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Preface

The material of this book has been compiled so that it serves the needs of
students and teachers as well as professional workers who use mathematics. The
contents and size make it especially convenient and portable. The widespread
availability and low price of scientific calculators have greatly reduced the need
for many numerical tables that make most handbooks bulky. However, most cal-
culators do not give integrals, derivatives, series, and other mathematical formulas
and figures that are often needed. Accordingly, this book contains that informa-
tion in an easy way to access in addition to illustrative examples that make
formulas more clear. To facilitate the use of this book, the author and publisher
have worked together to make the format attractive and clear. Students and
professionals alike will find this book a valuable supplement to standard text-
books, a source for review, and a handy reference for many years.
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1 Symbols and Special Numbers

In

this chapter, several symbols used in mathematics are defined. Some special

numbers are given with examples and many conversion formulas are studied. This
chapter is essential to understand the next chapters. Topics discussed in this chapter
are as follows:

Basic mathematical symbols

Base algebra symbols

Linear algebra symbols

Probability and statistics symbols
Geometry symbols

Set theory symbols

Logic symbols

Calculus symbols

Numeral symbols

Greek alphabet letters

Roman numerals

Special numbers like prime numbers
Conversion formulas

Basic area, perimeter, and volume formulas.

Students encounter many mathematical symbols during their math courses. The

following sections show a categorical list of the math symbols, how to read them,
and some examples.

1.1 Basic Mathematical Symbols

Symbols How to Read It How to Use It Examples
= equals equality 3+7=10
#* does not equal inequality 12#£10
<>

| =

< is less than (strict) less than 2<5

= is less than or equal less than or equal to 12<=12
<=

> is greater than (strict)  greater than 7>3

(Continued)
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(Continued)

Symbols How to Read It How to Use It Examples

= is greater than greater than or equal to 15>=15

>= or equal

[] brackets calculate expression [(T+2)*(1+5]=18
inside first

) parentheses calculate expression 2X(3+5 =16
inside first

+ plus 7+8=15

- minus 8§—2=6

X times multiplication 7X8=56

. dot

* asterisk

+ division sign divided by 12/3=4

/ division slash

- horizontal line

+ plus-minus both plus and minus 3*£5=8and —2
operations

¥ minus-plus both minus and plus 3¥5=—-2and 8
operations

<¢

W

a™b
%

square root

cube root

nth root (radical)
absolute value or
modulus

divides
implies
equivalence
for each
there exists
there exists.
exactly one
period

power
caret
percent
per mille

decimal point, decimal
separator

exponent

exponent

1% = 1/100

1% = 1/1000 = 0.1%

J9=3

3\/8 =2

for n =3, n\/8=2

|—5] = |5] (absolute value)

|3 + 4i| =5 (modulus of
complex number)

5120

x=2=x2=4

xt5=y+2<x+3=y

2.56 =2+ 56/100

2°=38

273 =8

10% X 30 =3
10% X 30 =0.3
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1.2 Basic Algebra Symbols

Symbols How to Read It How to Use It Examples
X x variable unknown value to find when 2x =4, then x =2
= equivalence identical to
= equal by definition equal by definition
= definition cosh x: = (1/2)(exp x +
exp(— x))
~ approximately equal approximation m=3.14159
~ approximately equal weak approximation 11~10
o proportional is proportional to if y = 5x, then yxx
0 lemniscates infinity symbol
< is much less than is much less than 3« 1000
> is much greater than is much greater than 95>0.2
Lx] floor brackets rounds number to [43] =4
lower integer
[x] ceiling brackets rounds number to [431=5
upper integer
x! exclamation mark factorial 41 =1*2*"3*4 =24
flx) function of x maps values of x fx)=3x+5
to flx)
(fog) function composition (fog) (x) =flg(x)) fx) =3x,
g =x—1=(fog)(x) =
3x—1)
(a,b) open interval (a,b) £ {xla<x<b} xe(2,6)
[a,b] closed interval [a,b]1& {x|la=x=D) xe[2,6]
A delta change/difference
A discriminant A =b*—4ac
> sigma summation—sum of 5
all values in range an =2 +37+4 +57 =54
of series n=2
sigma double summation 2.8 8 8
2 ¢ Z Xij = in,l + Exi,z
j=1i=1 i=1 i=1
II capital pi product—product of I, =x1, X0, ... - X,
all values in range
of series
E e constant/Euler’s e=72.718281828...
number
r Euler—Mascheroni v =0.527721566. ..
constant
P golden ratio ¢ =1.61803398875
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1.3 Linear Algebra Symbol

Symbols How to Read It How to Use It Examples
. dot scalar product a-b
X cross vector product axXb
AQ®B tensor product tensor product of A and B A®B
(x,y) inner product
[1 brackets matrix of numbers
) parentheses matrix of numbers
|A] determinant determinant of matrix A
det(A) determinant determinant of matrix A
1] double vertical bars norm
AT transpose matrix transpose (AT),:,- = (A);i
A' Hermitian matrix matrix conjugate transpose (A'i'),;,- = (A);i
A* Hermitian matrix matrix conjugate transpose (A% = (A
ATl inverse matrix AAT =1
rank(A) matrix rank rank of matrix A rank(A) =3
dim(U) dimension dimension of matrix A rank(U) =3
1.4 Probability and Statistics Symbols
Symbols How to Read It How to Use It Examples
P(A) probability function probability of event A PA)=0.5
P(A N B) probability of events probability that of PANB)=05
intersection events A and B
P(A L B) probability of events probability that of P(AuB)=05
union events A or B
P(A|B) conditional probability probability of event A P(A|B)=0.3
function given event B
occurred
fix) probability density Pla=x=b)= ff(x)dx
function (pdf)
F(x) cumulative distribution F(x)=PX=x)
function (cdf)
o population mean mean of population ©w=10
values
EX) expectation value expected value of EX)=10
random variable X
EX|Y) conditional expectation expected value of EX|Y=2)=5
random variable X
given Y
var(X) variance variance of random var(X) =4
variable X

(Continued)
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(Continued)

Symbols How to Read It How to Use It Examples

o2 variance variance of population o?=4
values

std(X) standard deviation standard deviation of std(X) =2
random variable X

ox standard deviation standard deviation value ox=2
of random variable X

X median middle value of random x=5
variable x

cov(X,Y) covariance covariance of random cov(X,Y)=4
variables X and Y

corr(X,Y) correlation correlation of random corr(X,Y) =3
variables X and Y

Px.y correlation correlation of random Pxy =73
variables X and Y

Mod mode value that occurs most
frequently in
population

MR mid range MR = (Xpax T Xmin)/2

Md sample median half the population is
below this value

0 lower/first quartile 25% of population are
below this value

0, median/second quartile 50% of population are
below this
value = median of
samples

(03 upper/third quartile 75% of population are
below this value

X sample mean average/arithmetic mean x=2+5+9)

3=5.333

5 sample variance population samples =4
variance estimator

S sample standard population samples s=2

deviation standard deviation

estimator

Z standard score 2 = (x — x)/sy

X~ distribution of X distribution of random X~N(0,3)
variable X

N(/L,O’z) normal distribution Gaussian distribution X~N(0,3)

U(a,b) uniform distribution equal probability in X~U(0,3)
range a, b

exp(A) exponential distribution f =M x=0

(Continued)
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(Continued)
Symbols How to Read It How to Use It Examples
gamma(c, \) gamma distribution fx) = Aex e ™ I(c),
x=0
X2(k) chi-square distribution fx) = XMy
Q"2 (k/2))
F(ky,k>) F distribution
Bin(n,p) binomial distribution flk) = ,,Cp*1 —py*
Poisson(\) Poisson distribution flk)= Nee™Vk!
Geom(p) geometric distribution fitk)y=p(1 — p)k
HG(N,K,n) hyper-geometric
distribution

Bern(p) Bernoulli distribution
n! factorial nl=1-2.3...-.n 5!'=1-2-3-4.

5=120
WP permutation P = # sP3=5!/(5-23)

=60
nck(’;) combination Cn\ sC3=5!/[3!

”Ck_(k>_k!(n—k)! 5-3)1=10
1.5 Geometry Symbols
Symbols How to Read It How to Use It Examples
L angle formed by two rays L ABC =30°
A measured angle AABC =30°
< spherical angle <XAOB =30°
L right angle =90° a=90°
° degree 1 turn = 360° a=60°
! arcminute 1° =60 a=60°59
" arcsecond 1= 60" o= 60°59'59"
<« line infinite line
AB
AB line segment line from point A to point B
m ray line that start from point A
AB arc arc from point A to point B
| perpendicular perpendicular lines (90° angle) AC|BC
|| parallel parallel lines AB||CD
>~ congruent to equivalence of geometric shapes AABC=AXYZ
and size

~ similarity same shapes, not same size AABC~AXYZ
A triangle triangle shape AABC~ABCD
[x—y| distance distance between points x and y [x—=y|=5

(Continued)
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(Continued)
Symbols How to Read It How to Use It Examples
T pi constant m=3.141592654. .. is the ratio c=m-d=2-m-r
between the circumference and
diameter of a circle
rad radians radians angle unit 360° =27 rad
grad grads grads angle unit 360° =400 grad

1.6 Set Theory Symbols

Symbols

How to Read It

How to Use It

Examples

{1}
ANnB

AUB
ASB
AcB

AzB

ADB
ADB
2A
P@)
A=B
AC

A\B

AAB

set
intersection

union

subset

proper subset/strict
subset

not subset

superset

proper superset/strict
superset

not superset

power set

power set

equality

complement

relative complement

relative complement

symmetric difference

a collection of elements

objects that belong to
set A and set B

objects that belong to
set A or set B

subset has less elements

or equal to the set

subset has less elements

than the set
left set not a subset of
right set

set A has more elements

or equal to the set B

set A has more elements

than set B

set A is not a superset of

set B

all subsets of A

all subsets of A

both sets have the same
members

all the objects that do
not belong to set A

objects that belong to A
and not to B

objects that belong to A
and not to B

objects that belong to A
or B but not to their
intersection

A={3,79,14}, B={9,14,28}
AN B={9,14}

AU B={3709,14,28)
{9,14,28} = {9,14,28}
(9,14} = {9,14,28}
{9,66)  {9,14,28)
{9,14,28} 2{9,14,28}
{9,14,28) > (9,14}

{9,14,28} 1 (9,66}

A={3,9,14}, B={3,9,14},
A=B

A={309,14}, B={1,2,3},

A—B=1{9,14}
A=1{39,14}, B= {123},
A—B=1{9,14}

A={39,14}, B={1,2,3},
AAB = {1,2,9,14}

(Continued)
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(Continued)

Symbols How to Read It How to Use It Examples

AOSB symmetric difference objects that belong to A A = {3,9,14}, B = {1,2,3},
or B but not to their AB6B=1{1,29,14}

intersection
acA element of set membership A=1{39,14},3€A
x¢A not element of no set membership A={39,14},1¢A
(a,b) ordered pair collection of two
elements
AXB Cartesian product set of all ordered pairs
from A and B
|A] cardinality the number of elements A = {3,9,14}, |A| =3
of set A
#A cardinality the number of elements A ={3,9,14}, #A =3
of set A
N aleph-null infinite cardinality of
0 natural numbers set
N aleph-one cardinality of
1

countable ordinal
numbers set

(1) empty set d=1{} C=1{0}
8] universal set set of all possible values
Ny natural numbers/whole N, = {0,1,2,34,...} 0eNy
numbers set (with
Zero)
N natural numbers/whole N; = {1,2,3,4,5,...} 6eN,;

numbers set
(without zero)

Z integer numbers set Z={...—3,-2,—1, —6€eZ
0,1,2,3,...}
Q rational numbers set Q= {x|x=alb,a,beN} 2/6eQ
R real numbers set R={x]— o <x<ow} 6343434eR
C complex numbers set C = {z|z=a + bi, 6+2ieC
—o0 <a< oo,
—no<b<ow}
1.7 Logic Symbols
Symbols How to Read It How to Use It Examples
and and X-y
A caret/circumflex and XNy
& ampersand and x&y
+ plus or x+ty

(Continued)
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(Continued)
Symbols How to Read It How to Use It Examples
v reversed caret or XVy
| vertical line or x|y
b single quote not—negation X
X bar not—negation X
- not not—negation X
! exclamation mark not—negation Ix
&) circled plus/oplus exclusive or—xor x®y
~ tilde negation ~X
= implies
< equivalent if and only if
\4 for all
E| there exists
2 there does not exists
) therefore
because/since
1.8 Calculus Symbols
Symbols  How to Read It How to Use It Examples
lirrz) f(x)  Limit limit value of a function
g epsilon represents a very small e—0

dily

B

f(x,y)
Ox

e constant/Euler’s
number
derivative

second derivative
nth derivative

derivative
second derivative

nth derivative

time derivative

time second
derivative

partial derivative

number, near zero
e=2.718281828...

derivative—Leibniz’s
notation

derivative of derivative

n times derivation

derivative—Lagrange’s
notation
derivative of derivative

n times derivation

derivative by time—
Newton notation
derivative of derivative

e =1lim(1 + 1/x)*, x— oo

(3x%) = 9x?
(3x%)" = 18x
BrH)P =18

d(3x3)/dx = 9x°

d?Bx>)/dx® = 18x

o + yHlox = 2x

(Continued)
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(Continued)
Symbols  How to Read It How to Use It Examples
integral opposite to derivation
double integral integration of function
of two variables
triple integral integration of function

of three variables
closed contour/line
integral
closed surface integral

closed volume integral

Fm e 5 =

[a,b] closed interval la,b] = {x|la=x=b}

(a,b) open interval (a,b) = {xla<x<b}

i imaginary unit i=/-1 7=3+2i

4 complex conjugate z=a+bi—~7*=a—bi =342

z complex conjugate z=a+bi—>z=a—bi z=3+2i

v nabla/del gradient/divergence Vfix,y,z)

operator

x*y convolution y(t) = x(t) * h()

£ Laplace transform F(s) = L{f(0)}

F Fourier transform X(w) =F{fn})

6 delta function

1.9 Numeral Symbols
Name European Roman Hindu Hebrew

Arabic

Zero 0 .
one 1 I \ N
two 2 11 Y l
three 3 11 Y 2
four 4 v 3 T
five 5 \" 0 n
Six 6 VI 1 1
seven 7 VII v T
eight 8 VI A n
nine 9 IX Q 8]
ten 10 X \. .
eleven 11 XI " X
twelve 12 XII \Y an
thirteen 13 XIIT 'Y an
fourteen 14 X1V '€ ™

(Continued)
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(Continued)

Name European Roman Hindu Hebrew
Arabic

fifteen 15 XV 10 0
sixteen 16 XVI 11 T0
seventeen 17 XVIL WV ™
eighteen 18 XVIII ‘A n
nineteen 19 XIX 1Q o?
twenty 20 XX Y. b}
thirty 30 XXX Y. 5
forty 40 XL £. n
fifty 50 L 0. ]
sixty 60 LX 1. 0
seventy 70 LXX V. Y
eighty 80 LXXX A 9
ninety 90 XC Q. 8
one hundred 100 C Voo P

1.10 Greek Alphabet Letters

Upper Case

Lower Case

Greek Letter Name

< HAMTZDOMNZEZ>R"AR—"OINODT®E >

P T T A NG R P i e i o)

Mmoo R

Q

€ S 3 QD 3

Alpha
Beta
Gamma
Delta
Epsilon
Zeta
Eta
Theta
Iota
Kappa
Lambda
Mu

Nu

Xi
Omicron
Pi

Rho
Sigma
Tau
Upsilon
Phi

(Continued)
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(Continued)
Upper Case Lower Case Greek Letter Name
X X Chi
v Y Psi
Q w Omega
1.11 Roman Numerals
Number Roman Numeral
1 I
2 II
3 11
4 v
5 A%
6 VI
7 VII
8 VIII
9 IX
10 X
11 XI
12 XII
13 XIII
14 X1v
15 XV
16 XVI
17 XVII
18 XVIII
19 XIX
20 XX
30 XXX
40 XL
50 L
60 LX
70 LXX
80 LXXX
90 XC
100 C
200 cc
300 CcCcC
400 CD

(Continued)
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(Continued)

Number Roman Numeral
500 D
600 DC
700 DCC
800 DCCC
900 CM
1000 M
5000 \'%

10,000 X
50,000 L
100,000 C
500,000 D
1,000,000 M

1.12 Prime Numbers

A prime number (or a prime) is a natural number >1 that has no positive divisors
other than 1 and itself. Examples are as follows:

2,3,5,7,11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173,
179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263,
269, 271, 2717, 281, ...

1.13 Important Numbers in Science (Physical Constants)

Avogadro constant (N4) 6.02 X 106 kmol !

Boltzmann constant (k) 1.38 X 10" 2 JK !

Electron charge (e) 1.602 X 107 C

Electron, charge/mass (e/me) 1.760 X 10'" C kg™’
Electron rest mass (me) 9.11 X 10! kg (0.511 MeV)
Faraday constant (F) 9.65 X 10* C mol™*

Gas constant (R) 8.31 X 10° J K~ ! kmol ™!

Gas (ideal) normal volume (Vo) 22.4 m> kmol ™
Gravitational constant (G) 6.67 X 10~ Nm? kgf2
Hydrogen atom (rest mass) (mH) 1.673 X 107 kg (938.8 MeV)
Neutron (rest mass) (mn) 1.675 X 10727 kg (939.6 MeV)
Planck constant (h) 6.63 X 1073*J s

Proton (rest mass) (mp) 1.673 X 1072 kg (938.3 MeV)
Speed of light (c) 3.00 X 108 m s™*
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1.14 Basic Conversion Formulas

When Converting from

Try Performing This Operation

Centimeters (cm) to feet (ft)

Centimeters (cm) to inches (in)
Centimeters (cm) to meters (m)
Centimeters (cm) to millimeters (mm)
Degrees (deg) to radians (rad)

Degrees Celsius (C) to degrees Fahrenheit (F)
Degrees Fahrenheit (F) to degrees Celsius (C)
Feet (ft) to centimeters (cm)

Feet (ft) to meters (m)

Feet (ft) to miles (mi)

Feet/minute (ft/min) to meters/second (m/s)
Feet/minute (ft/min) to miles/hour (mph)
Feet/second (ft/s) to kilometers/hour (kph)
Feet/second (ft/s) to knots (kt)

Feet/second (ft/s) to meters/second (m/s)
Feet/second (ft/s) to miles/hour (mph)
Inches (in) to centimeters (cm)

Inches (in) to millimeters (mm)

Kilometers (km) to meters (m)

Kilometers (km) to miles (mi)

Kilometers (km) to nautical miles (nmi)
Kilometers/hour (kph) to feet/second (ft/s)
Kilometers/hour (kph) to knots (kt)
Kilometers/hour (kph) to meters/second (m/s)
Kilometers/hour (kph) to miles/hour (mph)
Knots (kt) to feet/second (ft/s)

Knots (kt) to kilometers/hour (kph)

Knots (kt) to meters/second (m/s)

Knots (kt) to miles/hour (mph)

Knots (kt) to nautical miles/hour (nmph)
Meters (m) to centimeters (cm)

Meters (m) to feet (ft)

Meters (m) to kilometers (km)

Meters (m) to miles (mi)

Meters/second (m/s) to feet/minute (ft/min)
Meters/second (m/s) to feet/second (ft/s)
Meters/second (m/s) to kilometers/hour (kph)
Meters/second (m/s) to knots (kt)
Meters/second (m/s) to miles/hour (mph)
Miles (mi) to feet (ft)

Miles (mi) to kilometers (km)

(cm) * 0.032808399 = (ft)
(cm) * 0.39370079 = (in)
(cm) * 0.01 = (m)

(cm) * 10 = (mm)

(deg) * 0.01745329 = (rad)
[(C)*1.8]1+32=(F)

[(F) —32)] * 0.555556 = (C)
(ft) * 30.48 = (cm)

(ft) * 0.3048 = (m)

(ft) * 0.000189393 = (mi)
(ft/min) * 0.00508 = (m/s)
(ft/min) * 0.01136363 = (mph)
(ft/s) * 1.09728 = (kph)
(ft/s) * 0.5924838 = (kt)
(ft/s) * 0.3048 = (m/s)

(ft/s) * 0.681818 = (mph)
(in) * 2.54 = (cm)

(in) * 25.4 = (mm)

(km) * 1000 = (m)

(km) * 0.62137119 = (mi)
(km) * 0.5399568 = (nmi)
(kph) * 0.91134 = (ft/s)
(kph) * 0.5399568 = (kt)
(kph) * 0.277777 = (m/s)
(kph) * 0.62137119 = (mph)
(kt) * 1.6878099 = (ft/s)

(kt) * 1.852 = (kph)

(kt) * 0.514444 = (m/s)

(kt) * 1.1507794 = (mph)
Nothing—they are equivalent units
(m) * 100 = (cm)

(m) * 3.2808399 = (ft)

(m) * 0.001 = (km)

(m) * 0.00062137119 = (mi)
(m/s) * 196.85039 = (ft/min)
(m/s) * 3.2808399 = (ft/s)
(m/s) * 3.6 = (kph)

(m/s) * 1.943846 = (kt)
(m/s) * 2.2369363 = (mph)
(mi) * 5280 = (ft)

(mi) * 1.609344 = (km)

(Continued)
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(Continued)

When Converting from

Try Performing This Operation

Miles (mi) to meters (m)

Miles/hour (mph) to feet/minute (ft/min)

Miles/hour (mph) to feet/second (ft/s)

Miles/hour (mph) to kilometers/hour (kph)

Miles/hour (mph) to knots (kt)

Miles/hour (mph) to meters/second (m/s)

Millimeters (mm) to centimeters (cm)

Millimeters (mm) to inches (in)

Nautical miles (nmi) to kilometers (km)

Nautical miles (nmi) to statute miles (mi)

Nautical miles/hour (nmph) to knots (kt)

Pounds/cubic foot (lb/ft3 ) to kilograms/cubic
meter (kg/m3 )

Radians (rad) to degrees (deg)

Statute miles (mi) to nautical miles (nmi)

(mi) * 1609.344 = (m)

(mph) * 88 = (ft/min)

(mph) * 1.466666 = (ft/s)
(mph) * 1.609344 = (kph)
(mph) * 0.86897624 = (kt)
(mph) * 0.44704 = (m/s)
(mm) * 0.1 = (cm)

(mm) * 0.039370078 = (in)
(nmi) * 1.852 = (km)

(nmi) * 1.1507794 = (mi)
Nothing—they are equivalent units
(Ib/ft%) * 16.018463 = (kg/m?)

(rad) * 57.29577951 = (deg)
(mi) * 0.86897624 = (nmi)

1.15 Basic Area Formulas

Square side?
Rectangle length * width

Parallelogram base * height

Triangle base * height/2

Regular n-polygon (1/4) * n * side? * cot(pi/n)
Trapezoid height * (basel + base2)/2
Circle pi * radius?

Ellipse pi * radius1 * radius2

Cube (surface) 6 * side?
Sphere (surface)

Cylinder (surface of side)

4 * pi * radius®
perimeter of circle * height

2 * pi * radius * height

Cylinder (whole surface)

areas of top and bottom circles + area of the side

2(pi * radius®) + 2 * pi * radius * height

Cone (surface)
Torus (surface)

pi * radius * side
pi2 * (radius2? — radius1?)

1.16 Basic Perimeter Formulas

Square 4 * side

Rectangle 2 * (length + width)
Parallelogram 2 * (sidel + side2)
Triangle sidel + side2 + side3

(Continued)
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(Continued)
Regular n-polygon n* side
Trapezoid height * (basel + base2)/2
Trapezoid basel + base2 + height * [csc(thetal) + csc(theta2)]
Circle 2 * pi * radius
Ellipse 4 * radiusl * E(k,pi/2). E(k,pi/2) is the complete

elliptic integral of the second kind k = (1/radius1) *
sqrt(radiusl2 — radius2?)
Circumference or perimeter 2nr
of a circle of radius r

1.17 Basic Volume Formulas

Cube side’

Rectangular prism sidel * side2 * side3

Sphere (4/3) * pi * radius’

Ellipsoid (4/3) * pi * radius1 * radius2 * radius3
Cylinder pi * radius® * height

Cone (1/3) * pi * radius® * height

Pyramid (1/3) * (base area) * height

Torus (1/4) * pi2 * (rl +12) * (r1 — r2)*




2 Elementary Algebra

Elementary algebra encompasses some of the basic concepts of algebra, one of the
main branches of mathematics. It is typically taught to secondary school students and
builds on their understanding of arithmetic. Whereas arithmetic deals with specified
numbers, algebra introduces quantities without fixed values known as variables. This
use of variables entails a use of algebraic notation and an understanding of the general
rules of the operators introduced in arithmetic. Unlike abstract algebra, elementary
algebra is not concerned with algebraic structures outside the realm of real and com-
plex numbers. The use of variables to denote quantities allows general relationships
between quantities to be formally and concisely expressed, and thus enables solving
a broader scope of problems. Most quantitative results in science and mathematics are
expressed as algebraic equations.

* Sets of numbers

» Absolute value

» Basic properties of real numbers
* Logarithm

» Factorials

» Solving algebraic equations

* Intervals

* Complex numbers

* Euler’s formula.

2.1 Sets of Numbers

Numbers are divided into two parts: real (IR) and complex numbers (C). Real numbers
are divided into two types, rational numbers and irrational numbers.

Transcen-

dental
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Rational Numbers

1. Any number that can be expressed as the quotient of two integers (fraction).
Example: 3/5.

2. Any number with a decimal that repeats or terminates. Example: 5.67676767...
10.345612.

3. Subsets of rational numbers:
a. Integers: Rational numbers that contain no fractions or decimals {..., =2, —1, 0,

1,2, ...}

b. Whole numbers: All positive integers and the number O {0, 1, 2, 3, ...}.
c. Natural numbers (counting numbers): All positive integers (not 0) {1, 2, 3, ...}.

Irrational Numbers

1. Any number that cannot be expressed as a quotient of two integers (fraction).

2. Any number with a decimal that does not repeat and does not terminate. Example:
4.34567129. ..

3. Most common example is 7 (3.14159265359. . .).

Complex Numbers

@ gin\ Complex \

ary C
R| mi oi 1+mi 1.5 - 2mi e+mi
/ Algebraic \

A V2 A V2 + iV3 T+ V2
s al ik 17-28i
.g V4 —2i -3-2i Transcen-
& : ; dental
£ N i 1+ <

Rational “\Real algebraic| Real\
Q AR R

5 —V3 €
413 |« >
Irrgtional /
Q A R
Real part

Many engineering problems can be treated and solved by using complex numbers.
Many equations are not satisfied by any real numbers. Examples are

¥=-2or x> —2x+40=0

We must introduce the concept of complex numbers.
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Definition A complex number is an ordered pair z = (x, y) of real numbers x and y.
We call x the real art of z and y the imaginary part, and we write Re z=x, Im z =y.
Example: z=5 + 2i.

()
c

° ® ® 53 ® ° ®
-2 +3i 2
£
=]
c
g

° ® ° £y b ° ®
©

E .

n+ 1.5
° | v ; ° ° °

\/2+i/2

Real number line
0. 0.0.Q: 0. 0.0.Q-0-0.0.Q-0-0p
0 1 2 3

dqeo-0o. @ 0.0.0.9Q-0-0-0-Q-0-0-0.
-3 -2 -1

) L =5 ) ) ® ®
—2— ol 33—
° ° ° T ° ° °
—1.5.— el
) ) ) -3 4 ) )

4............................’............................>

2.2 Fundamental Properties of Numbers

Linear inequalities: Linear inequalities in the real number system are the statements,
suchasa>b,a<b,a=b, a=b, where a & b are real numbers.

Definition

1. a>b<a—b>0. Example: 5>3<5-3=2>0

2. a<b<b>a.Example: 5<9<=5-9=—-4<0

3. a=b<either a>b or a=b

4. a=b<either a<b or a=b

5. a<b<cea<b&b<c. Example: —3<5<1le —3<5&5<11

Basic properties:

1. a>b, b>c=a>c. Example: 5>3, 3> 1<5>1
a<b, b<c=a<c.Example: 5<8, §<14<=5<14
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2. a>b=a*c>b=*xc. Example: 5>3 - 5—-10=-5>3-10= -7
a<b=a*tc<b=*xc

3. a>b, ¢c>0=ac>bc, (a/c)>(b/c). Example: 6>3 > 6X4=24>3X4=12,
(6/2)=3>(3/2)=15

4. a>b,c<0=ac<bc, (a/c)<(b/c). Example: 6 >3 - 6 X —4=—-24<3 X —4=—12,
(6/-2)=-3<(3/-2)=-15

2.3 Absolute Value

Definition The absolute value (or modulus) of a real number x, denoted by the
symbol |x| is a nonnegative number defined as

| xx=0
lxl=14_
x,x<0

For example, [2| =2,10| =0, |—2| = —(—2)=2.

y = x|

-3 —2 -1 0 1 2 3

Geometrical interpretation: |x| gives the distance of the point P, representing
the number x on the real number line, from the origin.

3 2 -1 0 1 2
%(_/
=31

It is obvious that [x| <a< —a<x<a & |[x|=a< —a=x=a.

Basic properties of modulus: The following properties of modulus are very use-
ful in different types of problems, especially in mathematics.

1. |x|=0

2. x=|x|, —x= x|
3. x+yl=Ix| + 1yl
4. |x—yl= x| = Iyl
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Example
Find the values of x, which satisfy the inequality |2x — 3| = 4.

Solution

[2x —3|=b4=> —4=2x—3=4b=> —4+3=2x=4+3=> —1=22x=T7=> —

N
IA
>
IA

N~

So, the values of x are in between —1/2 and 7/2 inclusively.

2.4 Basic Properties of Real Numbers

1. Closureness: When two real numbers are added or multiplied together, we get again a real
number. So, we say that the real number system is closed with respect to addition and multi-
plication. It is also closed with respect to subtraction. However, it is closed with respect to
division, only when the divisor is non-zero.

In symbolic form, we write
i. a,belR=a *belR as well as abelIR

ii. a,belR and b;éO:%eIR.

2. Commutativity: a+b=>b+a V a,belR. Example: 2 +3 =3 +2.
. Associativity: a+ (b+c)=(a+b)+c V a,b,celR. Example: 2+ (3+4)=(2+3) +4.
4. Distributivity:a-(b+c)=a-b+a-c ¥V a,b,celR. Example:2-(3+4)=2-3+2-4.
We say that multiplication distributes over addition. However, addition does not
distribute over multiplication.
5. Existence of identity elements:a+0=0+a and a-1=1-a V aelR. Example: 3+0=3.
3-1=3.
Here, the elements 0 & 1 are known as the additive identity and multiplicative identity,
respectively.
6. Division by zero is undefined. Example: 5/0 is undefined.

w

2.5 Laws of Exponents

For integers x and y:

1. «°=1. Example: 7° =1
2. a* - @’ =a*. Example: 4°.4° =4'4
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3. (@) =av. Example: (4°)° = 4%
4. a™*=1/a*. Example: 4 °> =1/4°
5. a*/” = J/a*. Example: 5%7 = V/5°

2.6 Logarithm

1. log,1 =0, log,a=1. Example: logg1 =0,log;515=1
2. log,x™ = mlog,x. Example: 10g9,42 = 2logy4
3. log,(xy) =log,x + log,y. Example: loge(7 X 18) =logy7 + logy18
4. log,(x/y) =log,x —log,y. Example: logy(7/18) =logy7 — logy18
5. log,x =log,b - log,x. Example: logy(7) =logy15 - log,s7
6. log,x = logx

log,a

Note: From (5), taking x = a, we get the formula:

log,b = Example: logy18 =

log,a’ log,49

2.7 Factorials

The factorial of positive integer n is the product of all positive integers less than or
equal to the integer n and is denoted by n!

n!l=1X2X3X4X ... Xn. Example: 5! = 120. By definition 0! = 1.

Binomial expansion: For any value of n, whether positive, negative, integer, or
noninteger, the value of the nth power of a binomial is given by

—1 —1)(n—2
(x+y)n :xn + nxn—]y 4 n(n )xn—2y2 4 n(n )(n )

3 Al 4y Ty

Example

(x+3)°=x0+6x°(3) + 15x*3% +20x33 + 15x%3* + 6 x 3% + 3°
=%+ 18x° + 135x*3% + 540x° + 1215x* + 1458x + 729
(2x—3)° = (2x)° + 5(20)*(—3) + 10(2x)*(-3)* + 10(2x)*(-3)* + 5(2x)(=3)* + (-3)°
=32x" — 240x* + 720x — 1080x> + 810x — 243
(0 =2/0* = () + 40 (= 2/x) +6() (2 /) +40) (2 /%) + (2 /)

=x12—8x® +24x* — 32+ 16x7*
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2.8 Factors and Expansions

(x+y)? =x% + 2xy +y?
(x =y =2 —2xy+y
(x+ y)3 =x + 3x2y + 3xy* + y3
(x—y)P =2 =3x% + 307 —»*
(x+ ) =2 + 43y + 665y + 4xyd +
(x =y =x* — 43y + 665y — 4xyd +
(@ —y)=@—yx+y)
(& =) = (= & +xy+y7)
(& +5) = (c+ )& —xy +y7)
(& =) = =+ 06 +y7)

@ =) =@ =y + Xy + 5 + 0 +yY)

2.9 Solving Algebraic Equations

Linear equation: ax +b=c. If ax + b= c and a # 0, then the root is x = (¢ — b)/a.
Example: Solve 2x —5=10—x=(10+5)/2="17.5.

Quadratic equation: ax*> +bx+c=0. If ax> +bx+c=0, and a # 0, then
roots are

= —b * /b —4ac
2a

Example:

5+ /5 —4@4)(-9 _ -5=13

Solve 4x> +5x+ —9=0, x= 0] g

Cubic equation: x> +bx*>+cx+d=0. To solve x> +bx>+cx+d=0, let
x=y—b/3 then the reduced cubic is obtained as y*+py+g=0, where
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p=c—(1/3)b*> and g=d—(1/3)bc+ (2/27)b*. The three roots of reduced
cubic are

y1:ﬁ+\3/§
y2=C\3/Z+C2\3/]§
y3:C2\3/K+C«3/§

where

A== 2q+ AP + (/A

B=—2q— /25 + (19

C— —1+i«/§’ 5

5 i“=-1

Then the solutions in terms of x:

X1 =Y1— (1/3)19
x2=y, —(1/3)b
x3=y3—(1/3)b

Quartic equation: x* + ax® + bx> + cx +d =0
Let y; be a real root of the cubic equation: y> — bx?+ (ac —4d)y +
(4bd — ¢* — a*d) =0, then the solutions of the quartic equation are the roots of

2 +O.5(a + \/az—cthtyl)zJr o.s(y1 + /92 —4d).

2.10 Intervals

Definition Given any two real numbers a and b, the set of all real numbers in
between a and b is called an interval. Geometrically, an interval is a part of the
real number line.

There are three types of interval:

i. Open interval: (a,b) = {x:a <x <b}

ii. Closed interval: [a, b] = {x:a =x = b}
iii. Left-open interval: (a, b] = {x:a <x = b}
iv. Right-open interval: [a, b) = {x:a = x <b}.
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The last two types of interval are known as semi-open or semi-closed intervals.

Example

Express the following sets in terms of intervals.

a. {xeR:—3=x<5}
b. {xeR:|x| <3}
¢ {xeRix—1]=2}

Solution
a. [-3,5)
b. x| <3=-3<x<3=(-3,3)

€ x—1=2=-2=x—-1=2=-2+1=x=2+1=—-1=x=3=[—1,3].

Example

) )
T T T A =
2 -1 0 1 2
T T T Q)
-2 -1 0 1 2
T T T QC==0 —
-2 -1 0 1 2
T T T s >
-2 -1 0 1 2
T T T C :
-2 -1 0 1 2
< )
< =
-2 -1 0 1 2
< *—
-2 -1 0 1 2
-2 -1 0 1 2

2.11 Complex Numbers

(1,2)

(1,2)

(1,2)

(1, )

(1, )

(==, 2)

(==, 2)

In algebra, we discovered that many equations are not satisfied by any real numbers.

Examples are
xX=—2orx* —2x+40=0

We must introduce the concept of complex numbers.
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Definition A complex number is an ordered pair z = (x, y) of real numbers x and y.
We call x the real part of z and y the imaginary part, and we write Re z=1x,
Imz=y.

Example Let z=5-2i,w= —2+iand u =7i.
Then

Re(z) =5 Im(z) = —2
Re(w)= -2 Im(w)=1
Re(u) =0 Im(u) =7

Two complex numbers are equal, where z; = (x1,y1) and z, = (x2, ¥2):
71 =7 if and only if x; =x; and y; =y,

Addition and subtraction of complex numbers: We define for two complex numbers,
the sum and difference of z; = (x1, y1) and z5 = (xp, y2):

21+ 2= (x +x,y1 +y2) and z1 — 2 = (1 — x2, 1 — y2).
Multiplication of two complex numbers is defined as follows:

2122 = (X1x2 — y1y2, X1y2 + X2)1)

Example Let z; = (3,4) and z, = (5, —6) then
2+t2=03+54+(-6)=(8,—-2)
and
21—22=03-5,4—(-6))=(—2,10)
We need to represent complex numbers in a manner that will make addition and
multiplication easier to do.
Complex numbers represented as z = x + iy.
A complex number whose imaginary part is O is of the form (x,0) and we have
(x1,0) + (x2,0) = (x1 +x2,0) and (x1,0) = (x2,0) = (x; = x2,0)

and

(XI,O) : (xZaO) = (X].Xz,o)
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which looks like real addition, subtraction, and multiplication. So we identify (x, 0)
with the real number x and therefore we can consider the real numbers as a subset
of the complex numbers.

We let the letter i =(0,1) and we call i a purely imaginary number. Now
consider 2 =i-i=(0,1)-(0,1)=(—1,0) and so we can consider the complex
number i> = — 1 = the real number — 1. We also get yi =y - (0, 1) = (0, y).

And so we have (x,y) = (x,0) + (0,y) = x + iy.

Now we can write addition and multiplication as follows:

21tz = txo,y1 Hy2) =x1 Fxp Hily +y2)
and

2122 = (X1X2 = Y1y2, X1y2 + X2y1) = X1X2 — y1y2 T i(x1y2 + x2y1)

Example Let z; = (2,3)= 2 +3iand z, = (5, —4) =5 — 4i, then
atn=0C+3)+G—-4)=7—i
and

2 =0Q2+30)-(5—4)=10+ 15 — 8 — 12i* =22 + 7i.

Example Solve the quadratic equation x* + 4x + 5 = 0. Using the quadratic formula,
the solutions would be

—4 /424X 1 X5 —4x/—4

x= =

2 2

We notice a problem, however, since ~/—4 is not a real number. So the
equation x* + 4x + 5 = 0 does not have any real roots.

However, suppose we introduced the symbol i to represent +/—1. We could
then find expressions for the solutions of the quadratic as

—4*J-4 —4*£/4X -1 —4*2
= = =

2 2 2

So the equation has two solutions: x = —2 + i or x = —2 — i. These two solutions
are called complex numbers.
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2.12 The Complex Plane

The geometric representation of complex numbers is to represent the complex
number (x, y) as the point (x, y).

y-axis

1 2 X-axis

T (2-3)

So the real number (x, 0) is the point on the horizontal x-axis, the purely imaginary
number yi = (0, y) is on the vertical y-axis. For the complex number (x, y), x is the real
part and y is the imaginary part. Example: Locate 2 — 3i on the graph above.

How do we divide complex numbers? Let’s introduce the conjugate of a complex
number then go to division.

Given the complex number z = x + iy, define the conjugate 7 = x + iy = x — iy.
We can divide by using the following formula:

2 _ Xty _xtiyix —iyy _ xixn oy tiloyn —xiys)

22 XpTiyy Xy T iyaxp —iy2 x5 +y;
Example
243 _ (24303 +4) _ 6+ 122849 _ 6 .17
- - =2 4t
34 3-4)3+4) 9— 162 525

2.13 Complex Numbers in Polar Form

It is possible to express complex numbers in polar form. If the point
z=(x,y) =x+iy is represented by polar coordinates r,0, then we can write
x=rcosf, y=rsinf and z=rcos @+ irsin  =re”. r is the modulus or abso-
lute value of z, |z| =r=+/x* +y?, and 0 is z, the argument of z, § = arctan(y/x).
The values of r and 6 determine z uniquely, but the converse is not true. The modulus
r is determined uniquely by z, but 6 is only determined up to a multiple of 27. There
are infinitely many values of # which satisfy the equations x = r cos 6,y = r sin 0,
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but any two of them differ by some multiple of 27. Each of these angles 6 is called
an argument of z, but, by convention, one of them is called the principal argument.

Definition If z is a non-zero complex number, then the unique real number 6,
which satisfies

x=|zlcos O,y =|z|sinf, —w<O=m

is called the principal argument of z, denoted by 6 = arg(z). Note: The distance from
the origin to the point (x,y) is |z|, the modulus of z; the argument of z is the angle
0 = arctan(y/x). Geometrically, 0 is the directed angle measured from the positive
x-axis to the line segment from the origin to the point (x,y). When z = 0, the angle 6
is undefined.

The polar form of a complex number allows one to multiply and divide
complex numbers more easily than in the Cartesian form. For instance, if
21 =re? and zp = re®” then zizp = rire %)z /7o = (ry/r2)e™® %), These
formulae follow directly from DeMoivre’s formula.

Example For z=1+i, we get r=+v12+12=4/2 and 6=arctan(y/x) =
arctan 1 = /4. The principal value of 6 is 7/4, but 97/4 would work also.

2.14 Multiplication and Division in Polar Form

Let z; =r; cos by +irysin @y =ri(cos 0 +isin ;) and z; = rp(cos 6, + i sin 6,)
then we have

2122 = riray(cos(d, + 6,) +isin(f; + 6,)) and S ?(cos(ﬂl —0,) +isin(0, — 6,))
2 N

Example
z=1+i= \/z(cosE +1i sinz) and 7z, = V3—i= 2(COSE +1i sinz)
4 4 6 6
Then

T T 7 T 57 57
_ 2 isinl I yisint) = 24 isinoh
2122 \/E(COS 1 S1n )2(COS 6 1 S1n 6) 2\/5 <COS 12 1 S1n 12)
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and

) 2(cos(/6) + i sin(w/6))

<0 V2(cos(m/4) + i sin(m/4)) «/_E (
2

™ . 7r)
— sin—
Cos12 i B

We can use 7> =z -z =r- r(cos(6 + 0) + i sin(d + 0)) = r*(cos 26 + i sin 20)

2.15 DeMoivre’s Theorem

7" = r"(cos nf + i sin nb)

where n is a positive integer.

Let r =1 to get(cos 6+ sin #)" = cos nf + i sin nb.

Example Compute (1+i)°

6
(1+0)° = (ﬁ(cos% +i sin§)>

=\/§6 cos6-§+isin6~%

37 .. 3w
=8 cos— +isin—

2

= —8i

2.16 Euler's Formula

e =cos x + i sin x.

2



3 Linear Algebra

Linear algebra is the branch of mathematics concerning vector spaces, often finite
or countable infinite dimensional, as well as linear mappings between such spaces.
Such an investigation is initially motivated by a system of linear equations in sev-
eral unknowns. Such equations are naturally represented using the formalism of
matrices and vectors. Linear algebra is central to both pure and applied mathemat-
ics. For instance, abstract algebra arises by relaxing the axioms of a vector space,
leading to a number of generalizations. Functional analysis studies the infinite-
dimensional version of the theory of vector spaces. Combined with calculus, linear
algebra facilitates the solution of linear systems of differential equations.
Techniques from linear algebra are also used in analytic geometry, engineering,
physics, natural sciences, computer science, computer animation, and the social
sciences (particularly in economics). Because linear algebra is such a well-
developed theory, nonlinear mathematical models are sometimes approximated by
linear ones. Topics discussed in this chapter are as follows:

* Basic types of matrices

» Basic operations on matrices
+ Determinants

+ Sarrus rule

*  Minors and cofactors

+ Inverse matrix

» System of linear equations

*  Cramer’s rule.

3.1 Basic Definitions

Definition A matrix (plural form—matrices) is an arrangement of numbers in a
rectangular form consisting of one or more rows and columns. Each number in the
arrangement is called an entry or element of the matrix. A matrix is usually denoted
by a capital letter and its elements are enclosed within square brackets [ ] or round
brackets () or double vertical bars H H

If a; denotes the element in the ith row and jth column of a matrix A, then the
matrix is written in the following form:

a  ap Aain
ay; an Aap
am Qu ... QAun
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Definition If a matrix has m rows and n columns, we call it a matrix of order m by
n. The order of a matrix is also known as the size or dimension of the matrix.
2 1

For example, the matrices A= [ _11 f 2], B=|3 -1/, and
1 5
C= B _53] are of the orders 2 X 3, 3 X 2, and 2 X 2, respectively.

Definition Two matrices are said to be equal to each other if and only if they are
of the same order and have the same corresponding elements.

3.2 Basic Types of Matrices

1. Row matrix: A matrix having a single row. Example: [1 =2 4].
-1

2. Column matrix: A matrix having a single column. Example: | 2
5

3. Null matrix: A matrix having all elements zero. Example: 00 . A null matrix is
. . 0 0
also known as a zero matrix, and it is usually denoted by 0.
4. Square matrix: A matrix having equal number of rows and columns. Example: The

matrix (_33 12) is a square matrix of size 2 X 2.

5. Diagonal matrix: A square matrix, all of whose elements except those in the leading

2 0 0
diagonal are zero. Example: { 0 -3 0
0o 0 5
6. Scalar matrix: A diagonal matrix having all the diagonal elements equal to each other.
3 00
Example: |0 3 0
0 0 3
7. Unit matrix: A diagonal matrix having all the diagonal elements equal to 1.
1 o 1 00
Example: {0 1}, 0 1 Of,... A unit matrix is also known as an identity matrix
0 0 1

and is denoted by the capital letter 1.
8. Triangular matrix: A square matrix, in which all the elements below (or above) the lead-
ing diagonal are zero.

31 4 1 0 O
Example: [ 0 2 —1 | and | 2 3 O | are upper triangular and lower triangu-
00 4 4 -1 5

lar matrices, respectively.
9. Symmetric matrix: A square matrix [a;] such that a;=a; Vij. Example:
2 1 -3
1 4 5
-3 5 0
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10. Skew-symmetric matrix: A square matrix [a;] such that a; = —aj; V ij.
0 2 3
Example: | =2 0 1 |. Note that the elements in the leading diagonal of a skew-
-3 -1 0

symmetric matrix are always zero.

3.3 Basic Operations on Matrices

We can obtain new matrices from the given ones by using the following
operations:

1. Addition and subtraction: If A = (a;) and B = (b;) are m X n matrices, then their sum
A + B is defined as the new matrix: (a; + b;), where 1 =i=m and 1=j=n. The order
of this sum is again m X n. Similarly, A — B is defined. Note that the sum or difference of
two matrices is defined only when the matrices have the same size.

Example:
3 4 -2 1 2 3 -1 3
IfA_{z 0 1 } B‘L —1 2}’ a“dc_[ 2 4}

then A + B and A — B are defined, whereas A + C and A — C are not defined.

2. Scalar multiplication: If A = (a;) is a matrix and k is a scalar, then the scalar multiple of
A by k, denoted by kA, is the matrix B = (b;;) defined by b;; = kayj. So, to multiply a given
matrix A by a constant kK means to multiply each element of A by k.

Example:

(2 3 -1 _
LetAf(5 | 4 )andku.
Then, we get

(2 3 -1\ _(4 6 -2
kA_z(s 1 4 >_(10 2 8 )
3. Multiplication: If A =(a;) and B = (b;) are two matrices of orders m X p and p Xn,
respectively, then the product AB is the new matrix C = (c;;) of order m X n defined by
the formula: c;; = a;1by; + apby + apb,;, where 1 =i=m and 1=j=n. In short, we

P
write Cij = Z a,-kbkj.
k=1

Example:
2 3 —4 3 :
LetA:(1 3 )andB: -2 2
5 -3
Then, we get

AB = <2><3+3><(—2)+(—4)><5 2><1+3><2+(—4)><(—3)) _ (—20 20 )
1X3+2X(=2)+3X5 IX1+2X2+3X(=3) 14 -4
4. Transposition: The transpose of an m X n matrix A = (a;) is defined as the n X m matrix
A" =(a;;), where | <i=<m and 1=j=<n.1tis also denoted as A”.

Example:
_12 =35
ta=lg 703
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then
2 6
AT=1]-3 1
5 3
Remarks:
i. A is symmetric<=AT =4
ii. A is skew-symmetricAT = —A
3.4 Properties of Matrix Operations

Let A, B, and C be given matrices, then the basic properties of matrix addition, sca-
lar multiplication, matrix multiplication, and matrix transposition are stated below
without proof. These properties can be easily verified in examples.

1.

Properties of matrix addition and scalar multiplication:
i. A+ B =B+ A (commutativity)
ii. (A+B)+ C=A+ (B+ C) (associativity)
ili. A+0O=0+A=A, where O is the corresponding null matrix
iv. k(A + B) = kA + kB, where k is a scalar (distributivity).

. Properties of matrix multiplication:

i. AB # BA, in general

ii. A(BC) = (AB)C (associativity)
iii. A/ =JA =A, where [ is the corresponding identity matrix
iv. A(B+ C)=AB + AC (distributivity).

. Properties of matrix transposition:

i ANHT=4

ii. (A+B)T=AT +B"
jii. (kA)T = kAT
iv. (AB)T = BTAT.

Example 1
. . 1 2 4 1 .
Given the matnces{_3 4} and [2 3},vern‘ythatAB;«rSBA.
Solution
We have, by multiplication:
| 1o2][4 1] [ 1x4+2x2  1x1+2x3 ]_(8 7
-3 4|2 3 (3)X4+4X2 (—3)X1+4X3 -4 9

efe LS =]

So, AB # BA.
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Example 2
Given matrix is A = ( _14 (2) ;3) Verify that (A")" = A.
Solution
Here
1 —4
(1 2 -3 T_ m_(1 2 -3
_(—4 0 5)3/‘ ,23 2 =@ (‘4 0 5>

. (AN = A. Hence, it is verified.

Example

Suppose that a company puts a problem to you:

Determine which of the three methods M;, M,, and M5 of production it should use in
producing three goods A, B, and C. The amount of each good produced by each method is
shown below in matrix form:

M,
M,
Ms3

The row matrix (30 45 42) represents the profit per unit for the goods A, B, and ,
respectively. Use matrix multiplication to decide which method maximizes the total profit.

A

w U N
NOoOom
N oW

Solution
4 6 3 30
letP=|5 9 5| and Q=(30 45 42).ThenQ = | 45
3 4 7 42

Now, the total profits from the three methods are given by

4 6 3 30 120 + 270 + 126 516
R=PQ=1|5 9 5 45 | = | 150+ 405+ 210 | = | 765
3 4 7 42 90 + 180 + 294 564

So, the profits obtained from the methods M,, M,, and M; are Rs. 516, Rs. 765, and
Rs. 564, respectively. Consequently, the second method maximizes the profit.

3.5 Determinants

The determinant of a square matrix A is denoted by the symbol |A| or detA. We
can form determinants of n X n matrices. Such determinants are called n Xn
determinants.
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Definition

1. If A =[ay;] is a 1 X 1 matrix, then its determinant |A| is equal to the number a,; itself.

ay ap | . . . L
2. IfA= {a” alz} is a 2 X 2 matrix, then the determinant is given by
21 a2
apr  an
Al = =ajan — ana
azy

ap apy a3
3. IfA= | ay axn ay | isa3 X3 matrix, then its determinant is given by
as;  asy dsz
a a3 a ax
as;  as as;  as
= an(axnas; — apaz) — anlaaass — axast) + ai(aaan — anaz)

az a3

|Al = ay
azy asz

—ap tai;

Note that the determinant is expanded along the first row. Similarly, the determi-
nant can be expanded along any other row or column carrying (+) or (—) sign
according to the place occupied by the element in the following scheme:

+ - +
J— + J—
+ - +
Example
1. 12|=2
2 3
2. =2X(-5)—-3X4=-10—12=-22
4 =5
1 3 5
3.12 1 3 |=1 ! 3 —32 3 +52 ! , expanding along the first
-4 -6 3 -6 3 -4
3 -4 -6
row

= 1(~6+12)—3(-12—9) +5(-8—-3)=6+63—-55=14

3.6 Sarrus Rule

To find the value of a 3 X 3 determinant, the following rule, called the Sarrus rule
may also be useful.

ap app daps
1. Consider the determinant: |ay; ax» axs|.

asy  dasy dasz
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2. Write the three columns and then repeat the first two to have the fourth and fifth columns,
respectively, as follows (vertical bars are to be omitted):

app app aiz dir an
az) dxp a3 dz dy.
as; dsxp  azy az;  dads

3. Write the product of the elements of each leading diagonal with positive sign. Also write
the product of the elements of each secondary diagonal with negative sign.
4. The sum of the products obtained in step (3) gives the value of the determinant.

Example

Use Sarrus rule to find the value of the following determinant:

1 3 5

2 1 3

3 —4 —6
Solution

The elements of the given determinant are arranged as follows:

1 3 5 1 3
2 1 3 2 1
3 -4 —6 3 —4

Now, according to Sarrus rule, the value of the determinant is

1X1X(—6)+3X3X3+5X2X(—4)—3X1X5—(—4)X3X1—(=6)
X2X3=—6+27—40—15+12+36=75—61=14

3.7 Minors and Cofactors

ap dapz a3
Definition Let D= |ay; a» az3 | be a3 X 3 determinant.

as; Az ass
Then the 2 X 2 determinant obtained by deleting the row and column, in which an
element a;; lies, is called the minor of the element and is denoted by Mj;.

Definition If M;; is the minor of an element a;; of a de;erminant, then the cofactor
of the element, denoted by A;; is defined as A; = (—1)"/M;;.

. . . a a .
Thus, the minor of a;; in D is M = 2 ™31 and the cofactor is
ass

a
An =DMy =My 32

Remarks The value of the determinant D can be expressed in terms of the ele-
ments of any row or column of D.
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Example

Write the cofactors of elements of second row of the determinant

12 3
D=|-4 3 6
2 -7 9

and hence find the value of the determinant.

Solution
Here
An = (-1 _27 3‘ = —(18+21)=—39
_qe+2|l 3| g
An = (-1 9’—9 6=3
Aoy = (127 _27‘ =—7-4)=11
So

A21 = _39, Agz = 3, and A23 =11
Now

D= 021A21 + 022A22 + 023A23 = (_4)(_39) + 3(3) + 6(11) =231

3.8 Properties of Determinants

Following properties may be helpful to find the values of determinants:

P1: If any two rows or columns of a determinant are identical, then its value equals
zero.

Example

2
3

W B~ W

1
- 2| =0 [The first and second rows are identical.]
2 1
P2: If all the elements in any row or column of a determinant are zero, then the
value of the determinant is also zero.

Example

1 -2
3

5
2 4| =0 [The elements of third row are all 0.]
0 0 0
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P3: The determinant of a unit matrix is equal to 1.

Example

(=i
oS - O
— o O
I
—_

P4: The determinant of a diagonal matrix is equal to the product of the diagonal
elements.

Example
2 0 0
0 -3 0|=2X(-3)X4=-24
0 0 4

PS: The determinant of a square matrix equals the determinant of its transpose.
Example
1 2 3 1 3 2
-1 2 |=|2 -1 O
2 0 =3 3 2 -3

P6: If any two adjacent rows or columns of a determinant are interchanged, then
the value of the determinant changes by sign.

Example
1 2 3 3 -1 2
3 -1 2 |=—|1 2 3
2 0 -3 2 0 -3

P7: If each element of a row (or column) of a determinant is multiplied by a scalar
k, then the value of the determinant is also multiplied by k.

Example
3a b c a
3 m n|=3|1
3p g r p

QI
N 3 o
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ata b c
P8: A determinant of the form | [+ 3 m n| can be expressed in the form of the
pty q r
sum of two determinants:
a b c a b c
I m n|+|0 m n
p q r voq T

P9: If a multiple of any row (or column) of a determinant is added to (or subtracted
from) any other row (or column), then the value of the determinant remains

unchanged.

Example
a b c at+kb b ¢
I m ni=|l+km m n
p q r| |ptkg q r

P10: The determinant of a product of two square matrices is equal to the product
of their determinants, i.e., |[AB| = |A||B|.

Further Examples

1. Evaluate the following determinants as indicated:

1 2 3
i. |3 -1 2 | (along the first row)
4 0 —2
1 2 3
ii. |3 7 4 | (along the first column)
2 3 -2
Solution
1 2 3
-1 2 |=1
i 0 —2
-1 2 3 2 -1
-2 +3 = =42
0 -2 4 =2 0
1 2 3
37 4 |=1
ii. (2 3 =2
7 4 2 3 2 3
-3 +2 =..=-6
3 5 35 7 4
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2. Evaluate the following determinant without expanding

1 1 1
a b c
b+c c+a a+b

Solution
1 1 1 1 1 1
a b c |= a b c ;. R3 = R3+ R
b+c c+a a+b a+b+c a+b+c a+b+c
1 1 1
=(@+b+c)a b c|; (a+b+c) taken common from R
1 1 1
=(@+b+c)x0=0
1 1 1
3. Provethat |a b c|=(a—b)(b—c)c—a)
a@ b
Solution
1 1 1 1 0 0
b c|=|a b—-a c—al|; G—>G—-CGand GG—>G—0G
a® b a b—-a® 2-d°

b—a c—a
b2_02 C2_02
=(b—aXc—a)bia cia
=(0b—a)c—a)c—Db)
=(@—bb—o(c—a)

; expanding the determinant along R;

;  taking commons

4. Solve the following equation:

2 -3 4
-5 6 -7/=0
8 -9 x

Solution
Here, we have to find the value of x.
Now

2 4

—5 6 —7/=0=8 0

8 -9 x

2 -3 4
|

-3 4 2 -3
6 7 -5 6'
=8(21—24) +9(— 14 + 20) + x(12 — 15) =0
= —24+54—3x=0

=3x =30

=x=10

o5 5]
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3.9 Inverse Matrix

Definition A square matrix A is said to be singular, if its determinant |A| =0 and
nonsingular, if |A| # 0.

Definition The adjoint of a square matrix A, denoted as Adj.A, is defined as the
transpose of the matrix obtained by replacing each element of A by its cofactor.

2 1
1 6
A1 =6,Ap=—1,A;=—1, and A» =2. So, the matrix of cofactors is

(55)

Definition If A and B are square matrices such that AB = BA =1, where [ is the
unit matrix of the same order, then B is called the inverse (or reciprocal) of A and
is denoted by A~!. Similarly, A is said to be the inverse of B.

Thus, AA"'=A"'"A=Tand BB"''=B 'B=1.

Example Let A =< ) Then the cofactors of its elements are:

Formula The inverse of a nonsingular matrix A is given by the formula:
Al= l(Ad' A)
A0

Note that no inverse of A exists, when |A| = 0.

Example 0 1 2
Find the inverse of the matrix |1 2 3.
311
Solution
01 2 01 2
let A=(1 2 3|. Then the determinant of A is JAl=|1 2 3|=
311 311

02—-3)—1(1—-9)+2(1—6)=—2.Since |A| #0. .".A™! exists.
Now, the cofactors of the elements of A are

Azz—g i=—6, Aza——g 1=—3
|0 2=
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-1 8 5
.". The matrix of cofactorsis | 1 —6 3 |, hence
1 3 -1
-1 1 -1
AdjA)=1| 8 -6 2
-5 3 -1
Now
1 L [-1 1 -1 1/2 -1/2 1)2
A’1=7Adj(A)=? 8 -6 2 |=|-4 3 -1
Al R [ O R 5/2 —3/2 -1
11
2 2
Al=| —4 3 -1
5 31
2 2 2

3.10 System of Linear Equations

* An equation of the form ax + by + ¢ =0, where at least one of the real numbers a and b
is not zero, is called a linear equation in x and y. Similarly, an equation of the form
ax + by + cz+d =0 is a linear equation in three variables x, y, and z.

» A system of equations can have exactly one solution, no solution, or an infinite number
of solutions. A system with at least one solution is called a consistent system. If it has
unique solution, it is said to be consistent and independent.

+y= . . Lo
Example The system {i_i =§ has exactly one solution. The unique solution is
x=4,y=1. So, it is a consistent and independent system.

* A system of equations having no solution is called an inconsistent system.

+y=5 .
Example The system {x Y _ ~ has no solution, because no values of x and y sat-

x+y=17
isfy both equations. Therefore, it is an inconsistent system.

» A system of equations is said to be consistent and dependent, if it has infinitely many
solutions.

2x+y=7

4x+2y =14 is consistent, but dependent.

Example The system {
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3.11 Methods of Solution

I. Row-equivalent matrix method: According to this method, to solve a system of linear
aix +byy=c
ax+by=c;
ai bl . C

ap b2 . 6‘2:|.

equations in two variables, say, { , we form the following matrix, called

augmented matrix: {

Then, we use row operations to change this matrix into row-equivalent matrices. Some
of the elementary row operations are as follows:
i. Interchange of any two rows, e.g., R| <> R;.
ii. Multiplication of each element of a row by a non-zero number, e.g., Ry — 3R;.
ili. Multiple of a row added to (or subtracted from) any other row, e.g.,
R2—>R2+2R1; R2—>R2*3R].
In this way, row operations are performed until we get the following special form:

0 1
Note: A system of three linear equations with three variables can be solved
similarly.

{ Lo Z } . Then the solution of the system will be x=p, y=gq.

Example 1

Find the solution, if any, of the system

2x—3y=4
5x+4y =1
Solution
The augmented matrix is
2 -3 4
5 4 1
r 3
1 —= 2 1
~ 2 , Ri— ERI
L5 4 1
r 3
1 —= 2
2
~ 23 N Rg b d Rg - 5R1
0 — : -9
2
r 3
1 —= 2
2 2
~ 18 |» Rg — ERZ
0o 1 : —=
23
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0 19
23 3
~ Ri— Ri+ 2R
1 > 1 1 2
01 : -8 2
23

Thus the required solution is x = 19/23, y = —18/23.

Example 2

Solve the following system of equations:

2x+ty+6z2=3
x—y+4z=1
3x+2y—2z=2

Solution

Starting with the corresponding augmented matrix and using elementary row operations,
we get the following chain:

2 1 6 3 1 -1 4 1
1 -1 4 1{~|2 1 6 31, RioR
3 2 =2 2 3 2 =2 2
1 -1 4 : 1
~10 3 -2 1 . R2—>R2*2R1 and R3—>R3*3R1
0 5 14 : -1
o -1 4 1
. 3 1 1
~ 2 3 | R2—>§Rz
0 5 —14 -1
_ 1 B
10 W 4
3 3
2 1
~10 1 —3 3|, Ri—>Ri+R, and Rs — R; —5R,
32 8
00 —= =
3 3
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N L WL WA

10 2
. R1—>R1—?R3 and R2—>R2+§R3

2
NRr NIRe Ne

.. The required solutionis x=3, y=1, z= 1.

3.12 Inverse Matrix Method

Consider the following system of linear equations:

ai;x+byy=c
axtby=cy’

This system can also be written in the form {al by ] {x] = {Cl ] .
a by||y €

s[5 2} 5[] [z
Now 2 2 y 2

AX=B
=A"1(AX)=A"'B
=(A"'A)X=A"'B
=IX=A"'B
=X=A"'B

For a system of three linear equations:
aix+byy+ciz=d

arx + bzy + CZ = dz
asx + b3y +c3z=ds
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We have
a) b] C1 X d1
A= an b2 c |, X= yi, and B = dz
a3 by 3 z ds

So, the relation X = A™'B can be used to determine the values of x, v, and z that
satisfy the system.

Example 1

Solve the system

4x +3y =13
x+ty=—4
Solution

The given system can be written in the form
AX =8B

where

=[5 2 e[l e[

The solution is given by X =A"1B.
Let's first find A~1. Here

1

Adj.A:{ 3 _45} and |A|=4X1—-3X5=—11

L1, 11 -5
SAT = A A= —
ke —11{73 4}

Now

e L REIEAR Y

-[]-15]

Hence the required solution is x= —3 and y = 5.
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Example 2
Find the solution, if any, of the following system:
x+3y—z=-3

3x—y+2z=1
2x—y+2z=-1

Solution
The given system can be written as

1 3 -1 X -3
3 -1 2 vi=1]1
2 -1 2 z -1
So, we have AX = B, where
1 3 -1 X -3
A=13 -1 2 (,X=]y|, and B=| 1
2 -1 2 z -1

Let’s find A~ first. The cofactors of the elements of A are

-1 2] 32| e

A= 1 2‘—0, Ap = 5 2‘— 2, Ap= P 1
3 1 _ _ -1] _ |1 3 _
Azl*_‘_l 2‘ 5:/422*’2 > ‘*4, A = ‘2 _1' 7

3 -1] | =1 |1 3| _

A3 = 19 '—5, Az, = 3 2 ‘— 5, A3 = 3 _q|= 710

.". The matrix of cofactors is
0 —2 -1
-5 4 7
5 -5 —-10

Again

|A| =011A11 +(112A12 +013A13 =1X0+3 X(—Z)"r(—l) X(—l) =-5 75 0
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Now

o -5 5 -3 X 2
X=ATB=—C| -2 4 51| 1 |=|yl=]|-3
-1 7 -10][-1 z —4

Hence the required solution isx=2, y= —3, and z= —4.

3.13 Determinant Method (Cramer’s Rule)

a;x+byy=c
axtbhy=c’

Multiplying the first equation by b,, second by b;, and then subtracting the sec-
ond from the first, we get (a1b, — axby)x = bycy — bicy.

Let us consider the system of equations: {

b

_bici—biea |2 b

aiby —axby  |ay by

a b

ar ¢

Similarly, we obtain y = 1221 provided that [*1 21| % 0.
a; b a, by

ay b2

Alternatively, we can write the above-mentioned formulae as shown below:
If

_la b
¢ b

a ¢

, and D, =
a

then the values of x and y are given by the formulae:

D, _ D

D

x=

and y

In the same way, for a system of three linear equations:

ajx +byy+ciz=d
arx + bzy + 7 = d2
asx + b3y + Cc37 = d3

the values of x, y, and z are given by the formulae:

x=& _Dx and 7= —
D D’ =D
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where
a, by ¢ d by ¢ a, d; ¢
D=lay by |, Di=|d by |, Da=|ay dr ¢,
a; by ¢ ds by ¢ a; dy ¢
a, by d;
and D;=|a, by d>
as by ds

It should be noted here that D # 0.

Example 1
Use Cramer’s rule to solve the equations: 3x + 4y = 14, 5x + 6y = 22.

5 22

Solution
We have
3 4

= =3X6—5X4=—
0‘56‘3654 2#£0
|14 4| _ _
Dl—‘zz 6‘—14><6 4X22=—4
02:‘3 14‘:3><22—5><14:—4

Now, by Cramer’s rule, we get

J.ox=2and y=2.

Example

Use the determinant method to solve the following system of linear equations:

2x+y+z=3
—x+2y+2z=1
X—y—3z= -6

Solution
First of all, we calculate the following determinants:

-1 2
1 -3

2 2

R e N A P L

-1 2 ‘_

=-10
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2 1 1
2 2 1 2 1 2
D=1 2 2 =3‘_ - ’—1‘_ ‘+1’ - -10
6 -1 -3 1 3 6 3 6 1
2 3 1
1 2 1 2 -1 1
D,=]-1 1 2 =2‘_ ‘*3‘ ‘71‘ B 20
1 6 -3 6 3 1 3 1 6
2 1 3
2 1 -1 1 1 2
Dy=|-1 2 1 =2‘_ - ’—1‘ ‘+3’ - -30
oS 6 1 -6 1 6 1 1
Now, by Cramer’s rule, we have
x—Dl —10_1 D, 20 2 Z_D3_ —30_3
D 10 ’ D - 10 ’ D - 10

Hence, the required solutionisx=1, y=—2, and z=3.




4 Analytic Geometry and
Trigonometry

Geometry is divided into two branches: analytic geometry and trigonometry.
Trigonometry began as the computational component of geometry. For instance,
one statement of plane geometry states that a triangle is determined by a side
and two angles. In other words, given one side of a triangle and two angles in
the triangle, then the other two sides and the remaining angle are determined.
Trigonometry includes the methods for computing those other two sides. The
remaining angle is easy to find since the sum of the three angles equals
180 degrees (usually written as 180°). Analytic geometry is a branch of algebra
that is used to model geometric objects—points, (straight) lines, and circles being
the most basic of these. In plane analytic geometry (two-dimensional), points are
defined as ordered pairs of numbers, say, (x, y), while the straight lines are in
turn defined as the sets of points that satisfy linear equations. Topics discussed
in this chapter are as follows:

» Plane figures

» Solid figures

» Triangles

» Degrees or radians

+ Table of natural trigonometric functions
» Trigonometry identities

» The inverse trigonometric functions

» Solutions of trigonometric equations

» Analytic geometry (in the plane, i.e., 2D)
* Vector
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4.1 Plane Figures—Perimeter (P), Circumference (C),
and Area (A)

Rectangle Parallelogram Trapezoid Triangle Circle
P=2]+2w C=2mnr
A=lw A=bh A=12)a+bh A=1/2)bh A=m

4.2 Solid Figures—Surface Area (S) and Volume (V)

Rectangular Solid  Circular Cylinder Circular Cone Sphere
S=2wl+2hl+2wh §=2mr" +27rh S=ar+7r\/(r*+h?) S=dnr
V=lwh V=nrh V= (1/3)rr’h V= (4/3)mr

T
h I h
) 3

4.3 Right Triangle

A C

¢?=a*+ b or ¢ = va? + b? (Pythagorean Theorem)
a+ (6=90°
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. a
sin @ = — =cos 3
c
b .
cosa=— =sin g
c
a
tan = —- =cot 3
b
b
cota=—=tan 3
a
c
sec @ = — = cosec [3
b
c
cosec = — =sec 3
a

4.4 Any Triangle

In any triangle with sides a, b, and ¢ and corresponding opposite angles «, 3, and ~:

b

a+B+y=180°
a+b>c
b+c>a
atc>a
The law of sines is

a b ¢ sina _sinf3 _ sinvy
sina sinf3  sinvy a b c

The law of cosines is

a*> =b>+c* — 2cb cos a
b2 =a®+ c¢* — 2cacos (3
2 =b*+a*>—2abcosy

The law of tangents is

atb tan((a+3)/2)
a—b tan((a— £)/2)
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o Yo (s —=Db)(s—c) her _a+tb+tc
S 2—\/ e , where s = >
Cosg_”s(s—a)

2 bc

a_ fs—b)(s—c)
tan 2 s(s —a)

__bcsina

Area

Perimeter =a + b + c.

4.5 Degrees or Radians

Angles are measured in degrees or radians: 180° =7 radians; 1 radian = 180°/7
degrees.
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4.6 Table of Natural Trigonometric Functions

Radians Degrees Sin Cos Tan

0.000 00 0.0000 1.0000 0.0000 90 1.5707
0.0175 01 0.0175 0.9998 0.0175 89 1.5533
0.0349 02 0.0349 0.9994 0.0349 88 1.5359
0.0524 03 0.0523 09986 0.0524 87 1.5184
0.0698 04 0.0698 0.9976  0.0699 86 1.5010
0.0873 05 0.0872 0.9962 0.0875 85 1.4835
0.1047 06 0.1045 09945 0.1051 84 1.4661
0.1222 07 0.1219 09925 0.1228 83 1.4486
0.1396 08 0.1392  0.9903 0.1405 82 1.4312
0.1571 09 0.1564 09877 0.1584 81 1.4137
0.1745 10 0.1736  0.9848 0.1763 80 1.3953
0.1920 11 0.1908 09816 0.1944 79 1.3788
0.2094 12 0.2079 09781 0.2126 78 1.3614
0.2269 13 0.2250 09744 0.2309 77 1.3439
0.2443 14 0.2419 09703 0.2493 76 1.3265
0.2618 15 0.2588 0.9659 0.2679 75 1.3090
0.2793 16 0.2756 09613 0.2867 74 1.2915
0.2967 17 0.2924 09563 0.3057 73 1.2741
0.3142 18 0.3090 09511 0.3249 72 1.2566
0.3316 19 0.3256 09455 0.3443 71 1.2392
0.3491 20 0.3420 09397 0.3640 70 1.2217
0.3665 21 0.3584 09336 0.3839 69 1.2043
0.3840 22 03746 09272 0.4040 68 1.1868
0.4014 23 0.3907 0.9205 04245 67 1.1694
0.4189 24 0.4067 09135 0.4452 66 1.1519
0.4363 25 0.4226 0.9063 0.4663 65 1.1345
0.4538 26 0.4384 0.8988 0.4877 64 1.1170
0.4712 27 0.4540 0.8910 0.5095 63 1.0996
0.4887 28 0.4695 0.8829 0.5317 62 1.0821
0.5061 29 0.4848 0.8746  0.5543 61 1.0647
0.5236 30 0.5000 0.8660 0.5774 60 1.0472
0.5411 31 0.5150 0.8572  0.6009 59 1.0297
0.5585 32 0.5299 0.8480 0.6249 58 1.0123
0.5760 33 0.5446 0.8387 0.6494 57 0.9948
0.5934 34 0.5592  0.8290 0.6745 56 0.9774
0.6109 35 0.5736  0.8192 0.7002 55 0.9599
0.6283 36 0.5878 0.8090 0.7265 54 0.9425
0.6458 37 0.6018 0.7986 0.7536 53 0.9250
0.6632 38 0.6157 0.7880 0.7813 52 0.9076
0.6807 39 0.6293  0.7771 0.8098 51 0.8901
0.6981 40 0.6428 0.7660 0.8391 50 0.8727
0.7156 41 0.6561  0.7547 0.8693 49 0.8552

(Continued)
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(Continued)
Radians Degrees Sin Cos Tan
0.7330 42 0.6691 0.7431 0.9004 48 0.8378
0.7505 43 0.6820 0.7314 09325 47 0.8203
0.7679 44 0.6947 0.7193 0.9657 46 0.8029
0.7854 45 0.7071  0.7071 1.0000 45 0.7854
Cos Sin Cot Degrees Radians

P.S.: For an angle larger than 45° select such angle from right-hand side and
obtain values in column corresponding to the function at bottom page. For the others
functions like cot = 1/tan, csc = 1/sin, sec = 1/cos.

For an angle not found in the previous table, you can use the following rules:

sin(—#) = —sin 6
cos(—0) =cos 0
tan(—60) = —tan 0

tan (g - 0) =cot 0

sin(7m — €) = sin 6
cos(m — €)= —cos 0
tan(m — ¢) = —tan 6

sin (5 +0) =cos 6
cos (5 +0)

tan G +0)
sin(r + 0) = —sin 0

cos(w + 6) = —cos 0
tan(w + 6) =tan 0

= —gin 6

= —cot f

sin27w + 0) = *sin 0
cos(2m *= ) = cos 0
tan(2m + 0) = *tan 0

4.7 Trigonometry Identities

Reciprocal Identities

cscu = sec u =

S u

sin u = cos u=

SCu

Quotient Identities

sin u
tanu = —— cotu=
cos u

cotu =
cos u tan u
1 1
tan u =
sec u cot u
Ccos U
sin u



Analytic Geometry and Trigonometry

59

Cofunction Identities

(T m .

sin| - —u)=cosu cos{ - —u|=sinu
2 2

t T t t T t

an| - —u ) =cotu cot| - —u)=tanu
2 2
m s

sec| = —u ) =cscu csc| - —u|=secu
2 2

Pythagorean Identities

1. sin?0+cos? =1
2. tan?0 + 1 = sec®
3. cot’0+ 1 =csc?0

Sum and Difference of Angle Identities

1. sin(a + ) =sin acos B + cos a sin 8
2. sin(a — ) =sin a cos 3 — cos a sin 3
3. cos(a+ B) =cos acos B —sin a sin §
4. cos(a — ) =cos a.cos 3 + sin a sin §
tan o + tan (3
5. tan(a+ ) =————
( 2 1 —tan o tan 8
tan o — tan
6. tan(a — B) = s

1+tan o tan 8

Double Angle Identities

1. sin(26) = 2sin 6 cos 0
2. cos(26) = cos®6 — sin’6
=2cos’> — 1
=1-25sin%0
2 tan 6
3. tan(20) = m

Half Angle Identities
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Product to Sum

1 1
sinusinv = E(cos(u —v)—cos(u+v)) cosucosv= E(cos(u —v)+cos(u+v))

1 1
sinucosv= E(sin(u +v)+sin(u—v)) cosusinv= E(sin (u+tv)—sin(u—v))

Sum to Product

. 2 utv u—v . . ) utv\ . fu—v
in inv=2sin inu—siny= —— | sin
sinu +sinvy S > cos 2 sinu —sinvy cos > S >

+ ) utv u—v 26 utv\ . fu—v
cos cosv=2cos cos coSu —Ccosv=—2sin sin
u % 2 > u % > >

Power Reducing Identities

1 —
sinZy = cos(2u)
2
) 1 + cos(2u)
cos‘u=——=
2
tantu — 1 — cos(2u)
1 + cos(2u)
. 5 1 —rcos(2u)
sin‘uy = ———
2
. 3 _ 3sinu—sin3u
siny =———
4
5 _cos3u+3cosu
cosTu = —— ) ——

4.8 The Inverse Trigonometric Functions

Arc Sine
Let f:[—7/2,7/2] = [—1,1] where fix) =sin x. Therefore, its inverse function is
defined by f~':[—1,1] — [—n/2,7/2], where f~'(x) =sin"' x (1/sin x) and is called
the arc sine function.

Hence, if y=sin" ' x<siny =x.
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Arc Cosine

—1, 1], where g(x) = cos x. Therefore, its inverse func-

! 'x and is called the

[
tion is defined by g~ : [—1, 1] — [0, 7], where g_l(x) =cos
arc cosine function.

Also, y=cos ' x < x=cosy.

Let function g: [0, 7] —
il

Arc Tangent

Let h: (—7/2, w/2) — R, where h(x) =tan x. Therefore, its inverse function is
defined by ' R — (—7/2, 7/2), where A~ '(x) = tan™ 'x and is called the arc tan-
gent function.

Hence, if y=tan 'x < tany =1x.

4.9 Solutions of Trigonometric Equations

For tan 6 = k, the general solution is § =nmw + o, neZ, a = tan” ' k.

For cos @ =k, where |k|=1, the general solution is 8=2nm*qa, neZzZ,
a=cos 'k

For sin §# =k, where |k| =1, the general solution is 6 =n7m+ (—1)"a, neZz,
a=sin"'k

4.10 Analytic Geometry (in the plane, i.e., 2D)

y
I 1
yl A\
y2 B
0 xI x2 X

1II v

Given two points A(xy, y;) and B(xy, y»):

Distance formula: D = \/(x1 —xz)2 + _)72)2
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+ +
Midpoint formula: M = ()% s %)

Slope formula: m = 20
X2 — X1

Slope and Angle of Inclination

Slope Angle of Inclination

Definition Steepness of  Angle formed in relation to the x-axis
a line
Notation m @
Computation Y2 — Y} . .
*« is the angle formed between the lines

X, — X,

Relation m=tan o

Parallel lines have equal slopes.
Perpendicular lines have negative reciprocal slopes.
Equations for

Lines: y=mx + b; y =m(x — x1) + y;
Circles: x> + y2 = 2 (radius r, center the origin); (x — h? + y— k)? = /2 (radius r, center (h, k))

A tangent to a circle is a line that touches the circle at only one point.
Theorem: A tangent to a circle is perpendicular to the radius to the point of tangency.

4.11 \Vector

Vector equation of a straight line
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=a +1¢, r: scalar parameter
: position vector of a fixed point on the straight line
: direction vector
: position vector of any point on straight line
— — —
=a +tb —a)

~d slalal N

The length (magnitude) of the 2D vector a = <ay, a,> is given by

— ]2 2
la| = /a7 + a3

The length (magnitude) of the 3D vector a = <ay, a,, az> is given by

=+l + a2
la| = y/a; +a; + a3

Given a non-zero vector a, a unit vector u (vector of length one) in the same direction

as the vector a can be constructed by multiplying @ by the scalar quantity 1/|a|, that is,
forming

The dot product of two vectors gives a scalar that is computed in the following
manner:

In 2D, if a = <ay, a,> and b = <by, b,>, then dot product =a -b = a;b, + ab,

In 3D, if a=<ay, ap, az> and b= <b,, b,, b3>, then dot product=a-b=
a by + ab, + aszbs

If the dot product = 0, the vectors are perpendicular

Angle between two vectors: Given two vectors a and b separated by an angle 0,
0=f=m.

Then
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Solving for 8 gives

9=arccos( a-b >
la| |b]

The cross product (it is defined only for vectors of length 3, i.e., 3D) of two
vectors a and b gives a vector perpendicular to the plane of a and b that is
computed in the following manner:

N axb
b
0
i j k f F
axb—la; a, az| — |y a, az|— |ag dr asz|+

by by bs 1 by b3| |b by by
a, a a, a a, a
_ il B —j I I
by, by b by b, b,

— i(aybsz—azb,y) — jla;by — aszb) + k(a;by —a,by)



5 Calculus

Calculus is the mathematical study of change, in the same way that geometry is
the study of shape and algebra is the study of operations and their application to
solving equations. It has two major branches: differential calculus (concerning rates
of change and slopes of curves) and integral calculus (concerning accumulation of
quantities and the areas under curves); these two branches are related to each other
by the fundamental theorem of calculus. Both branches make use of the fundamental
notions of convergence of infinite sequences and infinite series to a well-defined
limit. Calculus has widespread uses in science, economics, and engineering and can
solve many problems that algebra alone cannot. Topics discussed in this chapter are
as follows:

» Functions and their graphs

* Limits of functions

* Definition and properties of the derivative
+ Table of derivatives

* Applications of derivative

» Indefinite integral

+ Integrals of rational function

+ Integrals of irrational function

+ Integrals of trigonometric functions

» Integrals of hyperbolic functions

+ Integrals of exponential and logarithmic functions
» Reduction formulas using integration by part
* Definite integral

* Improper integral

» Continuity of a function

* Partial fractions

+ Properties of trigonometric functions

» Sequences and series

» Convergence tests for series

* Taylor and Maclaurin series

» Continuous Fourier series

» Double integrals

+ Triple integrals

+ First-order differential equation

» Second-order differential equation

» Laplace transform

» Table of Laplace transforms
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5.1 Functions and Their Graphs

* A function f(x) is a relation between a set of inputs (range) and a set of permissible outputs
(domain) with the property that each input is related to exactly one output. Example of
function: f{x) = 5x. Example of a non function: f{x) = i\/x.

» Even function: f{—x) =f(x). Example: f(x) = X2

» 0Odd function: f{—x) = —f(x). Example: fix) = x.

» Periodic function: fix + nT) = f{x). Example: f(x) = sin(x).

« Inverse function: y=f(x) is any function, x = g(y) or y=f'(x) is its inverse function.
Example: f(x) = 2x + 3—f"'(y) = (y — 3)/2.

» Composite function: y = f(u), u = g(x), y =f(g(x)) is a composite function.

» Linear function: y=ax+b, xeR, a slope of the line, b is the y-intercept. Example:
y=2x—10.

«  Quadratic function: y = ax> + bx + ¢, xeR. Example: y = X%

«  Cubic function: y = ax® + bx* + cx + d, xeR. Example: y = x°.

+  Power function: y = x", neN.

 Square root function: y = /x, xe[0, o0).

»  Exponential functions: y=a",a>0,a#1,y=¢",ifa=e, e =2.71828182846. ..

» Logarithmic functions: y =log, x, xe(0, ), a>0,a# 1, y=Inx, ifa=e, x>0.

X 5, X
» Hyperbolic sine function: y = sinh x = ¢ Ze , X€R.

e t+e ™
* Hyperbolic cosine function: y = cosh x = > X€eR.

_sinhx e —e™

* Hyperbolic tangent function: y = tanh x = = ER

P 1¢ fangent function: y * coshx e +e *

. L et
+ Hyperbolic cotangent function: y = coth x = prg— xeR, x#0.
1 2

» Hyperbolic secant function: y=sech x=— = ———, ER

P Y * coshx e¥+e ™ *

1 2

» Hyperbolic cosecant function: y = csch x = = , XER, x#0

sinhx e*—e™
» Inverse hyperbolic sine function: y = arcsinh x, xeR.

+ Inverse hyperbolic cosine function: y = arccosh x, x€[l, o).
» Inverse hyperbolic tangent function: y = arctanh x, xe(—1, 1).
» Inverse hyperbolic cotangent function: y = arccoth x, xe(—oo, —1) U (1, c0).
» Inverse hyperbolic secant function: y = arcsech x, x€ (0, 1].

» Inverse hyperbolic cosecant function: y = arccsch x, xeR, x #0.

5.2 Limits of Functions

Functions: f(x), g(x)
Variable: x
Real constants: a, k

* Im[f(x) + g()] = lim f(x) + lim g(x)

* Iim[f(x) = g(0)] = lim f(x) — lim g(x)
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lim(f(x) - g(9] = lim £(x) - lim g(x)

) _ I

xLu@ lim g(x)’
X—>a

if }gr{ll gx)#0
© Tim{kf()] = klim £(x)
lim £(g(x)) = f(lim g(x)
li_r)n f(x) =f(a), if the function f(x) is continuous at x = a

. sinx
lim—— =1
x—>0 X

tanx

lim 1
x—>0 X

sin~!

* lim =1

x—0 X

tan~! x

* lim =1

x—0 X

+
lim In(1 + x) _
x—0 X

1 X
*  lim <l+7) =e
X—> 0 X
k X
+  lim (1+—) = ¢
X—> 00 X

¢ lima* =1
x—0

1

5.3 Definition and Properties of the Derivative

Functions: f, g, y, u, v

Independent variable: x

Real constant: k

Angle: o

fe+ A0 @) _ Ay _dy

im — ==

Y= Aligo Ax Ax—0Ax  dx

—y:tana
dx
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dx dx

d(u+v)  du 4 dv

du—v) du dv

dx dx dx

dk) _, du
dx dx

*  Product rule:

d(u-v) _ du n v
o d M

* Quotient rule:

d quy  (du/dx-v)— (u-dv/dx)
&(G) B V2

* Chain rule:
y=Ff(gx), u=gk), —=-">-—

» Derivative of inverse function:

dy 1

dx  dx/dy

where x(y) is the inverse function of y(x).
d /1 dy/dx
» Reciprocal rule: — (- | = — v/
dx \y ¥y

» Logarithmic differentiation:

y=f(x), Iny=1In fix),

dy d
ar =f(x) - a[lnf(x)l

5.4 Table of Derivatives
Independent variable: x
Real constants: C, a, b, ¢

Natural number: n

d

d —
M a(x)—l
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%(ax+b)=a

d
a(ax2+bx+c)=ax+b

%(x") ="}

— n
a(x n) = _xn+1

d 1y _ 1
dx \x x2

d 1

a(x/})*z—ﬁ

&=

ax V) g

d 1

“(lnx)= -

dx(nx) X

%(logax):ﬁ, a>0, a#1

d !
a(a“)=aA Ina, a>0, a#1

d

a(e") =e

d

a(sin X) =CO0S X

d

a(cos X)= —sinx

d

a(tan X)=— = sec? x
(cot x) ! csc?

Tl )= — =— x

dx sin? x

d
—(sec x) =tan x - sec x

dx

d (csc x) cotx - ¢csc
— x = — x . x
dx

d( in 1) 1

— (arcsin x) =

dx J1 -2
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. i(arcosx) S
dx J1 =2
d

M a(arctan x): W
d

. a(arccotx): T
d (arcsec x) !

. - =
dx [x|vx2 =1
d (arccsc x) !

. =
dx lx|vx2 =1

d
. P (sinh x) = cosh x

d
P (cosh x) = sinh x

d 1
* —(tanhx) = = sech? x
dx ( ) cosh® x
d 1
* —(cothx)= — = —csch? x
dx( ) sinh? x
- (sech x) = — sech x - tanh x
dx

d
' (csch x) = —csch x - coth x

d 1
+ —(arcsinh x) = ——
dx( ) x2+1
d 1
. a(arccosh x) = ==
d 1
° a(arctanh X) = l——x2 . |X| <1
d (arccoth x) x| >1
. = _ x
dx 2-1

d d d
. a(u")=vuvf1 au tu nu- S
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5.5 Higher Order Derivatives

Functions: f, y, u, v
Independent variable: x
Natural number: n

» Second derivative:

vy (DY d (dy\ _ dy
0= (@) & (@) - &

» Higher order derivative:

n dny n n— ’
e At Aa)

o (utv)® =y 4™
. (u— v)(") — u(n) _ v(")
* Leibnitz’s formulas:
()" =u"v +2u'v + w”

)" =u"v+3u"V +3uv' +uw"”
()™ = u®y + nu®= Dy + nn—1) l)u("fz)v’ + o+
1.2

m!

. my(n) — m—n
") (m— n)!x
. ()™ =n!
n—1
. (n) _ D" (=1
(log, ) x"Ina
1" Yn—1)!
| (n) — ( S
(In x) =

« @™ =d"In"a
. ( e,\‘)(n) — e,’c
. (amx)(n) — mnamx 11’1" a

+ (sin )™ =sin (x + %)

« (cos x)™ = cos (x + %)
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5.6 Applications of Derivative

Functions: f, g, y
Position of an object: s
Velocity: v
Acceleration: w
Independent variable: x
Time: ¢

Natural number: n

* Velocity and acceleration
s =f(t) is the position of an object relative to a fixed coordinate system at a time ¢,
v =g = f(¢) is the instantaneous velocity of the object, w =1' = s” = f'(¢) is the instantaneous
acceleration of the object.
« Tangent line: y — yo = f (x0)(x — Xo).
+  Normal line:

_ 1
S T (x — xo0)
* Increasing and decreasing functions:
If f (xo) >0, then f(x) is increasing at x.
If f (x0) <O, then f(x) is decreasing at xo.
If f (xo) does not exist or is zero, then the test fails.
» Local extrema: A function f{x) has a local maximum at x, if and only if there exists some
interval containing x, such that f{(x;) = f(x) for all x in the interval.
» A function f{x) has a local minimum at x,, if and only if there exists some interval con-
taining x,, such that f{x,) = f(x) for all x in the interval.
» Critical points: A critical point on f{x) occurs at xo, if and only if either f (xo) is zero or
the derivative doesn’t exist.
+ First derivative test for local extrema:
If f(x) is increasing (f'(x) > 0) for all x in some interval (a, x;] and f(x) is decreasing
(f (x) <0) for all x in some interval [x, b), then f{x) has a local maximum at x;.
« If fix) is decreasing (f (x) <0) for all x in some interval (a, x,] and f(x) is increasing
(f (x) > 0) for all x in some interval [x,, b), then f(x) has a local minimum at x,.
» Second derivative test for local extrema:
If f(x;) = 0 and f"(x;) <0, then f(x) has a local maximum at x;.
If £ (x,) = 0 and f"(x,) >0, then f(x) has a local minimum at x,.
» Concavity:
f(x) is concave upward at xg if and only if f'(x) is increasing at x.
f{x) is concave downward at xq if and only if f(x) is decreasing at x.
» Second derivative test for concavity:
If f'(xo) > 0, then f(x) is concave upward at x.
If f"(xo) <O, then f(x) is concave downward at xo.
If f'(x) does not exist or is zero, then the test fails.
+ Inflection points
If f(x3) exists and f'(x) changes sign at x = x3, then the point (x3,f{x3)) is an inflection
point of the graph of f{x). If f(x3) exists at the inflection point, then f”(x3) = 0.
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* L’Hopital’s rule:

SO @)

1 VAN )
eg(r) | wveg(x)

5.7 Indefinite Integral

Functions: f, g, u, v
Independent variables: x, ¢, £
Indefinite integral of a function:

Jf(x)dx, Jg(x)dx, .

Derivative of a function:

y), f(x), F(x),...

Real constants: C, a, b, ¢, d, k
Natural numbers: m, n, i, j

jf(x)dx =F(x)+C, if F'(x)=f(x)

’

(Jf(x)dx) — ()

kf (x)dx = ka(x)dx

/) + g0l = [ o + [t
L7 + ol = [ s~ [t
meh=éFm@+C
fmx+bmx=éme+by+c

0 f @=L Pw+ e

f'x)
)

dx = In|f(x)| + C

if limf(x)=1limgx)=0 or oo.
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*  Method of substitution:

Jf(x)dx =f(u)d' (t)dt, if x=u(r)

» Integration by parts: ‘ udv =uy — ‘ vdu, where u(x), v(x) are differentiable functions.

5.8 Integrals of Rational Function

. adx=ax+C

(ax+by""!

| (ax+b)'dx= PTESE

+C, n#-1

=&

=Injx| +C

&

Injax + b| + C

Q=

x + b

S

ax+b . bc —ad
ex+d c c?

|

Injcx +d| +C

dx 1 ln}x-i-b
xta)x+b) a-—b

}x+a +C, a#b

xdx
a+ bx

1
=ﬁ(a+bx*aln|a+bx|)+c

2 11
. ol = » {f(a-i-bx)2 —2a(a + bx) + a*Inja + bxq +C

a+ bx 2
1 +
. L:_lna bx+c
x(a+bx) a
+
o 1 b latbx .
x2(a + bx) ax a?
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i
J

dx 1
x —<1n|a+bx|+ a >+C
(a+bx)*> B2 +bx
dx 1
= (et b ) v C
(a+bx)* b2 +bx
dx _ 1 llna+bx+c
x(a+bx)*  ala+bx) a?
dx 1. [x—1
=_1 +
2-1 2 nx+l‘ ¢
dx 1 1—x
=1 +C
-2 2 M1—x
dx 1 atx
- = _ +C
a2—x2 2a |la—x
dx 1 1—a
-1 +
2-a 22 x-a ¢
dx
tan  x+C
1+x
dx -1
e .
o tan C
xdx 1
——— == In(* +a*) +
x2+a? 2n(x a+C
dx = arctan {/E +C, ab>0
a+bx®>  Jab a
xdx 1 a
= ’2+—)+C
a+b? 26 1 T
dx 1 x2
=1 +C
x(a+bx?) 2a N T o
dx 1 a+ bx
& - +
202 2ab a—bx ¢
dx B 1 1n 2ax +b— /b — 4ac
ax> +bx+c¢ /b2 —4ac |2ax+b+ Vb2 — 4ac
dx = 2 arctanﬂ-i-C
ax>+bx+c  Jdac—b? ~dac — b?
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5.9 Integrals of Irrational Function

dx 2
. =—~ax+b+C
Jax+b a

2
o |Vax+tbdx= 3—(ax+b)3/2 +C
a

xdx 2(ax — 2b)

. = Vax+b+
Jax+b 3a? atb+C

2(3ax —2b

. xmdx=7( Ci);az )(ax+b)3/2+C

. dx _ 1 «/ —+b—ac
x+c)Wax+b  b+ac «/ax+b+«/b—ac

dx 1 Jax + ‘

. = arctan +C
(x+c)Wax+b ac+b Jax—b
ax+b

. T \/(ax+b)(cx+d - ln‘\/a(cx+d)+\/c(ax+b)‘+c a>0
cx

. “Hbdx—f (ax+b)(ex+d) -2

cx+d

a(cx+d)
c(ax+b)

+C, a<0, ¢>0

f

2(8a* — 12abx + 15b*x*
o | PVa+bxdx= (8a ar x)\/(a+bx)3+C

105h3
x*dx 2(8a — 4abx + 3b*x?)
. va+bx+
~a—+ bx 1563
dx a+bx—
. —_— —1 +C, a>0
xva+ bx «/— a+bx
d arctana+b +C <0
. L a
x«/a+bx Vo
Ix+b
. = +/(a —x)(b + x) + (a + b) arcsin x—-ﬁ-C
at+b
a+x
. b —+/(a+x)(b—x) (a+b)arcsm1/—b+C
1+x

—+/1—x%+arcsinx + C
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. /x—a
= 2arcsiny/——+ C
b—a

dx
Vx—a)b—a)

2¢x — b? — 4ac 2cx—b
Va+dx—cex?2dx= v +bx —cx? + arcsin
83 Vb* + 4ac

dx
—_— = —1 )2ax+b+2\/a(ax2+bx+c‘+c a>0
J Vax? +bx+c f

dx 2ax +b
e aesin T2 —dac+C, a<0
\/ax2+bx+c f

VX2 +a*dx %«/x2+a2+—ln‘x+«/x2+a2)+c
xVx2+atdx= %(x2+a2)3/2 +C

4
P/x2+atdx= %(2)62 +d)Vi2 +a® - %ln‘x+ N x? +a2‘ +C

SR SRR)

¥ +a Vx2+a

\/ dx=— +ln‘x+\/x2+a2‘+c
X

x2

dx
:m%+¢ﬁﬁﬂ+c

VX2 +a?
/x2 + a2
u ~/x2+a2+aln
x a+\/x2+a2
xdx
e S A R
Jara rrere
x2dx X a?
7=—Vx2+a2——ln‘x+\/x2+a2’+c
X2+ a2 2 2
dx 1 } X

:—ln +C

xv/x? +a? lav/x2 + &2

2
Vxt—atdx = \/xz—az—%ln’x-i-\/xz-i-az +C

il
2

WA — ddx = %(xzfaz)s/z +C

)
Vxt—a . a
————dx=+x?—ad? +aarcsin— +C
X x

+C
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Vo) Vo )
o 3 T =Y "4 +ln‘x+«/x2*a2 +C
x

X

dx
. 7=1nx+\/x2—a2‘+c
Y

xdx
. " S22
= x*—a*+C

de 2
. %=§Vx2*a2+%ln’x+\/x2*a2 +C
Vxi—a

dx 1 . a+C
+ | ——= = — —arcsin—
xv/x? —a? a x
1 —
oA 1 xmae
x+a)Vx2—a*> aVx+ta

o4 1 jxta
x—ax2—a> aVx—a

. dx _Vx2—a?
2/x2 — a2 a’x

.  __ 4 C

(xz_a2)3/2 h 22— a2
3 4
. J(xz—a2)3/2dx =- %(2}62 —5a)Vx2 —a? + %ln x+vVxt—a?|+C

2

a x
o | Va?—xPdx= \/az—xz—k?arcsin—-i-c
a

N =

1
o |xVaR —xPdx= —g(az—x2)3/2+C

4
x a X

o | Va2 —x2dx= g(sz—az)«/az—xLi- g aresin— +C
a

C S — 2
Vva*—x X
s | ——d&x=Va? - +taln|—————| +C
. X a+va?—x?
Y —) Y —)
a’ —x a’?—x X
. 5 dx = + arcsin— + C
X X a
dx .
. ———— =arcsinx + C

V1 —x2
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dx
. \/ﬁ—slna +C
xdx
| ===V - +C
/2 — 2
x2dx X
. _ ,/ 2_ 2
m a’ —x + arcs1na+C
dx __1 a—x+C
(x+a)Wa?—x2 2Va+x
. dx _ 1 a+x+c
(x—a)Va*—x% 2Va—x
dx 1 bx + da*
. = arcsin rra +C, b>a
x+bWad—x2 VP2 —a? a(x +b)
dx 1 +b
. = In * +C

x+bWad—x2 P2 —a2 |Var—bVa? —x2+a? + bx

dx /2 — 2
. S L e

x2/a? — x2 a’x

3 4
o | (@-2)dx = %(Sa2 —2)Wak — 2+ %arcsinf +C
a

dx X

(az_x2)3/2 2V — 12

5.10 Integrals of Trigonometric Functions

. Jsinxdx: —cosx+ C
cosxdx=sinx+C

1
%— Z8in2x+C

cos xdx—f-i-%stx-l—C

J
. Jsm rdv=
J
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3

sin® x dx = lcos x—cosx+C= I—IZCOSSx—Ecosx-i-C

1 1 3
cos3xdx=sinxf§sin3x+c= Esin3x+ Zsinx+C

[ dx
- = Jcsc xdeIn‘tanf‘ +C
sin x 2
dr =Jsecxdx=ln‘tan({+z>‘+C
COS X 2 4
dx

dx :Jsec2xdx:tanx+C

cos? x

dx cos x 1 X

—— = esed xdx=— — >+ —ln‘tan—‘ +C
sin’ x 2sin”x 2 2

sin x 1 X
3 =Jsec3xdx= +—ln’tan(—+—)’+C
cos? x

2cos2x 2 2 4
. 1
smxcosxdx=fzcos2x+C

) L.

sin xcosxdx=§s1n x+C

. 2 1 3

sin x cos xdx:—gcos‘x-i-C

1
sin® xcos? xdx= = — ﬁsin4x+C

x
8

tan x dx = — In|cos x| + C

sin x 1

> dx = +C=secx+C
cos” x COS X
sin® x

dx=ln)tan<)—c + Z)) —sinx+C
CcoS X 2 4

tan? xdx=tanx —x + C
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. cot x dx = In|sin x| + C

coS X 1

. — dx=—-———+C=—cscx+C
sin” x sin x
cos? x

x
- dx:1n’tanf)+cosx+C
sin x 2

« |cot?xdx=—cotx—x+C

dx
. ——  =Injtanx| + C
COoS x sin x
dx 1 X
. ,27=7_—+ln‘tan<7+f>‘+c
sin” x cos x sin x 2 4
[ dx 1 X
. - = +1n’tan—’+C
sinxcos?x  cosx 2
dx
. ——— =tanx—cotx+C

sin? x cos? x

(- L
* |sinmxsinnxdx= — sin(m + nx + sin(m — n)x +C, mr#ER?
2(m + n) 2(m — n)

cos(im +n)x  cos(m— n)x 2 5
- - +
2(m + n) 2(m —n) ¢ mi#n

. sin mx cos nx dx =

. n . _
. cos mx cos nx dx = sin(m + n)x + sin(m — n)x +C, m? #* n?
2(m +n) 2(m — n)

. secxtan xdx=secx + C

. cscxcotxdx= —cscx+C
+1
X cos""! x
. sinxcos" xdx=—— +C
n+1
son+l
. sin"" " x
. sin" xcosxdx=—— +C
n+1

. arcsin xdx=xarcsinx ++/1 —x2+C
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. arccos x dx =x arccos x —+/1 —x2 + C

1
+ | arctan x dx = x arctan x — Eln(x2 +1)+C

[ 1
* | arccot x dx = x arccot x + Eln(x2 +1H)+C

5.11 Integrals of Hyperbolic Functions

. sinh x dx =coshx + C

. cosh x dx=sinhx + C

. 'tanhxdx=lncoshx+C

. coth x dx = In|sinh x| + C

. sech’ xdx=tanh x + C

. csch? xdx= —cothx + C

. sechx tanhx dx= —sechx + C

. cschxcothxdx= —cshx+ C

5.12 Integrals of Exponential and Logarithmic Functions

. efdx=e"+C
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ax

. xe‘”dx=%(ax—l)+c
a

. Inxdx=xInx—x+C

dx
. =In|lnx|+C
J xInx
1 1
o e mxde=t | 222 >
n+1l  (n+1)
. e‘”sinbxdx:aSinbx_bCObee‘”+C
a’+ b?
. .e‘”cosbxdx=aCObe_bSinhxe‘”‘—FC

a’+ b?

5.13 Reduction Formulas Using Integration by Part

. xn e dx = lxn P _EJ.x;lfl ™ dx
. m m

dx, n#1

emr emr m J emnr
. _

“dx= - +
X" (m—1x"! p—1Jx1

[ 1 1
. sinh” x dx = —sinh" ! x cosh x — n—2 [sinh"i2 x dx
o n n D

dx cosh x n— ZJ dx £
. = _ — , n
sinh” x (n—Dsinh®'x n—1) xsinh" % x
n 1 . n—1 n—1 n—2
. cosh” x dx = —sinh x cosh”™" x + —— | cosh" ™~ x dx
n n
dx sinh x n—2 dx
‘ n - _ n—1 - _ n=2 ° n 7& 1
cosh” x (n—1)cosh" ' x n—1) cosh" * x
si hn+l ‘hmfl -1
. sinh” x cosh™ x dx = s X €08 o + m Jsinh” x cosh”™ ™2 x dx
n+m n+m
si hn+l hm+1 -1
. sinh” x cosh™ x dx = s X €08 o + n Jsinh’r2 x cosh™ x dx
n+m n+m

. tanh"” x dx = —

n—

1
1 tanh" ! x + Jcosh”f2 xdx, n#1
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* |coth" xdx= — coth” ! x + Jcoth'h2 xdx, n#1
-2
sech" “xtanhx n—2 _
+ |[sech” xdx= + sech" 2xdx, n#1
n—1 n—1
. ) — n—1( .,
. sin” xdx = — —sin" ' x cos x + —— | sin" "% x dx
n n
dx CcOS X n—2 dx
‘ VR son—1 + n—2 > n # 1
sin” x (n—1Dsin" 'x n—1]sin""x
1. _ n—1 _
. cos" xdx= —sinxcos" ' x + cos" 2 x dx
n n
dx sin x n—2 dx
. - _ — ——, n#l
cos™ x (n—1)cos" 'x n—1) cos"2x
s on+l m+1
. sin”" " x cos x m—11. _
. sin” x cos™ x dx = + sin” x cos™ 2 x dx
n+m n+m
s on—1 m+1
. sin” ' x cos x n—1(. _
. sin” x cos™ x dx = — + sin" 2 x cos™ x dx
n+m n+m

1 _ -
+ |tan" x dx = —tan” 1x—Jtan" Zxdx, n#1
. n

1 _ -
. cot”xdx:——lcot” 1x—J~c0t”2xdx, n#1
n—

g n—2 t -2
. sec”xdx:Sec ranx  n sec" 2xdx, n#1
. n—1 n—1,
n—2
t -2 _
. csc”xdx=—CSC reotx 1 esc" 2xdx, n#1
n—1 n—1
n+llm
. x"ln’”xdx:w—ljx”lnm_l, xdx
n+1 n+1
lm lm lm—l
. "y o nxi mJn xdx,n;él
X" (n—Dx""! n—-1 X"

. Jln”xdx:xln"x—n‘ln””xdx

. Jx” sinh x dx = x" cosh x — an"_l cosh x dx
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. x" cosh x dx = x" sinhx—an”‘1 sinh x dx
« |x'sinxdx=—x" cosx+an”’1 cos x dx

. x"cosxdx:x"sinx—n‘x"_l sin x dx

o xn+l _ 1 xn+l
. x" sin xdx:n+1s1n x_n-i-lj _1_x2dx
n+1 +1
. _q _ X - 1 x"
X" cos™ ' xdx n+lcos x+n+1J 1_xz_dx
+1 1 xn+l
. -1 - 1
x" tan” " x dx . 1tan X n+1J _l_xzdx
X'dx  _x b[ dx
ax"+b a a)ax"+b
J dx _ —2ax—b
(ax?+bx+c)'  (n— 1)(b? — dac)(ax®+bx+c)""
2(2n —3)a dx
- 2 e 7l
(n = 1)(b* — 4ac) ) (ax?+bx+c)
dx 2n—73 dx
[ 212y - = . 2J -, n#l
(2+a®)"  2n— Da2(x2+a?)" 2n—1)*) (2 +a?)
J dx _ X _ 2n-3 J dx nt 1
(x2 +a2)n 2(}’[ _ 1)a2(x2 _,’_az)n*l 2(11 — ])(12 (X2 _a2)nf] °

5.14 Definite Integral

Definite integral of a function:

J if(x)dx, J zg(x)d.x, e

Riemann sum:

> A
i=1
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Small changes: Ax;
Antiderivatives: F(x), G(x)
Limits of integrations: a, b, ¢, d

b n
fode=Tim Y f(E)A;
a maxAxl; 0 i=1

where Ax; = x; — xj—1, Xi—1 = gi =X

b
ldx=b—a

a

b

b
kf (x)dx = k[ F(x)dx

b

b b
/() + g(0))dx = J Feod + j s

o b b rb
[F(x) — g(o)ldx = J e — | s()dr

b
f(x)dx=0

a

o b a
Q= —J Fodx

a b
b c b
f(x)dx = J f(x)dx + J f(x)dx for a<c<b

ob
f(x)dx=0, if f(x)=0 on [a,b]

a

b
fx)dx=0, if f(x)=0 on [a,b]

a

Fundamental theorem of calculus:
b
| Fax=rFenrct = Fe - F@. it =

Method of substitution:

If x = g(¥), then

b d
| reac= [ rtaong e

where ¢ = gil(a), d= gil(b)
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» Integration by parts:

b b
J udv = (uv)|Z —J vdu

a a
+ Trapezoidal rule:

b b _ n—1
| =22 {f(xO) ) 2 ()

i=1

» Simpson’s rule:

b _
| e = P ) + 4750 + 2100+ 4705 4 27050 + 45,0 £ )
where
Xi=a-+ 121, 1=0,1,2,...,n

n

+ Area under a curve:
b
S= J f(x)dx = F(b) — F(a)

where F'(x) = f(x).
* Area between two curves:

b
5= j /() — g@ldx = F(b) — G(b) — F(a) + Gla)

a

where F'(x) = fix), G'(x) = g(x).

5.15 Improper Integral

b
» The definite integral J f(x)dx is called an improper integral.

a

If a or b is infinite, f(x) has one or more points of discontinuity in the interval [a, b].
» If f(x) is a continuous function on [a, o0), then

| Cfeode= lim J:f(x)dx

a
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» If fix) is a continuous function on (— oo, b], then

f:of (Odx= lim_ J:f(x)dx

Note: The previous improper integrals are convergent if the limits exist and are finite;
otherwise the integrals are divergent.

| reoa=[" s | “ooax

If for some real number c, both of the integrals in the right side are convergent, then

[oe]

the integral J f(x)dx is also convergent; otherwise it is divergent.
—00
» Comparison theorems: Let f{x) and g(x) be continuous functions on the closed interval [a, o0).
Suppose that 0 = g(x) = fix) for all x in [a, c0).

5.16 Continuity of a Function

The concept of a continuous function is that it is a function, whose graph has no
break. For this reason, continuous functions are chosen, as far as possible, to model
the real world problems. If a function is such that its limiting value at a point equals
the functional value at that point, then we say that the function is continuous there.

Definition A function f(x) is said to be continuous at a point x = ¢, if the following
conditions hold true:

1. f(x) is defined at x = ¢
2. limf(x) exists

3. lim f(x) = f(c).

If at least one of these conditions is not satisfied, then the function will be
discontinuous at x = c. We say that a function is continuous on an interval, if it is
continuous at each point of that interval.

Examples

1. Let a function be such that f(x) =x? + 1 for x <1 and f(x) = x for x = 1. Draw the graph
of this function and discuss its continuity at the point x = 1.

2. Given the function f(x) = (x> —4)/(x —2) for x # 2 and f(2) =0. Decide whether this
function is continuous on the interval [0,4]. Justify your answer.
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5.17 Functions and Graphs

Relation R(x): A relation is a correspondence between two sets A and B such that
each element of set A corresponds to one or more elements of set B. Set A is called
the domain of the relation and set B is called the range of the relation.

Function f(x): A function is a relation such that for each element in the domain,
there corresponds exactly one and only one element in the range. In other words,
a function is a well-defined relation.

The function f(x) = ax* + @y 1 X" ' + a,_ox" "2+ - + aix + aq is a polynomial
function of degree n, where n is a nonnegative integer and ay,a;, ay, . . ., a, are real
numbers. The domain of every polynomial function is (—o0, c0).

Rational function: A rational function is a function of the form f(x) = g(x)/h(x),
where g and & are polynomial functions such that 4(x) = 0. The domain of a rational
function is the set of all real numbers such that A(x) £ 0.

Root function: The function f(x) = {/g(x) is a root function, where n is a positive
integer.

1. If n is even, the domain is the solution to the inequality g(x) = 0.
2. If n is odd, the domain is the set of all real numbers for which g(x) is defined.

5.18 Partial Fractions

Partial fraction decomposition of f{x)/g(x)

1. If the degree of f(x) is not lower than the degree of g(x), use long division to obtain the
proper form.

2. Express g(x) as a product of linear factors ax + b or irreducible quadratic ax® + bx + c,
and collect repeated factors so that g(x) is a product of different factors of the form
(ax+b)" or (ax>+bx+c)" for a nonnegative integer .

3. Apply the following rules.

Case L. Distinct Linear Factors

To each linear factor ax + b occurring once in the denominator of a proper
rational fraction, there corresponds a single partial fraction of the form A/(ax + b),
where A is a constant to be determined.

Case II. Repeated Linear Factors

To each linear factor ax + b occurring n times in the denominator of a proper
rational fraction, there corresponds a sum of n partial fractions of the form

A Ar A,
+ e
ax+b (ax+b)2 (ax+b)"

where the As are constants to be determined.
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Case III. Distinct Quadratic Factors

To each irreducible quadratic factor ax? + bx + ¢ occurring once in the denomi-
nator of a proper rational fraction, there corresponds a single partial fraction of the
form (Ax + B)/(ax® + bx + ¢), where A and B are constants to be determined.

Case IV. Repeated Quadratic Factors

To each irreducible quadratic factor ax> + bx + ¢ occurring 7 times in the denomi-
nator of a proper rational fraction, there corresponds a sum of n partial fractions of
the form

Aix + By n Axx + By " Ax+ B,
ax> +bx+c¢  (ax®+bx+c)? (ax®+bx+c)"

where the As and Bs are constants to be determined.

5.19 Properties of Trigonometric Functions

Properties of the Sine Function

The sine graph has the following characteristics:

1. the sine function is odd since sin(—x) = —sin x, that is, symmetrical about the origin
2. the sine function is continuous

3. the sine function is periodic with period 2w since sin x = sin(x + )

4. —1=sinx =1, that is, the range is [— 1, 1]

5. the curve cuts the x-axis at 0, =7, £27, =371, *4m, ...

Graph of sin x

0 0 i m 3w 57 3m T 27
4 2 4 4 2 4
sinf 00 07 10 07 00 -07 —10 -07 00

yA

v
>
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1
Th hofy=——= :
e graph of y Sinx cosec x

v

<2m

Properties of the Cosine Function

1. The cosine function is even since cos(—x) = cos x, that is, symmetrical about the y-axis
2. The cosine function is continuous
3. The cosine function is periodic with period 27 since cos x = cos(x + 27)
4. —1=cosx =1, that is, the range is [— 1, 1]

. T kY 57
5. The curve cuts the x-axis at 0, *—, *— *+— ...

2 2 2
Graph of cos x:
y A

v

SIES /
=

[S1E]
=)
1]
o8]
a

Note: The cosine graph has the same shape as the sine graph but the former is
shifted by a distance of 7/2 to the left on the x-axis.
Graph of y = 1/cos x = sec x:

A

\/
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Properties of the Tangent Function

1. The tan function is an odd function since tan(—x) = —tan x
2. The tan function is not continuous since tan x = sin x/cos x, so y =tan x is undefined
. s 3r ST
when cos x =0, that is, whenx= = -, *— *+=— . .
2 2 2
3

DR are called vertical asymptotes.

I+

. T
These lines x = £ —, x =

2
The curve approaches these lines but does not touch them.

3. The tangent function is periodic with period m since tan x = tan (x + m)
4. tan xe R, that is, range = R
5. The curve cuts the x-axis at 0, =, *£2m, ...

Graph of tan x:

A &%

1
Graph of y = anx = cot x:
an x

5.20 Sequences and Series

A sequence of numbers is simply a list of numbers, generated by some rule.
Examples: 3, 6,9, 12, ...

Each term in a sequence can be referred to by its place in the sequence, i.e., first
term, third term, nth term. In the examples above: the third term is 9.
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A sequence can develop in four ways

Divergent 1,4,9, 16, ... The terms keep growing
Convergent 401 l l The terms converge on a single value, in this case
A S 0.
Periodic 2,0,-2,0,2,0, —2,0, The sequence repeats itself after a set number of
e terms.
Oscillating 2, =2, —=2,2, =2, ... The sequence oscillates between two values.

If you add the terms of a sequence together, you get a series: 3 +6 +9 + 12.

5.21 Arithmetic Sequences and Series

Arithmetic sequence: Sequences of numbers that follow a pattern of adding a fixed
number from one term to the next are called arithmetic sequences. A sequence with
general term a,+, =a, +d is called an arithmetic sequence, a, =nth term and
d = common difference.

Examples The general (nth) term for 2, 6, 10, 14, 18, 22, ... is 4 and the first term
is 2. If we let d = 4 this becomes a,, = a; + (n — 1)d.

The nth or general term of an arithmetic sequence is given by a, =a; + (n — 1)d.
So in our example a; =2 and d=4s0a,=2+n—1)4=2+4n—4=4n—2.

The arithmetic series

To calculate the arithmetic series, we can use a, = a; + (n — 1)d, and the sum of
the sequence is

Sy = o(ay +ay) = [2a+ (n— 1)d]
2 2
Examples Find the following sum 3+7+ 11+ 15+ --- +35. We have a; =3,

a, =35, d=4. To find n, we note that 35 =3 + (n — 1)4 so that 32 =(n— 1)4 and
n=9. Now we are ready to use the formula:

S,=2-(3+35) =171

\SRINa

5.22 Geometric Sequences and Series

Geometric Sequence

Sequences of numbers that follow a pattern of multiplying a fixed number from
one term to the next are called geometric sequences. A sequence with general
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term a, ., = a,r is called an geometric sequence, a, = nth term and r = common
ratio.

The nth or general term of an geometric sequence is given by a, = ar"~', where
a is the first term.

Examples The general (nth) term for 2, 6, 18, 54, ... is a, = al(3)”7l and the first
term is 2.

5.23 The Finite Geometric Series

71 . . .
If a, = ar" " is a geometric sequence then the sum of the sequence is

1 1—7"
Sn=;an=a<1_r>

Example 3 + 6 + 12 =21. This is a geometric series with common ratio 2, where
a=3,a,=12,r=2.

1-23 -7
= =3__ = =21
S 3(1_2) 3_l 3(7)

5.24 The Infinite Geometric Series

If a,=ar" ' is a geometric sequence and |r| <1 then the sum of the infinite
sequence is

0
_ i a
Sn - § a, =
— 1—r
i=1

Examples
*+ —24+4-8+16+ --- — We have a= —2, r= —2 this infinite series diverges because
r= —2 and |—2]| is not <I. There is no sum.

+ 24+124+6+3+32+%+ .- — We have a =24, r=1/2 so that

24

Titap B

Su
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5.25 Some of Finite and Infinite Series

n(n+1)
2

14243+ +n=

2+4+6+ - +2n=nn+1)
143+5+ - +Q2n—1)=n?

k+(k+1)+(k+2)+ +(k+n—1)=4”(2k+2”_1)
2 nn+1)2n+1)

P+22+3+ . +n 5

2
_|._
P+23+33+ . +nd= ("(" 1))

2

_ n(4n®—1)

PP+32+5+ - +02n—1) 3

PB+3+53+.+2n-1)>=n2Qn®-1)

1+1+1+1+ +1+ =2
2 22 2 2"
1
I+=+=+= +—t e
TR (n—1)

5.26 Convergence Tests for Series
A series converges iff the associated sequence of partial sums represented by {S;}

converges. The element Sy in the sequence above is defined as the sum of the first
“k” terms of the series.

5.27 Series Tests

In this section the various tests mentioned in the previous section will be introduced,
and a number of examples will be considered in class to illustrate the various tests.
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General (nth) term test (also known as the divergence test):

If lim a, # 0, then the series Zf: | an diverges.

n— o0

Note This test is a test for divergence only, and says nothing about convergence.

Geometric Series Test

[Pl

A geometric series has the form > ar", where “a” is some fixed scalar
(real number). A series of this type will converge provided that || <1, and the
sum is a/(1 — r). A proof of this result follows.

Consider the kth partial sum, and “7” times the kth partial sum of the series

Sk=a+arl+ar2+ar3+ v+ ar

S =ar' v+ar* +ar* + -+ arF + o

The difference between Sy and S is (r — 1)S; = a(Z**! — 1).
Provided that r# 1, we can divide by (r — 1) to obtain

k+1 _

5 = a(r 1).

(r=1

Since the only place that “k” appears on the right in this last equation is in the
numerator, the limit of the sequence of partial sums {S;} will exist iff the limit
as k— oo exists as a finite number. This is possible iff |r| <1, and if this is true
then the limit value of the sequence of partial sums, and hence the sum of the
series, is S=a/(1 —r).

5.28 Integral Test

Given a series of the form Z:f;k ay, set a, = fin) where f(x) is a continuous function
with positive values that are decreasing for x=k. If the improper integral
L
Llim J f(x)dx exists as a finite real number, then the given series converges. If the
— D J x=k
improper integral above does not have a finite value, then the series above diverges.
If the improper integral exists, then the following inequality is always true

JOC f)dx= nzw;an =a,+ Jj_pf(x)dx

x=p+1
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By adding the terms from n=k to n=p to each expression in the inequalities
above it is possible to put both upper and lower bounds on the sum of the series.
Also it is possible to estimate the error generated in estimating the sum of the series
by using only the first “p” terms. If the error is represented by R,,, then it follows that

o0

JOC f(x)dst,,s[ f(x)dx

x=p+1 J x=p

5.29 Comparison Tests

There are four comparison tests that are used to test series. There are two conver-
gence tests and two divergence tests. In order to use these tests it is necessary to
know a number of convergent series and a number of divergent series. For the tests
that follow we shall assume that Y~ ¢, is some known convergent series, that
>, dy is some known divergent series, and that Y~ | a, is the series to be tested.
Also it is to be assumed that for ne {1, 2, 3, ..., k — 1} the values of q,, are finite and
that each of the series contains only positive terms.

5.30 Ratio Test

Given a series Y.~ a, with no restriction on the values of the a,s except that they
Ap+1

are finite, and that lim |

n— o0

| =L, the series converges absolutely whenever
n

0 =L <1, diverges whenever 1 <L = o0, and the test fails if L = 1.

5.31 Absolute and Conditional Convergence

A convergent series that contains an infinite number of both negative and positive
terms must be tested for absolute convergence.

A series of the form >, a, is absolutely convergent iff > | |a,| the series of
absolute values is convergent.

If fo;l a, is convergent, but Z;;l la,| the series of absolute values is divergent,
then the series Z;C:I ay is conditionally convergent.

A shortcut:

In some cases it is easier to show that Z,fo:l |a,| is convergent.

It then follows immediately that the original series '~ a, is absolutely
convergent.
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5.32 Taylor and Maclaurin Series

If
f@=7 ealx—a)

n=0

has a power series representation, then

e
! n!
and
9= L 60 = @+ P o
L@ @
31 l

which is called a Taylor series at x = a.
If a =0, then

O SOy (SO

£ = Zf"( ) = f(0) + £/ (O)x +

is the Maclaurin series of f centered at x = 0.
Expansions for some function:

| —
Il

=D+ =1 ==+ =1 = (1) 1)

=

1 o0
= Zx”=1+x+x2+x3+x4+

0 X" xz x3 4
- + ...
n!

X X
1+ 5+ -+ -+ =
o2t 31 4

2n+l 3 5 7
Smx_z( )(2n+1)' TR TR TR
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In(1 +x) = g(—nk;’:'l A

(42 =1+ ia(a— 1). .]ja—k+ l)xk
=1 :

=1l4+ax+ oz(az'— 1)x2 + ala — 13)'(a—2)x3 4.

5.33 Continuous Fourier Series

For a function with period 7, a continuous Fourier series can be expressed as

o0
f@&)=ao+ Y ay cos(kwot) + by sin(kwot)
k=1

The unknown Fourier coefficients ag, ax, and b; can be computed as

1 T
= (= d
“ <T> J Of(t) '

Thus, ap can be interpreted as the “average” function value between the period
interval [0, T1.

2 T
a= |7 Jof(t)cos(kwot)dt

= a_;(hence gy is an “even” function)

2

T
by = T JO f(@)sin(kwor)dt

= — b_i(hence by is an “odd” function)
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Example 1

Using the continuous Fourier series to approximate the following periodic function (7= 27 s)
shown in Figure 5.1:

t foro<t=nm
m for r=t<2w

ft)= {

Specifically, find the Fourier coefficients aq, ay, ..., ag and by, ..., bs.

Solution
The unknown Fourier coefficients aq, ax, and by can be computed based on the following
equations:

B 1 2m
o) o
g 2T
a = % X {Joth L Wdt}

a0 = 2.35619

2 T=2m
ax = (?)J f(t)cos(kwot)dt
0
g 2w
(i) X {J tcos(kx n Xt)dt-i—J chos(kX n Xt)dt}
2w 0 T - T

T 2w
ay = (1> X {[ t cos(kt)dt + J ™ cos(kt)dt}
U J 0 T

ax

Figure 5.1 A periodic function (between 0 and 2).
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The “integration by part” formula can be utilized to compute the first integral on the
right-hand side of the above equation.
Fork=1, 2, ..., 8, the Fourier coefficients a; can be computed as

—0.6366257003116296

a;
a, = —5.070352857678721 X 107 ¢ ~ 0
a3 = —0.07074100153210318

a; = —5.070320092569666 X 10~ % ~ 0

as = —0.025470225589332522

as = —5.070265333302604 X 10 ¢ ~ 0

ay; = —0.0012997664818977102

as = — 5.070188612604695 X 10 ¢ ~ 0

Similarly

) 2m .
by = (T) JO f(t) sin(kwot)dt

m 2m
by = (%) X {Jot sin(kt)dt + J T sin(kt)dt}

Fork=1, 2, ..., 8, the Fourier coefficients by can be computed as
b; = —0.9999986528958207
b, = —0.4999993232285269
b3 = —0.3333314439509194
b, = —0.24999804122384547
bs = —0.19999713794872364
bg = —0.1666635603759553
b; = —0.14285324664625462

bg = —0.12499577981019251
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Any periodic function f(t), such as the one shown in Figure 5.1, can be represented by
the Fourier series as

f®)=ao + i {ay cos(kwot) + by sin(kwot)}

k=1

where ao, ag, and by have already been computed (for k=1, 2, ..., 8) and

Thus, for k =1, one obtains

f1(t) = ag + a; cos(t) + by sin(t)
For k=1 — 2, one obtains

fo(t) & ag + ay cos(t) + by sin(t) + a, cos(2t) + b, sin(2t)
For k=1 — 4, one obtains

Fi(®) = ag + a1 cos(t) + by sin(t) + a, cos(2t) + b, sin(2t) + as cos(3t) + bs sin(3t)
+ a, cos(4t) + by sin(4t)

Plots for f,(t), f,(t), and f,(t) are shown in Figure 5.2.

4
3.5 ”
N
3 s
2.5 / \
> 2
= \
1.5 \ /
- A0
f - f[(t)
— 5H®
0.5 oo e fi(’)
% 1 2 3 4 5 6 7

Figure 5.2 Fourier approximated functions.
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It can be observed from the figure that as more terms are included in the Fourier series,
the approximated Fourier functions more closely resemble the original periodic function as
shown in Figure 5.1.

Example 2

The periodic triangular wave function f(t) is defined as

i i
— for —w<t< —
2 2

-7 ™
-7 ™
T for E<t<ﬂ'

Find the Fourier coefficients aqg, a;, ..., ag and by, ..., bg and approximate the
periodic triangular wave function by the Fourier series (Figure 5.3).

Solution
The unknown Fourier coefficients ag, ay, and by can be computed based on the following

equations:

o = G)J;f(t)dt
—r/2 /2 T
ao = & X {JW (—%)dﬂ L/z(_t)dH L/z(—g)dt}

) Figure 5.3 Periodic triangular
4 wave function.
T f(t) =—t
/
T
—TT 0 2 JT
'
_T
2
_z
2

[SIE!
1B
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ap = —0.78539753

ay = (E)J7r f(t)cos(kwot)dt

7
where

2m
Wo = T
_ 27
2m

=1

Hence,

ax = (;)Ji f(t)cos(kt)dt

or
2\ [ = /2 L
a = (g) {J B (f E) cos(kt)dt + LT/Z(* t)cos(kt)dt + L/z <f E) cos(kt)dt}
Similarly
by = (;) J;f(t)sin(kwot)dt = (;)J;f(t)sin(kt)dt
or

™ 0

o ( % ) { J:m (_9 sin(kt)dt + JW/:/Z(—t)sin(kt)dt + J:Z (—%) sin(kt)dt}

The “integration by part” formula can be utilized to compute the second integral on
the right-hand side of the above equations for a; and by.

For k=1, 2, ..., 8, the Fourier coefficients a; and by can be computed and summarized
as in Table 5.1.

The periodic function (shown in Example 1) can be approximated by Fourier series as

f)=ao+ i {ay cos(kt) + by sin(kt) }
=1

Thus, for k =1, one obtains

F1(6) =ag + ay cos(t) + by sin(t)
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k ay bk
1 0.999997 —0.63661936
2 0.00 —0.49999932
3 —0.3333355 0.07073466
4 0.00 0.2499980
5 0.1999968 —0.02546389
6 0.00 —0.16666356
7 —0.14285873 0.0126991327
8 0.00 0.12499578
2
1.5
N\ —
— fi
0.5 — %0
/ A0
< 0
= v
-0.5 /
-1
-1.5
i) < \_/7
-4 -3 -2 -1 2 3

Table 5.1 Fourier Coefficients a; and by for Various k£ Values

Figure 5.4 Fourier approximated functions.

For k=1 — 2, one obtains

Fo(t) =ag + a; cos(t) + by sin(t) + az cos(2t) + b, sin(2t)

Similarly, for k=1 — 4, one has

Fu(®) =ap + ay cos(t) + by sin(t) + az cos(2t) + by sin(2t) + a3 cos(3t) + bs sin(3t)

+ a, cos(4t) + b, sin(4t)

Plots for functions f,(t), f,(t), and f,(t) are shown in Figure 5.4.
It can be observed from the figure that as more terms are included in the Fourier series,

the approximated Fourier functions closely resemble the original periodic function.
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5.34 Double Integrals

A double integral is used to calculate the area under a surface over a bounded region.
In order to approximate the volume under a surface over a domain D, the domain
can be divided into rectangles. Each of these rectangles has an x and a y dimension
denoted as Ax and Ay, respectively. Therefore, the area of each rectangle is defined
as AA = AxAy.

To obtain the actual volume under a surface, the partitions of the domain must
be made infinitely small by finding the infinite limit of the double summations
in the volume approximation. As this limit approaches infinity, the error of the
approximation approaches 0.

m n

— 1 : * % .
V= fim fim D S6 Ay

m n
= lim g E f(xh, v AA;;
m,n— o0 ( l]’yu) v

i=1 j=1

JJDf(x, ¥)dA

The domain D of the double integral can be broken into the components dx and
dy, which produces the notation:

V= jbj ey s

aJd ¢

To evaluate a double integral, the integrand must first be integrated relative to
the first differential. All variables other than that of the first differential are treated
as constants. The bounds for the inner integral are entered into the antiderivative,
which then is integrated relative to the second differential.

For example:

Jz [ ?(x2y)dy dx

0.
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5.35 Triple Integrals

A triple integral has a three-dimensional domain. Since the resulting function exists
in four dimensions, the function cannot be represented graphically. However, some
mathematicians label the results of a triple integral as hypervolume. The formula
for calculating a triple integral can be determined as

m n

P
lim lim lim E E E F s Voo 2 ) AZk Ay je A
m— 00 n— o0 p— 0O =T =T =1

[l

= JdeJ:f(x, v,z)dz dy dx

ad c

Example

Use a triple integral to find the volume of the solid bounded by the graphs of z=x? + y?
and the plane z = 4.

Solution
The following graph shows a plot of the paraboloid z=x2 +y? (in blue), the plane z= 4
(in red), and its projection onto the x — y plane (in green).

The triple integral [[[.dV will evaluate the volume of this surface. In the z direction,
the surface £ is bounded between the graphs of the paraboloid z=x? + y? and the plane
Z = 4. This will make up the limits of integration in terms of z. The limits for y and x are
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determined by looking at the projection D given on the x —y plane, which is the graph of
the circle x2 + y2 = 4 given as follows:

3 B -1 0 1 2 3

=2

3]

Taking the equation x2 + y? = 4 and solving for y gives y = *+/4 — x2. Thus the limits
of integration of y will range from y = —+/4 — x2 to y = v/4 — x2. The integration limits in
terms of x hence range from x= —2 to x=2. Thus the volume of the region £ can be
found by evaluating the following triple integral:

] 2 (VE-x2 4
Volume of £ = m dV=J J J dz dy dx
JE —2J Va2 ) ety

If we evaluate the innermost integral we get the following:

2 (VAR 4 2 (Vix 7=4
J J J dzdy dx = J J [2] dy dx
—2J —v4—x2J x2+y? —2J —v4—x? z=x2+y?

2 Vb—x?
= J J [4— (* +y*)ldy dx
—-2J) —Va—x2

Since the limits involving y involve two radicals, integrating the rest of this result in
rectangular coordinates is a tedious task. However, since the region D on the x —y plane
given by x?2+y?=4 is circular, it is natural to represent this region in polar
coordinates.



Calculus 109

Using the fact that the radius r ranges from r = 0 to r = 2 and that 6 ranges from 6 =0
to 6 =27 and also that in polar coordinates, the conversion equation is r2 =x2 + y?2, the
iterated integral becomes

2 rNE—x2 27 2
J J [4— % + yz)]dy dx = J J (4 —r®)rdrdo
—2J —Va—2 0Jo

Evaluating this integral in polar coordinates, we obtain

2w 2 2m 2
J J (4— I’Z)f drdo = J (4r — r3)dr do (distribute r)
0 0 0 0
=27 1 r=2
= 2r2— 24 de (integrate)
=0 4 r=0

6=27
= [(2(2)2 - 1(2)4> — 0} df (subin limits of integration)

0=0
6=27
= 4.do (simplify)
0=0
0=2m
=40 (integrate)
0=0
= 4(2m) — 4(0) (sub in limits of integration)
=8r

Thus, the volume of E is 8.

5.36 First-Order Differential Equations
Linear equations:

d

=+ gy =/

The general solution is

J BECE Sf()dx

LS e

y =
Separable equations:

dy _
o =f(x)g()
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The general solution is

Jg% =Jf(x)dx+C

Exact equations: M(x,y)dx + N(x,y)dy =0 is called exact if 6M/dy=0N/ox
and not exact otherwise.
The general solution is

JM(x,y)dx + JN(x,y)dy =C

Homogeneous equations: dy/dx =f(x,y) is homogeneous if the function
flex, 1y) = f(x,y)

The substitution z = y/x converts the equation to separable x(dz/dx) + z =f(1,z2)

Bernoulli equations:

d
2+ gy ="

The substitution z=y'™" converts the equation to linear (dz/dx)+

(I=n)gz=~1—-n)f(x)

5.37 Second-Order Differential Equations

Homogeneous linear equation with constant coefficients: y” + by +cy=0. The
characteristic equation is \* + bA + ¢ = 0.

If A\; # )\, (distinct real roots) then y = c1eM* + cre™*.
If A\| = )\, (repeated roots) then y = c;eM* + cpxe*.
If \i=a+pi and \; =a— (i are complex numbers (distinct real roots) then

y = e™(cy cos Bx + ¢, sin Bx).

5.38 Laplace Transform

Why Laplace Transforms?

1. Converts differential equations to algebraic equations—facilitates combination of multiple
components in a system to get the total dynamic behavior (through addition and

multiplication)
2. Can gain insight from the solution in the transform domain (“s”’)—inversion of transform
not necessarily required
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3. Allows development of an analytical model which permits use of a discontinuous
(piecewise continuous) forcing function and the use of an integral term in the forcing
function (important for control)

4. System analysis using Laplace transform

X(s) Y(s)
——»{ Dynamic system

G(s)

Y(s) = G(s) X(s)
y(1) =L} (Y(5))

— inverse Laplace transform

Definition Laplace transform of x(7)

o0

Lix(0)] = X(s) = J x(e ' dt (s=o0+jw)

0

5.39 Table of Laplace Transforms

Function, f(¢) Laplace Transform, F(s)
1 1/s

T 1/s%

7 2/s*

" nl/s"t!

e 1/(s + a)

e nli(s +a)y"*!

sin(br) bl(s> + b%)

cos(br) sI(s2 + b?)

e “sin(br) bi((s + a)* + b

e “cos(br) (s + a)((s + a)* + b?)
sinh(bf) bl(s*> — b?)

cosh(br) s/(s2 = b

tsin(br) 2bs/(s* + b?)?
tcos(bt) (5% — POI(s* + b*)?
u(t) unit step function  1/s

u(t —d) e s

6(1) 1

8(t—d) e




6 Statistics and Probability

Probability and statistics are two related but separate academic disciplines.
Statistical analysis often uses probability distributions and the two topics are often
studied together. However, probability theory contains much that is of mostly of
mathematical interest and not directly relevant to statistics. Moreover, many topics
in statistics are independent of probability theory.

Probability (or likelihood) is a measure or estimation of how likely it is that some-
thing will happen or that a statement is true. Probabilities are given a value between
0 (0% chance or will not happen) and 1 (100% chance or will happen). The higher
the degree of probability, the more likely the event is to happen, or, in a longer series
of samples, the greater the number of times such event is expected to happen.

Statistics is the study of the collection, organization, analysis, interpretation, and
presentation of data. It deals with all aspects of data, including the planning of data
collection in terms of the design of surveys and experiments. Topics discussed in
this chapter are as follows:

* Mean

*  Median

* Mode

» Standard deviation

*  Variance

* Coefficient of variation
* z-Score

* Range

» Central limit theorem

» Counting rule for combinations

» Counting rule for permutations

* Binomial probability

» Poisson probability

+ Confidence intervals

+ Sample size

» Regression and correlation

» Pearson product—moment correlation coefficient
+ Test statistic for hypothesis tests about a population proportion
» Chi-square goodness-of-fit test statistic

» Standard normal distribution table

+ Student’s #-distribution table

» Chi-square table

+ Table of F-statistics, P = 0.05

Mathematical Formulas for Industrial and Mechanical Engineering. DOI: http://dx.doi.org/10.1016/B978-0-12-420131-6.00006-3
© 2014 Elsevier Inc. All rights reserved.
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6.1 Arithmetic Mean
S

n

2

. For population: p ~

X

For sample: x =

6.2 Median

The median is the middle measurement when an odd number (1) of measurement
is arranged in order; if n is even, it is the midpoint between the two middle
measurements.

6.3 Mode

It is the most frequently occurring measurement in a set.
6.4 Geometric Mean
A X1X2. . Xy

6.5 Standard Deviation

(Cx-x)
(n—1)

s =

or

Wzm - (o

n(n—1)

6.6 Variance

2

V=S¢

6.7 z-Score
xX—X

=

N
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6.8 Coefficient of Variation

CV (%) = standard deviation % 100
mean

6.9 Sample Covariance

_ 2 =) —Y)
Sy =

n—1

6.10 Range
Range = largest data value — smallest data value.
6.11 Central Limit Theorem

X—p

=30
o/ "

7=

6.12 Counting Rule for Combinations

n!
C =—"
Tl (=)

6.13 Counting Rule for Permutations

n!
P‘: -
" (n—r)!

6.14 Properties of Probability

Let

P denotes a probability
A, B, C denote specific events
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P(A) denotes the probability of event A occurring

number of times A occurred
PA) =

number of times trial was repeated
Computing probability using the complement: P(A) = 1 — P(A€)
Addition law: P(A U B) = P(A) + P(B) — P(A n B)

PANB PANB
Conditional probability: P(A|B) = % or P(BIA) = %
Multiplication law: P(A n B) = P(B)P(A|B) or P(A n B) = P(A)P(B|A)
Multiplication law for independent events: P(A N B) = P(A)P(B)
Expected value of a discrete random variable: E(x) = p = Y xf(x)

6.15 Binomial Probability Function
(n—x)

n!
fx) = mpx(l —p)

6.16 Expected Value and Variance for the Binomial
Distribution

E(x)=p=np Var(x)=0"=np(1—p)

6.17 Poisson Probability Function

Mxe -
x!

f)=

where f(x) is the probability of x occurrences in an interval, p is the expected value
or mean number of occurrences in an interval, and e = 2.718.

6.18 Confidence Intervals

Jn

_ ag
<pU<F+ ze—

Jn

Confidence interval for a mean (large samples): X — z.
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. . _ s _ s
Confidence interval for a mean (small samples): X — tc7ﬁ <pu<x+ tc7ﬁ
yp—E<y<y,+E, where y, is the predicted y value for x:

1 —_ 2

E=1S\/14+ -+ %)

n SS,

Confidence interval for a proportion (where np>5 and ng>35):

Y (G D Sy (GG

6.19 Sample Size

. .. Z.0\2
Sample size for estimating means n = (7) .

2
Sample size for estimating proportions n = p(1 — p) (%C) with preliminary esti-
mate of p.

1 e z .. .
n= Z(E) with no preliminary estimate of p.

6.20 Regression and Correlation

[

$S.=3 - ()

n

SS,= ¥ - (Z)

n

5= Y- ()

Least squares line
y=a+bx

where b = SS,,/SS, and a =7y — bx.
Standard error of estimate

SS, — bSS,,

S:
¢ n—2

where b = §§,,/SS,.
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6.21 Pearson Product—Moment Correlation Coefficient

SSy

/55,58,

r=

6.22 Test Statistic for Hypothesis Tests about a Population
Proportion

P —Po

V (po(1 — po))/n

6.23 Chi-Square Goodness-of-Fit Test Statistic

o2
Xz _ Z(.foﬁfe) . df = (C _ 1)

6.24 Standard Normal Distribution Table

Cumulative probabilities: P(Z=7z) for z=0

Probability
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V/ 0.09  0.08

0.07

0.06

0.05

0.04 0.03 0.02 0.01 0.00

-35

—3.4 0.0002 0.0003
—3.3 0.0003 0.0004
—3.2 0.0005 0.0005
—3.1 0.0007 0.0007
—3.0 0.0010 0.0010
—2.9 0.0014 0.0014
—2.8 0.0019 0.0020
—2.7 0.0026 0.0027
—2.6 0.0036 0.0037
—2.5 0.0048 0.0049
—2.4 0.0064 0.0066
—2.3 0.0084 0.0087
—22 0.0110 0.0113
—2.1 0.0143 0.0146
—2.0 0.0183 0.0188
—-1.9 0.0233 0.0239
—1.8 0.0294 0.0301
—1.7 0.0367 0.0375
—1.6 0.0455 0.0465
—1.5 0.0559 0.0571
—1.4 0.0681 0.0694
—1.3 0.0823 0.0838
—1.2 0.0985 0.1003
—1.1 0.1170 0.1190
—1.0 0.1379 0.1401
—09 0.1611 0.1635
—0.8 0.1867 0.1894
—0.7 0.2148 0.2177
—0.6 0.2451 0.2483
—0.5 0.2776 0.2810
—0.4 0.3121 0.3156
—0.3 0.3483 0.3520
—0.2 0.3859 0.3897
—0.1 0.4247 0.4286
—0.0 0.4641 0.4681

0.0003
0.0004
0.0005
0.0008
0.0011
0.0015
0.0021
0.0028
0.0038
0.0051
0.0068
0.0089
0.0116
0.0150
0.0192
0.0244
0.0307
0.0384
0.0475
0.0582
0.0708
0.0853
0.1020
0.1210
0.1423
0.1660
0.1922
0.2206
0.2514
0.2843
0.3192
0.3557
0.3936
0.4325
0.4721

0.0003
0.0004
0.0006
0.0008
0.0011
0.0015
0.0021
0.0029
0.0039
0.0052
0.0069
0.0091
0.0119
0.0154
0.0197
0.0250
0.0314
0.0392
0.0485
0.0594
0.0721
0.0869
0.1038
0.1230
0.1446
0.1685
0.1949
0.2236
0.2546
0.2877
0.3228
0.3594
0.3974
0.4364
0.4761

0.0003
0.0004
0.0006
0.0008
0.0011
0.0016
0.0022
0.0030
0.0040
0.0054
0.0071
0.0094
0.0122
0.0158
0.0202
0.0256
0.0322
0.0401
0.0495
0.0606
0.0735
0.0885
0.1056
0.1251
0.1469
0.1711
0.1977
0.2266
0.2578
0.2912
0.3264
0.3632
0.4013
0.4404
0.4801

0.0002
0.0003 0.0003 0.0003 0.0003 0.0003
0.0004 0.0004 0.0005 0.0005 0.0005
0.0006 0.0006 0.0006 0.0007 0.0007
0.0008 0.0009 0.0009 0.0009 0.0010
0.0012 0.0012 0.0013 0.0013 0.0013
0.0016 0.0017 0.0018 0.0018 0.0019
0.0023 0.0023 0.0024 0.0025 0.0026
0.0031 0.0032 0.0033 0.0034 0.0035
0.0041 0.0043 0.0044 0.0045 0.0047
0.0055 0.0057 0.0059 0.0060 0.0062
0.0073 0.0075 0.0078 0.0080 0.0082
0.0096 0.0099 0.0102 0.0104 0.0107
0.0125 0.0129 0.0132 0.0136 0.0139
0.0162 0.0166 0.0170 0.0174 0.0179
0.0207 0.0212 0.0217 0.0222 0.0228
0.0262 0.0268 0.0274 0.0281 0.0287
0.0329 0.0336 0.0344 0.0351 0.0359
0.0409 0.0418 0.0427 0.0436 0.0446
0.0505 0.0516 0.0526 0.0537 0.0548
0.0618 0.0630 0.0643 0.0655 0.0668
0.0749 0.0764 0.0778 0.0793 0.0808
0.0901 0.0918 0.0934 0.0951 0.0968
0.1075 0.1093 0.1112 0.1131 0.1151
0.1271 0.1292 0.1314 0.1335 0.1357
0.1492 0.1515 0.1539 0.1562 0.1587
0.1736 0.1762 0.1788 0.1814 0.1841
0.2005 0.2033 0.2061 0.2090 0.2119
0.2296 0.2327 0.2358 0.2389 0.2420
0.2611 0.2643 0.2676 0.2709 0.2743
0.2946 0.2981 0.3015 0.3050 0.3085
0.3300 0.3336 0.3372 0.3409 0.3446
0.3669 0.3707 0.3745 0.3783 0.3821
0.4052 0.4090 0.4129 0.4168 0.4207
0.4443 0.4483 0.4522 0.4562 0.4602
0.4840 0.4880 0.4920 0.4960 0.5000
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Cumulative probabilities: P(Z = z) for z=0.

z  0.00 0.01 0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.0 0.5000 0.5040 0.5080
0.1 0.5398 0.5438 0.5478
0.2 0.5793 0.5832 0.5871
0.3 0.6179 0.6217 0.6255
0.4 0.6554 0.6591 0.6628
0.5 0.6915 0.6950 0.6985
0.6 0.7257 0.7291 0.7324
0.7 0.7580 0.7611 0.7642
0.8 0.7881 0.7910 0.7939
0.9 0.8159 0.8186 0.8212
1.0 0.8413 0.8438 0.8461
1.1 0.8643 0.8665 0.8686
1.2 0.8849 0.8869 0.8888
1.3 0.9032 0.9049 0.9066
1.4 09192 0.9207 0.9222
1.5 09332 0.9345 0.9357
1.6 09452 0.9463 0.9474
1.7 09554 0.9564 0.9573
1.8 0.9641 0.9649 0.9656
1.9 09713 0.9719 0.9726
20 09772 09778 0.9783
2.1 09821 0.9826 0.9830
2.2 09861 0.9864 0.9868
2.3 09893 0.9896 0.9898
24 09918 0.9920 0.9922
2.5 09938 0.9940 0.9941
2.6 09953 0.9955 0.9956
2.7 09965 0.9966 0.9967
2.8 09974 0.9975 0.9976
29 09981 0.9982 0.9982
3.0 0.9987 0.9987 0.9987
3.1 09990 0.9991 0.9991
3.2 09993 0.9993 0.9994
3.3 09995 0.9995 0.9995
3.4 09997 0.9997 0.9997
3.5 0.9998

0.5120
0.5517
0.5910
0.6293
0.6664
0.7019
0.7357
0.7673
0.7967
0.8238
0.8485
0.8708
0.8907
0.9082
0.9236
0.9370
0.9484
0.9582
0.9664
0.9732
0.9788
0.9834
0.9871
0.9901
0.9925
0.9943
0.9957
0.9968
0.9977
0.9983
0.9988
0.9991
0.9994
0.9996
0.9997

0.5160
0.5557
0.5948
0.6331
0.6700
0.7054
0.7389
0.7704
0.7995
0.8264
0.8508
0.8729
0.8925
0.9099
0.9251
0.9382
0.9495
0.9591
0.9671
0.9738
0.9793
0.9838
0.9875
0.9904
0.9927
0.9945
0.9959
0.9969
0.9977
0.9984
0.9988
0.9992
0.9994
0.9996
0.9997

0.5199
0.5596
0.5987
0.6368
0.6736
0.7088
0.7422
0.7734
0.8023
0.8289
0.8531
0.8749
0.8944
0.9115
0.9265
0.9394
0.9505
0.9599
0.9678
0.9744
0.9798
0.9842
0.9878
0.9906
0.9929
0.9946
0.9960
0.9970
0.9978
0.9984
0.9989
0.9992
0.9994
0.9996
0.9997

0.5239
0.5636
0.6026
0.6406
0.6772
0.7123
0.7454
0.7764
0.8051
0.8315
0.8554
0.8770
0.8962
0.9131
0.9279
0.9406
0.9515
0.9608
0.9686
0.9750
0.9803
0.9846
0.9881
0.9909
0.9931
0.9948
0.9961
0.9971
0.9979
0.9985
0.9989
0.9992
0.9994
0.9996
0.9997

0.5279
0.5675
0.6064
0.6443
0.6808
0.7157
0.7486
0.7794
0.8078
0.8340
0.8577
0.8790
0.8980
0.9147
0.9292
0.9418
0.9525
0.9616
0.9693
0.9756
0.9808
0.9850
0.9884
0.9911
0.9932
0.9949
0.9962
0.9972
0.9979
0.9985
0.9989
0.9992
0.9995
0.9996
0.9997

0.5319
0.5714
0.6103
0.6480
0.6844
0.7190
0.7517
0.7823
0.8106
0.8365
0.8599
0.8810
0.8997
0.9162
0.9306
0.9429
0.9535
0.9625
0.9699
0.9761
0.9812
0.9854
0.9887
0.9913
0.9934
0.9951
0.9963
0.9973
0.9980
0.9986
0.9990
0.9993
0.9995
0.9996
0.9997

0.5359
0.5753
0.6141
0.6517
0.6879
0.7224
0.7549
0.7852
0.8133
0.8389
0.8621
0.8830
0.9015
0.9177
0.9319
0.9441
0.9545
0.9633
0.9706
0.9767
0.9817
0.9857
0.9890
0.9916
0.9936
0.9952
0.9964
0.9974
0.9981
0.9986
0.9990
0.9993
0.9995
0.9997
0.9998
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6.25 Table of the Student’s t-distribution

You must use the #-distribution table when working problems when the population

standard deviation (o) is not known and the sample size is small (n <30).

oV

The table gives the values of ¢,,,, where
Pr(T, > t,.,) = o with v degrees of freedom

v o
0.1 0.05 0.025 0.01 0.005 0.001 0.0005

1 3.078 6.314 12.076 31.821 63.657 318.310 636.620
2 1.886 2.920 4.303 6.965 9.925 22.326 31.598
3 1.638 2.353 3.182 4.541 5.841 10.213 12.924
4 1.533 2.132 2.776 3.747 4.604 7.173 8.610
5 1.476 2.015 2.571 3.365 4.032 5.893 6.869
6 1.440 1.943 2.447 3.143 3.707 5.208 5.959
7 1.415 1.895 2.365 2.998 3.499 4.785 5.408
8 1.397 1.860 2.306 2.896 3.355 4.501 5.041
9 1.383 1.833 2.262 2.821 3.250 4.297 4.781
10 1.372 1.812 2.228 2.764 3.169 4.144 4.587
11 1.363 1.796 2.201 2.718 3.106 4.025 4.437
12 1.356 1.782 2.179 2.681 3.055 3.930 4318
13 1.350 1.771 2.160 2.650 3.012 3.852 4221
14 1.345 1.761 2.145 2.624 2.977 3.787 4.140
15 1.341 1.753 2.131 2.602 2.947 3.733 4.073
16 1.337 1.746 2.120 2.583 2.921 3.686 4.015
17 1.333 1.740 2.110 2.567 2.898 3.646 3.965
18 1.330 1.734 2.101 2.552 2.878 3.610 3.922
19 1.328 1.729 2.093 2.539 2.861 3.579 3.883
20 1.325 1.725 2.086 2.528 2.845 3.552 3.850
21 1.323 1.721 2.080 2.518 2.831 3.527 3.819
22 1.321 1.717 2.074 2.508 2.819 3.505 3.792
23 1.319 1.714 2.069 2.500 2.807 3.485 3.767
24 1.318 1.711 2.064 2.492 2.797 3.467 3.745
25 1.316 1.708 2.060 2.485 2.787 3.450 3.725
26 1.315 1.706 2.056 2479 2779 3.435 3.707
27 1.314 1.703 2.052 2.473 2771 3.421 3.690
28 1.313 1.701 2.048 2.467 2.763 3.408 3.674
29 1.311 1.699 2.045 2.462 2.756 3.396 3.659
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14 «
0.1 0.05 0.025 0.01 0.005 0.001 0.0005

30 1310 1.697 2.042 2.457 2.750 3.385 3.646
40 1.303 1.684 2.021 2.423 2.704 3.307 3.551
60 1296 1671 2.000 2.390 2.660 3232 3.460
120 1289 1658 1.980 2358 2,617 3.160 3.373
o0 1.282 1.645 1.960 2.326 2.576 3.090 3.291
6.26 Chi-square Table

df P=0.05 P=0.01

1 3.84 6.64

2 5.99 9.21

3 7.82 11.35

4 9.49 13.28

5 11.07 15.09

6 12.59 16.81

7 14.07 18.48

8 15.51 20.09

9 16.92 21.67

10 18.31 23.21

11 19.68 24.73

12 21.03 26.22

13 22.36 27.69

14 23.69 29.14

15 25.00 30.58

16 26.30 32.00

17 27.59 33.41

18 28.87 34.81

19 30.14 36.19

20 31.41 37.57

21 32.67 38.93

22 33.92 40.29

23 35.17 41.64

24 36.42 42.98

25 37.65 4431

26 38.89 45.64

27 40.11 46.96

28 41.34 48.28

29 42.56 49.59

30 43.77 50.89




6.27 Table of F-statistics, P=0.05

df2 df1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20 30

3 10.13 955 928 9.12 9.0l 894 889 885 8.8l 879 876 874 873 871 870 8.66  8.62
4 771 694 659 639 626 616 609 604 600 59 594 591 589 587 586 580 575
5 6.61 579 541 519 505 495 488 482 477 474 470 468 466 464 462 456 450
6 599 514 476 453 439 428 421 415 410 406 403 400 398 396 394 387 3381
7 559 474 435 412 397 387 379 373 368 364 360 357 355 353 351 344 338
8 532 446 407 384 369 358 350 344 339 335 331 328 326 324 322 315 3.08
9 512 426 386 363 348 337 329 323 318 314 310 307 305 3.03 301 294 285
10 496 410 3.71 348 333 322 314 307 302 298 294 291 28 286 28 277 270
11 484 398 359 336 320 3.09 301 295 290 28 282 279 276 274 272 265 257
12 475 389 349 326 311 300 291 285 280 275 272 269 266 264 262 254 247
13 4.67 3.81 3.41 318 303 292 283 277 271 267 263 260 258 255 253 246 238
14 460 374 334 311 29 285 276 270 265 260 257 253 251 248 246 239 231
15 454 368 329 306 29 279 271 264 259 254 251 248 245 242 240 233 225
16 449 3,63 324 301 285 274 266 259 254 249 246 242 240 237 235 228 219
17 445 359 320 296 281 270 261 255 249 245 241 238 235 233 231 223 215
18 4.41 355 316 293 277 266 258 251 246 241 237 234 231 229 227 219 211
19 438 352 313 290 274 263 254 248 242 238 234 231 228 226 223 216 207
20 435 349 310 287 271 260 251 245 239 235 231 228 225 223 220 212 2.04
22 430 344 305 282 266 255 246 240 234 230 226 223 220 217 215 207 1.98
24 426 340 3.01 278 262 251 242 236 230 225 222 218 215 213 211 2.03 1.94
26 423 337 298 274 259 247 239 232 227 222 218 215 212 209 207 1.99 1.90
28 420 334 295 271 256 245 236 229 224 219 215 212 209 206 204 196 1.87
30 417 332 292 269 253 242 233 227 221 216 213 209 206 2.04 201 1.93 1.84
35 412 327 287 264 249 237 229 222 216 211 208 204 201 1.99 196  1.88 1.79




7 Financial Mathematics

The world of finance is literally FULL of mathematical models, formulas, and sys-
tems. It is absolutely necessary to understand certain key concepts in order to be
successful financially, whether that means saving money for the future or to avoid
being a victim of a quick-talking salesman. Financial mathematics is a collection of
mathematical techniques that find application in finance, e.g., asset pricing: deriva-
tive securities, hedging and risk management, portfolio optimization, structured
products. This chapter has links to math lessons about financial topics, such as
annuities, savings rates, compound interest, and present value. Topics discussed in
this chapter are as follows:

* Percentage

* The number of payments

» Convert interest rate compounding bases

+ Effective interest rate

* The future value of a single sum

» The future value with compounding

+ The future value of a cash flow series

» The future value of an annuity

» The future value of an annuity due

» The future value of an annuity with compounding

*  Monthly payment

* The present value of a single sum

» The present value with compounding

* The present value of a cash flow series

+ The present value of an annuity with continuous compounding
» The present value of a growing annuity with continuous compounding
+ The net present value of a cash flow series

» Expanded net present value formula

» The present worth cost of a cash flow series

* The present worth revenue of a cash flow series

Symbols used in financial mathematics are as follows:

P: amount borrowed

N: number of periods

B: balance

g: rate of growth

m: compounding frequency

Mathematical Formulas for Industrial and Mechanical Engineering. DOI: http://dx.doi.org/10.1016/B978-0-12-420131-6.00007-5
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r: interest rate

rE: effective interest rate
rN: nominal interest rate
PMT: periodic payment
FV: future value

PV: present value

CF: cash flow

J: the jth period

T: terminal or last period

7.1 Percentage
Percent means “out of one hundred.” To change a percent to decimal, drop the

% sign, and divide by 100. This is equivalent to moving the decimal point two
places to the left. Example: 45%, 76.25%.

7.2 The Number of Payments

—log(1 — rFV/PMT)
log(1 +r)

N =

7.3 Convert Interest Rate Compounding Bases

ny/ny
<1+ ”) - 1];12
n

where r; is original interest rate with compounding frequency n; and r; is the stated
interest rate with compounding frequency n,.

Iy =

7.4 Effective Interest Rate

[m/(payments /year)]
rE={<1+l(r)I(\)I) — 13 X100
m

7.5 The Future Value of a Single Sum

FV =PV(l+7)"
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7.6 The Future Value with Compounding

FV =PV ( 1+ 1)"_'"
m

7.7 The Future Value of a Cash Flow Series

FV = CF(l+r)
i1

7.8 The Future Value of an Annuity

FV, = PMT [(H—r)”—l}

r

7.9 The Future Value of an Annuity Due

1+r"—1
S

FVu = PMT{ (1+7r)

7.10 The Future Value of an Annuity with Compounding

FV, = PMT [%]

r/m

7.11 Monthly Payment

pmr=p| U
(1+r"—1

7.12 The Present Value of a Single Sum

RV
(1+r)"



128 Mathematical Formulas for Industrial and Mechanical Engineering

7.13 The Present Value with Compounding

FV

NV ey

7.14 The Present Value of a Cash Flow Series

Z(H(r/'n))’

7.15 The Present Value of an Annuity with Continuous
Compounding

l—e"
PVyp =

r

7.16 The Present Value of a Growing Annuity with
Continuous Compounding

PMT(1 — ¢ "*8")

PV,, =
& e 8—1

7.17 The Net Present Value of a Cash Flow Series

_ v CF
NPV—Z(l_H)j
j—1

7.18 Expanded Net Present Value Formula

T
B CF;
NPV = Z (1 + V)T
T=0
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7.19 The Present Worth Cost of a Cash Flow Series

where CF; <0.

7.20 The Present Worth Revenue of a Cash Flow Series

PWR = Z CE

= a +ry

where CF; > 0.
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