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FOREWORD

This series of textbooks was begun in 1951 by the late Dr. James L. Meriam. At that time,
the books represented a revolutionary transformation in undergraduate mechanics education.
They became the definitive textbooks for the decades that followed as well as models for other
engineering mechanics texts that have subsequently appeared. Published under slightly differ-
ent titles prior to the 1978 First Editions, this textbook series has always been characterized by
logical organization, clear and rigorous presentation of the theory, instructive sample prob-
lems, and a rich collection of real-life problems, all with a high standard of illustration. In addi-
tion to the U.S. versions, the books have appeared in SI versions and have been translated into
many foreign languages. These texts collectively represent an international standard for un-
dergraduate texts in mechanics.

The innovations and contributions of Dr. Meriam (1917–2000) to the field of engineer-
ing mechanics cannot be overstated. He was one of the premier engineering educators of
the second half of the twentieth century. Dr. Meriam earned his B.E., M. Eng., and Ph.D.
degrees from Yale University. He had early industrial experience with Pratt and Whitney
Aircraft and the General Electric Company. During the Second World War he served in the
U.S. Coast Guard. He was a member of the faculty of the University of California–Berkeley,
Dean of Engineering at Duke University, a faculty member at the California Polytechnic
State University–San Luis Obispo, and visiting professor at the University of California–
Santa Barbara, finally retiring in 1990. Professor Meriam always placed great emphasis on
teaching, and this trait was recognized by his students wherever he taught. At Berkeley in
1963, he was the first recipient of the Outstanding Faculty Award of Tau Beta Pi, given pri-
marily for excellence in teaching. In 1978, he received the Distinguished Educator Award
for Outstanding Service to Engineering Mechanics Education from the American Society
for Engineering Education, and in 1992 was the Society’s recipient of the Benjamin Garver
Lamme Award, which is ASEE’s highest annual national award.

Dr. L. Glenn Kraige, coauthor of the Engineering Mechanics series since the early
1980s, has also made significant contributions to mechanics education. Dr. Kraige earned
his B.S., M.S., and Ph.D. degrees at the University of Virginia, principally in aerospace engi-
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neering, and he currently serves as Professor of Engineering Science and Mechanics at Vir-
ginia Polytechnic Institute and State University. During the mid 1970s, I had the singular
pleasure of chairing Professor Kraige’s graduate committee and take particular pride in the
fact that he was the first of my three dozen Ph.D. graduates. Professor Kraige was
invited by Professor Meriam to team with him and thereby ensure that the Meriam legacy
of textbook authorship excellence was carried forward to future generations. For the past
two and a half decades, this highly successful team of authors has made an enormous and
global impact on the education of several generations of engineers.

In addition to his widely recognized research and publications in the field of spacecraft
dynamics, Professor Kraige has devoted his attention to the teaching of mechanics at both
introductory and advanced levels. His outstanding teaching has been widely recognized and
has earned him teaching awards at the departmental, college, university, state, regional, and
national levels. These include the Francis J. Maher Award for excellence in education in the
Department of Engineering Science and Mechanics, the Wine Award for excellence in uni-
versity teaching, and the Outstanding Educator Award from the State Council of Higher Ed-
ucation for the Commonwealth of Virginia. In 1996, the Mechanics Division of ASEE
bestowed upon him the Archie Higdon Distinguished Educator Award. The Carnegie Foun-
dation for the Advancement of Teaching and the Council for Advancement and Support of
Education awarded him the distinction of Virginia Professor of the Year for 1997. In his
teaching, Professor Kraige stresses the development of analytical capabilities along with the
strengthening of physical insight and engineering judgment. Since the early 1980s, he has
worked on personal-computer software designed to enhance the teaching/learning process in
statics, dynamics, strength of materials, and higher-level areas of dynamics and vibrations.

The Sixth Edition of Engineering Mechanics continues the same high standards set by
previous editions and adds new features of help and interest to students. It contains a vast
collection of interesting and instructive problems. The faculty and students privileged to
teach or study from Professors Meriam and Kraige’s Engineering Mechanics will benefit
from the several decades of investment by two highly accomplished educators. Following
the pattern of the previous editions, this textbook stresses the application of theory to ac-
tual engineering situations, and at this important task it remains the best.

John L. Junkins
Distinguished Professor of Aerospace Engineering
Holder of the George J. Eppright Chair Professorship in Engineering
Texas A&M University
College Station, Texas
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PREFACE

Engineering mechanics is both a foundation and a framework for most of the branches
of engineering. Many of the topics in such areas as civil, mechanical, aerospace, and agricul-
tural engineering, and of course engineering mechanics itself, are based upon the subjects
of statics and dynamics. Even in a discipline such as electrical engineering, practitioners, in
the course of considering the electrical components of a robotic device or a manufacturing
process, may find themselves first having to deal with the mechanics involved.

Thus, the engineering mechanics sequence is critical to the engineering curriculum.
Not only is this sequence needed in itself, but courses in engineering mechanics also serve
to solidify the student’s understanding of other important subjects, including applied math-
ematics, physics, and graphics. In addition, these courses serve as excellent settings in
which to strengthen problem-solving abilities.

PH I L O S O P H Y

The primary purpose of the study of engineering mechanics is to develop the capacity to
predict the effects of force and motion while carrying out the creative design functions of en-
gineering. This capacity requires more than a mere knowledge of the physical and mathe-
matical principles of mechanics; also required is the ability to visualize physical
configurations in terms of real materials, actual constraints, and the practical limitations
which govern the behavior of machines and structures. One of the primary objectives in a
mechanics course is to help the student develop this ability to visualize, which is so vital to
problem formulation. Indeed, the construction of a meaningful mathematical model is often
a more important experience than its solution. Maximum progress is made when the princi-
ples and their limitations are learned together within the context of engineering application.

There is a frequent tendency in the presentation of mechanics to use problems mainly as
a vehicle to illustrate theory rather than to develop theory for the purpose of solving prob-
lems. When the first view is allowed to predominate, problems tend to become overly ideal-
ized and unrelated to engineering with the result that the exercise becomes dull, academic,
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and uninteresting. This approach deprives the student of valuable experience in formulating
problems and thus of discovering the need for and meaning of theory. The second view pro-
vides by far the stronger motive for learning theory and leads to a better balance between
theory and application. The crucial role played by interest and purpose in providing the
strongest possible motive for learning cannot be overemphasized.

Furthermore, as mechanics educators, we should stress the understanding that, at best,
theory can only approximate the real world of mechanics rather than the view that the real
world approximates the theory. This difference in philosophy is indeed basic and distinguishes
the engineering of mechanics from the science of mechanics.

Over the past several decades, several unfortunate tendencies have occurred in engineer-
ing education. First, emphasis on the geometric and physical meanings of prerequisite mathe-
matics appears to have diminished. Second, there has been a significant reduction and even
elimination of instruction in graphics, which in the past enhanced the visualization and repre-
sentation of mechanics problems. Third, in advancing the mathematical level of our treat-
ment of mechanics, there has been a tendency to allow the notational manipulation of vector
operations to mask or replace geometric visualization. Mechanics is inherently a subject
which depends on geometric and physical perception, and we should increase our efforts to de-
velop this ability.

A special note on the use of computers is in order. The experience of formulating prob-
lems, where reason and judgment are developed, is vastly more important for the student
than is the manipulative exercise in carrying out the solution. For this reason, computer
usage must be carefully controlled. At present, constructing free-body diagrams and formu-
lating governing equations are best done with pencil and paper. On the other hand, there
are instances in which the solution to the governing equations can best be carried out and
displayed using the computer. Computer-oriented problems should be genuine in the sense
that there is a condition of design or criticality to be found, rather than “makework” prob-
lems in which some parameter is varied for no apparent reason other than to force artificial
use of the computer. These thoughts have been kept in mind during the design of the com-
puter-oriented problems in the Sixth Edition. To conserve adequate time for problem for-
mulation, it is suggested that the student be assigned only a limited number of the
computer-oriented problems.

As with previous editions, this Sixth Edition of Engineering Mechanics is written with
the foregoing philosophy in mind. It is intended primarily for the first engineering course in
mechanics, generally taught in the second year of study. Engineering Mechanics is written in
a style which is both concise and friendly. The major emphasis is on basic principles and
methods rather than on a multitude of special cases. Strong effort has been made to show
both the cohesiveness of the relatively few fundamental ideas and the great variety of prob-
lems which these few ideas will solve.

PE D A G O G I C A L FE A T U R E S

The basic structure of this textbook consists of an article which rigorously treats the par-
ticular subject matter at hand, followed by one or more Sample Problems, followed by a group
of Problems. There is a Chapter Review at the end of each chapter which summarizes the main
points in that chapter, followed by a Review Problem set.

Problems

The 86 Sample Problems appear on specially colored pages by themselves. The solu-
tions to typical statics problems are presented in detail. In addition, explanatory and cau-
tionary notes (Helpful Hints) in blue type are number-keyed to the main presentation.

viii Preface
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There are 1020 homework exercises, of which approximately 50 percent are new to the
Sixth Edition. The problem sets are divided into Introductory Problems and Representative
Problems. The first section consists of simple, uncomplicated problems designed to help stu-
dents gain confidence with the new topic, while most of the problems in the second section
are of average difficulty and length. The problems are generally arranged in order of in-
creasing difficulty. More difficult exercises appear near the end of the Representative Prob-
lems and are marked with the symbol �. Computer-Oriented Problems, marked with an
asterisk, appear in a special section at the conclusion of the Review Problems at the end of
each chapter. The answers to all odd-numbered problems and to all difficult problems have
been provided.

SI units are used throughout the book, except in a limited number of introductory areas
in which U.S. units are mentioned for purposes of completeness and contrast with SI units.

A notable feature of the Sixth Edition, as with all previous editions, is the wealth of in-
teresting and important problems which apply to engineering design. Whether directly
identified as such or not, virtually all of the problems deal with principles and procedures
inherent in the design and analysis of engineering structures and mechanical systems.

Illustrations

In order to bring the greatest possible degree of realism and clarity to the illustrations,
this textbook series continues to be produced in full color. It is important to note that color
is used consistently for the identification of certain quantities:

• red for forces and moments,

• green for velocity and acceleration arrows,

• orange dashes for selected trajectories of moving points.

Subdued colors are used for those parts of an illustration which are not central to the
problem at hand. Whenever possible, mechanisms or objects which commonly have a cer-
tain color will be portrayed in that color. All of the fundamental elements of technical illus-
tration which have been an essential part of this Engineering Mechanics series of textbooks
have been retained. The author wishes to restate the conviction that a high standard of il-
lustration is critical to any written work in the field of mechanics.

Features New to this Edition

While retaining the hallmark features of all previous editions, we have incorporated
these improvements:

• All theory portions have been reexamined in order to maximize rigor, clarity,
readability, and level of friendliness.

• Key Concepts areas within the theory presentation have been specially marked and
highlighted.

• The Chapter Reviews are highlighted and feature itemized summaries.

• Approximately 50 percent of the homework problems are new to this Sixth Edition. All
new problems have been independently solved in order to ensure a high degree of
accuracy.

• New Sample Problems have been added, including ones with computer-oriented
solutions.

Preface ix
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• All Sample Problems are printed on specially colored pages for quick identification.

• Within-the-chapter photographs have been added in order to provide additional
connection to actual situations in which statics has played a major role.

OR G A N I Z A T I O N

In Chapter 1, the fundamental concepts necessary for the study of mechanics are
established.

In Chapter 2, the properties of forces, moments, couples, and resultants are developed
so that the student may proceed directly to the equilibrium of nonconcurrent force systems
in Chapter 3 without unnecessarily belaboring the relatively trivial problem of the equilib-
rium of concurrent forces acting on a particle.

In both Chapters 2 and 3, analysis of two-dimensional problems is presented in Sec-
tion A before three-dimensional problems are treated in Section B. With this arrangement,
the instructor may cover all of Chapter 2 before beginning Chapter 3 on equilibrium, or
the instructor may cover the two chapters in the order 2A, 3A, 2B, 3B. The latter order
treats force systems and equilibrium in two dimensions and then treats these topics in
three dimensions.

Application of equilibrium principles to simple trusses and to frames and machines is
presented in Chapter 4 with primary attention given to two-dimensional systems. A suffi-
cient number of three-dimensional examples are included, however, to enable students to
exercise more general vector tools of analysis.

The concepts and categories of distributed forces are introduced at the beginning of
Chapter 5, with the balance of the chapter divided into two main sections. Section A treats
centroids and mass centers; detailed examples are presented to help students master early
applications of calculus to physical and geometrical problems. Section B includes the special
topics of beams, flexible cables, and fluid forces, which may be omitted without loss of conti-
nuity of basic concepts.

Chapter 6 on friction is divided into Section A on the phenomenon of dry friction and
Section B on selected machine applications. Although Section B may be omitted if time is
limited, this material does provide a valuable experience for the student in dealing with
both concentrated and distributed friction forces.

Chapter 7 presents a consolidated introduction to virtual work with applications lim-
ited to single-degree-of-freedom systems. Special emphasis is placed on the advantage of the
virtual-work and energy method for interconnected systems and stability determination.
Virtual work provides an excellent opportunity to convince the student of the power of
mathematical analysis in mechanics.

Moments and products of inertia of areas are presented in Appendix A. This topic helps
to bridge the subjects of statics and solid mechanics. Appendix C contains a summary re-
view of selected topics of elementary mathematics as well as several numerical techniques
which the student should be prepared to use in computer-solved problems. Useful tables of
physical constants, centroids, and moments of inertia are contained in Appendix D.

SU P P L E M E N T S

The following items have been prepared to complement this textbook:

Instructor’s Manual

Prepared by the authors and independently checked, fully worked solutions to all prob-
lems in the text are available to faculty by contacting their local Wiley representative.
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Instructor Lecture Resources

(Available on the text website at www.wiley.com/college/meriam):

WileyPlus: A complete online learning system to help prepare and present lectures, assign
and manage homework, keep track of student progress, and customize your course content
and delivery. See the description in front of the book for more information, and the website
for a demonstration. Talk to your Wiley representative for details on setting up your Wiley-
Plus course.

Lecture software specifically designed to aid the lecturer, especially in larger classrooms. Writ-
ten by the author and incorporating figures from the textbooks, this software is based on the
Macromedia Flash® platform. Major use of animation, concise review of the theory, and numer-
ous sample problems make this tool extremely useful for student self-review of the material.

Web-based simulations of representative applications in statics that allow for “what-if”
analysis. Developed by Richard Stanley at Kettering University, these simulations allow an
instructor to explore a problem from the text by changing variables and seeing the new re-
sults develop both visually and numerically. Available from the book website and as part of
the WileyPlus package.

All figures in the text are available in electronic format for use in creating lecture presen-
tations.

All Sample Problems are available as electronic files for display and discussion in the
classroom.

Transparencies for over 40 solved problems, similar to those in the text, available in .pdf
format for use in lecture or for self-study by students.

Extension sample problems build on sample problems from the text and show how com-
putational tools can be used to investigate a variety of “what-if” scenarios. Available to both
faculty and students, these were developed by Brian Harper at Ohio State University.

Solving Mechanics Problems with . . . .

A series of booklets introduces the use of computational software in the solution of me-
chanics problems. Developed by Brian Harper at Ohio State University, the booklets are
available for Matlab, MathCAD, and Maple. Please contact your local Wiley representative
for more information, or visit the book website at www.wiley.com/college/meriam.

AC K N O W L E D G M E N T S

Special recognition is due Dr. A. L. Hale, formerly of Bell Telephone Laboratories, for
his continuing contribution in the form of invaluable suggestions and accurate checking of
the manuscript. Dr. Hale has rendered similar service for all previous versions of this entire
series of mechanics books, dating back to the 1950s. He reviews all aspects of the books, in-
cluding all old and new text and figures. Dr. Hale carries out an independent solution to
each new homework exercise and provides the author with suggestions and needed correc-
tions to the solutions which appear in the Instructor’s Manual. Dr. Hale is well known for
being extremely accurate in his work, and his fine knowledge of the English language is a
great asset which aids every user of this textbook. In addition to his normal contributions,
Dr. Hale has been the prime proofreader for the Sixth Edition.
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Structures which support large forces must be designed with the principles of mechanics foremost in
mind. In this view of Pittsburgh, one can see a variety of such structures.
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3

CHAPTER OUTLINE

1/1 Mechanics
1/2 Basic Concepts
1/3 Scalars and Vectors
1/4 Newton’s Laws
1/5 Units
1/6 Law of Gravitation
1/7 Accuracy, Limits, and Approximations
1/8 Problem Solving in Statics
1/9 Chapter Review

1 INTRODUCTION
TO STATICS

1/1 ME C H A N I C S

Mechanics is the physical science which deals with the effects of
forces on objects. No other subject plays a greater role in engineering
analysis than mechanics. Although the principles of mechanics are few,
they have wide application in engineering. The principles of mechanics
are central to research and development in the fields of vibrations, sta-
bility and strength of structures and machines, robotics, rocket and
spacecraft design, automatic control, engine performance, fluid flow,
electrical machines and apparatus, and molecular, atomic, and sub-
atomic behavior. A thorough understanding of this subject is an essen-
tial prerequisite for work in these and many other fields.

Mechanics is the oldest of the physical sciences. The early history of
this subject is synonymous with the very beginnings of engineering. The
earliest recorded writings in mechanics are those of Archimedes
(287–212 B.C.) on the principle of the lever and the principle of buoy-
ancy. Substantial progress came later with the formulation of the laws
of vector combination of forces by Stevinus (1548–1620), who also for-
mulated most of the principles of statics. The first investigation of a dy-
namics problem is credited to Galileo (1564–1642) for his experiments
with falling stones. The accurate formulation of the laws of motion, as
well as the law of gravitation, was made by Newton (1642–1727), who
also conceived the idea of the infinitesimal in mathematical analysis.
Substantial contributions to the development of mechanics were also
made by da Vinci, Varignon, Euler, D’Alembert, Lagrange, Laplace, and
others.

In this book we will be concerned with both the development of the
principles of mechanics and their application. The principles of mechan-
ics as a science are rigorously expressed by mathematics, and thus

Sir Isaac Newton
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mathematics plays an important role in the application of these princi-
ples to the solution of practical problems.

The subject of mechanics is logically divided into two parts: statics,
which concerns the equilibrium of bodies under action of forces, and
dynamics, which concerns the motion of bodies. Engineering Mechan-
ics is divided into these two parts, Vol. 1 Statics and Vol. 2 Dynamics.

1/2 BA S I C CO N C E P T S

The following concepts and definitions are basic to the study of me-
chanics, and they should be understood at the outset.

Space is the geometric region occupied by bodies whose positions
are described by linear and angular measurements relative to a coordi-
nate system. For three-dimensional problems, three independent coordi-
nates are needed. For two-dimensional problems, only two coordinates
are required.

Time is the measure of the succession of events and is a basic quan-
tity in dynamics. Time is not directly involved in the analysis of statics
problems.

Mass is a measure of the inertia of a body, which is its resistance to
a change of velocity. Mass can also be thought of as the quantity of mat-
ter in a body. The mass of a body affects the gravitational attraction
force between it and other bodies. This force appears in many applica-
tions in statics.

Force is the action of one body on another. A force tends to move a
body in the direction of its action. The action of a force is characterized
by its magnitude, by the direction of its action, and by its point of appli-
cation. Thus force is a vector quantity, and its properties are discussed
in detail in Chapter 2.

A particle is a body of negligible dimensions. In the mathematical
sense, a particle is a body whose dimensions are considered to be near
zero so that we may analyze it as a mass concentrated at a point. We
often choose a particle as a differential element of a body. We may treat
a body as a particle when its dimensions are irrelevant to the descrip-
tion of its position or the action of forces applied to it.

Rigid body. A body is considered rigid when the change in distance
between any two of its points is negligible for the purpose at hand. For
instance, the calculation of the tension in the cable which supports the
boom of a mobile crane under load is essentially unaffected by the small
internal deformations in the structural members of the boom. For the
purpose, then, of determining the external forces which act on the boom,
we may treat it as a rigid body. Statics deals primarily with the calcula-
tion of external forces which act on rigid bodies in equilibrium. Determi-
nation of the internal deformations belongs to the study of the mechanics
of deformable bodies, which normally follows statics in the curriculum.

1/3 SC A L A R S A N D VE C T O R S

We use two kinds of quantities in mechanics—scalars and vectors.
Scalar quantities are those with which only a magnitude is associated.
Examples of scalar quantities are time, volume, density, speed, energy,

4 Chapter  1 Introduct ion to Stat ics
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and mass. Vector quantities, on the other hand, possess direction as well
as magnitude, and must obey the parallelogram law of addition as de-
scribed later in this article. Examples of vector quantities are displace-
ment, velocity, acceleration, force, moment, and momentum. Speed is a
scalar. It is the magnitude of velocity, which is a vector. Thus velocity is
specified by a direction as well as a speed.

Vectors representing physical quantities can be classified as free,
sliding, or fixed.

A free vector is one whose action is not confined to or associated
with a unique line in space. For example, if a body moves without rota-
tion, then the movement or displacement of any point in the body may
be taken as a vector. This vector describes equally well the direction and
magnitude of the displacement of every point in the body. Thus, we may
represent the displacement of such a body by a free vector.

A sliding vector has a unique line of action in space but not a
unique point of application. For example, when an external force acts on
a rigid body, the force can be applied at any point along its line of action
without changing its effect on the body as a whole,* and thus it is a slid-
ing vector.

A fixed vector is one for which a unique point of application is
specified. The action of a force on a deformable or nonrigid body must be
specified by a fixed vector at the point of application of the force. In this
instance the forces and deformations within the body depend on the
point of application of the force, as well as on its magnitude and line of
action.

Conventions for Equations and Diagrams

A vector quantity V is represented by a line segment, Fig. 1/1, hav-
ing the direction of the vector and having an arrowhead to indicate the
sense. The length of the directed line segment represents to some conve-
nient scale the magnitude �V� of the vector, which is printed with light-
face italic type V. For example, we may choose a scale such that an
arrow one centimeter long represents a force of twenty newtons.

In scalar equations, and frequently on diagrams where only the
magnitude of a vector is labeled, the symbol will appear in lightface
italic type. Boldface type is used for vector quantities whenever the di-
rectional aspect of the vector is a part of its mathematical representa-
tion. When writing vector equations, always be certain to preserve the
mathematical distinction between vectors and scalars. In handwritten
work, use a distinguishing mark for each vector quantity, such as an un-
derline, V, or an arrow over the symbol, V

�
, to take the place of boldface

type in print.

Working with Vectors

The direction of the vector V may be measured by an angle � from
some known reference direction as shown in Fig. 1/1. The negative of V
is a vector �V having the same magnitude as V but directed in the
sense opposite to V, as shown in Fig. 1/1.

Art ic le  1/3 Scalars  and Vectors 5

Figure 1/1

*This is the principle of transmissibility, which is discussed in Art. 2/2.
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Vectors must obey the parallelogram law of combination. This law
states that two vectors V1 and V2, treated as free vectors, Fig. 1/2a, may
be replaced by their equivalent vector V, which is the diagonal of the
parallelogram formed by V1 and V2 as its two sides, as shown in Fig.
1/2b. This combination is called the vector sum, and is represented by
the vector equation

where the plus sign, when used with the vector quantities (in boldface
type), means vector and not scalar addition. The scalar sum of the mag-
nitudes of the two vectors is written in the usual way as V1 � V2. The
geometry of the parallelogram shows that V � V1 � V2.

The two vectors V1 and V2, again treated as free vectors, may also be
added head-to-tail by the triangle law, as shown in Fig. 1/2c, to obtain the
identical vector sum V. We see from the diagram that the order of addi-
tion of the vectors does not affect their sum, so that V1 � V2 � V2 � V1.

The difference V1 � V2 between the two vectors is easily obtained
by adding �V2 to V1 as shown in Fig. 1/3, where either the triangle or
parallelogram procedure may be used. The difference V� between the
two vectors is expressed by the vector equation

where the minus sign denotes vector subtraction.
Any two or more vectors whose sum equals a certain vector V are

said to be the components of that vector. Thus, the vectors V1 and V2 in
Fig. 1/4a are the components of V in the directions 1 and 2, respectively.
It is usually most convenient to deal with vector components which are
mutually perpendicular; these are called rectangular components. The

V� � V1 � V2

V � V1 � V2

6 Chapter  1 Introduct ion to Stat ics
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vectors Vx and Vy in Fig. 1/4b are the x- and y-components, respectively,
of V. Likewise, in Fig. 1/4c, Vx� and Vy� are the x�- and y�-components of
V. When expressed in rectangular components, the direction of the vec-
tor with respect to, say, the x-axis is clearly specified by the angle �,
where

A vector V may be expressed mathematically by multiplying its
magnitude V by a vector n whose magnitude is one and whose direction
coincides with that of V. The vector n is called a unit vector. Thus,

In this way both the magnitude and direction of the vector are conve-
niently contained in one mathematical expression. In many problems,
particularly three-dimensional ones, it is convenient to express the rec-
tangular components of V, Fig. 1/5, in terms of unit vectors i, j, and k,
which are vectors in the x-, y-, and z-directions, respectively, with unit
magnitudes. Because the vector V is the vector sum of the components
in the x-, y-, and z-directions, we can express V as follows:

We now make use of the direction cosines l, m, and n of V, which are de-
fined by

Thus, we may write the magnitudes of the components of V as

where, from the Pythagorean theorem,

Note that this relation implies that l2 � m2 � n2 � 1.

1/4 NE W T O N’S LA W S

Sir Isaac Newton was the first to state correctly the basic laws gov-
erning the motion of a particle and to demonstrate their validity.*
Slightly reworded with modern terminology, these laws are:

Law 1. A particle remains at rest or continues to move with uni-
form velocity (in a straight line with a constant speed) if there is no un-
balanced force acting on it.

V 

2 � Vx 

2 � Vy 

2 � Vz 

2

Vx � lV   Vy � mV   Vz � nV

l � cos �x   m � cos �y   n � cos �z

V � Vxi � Vy j � Vzk

V � Vn

� � tan�1 
Vy

Vx

Art ic le  1/4 Newton’s  Laws 7
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*Newton’s original formulations may be found in the translation of his Principia (1687) re-
vised by F. Cajori, University of California Press, 1934.
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Law II. The acceleration of a particle is proportional to the vector
sum of forces acting on it, and is in the direction of this vector sum.

Law III. The forces of action and reaction between interacting bod-
ies are equal in magnitude, opposite in direction, and collinear (they lie
on the same line).

The correctness of these laws has been verified by innumerable ac-
curate physical measurements. Newton’s second law forms the basis for
most of the analysis in dynamics. As applied to a particle of mass m, it
may be stated as

(1/1)

where F is the vector sum of forces acting on the particle and a is the re-
sulting acceleration. This equation is a vector equation because the di-
rection of F must agree with the direction of a, and the magnitudes of F
and ma must be equal.

Newton’s first law contains the principle of the equilibrium of
forces, which is the main topic of concern in statics. This law is actually
a consequence of the second law, since there is no acceleration when the
force is zero, and the particle either is at rest or is moving with a uni-
form velocity. The first law adds nothing new to the description of mo-
tion but is included here because it was part of Newton’s classical
statements.

The third law is basic to our understanding of force. It states that
forces always occur in pairs of equal and opposite forces. Thus, the
downward force exerted on the desk by the pencil is accompanied by an
upward force of equal magnitude exerted on the pencil by the desk. This
principle holds for all forces, variable or constant, regardless of their
source, and holds at every instant of time during which the forces are
applied. Lack of careful attention to this basic law is the cause of fre-
quent error by the beginner.

In the analysis of bodies under the action of forces, it is absolutely
necessary to be clear about which force of each action-reaction pair is
being considered. It is necessary first of all to isolate the body under con-
sideration and then to consider only the one force of the pair which acts
on the body in question.

1/5 UN I T S

In mechanics we use four fundamental quantities called dimensions.
These are length, mass, force, and time. The units used to measure these
quantities cannot all be chosen independently because they must be con-
sistent with Newton’s second law, Eq. 1/1. Although there are a number
of different systems of units, only the two systems most commonly used
in science and technology will be used in this text. The four fundamental
dimensions and their units and symbols in the two systems are summa-
rized in the following table.

F � ma

8 Chapter  1 Introduct ion to Stat ics
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SI Units

The International System of Units, abbreviated SI (from the
French, Système International d’Unités), is accepted in the United
States and throughout the world, and is a modern version of the metric
system. By international agreement, SI units will in time replace other
systems. As shown in the table, in SI, the units kilogram (kg) for mass,
meter (m) for length, and second (s) for time are selected as the base
units, and the newton (N) for force is derived from the preceding three
by Eq. 1/1. Thus, force (N) � mass (kg) � acceleration (m/s2) or

Thus, 1 newton is the force required to give a mass of 1 kg an accelera-
tion of 1 m/s2.

Consider a body of mass m which is allowed to fall freely near the
surface of the earth. With only the force of gravitation acting on the
body, it falls with an acceleration g toward the center of the earth. This
gravitational force is the weight W of the body, and is found from Eq. 1/1:

U.S. Customary Units

The U.S. customary, or British system of units, also called the foot-
pound-second (FPS) system, has been the common system in business
and industry in English-speaking countries. Although this system will
in time be replaced by SI units, for many more years engineers must be
able to work with both SI units and FPS units.

As shown in the table, in the U.S. or FPS system, the units of feet
(ft) for length, seconds (sec) for time, and pounds (lb) for force are se-
lected as base units, and the slug for mass is derived from Eq. 1/1. Thus,
force (lb) � mass (slugs) � acceleration (ft/sec2), or

Therefore, 1 slug is the mass which is given an acceleration of 1 ft/sec2

when acted on by a force of 1 lb. If W is the gravitational force or weight
and g is the acceleration due to gravity, Eq. 1/1 gives

m(slugs) � 
W (lb)

g (ft/sec2)

slug � lb-sec2

ft

W (N) � m (kg) � g (m/s2)

N � kg � m/s2

Art ic le  1/5 Units 9
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Note that seconds is abbreviated as s in SI units, and as sec in FPS
units.

In U.S. units the pound is also used on occasion as a unit of mass,
especially to specify thermal properties of liquids and gases. When dis-
tinction between the two units is necessary, the force unit is frequently
written as lbf and the mass unit as lbm. In this book we use almost ex-
clusively the force unit, which is written simply as lb. Other common
units of force in the U.S. system are the kilopound (kip), which equals
1000 lb, and the ton, which equals 2000 lb.

The International System of Units (SI) is termed an absolute system
because the measurement of the base quantity mass is independent of
its environment. On the other hand, the U.S. system (FPS) is termed a
gravitational system because its base quantity force is defined as the
gravitational attraction (weight) acting on a standard mass under speci-
fied conditions (sea level and 45� latitude). A standard pound is also the
force required to give a one-pound mass an acceleration of 32.1740
ft/sec2.

In SI units the kilogram is used exclusively as a unit of mass—never
force. In the MKS (meter, kilogram, second) gravitational system, which
has been used for many years in non-English-speaking countries, the
kilogram, like the pound, has been used both as a unit of force and as a
unit of mass.

Primary Standards

Primary standards for the measurements of mass, length, and time
have been established by international agreement and are as follows:

Mass. The kilogram is defined as the mass of a specific platinum–
iridium cylinder which is kept at the International Bureau of Weights
and Measures near Paris, France. An accurate copy of this cylinder is
kept in the United States at the National Institute of Standards and
Technology (NIST), formerly the National Bureau of Standards, and
serves as the standard of mass for the United States.

Length. The meter, originally defined as one ten-millionth of the
distance from the pole to the equator along the meridian through Paris,
was later defined as the length of a specific platinum–iridium bar kept at
the International Bureau of Weights and Measures. The difficulty of ac-
cessing the bar and reproducing accurate measurements prompted the
adoption of a more accurate and reproducible standard of length for the
meter, which is now defined as 1 650 763.73 wavelengths of a specific ra-
diation of the krypton-86 atom.

Time. The second was originally defined as the fraction 1/(86 400)
of the mean solar day. However, irregularities in the earth’s rotation led
to difficulties with this definition, and a more accurate and reproducible
standard has been adopted. The second is now defined as the duration of
9 192 631 770 periods of the radiation of a specific state of the cesium-
133 atom.

For most engineering work, and for our purpose in studying me-
chanics, the accuracy of these standards is considerably beyond our

10 Chapter  1 Introduct ion to Stat ics
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needs. The standard value for gravitational acceleration g is its value at
sea level and at a 45� latitude. In the two systems these values are

The approximate values of 9.81 m/s2 and 32.2 ft/sec2, respectively, are
sufficiently accurate for the vast majority of engineering calculations.

Unit Conversions

The characteristics of SI units are shown inside the front cover of
this book, along with the numerical conversions between U.S. custom-
ary and SI units. In addition, charts giving the approximate conversions
between selected quantities in the two systems appear inside the back
cover for convenient reference. Although these charts are useful for ob-
taining a feel for the relative size of SI and U.S. units, in time engineers
will find it essential to think directly in terms of SI units without con-
verting from U.S. units. In statics we are primarily concerned with the
units of length and force, with mass needed only when we compute gravi-
tational force, as explained previously.

Figure 1/6 depicts examples of force, mass, and length in the two
systems of units, to aid in visualizing their relative magnitudes.

 U.S. units    g � 32.1740 ft/sec2

 SI units  g � 9.806 65 m/s2

Art ic le  1/5 Units 11
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1/6 LA W O F GR A V I T A T I O N

In statics as well as dynamics we often need to compute the weight
of a body, which is the gravitational force acting on it. This computation
depends on the law of gravitation, which was also formulated by New-
ton. The law of gravitation is expressed by the equation

(1/2)

where F � the mutual force of attraction between two particles

G � a universal constant known as the constant of gravitation

m1, m2 � the masses of the two particles

r � the distance between the centers of the particles

The mutual forces F obey the law of action and reaction, since they are
equal and opposite and are directed along the line joining the centers of
the particles, as shown in Fig. 1/7. By experiment the gravitational con-
stant is found to be G � 6.673(10�11) 

Gravitational Attraction of the Earth

Gravitational forces exist between every pair of bodies. On the sur-
face of the earth the only gravitational force of appreciable magnitude is
the force due to the attraction of the earth. For example, each of two
iron spheres 100 mm in diameter is attracted to the earth with a gravi-
tational force of 37.1 N, which is its weight. On the other hand, the force
of mutual attraction between the spheres if they are just touching is
0.000 000 095 1 N. This force is clearly negligible compared with the
earth’s attraction of 37.1 N. Consequently the gravitational attraction
of the earth is the only gravitational force we need to consider for most
engineering applications on the earth’s surface.

The gravitational attraction of the earth on a body (its weight)
exists whether the body is at rest or in motion. Because this attrac-
tion is a force, the weight of a body should be expressed in newtons
(N) in SI units and in pounds (lb) in U.S. customary units. Unfortu-
nately in common practice the mass unit kilogram (kg) has been fre-
quently used as a measure of weight. This usage should disappear in
time as SI units become more widely used, because in SI units the
kilogram is used exclusively for mass and the newton is used for
force, including weight.

For a body of mass m near the surface of the earth, the gravitational
attraction F on the body is specified by Eq. 1/2. We usually denote the

m3/(kg � s2).

F � G 
m1m2

r2

12 Chapter  1 Introduct ion to Stat ics
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magnitude of this gravitational force or weight with the symbol W. Be-
cause the body falls with an acceleration g, Eq. 1/1 gives

(1/3)

The weight W will be in newtons (N) when the mass m is in kilograms
(kg) and the acceleration of gravity g is in meters per second squared
(m/s2). In U.S. customary units, the weight W will be in pounds (lb)
when m is in slugs and g is in feet per second squared. The standard val-
ues for g of 9.81 m/s2 and 32.2 ft/sec2 will be sufficiently accurate for our
calculations in statics.

The true weight (gravitational attraction) and the apparent weight
(as measured by a spring scale) are slightly different. The difference,
which is due to the rotation of the earth, is quite small and will be ne-
glected. This effect will be discussed in Vol. 2 Dynamics.

1/7 AC C U R A C Y ,  L I M I T S ,  A N D AP P R O X I M A T I O N S

The number of significant figures in an answer should be no greater
than the number of figures justified by the accuracy of the given data.
For example, suppose the 24-mm side of a square bar was measured to
the nearest millimeter, so we know the side length to two significant fig-
ures. Squaring the side length gives an area of 576 mm2. However, ac-
cording to our rule, we should write the area as 580 mm2, using only two
significant figures.

When calculations involve small differences in large quantities,
greater accuracy in the data is required to achieve a given accuracy in
the results. Thus, for example, it is necessary to know the numbers
4.2503 and 4.2391 to an accuracy of five significant figures to express
their difference 0.0112 to three-figure accuracy. It is often difficult in
lengthy computations to know at the outset how many significant fig-
ures are needed in the original data to ensure a certain accuracy in the
answer. Accuracy to three significant figures is considered satisfactory
for most engineering calculations.

In this text, answers will generally be shown to three significant fig-
ures unless the answer begins with the digit 1, in which case the answer
will be shown to four significant figures. For purposes of calculation,
consider all data given in this book to be exact.

Differentials

The order of differential quantities frequently causes misunder-
standing in the derivation of equations. Higher-order differentials may
always be neglected compared with lower-order differentials when the
mathematical limit is approached. For example, the element of volume
�V of a right circular cone of altitude h and base radius r may be taken
to be a circular slice a distance x from the vertex and of thickness �x.
The expression for the volume of the element is

�V � �r2

h2
 [x2 �x � x(�x)2 � 13(�x)3]

W � mg

Art ic le  1/7 Accuracy ,  L imits ,  and Approximat ions 13
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Note that, when passing to the limit in going from �V to dV and from
�x to dx, the terms containing (�x)2 and (�x)3 drop out, leaving merely

which gives an exact expression when integrated.

Small-Angle Approximations

When dealing with small angles, we can usually make use of simpli-
fying approximations. Consider the right triangle of Fig. 1/8 where the
angle �, expressed in radians, is relatively small. If the hypotenuse is
unity, we see from the geometry of the figure that the arc length 1 � �

and sin � are very nearly the same. Also cos � is close to unity. Further-
more, sin � and tan � have almost the same values. Thus, for small an-
gles we may write

provided that the angles are expressed in radians. These approximations
may be obtained by retaining only the first terms in the series expan-
sions for these three functions. As an example of these approximations,
for an angle of 1�

If a more accurate approximation is desired, the first two terms may
be retained, and they are

where the angles must be expressed in radians. (To convert degrees to
radians, multiply the angle in degrees by �/180�.) The error in replacing
the sine by the angle for 1� (0.0175 rad) is only 0.005 percent. For 5�

(0.0873 rad) the error is 0.13 percent, and for 10� (0.1745 rad), the error
is still only 0.51 percent. As the angle � approaches zero, the following
relations are true in the mathematical limit:

where the differential angle d� must be expressed in radians.

1/8 PR O B L E M SO L V I N G I N ST A T I C S

We study statics to obtain a quantitative description of forces which
act on engineering structures in equilibrium. Mathematics establishes
the relations between the various quantities involved and enables us to
predict effects from these relations. We use a dual thought process in

sin d� � tan d� � d�   cos d� � 1

sin � � � � �3/6   tan � � � � �3/3   cos � � 1 � �2/2

 sin 1� � 0.017 452  cos 1� � 0.999 848

 1� � 0.017 453 rad    tan 1� � 0.017 455

sin � � tan � � �   cos � � 1

dV � �r2

h2
 x2 dx

14 Chapter  1 Introduct ion to Stat ics
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solving statics problems: We think about both the physical situation and
the corresponding mathematical description. In the analysis of every
problem, we make a transition between the physical and the mathemati-
cal. One of the most important goals for the student is to develop the
ability to make this transition freely.

Making Appropriate Assumptions

We should recognize that the mathematical formulation of a
physical problem represents an ideal description, or model, which ap-
proximates but never quite matches the actual physical situation.
When we construct an idealized mathematical model for a given engi-
neering problem, certain approximations will always be involved.
Some of these approximations may be mathematical, whereas others
will be physical.

For instance, it is often necessary to neglect small distances, angles,
or forces compared with large distances, angles, or forces. Suppose a
force is distributed over a small area of the body on which it acts. We
may consider it to be a concentrated force if the dimensions of the area
involved are small compared with other pertinent dimensions.

We may neglect the weight of a steel cable if the tension in the cable
is many times greater than its total weight. However, if we must calcu-
late the deflection or sag of a suspended cable under the action of its
weight, we may not ignore the cable weight.

Thus, what we may assume depends on what information is desired
and on the accuracy required. We must be constantly alert to the various
assumptions called for in the formulation of real problems. The ability to
understand and make use of the appropriate assumptions in the formula-
tion and solution of engineering problems is certainly one of the most im-
portant characteristics of a successful engineer. One of the major aims of
this book is to provide many opportunities to develop this ability through
the formulation and analysis of many practical problems involving the
principles of statics.

Using Graphics

Graphics is an important analytical tool for three reasons:

1. We use graphics to represent a physical system on paper with a
sketch or diagram. Representing a problem geometrically helps us
with its physical interpretation, especially when we must visualize
three-dimensional problems.

2. We can often obtain a graphical solution to problems more easily
than with a direct mathematical solution. Graphical solutions are
both a practical way to obtain results, and an aid in our thought
processes. Because graphics represents the physical situation and
its mathematical expression simultaneously, graphics helps us make
the transition between the two.

3. Charts or graphs are valuable aids for representing results in a form
which is easy to understand.

Art ic le  1/8 Problem Solv ing in  Stat ics 15
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Formulating Problems and Obtaining Solutions

In statics, as in all engineering problems, we need to use a precise
and logical method for formulating problems and obtaining their solu-
tions. We formulate each problem and develop its solution through the
following sequence of steps.

1. Formulate the problem:

(a) State the given data.

(b) State the desired result.

(c) State your assumptions and approximations.

2. Develop the solution:

(a) Draw any diagrams you need to understand the relationships.

(b) State the governing principles to be applied to your solution.

(c) Make your calculations.

(d) Ensure that your calculations are consistent with the accuracy
justified by the data.

(e) Be sure that you have used consistent units throughout your
calculations.

(f ) Ensure that your answers are reasonable in terms of magni-
tudes, directions, common sense, etc.

(g) Draw conclusions.

Keeping your work neat and orderly will help your thought process and
enable others to understand your work. The discipline of doing orderly
work will help you develop skill in formulation and analysis. Problems
which seem complicated at first often become clear when you approach
them with logic and discipline.

The Free-Body Diagram

The subject of statics is based on surprisingly few fundamental con-
cepts and involves mainly the application of these basic relations to a va-
riety of situations. In this application the method of analysis is all
important. In solving a problem, it is essential that the laws which apply
be carefully fixed in mind and that we apply these principles literally
and exactly. In applying the principles of mechanics to analyze forces
acting on a body, it is essential that we isolate the body in question from
all other bodies so that a complete and accurate account of all forces act-
ing on this body can be taken. This isolation should exist mentally and
should be represented on paper. The diagram of such an isolated body
with the representation of all external forces acting on it is called a free-
body diagram.

The free-body-diagram method is the key to the understanding of
mechanics. This is so because the isolation of a body is the tool by which

16 Chapter  1 Introduct ion to Stat ics
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cause and effect are clearly separated, and by which our attention is
clearly focused on the literal application of a principle of mechanics. The
technique of drawing free-body diagrams is covered in Chapter 3, where
they are first used.

Numerical Values versus Symbols

In applying the laws of statics, we may use numerical values to
represent quantities, or we may use algebraic symbols, and leave the
answer as a formula. When numerical values are used, the magnitude
of each quantity expressed in its particular units is evident at each
stage of the calculation. This is useful when we need to know the mag-
nitude of each term.

The symbolic solution, however, has several advantages over the
numerical solution. First, the use of symbols helps to focus our atten-
tion on the connection between the physical situation and its related
mathematical description. Second, we can use a symbolic solution re-
peatedly for obtaining answers to the same type of problem, but hav-
ing different units or numerical values. Third, a symbolic solution
enables us to make a dimensional check at every step, which is more
difficult to do when numerical values are used. In any equation repre-
senting a physical situation, the dimensions of every term on both
sides of the equation must be the same. This property is called dimen-
sional homogeneity.

Thus, facility with both numerical and symbolic forms of solution is
essential.

Solution Methods

Solutions to the problems of statics may be obtained in one or more
of the following ways.

1. Obtain mathematical solutions by hand, using either algebraic
symbols or numerical values. We can solve most problems this
way.

2. Obtain graphical solutions for certain problems.

3. Solve problems by computer. This is useful when a large number of
equations must be solved, when a parameter variation must be
studied, or when an intractable equation must be solved.

Many problems can be solved with two or more of these methods. The
method utilized depends partly on the engineer’s preference and partly
on the type of problem to be solved. The choice of the most expedient
method of solution is an important aspect of the experience to be gained
from the problem work. There are a number of problems in Vol. 1 Stat-
ics which are designated as Computer-Oriented Problems. These prob-
lems appear at the end of the Review Problem sets and are selected to
illustrate the type of problem for which solution by computer offers a
distinct advantage.

Art ic le  1/8 Problem Solv ing in  Stat ics 17
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1/9 CH A P T E R RE V I E W

This chapter has introduced the concepts, definitions, and units
used in statics, and has given an overview of the procedure used to for-
mulate and solve problems in statics. Now that you have finished this
chapter, you should be able to do the following:

1. Express vectors in terms of unit vectors and perpendicular com-
ponents, and perform vector addition and subtraction.

2. State Newton’s laws of motion.

3. Perform calculations using SI and U.S. units, using appropriate
accuracy.

4. Express the law of gravitation and calculate the weight of an object.

5. Apply simplifications based on differential and small-angle approx-
imations.

6. Describe the methodology used to formulate and solve statics
problems.

18 Chapter  1 Introduct ion to Stat ics
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Sample Problem 1/1

Determine the weight in newtons of a car whose mass is 1400 kg. Convert
the mass of the car to slugs and then determine its weight in pounds.

Solution. From relationship 1/3, we have

Ans.

From the table of conversion factors inside the front cover of the textbook, we
see that 1 slug is equal to 14.594 kg. Thus, the mass of the car in slugs is

Ans.

Finally, its weight in pounds is

Ans.

As another route to the last result, we can convert from kg to lbm. Again using
the table inside the front cover, we have

The weight in pounds associated with the mass of 3090 lbm is 3090 lb, as calcu-
lated above. We recall that 1 lbm is the amount of mass which under standard
conditions has a weight of 1 lb of force. We rarely refer to the U.S. mass unit lbm
in this textbook series, but rather use the slug for mass. The sole use of slug,
rather than the unnecessary use of two units for mass, will prove to be powerful
and simple—especially in dynamics.

m � 1400 kg� 1 lbm
0.45359 kg� � 3090 lbm

W � mg � (95.9)(32.2) � 3090 lb

m � 1400 kg� 1 slug
14.594 kg� � 95.9 slugs

W � mg � 1400(9.81) � 13 730 N

Art ic le  1/9 Chapter  Review 19

Helpful Hints

� Our calculator indicates a result of
13 734 N. Using the rules of signifi-
cant-figure display used in this text-
book, we round the written result to
four significant figures, or 13 730 N.
Had the number begun with any
digit other than 1, we would have
rounded to three significant figures.

� A good practice with unit conversion
is to multiply by a factor such as 

which has a value of 1,

because the numerator and the de-
nominator are equivalent. Make sure
that cancellation of the units leaves
the units desired; here the units of
kg cancel, leaving the desired units
of slug.

� 1 slug
14.594 kg�,

�

�

�

� Note that we are using a previously calculated result (95.9 slugs). We must be sure that when a calculated number is
needed in subsequent calculations, it is retained in the calculator to its full accuracy, (95.929834 . . .) until it is needed.
This may require storing it in a register upon its initial calculation and recalling it later. We must not merely punch 95.9
into our calculator and proceed to multiply by 32.2—this practice will result in loss of numerical accuracy. Some
individuals like to place a small indication of the storage register used in the right margin of the work paper, directly
beside the number stored.

Sample Problem 1/2

Use Newton’s law of universal gravitation to calculate the weight of a 70-kg
person standing on the surface of the earth. Then repeat the calculation by using
W � mg and compare your two results. Use Table D/2 as needed.

Solution. The two results are

Ans.

Ans.

The discrepancy is due to the fact that Newton’s universal gravitational law does
not take into account the rotation of the earth. On the other hand, the value g �

9.81 m/s2 used in the second equation does account for the earth’s rotation. Note
that had we used the more accurate value g � 9.80665 m/s2 (which likewise ac-
counts for the earth’s rotation) in the second equation, the discrepancy would
have been larger (686 N would have been the result).

 W � mg � 70(9.81) � 687 N

 W � 
Gmem

R2
 � 

(6.673 � 10�11)(5.976 � 1024)(70)

[6371 � 103]2
 � 688 N�

Helpful Hint

� The effective distance between the
mass centers of the two bodies in-
volved is the radius of the earth.
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20 Chapter  1 Introduct ion to Stat ics

Sample Problem 1/3

For the vectors V1 and V2 shown in the figure,

(a) determine the magnitude S of their vector sum S � V1 � V2

(b) determine the angle � between S and the positive x-axis

(c) write S as a vector in terms of the unit vectors i and j and then write a unit
vector n along the vector sum S

(d) determine the vector difference D � V1 � V2

Solution (a) We construct to scale the parallelogram shown in Fig. a for adding
V1 and V2. Using the law of cosines, we have

Ans.

(b) Using the law of sines for the lower triangle, we have

Ans.

(c) With knowledge of both S and �, we can write the vector S as

Ans.

Then Ans.

(d) The vector difference D is

Ans.

The vector D is shown in Fig. b as D � V1 � (�V2).

 � 0.230i � 4.33j units

 D � V1 � V2 � 4(i cos 45� � j sin 45�) � 3(i cos 30� � j sin 30�)

 n � S
S

 � 
5.43i � 1.328j

5.59
 � 0.971i � 0.238j

 � S[i cos 13.76� � j sin 13.76�] � 5.43i � 1.328j units

 S � S[i cos � � j sin �]

 (� � 30�) � 43.8�   � � 13.76�

 sin(� � 30�) � 0.692

 sin 105�
5.59

 � 
sin(� � 30�)

4

 S � 5.59 units

 S2 � 32 � 42 � 2(3)(4) cos 105�

�

�

Helpful Hints

� You will frequently use the laws of
cosines and sines in mechanics. See
Art. C/6 of Appendix C for a review of
these important geometric principles.

� A unit vector may always be formed
by dividing a vector by its magnitude.
Note that a unit vector is dimen-
sionless.
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Art ic le  1/9 Problems 21

1/8 Suppose that two nondimensional quantities are ex-
actly A � 8.67 and B � 1.429. Using the rules for sig-
nificant figures as stated in this chapter, express the
four quantities (A � B), (A � B), (AB), and (A/B).

1/9 Compute the magnitude F of the force which the sun
exerts on the earth. Perform the calculation first in
newtons and then convert your result to pounds.
Refer to Table D/2 for necessary physical quantities.

Ans. F � 3.55(1022) N, F � 7.97(1021) lb

Problem 1/9

1/10 The element of volume �V of the right circular cone
of altitude h and base radius r is formed by slicing
the cone at a distance x from the vertex. If the slice
is of finite thickness �x, show that its volume �V is

(Recall the for-
mula for the volume of a cone.) Explain what hap-
pens to the second and third terms when �x becomes
the infinitesimal dx.

Problem 1/10

1/11 What is the percent error n in replacing the sine of
20� by the value of the angle in radians? Repeat for
the tangent of 20�, and explain the qualitative differ-
ence in the two error percentages.

Ans. n � 2.06%, n � 4.09%

[x2 �x � x(�x)2 � 13 (�x)3].[�r2/h2]

PROBLEMS

1/1 Determine the angles made by the vector V � �36i �

15j with the positive x- and y-axes. Write the unit vec-
tor n in the direction of V.

Ans. �x � 157.4�, �y � 67.4�

n � �0.923i � 0.385j

1/2 Determine the magnitude of the vector sum V �

V1 � V2 and the angle �x which V makes with the
positive x-axis. Complete both graphical and alge-
braic solutions.

Problem 1/2

1/3 For the given vectors V1 and V2 of Prob. 1/2, deter-
mine the magnitude of the vector difference V� �

V2 � V1 and the angle �x which V� makes with the
positive x-axis. Complete both graphical and alge-
braic solutions.

Ans. V� � 36.1 units, �x � 174.8�

1/4 A force is specified by the vector F � 160i � 80j �

120k N. Calculate the angles made by F with the posi-
tive x-, y-, and z-axes.

1/5 What is the mass in both slugs and kilograms of a
1000-lb beam?

Ans. m � 31.1 slugs, m � 454 kg

1/6 From the gravitational law calculate the weight W
(gravitational force with respect to the earth) of an
80-kg man in a spacecraft traveling in a circular orbit
250 km above the earth’s surface. Express W in both
newtons and pounds.

1/7 Determine the weight in newtons of a woman whose
weight in pounds is 125. Also, find her mass in slugs
and in kilograms. Determine your own weight in
newtons.

Ans. W � 556 N, m � 3.88 slugs, m � 56.7 kg
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The properties of force systems must be thoroughly understood by the engineers who design devices such as this
crane and its lifting harness. Try to visualize the forces present in the various parts of this system.
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CHAPTER OUTLINE

2/1 Introduction
2/2 Force

SECTION A TWO-DIMENSIONAL FORCE SYSTEMS
2/3 Rectangular Components
2/4 Moment
2/5 Couple
2/6 Resultants

SECTION B THREE-DIMENSIONAL FORCE SYSTEMS
2/7 Rectangular Components
2/8 Moment and Couple
2/9 Resultants
2/10 Chapter Review

2 FORCE SYSTEMS

2/1 IN T R O D U C T I O N

In this and the following chapters, we study the effects of forces
which act on engineering structures and mechanisms. The experience
gained here will help you in the study of mechanics and in other sub-
jects such as stress analysis, design of structures and machines, and
fluid flow. This chapter lays the foundation for a basic understanding
not only of statics but also of the entire subject of mechanics, and you
should master this material thoroughly.

2/2 FO R C E

Before dealing with a group or system of forces, it is necessary to
examine the properties of a single force in some detail. A force has been
defined in Chapter 1 as an action of one body on another. In dynamics
we will see that a force is defined as an action which tends to cause ac-
celeration of a body. A force is a vector quantity, because its effect de-
pends on the direction as well as on the magnitude of the action. Thus,
forces may be combined according to the parallelogram law of vector
addition.

The action of the cable tension on the bracket in Fig. 2/1a is repre-
sented in the side view, Fig. 2/1b, by the force vector P of magnitude P.
The effect of this action on the bracket depends on P, the angle �, and
the location of the point of application A. Changing any one of these
three specifications will alter the effect on the bracket, such as the force
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in one of the bolts which secure the bracket to the base, or the internal
force and deformation in the material of the bracket at any point. Thus,
the complete specification of the action of a force must include its mag-
nitude, direction, and point of application, and therefore we must treat
it as a fixed vector.

External and Internal Effects

We can separate the action of a force on a body into two effects, ex-
ternal and internal. For the bracket of Fig. 2/1 the effects of P external
to the bracket are the reactive forces (not shown) exerted on the bracket
by the foundation and bolts because of the action of P. Forces external
to a body can be either applied forces or reactive forces. The effects of P
internal to the bracket are the resulting internal forces and deforma-
tions distributed throughout the material of the bracket. The relation
between internal forces and internal deformations depends on the mate-
rial properties of the body and is studied in strength of materials, elas-
ticity, and plasticity.

Principle of Transmissibility

When dealing with the mechanics of a rigid body, we ignore defor-
mations in the body and concern ourselves with only the net external ef-
fects of external forces. In such cases, experience shows us that it is not
necessary to restrict the action of an applied force to a given point. For
example, the force P acting on the rigid plate in Fig. 2/2 may be applied
at A or at B or at any other point on its line of action, and the net exter-
nal effects of P on the bracket will not change. The external effects are
the force exerted on the plate by the bearing support at O and the force
exerted on the plate by the roller support at C.

This conclusion is summarized by the principle of transmissibility,
which states that a force may be applied at any point on its given line of
action without altering the resultant effects of the force external to the
rigid body on which it acts. Thus, whenever we are interested in only
the resultant external effects of a force, the force may be treated as a
sliding vector, and we need specify only the magnitude, direction, and
line of action of the force, and not its point of application. Because this
book deals essentially with the mechanics of rigid bodies, we will treat
almost all forces as sliding vectors for the rigid body on which they act.

Force Classification

Forces are classified as either contact or body forces. A contact force
is produced by direct physical contact; an example is the force exerted
on a body by a supporting surface. On the other hand, a body force is
generated by virtue of the position of a body within a force field such as
a gravitational, electric, or magnetic field. An example of a body force is
your weight.

Forces may be further classified as either concentrated or distrib-
uted. Every contact force is actually applied over a finite area and is
therefore really a distributed force. However, when the dimensions of
the area are very small compared with the other dimensions of the

24 Chapter  2 Force Systems

Figure 2/2
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The forces associated with this lift-
ing rig must be carefully identified,
classified, and analyzed in order to
provide a safe and effective work-
ing environment.
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body, we may consider the force to be concentrated at a point with neg-
ligible loss of accuracy. Force can be distributed over an area, as in the
case of mechanical contact, over a volume when a body force such as
weight is acting, or over a line, as in the case of the weight of a sus-
pended cable.

The weight of a body is the force of gravitational attraction distrib-
uted over its volume and may be taken as a concentrated force acting
through the center of gravity. The position of the center of gravity is fre-
quently obvious if the body is symmetric. If the position is not obvious,
then a separate calculation, explained in Chapter 5, will be necessary to
locate the center of gravity.

We can measure a force either by comparison with other known
forces, using a mechanical balance, or by the calibrated movement of an
elastic element. All such comparisons or calibrations have as their basis
a primary standard. The standard unit of force in SI units is the newton
(N) and in the U.S. customary system is the pound (lb), as defined in
Art. 1/5.

Action and Reaction

According to Newton’s third law, the action of a force is always ac-
companied by an equal and opposite reaction. It is essential to distin-
guish between the action and the reaction in a pair of forces. To do so,
we first isolate the body in question and then identify the force exerted
on that body (not the force exerted by the body). It is very easy to mis-
takenly use the wrong force of the pair unless we distinguish carefully
between action and reaction.

Concurrent Forces

Two or more forces are said to be concurrent at a point if their lines
of action intersect at that point. The forces F1 and F2 shown in Fig. 2/3a
have a common point of application and are concurrent at the point A.
Thus, they can be added using the parallelogram law in their common
plane to obtain their sum or resultant R, as shown in Fig. 2/3a. The re-
sultant lies in the same plane as F1 and F2.

Suppose the two concurrent forces lie in the same plane but are ap-
plied at two different points as in Fig. 2/3b. By the principle of transmis-
sibility, we may move them along their lines of action and complete
their vector sum R at the point of concurrency A, as shown in Fig. 2/3b.
We can replace F1 and F2 with the resultant R without altering the ex-
ternal effects on the body upon which they act.

We can also use the triangle law to obtain R, but we need to move
the line of action of one of the forces, as shown in Fig. 2/3c. If we add the
same two forces as shown in Fig. 2/3d, we correctly preserve the magni-
tude and direction of R, but we lose the correct line of action, because R
obtained in this way does not pass through A. Therefore this type of
combination should be avoided.

We can express the sum of the two forces mathematically by the
vector equation

R � F1 � F2

Art ic le  2/2 Force 25

Figure 2/3
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Vector Components

In addition to combining forces to obtain their resultant, we often
need to replace a force by its vector components in directions which are
convenient for a given application. The vector sum of the components
must equal the original vector. Thus, the force R in Fig. 2/3a may be re-
placed by, or resolved into, two vector components F1 and F2 with the
specified directions by completing the parallelogram as shown to obtain
the magnitudes of F1 and F2.

The relationship between a force and its vector components along
given axes must not be confused with the relationship between a force
and its perpendicular* projections onto the same axes. Figure 2/3e
shows the perpendicular projections Fa and Fb of the given force R onto
axes a and b, which are parallel to the vector components F1 and F2 of
Fig. 2/3a. Figure 2/3e shows that the components of a vector are not nec-
essarily equal to the projections of the vector onto the same axes. Fur-
thermore, the vector sum of the projections Fa and Fb is not the vector
R, because the parallelogram law of vector addition must be used to
form the sum. The components and projections of R are equal only
when the axes a and b are perpendicular.

A Special Case of Vector Addition

To obtain the resultant when the two forces F1 and F2 are parallel
as in Fig. 2/4, we use a special case of addition. The two vectors are com-
bined by first adding two equal, opposite, and collinear forces F and �F
of convenient magnitude, which taken together produce no external ef-
fect on the body. Adding F1 and F to produce R1, and combining with
the sum R2 of F2 and �F yield the resultant R, which is correct in mag-
nitude, direction, and line of action. This procedure is also useful for
graphically combining two forces which have a remote and inconvenient
point of concurrency because they are almost parallel.

It is usually helpful to master the analysis of force systems in two
dimensions before undertaking three-dimensional analysis. Thus the re-
mainder of Chapter 2 is subdivided into these two categories.

26 Chapter  2 Force Systems

Figure 2/4

SECTION A TWO-DIMENSIONAL FORCE SYSTEMS

2/3 RE C T A N G U L A R CO M P O N E N T S

The most common two-dimensional resolution of a force vector is
into rectangular components. It follows from the parallelogram rule
that the vector F of Fig. 2/5 may be written as

(2/1)

where Fx and Fy are vector components of F in the x- and y-directions.
Each of the two vector components may be written as a scalar times the

F � Fx � Fy

*Perpendicular projections are also called orthogonal projections.
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appropriate unit vector. In terms of the unit vectors i and j of Fig. 2/5,
Fx � Fxi and Fy � Fy j, and thus we may write

(2/2)

where the scalars Fx and Fy are the x and y scalar components of the vec-
tor F.

The scalar components can be positive or negative, depending on
the quadrant into which F points. For the force vector of Fig. 2/5, the x
and y scalar components are both positive and are related to the magni-
tude and direction of F by

(2/3)

Conventions for Describing Vector Components

We express the magnitude of a vector with lightface italic type in
print; that is, �F� is indicated by F, a quantity which is always nonnega-
tive. However, the scalar components, also denoted by lightface italic
type, will include sign information. See Sample Problems 2/1 and 2/3 for
numerical examples which involve both positive and negative scalar
components.

When both a force and its vector components appear in a diagram, it
is desirable to show the vector components of the force with dashed
lines, as in Fig. 2/5, and show the force with a solid line, or vice versa.
With either of these conventions it will always be clear that a force and
its components are being represented, and not three separate forces, as
would be implied by three solid-line vectors.

Actual problems do not come with reference axes, so their assign-
ment is a matter of arbitrary convenience, and the choice is frequently
up to the student. The logical choice is usually indicated by the way in
which the geometry of the problem is specified. When the principal di-
mensions of a body are given in the horizontal and vertical directions, for
example, you would typically assign reference axes in these directions.

Determining the Components of a Force

Dimensions are not always given in horizontal and vertical direc-
tions, angles need not be measured counterclockwise from the x-axis,
and the origin of coordinates need not be on the line of action of a force.
Therefore, it is essential that we be able to determine the correct com-
ponents of a force no matter how the axes are oriented or how the an-
gles are measured. Figure 2/6 suggests a few typical examples of vector
resolution in two dimensions.

Memorization of Eqs. 2/3 is not a substitute for understanding the
parallelogram law and for correctly projecting a vector onto a reference
axis. A neatly drawn sketch always helps to clarify the geometry and
avoid error.

 Fy � F sin �   � � tan�1 
Fy

Fx

 Fx � F cos �   F � �Fx 

2 � Fy 

2

F � Fxi � Fy j
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Figure 2/6
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Rectangular components are convenient for finding the sum or re-
sultant R of two forces which are concurrent. Consider two forces F1

and F2 which are originally concurrent at a point O. Figure 2/7 shows
the line of action of F2 shifted from O to the tip of F1 according to the
triangle rule of Fig. 2/3. In adding the force vectors F1 and F2, we may
write

or

from which we conclude that

(2/4)

The term ΣFx means “the algebraic sum of the x scalar components”.
For the example shown in Fig. 2/7, note that the scalar component 
would be negative.

F2y

 Ry � F1y
 � F2y

 � ΣFy

 Rx � F1x
 � F2x

 � ΣFx

Rxi � Ryj � (F1x
 � F2x

)i � (F1y
 � F2y

) j

R � F1 � F2 � (F1x
i � F1y

j) � (F2x
i � F2y

j)
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The structural elements in the fore-
ground transmit concentrated forces
to the brackets at both ends.
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Sample Problem 2/1

The forces F1, F2, and F3, all of which act on point A of the bracket, are
specified in three different ways. Determine the x and y scalar components of
each of the three forces.

Solution. The scalar components of F1, from Fig. a, are

Ans.

Ans.

The scalar components of F2, from Fig. b, are

Ans.

Ans.

Note that the angle which orients F2 to the x-axis is never calculated. The cosine
and sine of the angle are available by inspection of the 3-4-5 triangle. Also note
that the x scalar component of F2 is negative by inspection.

The scalar components of F3 can be obtained by first computing the angle �
of Fig. c.

Ans.

Ans.

Alternatively, the scalar components of F3 can be obtained by writing F3 as
a magnitude times a unit vector nAB in the direction of the line segment AB.
Thus,

The required scalar components are then

Ans.

Ans.

which agree with our previous results.

F3y
 � �716 N

F3x
 � 358 N

 � 358i � 716j N

 � 800 [0.447i � 0.894j]

 F3 � F3nAB � F3 �  AB
l

AB
 � 800 � 0.2i � 0.4j

�(0.2)2 � (�0.4)2�

 F3y
 � �F3 cos � � �800 cos 26.6� � �716 N

 Then F3x
 � F3 sin � � 800 sin 26.6� � 358 N

� � tan�1 �0.2
0.4� � 26.6�

 F2y
 � 500�3

5� � 300 N

 F2x
 � �500�4

5� � �400 N

 F1y
 � 600 sin 35� � 344 N

 F1x
 � 600 cos 35� � 491 N
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Helpful Hints

� You should carefully examine the
geometry of each component deter-
mination problem and not rely on
the blind use of such formulas as 
Fx � F cos � and Fy � F sin �.

� A unit vector can be formed by di-
viding any vector, such as the geo-
metric position vector , by its
length or magnitude. Here we use
the overarrow to denote the vector
which runs from A to B and the
overbar to determine the distance
between A and B.

AB
l

0.4 m

0.2 m

0.1 m

0.3 m

F2 = 500 N

F3 = 800 N

F1 = 600 N

3
4

A

B

x

y

35°

F2 = 500 N

3
4

F1 = 600 N

A

A

B

A

35°

F1y

F1x

F3x

F3yF2y

F2x

0.4 m

0.2 m

(a)

(b)

(c)

α

F
3 = 800 N

�

�
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Sample Problem 2/2

Combine the two forces P and T, which act on the fixed structure at B, into
a single equivalent force R.

Graphical solution. The parallelogram for the vector addition of forces T and
P is constructed as shown in Fig. a. The scale used here is 1 cm � 400 N; a scale
of 1 cm � 100 N would be more suitable for regular-size paper and would give
greater accuracy. Note that the angle a must be determined prior to construction
of the parallelogram. From the given figure

Measurement of the length R and direction � of the resultant force R yields the
approximate results

Ans.

Geometric solution. The triangle for the vector addition of T and P is shown
in Fig. b. The angle � is calculated as above. The law of cosines gives

Ans.

From the law of sines, we may determine the angle � which orients R. Thus,

Ans.

Algebraic solution. By using the x-y coordinate system on the given figure,
we may write

The magnitude and dipection of the resultant force R as shown in Fig. c are then

Ans.

Ans.

The resultant R may also be written in vector notation as

Ans.R � Rxi � Ry j � 346i � 393j N

� � tan�1 
�Ry �

�Rx �
 � tan�1 393

346
 � 48.6�

R � �Rx 

2 � Ry 

2 � �(346)2 � (�393)2 � 524 N

 Ry � ΣFy � �600 sin 40.9� � �393 N

 Rx � ΣFx � 800 � 600 cos 40.9� � 346 N

600
sin �

 � 524
sin 40.9�

  sin � � 0.750   � � 48.6�

 R � 524 N

 R2 � (600)2 � (800)2 � 2(600)(800) cos 40.9� � 274,300

R � 525 N   � � 49�

tan � � BD
 AD 

 � 6 sin 60�
3 � 6 cos 60�

 � 0.866    � � 40.9�
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� Note the repositioning of F so as to
preserve the correct line of action of
the resultant R.

P = 800 N

T = 60
0 N

B

DCA

y

x

α  60°

6 m

3 m

600 N

B P

R

T

α

α

θ

(b)

800 N

Rx = 346 N

Ry = – 393 N

B x

y

R

θ

(c)

800 N

600 N

B
P

T R
α

θ

(a)

Helpful Hints

� Note the repositioning of P to per-
mit parallelogram addition at B.

�

�

c02.qxd  10/29/07  1:38 PM  Page 30



Sample Problem 2/3

The 500-N force F is applied to the vertical pole as shown. (1) Write F in
terms of the unit vectors i and j and identify both its vector and scalar compo-
nents. (2) Determine the scalar components of the force vector F along the 
x�- and y�-axes. (3) Determine the scalar components of F along the x- and y�-axes.

Solution. Part (1). From Fig. a we may write F as

Ans.

The scalar components are Fx � 250 N and Fy � �433 N. The vector compo-
nents are Fx � 250i N and Fy � �433j N.

Part (2). From Fig. b we may write F as F � 500i� N, so that the required
scalar components are

Ans.

Part (3). The components of F in the x- and y�-directions are nonrectan-
gular and are obtained by completing the parallelogram as shown in Fig. c. The
magnitudes of the components may be calculated by the law of sines. Thus,

The required scalar components are then

Ans.

Sample Problem 2/4

Forces F1 and F2 act on the bracket as shown. Determine the projection Fb

of their resultant R onto the b-axis.

Solution. The parallelogram addition of F1 and F2 is shown in the figure.
Using the law of cosines gives us

The figure also shows the orthogonal projection Fb of R onto the b-axis. Its
length is

Ans.

Note that the components of a vector are in general not equal to the projec-
tions of the vector onto the same axes. If the a-axis had been perpendicular to
the b-axis, then the projections and components of R would have been equal.

Fb � 80 � 100 cos 50� � 144.3 N

R2 � (80)2 � (100)2 � 2(80)(100) cos 130�   R � 163.4 N

Fx � 1000 N   Fy� � �866 N

�Fy��

sin 60�
 � 500

sin 30�
  �Fy��  � 866 N

�Fx�
sin 90�

 � 500
sin 30�

  �Fx�  � 1000 N

Fx� � 500 N   Fy� � 0

 � (250i � 433j) N

 � (500 cos 60�)i � (500 sin 60�)j

 F � (F cos �)i � (F sin �)j
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y

y′

x′

i′

i

j′

j

A
x

30°

30°

F = 500 N

30°
20°

C

b

a

F1 = 100 N

F2 = 80 N

a

C

50°

50°

b

F2

F1

R

80 N

100 N

Fb

A A

F
F

x

x

y

x′

y′

Fy

Fy′

Fx

Fx

= 60°θ

y′

i′

j′

(a) (b)

(c)

F = 500 N
30° 60°

90° 60° 30°

90°

Helpful Hint

� Obtain Fx and Fy� graphically and
compare your results with the calcu-
lated values.

�
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Problem 2/3

2/4 The line of action of the 9.6-kN force F runs through
the points A and B as shown in the figure. Determine
the x and y scalar components of F.

Problem 2/4

2/5 A cable stretched between the fixed supports A and B
is under a tension T of 900 N. Express the tension as
a vector using the unit vectors i and j, first, as a force
TA acting on A and second, as a force TB acting on B.

Ans. TA � 749i � 499j N, TB � �749i � 499j N

Problem 2/5

x

y

3 m

2 m

A

B

F = 9.6 kN

O

B (300, 100)

A (–150, –200)

y, mm

x, mm

F = 4.8 kN

3

4

y

O
x
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PROBLEMS

Introductory Problems

2/1 The force F has a magnitude of 800 N. Express F as a
vector in terms of the unit vectors i and j. Identify the
x and y scalar components of F.

Ans. F � �459i � 655j N
Fx � �459 N, Fy � 655 N

Problem 2/1

2/2 The magnitude of the force F is 600 N. Express F as a
vector in terms of the unit vectors i and j. Identify
both the scalar and vector components of F.

Problem 2/2

2/3 The slope of the 4.8-kN force F is specified as shown
in the figure. Express F as a vector in terms of the
unit vectors i and j.

Ans. F � �2.88i � 3.84j kN

F = 600 N

O

A (–3, 1)

30°

y, m

x, m

F = 800 N

35°

y

x
O
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2/6 The 1800-N force F is applied to the end of the I-
beam. Express F as a vector using the unit vectors i
and j.

Problem 2/6

2/7 The two structural members, one of which is in ten-
sion and the other in compression, exert the indicated
forces on joint O. Determine the magnitude of the re-
sultant R of the two forces and the angle � which R
makes with the positive x-axis.

Ans. R � 3.61 kN, � � 206�

Problem 2/7

2/8 Two forces are applied to the construction bracket as
shown. Determine the angle � which makes the resul-
tant of the two forces vertical. Determine the magni-
tude R of the resultant.

O

x

2 kN

3 kN

30° 60°

x

z

y

O

A

3

4

F = 1800 N
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Problem 2/8

Representative Problems

2/9 In the design of a control mechanism, it is determined
that rod AB transmits a 260-N force P to the crank
BC. Determine the x and y scalar components of P.

Ans. Px � �240 N
Py � �100 N

Problem 2/9

2/10 For the mechanism of Prob. 2/9, determine the
scalar components Pt and Pn of P which are tangent
and normal, respectively, to crank BC.

5

12

t

n y

x

A

B

C

P = 260 N

30°

70°

x

z

yF1 = 800 N

F2 = 425 N

θ
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Problem 2/13

2/14 To satisfy design limitations it is necessary to deter-
mine the effect of the 2-kN tension in the cable on
the shear, tension, and bending of the fixed I-beam.
For this purpose replace this force by its equivalent
of two forces at A, Ft parallel and Fn perpendicular
to the beam. Determine Ft and Fn.

Problem 2/14

30°

20°

A

2 kN

A

F1 = 3 kN

x

y

45°

30°

F2 = 7 kN
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2/11 The t-component of the force F is known to be 75
N. Determine the n-component and the magnitude
of F.

Ans. Fn � �62.9 N, F � 97.9 N

Problem 2/11

2/12 A force F of magnitude 800 N is applied to point C of
the bar AB as shown. Determine both the x-y and
the n-t components of F.

Problem 2/12

2/13 The two forces shown act at point A of the bent bar.
Determine the resultant R of the two forces.

Ans. R � 2.35i � 3.45j kN

B

C

F = 800 N

A

60°

40°

x

t

n

y

F

n
t

30°

10°
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2/15 Determine the magnitude Fs of the tensile spring
force in order that the resultant of Fs and F is a ver-
tical force. Determine the magnitude R of this verti-
cal resultant force.

Ans. Fs � 250 N, R � 433 N

Problem 2/15

2/16 The ratio of the lift force L to the drag force D for
the simple airfoil is L/D � 10. If the lift force on a
short section of the airfoil is 200 N, compute the
magnitude of the resultant force R and the angle �

which it makes with the horizontal.

Problem 2/16

2/17 Determine the components of the 2-kN force along
the oblique axes a and b. Determine the projections
of F onto the a- and b-axes.

Ans. Fa � 0.598 kN, Fb � 1.633 kN
Pa � 1.414 kN, Pb � 1.932 kN

Air flow

C D

L

A

F = 500 N

60°
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Problem 2/17

2/18 Determine the scalar components Ra and Rb of the
force R along the nonrectangular axes a and b. Also
determine the orthogonal projection Pa of R onto
axis a.

Problem 2/18

2/19 Determine the resultant R of the two forces shown
by (a) applying the parallelogram rule for vector ad-
dition and (b) summing scalar components.

Ans. R � 520i � 700j N

Problem 2/19

60°

y

x

600 N

400 N

O

a

b

110°

30°
R = 800 N

a

b

F  =  2 kN

60°
45°
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Problem 2/22

2/23 Refer to the statement and figure of Prob. 2/22.
When pin P is in the position � � 20�, determine the
n- and t-components of the force F which the spring
of modulus k � 1.2 kN/m exerts on the pin.

Ans. Fn � 19.18 N, Ft � 13.84 N

2/24 The cable AB prevents bar OA from rotating clock-
wise about the pivot O. If the cable tension is 750 N,
determine the n- and t-components of this force act-
ing on point A of the bar.

Problem 2/24

1.2 m

1.
5 

m

60°

A

OB

t
n

O

P

k

n

A

t

x

y

60 mm

80 mm

40 mm

θ
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2/20 It is desired to remove the spike from the timber by
applying force along its horizontal axis. An obstruc-
tion A prevents direct access, so that two forces, one
1.6 kN and the other P, are applied by cables as
shown. Compute the magnitude of P necessary to
ensure a resultant T directed along the spike. Also
find T.

Problem 2/20

2/21 At what angle � must the 800-N force be applied in
order that the resultant R of the two forces has a
magnitude of 2000 N? For this condition, determine
the angle � between R and the vertical.

Ans. � � 51.3�, � � 18.19�

Problem 2/21

2/22 The unstretched length of the spring of modulus k �

1.2 kN/m is 100 mm. When pin P is in the position �
� 30�, determine the x- and y-components of the
force which the spring exerts on the pin. (The force
in a spring is given by F � kx, where x is the deflec-
tion from the unstretched length.)

θ

1400 N

800 N

200 mm

100 mm

150 mm
A

P

1.6 kN
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2/25 At what angle � must the 400-N force be applied in
order that the resultant R of the two forces have a
magnitude of 1000 N? For this condition what will
be the angle � between R and the horizontal?

Ans. � � 51.3�, � � 18.19�

Problem 2/25

2/26 In the design of the robot to insert the small cylindri-
cal part into a close-fitting circular hole, the robot
arm must exert a 90-N force P on the part parallel to
the axis of the hole as shown. Determine the compo-
nents of the force which the part exerts on the robot
along axes (a) parallel and perpendicular to the arm
AB, and (b) parallel and perpendicular to the arm BC.

Problem 2/26

60°

45°

B

A
C

D

15°

P = 90 N

O

700 N

400 N

θ
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2/27 The guy cables AB and AC are attached to the top of
the transmission tower. The tension in cable AC is 8
kN. Determine the required tension T in cable AB
such that the net effect of the two cable tensions is a
downward force at point A. Determine the magni-
tude R of this downward force.

Ans. T � 5.68 kN, R � 10.21 kN

Problem 2/27

2/28 The gusset plate is subjected to the two forces
shown. Replace them by two equivalent forces, Fx in
the x-direction and Fa in the a-direction. Determine
the magnitudes of Fx and Fa. Solve geometrically or
graphically.

Problem 2/28

y

A

800 N

900 N

25° 45°

10°

a

x

40 m50 m

A

C

B

20 m

40 m
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2/4 MO M E N T

In addition to the tendency to move a body in the direction of its ap-
plication, a force can also tend to rotate a body about an axis. The axis
may be any line which neither intersects nor is parallel to the line of ac-
tion of the force. This rotational tendency is known as the moment M of
the force. Moment is also referred to as torque.

As a familiar example of the concept of moment, consider the pipe
wrench of Fig. 2/8a. One effect of the force applied perpendicular to
the handle of the wrench is the tendency to rotate the pipe about its
vertical axis. The magnitude of this tendency depends on both the
magnitude F of the force and the effective length d of the wrench
handle. Common experience shows that a pull which is not perpendic-
ular to the wrench handle is less effective than the right-angle pull
shown.

Moment about a Point

Figure 2/8b shows a two-dimensional body acted on by a force F in
its plane. The magnitude of the moment or tendency of the force to ro-
tate the body about the axis O-O perpendicular to the plane of the
body is proportional both to the magnitude of the force and to the mo-
ment arm d, which is the perpendicular distance from the axis to the
line of action of the force. Therefore, the magnitude of the moment is
defined as

(2/5)

The moment is a vector M perpendicular to the plane of the body. The
sense of M depends on the direction in which F tends to rotate the
body. The right-hand rule, Fig. 2/8c, is used to identify this sense. We
represent the moment of F about O-O as a vector pointing in the direc-
tion of the thumb, with the fingers curled in the direction of the rota-
tional tendency.

The moment M obeys all the rules of vector combination and may
be considered a sliding vector with a line of action coinciding with the
moment axis. The basic units of moment in SI units are newton-meters

and in the U.S. customary system are pound-feet (lb-ft).
When dealing with forces which all act in a given plane, we custom-

arily speak of the moment about a point. By this we mean the moment
with respect to an axis normal to the plane and passing through the
point. Thus, the moment of force F about point A in Fig. 2/8d has the
magnitude M � Fd and is counterclockwise.

Moment directions may be accounted for by using a stated sign con-
vention, such as a plus sign (�) for counterclockwise moments and a
minus sign (�) for clockwise moments, or vice versa. Sign consistency
within a given problem is essential. For the sign convention of Fig. 2/8d,
the moment of F about point A (or about the z-axis passing through
point A) is positive. The curved arrow of the figure is a convenient way
to represent moments in two-dimensional analysis.

(N � m),

M � Fd

38 Chapter  2 Force Systems

Figure 2/8

A

x

y

F

M

M
F

r

d

M = Fd

(d)

(c)

(b)

(a)

+

O

A
d

O

α

d

F
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The Cross Product

In some two-dimensional and many of the three-dimensional prob-
lems to follow, it is convenient to use a vector approach for moment cal-
culations. The moment of F about point A of Fig. 2/8b may be
represented by the cross-product expression

(2/6)

where r is a position vector which runs from the moment reference
point A to any point on the line of action of F. The magnitude of this ex-
pression is given by*

(2/7)

which agrees with the moment magnitude as given by Eq. 2/5. Note that
the moment arm d � r sin � does not depend on the particular point on
the line of action of F to which the vector r is directed. We establish the
direction and sense of M by applying the right-hand rule to the se-
quence r F. If the filgers of the right hand are curled in the direction
of rotation from the positive sense of r to the positive sense of F, then
the thumb points in the positive sense of M.

We must maintain the sequence r F, because the sequence F r
would produce a vector with a sense opposite to that of the correct
moment. As was the case with the scalar approach, the moment M
may be thought of as the moment about point A or as the moment
about the line O-O which passes through point A and is perpendicular
to the plane containing the vectors r and F. When we evaluate the
moment of a force about a given point, the choice between using the
vector cross product or the scalar expression depends on how the
geometry of the problem is specified. If we know or can easily deter-
mine the perpendicular distance between the line of action of the
force and the moment center, then the scalar approach is generally
simpler. If, however, F and r are not perpendicular and are easily ex-
pressible in vector notation, then the cross-product expression is
often preferable.

In Section B of this chapter, we will see how the vector formulation
of the moment of a force is especially useful for determining the mo-
ment of a force about a point in three-dimensional situations.

Varignon’s Theorem

One of the most useful principles of mechanics is Varignon’s theo-
rem, which states that the moment of a force about any point is equal to
the sum of the moments of the components of the force about the same
point.

��

�

M � Fr sin � � Fd

M � r � F

Art ic le  2/4 Moment 39

*See item 7 in Art. C/7 of Appendix C for additional information concerning the cross
product.
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To prove this theorem, consider the force R acting in the plane of
the body shown in Fig. 2/9a. The forces P and Q represent any two non-
rectangular components of R. The moment of R about point O is

Because R � P � Q, we may write

Using the distributive law for cross products, we have

(2/8)

which says that the moment of R about O equals the sum of the mo-
ments about O of its components P and Q. This proves the theorem.

Varignon’s theorem need not be restricted to the case of two compo-
nents, but it applies equally well to three or more. Thus we could have
used any number of concurrent components of R in the foregoing
proof.*

Figure 2/9b illustrates the usefulness of Varignon’s theorem. The
moment of R about point O is Rd. However, if d is more difficult to de-
termine than p and q, we can resolve R into the components P and Q,
and compute the moment as

where we take the clockwise moment sense to be positive.
Sample Problem 2/5 shows how Varignon’s theorem can help us to

calculate moments.

MO � Rd � �pP � qQ

MO � r � R � r � P � r � Q

r � R � r � (P � Q)

MO � r � R

40 Chapter  2 Force Systems

*As originally stated, Varignon’s theorem was limited to the case of two concurrent com-
ponents of a given force. See The Science of Mechanics, by Ernst Mach, originally pub-
lished in 1883.

O

r

Q

P
R

B

(a)

O

Q

P
R

B

(b)

p

d

q

Figure 2/9
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Sample Problem 2/5

Calculate the magnitude of the moment about the base point O of the 600-N
force in five different ways.

Solution. (I) The moment arm to the 600-N force is

By M � Fd the moment is clockwise and has the magnitude

Ans.

(II) Replace the force by its rectangular components at A

By Varignon’s theorem, the moment becomes

Ans.

(III) By the principle of transmissibility, move the 600-N force along its
line of action to point B, which eliminates the moment of the component F2. The
moment arm of F1 becomes

and the moment is

Ans.

(IV) Moving the force to point C eliminates the moment of the component
F1. The moment arm of F2 becomes

and the moment is

Ans.

(V) By the vector expression for a moment, and by using the coordinate
system indicated on the figure together with the procedures for evaluating cross
products, we have

The minus sign indicates that the vector is in the negative z-direction. The mag-
nitude of the vector expression is

Ans.MO � 2610 N � m

 � �2610k N � m

 MO � r � F � (2i � 4j) � 600(i cos 40� � j sin 40�)

MO � 386(6.77) � 2610 N � m

d2 � 2 � 4 cot 40� � 6.77 m

MO � 460(5.68) � 2610 N � m

d1 � 4 � 2 tan 40� � 5.68 m

MO � 460(4) � 386(2) � 2610 N � m

F1 � 600 cos 40� � 460 N,   F2 � 600 sin 40� � 386 N

MO � 600(4.35) � 2610 N � m

d � 4 cos 40� � 2 sin 40� � 4.35 m
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2 m

4 m

A

O

40°

600 N

2 m

4 m
600 N

40°

40°

O

d

2 m

4 m

O

F2 = 600 sin 40°

F1 = 600 cos 40°

O

C

B

F

A
x

y

d1

d2

F2

F2

F1

F1

r

Helpful Hints

� The required geometry here and in
similar problems should not cause dif-
ficulty if the sketch is carefully drawn.

� This procedure is frequently the
shortest approach.

� The fact that points B and C are not
on the body proper should not cause
concern, as the mathematical calcula-
tion of the moment of a force does not
require that the force be on the body.

� Alternative choices for the position
vector r are r � d1 j � 5.68j m and 
r � d2i � 6.77i m.

�

�

�

�
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Sample Problem 2/6

The trap door OA is raised by the cable AB, which passes over the small fric-
tionless guide pulleys at B. The tension everywhere in the cable is T, and this ten-
sion applied at A causes a moment MO about the hinge at O. Plot the quantity MO/T
as a function of the door elevation angle � over the range 0 � � � 90� and note min-
imum and maximum values. What is the physical significance of this ratio?

Solution. We begin by constructing a figure which shows the tension force T
acting directly on the door, which is shown in an arbitrary angular position �. It
should be clear that the direction of T will vary as � varies. In order to deal with
this variation, we write a unit vector nAB which “aims” T:

Using the x-y coordinates of our figure, we can write

So

and

The desired unit vector is

Our tension vector can now be written as

The moment of T about point O, as a vector, is MO � rOB T, where rOB � 0.4j m, or

The magnitude of MO is

and the requested ratio is

Ans.

which is plotted in the accompanying graph. The expression MO/T is the moment
arm d (in meters) which runs from O to the line of action of T. It has a maximum
value of 0.4 m at � � 53.1� (at which point T is horizontal) and a minimum value of
0 at � � 90� (at which point T is vertical). The expression is valid even if T varies.

This sample problem treats moments in two-dimensional force systems, and
it also points out the advantages of carrying out a solution for an arbitrary posi-
tion, so that behavior over a range of positions can be examined.

MO

T
 � 0.2 cos �

�0.41 � 0.4 sin �

MO � 0.2T cos �
�0.41 � 0.4 sin �

 � 0.2T cos �
�0.41 � 0.4 sin �

 k

 MO � 0.4j � T��0.5 cos �i � (0.4 � 0.5 sin �)j

�0.41 � 0.4 sin � �
�

T � TnAB � T��0.5 cos �i � (0.4 � 0.5 sin �)j

�0.41 � 0.4 sin � �

nAB � 
rAB
rAB

 � 
�0.5 cos �i � (0.4 � 0.5 sin �)j

�0.41 � 0.4 sin �

 � �0.41 � 0.4 sin � m

 rAB � �(0.5 cos �)2 � (0.4 � 0.5 sin �)2

 � �0.5 cos �i � (0.4 � 0.5 sin �)j m

 rAB � rOB � rOA � 0.4j � (0.5)(cos �i � sin �j)

rOB � 0.4j m and rOA � 0.5(cos �i � sin �j) m

nAB � 
rAB
rAB

 � 
rOB � rOA

rAB
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0.5

0.4

0.3

0.2

0.1

0

, m

0 10 20 30 40 50 60 70 80 90

MO——–
T

, degθ

0.4 m
0.5 m

0.3 m

T

A

B

O θ

rOA

T

d
A

O θ x

y

rOB

rAB
B

�

�

�

� Recall that any vector may be writ-
ten as a magnitude times an “aim-
ing” unit vector.

� In the expression M � r F, the po-
sition vector r runs from the mo-
ment center to any point on the line
of action of F. Here, rOB is more con-
venient than rOA.

�

Helpful Hints

� Recall that any unit vector can be
written as a vector divided by its
magnitude. In this case the vector in
the numerator is a position vector.
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PROBLEMS

Introductory Problems

2/29 The 10-kN force is applied at point A. Determine the
moment of F about point O. Determine the points on
the x- and y-axes about which the moment of F is
zero.

Ans. MO � 16 CW
(x, y) � (2.67, 0) m and (0, 2) m

Problem 2/29

2/30 Determine the moment of the 800-N force about
point A and about point O.

Problem 2/30

O

A B

F = 800 N
30°

y

x

875 mm

625 mm

F = 10 kN

O

A (–4, 5)
y, m

x, m

3

4

kN � m
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2/31 Determine the moment of the 50-N force (a) about
point O by Varignon’s theorem and (b) about point C
by a vector approach.

Ans. MO � 519 CCW, MC � 1616k

Problem 2/31

2/32 The force of magnitude F acts along the edge of the
triangular plate. Determine the moment of F about
point O.

Problem 2/32

2/33 In steadily turning the water pump, a person exerts
the 120-N force on the handle as shown. Determine
the moment of this force about point O.

Ans. MO � 14.74 CW

Problem 2/33

150 mm

F = 120 N

O

A15°

20°

N � m

O

h

b

F

F = 50 N

O

B (40, 10)

C (0, 25)

A (–15, –20)

y, mm

x, mm

N � mmN � mm
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Problem 2/36

2/37 A mechanic pulls on the 13-mm combination wrench
with the 140-N force shown. Determine the moment
of this force about the bolt center O.

Ans. MO � 13.10 CCW

Problem 2/37

2/38 As a trailer is towed in the forward direction, the
force F � 500 N is applied as shown to the ball of the
trailer hitch. Determine the moment of this force
about point O.

Problem 2/38

F = 500 N

32 mm

38 mm

30°

275 mm

A
O

95 mm

15°

25°

F = 140 N

O

A

N � m

200 mm

30 mm

15°

250 N
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2/34 The throttle-control sector pivots freely at O. If an
internal torsional spring exerts a return moment M
� 1.8 on the sector when in the position
shown, for design purposes determine the necessary
throttle-cable tension T so that the net moment
about O is zero. Note that when T is zero, the sector
rests against the idle-control adjustment screw at R.

Problem 2/34

2/35 A force F of magnitude 60 N is applied to the gear.
Determine the moment of F about point O.

Ans. MO � 5.64 CW

Problem 2/35

2/36 Calculate the moment of the 250-N force on the han-
dle of the monkey wrench about the center of the
bolt.

20°

F = 60 N

r = 100 mm

O

N � m

N � m

M

Q

R

P

T

50 mm

O
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Representative Problems

2/39 A portion of a mechanical coin sorter works as fol-
lows: Pennies and dimes roll down the 20� incline,
the last triangular portion of which pivots freely
about a horizontal axis through O. Dimes are light
enough (2.28 grams each) so that the triangular por-
tion remains stationary, and the dimes roll into the
right collection column. Pennies, on the other hand,
are heavy enough (3.06 grams each) so that the tri-
angular portion pivots clockwise, and the pennies
roll into the left collection column. Determine the
moment about O of the weight of the penny in terms
of the slant distance s in millimeters.

Ans. MO � 0.1335 � 0.0282s (s in mm)

Problem 2/39

19891989
LIBERTYLIBERTY

IN
GOD WE TRUSTIN
GOD WE TRUST

3.5 mm
O

20°

s

9.5 mm

pennies dimes

N � mm
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2/40 Elements of the lower arm are shown in the figure.
The mass of the forearm is 2.3 kg with mass center
at G. Determine the combined moment about the
elbow pivot O of the weights of the forearm and the
3.6-kg homogeneous sphere. What must the biceps
tension force be so that the overall moment about O
is zero?

Problem 2/40

2/41 A 150-N pull T is applied to a cord, which is wound
securely around the inner hub of the drum. Deter-
mine the moment of T about the drum center C. At
what angle � should T be applied so that the moment
about the contact point P is zero?

Ans. MC � CW, � � 51.3�

Problem 2/41

θ

T = 150 N

125 mm

200 mm

P

C

18.75 N � m

325 mm

150 mm

3.6(9.81) N
2.3(9.81) N

T

G

A

O

55°

50 mm
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2/44 The uniform work platform, which has a mass per
unit length of 28 kg/m, is simply supported by cross
rods A and B. The 90-kg construction worker starts
from point B and walks to the right. At what loca-
tion s will the combined moment of the weights of
the man and platform about point B be zero?

Problem 2/44

2/45 In raising the pole from the position shown, the ten-
sion T in the cable must supply a moment about O of
72 . Determine T.

Ans. T � 8.65 kN

Problem 2/45

60°O

T

10 m

30 m

12 m

kN � m

A B

28 kg/m

1 m 4 m 3 m

90 kg

s

46 Chapter  2 Force Systems

2/42 A force of 200 N is applied to the end of the wrench
to tighten a flange bolt which holds the wheel to the
axle. Determine the moment M produced by this
force about the center O of the wheel for the position
of the wrench shown.

Problem 2/42

2/43 In order to raise the flagpole OC, a light frame OAB
is attached to the pole and a tension of 3.2 kN is de-
veloped in the hoisting cable by the power winch D.
Calculate the moment MO of this tension about the
hinge point O.

Ans. MO � CCW

Problem 2/43

6.17 kN � m

650 mm

125 mm

450 mm

20°
O

200 N

B

A

OD C
20°

3 m 3 m

3 m
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2/46 The force exerted by the plunger of cylinder AB on
the door is 40 N directed along the line AB, and this
force tends to keep the door closed. Compute the mo-
ment of this force about the hinge O. What force FC

normal to the plane of the door must the door stop
at C exert on the door so that the combined moment
about O of the two forces is zero?

Problem 2/46

2/47 The 10-N force is applied to the handle of the hy-
draulic control valve as shown. Calculate the mo-
ment of this force about point O.

Ans. MO � CW

Problem 2/47

O

F = 10 N

B

A

37.5 mm

20°

60°

250 mm

2.81 N � m

O

A B C

25

400 400

100

75

Dimensions in millimeters
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2/48 Calculate the moment MA of the 200-N force about
point A by using three scalar methods and one vec-
tor method.

Problem 2/48

2/49 An exerciser begins with his arm in the relaxed ver-
tical position OA, at which the elastic band is un-
stretched. He then rotates his arm to the horizontal
position OB. The elastic modulus of the band is k �

60 N/m—that is, 60 N of force is required to stretch
the band each additional meter of elongation. Deter-
mine the moment about O of the force which the
band exerts on the hand B.

Ans. MO � 26.8 CCW

Problem 2/49

635 mm

740 mm

C

A

O

F

B

N � m

B

x

y

15°

280
mm

200 N

A
400 mm
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2/52 Design criteria require that the robot exert the 90-N
force on the part as shown while inserting a cylindri-
cal part into the circular hole. Determine the mo-
ment about points A, B, and C of the force which the
part exerts on the robot.

Problem 2/52

2/53 The masthead fitting supports the two forces shown.
Determine the magnitude of T which will cause no
bending of the mast (zero moment) at point O.

Ans. T � 4.04 kN

Problem 2/53

C

O

60 mm 2

5
30°

90 
mm

120
mm

T5 kN

60°

45°

B

A C

D

15°

P = 90 N
450 m

m

150 mm

55
0 

m
m
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2/50 (a) Calculate the moment of the 90-N force about
point O for the condition � � 15�. Also, determine
the value of � for which the moment about O is (b)
zero and (c) a maximum.

Problem 2/50

2/51 The small crane is mounted along the side of a
pickup bed and facilitates the handling of heavy
loads. When the boom elevation angle is � � 40�, the
force in the hydraulic cylinder BC is 4.5 kN, and this
force applied at point C is in the direction from B to
C (the cylinder is in compression). Determine the
moment of this 4.5-kN force about the boom pivot
point O.

Ans. MO � 0.902 CW

Problem 2/51

B

C

A

θ

785mm

340mm

360
mm

110
mm

O

kN � m

O

A

F = 90 N
800 mm

600 mm

θ
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2/54 The piston, connecting rod, and crankshaft of a
diesel engine are shown in the figure. The crank
throw OA is half the stroke of 200 mm, and the
length AB of the rod is 350 mm. For the position in-
dicated, the rod is under a compression along AB of
16 kN. Determine the moment M of this force about
the crankshaft axis O.

Problem 2/54

2/55 The 120-N force is applied as shown to one end of
the curved wrench. If � � 30�, calculate the moment
of F about the center O of the bolt. Determine the
value of � which would maximize the moment about
O; state the value of this maximum moment.

Ans. MO � 41.5 CW
� � 33.2�, (MO)max � 41.6 CW

Problem 2/55

A

O

F = 120 N

150 mm

25 mm
70m

m

25 mm

α

70m
m

N � m
N � m

B

A

O

30°

Art ic le  2/4 Problems 49

2/56 If the combined moment of the two forces about
point C is zero, determine
(a) the magnitude of the force P
(b) the magnitude R of the resultant of the two

forces
(c) the coordinates x and y of the point A on the rim

of the wheel about which the combined moment
of the two forces is a maximum

(d) the combined moment MA of the two forces
about A.

Ans. (a) P � 61.6 N
(b) R � 141.3 N
(c) x � 49.0 mm, y � 63.2 mm
(d) MA � 15.77 CW

Problem 2/56

y

x60°

100 N

O

C

P
40 mm

40 mm

40 mm

N � m

�
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2/5 CO U P L E

The moment produced by two equal, opposite, and noncollinear
forces is called a couple. Couples have certain unique properties and
have important applications in mechanics.

Consider the action of two equal and opposite forces F and �F a dis-
tance d apart, as shown in Fig. 2/10a. These two forces cannot be combined
into a single force because their sum in every direction is zero. Their only
effect is to produce a tendency of rotation. The combined moment of the
two forces about an axis normal to their plane and passing through any
point such as O in their plane is the couple M. This couple has a magnitude

or

Its direction is counterclockwise when viewed from above for the case il-
lustrated. Note especially that the magnitude of the couple is indepen-
dent of the distance a which locates the forces with respect to the
moment center O. It follows that the moment of a couple has the same
value for all moment centers.

Vector Algebra Method

We may also express the moment of a couple by using vector alge-
bra. With the cross-product notation of Eq. 2/6, the combined moment
about point O of the forces forming the couple of Fig. 2/10b is

where rA and rB are position vectors which run from point O to arbi-
trary points A and B on the lines of action of F and �F, respectively. Be-
cause rA � rB � r, we can express M as

Here again, the moment expression contains no reference to the mo-
ment center O and, therefore, is the same for all moment centers. Thus,
we may represent M by a free vector, as show in Fig. 2/10c, where the
direction of M is normal to the plane of the couple and the sense of M is
established by the right-hand rule.

Because the couple vector M is always perpendicular to the plane of
the forces which constitute the couple, in two-dimensional analysis we
can represent the sense of a couple vector as clockwise or counterclock-
wise by one of the conventions shown in Fig. 2/10d. Later, when we deal
with couple vectors in three-dimensional problems, we will make full
use of vector notation to represent them, and the mathematics will au-
tomatically account for their sense.

Equivalent Couples

Changing the values of F and d does not change a given couple as
long as the product Fd remains the same. Likewise, a couple is not af-
fected if the forces act in a different but parallel plane. Figure 2/11

M � r � F

M � rA � F � rB � (�F) � (rA � rB) � F

M � Fd

M � F(a � d) � Fa

50 Chapter  2 Force Systems

Figure 2/10

M

(a)

(b)

(c)

Counterclockwise
couple

(d)

Clockwise
couple

a

O

d

–F

F

O

O

A

B –F

F
rrA

rB

M

M M

M
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shows four different configurations of the same couple M. In each of
the four cases, the couples are equivalent and are described by the
same free vector which represents the identical tendencies to rotate the
bodies.

Force–Couple Systems

The effect of a force acting on a body is the tendency to push or pull
the body in the direction of the force, and to rotate the body about any
fixed axis which does not intersect the line of the force. We can repre-
sent this dual effect more easily by replacing the given force by an equal
parallel force and a couple to compensate for the change in the moment
of the force.

The replacement of a force by a force and a couple is illustrated in
Fig. 2/12, where the given force F acting at point A is replaced by an
equal force F at some point B and the counterclockwise couple M � Fd.
The transfer is seen in the middle figure, where the equal and opposite
forces F and �F are added at point B without introducing any net exter-
nal effects on the body. We now see that the original force at A and the
equal and opposite one at B constitute the couple M � Fd, which is
counterclockwise for the sample chosen, as shown in the right-hand part
of the figure. Thus, we have replaced the original force at A by the same
force acting at a different point B and a couple, without altering the ex-
ternal effects of the original force on the body. The combination of the
force and couple in the right-hand part of Fig. 2/12 is referred to as a
force–couple system.

By reversing this process, we can combine a given couple and a force
which lies in the plane of the couple (normal to the couple vector) to
produce a single, equivalent force. Replacement of a force by an equiva-
lent force–couple system, and the reverse procedure, have many applica-
tions in mechanics and should be mastered.
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≡ ≡ ≡

M

F

F

F

–F

–F
–F

2F

–2F

d

d d

d /2

M M M

Figure 2/11

Figure 2/12

A

BB
F

F
–F d

B F

A
F

M = Fd

≡ ≡
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52 Chapter  2 Force Systems

M

40

100

100

100
60

100 N

100 N

Dimensions in millimeters

P

–P
θ

θ

40 mm
d

θ

θ

θ

P = 400 N

P = 400 N

60°
O

200 mm

400 N

400 N

≡ ≡

400 N
69.3 N.m

400 N

O O O

400 N 400 N

Sample Problem 2/7

The rigid structural member is subjected to a couple consisting of the two
100-N forces. Replace this couple by an equivalent couple consisting of the two
forces P and �P, each of which has a magnitude of 400 N. Determine the proper
angle �.

Solution. The original couple is counterclockwise when the plane of the forces
is viewed from above, and its magnitude is

The forces P and �P produce a counterclockwise couple

Equating the two expressions gives

Ans.

Helpful Hint

� Since the two equal couples are parallel free vectors, the only dimensions
which are relevant are those which give the perpendicular distances between
the forces of the couples.

Sample Problem 2/8

Replace the horizontal 400-N force acting on the lever by an equivalent sys-
tem consisting of a force at O and a couple.

Solution. We apply two equal and opposite 400-N forces at O and identify the
counterclockwise couple

Ans.

Thus, the original force is equivalent to the 400-N force at O and the 
couple as shown in the third of the three equivalent figures.

Helpful Hint

� The reverse of this problem is often encountered, namely, the replacement
of a force and a couple by a single force. Proceeding in reverse is the same as
replacing the couple by two forces, one of which is equal and opposite to the
400-N force at O. The moment arm to the second force would be M/F �

69.3/400 � 0.1732 m, which is 0.2 sin 60�, thus determining the line of ac-
tion of the single resultant force of 400 N.

69.3-N � m

M � 400(0.200 sin 60�) � 69.3 N � m[M � Fd]

 � � cos�1 10
16 � 51.3�

 10 � (400)(0.040) cos �

M � 400(0.040) cos �

M � 100(0.1) � 10 N � m[M � Fd]

�

�
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PROBLEMS

Introductory Problems

2/57 The caster unit is subjected to the pair of 400-N
forces shown. Determine the moment associated
with these forces.

Ans. M � 14 N � m CW

Problem 2/57

2/58 A force F � 60 N acts along the line AB. Determine
the equivalent force–couple system at point C.

Problem 2/58

B

AC

10 mm

x

y

F

400 N

35 
mm

400 N
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2/59 The top view of a revolving entrance door is shown.
Two persons simultaneously approach the door and
exert force of equal magnitudes as shown. If the re-
sulting moment about the door pivot axis at O is 25

, determine the force magnitude F.
Ans. F � 16.18 N

Problem 2/59

2/60 The indicated force–couple system is applied to a
small shaft at the center of the plate. Replace this
system by a single force and specify the coordinate of
the point on the x-axis through which the line of ac-
tion of this resultalt force passes.

Problem 2/60

O
F = 6 kN

M = 400 N·m

x

y

15°

15°

0.8 m

0.8 m

O

– F

F

N � m
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2/63 Replace the 10-kN force acting on the steel column
by an equivalent force–couple system at point O.
This replacement is frequently done in the design of
structures.

Ans. R � 10 kN, MO � 0.75 CCW

Problem 2/63

2/64 Each propeller of the twin-screw ship develops a full-
speed thrust of 300 kN. In maneuvering the ship,
one propeller is turning full speed ahead and the
other full speed in reverse. What thrust P must each
tug exert on the ship to counteract the effect of the
ship’s propellers?

Problem 2/64

12 m
F

F

50 m

120 m

1 m

10 kN

O

75 mm

kN � m
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2/61 The bracket is spot welded to the end of the shaft at
point O. To show the effect of the 900-N force on the
weld, replace the force by its equivalent of a force
and couple M at O. Express M in vector notation.

Ans. M � �90i

Problem 2/61

2/62 As part of a test, the two aircraft engines are revved
up and the propeller pitches are adjusted so as to re-
sult in the fore and aft thrusts shown. What force F
must be exerted by the ground on each of the main
braked wheels at A and B to counteract the turning
effect of the two propeller thrusts? Neglect any ef-
fects of the nose wheel C, which is turned 90� and
unbraked.

Problem 2/62

2 kN

C

A

B
2 kN

3 m 5 m

100 mm

O

900 N

x

y

z

N � m
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Representative Problems

2/65 A lug wrench is used to tighten a square-head bolt. If
250-N forces are applied to the wrench as shown, de-
termine the magnitude F of the equal forces exerted
on the four contact points on the 25-mm bolt head so
that their external effect on the bolt is equivalent to
that of the two 250-N forces. Assume that the forces
are perpendicular to the flats of the bolt head.

Ans. F � 3500 N

Problem 2/65

2/66 During a steady right turn, a person exerts the forces
shown on the steering wheel. Note that each force
consists of a tangential component and a radially-
inward component. Determine the moment exerted
about the steering column at O.

Problem 2/66

375 mm

8 N

8 N

30°

30°

15°

15°
B

O A

350 mm

250 N

B

A
C

250 N

350 mm

25 mm

View C Detail
(clearances exaggerated)
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2/67 The 180-N force is applied to the end of body OAB. If
� � 50�, determine the equivalent force–couple sys-
tem at the shaft axis O.

Ans. F � �169.1i � 61.6j N, MO � 41.9 CCW

Problem 2/67

2/68 A force F of magnitude 50 N is exerted on the auto-
mobile parking-brake lever at the position x � 250
mm. Replace the force by an equivalent force–couple
system at the pivot point O.

Problem 2/68

x

100 mm
10°

20°

15°

F

O

30°

B

A

O

F = 180 N

120 mm

150 mmx

y

θ

N � m
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2/71 The system consisting of the bar OA, two identical
pulleys, and a section of thin tape is subjected to the
two 180-N tensile forces shown in the figure. Deter-
mine the equivalent force–couple system at point O.

Ans. M � 21.7 CCW

Problem 2/71

2/72 Calculate the moment MB of the 900-N force about
the bolt at B. Simplify your work by first replacing
the force by its equivalent force–couple system at A.

Problem 2/72

600 mm

30°
200 mm

40°

900 N

C

B

A

O

A

50 mm

100 mm

r = 25 mm

r

r

45°

180 N

180 N

N � m

56 Chapter  2 Force Systems

2/69 The tie-rod AB exerts the 250-N force on the steer-
ing knuckle AO as shown. Replace this force by an
equivalent force–couple system at O.

Ans. F � 43.4i � 246j N, MO � 60.0 CW

Problem 2/69

2/70 The combined drive wheels of a front-wheel-drive
automobile are acted on by a 7000-N normal reac-
tion force and a friction force F, both of which are
exerted by the road surface. If it is known that the
resultant of these two forces makes a 15� angle with
the vertical, determine the equivalent force–couple
system at the car mass center G. Treat this as a two-
dimensional problem.

Problem 2/70

GG

1000
mm

500 mm

7000 N

A BF

50 mm

235 mm

10° F = 250 N

A

B

O

x

y

N � m
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2/73 The bracket is fastened to the girder by means of the
two rivets A and B and supports the 2-kN force. Re-
place this force by a force acting along the centerline
between the rivets and a couple. Then redistribute
this force and couple by replacing it by two forces,
one at A and the other at B, and ascertain the forces
supported by the rivets.

Ans. FA � 0.8 kN
FB � 2.8 kN

Problem 2/73

2/74 The angle plate is subjected to the two 250-N forces
shown. It is desired to replace these forces by an
equivalent set consisting of the 200-N force applied
at A and a second force applied at B. Determine the
y-coordinate of B.

Problem 2/74

250 mm

100 mm

300 mm
2 kN

B

A

A

200
mm

250 N

250 N

x

240 mm

160 mm

y

Ax

y

200 N

30°

B
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2/75 The weld at O can support a maximum of 2500 N of
force along each of the n- and t-directions and a max-
imum of 1400 of moment. Determine the allow-
able range for the direction � of the 2700-N force
applied at A. The angle � is restricted to 0 � � � 90�.

Ans. 22.2� � � � 47.8�

Problem 2/75

2/76 The device shown is a part of an automobile seat-
back-release mechanism. The part is subjected to the
4-N force exerted at A and a restoring
moment exerted by a hidden torsional spring. Deter-
mine the y-intercept of the line of action of the single
equivalent force.

Problem 2/76

15°

O

F = 4 N

40 mm

10 mm

300 N·mm
x

y

A

300-N � mm

θ

O A
t

n

2700 N

0.7 m

N � m
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2/6 RE S U L T A N T S

The properties of force, moment, and couple were developed in the
previous four articles. Now we are ready to describe the resultant action of
a group or system of forces. Most problems in mechanics deal with a system
of forces, and it is usually necessary to reduce the system to its simplest
form to describe its action. The resultant of a system of forces is the sim-
plest force combination which can replace the original forces without alter-
ing the external effect on the rigid body to which the forces are applied.

Equilibrium of a body is the condition in which the resultant of all
forces acting on the body is zero. This condition is studied in statics. When
the resultant of all forces on a body is not zero, the acceleration of the body
is obtained by equating the force resultant to the product of the mass and
acceleration of the body. This condition is studied in dynamics. Thus, the
determination of resultants is basic to both statics and dynamics.

The most common type of force system occurs when the forces all
act in a single plane, say, the x-y plane, as illustrated by the system of
three forces F1, F2, and F3 in Fig. 2/13a. We obtain the magnitude and
direction of the resultant force R by forming the force polygon shown in
part b of the figure, where the forces are added head-to-tail in any se-
quence. Thus, for any system of coplanar forces we may write

(2/9)

Graphically, the correct line of action of R may be obtained by pre-
serving the correct lines of action of the forces and adding them by the
parallelogram law. We see this in part a of the figure for the case of
three forces where the sum R1 of F2 and F3 is added to F1 to obtain R.
The principle of transmissibility has been used in this process.

Algebraic Method

We can use algebra to obtain the resultant force and its line of ac-
tion as follows:

1. Choose a convenient reference point and move all forces to that
point. This process is depicted for a three-force system in Figs.
2/14a and b, where M1, M2, and M3 are the couples resulting from
the transfer of forces F1, F2, and F3 from their respective original
lines of action to lines of action through point O.

2. Add all forces at O to form the resultant force R, and add all couples
to form the resultant couple MO. We now have the single force–
couple system, as shown in Fig. 2/14c.

3. In Fig. 2/14d, find the line of action of R by requiring R to have a
moment of MO about point O. Note that the force systems of Figs.
2/14a and 2/14d are equivalent, and that Σ(Fd) in Fig. 2/14a is equal
to Rd in Fig. 2/14d.

� � tan�1 
Ry

Rx
 � tan�1 

ΣFy

ΣFx

Rx � ΣFx   Ry � ΣFy   R � �(ΣFx)2 � (ΣFy)2

R � F1 � F2 � F3 � � � �  � ΣF
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Figure 2/13

F1

F2

F3

F1

R1
R1

F2

F3

R

y

x

F1

F1x

F1y

F2yF3y

F2x
F3x

Rx

F2

θ

F3

RRy

(a)

(b)
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Principle of Moments

This process is summarized in equation form by

(2/10)

The first two of Eqs. 2/10 reduce a given system of forces to a force–
couple system at an arbitrarily chosen but convenient point O. The last
equation specifies the distance d from point O to the line of action of R,
and states that the moment of the resultant force about any point O
equals the sum of the moments of the original forces of the system about
the same point. This extends Varignon’s theorem to the case of noncon-
current force systems; we call this extension the principle of moments.

For a concurrent system of forces where the lines of action of all
forces pass through a common point O, the moment sum ΣMO about
that point is zero. Thus, the line of action of the resultant R � ΣF, de-
termined by the first of Eqs. 2/10, passes through point O. For a paral-
lel force system, select a coordinate axis in the direction of the forces.
If the resultant force R for a given force system is zero, the resultant
of the system need not be zepo because the resultant may be a couple.
The three forces in Fig. 2/15, for instance, have a zero resultant force
but have a resultant clockwise couple M � F3d.

Rd � MO

MO � ΣM � Σ(Fd)

R � ΣF

Art ic le  2/6 Resultants 59

Figure 2/15

F1

F2

F3

d3d1

d2O

(a) (b)

F1M1 = F1d1

M2 = F2d2
M3 = F3d3

F2

F3

O

(c)

MO = Σ(Fd)

R = ΣF

O

(d)

R

O

d

d =
MO–—
R

Figure 2/14

F1

F2

d

F1 + F2 = –F3

F1

F2

F3
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Sample Problem 2/9

Determine the resultant of the four forces and one couple which act on the
plate shown.

Solution. Point O is selected as a convenient reference point for the force–couple
system which is to represent the given system.

Ans.

Ans.

The force–couple system consisting of R and MO is shown in Fig. a.
We now determine the final line of action of R such that R alone represents

the original system.

Ans.

Hence, the resultant R may be applied at any point on the line which makes a
63.2� angle with the x-axis and is tangent at point A to a circle of 1.600-m radius
with center O, as shown in part b of the figure. We apply the equation Rd � MO in
an absolute-value sense (ignoring any sign of MO) and let the physics of the situa-
tion, as depicted in Fig. a, dictate the final placement of R. Had MO been counter-
clockwise, the correct line of action of R would have been the tangent at point B.

The resultant R may also be located by determining its intercept distance b
to point C on the x-axis, Fig. c. With Rx and Ry acting through point C, only Ry

exerts a moment about O so that

Alternatively, the y-intercept could have been obtained by noting that the mo-
ment about O would be due to Rx only.

A more formal approach in determining the final line of action of R is to use
the vector expression

where r � xi � yj is a position vector running from point O to any point on the
line of action of R. Substituting the vector expressions for r, R, and MO and car-
rying out the cross product result in

Thus, the desired line of action, Fig. c, is given by

By setting y � 0, we obtain x � �1.792 m, which agrees with our earlier calcula-
tion of the distance b.

132.4x � 66.9y � �237

 (132.4x � 66.9y)k � �237k

 (xi � yj) � (66.9i � 132.4j) � �237k

r � R � MO

Ry 

b � �MO�   and   b � 237
132.4

 � 1.792 m

148.3d � 237   d � 1.600 m[Rd � �MO�]

 � �237 N � m

 MO � 140 � 50(5) � 60 cos 45�(4) � 60 sin 45�(7)[MO � Σ(Fd)]

 � � tan�1 132.4
66.9

 � 63.2� �� � tan�1 
Ry

Rx
�

 R � �(66.9)2 � (132.4)2 � 148.3 N [R � �Rx 

2 � Ry 

2]

 Ry � 50 � 80 sin 30� � 60 cos 45� � 132.4 N [Ry � ΣFy]

 Rx � 40 � 80 cos 30� � 60 cos 45� � 66.9 N [Rx � ΣFx]
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50 N
60 N

2 m

2 m

2 m

1 m

5 m

140 N·m

80 N

40 N 30°

45°

O x

y

R = 148.3 N

 = 63.2°θ

O
x

y

|MO| =
237 N·m

R = 148.3 N

63.2°1.600 m

O

A

B
x

132.4x – 66.9y =
–237

O
b

x

y

R

C

(a)

(b)

(c)

Helpful Hints

� We note that the choice of point O as
a moment center eliminates any mo-
ments due to the two forces which
pass through O. Had the clockwise
sign convention been adopted, MO

would have been �237 , with
the plus sign indicating a sense
which agrees with the sign conven-
tion. Either sign convention, of
course, leads to the conclusion of a
clockwise moment MO.

� Note that the vector approach
yields sign information automati-
cally, whereas the scalar approach
is more physically oriented. You
should master both methods.

N � m

�

�
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PROBLEMS

Introductory Problems

2/77 Calculate the magnitude of the tension T and the
angle � for which the eye bolt will be under a resul-
tant downward force of 15 kN.

Ans. T � 12.85 kN, � � 38.9�

Problem 2/77

2/78 Determine the resultant R of the four forces acting
on the gusset plate. Also find the magnitude of R
and the angle �x which the resultant makes with the
x-axis.

Problem 2/78

40 kN

30 kN
50 kN

60 kN

40°

20°
20°

x

y

6 kN

8 kN

T
30°

θ
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2/79 Determine the equivalent force–couple system at the
origin O for each of the three cases of forces being
applied to the edge of a circular disk. If the resultant
can be so expressed, replace this force–couple system
with a stand-alone force.

Ans. (a) R � �2Fj along x � �r
(b) R � �Fi along y � 3r
(c) R � �Fi along y � �r

Problem 2/79

2/80 Determine the height h above the base B at which
the resultant of the three forces acts.

Problem 2/80

2/81 Where does the resultant of the two forces act?
Ans. 10.70 m to the left of A

Problem 2/81

500
mm

300
mm

680 N

660 N

A

300 N

250 N

650 N

B

600 mm

600 mm

600 mm

(a)

y

x

F

F
FF

O

(b)

y

x x

F
F

F

O

(c)

y

x

F
F

F

Or r r

c02.qxd  10/29/07  1:38 PM  Page 61



2/84 Determine the magnitude of the force F applied to
the handle which will make the resultant of the
three forces pass through O.

Problem 2/84

2/85 Determine and locate the resultant R of the two
forces and one couple acting on the I-beam.

Ans. R � 4 kN down at x � 5 m

Problem 2/85

10 kN

6 kN

52 kN·m

3 m 3 m 3 m

x

300 mm

F

150
mm

120 N 240 N

100
mm

O
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2/82 Under nonuniform and slippery road conditions, the
two forces shown are exerted on the two rear-drive
wheels of the pickup truck, which has a limited-slip
rear differential. Determine the y-intercept of the re-
sultant of this force system.

Problem 2/82

2/83 If the resultant of the two forces and couple M
passes through point O, determine M.

Ans. M � 148.0 CCW

Problem 2/83

150
mm

150
mm

160
mm

30°

60°

320 N

400 N

M

O

N � m

1675 mm

500 N

250 N

xx

y

G

1125 mm

750 mm

750 mm
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2/86 A commercial airliner with four jet engines, each
producing 90 kN of forward thrust, is in a steady,
level cruise when engine number 3 suddenly fails.
Determine and locate the resultant of the three re-
maining engine thrust vectors. Treat this as a two-
dimensional problem.

Problem 2/86

2/87 Replace the three forces acting on the bent pipe by a
single equivalent force R. Specify the distance x
from point O to the point on the x-axis through
which the line of action of R passes.

Ans. R � �200i � 80j N, x � 1.625 m (off pipe)

Problem 2/87

O

y

x

250 mm
160 N

200 N

240 N

250 mm
125 mm

250 mm

9 m
90 kN

4

9 m

12 m

12 m

90 kN

90 kN

3

2

1
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Representative Problems

2/88 The directions of the two thrust vectors of an experi-
mental aircraft can be independently changed from
the conventional forward direction within limits. For
the thrust configuration shown, determine the
equivalent force–couple system at point O. Then re-
place this force–couple system by a single force and
specify the point on the x-axis through which the
line of action of this resultant passes. These results
are vital to assessing design performance.

Problem 2/88

2/89 Determine the resultant R of the three forces acting
on the simple truss. Specify the points on the x- and
y-axes through which R must pass.

Ans. R � �15i � 47.3j kN
x � 7.42 m, y � �23.4 m

Problem 2/89

25 kN

y

xO

20 kN

30 kN

30°

6 m

5 m

3 m 3 m

10 m

3 m

3 m

15°

y

A
T

T

B

xO
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Problem 2/92

2/93 Two integral pulleys are subjected to the belt ten-
sions shown. If the resultant R of these forces passes
through the center O, determine T and the magni-
tude of R and the counterclockwise angle � it makes
with the x-axis.

Ans. T � 60 N, R � 193.7 N, � � 34.6�

Problem 2/93

2/94 While sliding a desk toward the doorway, three stu-
dents exert the forces shown in the overhead view.
Determine the equivalent force–couple system at
point A. Then determine the equation of the line of
action of the resultant force.

Problem 2/94

x
A

y

100 N

1.5 m

0.75 m

60 N

80 N

200 mm

30°

30°

160 N
200 N

150 N

T

O

y

x

100
mm

200 mm

250 mm

120 N

O

20°

θ

P

80 N

200 mm
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2/90 The gear and attached V-belt pulley are turning
counterclockwise and are subjected to the tooth load
of 1600 N and the 800-N and 450-N tensions in the
V-belt. Represent the action of these three forces by
a resultant force R at O and a couple of magnitude
M. Is the unit slowing down or speeding up?

Problem 2/90

2/91 The design specifications for the attachment at A for
this beam depend on the magnitude and location of
the applied loads. Represent the resultant of the
three forces and couple by a single force R at A and a
couple M. Specify the magnitude of R.

Ans. R � 1.879i � 1.684j kN, R � 2.52 kN
M � 14.85 CW

Problem 2/91

2/92 In the equilibrium position shown, the resultant of
the three forces acting on the bell crank passes
through the bearing O. Determine the vertical force
P. Does the result depend on �?

kN � m

450 N

800 N

1600 N

30°

280
mm 150

mm

20°

15°

15°

x
O

y

y

x
A

1.8 m

0.8 m

1.2 m

8 kN·m

2 kN

4 kN

3 kN

20°

1.5 m
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2/95 Under nonuniform and slippery road conditions, the
four forces shown are exerted on the four drive
wheels of the all-wheel-drive vehicle. Determine the
resultant of this system and the x- and y-intercepts
of its line of action. Note that the front and rear
tracks are equal (i.e., ).
Ans. R � 903i � 175j N, (0, �0.253) m, (1.308, 0) m

Problem 2/95

2/96 The rolling rear wheel of a front-wheel-drive auto-
mobile which is accelerating to the right is subjected
to the five forces and one moment shown. The forces
Ax � 240 N and Ay � 2000 N are forces transmitted
from the axle to the wheel, F � 160 N is the friction
force exerted by the road surface on the tire, N �

2400 N is the normal reaction force exerted by the
road surface, and W � 400 N is the weight of the
wheel/tire unit. The couple M � 3 is the bear-
ing friction moment. Determine and locate the resul-
tant of the system.

Problem 2/96

F 

N 

750 mmA 

M 

Ay 

Ax 

W 

x 

y 

N � m

300 N

300 N

200 N

1520 mm 1120 mm

B C

y

A D

760 mm

760 mm

30°

N

AB � CD
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2/97 A rear-wheel-drive car is stuck in the snow between
other parked cars as shown. In an attempt to free
the car, three students exert forces on the car at
points A, B, and C while the driver’s actions result in
a forward thrust of 200 N acting parallel to the plane
of rotation of each rear wheel. Treating the problem
as two-dimensional, determine the equivalent
force–couple system at the car center of mass G and
locate the position x of the point on the car center-
line through which the resultant passes. Neglect all
forces not shown.

Ans. R � 925i � 567j N
MG � 690 CCW

x � 1.218 m

Problem 2/97

2/98 An exhaust system for a pickup truck is shown in
the figure. The weights Wh, Wm, and Wt of the head-
pipe, muffler, and tailpipe are 10, 100, and 50 N, re-
spectively, and act at the indicated points. If the
exhaust-pipe hanger at point A is adjusted so that its
tension FA is 50 N, determine the required forces in
the hangers at points B, C, and D so that the
force–couple system at point O is zero. Why is a zero
force–couple system at O desirable?

Problem 2/98

30°

D

r = 0.35

C

FC FD

FBFA

Wh Wm

BAO

30°

Wt

0.650.20.5 0.65

Dimensions in meters

0.5 0.4

1800
mmG

y

x

B

A

C

1650
mm

350 N250 N
30°

825
mm

200 N

200 N

400 N 825
mm

N � m
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2/7 RE C T A N G U L A R CO M P O N E N T S

Many problems in mechanics require analysis in three dimensions,
and for such problems it is often necessary to resolve a force into its
three mutually perpendicular components. The force F acting at point O
in Fig. 2/16 has the rectangular components Fx, Fy, Fz, where

(2/11)

The unit vectors i, j, and k are in the x-, y-, and z-directions, respec-
tively. Using the direction cosines of F, which are l � cos �x, m � cos �y,
and n � cos �z, where l2 � m2 � n2 � 1, we may write the force as

(2/12)

We may regard the right-side expression of Eq. 2/12 as the force
magnitude F times a unit vector nF which characterizes the direction of
F, or

(2/12a)

It is clear from Eqs. 2/12 and 2/12a that nF � li � mj � nk, which
shows that the scalar components of the unit vector nF are the direction
cosines of the line of action of F.

In solving three-dimensional problems, one must usually find the x,
y, and z scalar components of a force. In most cases, the direction of a
force is described (a) by two points on the line of action of the force or
(b) by two angles which orient the line of action.

(a) Specification by two points on the line of action of the force.
If the coordinates of points A and B of Fig. 2/17 are known, the force F
may be written as

Thus the x, y, and z scalar components of F are the scalar coefficients of
the unit vectors i, j, and k, respectively.

F � FnF � F AB
l

AB
 � F 

(x2 � x1)i � (y2 � y1)j � (z2 � z1)k

�(x2 � x1)2 � (y2 � y1)2 � (z2 � z1)2

F � FnF

F � F(li � mj � nk)

 Fz � F cos �z   F � F(i cos �x � j cos �y � k cos �z)

 Fy � F cos �y   F � Fxi � Fy 

j � Fzk

 Fx � F cos �x   F � �Fx 

2 � Fy 

2 � Fz 

2
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Figure 2/16

SECTION B THREE-DIMENSIONAL FORCE SYSTEMS

x

y

yθ

xθ

zθ

Fxi

O

i
j

k

Fyj

Fzk F

z

z

y

x

A (x1, y1, z1)

B (x2, y2, z2)

(z2 – z1)

(x2 – x1)

(y2 – y1)











        


F

Figure 2/17
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(b) Specification by two angles which orient the line of action of
the force. Consider the geometry of Fig. 2/18. We assume that the an-
gles � and � are known. First resolve F into horizontal and vertical com-
ponents.

Then resolve the horizontal component Fxy into x- and y-components.

The quantities Fx, Fy, and Fz are the desired scalar components of F.
The choice of orientation of the coordinate system is arbitrary, with

convenience being the primary consideration. However, we must use a
right-handed set of axes in our three-dimensional work to be consistent
with the right-hand-rule definition of the cross product. When we rotate
from the x- to the y-axis through the 90� angle, the positive direction for
the z-axis in a right-handed system is that of the advancement of a
right-handed screw rotated in the same sense. This is equivalent to the
right-hand rule.

Dot Product

We can express the rectangular components of a force F (or any
other vector) with the aid of the vector operation known as the dot or
scalar product (see item 6 in Art. C/7 of Appendix C). The dot product of
two vectors P and Q, Fig. 2/19a, is defined as the product of their mag-
nitudes times the cosine of the angle � between them. It is written as

We can view this product either as the orthogonal projection P cos � of
P in the direction of Q multiplied by Q, or as the orthogonal projection
Q cos � of Q in the direction of P multiplied by P. In either case the dot
product of the two vectors is a scalar quantity. Thus, for instance, we
can express the scalar component Fx � F cos �x of the force F in Fig.
2/16 as , where i is the unit vector in the x-direction.Fx � F � i

P � Q � PQ cos �

 Fy � Fxy sin � � F cos � sin �

 Fx � Fxy cos � � F cos � cos �

 Fz � F sin �

 Fxy � F cos �
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Figure 2/18

F

z

Fz

θ

φ
Fy

Fx

Fxy

y

x

P

Q

F

(b)(a)

n (unit vector)Fn = F·nn

Fn = F·n

α

Figure 2/19
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In more general terms, if n is a unit vector in a specified direction,
the projection of F in the n-direction, Fig. 2/19b, has the magnitude 
Fn � . If we want to express the projection in the n-direction as a
vector quantity, then we multiply its scalar component, expressed by

, by the unit vector n to give Fn � . We may write this as 
Fn � without ambiguity because the term nn is not defined, and
so the complete expression cannot be misinterpreted as .

If the direction cosines of n are �, �, and �, then we may write n in
vector component form like any other vector as

where in this case its magnitude is unity. If the direction cosines of F
with respect to reference axes x-y-z are l, m, and n, then the projection
of F in the n-direction becomes

because

and

The latter two sets of equations are true because i, j, and k have unit
length and are mutually perpendicular.

Angle between Two Vectors

If the angle between the force F and the direction specified by the
unit vector n is �, then from the dot-product definition we have �

Fn cos � � F cos �, where �n� � n � 1. Thus, the angle between F and n
is given by

(2/13)

In general, the angle between any two vectors P and Q is

(2/13a)

If a force F is perpendicular to a line whose direction is specified by the
unit vector n, then cos � � 0, and � 0. Note that this relationship
does not mean that either F or n is zero, as would be the case with
scalar multiplication where (A)(B) � 0 requires that either A or B (or
both) be zero.

The dot-product relationship applies to nonintersecting vectors as
well as to intersecting vectors. Thus, the dot product of the noninter-
secting vectors P and Q in Fig. 2/20 is Q times the projection of P� on Q,
or P�Q cos � � PQ cos � because P� and P are the same when treated as
free vectors.

F � n

� � cos�1 
P � Q
PQ

� � cos�1 F � n
F

F � n

i � j � j � i � i � k � k � i � j � k � k � j � 0

i � i � j � j � k � k �1

 � F(l� � m� � n�)

 Fn � F � n �F(li � mj � nk) � (�i � �j � �k)

n � �i � �j � �k

F � (nn)
F � nn

(F � n)nF � n

F � n
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Figure 2/20
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Sample Problem 2/10

A force F with a magnitude of 100 N is applied at the origin O of the axes 
x-y-z as shown. The line of action of F passes through a point A whose coordi-
nates are 3 m, 4 m, and 5 m. Determine (a) the x, y, and z scalar components of
F, (b) the projection Fxy of F on the x-y plane, and (c) the projection FOB of F
along the line OB.

Solution. Part (a). We begin by writing the force vector F as its magnitude
F times a unit vector nOA.

The desired scalar components are thus

Ans.

Part (b). The cosine of the angle �xy between F and the x-y plane is

so that Fxy � F cos �xy � 100(0.707) � 70.7 N Ans.

Part (c). The unit vector nOB along OB is

The scalar projection of F on OB is

Ans.

If we wish to express the projection as a vector, we write

 � 58.1i � 58.1j � 19.35k N

 � 84.4(0.688i � 0.688j � 0.229k)

 FOB � F � nOBnOB

 � 84.4N

 � (42.4)(0.688) � (56.6)(0.688) � (70.7)(0.229)

 FOB � F � nOB � (42.4i � 56.6j � 70.7k) � (0.688i � 0.688j � 0.229k)

nOB � OB
l

OB
 � 

6i � 6j � 2k

�62 � 62 � 22
 � 0.688i � 0.688j � 0.229k

cos �xy � 
�32 � 42

�32 � 42 � 52
 � 0.707

Fx � 42.4 N   Fy � 56.6 N   Fz � 70.7 N

 � 42.4i � 56.6j � 70.7k N

 � 100[0.424i � 0.566j � 0.707k]

 F � FnOA � F  OA
l

OA
 � 100 � 3i � 4j � 5k

�32 � 42 � 52�
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z

x

y

A

B

O

5 m

4 m

F = 100 N

3 m

6 m

6 m

2 m

F

z

y

x

O

Fx

Fz

Fy

xyθ Fxy = 70.7 N

F

nOB

z

y

x

O

FOB = 84.4 N

Helpful Hints

� In this example all scalar components
are positive. Be prepared for the case
where a direction cosine, and hence
the scalar component, are negative.

� The dot product automatically finds
the projection or scalar component
of F along line OB as shown.

�

�
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Problem 2/101

2/102 Express F as a vector in terms of the unit vectors i,
j, and k. Determine the projection, both as a scalar
and as a vector, of F onto line OA, which lies in the
x-y plane.

Problem 2/102

2/103 The force F has a magnitude of 900 N and acts along
the diagonal of the parallelepiped as shown. Express F
in terms of its magnitude times the appropriate unit
vector and determine its x-, y-, and z-components.

Ans.
Fx = 300 N, Fy = �600 N, Fz = � 600 N

Problem 2/103

x

y

z

2 m
4 m

4 m

F = 900 N

F � 900 [1
3i � 23 j � 23k] N

z

x

y

F = 5 kN

O

40°

30° 35°

A

y, mm

B (–25, 50, 40)

F = 750 N

A (15, –20, –25)x, mm

z, mm

O
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PROBLEMS

Introductory Problems

2/99 Express F as a vector in terms of the unit vectors
i, j, and k. Determine the angle between F and the
y-axis.

Ans. F � 18.86i � 23.6j � 51.9k N
�y � 113.1�

Problem 2/99

2/100 The 70-m microwave transmission tower is stead-
ied by three guy cables as shown. Cable AB carries
a tension of 12 kN. Express the corresponding force
on point B as a vector.

Problem 2/100

2/101 Express the force F as a vector in terms of the
unit vectors i, j, and k. Determine the angles �x,
�y, and �z which F makes with the positive x-, y-,
and z-axes.

Ans. F � �290i � 507j � 471k N
�x � 112.7�, �y � 47.5�, �z � 51.1�

40 m

20 m
30 m

20 m

10 m

25 m

35 m
70 m

B

D

C

A

O

y

z

x

z

110

x

40

50 y

F = 60 N

O

Dimensions in millimeters
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2/104 The turnbuckle is tightened until the tension in
the cable AB equals 2.4 kN. Determine the vector
expression for the tension T as a force acting on
member AD. Also find the magnitude of the projec-
tion of T along the line AC.

Problem 2/104

2/105 The rigid pole and cross-arm assembly is supported
by the three cables shown. A turnbuckle at D is
tightened until it induces a tension T in CD of 1.2
kN. Express T as a vector. Does it make any differ-
ence in the result which coordinate system is used?

Ans. T � 0.321i � 0.641j � 0.962k kN, No

Problem 2/105

T = 1.2 kN

z′

y′

y

x′

x

z

B

C

G

A

E

D

F
1 m

2 m

3 m

1.5 m

1.5 m

1.5 m

1 m

3 m

O

5 m

OC

B

x

y2 m

3 m
1 m

z

D

A
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2/106 Use the result cited for Prob. 2/105 and deter-
mine the magnitude TGF of the projection of T
onto line GF.

Representative Problems

2/107 The tension in the supporting cable AB is 10 kN.
Write the force which the cable exerts on the boom
BC as a vector T. Determine the angles �x, �y, and
�z which the line of action of T forms with the posi-
tive x-, y-, and z-axes.

Ans. T � 10[0.406i � 0.761j � 0.507k] kN
�x � 66.1�, �y � 139.5�, �z � 59.5�

Problem 2/107

2/108 The cable BC carries a tension of 750 N. Write this
tension as a force T acting on point B in terms of
the unit vectors i, j, and k. The elbow at A forms a
right angle.

Problem 2/108

1.6 mC O

A
x

z

y

B

0.7 m

1.2 m

0.8 m30°

5 m
2.5 m

z

x

y
B

C

T = 10 kN

4 m

5 m

A
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2/112 The rectangular plate is supported by hinges along
its side BC and by the cable AE. If the cable tension
is 300 N, determine the projection onto line BC of
the force exerted on the plate by the cable. Note
that E is the midpoint of the horizontal upper edge
of the structural support.

Problem 2/112

2/113 The access door is held in the 30� open position by
the chain AB. If the tension in the chain is 100 N,
determine the projection of the tension force onto
the diagonal axis CD of the door.

Ans. TCD � 46.0 N

Problem 2/113

900 mm

30°C
A

D

B

900
mm

1200 mm

400 mm

25°
E

C

D

A

B

T = 300 N 12
00

 m
m
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2/109 Derive the expression for the projection FDC of the
force F onto the line directed from D to C.

Ans.

Problem 2/109

2/110 If M is the center of the face ABCD of the rectangu-
lar solid, express F as a vector in terms of the unit
vectors i, j, and k. Determine the scalar projection
of F along line AE. The quantities F, a, b, and c are
known.

Problem 2/110

2/111 Determine the angle � between the 200-N force and
line OC.

Ans. � � 54.9�

Problem 2/111

z

y

x 240 mm
120 mm

80 mm

B

A

C

O F = 200 N

z

y
x

Oc

D

b a

B

E

M
A

C

F

a

c

b

BF

D

A
C

FDC � 
(b2 � a2)F

�a2 � b2�a2 � b2 � c2
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2/114 The spring of constant k � 2.6 kN/m is attached to
the disk at point A and to the end fitting at point B
as shown. The spring is unstretched when �A and
�B are both zero. If the disk is rotated 15� clockwise
and the end fitting is rotated 30� counterclockwise,
determine a vector expression for the force F which
the spring exerts at point A. The magnitude of the
spring force is the constant k multiplied by the de-
flection (lengthening or shortening) of the spring.

Ans. F � �3.12i � 41.1j � 7.52k N

Problem 2/114

2/115 Determine the x-, y-, and z-components of force F
which acts on the tetrahedron as shown. The quan-
tities a, b, c, and F are known, and M is the mid-
point of edge AB.

Ans.

Problem 2/115

z

y

M

C

O

B

A

a

c

b F

x

Fz � F� a2 � b2

a2 � b2 � 4c2

Fy � 2bcF
�a2 � b2�a2 � b2 � 4c2

Fx � 2acF
�a2 � b2�a2 � b2 � 4c2

z

x

O

900 mm 200 mm

250 mm

B

  A = 15°θ

  B = 30°θ

yk = 2.6 kN/m

A
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2/116 A force F is applied to the surface of the sphere as
shown. The angles � and � locate point P, and point
M is the midpoint of ON. Express F in vector form,
using the given x-, y-, and z-coordinates.

Ans.

Problem 2/116

O

M

N

P

F

R

z

x

yθ

φ

F � F�(2 sin � � 1)(i cos � � j sin �) � k(2 cos �)

�5 � 4 sin � �

� �

�
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2/8 MO M E N T A N D CO U P L E

In two-dimensional analyses it is often convenient to determine a
moment magnitude by scalar multiplication using the moment-arm
rule. In three dimensions, however, the determination of the perpendic-
ular distance between a point or line and the line of action of the force
can be a tedious computation. A vector approach with cross-product
multiplication then becomes advantageous.

Moments in Three Dimensions

Consider a force F with a given line of action acting on a body, Fig.
2/21a, and any point O not on this line. Point O and the line of F estab-
lish a plane A. The moment MO of F about an axis through O normal to
the plane has the magnitude MO � Fd, where d is the perpendicular dis-
tance from O to the line of F. This moment is also referred to as the mo-
ment of F about the point O.

The vector MO is normal to the plane and is directed along the axis
through O. We can describe both the magnitude and the direction of MO

by the vector cross-product relation introduced in Art. 2/4. (Refer to
item 7 in Art. C/7 of Appendix C.) The vector r runs from O to any point
on the line of action of F. As described in Art. 2/4, the cross product of r
and F is written r F and has the magnitude (r sin �)F, which is the
same as Fd, the magnitude of MO.

The correct direction and sense of the moment are established by
the right-hand rule, described previously in Arts. 2/4 and 2/5. Thus,
with r and F treated as free vectors emanating from O, Fig. 2/21b, the
thumb points in the direction of MO if the fingers of the right hand curl
in the direction of rotation from r to F through the angle �. Therefore,
we may write the moment of F about the axis through O as

(2/14)

The order r F of the vectors must be maintained because F r
would produce a vector with a sense opposite to that of MO; that is, 
F r � �MO.

Evaluating the Cross Product

The cross-product expression for MO may be written in the determi-
nant form

(2/15)

(Refer to item 7 in Art. C/7 of Appendix C if you are not already familiar
with the determinant representation of the cross product.) Note the
symmetry and order of the terms, and note that a right-handed coordi-
nate system must be used. Expansion of the determinant gives

MO � (ry Fz � rz Fy)i � (rz Fx � rx Fz)j � (rx Fy � ry Fx)k

MO � � irx

Fx

j
ry

Fy

k
rz

Fz

�

�

��

MO � r � F

�
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Figure 2/21
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To gain more confidence in the cross-product relationship, exam-
ine the three components of the moment of a force about a point as
obtained from Fig. 2/22. This figure shows the three components of a
force F acting at a point A located relative to O by the vector r. The
scalar magnitudes of the moments of these forces about the positive
x-, y-, and z-axes through O can be obtained from the moment-arm
rule, and are

which agree with the respective terms in the determinant expansion for
the cross product r F.

Moment about an Arbitrary Axis

We can now obtain an expression for the moment M� of F about any
axis � through O, as shown in Fig. 2/23. If n is a unit vector in the 
�-direction, then we can use the dot-product expression for the compo-
nent of a vector as described in Art. 2/7 to obtain , the component
of MO in the direction of �. This scalar is the magnitude of the moment
M� of F about �.

To obtain the vector expression for the moment M� of F about �,
multiply the magnitude by the directional unit vector n to obtain

(2/16)

where r F replaces MO. The expression is known as a triple
scalar product (see item 8 in Art. C/7, Appendix C). It need not be writ-
ten because a cross product cannot be formed by a vector and
a scalar. Thus, the association would have no meaning.

The triple scalar product may be represented by the determinant

(2/17)

where �, �, � are the direction cosines of the unit vector n.

Varignon’s Theorem in Three Dimensions

In Art. 2/4 we introduced Varignon’s theorem in two dimensions.
The theorem is easily extended to three dimensions. Figure 2/24 shows a
system of concurrent forces F1, F2, F3, . . . . The sum of the moments
about O of these forces is

 � r � ΣF

 r � F1 � r � F2 � r � F3 � � � �  � r � (F1 � F2 � F3 � � � � )

�M��  � M� � � rx

Fx
�

ry

Fy
�

rz

Fz
�

�
r � (F � n)

(r � F) � n

r � F � n�

M� � (r � F � n)n

MO � n

�

Mx � ry Fz � rz Fy   My � rz Fx � rx Fz   Mz � rx Fy � ry Fx
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Figure 2/22
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where we have used the distributive law for cross products. Using the
symbol MO to represent the sum of the moments on the left side of the
above equation, we have

(2/18)

This equation states that the sum of the moments of a system of concur-
rent forces about a given point equals the moment of their sum about
the same point. As mentioned in Art. 2/4, this principle has many appli-
cations in mechanics.

Couples in Three Dimensions

The concept of the couple was introduced in Art. 2/5 and is easily
extended to three dimensions. Figure 2/25 shows two equal and opposite
forces F and �F acting on a body. The vector r runs from any point B
on the line of action of �F to any point A on the line of action of F.
Points A and B are located by position vectors rA and rB from any point
O. The combined moment of the two forces about O is

However, rA � rB � r, so that all reference to the moment center O dis-
appears, and the moment of the couple becomes

(2/19)

Thus, the moment of a couple is the same about all points. The magni-
tude of M is M � Fd, where d is the perpendicular distance between the
lines of action of the two forces, as described in Art. 2/5.

The moment of a couple is a free vector, whereas the moment of a
force about a point (which is also the moment about a defined axis
through the point) is a sliding vector whose direction is along the axis
through the point. As in the case of two dimensions, a couple tends to
produce a pure rotation of the body about an axis normal to the plane of
the forces which constitute the couple.

Couple vectors obey all of the rules which govern vector quantities.
Thus, in Fig. 2/26 the couple vector M1 due to F1 and �F1 may be added

M � r � F

M � rA � F � rB � (�F) � (rA � rB) � F

MO � Σ(r � F) � r � R
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Figure 2/25

M1

M

M2

F1

–F1

–F≡
F

M1

M2
F2

–F2

Figure 2/26

rArB

–F

A

d

O

B r

F

M
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as shown to the couple vector M2 due to F2 and �F2 to produce the cou-
ple M, which, in turn, can be produced by F and �F.

In Art. 2/5 we learned how to replace a force by its equivalent
force–couple system. You should also be able to carry out this replace-
ment in three dimensions. The procedure is represented in Fig. 2/27,
where the force F acting on a rigid body at point A is replaced by an
equal force at point B and the couple M � r F. By adding the equal
and opposite forces F and �F at B, we obtain the couple composed of
�F and the original F. Thus, we see that the couple vector is simply the
moment of the original force about the point to which the force is being
moved. We emphasize that r is a vector which runs from B to any point
on the line of action of the original force passing through A.

�
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O

F

a b

c
y
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x

O
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a b

c
y
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y
x

A

O
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B

T

rOA

�

�

Sample Problem 2/11

Determine the moment of force F about point O (a) by inspection and (b) by
the formal cross-product definition MO � r F.

Solution. (a) Because F is parallel to the y-axis, F has no moment about that
axis. It should be clear that the moment arm from the x-axis to the line of action
of F is c and that the moment of F about the x-axis is negative. Similarly, the
moment arm from the z-axis to the line of action of F is a and the moment of F
about the z-axis is positive. So we have

Ans.

(b) Formally,

Ans.

Helpful Hint

� Again we stress that r runs from the moment center to the line of action of F.
Another permissible, but less convenient, position vector is r � ai � bj � ck.

Sample Problem 2/12

The turnbuckle is tightened until the tension in cable AB is 2.4 kN. Deter-
mine the moment about point O of the cable force acting on point A and the
magnitude of this moment.

Solution. We begin by writing the described force as a vector.

The moment of this force about point O is

Ans.

This vector has a magnitude

Ans.

Helpful Hint

� The student should verify by inspection the signs of the moment components.

MO � �2.742 � 4.392 � 2.192 � 5.62 kN � m

 � �2.74i � 4.39j � 2.19k kN � m

 MO � rOA � T � (1.6i � 2k) � (0.731i � 1.371j � 1.829k)

 � 0.731i � 1.371j � 1.829k kN

 T � TnAB � 2.4� 0.8i � 1.5j � 2k

�0.82 � 1.52 � 22�

 � F(�ci � ak)

 MO � r � F � (ai � ck) � Fj � aFk � cFi

MO � �cFi � aFk � F(�ci � ak)

�
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Sample Problem 2/13

A tension T of magnitude 10 kN is applied to the cable attached to the top A
of the rigid mast and secured to the ground at B. Determine the moment Mz of T
about the z-axis passing through the base O.

Solution (a). The required moment may be obtained by finding the compo-
nent along the z-axis of the moment MO of T about point O. The vector MO is
normal to the plane defined by T and point O, as shown in the accompanying fig-
ure. In the use of Eq. 2/14 to find MO, the vector r is any vector from point O to
the line of action of T. The simplest choice is the vector from O to A, which is
written as r � 15j m. The vector expression for T is

From Eq. 2/14,

The value Mz of the desired moment is the scalar component of MO in the 
z-direction or . Therefore,

Ans.

The minus sign indicates that the vector Mz is in the negative z-direction. Ex-
pressed as a vector, the moment is Mz � �84.9k .

Solution (b). The force of magnitude T is resolved into components Tz and Txy

in the x-y plane. Since Tz is parallel to the z-axis, it can exert no moment about
this axis. The moment Mz is, then, due only to Txy and is Mz � Txyd, where d is
the perpendicular distance from Txy to O. The cosine of the angle between T and 
Txy is , and therefore,

The moment arm d equals multiplied by the sine of the angle between Txy

and OA, or

Hence, the moment of T about the z-axis has the magnitude

Ans.

and is clockwise when viewed in the x-y plane.

Solution (c). The component Txy is further resolved into its components Tx and Ty.
It is clear that Ty exerts no moment about the z-axis since it passes through it, so
that the required moment is due to Tx alone. The direction cosine of T with respect
to the x-axis is so that Tx � 10(0.566) � 5.66 kN. Thus,

Ans.Mz � 5.66(15) � 84.9 kN � m

12/�92 � 122 � 152 � 0.566

Mz � 9.06(9.37) � 84.9 kN � m

d � 15 12
�122 � 152

 � 9.37 m

OA

Txy � 10(0.906) � 9.06 kN

�152 � 122 / �152 � 122 � 92 � 0.906

kN � m

Mz � 150(�0.566k � 0.424i) � k � �84.9 kN � m

Mz � MO � k

 � 150(�0.566k � 0.424i) kN � m

 MO � 15j � 10(0.566i � 0.707j � 0.424k) [MO � r � F]

 � 10(0.566i � 0.707j � 0.424k) kN

 T � TnAB � 10 � 12i � 15j � 9k

�(12)2 � (�15)2 � (9)2�
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B
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T
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x
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�

�

�

Helpful Hints

� We could also use the vector from O
to B for r and obtain the same result,
but using vector OA is simpler.

� It is always helpful to accompany your
vector operations with a sketch of the
vectors so as to retain a clear picture
of the geometry of the problem.

� Sketch the x-y view of the problem
and show d.
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Sample Problem 2/14

Determine the magnitude and direction of the couple M which will replace
the two given couples and still produce the same external effect on the block.
Specify the two forces F and �F, applied in the two faces of the block parallel to
the y-z plane, which may replace the four given forces. The 30-N forces act paral-
lel to the y-z plane.

Solution. The couple due to the 30-N forces has the magnitude M1 � 30(0.06) �
1.80 . The direction of M1 is normal to the plane defined by the two forces,
and the sense, shown in the figure, is established by the right-hand convention.
The couple due to the 25-N forces has the magnitude M2 � 25(0.10) � 2.50 
with the direction and sense shown in the same figure. The two couple vectors
combine to give the components

Thus, Ans.

with Ans.

The forces F and �F lie in a plane normal to the couple M, and their mo-
ment arm as seen from the right-hand figure is 100 mm. Thus, each force has the
magnitude

[M = Fd] Ans.

and the direction � � 44.3�.

Sample Problem 2/15

A force of 400 N is applied at A to the handle of the control lever which is at-
tached to the fixed shaft OB. In determining the effect of the force on the shaft
at a cross section such as that at O, we may replace the force by an equivalent
force at O and a couple. Describe this couple as a vector M.

Solution. The couple may be expressed in vector notation as M � r F,
where and F � �400i N. Thus,

Alternatively we see that moving the 400-N force through a distance d �

� 0.236 m to a parallel position through O requires the addition
of a couple M whose magnitude is

Ans.

The couple vector is perpendicular to the plane in which the force is shifted, and
its sense is that of the moment of the given force about O. The direction of M in
the y-z plane is given by

Ans.� � tan�1 125
200 � 32.0�

M � Fd  � 400(0.236) � 94.3 N � m

�0.1252 � 0.22 

M � (0.2j � 0.125k) � (�400i) � �50j � 80k N � m

r � OA
l

 � 0.2j � 0.125k m
�

F � 2.23
0.10 � 22.3 N

� � tan�1 1.559
1.600 � tan�1 0.974 � 44.3�

M � �(1.559)2 � (�1.600)2 � 2.23 N � m

Mz � �2.50 � 1.80 cos 60� � �1.600 N � m

My � 1.80 sin 60� � 1.559 N � m

N � m

N � m
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z

x y

25 N

25 N

30 N

100 mm

50 mm

40 mm
60 mm

30 N

60°

60°

M2 = 2.5 N·m 

M1 = 1.8 N·m 

M

60°

z

x

z

y

y

–F

F

θ

θ

θ

y

x

75 mm

200 mm
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B

O

z

A

400 N

M

O

d
A

x y

θ

θ 125 mm

200 mm

400 N

(400 N)

z

�

Helpful Hint

� Bear in mind that the couple vectors
are free vectors and therefore have
no unique lines of action.

c02.qxd  10/29/07  1:38 PM  Page 80



PROBLEMS

Introductory Problems

2/117 Determine the moment of force F about point O.
Ans. MO � F(cj � bk)

Problem 2/117

2/118 Determine the moment of force F about point A.

Problem 2/118

F

y

z
b

a

x

A

O

F

a
b

c

y

z

x
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2/119 Determine the moment about O of the force of
magnitude F for the case (a) when the force F is
applied at A and for the case (b) when F is applied
at B.

Ans. (a) MO � FLi
(b) MO � F(Li � Dk)

Problem 2/119

2/120 In opening a door which is equipped with a heavy-
duty return mechanism, a person exerts a force P
of magnitude 32 N as shown. Force P and the nor-
mal n to the face of the door lie in a vertical plane.
Compute the moment of P about the z-axis.

Problem 2/120

900 mm

n

x

y

z

P

30°

20°

L

y

z

A

O

B

(b)

(a)

F

F

x

D
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2/123 A helicopter is shown here with certain three-
dimensional geometry given. During a ground test,
a 400-N aerodynamic force is applied to the tail
rotor at P as shown. Determine the moment of this
force about point O of the airframe.

Ans. MO � 480i � 2400k

Problem 2/123

2/124 The 24-N force is applied at point A of the crank as-
sembly. Determine the moment of this force about
point O.

Problem 2/124

30°

A

F = 24 N

y

x

z

O

18 mm

36 mm

P

O

400 N

1.2 m

0.8 m

6 m

x

y

z

N � m
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2/121 The two forces acting on the handles of the pipe
wrenches constitute a couple M. Express the couple
as a vector.

Ans. M � �75i � 22.5j

Problem 2/121

2/122 The bent bar has a mass � per unit of length. De-
termine the moment of the weight of the bar about
point O.

Problem 2/122

h

65°

d

x

z

y

O

250 mm

150 N

150 N

x

y

250 mm

150 mm

N � m
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2/125 The right-angle pipe OAB of Prob. 2/108 is shown
again here. Replace the 750-N tensile force which
the cable exerts on point B by a force–couple sys-
tem at point O.

Ans. R � �598i � 411j � 189.5k N
MO � �361i � 718j � 419k 

Problem 2/125

2/126 Determine the moment associated with the pair of
400-N forces applied to the T-shaped structure.

Problem 2/126

400 N

400 N

15°

y

z

x
O

A

B

0.25 m

0.45 m
0.25 m

15°

1.6 mC O

A
x

z

y

B

0.7 m

1.2 m

0.8 m30°

N � m
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2/127 If the magnitude of the moment of F about line CD
is 50 , determine the magnitude of F.

Ans. F � 228 N

Problem 2/127

Representative Problems

2/128 A mechanic applies the horizontal 100-N force per-
pendicular to the wrench as indicated in the figure.
Determine the moment of this force about the bolt
center O. The wrench centerline lies in the x-y plane.

Problem 2/128

B

A

0.2 m

0.2 m

0.2 m 0.4 m

C
D

F

N � m

x

y

z O
15°

A

OA = 185 mm

100 N
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2/131 A space shuttle orbiter is subjected to thrusts from
five of the engines of its reaction control system.
Four of the thrusts are shown in the figure; the
fifth is an 850-N upward thrust at the right rear,
symmetric to the 850-N thrust shown on the left
rear. Compute the moment of these forces about
point G and show that the forces have the same
moment about all points.

Ans. M � 3400i � 51 000j � 51 000k

Problem 2/131

2/132 In picking up a load from position B, a cable ten-
sion T of magnitude 24 kN is developed. Calculate
the moment which T produces about the base O of
the construction crane.

Problem 2/132

x B

A

O

T

30 m

18 m

5 m 6 m
y

z

N � m

3.2 m
3.2 m

1700 N

850 N 2 m

12 m

18 m

1700 N

1700 N

y

x
z

G
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2/129 Two 4-N thrusters on the nonrotating satellite are
simultaneously fired as shown. Compute the mo-
ment associated with this couple and state about
which satellite axes rotations will begin to occur.

Ans. M � �5i � 4k

Problem 2/129

2/130 Compute the moment MO of the 1.2-kN force about
the axis O-O.

Problem 2/130

1.2 kN

60°

300 mm

105 mm

200 mm O

O

40°

z

y

x

500
mm

500
mm

625 mm

4 N

G

4 N

625 mm

N � m
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2/133 The specialty wrench shown is used for difficult-to-
access bolts which have a low torque specification.
Determine the moment about O of the 40-N force
applied at point A of the wrench handle. Discuss
any shortcomings of this wrench.

Ans. MO � 12i � 9k

Problem 2/133

2/134 In order to decrease the undesirable moment about
the x-axis, a mechanic uses his left hand to support
the wrench handle at point B. What upward force F
must he exert in order that there be no moment
about the x-axis? What then is the net moment
about O?

Problem 2/134

2/135 Determine the moment of the 400-N force about
point A by (a) using the vector cross-product rela-
tion and (b) resolving the force into its components
and finding their respective moments.

Ans. MA � �9.64i � 17.32j � 10k N � m

100
mm

125
mm

300 mm
40 N

150 mm

y

O

z
x

A

F

B

100
mm

125 
mm

300 mm

40 N

y

O

z
x

A

N � m
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Problem 2/135

2/136 The specialty wrench shown in the figure is de-
signed for access to the hold-down bolt on certain
automobile distributors. For the configuration
shown where the wrench lies in a vertical plane
and a horizontal 200-N force is applied at A perpen-
dicular to the handle, calculate the moment MO ap-
plied to the bolt at O. For what value of the
distance d would the z-component of MO be zero?

Problem 2/136

x

200 mm

70 mm

d = 125 mm

A

20°
200 Ν

y

z

O

A

z

y
x B

100 mm
50 mm

50 mm

60°

400 N

125 mm
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2/139 Using the principles to be developed in Chapter 3
on equilibrium, one can determine that the tension
in cable AB is 143.4 N. Determine the moment
about the x-axis of this tension force acting on
point A. Compare your result with the moment of
the weight W of the 15-kg uniform plate about the
x-axis. What is the moment of the tension force act-
ing at A about line OB?

Ans. Mx � 31.1 , (Mx)W � �31.1 
MOB � 0

Problem 2/139

x

A

z

y0.4 m

0.7 m

15 kg

0.45 m

0.35 m

20°

B

G

O

W

N � mN � m

86 Chapter  2 Force Systems

2/137 The moment M applied to the pulley wheel causes
a tension T � 80 N in the cable which is secured to
the wheel at D and to the ground at E. Determine
the moment about O of this 80-N force as applied
at C.

Ans. MO � �15.49i � 4k

Problem 2/137

2/138 An 320-N force is applied to the end of the wrench
as the sprocket wheel is attached to an engine
crankshaft. The force is perpendicular to the plane
containing points O, A, and B. Determine the mo-
ment of this force about point O.

Problem 2/138

y

x

z

A

B

O

F = 320 N

100 
mm

20°

10°

400 mm

z

y
x

C

O

A

D

M

B

E

200 mm

400 mm

100 mm

N � m
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2/140 The rigid pole and cross-arm assembly of Prob.
2/105 is shown again here. Determine the vector
expression for the moment of the 1.2-kN tension
(a) about point O and (b) about the pole z-axis. Find
each moment in two different ways.

Problem 2/140

2/141 A 5-N vertical force is applied to the knob of the
window-opener mechanism when the crank BC is
horizontal. Determine the moment of the force
about point A and about line AB.

Ans. MA � �375i � 325j
MAB � �281i � 162.4k

Problem 2/141

z

x

B

C

D

5 N

y

30°

25
mm

50 mm

75 m
m

A

N � mm
N � mm

T = 1.2 kN

z′

y′

y

x′

x

z

B

C

G

A

E

D

F
O

1 m

1 m 3 m

3 m

1.5 m

2 m
1.5 m

1.5 m
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2/142 Determine the vector expression for the moment
MO of the 600-N force about point O. The design
specification for the bolt at O would require this
result.

Problem 2/142

x
z

y

130 mm

600 N

140 mm150 mm

50 mm

60° A

O

45°
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2/9 RE S U L T A N T S

In Art. 2/6 we defined the resultant as the simplest force combina-
tion which can replace a given system of forces without altering the ex-
ternal effect on the rigid body on which the forces act. We found the
magnitude and direction of the resultant force for the two-dimensional
force system by a vector summation of forces, Eq. 2/9, and we located the
line of action of the resultant force by applying the principle of moments,
Eq. 2/10. These same principles can be extended to three dimensions.

In the previous article we showed that a force could be moved to a
parallel position by adding a corresponding couple. Thus, for the system
of forces F1, F2, F3 . . . acting on a rigid body in Fig. 2/28a, we may move
each of them in turn to the arbitrary point O, provided we also intro-
duce a couple for each force transferred. Thus, for example, we may
move force F1 to O, provided we introduce the couple M1 � r1 F1,
where r1 is a vector from O to any point on the line of action of F1.
When all forces are shifted to O in this manner, we have a system of
concurrent forces at O and a system of couple vectors, as represented in
part b of the figure. The concurrent forces may then be added vectorially
to produce a resultant force R, and the couples may also be added to
produce a resultant couple M, Fig. 2/28c. The general force system,
then, is reduced to

(2/20)

The couple vectors are shown through point O, but because they are
free vectors, they may be represented in any parallel positions. The
magnitudes of the resultants and their components are

(2/21)

M � �Mx
2 � My

2 � Mz
2

Mx � Σ(r � F)x   My � Σ(r � F)y   Mz � Σ(r � F)z

R � �(ΣFx)2 � (ΣFy)2 � (ΣFz)2

Rx � ΣFx   Ry � ΣFy   Rz � ΣFz

M � M1 � M2 � M3 � � � �  � Σ(r � F)

R � F1 � F2 � F3 � � � �  � ΣF

�
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Figure 2/28

The cables of a suspension bridge
exert a three-dimensional system of
concentrated forces on this bridge
tower.
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The point O selected as the point of concurrency for the forces is ar-
bitrary, and the magnitude and direction of M depend on the particular
point O selected. The magnitude and direction of R, however, are the
same no matter which point is selected.

In general, any system of forces may be replaced by its resultant
force R and the resultant couple M. In dynamics we usually select the
mass center as the reference point. The change in the linear motion of
the body is determined by the resultant force, and the change in the an-
gular motion of the body is determined by the resultant couple. In stat-
ics, the body is in complete equilibrium when the resultant force R is
zero and the resultant couple M is also zero. Thus, the determination of
resultants is essential in both statics and dynamics.

We now examine the resultants for several special force systems.

Concurrent Forces. When forces are concurrent at a point, only the
first of Eqs. 2/20 needs to be used because there are no moments about
the point of concurrency.

Parallel Forces. For a system of parallel forces not all in the same
plane, the magnitude of the parallel resultant force R is simply the mag-
nitude of the algebraic sum of the given forces. The position of its line of
action is obtained from the principle of moments by requiring that 
r R � MO. Here r is a position vector extending from the force–couple
reference point O to the final line of action of R, and MO is the sum of
the moments of the individual forces about O. See Sample Problem 2/17
for an example of parallel-force systems.

Coplanar Forces. Article 2/6 was devoted to this force system.

Wrench Resultant. When the resultant couple vector M is parallel
to the resultant force R, as shown in Fig. 2/29, the resultant is called a
wrench. By definition a wrench is positive if the couple and force vectors
point in the same direction and negative if they point in opposite direc-
tions. A common example of a positive wrench is found with the applica-
tion of a screwdriver, to drive a right-handed screw. Any general force
system may be represented by a wrench applied along a unique line of
action. This reduction is illustrated in Fig. 2/30, where part a of the fig-
ure represents, for the general force system, the resultant force R acting
at some point O and the corresponding resultant couple M. Although M
is a free vector, for convenience we represent it as acting through O.

In part b of the figure, M is resolved into components M1 along the di-
rection of R and M2 normal to R. In part c of the figure, the couple M2 is
replaced by its equivalent of two forces R and �R separated by a distance

�

Art ic le  2/9 Resultants 89

M R R

Positive wrench Negative wrench

M

Figure 2/29
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d � M2/R with �R applied at O to cancel the original R. This step leaves
the resultant R, which acts along a new and unique line of action, and the
parallel couple M1, which is a free vector, as shown in part d of the figure.
Thus, the resultants of the original general force system have been trans-
formed into a wrench (positive in this illustration) with its unique axis de-
fined by the new position of R.

We see from Fig. 2/30 that the axis of the wrench resultant lies in a
plane through O normal to the plane defined by R and M. The wrench is
the simplest form in which the resultant of a general force system may
be expressed. This form of the resultant, however, has limited applica-
tion, because it is usually more convenient to use as the reference point
some point O such as the mass center of the body or another convenient
origin of coordinates not on the wrench axis.

90 Chapter  2 Force Systems
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R
O

M1 R
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Figure 2/30
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Sample Problem 2/16

Determine the resultant of the force and couple system which acts on the
rectangular solid.

Solution. We choose point O as a convenient reference point for the initial
step of reducing the given forces to a force–couple system. The resultant force is

The sum of the moments about O is

Hence, the resultant consists of a couple, which of course may be applied at any
point on the body or the body extended.

Helpful Hints

� Since the force summation is zero, we conclude that the resultant, if it exists,
must be a couple.

� The moments associated with the force pairs are easily obtained by using the 
M � Fd rule and assigning the unit-vector direction by inspection. In many
three-dimensional problems, this may be simpler than the M � r F approach.

Sample Problem 2/17

Determine the resultant of the system of parallel forces which act on the
plate. Solve with a vector approach.

Solution. Transfer of all forces to point O results in the force–couple system

The placement of R so that it alone represents the above force–couple system is
determined by the principle of moments in vector form

From the one vector equation we may obtain the two scalar equations

Hence, x � �0.357 m and z � 0.250 m are the coordinates through which the
line of action of R must pass. The value of y may, of course, be any value, as
permitted by the principle of transmissibility. Thus, as expected, the variable y
drops out of the above vector analysis.

350x � �125   and   �350z � �87.5

 350xk � 350zi � �87.5i � 125k

 (xi � yj � zk) � 350j � �87.5i � 125k

 r � R � MO

 � �87.5i � 125k N � m
 MO � [50(0.35) � 300(0.35)]i � [�50(0.50) � 200(0.50)]k

 R � ΣF � (200 � 500 � 300 � 50)j � 350j N

�

 � 10i N � m
 MO � [50(1.6) � 70]i � [80(1.2) � 96] j � [100(1) � 100]k

R � ΣF � (80 � 80)i � (100 � 100)j � (50 � 50)k � 0 N

Helpful Hint

� You should also carry out a scalar
solution to this problem.
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Sample Problem 2/18

Replace the two forces and the negative wrench by a single force R applied
at A and the corresponding couple M.

Solution. The resultant force has the components

Thus,

and Ans.

The couple to be added as a result of moving the 500-N force is

where r is the vector from A to B.

The term-by-term, or determinant, expansion gives

The moment of the 600-N force about A is written by inspection of its x- and z-
components, which gives

The moment of the 700-N force about A is easily obtained from the moments of
the x- and z-components of the force. The result becomes

Also, the couple of the given wrench may be written

Therefore, the resultant couple on adding together the i-, j-, and k-terms of the
four M’s is

and Ans.M � �(49.4)2 � (90.5)2 � (24.6)2 � 106.0 N � m

M � 49.4i � 90.5j � 24.6k N � m

 � �16.07i �13.54 j � 13.54k N � m

 M� � 25.0(�i sin 40� � j cos 40� cos 45� � k cos 40� sin 45�)

 � 10.5i � 71.4 j � 18.19k N � m

 � � (700 cos 60�)(0.100)] j � (700 sin 60�)(0.030)k
 M700 � (700 cos 60�)(0.030)i � [(700 sin 60�)(0.060)

 � 36.0i � 24.0k N � m

 M600 � (600)(0.060)i � (600)(0.040)k

M500 � 18.95i � 5.59j � 16.90k N � m

 � j cos 40� cos 45� � k cos 40� sin 45�)
 [M � r � F]  M500 � (0.08i � 0.12j � 0.05k) � 500(i sin 40�

R � �(928)2 � (871)2 � (621)2 � 1416 N

R � 928i � 871j � 621k N

 [Rz � ΣFz]  Rz � 700 cos 60� � 500 cos 40� sin 45� � 621 N

 [Ry � ΣFy]  Ry � 600 � 500 cos 40� cos 45� � 871 N

 [Rx � ΣFx]    Rx � 500 sin 40� � 700 sin 60� � 928 N
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M

�

�
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Helpful Hints

� Suggestion: Check the cross-product
results by evaluating the moments
about A of the components of the
500-N force directly from the sketch.

� For the 600-N and 700-N forces it is
easier to obtain the components of
their moments about the coordinate
directions through A by inspection
of the figure than it is to set up the
cross-product relations.

� The couple vector of the
wrench points in the direction oppo-
site to that of the 500-N force, and
we must resolve it into its x-, y-, and
z-components to be added to the
other couple-vector components.

� Although the resultant couple vec-
tor M in the sketch of the resultants
is shown through A, we recognize
that a couple vector is a free vector
and therefore has no specified line
of action.

25-N � m
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Sample Problem 2/19

Determine the wrench resultant of the three forces acting on the bracket.
Calculate the coordinates of the point P in the x-y plane through which the resul-
tant force of the wrench acts. Also find the magnitude of the couple M of the
wrench.

Solution. The direction cosines of the couple M of the wrench must be the
same as those of the resultant force R, assuming that the wrench is positive. The
resultant force is

and its direction cosines are

The moment of the wrench couple must equal the sum of the moments of
the given forces about point P through which R passes. The moments about P of
the three forces are

and the total moment is

The direction cosines of M are

where M is the magnitude of M. Equating the direction cosines of R and M gives

Solution of the three equations gives

Ans.

We see that M turned out to be negative, which means that the couple vector is
pointing in the direction opposite to R, which makes the wrench negative.

M � �2400 N � mm   x � 60 mm   y � 40 mm

 �40x �20y � 2M
3

 �4000 �40x � 2M
3

800 � 40y � M
3

 cos �z � (�40x � 20y)/M

 cos �y � (�4000 � 40x)/M

 cos �x � (800 � 40y)/M

M � (800 � 40y)i � (�4000 � 40x)j � (�40x � 20y)k N � mm

 (M)Rz
 � 40(80 � y)i � 40(100 � x)j N � mm

 (M)Ry
 � �40(60)i � 40xk N � mm

 (M)Rx
 � 20yk N � mm

cos �x � 20/60 � 1/3  cos �y � 40/60 � 2/3  cos �z � 40/60 � 2/3

R � 20i � 40j � 40k N    R � �(20)2 � (40)2 � (40)2 � 60 N
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60 mm

80 mm

40 N

20 N

40 N

100 mm

y

z

x

x

y
P

60 mm

80 mm

M

100 mm

y

y = 40 mm

x = 60 mm

z

x

R

P

Helpful Hint

� We assume initially that the wrench
is positive. If M turns out to be neg-
ative, then the direction of the cou-
ple vector is opposite to that of the
resultant force.

�
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2/145 The thin rectangular plate is subjected to the four
forces shown. Determine the equivalent force–
couple system at O. What is the resultant of the
system?

Ans.

Problem 2/145

2/146 The spacecraft of Prob. 2/129 is repeated here. The
plan is to fire four 4-N thrusters as shown in order
to spin up the spacecraft about its z-axis, but the
thruster at A fails. Determine the equivalent
force–couple system at G for the remaining three
thrusters.

Problem 2/146

z

y

x A

500
mm

500
mm

625 mm

4 N

G

4 N

4 N

625 mm

z

x

2b

b

y

F

F

F

F

30°

30°

O

R � 0, MO � Fb �1 � 
�3
2 �i
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PROBLEMS

Introductory Problems

2/143 Three forces act at point O. If it is known that the
y-component of the resultant R is �5 kN and that
the z-component is 6 kN, determine F3, �, and R.

Ans. F3 � 10.82 kN, � � 33.7�, R � 10.49 kN

Problem 2/143

2/144 Three equal forces are exerted on the equilateral
plate as shown. Reduce the force system to an
equivalent force–couple system at point O. Show
that R is perpendicular to MO.

Problem 2/144

z

O

x y

b

b

F

F

F b—
2

b—
2

y

F2 = 7 kN

F1 = 4 kN

F3

x

z

O
θ
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2/147 An oil tanker moves away from its docked position
under the action of reverse thrust from screw A,
forward thrust from screw B, and side thrust from
the bow thruster C. Determine the equivalent
force–couple system at the mass center G.

Ans. R � �8i kN, MG � 48j � 820k

Problem 2/147

2/148 The pulley and gear are subjected to the loads
shown. For these forces, determine the equivalent
force–couple system at point O.

Problem 2/148

x
z

y

100
  mm

75
mm

220
mm

330
mm

10°
200 N

1200 N

O

800 N

7 m

5 m5 m

40 m

6 m

50 kN

z

y

C

A
B

8 kNG

50 kN x

kN � m
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2/149 Determine the force–couple system at O which is
equivalent to the two forces applied to the shaft
AOB. Is R perpendicular to MO?

Ans. R � �266j � 1085k N
MO � �48.9j � 114.5k

Problem 2/149

Representative Problems

2/150 The commercial airliner of Prob. 2/86 is redrawn
here with three-dimensional information supplied.
If engine 3 suddenly fails, determine the resultant
of the three remaining engine thrust vectors, each
of which has a magnitude of 90 kN. Specify the y-
and z-coordinates of the point through which the
line of action of the resultant passes. This informa-
tion would be critical to the design criteria of per-
formance with engine failure.

Problem 2/150

12

90 kN90 kN

90 kN

2 m

2 m

3 m

3 m

x

y

9 m

9 m

12 m

12 m

3

4

z

z

A

O

y

80 mm

160 mm

30°

45°

xB

800 N

600 N

N � m
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2/153 A 25-kg computer and a 10-kg laser printer rest on
a horizontal tabletop. Determine the resultant of
the system of two corresponding weights and spec-
ify the coordinates of the point P in the x-y plane
through which the resultant passes. The two
weights act at the points G1 and G2.

Ans. R � �343k N, MO � �343i � 176.6j
(x, y) � (514, 1000) mm

75
mm

100
mm

160 N

120 N

A

y

z

x

75 mm

25 N·m

200 mm

N � m
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2/151 Represent the resultant of the force system acting
on the pipe assembly by a single force R at A and a
couple M.

Ans. R � 120i � 180j �100k N
MA � 100j � 50k

Problem 2/151

2/152 Two upward loads are exerted on the small three-
dimensional truss. Reduce these two loads to a sin-
gle force–couple system at point O. Show that R is
perpendicular to MO. Then determine the point in
the x-z plane through which the resultant passes.

Problem 2/152

y

z
O

x

1600 N0.9
 m

0.9 m

0.9 m

1.2 m

1.2 m

800 N

100 N

160 N

250 mm

300 mm
120 N

50 N·m

160 N

180 NA

x
y

z

200 mm

150
mm

100
mm

25°

N � m

Problem 2/153

2/154 The motor mounted on the bracket is acted on by
its 160-N weight, and its shaft resists the 120-N
thrust and 25- couple applied to it. Determine
the resultant of the force system shown in terms of
a force R at A and a couple M.

Problem 2/154

75
mm

100
mm

160 N

120 N

A

y

z

x

75 mm

25 N·m

200 mm

N � m

1200
mm

z

x

300 mm O

G1
B

G2

600 mm
yA

10 kg

25 kg

500
mm
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2/155 In tightening a bolt whose center is at point O, a
person exerts a 180-N force on the ratchet handle
with his right hand. In addition, with his left hand
he exerts a 90-N force as shown in order to secure
the socket onto the bolt head. Determine the equiv-
alent force–couple system at O. Then find the point
in the x-y plane through which the line of action of
the resultant force of the wrench passes.

Ans. R � �90j � 180k N, MO � �6.3i � 36j
x � �160 mm, y � 35 mm

Problem 2/155

2/156 Replace the two forces acting on the pole by a
wrench. Write the moment M associated with the
wrench as a vector and specify the coordinates of
the point P in the y-z plane through which the line
of action of the wrench passes.

Problem 2/156

T

T

z

a

3a

O

y

x

z

x

O

y

200 mm

180 N

90 N

35 mm

N � m
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2/157 Replace the two forces acting on the frame by a
wrench. Write the moment associated with the
wrench as a vector and specify the coordinates of
the point P in the y-z plane through which the line
of action of the wrench passes. Note that the force
of magnitude F is parallel to the x-axis.

Ans.

, 

Problem 2/157

2/158 For the system of two forces in Prob. 2/149, deter-
mine the coordinates of the point in the x-z plane
through which the line of action of the resultant of
the system passes.

2a

a

O

3F

F

z

yx

z � 2ay � a
10

R � F(i � 3k),  M � 3aF
10

 (i � 3k)
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2/160 For the position shown, the crankshaft of a small
two-cylinder compressor is subjected to the 400-N
and 800-N forces exerted by the connecting rods
and the couple. Replace this loading sys-
tem by a force–couple system at point A. Show that
R is not perpendicular to MA. Then replace this
force–couple system by a wrench. Determine the
magnitude M of the moment of the wrench, the
magnitude of the force R of the wrench, and the co-
ordinates of the point in the x-z plane through
which the line of action of the wrench passes.

Ans. M � 85.8 , R � 1108 N
x � 0.1158 m, z � �0.478 m

Problem 2/160

N � m

200-N � m

24°

24°

400 N

200 N·m

A

y

z

x

B

800 N

200
mm

200
mm

400 mm

200
mm

200
mm
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2/159 The resultant of the two forces and couple may be
represented by a wrench. Determine the vector ex-
pression for the moment M of the wrench and find
the coordinates of the point P in the x-z plane
through which the resultant force of the wrench
passes.

Ans. M � 10i � 10j
x � z � 0.1 m

Problem 2/159

y

z

x

400
mm

400 mm300 mm

100 N

100 N

20 N·m

N � m

� �
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2/10 CH A P T E R RE V I E W

In Chapter 2 we have established the properties of forces, moments,
and couples, and the correct procedures for representing their effects.
Mastery of this material is essential for our study of equilibrium in the
chapters which follow. Failure to correctly use the procedures of Chap-
ter 2 is a common cause of errors in applying the principles of equilib-
rium. When difficulties arise, you should refer to this chapter to be sure
that the forces, moments, and couples are correctly represented.

Forces

There is frequent need to represent forces as vectors, to resolve a
single force into components along desired directions, and to combine
two or more concurrent forces into an equivalent resultant force. Specif-
ically, you should be able to:

1. Resolve a given force vector into its components along given direc-
tions, and express the vector in terms of the unit vectors along a
given set of axes.

2. Express a force as a vector when given its magnitude and informa-
tion about its line of action. This information may be in the form of
two points along the line of action or angles which orient the line of
action.

3. Use the dot product to compute the projection of a vector onto a
specified line and the angle between two vectors.

4. Compute the resultant of two or more forces concurrent at a point.

Moments

The tendency of a force to rotate a body about an axis is described
by a moment (or torque), which is a vector quantity. We have seen that
finding the moment of a force is often facilitated by combining the mo-
ments of the components of the force. When working with moment vec-
tors you should be able to:

1. Determine a moment by using the moment-arm rule.

2. Use the vector cross product to compute a moment vector in terms
of a force vector and a position vector locating the line of action of
the force.

3. Utilize Varignon’s theorem to simplify the calculation of moments,
in both scalar and vector forms.

4. Use the triple scalar product to compute the moment of a force vec-
tor about a given axis through a given point.

Couples

A couple is the combined moment of two equal, opposite, and non-
collinear forces. The unique effect of a couple is to produce a pure twist
or rotation regardless of where the forces are located. The couple is
useful in replacing a force acting at a point by a force–couple system at
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a different point. To solve problems involving couples you should be
able to:

1. Compute the moment of a couple, given the couple forces and either
their separation distance or any position vectors locating their lines
of action.

2. Replace a given force by an equivalent force–couple system, and vice
versa.

Resultants

We can reduce an arbitrary system of forces and couples to a single
resultant force applied at an arbitrary point, and a corresponding resul-
tant couple. We can further combine this resultant force and couple into
a wrench to give a single resultant force along a unique line of action,
together with a parallel couple vector. To solve problems involving re-
sultants you should be able to:

1. Compute the magnitude, direction, and line of action of the resul-
tant of a system of coplanar forces if that resultant is a force; other-
wise, compute the moment of the resultant couple.

2. Apply the principle of moments to simplify the calculation of the
moment of a system of coplanar forces about a given point.

3. Replace a given general force system by a wrench along a specific
line of action.

Equilibrium

You will use the preceding concepts and methods when you study
equilibrium in the following chapters. Let us summarize the concept of
equilibrium:

1. When the resultant force on a body is zero (ΣF � 0), the body is in
translational equilibrium. This means that its center of mass is ei-
ther at rest or moving in a straight line with constant velocity.

2. In addition, if the resultant couple is zero (ΣM � 0), the body is in
rotational equilibrium, either having no rotational motion or rotat-
ing with a constant angular velocity.

3. When both resultants are zero, the body is in complete equilibrium.

100 Chapter  2 Force Systems
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REVIEW PROBLEMS

2/161 A die is being used to cut threads on a rod. If 60-N
forces are applied as shown, determine the magni-
tude F of the equal forces exerted on the 6-mm rod
by each of the four cutting surfaces so that their ex-
ternal effect on the rod is equivalent to that of the
two 60-N forces.

Ans. F � 1200 N

Problem 2/161

2/162 Using the principles of equilibrium to be developed
in Chapter 3, you will soon be able to verify that
the tension in cable AB is 85.8% of the weight of
the cylinder of mass m, while the tension in cable
AC is 55.5% of the suspended weight. Write each
tension force acting on point A as a vector if the
mass m is 60 kg.

Problem 2/162

1.2 m

m

A

B C

0.8 m 2 m

y

x

6 mm

60 N

120
mm

120
mm

60 N
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2/163 The control lever is subjected to a clockwise couple
of 80 exerted by its shaft at A and is designed
to operate with a 200-N pull as shown. If the resul-
tant of the couple and the force passes through A,
determine the proper dimension x of the lever.

Ans. x � 266 mm

Problem 2/163

2/164 The blades of the portable fan generate a 4-N
thrust T as shown. Compute the moment MO of
this force about the rear support point O. For com-
parison, determine the moment about O due to the
weight of the motor–fan unit AB, whose weight of
40 N acts at G.

Problem 2/164

250 mm

A

Air flow

G

B

O
50

mm

100 mm
15°

200 mm

50
mm

T = 4 N

150 mm

200 N

x

20°

A

N � m
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2/167 Represent the resultant of the three forces and cou-
ple by a force–couple system located at point A.

Ans. R � 4.75 kN, MA � 21.1 CCW

Problem 2/167

2/168 Reduce the given loading system to a force–couple
system at point A. Then determine the distance x
to the right of point A at which the resultant of the
three forces acts.

Problem 2/168

500 mm200 mm

450 mm

800 N

1200 N

720 N

A

2 m

3.5 m
1.5 m

2.5 m

3 kN

4 kN

10 kN·m

5 kN
160°

A

kN � m
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2/165 For the angular position � � 60� of the crank OA,
the gas pressure on the piston induces a compres-
sive force P in the connecting rod along its center-
line AB. If this force produces a moment of 720

about the crank axis O, calculate P.
Ans. P � 9.18 kN

Problem 2/165

2/166 Calculate the moment MO of the 250-N force about
the base point O of the robot.

Problem 2/166

A

B

C

400 mm

300 mm

250 N

20°

60°

O

500 mm

θ

O

A

OA = 125 mm
AB = 300 mm

B

N � m
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2/169 The directions of rotation of the input shaft A and
output shaft B of the worm-gear reducer are indi-
cated by the curved dashed arrows. An input
torque (couple) of 80 is applied to shaft A in
the direction of rotation. The output shaft B sup-
plies a torque of 320 to the machine which it
drives (not shown). The shaft of the driven ma-
chine exerts an equal and opposite reacting torque
on the output shaft of the reducer. Determine the
resultant M of the two couples which act on the re-
ducer unit and calculate the direction cosine of M
with respect to the x-axis.

Ans. M � �320i � 80j
cos �x � �0.970

Problem 2/169

2/170 Determine the moment of the force P about point A.

Problem 2/170

A

B

z

y
b

b

b

x

P

3

4

y

z

80 N·m

320 N·m

x

150 mm

A

B

N � m

N � m

N � m
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2/171 When the pole OA is in the position shown, the ten-
sion in cable AB is 3 kN. (a) Write the tension force
exerted on the small collar at point A as a vector
using the coordinates shown. (b) Determine the
moment of this force about point O and state the
moments about the x-, y-, and z-axes. (c) Determine
the projection of this tension force onto line AO.

Ans. (a) 
(b) 

(c) 

Problem 2/171

2/172 A force F acts along the line AB inside the right
circular cylindrical shell as shown. The quantities
r, h, �, and F are known. Using the x-, y-, and 
z-coordinates shown, express F as a vector.

Problem 2/172

y

z

xB

F

A

O

h

rθ

z 

60°

35°

A 

B 

OA = 10 m 
OB = 8 m 
OG = 6 m 

O 

G 

y 

x 

TAO � 2.69 kN
MO � 7.63i � 10.90j kN � m

TAB � �2.05i � 1.432j � 1.663k kN
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2/175 The combined action of the three forces on the base
at O may be obtained by establishing their resul-
tant through O. Determine the magnitudes of R
and the accompanying couple M.

Ans. R � 10.93 kN, M � 38.9 

Problem 2/175

*Computer-Oriented Problems

*2/176 Four forces are exerted on the eyebolt as shown. If
the net effect on the bolt is a direct pull of 1200 N
in the y-direction, determine the necessary values
of T and �.

Problem 2/176

30°

30°θ

y

x

800 N

480 N

720 N

T

6 kN

45°

2.8 m

1.2 m

1.2 m

1.2 m

5 kN

4 kN
z

x

y
O

kN � m
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2/173 Three couples are formed by the three pairs of
equal and opposite forces. Determine the resultant
M of the three couples.

Ans. M � �20i � 6.77j � 37.2k

Problem 2/173

2/174 During a drilling operation, the small robotic de-
vice is subjected to an 800-N force at point C as
shown. Replace this force by an equivalent force–
couple system at point O.

Problem 2/174

B
A

x

C

y

z

F = 800 N
O

250 mm

300 mm

30°

20°

30° y

z

x

45°

200

mm

18
0

m
m

100

mm

20°

80 N

80 N

100 N

120 N

120 N

100 N 20°

45°

N � m
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*2/177 The force F is directed from A toward D and D is
allowed to move from B to C as measured by the
variable s. Consider the projection of F onto line
EF as a function of s. In particular, determine and
plot the fraction n of the magnitude F which is
projected as a function of s/d. Note that s/d varies
from 0 to .

Ans.

Problem 2/177

*2/178 The throttle-control lever OA rotates in the range
0 � � � 90�. An internal torsional return spring
exerts a restoring moment about O given by M �

K(� � 	/4), where K � 500 and � is in
radians. Determine and plot as a function of � the
tension T required to make the net moment about
O zero. Use the two values d � 60 mm and d �

160 mm and comment on the relative design mer-
its. The effects of the radius of the pulley at B are
negligible.

Problem 2/178

d

T

B

M

A

40 mm
45° 40 mm

θ

O

N � mm/rad

B

A

F

E

F
D

s

C d

2d
2d

n � 
�2 s

d
 � 1

�5��s
d�

2
 � 5 � 2�2 s

d

2�2
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*2/179 With the cylindrical part P of weight 1500 N in its
grip, the robotic arm pivots about O through the
range �45� � � � 45� with the angle at A locked
at 120�. Determine and plot (as a function of �) the
moment at O due to the combined effects of the
weight of part P, the 600-N weight of member OA
(mass center at G1), and the 250-N weight of
member AB (mass center at G2). The end grip is
included as a part of member AB. The lengths L1

and L2 are 900 mm and 600 mm, respectively.
What is the maximum value of MO and at what
value of � does this maximum occur?

Ans.

Problem 2/179

A

120°
B

P

O
G1

G2

θ

L 1
—–

2

L 1
—–

2

L
2—–2

L
2—–2

(MO)max � 2480 N � m at � � 19.90�

MO � 1845 cos � � 975 cos(60� � �) N � m
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*2/182 The tension T in cable AB is maintained at a
constant value of 120 N. Determine the moment
MO of this tension about point O over the range
0 � � � 90�. Plot the x-, y-, and z-components of
MO as functions of �.

Problem 2/182

B
T

O

800 mm

800 mm

400 mm

A′ 

A

z

x

y

θ
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*2/180 A motor attached to the shaft at O causes the arm
OA to rotate over the range 0 � � � 180�. The un-
stretched length of the spring is 0.65 m, and it can
support both tension and compression. If the net
moment about O must be zero, determine and plot
the required motor torque M as a function of �.

Problem 2/180

*2/181 A flagpole with attached light triangular frame is
shown here for an arbitrary position during its
raising. The 75-N tension in the erecting cable re-
mains constant. Determine and plot the moment
about the pivot O of the 75-N force for the range
0 � � � 90�. Determine the maximum value of
this moment and the elevation angle at which it
occurs; comment on the physical significance of
the latter. The effects of the diameter of the drum
at D may be neglected.

Ans.

Problem 2/181

D

6 m

O

A

θ
3 m

3 m

3 m

B

C

(MO)max � 225 N � m at � � 60�

MO � 
1350 sin (� � 60�)

�45 � 36 cos (� � 60�)
 k N � m

O

M

B

0.5 m

x

y

A′′ A′

A

0.3 m
k = 600 N/m

θ
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*2/183 The arm AB rotates in the range 0 � � � 180�,
and the spring is unstretched when � � 90�. De-
termine as a function of � the moment about O of
the spring force as applied at B. Plot the three
scalar components of MO, and state the maximum
absolute value of each component.

Ans.

= 123.7 at � � 0, 180�

= 61.8 at � � 0, 180�

Problem 2/183

A

z

D

B

k = 2.6 kN/m

Ox

y

360 mm

360 mm

720 mm

θ

C

N � m(MOz
)max

N � m(MOx
)max

MO � 
�1.5 � 0.5 sin � � 1

�1.5 � 0.5 sin �
 [�674i � 337 cos �k] N � m
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*2/184 The rectangular plate is tilted about its lower
edge by a cable tensioned at a constant 600 N. De-
termine and plot the moment of this tension
about the lower edge AB of the plate for the range
0 � � � 90�.

Problem 2/184

z

x

y

B

O

A

5 m

5 m

4 m

3 m

CT = 600 N

θ
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In many applications of mechanics, the sum of the forces acting on a body is zero, and a state of equilibrium exists. This
apparatus is designed to hold a car body in equilibrium for a wide range of orientations during vehicle production.
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CHAPTER OUTLINE

3/1 Introduction

SECTION A EQUILIBRIUM IN TWO DIMENSIONS
3/2 System Isolation and the Free-Body Diagram
3/3 Equilibrium Conditions

SECTION B EQUILIBRIUM IN THREE DIMENSIONS
3/4 Equilibrium Conditions
3/5 Chapter Review

3 EQUILIBRIUM

3/1 IN T R O D U C T I O N

Statics deals primarily with the description of the force conditions
necessary and sufficient to maintain the equilibrium of engineering
structures. This chapter on equilibrium, therefore, constitutes the
most important part of statics, and the procedures developed here form
the basis for solving problems in both statics and dynamics. We will
make continual use of the concepts developed in Chapter 2 involving
forces, moments, couples, and resultants as we apply the principles of
equilibrium.

When a body is in equilibrium, the resultant of all forces acting on
it is zero. Thus, the resultant force R and the resultant couple M are
both zero, and we have the equilibrium equations

(3/1)

These requirements are both necessary and sufficient conditions for
equilibrium.

All physical bodies are three-dimensional, but we can treat many of
them as two-dimensional when the forces to which they are subjected
act in a single plane or can be projected onto a single plane. When this
simplification is not possible, the problem must be treated as three-
dimensional. We will follow the arrangement used in Chapter 2, and dis-
cuss in Section A the equilibrium of bodies subjected to two-dimensional

R � ΣF � 0   M � ΣM � 0
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3/2 SY S T E M IS O L A T I O N A N D T H E FR E E-BO D Y DI A G R A M

Before we apply Eqs. 3/1, we must define unambiguously the partic-
ular body or mechanical system to be analyzed and represent clearly
and completely all forces acting on the body. Omission of a force which
acts on the body in question, or inclusion of a force which does not act
on the body, will give erroneous results.

A mechanical system is defined as a body or group of bodies which
can be conceptually isolated from all other bodies. A system may be a
single body or a combination of connected bodies. The bodies may be
rigid or nonrigid. The system may also be an identifiable fluid mass, ei-
ther liquid or gas, or a combination of fluids and solids. In statics we
study primarily forces which act on rigid bodies at rest, although we also
study forces acting on fluids in equilibrium.

Once we decide which body or combination of bodies to analyze, we
then treat this body or combination as a single body isolated from all
surrounding bodies. This isolation is accomplished by means of the
free-body diagram, which is a diagrammatic representation of the
isolated system treated as a single body. The diagram shows all forces
applied to the system by mechanical contact with other bodies, which
are imagined to be removed. If appreciable body forces are present,
such as gravitational or magnetic attraction, then these forces must
also be shown on the free-body diagram of the isolated system. Only
after such a diagram has been carefully drawn should the equilibrium
equations be written. Because of its critical importance, we emphasize
here that

Before attempting to draw a free-body diagram, we must recall the
basic characteristics of force. These characteristics were described in
Art. 2/2, with primary attention focused on the vector properties of
force. Forces can be applied either by direct physical contact or by re-
mote action. Forces can be either internal or external to the system
under consideration. Application of force is accompanied  by reactive
force, and both applied and reactive forces may be either concentrated
or distributed. The principle of transmissibility permits the treatment
of force as a sliding vector as far as its external effects on a rigid body
are concerned.

We will now use these force characteristics to develop conceptual
models of isolated mechanical systems. These models enable us to

the free-body diagram is the most important single step
in the solution of problems in mechanics.

110 Chapter  3 Equi l ibr ium

SECTION A EQUILIBRIUM IN TWO DIMENSIONS

force systems and in Section B the equilibrium of bodies subjected to
three-dimensional force systems.
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write the appropriate equations of equilibrium, which can then be
analyzed.

Modeling the Action of Forces

Figure 3/1 shows the common types of force application on mechani-
cal systems for analysis in two dimensions. Each example shows the
force exerted on the body to be isolated, by the body to be removed. New-
ton’s third law, which notes the existence of an equal and opposite reac-
tion to every action, must be carefully observed. The force exerted on
the body in question by a contacting or supporting member is always in
the sense to oppose the movement of the isolated body which would
occur if the contacting or supporting body were removed.
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θ

θ

MODELING THE ACTION OF FORCES IN TWO-DIMENSIONAL ANALYSIS
Type of Contact and Force Origin

1. Flexible cable, belt,
chain, or rope

2. Smooth surfaces

3. Rough surfaces

4. Roller support

5. Freely sliding guide

Action on Body to Be Isolated

Force exerted by 
a flexible cable is 
always a tension away 
from the body in the 
direction of the cable.

Contact force is 
compressive and is 
normal to the surface.

Rough surfaces are 
capable of supporting 
a tangential 
compo-nent F 
(frictional force) as 
well as a normal 
component 
N of the resultant 

Roller, rocker, or ball 
support transmits a 
compressive force 
normal to the 
supporting surface.

Collar or slider free to 
move along smooth 
guides; can support 
force normal to guide 
only.

θ

θ

Weight of cable
negligible

Weight of cable
not negligible

T

T

N

N

N

N

F

R

N N

Figure 3/1
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In Fig. 3/1, Example 1 depicts the action of a flexible cable, belt, rope,
or chain on the body to which it is attached. Because of its flexibility, a
rope or cable is unable to offer any resistance to bending, shear, or com-
pression and therefore exerts only a tension force in a direction tangent to
the cable at its point of attachment. The force exerted by the cable on the
body to which it is attached is always away from the body. When the ten-
sion T is large compared with the weight of the cable, we may assume that
the cable forms a straight line. When the cable weight is not negligible
compared with its tension, the sag of the cable becomes important, and
the tension in the cable changes direction and magnitude along its length.

When the smooth surfaces of two bodies are in contact, as in Exam-
ple 2, the force exerted by one on the other is normal to the tangent to
the surfaces and is compressive. Although no actual surfaces are per-
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MODELING THE ACTION OF FORCES IN TWO-DIMENSIONAL ANALYSIS (cont.)
Type of Contact and Force Origin

6. Pin connection

7. Built-in or fixed support

8. Gravitational attraction

9. Spring action

Action on Body to Be Isolated

A freely hinged pin 
connection is capable 
of supporting a force 
in any direction in the 
plane normal to the 
pin axis. We may 
either show two 
components Rx and
Ry or a magnitude R 
and direction   . A pin 
not free to turn also 
supports a couple M.

A built-in or fixed 
support is capable of 
supporting an axial 
force F, a transverse 
force V (shear force), 
and a couple M 
(bending moment) to 
prevent rotation.

The resultant of 
gravitational 
attraction on all 
elements of a body of 
mass m is the weight 
W = mg and acts 
toward the center of 
the earth through the 
center mass G.

Spring force is tensile 
if spring is stretched 
and compressive if 
compressed. For a 
linearly elastic spring 
the stiffness k is the 
force required to 
deform the spring a 
unit distance.

Pin free to turn

Pin not free to turn

Ry

Rx

Ry

Rx

R

Weld

A

M

F

V

or
AA

W = mg

F

Gm

F
x

F = kx
Hardening

NonlinearLinear
Neutral
position

Softening

F

x

F

x

θ

θ

M

Figure 3/1, continued
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fectly smooth, we can assume this to be so for practical purposes in
many instances.

When mating surfaces of contacting bodies are rough, as in Exam-
ple 3, the force of contact is not necessarily normal to the tangent to the
surfaces, but may be resolved into a tangential or frictional component F
and a normal component N.

Example 4 illustrates a number of forms of mechanical support
which effectively eliminate tangential friction forces. In these cases the
net reaction is normal to the supporting surface.

Example 5 shows the action of a smooth guide on the body it sup-
ports. There cannot be any resistance parallel to the guide.

Example 6 illustrates the action of a pin connection. Such a connec-
tion can support force in any direction normal to the axis of the pin. We
usually represent this action in terms of two rectangular components.
The correct sense of these components in a specific problem depends on
how the member is loaded. When not otherwise initially known, the
sense is arbitrarily assigned and the equilibrium equations are then
written. If the solution of these equations yields a positive algebraic sign
for the force component, the assigned sense is correct. A negative sign
indicates the sense is opposite to that initially assigned.

If the joint is free to turn about the pin, the connection can support
only the force R. If the joint is not free to turn, the connection can also
support a resisting couple M. The sense of M is arbitrarily shown here,
but the true sense depends on how the member is loaded.

Example 7 shows the resultants of the rather complex distribution
of force over the cross section of a slender bar or beam at a build-in or
fixed support. The sense of the reactions F and V and the bending cou-
ple M in a given problem depends, of course, on how the member is
loaded.

One of the most common forces is that due to gravitational attrac-
tion, Example 8. This force affects all elements of mass in a body and is,
therefore, distributed throughout it. The resultant of the gravitational
forces on all elements is the weight W � mg of the body, which passes
through the center of mass G and is directed toward the center of the
earth for earthbound structures. The location of G is frequently obvious
from the geometry of the body, particularly where there is symmetry.
When the location is not readily apparent, it must be determined by ex-
periment or calculations.

Similar remarks apply to the remote action of magnetic and electric
forces. These forces of remote action have the same overall effect on a
rigid body as forces of equal magnitude and direction applied by direct
external contact.

Example 9 illustrates the action of a linear elastic spring and of a
nonlinear spring with either hardening or softening characteristics. The
force exerted by a linear spring, in tension or compression, is given by 
F � kx, where k is the stiffness of the spring and x is its deformation
measured from the neutral or undeformed position.

The representations in Fig. 3/1 are not free-body diagrams, but are
merely elements used to construct free-body diagrams. Study these nine
conditions and identify them in the problem work so that you can draw
the correct free-body diagrams.
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Another view of the car-body lifting
device shown in the chapter-opening
photograph.
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114 Chapter  3 Equi l ibr ium

Construction of Free-Body Diagrams

The full procedure for drawing a free-body diagram which isolates a
body or system consists of the following steps.

Step 1. Decide which system to isolate. The system chosen should
usually involve one or more of the desired unknown quantities.

Step 2. Next isolate the chosen system by drawing a diagram which
represents its complete external boundary. This boundary defines the
isolation of the system from all other attracting or contacting bodies,
which are considered removed. This step is often the most crucial of all.
Make certain that you have completely isolated the system before pro-
ceeding with the next step.

Step 3. Identify all forces which act on the isolated system as ap-
plied by the removed contacting and attracting bodies, and represent
them in their proper positions on the diagram of the isolated system.
Make a systematic traverse of the entire boundary to identify all contact
forces. Include body forces such as weights, where appreciable. Repre-
sent all known forces by vector arrows, each with its proper magnitude,
direction, and sense indicated. Each unknown force should be repre-
sented by a vector arrow with the unknown magnitude or direction indi-
cated by symbol. If the sense of the vector is also unknown, you must
arbitrarily assign a sense. The subsequent calculations with the equilib-
rium equations will yield a positive quantity if the correct sense was as-
sumed and a negative quantity if the incorrect sense was assumed. It is
necessary to be consistent with the assigned characteristics of unknown
forces throughout all of the calculations. If you are consistent, the solu-
tion of the equilibrium equations will reveal the correct senses.

Step 4. Show the choice of coordinate axes directly on the diagram.
Pertinent dimensions may also be represented for convenience. Note,
however, that the free-body diagram serves the purpose of focusing at-
tention on the action of the external forces, and therefore the diagram
should not be cluttered with excessive extraneous information. Clearly
distinguish force arrows from arrows representing quantities other than
forces. For this purpose a colored pencil may be used.

Completion of the foregoing four steps will produce a correct free-
body diagram to use in applying the governing equations, both in statics
and in dynamics. Be careful not to omit from the free-body diagram cer-
tain forces which may not appear at first glance to be needed in the cal-
culations. It is only through complete isolation and a systematic
representation of all external forces that a reliable accounting of the ef-
fects of all applied and reactive forces can be made. Very often a force
which at first glance may not appear to influence a desired result does
indeed have an influence. Thus, the only safe procedure is to include on
the free-body diagram all forces whose magnitudes are not obviously
negligible.
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The free-body method is extremely important in mechanics because
it ensures an accurate definition of a mechanical system and focuses at-
tention on the exact meaning and application of the force laws of statics
and dynamics. Review the foregoing four steps for constructing a free-
body diagram while studying the sample free-body diagrams shown in
Fig. 3/2 and the Sample Problems which appear at the end of the next
article.

Examples of Free-Body Diagrams

Figure 3/2 gives four examples of mechanisms and structures to-
gether with their correct free-body diagrams. Dimensions and magni-
tudes are omitted for clarity. In each case we treat the entire system as
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Figure 3/2

A B

P

Ax

F3 F2 F1

Ay By

Bx
By

P

y

x

y

x

y

x

y

x

A Mass m

F3 F2 F1

F

M

M

B

A
P P

N

V2. Cantilever beam

3. Beam

4. Rigid system of interconnected bodies
    analyzed as a single unit

1. Plane truss

Weight of truss
assumed negligible
compared with P

Mechanical System Free-Body Diagram of Isolated Body

SAMPLE FREE-BODY DIAGRAMS

W = mg

W = mg

W = mg

Smooth surface
contact at A.
Mass m

P

A B

m

M

Bx

By

Weight of mechanism
neglected

P

Ay
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a single body, so that the internal forces are not shown. The characteris-
tics of the various types of contact forces illustrated in Fig. 3/1 are used
in the four examples as they apply.

In Example 1 the truss is composed of structural elements which,
taken all together, constitute a rigid framework. Thus, we may remove
the entire truss from its supporting foundation and treat it as a single
rigid body. In addition to the applied external load P, the free-body dia-
gram must include the reactions on the truss at A and B. The rocker at
B can support a vertical force only, and this force is transmitted to the
structure at B (Example 4 of Fig. 3/1). The pin connection at A (Exam-
ple 6 of Fig. 3/1) is capable of supplying both a horizontal and a vertical
force component to the truss. If the total weight of the truss members is
appreciable compared with P and the forces at A and B, then the
weights of the members must be included on the free-body diagram as
external forces.

In this relatively simple example it is clear that the vertical compo-
nent Ay must be directed down to prevent the truss from rotating clock-
wise about B. Also, the horizontal component Ax will be to the left to
keep the truss from moving to the right under the influence of the hori-
zontal component of P. Thus, in constructing the free-body diagram for
this simple truss, we can easily perceive the correct sense of each of the
components of force exerted on the truss by the foundation at A and can,
therefore, represent its correct physical sense on the diagram. When the
correct physical sense of a force or its component is not easily recog-
nized by direct observation, it must be assigned arbitrarily, and the cor-
rectness of or error in the assignment is determined by the algebraic
sign of its calculated value.

In Example 2 the cantilever beam is secured to the wall and sub-
jected to three applied loads. When we isolate that part of the beam to
the right of the section at A, we must include the reactive forces applied
to the beam by the wall. The resultants of these reactive forces are
shown acting on the section of the beam (Example 7 of Fig. 3/1). A verti-
cal force V to counteract the excess of downward applied force is shown,
and a tension F to balance the excess of applied force to the right must
also be included. Then, to prevent the beam from rotating about A, a
counterclockwise couple M is also required. The weight mg of the beam
must be represented through the mass center (Example 8 of Fig. 3/1).

In the free-body diagram of Example 2, we have represented the
somewhat complex system of forces which actually act on the cut section
of the beam by the equivalent force–couple system in which the force is
broken down into its vertical component V (shear force) and its horizon-
tal component F (tensile force). The couple M is the bending moment in
the beam. The free-body diagram is now complete and shows the beam
in equilibrium under the action of six forces and one couple.

In Example 3 the weight W � mg is shown acting through the cen-
ter of mass of the beam, whose location is assumed known (Example 8 of
Fig. 3/1). The force exerted by the corner A on the beam is normal to the
smooth surface of the beam (Example 2 of Fig. 3/1). To perceive this ac-
tion more clearly, visualize an enlargement of the contact point A,
which would appear somewhat rounded, and consider the force exerted
by this rounded corner on the straight surface of the beam, which is as-
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sumed to be smooth. If the contacting surfaces at the corner were not
smooth, a tangential frictional component of force could exist. In addi-
tion to the applied force P and couple M, there is the pin connection at
B, which exerts both an x- and a y-component of force on the beam. The
positive senses of these components are assigned arbitrarily.

In Example 4 the free-body diagram of the entire isolated mecha-
nism contains three unknown forces if the loads mg and P are known.
Any one of many internal configurations for securing the cable leading
from the mass m would be possible without affecting the external re-
sponse of the mechanism as a whole, and this fact is brought out by the
free-body diagram. This hypothetical example is used to show that the
forces internal to a rigid assembly of members do not influence the val-
ues of the external reactions.

We use the free-body diagram in writing the equilibrium equations,
which are discussed in the next article. When these equations are
solved, some of the calculated force magnitudes may be zero. This would
indicate that the assumed force does not exist. In Example 1 of Fig. 3/2,
any of the reactions Ax, Ay, or By can be zero for specific values of the
truss geometry and of the magnitude, direction, and sense of the applied
load P. A zero reaction force is often difficult to identify by inspection,
but can be determined by solving the equilibrium equations.

Similar comments apply to calculated force magnitudes which are
negative. Such a result indicates that the actual sense is the opposite of
the assumed sense. The assumed positive senses of Bx and By in Exam-
ple 3 and By in Example 4 are shown on the free-body diagrams. The
correctness of these assumptions is proved or disproved according to
whether the algebraic signs of the computed forces are plus or minus
when the calculations are carried out in an actual problem.

The isolation of the mechanical system under consideration is a cru-
cial step in the formulation of the mathematical model. The most impor-
tant aspect to the correct construction of the all-important free-body
diagram is the clear-cut and unambiguous decision as to what is in-
cluded and what is excluded. This decision becomes unambiguous only
when the boundary of the free-body diagram represents a complete tra-
verse of the body or system of bodies to be isolated, starting at some ar-
bitrary point on the boundary and returning to that same point. The
system within this closed boundary is the isolated free body, and all con-
tact forces and all body forces transmitted to the system across the
boundary must be accounted for.

The following exercises provide practice with drawing free-body dia-
grams. This practice is helpful before using such diagrams in the appli-
cation of the principles of force equilibrium in the next article.
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Even complex pulley systems such
as the ones seen here are easily
handled with a systematic equilib-
rium analysis.
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necessary in each case to form a complete free-body
diagram. The weights of the bodies are negligible un-
less otherwise indicated. Dimensions and numerical
values are omitted for simplicity.
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FREE-BODY DIAGRAM EXERCISES

3/A In each of the five following examples, the body to be
isolated is shown in the left-hand diagram, and an in-
complete free-body diagram (FBD) of the isolated
body is shown on the right. Add whatever forces are

Figure 3/A

1. Bell crank
    supporting mass
    m with pin support
    at A.

2. Control lever
    applying torque
    to shaft at O.

3. Boom OA, of
    negligible mass
    compared with
    mass m. Boom
    hinged at O and
    supported by
    hoisting cable at B.

4. Uniform crate of
    mass m leaning
    against smooth
    vertical wall and
    supported on a 
    rough horizontal
    surface.

5. Loaded bracket
    supported by pin
    connection at A and
    fixed pin in smooth
    slot at B.

Body Incomplete FBD

m

A

O

A

B

A

O
O

A

B

T

A

mg
T

Flexible
cable

Pull P P

FO

m mg

mg

B

B

A
Load L

B

A
L
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3/B In each of the five following examples, the body to be
isolated is shown in the left-hand diagram, and either
a wrong or an incomplete free-body diagram (FBD) is
shown on the right. Make whatever changes or addi-

Free-Body Diagram Exerc ises 119

tions are necessary in each case to form a correct and
complete free-body diagram. The weights of the bod-
ies are negligible unless otherwise indicated. Dimen-
sions and numerical values are omitted for simplicity.

Figure 3/B

mg

mg

1. 

Wrong or Incomplete FBDBody

P

P

N

N

PLawn roller of 
mass m being
pushed up 
incline    . 

5. Bent rod welded to
support at A and 
subjected to two 
forces and couple.

4. Supporting angle
bracket for frame;
pin joints.

3. Uniform pole of 
mass m being
hoisted into posi-
tion by winch.  
Horizontal sup-
porting surface
notched to prevent
slipping of pole.

2. Prybar lifting 
body A having 
smooth horizontal 
surface.  Bar rests 
on horizontal 
rough surface.

θ θ

P

T

R

R

A

Notch

y

x

M

F

M

F

P

Ay

F

A

A

B

P

A

B
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All forces, known and unknown, should be labeled.
(Note: The sense of some reaction components cannot
always be determined without numerical calculation.)
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3/C Draw a complete and correct free-body diagram of each
of the bodies designated in the statements. The weights
of the bodies are significant only if the mass is stated.

Figure 3/C

m

L

A

A B

A

A

B

C

A

B

B

3. Loaded truss supported by pin joint at 
A and by cable at B.

2. Wheel of mass m on verge of being
rolled over curb by pull P.

4. Uniform bar of mass m and roller of
mass m0 taken together.  Subjected to 
couple M and supported as shown.
Roller is free to turn.

7. Uniform heavy plate of mass m
supported in vertical plane by cable
C and hinge A.

6. Bar, initially horizontal but deflected 
under load L.  Pinned to rigid support 
at each end.

8. Entire frame, pulleys, and contacting
cable to be isolated as a single unit.

1. Uniform horizontal bar of mass m 
suspended by vertical cable at A and
supported by rough inclined surface 
at B.

5. Uniform grooved wheel of mass m
supported by a rough surface and by 
action of horizontal cable.

m0
M

A

m

P

m

L

m

L
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3/3 EQ U I L I B R I U M CO N D I T I O N S

In Art. 3/1 we defined equilibrium as the condition in which the re-
sultant of all forces and moments acting on a body is zero. Stated in an-
other way, a body is in equilibrium if all forces and moments applied to
it are in balance. These requirements are contained in the vector equa-
tions of equilibrium, Eqs. 3/1, which in two dimensions may be written
in scalar form as

(3/2)

The third equation represents the zero sum of the moments of all forces
about any point O on or off the body. Equations 3/2 are the necessary
and sufficient conditions for complete equilibrium in two dimensions.
They are necessary conditions because, if they are not satisfied, there can
be no force or moment balance. They are sufficient because once they are
satisfied, there can be no imbalance, and equilibrium is assured.

The equations relating force and acceleration for rigid-body motion
are developed in Vol. 2 Dynamics from Newton’s second law of motion.
These equations show that the acceleration of the mass center of a body
is proportional to the resultant force ΣF acting on the body. Conse-
quently, if a body moves with constant velocity (zero acceleration), the
resultant force on it must be zero, and the body may be treated as in a
state of translational equilibrium.

For complete equilibrium in two dimensions, all three of Eqs. 3/2
must hold. However, these conditions are independent requirements,
and one may hold without another. Take, for example, a body which
slides along a horizontal surface with increasing velocity under the ac-
tion of applied forces. The force–equilibrium equations will be satisfied in
the vertical direction where the acceleration is zero, but not in the hori-
zontal direction. Also, a body, such as a flywheel, which rotates about its
fixed mass center with increasing angular speed is not in rotational equi-
librium, but the two force–equilibrium equations will be satisfied.

Categories of Equilibrium

Applications of Eqs. 3/2 fall naturally into a number of categories
which are easily identified. The categories of force systems acting on
bodies in two-dimensional equilibrium are summarized in Fig. 3/3 and
are explained further as follows.

Category 1, equilibrium of collinear forces, clearly requires only
the one force equation in the direction of the forces (x-direction), since
all other equations are automatically satisfied.

Category 2, equilibrium of forces which lie in a plane (x-y plane)
and are concurrent at a point O, requires the two force equations only,
since the moment sum about O, that is, about a z-axis through O, is nec-
essarily zero. Included in this category is the case of the equilibrium of a
particle.

Category 3, equilibrium of parallel forces in a plane, requires the
one force equation in the direction of the forces (x-direction) and one mo-
ment equation about an axis (z-axis) normal to the plane of the forces.

ΣFx � 0   ΣFy � 0   ΣMO � 0
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Category 4, equilibrium of a general system of forces in a plane
(x-y), requires the two force equations in the plane and one moment
equation about an axis (z-axis) normal to the plane.

Two- and Three-Force Members

You should be alert to two frequently occurring equilibrium situa-
tions. The first situation is the equilibrium of a body under the action
of two forces only. Two examples are shown in Fig. 3/4, and we see
that for such a two-force member to be in equilibrium, the forces must
be equal, opposite, and collinear. The shape of the member does not af-
fect this simple requirement. In the illustrations cited, we consider the
weights of the members to be negligible compared with the applied
forces.

The second situation is a three-force member, which is a body under
the action of three forces, Fig. 3/5a. We see that equilibrium requires
the lines of action of the three forces to be concurrent. If they were not
concurrent, then one of the forces would exert a resultant moment
about the point of intersection of the other two, which would violate the
requirement of zero moment about every point. The only exception oc-
curs when the three forces are parallel. In this case we may consider the
point of concurrency to be at infinity.
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The principle of the concurrency of three forces in equilibrium is of
considerable use in carrying out a graphical solution of the force equa-
tions. In this case the polygon of forces is drawn and made to close, as
shown in Fig. 3/5b. Frequently, a body in equilibrium under the action
of more than three forces may be reduced to a three-force member by a
combination of two or more of the known forces.

Alternative Equilibrium Equations

In addition to Eqs. 3/2, there are two other ways to express the gen-
eral conditions for the equilibrium of forces in two dimensions. The first
way is illustrated in Fig. 3/6, parts (a) and (b). For the body shown in
Fig. 3/6a, if ΣMA � 0, then the resultant, if it still exists, cannot be a
couple, but must be a force R passing through A. If now the equation
ΣFx � 0 holds, where the x-direction is arbitrary, it follows from Fig.
3/6b that the resultant force R, if it still exists, not only must pass
through A, but also must be perpendicular to the x-direction as shown.
Now, if ΣMB � 0, where B is any point such that the line AB is not per-
pendicular to the x-direction, we see that R must be zero, and thus the
body is in equilibrium. Therefore, an alternative set of equilibrium
equations is

where the two points A and B must not lie on a line perpendicular to the
x-direction.

A third formulation of the equilibrium conditions may be made for
a coplanar force system. This is illustrated in Fig. 3/6, parts (c) and
(d). Again, if ΣMA � 0 for any body such as that shown in Fig. 3/6c, the
resultant, if any, must be a force R through A. In addition, if ΣMB � 0,
the resultant, if one still exists, must pass through B as shown in Fig.
3/6d. Such a force cannot exist, however, if ΣMC � 0, where C is not

ΣFx � 0   ΣMA � 0   ΣMB � 0
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collinear with A and B. Thus, we may write the equations of equilib-
rium as

where A, B, and C are any three points not on the same straight line.
When equilibrium equations are written which are not indepen-

dent, redundant information is obtained, and a correct solution of the
equations will yield 0 � 0. For example, for a general problem in two di-
mensions with three unknowns, three moment equations written about
three points which lie on the same straight line are not independent.
Such equations will contain duplicated information, and solution of two
of them can at best determine two of the unknowns, with the third
equation merely verifying the identity 0 � 0.

Constraints and Statical Determinacy

The equilibrium equations developed in this article are both neces-
sary and sufficient conditions to establish the equilibrium of a body.
However, they do not necessarily provide all the information required to
calculate all the unknown forces which may act on a body in equilib-
rium. Whether the equations are adequate to determine all the un-
knowns depends on the characteristics of the constraints against
possible movement of the body provided by its supports. By constraint
we mean the restriction of movement.

In Example 4 of Fig. 3/1 the roller, ball, and rocker provide con-
straint normal to the surface of contact, but none tangent to the sur-
face. Thus, a tangential force cannot be supported. For the collar and
slider of Example 5, constraint exists only normal to the guide. In Ex-
ample 6 the fixed-pin connection provides constraint in both directions,
but offers no resistance to rotation about the pin unless the pin is not
free to turn. The fixed support of Example 7, however, offers constraint
against rotation as well as lateral movement.

If the rocker which supports the truss of Example 1 in Fig. 3/2 were
replaced by a pin joint, as at A, there would be one additional constraint
beyond those required to support an equilibrium configuration with no
freedom of movement. The three scalar conditions of equilibrium, Eqs.
3/2, would not provide sufficient information to determine all four un-
knowns, since Ax and Bx could not be solved for separately; only their
sum could be determined. These two components of force would be de-
pendent on the deformation of the members of the truss as influenced
by their corresponding stiffness properties. The horizontal reactions Ax

and Bx would also depend on any initial deformation required to fit the
dimensions of the structure to those of the foundation between A and B.
Thus, we cannot determine Ax and Bx by a rigid-body analysis.

Again referring to Fig. 3/2, we see that if the pin B in Example 3
were not free to turn, the support could transmit a couple to the beam
through the pin. Therefore, there would be four unknown supporting
reactions acting on the beam, namely, the force at A, the two compo-
nents of force at B, and the couple at B. Consequently the three inde-

ΣMA � 0   ΣMB � 0   ΣMC � 0
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pendent scalar equations of equilibrium would not provide enough in-
formation to compute all four unknowns.

A rigid body, or rigid combination of elements treated as a single
body, which possesses more external supports or constraints than are
necessary to maintain an equilibrium position is called statically inde-
terminate. Supports which can be removed without destroying the equi-
librium condition of the body are said to be redundant. The number of
redundant supporting elements present corresponds to the degree of sta-
tical indeterminacy and equals the total number of unknown external
forces, minus the number of available independent equations of equilib-
rium. On the other hand, bodies which are supported by the minimum
number of constraints necessary to ensure an equilibrium configuration
are called statically determinate, and for such bodies the equilibrium
equations are sufficient to determine the unknown external forces.

The problems on equilibrium in this article and throughout Vol. 1
Statics are generally restricted to statically determinate bodies where
the constraints are just sufficient to ensure a stable equilibrium configu-
ration and where the unknown supporting forces can be completely de-
termined by the available independent equations of equilibrium.

We must be aware of the nature of the constraints before we attempt
to solve an equilibrium problem. A body can be recognized as statically
indeterminate when there are more unknown external reactions than
there are available independent equilibrium equations for the force sys-
tem involved. It is always well to count the number of unknown variables
on a given body and to be certain that an equal number of independent
equations can be written; otherwise, effort might be wasted in attempt-
ing an impossible solution with the aid of the equilibrium equations only.
The unknown variables may be forces, couples, distances, or angles.

Adequacy of Constraints

In discussing the relationship between constraints and equilibrium,
we should look further at the question of the adequacy of constraints.
The existence of three constraints for a two-dimensional problem does
not always guarantee a stable equilibrium configuration. Figure 3/7
shows four different types of constraints. In part a of the figure, point A
of the rigid body is fixed by the two links and cannot move, and the third
link prevents any rotation about A. Thus, this body is completely fixed
with three adequate (proper) constraints.

In part b of the figure, the third link is positioned so that the force
transmitted by it passes through point A where the other two constraint
forces act. Thus, this configuration of constraints can offer no initial re-
sistance to rotation about A, which would occur when external loads
were applied to the body. We conclude, therefore, that this body is in-
completely fixed under partial constraints.

The configuration in part c of the figure gives us a similar condition
of incomplete fixity because the three parallel links could offer no initial
resistance to a small vertical movement of the body as a result of exter-
nal loads applied to it in this direction. The constraints in these two ex-
amples are often termed improper.
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In part d of Fig. 3/7 we have a condition of complete fixity, with link
4 acting as a fourth constraint which is unnecessary to maintain a fixed
position. Link 4, then, is a redundant constraint, and the body is stati-
cally indeterminate.

As in the four examples of Fig. 3/7, it is generally possible by direct
observation to conclude whether the constraints on a body in two-
dimensional equilibrium are adequate (proper), partial (improper), or
redundant. As indicated previously, the vast majority of problems in this
book are statically determinate with adequate (proper) constraints.

Approach to Solving Problems

The sample problems at the end of this article illustrate the applica-
tion of free-body diagrams and the equations of equilibrium to typical
statics problems. These solutions should be studied thoroughly. In the
problem work of this chapter and throughout mechanics, it is important
to develop a logical and systematic approach which includes the follow-
ing steps:

1. Identify clearly the quantities which are known and unknown.

2. Make an unambiguous choice of the body (or system of connected
bodies treated as a single body) to be isolated and draw its complete
free-body diagram, labeling all external known and unknown but
identifiable forces and couples which act on it.

3. Choose a convenient set of reference axes, always using right-
handed axes when vector cross products are employed. Choose mo-
ment centers with a view to simplifying the calculations. Generally
the best choice is one through which as many unknown forces pass
as possible. Simultaneous solutions of equilibrium equations are
frequently necessary, but can be minimized or avoided by a careful
choice of reference axes and moment centers.

4. Identify and state the applicable force and moment principles or
equations which govern the equilibrium conditions of the problem.
In the following sample problems these relations are shown in
brackets and precede each major calculation.

5. Match the number of independent equations with the number of
unknowns in each problem.

6. Carry out the solution and check the results. In many problems en-
gineering judgment can be developed by first making a reasonable
guess or estimate of the result prior to the calculation and then
comparing the estimate with the calculated value.
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Sample Problem 3/1

Determine the magnitudes of the forces C and T, which, along with the
other three forces shown, act on the bridge-truss joint.

Solution. The given sketch constitutes the free-body diagram of the isolated
section of the joint in question and shows the five forces which are in equilibrium.

Solution I (scalar algebra). For the x-y axes as shown we have

(a)

(b)

Simultaneous solution of Eqs. (a) and (b) produces

Ans.

Solution II (scalar algebra). To avoid a simultaneous solution, we may use axes
x�-y� with the first summation in the y�-direction to eliminate reference to T. Thus,

Ans.

Ans.

Solution III (vector algebra). With unit vectors i and j in the x- and y-direc-
tions, the zero summation of forces for equilibrium yields the vector equation

Equating the coefficients of the i- and j-terms to zero gives

which are the same, of course, as Eqs. (a) and (b), which we solved above.

Solution IV (geometric). The polygon representing the zero vector sum of
the five forces is shown. Equations (a) and (b) are seen immediately to give the
projections of the vectors onto the x- and y-directions. Similarly, projections onto
the x�- and y�-directions give the alternative equations in Solution II.

A graphical solution is easily obtained. The known vectors are laid off head-
to-tail to some convenient scale, and the directions of T and C are then drawn to
close the polygon. The resulting intersection at point P completes the solution,
thus enabling us to measure the magnitudes of T and C directly from the draw-
ing to whatever degree of accuracy we incorporate in the construction.

 T sin 40� � 3 � C cos 20� � 0

 8 � T cos 40� � C sin 20� � 16 � 0

 � (C cos 20�)j � 16i � 0

8i � (T cos 40�)i � (T sin 40�)j � 3j � (C sin 20�)i[ΣF � 0]

T � 9.09 kN

T � 8 cos 40� � 16 cos 40� � 3 sin 40� � 3.03 sin 20� � 0[ΣFx� � 0]

C � 3.03 kN

�C cos 20� � 3 cos 40� � 8 sin 40� � 16 sin 40� � 0[ΣFy� � 0]

T � 9.09 kN   C � 3.03 kN

 0.643T � 0.940C � 3

 T sin 40� � C cos 20� � 3 � 0 [ΣFy � 0]

 0.766T � 0.342C � 8

 8 � T cos 40� � C sin 20� � 16 � 0 [ΣFx � 0]
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� The known vectors may be added in
any order desired, but they must be
added before the unknown vectors.

Helpful Hints

� Since this is a problem of concur-
rent forces, no moment equation is
necessary.

� The selection of reference axes to fa-
cilitate computation is always an im-
portant consideration. Alternatively
in this example we could take a set
of axes along and normal to the di-
rection of C and employ a force sum-
mation normal to C to eliminate it.

�

�

�
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Sample Problem 3/2

Calculate the tension T in the cable which supports the 500-kg mass with
the pulley arrangement shown. Each pulley is free to rotate about its bearing,
and the weights of all parts are small compared with the load. Find the magni-
tude of the total force on the bearing of pulley C.

Solution. The free-body diagram of each pulley is drawn in its relative posi-
tion to the others. We begin with pulley A, which includes the only known force.
With the unspecified pulley radius designated by r, the equilibrium of moments
about its center O and the equilibrium of forces in the vertical direction require

From the example of pulley A we may write the equilibrium of forces on pulley B
by inspection as

For pulley C the angle � � 30� in no way affects the moment of T about the cen-
ter of the pulley, so that moment equilibrium requires

Ans.

Equilibrium of the pulley in the x- and y-directions requires

Ans.

Sample Problem 3/3

The uniform 100-kg I-beam is supported initially by its end rollers on the
horizontal surface at A and B. By means of the cable at C it is desired to elevate
end B to a position 3 m above end A. Determine the required tension P, the reac-
tion at A, and the angle � made by the beam with the horizontal in the elevated
position.

Solution. In constructing the free-body diagram, we note that the reaction on
the roller at A and the weight are vertical forces. Consequently, in the absence of
other horizontal forces, P must also be vertical. From Sample Problem 3/2 we
see immediately that the tension P in the cable equals the tension P applied to
the beam at C.

Moment equilibrium about A eliminates force R and gives

Ans.

Equilibrium of vertical forces requires

Ans.

The angle � depends only on the specified geometry and is

Ans.sin � � 3/8   � � 22.0�

654 � R � 981 � 0    R � 327 N[ΣFy � 0]

P � 654 NP(6 cos �) � 981(4 cos �) � 0[ΣMA � 0]

[F � �Fx 

2 � Fy 

2]   F � �(1062)2 � (613)2 � 1226 N

Fy � 613 NFy � 1226 sin 30� � 1226 � 0[ΣFy � 0]

Fx � 1062 N1226 cos 30� � Fx � 0[ΣFx � 0]

T � T3   or   T � 1226 N

T3 � T4 � T2/2 � 1226 N

 2T1 � 500(9.81)   T1 � T2 � 2450 NT1 � T2 � 500(9.81) � 0[ΣFy � 0]

T1 � T2T1r � T2r � 0[ΣMO � 0]
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Helpful Hint

� Clearly the equilibrium of this paral-
lel force system is independent of �.

Helpful Hint

� Clearly the radius r does not influence
the results. Once we have analyzed a
simple pulley, the results should be
perfectly clear by inspection.

�

�

c03.qxd  11/6/07  3:26 PM  Page 128



Sample Problem 3/4

Determine the magnitude T of the tension in the supporting cable and the
magnitude of the force on the pin at A for the jib crane shown. The beam AB is a
standard 0.5-m I-beam with a mass of 95 kg per meter of length.

Algebraic solution. The system is symmetrical about the vertical x-y plane
through the center of the beam, so the problem may be analyzed as the equilib-
rium of a coplanar force system. The free-body diagram of the beam is shown in
the figure with the pin reaction at A represented in terms of its two rectangular
components. The weight of the beam is 95(10�3)(5)9.81 � 4.66 kN and acts
through its center. Note that there are three unknowns Ax, Ay, and T, which may
be found from the three equations of equilibrium. We begin with a moment
equation about A, which eliminates two of the three unknowns from the equa-
tion. In applying the moment equation about A, it is simpler to consider the mo-
ments of the x- and y-components of T than it is to compute the perpendicular
distance from T to A. Hence, with the counterclockwise sense as positive we
write

from which Ans.

Equating the sums of forces in the x- and y-directions to zero gives

Ans.

Graphical solution. The principle that three forces in equilibrium must be
concurrent is utilized for a graphical solution by combining the two known verti-
cal forces of 4.66 and 10 kN into a single 14.66-kN force, located as shown on the
modified free-body diagram of the beam in the lower figure. The position of this
resultant load may easily be determined graphically or algebraically. The inter-
section of the 14.66-kN force with the line of action of the unknown tension T
defines the point of concurrency O through which the pin reaction A must pass.
The unknown magnitudes of T and A may now be found by adding the forces
head-to-tail to form the  closed equilibrium polygon of forces, thus satisfying
their zero vector sum. After the known vertical load is laid off to a convenient
scale, as shown in the lower part of the figure, a line representing the given di-
rection of the tension T is drawn through the tip of the 14.66-kN vector. Like-
wise a line representing the direction of the pin reaction A, determined from the
concurrency established with the free-body diagram, is drawn through the tail of
the 14.66-kN vector. The intersection of the lines representing vectors T and A
establishes the magnitudes T and A necessary to make the vector sum of the
forces equal to zero. These magnitudes are scaled from the diagram. The x- and
y-components of A may be constructed on the force polygon if desired.

[A � �Ax 

2 � Ay 

2]   A � �(17.77)2 � (6.37)2 � 18.88 kN

 Ay � 19.61 sin 25� � 4.66 � 10 � 0   Ay � 6.37 kN[ΣFy � 0]

Ax � 17.77 kN Ax � 19.61 cos 25� � 0[ΣFx � 0]

T � 19.61 kN

� 10(5 � 1.5 � 0.12) � 4.66(2.5 � 0.12) � 0
(T cos 25�)0.25 � (T sin 25�)(5 � 0.12)[ΣMA � 0]
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Graphical solution

10 kN

25°A
0.5 m

0.25 m

0.12 m

5 m

1.5 m

B

4.66 kN
10 kN

25°

T

Ax

Ay
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Free-body diagram

Helpful Hints

� The justification for this step is
Varignon’s theorem, explained in
Art. 2/4. Be prepared to take full ad-
vantage of this principle frequently.

� The calculation of moments in two-
dimensional problems is generally
handled more simply by scalar alge-
bra than by the vector cross product 
r F. In three dimensions, as we will
see later, the reverse is often the case.

� The direction of the force at A could
be easily calculated if desired. How-
ever, in designing the pin A or in
checking its strength, it is only the
magnitude of the force that matters.

�

�

�

�

c03.qxd  11/6/07  3:26 PM  Page 129



3/3 A carpenter carries a 6-kg uniform board as shown.
What downward force does he feel on his shoulder at
A?

Ans. NA � 88.3 N

Problem 3/3

3/4 In the side view of a 70-kg television resting on a 
24-kg cabinet, the mass centers are labeled G1 and G2.
Determine the force reactions at A and B. (Note that
the mass center of most televisions is located well for-
ward because of the heavy nature of the front portion
of picture tubes.)

Problem 3/4

A

G1

B

350
mm

250
mm

100 mm

G2

0.6 m1.5 m

A B

0.3 m
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PROBLEMS

Introductory Problems

3/1 Determine the force P required to maintain the 200-kg
engine in the position for which � � 30�. The diameter
of the pulley at B is negligible.

Ans. P � 1759 N

Problem 3/1

3/2 The mass center G of the 1400-kg rear-engine car is
located as shown in the figure. Determine the normal
force under each tire when the car is in equilibrium.
State any assumptions.

Problem 3/2

G

1386 mm 964 mm

A

P

B

C

2 m

2 m

200 kg

�
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3/5 The roller stand is used to support portions of long
boards as they are being cut on a table saw. If the
board exerts a 25-N downward force on the roller C,
determine the vertical reactions at A and D. Note that
the connection at B is rigid, and that the feet A and D
are fairly lengthy horizontal tubes with a nonslip
coating.

Ans. NA � 8.45 N, ND � 16.55 N

Problem 3/5

3/6 The 450-kg uniform I-beam supports the load shown.
Determine the reactions at the supports.

Problem 3/6

3/7 Calculate the force and moment reactions at the bolted
base O of the overhead traffic-signal assembly. Each
traffic signal has a mass of 36 kg, while the masses of
members OC and AC are 50 kg and 55 kg, respectively.

Ans. Ox � 0, Oy � 1736 N, MO � 7460 N � m CW

5.6 m

220 kg

A B

2.4 m

A D

B

C

355 mm

235 mm
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Problem 3/7

3/8 The 20-kg homogeneous smooth sphere rests on the
two inclines as shown. Determine the contact forces
at A and B.

Problem 3/8

3/9 A 54-kg crate resets on the 27-kg pickup tailgate. Cal-
culate the tension T in each of the two restraining ca-
bles, one of which is shown. The centers of gravity are
at G1 and G2. The crate is located midway between
the two cables.

Ans. T � 577 N

Problem 3/9

A O

240
mm70 mm

350 mm

300
mm

B

G2

G1

A

B
75° 30°

36 kg 36 kg

55 kg

50 kg

7 m

4 m5 m 1
m

A B
G C

O

c03.qxd  11/6/07  3:26 PM  Page 131



3/12 The device shown is designed to aid in the removal
of pull-tab tops from cans. If the user exerts a 40-N
force at A, determine the tension T in the portion
BC of the pull tab.

Problem 3/12

3/13 A woodcutter wishes to cause the tree trunk to fall
uphill, even though the trunk is leaning downhill.
With the aid of the winch W, what tension T in the
cable will be required? The 600-kg trunk has a cen-
ter of gravity at G. The felling notch at O is suffi-
ciently large so that the resisting moment there is
negligible.

Ans. T � 401 N

Problem 3/13

W
B

O

A

G

5°

10°

4.7 m

1.3 m

4 m

Horizontal

36
mm

78 mm
F = 40N

10°

45°
32 mm

27
mm

C

A

B

O
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3/10 A portable electric generator has a mass of 160 kg
with mass center at G. Determine the upward force
F necessary to reduce the normal force at A to one-
half its nominal (F � 0) value.

Problem 3/10

3/11 With what force magnitude T must the person pull
on the cable in order to cause the scale A to read
2000 N? The weights of the pulleys and cables are
negligible. State any assumptions.

Ans. T � 581 N

Problem 3/11

A

500 kg

O

F

240
mm

325
mm

135
mm

A

B

G
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3/14 To facilitate shifting the position of a lifting hook
when it is not under load, the sliding hanger shown
is used. The projections at A and B engage the
flanges of a box beam when a load is supported, and
the hook projects through a horizontal slot in the
beam. Compute the forces at A and B when the hook
supports a 300-kg mass.

Problem 3/14

3/15 Three cables are joined at the junction ring C. Deter-
mine the tensions in cables AC and BC caused by the
weight of the 30-kg cylinder.

Ans. TAC � 215 N, TBC � 264 N

Problem 3/15

15°

45°

30° 30 kg

A

B

C
D

400
mm

600
mm B

A

300 kg
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3/16 A 700-N axial force is required to remove the pulley
from its shaft. What force F must be exerted on the
handle of each of the two prybars? Friction at the
contact points B and E is sufficient to prevent slip-
ping; friction at the pulley contact points C and F is
negligible.

Problem 3/16

3/17 The uniform beam has a mass of 50 kg per meter of
length. Compute the reactions at the support O. The
force loads shown lie in a vertical plane.
Ans. Ox � �0.7 kN, Oy � 5.98 kN, MO � 9.12 

Problem 3/17

30°

AO

B
C3 kN

1.4 kN

4 kN·m

1.8 m
0.6 m

0.6 m

0.6 m

kN � m

F F
A D

B C FO E

5°

250 mm

38
mm

31
mm
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3/20 Determine the reactions at A and E if P � 500 N.
What is the maximum value which P may have for
static equilibrium? Neglect the weight of the struc-
ture compared with the applied loads.

Problem 3/20

3/21 While digging a small hole prior to planting a tree,
a homeowner encounters rocks. If he exerts a hori-
zontal 225-N force on the prybar as shown, what is
the horizontal force exerted on rock C? Note that a
small ledge on rock C supports a vertical force re-
action there. Neglect friction at B. Complete solu-
tions (a) including and (b) excluding the weight of
the 18-kg prybar.

Ans. (a) FC � 1705 N, (b) FC � 1464 N

Problem 3/21

A

1500 mm

225 N

20°

200 mm
C

B

x

y

4 m 4 m

30°

3 m

4000 N

A B

P

E D
C
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Representative Problems

3/18 A pipe P is being bent by the pipe bender as shown.
If the hydraulic cylinder applies a force of magnitude
F � 24 kN to the pipe at C, determine the magni-
tude of the roller reactions at A and B.

Problem 3/18

3/19 The uniform 15-m pole has a mass of 150 kg and is
supported by its smooth ends against the vertical
walls and by the tension T in the vertical cable.
Compute the reactions at A and B.

Ans. A � B � 327 N

Problem 3/19

A

B

5 m

10 m

12 m

T

A B

C

P

F

15°
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3/22 Determine the force P required to begin rolling the
uniform cylinder of mass m over the obstruction of
height h.

Problem 3/22

3/23 A 35-N axial force at B is required to open the spring-
loaded plunger of the water nozzle. Determine the re-
quired force F applied to the handle at A and the
magnitude of the pin reaction at O. Note that the
plunger passes through a vertically-elongated hole in
the handle at B, so that negligible vertical force is
transmitted there.

Ans. F � 13.98 N, O � 48.8 N

Problem 3/23

F

FA

B

O

38 mm

44 mm

10°

18 mm

r
P

h
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3/24 A person holds a 30-kg suitcase by its handle as indi-
cated in the figure. Determine the tension in each of
the four identical links AB.

Problem 3/24

3/25 A block placed under the head of the claw hammer
as shown greatly facilitates the extraction of the
nail. If a 200-N pull on the handle is required to pull
the nail, calculate the tension T in the nail and the
magnitude A of the force exerted by the hammer
head on the block. The contacting surfaces at A are
sufficiently rough to prevent slipping.

Ans. T � 800 N, A � 755 N

Problem 3/25

200 N

200 mm

50 mm

45 mm
A

20°

A

A

B

B

35°

30(9.81) N

35°
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3/28 To test the validity of aerodynamic assumptions
made in the design of the aircraft, its model is
being tested in a wind tunnel. The support bracket
is connected to a force and moment balance, which
is zeroed when there is no airflow. Under test con-
ditions, the lift L, drag D, and pitching moment MG

act as shown. The force balance records the lift,
drag, and a moment MP. Determine MG in terms of
L, D, and MP.

Problem 3/28

3/29 The chain binder is used to secure loads of logs,
lumber, pipe, and the like. If the tension T1 is 2 kN
when � � 30�, determine the force P required on the
lever and the corresponding tension T2 for this posi-
tion. Assume that the surface under A is perfectly
smooth.

Ans. P � 166.7 N, T2 � 1.917 kN

Problem 3/29

d

h

Airflow

P

L

G

DMG

T1

T2

P

100

mm

500 mm

A
B

�
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3/26 The indicated location of the center of mass of the
1600-kg pickup truck is for the unladen condition. If
a load whose center of mass is x � 400 mm behind
the rear axle is added to the truck, determine the
mass mL for which the normal forces under the front
and rear wheels are equal.

Problem 3/26

3/27 The wall-mounted 2.5-kg light fixture has its mass
center at G. Determine the reactions at A and B and
also calculate the moment supported by the adjust-
ment thumbscrew at C. (Note that the lightweight
frame ABC has about 250 mm of horizontal tubing,
directed into and out of the paper, at both A and B.)

Ans. Bx � 32.0 N
Ax � 32.0 N, Ay � 24.5 N

MC � 2.45 CW

Problem 3/27

200 mm

230 mm

100 mm
10 mm

A

C

G

B

N � m

1125
mm 1675 mm x

BA

GG

WL
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3/30 The device shown is designed to apply pressure
when bonding laminate to each side of a countertop
near an edge. If a 120-N force is applied to the han-
dle, determine the force which each roller exerts on
its corresponding surface.

Problem 3/30

3/31 The two light pulleys are fastened together and form
an integral unit. They are prevented from turning
about their bearing at O by a cable wound securely
around the smaller pulley and fastened to point A.
Calculate the magnitude R of the force supported by
the bearing O for the applied 2-kN load.

Ans. R � 4.38 kN

Problem 3/31

3/32 In a procedure to evaluate the strength of the triceps
muscle, a person pushes down on a load cell with the
palm of his hand as indicated in the figure. If the
load-cell reading is 160 N, determine the vertical
tensile force F generated by the triceps muscle. The
mass of the lower arm is 1.5 kg with mass center at
G. State any assumptions.

2 kN

325 mm

AO

200 mm

125 mm

16
5 m

m

45°

45 mm

30 mm

30
mm

120 N

A

C

B
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Problem 3/32

3/33 A person is performing slow arm curls with a 10-kg
weight as indicated in the figure. The brachialis
muscle group (consisting of the biceps and brachialis
muscles) is the major factor in this exercise. Deter-
mine the magnitude F of the brachialis-muscle-
group force and the magnitude E of the elbow joint
reaction at point E for the forearm position shown
in the figure. Take the dimensions shown to locate
the effective points of application of the two muscle
groups; these points are 200 mm directly above E
and 50 mm directly to the right of E. Include the
effect of the 1.5-kg forearm mass with mass center
at point G. State any assumptions.

Ans. F � 753 N, E � 644 N

Problem 3/33

E
G

350 mm
50 mm 100 mm

200 mm

Humerus
Biceps
Brachialis

Ulna
Radius 10 kg

25 mm

G

Ulna
Hand

Load cell

O

Humerus
Triceps

150 mm 150 mm
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Problem 3/35

3/36 The elements of an on-off mechanism for a table
lamp are shown in the figure. The electrical switch
S requires a 4-N force in order to depress it. What
corresponding force F must be exerted on the han-
dle at A?

Problem 3/36

A

O

S F

90 mm

30 mm

30°

15°

60 mm

50 mm

225 mm

Femur
Fibula

Tibia
Patella

Patellar
tendon

Quadriceps muscle

O

40°

55°
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3/34 A woman is holding a 3.6-kg sphere in her hand
with the entire arm held horizontally as shown in
the figure. A tensile force in the deltoid muscle pre-
vents the arm from rotating about the shoulder
joint O; this force acts at the 21� angle shown. De-
termine the force exerted by the deltoid muscle on
the upper arm at A and the x- and y-components of
the force reaction at the shoulder joint O. The mass
of the upper arm is mU � 1.9 kg, the mass of the
lower arm is mL � 1.1 kg, and the mass of the hand
is mH � 0.4 kg; all the corresponding weights act at
the locations shown in the figure.

Problem 3/34

3/35 With his weight W equally distributed on both feet, a
man begins to slowly rise from a squatting position
as indicated in the figure. Determine the tensile
force F in the patellar tendon and the magnitude of
the force reaction at point O, which is the contact
area between the tibia and the femur. Note that the
line of action of the patellar tendon force is along its
midline. Neglect the weight of the lower leg.

Ans. F � 2.25W, O � 2.67W

y

x

635 mm
412 mm

125 mm

Deltoid muscle

21°

3.6(9.81) N

WU

O

FD

A

WL WH

130 mm
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3/37 The uniform 18-kg bar OA is held in the position
shown by the smooth pin at O and the cable AB. De-
termine the tension T in the cable and the magni-
tude and direction of the external pin reaction at O.
Ans. T � 99.5 N, O � 246 N, 70.3� CCW from x-axis

Problem 3/37

3/38 A person attempts to move a 20-kg shop vacuum by
pulling on the hose as indicated. What force F will
cause the unit to tip clockwise if wheel A is against
an obstruction?

Problem 3/38

F

15°C

G

B
A

200 mm

375 mm

175
mm

175
mm

75 
mm

B O

A

1.5 m

60°

1.2 m

x

Art ic le  3/3 Problems 139

3/39 The exercise machine is designed with a lightweight
cart which is mounted on small rollers so that it is
free to move along the inclined ramp. Two cables are
attached to the cart—one for each hand. If the hands
are together so that the cables are parallel and if
each cable lies essentially in a vertical plane, deter-
mine the force P which each hand must exert on its
cable in order to maintain an equilibrium position.
The mass of the person is 70 kg, the ramp angle � is
15�, and the angle � is 18�. In addition, calculate the
force R which the ramp exerts on the cart.

Ans. P � 45.5 N, R � 691 N

Problem 3/39

3/40 The device shown is used to test automobile-engine
valve springs. The torque wrench is directly con-
nected to arm OB. The specification for the automo-
tive intake-valve spring is that 370 N of force should
reduce its length from 50 mm (unstressed length) to
42 mm. What is the corresponding reading M on the
torque wrench, and what force F exerted on the
torque-wrench handle is required to produce this
reading? Neglect the small effects of changes in the
angular position of arm OB.

Problem 3/40

F

55°

20°

A

B
O

375 mm

150 mm

β

θ 
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3/43 The hook wrench or pin spanner is used to turn
shafts and collars. If a moment of is re-
quired to turn the 200-mm-diameter collar about its
center O under the action of the applied force P, de-
termine the contact force R on the smooth surface at
A. Engagement of the pin at B may be considered to
occur at the periphery of the collar.

Ans. R � 1047 N

Problem 3/43

3/44 The dolly shown is useful in the handling of large
drums. Determine the force F necessary to hold a
drum in the position shown. You may neglect the
weight of the dolly in comparison with that of the
250-kg drum, whose center of mass is at G. There is
sufficient friction to prevent slipping at the contact
point P.

Problem 3/44

425 mm

900 mm

150 mm

300 mm

25°
P

C

G

F

375 mm
A

P
B

O

120°100mm

80 N � m
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3/41 During an engine test on the ground, a propeller
thrust T � 3000 N is generated on the 1800-kg air-
plane with mass center at G. The main wheels at B
are locked and do not skid; the small tail wheel at A
has no brake. Compute the percent change n in the
normal forces at A and B as compared with their
“engine-off” values.

Ans. nA � �32.6%, nB � 2.28%

Problem 3/41

3/42 A rocker arm with rollers at A and B is shown in
the position when the valve is open and the valve
spring is fully compressed. In this position, the
spring force is 900 N. Determine the force which
the rocker arm exerts on the camshaft C. Also cal-
culate the magnitude of the force supported by the
rocker-arm shaft O.

Problem 3/42

A B

C
O

10°
48 mm 30 mm

7 mm

4 m

1.4 m

12°

T

G

BA
0.8
m
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3/45 In sailing at a constant speed with the wind, the sail-
boat is driven by a 4-kN force against its mainsail and
a 1.6-kN force against its staysail as shown. The total
resistance due to fluid friction through the water is
the force R. Determine the resultant of the lateral
forces perpendicular to motion applied to the hull by
the water.

Ans. M � 9.6 kN � m

Problem 3/45

3/46 Estimate the force F required to lift the rear tires of
the race car off the ground. You may assume that
part of CD of the dolly jack is horizontal. The mass
of the car and the driver combined is 700 kg with
mass center at G. The driver applies the brakes dur-
ing the jacking. State any additional assumptions.

Problem 3/46

3/47 A portion of the shifter mechanism for a manual car
transmission is shown in the figure. For the 8-N
force exerted on the shift knob, determine the corre-
sponding force P exerted by the shift link BC on the
transmission (not shown). Neglect friction in the
ball-and-socket joint at O, in the joint at B, and in
the slip tube near support D. Note that a soft rubber
bushing at D allows the slip tube to self-align with
link BC.

Ans. P � 26.3 N

1200
mm

1625 mm 1370 mm

370 mm 190 mm

F

A B

G C D

E

1.5 m

3 m

R

1.6
kN

4 kN

Wind

Art ic le  3/3 Problems 141

Problem 3/47

3/48 The small sailboat may be tipped at its moorings as
shown to effect repairs below the waterline. One at-
tached rope is passed under the keel and secured to
the dock. The other rope is attached to the mast and
is used to tip the boat. The boat shown has a dis-
placement (which equals the total mass) of 5000 kg
with mass center at G. The metacenter M is the
point on the centerline of the boat through which
the vertical resultant of the buoyant forces passes,
and . Calculate the tension T required to
hold the boat in the position shown.

Problem 3/48

6 
m

M

G

30°

T90°

90°

GM � 0.8 m

188 mm

8 N

5°

15° Slip tube

A

B

O

D

C P
75 mm

25 mm
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Problem 3/51

3/52 To test the deflection of the uniform 100-kg beam
the 50-kg boy exerts a pull of 150 N on the rope
rigged as shown. Compute the force supported by
the pin at the hinge O.

Problem 3/52

3/53 Determine the external reactions at A and F for the
roof truss loaded as shown. The vertical loads repre-
sent the effect of the supported roofing materials,
while the 400-N force represents a wind load.

Ans. Ax � 346 N, Ay � 1100 N, Fy � 1100 N

Problem 3/53

250 N

500 N

x

y

A
G

F

B

C

D

E
250 N

60°

60°

30° 30° 30°
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A
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8003000
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B
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3/49 A torque (moment) of is required to turn
the bolt about its axis. Determine P and the forces
between the smooth hardened jaws of the wrench
and the corners A and B of the hexagonal head. As-
sume that the wrench fits easily on the bolt so that
contact is made at corners A and B only.

Ans. P � 200 N, A � 2870 N, B � 3070 N

Problem 3/49

3/50 Determine the moment M which must be applied to
the shaft in order to hold the homogeneous hemi-
sphere in an arbitrary angular position as measured
by the angle �. The radii of gear A, gear B, and the
hemisphere are rA, rB, and r, respectively. Assume
the friction in all bearings to be negligible.

Problem 3/50

3/51 The car complete with driver has a mass of 815 kg
and without the two airfoils has a 50%–50%
front–rear weight distribution at a certain speed at
which there is no lift on the car. It is estimated that
at this speed each of the airfoils A1 and A2 will gen-
erate 2 kN of downward force L and 250 N of drag
force D on the car. Specify the vertical reactions NA

and NB under the two pairs of wheels at that speed
when the airfoils are added. Assume that the addi-
tion of the airfoils does not affect the drag and zero-
lift conditions of the car body itself and that the
engine has sufficient power for equilibrium at that
speed. The weight of the airfoils may be neglected.

Ans. NA � 5750 N (48.0%), NB � 6240 N (52.0%)

M

A

B

C

D

m
r

�

A
B14 mm

120 mm

P

24 N � m
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3/54 The member OBC and sheave at C together have a
mass of 500 kg, with a combined center of mass at G.
Calculate the magnitude of the force supported by
the pin connection at O when the 3-kN load is ap-
plied. The collar at A can provide support in the hor-
izontal direction only.

Problem 3/54

3/55 It is desired that a person be able to begin closing
the van hatch from the open position shown with a
40-N vertical force P. As a design exercise, deter-
mine the necessary force in each of the two hy-
draulic struts AB. The mass center of the 40-kg
door is 37.5 mm directly below point A. Treat the
problem as two-dimensional.

Ans. F � 803 N

Problem 3/55

C
B

A
G

O
3 kN

0.5 m
0.5 m

4.5 m
1.5 m

30°

1 m

1 m

1 m
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550 mm
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A

A

O

O

B

B

P
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3/56 The man pushes the lawn mower at a steady speed
with a force P which is parallel to the incline. The
mass of the mower with attached grass bag is 50 kg
with mass center at G. If � � 15�, determine the nor-
mal forces NB and NC under each pair of wheels B
and C. Neglect friction. Compare with the normal
forces for the conditions of � � 0 and P � 0.

Problem 3/56

3/57 Determine the tension T in the turnbuckle for the
pulley–cable system in terms of the mass m of the
body which it supports. Neglect the mass of the pul-
leys and cable.

Ans.

Problem 3/57

T

m

T � 27 

mg

θ

900
mm

1000
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215 mmP
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C
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3/60 Certain elements of an in-refrigerator ice-cube
maker are shown in the figure. (A “cube” has the
form of a cylindrical segment!) Once the cube freezes
and a small heater (not shown) forms a thin film of
water between the cube and supporting surface, a
motor rotates the ejector arm OA to remove the
cube. If there are eight cubes and eight arms, deter-
mine the required torque M as a function of �. The
mass of eight cubes is 0.25 kg, and the center-of-
mass distance . Neglect friction, and as-
sume that the resultant of the distributed normal
force acting on the cube passes through point O.

Problem 3/60

M

A

A

O

G
r = 37 mm

r–

8 m
m

r � 0.55r
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3/58 The cargo door for an airplane of circular fuselage
section consists of the uniform quarter-circular seg-
ment AB of mass m. A detent in the hinge at A holds
the door open in the position shown. Determine the
moment exerted by the hinge on the door.

Problem 3/58

3/59 Pulley A delivers a steady torque (moment) of
to a pump through its shaft at C. The ten-

sion in the lower side of the belt is 600 N. The dri-
ving motor B has a mass of 100 kg and rotates
clockwise. As a design consideration, determine the
magnitude R of the force on the supporting pin at O.

Ans. R � 1.167 kN

Problem 3/59

100 N � m

Closed position of B

Horiz. A

30°

B
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30°
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3/4 EQ U I L I B R I U M CO N D I T I O N S

We now extend our principles and methods developed for two-
dimensional equilibrium to the case of three-dimensional equilibrium.
In Art. 3/1 the general conditions for the equilibrium of a body were
stated in Eqs. 3/1, which require that the resultant force and resultant
couple on a body in equilibrium be zero. These two vector equations of
equilibrium and their scalar components may be written as

(3/3)

The first three scalar equations state that there is no resultant force act-
ing on a body in equilibrium in any of the three coordinate directions.
The second three scalar equations express the further equilibrium re-
quirement that there be no resultant moment acting on the body about
any of the coordinate axes or about axes parallel to the coordinate axes.
These six equations are both necessary and sufficient conditions for
complete equilibrium. The reference axes may be chosen arbitrarily as a
matter of convenience, the only restriction being that a right-handed co-
ordinate system should be chosen when vector notation is used.

The six scalar relationships of Eqs. 3/3 are independent conditions
because any of them can be valid without the others. For example, for a
car which accelerates on a straight and level road in the x-direction,
Newton’s second law tells us that the resultant force on the car equals
its mass times its acceleration. Thus ΣFx � 0, but the remaining two
force–equilibrium equations are satisfied because all other acceleration
components are zero. Similarly, if the flywheel of the engine of the accel-
erating car is rotating with increasing angular speed about the x-axis, it
is not in rotational equilibrium about this axis. Thus, for the flywheel
alone, ΣMx � 0 along with ΣFx � 0, but the remaining four equilibrium
equations for the flywheel would be satisfied for its mass-center axes.

In applying the vector form of Eqs. 3/3, we first express each of the
forces in terms of the coordinate unit vectors i, j, and k. For the first
equation, ΣF � 0, the vector sum will be zero only if the coefficients of i,
j, and k in the expression are, respectively, zero. These three sums,
when each is set equal to zero, yield precisely the three scalar equations
of equilibrium, ΣFx � 0, ΣFy � 0, and ΣFz � 0.

For the second equation, ΣM � 0, where the moment sum may be
taken about any convenient point O, we express the moment of each
force as the cross product r F, where r is the position vector from O to
any point on the line of action of the force F. Thus ΣM � Σ(r F) � 0.
When the coefficients of i, j, and k in the resulting moment equation are

�
�
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SECTION B EQUILIBRIUM IN THREE DIMENSIONS

M � 0   or   �
Mx � 0
My � 0
Mz � 0

F � 0   or   �
Fx � 0
Fy � 0
Fz � 0
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set equal to zero, respectively, we obtain the three scalar moment equa-
tions ΣMx � 0, ΣMy � 0, and ΣMz � 0.

Free-Body Diagrams

The summations in Eqs. 3/3 include the effects of all forces on the
body under consideration. We learned in the previous article that the
free-body diagram is the only reliable method for disclosing all forces
and moments which should be included in our equilibrium equations. In
three dimensions the free-body diagram serves the same essential pur-
pose as it does in two dimensions and should always be drawn. We have
our choice either of drawing a pictorial view of the isolated body with all
external forces represented or of drawing the orthogonal projections of
the free-body diagram. Both representations are illustrated in the sam-
ple problems at the end of this article.

The correct representation of forces on the free-body diagram re-
quires a knowledge of the characteristics of contacting surfaces. These
characteristics were described in Fig. 3/1 for two-dimensional problems,
and their extension to three-dimensional problems is represented in Fig.
3/8 for the most common situations of force transmission. The representa-
tions in both Figs. 3/1 and 3/8 will be used in three-dimensional analysis.

The essential purpose of the free-body diagram is to develop a reli-
able picture of the physical action of all forces (and couples if any) acting
on a body. So it is helpful to represent the forces in their correct physi-
cal sense whenever possible. In this way, the free-body diagram becomes
a closer model to the actual physical problem than it would be if the
forces were arbitrarily assigned or always assigned in the same mathe-
matical sense as that of the assigned coordinate axis.

For example, in part 4 of Fig. 3/8, the correct sense of the unknowns
Rx and Ry may be known or perceived to be in the sense opposite to
those of the assigned coordinate axes. Similar conditions apply to the
sense of couple vectors, parts 5 and 6, where their sense by the right-
hand rule may be assigned opposite to that of the respective coordi-
nate direction. By this time, you should recognize that a negative
answer for an unknown force or couple vector merely indicates that its
physical action is in the sense opposite to that assigned on the free-
body diagram. Frequently, of course, the correct physical sense is not
known initially, so that an arbitrary assignment on the free-body dia-
gram become necessary.

Categories of Equilibrium

Application of Eqs. 3/3 falls into four categories which we identify
with the aid of Fig. 3/9. These categories differ in the number and type
(force or moment) of independent equilibrium equations required to
solve the problem.

Category 1, equilibrium of forces all concurrent at point O, re-
quires all three force equations, but no moment equations because the
moment of the forces about any axis through O is zero.

Category 2, equilibrium of forces which are concurrent with a line,
requires all equations except the moment equation about that line,
which is automatically satisfied.
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M O D E L I N G  T H E  A C T I O N  O F  F O R C E S  I N  T H R E E - D I M E N S I O N A L  A N A L Y S I S

Type of Contact and Force Origin Action on Body to Be Isolated

Force must be normal to the
surface and directed toward
the member.

The possibility exists for a 
force F tangent to the surface
(friction force) to act on the
member, as well as a normal
force N.

A lateral force P exerted by the
guide on the wheel can exist, in
addition to the normal force N.

A ball-and-socket joint free to
pivot about the center of the
ball can support a force R with
all three components.

In addition to three components
of force, a fixed connection
can support a couple M
represented by its three
components.

Thrust bearing is capable of
supporting axial force Ry as
well as radial forces Rx and Rz.
Couples Mx and Mz must, in
some cases, be assumed zero
in order to provide statical
determinacy.

1. Member in contact with smooth
surface, or ball-supported member

2. Member in contact
with rough
surface

3. Roller or wheel support
with lateral
constraint

4. Ball-and-socket joint

5. Fixed connection (embedded or welded)

6. Thrust-bearing support
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Category 3, equilibrium of parallel forces, requires only one force
equation, the one in the direction of the forces (x-direction as shown),
and two moment equations about the axes (y and z) which are normal to
the direction of the forces.

Category 4, equilibrium of a general system of forces, requires all
three force equations and all three moment equations.

The observations contained in these statements are generally quite
evident when a given problem is being solved.

Constraints and Statical Determinacy

The six scalar relations of Eqs. 3/3, although necessary and suffi-
cient conditions to establish equilibrium, do not necessarily provide all
of the information required to calculate the unknown forces acting in a
three-dimensional equilibrium situation. Again, as we found with two
dimensions, the question of adequacy of information is decided by the
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CATEGORIES OF EQUILIBRIUM IN THREE DIMENSIONS

Force System Free-Body Diagram Independent Equations

ΣFx = 0

ΣFy = 0

ΣMx = 0

ΣMy = 0

ΣFz = 0 ΣMz = 0

ΣFx = 0 ΣMy = 0

ΣMz = 0

ΣFx = 0

ΣFy = 0

ΣMy = 0

ΣMz = 0

ΣFz = 0

ΣFx = 0

ΣFy = 0

ΣFz = 0

1. Concurrent
    at a point

2. Concurrent
    with a line

3. Parallel

4. General

O

F1 F2

F3

F4
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Figure 3/9
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characteristics of the constraints provided by the supports. An analyti-
cal criterion for determining the adequacy of constraints is available,
but it is beyond the scope of this treatment.* In Fig. 3/10, however, we
cite four examples of constraint conditions to alert the reader to the
problem.

Part a of Fig. 3/10 shows a rigid body whose corner point A is com-
pletely fixed by the links 1, 2, and 3. Links 4, 5, and 6 prevent rotations
about the axes of links 1, 2, and 3, respectively, so that the body is com-
pletely fixed and the constraints are said to be adequate. Part b of the fig-
ure shows the same number of constraints, but we see that they provide
no resistance to a moment which might be applied about axis AE. Here
the body is incompletely fixed and only partially constrained.

Similarly, in Fig. 3/10c the constraints provide no resistance to an
unbalanced force in the y-direction, so here also is a case of incomplete
fixity with partial constraints. In Fig. 3/10d, if a seventh constraining
link were imposed on a system of six constraints placed properly for
complete fixity, more supports would be provided than would be neces-
sary to establish the equilibrium position, and link 7 would be redun-
dant. The body would then be statically indeterminate with such a
seventh link in place. With only a few exceptions, the supporting con-
straints for rigid bodies in equilibrium in this book are adequate, and
the bodies are statically determinate.
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Figure 3/10

*See the first author’s Statics, 2nd Edition SI Version, 1975, Art. 16.
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Sample Problem 3/5

The uniform 7-m steel shaft has a mass of 200 kg and is supported by a ball-
and-socket joint at A in the horizontal floor. The ball end B rests against the
smooth vertical walls as shown. Compute the forces exerted by the walls and the
floor on the ends of the shaft.

Solution. The free-body diagram of the shaft is first drawn where the contact
forces acting on the shaft at B are shown normal to the wall surfaces. In addition
to the weight W � mg � 200(9.81) � 1962 N, the force exerted by the floor on
the ball joint at A is represented by its x-, y-, and z-components. These compo-
nents are shown in their correct physical sense, as should be evident from the re-
quirement that A be held in place. The vertical position of B is found from

, h � 3 m. Right-handed coordinate axes are assigned as shown.

Vector solution. We will use A as a moment center to eliminate reference to
the forces at A. The position vectors needed to compute the moments about A are

where the mass center G is located halfway between A and B.
The vector moment equation gives

Equating the coefficients of i, j, and k to zero and solving give

Ans.

The forces at A are easily determined by

and

Finally

Ans.

Scalar solution. Evaluating the scalar moment equations about axes through
A parallel, respectively, to the x- and y-axes, gives

The force equations give, simply,

 Az � 1962 N Az � 1962 � 0[ΣFz � 0]

 Ay � 1962 N �Ay � 1962 � 0[ΣFy � 0]

 Ax � 654 N �Ax � 654 � 0[ΣFx � 0]

Bx � 654 N �1962(1) � 3Bx � 0[ΣMAy
 � 0]

By � 1962 N 1962(3) � 3By � 0[ΣMAx
 � 0]

 � �(654)2 � (1962)2 � (1962)2 � 2850 N

 A � �Ax 

2 � Ay 

2 � Az 

2

Ax � 654 N   Ay � 1962 N   Az � 1962 N

(654 � Ax)i � (1962 � Ay)j � (�1962 � Az)k � 0[ΣF � 0]

Bx � 654 N   and   By � 1962 N

(�3By � 5890)i � (3Bx � 1962)j � (�2By � 6Bx)k � 0

� i
�2
Bx

j
�6
By

k
3
0
� � � i

�1
0

j
�3

0

k     
1.5   

�1962
� � 0

(�2i � 6j � 3k) � (Bxi � By j) � (�i � 3j � 1.5k) � (�1962k) � 0

rAB � (Bx � By) � rAG � W � 0[ΣMA � 0]

rAG � �1i � 3j � 1.5k m   and   rAB � �2i � 6j � 3k m

7 � �22 � 62 � h2
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7 m

6 m 2 m

B

A

6 m

3.5 m

3.5 m

2 m
A

B

G

y

h

x

z

W = mg

Ax

By
Bx

Ay

Az

�

�

�

Helpful Hints

� We could, of course, assign all of the
unknown components of force in the
positive mathematical sense, in which
case Ax and Ay would turn out to be
negative upon computation. The free-
body diagram describes the physical
situation, so it is generally preferable
to show the forces in their correct
physical senses wherever possible.

� Note that the third equation �2By �

6Bx � 0 merely checks the results of
the first two equations. This result
could be anticipated from the fact
that an equilibrium system of forces
concurrent with a line requires only
two moment equations (Category 2
under Categories of Equilibrium).

� We observe that a moment sum
about an axis through A parallel to
the z-axis merely gives us 6Bx �

2By � 0, which serves only as a
check as noted previously. Alterna-
tively we could have first obtained
Az from and then taken 
our moment equations about axes
through B to obtain A x and Ay.

ΣFz � 0
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Sample Problem 3/6

A 200-N force is applied to the handle of the hoist in the direction shown.
The bearing A supports the thrust (force in the direction of the shaft axis), while
bearing B supports only radial load (load normal to the shaft axis). Determine
the mass m which can be supported and the total radial force exerted on the
shaft by each bearing. Assume neither bearing to be capable of supporting a mo-
ment about a line normal to the shaft axis.

Solution. The system is clearly three-dimensional with no lines or planes of
symmetry, and therefore the problem must be analyzed as a general space sys-
tem of forces. A scalar solution is used here to illustrate this approach, although
a solution using vector notation would also be satisfactory. The free-body dia-
gram of the shaft, lever, and drum considered a single body could be shown by a
space view if desired, but is represented here by its three orthogonal projections.

The 200-N force is resolved into its three components, and each of the three
views shows two of these components. The correct directions of Ax and Bx may be
seen by inspection by observing that the line of action of the resultant of the two
70.7-N forces passes between A and B. The correct sense of the forces Ay and By

cannot be determined until the magnitudes of the moments are obtained, so they
are arbitrarily assigned. The x-y projection of the bearing forces is shown in
terms of the sums of the unknown x- and y-components. The addition of Az and
the weight W � mg completes the free-body diagrams. It should be noted that
the three views represent three two-dimensional problems related by the corre-
sponding components of the forces.

From the x-y projection

Ans.

From the x-z projection

The y-z view gives

The total radial forces on the bearings become

Ans.

Ans. B � �(35.4)2 � (520)2 � 521 N [B � �Bx 

2 � By 

2]

 Ar � �(35.4)2 � (86.8)2 � 93.5 N [Ar � �Ax 

2 � Ay 

2]

Az � 70.7 N[ΣFz � 0]

Ay �86.8 NAy � 520 � 173.2 � (44.1)(9.81) � 0[ΣFy � 0]

By � 520 N150By � 175(173.2) � 250(44.1)(9.81) � 0[ΣMA � 0]

Ax � 35.4 NAx � 35.4 � 70.7 � 0[ΣFx � 0]

Bx � 35.4 N150Bx � 175(70.7) � 250(70.7) � 0[ΣMA �0]

100(9.81m) � 250(173.2) � 0   m� 44.1 kg[ΣMO � 0]
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Thrust
bearing

Radial
bearing

100 45°

60°

200 N75150
100

100 250

x

z

y

A

B

m

Dimensions in millimeters

70.7 N

173.2 N 173.2 N

70.7 N

70.7 N

70.7 N

Az

Az

Ax + Bx

Ay + By

Bx

z

x

Ax

By Ay

z x

yy

mg = 9.81m mg = 9.81m

O

Helpful Hints

� If the standard three views of ortho-
graphic projection are not entirely
familiar, then review and practice
them. Visualize the three views as
the images of the body projected
onto the front, top, and end surfaces
of a clear plastic box placed over and
aligned with the body.

� We could have started with the x-z
projection rather than with the x-y
projection.

� The y-z view could have followed im-
mediately after the x-y view since
the determination of Ay and By may
be made after m is found.

� Without the assumption of zero mo-
ment supported by each bearing
about a line normal to the shaft axis,
the problem would be statically in-
determinate.

�

�

�

�
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Sample Problem 3/7

The welded tubular frame is secured to the horizontal x-y plane by a ball-
and-socket joint at A and receives support from the loose-fitting ring at B. Under
the action of the 2-kN load, rotation about a line from A to B is prevented by the
cable CD, and the frame is stable in the position shown. Neglect the weight of
the frame compared with the applied load and determine the tension T in the
cable, the reaction at the ring, and the reaction components at A.

Solution. The system is clearly three-dimensional with no lines or planes of
symmetry, and therefore the problem must be analyzed as a general space sys-
tem of forces. The free-body diagram is drawn, where the ring reaction is shown
in terms of its two components. All unknowns except T may be eliminated by a
moment sum about the line AB. The direction of AB is specified by the unit

vector The moment of T about AB

is the component in the direction of AB of the vector moment about the point A
and equals Similarly the moment of the applied load F about AB is

With the vector expressions for T, F, r1, and r2 are

The moment equation now becomes

Completion of the vector operations gives

Ans.

and the components of T become

We may find the remaining unknowns by moment and force summations as
follows:

Ans.

Ans.

Ans.

Ans.

Ans. Az � 4.06 � 2.50 � 0    Az � �1.556 kN[ΣFz � 0]

 Ay � 2 � 1.042 � 0    Ay � �3.04 kN[ΣFy � 0]

 Ax � 0.417 � 0.833 � 0    Ax � �1.250 kN[ΣFx � 0]

 4.5Bz � 2(6) � 1.042(6) � 0    Bz � 4.06 kN[ΣMx � 0]

 2(2.5) � 4.5Bx � 1.042(3) � 0    Bx � 0.417 kN[ΣMz � 0]

Tx � 0.833 kN   Ty � 1.042 kN   Tz � �2.50 kN

�
48T

�46.2
 � 20 � 0   T � 2.83 kN

� (2.5i � 6k) � (2j) �
1
5(3j � 4k) � 0

(�i � 2.5j) � T
�46.2

 (2i � 2.5j � 6k) �
1
5(3j � 4k)[ΣMAB � 0]

r1 � �i � 2.5j m   r2 � 2.5i � 6k m

T � T
�46.2

 (2i � 2.5j � 6k)   F � 2j kN

CD � �46.2 m,r2 � F � n.
r1 � T � n.

n � 1
�62 � 4.52

 (4.5j � 6k) � 15(3j � 4k).
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�

Helpful Hints

� The advantage of using vector nota-
tion in this problem is the freedom
to take moments directly about any
axis. In this problem this freedom
permits the choice of an axis that
eliminates five of the unknowns.

� Recall that the vector r in the expres-
sion r F for the moment of a force
is a vector from the moment center to
any point on the line of action of the
force. Instead of r1, an equally simple
choice would be the vector .

� The negative signs associated with
the A-components indicate that they
are in the opposite direction to those
shown on the free-body diagram.

AC
l

�
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PROBLEMS

Introductory Problems

3/61 Determine the tensions in cables AB, AC, and AD. 
Ans. TAB � 569 N, TAC � 376 N, TAD � 467 N

Problem 3/61

3/62 A uniform steel plate 360 mm square with a mass of
15 kg is suspended in the horizontal plane by the
three vertical wires as shown. Calculate the tension
in each wire.

Problem 3/62

120
mm

240
mm

180
mm

180
mm

A

B

C

120 kg

2.5
m

A

B

C

D

1.25 m

2 m
1.5 m

0.5 m
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3/63 The horizontal steel shaft has a mass of 480 kg and
is suspended by a vertical cable from A and by a sec-
ond cable BC which lies in a vertical transverse
plane and loops underneath the shaft. Calculate the
tensions T1 and T2 in the cables.

Ans. T1 � 1177 N, T2 � 1974 N

Problem 3/63

3/64 Two steel I-beams, each with a mass of 100 kg, are
welded together at right angles and lifted by vertical
cables so that the beams remain in a horizontal
plane. Compute the tension in each of the cables A,
B, and C.

Problem 3/64

B

A

C

90°

2.4 m

0.9 m

1.5 m

T2

T2

T1

1.5 m

1
m

3 m

4 m

3 m

1.5 m

A

B

C

x

z

y
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3/67 The 600-kg industrial door is a uniform rectangular
panel which rolls along the fixed rail D on its
hanger-mounted wheels A and B. The door is main-
tained in a vertical plane by the floor-mounted guide
roller C, which bears against the bottom edge. For
the position shown compute the horizontal side
thrust on each of the wheels A and B, which must be
accounted for in the design of the brackets.

Ans. Ax � 235 N, Bx � 58.9 N

Problem 3/67

3/68 A uniform steel ring 600 mm in diameter has a mass
of 50 kg and is lifted by the three cables, each 500
mm long, attached at points A, B, and C as shown.
Compute the tension in each cable.

Problem 3/68

3/69 A three-legged stool is subjected to the load L as
shown. determine the vertical force reaction under
each leg. Neglect the weight of the stool.

Ans. NA � 0.533L, NB � NC � 0.233L

300 mm

500 mm

90°
120°

A 
B 

C 

150 mm

Detail of
Door Hanger

D

A

C

z

y

x

0.9
m

0.9
m3 m

3 m

1.5 m

B
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3/65 The chain-supported portion of a light fixture is in
the shape of part of a spherical shell. If the mass of
the glass unit is m, determine the tension T in each
of the three chains.

Ans. T � 0.373mg

Problem 3/65

3/66 An overhead view of a car is shown in the figure.
Two different locations C and D are considered for a
single jack. In each case, the entire right side of the
car is lifted just off the ground. Determine the nor-
mal reaction forces at A and B and the vertical jack-
ing force required for the case of each jacking
location. Consider the 1600-kg car to be rigid. The
mass center G is on the midline of the car.

Problem 3/66

1575 mm

BA

G

C D
1120
mm

1400
mm 280

mm

m

r

4r

3r
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Problem 3/69

3/70 Determine the compression in each of the three legs
of the tripod subjected to the vertical 2-kN force. The
weight of the legs is negligible compared with the
applied load. Solve by using the force–equilibrium
equation ΣF � 0.

Problem 3/70

z

y

x

F = 2 kN

D

A

B

C
O

500
mm

230
mm

440
mm

1100
mm

380mm

400mm

240mm

A

B

120° 120°

120°

325

Dimensions in millimeters

L

7575100

C
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Representative Problems

3/71 One of the vertical walls supporting end B of the
200-kg uniform shaft of Sample Problem 3/5 is
turned through a 30� angle as shown here. End A is
still supported by the ball-and-socket connection in
the horizontal x-y plane. Calculate the magnitudes of
the forces P and R exerted on the ball end B of the
shaft by the vertical walls C and D, respectively.

Ans. P � 1584 N, R � 755 N

Problem 3/71

3/72 The 9-m steel boom has a mass of 600 kg with center
of mass at midlength. It is supported by a ball-and-
socket joint at A and the two cables under tensions
T1 and T2. The cable which supports the 2000-kg
load leads through a sheave (pulley) at B and is se-
cured to the vertical x-y plane at F. Calculate the
magnitude of the tension T1. (Hint: Write a moment
equation which eliminates all unknowns except T1.)

Problem 3/72

C

B

A

F

D
E

x

y

2 m

5 m

4 m

6 m

6 m

A
__

F
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 = 3 m
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2 m

T2T1

z

x y

z

B
D

C

A

30°

6 m

7 m

2 m
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3/75 The mass center of the 30-kg door is in the center of
the panel. If the weight of the door is supported en-
tirely by the lower hinge A, calculate the magnitude
of the total force supported by the hinge at B.

Ans. B � 190.2 N

Problem 3/75

3/76 As part of a check on its design, a lower A-arm (part
of an automobile suspension) is supported by bear-
ings at A and B and subjected to the pair of 900-N
forces at C and D. The suspension spring, not shown
for clarity, exerts a force FS at E as shown, where E
is in plane ABCD. Determine the magnitude FS of
the spring force and the magnitudes FA and FB of
the bearing forces at A and B which are perpendicu-
lar to the hinge axis AB.

Problem 3/76

420 mm

900 N

900 N

15°Fs

170 mm

190 mm

180
mm

120
mm

A

C

E

B

D

1500 mm

80 mm 360 mm

30 kg

1640 mm

A

B
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3/73 The smooth homogeneous sphere rests in the 120�

groove and bears against the end plate, which is nor-
mal to the direction of the groove. Determine the
angle �, measured from the horizontal, for which the
reaction on each side of the groove equals the force
supported by the end plate.

Ans. � � 30�

Problem 3/73

3/74 The small tripod-like stepladder is useful for sup-
porting one end of a walking board. If F denotes the
magnitude of the downward load from such a board
(not shown), determine the reaction at each of the
three feet A, B, and C. Neglect friction.

Problem 3/74

A

B

C

E

G

D

F

65°

425 mm

730 mm

365 mm

460 mm

460 mm

480 mm65°

60°

60°

θ
Horizontal

End view
of V-groove
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3/77 The rigid unit of post, bracket, and motor has a mass
of 30 kg with its mass center at G located 300 mm
from the vertical centerline of the post. The post is
welded to the fixed base at A. The motor, which dri-
ves a machine through a flexible shaft, turns in the
direction indicated and delivers a torque of 200 N � m.
In addition, a 200-N force is applied to the bracket as
shown. Determine the vector expressions for the
total force R and moment M applied to the post at A
by the supporting base. (Caution: Be careful to assign
the torque (couple) which acts on the motor shaft in
its correct sense consistent with Newton’s third law.)

Ans. R � 200i � 294k N, M � �61.7j � 15k N � m

Problem 3/77

3/78 Determine the magnitudes of the force R and couple
M exerted by the nut and bolt on the loaded bracket
at O to maintain equilibrium.

Problem 3/78

200 mm

30°

50°

1.6 kN

200 mm

150 mm

O

z

2.4 kN

y
x

z

A

G

y
x

250 mm

75
mm

200 N

300 mm
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3/79 The 220-kg V-8 engine is supported on an engine
stand and rotated 90� from its upright position so
that its center of gravity G is in the position shown.
Determine the vertical reaction at each roller of the
stand. Neglect the weight of the stand itself.

Ans. NA � 1270 N, NB � 156.6 N, NC � 732 N

Problem 3/79

3/80 During a test, the left engine of the twin-engine air-
plane is revved up and a 2-kN thrust is generated.
The main wheels at B and C are braked in order to
prevent motion. Determine the change (compared
with the nominal values with both engines off) in
the normal reaction forces at A, B, and C.

Problem 3/80

T = 2 kN

C

A
B

4 m

2.4 m
2.4 m

2 m

C

A

B

375
mm

375
mm

275
mm

500 mm

850 mm

G
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Problem 3/82

3/83 Gear C drives the V-belt pulley D at a constant
speed. For the belt tensions shown calculate the
gear-tooth force P and the magnitudes of the total
forces supported by the bearings at A and B.

Ans. P � 70.9 N, A � 83.3 N, B � 208 N

Problem 3/83

A

C
D

P

150 mm
100
mm

100
mm

120
mm

160
mm

B

200 N

100 N

20°

Dimensions in millimeters

550

350

550

300

300

100

A

x

y

z

B

D

C
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3/81 The 25-kg rectangular access door is held in the 90�

open position by the single prop CD. Determine the
force F in the prop and the magnitude of the force
normal to the hinge axis AB in each of the small
hinges A and B.

Ans. F � 140.5 N, An � 80.6 N, Bn � 95.4 N

Problem 3/81

3/82 One of the three landing pads for a proposed Mars
lander is shown in the figure. As part of a design
check on the distribution of force in the landing
struts, compute the force in each of the struts AC,
BC, and CD when the lander is resting on a horizon-
tal surface on Mars. The arrangement is symmetri-
cal with respect to the x-z plane. The mass of the
lander is 600 kg. (Assume equal support by the pads
and consult Table D/2 in Appendix D as needed.)

A

B

D

C

1000 mm

600 mm

1200 mm

300 mm
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3/84 The spring of modulus k � 900 N/m is stretched a
distance � � 60 mm when the mechanism is in the
position shown. Calculate the force Pmin required to
initiate rotation about the hinge axis BC, and deter-
mine the corresponding magnitudes of the bearing
forces which are perpendicular to BC. What is the
normal reaction force at D if P � Pmin/2?

Problem 3/84

3/85 A force P of 200 N on the handle of the cable reel is
required to wind up the underground cable as it
comes from the manhole. The drum diameter is 1000
mm. For the horizontal position of the crank handle
shown, calculate the magnitudes of the bearing
forces at A and B. Neglect the weight of the drum.

Ans. A � 116.7 N, B � 313 N

Problem 3/85

45 mm

45 mm

40 mm

k = 900 N/m

P
A

B

C

D

55
mm

55
mm

90
mm

135
mm

135
mm

165
mm

1600
150 

600 

300 
1200

A

B

P

x

y

z

45°

Dimensions in millimeters
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3/86 The shaft, lever, and handle are welded together and
constitute a single rigid body. Their combined mass
is 28 kg with mass center at G. The assembly is
mounted in bearings A and B, and rotation is pre-
vented by link CD. Determine the forces exerted on
the shaft by bearings A and B while the 
couple is applied to the handle as shown. Would
these forces change if the couple were applied to the
shaft AB rather than to the handle?

Problem 3/86

3/87 Each of the two legs of the welded frame has a mass
of 50 kg. A wire from C to D prevents the frame from
rotating out of the horizontal plane about an axis
through its bearing at B and its ball-and-socket joint
at A. Calculate the tension T in the wire and the
magnitude of the total force supported by the con-
nection at A.

Ans. T � 1201 N, A � 601 N

Problem 3/87

z

D

C
E

B

A

y

x

2 m 2 m2 m

1 m 2 m

30-N � m

30 N·m

y

x

z

B

A

C

D

450 mm

100 mm

G

200mm 200mm

220
mm

300mm

600
mm

300mm
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3/90 A homogeneous door of mass m, height h, and width
w is leaned against a wall for painting. Small wooden
strips are placed beneath corners A, B, and C. There
is negligible friction at C, but friction at A and B is
sufficient to prevent slipping. Determine the y- and
z-components of the force reactions at A and B and
the force normal to the wall at C.

Problem 3/90

3/91 The upper ends of the vertical coil springs in the
stock racecar can be moved up and down by means
of a screw mechanism not shown. This adjustment
permits a change in the downward force at each
wheel as an optimum handling setup is sought. Ini-
tially, scales indicate the normal forces to be 3600 N,
3600 N, 4500 N, and 4500 N at A, B, C, and D, re-
spectively. If the top of the right rear spring at A is
lowered so that the scale at A reads an additional
450 N, determine the corresponding changes in the
normal forces at B, C, and D. Neglect the effects of
the small attitude changes (pitch and roll angles)
caused by the spring adjustment. The front wheels
are the same distance apart as the rear wheels.

Ans. �NB � �450 N, �NC � 450 N
�ND � � 450 N

B

A

C
D

w

m

h

y

z

x
35°

15°
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3/88 Consider the rudder assembly of a radio-controlled
model airplane. For the 15� position shown in the
figure, the net pressure acting on the left side of the
rectangular rudder area is p � 4(10�5) N/mm2. Deter-
mine the required force P in the control rod DE and
the horizontal components of the reactions at hinges A
and B which are parallel to the rudder surface. As-
sume the aerodynamic pressure to be uniform.

Problem 3/88

3/89 The rigid pole and cross-arms of Prob. 2/105 are
shown again here. Determine the tensions TAE and
TGF in the two supporting cables resulting from the
1.2-kN tension in cable CD. Assume the absence of
any resisting moments on the base of the pole at O
about the x- and y-axes, but not about the z-axis.

Ans. TAE � 4.30 kN, TGF � 3.47 kN

Problem 3/89

T = 1.2 kN

z′

y′

y

x′

x

z

B

C

G

A

E

D

F
1 m

2 m

3 m

1.5 m

1.5 m

1.5 m

1 m

3 m

O

15°

Dimensions in
millimeters

22

10 15°

32 16

B

A
C

D

E
P16

42

12
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Problem 3/91

3/92 A uniform bar of length b and mass m is suspended
at its ends by two wires, each of length b, from
points A and B in the horizontal plane a distance b
apart. A couple M is applied to the bar causing it to
rotate about a vertical axis to the equilibrium posi-
tion shown. Derive an expression for the height h
which it rises from its original equilibrium position
where it hangs freely with no applied moment. What
value of M is required to raise the bar the maximum
amount b?

Problem 3/92

3/93 The boom AB lies in the vertical y-z plane and is sup-
ported by a ball-and-socket joint at B and by the two
cables at A. Calculate the tension in each cable re-
sulting from the 20-kN force acting in the horizontal

b

b

b

A

B

b
M

Simplified spring detail

A

B

C

D
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plane and applied at the midpoint M of the boom.
Neglect the weight of the boom.

Ans. T1 � 33.0 kN, T2 � 22.8 kN

Problem 3/93

3/94 A rectangular sign over a store has a mass of 100 kg,
with the center of mass in the center of the rectan-
gle. The support against the wall at point C may be
treated as a ball-and-socket joint. At corner D sup-
port is provided in the y-direction only. Calculate the
tensions T1 and T2 in the supporting wires, the total
force supported at C, and the lateral force R sup-
ported at D.

Problem 3/94

4 m

1 m

2.5 m

1.5 m

1.5 m

2.5 m

1 m

x

D

B

A

T1 T2

C
y

z

xC

D

T1

T2

B

M

A

y

z

20 kN

10 m

3 m

2 m

2 m

4 m

4 m

20°
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3/96 The vertical plane containing the utility cable turns
30� at the vertical pole OC. The tensions T1 and T2

are both 950 N. In order to prevent long-term lean-
ing of the pole, guy wires AD and BE are utilized. If
the two guy wires are adjusted so as to carry equal
tensions T which together reduce the moment at O
to zero, determine the net horizontal reaction at O.
Determine the required value of T. Neglect the
weight of the pole.

Ans. O � 144.9 N, T � 471 N

Problem 3/96

10°

30°

15°

10°

T2 = 950 N T1 = 950 NB

C

A

D

O

E

OA  = 

y

x

z

 

9 m

OB  = 11 m

OC  = 13 m

OD  = 8 m

OE  = 10 m
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3/95 The uniform rectangular panel ABCD has a mass of
40 kg and is hinged at its corners A and B to the
fixed vertical surface. A wire from E to D keeps
edges BC and AD horizontal. Hinge A can support
thrust along the hinge axis AB, whereas hinge B
supports force normal to the hinge axis only. Find
the tension T in the wire and the magnitude B of the
force supported by hinge B.

Ans. T � 277 N, B � 169.9 N

Problem 3/95

2400 mm

1200 mm

30°

A

B

C

D

T

E

� �
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3/5 CH A P T E R RE V I E W

In Chapter 3 we have applied our knowledge of the properties of
forces, moments, and couples studied in Chapter 2 to solve problems in-
volving rigid bodies in equilibrium. Complete equilibrium of a body re-
quires that the vector resultant of all forces acting on it be zero (ΣF � 0)
and the vector resultant of all moments on the body about a point (or
axis) also be zero (ΣM � 0). We are guided in all of our solutions by
these two requirements, which are easily comprehended physically.

Frequently, it is not the theory but its application which presents
difficulty. The crucial steps in applying our principles of equilibrium
should be quite familiar by now. They are:

1. Make an unequivocal decision as to which system (a body or collec-
tion of bodies) in equilibrium is to be analyzed.

2. Isolate the system in question from all contacting bodies by drawing
its free-body diagram showing all forces and couples acting on the
isolated system from external sources.

3. Observe the principle of action and reaction (Newton’s third law)
when assigning the sense of each force.

4. Label all forces and couples, known and unknown.

5. Choose and label reference axes, always choosing a right-handed set
when vector notation is used (which is usually the case for three-
dimensional analysis).

6. Check the adequacy of the constraints (supports) and match the
number of unknowns with the number of available independent
equations of equilibrium.

When solving an equilibrium problem, we should first check to see
that the body is statically determinate. If there are more supports than
are necessary to hold the body in place, the body is statically indetermi-
nate, and the equations of equilibrium by themselves will not enable us
to solve for all of the external reactions. In applying the equations of
equilibrium, we choose scalar algebra, vector algebra, or graphical
analysis according to both preference and experience; vector algebra is
particularly useful for many three-dimensional problems.

The algebra of a solution can be simplified by the choice of a mo-
ment axis which eliminates as many unknowns as possible or by the
choice of a direction for a force summation which avoids reference to
certain unknowns. A few moments of thought to take advantage of
these simplifications can save appreciable time and effort.

The principles and methods covered in Chapter 2 and 3 constitute
the most basic part of statics. They lay the foundation for what follows
not only in statics but in dynamics as well.
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3/100 The tool shown is used for straightening twisted
members as wooden framing is completed. If the
force P � 150 N is applied to the handle as shown,
determine the normal forces applied to the in-
stalled stud at points A and B. Ignore friction.

Problem 3/100

3/101 The device shown in the figure is useful for lifting
drywall panels into position prior to fastening to
the stud wall. Estimate the magnitude P of the
force required to lift the 25-kg panel. State any
assumptions.

Ans. P � 351 N

Problem 3/101

3/102 The designers of an aircraft landing-gear system
wish to cause the forces in both struts AB and CD
to act along their respective lengths. What angle �
should they specify for strut AB? The weights of
all members are small compared with the forces
which act on the system shown. Treat as two-
dimensional.

36 mm

5°

25 kg

60 mm90 mm

A B

P

C

B

A

P

45 mm

85
mm

360 mm
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REVIEW PROBLEMS

3/97 Calculate the magnitude of the force supported by
the pin at B for the bell crank loaded and supported
as shown.

Ans. B � 240 N

Problem 3/97

3/98 A 50-kg acrobat pedals her unicycle across the taut
but slightly elastic cable. If the deflection at the cen-
ter of the 18-m span is 75 mm, determine the ten-
sion in the cable. Neglect the effects of the weights
of the cable and unicycle.

Problem 3/98

3/99 The uniform 5-m bar with a mass of 100 kg is hinged
at O and prevented from rotating in the vertical
plane beyond the 30� position by the fixed roller at A.
Calculate the magnitude of the total force supported
by the pin at O.

Ans. O � 1769 N

Problem 3/99

O

A

30°

5 m
1 m

0.5 m

75 mm

9 m 9 m

125 mm

50 mm

50 mm

B 

A 

120 N

20 N.m
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Problem 3/102

3/103 A freeway sign measuring 4 m by 2 m is supported
by the single mast as shown. The sign, supporting
framework, and mast together have a mass of 300
kg, with center of mass 3.3 m away from the vertical
centerline of the mast. When the sign is subjected to
the direct blast of a 125-km/h wind, an average
pressure difference of 700 Pa is developed between
the front and back sides of the sign, with the resul-
tant of the wind-pressure forces acting at the center
of the sign. Determine the magnitudes of the force
and moment reactions at the base of the mast. Such
results would be instrumental in the design of the
base.

Ans. R � 6330 N, M � 38.1 kN � m

Problem 3/103

4 m

4.7 m

1.3 m

2 m

z

x

�

560 mm

A

C

B

D

320 mm

35°

180
mm
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3/104 If the weight of the boom is negligible compared
with the applied 30-kN load, determine the cable
tensions T1 and T2 and the force acting at the ball
joint at A.

Problem 3/104

3/105 Magnetic tape under a tension of 10 N at D passes
around the guide pulleys and through the erasing
head at C at constant speed. As a result of a small
amount of friction in the bearings of the pulleys,
the tape at E is under a tension of 11 N. Determine
the tension T in the supporting spring at B. The
plate lies in a horizontal plane and is mounted on a
precision needle bearing at A.

Ans. T � 10.62 N

Problem 3/105

100 mm
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B

C
E

D

100
mm

50
mm
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100 mm

All pulleys
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4 m
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3/107 Determine the tension T required to hold the rec-
tangular solid in the position shown. The 125-kg
rectangular solid is homogeneous. Friction at D is
negligible.

Ans. T � 1053 N

Problem 3/107

3/108 A vertical force P on the foot pedal of the bell crank
is required to produce a tension T of 400 N in the
vertical control rod. Determine the corresponding
bearing reactions at A and B.

Problem 3/108

30°
100
mm

100
mm

60 mm

120 mm

200 mm

T = 400 N

B

x

z
y

A

P

A

B

y

xz
T

D

C

0.3 m

0.4 m

0.4 m

0.125 m

0.5 m
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3/106 The curved arm BC and attached cables AB and AC
support a power line which lies in the vertical y-z
plane. The tangents to the power line at the insula-
tor below A make 15� angles with the horizontal 
y-axis. If the tension in the power line at the insula-
tor is 1.3 kN, calculate the total force supported by
the bolt at D on the pole bracket. The weight of the
arm BC can be neglected compared with the other
forces, and it can be assumed that the bolt at E
supports horizontal force only.

Problem 3/106

z

x

y

B
D, E

Detail of arm attachment

C

A

45°

1.2 m
1.2 m

45°

B

600 mm

160 mm

160 mm
D

E
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3/109 The wind blowing normal to the plane of the rec-
tangular sign exerts a uniform pressure of 175 N/m2

as indicated in the figure. Determine the changes in
the forces exerted at A and B by each support.
There are two symmetrically placed I-beam up-
rights, and the width of the sign is 3 m.

Ans. �A � 1451 N down, �B � 1451 N up

Problem 3/109

3/110 Each of the three uniform 1200-mm bars has a
mass of 20 kg. The bars are welded together into
the configuration shown and suspended by three
vertical wires. Bars AB and BC lie in the horizontal
x-y plane, and the third bar lies in a plane parallel
to the x-z plane. Compute the tension in each wire.

Problem 3/110

1200 mm 600 mm

x
y

z

A

B

C
600 mm

1200 mm
30°

550 mm

BA

1.1 m

1.6 m
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3/111 A wheel of mass m and radius r with its mass cen-
ter G at the geometric center rests in a small de-
pression of width b. Determine the minimum
couple M applied to the wheel at the location
shown in order to roll the wheel out of the depres-
sion. Assume no slipping occurs. What is the influ-
ence of r0, r, and �?

Ans. M = 

Problem 3/111

3/112 The 400-kg boom with center of mass at G is held
in the position shown by a ball-and-socket joint at
O and the two cables AB and AC. Determine the
two cable tensions and the x-, y-, and z-components
of the force reaction at O.

Problem 3/112

x

y

z
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G
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A
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C
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3/115 The L-shaped bar is supported by a ball-and-socket
joint at O [case (a)] and the two cables as shown.
Explain why this configuration is improperly con-
strained. (b) The ball-and-socket joint is now re-
placed by the universal joint which can support, in
addition to three force reactions, a moment about
the y-axis but no moments about the x- and z-axes.
Plot the two cable tensions, the magnitude of the
force reaction at O, and the moment reaction at O
as functions of the position x of the 50-kg cylinder
over the range 0.15 � x � 1.35 m. Explain any un-
usual characteristics of these plots. Neglect the
weight of the bar throughout.

Ans. TAD � 1019 N, TBC � 628 N 
O � 1488 N, all constant

Problem 3/115

z

x
yx

O

O

C

D

A

B
E

2.1 m 1.5 m

0.3
m

0.6 m

50 kg

1.2 m

(a)

(b)

1.8 m

MOy
 � �490x � 368 N � m
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3/113 The stand is used for storing and dispensing cable.
The combined mass of the stand, reel, and cable is
150 kg with center of mass at G. Determine the nor-
mal forces at all four feet (A, B, C, and D) if (a) the
cable comes off at the top of the reel and (b) the cable
comes off at the bottom of the reel. Note that the
cable departs the reel at its horizontal midpoint in
both cases. The effective radius of the reel is 150 mm.

Ans. (a) NA � ND � 214 N, NB � NC � 492 N
(b) NA � ND � 271 N, NB � NC � 436 N

Problem 3/113

3/114 The drum and shaft are welded together and have
a mass of 50 kg with mass center at G. The shaft is
subjected to a torque (couple) of and the
drum is prevented from rotating by the cord
wrapped securely around it and attached to point
C. Calculate the magnitudes of the forces sup-
ported by bearings A and B.

Problem 3/114

200

120 N·m
100

180

240
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140

150

Dimensions in millimeters

120 N � m,

950

300
37550250

A

D

C

E

G

T = 225 N

B

675

375

T = 225 N
15°

15°

(b)
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*Computer-Oriented Problems

*3/116 Determine and plot the tension ratio T/mg re-
quired to hold the uniform slender bar in equilib-
rium for any angle � from just above zero to just
under 45�. The bar AB of mass m is uniform.

Problem 3/116

*3/117 The jib crane is designed for a maximum capacity
of 10 kN, and its uniform I-beam has a mass of
200 kg. (a) Plot the magnitude R of the force on
the pin at A as a function of x through its operat-
ing range of x � 0.2 m to x � 3.8 m. On the same
set of axes, plot the x- and y-components of the pin
reaction at A. (b) Determine the minimum value
of R and the corresponding value of x. (c) For
what value of R should the pin at A be designed?
(Use g � 10 m/s2.)

Ans. (a)
(b)
(c)

Problem 3/117

30°

10 kN

3 m1 m

A

y

x

x

Rmax � 24.3 kN at x � 3.8 m
Rmin � 10.39 kN at  x � 0.5 m
R � 13 {400x2 � 400x � 1072}1/2

C

m
B

A

T

15°

30°

�
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*3/118 Two traffic signals are attached to the 10.8-m sup-
port cable at equal intervals as shown. Determine
the equilibrium configuration angles �, �, and �,
as well as the tension in each cable segment.

Problem 3/118

*3/119 The two traffic signals of Prob. 3/118 are now
repositioned so that segment BC of the 10.8-m
support cable is 3 m in length and is horizontal.
Specify the necessary lengths AB and CD and the
tensions in all three cable segments.

Ans. 

Problem 3/119

A D

10.5 m

3 m

C

100 kg

B

50 kg

 TAB � 2470 N, TBC � 2420 N,  TCD � 2610 N
 AB � 5.10 m, CD � 2.70 m

A D

CB

10.5 m

3.6 m
3.6 m

50 kg

3.6 m

100 kg

α γβ
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Problem 3/121

*3/122 The mass center of the 10-kg arm OC is located
at G, and the spring of constant k � 1.2 kN/m is
unstretched when � � 0. Plot the applied mo-
ment M required for static equilibrium over the
range 0 � � � 180�. Determine the value of � for
which M � 0 (if any) and the minimum and max-
imum values of M along with the corresponding
values of � at which these extremes occur. The
motion of this mechanism occurs in a vertical
plane. Take M to be positive when counterclock-
wise. The value of m2 is 3 kg.

Problem 3/122

m1

m2

C

D

A

G

O

M k = 2 kN/m

θ

OG = 150 mm
OA = 250 mm
OC = 360 mm
OD = 480 mm
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*3/120 The vertical position of the two 20-kg cylinders
is controlled by the torque M applied to the cen-
tral shaft. The cords attached to the ends of the
arms pass through smooth holes in a fixed sur-
face at A and B. Plot M as a function of � from 
� � 0� to � � 180�. Determine the maximum
value of M and the corresponding value of �.
Take g � 10 m/s2 for your calculations.

Problem 3/120

*3/121 The horizontal boom is supported by the cables
AB and CD and by a ball-and-socket joint at O. To
determine the influence on the reaction at O of
the position of the vertical load L along the boom,
we may neglect the weight of the boom. If R repre-
sents the magnitude of the total force at O, deter-
mine by calculus the minimum ratio R/L and the
corresponding value of x. Then write a computer
program for R/L and plot the results for 0 � x � 6 m
as a check on your calculations.

Ans.
(R/L)min � 0.951 at x � 0.574 m

R/L � �47x2/162 � x/3 � 1

20 kg

20 kg

�

�

300 mm

300 mm

M
A

B

300 mm

z

O

A
C

B

D

y

x

L

6 m

x

4 m

3 m

3 m

2 m
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*3/123 The basic features of a small backhoe are shown
in the illustration. Member BE (complete with hy-
draulic cylinder CD and bucket-control links DF
and DE) has a mass of 200 kg with mass center at
G1. The bucket and its load of clay have a mass of
140 kg with mass center at G2. To disclose the op-
erational design characteristics of the backhoe, de-
termine and plot the force T in the hydraulic
cylinder AB as a function of the angular position �
of member BE over the range 0 � � � 90�. For
what value of � is the force T equal to zero? Mem-
ber OH is fixed for this exercise; note that its con-
trolling hydraulic cylinder (hidden) extends from
near point O to pin I. Similarly, the bucket-control
hydraulic cylinder CD is held at a fixed length.

Ans. T � 0 at � � 1.729�

Problem 3/123

*3/124 The system of Prob. 3/107 is shown again here,
only now the 125-kg homogeneous rectangular
solid is depicted as having rotated an angle �

about the hinge axis AB. Determine and plot the
following quantities as functions of � over the
range 0 � � � 60�: T, Ay, Az, Bx, By, and Bz. The
hinge at A cannot exert an axial thrust. Assume all
hinge force components to be in the positive coor-
dinate directions.
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300
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300

A

B

C

D
F
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G2

G1

H

I

O

θ

Dimensions in millimeters
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Problem 3/124

*3/125 The vertical pole, utility cable, and two guy wires
from Prob. 3/96 are shown again here. As part of a
design study, the following conditions are consid-
ered. The tension T2 is a constant 1000 N, and its
10� angle is fixed. The 10� angle for T1 is also fixed,
but the magnitude of T1 is allowed to vary from 0 to
2000 N. For each value of T1, determine and plot
the magnitude of the equal tensions T in cables AD
and BE and the angle � for which the moment at O
will be zero. State the values of T and � for T1 �

1000 N.
Ans. T � 495 N, � � 15�

Problem 3/125
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This view from Lisbon, Portugal, shows a variety of structures. In all cases, however, the engineers
had to calculate the force supported by each major component of the overall structure.
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CHAPTER OUTLINE

4/1 Introduction
4/2 Plane Trusses
4/3 Method of Joints
4/4 Method of Sections
4/5 Space Trusses
4/6 Frames and Machines
4/7 Chapter Review

4 STRUCTURES

4/1 IN T R O D U C T I O N

In Chapter 3 we studied the equilibrium of a single rigid body or a
system of connected members treated as a single rigid body. We first
drew a free-body diagram of the body showing all forces external to
the isolated body and then we applied the force and moment equa-
tions of equilibrium. In Chapter 4 we focus on the determination of
the forces internal to a structure, that is, forces of action and reaction
between the connected members. An engineering structure is any
connected system of members built to support or transfer forces and
to safely withstand the loads applied to it. To determine the forces in-
ternal to an engineering structure, we must dismember the structure
and analyze separate free-body diagrams of individual members or
combinations of members. This analysis requires careful application
of Newton’s third law, which states that each action is accompanied
by an equal and opposite reaction.

In Chapter 4 we analyze the internal forces acting in several types
of structures, namely, trusses, frames, and machines. In this treatment
we consider only statically determinate structures, which do not have
more supporting constraints than are necessary to maintain an equilib-
rium configuration. Thus, as we have already seen, the equations of
equilibrium are adequate to determine all unknown reactions.

The analysis of trusses, frames and machines, and beams under
concentrated loads constitutes a straightforward application of the ma-
terial developed in the previous two chapters. The basic procedure de-
veloped in Chapter 3 for isolating a body by constructing a correct
free-body diagram is essential for the analysis of statically determinate
structures.
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Figure 4/2

L

L

L

Stringer

Cross beam

L

L

L

Figure 4/1

Pratt Howe

Warren

Fink

Howe

Commonly Used Roof Trusses

Pratt

Warren

K

Baltimore

Commonly Used Bridge Trusses
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4/2 PL A N E TR U S S E S

A framework composed of members joined at their ends to form a
rigid structure is called a truss. Bridges, roof supports, derricks, and
other such structures are common examples of trusses. Structural mem-
bers commonly used are I-beams, channels, angles, bars, and special
shapes which are fastened together at their ends by welding, riveted
connections, or large bolts or pins. When the members of the truss lie
essentially in a single plane, the truss is called a plane truss.

For bridges and similar structures, plane trusses are commonly uti-
lized in pairs with one truss assembly placed on each side of the struc-
ture. A section of a typical bridge structure is shown in Fig. 4/1. The
combined weight of the roadway and vehicles is transferred to the longi-
tudinal stringers, then to the cross beams, and finally, with the weights
of the stringers and cross beams accounted for, to the upper joints of the
two plane trusses which form the vertical sides of the structure. A sim-
plified model of the truss structure is indicated at the left side of the il-
lustration; the forces L represent the joint loadings.

Several examples of commonly used trusses which can be analyzed
as plane trusses are shown in Fig. 4/2.

Simple Trusses

The basic element of a plane truss is the triangle. Three bars joined
by pins at their ends, Fig. 4/3a, constitute a rigid frame. The term rigid
is used to mean noncollapsible and also to mean that deformation of the
members due to induced internal strains is negligible. On the other
hand, four or more bars pin-jointed to form a polygon of as many sides
constitute a nonrigid frame. We can make the nonrigid frame in Fig.
4/3b rigid, or stable, by adding a diagonal bar joining A and D or B and C
and thereby forming two triangles. We can extend the structure by
adding additional units of two end-connected bars, such as DE and CE
or AF and DF, Fig. 4/3c, which are pinned to two fixed joints. In this
way the entire structure will remain rigid.

Structures built from a basic triangle in the manner described are
known as simple trusses. When more members are present than are
needed to prevent collapse, the truss is statically indeterminate. A stati-
cally indeterminate truss cannot be analyzed by the equations of equi-
librium alone. Additional members or supports which are not necessary
for maintaining the equilibrium configuration are called redundant.

To design a truss we must first determine the forces in the various
members and then select appropriate sizes and structural shapes to
withstand the forces. Several assumptions are made in the force analy-
sis of simple trusses. First, we assume all members to be two-force mem-
bers. A two-force member is one in equilibrium under the action of two
forces only, as defined in general terms with Fig. 3/4 in Art. 3/3. Each
member of a truss is normally a straight link joining the two points of
application of force. The two forces are applied at the ends of the mem-
ber and are necessarily equal, opposite, and collinear for equilibrium.

The member may be in tension or compression, as shown in Fig.
4/4. When we represent the equilibrium of a portion of a two-force mem-
ber, the tension T or compression C acting on the cut section is the same
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for all sections. We assume here that the weight of the member is small
compared with the force it supports. If it is not, or if we must account
for the small effect of the weight, we can replace the weight W of the
member by two forces, each W/2 if the member is uniform, with one
force acting at each end of the member. These forces, in effect, are
treated as loads externally applied to the pin connections. Accounting
for the weight of a member in this way gives the correct result for the
average tension or compression along the member but will not account
for the effect of bending of the member.

Truss Connections and Supports

When welded or riveted connections are used to join structural
members, we may usually assume that the connection is a pin joint if
the centerlines of the members are concurrent at the joint as in Fig. 4/5.

We also assume in the analysis of simple trusses that all external
forces are applied at the pin connections. This condition is satisfied in
most trusses. In bridge trusses the deck is usually laid on cross beams
which are supported at the joints, as shown in Fig. 4/1.

For large trusses, a roller, rocker, or some kind of slip joint is used
at one of the supports to provide for expansion and contraction due to
temperature changes and for deformation from applied loads. Trusses
and frames in which no such provision is made are statically indetermi-
nate, as explained in Art. 3/3. Figure 3/1 shows examples of such joints.

Two methods for the force analysis of simple trusses will be given.
Each method will be explained for the simple truss shown in Fig. 4/6a.
The free-body diagram of the truss as a whole is shown in Fig. 4/6b. The
external reactions are usually determined first, by applying the equilib-
rium equations to the truss as a whole. Then the force analysis of the re-
mainder of the truss is performed.

4/3 ME T H O D O F JO I N T S

This method for finding the forces in the members of a truss con-
sists of satisfying the conditions of equilibrium for the forces acting on
the connecting pin of each joint. The method therefore deals with the
equilibrium of concurrent forces, and only two independent equilibrium
equations are involved.

We begin the analysis with any joint where at least one known load
exists and where not more than two unknown forces are present. The
solution may be started with the pin at the left end. Its free-body dia-
gram is shown in Fig. 4/7. With the joints indicated by letters, we usu-
ally designate the force in each member by the two letters defining the
ends of the member. The proper directions of the forces should be evi-
dent by inspection for this simple case. The free-body diagrams of por-
tions of members AF and AB are also shown to clearly indicate the
mechanism of the action and reaction. The member AB actually makes
contact on the left side of the pin, although the force AB is drawn from
the right side and is shown acting away from the pin. Thus, if we consis-
tently draw the force arrows on the same side of the pin as the member,
then tension (such as AB) will always be indicated by an arrow away
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Figure 4/5
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from the pin, and compression (such as AF) will always be indicated by
an arrow toward the pin. The magnitude of AF is obtained from the
equation ΣFy � 0 and AB is then found from ΣFx � 0.

Joint F may be analyzed next, since it now contains only two un-
knowns, EF and BF. Proceeding to the next joint having no more than
two unknowns, we subsequently analyze joints B, C, E, and D in that
order. Figure 4/8 shows the free-body diagram of each joint and its cor-
responding force polygon, which represents graphically the two equilib-
rium conditions ΣFx � 0 and ΣFy � 0. The numbers indicate the order in
which the joints are analyzed. We note that, when joint D is finally
reached, the computed reaction R2 must be in equilibrium with the
forces in members CD and ED, which were determined previously from
the two neighboring joints. This requirement provides a check on the
correctness of our work. Note that isolation of joint C shows that the
force in CE is zero when the equation ΣFy � 0 is applied. The force in
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This New York City bridge structure
suggests that members of a simple
truss need not be straight.
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this member would not be zero, of course, if an external vertical load
were applied at C.

It is often convenient to indicate the tension T and compression C of
the various members directly on the original truss diagram by drawing
arrows away from the pins for tension and toward the pins for compres-
sion. This designation is illustrated at the bottom of Fig. 4/8.

Sometimes we cannot initially assign the correct direction of one or
both of the unknown forces acting on a given pin. If so, we may make an
arbitrary assignment. A negative computed force value indicates that
the initially assumed direction is incorrect.

Internal and External Redundancy

If a plane truss has more external supports than are necessary to
ensure a stable equilibrium configuration, the truss as a whole is stati-
cally indeterminate, and the extra supports constitute external redun-
dancy. If a truss has more internal members than are necessary to
prevent collapse when the truss is removed from its supports, then the
extra members constitute internal redundancy and the truss is again
statically indeterminate.

For a truss which is statically determinate externally, there is a def-
inite relation between the number of its members and the number of its
joints necessary for internal stability without redundancy. Because we
can specify the equilibrium of each joint by two scalar force equations,
there are in all 2j such equations for a truss with j joints. For the entire
truss composed of m two-force members and having the maximum of
three unknown support reactions, there are in all m � 3 unknowns (m
tension or compression forces and three reactions). Thus, for any plane
truss, the equation m � 3 � 2j will be satisfied if the truss is statically
determinate internally.

A simple plane truss, formed by starting with a triangle and adding
two new members to locate each new joint with respect to the existing
structure, satisfies the relation automatically. The condition holds for
the initial triangle, where m � j � 3, and m increases by 2 for each
added joint while j increases by 1. Some other (nonsimple) statically de-
terminate trusses, such as the K-truss in Fig. 4/2, are arranged differ-
ently, but can be seen to satisfy the same relation.

This equation is a necessary condition for stability but it is not a
sufficient condition, since one or more of the m members can be
arranged in such a way as not to contribute to a stable configuration of
the entire truss. If m � 3 � 2j, there are more members than indepen-
dent equations, and the truss is statically indeterminate internally
with redundant members present. If m � 3 � 2j, there is a deficiency
of internal members, and the truss is unstable and will collapse under
load.

Special Conditions

We often encounter several special conditions in the analysis of
trusses. When two collinear members are under compression, as indi-
cated in Fig. 4/9a, it is necessary to add a third member to maintain
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Harbour Bridge in Sydney, Australia

©
 P

ho
to

di
sc

/M
ed

ia
 B

ak
er

y

c04.qxd  11/6/07  4:17 PM  Page 178



alignment of the two members and prevent buckling. We see from a
force summation in the y-direction that the force F3 in the third mem-
ber must be zero and from the x-direction that F1 � F2. This conclusion
holds regardless of the angle � and holds also if the collinear members
are in tension. If an external force with a component in the y-direction
were applied to the joint, then F3 would no longer be zero.

When two noncollinear members are joined as shown in Fig. 4/9b,
then in the absence of an externally applied load at this joint, the
forces in both members must be zero, as we can see from the two force
summations.

When two pairs of collinear members are joined as shown in Fig.
4/9c, the forces in each pair must be equal and opposite. This conclusion
follows from the force summations indicated in the figure.

Truss panels are frequently cross-braced as shown in Fig. 4/10a.
Such a panel is statically indeterminate if each brace can support ei-
ther tension or compression. However, when the braces are flexible
members incapable of supporting compression, as are cables, then only
the tension member acts and we can disregard the other member. It is
usually evident from the asymmetry of the loading how the panel will
deflect. If the deflection is as indicated in Fig. 4/10b, then member AB
should be retained and CD disregarded. When this choice cannot be
made by inspection, we may arbitrarily select the member to be re-
tained. If the assumed tension turns out to be positive upon calcula-
tion, then the choice was correct. If the assumed tension force turns
out to be negative, then the opposite member must be retained and
the calculation redone.

We can avoid simultaneous solution of the equilibrium equations for
two unknown forces at a joint by a careful choice of reference axes.
Thus, for the joint indicated schematically in Fig. 4/11 where L is known
and F1 and F2 are unknown, a force summation in the x-direction elimi-
nates reference to F1 and a force summation in the x�-direction elimi-
nates reference to F2. When the angles involved are not easily found,
then a simultaneous solution of the equations using one set of reference
directions for both unknowns may be preferable.
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Figure 4/11
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Sample Problem 4/1

Compute the force in each member of the loaded cantilever truss by the
method of joints.

Solution. If it were not desired to calculate the external reactions at D and E,
the analysis for a cantilever truss could begin with the joint at the loaded end.
However, this truss will be analyzed completely, so the first step will be to com-
pute the external forces at D and E from the free-body diagram of the truss as a
whole. The equations of equilibrium give

Next we draw free-body diagrams showing the forces acting on each of the
connecting pins. The correctness of the assigned directions of the forces is veri-
fied when each joint is considered in sequence. There should be no question
about the correct direction of the forces on joint A. Equilibrium requires

Ans.

Ans.

where T stands for tension and C stands for compression.
Joint B must be analyzed next, since there are more than two unknown

forces on joint C. The force BC must provide an upward component, in which
case BD must balance the force to the left. Again the forces are obtained from

Ans.

Ans.

Joint C now contains only two unknowns, and these are found in the same
way as before:

Ans.

Ans.

Finally, from joint E there results

Ans.

and the equation ΣFx � 0 checks.

DE � 11.55 kN C0.866DE � 10[ΣFy � 0]

 CE � 63.5 kN C

 CE � 17.32 � 0.5(34.6) � 0.5(57.7) � 0[ΣFx � 0]

 CD � 57.7 kN T

 0.866CD � 0.866(34.6) � 20 � 0[ΣFy � 0]

 BD � 34.6 kN T BD � 2(0.5)(34.6) � 0[ΣFx � 0]

 BC � 34.6 kN C 0.866BC � 0.866(34.6) � 0[ΣFy � 0]

AC � 17.32 kN C AC � 0.5(34.6) � 0[ΣFx � 0]

AB � 34.6 kN T 0.866AB � 30 � 0[ΣFy � 0]

 Ey � 10 kN 80 sin 30� � Ey � 20 � 30 � 0[ΣFy � 0]

 Ex � 69.3 kN 80 cos 30� � Ex � 0[ΣFx � 0]

 T � 80 kN 5T � 20(5) � 30(10) � 0[ΣME � 0]
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Helpful Hint

� It should be stressed that the ten-
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which exerts the force. In this way
tension (arrow away from the joint)
is distinguished from compression
(arrow toward the joint).
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Sample Problem 4/2

The simple truss shown supports the two loads, each of magnitude L. Deter-
mine the forces in members DE, DF, DG, and CD.

Solution. First of all, we note that the curved members of this simple truss
are all two-force members, so that the effect of each curved member within the
truss is the same as that of a straight member.

We can begin with joint E because there are only two unknown member
forces acting there. With reference to the free-body diagram and accompanying
geometry for joint E, we note that � � 180� � 11.25� � 90� � 78.8�.

Ans.

We must now move to joint F, as there are still three unknown members at joint
D. From the geometric diagram,

From the free-body diagram of joint F,

Simultaneous solution of these two equations yields

Ans.

For member DG, we move to the free-body diagram of joint D and the accompa-
nying geometry.

Then from joint D:

The simultaneous solution is

Ans.

Note that � is shown exaggerated in the accompanying figures.

CD � 1.617L T   DG � �1.147L or DG � 1.147L C

[ΣFy � 0] �DG sin 2.92� � CD cos 33.8� � 0.601L cos 47.9� � 1.020L sin 78.8� � 0

[ΣFx � 0] �DG cos 2.92� � CD sin 33.8� � 0.601L sin 47.9� � 1.020L cos 78.8� � 0

 � � tan�1�2R sin 22.5� � R sin 45�

2R cos 22.5� � R cos 45�� � 2.92�

 � � tan�1�2R cos 22.5� � 2R cos 45�

2R sin 45� � 2R sin 22.5�� � 33.8�

GF � 0.646L T   DF � 0.601L T

 GF sin 67.5� � DF sin 42.1� � L � 0[ΣFy � 0]

 �GF cos 67.5� � DF cos 42.1� � 0.1989L � 0[ΣFx � 0]

� � tan�1� 2R sin 22.5�

2R cos 22.5� � R� � 42.1�

EF � 0.1989L C EF � DE cos 78.8� � 0[ΣFx � 0]

DE � 1.020L T DE sin 78.8� � L � 0[ΣFy � 0]
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Helpful Hint

� Rather than calculate and use the
angle � � 78.8� in the force equa-
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angle directly.
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4/4 Determine the force in each member of the loaded
truss.

Problem 4/4

4/5 Determine the force in each member of the loaded
truss.

Ans. AB � 5.63 kN C, AF � 3.38 kN T
BC � 4.13 kN C, BE � 0.901 kN T
BF � 4 kN T, CD � 6.88 kN C
CE � 5.50 kN T, DE � 4.13 kN T
EF � 3.38 kN T

Problem 4/5

4/6 Calculate the force in each member of the loaded
truss. All triangles are isosceles.

Problem 4/6
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6 m

4 m
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B C
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5 m

45°
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PROBLEMS

Introductory Problems

4/1 Determine the force in each member of the loaded
truss. Explain why knowledge of the lengths of the
members is unnecessary.

Ans. AB � 1.2 kN C, AC � 1.039 kN T
BC � 2.08 kN C

Problem 4/1

4/2 Determine the force in each member of the loaded
truss. Identify any zero-force members by inspection.

Problem 4/2

4/3 Determine the force in each member of the loaded
truss.
Ans. AB � 3000 N T, AC � 4240 N C, CD � 4240 N T

AD � 3000 N C, BC � 6000 N T

Problem 4/3

B

A
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45°
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8 kN

A C

D

B

2.4 kN

B

30° 60° CA

c04.qxd  11/6/07  4:17 PM  Page 182



4/7 Determine the force in member AC of the loaded
truss. The two quarter-circular members act as two-
force members.

Ans. AC � T

Problem 4/7

4/8 Determine the force in each member of the loaded
truss. Make use of the symmetry of the truss and of
the loading.

Problem 4/8

4/9 Determine the force in each member of the loaded
truss.

Ans. AB � 14.42 kN T, AC � 2.07 kN C, AD � 0
BC � 6.45 kN T, BD � 12.89 kN C

Problem 4/9
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B C D

G F

E

60 kN

5 m 5 m

4 m

5 m 5 m

30 kN

A C

B

L

L
2
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4/10 Determine the forces in members BE and CE of the
loaded truss.

Problem 4/10

Representative Problems

4/11 Calculate the forces in members CG and CF for the
truss shown.

Ans. CG � 2.24 kN T, CF � 1 kN C

Problem 4/11

4/12 Each member of the truss is a uniform 8-m bar with
a mass of 400 kg. Calculate the average tension or
compression in each member due to the weights of
the members.

Problem 4/12

E D

A C
B8 m

60° 60° 60° 60°

8 m

3 m4 kN

2 kN

2 m
A

G

DCB

F

E

2 m 2 m

5 kN

D
E

C

B

3 m

3 m

3 m
A

3 kN

45°

BC = CD
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4/15 Determine the forces in members BC and BG of the
loaded truss.

Ans. BC � 3.46 kN C, BG � 1.528 kN T

Problem 4/15

4/16 Determine the forces in members BI, CI, and HI for
the loaded truss. All angles are 30�, 60�, or 90�.

Problem 4/16

4 kN 2 kN

I H G
FA

E

DC

B

a aa–
2

a–
2

2 kN

F
G

H

3 m 3 m

2 m

2 m2 m

2 m2 m

2 m 2 m

A

3 kN

C D

B

3 kN

E
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4/13 A drawbridge is being raised by a cable EI. The four
joint loadings shown result from the weight of the
roadway. Determine the forces in members EF, DE,
DF, CD, and FG.

Ans. EF � 15.46 kN C, DE � 18.43 kN T
DF � 17.47 kN C, CD � 10.90 kN T
FG � 29.1 kN C

Problem 4/13

4/14 The truss is composed of equilateral triangles of
sides a and is loaded and supported as shown. Deter-
mine the forces in members EF, DE, and DF.

Problem 4/14

30°

30°A

B

G

C

F

L

E

D

a

a

a

20°A

4 m

H

G

F

E

B

C

D

50°
4 m

4 m

3.2 m

8 kN

16 kN

16 kN

8 kN

I
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4/17 Determine the forces in members AF, BE, BF, and
CE of the loaded truss.

Ans. AF � 6.13 kN T, BE � 5.59 kN T
BF � 6.50 kN C, CE � 5 kN C

Problem 4/17

4/18 The signboard truss is designed to support a hori-
zontal wind load of 4 kN. A separate analysis shows
that of this force is transmitted to the center con-
nection at C and the rest is equally divided between
D and B. Calculate the forces in members BE and
BC.

Problem 4/18

GA

D

C E

FB

4 kN

2 m

2 m

2 m

2 m

2 m 1 m

5
8

4 kN

D

E

F

G
A

B

C

3 m

2 m

2 m

2 m

5 kN

6 kN
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4/19 A snow load transfers the forces shown to the upper
joints of a Pratt roof truss. Neglect any horizontal
reactions at the supports and solve for the forces in
all members.

Ans. AB � DE � BC � CD � 3.35 kN C
AH � EF � 3 kN T, BH � DF � 1 kN C

CF � CH � 1.414 kN T, FG � GH � 2 kN T

Problem 4/19

4/20 The loading of Prob. 4/19 is shown applied to a Howe
roof truss. Neglect any horizontal reactions at the
supports and solve for the forces in all members.
Compare with the results of Prob. 4/19.

Problem 4/20

4/21 Determine the force in each member of the pair of
trusses which support the 20-kN load at their com-
mon joint C.

Ans. AB � BC � BG � 0, AG � CG � 11.55 kN C

Problem 4/21

A

B C D

G

60°

20 kN

60°

60° 60°

F

E

A

B

C

D

E
FGH

1 kN

1 kN

1 kN

1 kN

1 kN2 m

2 m2 m2 m 2 m

A

B

C

D

E
FGH

1 kN

1 kN

1 kN

1 kN

1 kN
2 m

2 m2 m2 m 2 m
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4/24 Verify the fact that each of the trusses contains one
or more elements of redundancy and propose two
separate changes, either one of which would remove
the redundancy and produce complete statical deter-
minacy. All members can support compression as
well as tension.

Problem 4/24

4/25 Determine the forces in members AC and AD of the
loaded truss.

Ans. AC � AD � 3.12 kN C

Problem 4/25

2 kN

A

C

D

E

1.2 m

1.2 m

1.2 m

40°
25°

B

A B

DC

E
A B

DC

F

E

A F

C

B

(a) (b)

(c) (d)

D

E

A F

C

B D

E
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4/22 Determine the force in member BF of the loaded
truss.

Problem 4/22

4/23 The rectangular frame is composed of four perimeter
two-force members and two cables AC and BD which
are incapable of supporting compression. Determine
the forces in all members due to the load L in posi-
tion (a) and then in position (b).

Ans. (a) AB � AD � BD � 0, BC � L C

AC � T, CD � C

(b) AB � AD � BC � BD � 0

AC � T, CD � C

Problem 4/23

L

L

4d
(a)

(b)

3d

A

D
C

B

4L
3

5L
3

4L
3

5L
3

A

E

L

2R

R

L

O
D

C

B

G
F

H

30°
30°

30°
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4/26 Analysis of the wind acting on a small Hawaiian
church, which withstood the 280-km/h winds of 
Hurricane Iniki in 1992, showed the forces transmit-
ted to each roof truss panel to be as shown. Treat
the structure as a symmetrical simple truss and ne-
glect any horizontal component of the support reac-
tion at A. Identify the truss member which supports
the largest force, tension or compression, and calcu-
late this force.

Problem 4/26

4/27 The tower for a transmission line is modeled by the
truss shown. The crossed members in the center sec-
tions of the truss may be assumed to be capable of
supporting tension only. For the loads of 1.8 kN ap-
plied in the vertical plane, compute the forces in-
duced in members AB, DB, and CD.

Ans. AB � 3.89 kN C, DB � 0, CD � 0.932 kN C

Problem 4/27

1.8 kN 1.8 kN

AEDJI

G B

CF

K L

H

3 m

3 m

3 m

5 panels at 3 m

5 m

15° 15°

9.80 kN

B

C

D

E

9 m

6 m

28.0 kN

18.20 kN

24.0 kN

A

F
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4/28 Determine the force in member CM of the loaded
truss.

Ans. CM � 3.41L T

Problem 4/28

A I

HN

K
J

LM
B

4 m

L L

L LL

E FD
C G

4 m 4 m 4 m4 m4 m

Arc of radius 16 m
Arc of radius 18 m

�

�
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4/4 ME T H O D O F SE C T I O N S

When analyzing plane trusses by the method of joints, we need only
two of the three equilibrium equations because the procedures involve
concurrent forces at each joint. We can take advantage of the third or
moment equation of equilibrium by selecting an entire section of the
truss for the free body in equilibrium under the action of a nonconcur-
rent system of forces. This method of sections has the basic advantage
that the force in almost any desired member may be found directly from
an analysis of a section which has cut that member. Thus, it is not nec-
essary to proceed with the calculation from joint to joint until the mem-
ber in question has been reached. In choosing a section of the truss, we
note that, in general, not more than three members whose forces are
unknown should be cut, since there are only three available indepen-
dent equilibrium relations.

Illustration of the Method

The method of sections will now be illustrated for the truss in Fig.
4/6, which was used in the explanation of the method of joints. The truss
is shown again in Fig. 4/12a for ready reference. The external reactions
are first computed as with the method of joints, by considering the truss
as a whole.

Let us determine the force in the member BE, for example. An
imaginary section, indicated by the dashed line, is passed through the
truss, cutting it into two parts, Fig. 4/12b. This section has cut three
members whose forces are initially unknown. In order for the portion of
the truss on each side of the section to remain in equilibrium, it is nec-
essary to apply to each cut member the force which was exerted on it by
the member cut away. For simple trusses composed of straight two-force
members, these forces, either tensile or compressive, will always be in
the directions of the respective members. The left-hand section is in
equilibrium under the action of the applied load L, the end reaction R1,
and the three forces exerted on the cut members by the right-hand sec-
tion which has been removed.

We can usually draw the forces with their proper senses by a visual
approximation of the equilibrium requirements. Thus, in balancing the
moments about point B for the left-hand section, the force EF is clearly
to the left, which makes it compressive, because it acts toward the cut
section of member EF. The load L is greater than the reaction R1, so
that the force BE must be up and to the right to supply the needed up-
ward component for vertical equilibrium. Force BE is therefore tensile,
since it acts away from the cut section.

With the approximate magnitudes of R1 and L in mind we see that
the balance of moments about point E requires that BC be to the right. A
casual glance at the truss should lead to the same conclusion when it is
realized that the lower horizontal member will stretch under the tension
caused by bending. The equation of moments about joint B eliminates
three forces from the relation, and EF can be determined directly. The
force BE is calculated from the equilibrium equation for the y-direction.
Finally, we determine BC by balancing moments about point E. In this
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Figure 4/12

A
B C

L
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EF
F E

B CB

E

BE
BE

(a)

(b)

R1 R2

LR1 R2

EF

D

y

x
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way each of the three unknowns has been determined independently of
the other two.

The right-hand section of the truss, Fig. 4/12b, is in equilibrium
under the action of R2 and the same three forces in the cut members ap-
plied in the directions opposite to those for the left section. The proper
sense for the horizontal forces can easily be seen from the balance of
moments about points B and E.

Additional Considerations

It is essential to understand that in the method of sections an entire
portion of the truss is considered a single body in equilibrium. Thus, the
forces in members internal to the section are not involved in the analy-
sis of the section as a whole. To clarify the free body and the forces act-
ing externally on it, the cutting section is preferably passed through the
members and not the joints. We may use either portion of a truss for the
calculations, but the one involving the smaller number of forces will
usually yield the simpler solution.

In some cases the methods of sections and joints can be combined
for an efficient solution. For example, suppose we wish to find the force
in a central member of a large truss. Furthermore, suppose that it is not
possible to pass a section through this member without passing through
at least four unknown members. It may be possible to determine the
forces in nearby members by the method of sections and then progress
to the unknown member by the method of joints. Such a combination of
the two methods may be more expedient than exclusive use of either
method.

The moment equations are used to great advantage in the method
of sections. One should choose a moment center, either on or off the sec-
tion, through which as many unknown forces as possible pass.

It is not always possible to assign the proper sense of an unknown
force when the free-body diagram of a section is initially drawn. Once an
arbitrary assignment is made, a positive answer will verify the assumed
sense and a negative result will indicate that the force is in the sense op-
posite to that assumed. An alternative notation preferred by some is to
assign all unknown forces arbitrarily as positive in the tension direction
(away from the section) and let the algebraic sign of the answer distin-
guish between tension and compression. Thus, a plus sign would signify
tension and a minus sign compression. On the other hand, the advan-
tage of assigning forces in their correct sense on the free-body diagram
of a section wherever possible is that doing so emphasizes the physical
action of the forces more directly, and this practice is the one which is
preferred here.
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Many simple trusses are periodic in
that there are repeated and identi-
cal structural sections.
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Sample Problem 4/3

Calculate the forces induced in members KL, CL, and CB by the 200-kN
load on the cantilever truss.

Solution. Although the vertical components of the reactions at A and M are
statically indeterminate with the two fixed supports, all members other than AM
are statically determinate. We may pass a section directly through members KL,
CL, and CB and analyze the portion of the truss to the left of this section as a
statically determinate rigid body.

The free-body diagram of the portion of the truss to the left of the section is
shown. A moment sum about L quickly verifies the assignment of CB as com-
pression, and a moment sum about C quickly discloses that KL is in tension. The
direction of CL is not quite so obvious until we observe that KL and CB intersect
at a point P to the right of G. A moment sum about P eliminates reference to KL
and CB and shows that CL must be compressive to balance the moment of the
200-kN force about P. With these considerations in mind the solution becomes
straightforward, as we now see how to solve for each of the three unknowns in-
dependently of the other two.

Summing moments about L requires finding the moment arm � 4 �

(6.5 � 4)/2 � 5.25 m. Thus,

Ans.

Next we take moments about C, which requires a calculation of cos �. From the
given dimensions we see � � tan�1(5/12) so that cos � � 12/13. Therefore,

Ans.

Finally, we may find CL by a moment sum about P, whose distance from C
is given by � 6/(6.5 � 4) or � 9.60 m. We also need �, which is given by
� � � tan�1(3/5.25) � 29.7� and cos � � 0.868. We now have

Ans. CL � 57.6 kN C

 200(12 � 9.60) � CL(0.868)(9.60) � 0[ΣMp � 0]

tan�1(CB/BL)
PCPC/4

KL � 650 kN T200(4)(3) � 12
13 

KL(4) � 0[ΣMC � 0]

CB � 571 kN C200(5)(3) � CB(5.25) � 0[ΣML � 0]

BL
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6.5 m
4 m

200 kN

F

H I J K
L

M

G E D C B A
6 panels at 3 m

200 kN

y

x
P

G
C

θ

β

CB

CL

LKL

Helpful Hints

� We note that analysis by the method
of joints would necessitate working
with eight joints in order to calcu-
late the three forces in question.
Thus, the method of sections offers a
considerable advantage in this case.

� We could have started with mo-
ments about C or P just as well.

� We could also have determined CL
by a force summation in either the
x- or y-direction.

�

�

�
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Sample Problem 4/4

Calculate the force in member DJ of the Howe roof truss illustrated. Ne-
glect any horizontal components of force at the supports.

Solution. It is not possible to pass a section through DJ without cutting four
members whose forces are unknown. Although three of these cut by section 2 are
concurrent at J and therefore the moment equation about J could be used to ob-
tain DE, the force in DJ cannot be obtained from the remaining two equilibrium
principles. It is necessary to consider first the adjacent section 1 before analyzing
section 2.

The free-body diagram for section 1 is drawn and includes the reaction of
18.33 kN at A, which is previously calculated from the equilibrium of the truss
as a whole. In assigning the proper directions for the forces acting on the three
cut members, we see that a balance of moments about A eliminates the effects of
CD and JK and clearly requires that CJ be up and to the left. A balance of mo-
ments about C eliminates the effect of the three forces concurrent at C and indi-
cates that JK must be to the right to supply sufficient counterclockwise moment.
Again it should be fairly obvious that the lower chord is under tension because of
the bending tendency of the truss. Although it should also be apparent that the
top chord is under compression, for purposes of illustration the force in CD will
be arbitrarily assigned as tension.

By the analysis of section 1, CJ is obtained from

In this equation the moment of CJ is calculated by considering its horizontal and
vertical components acting at point J. Equilibrium of moments about J requires

The moment of CD about J is calculated here by considering its two components
as acting through D. The minus sign indicates that CD was assigned in the
wrong direction.

Hence,

From the free-body diagram of section 2, which now includes the known
value of CJ, a balance of moments about G is seen to eliminate DE and JK.
Thus,

Ans.

Again the moment of CJ is determined from its components considered to be act-
ing at J. The answer for DJ is positive, so that the assumed tensile direction is
correct.

An alternative approach to the entire problem is to utilize section 1 to deter-
mine CD and then use the method of joints applied at D to determine DJ.

DJ � 16.67 kN T

12DJ � 10(16) � 10(20) � 18.33(24) � 14.14(0.707)(12) � 0[ΣMG � 0]

CD � 18.63 kN C

 CD � �18.63 kN

0.894CD(6) � 18.33(12) � 10(4) � 10(8) � 0[ΣMJ � 0]

CJ � 14.14 kN C0.707CJ(12) � 10(4) � 10(8) � 0[ΣMA � 0]
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6 panels at 4 m

A G

F

E

D

B

C

L K J I H
10 kN

10 kN

10 kN 1 2

6 m

10 kN

18.33 kN

10 kN

Section 1

A

CJ

JK
J

CDC

A GJJK

DJ

DE
10 kN

10 kN

Section 2

14.14 kN

18.33 kN

� Observe that a section through mem-
bers CD, DJ, and DE could be taken
which would cut only three unknown
members. However, since the forces
in these three members are all con-
current at D, a moment equation
about D would yield no information
about them. The remaining two force
equations would not be sufficient to
solve for the three unknowns.

Helpful Hints

� There is no harm in assigning one or
more of the forces in the wrong di-
rection, as long as the calculations
are consistent with the assumption.
A negative answer will show the
need for reversing the direction of
the force.

� If desired, the direction of CD may
be changed on the free-body diagram
and the algebraic sign of CD re-
versed in the calculations, or else the
work may be left as it stands with a
note stating the proper direction.

�

�

�
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4/32 Determine the forces in members GH and CG for
the truss loaded and supported as shown. Does the
statical indeterminacy of the supports affect your
calculation?

Problem 4/32

4/33 Determine the force in member DG of the loaded
truss.

Ans. DG � L T

Problem 4/33

4/34 Determine the force in member BE of the loaded
truss.

Problem 4/34

A

G F E
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H
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L
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6
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6

d––
6

d––
6

d––
3

20°

AH = GH

A F

E

L L L L L L

D C

G
H

B

5 panels at 4 m
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60°
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PROBLEMS

Introductory Problems

4/29 Determine the forces in members CG and GH.
Ans. CG � 0, GH � 27 kN T

Problem 4/29

4/30 Determine the force in member AE of the loaded
truss.

Problem 4/30

4/31 Determine the force in member BC of the loaded
truss.

Ans. BC � 24.1 kN T

Problem 4/31

F3 m

3 m

2 m 2 m

1.5 m

3 m

A

D

20 kN

C

25 kN

B

15 kN

E

A

F

D
2 m

2 m B

E

2 m

1 m

C

2.4 kN 3.2 kN

A F
4 m

12 kN 12 kN 

DCB

GH

E

7 panels at 3 m
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Representative Problems

4/35 Determine the forces in members DE and DL.
Ans. DE � 24 kN T, DL � 33.9 kN C

Problem 4/35

4/36 Calculate the forces in members BC, BE, and EF.
Solve for each force from an equilibrium equation
which contains that force as the only unknown.

Problem 4/36

4/37 Calculate the forces in members BC, CD, and CG of
the loaded truss composed of equilateral triangles,
each of side length 8 m.

Ans. BC � 1.155 kN T, CD � 5.20 kN T
CG � 4.04 kN C

Problem 4/37

5 kN

3 kN

8 mJ
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I H G F

B C D E

14 kN

G F
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CB3 m 3 m 3 m

3 m 3 m
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C

A

2 m 2 m 2 m 2 m

2 m

2 m

2 m 1 m

0.5 m

8 kN
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4/38 Determine the forces in members BC and FG of the
loaded symmetrical truss. Show that this calculation
can be accomplished by using one section and two
equations, each of which contains only one of the
two unknowns. Are the results affected by the stati-
cal indeterminacy of the supports at the base?

Problem 4/38

4/39 The truss shown is composed of 45� right triangles.
The crossed members in the center two panels are
slender tie rods incapable of supporting compres-
sion. Retain the two rods which are under tension
and compute the magnitudes of their tensions. Also
find the force in member MN.

Ans. FN � GM � 84.8 kN T, MN � 20 kN T

Problem 4/39
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J H G F E D
C

BA

K L M N O

 2 m2 m
1200 N

800 N

400 N

D
E

K

J

I

A

B

C
F

2 m

2 m

2 m

G

H

c04.qxd  11/6/07  4:17 PM  Page 193



4/43 Determine the forces in members DE, DL, LM, and
EL of the loaded symmetrical truss.
Ans. DE � 4.80L C, DL � 0.0446L T, LM � 4.54L T

EL � 3.80L T

Problem 4/43

4/44 Determine the forces in members DQ and CQ of the
loaded symmetrical truss.

Problem 4/44

4/45 Calculate the forces in members CB, CG, and FG for
the loaded truss without first calculating the force in
any other member.

Ans. CB � 56.2 kN C, CG � 13.87 kN T
FG � 19.62 kN T

A G
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P SQ R
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L

L

L
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4 m 4 m 4 m 4 m 4 m
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2
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2

25°

30°
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4/40 Determine the force in member BF.

Problem 4/40

4/41 Determine the forces in members CD, CJ, and DJ.
Ans. CD � 0.562L C, CJ � 1.562L T

DJ � 1.250L C

Problem 4/41

4/42 Compute the force in member HN of the loaded
truss.

Problem 4/42
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Problem 4/45

4/46 The hinged frames ACE and DFB are connected by
two hinged bars, AB and CD, which cross without
being connected. Compute the force in AB.

Problem 4/46

4/47 Determine the force in member JM of the loaded
truss.

Ans. JM � 0.0901L T

Problem 4/47

A G
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M N
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C
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E
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4/48 Determine the forces in members DE, EI, FI, and HI
of the arched roof truss.

Problem 4/48

4/49 Determine the force in member GK of the loaded
symmetrical truss.

Ans. GK � 2.13L T

Problem 4/49

4/50 Determine the force in member CL of the loaded
truss. The radius of curvature of the upper chord
BCDEFG is 30 m.

Problem 4/50
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Problem 4/53

4/54 A design model for a transmission-line tower is
shown in the figure. Members GH, FG, OP, and NO
are insulated cables; all other members are steel
bars. For the loading shown, compute the forces in
members FI, FJ, EJ, EK, and ER. Use a combina-
tion of methods if desired.

Ans. FI � ER � 0, FJ � 7.81 kN T
EJ � 3.61 kN C, EK � 22.4 kN C

Problem 4/54
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4/51 Determine the force in member DK of the loaded
overhead sign truss.

Ans. DK � 5 kN T

Problem 4/51

4/52 Determine the force in member DG of the compound
truss. The joints all lie on radial lines subtending an-
gles of 15� as indicated, and the curved members act
as two-force members. Distance � � � R.

Ans. DG � 0.569L C

Problem 4/52

4/53 Determine the force in member CK of the loaded
truss.

Ans. CK � 9290 N C
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4/5 SP A C E TR U S S E S

A space truss is the three-dimensional counterpart of the plane
truss described in the three previous articles. The idealized space truss
consists of rigid links connected at their ends by ball-and-socket joints
(such a joint is illustrated in Fig. 3/8 in Art. 3/4). Whereas a triangle of
pin-connected bars forms the basic noncollapsible unit for the plane
truss, a space truss, on the other hand, requires six bars joined at their
ends to form the edges of a tetrahedron as the basic noncollapsible unit.
In Fig. 4/13a the two bars AD and BD joined at D require a third sup-
port CD to keep the triangle ADB from rotating about AB. In Fig. 4/13b
the supporting base is replaced by three more bars AB, BC, and AC to
form a tetrahedron not dependent on the foundation for its own rigidity.

We may form a new rigid unit to extend the structure with three ad-
ditional concurrent bars whose ends are attached to three fixed joints on
the existing structure. Thus, in Fig. 4/13c the bars AF, BF, and CF are
attached to the foundation and therefore fix point F in space. Likewise
point H is fixed in space by the bars AH, DH, and CH. The three addi-
tional bars CG, FG, and HG are attached to the three fixed points C, F,
and H and therefore fix G in space. The fixed point E is similarly cre-
ated. We see now that the structure is entirely rigid. The two applied
loads shown will result in forces in all of the members. A space truss
formed in this way is called a simple space truss.

Ideally there must be point support, such as that given by a ball-
and-socket joint, at the connections of a space truss to prevent bend-
ing in the members. As in riveted and welded connections for plane
trusses, if the centerlines of joined members intersect at a point, we
can justify the assumption of two-force members under simple tension
and compression.

Statically Determinate Space Trusses

When a space truss is supported externally so that it is statically de-
terminate as an entire unit, a relationship exists between the number of
its joints and the number of its members necessary for internal stability
without redundancy. Because the equilibrium of each joint is specified by
three scalar force equations, there are in all 3j such equations for a space
truss with j joints. For the entire truss composed of m members there are
m unknowns (the tensile or compressive forces in the members) plus six
unknown support reactions in the general case of a statically determinate
space structure. Thus, for any space truss, the equation m � 6 � 3j will be
satisfied if the truss is statically determinate internally. A simple space
truss satisfies this relation automatically. Starting with the initial tetra-
hedron, for which the equation holds, the structure is extended by adding
three members and one joint at a time, thus preserving the equality.

As in the case of the plane truss, this relation is a necessary condi-
tion for stability, but it is not a sufficient condition, since one or more
of the m members can be arranged in such a way as not to contribute
to a stable configuration of the entire truss. If m � 6 � 3j, there are
more members than there are independent equations, and the truss is
statically indeterminate internally with redundant members present.
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Figure 4/13
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If m � 6 � 3j, there is a deficiency of internal members, and the truss
is unstable and subject to collapse under load. This relationship be-
tween the number of joints and the number of members is very helpful
in the preliminary design of a stable space truss, since the configura-
tion is not as obvious as with a plane truss, where the geometry for
statical determinacy is generally quite apparent.

Method of Joints for Space Trusses

The method of joints developed in Art. 4/3 for plane trusses may be
extended directly to space trusses by satisfying the complete vector
equation

(4/1)

for each joint. We normally begin the analysis at a joint where at least one
known force acts and not more than three unknown forces are present.
Adjacent joints on which not more than three unknown forces act may
then be analyzed in turn.

This step-by-step joint technique tends to minimize the number of
simultaneous equations to be solved when we must determine the forces
in all members of the space truss. For this reason, although it is not
readily reduced to a routine, such an approach is recommended. As an
alternative procedure, however, we may simply write 3j joint equations
by applying Eq. 4/1 to all joints of the space frame. The number of un-
knowns will be m � 6 if the structure is noncollapsible when removed
from its supports and those supports provide six external reactions.
If, in addition, there are no redundant members, then the number of
equations (3j) equals the number of unknowns (m � 6), and the entire
system of equations can be solved simultaneously for the unknowns. Be-
cause of the large number of coupled equations, a computer solution is
usually required. With this latter approach, it is not necessary to begin
at a joint where at least one known and no more than three unknown
forces act.

Method of Sections for Space Trusses

The method of sections developed in the previous article may also
be applied to space trusses. The two vector equations

must be satisfied for any section of the truss, where the zero moment
sum will hold for all moment axes. Because the two vector equations are
equivalent to six scalar equations, we conclude that, in general, a sec-
tion should not be passed through more than six members whose forces
are unknown. The method of sections for space trusses is not widely
used, however, because a moment axis can seldom be found which elimi-
nates all but one unknown, as in the case of plane trusses.

Vector notation for expressing the terms in the force and moment
equations for space trusses is of considerable advantage and is used in
the sample problem which follows.

ΣF � 0   and   ΣM � 0

ΣF � 0
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This space truss is used to support
observation equipment in Bottrop,
Germany.
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Sample Problem 4/5

The space truss consists of the rigid tetrahedron ABCD anchored by a ball-
and-socket connection at A and prevented from any rotation about the x-, y-, or
z-axes by the respective links 1, 2, and 3. The load L is applied to joint E, which
is rigidly fixed to the tetrahedron by the three additional links. Solve for the
forces in the members at joint E and indicate the procedure for the determina-
tion of the forces in the remaining members of the truss.

Solution. We note first that the truss is supported with six properly placed
constraints, which are the three at A and the links 1, 2, and 3. Also, with m � 9
members and j � 5 joints, the condition m � 6 � 3j for a sufficiency of members
to provide a noncollapsible structure is satisfied.

The external reactions at A, B, and D can be calculated easily as a first step,
although their values will be determined from the solution of all forces on each
of the joints in succession.

We start with a joint on which at least one known force and not more than
three unknown forces act, which in this case is joint E. The free-body diagram of
joint E is shown with all force vectors arbitrarily assumed in their positive ten-
sion directions (away from the joint). The vector expressions for the three un-
known forces are

Equilibrium of joint E requires

Rearranging terms gives

Equating the coefficients of the i-, j-, and k-unit vectors to zero gives the three
equations

Solving the equations gives us

Ans.

Thus, we conclude that FEB and FEC are compressive forces and FED is tension.
Unless we have computed the external reactions first, we must next analyze

joint C with the known value of FEC and the three unknowns FCB, FCA, and FCD.
The procedure is identical with that used for joint E. Joints B, D, and A are then
analyzed in the same way and in that order, which limits the scalar unknowns to
three for each joint. The external reactions computed from these analyses must,
of course, agree with the values which can be determined initially from an analy-
sis of the truss as a whole.

FEB � �L/�2   FEC � �5L/6   FED � 5L/6

FEC � FED � 0
FEB

�2
 � 

3FEC

5
 � �L   

FEB

�2
 � 

3FED

5
 � 0

��L � 
FEB

�2
 � 

3FEC

5 �i � ��
FEB

�2
 � 

3FED

5 � j � ��
4FEC

5
 � 

4FED

5 �k � 0

�Li � 
FEB

�2
 (�i � j) � 

FEC

5
 (�3i � 4k) � 

FED

5
 (�3j � 4k) � 0

[ΣF � 0]   L � FEB � FEC � FED � 0   or

FEB � 
FEB

�2
 (�i � j), FEC � 

FEC

5
 (�3i � 4k), FED � 

FED

5
 (�3j � 4k)
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Helpful Hints

� Suggestion: Draw a free-body dia-
gram of the truss as a whole and ver-
ify that the external forces acting on
the truss are Ax � Li, Ay � Lj, Az �

(4L/3)k, By � 0, Dy � �Lj, Dz �

�(4L/3)k.

� With this assumption, a negative
numerical value for a force indicates
compression.

�

�
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Problem 4/56

4/57 The space truss in the form of a tetrahedron is sup-
ported by ball-and-socket connections at its base
points A and B and is prevented from rotating about
AB by the vertical tie bar CD. After noting the verti-
cal components of the reactions under the symmetri-
cal truss at A and B, draw a free-body diagram of the
triangular configuration of links BDE and determine
the x-component of the force exerted by the founda-
tion on the truss at B.

Ans. Bx � P

Problem 4/57

D
B

E

b

b
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C
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z

x
b

b
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400 mm

250 mm

4 kN
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PROBLEMS
(In the following problems, use plus for tension and minus
for compression.)

4/55 Determine the forces in members AB, AC, and AD.
Point M is the centroid of triangle BCD.

Ans. TAB � 6.43 kN, TAC � 0, TAD � �6.43 kN

Problem 4/55

4/56 The base of an automobile jackstand forms an equi-
lateral triangle of side length 250 mm and is cen-
tered under the collar A. Model the structure as one
with a ball and socket at each joint and determine
the forces in members BC, BD, and CD. Neglect any
horizontal reaction components under the feet B, C,
and D.

2 m

M

D

3 m

4 kN

C

B

A

2 m

z

y

x

2 m
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4/58 The rectangular space truss 16 m in height is
erected on a horizontal square base 12 m on a side.
Guy wires are attached to the structure at E and G
as shown and are tightened until the tension T in
each wire is 9 kN. Calculate the force F in each of
the diagonal members.

Problem 4/58

4/59 The tetrahedral space truss has a horizontal base
ABC in the form of an isosceles triangle and legs AD,
BD, and CD which support the mass m from point D.
Each vertex of the base is suspended by a vertical
wire from an overhead support. Calculate the forces
induced in members AC and AB.

Ans. FAC � FAB �

Problem 4/59
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4/60 For the space truss shown, check the sufficiency of
the supports and also the number of and arrange-
ment of the members to ensure statical determinacy,
both external and internal. Determine the forces in
members AE, BE, BF, and CE.

Problem 4/60

4/61 Determine the force in member BD of the regular
pyramid with square base.

Ans. DB � �2.00L

Problem 4/61

A

B

C

L

E

D

2L

5a
5a

6a

x
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E
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A
a

a

a

1.5a
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4/64 The pyramidal truss section BCDEF is symmetric
about the vertical x-z plane as shown. Cables AE,
AF, and AB support a 5-kN load. Determine the
force in member BE.

Problem 4/64

4/65 The lengthy boom of an overhead construction
crane, a portion of which is shown, is an example of
a periodic structure—one which is composed of
repeated and identical structural units. Use the
method of sections to find the forces in members FJ
and GJ.

Ans. FJ � 0, GJ � �70.8 kN

Problem 4/65
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4/62 A space truss is being designed with the elements
shown. How many more members are needed to
make the truss stable internally? Name the members
(by specifying their end points) which would produce
one possible configuration of internal stability.

Problem 4/62

4/63 The space truss shown is secured to the fixed sup-
ports at A, B, and E and is loaded by the force L
which has equal x- and y-components but no vertical
z-component. Show that there is a sufficient number
of members to provide internal stability and that
their placement is adequate for this purpose. Next
determine the forces in members CD, BC, and CE.

Ans. FBC � FCD � 0, FCE �

Problem 4/63
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4/66 A space truss consists of two pyramids on identical
square bases in the horizontal x-y plane with com-
mon side DG. The truss is loaded at the vertex A by
the downward force L and is supported by the verti-
cal reactions shown at its corners. All members ex-
cept the two base diagonals are of the same length b.
Take advantage of the two vertical planes of symme-
try and determine the forces in AB and DA. (Note
that link AB prevents the two pyramids from hing-
ing about DG.)

Ans. AB �

DA � �
�2L

8

�
�2L

4
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Problem 4/66
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4/6 FR A M E S A N D MA C H I N E S

A structure is called a frame or machine if at least one of its individ-
ual members is a multiforce member. A multiforce member is defined as
one with three or more forces acting on it, or one with two or more
forces and one or more couples acting on it. Frames are structures
which are designed to support applied loads and are usually fixed in po-
sition. Machines are structures which contain moving parts and are de-
signed to transmit input forces or couples to output forces or couples.

Because frames and machines contain multiforce members, the
forces in these members in general will not be in the directions of the
members. Therefore, we cannot analyze these structures by the meth-
ods developed in Arts. 4/3, 4/4, and 4/5 because these methods apply to
simple trusses composed of two-force members where the forces are in
the directions of the members.

Interconnected Rigid Bodies with Multiforce Members

In Chapter 3 we discussed the equilibrium of multiforce bodies, but
we concentrated on the equilibrium of a single rigid body. In this present
article we focus on the equilibrium of interconnected rigid bodies which in-
clude multiforce members. Although most such bodies may be analyzed as
two-dimensional systems, there are numerous examples of frames and
machines which are three-dimensional.

The forces acting on each member of a connected system are found
by isolating the member with a free-body diagram and applying the
equations of equilibrium. The principle of action and reaction must be
carefully observed when we represent the forces of interaction on the
separate free-body diagrams. If the structure contains more members or
supports than are necessary to prevent collapse, then, as in the case of
trusses, the problem is statically indeterminate, and the principles of
equilibrium, although necessary, are not sufficient for solution. Al-
though many frames and machines are statically indeterminate, we will
consider in this article only those which are statically determinate.

If the frame or machine constitutes a rigid unit by itself when re-
moved from its supports, like the A-frame in Fig. 4/14a, the analysis is
best begun by establishing all the forces external to the structure
treated as a single rigid body. We then dismember the structure and
consider the equilibrium of each part separately. The equilibrium equa-
tions for the several parts will be related through the terms involving
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Figure 4/14
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the forces of interaction. If the structure is not a rigid unit by itself but
depends on its external supports for rigidity, as illustrated in Fig. 4/14b,
then the calculation of the external support reactions cannot be com-
pleted until the structure is dismembered and the individual parts are
analyzed.

Force Representation and Free-Body Diagrams

In most cases the analysis of frames and machines is facilitated by
representing the forces in terms of their rectangular components. This
is particularly so when the dimensions of the parts are given in mutu-
ally perpendicular directions. The advantage of this representation is
that the calculation of moment arms is simplified. In some three-dimen-
sional problems, particularly when moments are evaluated about axes
which are not parallel to the coordinate axes, use of vector notation is
advantageous.

It is not always possible to assign the proper sense to every force or
its components when drawing the free-body diagrams, and it becomes
necessary to make an arbitrary assignment. In any event, it is absolutely
necessary that a force be consistently represented on the diagrams for in-
teracting bodies which involve the force in question. Thus, for two bod-
ies connected by the pin A, Fig. 4/15a, the force components must be
consistently represented in opposite directions on the separate free-body
diagrams.

For a ball-and-socket connection between members of a space
frame, we must apply the action-and-reaction principle to all three com-
ponents as shown in Fig. 4/15b. The assigned directions may prove to be
wrong when the algebraic signs of the components are determined upon
calculation. If Ax, for instance, should turn out to be negative, it is actu-
ally acting in the direction opposite to that originally represented. Ac-
cordingly, we would need to reverse the direction of the force on both
members and to reverse the sign of its force terms in the equations. Or
we may leave the representation as originally made, and the proper
sense of the force will be understood from the negative sign. If we
choose to use vector notation in labeling the forces, then we must be
careful to use a plus sign for an action and a minus sign for the corre-
sponding reaction, as shown in Fig. 4/16.

We may occasionally need to solve two or more equations simulta-
neously in order to separate the unknowns. In most instances, however,
we can avoid simultaneous solutions by careful choice of the member or
group of members for the free-body diagram and by a careful choice of
moment axes which will eliminate undesired terms from the equations.
The method of solution described in the foregoing paragraphs is illus-
trated in the following sample problems.
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Sample Problem 4/6

The frame supports the 400-kg load in the manner shown. Neglect the
weights of the members compared with the forces induced by the load and com-
pute the horizontal and vertical components of all forces acting on each of the
members.

Solution. We observe first that the three supporting members which consti-
tute the frame form a rigid assembly that can be analyzed as a single unit. We
also observe that the arrangement of the external supports makes the frame sta-
tically determinate.

From the free-body diagram of the entire frame we determine the external
reactions. Thus,

Next we dismember the frame and draw a separate free-body diagram of
each member. The diagrams are arranged in their approximate relative positions
to aid in keeping track of the common forces of interaction. The external reac-
tions just obtained are entered onto the diagram for AD. Other known forces are
the 3.92-kN forces exerted by the shaft of the pulley on the member BF, as ob-
tained from the free-body diagram of the pulley. The cable tension of 3.92 kN is
also shown acting on AD at its attachment point.

Next, the components of all unknown forces are shown on the diagrams.
Here we observe that CE is a two-force member. The force components on CE
have equal and opposite reactions, which are shown on BF at E and on AD at C.
We may not recognize the actual sense of the components at B at first glance, so
they may be arbitrarily but consistently assigned.

The solution may proceed by use of a moment equation about B or E for
member BF, followed by the two force equations. Thus,

Ans.

Ans.

Ans.

Positive numerical values of the unknowns mean that we assumed their direc-
tions correctly on the free-body diagrams. The value of Cx � Ex � 13.08 kN ob-
tained by inspection of the free-body diagram of CE is now entered onto the
diagram for AD, along with the values of Bx and By just determined. The equa-
tions of equilibrium may now be applied to member AD as a check, since all the
forces acting on it have already been computed. The equations give

�13.08/2 � 2.62 � 3.92 � 0[ΣFy � 0]

4.32 � 13.08 � 9.15 � 3.92 � 4.32 � 0[ΣFx � 0]

4.32(3.5) � 4.32(1.5) � 3.92(2) � 9.15(1.5) � 0[ΣMC � 0]

Bx � 9.15 kNBx � 3.92 � 13.08 � 0[ΣFx � 0]

 By � 2.62 kNBy � 3.92 � 13.08/2 � 0[ΣFy � 0]

 Ex � 13.08 kN3.92(5) � 12Ex(3) � 0[ΣMB � 0]

Ay � 3.92 kNAy � 3.92 � 0[ΣFy � 0]

Ax � 4.32 kNAx � 4.32 � 0[ΣFx � 0]

 D � 4.32 kN5.5(0.4)(9.81) � 5D � 0[ΣMA � 0]
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Helpful Hints

� We see the frame corresponds to the
category illustrated in Fig. 4/14a.

� Without this observation, the prob-
lem solution would be much longer,
because the three equilibrium equa-
tions for member BF would contain
four unknowns: Bx, By, Ex, and Ey.
Note that the direction of the line
joining the two points of force appli-
cation, and not the shape of the mem-
ber, determines the direction of the
forces acting on a two-force member.
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Sample Problem 4/7

Neglect the weight of the frame and compute the forces acting on all of its
members.

Solution. We note first that the frame is not a rigid unit when removed from
its supports since BDEF is a movable quadrilateral and not a rigid triangle. Con-
sequently the external reactions cannot be completely determined until the indi-
vidual members are analyzed. However, we can determine the vertical
components of the reactions at A and C from the free-body diagram of the frame
as a whole. Thus,

Ans.

Ans.

Next we dismember the frame and draw the free-body diagram of each part.
Since EF is a two-force member, the direction of the force at E on ED and at F on
AB is known. We assume that the 120-N force is applied to the pin as a part of
member BC. There should be no difficulty in assigning the correct directions for
forces E, F, D, and Bx. The direction of By, however, may not be assigned by inspec-
tion and therefore is arbitrarily shown as downward on AB and upward on BC.

Member ED. The two unknowns are easily obtained by

Ans.

Ans.

Member EF. Clearly F is equal and opposite to E with the magnitude of 200 N.

Member AB. Since F is now known, we solve for Bx, Ax, and By from

Ans.

Ans.

Ans.

The minus sign shows that we assigned By in the wrong direction.

Member BC. The results for Bx, By, and D are now transferred to BC, and the
remaining unknown Cx is found from

Ans.

We may apply the remaining two equilibrium equations as a check. Thus,

(120 � 60)(1.0) � (�80)(0.75) � 0[ΣMC � 0]

400 � (�80) � 400(4/5) � 0[ΣFy � 0]

Cx � 300 N120 � 400(3/5) � 60 � Cx � 0[ΣFx � 0]

 By � �80 N200(4/5) � 240 � By � 0[ΣFy � 0]

 Ax � 60 NAx � 60 � 200(3/5) � 0[ΣFx � 0]

 Bx � 60 N200(3/5)(0.5) � Bx(1.0) � 0[ΣMA � 0]

 D � 400 ND � 200 � 200 � 0[ΣF � 0]

 E � 200 N200(0.3) � 0.3E � 0[ΣMD � 0]

 Cy � 400 NCy � 200(4/5) � 240 � 0[ΣFy � 0]

 Ay � 240 N200(0.3) � 120(0.1) � 0.750Ay � 0[ΣMC � 0]
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500 mm

120 N

CA

E

F

B

D
200 N

300
mm

500 mm

750 mm

300
mm

120 N
3

4

200 N

x

y

Ax
Cx

Ay Cy

3

3

3

4

4

4

x

y

Cx

F

F

Ax

By

Bx Bx

By

Ay = 240 N Cy = 400 N

120 N

D

D

E

E

200 N

�

�

�

�

Helpful Hints

� We see that this frame corresponds to
the category illustrated in Fig. 4/14b.

� The directions of Ax and Cx are not
obvious initially and can be assigned
arbitrarily to be corrected later if
necessary.

� Alternatively the 120-N force could
be applied to the pin considered a
part of BA, with a resulting change
in the reaction Bx.

� Alternatively we could have re-
turned to the free-body diagram of
the frame as a whole and found Cx.
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Sample Problem 4/8

The machine shown is designed as an overload protection device which re-
leases the load when it exceeds a predetermined value T. A soft metal shear pin
S is inserted in a hole in the lower half and is acted on by the upper half. When
the total force on the pin exceeds its strength, it will break. The two halves then
rotate about A under the action of the tensions in BD and CD, as shown in the
second sketch, and rollers E and F release the eye bolt. Determine the maximum
allowable tension T if the pin S will shear when the total force on it is 800 N.
Also compute the corresponding force on the hinge pin A.

Solution. Because of symmetry we analyze only one of the two hinged mem-
bers. The upper part is chosen, and its free-body diagram along with that for the
connection at D is drawn. Because of symmetry the forces at S and A have no 
x-components. The two-force members BD and CD exert forces of equal magni-
tude B � C on the connection at D. Equilibrium of the connection gives

From the free-body diagram of the upper part we express the equilibrium of
moments about point A. Substituting S � 800 N and the expression for B gives

Substituting sin �/cos � � tan � � 5/12 and solving for T give

Ans.

Finally, equilibrium in the y-direction gives us

Ans.A � 492 N  800 � 1477
2(12/13)

 5
13

 � A � 0

S � B sin � � A � 0[ΣFy � 0]

T � 1477 N   or   T � 1.477 kN

T�25 � 
5(36)
2(12)

 � 13� � 28 800

T
2 cos �

 (cos �)(50) � T
2 cos �

 (sin �)(36) � 36(800) � T
2

 (26) � 0[ΣMA � 0]

B � T/(2 cos �)
2B cos � � TB cos � � C cos � � T � 0[ΣFx � 0]
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Released
position

Dimensions
in millimeters

50

120

24

36 60

F
A

C

B

TT
D

S

E

T––
2θ

θ x
T

C

B
B

S

A

A

y

�

� Helpful Hints

� It is always useful to recognize sym-
metry. Here it tells us that the forces
acting on the two parts behave as
mirror images of each other with re-
spect to the x-axis. Thus, we cannot
have an action on one member in the
plus x-direction and its reaction on
the other member in the negative 
x-direction. Consequently the forces
at S and A have no x-components.

� Be careful not to forget the moment of
the y component of B. Note that our
units here are newton-millimeters.
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Sample Problem 4/9

In the particular position shown, the excavator applies a
20-kN force parallel to the ground. There are two hydraulic
cylinders AC to control the arm OAB and a single cylinder
DE to control arm EBIF. (a) Determine the force in the hy-
draulic cylinders AC and the pressure pAC against their pis-
tons, which have an effective diameter of 95 mm. (b) Also
determine the force in hydraulic cylinder DE and the pres-
sure pDE against its 105-mm-diameter piston. Neglect the
weights of the members compared with the effects of the 20-
kN force.

Solution. (a) We begin by constructing a free-body diagram of the entire arm
assembly. Note that we include only the dimensions necessary for this portion of
the problem—details of the cylinders DE and GH are unnecessary at this time.

Ans.

Ans.

(b) For cylinder DF, we “cut” the assembly at a location which makes the desired
cylinder force external to our free-body diagram. This means isolating the verti-
cal arm EBIF along with the bucket and its applied force.

Ans.

Ans.pDE � 
FDE

ADE
 � 88 100

�� 0.1052

4 �
 � 10.18(106) Pa or 10.18 MPa

FDE � 88 100 N or 88.1 kN

�20 000(3.5) � FDE cos 11.31�(0.73) � FDE sin 11.31�(0.4) � 0[ΣMB � 0]

From FAC � pACAAC, pAC � 
FAC

AAC
 � 48 800

�� 0.0952

4 �
 � 6.89(106) Pa or 6.89 MPa

FAC � 48 800 N or 48.8 kN

�20 000(3.95) � 2FAC cos 41.3�(0.68) � 2FAC sin 41.3�(2) � 0[ΣMO � 0]
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0.2 m

3.5 m

0.45 m

0.28 m

0.4 m
0.1 m

0.55 m

F
IH

G

E

B

A
D

O
C

J

0.4 m 0.6 m

2.1 m
0.9 m 1.4 m

20 kN

3.5 m

0.73 m

0.4 m2 m

B

E
D

By

Bx

O

Oy

Ox

FDE
2FAC

β

C

A

α

= tan−1 ( ) = 11.31°0.1 + 0.4––––––––
0.4 + 2.13.95 m

20 kN

0.68 m

= tan−1 ( ) = 41.3°α

β

0.4 + 0.28 + 0.55––––––––––––––
1.4

20 kN

(b)(a)

Helpful Hint

� Recall that force � (pressure)(area).�
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4/69 For an 80-N squeeze on the handles of the pliers, de-
termine the force F applied to the round rod by each
jaw. In addition, calculate the force supported by the
pin at A.

Ans. F � 217 N, A � 297 N

Problem 4/69

4/70 Compute the force supported by the pin at A for the
slip-joint pliers under a grip of 100 N.

Problem 4/70

4/71 Determine the force supported by the roller at E.
Ans. E � 150 N

Problem 4/71

E

F

C

D

A

B
200 N

1.2 m

0.6 m

0.3 m

0.3 m

0.3 m

A

270 mm

60
 m

m

100 N

100 N
45°

35 mm 95 mm
80 N

80 N

A
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PROBLEMS

Introductory Problems

(Unless otherwise instructed, neglect the mass of the
various members and all friction in the problems which
follow.)

4/67 Determine the force in member BD and the forces
supported by all pins in the loaded frame.

Ans. BD � 9.66 kN, A � 8.09 kN
B � D � 9.66 kN

Problem 4/67

4/68 Determine the force supported by each pin of the
loaded truss.

Problem 4/68

R

A

B

C
M

D

45°

30°

A

B

D

C

2.5 kN

45°

15°0.8 m

0.8 m
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4/72 Calculate the magnitude of the force acting on the
pin at D. Pin C is fixed in DE and bears against the
smooth slot in the triangular plate.

Problem 4/72

4/73 Determine the reaction at the roller F for the frame
loaded as shown.

Ans. F � 800 N

Problem 4/73

4/74 Given the values of the load L and dimension R, for
what value of the couple M will the force in link CH
be zero?

Problem 4/74

G

ABC

H

D

F
E

2RR

R R R

M

L

60°

0.3 m

250 N

0.3 m

0.5 m

0.2 m 0.2 m

ED

A B
C

F

160 mm

120 mm

100 N

140 mm

80 mm

A

B

D

C

E
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4/75 The handheld press is useful for such tasks as
squeezing rivets or punching holes. What force P is
applied to the sheet metal at E for the 60-N forces
applied to the handles?

Ans. P � 2050 N

Problem 4/75

4/76 The device shown is used to straighten bowed deck-
ing boards just prior to final nailing to the joists.
There is a lower bracket (not shown) at O which
fixes the part OA to a joist, so that the pivot A may
be considered fixed. For a given force P exerted per-
pendicular to the handle ABC as shown, determine
the corresponding normal force N applied to the
bent board near point B. Neglect friction.

Problem 4/76

175 mm

2°

500 mm

15°

P

O
A

C

B

B

E

D

C

A

60 N

60 N

52 mm

205 mm

55 mm

17 mm

6 mm

27 mm
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Representative Problems

4/79 The wingnut B of the collapsible bucksaw is tight-
ened until the tension in rod AB is 200 N. Determine
the force in the saw blade EF and the magnitude F
of the force supported by pin C.

Ans. EF � 100 N T, F � 300 N

Problem 4/79

4/80 The elements of a floor jack are shown in the figure.
The figure CDFE is a parallelogram. Calculate the
force in the hydraulic cylinder AB corresponding to
the 10-kN load supported as shown. What is the
force in link EF ?

Problem 4/80

C

D

BBBBBBBBBBBBBBBBBBBB

AAAAAAAAAAAAAAAAAAAAAAA

114 222

68.4

60

30

30

10 kN

EEEEEEEEEEEEEEEEEEE

F

Dimensions in millimeters

80 mm

160 mm

25° 25°

A B

D

FE

C
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4/77 The “jaws-of-life” device is utilized by rescuers to
pry apart wreckage, thus helping to free accident
victims. If a pressure of 3.5 MPa is developed behind
the piston P of area 13(103) mm2, determine the ver-
tical force R which is exerted by the jaw tips on the
wreckage for the position shown. Note that link AB
and its counterpart are both horizontal in the figure
for this position.

Ans. R � 5.06 kN

Problem 4/77

4/78 Determine the moment M which must be applied at
A to keep the frame in static equilibrium in the posi-
tion shown. Also calculate the magnitude of the pin
reaction at A.

Problem 4/78

150 kg

M

C D

E

BA

1.5 m

1 m
1 m

1.25 m

60° 60°

31.25
31.25

R

50 25

25

100

100

25

450

R

B
C

A
P

Dimensions in millimeters
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4/81 The device shown is used for lifting 55-gallon drums.
Determine the magnitude of the force exerted at B.

Ans. B � 1.855 kN

Problem 4/81

4/82 Calculate the x- and y-components of the force C
which member BC exerts on member ACD. The ca-
bles are wrapped securely around the two pulleys,
which are fastened together.

Problem 4/82

4/83 Determine the magnitude of the pin reaction at A
and the magnitude and direction of the force reac-
tion at the rollers. The pulleys at C and D are small.

Ans. A � 999 N, F � 314 N up

m = 100 kg

C

A

45°
B

x

y

2 m

2 m
0.25 m

0.5 m

D

D C

B

2.2 kN

A

586 mm

240 mm

90 mm

33 mm293 mm
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Problem 4/83

4/84 If a force F � 15 N is required to release the spring-
loaded clamps, what are the normal reactions at A
and B if F � 0?

Problem 4/84

B
D

F

G

O

C
A

F

E

18
mm

21
mm

32
mm

F

E

0.4 m

60 kg

0.4 m0.4 m

0.5 m

A

D

B
C
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4/86 The ramp is used as passengers board a small com-
muter airplane. The total mass of the ramp and six
passengers is 750 kg with mass center at G. Deter-
mine the force in the hydraulic cylinder AB and the
magnitude of the pin reaction at C.

Problem 4/86

4/87 A small bolt cutter operated by hand for cutting
small bolts and rods is shown in the sketch. For a
hand grip P � 150 N, determine the force Q devel-
oped by each jaw on the rod to be cut.

Ans. Q � 2.7 kN

Problem 4/87

180

Dimensions in millimeters

30

P

P

6020

1210 mm

G

A
B

C

2300 mm

740 mm

605 mm
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4/85 The figure illustrates a common problem associated
with simple structures. Under the loadings L, the
rafters can rotate, the ridge beam at A can lower,
and the walls BC and DE can rotate outward, as
shown in part b of the figure. This phenomenon is
sometimes clearly observed in old wooden farm
structures as a central sagging of the ridge beam
when viewed from the side. A simple remedy is
shown in part a of the figure. A chain or cable is
stretched between fasteners at B and E, and the
turnbuckle F is tightened until a proper tension is
achieved, thereby preventing the outward tilting of
the walls. For given values of the dimension d and
the point loads L (which result from the distributed
loads of the rafter and roofing weights and any addi-
tional loads such as snow), calculate the tension T
required so that there are no outward forces on the
walls at B and E. Assume that the support of the
rafters at the ridge beam is purely horizontal and
that all joints are free to rotate.

Ans. T �

Problem 4/85

12

7

(a)

(b)

A

AL

B F E

C D

L

d––
2

d––
3

d––
6

L L

24
35L
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4/88 The clamp shown in the figure is frequently used in
welding operations. Determine the clamping force
on the two metal pieces at E and the magnitudes of
the forces supported by pins A, B, and D.

Problem 4/88

4/89 The clamp is adjusted so that it exerts a pair of 200-
N compressive forces on the boards between its
swivel grips. Determine the force in the threaded
shaft BC and the magnitude of the pin reaction at D.

Ans. BC � 375 N C, D � 425 N

Problem 4/89

35 35 40

ED

B
A

C

F

10
10

30

Dimensions in millimeters

A

60 N60 N

A

BBBBBBBBB CCCCCCCC

D

E

66
14.414.4

72

7.2
16.8

72

66

Dimensions in millimeters
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4/90 When the crank AB is vertical, the beam CD is hori-
zontal and the cable makes a 20� angle with the hori-
zontal. Compute the moment M required for
equilibrium of the frame.

Problem 4/90

4/91 A 75-N force is applied to the handle OAB of the
cork puller. Determine the extraction force F ex-
erted on the cork.

Ans. F � 227 N

Problem 4/91

4.8 mm

75 N66 mm31 mm

31 mm

9.6 mm

A

C

O B

15°

20°
m = 100 kg

B

A

M

DC

E0.65 m 0.6 m

0.20 m0.5 m

2 m1 m
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4/94 The dual-grip clamp shown in the figure is used to
provide added clamping force with a positive action.
If the vertical screw is tightened to produce a clamp-
ing force of 3 kN and then the horizontal screw is
tightened until the force in the screw at A is dou-
bled, find the total reaction R on the pin at B.

Problem 4/94

4/95 Determine the vertical clamping force at E in terms
of the force P applied to the handle of the toggle
clamp, which holds the workpiece F in place.

Ans. E � 7.2P

Problem 4/95

270 mm 120 mm

P
D B

120 
mm90

mm

120 mm
210 mm

C A

E

F

75
mm

125
mm

A

B
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4/92 The illustration represents the framework for a
storage-shelf unit, with the intermediate shelves not
shown. The variable x represents different bracing
configurations. Determine and plot, over the range 

0 � � 1, the force in the brace EF corresponding

to the applied force P. What happens if x � 0?

Problem 4/92

4/93 The simple crane supports the 3-Mg load. Determine
the tension T in the cable and the magnitude of the
pin reaction at O.

Ans. T � 114.2 kN, O � 113.4 kN

Problem 4/93

3.75

D

B

A

O

C

3 Mg

3.15
0.6

1.2

0.6

Dimensions in meters

C

F

B

h

x
x

h

h

D

E

A

P

x
h
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4/96 Compute the force in link AB of the lifting tongs
which cross without touching.

Problem 4/96

4/97 The elements of a spring-loaded mechanism for a
car-trunk lid are shown in the figure. For the equi-
librium position shown, determine the moment MA

which each of two torsional springs at A must exert
on link AB. The mass of the trunk lid is 18 kg with
mass center at G. The effects of the weights of the
other members may be neglected.

Ans. MA � 9.94 CCW

Problem 4/97

350 mm

205 mm

23 mm

80 mm

15 mm 60 mm

28 mm

G

O

CBA

N � m

540
mm

540
mm

900 mm

400 kg

360 mm

600 mm

720 mm

G

A B

D
C

E

F
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4/98 The machine shown is used for moving heavy items
such as pallets of bricks around construction sites.
For the horizontal boom position shown, determine
the force in each of the two hydraulic cylinders AB.
The mass of the boom is 1500 kg with mass center at
G1, and the mass of the cube of bricks is 2000 kg
with mass center at G2.

Problem 4/98

4/99 The forklift area of the machine of Prob. 4/98 is
shown with additional dimensional detail. Deter-
mine the force in the single hydraulic cylinder CD.
The mass of the cube of bricks is 2000 kg with mass
center at G2. You may neglect the effects of the mass
of the forklift components.

Ans. FCD � 127.8 kN

Problem 4/99

4/100 Determine the vertical clamping force at E in terms
of the force P applied to the handle of the toggle
clamp.

Problem 4/100

80 mm 160 mm
16 mm

12 mm12 mm

12 mm
5 mm

D

E A
C

B

P

835
mm

35 mm

480
mm

C

E
D

735 mm

215 mm

G2

3060 mm1700 mm
740 mm

600 mm

150 mm

890 mm

B

A

O

G1 G2
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4/103 The figure shows a wheel puller which is designed
to remove a V-belt pulley P from its tight-fitting
shaft S by tightening of the central screw. If the
pulley starts to slide off the shaft when the com-
pression in the screw has reached 1.2 kN, calculate
the magnitude of the force supported by each jaw
at A. The adjusting screws D support horizontal
force and keep the side arms parallel with the cen-
tral screw.

Ans. A � 0.626 kN

Problem 4/103

4/104 The elements of a front-hinged automobile-hood
assembly are shown in the figure. The light link-
ages BC and CD and the gas-pressurized strut EF
hold the hood in the open position shown. In this
position, the hood is free to rotate clockwise about
pin O; pin A is locked until the hood has been low-
ered to a nearly closed horizontal position. For a
hood mass of 40 kg with center of mass at G, deter-
mine the minimum compression force C in the
strut which will maintain the open-hood position.
Note that there are two links OA spaced across the
front of the car, but only one set of the remaining
links, located on the inside of the right-front fender.

60
mm

D
D C

P

B

S A

15 mm

90 mm

60 mm
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4/101 The device shown is used to drag loaded wooden
pallets across warehouse floors. The wood board
shown is one of several members that comprise the
base of the pallet. For the 4-kN force applied by a
forklift, determine the magnitude of the force sup-
ported by pin C and the normal gripping forces at A
and B.

Ans. C � 5.46 kN, An � Bn � 3.08 kN

Problem 4/101

4/102 A modification of the pallet puller of Prob. 4/101 is
shown here. For the same net 4-kN force as in
Prob. 4/101, determine the magnitude of the force
supported by pin C and the normal gripping forces
at A and B.

Problem 4/102

B

A

36

2 kN

2 kN

C

EH

DG

F

93 93 93 156

111

Dimensions in millimeters

B

A

36

C

E

D

F

93 93 156

111

4 kN

Dimensions in millimeters
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Problem 4/104

4/105 The elements of a rear suspension for a front-
wheel-drive car are shown in the figure. Determine
the magnitude of the force at each joint if the nor-
mal force F exerted on the tire has a magnitude of
3600 N.

Ans. A � 4550 N, B � 4410 N
C � D � 1898 N, E � F � 5920 N

Problem 4/105

BE

F = 3600 N

A

D

C

F

90 mm

260
mm

165
mm

245 mm

60 mm
220
mm

130 mm

60 mm

A

60°

40°
5°40°

G

B

C

E

D

F
O

75°

250 mm

175 mm

AO = 100 mm

BC = CD = 225 mm

DE = 75 mm
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4/106 A 250-N force is applied to the foot-operated air
pump. The return spring S exerts a 3- mo-
ment on member OBA for this position. Determine
the corresponding compression force C in the cylin-
der BD. If the diameter of the piston in the cylinder
is 45 mm, estimate the air pressure generated for
these conditions. State any assumptions.

Problem 4/106

125

250 N

15°
25

225

Dimensions in millimeters

50

25

100

85

B

A

O
S

D

N � m

c04.qxd  11/6/07  4:17 PM  Page 219



4/109 Determine the compression force C exerted on the
can for an applied force P � 50 N when the can
crusher is in the position shown. Note that there
are two links AB and two links AOD, with one pair
of linkages on each side of the stationary portion of
the crusher. Also, pin B is on the vertical centerline
of the can. Finally, note that small square projec-
tions E of the moving jaw move in recessed slots of
the fixed frame.

Ans. C � 249 N

Problem 4/109

4/110 Determine the compression force C exerted on the
can for an applied force P � 50 N when the can
crusher is in the position shown. Point B is cen-
tered on the bottom of the can.

Problem 4/110
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4/107 The truck shown is used to deliver food to aircraft.
The elevated unit has a mass of 1000 kg with cen-
ter of mass at G. Determine the required force in
the hydraulic cylinder AB.

Ans. FAB � 32.9 kN

Problem 4/107

4/108 A lifting device for transporting 135-kg steel drums
is shown. Calculate the magnitude of the force ex-
erted on the drum at E and F.

Problem 4/108
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4/111 Determine the force in cylinder AB due to the com-
bined weight of the bucket and operator. The com-
bined mass is 180 kg with mass center at G.

Ans. FAB � 9200 N

Problem 4/111

4/112 Additional detail in the bucket area of the cherry-
picker of Prob. 4/111 is given in the figure. Solve
for the force in cylinder HJ due to the effects of the
180-kg combined mass of the bucket and operator,
with mass center at G.

Problem 4/112
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4/113 The car hoist allows the car to be driven onto the
platform, after which the rear wheels are raised. If
the loading from both rear wheels is 6 kN, deter-
mine the force in the hydraulic cylinder AB. Ne-
glect the weight of the platform itself. Member
BCD is a right-angle bell crank pinned to the ramp
at C.

Ans. AB � 15.87 kN C

Problem 4/113

4/114 The aircraft landing gear consists of a spring- and
hydraulically-loaded piston and cylinder D and
the two pivoted links OB and CB. If the gear is
moving along the runway at a constant speed with
the wheel supporting a stabilized constant load of
24 kN, calculate the total force which the pin at A
supports.

Problem 4/114
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Problem 4/116

4/117 An adjustable tow bar connecting the tractor unit
H with the landing gear J of a large aircraft is
shown in the figure. Adjusting the height of the
hook F at the end of the tow bar is accomplished by
the hydraulic cylinder CD activated by a small
hand pump (not shown). For the nominal position
shown of the triangular linkage ABC, calculate the
force P supplied by the cylinder to the pin C to posi-
tion the tow bar. The rig has a total mass of 50 kg
and is supported by the tractor hitch at E.

Ans. P � 298 N
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4/115 Determine the force in the hydraulic cylinder AB
and the magnitude of the pin reaction at O for the
position shown. The bucket and its load have a
combined mass of 2000 kg with center of mass at
G. You may neglect the effect of the weights of the
other members.

Ans. FAB � 84.1 kN, O � 81.4 kN

Problem 4/115

4/116 Consider the additional dimensional detail for the
front-end loader of Prob. 4/115. Determine the
force in the hydraulic cylinder CE. The mass of the
bucket and its load is 2000 kg with center of mass
at G. You may ignore the effects of the weights of
other members.

1250 1250
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B

O

275
325

Dimensions in millimeters

Problem 4/117
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4/118 An automatic window-positioning system for a
greenhouse is shown in the figure. Window OA has
a mass of 50 kg with mass center at G. A motor
(not shown) drives the gear C, which in turn moves
the positioning rack AB. For the window position
shown, determine the motor torque M which must
be supplied to the pinion C. Neglect the weight of
bar AB.

Problem 4/118

4/119 The pruning mechanism of a pole saw is shown as
it cuts a branch S. For the particular position
drawn, the actuating cord is parallel to the pole and
carries a tension of 120 N. Determine the shearing
force P applied to the branch by the cutter and the
total force supported by the pin at E. The force ex-
erted by the light return spring at C is small and
may be neglected.

Ans. P � 1351 N, E � 300 N

Problem 4/119
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4/120 The figure shows a special rig designed to erect ver-
tical sections of a construction tower. The assembly
A has a mass of 1.5 Mg and is elevated by the plat-
form B, which itself has a mass of 2 Mg. The plat-
form is guided up the fixed vertical column by
rollers and is activated by the hydraulic cylinder
CD and links EDF and FH. For the particular posi-
tion shown, calculate the force R exerted by the hy-
draulic cylinder at D and the magnitude of the
force supported by the pin at E.

Problem 4/120
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4/122 In the schematic representation of an actual struc-
ture, T represents a turnbuckle, C and D are non-
thrust-bearing hinges whose axes are along the line
CD, and B, E, and F are ball-and-socket joints. De-
termine the tension T in the turnbuckle and the
force in member EF.

Problem 4/122
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4/121 Determine the force acting on member ABC at con-
nection A for the loaded space frame shown. Each
connection may be treated as a ball-and-socket
joint.

Ans. A � 4.25 kN

Problem 4/121
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4/7 CH A P T E R RE V I E W

In Chapter 4 we have applied the principles of equilibrium to two
classes of problems: (a) simple trusses and (b) frames and machines. No
new theory was needed, since we merely drew the necessary free-body dia-
grams and applied our familiar equations of equilibrium. The structures
dealt with in Chapter 4, however, have given us the opportunity to further
develop our appreciation for a systematic approach to mechanics problems.

The most essential features of the analysis of these two classes of
structures are reviewed in the following statements.

(a) Simple Trusses

1. Simple trusses are composed of two-force members joined at their
ends and capable of supporting tension or compression. Each inter-
nal force, therefore, is always in the direction of the line joining the
endpoints of its member.

2. Simple trusses are built from the basic rigid (noncollapsible) unit of
the triangle for plane trusses and the tetrahedron for space trusses.
Additional units of a truss are formed by adding new members, two
for plane trusses and three for space trusses, attached to existing
joints and joined at their ends to form a new joint.

3. The joints of simple trusses are assumed to be pin connections for
plane trusses and ball-and-socket connections for space trusses.
Thus, the joints can transmit force but not moment.

4. External loads are assumed to be applied only at the joints.

5. Trusses are statically determinate externally when the external
constraints are not in excess of those required to maintain an equi-
librium position.

6. Trusses are statically determinate internally when constructed in
the manner described in item (2), where internal members are not
in excess of those required to prevent collapse.

7. The method of joints utilizes the force equations of equilibrium for
each joint. Analysis normally begins at a joint where at least one
force is known and not more than two forces are unknown for plane
trusses or not more than three forces are unknown for space trusses.

8. The method of sections utilizes a free body of an entire section of a
truss containing two or more joints. In general, the method involves
the equilibrium of a nonconcurrent system of forces. The moment
equation of equilibrium is especially useful when the method of sec-
tions is used. In general, the forces acting on a section which cuts
more than three unknown members of a plane truss cannot be
solved for completely because there are only three independent
equations of equilibrium.

9. The vector representing a force acting on a joint or a section is
drawn on the same side of the joint or section as the member which
transmits the force. With this convention, tension is indicated when
the force arrow is away from the joint or section, and compression is
indicated when the arrow points toward the joint or section.
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10. When the two diagonal members which brace a quadrilateral panel
are flexible members incapable of supporting compression, only the
one in tension is retained in the analysis, and the panel remains
statically determinate.

11. When two joined members under load are collinear and a third
member with a different direction is joined with their connection,
the force in the third member must be zero unless an external force
is applied at the joint with a component normal to the collinear
members.

(b) Frames and Machines

1. Frames and machines are structures which contain one or more
multiforce members. A multiforce member is one which has acting
on it three or more forces, or two or more forces and one or more
couples.

2. Frames are structures designed to support loads, generally under
static conditions. Machines are structures which transform input
forces and moments to output forces and moments and generally in-
volve moving parts. Some structures may be classified as either a
frame or a machine.

3. Only frames and machines which are statically determinate exter-
nally and internally are considered here.

4. If a frame or machine as a whole is a rigid (noncollapsible) unit
when its external supports are removed, then we begin the analysis
by computing the external reactions on the entire unit. If a frame or
machine as a whole is a nonrigid (collapsible) unit when its external
supports are removed, then the analysis of the external reactions
cannot be completed until the structure is dismembered.

5. Forces acting in the internal connections of frames and machines
are calculated by dismembering the structure and constructing a
separate free-body diagram of each part. The principle of action and
reaction must be strictly observed; otherwise, error will result.

6. The force and moment equations of equilibrium are applied to the
members as needed to compute the desired unknowns.
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REVIEW PROBLEMS

4/123 The support apparatus for a power line for a light-
rapid-transit train is shown. If a tension of 2.5 kN
exists in cable EDF, determine the force F sup-
ported by the bolt at B.

Ans. F � 7.39 kN

Problem 4/123

4/124 Determine the force in each member of the loaded
truss.

Problem 4/124

4/125 The specialty tool is used for installing and remov-
ing snap rings. Determine the spreading force ap-
plied at G and H if P � 50 N.

Ans. G � 181.8 N

Problem 4/125
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4/126 Determine the forces in members CH and CF.

Problem 4/126

4/127 Calculate the force in member BG using a free-
body diagram of the rigid member ABC.

Ans. BG � 8 kN C

Problem 4/127

4/128 Show that the force in the horizontal member BD
is independent of its position x within the triangu-
lar truss. Each side of the overall truss supports a
centered vertical load L as shown by the two
dashed vectors, and their loads are then distributed
to the joints as shown by the solid vectors.

Problem 4/128
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4/131 The nose-wheel assembly is raised by the applica-
tion of a torque M to link BC through the shaft at
B. If the arm and wheel AO have a combined mass
of 50 kg with center of mass at G, find the value of
M necessary to lift the wheel when D is directly
under B, at which position angle � is 30�.

Ans. M � 153.3 N � m

Problem 4/131

4/132 Determine the force in member BF of the loaded
truss.

Problem 4/132
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4/129 The basic structural shape and loading of Prob.
4/128 is now treated as the loaded frame shown in
the figure. Determine the force in the horizontal
member BD as a function of its position x within
the frame.

Ans. BD �

Problem 4/129

4/130 Determine the forces in members CH, AH, and CD
of the loaded truss.

Problem 4/130
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4/133 Determine the forces in members AB, BI, and CI of
the simple truss. Note that all curved members are
two-force members.

Ans. AB � 2.26L T, BI � L T, CI � 0.458L T

Problem 4/133

4/134 The structure of Prob. 4/133 is modified in that the
four curved members are replaced by the two mem-
bers AIH and HGF. Instrumentation indicates the
tension in members CH and DH to be 0.5L each.
Determine the forces in members AB, BI, and CI.
Is the problem solvable without the information
about CH?

Problem 4/134
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4/135 An antitorque wrench is designed for use by a
crewman of a spacecraft where he has no stable
platform against which to push as he tightens a
bolt. The pin A fits into an adjacent hole in the
structure which contains the bolt to be turned.
Successive oscillations of the gear and handle unit
turn the socket in one direction through the action
of a ratchet mechanism. The reaction against the
pin A provides the “antitorque” characteristic of
the tool. For a gripping force P � 150 N, determine
the torque M transmitted to the bolt and the exter-
nal reaction R against the pin A normal to the line
AB. (One side of the tool is used for tightening and
the opposite side for loosening a bolt.)

Ans. M � 7.88 R � 137.0 N

Problem 4/135

4/136 Determine the forces in members DM and DN of
the loaded symmetrical truss.

Problem 4/136
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Problem 4/138

4/139 Determine the forces in members AD and DG.
Ans. AD � 0.625L C, DG � 2.5L C

Problem 4/139
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4/137 The depicted structure is under consideration as
the upper portion of a transmission-line tower and
is supported at points F, G, H, and I. Point C is di-
rectly above the center of rectangle FGHI. Deter-
mine the force in member CD.

Ans. CD � 2.4L T

Problem 4/137

4/138 The structure shown is being considered as part of
a large cylindrical vessel which must support exter-
nal loads. Strain-gage instrumentation indicates
that the compressive force in member BE is 0.8L.
Determine the forces in members AB and DE.
Make use of symmetry.
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*4/142 The truck with bed-mounted crane is used in the
delivery of cubes of bricks. For the given position
of the carrier C along the boom, determine and
plot the force F in the hydraulic cylinder AB as a
function of the elevation angle � for 0 � � � 75�.
Find the maximum value of F and the correspond-
ing angle �. Neglect the mass of the boom com-
pared with that of the 1500-kg pallet of bricks.

Problem 4/142

*4/143 The type of marine crane shown is utilized for
both dockside and offshore operations. Determine
and plot the force in member BC as a function of
the boom angle � for 0 � � � 80� and state the
value of this force for � � 40�. Neglect the radius
of all pulleys and the weight of the boom.

Ans. BC � 190.5 kN at � � 40�

Problem 4/143

�4/140 Each of the landing struts for a planet exploration
spacecraft is designed as a space truss symmetrical
about the vertical x-z plane as shown. For a landing
force F � 2.2 kN, calculate the corresponding force
in member BE. The assumption of static equilib-
rium for the truss is permissible if the mass of the
truss is very small. Assume equal loads in the sym-
metrically placed members.

Ans. FBE � 1.620 kN

Problem 4/140

Computer-Oriented Problems*

*4/141 For a given force P on the handle of the toggle
clamp the clamping force C increases to very large
values as the angle � decreases. For P � 120 N de-
termine the relationship between C and � and plot
it as a function of � from � � 2� to � � 30�. Assume
that the shaft slides freely in its guide.

Ans. C � N

Problem 4/141
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*4/146 The lift shown is used to elevate motorcycles dur-
ing manufacture and repair. The hydraulic cylin-
der OM remains at the 60� angle as the elevation
angle � varies. The figures ACDE and FHIJ (J
hidden) are parallelograms. There is a ball-and-
socket joint at M to allow rotation of the frame
BKMNG. If the total load L � 4 kN, determine
and plot the required axial cylinder force R as a
function of � over the range 0 � � � 90�. State the
maximum value of R and the angle at which the
maximum occurs. Over the same range of �, plot
the side force S applied to the cylinder rod at M
and state its maximum absolute value.

Problem 4/146

I

D

C

KKKKKKKK

B EEEEEEEEEEE

AAAAA
OO′

OOOOOOOOOOOO

GGGGGGGGGGGGGGGGG

FFFFFFFFFFFFFFFFFF

MMMMMMM

N
H

L–
4

L–
4

L–
4

L–
4

192

216
540

210
126

060666666600000000606666060°

θθθθθθθθθθθθθθθ

Dimensions in millimeters

232 Chapter  4 Structures

*4/144 Boom OA of the large waterfront crane can rotate
about the vertical member OB. Determine and plot
the forces in members BC and BD as functions of �
over the range �90� � � � 90�. The mass of the
crate is 3 Mg. The 45� elevation angle of the boom
remains constant; the cables for control of boom el-
evation angle have been omitted for clarity.

Problem 4/144

*4/145 A door-opening mechanism is shown in the figure.
The spring-loaded hinges at O provide a moment
KT� which tends to close the door, where � is the
door-opening angle and the torsional spring con-
stant KT � 56.5 N � m/rad. The motor unit at A
provides a variable moment M so that the slowly
opening door is always in quasi-static equilibrium.
Determine the moment M and the pin force at B
as functions of � for the range 0 � � � 90�. State
the value of M for � � 45�.

Ans. M � 32.2 N � m at � � 45�

Problem 4/145
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*4/147 The uniform 30-kg ventilation door OAP is opened
by the mechanism shown. Plot the required force
in the cylinder DE as a function of the door open-
ing angle � over the range 0 � � � �max, where
�max is the maximum opening. Determine the min-
imum and maximum values of this force and the
angles at which these extremes occur. Note that
the cylinder is not horizontal when � � 0.

Ans. (FDE)max � 3580 N at � � 0
(FDE)min � 0 at �max � 65.9�

Problem 4/147

*4/148 The machine shown is used to help load luggage
into airliners. The combined mass of the conveyor
and luggage is 100 kg with mass center at G. De-
termine and plot the force in the hydraulic cylin-
der as a function of � over the range 5� � � � 30�

and state the maximum value over this range.

Problem 4/148
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*4/149 The “jaws of life” device is used by rescuers to pry
apart wreckage. A pressure of 35 MPa (35(106)
N/m2) is developed behind the piston of 50-mm ra-
dius. Begin by determining the prying force R, the
force in link AB, and the horizontal force reaction
at C for the condition shown on the left. Then de-
velop expressions for and plot those quantities as
functions of the jaw angle � (shown on the right)
over the range 0 � � � 45�. State the minimum
value of R and the value of � for which this ex-
treme occurs.

Ans. At � � 0: R � 75 000 N, AB � 211 000 N 
Cx � �85 400 N

Rmin � 49 400 N at � � 23.2�

Problem 4/149
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When forces are continuously distributed over a region of a structure, the cumulative effect of this
distribution must be determined. The designers of high-performance sailboats consider both air-
pressure distributions on the sails and water-pressure distributions on the hull.
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5 DISTRIBUTED
FORCES

5/1 IN T R O D U C T I O N

In the previous chapters we treated all forces as concentrated along
their lines of action and at their points of application. This treatment
provided a reasonable model for those forces. Actually, “concentrated”
forces do not exist in the exact sense, since every external force applied
mechanically to a body is distributed over a finite contact area, however
small.

The force exerted by the pavement on an automobile tire, for in-
stance, is applied to the tire over its entire area of contact, Fig. 5/1a,
which may be appreciable if the tire is soft. When analyzing the forces
acting on the car as a whole, if the dimension b of the contact area is
negligible compared with the other pertinent dimensions, such as the
distance between wheels, then we may replace the actual distributed
contact forces by their resultant R treated as a concentrated force. Even
the force of contact between a hardened steel ball and its race in a
loaded ball bearing, Fig. 5/1b, is applied over a finite though extremely
small contact area. The forces applied to a two-force member of a truss,
Fig. 5/1c, are applied over an actual area of contact of the pin against
the hole and internally across the cut section as shown. In these and
other similar examples we may treat the forces as concentrated when
analyzing their external effects on bodies as a whole.
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If, on the other hand, we want to find the distribution of internal
forces in the material of the body near the contact location, where the
internal stresses and strains may be appreciable, then we must not
treat the load as concentrated but must consider the actual distribution.
This problem will not be discussed here because it requires a knowledge
of the properties of the material and belongs in more advanced treat-
ments of the mechanics of materials and the theories of elasticity and
plasticity.

When forces are applied over a region whose dimensions are not
negligible compared with other pertinent dimensions, then we must ac-
count for the actual manner in which the force is distributed. We do
this by summing the effects of the distributed force over the entire re-
gion using mathematical integration. This requires that we know the
intensity of the force at any location. There are three categories of such
problems.

(1) Line Distribution. When a force is distributed along a line, as in
the continuous vertical load supported by a suspended cable, Fig. 5/2a,
the intensity w of the loading is expressed as force per unit length of
line, newtons per meter (N/m) or pounds per foot (lb/ft).

(2) Area Distribution. When a force is distributed over an area, as
with the hydraulic pressure of water against the inner face of a section
of dam, Fig. 5/2b, the intensity is expressed as force per unit area. This
intensity is called pressure for the action of fluid forces and stress for the
internal distribution of forces in solids. The basic unit for pressure or
stress in SI is the newton per square meter (N/m2), which is also called
the pascal (Pa). This unit, however, is too small for most applications
(6895 Pa � 1 lb/in.2). The kilopascal (kPa), which equals 103 Pa, is more
commonly used for fluid pressure, and the megapascal, which equals 106

Pa, is used for stress. In the U.S. customary system of units, both fluid
pressure and mechanical stress are commonly expressed in pounds per
square inch (lb/in.2).

(3) Volume Distribution. A force which is distributed over the vol-
ume of a body is called a body force. The most common body force is the
force of gravitational attraction, which acts on all elements of mass in a
body. The determination of the forces on the supports of the heavy can-
tilevered structure in Fig. 5/2c, for example, would require accounting
for the distribution of gravitational force throughout the structure. The
intensity of gravitational force is the specific weight �g, where � is the
density (mass per unit volume) and g is the acceleration due to gravity.
The units for �g are (kg/m3)(m/s2) � N/m3 in SI units and lb/ft3 or lb/in.3

in the U.S. customary system.
The body force due to the gravitational attraction of the earth

(weight) is by far the most commonly encountered distributed force.
Section A of this chapter treats the determination of the point in a body
through which the resultant gravitational force acts, and discusses the
associated geometric properties of lines, areas, and volumes. Section B
treats distributed forces which act on and in beams and flexible cables
and distributed forces which fluids exert on exposed surfaces.
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SECTION A CENTERS OF MASS AND CENTROIDS

Art ic le  5/2 Center  of  Mass 237

w
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Figure 5/2

5/2 CE N T E R O F MA S S

Consider a three-dimensional body of any size and shape, having
a mass m. If we suspend the body, as shown in Fig. 5/3, from any
point such as A, the body will be in equilibrium under the action of
the tension in the cord and the resultant W of the gravitational forces
acting on all particles of the body. This resultant is clearly collinear
with the cord. Assume that we mark its position by drilling a hypo-
thetical hole of negligible size along its line of action. We repeat the
experiment by suspending the body from other points such as B and
C, and in each instance we mark the line of action of the resultant
force. For all practical purposes these lines of action will be concur-
rent at a single point G, which is called the center of gravity of the
body.

An exact analysis, however, would account for the slightly differing
directions of the gravity forces for the various particles of the body, be-
cause those forces converge toward the center of attraction of the earth.
Also, because the particles are at different distances from the earth, the
intensity of the force field of the earth is not exactly constant over the
body. As a result, the lines of action of the gravity-force resultants in 
the experiments just described will not be quite concurrent, and there-
fore no unique center of gravity exists in the exact sense. This is of no
practical importance as long as we deal with bodies whose dimensions
are small compared with those of the earth. We therefore assume a uni-
form and parallel force field due to the gravitational attraction of the
earth, and this assumption results in the concept of a unique center of
gravity.

Determining the Center of Gravity

To determine mathematically the location of the center of gravity of
any body, Fig. 5/4a, we apply the principle of moments (see Art. 2/6) to
the parallel system of gravitational forces. The moment of the resultant
gravitational force W about any axis equals the sum of the moments

A B A

A

B B
C

GC CG

W

(a) (b) (c)

W W

Figure 5/3
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about the same axis of the gravitational forces dW acting on all particles
treated as infinitesimal elements of the body. The resultant of the gravi-
tational forces acting on all elements is the weight of the body and is
given by the sum W � � dW. If we apply the moment principle about the
y-axis, for example, the moment about this axis of the elemental weight
is x dW, and the sum of these moments for all elements of the body is 
� x dW. This sum of moments must equal the moment of the sum.
Thus, � � x dW.

With similar expressions for the other two components, we may ex-
press the coordinates of the center of gravity G as

(5/1a)

To visualize the physical moments of the gravity forces appearing in the
third equation, we may reorient the body and attached axes so that the
z-axis is horizontal. It is essential to recognize that the numerator of
each of these expressions represents the sum of the moments, whereas
the product of W and the corresponding coordinate of G represents the
moment of the sum. This moment principle finds repeated use through-
out mechanics.

With the substitution of W � mg and dW � g dm, the expressions
for the coordinates of the center of gravity become

(5/1b)

Equations 5/1b may be expressed in vector form with the aid of Fig.
5/4b, in which the elemental mass and the mass center G are located by

x � 
�  x dm

m   y � 
�  y dm

m   z � 
�  z dm

m

x � 
�x dW

W
  y � 

�  y dW

W
  z � 

�  z dW

W

xW
W x,
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their respective position vectors r � xi � yj � zk and �

Thus, Eqs. 5/1b are the components of the single vector equation

(5/2)

The density � of a body is its mass per unit volume. Thus, the mass
of a differential element of volume dV becomes dm � � dV. If � is not
constant throughout the body but can be expressed as a function of the
coordinates of the body, we must account for this variation when calcu-
lating the numerators and denominators of Eqs. 5/1b. We may then
write these expressions as

(5/3)

Center of Mass versus Center of Gravity

Equations 5/1b, 5/2, and 5/3 are independent of gravitational effects
since g no longer appears. They therefore define a unique point in the
body which is a function solely of the distribution of mass. This point is
called the center of mass, and clearly it coincides with the center of grav-
ity as long as the gravity field is treated as uniform and parallel.

It is meaningless to speak of the center of gravity of a body which is
removed from the gravitational field of the earth, since no gravitational
forces would act on it. The body would, however, still have its unique
center of mass. We will usually refer henceforth to the center of mass
rather than to the center of gravity. Also, the center of mass has a spe-
cial significance in calculating the dynamic response of a body to unbal-
anced forces. This class of problems is discussed at length in Vol. 2
Dynamics.

In most problems the calculation of the position of the center of
mass may be simplified by an intelligent choice of reference axes. In gen-
eral the axes should be placed so as to simplify the equations of the
boundaries as much as possible. Thus, polar coordinates will be useful
for bodies with circular boundaries.

Another important clue may be taken from considerations of sym-
metry. Whenever there exists a line or plane of symmetry in a homoge-
neous body, a coordinate axis or plane should be chosen to coincide with
this line or plane. The center of mass will always lie on such a line or
plane, since the moments due to symmetrically located elements will al-
ways cancel, and the body may be considered composed of pairs of these
elements. Thus, the center of mass G of the homogeneous right-circular
cone of Fig. 5/5a will lie somewhere on its central axis, which is a line of
symmetry. The center of mass of the half right-circular cone lies on its
plane of symmetry, Fig. 5/5b. The center of mass of the half ring in Fig.
5/5c lies in both of its planes of symmetry and therefore is situated on

x � 
�  x� dV

�  � dV
  y � 

�  y� dV

�  � dV
  z � 

�  z� dV

�  � dV

r � 
�  r dm

m

x i � y j � z k.r
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line AB. It is easiest to find the location of G by using symmetry when it
exists.

5/3 CE N T R O I D S O F L I N E S ,  AR E A S ,  A N D VO L U M E S

When the density � of a body is uniform throughout, it will be a
constant factor in both the numerators and denominators of Eqs. 5/3
and will therefore cancel. The remaining expressions define a purely
geometrical property of the body, since any reference to its mass prop-
erties has disappeared. The term centroid is used when the calculation
concerns a geometrical shape only. When speaking of an actual physical
body, we use the term center of mass. If the density is uniform through-
out the body, the positions of the centroid and center of mass are iden-
tical, whereas if the density varies, these two points will, in general, not
coincide.

The calculation of centroids falls within three distinct categories,
depending on whether we can model the shape of the body involved as a
line, an area, or a volume.

(1) Lines. For a slender rod or wire of length L, cross-sectional area
A, and density �, Fig. 5/6, the body approximates a line segment, and 
dm � �A dL. If � and A are constant over the length of the rod, the coor-
dinates of the center of mass also become the coordinates of the centroid
C of the line segment, which, from Eqs. 5/1b, may be written

(5/4)

Note that, in general, the centroid C will not lie on the line. If the rod
lies on a single plane, such as the x-y plane, only two coordinates need to
be calculated.

(2) Areas. When a body of density � has a small but constant thick-
ness t, we can model it as a surface area A, Fig. 5/7. The mass of an ele-
ment becomes dm � �t dA. Again, if � and t are constant over the entire
area, the coordinates of the center of mass of the body also become the
coordinates of the centroid C of the surface area, and from Eqs. 5/1b the
coordinates may be written

(5/5)

The numerators in Eqs. 5/5 are called the first moments of area.* If the
surface is curved, as illustrated in Fig. 5/7 with the shell segment, all
three coordinates will be involved. The centroid C for the curved sur-
face will in general not lie on the surface. If the area is a flat surface in,

x � 
�  x dA

A
  y � 

�  y dA

A
  z � 

�  z dA

A

x � 
�  x dL

L
  y � 

�  y dL

L
  z � 

�  z dL

L
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*Second moments of areas (moments of first moments) appear later in our discussion of
area moments of inertia in Appendix A.
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say, the x-y plane, only the coordinates of C in that plane need to be
calculated.

(3) Volumes. For a general body of volume V and density �, the ele-
ment has a mass dm � � dV. The density � cancels if it is constant over
the entire volume, and the coordinates of the center of mass also become
the coordinates of the centroid C of the body. From Eqs. 5/3 or 5/1b they
become

(5/6)

Choice of Element for Integration

The principal difficulty with a theory often lies not in its concepts
but in the procedures for applying it. With mass centers and centroids
the concept of the moment principle is simple enough; the difficult steps
are the choice of the differential element and setting up the integrals.
The following five guidelines will be useful.

(1) Order of Element. Whenever possible, a first-order differential
element should be selected in preference to a higher-order element so
that only one integration will be required to cover the entire figure.
Thus, in Fig. 5/8a a first-order horizontal strip of area dA � l dy will re-
quire only one integration with respect to y to cover the entire figure.
The second-order element dx dy will require two integrations, first with
respect to x and second with respect to y, to cover the figure. As a further
example, for the solid cone in Fig. 5/8b we choose a first-order element in
the form of a circular slice of volume dV � �r2 dy. This choice requires
only one integration, and thus is preferable to choosing a third-order ele-
ment dV � dx dy dz, which would require three awkward integrations.

(2) Continuity. Whenever possible, we choose an element which can
be integrated in one continuous operation to cover the figure. Thus, the
horizontal strip in Fig. 5/8a would be preferable to the vertical strip in
Fig. 5/9, which, if used, would require two separate integrals because of
the discontinuity in the expression for the height of the strip at x � x1.

(3) Discarding Higher-Order Terms. Higher-order terms may al-
ways be dropped compared with lower-order terms (see Art. 1/7). Thus,
the vertical strip of area under the curve in Fig. 5/10 is given by the

x � 
�  x dV

V
  y � 

�  y dV

V
  z � 

�  z dV

V
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first-order term dA � y dx, and the second-order triangular area 
is discarded. In the limit, of course, there is no error.

(4) Choice of Coordinates. As a general rule, we choose the coordi-
nate system which best matches the boundaries of the figure. Thus, the
boundaries of the area in Fig. 5/11a are most easily described in rectan-
gular coordinates, whereas the boundaries of the circular sector of Fig.
5/11b are best suited to polar coordinates.

(5) Centroidal Coordinate of Element. When a first- or second-
order differential element is chosen, it is essential to use the coordinate
of the centroid of the element for the moment arm in expressing the mo-
ment of the differential element. Thus, for the horizontal strip of area in
Fig. 5/12a, the moment of dA about the y-axis is xc dA, where xc is the 
x-coordinate of the centroid C of the element. Note that xc is not the x
which describes either boundary of the area. In the y-direction for this
element the moment arm yc of the centroid of the element is the same,
in the limit, as the y-coordinates of the two boundaries.

As a second example, consider the solid half-cone of Fig. 5/12b with
the semicircular slice of differential thickness as the element of volume.
The moment arm for the element in the x-direction is the distance xc to
the centroid of the face of the element and not the x-distance to the
boundary of the element. On the other hand, in the z-direction the mo-
ment arm zc of the centroid of the element is the same as the z-coordinate
of the element.

With these examples in mind, we rewrite Eqs. 5/5 and 5/6 in the form

(5/5a)x � 
�  xc dA

A
  y � 

�  yc dA

A
  z � 

�  zc dA

A

1
2dx dy
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and

(5/6a)

It is essential to recognize that the subscript c serves as a reminder that
the moment arms appearing in the numerators of the integral expres-
sions for moments are always the coordinates of the centroids of the
particular elements chosen.

At this point you should be certain to understand clearly the princi-
ple of moments, which was introduced in Art. 2/4. You should recognize
the physical meaning of this principle as it is applied to the system of
parallel weight forces depicted in Fig. 5/4a. Keep in mind the equiva-
lence between the moment of the resultant weight W and the sum (inte-
gral) of the moments of the elemental weights dW, to avoid mistakes in
setting up the necessary mathematics. Recognition of the principle of
moments will help in obtaining the correct expression for the moment
arm xc, yc, or zc of the centroid of the chosen differential element.

Keeping in mind the physical picture of the principle of moments,
we will recognize that Eqs. 5/4, 5/5, and 5/6, which are geometric rela-
tionships, are descriptive also of homogeneous physical bodies, because
the density � cancels. If the density of the body in question is not con-
stant but varies throughout the body as some function of the coordi-
nates, then it will not cancel from the numerator and denominator of
the mass-center expressions. In this event, we must use Eqs. 5/3 as ex-
plained earlier.

Sample Problems 5/1 through 5/5 which follow have been carefully
chosen to illustrate the application of Eqs. 5/4, 5/5, and 5/6 for calculat-
ing the location of the centroid for line segments (slender rods), areas
(thin flat plates), and volumes (homogeneous solids). The five integra-
tion considerations listed above are illustrated in detail in these sample
problems.

Section C/10 of Appendix C contains a table of integrals which in-
cludes those needed for the problems in this and subsequent chapters. A
summary of the centroidal coordinates for some of the commonly used
shapes is given in Tables D/3 and D/4, Appendix D.

x � 
�  xc dV

V
  y � 

�  yc dV

V
  z � 

�  zc dV

V
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Sample Problem 5/1

Centroid of a circular arc. Locate the centroid of a circular arc as shown in
the figure.

Solution. Choosing the axis of symmetry as the x-axis makes � 0. A differ-
ential element of arc has the length dL � r d� expressed in polar coordinates,
and the x-coordinate of the element is r cos �.

Applying the first of Eqs. 5/4 and substituting L � 2�r give

Ans.

For a semicircular arc 2� � �, which gives � 2r/�. By symmetry we see
immediately that this result also applies to the quarter-circular arc when the
measurement is made as shown.

Helpful Hint

� It should be perfectly evident that polar coordinates are preferable to rectan-
gular coordinates to express the length of a circular arc.

x

 x � r sin �
�

 2�rx � 2r2 sin �

 (2�r)x � ��

��
 (r cos �) r d�[Lx � �  x dL]

y
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r dθ
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θ

rr

2r/π

y

x

h

b
x

y

dy

Helpful Hint

� We save one integration here by
using the first-order element of area.
Recognize that dA must be expressed
in terms of the integration variable
y; hence, x � ƒ(y) is required.

Sample Problem 5/2

Centroid of a triangular area. Determine the distance from the base of a
triangle of altitude h to the centroid of its area.

Solution. The x-axis is taken to coincide with the base. A differential strip of
area dA � x dy is chosen. By similar triangles x/(h � y) � b/h. Applying the sec-
ond of Eqs. 5/5a gives

and Ans.

This same result holds with respect to either of the other two sides of the
triangle considered a new base with corresponding new altitude. Thus, the cen-
troid lies at the intersection of the medians, since the distance of this point from
any side is one-third the altitude of the triangle with that side considered the
base.

 y � h
3

 bh
2

 y � �h

0
 y 

b(h � y)
h

 dy � bh2

6
[Ay � �  yc dA]

h

�

�
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Sample Problem 5/3

Centroid of the area of a circular sector. Locate the centroid of the area
of a circular sector with respect to its vertex.

Solution I. The x-axis is chosen as the axis of symmetry, and is therefore
automatically zero. We may cover the area by moving an element in the form of
a partial circular ring, as shown in the figure, from the center to the outer pe-
riphery. The radius of the ring is r0 and its thickness is dr0, so that its area is
dA � 2r0� dr0.

The x-coordinate to the centroid of the element from Sample Problem 5/1 is
xc � r0 sin �/�, where r0 replaces r in the formula. Thus, the first of Eqs. 5/5a
gives

Ans.

Solution II. The area may also be covered by swinging a triangle of differential
area about the vertex and through the total angle of the sector. This triangle,
shown in the illustration, has an area dA � (r/2)(r d�), where higher-order terms
are neglected. From Sample Problem 5/2 the centroid of the triangular element
of area is two-thirds of its altitude from its vertex, so that the x-coordinate to the
centroid of the element is xc � cos �. Applying the first of Eqs. 5/5a gives

and as before Ans.

For a semicircular area 2� � �, which gives � 4r/3�. By symmetry we see
immediately that this result also applies to the quarter-circular area where the
measurement is made as shown.

It should be noted that, if we had chosen a second-order element r0 dr0 d�,
one integration with respect to � would yield the ring with which Solution I
began. On the other hand, integration with respect to r0 initially would give the
triangular element with which Solution II began.

x

 x � 2
3

 r sin �
�

 r2�x � 23r3 sin �

 (r2�)x � ��

��
 (23 r cos �)(12 r2 d�)[Ax � �  xc dA]

2
3 

r

 x � 2
3

 r sin �
�

 r2�x � 23r 

3 sin �

 2�
2�

 (�r2)x � � r

0
 �r0 sin �

� �(2r0� dr0)[Ax � �  xc dA]

y
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Solution I

Helpful Hints

� Note carefully that we must distin-
guish between the variable r0 and
the constant r.

� Be careful not to use r0 as the cen-
troidal coordinate for the element.

x

r

y

α
θ

dθ

α
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Sample Problem 5/4

Locate the centroid of the area under the curve x � ky3 from x � 0 to x � a.

Solution I. A vertical element of area dA � y dx is chosen as shown in the fig-
ure. The x-coordinate of the centroid is found from the first of Eqs. 5/5a. Thus,

Substituting y � (x/k)1/3 and k � a/b3 and integrating give

Ans.

In the solution for from the second of Eqs. 5/5a, the coordinate to the
centroid of the rectangular element is yc � y/2, where y is the height of the strip
governed by the equation of the curve x � ky3. Thus, the moment principle be-
comes

Substituting y � b(x/a)1/3 and integrating give

Ans.

Solution II. The horizontal element of area shown in the lower figure may be
employed in place of the vertical element. The x-coordinate to the centroid of the
rectangular element is seen to be xc � x � � (a � x)/2, which is simply
the average of the coordinates a and x of the ends of the strip. Hence,

The value of is found from

where yc � y for the horizontal strip. The evaluation of these integrals will check
the previous results for and y.x

y �b

0
 (a � x) dy � �b

0
 y(a � x) dy[Ay � �  yc dA]

y

x �b

0
 (a � x) dy � �b

0
 �a � x

2 �(a � x) dy[Ax � �  xc dA]

1
2(a � x)

3ab
4

 y � 3ab2

10
  y � 25 

b

3ab
4

 y � �a

0
 �y

2�y dx[Ay � �  yc dA]

y

3ab
4

 x � 3a2b
7

  x � 47a

x �a

0
 y dx � �a

0
 xy dx[Ax � �  xc dA]
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Helpful Hint

� Note that xc � x for the vertical
element.
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Sample Problem 5/5

Hemispherical volume. Locate the centroid of the volume of a hemisphere
of radius r with respect to its base.

Solution I. With the axes chosen as shown in the figure, � � 0 by symme-
try. The most convenient element is a circular slice of thickness dy parallel to
the x-z plane. Since the hemisphere intersects the y-z plane in the circle y2 � z2 �

r2, the radius of the circular slice is z � The volume of the elemental
slice becomes

The second of Eqs. 5/6a requires

where yc � y. Integrating gives

Ans.

Solution II. Alternatively we may use for our differential element a cylindrical
shell of length y, radius z, and thickness dz, as shown in the lower figure. By ex-
panding the radius of the shell from zero to r, we cover the entire volume. By
symmetry the centroid of the elemental shell lies at its center, so that yc � y/2.
The volume of the element is dV � (2�z dz)(y). Expressing y in terms of z from
the equation of the circle gives y � Using the value of computed
in Solution I for the volume of the hemisphere and substituting in the second of
Eqs. 5/6a give us

Ans.

Solutions I and II are of comparable use since each involves an element of
simple shape and requires integration with respect to one variable only.

Solution III. As an alternative, we could use the angle � as our variable with
limits of 0 and �/2. The radius of either element would become r sin �, whereas
the thickness of the slice in Solution I would be dy � (r d�) sin � and that of the
shell in Solution II would be dz � (r d�) cos �. The length of the shell would be 
y � r cos �.

 y � 38 

r

 � � r

0
 �(r2z � z3) dz � �r4

4

 (23�r3)y � � r

0
 
�r2 � z2

2
 (2�z�r2 � z2) dz[V  y � �  yc dV]

2
3 

�r3��r2 � z2.

2
3�

 

r3
 y � 14�r4   y � 38 

r

y � r

0
 �(r2 � y2) dy � � r

0
 y�(r2 � y2) dy[V y � �  yc dV]

dV � �(r2 � y2) dy

��r2 � y2.

zx
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z

y2 + z2 = r2

yc = y

y

x
dy

dz

r

z

z

yc = y/2

y

y

r

y

z

r

x

r dθ

θ

dθ

Solution I

Solution II

Solution III

z

Helpful Hint

� Can you identify the higher-order el-
ement of volume which is omitted
from the expression for dV?

�
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5/3 Specify the x- and z-coordinates of the center of mass
of the semicylindrical shell.

Ans. � �120 mm, � 43.6 mm

Problem 5/3

5/4 Specify the x-, y-, and z-coordinates of the mass center
of the quadrant of the homogeneous solid cylinder.

Problem 5/4

5/5 Determine the y-coordinate of the centroid of the area
by direct integration.

Ans.

Problem 5/5

R/2

y

x

R

y � 14R
9�

240 mm
z

x

y

120
mm

240 mm

120
mm

x
y

z

zx
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PROBLEMS

Introductory Problems

5/1 Place your pencil on the position of your best visual
estimate of the centroid of the triangular area. Check
the horizontal position of your estimate by referring
to the results of Sample Problem 5/2.

Problem 5/1

5/2 With your pencil make a dot on the position of your
best visual estimate of the centroid of the area of the
circular sector. Check your estimate by using the re-
sults of Sample Problem 5/3.

Problem 5/2

0

r

2

4

6

8

30° 30°

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16
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5/6 Determine the coordinates of the centroid of the
shaded area.

Problem 5/6

5/7 Determine the y-coordinate of the centroid of the area
under the sine curve shown.

Ans.

Problem 5/7

5/8 Determine the coordinates of the centroid of the
shaded area.

Problem 5/8

y

a

b

x = ky2

x

b

a

y

y = a sin

x

  x—–
b

π

y � �a
8

y

a

b

x = ky2

x
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5/9 By direct integration, determine the coordinates of
the centroid of the trapezoidal area.

Ans. � 2.35, 

Problem 5/9

5/10 Find the distance from the vertex of the right-
circular cone to the centroid of its volume.

Problem 5/10

5/11 Determine the x- and y-coordinates of the centroid of
the trapezoidal area.

Ans. ’

Problem 5/11

x

y

b

h

a

y � 
h(2a � b)
3(a � b)

x � a
2 � b2 � ab
3(a � b)

C
h

z–

z

y

x

Slope = 0.3

Slope = 0.6

5

0
0 5

y � 3.56x
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5/15 The mass per unit length of the slender rod varies
with position according to � � �0(1 � x/2), where x is
in meters. Determine the location of the center of
mass of the rod.

Ans.

Problem 5/15

5/16 Determine the coordinates of the centroid of the
shaded area.

Problem 5/16

5/17 Calculate the coordinates of the centroid of the seg-
ment of the circular area.

Ans.

Problem 5/17

y

x

a

x � y � 2a
3(� � 2)

x

y = kx2b

b

y

x 1 m

x � 49 m
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5/12 Determine the x- and y-coordinates of the centroid of
the shaded area.

Problem 5/12

Representative Problems

5/13 Locate the centroid of the shaded area.
Ans. � 2a/5, � 3b/8

Problem 5/13

5/14 Locate the centroid of the shaded area shown.

Problem 5/14

x

y

0

– 3

– 4

– 4y =

3

x2
–––
4

x
a

b

y

x = a 1 –( )y2
—–
b2

yx

x

y = 1 +
x3
—
6

10

1

0 2

y
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5/18 Determine the x-coordinate of the mass center of the
tapered steel rod of length L where the diameter at
the large end is twice the diameter at the small end.

Problem 5/18

5/19 Determine the y-coordinate of the centroid of the
shaded area.

Ans.

Problem 5/19

5/20 Let c l � and determine the x- and y-coordinates of
the centroid of the shaded area.

Problem 5/20

5/21 Determine the x- and y-coordinates of the centroid of
the shaded area shown.

Ans. , y � b

3��
2

 �1�
x � a

3��
2

 � 1�

y

y = ae–bx

a

c0
0 x

b /2

b

b
x

x = y2/b

0
0

y

y � b
2

x
Ly

Dia. = D

Dia. = 2D
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Problem 5/21

5/22 Determine the y-coordinate of the centroid of the
shaded area.

Problem 5/22

5/23 Use the results of Sample Problem 5/3 to compute
the coordinates of the mass center of the portion of
the solid homogeneous cylinder shown.

Ans. � �8.49 mm, � 50 mm

Problem 5/23

100 mm

z

x
y

60 mm

zx � y

y

x = ky2b

a

b

b

x

x

b

a

y

+ = 1
x2
—
a2

y2
—
b2
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5/27 Determine the y-coordinate of the centroid of the
shaded area.

Ans.

Problem 5/27

5/28 Locate the centroid of the area shown in the figure
by direct integration. (Caution: Carefully observe
the proper sign of the radical involved.)

Problem 5/28

5/29 Locate the centroid of the shaded area between the
two curves.

Ans. ,

Problem 5/29

2

2
x

y

0
0

x =
y2
—
2

y = x3
—
4

y � 67x � 24
25

x

a

y

y

x

a

a
2

45°45°

y � 
14�2

9�
 a
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5/24 Determine the coordinates of the centroid of the
shaded area.

Problem 5/24

5/25 Determine the x- and y-coordinates of the centroid of
the shaded area.

Ans. ,

Problem 5/25

5/26 Determine the x- and y-coordinates of the shaded
area.

Problem 5/26

x

y

a
—
2

a

y

x

b
2

b
2

x2

a2
y2

b2+ = 1

a

y � 7b
6(� � 1)

x � a
� � 1

y

x

b

a

y = k|x|3
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5/30 The figure represents a flat piece of sheet metal sym-
metrical about axis A-A and having a parabolic
upper boundary. Choose your own coordinates and
calculate the distance from the base to the center
of gravity of the piece.

Problem 5/30

5/31 Determine the z-coordinate of the centroid of the
volume obtained by revolving the shaded area under
the parabola about the z-axis through 180�.

Ans. � 2a/3

Problem 5/31

5/32 Determine the x-coordinate of the centroid of the
solid spherical segment.

Problem 5/32

x

y
R—
2

R—
2

z

x

x = kx2

b

y
a

z

A

A

30 mm

20 mm

30 mm

h
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5/33 Determine the y-coordinate of the centroid of the
shaded area shown. (Observe the caution cited with
Prob. 5/28.)

Ans. � 0.339a

Problem 5/33

5/34 The thickness of the triangular plate varies linearly
with y from a value t0 along its base y � 0 to 2t0 at 
y � h. Determine the y-coordinate of the center of
mass of the plate.

Problem 5/34

5/35 Calculate the distance measured from the base to
the centroid of the volume of the frustum of the
right-circular cone.

Ans.

Problem 5/35

h

r

z

y

h—
2

h � 11
56h

h

y

x
b

h

t0

2t0

a a

x

y

y
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Problem 5/38

5/39 Locate the mass center of the homogeneous solid
body whose volume is determined by revolving the
shaded area through 360� about the z-axis.

Ans. � 263 mm

Problem 5/39

5/40 Determine the z-coordinate of the mass center of the
homogeneous quarter-spherical shell which has a
radius r.

Ans.

Problem 5/40

x

y

z

r

z � r
2

0
0 z

r

300 mm

200 mm
r = kz3

z

z

r

a a/2

254 Chapter  5 Distr ibuted Forces

5/36 Determine the x-coordinate of the mass center of the
portion of the spherical shell of uniform but small
thickness.

Problem 5/36

5/37 The homogeneous slender rod has a uniform cross
section and is bent into the shape shown. Calculate
the y-coordinate of the mass center of the rod.
(Reminder: A differential arc length is dL �

� )
Ans. � 57.4 mm

Problem 5/37

5/38 Determine the z-coordinate of the centroid of the
volume obtained by revolving the shaded triangular
area about the z-axis through 360�.

100 mm

100 mm

y

x

x = ky2

y
�1 � (dx/dy)2 dy.�(dx)2 � (dy)2

y

x

R—
4 3R–—

4

�
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5/41 Determine the y-coordinate of the centroid of the
plane area shown. Set h � 0 in your result and com-

pare with the result � for a full semicircular

area (see Sample Problem 5/3 and Table D/3). Also

evaluate your result for the conditions h � and 

h �

Problem 5/41

5/42 Determine the x-coordinate of the mass center of the
homogeneous hemisphere with the smaller hemi-
spherical portion removed.

Ans.

Problem 5/42

y

x

z

R––
2

R

x � 45
112 R

h

a

x

y

 h � a
4

: y � 0.562a, h � a
2

: y � 0.705a

 Ans. y � 

2
3

 [a2 � h2]3/2

a2��
2

 � sin�1 ha� � h�a2 � h2

a
2

.

a
4

4a
3�

y
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5/43 Determine the x-coordinate of the mass center of the
solid homogeneous body shown.

Ans. � 1.542R

Problem 5/43

5/44 Determine the x-coordinate of the mass center of the
cylindrical shell of small uniform thickness.

Ans. � 1.583R

Problem 5/44

4R

2R

x

R

x

4R

2R

x

R

x

�

�

�

�
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5/4 CO M P O S I T E BO D I E S A N D F I G U R E S ;  
AP P R O X I M A T I O N S

When a body or figure can be conveniently divided into several parts
whose mass centers are easily determined, we use the principle of mo-
ments and treat each part as a finite element of the whole. Such a body is
illustrated schematically in Fig. 5/13. Its parts have masses m1, m2, m3

with the respective mass-center coordinates in the x-direction.
The moment principle gives

where is the x-coordinate of the center of mass of the whole. Similar
relations hold for the other two coordinate directions.

We generalize, then, for a body of any number of parts and express
the sums in condensed form to obtain the mass-center coordinates

(5/7)

Analogous relations hold for composite lines, areas, and volumes, where
the m’s are replaced by L’s, A’s, and V’s, respectively. Note that if a hole
or cavity is considered one of the component parts of a composite body
or figure, the corresponding mass represented by the cavity or hole is
treated as a negative quantity.

An Approximation Method

In practice the boundaries of an area or volume might not be ex-
pressible in terms of simple geometrical shapes or as shapes which can
be represented mathematically. For such cases we must resort to a
method of approximation. As an example, consider the problem of locat-

X � Σmx
Σm

  Y � 
Σmy
Σm

  Z � Σmz
Σm

X

(m1 � m2 � m3)X � m1x1 � m2x2 � m3x3

x3x2,x1,
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– x3

– x2

 –
X

– x1

m1

m2

m3

G1

GG2
G3

Figure 5/13
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ing the centroid C of the irregular area shown in Fig. 5/14. The area is
divided into strips of width �x and variable height h. The area A of each
strip, such as the one shown in red, is h �x and is multiplied by the coor-
dinates xc and yc of its centroid to obtain the moments of the element of
area. The sum of the moments for all strips divided by the total area of
the strips will give the corresponding centroidal coordinate. A system-
atic tabulation of the results will permit an orderly evaluation of the
total area ΣA, the sums ΣAxc and ΣAyc, and the centroidal coordinates

We can increase the accuracy of the approximation by decreasing
the widths of the strips. In all cases the average height of the strip
should be estimated in approximating the areas. Although it is usually
advantageous to use elements of constant width, it is not necessary. In
fact, we may use elements of any size and shape which approximate the
given area to satisfactory accuracy.

Irregular Volumes

To locate the centroid of an irregular volume, we may reduce the
problem to one of locating the centroid of an area. Consider the volume
shown in Fig. 5/15, where the magnitudes A of the cross-sectional areas
normal to the x-direction are plotted against x as shown. A vertical strip
of area under the curve is A �x, which equals the corresponding element
of volume �V. Thus, the area under the plotted curve represents the vol-
ume of the body, and the x-coordinate of the centroid of the area under
the curve is given by

for the centroid of the actual volume.

x � 
Σ(A �x)xc

ΣA �x
  which equals   x � 

ΣVxc

ΣV

x � 
ΣAxc

ΣA
  y � 

ΣAyc

ΣA
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xc

yc

x

C

y

–x

–y

h

x∆

Figure 5/14

–x

–x

A

x

G

C

x

x∆

V = A   x∆ ∆

x∆
x

A
A

xc

Figure 5/15
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Sample Problem 5/6

Locate the centroid of the shaded area.

Solution. The composite area is divided into the four elementary shapes
shown in the lower figure. The centroid locations of all these shapes may be ob-
tained from Table D/3. Note that the areas of the “holes” (parts 3 and 4) are
taken as negative in the following table:

A
PART mm2 mm mm mm3 mm3

1 12 000 60 50 720 000 600 000
2 3000 140 100/3 420 000 100 000
3 �1414 60 12.73 �84 800 �18 000
4 �800 120 40 �96 000 �32 000

TOTALS 12 790 959 000 650 000

The area counterparts to Eqs. 5/7 are now applied and yield

Ans.

Ans.

Sample Problem 5/7

Approximate the x-coordinate of the volume centroid of a body whose length
is 1 m and whose cross-sectional area varies with x as shown in the figure.

Solution. The body is divided into five sections. For each section, the average
area, volume, and centroid location are determined and entered in the following
table:

Aav Volume V
INTERVAL m2 m3 m m4

0–0.2 3 0.6 0.1 0.060
0.2–0.4 4.5 0.90 0.3 0.270
0.4–0.6 5.2 1.04 0.5 0.520
0.6–0.8 5.2 1.04 0.7 0.728
0.8–1.0 4.5 0.90 0.9 0.810

TOTALS 4.48 2.388

Ans.X � 2.388
4.48

 � 0.533 m�X � ΣV x

ΣV
�

V xx

 Y � 650 000
12 790

 � 50.8 mm�Y � 
ΣAy

ΣA�

 X � 959 000
12 790

 � 75.0 mm�X � ΣAx
ΣA�

yAxAyx
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Helpful Hint

� Note that the shape of the body as a
function of y and z does not affect X.

�

x

y

120

30

30 20 20

20

50

40

40

Dimensions in millimeters

1
4

2

3

0
0

1

2

3

4

5

6

0.2 0.4
x, m

A
, m

2

0.6 0.8 1.0
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Sample Problem 5/8

Locate the center of mass of the bracket-and-shaft combination. The verti-
cal face is made from sheet metal which has a mass of 25 kg/m2. The material of
the horizontal base has a mass of 40 kg/m2, and the steel shaft has a density of
7.83 Mg/m3.

Solution. The composite body may be considered to be composed of the five el-
ements shown in the lower portion of the illustration. The triangular part will be
taken as a negative mass. For the reference axes indicated it is clear by symme-
try that the x-coordinate of the center of mass is zero.

The mass m of each part is easily calculated and should need no further ex-
planation. For Part 1 we have from Sample Problem 5/3

For Part 3 we see from Sample Problem 5/2 that the centroid of the triangular
mass is one-third of its altitude above its base. Measurement from the coordinate
axes becomes

The y- and z-coordinates to the mass centers of the remaining parts should be ev-
ident by inspection. The terms involved in applying Eqs. 5/7 are best handled in
the form of a table as follows:

m
PART kg mm mm

1 0.098 0 21.2 0 2.08
2 0.562 0 �75.0 0 �42.19
3 �0.094 0 �100.0 0 9.38
4 0.600 50.0 �150.0 30.0 �90.00
5 1.476 75.0 0 110.7 0

TOTALS 2.642 140.7 �120.73

Equations 5/7 are now applied and the results are

Ans.

Ans. Z � �120.73
2.642

 � �45.7 mm�Z � Σmz
Σm�

 Y � 140.7
2.642

 � 53.3 mm�Y � 
Σmy

Σm�

kg � mmkg � m
mzmyzy

z � �[150 � 25 � 13 

(75)] � �100 mm

z � 4r
3�

 � 
4(50)

3�
 � 21.2 mm
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y

x

z

40

50 50

50

25

100

150 75

150

Dimensions in millimeters

150

1

2

3

4

5
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5/47 Determine the coordinates of the centroid of the
trapezoidal area shown.

Ans. � 25.3 mm, � 28.0 mm

Problem 5/47

5/48 Determine the x- and y-coordinates of the centroid of
the shaded area.

Problem 5/48

5/49 Determine the y-coordinate of the centroid of the
shaded area in terms of h.

Ans. � 0.412h

Problem 5/49

x

y

h

h h

h/2

Y

y

x

120 mm

240 mm

120 mm

360 mm

60 mm

y

x
60 mm

40 mm

60 
mm

YX
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PROBLEMS

Introductory Problems

5/45 Determine the y-coordinate of the centroid of the
shaded area.

Ans. � 37.1 mm

Problem 5/45

5/46 Calculate the y-coordinate of the centroid of the
shaded area.

Problem 5/46

x

y

32
mm

32
mm

32 mm

74 mm

50 mm

20 mm

y

10 mm

10 mm 20 mm 10 mm

Y
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5/50 Determine the y-coordinate of the centroid of the
shaded area. The triangle is equilateral.

Problem 5/50

5/51 Determine the x- and y-coordinates of the centroid of
the shaded area.

Ans. � � 103.6 mm

Problem 5/51

y

x

192 96

48

96

48

48

48

192

30

30

A

B

Dimensions in millimeters

YX

x

y

60 40 60

20

40

40

Dimensions in millimeters
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5/52 Determine the x- and y-coordinates of the centroid of
the shaded area.

Problem 5/52

5/53 Determine the x- and y-coordinates of the centroid of
the shaded area.

Ans. � 4.02b, � 1.588b

Problem 5/53

x

1.5b

2.5b

y

2b 2b

b

2b 3b

2b

YX

y

x
40 mm

30
mm

50
mm

60 mm

20
mm

40
mm
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5/56 Locate the mass center of the slender rod bent into
the shape shown.

Problem 5/56

5/57 The rigidly connected unit consists of a 2-kg circular
disk, a 1.5-kg round shaft, and a 1-kg square plate.
Determine the z-coordinate of the mass center of the
unit.

Ans. � 70 mm

Problem 5/57

5/58 Determine the height above the base of the centroid
of the cross-sectional area of the beam. Neglect the
fillets.

Problem 5/58

156

35
22343

35

Dimensions in millimeters

312

z

y

x

180 mm

Z

y

x

300 mm
150
mm
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Representative Problems

5/54 By inspection, state the quadrant in which the cen-
troid of the shaded area is located. Then determine
the coordinates of the centroid. The plate center is M.

Problem 5/54

5/55 Determine the distance from the bottom of the
base plate to the centroid of the built-up structural
section shown.

Ans. � 39.3 mm

Problem 5/55

10 10

1010

10 10

10
80

160

Dimensions in millimeters

120

50

H

H

320

320

Dimensions in millimeters

60

60

80

80

x

y

M
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5/59 Determine the x-coordinate of the mass center of the
bracket constructed of uniform steel plate.

Ans. � 0.1975 m

Problem 5/59

5/60 Determine the x- and y-coordinates of the centroid of
the area of Prob. 5/26 by the method of this article.

Problem 5/60

5/61 The homogeneous hemisphere with the smaller
hemispherical portion removed is repeated here
from Prob. 5/42. By the method of this article, deter-
mine the x-coordinate of the mass center.

Ans.

Problem 5/61

y

x

z

R––
2

R

X � 45
112 R

x

y

a
—
2

a

0.2 m

0.15 m

45°

0.3 m
0.3 m0.1 m

0.1 m

x

X
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5/62 The two upper lengths of the welded Y-shaped as-
sembly of uniform slender rods have a mass per
unit length of 0.3 kg/m, while the lower length has
a mass of 0.5 kg/m. Locate the mass center of the
assembly.

Problem 5/62

5/63 Determine the coordinates of the mass center of the
welded assembly of uniform slender rods made from
the same bar stock.

Ans. , ,

Problem 5/63

a a

a

a

y

z

x

Z � �a
6 � �

Y � � 2a
6 � �

X � 3a
6 � �

x

y

45°45°

30 mm

30
 m

m
30 m

m
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5/66 Determine the distance from the bottom of the
base to the mass center of the bracket casting.

Problem 5/66

5/67 An underwater instrument is modeled as shown in
the figure. Determine the coordinates of the centroid
of this composite volume.

Ans. � 38.5 mm, � 13.52 mm, � 0

Problem 5/67

85
mm

125
mm

125
mm85

mm

95 mm

50 mm
15

mm95 mm

60 mm

200 mm

150 mm

z

y

x

ZYX

25 mm

25 mm

25
mm

50 mm

75 mm

75 mm
150 mm

H
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5/64 Determine the x-, y-, and z-coordinates of the mass
center of the sheet-metal bracket whose thickness is
small in comparison with the other dimensions.

Problem 5/64

5/65 Determine the x- and y-coordinates of the centroid of
the shaded area.

Ans. � 133.5 mm, � 97.0 mm

Problem 5/65

120 mm

72 mm 

36 mm

72 mm

72 mm

x

y

30°

YX

1.5b

1.5b

b

b

b
O

b

z

yx
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5/68 Calculate the coordinates of the mass center of the
metal die casting shown.

Problem 5/68

5/69 Determine the dimension h of the rectangular open-
ing in the square plate which will result in the mass
center of the remaining plate being as close to the
upper edge as possible.

Ans. h � 0.586a

Problem 5/69

x

y

h

a

a—
2

a—
2

a—
2

20
30 25 35

Dimensions in millimeters

z

x

y
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5/70 Determine the depth h of the circular hole in the
cube for which the z-coordinate of the mass center
will have the maximum possible value.

Problem 5/70

5/71 An opening is formed in the thin cylindrical shell.
Determine the x-, y-, and z-coordinates of the mass
center of the homogeneous body.

Ans. � �0.509L, � 0.0443R, � �0.01834R

Problem 5/71

5/72 Determine the y-coordinate of the centroid of the
shaded area. Use the result of Prob. 5/41.

Ans. � 0.353 m

Problem 5/72

y

0.3 m

1.35 m

1.5 m

0.3 m

1.35 m

Y

z

x

y
45°

R

L––
8

3L––
8

L––
2

ZYX

x

h

175 mm

175
mm

175
mm

350
mm

175 mm

yz
100
mm

�

�
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5/5 TH E O R E M S O F PA P P U S*

A very simple method exists for calculating the surface area gener-
ated by revolving a plane curve about a nonintersecting axis in the plane
of the curve. In Fig. 5/16 the line segment of length L in the x-y plane
generates a surface when revolved about the x-axis. An element of this
surface is the ring generated by dL. The area of this ring is its circum-
ference times its slant height or dA � 2�y dL. The total area is then

Because the area becomes

(5/8)

where is the y-coordinate of the centroid C for the line of length L.
Thus, the generated area is the same as the lateral area of a right-circular
cylinder of length L and radius 

In the case of a volume generated by revolving an area about a non-
intersecting line in its plane, an equally simple relation exists for find-
ing the volume. An element of the volume generated by revolving the
area A about the x-axis, Fig. 5/17, is the elemental ring of cross-section
dA and radius y. The volume of the element is its circumference times
dA or dV � 2�y dA, and the total volume is

V � 2� �  y dA

y.

y

A � 2�yL

yL � � y dL,

A � 2� �  y dL
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x

L
dL

C

y

y y  –

Figure 5/16

x

y

dA C
A

y
y–

Figure 5/17

*Attributed to Pappus of Alexandria, a Greek geometer who lived in the third century A.D.
The theorems often bear the name of Guldinus (Paul Guldin, 1577–1643), who claimed
original authorship, although the works of Pappus were apparently known to him.
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Because the volume becomes

(5/9)

where is the y-coordinate of the centroid C of the revolved area A.
Thus, we obtain the generated volume by multiplying the generating
area by the circumference of the circular path described by its centroid.

The two theorems of Pappus, expressed by Eqs. 5/8 and 5/9, are use-
ful for determining areas and volumes of revolution. They are also used
to find the centroids of plane curves and plane areas when we know the
corresponding areas and volumes created by revolving these figures
about a nonintersecting axis. Dividing the area or volume by 2� times
the corresponding line segment length or plane area gives the distance
from the centroid to the axis.

If a line or an area is revolved through an angle � less than 2�, we
can determine the generated surface or volume by replacing 2� by � in
Eqs. 5/8 and 5/9. Thus, the more general relations are

(5/8a)

and

(5/9a)

where � is expressed in radians.

V � �yA

A � �yL

y

V � 2�yA

yA � � y dA,
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Sample Problem 5/9

Determine the volume V and surface area A of the complete torus of circular
cross section.

Solution. The torus can be generated by revolving the circular area of radius a
through 360� about the z-axis. With the use of Eq. 5/9a, we have

Ans.

Similarly, using Eq. 5/8a gives

Ans.A � �rL � 2�(R)(2�a) � 4�2Ra

V � �rA � 2�(R)(�a2) � 2�2Ra2

268 Chapter  5 Distr ibuted Forces

Helpful Hint

� We note that the angle � of revolu-
tion is 2� for the complete ring. This
common but special-case result is
given by Eq. 5/9.

Sample Problem 5/10

Calculate the volume V of the solid generated by revolving the 60-mm right-
triangular area through 180� about the z-axis. If this body were constructed of
steel, what would be its mass m?

Solution. With the angle of revolution � � 180�, Eq. 5/9a gives

Ans.

The mass of the body is then

Ans. � 2.21 kg

 m � �V � �7830 
kg

m3�[2.83(105) mm3]� 1 m
1000 mm�

3

V � �rA � �[30 � 13(60)][12(60)(60)] � 2.83(105) mm3

Helpful Hint

� Note that � must be in radians.

R
z

a

60
mm

60
mm

30
mm

x

z

60
mm

60
mm

30
mm

z

r–
CC

z

r = R–

aa

�

�
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PROBLEMS

Introductory Problems

5/73 Using the methods of this article, determine the sur-
face area A and volume V of the body formed by re-
volving the rectangular area through 360� about the
z-axis.

Ans. A � 2640 mm2, V � 3170 mm3

Problem 5/73

5/74 The circular arc is rotated through 360� about the y-
axis. Determine the outer surface area S of the re-
sulting body, which is a portion of a sphere.

Problem 5/74

y

x

a

30°
30°

z

x

y

4 mm

18 mm

6 mm
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5/75 The area of the circular sector is rotated through
180� about the y-axis. Determine the volume of the
resulting body, which is a portion of a sphere.

Ans. V �

Problem 5/75

5/76 Compute the volume V of the solid generated by re-
volving the right triangle about the z-axis through
180�.

Problem 5/76

12 mm

x

z

12 mm

8 mm

y

x

a

30°
30°

�a3

3
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Representative Problems

5/80 The area shown is rotated through 360� about the y-
axis. Determine the volume of the resulting body,
which is a sphere with a significant portion removed.

Problem 5/80

5/81 The water storage tank is a shell of revolution and is
to be sprayed with two coats of paint which has a
coverage of 16 m2 per gallon. The engineer (who re-
members mechanics) consults a scale drawing of the
tank and determines that the curved line ABC has a
length of 10 m and that its centroid is 2.50 m from
the centerline of the tank. How many gallons of
paint will be used for the tank including the vertical
cylindrical column?

Ans. 25.5 liters

Problem 5/81

6 m

A

B

C

2.5 m

y

x

a

45°
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5/77 The body shown in cross section is a half-circular
ring formed by revolving the cross-hatched area 180�

about the z-axis. Determine the surface area A of the
body.

Ans. A � 90 000 mm2

Problem 5/77

5/78 Calculate the volume V of the complete ring of cross
section shown.

Problem 5/78

5/79 Determine the volume V generated by revolving the
quarter-circular area about the z-axis through an
angle of 90�.

Ans. V � (3� � 4)

Problem 5/79

a

z

y

xa

��a3

24 �

30 mm

30 mm

96 mm

z

72 
mm

96 
mm

20

Dimensions in millimeters

602040

40

20

z
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5/82 Determine the total surface area A and volume V of
the complete solid shown in cross section. Determine
the mass of the body if it is constructed of steel.

Problem 5/82

5/83 Calculate the volume V of the rubber gasket formed
by the complete ring of the semicircular cross sec-
tion shown. Also compute the surface area A of the
outside of the ring.

Ans. V � 13.95(104) mm3, A � 1.686(104) mm2

Problem 5/83

5/84 The body shown in cross section is a complete circu-
lar ring formed by revolving the cross-hatched area
about the z-axis. Determine the surface area A and
volume V of the body.

Problem 5/84

z

2b

3b

b

2b

r

z

18 mm

36 mm

z

20 mm 20 mm

10 mm
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5/85 The body shown in cross section is a large neoprene
washer. Compute its surface area A and volume V.

Ans. A � 7290 mm2, V � 24 400 mm3

Problem 5/85

5/86 The two circular arcs AB and BC are revolved about
the vertical axis to obtain the surface of revolution
shown. Compute the area A of the outside of this
surface.

Problem 5/86

5/87 A thin shell, shown in section, has the form gener-
ated by revolving the arc about the z-axis through
360�. Determine the surface area A of one of the two
sides of the shell.

Ans. A � 4�r(R� � r sin �)

Problem 5/87

r

z

α
α

R

50 mm

A

B

C
50 mm

50 mm

5 mm

15 mm 15 mm

z
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5/91 The shaded area is bounded by one half-cycle of a
sine wave and the axis of the sine wave. Determine
the volume generated by completely revolving the
area about the x-axis.

Ans. V � 4bc

Problem 5/91

5/92 Find the volume V of the solid generated by revolv-
ing the shaded area about the z-axis through 90�.

Problem 5/92

x

y

b

a
c

�a � b�
8 �

z

x

y

a

r
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5/88 Calculate the volume formed by completely revolv-
ing the cross-sectional area shown about the z-axis
of symmetry.

Problem 5/88

5/89 Calculate the weight W of the aluminum casting
shown. The solid is generated by revolving the trape-
zoidal area shown about the z-axis through 180�.

Ans. W � 42.7 N

Problem 5/89

5/90 Determine the volume V and total surface area A of
the solid generated by revolving the area shown
through 180� about the z-axis.

Problem 5/90

40 mm
30 mm

z

75 mm

75 mm

z

25 mm

25 mm

50 mm

50 mm

100 mm

200 mm
600 mm
1000 mm

250 mm

z
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5/93 Calculate the mass m of concrete required to con-
struct the arched dam shown. Concrete has a density
of 2.40 Mg/m3.

Ans. m � 1.126(106) Mg

Problem 5/93

A

60°

200 m

A

70 m

10 m

10 m
Section A-A
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5/94 In order to provide sufficient support for the stone
masonry arch designed as shown, it is necessary to
know its total weight W. Use the results of Prob.
5/11 and determine W. The density of stone masonry
is 2.40 Mg/m3.

Problem 5/94

2 m

2 m

60°
8 m

r

1.5 m
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SECTION B SPECIAL TOPICS

274 Chapter  5 Distr ibuted Forces

5/6 BE A M S—EX T E R N A L EF F E C T S

Beams are structural members which offer resistance to bending
due to applied loads. Most beams are long prismatic bars, and the loads
are usually applied normal to the axes of the bars.

Beams are undoubtedly the most important of all structural mem-
bers, so it is important to understand the basic theory underlying
their design. To analyze the load-carrying capacities of a beam we
must first establish the equilibrium requirements of the beam as a
whole and any portion of it considered separately. Second, we must es-
tablish the relations between the resulting forces and the accompany-
ing internal resistance of the beam to support these forces. The first
part of this analysis requires the application of the principles of stat-
ics. The second part involves the strength characteristics of the mater-
ial and is usually treated in studies of the mechanics of solids or the
mechanics of materials.

This article is concerned with the external loading and reactions act-
ing on a beam. In Art. 5/7 we calculate the distribution along the beam
of the internal force and moment.

Types of Beams

Beams supported so that their external support reactions can be cal-
culated by the methods of statics alone are called statically determinate
beams. A beam which has more supports than needed to provide equilib-
rium is statically indeterminate. To determine the support reactions for
such a beam we must consider its load-deformation properties in addi-
tion to the equations of static equilibrium. Figure 5/18 shows examples

Simple

Cantilever

Continuous

Combination

Statically determinate beams Statically indeterminate beams

End-supported cantilever

Fixed 

Figure 5/18
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of both types of beams. In this article we will analyze statically determi-
nate beams only.

Beams may also be identified by the type of external loading they
support. The beams in Fig. 5/18 are supporting concentrated loads,
whereas the beam in Fig. 5/19 is supporting a distributed load. The in-
tensity w of a distributed load may be expressed as force per unit length
of beam. The intensity may be constant or variable, continuous or dis-
continuous. The intensity of the loading in Fig. 5/19 is constant from C
to D and variable from A to C and from D to B. The intensity is discon-
tinuous at D, where it changes magnitude abruptly. Although the inten-
sity itself is not discontinuous at C, the rate of change of intensity dw/dx
is discontinuous.

Distributed Loads

Loading intensities which are constant or which vary linearly are
easily handled. Figure 5/20 illustrates the three most common cases and
the resultants of the distributed loads in each case.

In cases a and b of Fig. 5/20, we see that the resultant load R is rep-
resented by the area formed by the intensity w (force per unit length of
beam) and the length L over which the force is distributed. The resul-
tant passes through the centroid of this area.

In part c of Fig. 5/20, the trapezoidal area is broken into a rectangu-
lar and a triangular area, and the corresponding resultants R1 and R2 of
these subareas are determined separately. Note that a single resultant
could be determined by using the composite technique for finding cen-
troids, which was discussed in Art. 5/4. Usually, however, the determi-
nation of a single resultant is unnecessary.

For a more general load distribution, Fig. 5/21, we must start with a
differential increment of force dR � w dx. The total load R is then the
sum of the differential forces, or

As before, the resultant R is located at the centroid of the area under
consideration. The x-coordinate of this centroid is found by the principle
of moments � xw dx, or

For the distribution of Fig. 5/21, the vertical coordinate of the centroid
need not be found.

Once the distributed loads have been reduced to their equivalent
concentrated loads, the external reactions acting on the beam may be
found by a straightforward static analysis as developed in Chapter 3.

x � 
�  xw dx

R

�Rx

R � �  w dx
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A

x

w

C D

B

Figure 5/19

L/2
R = wL

L

(a)

2L/3

L

(b)

R =    wL1–
2

L/2

L

(c)

R1 = w1L
2L/3

R2 =    (w2 – w1)L1–
2

w1 

w

w

w2

Figure 5/20

  – R

dxx

dR = wdx
x

w

Figure 5/21
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Sample Problem 5/11

Determine the equivalent concentrated load(s) and external reactions for
the simply supported beam which is subjected to the distributed load shown.

Solution. The area associated with the load distribution is divided into the
rectangular and triangular areas shown. The concentrated-load values are deter-
mined by computing the areas, and these loads are located at the centroids of the
respective areas.

Once the concentrated loads are determined, they are placed on the free-
body diagram of the beam along with the external reactions at A and B. Using
principles of equilibrium, we have

Ans.

Ans.RA � 6960 N or 6.96 kN

 RA(10) � 12 000(5) � 4800(2) � 0[ΣMB � 0]

RB � 9840 N or 9.84 kN

12 000(5) � 4800(8) � RB(10) � 0[ΣMA � 0]
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A
8 m

B

  w(x)     

1000 N/m 2024
N/m

x

 w = w0 + kx3

5 m
8 m

1200 N/m 1200 N/m

1600 N/m

(1200) (10) = 12 000 N

(1600) (6) = 4800 N

12 000 N 4800 N

5 m
A

RA RB

A B

B
3 m

1_
2

A B

4 m 6 m

1200 N/m
2800 N/m

4.49 m

Ay

A
Ax B

MA

10 050 N

y

x

Helpful Hint

� Note that it is usually unnecessary
to reduce a given distributed load to
a single concentrated load.

Sample Problem 5/12

Determine the reaction at the support A of the loaded cantilever beam.

Solution. The constants in the load distribution are found to be w0 � 1000
N/m and k � 2 N/m4. The load R is then

The x-coordinate of the centroid of the area is found by

From the free-body diagram of the beam, we have

Ans.

Ans.

Note that Ax � 0 by inspection.

Ay � 10 050 N[ΣFy � 0]

MA � 45 100 N � m

MA � (10 050)(4.49) � 0[ΣMA � 0]

 � 1
10 050

 (500x2 � 25x5)	8
0
 � 4.49 m

 x � 
�  xw dx

R
 � 1

10 050
 �8

0
 x(1000 � 2x3) dx

R � �  w dx � �8

0
 (1000 � 2x3) dx � �1000x � x

4

2 � 
80 � 10 050 N
Helpful Hints

� Use caution with the units of the
constants w0 and k.

� The student should recognize that
the calculation of R and its location 
is simply an application of centroids
as treated in Art. 5/3.

x

�

�

�
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PROBLEMS

Introductory Problems

5/95 Calculate the supporting force RA and moment MA

at A for the loaded cantilever beam.
Ans. RA � 2.4 kN, MA � 14.4 CCW

Problem 5/95

5/96 Calculate the reactions at A and B for the beam sub-
jected to the triangular load distribution.

Problem 5/96

5/97 Determine the reactions at the built-in end of the
beam subjected to the triangular load distribution.

Ans. RA � , MA � CCW

Problem 5/97

A

w0

l

w0 l2

6
w0 l
2

A B 

4.8 kN/m

3 m 3 m

8 m

A
4 m

600 N/m

kN � m
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5/98 Determine the reactions at A and B for the loaded
beam.

Problem 5/98

5/99 Find the reaction at A due to the uniform loading
and the applied couple.

Ans. RA � 6 kN, MA � 3 kN � m CW

Problem 5/99

5/100 Determine the reactions at A for the cantilever
beam subjected to the distributed and concentrated
loads.

Problem 5/100

2 kN

4 kN/m

3 m 1.5 m 1.5 m

A

y

x

A 

2 kN/m

12 kN.m

3 m 3 m

A B

1.2 m1.5 m0.9 m

y

x 2.4 kN/m
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5/104 The beam is subjected to the distributed load and
the couple shown. If M is slowly increased starting
from zero, at what value M0 will contact at B
change from the lower surface to the upper surface?

Problem 5/104

Representative Problems

5/105 Determine the force and moment reactions at A for
the beam which is subjected to the load combina-
tion shown.

Ans. RA � 55 kN, MA � 253 CW

Problem 5/105

5/106 Determine� the force and moment reactions at the
support A of the built-in beam which is subjected to
the sine-wave load distribution.

Problem 5/106

A

w0

Sine wave

l

60 kN/m
A

40 kN.m
24 kN/m

50 kN

1 m 1 m1.5 m 1.5 m

kN � m

A B

y

x

1 m 1 m 1 m

M

1 m

4000 N/m

278 Chapter  5 Distr ibuted Forces

5/101 Determine the reactions at A and B for the beam
subjected to a combination of distributed and point
loads.

Ans. Ax � 750 N, Ay � 3.07 kN, By � 1.224 kN

Problem 5/101

5/102 Calculate the supporting reactions at A and B for
the beam subjected to the two linearly distributed
loads.

Problem 5/102

5/103 Determine the reactions at the supports of the
beam which is loaded as shown.

Ans. RA � 2230 N, RB � 2170 N

Problem 5/103

6 m
1
m

1
m

A
B

800 N/m 400 N/m

4 m 3 m

A B

2 kN/m

10 kN/m
8 kN/m

4 kN/m

A B

1.5 kN
2 kN/m

30°

1.2 m 0.6
m

1.2 m 1.8 m 1.2 m

x

y
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5/107 Determine the reactions at points A and B of the
beam subjected to the elliptical and uniform load
distributions. At which surface, upper or lower, is
the reaction at A exerted?

Ans. A � 5.15 kN, B � 5.37 kN, upper

Problem 5/107

5/108 The cantilever beam is subjected to a parabolic dis-
tribution of load symmetrical about the middle of
the beam. Determine the supporting force RA and
moment MA acting on the beam at A.

Problem 5/108

5/109 Determine the force and moment reactions at the
support A of the cantilever beam subjected to the
load distribution shown.

Ans. RA � w0b, MA � w0b2 CW

Problem 5/109

w = k  x

w0

b b

A

x

w

y

14
15

2
3

A

w0

w

x

l/2 l/2

A

B

3 kN/m

2 m 2 m
1 m

4 m

5 m

3 kN/m
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5/110 A cantilever beam supports the variable load
shown. Calculate the supporting force RA and mo-
ment MA at A.

Problem 5/110

5/111 Determine the reactions at points A and B of the
inclined beam subjected to the vertical load distrib-
ution shown. The value of the load distribution at
the right end of the beam is 5 kN per horizontal
meter.

Ans. A � 2.5 kN, B � 6.61 kN

Problem 5/111

5/112 Determine the reactions at the support for the
beam which is subjected to the combination of uni-
form and parabolic loading distributions.

Problem 5/112

A B

8 kN/m
Parabolic

region

3 m 2 m

A

w = w0 + kx2

w

x
500 N/m

6 m

900 N/m
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5/115 Determine the reactions at the supports of the
beam which is acted on by the combination of uni-
form and parabolic loading distributions.

Ans. RA � RB � 7 kN

Problem 5/115

5/116 The transition between the loads of 10 kN/m and
37 kN/m is accomplished by means of a cubic func-
tion of form w � k0 � k1x � k2x2 � k3x3, the slope of
which is zero at its end points x � 1 m and x � 4 m.
Determine the reactions at A and B.

Ans. RA � 43.1 kN, RB � 74.4 kN

Problem 5/116

A B

2 kN/m
6 kN/m

1 m 1 m 3 m

Parabolic
region

w

x

Vertex

A B

10 kN/m

37 kN/m

1 m 1 m3 m

Cubic
function

w

x

280 Chapter  5 Distr ibuted Forces

5/113 A beam is subjected to the variable loading shown.
Calculate the support reactions at A and B.

Ans. RA � 6.84 kN, RB � 5.76 kN

Problem 5/113

5/114 Determine the reactions at A and B for the beam
subjected to the distributed and concentrated
loads.

Problem 5/114

4 kN
6 kN/m

w = w0 + kx2

2 kN/m

0.6 m 1.4 m 0.4 m 0.6 m

BA

w

x
0.5 mw

A B

w = w0 – kx3

w

x
1200 N/m

6 m

2400 N/m

�
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5/7 BE A M S—IN T E R N A L EF F E C T S

The previous article treated the reduction of a distributed force to
one or more equivalent concentrated forces and the subsequent determi-
nation of the external reactions acting on the beam. In this article we in-
troduce internal beam effects and apply principles of statics to calculate
the internal shear force and bending moment as functions of location
along the beam.

Shear, Bending, and Torsion

In addition to supporting tension or compression, a beam can resist
shear, bending, and torsion. These three effects are illustrated in Fig.
5/22. The force V is called the shear force, the couple M is called the
bending moment, and the couple T is called a torsional moment. These
effects represent the vector components of the resultant of the forces
acting on a transverse section of the beam as shown in the lower part of
the figure.

Consider the shear force V and bending moment M caused by forces
applied to the beam in a single plane. The conventions for positive val-
ues of shear V and bending moment M shown in Fig. 5/23 are the ones
generally used. From the principle of action and reaction we can see
that the directions of V and M are reversed on the two sections. It is fre-
quently impossible to tell without calculation whether the shear and
moment at a particular section are positive or negative. For this reason
it is advisable to represent V and M in their positive directions on the
free-body diagrams and let the algebraic signs of the calculated values
indicate the proper directions.

As an aid to the physical interpretation of the bending couple M,
consider the beam shown in Fig. 5/24 bent by the two equal and opposite
positive moments applied at the ends. The cross section of the beam is
treated as an H-section with a very narrow center web and heavy top
and bottom flanges. For this beam we may neglect the load carried by
the small web compared with that carried by the two flanges. The upper
flange of the beam clearly is shortened and is under compression,
whereas the lower flange is lengthened and is under tension. The resul-
tant of the two forces, one tensile and the other compressive, acting on
any section is a couple and has the value of the bending moment on the
section. If a beam having some other cross-sectional shape were loaded
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V

V

M

T

T

M
V

T

M

Shear

Bending

Torsion

Combined loading

Figure 5/22

+M +M

+V

+V

Figure 5/23

+M +M

Figure 5/24
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in the same way, the distribution of force over the cross section would
be different, but the resultant would be the same couple.

Shear-Force and Bending-Moment Diagrams

The variation of shear force V and bending moment M over the
length of a beam provides information necessary for the design analysis
of the beam. In particular, the maximum magnitude of the bending mo-
ment is usually the primary consideration in the design or selection of a
beam, and its value and position should be determined. The variations
in shear and moment are best shown graphically, and the expressions
for V and M when plotted against distance along the beam give the
shear-force and bending-moment diagrams for the beam.

The first step in the determination of the shear and moment rela-
tions is to establish the values of all external reactions on the beam by
applying the equations of equilibrium to a free-body diagram of the
beam as a whole. Next, we isolate a portion of the beam, either to the
right or to the left of an arbitrary transverse section, with a free-body
diagram, and apply the equations of equilibrium to this isolated portion
of the beam. These equations will yield expressions for the shear force V
and bending moment M acting at the cut section on the part of the beam
isolated. The part of the beam which involves the smaller number of
forces, either to the right or to the left of the arbitrary section, usually
yields the simpler solution.

We should avoid using a transverse section which coincides with the
location of a concentrated load or couple, as such a position represents a
point of discontinuity in the variation of shear or bending moment. Fi-
nally, it is important to note that the calculations for V and M on each
section chosen should be consistent with the positive convention illus-
trated in Fig. 5/23.

General Loading, Shear, and Moment Relationships

For any beam with distributed loads we can establish certain gen-
eral relationships which will aid greatly in the determination of the
shear and moment distributions along the beam. Figure 5/25 represents
a portion of a loaded beam, where an element dx of the beam is isolated.
The loading w represents the force per unit length of beam. At the loca-
tion x the shear V and moment M acting on the element are drawn in
their positive directions. On the opposite side of the element where the
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w = ƒ (x)

w w

x dx

dx

V

M
V + dV

M + dM

Figure 5/25
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coordinate is x � dx, these quantities are also shown in their positive di-
rections. They must, however, be labeled V � dV and M � dM, since V
and M change with x. The applied loading w may be considered constant
over the length of the element, since this length is a differential quan-
tity and the effect of any change in w disappears in the limit compared
with the effect of w itself.

Equilibrium of the element requires that the sum of the vertical
forces be zero. Thus, we have

or

(5/10)

We see from Eq. 5/10 that the slope of the shear diagram must every-
where be equal to the negative of the value of the applied loading. Equa-
tion 5/10 holds on either side of a concentrated load but not at the
concentrated load because of the discontinuity produced by the abrupt
change in shear.

We may now express the shear force V in terms of the loading w by
integrating Eq. 5/10. Thus,

or

In this expression V0 is the shear force at x0 and V is the shear force at x.
Summing the area under the loading curve is usually a simple way to
construct the shear-force diagram.

Equilibrium of the element in Fig. 5/25 also requires that the mo-
ment sum be zero. Summing moments about the left side of the element
gives

The two M’s cancel, and the terms w(dx)2/2 and dV dx may be dropped,
since they are differentials of higher order than those which remain.
This leaves

(5/11)V � dM
dx

M � w dx dx
2

 � (V � dV) dx � (M � dM) � 0

 the loading curve from x0 to x)
 V � V0 � (the negative of the area under

�V

V0

 dV � ��x

x0

 w dx

w � �dV
dx

V � w dx � (V � dV) � 0
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Because of its economical use of
material in achieving bending stiff-
ness, the I-beam is a very common
structural element.
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which expresses the fact that the shear everywhere is equal to the slope
of the moment curve. Equation 5/11 holds on either side of a concen-
trated couple but not at the concentrated couple because of the disconti-
nuity caused by the abrupt change in moment.

We may now express the moment M in terms of the shear V by inte-
grating Eq. 5/11. Thus,

or

In this expression M0 is the bending moment at x0 and M is the bend-
ing moment at x. For beams where there is no externally applied mo-
ment M0 at x0 � 0, the total moment at any section equals the area
under the shear diagram up to that section. Summing the area under
the shear diagram is usually the simplest way to construct the mo-
ment diagram.

When V passes through zero and is a continuous function of x with
dV/dx � 0, the bending moment M will be a maximum or a minimum,
since dM/dx � 0 at such a point. Critical values of M also occur when V
crosses the zero axis discontinuously, which occurs for beams under
concentrated loads.

We observe from Eqs. 5/10 and 5/11 that the degree of V in x is one
higher than that of w. Also M is of one higher degree in x than is V. Con-
sequently, M is two degrees higher in x than w. Thus for a beam loaded
by w � kx, which is of the first degree in x, the shear V is of the second
degree in x and the bending moment M is of the third degree in x.

Equations 5/10 and 5/11 may be combined to yield

(5/12)

Thus, if w is a known function of x, the moment M can be obtained by
two integrations, provided that the limits of integration are properly
evaluated each time. This method is usable only if w is a continuous
function of x.*

When bending in a beam occurs in more than a single plane, we
may perform a separate analysis in each plane and combine the results
vectorially.

d2M
dx2

 � �w

M � M0 � (area under the shear diagram from x0 to x)

�M

M0

 dM � �x

x0

 V dx
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*When w is a discontinuous function of x, it is possible to introduce a special set of expres-
sions called singularity functions which permit writing analytical expressions for shear V
and moment M over an interval which includes discontinuities. These functions are not dis-
cussed in this book.
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Sample Problem 5/13

Determine the shear and moment distributions produced in the simple
beam by the 4-kN concentrated load.

Solution. From the free-body diagram of the entire beam we find the support
reactions, which are

A section of the beam of length x is next isolated with its free-body diagram
on which we show the shear V and the bending moment M in their positive direc-
tions. Equilibrium gives

These values of V and M apply to all sections of the beam to the left of the 4-kN
load.

A section of the beam to the right of the 4-kN load is next isolated with its
free-body diagram on which V and M are shown in their positive directions.
Equilibrium requires

These results apply only to sections of the beam to the right of the 4-kN load.

The values of V and M are plotted as shown. The maximum bending mo-
ment occurs where the shear changes direction. As we move in the positive 
x-direction starting with x � 0, we see that the moment M is merely the
accumulated area under the shear diagram.

 �(2.4)(10 � x) � M � 0  M � 2.4(10 � x)[ΣMR2
 � 0]

 V � 2.4 � 0    V� �2.4 kN[ΣFy � 0]

 M � 1.6x � 0  M � 1.6x[ΣMR1
 � 0]

 1.6 � V � 0    V � 1.6 kN[ΣFy � 0]

R1 � 1.6 kN   R2 � 2.4 kN
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�

4 kN

6 m 4 m

4 kN
y

y

x

V

V

M M

10 – x

x

R1 = 1.6 kN R2 = 2.4 kN

1.6 kN

1.6

0

0

9.6

0 6

2.4 kN

V, kN

M, kN·m
–2.4

10

1060

x, m

x, m

Helpful Hint

� We must be careful not to take our
section at a concentrated load (such
as x � 6 m) since the shear and mo-
ment relations involve discontinu-
ities at such positions.
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Sample Problem 5/14

The cantilever beam is subjected to the load intensity (force per unit length)
which varies as w � w0 sin (�x/l). Determine the shear force V and bending mo-
ment M as functions of the ratio x/l.

Solution. The free-body diagram of the entire beam is drawn first so that the
shear force V0 and bending moment M0 which act at the supported end at x � 0
can be computed. By convention V0 and M0 are shown in their positive mathe-
matical senses. A summation of vertical forces for equilibrium gives

A summation of moments about the left end at x � 0 for equilibrium gives

From a free-body diagram of an arbitrary section of length x, integration of
Eq. 5/10 permits us to find the shear force internal to the beam. Thus,

or in dimensionless form

Ans.

The bending moment is obtained by integration of Eq. 5/11, which gives

or in dimensionless form

Ans.

The variations of V/w0l and M/w0l2 with x/l are shown in the bottom figures.
The negative values of M/w0l2 indicate that physically the bending moment is in
the direction opposite to that shown.

M
w0l2

 � 1� �x
l
 � 1 � 1� sin �x

l �

 M � �
w0l2

�  � 
w0l
�  �x � l

� sin �x
l

 � 0�

 M � M0 � 
w0l
�  �x � l

� sin �x
l �

x

0

�M

M0

 dM � �x

0
 
w0l
�  �1 � cos �x

l � dx[dM � V dx]

V
w0l

 � 1� �1 � cos �x
l �

V � V0 � �w0l
�  cos �x

l �
x

0

  V � 
2w0l

�  � 
w0l
�  �cos �x

l
 � 1�

�V

V0

 dV � ��x

0
 w0 sin �x

l
 dx[dV � �w dx]

  M0 � 
�w0l2

�2
 �sin �x

l
 � �x

l
 cos �x

l �
l

0

 � �
w0l2

�

 �M0 � � l

0
 x(w dx) � 0   M0 � �� l

0
 w0x sin �x

l
 dx[ΣM � 0]

V0 � � l

0
 w dx � 0   V0 � � l

0
 w0 sin �x

l
 dx � 

2w0l
�[ΣFy � 0]
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x

w
w0

l

w

R

x

y

x

x

dx

M0

V0

M0

V0

M

V

0.637

0

0

–0.318

V——
w0l  

M——–
w0 l2

0.20 0.6 0.8 1.0x/l

Helpful Hints

� In this case of symmetry it is clear
that the resultant R � V0 � 2w0l/� of
the load distribution acts at midspan,
so that the moment requirement is
simply M0 � �Rl/2 � �w0l2/�. The
minus sign tells us that physically
the bending moment at x � 0 is oppo-
site to that represented on the free-
body diagram.

� The free-body diagram serves to
remind us that the integration
limits for V as well as for x must be
accounted for. We see that the
expression for V is positive, so that
the shear force is as represented on
the free-body diagram.

�

�
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Sample Problem 5/15

Draw the shear-force and bending-moment diagrams for the loaded beam
and determine the maximum moment M and its location x from the left end.

Solution. The support reactions are most easily obtained by considering the
resultants of the distributed loads as shown on the free-body diagram of the
beam as a whole. The first interval of the beam is analyzed from the free-body di-
agram of the section for 0 � x � 2 m. A summation of vertical forces and a mo-
ment summation about the cut section yield

These values of V and M hold for 0 � x � 2 m and are plotted for that interval in
the shear and moment diagrams shown.

From the free-body diagram of the section for which 2 � x � 4 m, equilib-
rium in the vertical direction and a moment sum about the cut section give

These values of V and M are plotted on the shear and moment diagrams for the
interval 2 � x � 4 m.

The analysis of the remainder of the beam is continued from the free-body
diagram of the portion of the beam to the right of a section in the next interval.
It should be noted that V and M are represented in their positive directions. A
vertical-force summation and a moment summation about the section yield

These values of V and M are plotted on the shear and moment diagrams for the
interval 4 � x � 5m.

The last interval may be analyzed by inspection. The shear is constant at
�1.5 kN, and the moment follows a straight-line relation beginning with zero at
the right end of the beam.

The maximum moment occurs at x � 2.23 m, where the shear curve crosses
the zero axis, and the magnitude of M is obtained for this value of x by substitu-
tion into the expression for M for the second interval. The maximum moment is

Ans.

As before, note that the change in moment M up to any section equals the
area under the shear diagram up to that section. For instance, for x � 2m,

and, as above,  M � 1.233x � 0.0833x3

 M � 0 � �x

0
 (1.233 � 0.25x2) dx[�M � �  V dx]

M � 1.827 kN � m

V � �1.767 kN   and   M � 7.33 � 1.767x

M � �0.667 � 2.23x � 0.50x2

M � 1(x � 2) x � 2
2

 � 1[x � 23(2)] � 1.233x � 0[ΣM � 0]

V � 1(x � 2) � 1 � 1.233 � 0   V � 2.23 � x[ΣFy � 0]

M � (0.25x2) x
3

 � 1.233x � 0   M � 1.233x � 0.0833x3[ΣM � 0]

V � 1.233 � 0.25x2[ΣFy � 0]
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x

1.233 kN
V

M

M

V

1.233 kN

V, kN

M, kN.m
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V

M
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x

x, m
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1.827

0
0

1.5
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5/120 Draw the shear and moment diagrams for the
beam loaded at its center by the couple C.

Problem 5/120

5/121 Draw the shear and moment diagrams for the
beam subjected to the end couple. What is the mo-
ment M at a section 0.5 m to the right of B?

Ans. M � �120 

Problem 5/121

5/122 Draw the shear and moment diagrams for the
loaded beam. What are the values of the shear and
moment at the middle of the beam?

Problem 5/122

5/123 Draw the shear and moment diagrams for the
beam shown and find the bending moment M at
section C.

Ans. MC �

Problem 5/123

A

1 m

C B

1 m

4 kN 5 kN

1 m 1 m
3 kN

1_
3

m

�2.78 kN � m

A B 

1 m 1 m 1 m

2800 N.m
4 kN

A B

2 m 2 m

120 N·m

N � m

A

C

B

l/2 l/2
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PROBLEMS

Introductory Problems

5/117 Determine the shear-force and bending-moment
distributions produced in the beam by the concen-
trated load. What are the values of the shear and
moment at x � l/2?

Ans. V � P, M �

Problem 5/117

5/118 Determine the shear V at a section B between A
and C and the moment M at the support A.

Problem 5/118

5/119 Draw the shear and moment diagrams for the div-
ing board, which supports the 80-kg man poised to
dive. Specify the bending moment with the maxi-
mum magnitude.

Ans. MB �

Problem 5/119

BA

1.2 m

4 m

�2200 N � m

B
A C

1.4 kN 1.8 kN

1.5 m 1.6 m 1.8 m

A

P

2l––
3

l––
3

x

y

�
Pl
6
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Representative Problems

5/124 Construct the bending-moment diagram for the
cantilevered shaft AB of the rigid unit shown.

Problem 5/124

5/125 Determine the shear V and moment M at a section
of the loaded beam 200 mm to the right of A.

Ans. V � 0.15 kN, M � 0.15 

Problem 5/125

5/126 Determine the shear V and moment M in the beam
at a section 2 m to the right of end A.

Problem 5/126

A B 

4.8 kN/m

3 m 3 m

6 kN/m

300 mm 300 mm

A B

kN � m

150 mm

100 mm

75 mm

500 N

150 mm750 N

z

y

x

B
C A
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5/127 Draw the shear and moment diagrams for the can-
tilever beam with the linear loading, repeated here
from Prob. 5/97. Find the maximum magnitude of
the bending moment M.

Ans. 	M	max �

Problem 5/127

5/128 Draw the shear and moment diagrams for the
beam shown. Determine the distance b, measured
from the left end, to the point where the bending
moment is zero between the supports.

Problem 5/128

5/129 Draw the shear and moment diagrams for the
loaded beam and find the maximum magnitude M
of the bending moment.

Ans. M �

Problem 5/129

l

P/l  N/m P

ll

5
6Pl

2 m 1 m

1.5 kN/m

A

w0

l

w0l2

6
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5/133 The resistance of a beam of uniform width to bend-
ing is found to be proportional to the square of the
beam depth y. For the cantilever beam shown the
depth is h at the support. Find the required depth y
as a function of the length x in order for all sec-
tions to be equally effective in their resistance to
bending.

Ans. y �

Problem 5/133

5/134 Determine the maximum bending moment M and
the corresponding value of x in the crane beam and
indicate the section where this moment acts.

Problem 5/134

L

a a
x

l

A B

l

Ly

h

y

x

h�x/l
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5/130 Draw the shear and moment diagrams for the
loaded cantilever beam where the end couple M1 is
adjusted so as to produce zero moment at the fixed
end of the beam. Find the bending moment M at x
� 2 m.

Problem 5/130

5/131 Draw the shear and moment diagrams for the lin-
early loaded simple beam shown. Determine the
maximum magnitude of the bending moment M.

Ans. 	M	max �

Problem 5/131

5/132 The shear force in kilonewtons in a certain beam is
given by V � 33x � 7x3 where x is the distance in
meters measured along the beam. Determine the
corresponding variation with x of the normal load-
ing w in kilonewtons per meter of length. Also de-
termine the bending moment M at x � 1.5 m if the
bending moment at x � 0.5 m is 0.4 .kN � m

l/2 l/2

w0

w0l2

12

2 kN/m

M1

4 m 4 m

x
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5/135 The angle strut is welded to the end C of the I-
beam and supports the 1.6-kN vertical force. Deter-
mine the bending moment at B and the distance x
to the left of C at which the bending moment is
zero. Also construct the moment diagram for the
beam.

Ans. MB � �0.40 x � 0.2 m

Problem 5/135

5/136 Plot the shear and moment diagrams for the beam
loaded with both the distributed and point loads.
What are the values of the shear and moment at 
x � 6 m? Determine the maximum bending mo-
ment Mmax.

Problem 5/136

5/137 Repeat Prob. 5/136, where the 1500-N load has
been replaced by the couple.

Ans. V � �1400 N, M � 0, Mmax � 2800 

Problem 5/137

A B

800 N/m
4.2 kN·mx

2 m 2 m2 m3 m

N � m
4.2-kN � m

A B

800 N/m
1500 N

x

2 m 2 m2 m3 m

A

B

C

450 mm400 mm

200
mm

1.6 kN

kN � m,
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5/138 The beam is subjected to the two similar loadings
shown where the maximum intensity of loading, in
force per unit length, is w0. Derive expressions for
the shear V and moment M in the beam in terms of
the distance x measured from the center of the
beam.

Problem 5/138

5/139 The distributed load decreases linearly from 4 to 2
kN/m in a distance of 2 m along a certain beam in
equilibrium. If the shear force and bending mo-
ment at section A are �3 kN and �2 respec-
tively, calculate the shear force and bending
moment at section B.

Ans. VB � �3 kN, MB � 4/3 

Problem 5/139

5/140 Derive expressions for the shear force V and bend-
ing moment M as functions of x in the cantilever
beam loaded as shown.

Problem 5/140

4000 N/m1000 N/m

3 m

A

y

x

w = w0 + kx2

w

2 m

4 kN/m
2 kN/m

BA

kN � m

kN � m,

l/2

l/2
x

w0

w0

A B
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5/143 The beam supports a uniform unit load w. Deter-
mine the location x of the two supports so as to
minimize the maximum bending moment Mmax in
the beam. Specify Mmax.

Ans. x � 0.207L, Mmax � 0.0214wL2

Problem 5/143

5/144 The curved cantilever beam in the form of a quar-
ter-circular arc supports a load of w N/m applied
along the curve of the beam on its upper surface.
Determine the magnitudes of the torsional moment
T and bending moment M in the beam as functions
of �.

Ans. T �

M � wr2(1 � sin �)

Problem 5/144

θr

w

x

y

wr2��
2

 � � � cos ��

L

w

x x
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5/141 Derive expressions for the shear V and moment M
in terms of x for the cantilever beam of Prob. 5/108
shown again here.

Problem 5/141

5/142 A curved cantilever beam has the form of a quarter
circular arc. Determine the expressions for the shear
V and the bending moment M as functions of �.

Problem 5/142

P

LL

a
V

M

θ θ

A

w0

w

x

l/2 l/2

 M � w0�� l2

16
 � xl

3
 � x

2

2
 � x4

3l2�
 Ans. V � w0� l

3
 � x � 4x3

3l2�

�

�
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5/8 FL E X I B L E CA B L E S

One important type of structural member is the flexible cable which
is used in suspension bridges, transmission lines, messenger cables for
supporting heavy trolley or telephone lines, and many other applica-
tions. To design these structures we must know the relations involving
the tension, span, sag, and length of the cables. We determine these
quantities by examining the cable as a body in equilibrium. In the analy-
sis of flexible cables we assume that any resistance offered to bending is
negligible. This assumption means that the force in the cable is always
in the direction of the cable.

Flexible cables may support a series of distinct concentrated loads,
as shown in Fig. 5/26a, or they may support loads continuously distrib-
uted over the length of the cable, as indicated by the variable-intensity
loading w in 5/26b. In some instances the weight of the cable is negligi-
ble compared with the loads it supports. In other cases the weight of
the cable may be an appreciable load or the sole load and cannot be ne-
glected. Regardless of which of these conditions is present, the equi-
librium requirements of the cable may be formulated in the same
manner.

General Relationships

If the intensity of the variable and continuous load applied to the
cable of Fig. 5/26b is expressed as w units of force per unit of horizontal
length x, then the resultant R of the vertical loading is

R � �  dR � �  w dx

Art ic le  5/8 Flexible  Cables 293

w dx

F1 F2 F3

(a)

(b)

(c)

–x

x

x + dx
T + dT

T

x

y

x

w

R

θ + dθ θ

Figure 5/26
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where the integration is taken over the desired interval. We find the po-
sition of R from the moment principle, so that

The elemental load dR � w dx is represented by an elemental strip of
vertical length w and width dx of the shaded area of the loading dia-
gram, and R is represented by the total area. It follows from the forego-
ing expressions that R passes through the centroid of the shaded area.

The equilibrium condition of the cable is satisfied if each infinitesi-
mal element of the cable is in equilibrium. The free-body diagram of a
differential element is shown in Fig. 5/26c. At the general position x the
tension in the cable is T, and the cable makes an angle � with the hori-
zontal x-direction. At the section x � dx the tension is T � dT, and the
angle is � � d�. Note that the changes in both T and � are taken to be
positive with a positive change in x. The vertical load w dx completes the
free-body diagram. The equilibrium of vertical and horizontal forces re-
quires, respectively, that

The trigonometric expansion for the sine and cosine of the sum of two
angles and the substitutions sin d� � d� and cos d� � 1, which hold in
the limit as d� approaches zero, yield

Dropping the second-order terms and simplifying give us

which we write as

The second relation expresses the fact that the horizontal component of
T remains unchanged, which is clear from the free-body diagram. If we
introduce the symbol T0 � T cos � for this constant horizontal force, we
may then substitute T � T0/cos � into the first of the two equations just
derived and obtain d(T0 tan �) � w dx. Because tan � � dy/dx, the equi-
librium equation may be written in the form

(5/13)
d2y
dx2

 � w
T0

d(T sin �) � w dx   and   d(T cos �) � 0

 �T sin � d� � dT cos � � 0

 T cos � d� � dT sin � � w dx

 (T � dT)(cos � � sin � d�) � T cos �

 (T � dT)(sin � � cos � d�) � T sin � � w dx

 (T � dT) cos (� � d�) � T cos �

 (T � dT) sin (� � d�) � T sin � � w dx

Rx � �  x dR   x � 
�  x dR

R
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Equation 5/13 is the differential equation for the flexible cable. The
solution to the equation is that functional relation y � ƒ(x) which satis-
fies the equation and also satisfies the conditions at the fixed ends of the
cable, called boundary conditions. This relationship defines the shape of
the cable, and we will use it to solve two important and limiting cases of
cable loading.

Parabolic Cable

When the intensity of vertical loading w is constant, the condition
closely approximates that of a suspension bridge where the uniform
weight of the roadway may be expressed by the constant w. The mass of
the cable itself is not distributed uniformly with the horizontal but is
relatively small, and thus we neglect its weight. For this limiting case
we will prove that the cable hangs in a parabolic arc.

We start with a cable suspended from two points A and B which are
not on the same horizontal line, Fig. 5/27a. We place the coordinate ori-
gin at the lowest point of the cable, where the tension is horizontal and
is T0. Integration of Eq. 5/13 once with respect to x gives

where C is a constant of integration. For the coordinate axes chosen,
dy/dx � 0 when x � 0, so that C � 0. Thus,

which defines the slope of the curve as a function of x. One further inte-
gration yields

(5/14)

Alternatively, you should be able to obtain the identical results with
the indefinite integral together with the evaluation of the constant of in-

�y

0
 dy � �x

0
 wx
T0

 dx   or   y � wx2

2T0

dy
dx

 � wx
T0

dy
dx

 � wx
T0

 � C
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hA
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w = Load per unit of horizontal length
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R = wx

(b)

yhB

lB

x
s

x/2T0

y

θ
x

T

x

Figure 5/27
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tegration. Equation 5/14 gives the shape of the cable, which we see is a
vertical parabola. The constant horizontal component of cable tension
becomes the cable tension at the origin.

Inserting the corresponding values x � lA and y � hA in Eq. 5/14
gives

The tension T is found from a free-body diagram of a finite portion of
the cable, shown in Fig. 5/27b. From the Pythagorean theorem

Elimination of T0 gives

(5/15)

The maximum tension occurs where x � lA and is

(5/15a)

We obtain the length sA of the cable from the origin to point A by in-
tegrating the expression for a differential length ds �

Thus,

Although we can integrate this expression in closed form, for computa-
tional purposes it is more convenient to express the radical as a conver-
gent series and then integrate it term by term. For this purpose we use
the binomial expansion

which converges for x2 � 1. Replacing x in the series by (wx/T0)2 and set-
ting n � give the expression

(5/16)

This series is convergent for values of hA/lA � which holds for most
practical cases.

The relationships which apply to the cable section from the origin to
point B can be easily obtained by replacing hA, lA, and sA by hB, lB, and
sB, respectively.

1
2,

 � lA�1 � 2
3

 �hA

lA
�2

 � 2
5

 �hA

lA
�4

 � � � ��

 sA � � lA

0
 �1 � w

2x2

2T0 

2
 � w

4x4

8T0 

4
 � � � �� dx

1
2

(1 � x)n � 1 � nx � 
n(n � 1)

2!
 x2 � 

n(n � 1)(n � 2)
3!

 x3 � � � �

� sA

0
 ds � � lA

0
 �1 � (dy/dx)2 dx � � lA

0
 �1 � (wx/T0)2 dx

�(dx)2 � (dy)2.

Tmax � wlA�1 � (lA/2hA)2

T � w�x2 � (lA 

2/2hA)2

T � �T0 

2 � w2x2

T0 � 
wlA 

2

2hA
  so that   y � hA(x/lA)2
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For a suspension bridge where the supporting towers are on the
same horizontal line, Fig. 5/28, the total span is L � 2lA, the sag is h �

hA, and the total length of the cable is S � 2sA. With these substitutions,
the maximum tension and the total length become

(5/15b)

(5/16a)

This series converges for all values of h/L � In most cases h is much
smaller than L/4, so that the three terms of Eq. 5/16a give a sufficiently
accurate approximation.

Catenary Cable

Consider now a uniform cable, Fig. 5/29a, suspended from two
points A and B and hanging under the action of its own weight only. We
will show in this limiting case that the cable assumes a curved shape
known as a catenary.

The free-body diagram of a finite portion of the cable of length s
measured from the origin is shown in part b of the figure. This free-body
diagram differs from the one in Fig. 5/27b in that the total vertical force
supported is equal to the weight of the cable section of length s rather

1
4.

 S � L �1 � 8
3

 �h
L�

2
 � 32

5
 �h

L�
4
 � � � ��

 Tmax � wL
2

 �1 � (L/4h)2
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than the load distributed uniformly with respect to the horizontal. If the
cable has a weight � per unit of its length, the resultant R of the load is
R � �s, and the incremental vertical load w dx of Fig. 5/26c is replaced
by � ds. With this replacement the differential relation, Eq. 5/13, for the
cable becomes

(5/17)

Because s � ƒ(x, y), we must change this equation to one containing
only the two variables.

We may substitute the identity (ds)2 � (dx)2 � (dy)2 to obtain

(5/18)

Equation 5/18 is the differential equation of the curve (catenary) formed
by the cable. This equation is easier to solve if we substitute p � dy/dx
to obtain

Integrating this equation gives us

The constant C is zero because dy/dx � p � 0 when x � 0. Substituting
p � dy/dx, changing to exponential form, and clearing the equation of
the radical give

where the hyperbolic function* is introduced for convenience. The slope
may be integrated to obtain

The integration constant K is evaluated from the boundary condition
x � 0 when y � 0. This substitution requires that K � �T0/�, and
hence,

(5/19)y � 
T0
�  �cosh 

�x
T0

 � 1�

y � 
T0
�  cosh 

�x
T0

 � K

dy
dx

 � e
�x/T0 � e��x/T0

2
 � sinh 

�x
T0

ln (p � �1 � p2) � 
�

T0
 x � C

dp

�1 � p2
 � 

�

T0
 dx

d2y
dx2

 � 
�

T0
 �1 � �dy

dx�
2

d2y
dx2

 � 
�

T0
 ds
dx
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*See Arts. C/8 and C/10, Appendix C, for the definition and integral of hyperbolic functions.
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Equation 5/19 is the equation of the curve (catenary) formed by the
cable hanging under the action of its weight only.

From the free-body diagram in Fig. 5/29b we see that dy/dx �

tan � � �s/T0. Thus, from the previous expression for the slope,

(5/20)

We obtain the tension T in the cable from the equilibrium triangle of
the forces in Fig. 5/29b. Thus,

which, when combined with Eq. 5/20, becomes

T2

or

(5/21)

We may also express the tension in terms of y with the aid of Eq. 5/19,
which, when substituted into Eq. 5/21, gives

(5/22)

Equation 5/22 shows that the change in cable tension from that at the
lowest position depends only on �y.

Most problems dealing with the catenary involve solutions of Eqs.
5/19 through 5/22, which can be handled by a graphical approximation
or solved by computer. The procedure for a graphical or computer solu-
tion is illustrated in Sample Problem 5/17 following this article.

The solution of catenary problems where the sag-to-span ratio is
small may be approximated by the relations developed for the parabolic
cable. A small sag-to-span ratio means a tight cable, and the uniform
distribution of weight along the cable is not very different from the
same load intensity distributed uniformly along the horizontal.

Many problems dealing with both the catenary and parabolic cables
involve suspension points which are not on the same level. In such cases
we may apply the relations just developed to the part of the cable on
each side of the lowest point.

T � T0 � �y

T � T0 cosh 
�x
T0

 � T0 

2�1 � sinh2 
�x
T0
� � T0 

2 cosh2 
�x
T0

T 

2 � �2s2 � T0 

2

s � 
T0
�  sinh 

�x
T0
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Sample Problem 5/16

The light cable supports a mass of 12 kg per meter of horizontal length and
is suspended between the two points on the same level 300 m apart. If the sag is
60 m, find the tension at midlength, the maximum tension, and the total length
of the cable.

Solution. With a uniform horizontal distribution of load, the solution of part
(b) of Art. 5/8 applies, and we have a parabolic shape for the cable. For h � 60 m,
L � 300 m, and w � 12(9.81)(10�3) kN/m the relation following Eq. 5/14 with 
lA � L/2 gives for the midlength tension

Ans.

The maximum tension occurs at the supports and is given by Eq. 5/15b. Thus,

Ans.

The sag-to-span ratio is 60/300 � 1/5 � 1/4. Therefore, the series expression
developed in Eq. 5/16a is convergent, and we may write for the total length

Ans. � 329 m

 � 300[1 � 0.1067 � 0.01024 � … ]

 S � 300 �1 � 8
3

 �1
5�

2
 � 32

5
 �1

5�
4
 � … �

 Tmax � 
12(9.81)(10�3)(300)

2
 �1 � � 300

4(60)�
2
 � 28.3 kN

 �Tmax � wL
2

 �1 � � L
4h�

2�

T0 � 
0.1177(300)2

8(60)
 � 22.1 kN�T0 � wL2

8h �

300 Chapter  5 Distr ibuted Forces

60 m

300 m

12 kg/m

75 m 75 m
xT0

R = 12(150)(9.81)(10–3)
    = 17.66 kN

Tmaxy

60 m

� Helpful Hint

� Suggestion: Check the value of Tmax

directly from the free-body diagram
of the right-hand half of the cable,
from which a force polygon may be
drawn.
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60 m

300 m

x

y

0.33

Solution
T0 = 23.2 kN

T0, kN

0.32

0.31

0.30

0.29

0.28

7.06
——–

T0

22.5 23.0 23.5 24.0

cosh – 1
17.66
——–

T0
( (

((

�

Sample Problem 5/17

Replace the cable of Sample Problem 5/16, which is loaded uniformly along
the horizontal, by a cable which has a mass of 12 kg per meter of its own length
and supports its own weight only. The cable is suspended between two points on
the same level 300 m apart and has a sag of 60 m. Find the tension at midlength,
the maximum tension, and the total length of the cable.

Solution. With a load distributed uniformly along the length of the cable, the
solution of part (c) of Art. 5/8 applies, and we have a catenary shape of the cable.
Equations 5/20 and 5/21 for the cable length and tension both involve the min-
imum tension T0 at midlength, which must be found from Eq. 5/19. Thus, for 
x � 150 m, y � 60 m, and � � 12(9.81)(10�3) � 0.1177 kN/m, we have

or

This equation can be solved graphically. We compute the expression on each
side of the equals sign and plot it as a function of T0. The intersection of the two
curves establishes the equality and determines the correct value of T0. This plot
is shown in the figure accompanying this problem and yields the solution

Alternatively, we may write the equation as

and set up a computer program to calculate the value(s) of T0 which renders 
ƒ(T0) � 0. See Art. C/11 of Appendix C for an explanation of one applicable nu-
merical method.

The maximum tension occurs for maximum y and from Eq. 5/22 is

Ans.

From Eq. 5/20 the total length of the cable becomes

Ans.

Helpful Hint

� Note that the solution of Sample Problem 5/16 for the parabolic cable gives a
very close approximation to the values for the catenary even though we have
a fairly large sag. The approximation is even better for smaller sag-to-span
ratios.

2s � 2 23.2
0.1177

 sinh 
(0.1177)(150)

23.2
 � 330 m

Tmax � 23.2 � (0.1177)(60) � 30.2 kN

ƒ(T0) � cosh 17.66
T0

 � 7.06
T0

 � 1 � 0

T0 � 23.2 kN

 7.06
T0

 � cosh 17.66
T0

 � 1

 60 � 
T0

0.1177
 �cosh 

(0.1177)(150)
T0

 � 1�
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5/148 A cable supports a load of 40 kg/m uniformly dis-
tributed along the horizontal and is suspended
from two fixed points A and B located as shown.
Calculate the cable tensions at A and B and the
minimum tension T0.

Problem 5/148

*5/149 A light fixture is suspended from the ceiling of an
outside portico. Four chains, two of which are
shown, prevent excessive motion of the fixture
during windy conditions. If the chains weigh 200
newtons per meter of length, determine the chain
tension at C and the length L of chain BC.

Ans. TC � 945 N, L � 6.90 m

Problem 5/149

B CA

1.5 m

6 m

100 m

40 kg/m

10 m

10 m

A

B

302 Chapter  5 Distr ibuted Forces

PROBLEMS
(The problems marked with an asterisk (*) involve tran-
scendental equations which may be solved with a computer
or by graphical methods.)

Introductory Problems

5/145 A coil of surveyor’s tape 30 m in length has a mass of
0.283 kg. When the tape is stretched between two
points on the same level by a tension of 42 N at each
end, calculate the sag h of the tape in the middle.

Ans. h � 248 mm

5/146 The Golden Gate Bridge in San Francisco has a
main span of 1280 m, a sag of 143 m, and a total
static loading of 310.8 kN per lineal meter of hori-
zontal measurement. The weight of both of the
main cables is included in this figure and is as-
sumed to be uniformly distributed along the hori-
zontal. The angle made by the cable with the
horizontal at the top of the tower is the same on
each side of each tower. Calculate the midspan ten-
sion T0 in each of the main cables and the compres-
sive force C exerted by each cable on the top of each
tower.

Problem 5/146

5/147 Calculate the tension T0 in the cable at A necessary
to support the load distributed uniformly with re-
spect to the horizontal. Also find the angle � made
by the cable with the horizontal at the attachment
point B.

Ans. T0 � 18.03 kN, � � 48.8�

Problem 5/147

30 kg/m

A
T0

70 m

40 m

B

1280 m

143 m
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5/150 An advertising balloon is moored to a post with a
cable which has a mass of 0.12 kg/m. In a wind the
cable tensions at A and B are 110 N and 230 N, re-
spectively. Determine the height h of the balloon.

Problem 5/150

5/151 A horizontal 350-mm-diameter water pipe is sup-
ported over a ravine by the cable shown. The pipe
and the water within it have a combined mass of
1400 kg per meter of its length. Calculate the com-
pression C exerted by the cable on each support.
The angles made by the cable with the horizontal
are the same on both sides of each support.

Ans. C � 549 kN

Problem 5/151

5/152 Strain-gage measurements made on the cables of
the suspension bridge at position A indicate an in-
crease of 2.14 MN of tension in each of the two
main cables because the bridge has been repaved.
Determine the total mass m� of added paving mate-
rial used per foot of roadway.

Problem 5/152

1000 m

240 m200 m

A

2.5 m

40 m

A

B

h

Art ic le  5/8 Problems 303

Representative Problems

*5/153 The glider A is being towed in level flight and is
120 m behind and 30 m below the tow plane B.
The tangent to the cable at the glider is horizon-
tal. The cable has a mass of 0.750 kg per meter of
length. Calculate the horizontal tension T0 in the
cable at the glider. Neglect air resistance and
compare your result with that obtained by ap-
proximating the cable shape by a parabola.

Ans. T0 � 1801 N, (T0)par � 1766 N

Problem 5/153

*5/154 Find the total length L of chain which will have a
sag of 2 m when suspended from two points on
the same horizontal line 10 m apart.

Problem 5/154

5/155 A cable weighing 40 newtons per meter of length is
suspended from point A and passes over the small
pulley at B. Determine the mass m of the attached
cylinder which will produce a sag of 10 m. With the
small sag-to-span ratio, approximation as a para-
bolic cable may be used.

Ans. m � 480 kg

Problem 5/155

*5/156 Repeat Prob. 5/155, but do not use the approxima-
tion of a parabolic cable. Compare your results
with the printed answer for Prob. 5/155.

B

m

10 m

120 m

15 m
A

10 m

2 m

30 m

A

120 m

B
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*5/159 Determine the length L of chain required from B
to A and the corresponding tension at A if the
slope of the chain is to be horizontal as it enters
the guide at A. The weight of the chain is 140 N
per meter of its length.

Ans. L � 8.71 m, TA � 1559 N

Problem 5/159

*5/160 Numerous small flotation devices are attached to
the cable, and the difference between buoyancy
and weight results in a net upward force of 30
newtons per meter of cable length. Determine the
force T which must be applied to cause the cable
configuration shown.

Problem 5/160

*5/161 A rope 40 m in length is suspended between two
points which are separated by a horizontal dis-
tance of 10 m. Compute the distance h to the low-
est part of the loop.

Ans. h � 18.53 m

Problem 5/161

h

10 m

25 m

8 m

B

A

T

3 m

8 m

B

A
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5/157 A floating dredge is anchored in position with a sin-
gle stern cable which has a horizontal direction at
the attachment A and extends a horizontal dis-
tance of 250 m to an anchorage B on shore. A ten-
sion of 300 kN is required in the cable at A. If the
cable has a mass of 22 kg per meter of its length,
compute the required height H of the anchorage
above water level and find the length s of cable be-
tween A and B.

Ans. H � 24.5 m, s � 251 m

Problem 5/157

*5/158 A series of spherical floats are equally spaced and
securely fastened to a flexible cable of length 20 m.
Ends A and B are anchored 16 m apart to the bot-
tom of a fresh-water lake at a depth of 8 m. The
floats and cable have a combined weight of 100 N
per meter of cable length, and the buoyancy of the
water produces an upward force of 560 N per
meter of cable length. Calculate the depth h below
the surface to the top of the line of floats. Also find
the angle � made by the line of floats with the hor-
izontal at A.

Problem 5/158

h

A B

8 m

16 m

θ

A

B

250 m

2 m H
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5/162 The blimp is moored to the ground winch in a gen-
tle wind with 100 m of 12-mm cable which has a
mass of 0.51 kg/m. A torque of 400 on the
drum is required to start winding in the cable. At
this condition the cable makes an angle of 30� with
the vertical as it approaches the winch. Calculate
the height H of the blimp. The diameter of the
drum is 0.5 m.

Problem 5/162

*5/163 A cable installation crew wishes to establish the
dependence of the tension T on the cable sag h.
Plot both the minimum tension T0 and the ten-
sion T at the supports A and B as functions of h
for 1 � h � 10 m. The cable mass per unit length
is 3 kg/m. State the values of T0 and T for h � 2
m.

Ans. T0 � 6630 N, T � 6690 N

Problem 5/163

60 m

h

T T

BA

30°

H

N � m
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*5/164 The cable of Prob. 5/163 is now placed on supports
A and B whose elevation differs by 9 m as shown.
Plot the minimum tension T0, the tension TA at
support A, and the tension TB at support B as
functions of h for 1 � h � 10 m, where h is the sag
below point A. State all three tensions for h � 2 m
and compare with the results of Prob. 5/163. The
cable mass per unit length is 3 kg/m.

Problem 5/164

*5/165 In preparing to spray-clean a wall, a person
arranges a hose as shown in the figure. The hose
is horizontal at A and has a mass of 0.75 kg/m
when empty and 1.25 kg/m when full of water. De-
termine the necessary tension T and angle � for
both the empty and full hose.

Ans. T � 63.0 N (empty), T � 105.0 N (full)
� � 40.0� in both cases

Problem 5/165

T

B

A

5 m

2 m

θ

60 m
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*5/169 The moving cable for a ski lift has a mass of 10
kg/m and carries equally spaced chairs and pas-
sengers, whose added mass is 20 kg/m when aver-
aged over the length of the cable. The cable leads
horizontally from the supporting guide wheel at A.
Calculate the tensions in the cable at A and B and
the length s of the cable between A and B.

Ans. TA � 27.4 kN, TB � 33.3 kN, s � 64.2 m

Problem 5/169

*5/170 A cable ship tows a plow A during a survey of the
ocean floor for later burial of a telephone cable. The
ship maintains a constant low speed with the plow
at a depth of 180 m and with a sufficient length of
cable so that it leads horizontally from the plow,
which is 480 m astern of the ship. The tow cable
has an effective weight of 45.2 N/m when the buoy-
ancy of the water is accounted for. Also, the forces
on the cable due to movement through the water
are neglected at the low speed. Compute the hori-
zontal force T0 applied to the plow and the maxi-
mum tension in the cable. Also find the length of
the tow cable from point A to point B.

Problem 5/170

B

A

180 m

480 m

A

B

20 m

60 m
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*5/166 A length of cable which has a mass of 1.2 kg/m is
to have a sag of 2.4 m when suspended from the
two points A and B on the same horizontal line 10
m apart. For comparison purposes, determine the
length L of cable required and plot its configura-
tion for the two cases of (a) assuming a parabolic
shape and (b) using the proper catenary model. In
order to more clearly distinguish between the two
cases, also plot the difference (yC � yP) as a func-
tion of x, where C and P refer to catenary and
parabola, respectively.

Problem 5/166

*5/167 A power line is suspended from two towers 200 m
apart on the same horizontal line. The cable has a
mass of 18.2 kg per meter of length and has a sag
of 32 m at midspan. If the cable can support a
maximum tension of 60 kN, determine the mass �
of ice per meter which can form on the cable with-
out exceeding the maximum cable tension.

Ans. � � 13.44 kg of ice per meter

*5/168 A cable which has a mass of 0.5 kg per meter of
length is attached to point A. A tension TB is ap-
plied to point B, causing the angle �A to be 15°. De-
termine TB and �B.

Problem 5/168

12 m

9 m

B

TB

B

= 15°A
A

10 m

x

2.4 m

y AB
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*5/171 For aesthetic reasons, chains are sometimes used
instead of downspouts on small buildings in order
to direct roof runoff water from the gutter down to
ground level. The architect of the illustrated build-
ing specified a 6-m vertical chain from A to B, but
the builder decided to use a 6.1-m chain from A to C
as shown in order to place the water farther from
the structure. By what percentage n did the builder
increase the magnitude of the force exerted on the
gutter at A over that figured by the architect? The
chain weighs 100 N per meter of its length.

Ans. n � 29.0%

Problem 5/171

6 m

1 m

C

A

B
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*5/172 A 50-kg traffic signal is suspended by two 21-m ca-
bles which have a mass of 1.2 kg per meter of
length. Determine the vertical deflection � of the
junction ring A relative to its position before the
signal is added.

Problem 5/172

C B

A

20 m 20 m

50 kg
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5/9 FL U I D ST A T I C S

So far in this chapter we have treated the action of forces on and be-
tween solid bodies. In this article we consider the equilibrium of bodies
subjected to forces due to fluid pressures. A fluid is any continuous sub-
stance which, when at rest, is unable to support shear force. A shear
force is one tangent to the surface on which it acts and is developed
when differential velocities exist between adjacent layers of fluids. Thus,
a fluid at rest can exert only normal forces on a bounding surface. Fluids
may be either gaseous or liquid. The statics of fluids is generally called
hydrostatics when the fluid is a liquid and aerostatics when the fluid is 
a gas.

Fluid Pressure

The pressure at any given point in a fluid is the same in all direc-
tions (Pascal’s law). We may prove this by considering the equilibrium
of an infinitesimal triangular prism of fluid as shown in Fig. 5/30. The
fluid pressures normal to the faces of the element are p1, p2, p3, and p4 as
shown. With force equal to pressure times area, the equilibrium of
forces in the x- and y-directions gives

Since ds sin � � dy and ds cos � � dx, these questions require that

By rotating the element through 90�, we see that p4 is also equal to the
other pressures. Thus, the pressure at any point in a fluid at rest is 
the same in all directions. In this analysis we need not account for the
weight of the fluid element because, when the weight per unit volume
(density � times g) is multiplied by the volume of the element, a differ-
ential quantity of third order results which disappears in the limit com-
pared with the second-order pressure-force terms.

In all fluids at rest the pressure is a function of the vertical dimen-
sion. To determine this function, we consider the forces acting on a dif-
ferential element of a vertical column of fluid of cross-sectional area dA,
as shown in Fig. 5/31. The positive direction of vertical measurement h
is taken downward. The pressure on the upper face is p, and that on the
lower face is p plus the change in p, or p � dp. The weight of the ele-
ment equals �g multiplied by its volume. The normal forces on the lat-
eral surface, which are horizontal and do not affect the balance of forces
in the vertical direction, are not shown. Equilibrium of the fluid element
in the h-direction requires

(5/23)

This differential relation shows us that the pressure in a fluid increases
with depth or decreases with increased elevation. Equation 5/23 holds

dp � �g dh

p dA � �g dA dh � (p � dp) dA � 0

p1 � p2 � p3 � p

p1 dy dz � p3 ds dz sin �   p2 dx dz � p3 ds dz cos �
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for both liquids and gases, and agrees with our common observations of
air and water pressures.

Fluids which are essentially incompressible are called liquids, and
for most practical purposes we may consider their density � constant for
every part of the liquid.* With � a constant, integration of Eq. 5/23 gives

(5/24)

The pressure p0 is the pressure on the surface of the liquid where h � 0.
If p0 is due to atmospheric pressure and the measuring instrument
records only the increment above atmospheric pressure,† the measure-
ment gives what is called gage pressure. It is computed from p � �gh.

The common unit for pressure in SI units is the kilopascal (kPa),
which is the same as a kilonewton per square meter (103 N/m2). In com-
puting pressure, if we use Mg/m3 for �, m/s2 for g, and m for h, then the
product �gh gives us pressure in kPa directly. For example, the pressure
at a depth of 10 m in fresh water is

In the U.S. customary system, fluid pressure is generally expressed
in pounds per square inch (lb/in.2) or occasionally in pounds per square
foot (lb/ft2). Thus, at a depth of 10 ft in fresh water the pressure is

Hydrostatic Pressure on Submerged Rectangular Surfaces

A body submerged in a liquid, such as a gate valve in a dam or the
wall of a tank, is subjected to fluid pressure acting normal to its surface
and distributed over its area. In problems where fluid forces are appre-
ciable, we must determine the resultant force due to the distribution of
pressure on the surface and the position at which this resultant acts.
For systems open to the atmosphere, the atmospheric pressure p0 acts
over all surfaces and thus yields a zero resultant. In such cases, then, we
need to consider only the gage pressure p � �gh, which is the increment
above atmospheric pressure.

Consider the special but common case of the action of hydrostatic
pressure on the surface of a rectangular plate submerged in a liquid.
Figure 5/32a shows such a plate 1-2-3-4 with its top edge horizontal and
with the plane of the plate making an arbitrary angle � with the vertical
plane. The horizontal surface of the liquid is represented by the x-y�
plane. The fluid pressure (gage) acting normal to the plate at point 2 is

p � �gh � �62.4 lb
ft3�� 1

1728
 ft3

in.3�(120 in.) � 4.33 lb/in.2

 � 98.1 kN/m2 � 98.1 kPa

 p � �gh � �1.0 
Mg
m3��9.81 m

s2�(10 m) � 98.1�103 
kg � m

s2
 1
m2�

p � p0 � �gh
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*See Table D/1, Appendix D, for table of densities.
†Atmospheric pressure at sea level may be taken to be 101.3 kPa or 14.7 lb/in.2

c05.qxd  10/29/07  1:18 PM  Page 309



represented by the arrow 6-2 and equals �g times the vertical distance
from the liquid surface to point 2. This same pressure acts at all points
along the edge 2-3. At point 1 on the lower edge, the fluid pressure
equals �g times the depth of point 1, and this pressure is the same at all
points along edge 1-4. The variation of pressure p over the area of the
plate is governed by the linear depth relationship and therefore it is rep-
resented by the arrow p, shown in Fig. 5/32b, which varies linearly from
the value 6-2 to the value 5-1. The resultant force produced by this pres-
sure distribution is represented by R, which acts at some point P called
the center of pressure.

The conditions which prevail at the vertical section 1-2-6-5 in Fig.
5/32a are identical to those at section 4-3-7-8 and at every other vertical
section normal to the plate. Thus, we may analyze the problem from the
two-dimensional view of a vertical section as shown in Fig. 5/32b for sec-
tion 1-2-6-5. For this section the pressure distribution is trapezoidal. If b
is the horizontal width of the plate measured normal to the plane of the
figure (dimension 2-3 in Fig. 5/32a), an element of plate area over which
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the pressure p � �gh acts is dA � b dy, and an increment of the result-
ant force is dR � p dA � bp dy. But p dy is merely the shaded increment
of trapezoidal area dA�, so that dR � b dA�. We may therefore express
the resultant force acting on the entire plate as the trapezoidal area
1-2-6-5 times the width b of the plate,

Be careful not to confuse the physical area A of the plate with the geo-
metrical area A� defined by the trapezoidal distribution of pressure.

The trapezoidal area representing the pressure distribution is easily
expressed by using its average altitude. The resultant force R may
therefore be written in terms of the average pressure pav �

times the plate area A. The average pressure is also the pressure which
exists at the average depth, measured to the centroid O of the plate. An
alternative expression for R is therefore

where � cos �.
We obtain the line of action of the resultant force R from the princi-

ple of moments. Using the x-axis (point B in Fig. 5/32b) as the moment
axis yields � � y(pb dy). Substituting p dy � dA� and R � bA� and
canceling b give

which is simply the expression for the centroidal coordinate of the trape-
zoidal area A�. In the two-dimensional view, therefore, the resultant R
passes through the centroid C of the trapezoidal area defined by the
pressure distribution in the vertical section. Clearly also locates the
centroid C of the truncated prism 1-2-3-4-5-6-7-8 in Fig. 5/32a through
which the resultant passes.

For a trapezoidal distribution of pressure, we may simplify the cal-
culation by dividing the trapezoid into a rectangle and a triangle, Fig.
5/32c, and separately considering the force represented by each part.
The force represented by the rectangular portion acts at the center O of
the plate and is R2 � p2A, where A is the area 1-2-3-4 of the plate. The
force R1 represented by the triangular increment of pressure distribu-
tion is and acts through the centroid of the triangular 
portion shown.

Hydrostatic Pressure on Cylindrical Surfaces

The determination of the resultant R due to distributed pressure on
a submerged curved surface involves more calculation than for a flat
surface. For example, consider the submerged cylindrical surface shown
in Fig. 5/33a where the elements of the curved surface are parallel to the
horizontal surface x-y� of the liquid. Vertical sections perpendicular to
the surface all disclose the same curve AB and the same pressure distri-

1
2(p1 � p2)A

Y

Y � 
�  y dA�

�  dA�

RY

yh

R � pavA � �ghA

1
2(p1 � p2)

R � b �  dA� � bA�
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bution. Thus, the two-dimensional representation in Fig. 5/33b may be
used. To find R by a direct integration, we need to integrate the x- and
y-components of dR along the curve AB, since dR continuously changes
direction. Thus,

A moment equation would now be required if we wished to establish the
position of R.

A second method for finding R is usually much simpler. Consider
the equilibrium of the block of liquid ABC directly above the surface,
shown in Fig. 5/33c. The resultant R then appears as the equal and
opposite reaction of the surface on the block of liquid. The resultants
of the pressures along AC and CB are Py and Px, respectively, and are
easily obtained. The weight W of the liquid block is calculated from
the area ABC of its section multiplied by the constant dimension b
and by �g. The weight W passes through the centroid of area ABC.
The equilibrant R is then determined completely from the equilib-
rium equations which we apply to the free-body diagram of the fluid
block.

Hydrostatic Pressure on Flat Surfaces of Any Shape

Figure 5/34a shows a flat plate of any shape submerged in a liq-
uid. The horizontal surface of the liquid is the plane x-y�, and the
plane of the plate makes an angle � with the vertical. The force acting
on a differential strip of area dA parallel to the surface of the liquid 
is dR � p dA � �gh dA. The pressure p has the same magnitude
throughout the length of the strip, because there is no change of

Rx � b �  (p dL)x � b �  p dy   and   Ry � b �  (p dL)y � b �  p dx
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depth along the strip. We obtain the total force acting on the exposed
area A by integration, which gives

Substituting the centroidal relation � gives us

(5/25)

The quantity is the pressure which exists at the depth of the cen-
troid O of the area and is the average pressure over the area.

We may also represent the resultant R geometrically by the volume
V� of the figure shown in Fig. 5/34b. Here the fluid pressure p is repre-
sented as a dimension normal to the plate regarded as a base. We see
that the resulting volume is a truncated right cylinder. The force dR
acting on the differential area dA � x dy is represented by the elemental
volume p dA shown by the shaded slice, and the total force is repre-
sented by the total volume of the cylinder. We see from Eq. 5/25 that the
average altitude of the truncated cylinder is the average pressure 
which exists at a depth corresponding to the centroid O of the area ex-
posed to pressure.

For problems where the centroid O or the volume V� is not readily
apparent, a direct integration may be performed to obtain R. Thus,

where the depth h and the length x of the horizontal strip of differential
area must be expressed in terms of y to carry out the integration.

After the resultant is obtained, we must determine its location.
Using the principle of moments with the x-axis of Fig. 5/34b as the mo-
ment axis, we obtain

(5/26)

This second relation satisfies the definition of the coordinate to the
centroid of the volume V� of the pressure-area truncated cylinder. We
conclude, therefore, that the resultant R passes through the centroid C
of the volume described by the plate area as base and the linearly vary-
ing pressure as the perpendicular coordinate. The point P at which R is
applied to the plate is the center of pressure. Note that the center of
pressure P and the centroid O of the plate area are not the same.

Buoyancy

Archimedes is credited with discovering the principle of buoyancy.
This principle is easily explained for any fluid, gaseous or liquid, in equi-
librium. Consider a portion of the fluid defined by an imaginary closed

Y

RY � �  y dR   or   Y � 
�  y(px dy)

�  px dy

R � �  dR � �  p dA � �  �ghx dy

�gh

�gh

R � �ghA

� h dAhA

R � �  dR � �  p dA � �g �  h dA
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surface, as illustrated by the irregular dashed boundary in Fig. 5/35a. If
the body of the fluid could be sucked out from within the closed cavity
and replaced simultaneously by the forces which it exerted on the
boundary of the cavity, Fig. 5/35b, the equilibrium of the surrounding
fluid would not be disturbed. Furthermore, a free-body diagram of the
fluid portion before removal, Fig. 5/35c, shows that the resultant of the
pressure forces distributed over its surface must be equal and opposite
to its weight mg and must pass through the center of mass of the fluid
element. If we replace the fluid element by a body of the same dimen-
sions, the surface forces acting on the body held in this position will be
identical to those acting on the fluid element. Thus, the resultant force
exerted on the surface of an object immersed in a fluid is equal and op-
posite to the weight of fluid displaced and passes through the center of
mass of the displaced fluid. This resultant force is called the force of
buoyancy

(5/27)

where � is the density of the fluid, g is the acceleration due to gravity,
and V is the volume of the fluid displaced. In the case of a liquid whose
density is constant, the center of mass of the displaced liquid coincides
with the centroid of the displaced volume.

Thus when the density of an object is less than the density of the
fluid in which it is fully immersed, there is an imbalance of force in the
vertical direction, and the object rises. When the immersing fluid is a
liquid, the object continues to rise until it comes to the surface of the liq-
uid and then comes to rest in an equilibrium position, assuming that the
density of the new fluid above the surface is less than the density of the
object. In the case of the surface boundary between a liquid and a gas,
such as water and air, the effect of the gas pressure on that portion of
the floating object above the liquid is balanced by the added pressure in
the liquid due to the action of the gas on its surface.

An important problem involving buoyancy is the determination of
the stability of a floating object, such as a ship hull shown in cross sec-
tion in an upright position in Fig. 5/36a. Point B is the centroid of the
displaced volume and is called the center of buoyancy. The resultant of
the forces exerted on the hull by the water pressure is the buoyancy
force F which passes through B and is equal and opposite to the weight
W of the ship. If the ship is caused to list through an angle �, Fig. 5/36b,

F � �gV
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The design of ship hulls must take
into account fluid dynamics as well
as fluid statics.
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the shape of the displaced volume changes, and the center of buoyancy
shifts to B�.

The point of intersection of the vertical line through B� with the
centerline of the ship is called the metacenter M, and the distance h of M
from the center of mass G is called the metacentric height. For most hull
shapes h remains practically constant for angles of list up to about 20�.
When M is above G, as in Fig. 5/36b, there is a righting moment which
tends to bring the ship back to its upright position. If M is below G, as
for the hull of Fig. 5/36c, the moment accompanying the list is in the di-
rection to increase the list. This is clearly a condition of instability and
must be avoided in the design of any ship.
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Submersible vessels must be designed with extremely
large external pressures in mind.
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Sample Problem 5/18

A rectangular plate, shown in vertical section AB, is 4 m high and 6 m wide
(normal to the plane of the paper) and blocks the end of a fresh-water channel 3 m
deep. The plate is hinged about a horizontal axis along its upper edge through A
and is restrained from opening by the fixed ridge B which bears horizontally against
the lower edge of the plate. Find the force B exerted on the plate by the ridge.

Solution. The free-body diagram of the plate is shown in section and includes
the vertical and horizontal components of the force at A, the unspecified weight
W � mg of the plate, the unknown horizontal force B, and the resultant R of the
triangular distribution of pressure against the vertical face.

The density of fresh water is � � 1.000 Mg/m3 so that the average pressure is

The resultant R of the pressure forces against the plate becomes

This force acts through the centroid of the triangular distribution of pressure,
which is 1 m above the bottom of the plate. A zero moment summation about A
establishes the unknown force B. Thus,

Ans.3(265) � 4B � 0   B � 198.7 kN[ΣMA � 0]

R � (14.72)(3)(6) � 265 kN[R � pavA]

pav � 1.000(9.81)(32) � 14.72 kPa[pav � �gh]

Sample Problem 5/19

The air space in the closed fresh-water tank is maintained at a pressure of
5.5 kPa (above atmospheric). Determine the resultant force R exerted by the air
and water on the end of the tank.

Solution. The pressure distribution on the end surface is shown, where p0 �

5.5 kPa. The specific weight of fresh water is � � �g � 1000(9.81) � 9.81 kN/m3

so that the increment of pressure �p due to the water is

The resultant forces R1 and R2 due to the rectangular and triangular distribu-
tions of pressure, respectively, are

Ans.

We locate R by applying the moment principle about A noting that R1 acts
through the center of the 760-mm depth and that R2 acts through the centroid of
the triangular pressure distribution 400 mm below the surface of the water and 
400 � 160 � 560 mm below A. Thus,

Ans.2.97h � 2.09(380) � 0.833(560)   h � 433 mm[Rh � ΣMA]

The resultant is then R � R1 � R2 � 2.09 � 0.883 � 2.97 kN.

 R2 � �pavA2 � 5.89
2

 (0.6)(0.5) � 0.883 kN

 R1 � p0A1 � 5.5(0.760)(0.5) � 2.09 kN

�p � � �h � 9.81(0.6) � 5.89 kPa

1 m

B

A

3 m

Ay

y

2 m

R

mg 4 m

Ax
x

B
1 m

Side view

Air

Water

B

A 500 mm

600
mm

End view

160 mm160 mm160 mm

Bp0

p0

R1

R2

R

∆p

A

380
mm h 560

mm

Helpful Hint

� Dividing the pressure distribution
into these two parts is decidedly the
simplest way in which to make the
calculation.

�

�

Helpful Hint

� Note that the units of pressure �gh are

 � kN/m2 � kPa.

 �103 kg
m3��m

s2�(m) � �103 
kg � m

s2 �� 1
m2�
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Sample Problem 5/20

Determine completely the resultant force R exerted on the cylindrical dam
surface by the water. The density of fresh water is 1.000 Mg/m3, and the dam has
a length b, normal to the paper, of 30 m.

Solution. The circular block of water BDO is isolated and its free-body dia-
gram is drawn. The force Px is

The weight W of the water passes through the mass center G of the quarter-
circular section and is

Equilibrium of the section of water requires

The resultant force R exerted by the fluid on the dam is equal and opposite
to that shown acting on the fluid and is

Ans.

The x-coordinate of the point A through which R passes may be found from the
principle of moments. Using B as a moment center gives

Ans.

Alternative Solution. The force acting on the dam surface may be obtained
by a direct integration of the components

where p � �gh � �gr sin � and dA � b(r d�). Thus,

Thus, R � � Substituting the numerical values gives

Ans.

Since dR always passes through point O, we see that R also passes through
O and, therefore, the moments of Rx and Ry about O must cancel. So we write
Rxy1 � Ryx1, which gives us

By similar triangles we see that

Ans.x/r � x1/y1 � 2/�   and   x � 2r/� � 2(4)/� � 2.55 m

x1/y1 � Rx/Ry � (12�gr2b)/(14��gr2b) � 2/�

R � 12(1.000)(9.81)(42)(30)�1 � �2/4 � 4380 kN

1
2�gr2b�1 � �2/4.�Rx 

2 � Ry 

2

 Ry � ��/2

0
 �gr2b sin2 � d� � �gr2b��

2
 � sin 2�

4 �
�/2

0

 � 14��gr2b

 Rx � ��/2

0
 �gr2b sin � cos � d� � ��gr2b�cos 2�

4 �
�/2

0

 � 12�gr2b

dRx � p dA cos �   and   dRy � p dA sin �

Px 
r
3

 � mg 4r
3�

 � Ryx � 0, x � 
2350�4

3� � 3700�16
3��

3700
 � 2.55 m

R � �(2350)2 � (3700)2 � 4380 kN[R � �Rx 

2 � Ry 

2]

 Ry � mg � 3700 kN[ΣFy � 0]

 Rx � Px � 2350 kN[ΣFx � 0]

mg � �gV � (1.000)(9.81) 
�(4)2

4
 (30) � 3700 kN

Px � �ghA � 
�gr
2

 br � 
(1.000)(9.81)(4)

2
 (30)(4) � 2350 kN

r = 4 m

B

O D

x

y

x

D

G

C

A

R

B

Px

O
mg

x

D

r p

θ
r sin θ

A

R

B

x1

y1

O

�

�

Helpful Hints

� See note � in Sample Problem 5/18
if there is any question about the
units for 

� This approach by integration is feasi-
ble here mainly because of the simple
geometry of the circular arc.

�gh.
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Sample Problem 5/21

Determine the resultant force R exerted on the semicircular end of the
water tank shown in the figure if the tank is filled to capacity. Express the result
in terms of the radius r and the water density �.

Solution I. We will obtain R first by a direct integration. With a horizontal
strip of area dA � 2x dy acted on by the pressure p � �gy, the increment of the
resultant force is dR � p dA so that

Integrating gives Ans.

The location of R is determined by using the principle of moments. Taking
moments about the x-axis gives

Integrating gives Ans.

Solution II. We may use Eq. 5/25 directly to find R, where the average pres-
sure is and is the coordinate to the centroid of the area over which the
pressure acts. For a semicircular area � 4r/(3�).

Ans.

which is the volume of the pressure-area figure.
The resultant R acts through the centroid C of the volume defined by the

pressure-area figure. Calculation of the centroidal distance involves the same
integral obtained in Solution I.

Y

R � �g 4r
3�

 �r2

2
 � 23�gr3[R � �ghA]

h
h�gh

2
3�gr3Y � 

�gr4

4
 �
2

  and   Y � 3�r
16

2
3�gr3Y � 2�g � r

0
 y2�r2 � y2 dy[RY � �  y dR]

R � 23�gr3

 R � �  p dA � �  �gy(2x dy) � 2�g � r

0
 y�r2 � y2 dy
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Sample Problem 5/22

A buoy in the form of a uniform 8-m pole 0.2 m in diameter has a mass of
200 kg and is secured at its lower end to the bottom of a fresh-water lake with
5 m of cable. If the depth of the water is 10 m, calculate the angle � made by
the pole with the horizontal.

Solution. The free-body diagram of the buoy shows its weight acting through
G, the vertical tension T in the anchor cable, and the buoyancy force B which
passes through centroid C of the submerged portion of the buoy. Let x be the dis-
tance from G to the waterline. The density of fresh water is � � 103 kg/m3, so
that the buoyancy force is

Moment equilibrium, ΣMA � 0, about A gives

Thus, Ans.x � 3.14 m   and   � � sin�1� 5
4 � 3.14� � 44.5�

200(9.81)(4 cos �) � [103(9.81)�(0.1)2(4 � x)] 4 � x
2

 cos � � 0

B � 103(9.81)�(0.1)2(4 � x) N[B � �gV]

r

y

x
y

dy

x

r

p

C
R

Y
––

�

Helpful Hint

� Be very careful not to make the mis-
take of assuming that R passes
through the centroid of the area
over which the pressure acts.

θ

10 m

5 m

x

4 m

A
B

T

4 m

C

G

5 m
200(9.81) N

θ
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PROBLEMS

Introductory Problems

5/173 Determine the maximum height h to which a vac-
uum pump can cause the fresh water to rise. As-
sume standard atmospheric pressure of 1.0133(105)
Pa. Repeat your calculations for mercury.

Ans. h � 10.33 m (water)
h � 0.761 m (mercury)

Problem 5/173

5/174 A beaker of fresh water is in place on the scale
when the 1-kg stainless-steel weight is added to the
beaker. What is the normal force which the weight
exerts on the bottom of the beaker? By how much
does the scale reading increase as the weight is
added? Explain your answer.

Problem 5/174

1 kg

to vacuum
pump

h
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5/175 Specify the magnitude and location of the resultant
force which acts on each side and the bottom of the
aquarium due to the fresh water inside it.

Ans. Bottom force � 824 N
Side forces � 235 N, 549 N

All four side forces at depth

Problem 5/175

5/176 A rectangular block of density �1 floats in a liquid
of density �2. Determine the ratio r � h/c, where h
is the submerged depth of block. Evaluate r for an
oak block floating in fresh water and for steel float-
ing in mercury.

Problem 5/176

a
b

ρ1

ρ2

ch

0.7 m0.3 m

0.4 m

2
3
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5/179 A deep-submersible diving chamber designed in the
form of a spherical shell 1500 mm in diameter is
ballasted with lead so that its weight slightly ex-
ceeds its buoyancy. Atmospheric pressure is main-
tained within the sphere during an ocean dive to a
depth of 3 km. The thickness of the shell is 25 mm.
For this depth calculate the compressive stress �

which acts on a diametral section of the shell, as in-
dicated in the right-hand view.

Ans. � � 463 MPa

Problem 5/179

5/180 Fresh water in a channel is contained by the uni-
form 2.5-m plate freely hinged at A. If the gate is
designed to open when the depth of the water
reaches 0.8 m as shown in the figure, what must be
the weight w (in newtons per meter of horizontal
length into the paper) of the gate?

Problem 5/180

2 m

A

B

0.5 m

30°

0.8 m

σ
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5/177 Calculate the depth h of mud for which the 3-m
concrete retaining wall is on the verge of tipping
about its forward edge A. The density of mud may
be taken to be 1760 kg/m3 and that of concrete to
be 2400 kg/m3.

Ans. h � 1.99 m

Problem 5/177

5/178 The two hemispherical shells are perfectly sealed
together over their mating surfaces, and the air in-
side is partially evacuated to a pressure of 14 kPa.
Atmospheric pressure is 101.3 kPa. Determine the
force F required to separate the shells.

Problem 5/178

F F

200 mm
170 mm

h Mud

3 m 

0.8 m 
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5/181 When the seawater level inside the hemispherical
chamber reaches the 0.6-m level shown in the fig-
ure, the plunger is lifted, allowing a surge of sea
water to enter the vertical pipe. For this fluid level
(a) determine the average pressure � supported by
the seal area of the valve before force is applied to
lift the plunger and (b) determine the force P (in
addition to the force needed to support its weight)
required to lift the plunger. Assume atmospheric
pressure in all airspaces and in the seal area when
contact ceases under the action of P.

Ans. � � 10.74 kPa, P � 1.687 kN

Problem 5/181

Seawater
supply Air vent

P

0.8 m

75 mm

0.4 m

0.6 m

0.6 m
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Representative Problems

5/182 The figure shows the end view of a long homoge-
neous solid cylinder which floats in a liquid and has
a removed segment. Show that � � 0 and � � 180�

are the two values of the angle between its center-
line and the vertical for which the cylinder floats in
stable positions.

Problem 5/182

5/183 One of the critical problems in the design of deep-
submergence vehicles is to provide viewing ports
which will withstand tremendous hydrostatic pres-
sures without fracture or leakage. The figure shows
the cross section of an experimental acrylic window
with spherical surfaces under test in a high-pres-
sure liquid chamber. If the pressure p is raised to a
level that simulates the effect of a dive to a depth of
1 km in sea water, calculate the average pressure �
supported by the gasket A.

Ans. � � 26.4 MPa

Problem 5/183

A

p
275 mm

350 mm300 mm

θ
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5/186 A fresh-water channel 3 m wide (normal to the
plane of the paper) is blocked at its end by a rectan-
gular barrier, shown in section ABD. Supporting
struts BC are spaced every 0.6 m along the 3-m
width. Determine the compression C in each strut.
Neglect the weights of the members.

Problem 5/186

5/187 A vertical section of an oil sump is shown. The ac-
cess plate covers a rectangular opening which has a
dimension of 400 mm normal to the plane of the
paper. Calculate the total force R exerted by the oil
on the plate and the location x of R. The oil has a
density of 900 kg/m3.

Ans. R � 1377 N, x � 323 mm

Problem 5/187

x

R

600 mm

500 mm

30°
Oil

0.6 m

0.6 m

0.6 m

A

B

C

D

60° 60°
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5/184 The solid concrete cylinder 2.4 m long and 1.6 m in
diameter is supported in a half-submerged position
in fresh water by a cable which passes over a fixed
pulley at A. Compute the tension T in the cable.
The cylinder is waterproofed by a plastic coating.
(Consult Table D/1, Appendix D, as needed.)

Problem 5/184

5/185 A marker buoy consisting of a cylinder and cone
has the dimensions shown and has a mass of 
285 kg. Determine the protrusion h when the buoy
is floating in salt water. The buoy is weighted so
that a low center of mass ensures stability.

Ans. h � 1.121 m

Problem 5/185

h

0.6 m

1.8 m

0.9 m

A

T

2.4 m

0.8 m
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5/188 A homogeneous solid sphere of radius r is resting
on the bottom of a tank containing a liquid of den-
sity �l, which is greater than the density �s of the
sphere. As the tank is filled, a depth h is reached at
which the sphere begins to float. Determine the ex-
pression for the density �s of the sphere.

Problem 5/188

5/189 The rectangular gate shown in section is 3 m long
(perpendicular to the paper) and is hinged about its
upper edge B. The gate divides a channel leading to
a fresh-water lake on the left and a salt-water tidal
basin on the right. Calculate the torque M on the
shaft of the gate at B required to prevent the gate
from opening when the salt-water level drops to 
h � 1 m.

Ans. M � 195.2 kN � m

Problem 5/189

4 m

1 m B M

A

h

Salt
water

Fresh
water

h
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5/190 The hydraulic cylinder operates the toggle which
closes the vertical gate against the pressure of fresh
water on the opposite side. The gate is rectangular
with a horizontal width of 2 m perpendicular to the
paper. For a depth h � 3 m of water, calculate the
required oil pressure p which acts on the 150-mm-
diameter piston of the hydraulic cylinder.

Problem 5/190

5/191 The design of a floating oil-drilling platform con-
sists of two rectangular pontoons and six cylindri-
cal columns which support the working platform.
When ballasted, the entire structure has a displace-
ment of 26,000 metric tons (1 metric ton equals
1000 kg). Calculate the total draft h of the struc-
ture when it is moored in the ocean. The density of
salt water is 1030 kg/m3. Neglect the vertical com-
ponents of the mooring forces.

Ans. h � 24.1 m

Problem 5/191

105 m
7.5 m

9 m 
diameter

12
m

12
m

h

Side View End View

A

1 m 1 m

2 m

2 m

1.5 m

h
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5/194 The cast-iron plug seals the drainpipe of an open
fresh-water tank which is filled to a depth of 7.2 m.
Determine the tension T required to remove the
plug from its tapered hole. Atmospheric pressure
exists in the drainpipe and in the seal area as the
plug is being removed. Neglect mechanical friction
between the plug and its supporting surface.

Problem 5/194

5/195 The Quonset hut is subjected to a horizontal wind,
and the pressure p against the circular roof is ap-
proximated by p0 cos �. The pressure is positive on
the windward side of the hut and is negative on the
leeward side. Determine the total horizontal shear
Q on the foundation per unit length of roof mea-
sured normal to the paper.

Ans. Q �

Problem 5/195

θ

r

θp = p0 cos

1
2�rp0

T

180
mm

120 mm
90 mm

120 mm

7.2 m
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5/192 Determine the total force R exerted on the triangu-
lar window by the fresh water in the tank. The
water level is even with the top of the window. Also
determine the distance H from R to the water level.

Problem 5/192

5/193 The barge crane of rectangular proportions has a 
6-m by 15-m cross section over its entire length of
40 m. If the maximum permissible submergence
and list in sea water are represented by the posi-
tion shown, determine the corresponding maxi-
mum safe mass m0 which the barge can handle at
the 10-m extended position of the boom. Also find
the total displacement m in metric tons of the un-
loaded barge. The distribution of machinery and
ballast places the center of gravity G of the barge,
minus the mass m0, at the center of the hull.

Ans. m0 � 203 Mg, m � 1651 Mg

Problem 5/193

10 m

20 m

6 m

15 m

G

m0

1 m

1 m
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5/196 The upstream side of an arched dam has the form
of a vertical cylindrical surface of 240-m radius and
subtends an angle of 60�. If the fresh water is 90 m
deep, determine the total force R exerted by the
water on the dam face.

Problem 5/196

5/197 The fresh-water side of a concrete dam has the
shape of a vertical parabola with vertex at A. Deter-
mine the position b of the base point B through
which acts the resultant force of the water against
the dam face C.

Ans. b � 28.1 m

Problem 5/197

36 m

27 m

A

C

B

b

6 m

240 m
30°

30°

90 m
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5/198 The small access hole A allows maintenance work-
ers to enter the storage tank at ground level when
it is empty. Two designs, (a) and (b), are shown for
the hole cover. If the tank is full of fresh water, es-
timate the average pressure � in the seal area of
design (a) and the average increase �T in the ini-
tial tension in each of the 16 bolts of design (b). You
may take the pressure over the hole area to be con-
stant, and the pressure in the seal area of design
(b) may be assumed to be atmospheric.

Problem 5/198

5/199 The 3-m plank shown in section has a density of
800 kg/m3 and is hinged about a horizontal axis
through its upper edge O. Calculate the angle � as-
sumed by the plank with the horizontal for the
level of fresh water shown.

Ans. � � 48.2�

Problem 5/199

3 m
1 m

O

θ

0.375
m

0.5
m

12 m
0.55 m

0.75 m

(b)A

(a)
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5/202 The trapezoidal viewing window in a sea-life aquar-
ium has the dimensions shown. With the aid of ap-
propriate diagrams and coordinates, describe two
methods by which the resultant force R on the
glass due to water pressure, and the vertical loca-
tion of R, could be found if numerical values were
supplied.

Problem 5/202

5/203 The sphere is used as a valve to close the hole in
the fresh-water tank. As the depth h decreases, the
tension T required to open the valve decreases be-
cause the downward force on the sphere decreases
with less pressure. Determine the depth h for
which T equals the weight of the sphere.

Ans. h � 0.233 m

Problem 5/203

200 mm

h

T

250 mm

b
c

Ramp

h1h2

Water level
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5/200 The deep-submersible research vessel has a passen-
ger compartment in the form of a spherical steel
shell with a mean radius of 1.000 m and a thickness
of 35 mm. Calculate the mass of lead ballast which
the vessel must carry so that the combined weight
of the steel shell and lead ballast exactly cancels
the combined buoyancy of these two parts alone.
(Consult Table D/1, Appendix D, as needed.)

Problem 5/200

5/201 The elements of a new method for constructing con-
crete foundation walls for new houses are shown in
the figure. Once the footing F is in place, poly-
styrene forms A are erected and a thin concrete
mixture B is poured between the forms. Ties T pre-
vent the forms from separating. After the concrete
cures, the forms are left in place for insulation. As a
design exercise, make a conservative estimate for
the uniform tie spacing d if the tension in each tie is
not to exceed 6.5 kN. The horizontal tie spacing is
the same as the vertical spacing. State any assump-
tions. The density of wet concrete is 2400 kg/m3.

Ans. d � 0.300 m

Problem 5/201

d

d

d/2 A A
T

B

F

3 m

1 m 35 mm

�
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5/204 The accurate determination of the vertical position
of the center of mass G of a ship is difficult to
achieve by calculation. It is more easily obtained by
a simple inclining experiment on the loaded ship.
With reference to the figure, a known external
mass m0 is placed a distance d from the centerline,
and the angle of list � is measured by means of the
deflection of a plumb bob. The displacement of the
ship and the location of the metacenter M are
known. Calculate the metacentric height for a
12 000-t ship inclined by a 27-t mass placed 7.8 m
from the centerline if a 6-m plumb line is deflected
a distance a � 0.2 m. The mass m0 is at a distance b
� 1.8 m above M. [Note that the metric ton (t)
equals 1000 kg and is the same as the megagram
(Mg).]

Ans. � 0.530 mGM

GM
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Problem 5/204

b

a

θ

d

m0

M

G

�
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5/10 CH A P T E R RE V I E W

In Chapter 5 we have studied various common examples of forces
distributed throughout volumes, over areas, and along lines. In all these
problems we often need to determine the resultant of the distributed
forces and the location of the resultant.

Finding Resultants of Distributed Forces

To find the resultant and line of action of a distributed force:

1. Begin by multiplying the intensity of the force by the appropriate
element of volume, area, or length in terms of which the intensity is
expressed. Then sum (integrate) the incremental forces over the re-
gion involved to obtain their resultant.

2. To locate the line of action of the resultant, use the principle of mo-
ments. Evaluate the sum of the moments, about a convenient axis,
of all of the increments of force. Equate this sum to the moment of
the resultant about the same axis. Then solve for the unknown mo-
ment arm of the resultant.

Gravitational Forces

When force is distributed throughout a mass, as in the case of gravi-
tational attraction, the intensity is the force of attraction �g per unit of
volume, where � is the density and g is the gravitational acceleration.
For bodies whose density is constant, we saw in Section A that �g can-
cels when the moment principle is applied. This leaves us with a strictly
geometric problem of finding the centroid of the figure, which coincides
with the mass center of the physical body whose boundary defines the
figure.

1. For flat plates and shells which are homogeneous and have constant
thickness, the problem becomes one of finding the properties of an
area.

2. For slender rods and wires of uniform density and constant cross
section, the problem becomes one of finding the properties of a line
segment.

Integration of Differential Relationships

For problems which require the integration of differential relation-
ships, keep in mind the following considerations.

1. Select a coordinate system which provides the simplest description
of the boundaries of the region of integration.

2. Eliminate higher-order differential quantities whenever lower-
order differential quantities will remain.

3. Choose a first-order differential element in preference to a second-
order element and a second-order element in preference to a third-
order element.

328 Chapter  5 Distr ibuted Forces
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4. Whenever possible, choose a differential element which avoids dis-
continuities within the region of integration.

Distributed Forces in Beams, Cables, and Fluids

In Section B we used these guidelines along with the principles of
equilibrium to solve for the effects of distributed forces in beams, cables,
and fluids. Remember that:

1. For beams and cables the force intensity is expressed as force per
unit length.

2. For fluids the force intensity is expressed as force per unit area, or
pressure.

Although beams, cables, and fluids are physically quite different applica-
tions, their problem formulations share the common elements cited
above.
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5/207 The cross section shown is for a complete cast-iron
body of revolution about the z-axis. Compute its
mass m.

Ans. m � 11.55 kg

Problem 5/207

5/208 The assembly consists of four rods cut from the
same bar stock. The curved member is a circular
arc of radius b. Determine the y- and z-coordinates
of the mass center of the assembly.

Problem 5/208

z

30°
30°

x

y

b

b

b

100 mm

40 mm

100 mm

160 mm

z
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REVIEW PROBLEMS

5/205 Determine the x- and y-coordinates of the centroid
of the shaded area.

Ans. ,

Problem 5/205

5/206 Determine the x- and y-coordinates of the centroid
of the shaded area.

Problem 5/206

120
mm

270
mm

y

x
30

mm

30
mm

y

x

1

0
10.50

y = kx 1/3

y � 13
30x � 37

84
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5/209 Determine the area A of the curved surface ABCD
of the solid of revolution shown.

Ans. A �

Problem 5/209

5/210 The uniform bar of mass m is bent into the quar-
ter-circular arc in the vertical plane and is hinged
freely at A. The bar is held in position by the hori-
zontal wire from O to B. Determine the magnitude
R of the force on the pin at A.

Problem 5/210

O

A

B

r

a

a

y

x

z

A

B
C

D

�a2

2
 (� � 1)
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5/211 The tapered body has a horizontal cross section
which is circular. Determine the height of its
mass center above the base of the homogeneous
body.

Ans.

Problem 5/211

5/212 Shown in the figure is a body similar to that of
Prob. 5/211, only now the body is a thin shell with
open top and bottom. Determine the height of its
mass center above the base of the homogeneous
body and compare your result with the printed an-
swer for Prob. 5/211.

Problem 5/212

2R2R2

R

H h

h

2R

R

H h

h � 11
28 H

h
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5/216 Sketch the shear and moment diagrams for each of
the four beams loaded and supported as shown.

Problem 5/216

5/217 The triangular sign is attached to the post embed-
ded in the concrete base at B. Calculate the shear
force V, the bending moment M, and the torsional
moment T in the post at B during a storm where
the wind velocity normal to the sign reaches 100
km/h. The air pressure (called stagnation pressure)
against the vertical surface corresponding to this
velocity is 1.4 kPa.
Ans. V � 2.8 kN, M � 6.53 T � 1.867 

Problem 5/217

2 m

1 m

2 m

B
x y

z

kN � mkN � m,

P

(a) (c)

(b) (d)

P

P

M

M

M

P
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5/213 The homogeneous body shown is constructed by be-
ginning with the solid body of Prob. 5/211 and then
removing a cylindrical volume of diameter just less
than R as shown, leaving a thin wall at the left por-
tion of the body as well as at the very top. Deter-
mine the height of the mass center above the
base of the body.

Ans.

Problem 5/213

5/214 Draw the shear and moment diagrams for the
beam, which supports the uniform load of 500 N
per meter of beam length distributed over its mid-
section. Determine the maximum bending moment
and its location.

Problem 5/214

5/215 Determine the maximum bending moment Mmax

for the loaded beam and specify the distance x to
the right of end A where Mmax exists.

Ans. Mmax � 186.4 at x � 0.879 m

Problem 5/215

2 m 1 m

600 N/m

A
B

N � m

4 m 4 m 4 m

500 N/m

2R2R2

R

H h

h � 5
16 H

h
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5/218 The circular disk rotates about an axis through its
center O and has three holes of diameter d posi-
tioned as shown. A fourth hole is to be drilled in
the disk at the same radius r so that the disk will
be in balance (mass center at O). Determine the re-
quired diameter D of the new hole and its angular
position.

Problem 5/218

5/219 Determine the depth h of the square hole in the
solid circular cylinder for which the z-coordinate of
the mass center will have the maximum possible
value.

Ans. h � 204 mm

Problem 5/219

120
mm
240 mm

120
mm

h

y

x

z

400 mm

D

O
d

d

d

r 30°
θ
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5/220 A flat plate seals a triangular opening in the verti-
cal wall of a tank of liquid of density �. The plate is
hinged about the upper edge O of the triangle. De-
termine the force P required to hold the gate in a
closed position against the pressure of the liquid.

Problem 5/220

5/221 A prismatic structure of height h and base b is sub-
jected to a horizontal wind load whose pressure p
increases from zero at the base to p0 at the top ac-
cording to p � Determine the resisting mo-
ment M at the base of the structure.

Ans. M �

Problem 5/221

h

y

y

b

p0

p

p = k y

4
35 p0bh2

k�y.

O
b

h

a

P
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5/224 Locate the center of mass of the thin spherical shell
which is formed by cutting out one-eighth of a com-
plete shell.

Ans.

Problem 5/224

5/225 Locate the center of mass of the homogeneous bell-
shaped shell of uniform but negligible thickness.

Ans.

Problem 5/225

a

z

x

a

z � a
� � 2

z

y

x
r

x � y � z � r
2

334 Chapter  5 Distr ibuted Forces

5/222 As part of a preliminary design study, the effects of
wind loads on a 300-m building are investigated.
For the parabolic distribution of wind pressure
shown in the figure, compute the force and moment
reactions at the base A of the building due to the
wind load. The depth of the building (perpendicular
to the paper) is 60 m.

Problem 5/222

5/223 Regard the tall building of Prob. 5/222 as a uniform
upright beam. Determine and plot the shear force
and bending moment in the structure as functions
of the height x above the ground. Evaluate your ex-
pressions at x � 150 m.

Ans. V � 7.2(106) � 1386 x3/2 N

M � 1296 � 7.2x � 5.54(10�4) x5/2 MN � m

V	x�150 m � 4.65 MN

M	x�150 m � 369 MN � m

300 m

x

p

A

600 Pa

p = k x

�

�

�
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Computer-Oriented Problems*

*5/226 Construct the shear and moment diagrams for the
loaded beam of Prob. 5/113, repeated here. Deter-
mine the maximum values of the shear and mo-
ment and their locations on the beam.

Problem 5/226

*5/227 Construct the shear and moment diagrams for the
loaded beam shown. Determine the maximum
bending moment and its location.

Ans. Mmax � 6.23 at x � 2.13 m

Problem 5/227

4 m

4.8 kN/m

2.4 kN/m

A B
x

w = w0 + kx2y

w

kN � m

A B

w = w0 – kx3

w

x
1200 N/m

6 m

2400 N/m
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*5/228 Find the angle � which will place the mass center
of the thin ring a distance r/10 from the center of
the arc.

Problem 5/228

*5/229 A homogeneous charge of solid propellant for a
rocket is in the shape of the circular cylinder
formed with a concentric hole of depth x. For the
dimensions shown, plot the x-coordinate of the
mass center of the propellant, as a function of the
depth x of the hole from x � 0 to x � 600 mm. De-
termine the maximum value of and show that it
is equal to the corresponding value of x.

Ans. � 322 mm

Problem 5/229

600 mm

90 mm

180 mmx

Xmax

X

X,

θ

r
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Problem 5/232

*5/233 A right-circular cylinder of density �1 floats in a
liquid of density �2. If d is the diameter of the
cylinder and h is the submerged depth, plot the

ratio r � as a function of over the range 0 �

� 1. Evaluate r for a pine cylinder floating in

sea water.

Ans. r � 0.473

Problem 5/233

d

h

ρ1

ρ2

�1
�2

�1
�2

h
d

B
A

x
–x

50 m
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*5/230 A cable with a mass of 15 kg/m is attached to point
A and passes over the small pulley at B on the
same horizontal line with A. Determine the sag h
and length S of the cable between A and B if a
tension of 12 kN is applied to the cable over the
pulley.

Problem 5/230

*5/231 An underwater detection instrument A is attached
to the midpoint of a 100-m cable suspended be-
tween two ships 50 m apart. Determine the depth
h of the instrument, which has negligible mass.
Does the result depend on the mass of the cable or
on the density of the water?

Ans. h � 39.8 m

Problem 5/231

*5/232 The center of buoyancy B of a ship’s hull is the
centroid of its submerged volume. The under-
water cross-sectional areas A of the transverse
sections of the tugboat hull shown are tabulated
for every five meters of waterline length. With an
appropriate computer program, determine to the
nearest 0.5 m the distance of B aft of point A.

x, m A, m2 x, m A, m2

0 0 30 23.8
5 7.1 35 19.5

10 15.8 40 12.5
15 22.1 45 5.1
20 24.7 50 0
25 25.1

x

A

h

50 m

100 m
T = 12 kN

h

A
B
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*5/234 A length of power cable is suspended from the two
towers as shown. The cable has a mass of 20 kg per
meter of cable. If the maximum allowable cable
tension is 75 kN, determine the mass � of ice per
meter which can form on the cable without the
maximum allowable tension being exceeded. If ad-
ditional stretch in the cable is neglected, does the
addition of the ice change the cable configuration?

Art ic le  5/10 Review Problems 337

Problem 5/234

10 m

200 mA

B
30 m
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Conversion Factors
U.S. Customary Units to SI Units

To convert from To Multiply by

(Acceleration)
foot/second2 (ft/sec2) meter/second2 (m/s2) 3.048 � 10�1*
inch/second2 (in./sec2) meter/second2 (m/s2) 2.54 � 10�2*

(Area)
foot2 (ft2) meter2 (m2) 9.2903 � 10�2

inch2 (in.2) meter2 (m2) 6.4516 � 10�4*
(Density)

pound mass/inch3 (lbm/in.3) kilogram/meter3 (kg/m3) 2.7680 � 104

pound mass/foot3 (lbm/ft3) kilogram/meter3 (kg/m3) 1.6018 � 10
(Force)

kip (1000 lb) newton (N) 4.4482 � 103

pound force (lb) newton (N) 4.4482
(Length)

foot (ft) meter (m) 3.048 � 10�1*
inch (in.) meter (m) 2.54 � 10�2*
mile (mi), (U.S. statute) meter (m) 1.6093 � 103

mile (mi), (international nautical) meter (m) 1.852 � 103*
(Mass)

pound mass (lbm) kilogram (kg) 4.5359 � 10�1

slug (lb-sec2/ft) kilogram (kg) 1.4594 � 10
ton (2000 lbm) kilogram (kg) 9.0718 � 102

(Moment of force)
pound-foot (lb-ft) newton-meter (N � m) 1.3558
pound-inch (lb-in.) newton-meter (N � m) 0.1129 8

(Moment of inertia, area)
inch4 meter4 (m4) 41.623 � 10�8

(Moment of inertia, mass)
pound-foot-second2 (lb-ft-sec2) kilogram-meter2 (kg � m2) 1.3558

(Momentum, linear)
pound-second (lb-sec) kilogram-meter/second (kg � m/s) 4.4482

(Momentum, angular)
pound-foot-second (lb-ft-sec) newton-meter-second (kg � m2/s) 1.3558

(Power)
foot-pound/minute (ft-lb/min) watt (W) 2.2597 � 10�2

horsepower (550 ft-lb/sec) watt (W) 7.4570 � 102

(Pressure, stress)
atmosphere (std)(14.7 lb/in.2) newton/meter2 (N/m2 or Pa) 1.0133 � 105

pound/foot2 (lb/ft2) newton/meter2 (N/m2 or Pa) 4.7880 � 10
pound/inch2 (lb/in.2 or psi) newton/meter2 (N/m2 or Pa) 6.8948 � 103

(Spring constant)
pound/inch (lb/in.) newton/meter (N/m) 1.7513 � 102

(Velocity)
foot/second (ft/sec) meter/second (m/s) 3.048 � 10�1*
knot (nautical mi/hr) meter/second (m/s) 5.1444 � 10�1

mile/hour (mi/hr) meter/second (m/s) 4.4704 � 10�1*
mile/hour (mi/hr) kilometer/hour (km/h) 1.6093

(Volume)
foot3 (ft3) meter3 (m3) 2.8317 � 10�2

inch3 (in.3) meter3 (m3) 1.6387 � 10�5

(Work, Energy)
British thermal unit (BTU) joule (J) 1.0551 � 103

foot-pound force (ft-lb) joule (J) 1.3558
kilowatt-hour (kw-h) joule (J) 3.60 � 106*

*Exact value
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SI Units Used in Mechanics

Quantity Unit SI Symbol

(Base Units)
Length meter* m
Mass kilogram kg
Time second s

(Derived Units)
Acceleration, linear meter/second2 m/s2

Acceleration, angular radian/second2 rad/s2

Area meter2 m2

Density kilogram/meter3 kg/m3

Force newton N (� kg � m/s2)
Frequency hertz Hz (� 1/s)
Impulse, linear newton-second N � s
Impulse, angular newton-meter-second N � m � s
Moment of force newton-meter N � m
Moment of inertia, area meter4 m4

Moment of inertia, mass kilogram-meter2 kg � m2

Momentum, linear kilogram-meter/second kg � m/s (� N � s)
Momentum, angular kilogram-meter2/second kg � m2/s (� N � m � s)
Power watt W (� J/s � N � m/s)
Pressure, stress pascal Pa (� N/m2)
Product of inertia, area meter4 m4

Product of inertia, mass kilogram-meter2 kg � m2

Spring constant newton/meter N/m
Velocity, linear meter/second m/s
Velocity, angular radian/second rad/s
Volume meter3 m3

Work, energy joule J (� N � m)
(Supplementary and Other Acceptable Units)

Distance (navigation) nautical mile (� 1,852 km)
Mass ton (metric) t (� 1000 kg)
Plane angle degrees (decimal) �
Plane angle radian —
Speed knot (1.852 km/h)
Time day d
Time hour h
Time minute min

*Also spelled metre.

Selected Rules for Writing Metric Quantities
1. (a) Use prefixes to keep numerical values generally between 0.1 and 1000.

(b) Use of the prefixes hecto, deka, deci, and centi should generally be avoided
except for certain areas or volumes where the numbers would be awkward
otherwise.

(c) Use prefixes only in the numerator of unit combinations. The one exception 
is the base unit kilogram. (Example: write kN/m not N/mm; J/kg not mJ/g)

(d) Avoid double prefixes. (Example: write GN not kMN)
2. Unit designations

(a) Use a dot for multiplication of units. (Example: write N � m not Nm)
(b) Avoid ambiguous double solidus. (Example: write N/m2 not N/m/m)
(c) Exponents refer to entire unit. (Example: mm2 means (mm)2)

3. Number grouping
Use a space rather than a comma to separate numbers in groups of three,
counting from the decimal point in both directions. Example: 4 607 321.048 72)
Space may be omitted for numbers of four digits. (Example: 4296 or 0.0476)

SI Unit Prefixes

Multiplication Factor Prefix Symbol
1 000 000 000 000 � 1012 tera T

1 000 000 000 � 109 giga G
1 000 000 � 106 mega M

1 000 � 103 kilo k
100 � 102 hecto h
10 � 10 deka da
0.1 � 10�1 deci d

0.01 � 10�2 centi c
0.001 � 10�3 milli m

0.000 001 � 10�6 micro �
0.000 000 001 � 10�9 nano n

0.000 000 000 001 � 10�12 pico p
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FOREWORD

This series of textbooks was begun in 1951 by the late Dr. James L. Meriam. At that time,
the books represented a revolutionary transformation in undergraduate mechanics education.
They became the definitive textbooks for the decades that followed as well as models for other
engineering mechanics texts that have subsequently appeared. Published under slightly differ-
ent titles prior to the 1978 First Editions, this textbook series has always been characterized by
logical organization, clear and rigorous presentation of the theory, instructive sample prob-
lems, and a rich collection of real-life problems, all with a high standard of illustration. In addi-
tion to the U.S. versions, the books have appeared in SI versions and have been translated into
many foreign languages. These texts collectively represent an international standard for un-
dergraduate texts in mechanics.

The innovations and contributions of Dr. Meriam (1917–2000) to the field of engineer-
ing mechanics cannot be overstated. He was one of the premier engineering educators of
the second half of the twentieth century. Dr. Meriam earned his B.E., M. Eng., and Ph.D.
degrees from Yale University. He had early industrial experience with Pratt and Whitney
Aircraft and the General Electric Company. During the Second World War he served in the
U.S. Coast Guard. He was a member of the faculty of the University of California–Berkeley,
Dean of Engineering at Duke University, a faculty member at the California Polytechnic
State University–San Luis Obispo, and visiting professor at the University of California–
Santa Barbara, finally retiring in 1990. Professor Meriam always placed great emphasis on
teaching, and this trait was recognized by his students wherever he taught. At Berkeley in
1963, he was the first recipient of the Outstanding Faculty Award of Tau Beta Pi, given pri-
marily for excellence in teaching. In 1978, he received the Distinguished Educator Award
for Outstanding Service to Engineering Mechanics Education from the American Society
for Engineering Education, and in 1992 was the Society’s recipient of the Benjamin Garver
Lamme Award, which is ASEE’s highest annual national award.

Dr. L. Glenn Kraige, coauthor of the Engineering Mechanics series since the early
1980s, has also made significant contributions to mechanics education. Dr. Kraige earned
his B.S., M.S., and Ph.D. degrees at the University of Virginia, principally in aerospace engi-

v
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neering, and he currently serves as Professor of Engineering Science and Mechanics at Vir-
ginia Polytechnic Institute and State University. During the mid 1970s, I had the singular
pleasure of chairing Professor Kraige’s graduate committee and take particular pride in the
fact that he was the first of my three dozen Ph.D. graduates. Professor Kraige was
invited by Professor Meriam to team with him and thereby ensure that the Meriam legacy
of textbook authorship excellence was carried forward to future generations. For the past
two and a half decades, this highly successful team of authors has made an enormous and
global impact on the education of several generations of engineers.

In addition to his widely recognized research and publications in the field of spacecraft
dynamics, Professor Kraige has devoted his attention to the teaching of mechanics at both
introductory and advanced levels. His outstanding teaching has been widely recognized and
has earned him teaching awards at the departmental, college, university, state, regional, and
national levels. These include the Francis J. Maher Award for excellence in education in the
Department of Engineering Science and Mechanics, the Wine Award for excellence in uni-
versity teaching, and the Outstanding Educator Award from the State Council of Higher Ed-
ucation for the Commonwealth of Virginia. In 1996, the Mechanics Division of ASEE
bestowed upon him the Archie Higdon Distinguished Educator Award. The Carnegie Foun-
dation for the Advancement of Teaching and the Council for Advancement and Support of
Education awarded him the distinction of Virginia Professor of the Year for 1997. In his
teaching, Professor Kraige stresses the development of analytical capabilities along with the
strengthening of physical insight and engineering judgment. Since the early 1980s, he has
worked on personal-computer software designed to enhance the teaching/learning process in
statics, dynamics, strength of materials, and higher-level areas of dynamics and vibrations.

The Sixth Edition of Engineering Mechanics continues the same high standards set by
previous editions and adds new features of help and interest to students. It contains a vast
collection of interesting and instructive problems. The faculty and students privileged to
teach or study from Professors Meriam and Kraige’s Engineering Mechanics will benefit
from the several decades of investment by two highly accomplished educators. Following
the pattern of the previous editions, this textbook stresses the application of theory to ac-
tual engineering situations, and at this important task it remains the best.

John L. Junkins
Distinguished Professor of Aerospace Engineering
Holder of the George J. Eppright Chair Professorship in Engineering
Texas A&M University
College Station, Texas

vi Foreword
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