e e e |

J2EE” Connector
Architecture and Enterprise
Application Integration

Towrvvenrdd by ol Dwtarn M, e echnsdon
CHlcer, Server [edben, B Sl

Front Matter
Table of Contents
About the Author

J2EE Connector Architecture and Enterprise Application Integration

Rahul Sharma

Beth Stearns

Tony Ng

Publisher: Addison Wesley

First Edition December 01, 2001
ISBN: 0-201-77580-8, 416 pages

The Java(TM) 2 Enterprise Edition (J2EE) platform connector architecture is the key component in
Java s support for enterprise application integration (EAI) and for linking enterprise information
systems (EI Ss) with Web services. Because many services are now provided through the Web, it is
essential that business enterprises have an efficient EAI solution. J2EE(TM) Connector Architecture
and Enterprise Application Integration is the definitive guide to showing enterprise organizations
how to incorporate existing enterprise infrastructure and applications, taking them into the
Web-enabled economy of the future.

Written for application component developers who are building Connector architecture applications,
J2EE(TM) Connector Architecture and Enterprise Application Integration explains how to connect
applications not only to one another but also to a multitude of ElSs and legacy systems. Thisbook is
also of interest to independent software developers (ISV's) and others who devel op resource adapters
for specific EISs. Readers will learn how to link underlying infrastructure products with J2EE
application server and platform technologies.

Table of Content

T ABLE OF CONTENT ...ttttteauttesteeeuteesseaauseessesssseasseaasseaaseesaseaseeaase e s eeaaseebeeemseebe e eae e e beeemseeabeesmseebeeemseeseesaneenneasnnis A
FFOREWORD ...ttt ettt sttt be sttt et bt bbbt st et et a4 e e bt A bt b e e b e e R e e Rt et e b e b e bt e bt e bt e bt e ne et et et e s eenbenbeenes I
e Y 1 PRI [l
ConventioNS USEA 1N THIS BOOKccciiiueiieiieeiesiesteseesieestesessseessessaesseesesseesseessessesssesnsessessseensessesssessenns [l
LT =T o] T o= TSRS [l
TYPOGrapPhiC CONVENLIONS.......ccueeiiieieeteeieeeesee e eeesteesteseesseeseeseesseesesseesseesseaseesseensesseesseenseaseesseensnssennsesnenns v
Other Sources Of INFOIMALIONccuiiiiiieieee ettt e s ae e s be e e e e seenbesneesreeneesneans v
(@001 =01k 0 11 0= 2 o | S \
ACKNOWLEDGMENTS .tttiiutttteeesttteesasssetessssssseessasssessasssssesssassssessassssssssassssssssassssssssassssssssnsssesssassssesssnssssesssnssns VI
CHAPTER 1. ENTERPRISE APPLICATION INTEGRATIONcitttrtitestestessesseeeessessessessessessessessesssessessessessessessessessessens 1
1.1 What Is Enterprise Application INtEGratioN?...........ccoueiiererieieesie et see e sne e 2
1.2 Web-driven Application INEEQratioNceeieeieieeiieeieseeeseeseesesee e sae e e eae e e sseeeesseesseessesseensens 3
1.3 Enterprise INfOrmation SYSLEITIS.cceiiiiiiiierieeie ettt s et sae et e e s seesbe e e e sreesbesseessesnsesneennens 4
1.4 Challengesin EISTNIEQratioN........c.ciieiieeeiiese s seese e ee e e e te e e e e sseeaeeseesseeaesseesseensesnnensens 6
1.5 Enterprise Application Integration APProaches.............cooeeeiiiieiiee e 7
1.6 J2EE Connector ArchiteCture and EAL ..ottt ne e 13
A o g Tox 1T o] o PR 15
CHAPTER 2. J2EE CONNECTOR ARCHITECTURE OVERVIEWcttitiriieiieiesiesieste st siessesseseese s ssessessessessessesnnenes 16
2.1 What 1Sthe J2EE PlIAtfOrM? ...ttt sttt nne s 16
2.2 J2EE Connector ArChitECIUrE€ OVEIVIEW..........uecierieeieeiesteesieseesteesaessees e etesseessesseesseessesseessesssessessseessens 19
2.3 EXAMPIE SCENAITO ...ttt sttt sttt e e s st e be et e saeesbeeaeeeae e beentesaeesseensesneenbeas 22
0] o 11 o o SRS 26
CHAPTER 3. MANAGING CONNECTIONS.utttttaaustasseesseaasesaseasseesseaasesasseassessasssssessnsessssssnsesasessnsesssessnsesssessnes 27
3.1 Connection Management CONLIACE...........ccveieieereerreeeseeresee e e e sees e eeesreessesseesseensesseesseesessesseensens 28
3.2 Connection Management ArChItECIUNE.............ooii e st nee s 28
3.3 Application Programming MOGEc.ooeeiiiiiiicir et se e neenne s 30
I3] o 11 o o ISR 31
CHAPTER 4. WORKING WITH TRANSACTIONS ..c.cttiuteuieiestessestessessessesseessessessessessessessessessssssensessessessessessessessnnes 32
v R g (0o (0o o g T (o T I = - o o) S 32
4.2 Developing Transactional APPIICALIONScciiuiiieieiee ettt nbe e nrs 35
A.3 TranSACHION LEVEIS.ocoieeie ettt ae et e e e s te e e e e se e aeenteenaesseeseeneeeseeteeneennen 38
4.4 Sample Application TranSaCtioN SCENAITO........ccueiuerriereereerieeee et see e sre s e st sreseesseesseseesseeseesneesees 38
3 @0 o 1101 o o S 40
CHAPTER 5. MANAGING SECURITY w...ttettieuteeateaaseasseesseassesasseassessseaasesasseaasessseassessnsessssssnsesasessnsesssessnsesssessnes 41
5.1 SECUNILY CONCEPLS.cueevieuiesteesieetesteesteestesteesseeseesseeseaseesseesesseesseesseaseeseensesseessesnseaseensenssessenssesnsnssennses 41
5.2 Security Model fOr EIS CONNECIIONS.........coiiiiiiiiiieiie ettt sttt e e bt e saeeseesnsesneeneeas 43
5.3UNderstanding EIS SGN-ONccooiioiiciececie et e s e e sseeste e e s seeaesneesseesseensesnnensens 44
5.4 MANAGING SECUITY ...uteeueieieeitee e eee st e st ee st e e eesbe e te s e e s beebesaeesseebesaeesbeenbesseesbeenseeaeesbesnsesaeessesnsesneasens 45
5.5 SECUMLY EXAMIPIE ...ttt et e et e e e e e e e s te e teeseesseeneeeneesseeneesneesseensenneensens 47
I S X O] o 11 Lo o ISR 49
CHAPTER 6. ASYNCHRONOUS IMESSAGINGveviruerueeieiestestestestessessesseesessessessessessessessesssensensessessessessessessesnsenes 50
6.1 SyNChronOUS COMMUNICALIONccueeieieieiieeieetie sttt seesteeee e e s beeseesaeesbesseesaeenaesneesneesreeneenns 50
6.2 ASyNChronOUS COMIMUNICALIONccueiieieeeiteeeesteeteseesseeseeeseesseessesseesseesseaseesseessesseesseessnsseessessesssessens 52
6.3 Connector Architecture 2.0 Message Handling.........cocooeeirieiieieneereee e 53
6.4 ComMMUNICAtiON TraOE-OfSecieiee ettt e s e aeeteeneesreense e 54
6.5 Enterprise Messaging TEChNOIOGIES........cc.ooiiiiiiece et 55
5.6 JAVA IMIESSAGE SENVICEeueeieeeteeeeeeteesteetesteesteaseesseetesseesseesseaseesseaseesseesseaseeaseensesseesseensesseeaseensenneessennsenns 56
TN 1Y S = o = SRS 59
6.8 J2EE PlatfOrmM and EAIooueee ettt sttt te e s esteene et e enseeneenseenaesaeensesnennneenseans 60
6.9 MESSAGE-AIVEN BEAN.....ccuiiiiieieie et bbbt e s se et e et e s bt e be et e sbeebesneenreenee e 61
TN 0 = 0= 62
G300 I 0 o 101 o o PR 64
CHAPTER 7. COMMON CLIENT INTERFACE.uttttruttutetestestestestessessessesseessesssssessessessessessesssessensessessessessessessessnnes 66
7.1 OVENVIEW Of TNE CCl ...ttt sttt e st e bt et e st e b e e st e sbe et e eneesreenee e 66
7.2 CCl Programming EXAMPIEccueiiiieiieie e eiesee st sste et eaesseesseesaeeseesteensesseesseessesseessessessseensenns 67
7.3 CONNECHION INEEITACES ... ittt sttt et b et e bt e e st e sb e et e e se e s be et e sbeenbesneesreenee e 70
A g1 C= = oo N 1= g = ot 72
7.5 Data Representation INTEITACESooeiiiiecee ettt sre e 74
7.6 Metadata INTEITACESecive ettt s e te e e e se et e eneesseeseeneesaeenteenennreenseans 75
7.7 EXCEPUION INTEITACES. ... ettt ettt b et se et et e bt et e e st e sbe et e sneenreenee e 76
AR ST O 0 T [= o] =SSP 76

T.9 CONCIUSION <. 78

CHAPTER 8. TOOLS AND FRAMEWORKS.....c.utittiterueruteiessessessessessessessesssessesssssessessessessessessssnsensessessessessessessessnnes 79
S0 R Y/ 0= N oo 1 USSR 79
8.2 Connector ArchiteCture TOOIS SUPPOITveiieiieieeeeieseesie et et e e e e e e teee e s e eeeeseesreeseeneesseenseeneensens 80
B.3 EIS ACCESS ODJECLS. ... eiitieueerieesieeiestee st e ie st e s bt et et esbeesee bt e sbesaeesseebe s st e s beentesaeesbeeneeeseesbesnsesaeessesnsesneensens 81
8.4 GUIAElINES TOr ACCESS ODJECEScuviiuieitieieeeeseeiteeeesteesteseesreeste s esteetesreesseeseeseesseeneesseesseeneesseensesneensens 85
8.5 EJB 2.0 Container-Managed PerSISIENCE.cccuiiiiirieiie et see sttt ee et sreesseseesseessesseeneeas 86
8.6 CONCIUSION ...ttt bbbt bt a e s et e e e b e s b e e bt she s bt et e b e besbenbenbeenenneenean 87

CHAPTER 9. XML AND THE CONNECTOR ARCHITECTUREctiittteteesteaaeeasseesseesseassesssessnseessessssesssessnsssssessnnes 88
9.1 Enterprise Application Integration @nd XIMILccveuereiieiieseese et nne s 88
9.2 OVEIVIEW OFf XIML CONCEPLSc.eeeeeeeeesiieiesieesieesie e sieesteseesseessesseesseessessessseesessessseensesnessseensessesnsesseessens 89
9.3 Defining Document TYPES aNd FOIMALSeeuiiiereeieseesieeeeseesteseesee e saesseesaeeseesseesesneessessesseessens 89
9.4 Java Technol0gies SUPPOITING XIMLcc.eiiuiiieiiiiieie sttt sttt et n e ne e s 90
9.5 XML and ConNECIOr ArCHITECTUIE........ocueiuieiieieierie ettt sttt a e bbbt be b e eae e eneas 93
9.6 XML Support in ConNECLOr ArChItECIUIE..........cc.ei et 96
0.7 CONCIUSION ...ttt bbbt b h e s e s e b e b e s b e e bt sbe e Rt e ne et e be s benbenbeenenneeneas 97

CHAPTER 10. BUILDING A RESOURCE ADAPTERcccutttuttaateaastasseesseassesaseassesssesssesssesssessnsesssessssesssesssesssessnnes 98
10.1 Implementing & RESOUICE AGAILEYccveiieeereeieeie st erie e sreeaese e teeee e e tesseesseeseesaesseensesseesseensens 98
10.2 System CONEraCt INEEITACEScoieeiiiieie ettt b et b et e e e s be et e sneesreense e 99
10.3 ManNaging TraNSACHIONS..........ccuerieeieieesteeteeeesteestesseesseeeesseesseeseesseesseeseesseessesseesseeseesessseessennsenseessens 103
10.4 Implementing SeCUrity ManagEMENT.........ccciiieiiee ettt bt st esbeesesneenaeas 104
10.5 Handling CONNECLION EVENLSccieiieeieieesieeiese e see e e e e ae s e teeaesseesaeeseesneesseensesseensesneessens 105
10.6 Distributing @ RESOUICE AQAILEYeoiuieieiee ettt st ae e sbeeeeeneesneenaeas 106
10.7 Using an Adapter in the RUNtIME ENVIFONMENEcccveiiiieieere e e see e eee e see e eee e nne e 107
O RS 3] o 11 Lo o ISR 108

CHAPTER 11. RESOURCE ADAPTER PACKAGING AND DEPLOYMENToouiiiiiisiesiesiesieeieeee et 109
11.1 DeplOyment ADPPIrOBCNES.........coierieiteeiieeie ettt et ee st e ste st e sre e te et e sbeentesseesseensesseesbesneesseesseansesneensens 110
11.2 Packaging @ RESOUICE ATGPLESccveieieeieeeeeeseeee e e te s e s e e ee e e steesaesseeae e e e sseensesseesseensesneensens 111
11.3 Deployment and CONfIQUIALION.........ccuirierierierieerieeeesiee ettt e e see e sse et s seesbeesesseesseensesneeneens 113
11.4 ConNECtion FACLONY CrEaliONccvccueeierieeieseeseeee st eteseesteessesseesseeseesseesseessesseesseensesseessenssesneessens 113
11.5 Using Packaging and Deployment TOOIS.........cociiiiiiieiinienieseee et 113
LG @0 0ol 1 o] o ISPV 117

CHAPTER 12. CONNECTION MANAGEMENT CONTRACTuttiiutieteesieeeteesseeeseessessseessessseessesssessssssnsesssnsssesnns 119
12.1 Connection Management CONEIACE...........cciueiueieereeeeeeseseeseesre e e steeseesseesreeeesseesseesessreessesseesneessens 119
12.2 CONEFACT OVENVIBW ...ttt sttt et e st ee st e sbe s st e sse e beameesbeebesseesbeenseeseenbeensesseesbeanseaneensens 119
RS o< 0= oSS PR PPN 121
12.4 Connection Management Classes and INtErfaces..........cooeereriiririe e 128
12.5 CONCIUSION ...ttt bbbt bt e e e b e s e e bt s b e e bt e bt e st et e et e besbeebenbeeneeneeneas 132

CHAPTER 13. TRANSACTION MANAGEMENT CONTRACT ...teeiutiateesieeeteesseeeseesseesseessessseessesssesssessnsesssesssesnns 133
13.1 Transaction Management CONIFACTcccvecueieereeieciereereesee e e see e e sreeee e e aeeeesreessesseesseensesneessens 133
13.2 Local Transaction MaNAGEIMENLcoueieriiirierieerie e seeeteseesseseesseesseseesseessesseesseessesseessesssesseessens 135
13.3 XAResource Transaction Man@gemMENL..........c.eccuereereeeereerieseeseeseesseesseseessessesseessessssssesssesseessesssens 137
13.4 Requirements for Transaction Management CONraCtcoceeverrrieeneniesee e 140
13.5 CONNECLION SNAIING ...veivieeieeieiie e e e e e e e eeesseesseeseeseesseensesseesseesseaseeseensesreessennsenseensens 141
13.6 TranSACION SCENAITOScueetieeeriieiteeeestee e seesteestesseesbeeeesaeesbeeteaaeesbeeneesseesbeensesseesbeensesreesseensesneensens 142
13,7 CONCIUSION ...ttt bbb bt b e h et e e e b e nR e eb e e b e e bt e bt e st et e nb e benbenbenbeeneeneeneas 144
G 0] o 11 o o ISR 145

CHAPTER 14. SECURITY MANAGEMENT CONTRACTeititertestestesiesseseesessessessessessessessssssessessessessessessessesseses 146
14.7 INtErfACES AN CIASSESeiiueiieeiesiie ettt sttt ettt et e sae e st e e e e se e beeneesreesbesseesbeansesneensens 146
14.2 Security Management CONIFACTccveuereeieeieseeseseeseeee e e ee e e seessaesseeaesseesseesesseesseensesneessens 148
I 3] o 11 o o ISP USRTRR 150

CHAPTER 15. FUTURE DIRECTIONS.eittittitistesteeieeseetessestessessessessessesssesessestessessessessesssensensessessessessessessessesnens 151
15.1 CoNNECLOr ArChITECTUN 2.0.....cuieiieiieieeie ettt sttt b ettt e et s besreeneeneeneas 151
15.2 J2EE @QNA EAI ...ttt ettt ettt e e Re e Rt e ne et et e tenreenenreeneeneenean 153
SRS @0 00! 11 [o] o SRR 153

CHAPTER 16. THE SAP CONNECTORutttitttateeateerseesseeaseessseaaseesaesasesssssaaseessssssessssssseesssssasesssessnsesssnssnsesnns 154
16.1 ArChiteCture Of SAP SYSLEITIS.cccuiiierieciesie e ete s e e et e e s e e e e sseesteeeesseesaeeseesseessesseessennsesneensens 154
16.2 Architecture Of the SAP CONNECLONcoiiiiiieieeie ettt re et s se e e nae s 156
G T 1 o SO USS 159

CHAPTER 17. DEVELOPING APPLICATIONS WITH JCA -BASED TOOLS.....uciiiierieeeiee e eieesiee e sie e see e 162
17.1 Enterprise Access Builder (EAB) 10L..........oooieiieieieeieseesieeieseesesee e e saesae e esesseesseesesseessesneessens 162
17.2 JCA Application DeveElOpMENT PrOCESS........cciiiirierieeie et eie ettt sse e seesbeseenaeas 163
17.3 FULUM @ DITECHIONS.eiieieiteite sttt st b ettt bbbt bt bt e st e e e b et e st e st e besbesbesbeeneeneeneas 174
A] o 11 Lo o ISR 175

CHAPTER 18. EMBRACING THE J2EE CONNECTOR ARCHITECTURE: THE BEA WEBLOGIC EXPERIENCE 177

18.1 WebL ogic Server's Implementation of the J2EE Connector Architecture Specification.................... 177
(ESTZAVLY S o IoTe [Toll L gl1e= o =14 Koo 1200 O USRS 182
18.3 BEA Partners Adopting the J2EE Connector ArchiteCture...........coceoveeveececceeseee e 186
APPENDIX A. APl REFERENCEceiiutiiiiiieiiiie ettt ase e s see e s asse e s amee e s amee e s nee e sne e e saneeesaneeesnneeeanneas 187
A.L JAVAX.FESOUICE PACKAGE. ... eeiveeueeiteesieeiesieesteeiesee e etesteestesae s e e e eseesseesseeseesseenseaseesseensesneensennseaneensens 187
A.2 javax.r €S0UrCE.CCl PACKAGE.........eiii ettt a e sneenne s 187
A.3 javax.r€SOUrCe.SPI PACKAGE.........iceecie ettt s et e e reeteeneenseeneesneensens 203
A.4 javax.resourCe.SpI.SECUNLY PACKAGEc..eiiiriiiieiiie ettt s nne s 216
LTI @Y S TPV 220

Foreword

Standards can redefine a marketplace—consider the impact that SQL had in launching the relational database
market. Standards can also create new markets—without HTML, HTTP, and SSL, we would still be waiting for
the World Wide Web. That is why the Java community is so excited about Web Services and the Java™ 2
Enterprise Edition (J2EE™) Connector Architecture: we expect a similarly dramatic impact on application
integration.

By application integration (or simply “integration”), | do not just mean Enterprise Application Integration (EAI),
which | would characterize as Intranet integration, which happens behind the firewall. | am also including
business-to-business application integration (B2Bl) wherein the applications from one company directly
interoperate with the applications of a business partner across the Internet or a Virtual Private Network. In fact,
EAIl and B2BI are already converging: individual business unitsincreasingly have their own IT infrastructure and
applications. So just as Web technologies are widely used on our Intranets, we can expect XML, Web Services,
and J2EE adapters to become common on our corporate networks. But | would take this one step further. The
majority of new applications today are built to plug into the Web. Going forward, we should demand that both
commercia off-the-shelf applications as well as “home grown” applications be “integration ready” out of the
box—ready to plug into this emerging integration “backplane” of Web Services.

Technology alone is never sufficient to drive thislevel of change. There also must be a compelling business case.
Today, large companies depend on tens of thousands of applications. Most of these applications operate in silos,
interconnecting only with their close peers. And the trend is toward proliferation. At the same time, the rigors of
competition are forcing our businesses to specialize—to focus on only what they do well. But as we divest and
outsource, we are forced to more closely integrate with our business partners.

Integration “ after the fact” is such a pain point that some application vendors are now suggesting that the only
antidote isto purchase every business application from a single supplier so that they are “ pre-integrated”—call
this“worst of breed.” For larger businesses such a prospect is absurd. What about the legacy applications and data?
What about the increasing demand for vertically specialized applications? What about the in-house software
essential for competitive differentiation?

So, while integration may well be the biggest source of information technology (IT) pain today, the integration
solutions market nevertheless remains fragmented. Growth is stilted by alack of standards. Instead of a unifying
architecture, we have numerous small vendors offering highly proprietary technologies:

1. Proprietary protocols— Thelitmustest for aproprietary protocol iswhether the same software stack
has to run on both sides of the network. The Web analogy is compelling—without HTML and HTTP, a
World Wide Web of heterogeneous clients talking to heterogeneous servers would not have happened.
Proprietary protocols simply do not work for the scale of integration we need on the Web. Beware: While
XML isastandard, XML document-passing conventions can still be highly proprietary. That's why the
emerging family of Web Services standardsis so essential—SOAP, WSDL, UDDI, ebXML, BTP, and so
on. Without such standards, users will be unable to mix and match integration solutions as they have Web
technologies.

2. Proprietary adapters— Adapters map between new standards (such as Java technology and the J2EE
platform) and legacy technologies (including COBOL/CICS). Even with the emergence of XML and Web
Services, adapters remain essential because very little of today's legacy is going to directly support Web
Services. Adapters solve what could be called the “last mile” problem of integration—how do | get from
my XML/Web Services “backbone’ into the legacy? Without a standard model for adapters, it's nearly
impossible to get critical mass. Instead of an enterprise software vendor delivering standard adapters with
its product, adapters are “one-off” by a small integration vendor or the system integrator.

3. Proprietary containers— Protocols and adapters are hosted in containers. Virtually all integration
solutions on the market today depend on proprietary containers. These containers are themselves
proprietary not just because the adapters and protocols are. Consider that little investment protection is
offered for the additional programming required to move data from one integration platform to another:

o Synchronous and asynchronous messaging (for hub-and-spoke as well as peer-to-peer integration
server networks)

Security (authentication, authorization, privacy, non-repudiation)

Transactions, compensating actions, and guaranteed delivery

M essage (data dependent) routing, load balancing, and failover

Rules management, workflow, and multi-vendor collaboration

Naming/directory (LDAP, UDDI)

Transformation

Repository and content management

O O O O O o0 o

o Session management and protection
o Caching for efficient re-use of content and data

In the first case—proprietary protocols—the answer is XML and Web Services. In the second case, for
proprietary adapters, the answer isthe J2EE Connector Architecture (JCA). What about the third
case—proprietary containers? The key insight isto recognize that “integration logic” is not fundamentally
different from “business logic.” Look at the considerations enumerated in the case of proprietary containers. All
are equally applicable to the hosting of general-purpose applications, in addition to the integration glue.

Today, the industry is rapidly coa escing around the JavalJ2EE platform and the .NET alternative from Microsoft.
Both platforms have a compelling shared vision of Web Services, avision that is already being proven out with
direct interoperability testing between the two. The additional value proposition for Java, however, in the first
place, isthat Web Services bindings can be generated transparently for existing J2EE applications (programmers
use what they already know), and, in the second place, that the J2EE Connector Architecture is commercially
viable today. Indeed, software vendors like PeopleSoft, Siebel, SAP, and many others are working to deliver
standard JCA adapters for their enterprise suites. We also have leading systems integrators like Accenture, CSC,
EDS, KPMG, and so on developing standards-based integration practices around this new framework. Of course,
the major J2EE product systems vendors—BEA, Sun, IBM, HP, Oracle, Compag, NEC, and so on—are also very
much behind using Java technology as a basis for integration. All this gives the J2EE-based integration critical
mass.

Of course, this new standard integration platform needs more time to cook. Web Services standards continue to
progress. Guaranteed delivery, non-repudiation, and compensating actions are three key areas of ongoing
investment. Also, the JCA-compliant adapters are still being built, and vendors like BEA have extended JCA to
allow bi-directional communications and support for asynchronous processing (viathe Java Message Service).

How, then, should organizations deal with this coming tsunami of standards-based integration? By treating
integration challenges both tactically and strategically: Tactically, get the job done, with amix of best-fit standard
and proprietary technologies. But strategically bet on the emerging standards. In particular, do not make
long-term or large commitments to proprietary integration frameworks.

For those who may still have doubts, we have just witnessed a very similar transformation. Four years ago there
were literally dozens of application servers promoting all sorts of proprietary programming models. We said then
that J2EE would drive rapid consolidation in this market, and that those who ignored J2EE would sacrifice their
investment. The large majority of those proprietary technologies are now gone. Those that remain have
redesigned their product around J2EE.

The smart money is on history repeating itself for Web-based application integration. The compelling demand for
standardization will drive this market—standards like Web Services and the J2EE Connector Architecture. As
with al technology transformations, right now there are compelling opportunities to gain competitive
advantage—competitive advantage for software vendors, for systems integrators, for end-users, and especially for
integration vendors. Hopefully, understanding and adopting that competitive advantage is why you bought this
book.

Scott Dietzen, Ph.D.
Chief Technology Officer, Server Division
BEA Systems

Preface

This book provides an in-depth coverage of the Java™ 2, Enterprise Edition (J2EE™) platform Connector
architecture. The Connector architectureis an integral part of the J2EE platform, and, as a key component in the
platform’s support for application integration, it ensures that J2EE applications can connect to and use a multitude
of EISs and legacy systems. The Connector architecture, because it defines a standard set of contracts for
handling connections, transactions, and security, makes it easier for vendors to devel op products that can hook
into the J2EE platform. Vendors follow the guidelines of these Connector contracts to develop special software
modules, called resource adapters, that enable this linkage between their underlying products and the J2EE
platform.

This book iswritten for application component developers who are building applications that run on the J2EE
platform. It is also of interest to independent software vendors (1SV's) and others who devel op resource adapters
for specific EISs, such as legacy and database systems.

Conventions Used in This Book

This book uses certain graphical and typographical conventions.

The graphical conventions used here are based on the Unified Modeling Language (UML) standard. UML isa
modeling language for object-oriented development. In general, object-oriented modeling decomposes systems
into collaborating objects. The resulting model captures the underlying semantics of a problem. UML defines
different models for representing systems, and graphical diagrams to depict these models, including a class model,
astate model, a use case model, an interaction model, an implementation model, and a deployment model.

We only use a subset of the UML diagrams in this book. The diagrams of most interest to readers are the class
diagrams, which depict static structure, and sequence, object, and collaboration diagrams, which depict dynamic
object interactions.

Note that we use the terms application server, server, and J2EE application server interchangeably. Unless
otherwise noted, these three terms all refer to a J2EE application server.

For those interested in more information about UML, we refer you to the following sources:

« UML Distilled, Second Edition, Fowler, Scott, 2000, Addison-Wesley
e Instant UML, Muller, 1997, Wrox Press Ltd.

Graphics

Many of the graphics in this book depict UML diagrams. The conventions used in these diagrams follow the
UML standard. Because different notations can be used to represent the same model, we have included afigure
that illustrates how we use these UML conventionsin this book.

Briefly, Figure 1 illustrates the arrows and connectors used in standard UML diagrams, along with different types
of associations.

Figure 1. UML symbolsand associations

< =
Comment —_— = interface ‘

Interface Namea
I
| Base Class
Realize or Implaments ZF‘
I Generalization ar
| Extends
Unidirectional | |

=<package=>> Agsociation - Aggregation
Package Mame Class Mame F:‘;— Derived Class

|

Dependency or

Instantiates
|

L___

Typographic Conventions

Table 1 describes the typographic conventions used in this book.

Table 1. Typographic Conventions

Typeface or

Symbol Meaning Example
AaBbCc123 The names of commands, files, and directories; interface, class,|Edit the file
method, variable, and deployment descriptor element names;|InventoryManagerEJB. java.
programming language keywords Uses a ConnectorFactory object.
Invokes the getConnection
method.
AaBbCc123 Book titles, new words or terms, or words to be emphasized. Read Chapter 2 in EJB 1.1

Specification.

This is a local transaction.

You must be careful when using this
option.

Other Sources of Information

Y ou should refer to other publications related to J2EE and to the J2EE Web site, http://java.sun.com/j2ee/. The
following books, both online and in print, are of particular interest to those devel oping J2EE Connectors and

other application components.

Java 2 Platform, Enterprise Edition Connector Specification, 2000, Sun Microsystems, Inc. Available at
http://java.sun.com/j 2ee/docs.html

Java Message Service API, 2000, Sun Microsystems, Inc. Available at http://java.sun.com/j2ee/docs.html.
Java™ 2 Standard Edition Platform (J2SE™), 2000, Sun Microsystems, Inc. Available at
http://java.sun.com/products.

Java™ Authentication and Authorization Service (JAAS) 1.0 Specification, 2000, Sun Microsystems, Inc.
Available at http://java.sun.com/security/jaas/doc.

Java™ 2 Platform, Enterprise Edition, Platform and Component Specifications, Shannon, Hapner,
Matena, Davidson, Pelegri-Llopart, Cable, Enterprise Team, 2000, Addison-Wesley.

Enterprise JavaBeans™ 2.0 Specification, Copyright 2001, Sun Microsystems, Inc. Available at
http://java.sun.com/j 2ee/docs.html.

Designing Enterprise Applications with the Java™ 2 Platform, Enterprise Edition, Version 1.0., Kassem,
Enterprise Team, 2000, Addison-Wesley.

Applying Enterprise JavaBeans™, Component-Based Devel opment for the J2EE™ Platform, Matena,
Stearns, 2001, Addison-Wesley.

JDBC™ API Tutorial and Reference, Second Edition, Universal Data Access for the Java™ 2 Platform,
White, Fisher, Cattell, Hamilton, Hapner, 1999, Addison-Wesley.

JDBC™ 2.0 API Specification, 1999, Sun Microsystems, Inc. Available at http://java.sun.com/products/jdbc.

http://java.sun.com/j2ee/
http://java.sun.com/j2ee/docs.html
http://java.sun.com/j2ee/docs.html
http://java.sun.com/products
http://java.sun.com/security/jaas/doc
http://java.sun.com/j2ee/docs.html
http://java.sun.com/products/jdbc

« JDBC 2.0 Sandard Extension APl Specification, 1999, Sun Microsystems, Inc. Available at
http://java.sun.com/products/jdbc.

e RMI over I1OP 1.0.1 Secification, 2000, Sun Microsystems, Inc. Available at
http://java.sun.com/products/rmi-iiop.

Contents of the Book

As noted previously, we've written this book for two distinct audiences: application developers and software
product vendors (including ISVs) who are building resource adapters and enterprise information systems.
Application developers work within the Information Technology (IT) department of an enterprise. Their charter is
to link the underlying infrastructure products, whether they were developed in-house or purchased from a
third-party vendor, with the J2EE application server and platform technologies. Application developers need to
know how to use the resource adapters provided by the product vendors and 1SV's, and vendors need to know how
to construct resource adapters that conform to the Connector architecture specifications.

We have organized this book into sections so that it is easier for readers to access the information they need.
Before we get into the specifics of using or building resource adapters, we have included an introductory section
that provides background information of interest to all readers. Thisfirst section, consisting of Chapters 1 and 2,
provides a general introduction to application integration and the J2EE Connector architecture.

The next section is primarily for application devel opers who need to know how to use a resource adapter. This
section describes the Connector application programming model. Chapters 3 through 9 describe how to use a
resource adapter from an application developer perspective.

Chapters 10 through 12 focus on the details of the Connector system contracts. These chapters are written for
product vendors and ISV s interested in building a resource adapter. Product vendors and 1SV s will probably want
to focus on Chapter 10 and Chapter 11, which provide the details for building and deploying a resource adapter.

The book begins with an introduction to enterprise application integration, aterm that is often abbreviated to EAI.
Chapter 1, Enterprise Application Integration, describes the state of enterprise application integration today and
shows how it has evolved to this point. Much of the J2EE Connector architecture addresses the problem of
application integration, particularly Web-driven application integration. Because more and more services are
provided through the Web, it is essential that enterprises have an efficient solution for EAL.

Enterprises must also integrate their enterprise information systems (EISs) with their Web services. EISs
encompass the information infrastructure—the business processes and data—of an enterprise. Often, these are the
legacy applications, database management systems, and so forth, that the enterprise relies on for its business
functioning. This chapter describes the different approaches to integrating the often disparate pieces of an
enterprise's information infrastructure, and it shows how the J2EE Connector architecture helps with this process.

Chapter 2, J2EE Connector Architecture Overview, provides an introduction to the Connector architecture. It
presents the architecture's concepts and introduces the three system contracts defined by the architecture: the
connection, transaction, and security contracts. The Connector architecture is designed for applications running
on the J2EE platform. For those not quite as familiar with the J2EE platform, this chapter also includes a
description of the platform's components and technologies.

Chapter 3, Managing Connections, starts the application programming model section. This chapter focuses on how
application developers can best use the connection pooling mechanisms defined by the Connector architecture's
connection management contract. The chapter describes the interfaces that support connection pooling and shows
application developers how to use these interfaces so that their applications can connect to an EIS.

Application developers also need to know how to effectively use the transactional support provided by the J2EE
platform, and specifically by the Connector architecture. The architecture supports both local and global
transactions, and developers use different application programming interfaces to implement these approaches.
Chapter 4, Working with Transactions, describes basic transactional concepts and illustrates how to develop
transactional applications on the J2EE platform.

Security is also important for EAI. Chapter 5, Managing Security, describes the support for secure connections to
ElSs that the Connector architecture provides. The Connector architecture builds on the J2EE platform security
model. The J2EE model defines the security applied to a client's access to the Web tier, and from there to the EJB
tier. The Connector architecture defines a security management contract that extends the J2EE security model to
include the connection between the EJB and EIStiers. This security contract enables a J2EE server to manage
security while it creates connections to an EIS and accesses EIS resources. This chapter introduces the reader to
the Connector's security contract and describes the basic J2EE security concepts and terminology. It presents the

Vv

http://java.sun.com/products/jdbc
http://java.sun.com/products/rmi-iiop

security model asit relates to the process of signing on to an EIS and illustrates that process with an example
scenario.

The Connector architecture supports synchronous and asynchronous messaging systems. These types of
messaging systems underlie communi cation between an application server and an EIS. Often, asynchronous
messaging is the preferred communi cation mode because it allows a message sender to continue processing
without waiting for the message to be received and acknowledged. It offers improved performance over
synchronous messaging and eliminates some of the dependencies between sender and receiver, or EIS and
application. Chapter 6, Asynchronous Messaging, describes the Java Message Service (IMS), the standard Java
API (application programming interface) defined for enterprise messaging systems, and shows how the Connector
architecture accomplishes asynchronous messaging within this framework.

Chapter 7, Common Client Interface, describes the interfaces and methods of the Common Client Interface (CCI),
which isaset of APIs between application components and EIS resource adapters. The CCI provides acommon
API across heterogeneous EISs, so that vendors specializing in application integration do not have to adapt their
products to each individual EIS whose client API they want to support. By building their products to the CCI API,
application integration product vendors have a standard way to plug in their resource adapters to different EISs. In
addition to describing the interfaces and methods, the chapter provides an example that illustrates how to use the
CCl.

Chapter 8, Tools and Frameworks, describes how to integrate application devel opment tools with EIS resource
adapters using the Connector architecture, particularly the Common Client Interface API. Integrating tools with
resource adaptersis particularly challenging because of the heterogeneous nature of ElSs—they differ in their
client APIs, their support for transactions and security, and in their application programming models. The
Connector architecture promotes the use of tools so that devel opment and system integration are simplified.

Chapter 9, XML and the Connector Architecture, provides overview information about XML (eXtensible Markup
Language) and shows how to work with XML data within the J2EE and Connector framework. This chapter has a
two-fold approach. It describes the current means for incorporating XML data, but, more important, it gives some
insight into XML-related tools that are expected to be available in the near future.

ISV's, once they have a good grasp of the underlying contracts, need to know how to build a resource adapter
module. A resource adapter is a system-level software driver that provides the connection to the vendor's EIS. A
resource adapter implements the EIS side of the Connector system contracts, and it provides aclient level API
that applications can use to connect to the adapter's underlying EIS.

Chapter 10, Building a Resource Adapter, describes the steps involved in building a resource adapter. It illustrates
these steps with code examples for a sample resource adapter.

Chapter 11, Resource Adapter Packaging and Deployment, describes how to package and deploy aresource
adapter that you have developed. Packaging and deployment are essential steps for bringing a resource adapter to
market. The Connector architecture specifies a standard packaging format for a resource adapter. The deployment
process installs components such as adapters into the enterprise's operational environment. By following the
Connector architecture's packaging and deployment formats, you are assured that a resource adapter will work on
any J2EE application server.

This compl etes the application programming model section of the book. From this point on, we focus on the
system-level aspects of the Connector contracts. These next three chapters—one on each system contract—are
meant to provide an “under the covers’ view of the contracts. Although the intended audience for these chapters
is application server vendors and resource adapter providers, application developers may find thisinformation
useful.

Chapter 12, Connection Management Contract, looks at the Connector architecture's connection management
contract from a system-level viewpoint. It examinesin detail the contract's interfaces and classes. It also explains
how connections are handled in both two-tier and multi-tier environments and how a connection pool is
implemented. Its focus is on managing connections in different environments so that scalability is enhanced.

Chapter 13, Transaction Management Contract, explains the system-level details of the Connector architecture's
transaction management contract. It examines the methods of the local and global transaction interfaces and
explains the different levels of transactional support that a J2EE application server provides. It also illustrates
how the contract mandates the handling of this transactional support.

Chapter 14, Security Management Contract, similar to the previous two chapters, explains the system-level details
of the Connector architecture's security management contract. Not only does it present and explain the interfaces

VI

and classes that the contract supports, it also shows how to use the contract to identify and authenticate users and
determine their authorization and access control privileges.

The Connector architecture is constantly evolving and including new Java technologies. Chapter 15, Future
Directions, describes the new technologies that will be included in the architecture. It particularly focuses on the
features that the 2.0 version of the architecture is expected to support. These features will enhance EIS
pluggability into the J2EE platform.

We have aso included three chapters from three different resource adapter vendors. Chapter 16, written by
engineers working with SAP, describes the architecture of the SAP connector, and shows how the connector
manages connections, transactions, and security. It also describes the CCI provided for the SAP connector and
uses an example to illustrate how to use this resource adapter in an application. Chapter 17, written by IBM
Corporation, describes how developers can use the IBM J2EE Connector architecture-based tools to develop
enterprise applications. This chapter focuses on using VisualAge for Javato develop an application that uses a
CICS ECI connector to execute a CICS transaction within a WebSphere Application Server environment. Chapter
18, provided by BEA Systems, Inc., describes how they have implemented the J2EE Connector architecture
specification in their WebL ogic Server product.

Last, the book includes an appendix that contains the API reference and a glossary of terms. The reference section

contains all the classes and interfaces defined by the Connector architecture as well as the methods within each
interface or class.

VUi

Acknowledgments

We would like to thank the following individuals who participated in the Connector architecture expert group and
made valuable contributions to the architecture's design and specification: Pete Homan and Deb June (BEA),
Charlton Barreto (Borland), Y oshi Otagiri and Ivar Alexander (Fujitsu), Tom Freund and Michael Beisiegel
(IBM), Tony Plan and Pavan Bhatnagar (IPlanet), Guy Bieber (Motorola), Dan Coyle (Oracle), Jack Greenfield
(Rational), Marek Barwicki (SAP), Fred H. Carter (Sun Microsystems), Rajini Balay and K. Swaminathan
(Sybase), Jon Dart (Tibco), and Lester Lee (Unisys).

We especialy want to thank Vlada Matena, who worked closely with Rahul Sharma, and was instrumental in
starting the Connector architecture. We a'so want to thank our associates at Sun who provided technical input and
guidance for the development of the architecture, particularly Shel Finkelstein, Mark Hapner, Vlada Matena, Bill
Shannon, Sekhar Vajjhala, Jean Zeng, and Pong Ching.

In addition, we want to thank the following individuals whose work on the J2EE Reference Implementation and
Compatibility Test Suite gave us a platform and standard against which we could test the architecture's concepts:
Liz Blair, Anand Dhingra, Helen He, Gursharan Singh, and Sheetal Vartak.

Likewise, we want to thank the following individuals for reviewing the drafts of this book: Lance Anderson, Herb
Jellnek, Ram Jeyaraman, Robert McCarter, Vijay Sarathy, Herb Jellneck, Mark Hershey, and Robert McCarter.

Last, we want to acknowledge the following people who helped us accomplish the many tasks necessary to
publish this book: Jeff Jackson, for his unflagging and enthusiastic encouragement; Lisa Friendly and Jim Inscore,
for helping coordinate all those publication details; and Mike Hendrickson, Ross Venables, and Elizabeth Ryan,
among others at Addison-Wesley, who have continued to be the best publishing team with whom we've had the
pleasure to work.

VIl

Chapter 1. Enterprise Application Integration

Enterprise computing has progressed enormously in just the last few years. Especially with the advent of the Web,
not only isit possible for diverse organizations to automate and integrate their businesses and computer
operations, it isimperative that they do so. Suddenly, as corporations become Web-enabled and find themselves
relying on myriad applications, the ability to evolve and integrate existing applications becomes significant.

Virtually all enterprise organizations at some time face the problem of integrating different applications and
database systems. In addition, enterprise organizations must constantly evolve. This need to evolve occurs as
enterprises strive for competitive advantages. In today's economy, it is rare for an organization to continue to be
successful by merely maintaining the status quo. In a sense, enterprises are forced to evolve to stay at the
forefront of their industries. Enterprises frequently find themselves having to merge with other enterprises,
reorganizing their internal structure, and adopting new technologies and platforms as they strive for competitive
advantages. More and more, they are adopting an e-business strategy. The failure of the “dot-com”
business-to-consumer (B2C) economy has not affected the need for traditional enterprises to adopt an e-business

strategy.

Enterprises still consider the e-business model to be an effective medium. The e-business model is particularly
useful for managing purchasing and supply-chain issues, managing customer rel ationships and providing
customer service, and providing Web-based applications and services. (An example of such a Web-based service
isan online customer service application for bill payment and presentment.) Because it is imperative that
enterprises adapt to business- and technology-driven changes, they need an e-business model more than ever to
adapt their existing business processes, applications, and enterprise systems to these changes.

Furthermore, it is not a simple matter for an enterprise to discard its existing applications, or even overhaul its
established business processes, to effect a change in its business model. These kinds of changes are financially
expensive to undertake and daunting in terms of human resources. Many enterprises cannot afford to make such
changes or discard existing systems. Thusit is critical for enterprises to be able to leverage their investmentsin
their existing enterprise infrastructure and applications.

In these situations, enterprise application integration assumes a great importance. Enterprise application
integration (EAI) enables an enterprise to integrate its existing applications and systems and to add new
technol ogies and applications to the mix. EAI aso helps an enterprise to model and automate its business
processes.

Enterprise application integration has always focused on a company's IT department integrating new software
modules or applications with its existing systems. How did a company handle these integration scenarios before
the advent of EAI, J2EE, and the Connector technology? Companies handled such integration with agreat deal of
difficulty and significant expense, often bringing in teams of expensive consultants with little guarantee that they
would deliver satisfactorily. Several years after undertaking these projects, it was not uncommon for companies
to throw up their collective “corporate hands,” write off the hundreds of thousands—if not millions—they had
spent, and walk away from the project.

Enterprise organizations also must weigh the cost of replacing existing systems with new systems against the cost
of merging existing systems with new systems. Discarding existing systems is never an easy choice: companies
have invested huge sums of money to install, use, and customize these systems. Not only are their personnel
comfortable with using these systems, even if the software is rife with drawbacks, but often the company's way of
doing business has evolved to fit with these systems. It's difficult to just walk away from such an investment.
Likewise, bringing in areplacement system has its costs. there's the purchase price of the new system, plus the
training and customization costs. The investment in the new system can be aslarge, if not larger, than the
investment in the existing system.

Companies aso have the option of keeping their existing systems and finding the means to combine their
functionality. In addition to retaining the existing systems, companies can integrate them with new applications to
enhance functionality. The key with this option isthe cost of integrating the separate applications and systems.
EAI has grown out of this need to simplify the process of integrating applications and data.

1.1 What Is Enterprise Application Integration?

Enterprise application integration (EAI) entails integrating applications and enterprise data sources so that they
can easily share business processes and data. Integrating the applications and data sources must be accomplished
without requiring significant changes to these existing applications and the data.

Before EAI, integrating applications and data within a corporate environment was an expensive and risky
proposition. Companies were trying to combine applications that often ran on different hardware platforms and
had no protocols for communicating with other software packages outside of their own narrowly defined realm.
In a sense, companies had “islands’ of business functions and data, and each island existed in its own, separate
problem domain. (See Figure 1.1.)

Figure 1.1. A Typical Enterprise Domain

Enterprise

Business Division A

=
—

Business _f""'-' A —
Partner > Applications
Consumer I . Appliéatiuns
7 Business Division B
Service [/ i@_g,l Q -
B | —)

Applications

Business Division C

How did an enterprise try to fix this situation? The company would bring in ateam of consultants and embark on
along and expensive process of determining the feasibility of integrating their systems, designing the integration
approach, and finally developing and implementing the procedures (both manual and computerized) to achieve
the integration. Sometimes the analysis phase determined that it was not economical or possible to integrate the
particular systems. Even when the integration did go forward, it might take years to accomplish. There was often
no guarantee of success. Projects were often abandoned because of cost overruns or the belated recognition of
significant difficulties. Even when projects were completed, the resulting patchwork solution might be fraught
with its own set of problems.

EAI represents a different approach to this problem. EAI defines semantics for application and data integration.
That is, EAI defines a standard methodology, or approach, for applications and data sources to communicate. By
supporting this standard, applications can easily communicate with other applications and data sources. The
pieces in the integration puzzle—such as an underlying database management system (DBM S)—can change, but
because of this common methodol ogy, the replacement piece can be plugged in and the communication can
continue uninterrupted.

There are many real-world examples of EAI, particularly in the banking and financial services and the
telecommunications industry. Take AT& T, for example. AT& T started as a phone service provider, then added
cabletelevision services and wireless service. Later it became a broadband provider. The company has grown and
evolved by merging with other companies and acquiring other businesses. As aresult of this growth, and before
its current plans to break into four different companies, AT& T needed to integrate its online customer services. It
had to integrate its bill presentment for all services, payment for services, and its overall customer service. This
entailed integrating access to the existing applications that provided these services.

By focusing on integrating business processes and data, EAl encompasses both the distribution of such processes
and data and the concept of reusing modules. Most important, EAI approaches this integration as a process
separate from the different applications. That is, someone can integrate various applications with each other, and
with underlying data sources, without having to understand or know the details of the applications themselves.

EAI isbest suited for environments that are heterogeneous rather than homogeneous. Heterogeneous
environments are those whose applications and data do not al reside within the same environment, such asin the

AT&T example just discussed. A company may have reached this point because of acquisitions or mergers with
other companies in which they have been compelled to absorb some other company's systems into their own
environment. They may have been trying to increase their capacity—or to avoid replacing existing systems—nby
patching their own internally devel oped systems or other purchased systems onto their core systems. Or, they may
be supporting large numbers of users on distributed systems with a multitude of platforms.

1.2 Web-driven Application Integration

With the advent of the Web, enterprise application integration has taken on a larger significance beyond that of
merging application systems solely within an enterprise. Enterprise servers now handle and maintain huge
amounts of data and business |ogic. Furthermore, because the Web enables easy information and service access, it
has become a principal means of communication. An enterprise must be able to make its business data accessible
to others, from internal employeesto external partners, suppliers, and buyers. Employees require access to the
enterprise data to keep abreast of company policies and developments and to carry on the internal business of the
company. For example, employees file their expense reports through a Web interface. Business partners may be
communicating important technological information. Buyers and suppliers need access to enterprise data to
facilitate the parts ordering and delivery process.

Providing services through the Web is rapidly becoming the emerging trend. Enterprises are recognizing that it is
important for them to provide more of their services, such as customer support and product catal ogs, through the
Web. Enterprises have come to see that having such services available both in atraditional manner and over the
Web enhances their business. The technology scenario is evolving at a breathtaking pace, and EAI is now
increasingly being driven by Web-driven requirements and technologies.

Web-driven application integration, by making data and services more easily and widely accessible, places
additional security requirements on an enterprise. All access to enterprise servers must happen in a secure manner.
No company can risk losing data, or worse, having the integrity of their data compromised in any way. Likewise,
such server access must also be transactional to maintain dataintegrity.

And, last, it's necessary for all this to happen in an environment that is scalable. Whether an enterprise starts large
or small, the need for accessto its systemsis bound to multiply. An enterprise cannot risk using a system that is
not able to scale to many users over time. For example, an online stock trading application offered by the
financia servicesindustry must be able to handle transactions whose numbers can increase rapidly. It is best, too,
if the enterprise can retain the flexibility to develop and add in new applications and extend its existing
applications.

As more businesses establish a Web presence, Web-driven EAl becomes more essential. Enterprises need to
integrate their existing applications and enterprise systems to drive their business-to-consumer and
business-to-business interactions, plus their other Web services. In fact, successin e-businessis driven by an
enterprise's ability to integrate existing applications and extend the reach of these applications to Web-based
access.

Up till now, applications were classified as either front-office or back-office applications. Front-office
applications are considered to face the customer or end user. Front-office applications include applications for
customer relationship management and marketing automation. Back-office applications provide the information
infrastructure for running the back-end business processes of an enterprise. Applications provided by an
enterprise resource planning (ERP) system are good examples of back-office applications. Traditional EAI
focused on integrating the front- and back-office applications. However, traditional EAI is becoming Web-driven
EAI. Rather than being targeted to the front end or the back end, most EAI applications are now integrated for the
front and back ends and Web enabled.

Just asit isimperative for an enterprise information system (EIS) to move to a Web-based architecture, enterprise
applications need to be deployed on widely adopted, standard application platforms. Enterprises now regard
application servers as mature platforms for devel oping Web-based applications. As Figure 1.2 shows, application
servers are particularly appropriate for the B2C and business-to-business (B2B) areas that place so much stress on
application integration. The application server provides anatural point of integration between an enterprise's
existing enterprise information systems and the Web-based applications. The application server also helps handle
transactions and can be scaled as needed. The J2EE application platform is the technology of choice for
enterprises and application vendors.

Figure 1.2. Web-driven Application I ntegration

Enterprise

Business Web
Pariner Services

Web Application 6331
Consumer | < —— AT S — Eleg

Server El,

Applications

Service Business
Provider Applications

Figure 1.2 illustrates this Web direction to which enterprises are currently moving. The success of the Java
programming language and the J2EE platform are also responsible for this Web-driven application integration, in
large part because they make it easier to develop and implement Web-based applications.

To maximize this Web-driven application integration, enterprises are turning to the Java programming language
and the J2EE platform. Javais a platform-independent computer language that is designed for the Web, and itisa
successful, widely adopted platform for enterprise application development.

In addition to the Java platform, enterprises are using eXtensible Markup Language (XML) to exchange corporate
data across application domains. XML is a platform-independent way of representing dataformats, and it is
invaluable for exchanging data among different entities. There is a synergy between XML and Java. XML isto
data what the Java programming language is to application services. Because of XML's platform-independent
features, it serves as afoundation for the current generation of Web technologies.

1.3 Enterprise Information Systems

Before delving into the details of EAL, it is useful to understand the definition of an enterprise information system.
An enterprise requires certain business processes and underlying data to run its business. An enterprise
information system encompasses these business processes and information technology (IT) infrastructure. The
enterprise business processes include applications for handling payroll processing, inventory management,
manufacturing production control, and financial accounting (accounts payable and accounts receivable).

We define an enterprise information system as an application or enterprise system that provides the information
infrastructure for an enterprise. An EIS consists of one or more applications deployed on an enterprise system. An
EIS provides a set of servicesto its users. Services exposed to clients may be at different levels of
abstraction—including the system level, datalevel, function level, and business object or process level.

Graphically this might look as shown in Figure 1.3. In this EIS environment, the applications reside on the
application server. The application server has a vendor-specific infrastructure, particularly regarding such services
as transaction processing, security, and load balancing. The applications that sit on the server may be supplied by
different vendors, or they may be developed in house by the IT department. Applications have been written in
various languages, such as COBOL, C, and C++. Clients can access the different applications by means of
application programming interfaces (APIs). An API is some routine that alows a client to do such operations as
create a purchase order or update a customer record. The data access interface represents the means of accessto
the legacy data stores or relational databases. The business object interfaces are abstractions representing the
business-specific logic for accessing functions and data.

Figure 1.3. Enterprise Infor mation System Environment

Enterprise Information System

Business Object /(Application) (Application)

Interface

Client
Application

Business Objecls

=
(S

Function Call
Interface
Transaction Security EIS
Data Access Manager Manager Server
Interface

Many different applications and systems qualify as EISs. EISs include the following:

o Enterprise applications that have been devel oped by an enterprise specifically to meet its business needs.
These are considered to be custom applications. Legacy applications typically run on different computing
environments. In addition, they are developed using different programming languages, such as C and
COBOL.

o Applicationsthat are part of an ERP suite of applications. ERP applications cover awide range of
functions, including inventory management, production control, human resources. Logistics applications
are another set of ERP applications.

o Transaction programs running on a mainframe transaction processing system.

o Legacy databases that manage data critical to the business processes of an enterprise.

For avariety of reasons, EISs vary greatly even within the same enterprise. EISs usually vary because

o Enterprises purchase or implement different EISs over a period of years as their business needs grow.
o Enterprises deploy enterprise applications on different platforms or architectures.
o Enterprises customize an EISto fit their own unique business needs.

An enterprise develops EISs over time, as aneed for a particular EIS arises. For example, an enterprise may start
out by purchasing a manufacturing system. Over the years, asits business grows, it incrementally adds different
accounting packages, customer support, human resources, and so forth. It may be able to add some systems to the
platform that hosts its manufacturing operations. However, other packages require different platform capabilities,
or have only been developed for a particular platform or architecture. Not only does the enterprise add the new
software systems, it also buys additional hardware that may be completely different from its original
configuration. (The AT& T example mentioned earlier is another good illustration of this process.) It is easy to see
that when an enterprise has been in business for along time, it may very well be using EISs that have been
developed and installed on different computing platforms and architectures.

It is not uncommon for alarge, established enterprise to have afew applications that run on a mainframe
transaction processing system. These mainframe-based systems may have been purchased years ago. The same
enterprise runs other applications that may be part of an integrated ERP suite of applications.

In addition, it istypical for an enterprise to customize its applications to its own enterprise-specific business
processes. Thislevel of customization can vary greatly. For example, an enterprise may purchase an off-the-shelf
ERP application, and then customize the application so that it addresses its specific business processes. At the
same time, it may develop other applications internally, using its own employees or consultants. These internally
developed applications are completely custom applications, designed to specifically meet the enterprise's business
needs.

1.4 Challenges in EIS Integration

ElSs differ significantly, in terms of their level of technological support, administrative and technological
restrictions; their ability to integrate with other systems and their exposure to low-level system details, asfollows:

e Leve of technological support— EISsvary greatly in their level of technological advancement. For
example, support for transactions and security differs vastly. Some EISs are rather primitive, and they may
offer no support for transactional access. Or, if they do offer some support, it islimited in scope. Other
ElISs are more advanced in supporting a transaction and security infrastructure. They may alow
transactional accessto their resources. Or, they may support a two-phase commit protocol and distributed
transactions and thus may be able to participate in transactions with other EISs.

o Administrative and technological restrictions— Many EISs impose specific technology and
administrative restrictions on their users. These EISs are legacy systems or applications that have been in
existence for along time and their usage requirements may be more rigidly structured. For example, in
some legacy systems, it may be difficult to create new user accounts. Other legacy systems are difficult to
extend to support development of new applications. An enterprise with such alegacy system must adapt to
its shortcomings, but it still must find away to integrate the legacy system with other systems and new
Web-based applications.

o Ability tointegrate with other systems— EISsaso differ in terms of their application programming
models and client APIs, which makes it difficult to integrate these different EISs. These differences exist
because most EISs were developed using architectures and technol ogies that best suited a certain class of
enterprise applications and were prevalent at the time the application wasinitially developed. In addition,
these EISs were developed when integration and interoperability with other types of systems and EISs
may not have been the primary design goals.

o Exposureto low-level system details— Client APIsfor these EISs may differ in the low-level
transaction and security management details they expose to application developers, and this makes it more
complex to integrate EISs. The application developer must understand the programming details of the
EIS'slow-level client API to properly integrate with the EIS. For example, suppose an EIS definesits
client APl using aC library. The C library defines methods that client applications use to manage
transactions and perform transactional accessto the EIS. Such alibrary may even expose the distributed
communication mechanisms between client applications and the EIS. The application devel oper now has
the added task of understanding this C library—and the low-level mechanisms exposed through this
API—to use the client API. This additional complexity increases the development effort in enterprise
application integration.

Given the complex nature of application development and EIS integration, it isimportant that devel opers use
standardized application development tools and integration frameworks.

Transactional accessto EISsis aso important in terms of EIS integration. Enterprises run their businesses using
the information stored in their EISs—the success of an enterprise critically depends on thisinformation. An
enterprise cannot afford to have an application cause inconsistent data or compromise the integrity of data stored
in an EIS. Various applications require ensured transactional accessto the EISs.

Secure accessto its EISsis aso of critical importance to an enterprise. An enterprise must be able to depend on
theinformation in its EIS for its business activities. Any loss or inaccuracy of information, or any unauthorized
accessto the EIS, is extremely costly to an enterprise.

Scalability is another important requirement. Over time, enterprises can expect to increase their relationships to
suppliers, buyers, and partners. Their applications, particularly those that access EISs, must be scalable and able
to support alarge number of clients. To accomplish this, use of connection pooling becomes an important
requirement for EIS integration.

Additionally, enterprises must consider their existing application investment and a cost-effective integration plan.
Most enterprises and EISs have invested sizable amounts in their existing application code and infrastructure.
Although they recognize the need to migrate to a J2EE platform, they must accomplish this migration
incrementally rather than in one step. An incremental migration lets them get maximum use from their existing
systems, but still gradually add new functionality as J2EE components and make more of their existing
applications J2EE accessible. During this migration process, they can rely on application server and system
software vendors to manage the system-level complexity of transactions and security, and thus let their
application developers focus on solving business domain problems.

1.5 Enterprise Application Integration Approaches

There are severa approaches to achieving enterprise application integration. We have identified five approaches
that we feel are used to integrate existing enterprise information systems with enterprise applications. These
approaches are

Using atwo-tier client server

Using synchronous adapters

Using asynchronous adapters

Using a message broker approach

Using an application server-based approach

1.5.1 Two-Tier Client-Server Approach

This approach is based on the two-tier client-server model used by applications that are not based on the Web. It
was awidely used approach prior to the advent of Web-based applications, but is less used now.

With this approach, an EIS provides an adapter that defines an API for accessing the data and functions of the EIS.
A client application accesses data and functions exposed by an EIS through this adapter interface. The client uses
the programmatic APl exposed by the adapter to connect to and access the EIS. The adapter implements the
support for communication with the EIS and provides access to EIS data and functions.

Communication between an adapter and the EIS use a protocol specific to the EIS. This protocol may provide
support for security and transactions. It also supports content propagation from an application to the EIS. Most
adapters expose an API to the client that abstracts out the details of the underlying protocol and the distribution
mechanism between the EIS and the adapter. (See Figure 1.4.)

Figure 1.4. EI SResource Adapter Approach to EAI

Application Adapter Syslem

Application-Adapter
Interface

Adapter-EIS
Interface

Although a resource adapter is specific to a particular EIS, an EIS may provide more than one adapter that a client
can use to access the EIS. Because the key to EIS adaptersis their reusability, EISs, or independent software
vendors (ISVs), try to develop adapters that employ a widely used programming language and expose a client
programming model that has the greatest degree of reusability.

An EIS may provide asimple form of an adapter, where the adapter maps an API that is specific to the EISto a
reusable, standard API. Often, such an adapter is developed as alibrary. When developed as alibrary, the
application developer can use the same programming language to access the adapter that he or she uses to write
the application, and the EIS requires no modifications. For example, a Java application developer can use a
Java-based adapter—an adapter written in the Java programming language—to access an EIS that is based on
some non-Java language or platform.

An EIS adapter may be developed asa C library. (See Figure 1.5.) A Java application uses a Java™ Native
Interface (INI) interface to access this C library or C-based resource adapter. The NI is the native programming
interface for Java, and it is part of the Java™ Development Kit (JDK). The JNI allows Java code that runs within
aJavaVirtual Machine to operate with applications and libraries written in other languages, such as C and C++.
Programmers use the NI to write native methods when they cannot write the entire application in Java. Thisis
the case when a Java application needs to access an existing library or application written in another
programming language. (Although the JNI was especially useful before the advent of the J2EE platform, many of
its uses may now be replaced by the J2EE Connector architecture.)

Figure 1.5. Using the Java Native I nterface

CIC++ API

Java
Java Mative
Interface
Adapter-EIS
Interface

The JNI interface to the resource adapter enables the Java application to communicate with the adapter's C library.
Although this approach does work, it is complex to use. The Java application has to understand how to invoke
methods through the NI interface. This approach also provides none of the J2EE support for transactions,
security, and scalability. The developer is exposed to the complexity of managing these system-level services and
must do so through the complex JNI interface.

Another, more complex form of an EIS adapter might do its “ adaptation” work across diverse component models,
distributed computing platforms, and architectures. For example, an EIS may develop a distributed adapter that
can communicate remotely with the EIS. Thistype of adapter exposes a client programming model based on a
component model architecture.

Adapters use different levels of abstraction, and expose different APIs based on those abstractions, depending on

the type of the EIS. For example, with certain types of EISs, an adapter may expose a remote function call API to
the client application. If so, aclient application uses this remote function call API to execute its interactions with

the EIS.

An adapter for other types of EISs may expose a data-based programming model for the client application
developer. When the adapter exposes this sort of programming model, a client application accesses EIS data using
a data representation and access model specific to the EIS or relational data model.

It isaso possible for an adapter to build on the API (the remote function call or data access API) exposed by the

EIS. That is, amore advanced adapter may use the lower level abstraction layer exposed by the EIS to build a
higher level business process or business object abstraction for client application developers.

1.5.2 Using Synchronous Adapters

An adapter can expose either a synchronous or an asynchronous mode of communication between the client
applications and the EIS. Figure 1.6 illustrates using adapters designed for synchronous communication. Adapters
designed for this approach provide a synchronous request-reply communication model for use between an
application and an EIS.

Figure 1.6. Using a Synchronous Adapter

Client —* | Resource) Ei8
Application \ Adapter

Application-Adapter
Interface

Adapter-EIS
Interface

How might a synchronous adapter work? As an example, let's consider an adapter that defines an API that
includes aremote function callable by an application. This remote function creates an accounts receivableitemin
the EIS. When an application wants to interact with the EIS to create an accounts receivable item, it invokes this
remote function on the EIS. The application that initiated the call then waits until the function completes and
returnsitsreply to the caller. The reply contains the results of the function's execution on the EIS. An interaction
such asthisis considered synchronous because the execution of the calling application waits synchronously
during the time the function executes on the EIS.

One form of synchronous adapter allows bidirectional synchronous communication between an application and
an EIS. Thistype of adapter enables an EIS to synchronously call an application.

1.5.3 Using Asynchronous Adapters

Asynchronous adapters provide another approach to application integration. Figure 1.7 provides a high-level view
of thisform of communication.

Figure 1.7. Using Asynchronous Adapters
Asynchronous Outbound Communication

- - M
Client Resource EIS
Application Adapter

Client Resource EIS
Application Adapter
_— _—

Asynchronous Inbound Communication

Let's use the same example of an adapter that exposes an API with aremote function that permits an application
to interact with the EIS and create an accounts receivable item. This function is callable by an application.

With asynchronous communication, an application calls the remote function to create a new accounts receivable
item in the EIS. The application makes the remote call, then immediately returns and continues its own
processing. The remote function is sent to the EIS. The EIS handles the function and returns some reply
information to the application as a separate asynchronous invocation. The resource adapter dispatches the
asynchronous call from the EIS to the application.

The important point to remember is that the application does not suspend its own processing while the remote
function executes on the EIS. Rather, the application continues its own work and receives notification at some
later point of the results of its earlier remote function invocation. In addition, an EIS is able to asynchronously
invoke or call an application.

1.5.4 Queue-Based Approach

Asynchronous message-based communication may also be used to integrate enterprise applications and EISs.
There are two forms of asynchronous messaging: queue-based messaging and publish-subscribe messaging. A
message broker may provide either one of these forms of messaging. Figure 1.8 illustrates queue-based
communication.

Figure 1.8. Using a M essage Queue for EIS Integration

Java Application)t »
<Sender/Receiver>) Queus EIS

CQueus-based
Messaging System

<Sender/Receiver>

In gueue-based communication, which is also called point-to-point messaging, one application sends a message to
amessage queue. With queue-based communication, a queue that is independent from both the sender and
receiver applications acts as a message buffer between the communicating applications. The sender application
sends a message to this queue, and the receiver application receives its messages from the same queue.

©

1.5.5 Publish-Subscribe Approach

The publish-subscribe approach works differently from the queue-based approach. Figure 1.9 illustrates
publish-subscribe messaging.

Figure 1.9. Using a Publish-Subscribe System for EIS Integration

EIS
T"OF“"“' <Publisher/Subscriber>
Java Application .)
Publish-subscribe
Messaging System
<Publisher/Subscriber> oine = '\‘*
EIS
<Sender/Receiver>

Figure 1.9 might be a stock quote service that publishes messages—updated stock prices—to subscribed portfolio
applications. With publish-subscribe messaging, there are message publishers, who produce messages, and
message subscribers, who register their interest in particular messages. There is also a separate publish-subscribe
facility that acts as the integration poi nt—publishers publish messages to this facility and the facility delivers
messages to subscribers.

Here's how publish-subscribe messaging works. A publisher application publishes messages on a specific topic,
such as up-to-the-minute quotes on a specific stock symbol. Multiple applications can subscribe to this topic and
receive the messages published by the publisher. The publish-subscribe facility takes the responsibility of
delivering the published messages to the subscribing applications based on the subscribed topic.

When an application needs to use either queue-based or publish-subscribe messaging, it must also hook into a
messaging system that provides these mechanisms. The application uses an APl exposed by the messaging system
to access the messaging services. The messaging system uses a messaging adapter, also called a provider, to
implement the messaging API. Java™ Message Service (JMS) provides an API for enterprise messaging systems.
Applications, called IMS clients, use the IMS API to access the messaging service and either a queue-based or
publish-subscribe messaging system. (See Figure 1.10.) Refer to Chapter 6, Asynchronous Messaging, for more
information on IMS.

Figure 1.10. Using a JM S Provider
JME AFRI

Java Application .
<JMS Client= 4[" JMS Provider
\ Mmging S}"Stﬂ'l‘ﬂ

Figure 1.11 illustrates using a message broker for EIS integration. Notice that an adapter enables an application to
access the message broker. In this scenario, an adapter maps the application-level interface for the message broker
to the underlying asynchronous messaging mechanisms supported by the message broker, plus the adapter maps
the message formats supported by the message broker. (The underlying messaging mechanisms supported by the
message broker may be a queue-based or a publish-subscribe mechanism, for example.) Some adapters layer
additional functionality between the application and the message broker. For example, they may add a message
transformation capability—an adapter may transform application-specific messages to aformat expected by the
message broker. The message broker then converts the message to aformat expected by the message receiver or
subscriber.

Figure 1.11. Using a Message Broker for EIS Integration

10

Java
Application ﬂ [l‘ EIS A

JMS Custom
Provider Adapter

Message Broker “

Legacy Y
Application Database

Custom Custom
Adapter Adapter

When applications and EISs use a message broker for integration and message delivery, the applications and the
ElISs can act as both message producers and consumers. For example, afinancial accounting application can
subscribe to messages that carry information on financial transactions. An order management application may
send a message through the message broker that updates an account payable in the accounting application. Most
message broker vendors provide vendor-specific adapters for popular EISs.

When an application and an EIS communicate using asynchronous messaging, they are considered to be loosely
coupled. A loosely coupled integration has advantages and disadvantages. With aloosely coupled integration
between atarget EIS and an application, the application can continue processing client requests without blocking
on EIS performance or communication glitches. Thisimproves scalability. However, application devel opers may
find it difficult to program against an asynchronous messaging model. Also, these asynchronous messaging
systems do not always support the propagation of security and transactional contexts.

A message broker may provide additional services for enterprise application integration. These additional services
are message routing, transaction management, reliable message delivery, message priority and ordering, and
message transformation. We discuss these topics further in Chapter 6.

1.5.6 Application Server-Based Integration

Figure 1.12 shows how an application server can be used for integration with existing enterprise applications and
ElSs.

Figure 1.12. Application Server-Based Enterprise Application Integration

11

JZEE Application Server

I
I
1
|
|
i Entarprise
:)] EISA
Web !
Clients : .| Resource
: Wab Adapter
! Component
Application i M
Client ! Message-driven » EISE
: Bean N iy
| Resource
i JMS Adapter
! Provider
| A
| 1 » EISC
| >
i JMS
| Provider
I
I
i Enterprise EISD
Web : Bean N "
Clients i L | Resource
! Web Adapter
I
: Component
Application I
Client | Message-driven
l Bean
|
I
i
1

J2EE Application Server

An application server is anatural point for application integration because it provides a platform for devel opment,
deployment, and management of Web-based enterprise applications. Application servers are the platform of
choice for applications that are developed using a multi-tier architecture.

A typical multi-tier application consists of threetiers: aclient tier, amiddle tier, and an EIStier. The middletier
implements the business logic for an application. As part of itsimplementation of application business logic
functionality, the middle tier might access data and functions associated with applications running on the EIS tier.
The middletier also serves up both static and dynamic presentation content to the client tier.

The EIS tier contains the systems that run existing enterprise applications and databases. As described earlier,
these EISs can be custom or off-the-shelf applications.

The client tier is composed of different types of client applications. A client can be a Web browser-based HTML
client or a peer application.

An application server supports a component-based model for developing applications. With this model, an
application may be composed of different types of components, such as Web components or business components.
The application server provides deployment and runtime support for these application components. In effect, an
application server provides an extremely useful platform for the development of Web-based, transactional, secure,
distributed, and scalable applications. This increases the usefulness of an application server environment for
enterprise application integration.

An application server provides a set of runtime services to its deployed components. These runtime services are
hidden from the application components through a simplified application programming model. The services
provided include

Support for transactions
Security

Load balancing and failover
Database access
Asynchronous messaging
Distributed communications
Web protocols

XML support

It is possible to develop and deploy applications on an application server such that the applications can connect
and aggregate access to multiple heterogeneous EISs and existing enterprise applications. When applications are

12

developed with this ability to access multiple heterogeneous EISs, Web and business components that are
deployed on the middle tier (or application server) use adapters to access the data and functions associated with
the applications on these EISs.

Application components deployed on the application servers use synchronous resource adapters to connect and
access EISs. As explained earlier, thisistightly coupled integration between applications and EI Ss.

Application components can also use an adapter (or IMS provider) to a message broker to integrate with EISs
based on asynchronous messaging. We explain this approach in greater detail in Chapter 6.

1.6 J2EE Connector Architecture and EAI

How does the J2EE Connector architecture fit in with the EAl scheme of things? To begin with, the Connector
architecture is designed to simplify integrating J2EE components with EISs. The architecture makesit easier to
connect J2EE components and applications to heterogeneous enterprise information systems (EISs). Examples of
ElSs include database systems, ERP systems, and mainframe transaction processing (TP).

How does the Connector architecture accomplish this? The Connector architecture defines a set of mechanisms,
referred to as contracts, so that EISs can easily integrate with application servers and enterprise applications.
These mechanisms are designed to be scalable, secure, and transactional. These contracts exist between the J2EE
application servers and the EISs.

The Connector architecture al'so defines a client interface API to enable J2EE application components to access a
multitude of heterogeneous EISs. Thisclient API is called the Common Client Interface (CCI).

An EIS vendor who wants to participate in the Connector architecture must provide its half of the bargain—that it,
the EIS vendor must support the Connector contracts. The EIS vendor can provide a standard resource adapter for
its EIS, and this resource adapter can plug into any J2EE-compliant application server. (A resource adapter isa
system-level software library that a Java application on the J2EE platform uses to connect to an EIS.) The
resource adapter is the connection conduit between the enterprise application on the application server and the
EIS.

Because the Connector architecture defines the resource adapter requirements, the EIS vendor is assured that his
or her resource adapter will work with any J2EE-compliant application server. This means that the EIS vendor
must only provide one standard resource adapter for all J2EE application servers and not a separate adapter for
each application server.

Likewise, the application server vendor, by following the terms of the Connector contracts defined for an
application server, only has to extend its product once to support the Connector architecture. By supporting the
Connector architecture, the application server also supports multiple EIS resource adapters, regardless of the EIS
vendor.

Application integration in a Web-based, e-business environment encompasses three layers: a business process
layer, an integration layer, and an application server layer. Each layer, in turn, holds technologies that serve as the
application server integration building blocks. (See Figure 1.13.)

Figure 1.13. Application Integration Layers

13

s““i“::“ Business Process Business Process
Lamy:rﬂ Modeling Engine
Application Development Rules Intelligent Message
N Tools and Frameworks Engine Routing Transformation
Integration
Layer
Matadata
lication Web E.JB
Layer KF_.'1L
Messaging/ Container Container
Com r:.: ?1?1;31:‘ on XML Transactions Directory Asynchronous Connectars
Protocols Support Security Messaging

The application server layer technologies, which are based on the J2EE platform and use the Connector
architecture, enable an application integration project to link not only with existing enterprise systems but also
with the Web and other, wireless applications.

A J2EE-based application server is at the bottom layer of this application integration platform. A J2EE
application server provides value to the application integration platform through such services as

e TheJ2EE component-container model— This model includes the Enterprise JavaBeans (EJB)
container and such components as enterprise beans and message-driven beans. It also includes the
JavaServer Pages (JSP) and servlet components defined in the J2EE platform.

e JavaMessage Service— JMS provides support for asynchronous messaging.

e A set of APIsthat support transactions, security, and naming and directory services.

e A set of APIsthat add support for XML messaging and Remote Procedure Calls (RPCs)— (Itis
anticipated that this support will be in future versions of the J2EE platform specification.)

The application integration platform adds an integration layer on top of the J2EE-based application server. This
integration layer provides support for application development tools and frameworks. These development tools
and integration frameworks are based on the J2EE application programming model, and they rely on metadata for
generating and providing services. The integration layer also adds support for such functionality as a rules engine,
intelligent message routing, and message transformation, all on top of the base functionality provided by the J2EE
application server.

Last, abusiness process layer serves as the top-most layer for the platform and represents an enterprise's unique
way of doing business. Enterprises rely on software packages from different vendors to devel op and manage their
business processes. This business process layer exposes business process level abstraction by providing support
for business process modeling and for the business process engine.

Figure 1.14 illustrates a typical application integration platform, with the J2EE platform and the J2EE Connector
architecture together acting as building blocks for Web-driven application integration.

Figure 1.14. Application I ntegration on the J2EE Platform

14

EZB Existing

Applications Applications
BZC
Applicati
pplications Tocls | | Application Pragramming Model
+ @ EJBs JSPs Trans?clin:ln . E
Web = Sarviels Messaging Mail 5
Services ﬁ; E
Container
g 3
[
% Java 2 SDK, Standard Edition
Wircless 2 CORBA RMI DB Naming .
Applications Directory Enterprise
Infarmation
Systems

Application Server

1.7 Conclusion

There is adefinite trend among enterprises toward integrating their existing enterprise applications and
information systems with Web-based applications and services. Enterprises must establish a Web presence and
make their business services available to Web clients. However, at the same time, an enterprise cannot afford to
discard its existing systems and applications, but must leverage these existing assets to be successful.

This chapter highlighted some of the tasks and challenges that face enterprises that are compelled to integrate
their information systems and applications and then expose these applications and systems to the Web. It also
showed how the J2EE platform and the J2EE Connector architecture serve as building blocks for Web-driven
application integration. The J2EE platform and the Connector architecture, by providing standardized integration
contracts, have enabled application servers to serve akey role in the Web-driven application integration process.

This Web-driven application integration is a process that closes the gap between existing applications and
Web-based applications and services. Ultimately, Web service and wireless clients, in aB2C or B2B context, will
be able to initiate business processes that act on critical information maintained in EISs.

In Chapter 2, we provide an overview of the Connector architecture and describe its role within the J2EE platform.

15

Chapter 2. J2EE Connector Architecture Overview

This chapter provides a high-level overview of the J2EE Connector architecture. In addition to introducing the
key concepts of the architecture, it describes the value that the Connector architecture adds to the J2EE platform.

The J2EE platform is a Java platform for developing and deploying Web-based, multi-user applications. These
are distributed applications that require an environment that is secure, transactional, and scalable. The J2EE
platform is the application architecture that is probably best suited for Web and network distributed environments.

The J2EE platform consists of several different technologies, some of which operate at the system level and some
of which are more exposed to clients. These latter technol ogies include the Enterprise JavaBeans (EJB)
architecture, JavaServer Pages™ (JSP™), and servlets. The EJB architecture defines a component model for
enterprise applications, and it provides portability across application servers. JSP and servlets support dynamic
HTML generation and session management for Web-based clients.

The other technologies and APIs of the J2EE platform operate closer to the system level. These technologies,
such as JDBC, Java Message Service (IMS), Java™ Transaction Service (JTS) and Java™ Transaction APl (JTS),

among others, provide standard programming interfaces for Java applications to access enterprise infrastructure
services.

2.1 What Is the J2EE Platform?

The J2EE platform is particularly suited for the development and deployment of enterprise Web-based
applications that use the Java programming language. Its architecture provides both server- and client-side
support for both enterprise and Web-based applications that run in multi-tiered environments.

Figure 2.1 shows the J2EE support for a typical multi-tier architecture.

Figure 2.1. J2EE Support for Multi-tier Applications

Client Tier Middle Tier EI5 Tier
! Web Containar
Web Browser -
Client 4 serviets
JSPs
- " Enterprise
> EJB Container Information
— | Systems
Application N W\ N
Client o grorico
enterprise
bean

Other services:
JNDI, JMS, ...

Multi-tier applications usually are configured into three parts: aclient tier, amiddletier, and an EIStier. The
client tier may include browser-based clients, peer enterprise applications, and Java-based client applications. The
middle tier supports modules that provide application services to the client and that implement the application's
business logic. Keep in mind that there can be more than one such middle tier. The enterprise information system
(EIS) tier (sometimes referred to as the back-end tier) supports the enterprise information systems that manage
and store enterprise critical data and functions. The Connector architecture integrates applications that are in the
middletier application server with the EIStier.

For example, the J2EE architecture supports multi-tier applications that might be divided aong the following
lines:

o A Web browser-based client. Often, such a client encompasses the presentation logic.

e Anapplication server with an EJB container and a Web container. The EJB container handles the business
logic tier. The Web container, using servlets, JSPs, and so forth, provides services for the generation of
dynamic and static content targeted for Web browser-based clients.

o A relationa database or legacy system such as the EIS tier, connected to the middle tier via the Connector
architecture.

16

The J2EE architecture is designed to support distributed application development. That is, in a J2EE multi-tier
environment, each part of the application can run on a different platform or node. In fact, the middle tier itself is
not restricted to one tier, but may be divided into sub-tiers and these sub-tiers distributed across nodes.

2.1.1 Components and Containers

Conceptually the J2EE architecture divides the programming environment into containers. A container isa
standardized runtime environment that provides specific services to components. A component is an
application-level software unit that is supported by a container. In the J2EE environment, a Web container
provides standard Web-specific services, whereas an EJB container provides services to support enterprise bean
components. For example, an EJB container provides such services as transaction management, security,
multi-threading, distributed programming, and connection pooling. A Web container provides communication
APIs and protocols and network services to facilitate sending and receiving requests and responses.

Keep in mind that all J2EE-compliant platforms, regardless of the vendor, are required to provide these services.

Figure 2.2 illustrates the J2EE component types and their containers. It is a good road map to help you understand
the discussion that follows.

Figure 2.2. J2EE Components and Containers

Applet
Container

85L
25E
— Web Container EJB Container
pplication Bean
Client SsL
Container Connector Archilecture

b 4

D5 |Javal S5 :‘:'"":|.J::1n-'a|""'E
Client Q Q e
A
[2[s]a JAF JAF
m%g%
5 J2SE J2SE
9

1oSE _‘ RMI-IOP

The J2EE client tier supports a variety of client types. A client may be a Web browser using HTML pages, or it
may use dynamic HTML generated with JSP technology. A client may be a Java applet or a standalone Java
application. J2EE clients access the middle tier using standard Web communication protocols. In multi-tier
environments, they never directly accessthe EIStier.

The middletier consists of the Web and EJB containers, plus other services, such as Java Naming and Directory
Interface (JNDI), IMS, JavaMail, and so forth. The Web container provides the programming environment for
developing and deploying servlets and JSPs. Typically, servlets and JSPs encompass an application's presentation
logic and the logic that controls client interaction. Web components, when packaged together, comprise aWeb
application. The Web container, through servlets and JSPs, provides runtime support for receiving HT TP requests
and composing HTTP responses to these requests. It ensures that results are returned to the requesting client.

The EJB container, which is also in the middle tier, provides the environment for developing and running
enterprise bean components. It is often considered the backbone of the J2EE programming environment.
Enterprise bean components are Java code that implement an enterprise's business processes and entities. They
perform the application’s business operations and encapsul ate the business logic. The EJB container automatically
handles transaction and life-cycle management for its enterprise bean components. In addition, the EJB container
provides other servicesto its beans, such as lookup and security services, and standardized access viathe
Connector architecture to the EIS tier database or legacy system.

What are the advantages and benefits of using the J2EE platform? Among other benefits, the J2EE platform offers

developers a simplified devel opment environment that scales easily and can be integrated with existing systems
and applications. It also gives developers the flexibility to choose servers, tools, or other components that best fit

17

their needs, and to customize the security model for their needs. Vendors and customers alike benefit from the
J2EE platform, asfollows:

o Enterprise system vendors can implement compliant products that are also customizable.

« Corporate information technol ogists benefit from the advantages of portable component technology—they
can focus on supporting business process requirements rather than handling distributed infrastructure
integration problems.

2.1.2 J2EE Technologies

Aswe've already noted, the J2EE platform specifies technologies to support multi-tier, distributed application
development. These supported technologies are divided into three categories. components, services, and
communication.

Components are separate application modules—that is, separate application-level software units—that can be
reused by other enterprise applications. (Technically speaking, a component is a reusable piece of software that
encapsulates data and behavior, has a defined life-cycle model, and provides services to clients. Components can
be packaged together to compose an application.) Generally these component technol ogies encompass the
technologies used by developersto create the business |ogic and user interface portions of the application. The
J2EE platform supports several different kinds of components, such as Enterprise JavaBean (EJB) components,
Web components (servlets and JSPs), and application clients, including applets. Typically, application clients and
applets run on aclient platform, whereas enterprise bean and Web components run on a server platform.

Enterprise service technologies encompass the APIs that provide access to existing enterprise services. These
APIs pertain to database access, transactions, naming and directory services for lookup capabilities, and
messaging services. The J2EE technology aso enables communication between clients and servers. It aso
supports distribution protocols and mechanisms between multiple servers.

The J2EE platform also provides service technologies. These are the system-level services that support the other
technologies and simplify application development. The principal services provided by the J2EE platform are
naming, deployment, transaction, and security services.

The Java Naming and Directory Interface (JNDI) provides naming and directory functionality. It provides a
means for an application to locate components that exist in a name space according to certain attributes. A J2EE
application component uses the JNDI interfaces to look up and reference system-provided and user-defined
objects in the component environment.

The J2EE deployment services allow users to customize components and applications when they are deployed in
an operational environment. A deployment descriptor fileisan XML document. Its e ements declaratively
describe how to assemble components and deploy the parts of the application into a specific environment. Users
can customize the deployment descriptor for an application.

Transaction services are another important service of the J2EE platform. The J2EE platform manages transactions
for an application. It provides for failure recovery and handles multi-user programming, thus ensuring that each
transactional unit of work fully completes without interference from other processes. The platform provides the
Java Transaction API (JTA) so that applications can use transactions.

Within the EJB container, transactions may be controlled completely by the container (container-managed
transactions) or they may be handled by the enterprise bean itself (bean-managed transactions). With

contal ner-managed transactions, the EJB container handles all aspects of a transaction—starting the transaction,
maintaining and propagating transaction context, and committing or rolling back the transaction—based on
elements in the deployment descriptor. When bean-managed transactions are used, the enterprise bean itself must
manage these aspects of a transaction.

The J2EE platform also provides security services that ensure authorized access to resources. These security
services control access through atwo-step process of authentication and authorization. A principal, whichis
typically auser or another program, authenticates itself by providing a name and password, referred to asits
authentication data. Once authenticated, a principal must have the correct authorizations to access a particul ar
resource. The J2EE platform authorization is based on security roles, which are logical groupings of users defined
for the application environment.

18

The JDBC API provides database-independent connectivity between the J2EE platform and a wide variety of
relational databases. Using the JDBC API, an application can perform such functions as connect to a database
server, manage transactions, execute stored procedures and SQL statements, and retrieve stored data.

The J2EE platform provides a messaging technology for asynchronous messaging. Java Message Service (IMYS)
isan API for using enterprise messaging systems. Such messages contain information describing specific
business actions. JM S supports both point-to-point queue-based and publish-subscribe messaging.

JavaMail isan API for an electronic mail system. Its abstract classes and interfaces support various
implementations of message stores, formats, and transports. JavaMail uses the JavaBeans Activation Framework
(JAF) to integrate support for MIME data types into the Java platform. Applications do not use JAF directly.

The Remote Method Invocation (RMI) set of APIs allows developers to build distributed applicationsin the Java
environment. RMI-I10OP is an implementation of the RMI API over the Internet Inter-ORB Protocol (I10P). This
implementation permits devel opers to write remote interfaces in Java. The remote interface can be converted to
the Interface Definition Language (IDL) and then can be implemented in any other language that supports Object
Management Group (OMG) protocols and includes an Object Request Broker (ORB) library. Thus RMI-110P
provides interoperability with CORBA objects implemented in any language.

2.2 J2EE Connector Architecture Overview

The Connector architecture defines a standard architecture for connecting the J2EE platform to heterogeneous
ElISs. The architecture is based on the technologies that are defined and standardized as part of the J2EE platform.
(The J2EE Connector architecture is arequired part of version 1.3 of the J2EE platform.) It addresses the key
issues and requirements of EIS integration by defining a set of scalable, secure, and transactional mechanisms that
enable the integration of EISs with application servers and enterprise applications.

Prior to the existence of the Connector architecture, the Java platform had no standard architecture for integrating
heterogeneous EISs. It was up to the individual EIS vendors and application server vendors to determine their
own EIS integration approach. As aresult, early EIS integration implementations used nonstandard,
vendor-specific architectures.

The introduction of the Connector architecture has changed the situation for the better. By adhering to the
Connector architecture, EIS vendors no longer need to customize their product for each application server.
Application server vendors who conform to the J2EE Connector architecture do not need to add custom code
when they add connectivity to anew EIS.

2.2.1 Connector Architecture Contracts

EIS vendors or third-party independent software vendors (ISV's) specializing in enterprise application integration
use the Connector architecture to develop standard resource adapters for different EIS types. Because these
resource adapters conform to the Connector architecture specifications, they can plug into any J2EE-compliant
application server and provide connectivity among the EIS, the application server, and the enterprise application.

What advantages does the Connector architecture for standard resource adapters offer? For one, it makes
application development faster and easier. An application server and resource adapter (and its underlying EIS)
collaborate to keep all system-level mechanisms—transactions, security, and connection pooling—transparent
from the application. As aresult, an application developer focuses on the development of business and
presentation logic for its application components and does not need to get involved in the system-level issues
related to EIS integration. Removing the system-level issues improves the development cycle for enterprise
applications that require connectivity with multiple EISs in a scalable, secure, and transactional manner.

To accomplish its goals, the Connector architecture defines two types of contracts (see Figure 2.3):

Figure 2.3. Connector Architecture: System and Application Contracts

19

Container-Componant
Contract "/A

pplication Cumpone@
Container i‘\,_

I
Application Contract

Connection Pool
Manager System
Contract
Resource Adapter
Transaction ssiﬁ:::i
Manager Manager |

Application Server ElS-specific Inteface

Enterprise Information
System

o A system-level contract between an application server and a resource adapter
e An application contract between an application component and a resource adapter

2.2.2 System-L evel Contracts

The Connector architecture's system-level contracts define a“pluggability” standard between application servers
and EISs. By adhering to the terms of these contracts when developing their components, an application server
and an EIS know that connecting will be a straightforward operation of plugging in the resource adapter.

The EIS vendor or resource adapter provider implementsits side of the system-level contractsin aresource
adapter. A resource adapter is asystem library that is specific to the EIS and designed to provide connectivity to
the EIS. The resource adapter is the component that plugs in to an application server. Keep in mind that a
resource adapter is alibrary used within the address space of the application server.

Y ou can think of an adapter as analogous to a JDBC driver. In fact, one example of aresource adapter isaJDBC
driver that connectsto arelational database (as specified in the JDBC specification). Other examples of resource
adaptersinclude an adapter that connects to an ERP system and one that connects to a mainframe transaction
processing system.

Figure 2.3 shows that the system contracts sit between the application server and the EIS's resource adapter. In
addition, notice the interface between aresource adapter and its particular EIS. Thisinterface is specific to the
type of the EIS, and it may be a native interface or some other type of interface. (Also note that the Connector
architecture does not define this interface.)

The resource adapter abstracts the details of both the interface and communication between the underlying
resource adapter library and the EIS system. Typically, the EIS and the resource adapter communicate over some
EIS-specific protocol. A resource adapter can also use a native library as part of itsimplementation.

The application server is a 2EE-compliant server. The application server may host Web containers and EJB
containers. Web containers, in turn, host JSPs and servlets, whereas EJB containers host enterprise beans. The
application server also provides a set of services—including transaction management, security services, and
connection pooling—that it implements in its own specific way. That is, the Connector architecture does not
define how the server implements these services. The resource adapter, in turn, can rely on the set of system-level
contracts to determine how it will plug in to an application server, and it must only implement the EIS side of the
system contracts. The application server uses these system-level contracts with the resource adapter to manage
transactions, security, and connection pooling.

Thus, from the application server point of view, the system contracts are considered a Service Provider Interface
(SPI). An SPI provides a standard way for a vendor to extend a container to support connectivity to multiple EISs.

What are the contracts between the server and resource adapter that constitute the set of system-level contractsin
the 1.0 version of the Connector architecture? Currently there are three contracts. (These contracts are expected to
be extended in the 2.0 version of the Connector architecture to provide support for thread management and
asynchronous communication with EISs.)

20

« Connection management contract— This contract enables an application server to pool connections to
an underlying EIS, while at the same time it enables application components to connect to an EIS. Pooling
connections is important to create a scal able application environment, particularly when large numbers of
clients require access to the underlying EIS.

e Transaction management contract— This contract is between the transaction manager that is provided
with the application server and an EIS that supports transactions. It gives an application server's
transaction manager the ability to manage transactions across multiple EIS resource managers. (A
resource manager provides access to a set of shared resources.) The contract also supports transactions
that do not involve an external transaction manager; that is, local transactions that an EIS resource
manager handles internally.

e Security contract— The security contract enables secure accessto an EIS. It provides support for a
secure application environment and protects the EIS-managed resources.

Note that the container component contract refers to contracts defined in various component model specifications.
For example, the EJB specification specifies a contract between an enterprise bean and an EJB container.

2.2.3 Application Contract

The Connector architecture al'so defines an application-level contract between an application component and a
resource adapter. In particular, this contract defines the client API that an application component uses for EIS
access. The client APl may be the Common Client Interface (CCI) or it may be an API specific to the particul ar
type of resource adapter and the underlying EIS. JDBC is an example of a client API specific to one type of
resource adapter, in this case, arelational database.

The CCI defines acommon client API for accessing multiple heterogeneous EISs. It iswell suited for enterprise
application integration (EAI) and enterprise tool vendors. (See Chapter 7 for more information on the CCI.)

2.2.4 Packaging and Deployment

Because the Connector architecture emphasizes the pluggability of resource adaptersin to application servers, it
also provides a standard packaging model for resource adapters and a deployment model that enables such

adapter pluggability. (See Chapter 11.)

A resource adapter provider is expected to devel op a resource adapter according to the Connector architecture's
packaging model. By adhering to this model, the server's deployment tools can easily deploy the packaged
resource adapter in the application server's operationa environment.

2.2.5Why Use the Connector Architecture?

There are several reasons to use the Connector architecture. Principally, using the Connector architecture reduces
the scope of integration and simplifies application development. It also makes it easier to usetoolsfor EIS
integration, and it avoids vendor lock in.

2.2.5.1 Scope of Integration

Of coursg, it is possible to accomplish EIS integration without using a standard architecture such as the Connector
architecture. However, in such a situation, each application server vendor spends a significant effort to architect
and implement its integration with each type of EIS. The application server vendor must repeat, to a great extent,
the amount of effort—devising and implementing a new solution—for each type of EIS. The EIS vendor, too,
must expend a significant amount of effort providing adaptersto its EIS, and it must repeat this effort for each
application server. As aresult, the adapters and the application server's integration solutions are nonstandard,
proprietary software, and they are both difficult to maintain and evolve.

Taking this one step further, suppose you have m number of application server vendors and n number of EIS
vendors. The effort to integrate all these application servers with all EIS vendors, without using the Connector
architecture, could be expressed by the formula m multiplied by n, or (m* n). Given the growing number of
application servers and EISs, it is easy to see that integration becomes a significant task.

The Connector architecture greatly reduces this level of effort. An application server vendor that uses the
Connector architecture must only be extended once to support the system-level contracts. Likewise, an EIS
vendor using the Connector architecture must only provide a single resource adapter that supports the Connector
contracts. With one implementation effort, an application server can integrate with multiple EISs. Also, asingle
resource adapter for an EIS can plug in to multiple application servers. Thus the Connector architecture reduces

21

the scope of the EIS integration effort to the sum of the number of application server vendors plus the number of
ElISs, or m+ n. This represents a significant reduction in the scope of an integration effort. In addition, resource
adapters are based on a standard architecture that includes a defined integration and application programming
model.

2.2.5.2 Application Development

In addition to reducing the scope of integration, the Connector architecture simplifies application development.
Because the application servers and resource adapters rely on the system contract to provide the transaction,
security, and connection pooling services for EIS integration, the application component provider does not have
to be concerned with these system-level details. The system details are actually kept hidden from the component
provider because they are managed by the underlying platform. Instead, the application devel oper focuses on
devel oping the business and application logic.

Application developers use the J2EE application programming model with its set of components to develop their
applications and to integrate with EISs. The programming model and the components simplify application
development.

2.2.5.3 Tools I ntegration

Up to this point we have looked at EIS integration from the point of view of the application server and an EIS. It
is also important to consider EIS integration from the perspective of enterprise application development tools
vendors and vendors of EAI frameworks. A similar scope of integration scale—that of m* n—appliesto these
vendors as it does for application server and EIS vendors.

An enterprise tools vendor provides tools to simplify the application programming model and reduce the effort
required in EIS integration. An EAI vendor provides a framework to support integration across multiple EISs and
enterprise applications. Both types of vendors must integrate their products across heterogeneous EISs.

Keep in mind that each EIS has its own specific client API. For example, SAP R/3 exposesits own client API,
whereas CICS exposes a different client API. Typically, the tools vendor must adapt these different client APIsto
acommon layer API, and thisis often a significant effort. The resulting adapted API, though it supports a
common EIS application programming model, is also specific to the tools vendor. It's easy to see that them™* n
(where m represents the number of tools vendors and n represents the different EISs) integration problem quickly
appliesto tools vendors.

The Connector architecture's standard CCl, because it supports a common client API across heterogeneous EISs,
provides a solution to tools vendors for this scope of integration problem. (Chapter 7, Common Client Interface,
discusses the CCl in detail.) When aresource adapter supports the CCl, it is guaranteed that the adapter can be
plugged in to any J2EE-compliant development tool and EAI framework, and that this plug-in can be achieved in
a standard way. This narrows the scope of integration to m plus n (m + n) dimensions. Thus tool vendors need not
adapt their API for a specific resource adapter. Instead, they can focus on their development tools.

2.3 Example Scenario

To illustrate how the Connector architecture hel ps enterprise environments integrate their disparate systems,
we've developed a simple application scenario that is also broad enough to show how an enterprise might use the
Connector architecture in different EAl scenarios. It's important to understand this application scenario starting
with the high-level view that we present here, because we use this scenario in later chapters to describe design
issues and as the basis for code examples. Keep in mind as you read through the application description that
we've greatly simplified what in reality is acomplex, real-world application. We did this because we wanted to
highlight the important EAI concepts and not distract you with extraneous details.

Let'stake the case of afictitious company called ACI, Inc., a computer manufacturing firm that has decided to
build a Web-enabled order processing system that supports business-to-business (B2B) interactions. ACI's
primary goal isto have buyers place orders for its computers and software using the Web interface of the order
processing system. At the same time, ACI wants the order processing system to handle XM L-based B2B
interactions with buyers and suppliers.

However, ACI has significant investmentsin its existing information systems and its legacy applications, and it is
imperative that it continue to use these systems. As such, it isessential that ACI integrate this new order

22

processing system with its existing EIS and legacy applications despite some serious challenges to thisintegration
effort. What are those challenges?

To begin with, ACI's hardware division manages its manufacturing operations and inventory using an ERP
system-based logistics application. The ERP system, now in operation for five years, required a significant
investment to install and bring up to speed. Not only was there an investment in IT infrastructure and employee
training, but virtually all of the business processes and manufacturing operations have been defined in terms of
this ERP system. And, because ACI cannot afford to disrupt operations, the company is reluctant to replace this
system. Thus ACI must find away to integrate its existing ERP system with Web-based order processing.

ACI's software division procures its operating system and other bundled software from various software vendors.
ACI developed an in-house inventory management system, which it uses to track these procured software
products. This inventory management system is deployed on a mainframe system. ACI intends to keep this
existing system and to integrate it with the Web-based order processing system, for the same reasons it wants to
keep the ERP system.

Last, ACI must integrate its Web-based order processing system with its financia applications and its existing
customer account databases.

Because of the features and perceived benefits of the J2EE platform, ACI has decided to integrate its
heterogeneous EISs and enterprise applications on a J2EE-based application server.

2.3.1 Application Requirements

The order processing application has the following enterprise application integration requirements. (To keep the
book focused, note that we only list application integration requirements rather than all system requirements.)

e Theapplication must integrate with ACI'sexisting EI Ssand other applications. Thisincludesits
ERP system-based |ogistics application, the inventory management system, the financial application, and
its customer accounts database.

e Theapplication must be scalable. It especially must be able to process large numbers of concurrent
Web transactions. Scalability is often l[imited by the number of concurrent connections from clients to an
EIS. For example, our example order processing application needs to create connections to the one or
more EISs it must access. However, the number of sessions or clients that can access an EISis limited by
the number of concurrent connections to the EIS. Because connections are costly—they hold resources
such as sockets, memory, and file descriptors—a system's ability to create new connectionsis limited.
Thus, to achieve application scalability, it isimportant to be able to reuse existing connections.

e Theapplication must be capable of managing transactions acr ossintegrated sets of EISs. The order
processing system should be able to initiate an operation across one or more EISs and be assured that the
operation will not leave any EIS datain an inconsistent state. Keep in mind that EISs differ in their
transactional capabilities. (Transactional capabilities refer to the support provided for atomic, isolated,
consistent, and durabl e operations on data. We discuss transactions later.) For example, the example
relational database supports afull set of transactional capabilities, whereas the ERP system's transactional
support is limited to managing transactions internal to the ERP system. That is, the ERP's transactions
cannot be combined with transactions that include other EISs. And, the inventory management system
supports alimited set of transaction capabilities.

e Theapplication must not compromise the security of itSEISs. Thisincludes no loss of data, no data
inaccuracy, and no unauthorized accessto the EIS. EISs also differ in their security mechanisms and
policies. AClI's relational database supports user password-based sign-on. The mainframe-based
applications do not require user sign-on. Instead, they perform application-specific authorization using
access control lists.

o Theapplication'simplementation must be portable. ACI must be able to deploy the order
management application on different hardware and software platforms.

o Theapplication should be developed using a component-based approach and designed to be
extended to meet changing requirements. It should support both loosely coupled and tightly coupled
integration with EISs and existing enterprise applications.

2.3.2 Example Architecture

The order management application is a multi-tier, component-based application developed using the J2EE
application programming model. It consists of the following tiers:

23

e Webtier— TheWeb tier consists of the Web container, which provides the runtime environment for
Web applications. The container hosts the Web components—JSPs and servlets—providing the
presentation logic.

o Enterprise JavaBeanstier— Thistier hosts the EJB container and its enterprise bean components. The
bean components provide application-specific business logic; these business components link Web
components to the business-critical dataresiding in the EIS tier. The order management application
includes entity beans, session beans, and message-driven beans.

o« EIStier— TheEIStier consists of enterprise information systems and legacy enterprise applications.
The order management application uses enterprise beans to access the EIS tier using either Java Message
Service or resource adapters defined according to the Connector architecture.

Figure 2.4 captures the major components of ACI's business as they relate to the order processing application.

Figure 2.4. ACI Order Management System

Customer Order
Database Database

Inventary Mgmt.
Application
Mainframe

Logistics

Application /
Client - //'JJJ’
Order Management
JZEE Application *
Web | J2EE Application “”‘2‘;‘;‘ on
Client Sarver
\ Financial

Application
ERP

Fulfillment
Service

ACI's order management application resides on a J2EE-compliant application server. The order management
application interfaces with several subsystems both internal and external to ACI. Although we briefly mention
these subsystems, we focus on those interfaces that use the Connector architecture contracts.

2.3.2.1 Application Process

Ordersfor ACI's products come from buyers and from Web clients. Buyers use a procurement application to
submit their product ordersto ACI's order processing system. Web clients use a browser-based interface to
initiate order processing. The order management application receives a purchase order in the form of an XML
document or HTTP request, depending on how the communication between the client and the order processing
application is structured.

Servlet and JSP components of the Web container within the J2EE application server receive and processHTTP
requests. They pass these order requests to the enterprise bean components within the EJB container on the server.
Enterprise bean components apply the appropriate order management business logic, according to ACI's business
rules, to process the order.

The order management enterprise beans do such tasks as:
e Check that theinitiator of the order isin the Customer database. This may include checking the
validity of the customer's address, credit information, and so forth. The Customer database is alegacy

database on a mainframe system that maintains information related to customer accounts. The interface
between the Customer account database and the order management application uses the Connector

24

architecture. A third-party ISV provides aresource adapter for this legacy database. This adapter is based
on the Connector architecture and can be plugged in to any J2EE-compliant application server.

« Check theinventory management application to establish the availability of any softwar e products
on theorder. Theinventory management application resides on a mainframe system, and it manages the
software product catalog and inventory. Performing this task could cause the Inventory management
application to expedite its own orders for additional software products. Inventory is updated to reflect the
pending order, and, at alater point, the shipped order. The inventory management application uses the
Connector architecture to interface with the order management application. Because this application was
developed in house, ACI's IT department has developed a resource adapter for accessing the inventory
management application. The resource adapter is based on the Connector architecture specification.

o Check thelogistics application for hardware product availability. The logistics application, which is
part of an ERP system, maintains the hardware products bills of materials, build schedules, and purchasing
dataand lead times for parts. Depending on the current hardware availability, an order might generate a
flurry of logistics application activity, including updating inventory to reflect the pending order. Later, the
order management system notifies the logistics application to update the inventory balances. The ERP
system vendor distributes a standard Connector architecture-based resource adapter for integrating with its
logistics system, and the order management application uses this standard resource adapter to access the
logistics application.

« Interact with thefinancial application deployed on an ERP system to keep the financial records,
such as accountsreceivable, up to date. The financial accounting application isintegrated in aloosely
coupled manner using asynchronous messaging. The order management application uses the Java
Message Service (JMS) API to send and receive messages to the financial accounting application, which
does its processing asynchronously.

o Communicate with the Fulfillment Service Provider, an external application, to check shipping
schedules and to ensurethat the order isproperly shipped to the customer. Thiscommunication is
accomplished using XM L -based messaging.

e Enter theorder intothe Order database. The Order database is arelational database that keeps
information about orders so that they can be tracked. After verifying account information, product
availability, and the shipping schedule, the order management system creates a new order in the database
with information about the product shipping schedule and pricing. Enterprise beans access the Order
database using the JDBC API.

2.3.2.2 Roles

ACI's environment also illustrates the different Connector architecture-related roles. The resource adapter
provider provides a resource adapter for an EIS. Because the adapter is specific to an EIS, the EIS vendor
typically isthe resource adapter provider, but athird party may serve as the provider.

The application server vendor, usually an OS or middleware vendor, provides the implementation of the
J2EE-compliant application server. Often, the application server vendor is also a container provider, such as an
EJB or Web container, and these containers provide additional system servicesto their components.

Y et another vendor supplied the JIDBC driver that the order management application uses to connect to the order
database. Finaly, ACI'sIT department devel oped their own adapter to their custom inventory management
application.

Additional roles participate in the Connector environment. An application component provider, who is an expert
in the application domain, produces the application components that access an EIS. This provider is expected to
understand the enterprise's business and is not expected to be an expert at system-level programming.

An enterprise tools vendor provides tools that simplify application development for the application component
provider. These tools simplify the integration of the applications with the respective EISs. (See Chapter 8, Tools
and Frameworks, for more information on tools.) Some examples of typical toolsinclude

o Dataand function mining tools that allow providers to examine the scope and structure of EIS data and
functions

e Analysisand design tools that simplify application design

o Code generation tools that generate Java classes for accessing EIS data and functions

o Deployment tools that simplify application deployment tasks, such as setting security and transaction
requirements

The application assembler combines application components into sets of deployable modules, which the deployer

uses to do the actual deployment of the application into the target operational environment. The operational
environment encompasses al connected EISs and the application server. Deployment involves resolving all

25

external application dependencies, and it is often done with the help of specific deployment tools. The deployer
must ensure that all required connection factories are present in the operational environment and that the required
resource adapters are also deployed. The deployer must also configure the EIS environment, especially with
respect to security management.

Last, the system administrator configures and administers the enterprise infrastructure, including multiple
containers and EISs. The system administrator and the deployer typically work closely together.

2.3.2.3 Application Interfaceswith EISs
Figure 2.5 shows how the order management application interfaces with different EISs. Notice that most of the
interfaces—to the customer database, the inventory management application, and the logistics application—are

through resource adapters specific to the particular EIS. The interface to the order database uses a JDBC driver,
whereas the interface to the financial application relies on aJMS provider.

Figure 2.5. Interfaces Between Order Management Application and EISs

J2EE Application Server

Order Management
Application
Resource Resourca Resource JDBC JMS
Adapter Adapter Adapter Drriver Provider
Inventory Magmit. Logistics Financial
Application Application Application
1I\-""-—-"""'I I
Customer LT g Qrcler ERP
Database Database

2.4 Conclusion

This chapter provided a high-level overview of the Connector architecture and showed how the architecture fits
with the overall J2EE platform. It aso introduced the example application scenario and described the exampl€e's
architecture. It isimportant to have a good grasp of this example because it is used to illustrate many of the
architectural constructs discussed in the following chapters.

The next three chapters discuss the Connector architecture in more detail. We devote a separate chapter to each
Connector contract—connection handling, transaction management, and security management—and discuss these
contracts from an application developer's point of view. (Later chapters describe these same contracts from the
point of view of an ISV.)

26

Chapter 3. Managing Connections

This chapter discusses how an application creates and uses connections to an underlying EIS. In particular, it
focuses on the need for connection pooling and describes the different scenarios under which connection pooling
is accomplished.

To provide some background and context, we begin by discussing the need for connection pooling. Enterprise
applications that integrate with EISs run in either atwo-tier or amulti-tier application environment. (Note that a
two-tier environment is also called a non-managed environment, whereas a multi-tier environment is called a
managed environment.) Figure 3.1 provides asimplified illustration of these two environments.

Figure 3.1. Managed and Non-managed Environments
Nonmanaged Environment

Client | Server
|
|
|
{ Application) : EIS
|
|
Managed Environment
J2EE Server
Web Container

{JsSP)
| EJB

EJB Container

EIS

[Application

In atwo-tier application environment, a client accesses an EIS that resides on a server. The client application
creates a connection to an EIS. In this case, a resource adapter may provide connection pooling, or the client
application may manage the connection itself.

In a multi-tier application environment, Web-based clients or applications use an application server residing on a
middle tier to access EISs. The application server manages the connection pooling and provides this service to the
applications deployed on the application server.

Applications require connections so that they can communicate to an underlying EIS. They use connections to
access enterprise information system resources. A connection can be a database connection, a Java Message
Service (JMS) connection, a SAP R/3 connection, and so forth. From an application’s perspective, an application
obtains a connection, uses it to access an EIS resource, then closes the connection. The application uses a
connection factory to obtain a connection. Once it has obtained the connection, the application uses the
connection to connect to the underlying EIS. When the application completesits work with the EIS, it closes the
connection.

Why is there aneed for connection pooling? Connection pooling isaway of managing connections. Because
connections are expensive to create and destroy, it isimperative that they be pooled and managed properly.
Proper connection pooling leads to better scalability and performance for enterprise applications.

Often many clients want concurrent access to the EISs at any one time. However, accessto aparticular EISis
limited by the number of concurrent physical connections that may be created to that EIS. The number of client
sessions that can access the EIS is constrained by the EIS's physical connection limitation. An application server,
by providing connection pooling, enables these connections to be shared among client sessions so that a larger
number of concurrent sessions can access the EIS.

Web-based applications, in particular, have high scalability requirements. Note that the Connector architecture
does not specify a particular mechanism or implementation for connection pooling by an application server. (Our
example implementation presented later does demonstrate one possible approach to connection pooling.) Instead,
an application server does its own implementation-specific connection pooling mechanism, but, by adhering to
the Connector architecture, the mechanism is efficient, scalable, and extensible.

27

Prior to the advent of the J2EE Connector architecture, each application server implementation provided its own
specific implementation of connection pooling. There were no standard requirements for what constituted
connection pooling. Asaresult, it was not possible for EIS vendors to develop resource adapters that would work
across all application servers and support connection pooling. Applications also could not depend on a standard
support from the application server for connection pooling.

J2EE application servers that support the Connector architecture all provide standard support for connection
pooling. At the same time, they keep this connection pooling support transparent to their applications. That is, the
application server completely handles the connection pooling logic and applications do not have to get involved
with thisissue.

3.1 Connection Management Contract

The Connector architecture provides support for connection pooling and connection management through its
connection management contract, one of the three principal contracts defined by the Connector architecture. The
connection management contract is of most interest to application server vendors and resource adapter providers
because they implement it. However, application developers will also benefit from understanding the application
programming model based on the connection management contract.

The connection management contract is defined between an application server and a resource adapter. It provides
support for an application server to implement its connection pooling facility. The contract enables an application
server to pool its connections to an underlying EIS. It also enables individual application components to connect
toan EIS.

The connection management contract defines the fundamentals for the management of connections between
applications and underlying EISs. The application server uses the connection management contract to:

o Create new connections to an EIS.
« Configure connection factories in the INDI namespace.
« Find the matching physical connection from an existing set of pooled connections.

The connection management contract provides a consistent application programming model for connection
acquisition. This connection acquisition model is applicable to both managed and non-managed environments.
More details on the connection acquisition model are given later in this chapter in the section “ Application
Programming Model.” Chapter 12, Connection Management Contract, provides more information on the connection
contract itself.

3.2 Connection Management Architecture

To understand how the connection management architecture works, let'slook at Figure 3.2, which shows
connection management for an application in a managed environment.

Figure 3.2. Connection M anagement

28

Marning
Context
JZEE 1
Component [—
T 2
— .l JHDI Mamespace
Application Servar | k‘tl
Connection Pool Connection
Manager +—3 é Factory
4 85—
a Q0G0C0C0 Connection
I OO0 Faclory
5
Transaction Security v Resourca
Manager Manager Adapter
Container 6
k4
EIS

The resource adapter provides interfaces for an application component to create a connection to an EIS using a
connection factory. An application component that wants to connect to an underlying EIS uses the services of the
resource adapter.

Specific steps occur when an application component attempts to establish a connection to an EIS. However, prior
to this, the deployer configures the INDI namespace to include a connection factory. (Thisis marked asstep 1 in
Figure 3.2.) The connection factory carries the configuration information, specifically the EIS server and port
number, required to create connections to the EIS. Briefly, here is what happens when an application component
tries to establish a connection to an EIS.

1.

The application component begins by doing a JINDI lookup of a connection factory from the JNDI
namespace.

The application component, after successfully locating a connection factory, calls a method on the
connection factory to create a connection to the EIS. It uses the connection factory to obtain a connection
to the underlying EIS.

Before it creates the connection, the connection factory, which is provided by the resource adapter,

del egates the connection request to the application server using the connection management contract. The
application server provides a connection pool, along with other services such as transaction management,
security management, and error logging.

The application server, when it recelves arequest to create a connection, attempts to find a suitable
existing connection in the application server's connection pool. The connections in the pool are called
managed connections. A managed connection represents an actual physical connection to the underlying
EIS. If the application server finds a matching connection in the pool, it uses that matching managed
connection to satisfy the application’'s connection request.

If the application server cannot find a matching connection in the pool, then it uses the resource adapter to
create anew physical connection—also represented by a managed connection—to the underlying EIS.

The resource adapter for the EIS creates a new managed connection by establishing a physical connection
to the EIS. A resource adapter returns the newly created managed connection to the application server.

The application server adds the new managed connection to its connection pool. As part of this process,
the application server creates an application-level connection handle for the managed connection. The
application server returns this connection handle to the resource adapter, which in turn returnsit to the
application component.

The application component uses the connection handle returned by the resource adapter to access the EIS.

When the application component completes its work with the connection, it closes the connection handle.

29

What does al this mean to an application? Essentially, the connection management contract enables an
application server to offer anumber of important benefits to an application.

« It eliminates any dependencies of the application on the connection pooling and keeps the connection
pooling transparent to an application. Because connection pooling isimplemented independently from an
application, the application need not have any knowledge of how the application server accomplishes
connection pooling, nor does it have any dependencies on a particular connection pooling mechanism.

o It smplifiesthe application programming model for the management of connections. An application is not
exposed to how the application server and resource adapter use the connection management contract.

o It enablesthe application server to provide different qualities of servicesrelated to EIS integration.
Examples of services include transaction management, security management, and error logging and
tracing support. An application server can also implement different levels of connection pooling using this
connection management contract.

o Itincreasesthe scalability of an application. An application can now support a greater number of
concurrent client sessions accessing EISs.

3.3 Application Programming Model

An application uses a standard application programming model when obtaining connections. The model is similar
whether an application obtains the connection using an application server in a managed environment or whether it
obtains the connection independent of the application server.

An application developer follows defined steps and relies on particular information to establish a connection to an
underlying EIS. Before the devel oper can establish a connection, the necessary connection factory needs to be
properly deployed and configured. The deployer is responsible for the deployment of aresource adapter and an
application. The deployer aso deploys and configures the connection factory. What is entailed in deploying and
configuring a connection factory? The deployer configures the connection factory by providing configuration
information—port number, server name, and so forth. This configuration information represents the information
required by aresource adapter to create physical connectionsto an EIS. Once the connection factory is configured,
the application can use the connection factory to create connections to the EIS. See Code Example 3.1.

Example 3.1 Establishing a Connection

package com.aci;
public class InventoryManagerEJB implements javax.ejb.SessionBean {
private javax.resource.cci.ConnectionFactory cf;

public int getQuantityAvailable(String productld) throws InventoryException {
try {
Javax.resource.cci.Connection cx = getConnection();
ChecklnventoryCommand command = new ChecklnventoryCommand(cx, cf.getRecordFactory());
command .setProductld(productid);
command.execute();

// Close the connection.
cx.close();

return command.getProductQuantity();
} catch (Exception e) {
throw new InventoryException();

}
,

public void removeFromlnventory(String productld, int quantity) throws InventoryException {

}

public Connection getConnection() {
try {
// Get a connection using the ConnectionFactory.
Connection cx = cf.getConnection();
return cx;
} catch (ResourceException re) {
throw new EJBException(re);

3

3

private void initialize() {
try {

30

// Use JINDI interface to look up connection
// factory instance.
Context nc = new InitialContext();

// Lookup ConnectionFactory from the JNDI namespace.

cf = (ConnectionFactory)nc.lookup(*'java:comp/env/eis/MainframeCxFactory');
} catch (NamingException ne) {

throw new EJBException(ne);
}

}

public void ejbCreate() throws RemoteException {
initialize();
}

public void setSessionContext(SessionContext sc) {}
public void ejbRemove() throws RemoteException {}
public void ejbActivate() { /7** Never Called **/ }
public void ejbPassivate() { /7** Never Called **/ }

}

Code Example 3.1 uses the Connection and ConnectionFactory interfaces defined in the Common Client Interface.
(See Chapter 7, Common Client Interface, for more information on the CCl.) When the application component needs
to establish a connection, the developer uses the INDI naming context to ook up a ConnectionFactory instance.

Once the application component has a ConnectionFactory instance, the developer can obtain one or more
connections to the EIS by invoking the factory's getConnection method. This method returns an application-level
connection handle to the underlying physical connection. At this point, the developer may use the common client
interface (CCl) application programming model to access the underlying EIS. See Chapter 12, Connection
Management Contract, for details on a connection handle, and how an application server and resource adapter
collaborate to manage connection pooling.

When the application component completes its work using the connection, the developer calls the close method
on the connection handle.

3.4 Conclusion

We've seen in this chapter how an application can create connections to underlying EISs. In amanaged
environment, the application servers manage connection pooling, thus simplifying connection handling for an
application. The connection pooling mechanism, because it is handled by the application server, remains
transparent to the application.

The connection management contract results in a simplified application programming model. The contract also
serves to increase the scalability of application integration with EISs.

Chapter 4 describes the transaction management contract, also from the point of view of an application devel oper.

31

Chapter 4. Working with Transactions

This chapter discusses transactions and the transactional support provided by the Connector architecture.
Transactional accessto EISsis an important requirement for business applications. This chapter focuses on the
transaction model for application developers.

The Connector architecture supports both local transactions and XA transactions (also called JTA or global
transactions). JTA stands for Java™ Transaction APl and is a Java mapping of the industry standard X/Open XA
protocol. A local transaction is managed internal to aresource manager and does not require coordination by an
external resource manager. An XA transaction, on the other hand, can span multiple resource managers. An XA
transaction requires transaction coordination by an external transaction manager. A transaction manager uses a
two-phase commit protocol to manage an XA transaction that spans multiple resource managers.

An application server uses a transaction manager to manage transactions. An application component can access
multiple transactional resource managers.

The transaction management contract extends the connection management contract and provides support for
management of both local and XA transactions. The transaction management contract is defined between an
application server and a resource adapter (and its underlying EIS resource manager). This contract enables the
application server to provide the infrastructure and runtime support for transaction management. An application
component relies on the application server's transaction support for component level transaction demarcation.
(See Figure 4.1.) Transaction demarcation refers to managing transaction boundaries.

Figure4.1. Transaction Management Contract

Container-Companent
Contract 4

Container K

Application Guntmct)

|
Application Contract

Connection Pool Transaction
Manager Management
Contract
Resource Adapter
Transaction
Manager

EIS-specific Interface

Application Server

Enterprise Information
Systemn

Chapter 13, Transaction Management Contract, describes the transaction management contract in detail.

4.1 Introduction to Transactions

Transactions ssimplify the devel opment of enterprise applications, which are typically distributed, multi-user
applications. Transactions ensure data integrity because they enforce strict rules on an application’s ability to
access and update data. The J2EE platform, by supporting transactions, frees application developers from such
complex issues as failure recovery and multi-user programming. The J2EE platform also does not limit
transactions to a single database or single application server instance—global distributed transactions can
simultaneously update multiple EISs across multiple server instances.

An application programmer divides the application’'s work into a series of units and treats each unit as a separate
transaction. The underlying transaction management system ensures that each such unit of work, that is, each
transaction, fully completes. This means the transaction is atomic. In addition, the transaction management
system ensures that only one transaction manipulates the data at atime. If the transaction does not fully compl ete,
the transaction management system rolls back the transaction, which means it completely undoes whatever work
the transaction had performed.

32

It isimportant to understand certain terminology and functional roles that pertain to the transaction management
contract, as specified in the Connector architecture. We use the terms transaction manager, application server, and
resource manager. Here's how we define these terms.

e A transaction manager provides the services and management functions that are required to support
transaction demarcation, transactional resource management, synchronization, and transaction context
propagation. A transactional manager coordinates transactions across multiple resource managers. It also
provides low-level servicesto facilitate the propagation of the transaction context across distributed
systems. Often, the services of atransaction manager are not visible directly to the application
components.

e An application server, as used in this book, isageneric term for amiddle-tier component server that is
compatible with the J2EE platform.

e A resource manager manages a set of shared EIS resources. A client requests access to a resource
manager to use its managed resources. A transactional resource manager can participate in transactions
that are externally controlled and coordinated by a transaction manager. In the context of the Connector
architecture, a client of aresource manager is either amiddle-tier application server or an application
client. A resource manager istypically in adifferent address space or on a different machine from its
clients. Database systems, mainframe TP systems, and ERP systems are al examples of resource
managers.

4.1.1 Characteristics of Transactions

Data consistency is of utmost importance for business applicationsin an enterprise environment, and itisa
transactional system that ensures data consistency. But what exactly is a transaction?

A transaction defines a unit of work, where that unit of work can have multiple sets of operations. Transactions
refer to operations that access a resource manager, such as a database or an ERP system. A transactional
application accesses an EIS within the context of atransaction. All transactions share the following characteristics,
denoted by the acronym ACID:

o Atomicity

o Consistency
o Isolation

e Durability

Atomicity pertains to the operations of atransaction. Because a transaction often consists of more than asingle
operation, atomicity requires that all the operations of a transaction perform successfully for the transaction to be
considered complete. If even a single operation cannot be performed, none of the transaction's operations may be
performed.

Consistency refersto data consistency. A transaction must transition data from one consistent state to another. In
addition, the transaction must preserve the data's semantic and physical integrity.

I solation requires that a single transaction appears to be the only transaction currently manipulating the data. It is
possible for other transactions to run concurrently, but a transaction should not see the intermediate data
manipulation of other transactions until, and unless, they successfully complete and commit their work. Isolation
prevents a transaction from obtaining an inconsistent view of the data. Data inconsistency could occur if the
transaction were to see just a subset of another transaction's updates due to the interdependencies among these
updates.

Isolation is related to transaction concurrency. Most transactional systems allow for different levels of isolation,
and higher degrees of isolation limit the extent of concurrency. The highest level of isolation occurs when all
transactions are serialized—each transaction runs to completion before the next transaction starts. Some
applications require this level of isolation, but others may tolerate areduced level of isolation for greater
concurrency, particularly if they are only reading data and the accuracy of the datais not critical.

Durability means that updates made by committed transactions persist in the data store regardless of failure

conditions. Durability guarantees that committed updates remain in the data store even if failures occur after the
commit operation. In short, data can be recovered after a system or mediafailure.

33

4.1.2 Commit Protocols

Aswe've noted, transactions ensure data integrity by ensuring that a unit of work either fully completes, and is
committed, or the work is fully rolled back. Committing a transaction means that the changes that the
transactional work has made to the data are made durable.

The protocols of committing a transaction include supporting a one-phase commit process and, in a distributed
transaction system, atwo-phase commit process. Think of atypical transaction commit operation to asingle
resource manager as a one-phase commit protocol. The transaction commits the work that has been done to one,
and only one, resource manager. Once it has been determined that the transaction has fully completed—all the
ACID characteristics noted previously have been met—the changes are committed to the resource manager.

A two-phase commit protocol ensures that the transactional work correctly commits across multiple resource
managers. The two-phase commit protocol essentially updates the multiple resource managersin two phases: first
a prepare phase and then acommit phase. In the prepare phase, the transaction manager notifies each resource
manager to prepare for the transaction commit. The resource managers indicate if they are prepared to commit. If
all resource managers are prepared for the commit operation, the commit phase of the process occurs: the
transaction manager notifies the resource managers to complete or commit the transaction. If even one resource
manager is not prepared to commit, the transactional manager uses the commit phase to notify all of them to
rollback the changes. In short, the two-phase commit protocol commits transactions across multiple resource
managers.

4.1.3 Key Issueswith Transactions

Devel oping business applications requiring transactions raises some key issues. To begin with, just about all
enterprise environments have a multitude of users running the same applications. Many of the applications, even
if concerned with different parts of an enterprise's business, may still access the same underlying data. In a
production environment, literally hundreds of separate users may require concurrent access to the same pool of
data. In thistype of environment, it is essentia that transactions achieve the ACID.

Usually, enterprise environments have many diverse back-end EISs. These different EISs often come with
different transactional characteristics. Some EISs are transactional and support XA transactions, whereas other
ElISs are non-transactional or may just support local transactions. Business applications need to be capable of
accessing al types of EISs, regardless of the EISs' transactional capabilities. This transactional variation adds to
application complexity.

In addition, the transaction programming model cannot be overly complex. A too-complex model becomes a
costly and major hindrance to application development and maintenance. If the model is too complex, businesses
must employ developers who are business domain specialists and also skilled at system-level programming and
transaction management. Because it is rare to find devel opers who can do both kinds of programming well, this
usually means bringing in two sets of specialists. In short, a costly solution.

It isimportant to hide transaction management complexity. The J2EE platform provides a smple transaction
programming model for application developers, plus it hides much of the complexity of transaction management.
The Enterprise JavaBeans architecture, which is an integral part of the platform, handles the details of transaction
management for an application.

The Connector architecture takes the J2EE platform even further. As we've just noted, transactional application
components often must access multiple underlying resource managers. The diversity of these existing systems
and applications is enormous. By providing a transaction management contract, the Connector architecture
channels all access to multiple resource managers through standard interfaces. The Connector architecture enables
aresource manager to plug in to a J2EE application server. Once plugged in, the resource manager can be
accessed within transactions from applications developed and deployed on the J2EE server. In addition, the
Connector architecture enables application devel opers to use the standard J2EE programming model for
transaction management and to access an underlying, diverse set of EISs. Thus the Connector architecture's
transaction management contract ensures that the developer does not have to be conversant with the transaction
management complexity of various transaction processing monitors and EISs.

4.2 Developing Transactional Applications

Traditionally an application developer was responsible for managing all aspects of atransaction. In addition to
developing an application's business logic, the devel oper had to write code to explicitly start the transaction, then,
depending on whether the transaction concluded successfully or not, the developer had to write code to commit or
roll back the transaction. Applications that had more sophisticated transaction requirements might have required
developers to suspend and resume the transaction.

The J2EE environment simplifies application development in terms of transactions. This section focuses on
developing transactional applications within the J2EE environment.

4.2.1 Using the J2EE Platform

A transactional application on a J2EE platform comprises servlets and JSPs that access enterprise beans within a
transaction. Each component in the transaction—the JSP, servlet, enterprise bean—may acquire a connection to a
resource manager.

The J2EE platform supports both programmatic and declarative transaction demarcation. Programmatic
transaction demarcation is typical of the traditional transaction management approach. In this approach, the
application manages all aspects of the transaction. Declarative transaction demarcation is a style of transaction
management that shifts transactional control from the application to the underlying application server and
containers. The Enterprise JavaBeans architecture provides support for declarative transaction demarcation on the
J2EE platform. An enterprise bean's container automatically starts and completes transactions for its application
components.

For both kinds of transaction demarcation, the J2EE application server handles the necessary low-level
transaction management protocols between the transaction manager and the resource managers. The J2EE
application server also maintains the context for a transaction and may implement support for a distributed
two-phase commit process.

When an application manages its own transactional aspects, the developer must write complex code that is
system-level in detail and certainly very different from the application business logic. For example, in addition to
business logic code, the developer must write code to explicitly start atransaction and commit the transaction's
changes to the database (or roll back all changesif necessary). To do this properly, the devel oper must understand
the mechanisms of the target EIS, in particular handling multiple processes and concurrency issues. Although this
is often not the expertise of application developers, at times the developer wants this level of control over an
application. Thus the EJB model of programmatic transaction demarcation allows devel opers to manage the
application’s transactions.

Declarative transaction demarcation, on the other hand, |ets the devel oper declare transaction attributes separately
from the application. Transaction attributes describe how to partition the application's work into separate
transactional units. The J2EE application server then uses these attributes to apply its transaction management to
the execution of the application.

4.2.2 Using Enterprise Beans

Enterprise beans play a major transaction management role in the J2EE platform. There are two types of
transaction demarcation: bean-managed and contai ner-managed transaction demarcation. Entity beans, which are
enterprise beans designed for data access, use only container-managed transaction demarcation, whereas session
beans may use bean-managed or container-managed demarcation.

An enterprise bean with bean-managed demarcation uses the methods of the JTA
javax.transaction.UserTransaction interface to manage the transaction demarcation. The bean provider must set
up the transaction context and write code to start and end the transaction.

With container-managed demarcation, the EJB container, instead of the bean provider, manages the transaction
demarcation. For the container to do this, the devel oper first specifies atransaction attribute in the deployment
descriptor for each method of an enterprise bean. (The developer does not write any explicit transaction begin and
transaction commit code within the enterprise bean.) An attribute describes the transaction context for the
associated method. The EJB container uses the transaction attributes to determine what it needs to do to manage
transactions on these methods. For example, a particular method may have a transaction attribute requiring a new
transaction context. When an application invokes that method, the container knows to begin a new transaction and
commit the transaction when the method compl etes.

35

Application developers, whenever possible, should use container-managed demarcation and let the J2EE platform
and the EJB container handle the complexities of transaction demarcation. By doing so, the developer does not
have to write what is often complex transaction demarcation code. It isfar simpler to declaratively define the
transaction behavior of an enterprise bean rather than to programmatically define this behavior. Plus, the
developer can change transaction behavior later without touching the code itself. All in all, an application isless
prone to error if the EJB container handles the transactional aspects.

Using container-managed transaction demarcation is also not overly restrictive. Transaction attributes can be
combined and used in a manner that makes it easy to compose multiple enterprise beans to perform tasks with
specific transaction behavior.

An example scenario for both bean-managed and container-managed transaction demarcation is presented later in
this chapter in the section “ Sample Application Transaction Scenario.”

4.2.3Using JTA Transactions

It is recommended that Web components, such as JSPs and servlets, generally not engage in JTA transactions, but
instead delegate such work to enterprise beans. However, Web components may use a JTA transaction to access
an EIS.

A servlet or JSP uses JNDI to look up ajavax.transaction.UserTransaction object, and then uses the
UserTransaction interface to demarcate transactions. For example, a Web component might include the following
code to demarcate transactions. (See Code Example 4.1.)

Example 4.1 Demar cating Transactions

Context ic = new InitialContext();
UserTransaction ut = (UserTransaction) ic.lookup(*java:comp/UserTransaction™™);

// Start the transaction.
ut.begin();

// Perform transactional work here.

// End the transaction.
ut.commit(Q);

Enterprise beans use one of two types of transaction demarcation: bean managed and container managed. With
bean-managed transaction demarcation, an enterprise bean uses the javax.transaction.User Transaction interface to
explicitly demarcate the transaction's boundaries. (Bean-managed transaction demarcation is only available to
session beans, whereas entity beans must use container-managed transaction demarcation.)

For example, a session bean with bean-managed transaction demarcation might include the following code to use
JTA to demarcate a transaction. (See Code Example 4.2.)

Example 4.2 JTA and Bean-M anaged Transaction Demar cation

UserTransaction ut = ejbContext.getUserTransaction();
// Start the transaction.

ut._begin();

// Perform transactional work here.

// End the transaction.

ut.commit(Q);

When an enterprise bean uses contai ner-managed transaction demarcation, the EJB container manages the
transaction boundaries for the bean. The EJB container uses the transaction attribute associated with a bean's
method to determine the degree of transaction management it must provide. Depending on the transaction
attribute, the EJB container may begin anew JTA transaction or join the method to an existing JTA transaction.

To ensure the integrity and consistency of data, components should always access an EIS under the scope of a
transaction. Accessing an EIS under the scope of a JTA transaction ensures that any updates are committed or
rolled back, depending on the outcome of the JTA transaction. In addition, JTA alows multiple, ssmultaneous
connectionsto an EIS, and it ensures that al updates made through these connections are atomic. Because the
J2EE application server coordinates and propagates transactions between the server and the EIS, components
need not include code to handle this coordination.

36

When the J2EE application server supports a transaction across multiple EISs, the application can access and
perform updates on these EISs atomically from within asingle JTA transaction. Code Example 4.3 illustrates how
an application component might update two different databasesin one JTA transaction.

Example 4.3 Using One JTA Transaction to Update Two Databases

InitialContext ic = new InitialContext("java:comp/env');
DataSource dbl (DataSource) ic.lookup("OrdersDB™);
DataSource db2 (DataSource) ic.lookup("InventoryDB™);
Connection conl = dbl.getConnection();

Connection con2 = db2.getConnection();

UserTransaction ut = ejbContext.getUserTransaction();
// Start the transaction.

ut.begin();

// Perform updates to OrdersDB using connection conl.
// Perform updates to InventoryDB using connection con2.
// End the transaction.

ut.commit(Q);

4.2.4 Compensating Transactions
When an application component uses local transactions, it may be necessary to define a compensating transaction

for each EIS access done under the scope of alocal transaction. A compensating transaction is a transaction (or
group of operations) that undoes the work of a previously committed transaction.

Compensating transactions are necessary when an application requires access to multiple EISs, but not all of the
EISs support JTA transactions. In such a case, an application component needs to define a compensating
transaction for each accessto an EIS that is under the scope of alocal transaction. If al EISsin asituation
requiring access to multiple EISs do not support JTA, it isdifficult to ensure the atomicity of the transaction.
Compensating transactions are a means to group all the transactional work to multiple EISsin an atomic unit.

Take, for example, an application component that needs to perform an atomic operation to update three separate
ElISs. Two of the EISs support JDBC and JTA transactions, so the component knows that the transaction manager
ensures the atomicity of these two updates. The third EIS is an ERP system that does not support JTA transactions.
The application performs the transactional work to the ERP system under the scope of alocal transaction and
includes a compensating transaction to undo the local transaction, if necessary. Code Example 4.4 illustrates this.

Example 4.4 Using a Compensating Transaction

// Local transaction to update ERP system
updateERPSystem();

try {
// JTA transaction to update 2 JDBC databases

UserTransaction.begin();
updateJDBCDatabasel();
updateJDBCDatabase2();
UserTransaction.commit();

}

catch (RollbackException ex) {
// Compensating transaction
undoUpdateERPSystem() ;

}

The updateERPSystem method performs the update to the ERP system under the scope of alocal transaction, and
the updateJDBCDatabasel and updateJDBCDatabase2 methods update the two databases under the scope of a
single JTA transaction. If arollback occursin the JTA transaction, the undoUpdateERPSystem method attempts
to undo the work previously done by the updateERPSystem method.

Keep in mind that compensating transactions cannot always undo the effect of a committed transaction. For
example, the compensating transaction may itself not commit for some reason, thus leaving the datain an
inconsistent state. Or, because the JTA and local transactions are separate transactions, atomicity may be broken
if the application server crashes after one transaction commit occurs but before the second transaction commits.

There is a'so the chance that another component may perform a concurrent access to the EIS updated with the

local transaction and see inconsistent data. This might occur if the second access happens after the local
transaction commit, but prior to a problem in the JTA transaction requiring the compensating transaction.

37

4.3 Transaction Levels

A resource adapter can be classified based on the level of transaction support it provides. These transaction
support levels are as follows:

e NoTransaction— The resource adapter supports neither local nor XA transactions.
e LocalTransaction— The resource adapter supportslocal transactions only.
o« XATransaction— The resource adapter supports both local and XA transactions.

Depending on aresource adapter's transactional capabilities and the requirements of its underlying EIS, aresource
adapter can choose to support any one of the preceding transaction support levels. An application server provides
support for resource adapters with all three levels of transaction support.

4.4 Sample Application Transaction Scenario

ACI's order management application illustrates common transaction scenarios. Recall that the order management
application accesses several different EISs, including a Customer database, an Order database, an inventory
management application, and alogistics application (see Figure 2.4). The resource adapters for each EIS offer a
different transaction support level.

The resource adapter for the Customer account database, which is a non-relational database, supports
XATransactions. The JDBC driver for the Order database, which is arelational database, also supports
XATransactions.

The OrderProcessor session bean performs access to both the Customer account database and the Order database.
This bean uses container-managed transaction demarcation and is developed by the ACI IT staff. Because the
bean uses container-managed transaction demarcation, the bean provider does not have to program the transaction
management and security mechanisms required for connectivity to the Customer account database and the Order
database. Instead, the EJB container and the application server handle these services.

The OrderProcessor session bean accesses both the Customer and Order databases within the same transaction.

Thisscenarioisillustrated in Figure 4.2.

Figure 4.2. Order Processor session bean

Customer
Account DB
<<Session Beansx»
OrderProcessorEJR
L
Order DB

Code Example 4.5 shows a business method that performs container-managed transaction demarcation. In this
code snippet, the OrderProcessor session bean creates separate connections to the two databases. The transaction
attribute for this method is set to Required. The EJB container takes the responsibility of invoking this method
within avalid transaction context. For example, the EJB container may automatically start a transaction when this
method is invoked.

38

The EJB container also automatically enlists the two connections with this transaction. All operations performed
by OrderProcessorEJB on the two databases happen in the context of this transaction. The EJB container commits
the transaction after this method is completed. Notice that the session bean code does not include any
programmatic transaction demarcation. In this case, the EJB container takes the responsibility of transaction
demarcation and management.

Example 4.5 Container-Managed Transaction Demar cation

public class OrderProcessorEJB implements SessionBean {
EJBContext ejbContext;

public void checkCustomerAccount(PurchaseOrder po) {
Javax.sqgl .DataSource ds;
Javax.resource.cci.ConnectionFactory cf;
jJava.sql .Connection cx1;
Javax.resource.cci.Connection cx2;

try {
Context nc = new InitialContext();

// Get Connection to Order database
ds = (Javax.sql.DataSource)nc. lookup(*'java:comp/env/jdbc/OrderDB™);
cx1l = ds.getConnection();

// Get Connection to CustomerAccount database
cf = (ConnectionFactory)nc. lookup(*'java:comp/env/eis/CustomerAccountDB"™);
cx2 = cf.getConnection();

// Do operations on Order and CustomerAccount databases
// using connections cx1 and cx2. The container

// enlists cx1 and cx2 with the container managed

// transaction

// Close the Connections
cxl.close();
cx2.close();

} catch (Exception e) {
// ...

Code Example 4.6 shows a business method that performs a bean-managed transaction involving two transactiona
resource managers. In this example, OrderProcessorEJB uses the javax.transactionUser Transaction interface to
demarcate a transaction. Behind the scenes, the EJB container enlists with the underlying transaction manager the
two connections that are acquired by the OrderProcessorEJB. All updates to the Order and Customer databases
between the UserTransaction.begin and UserTransaction.commit methods are performed within the
transaction. The underlying transaction manager takes the responsibility for committing this transaction using a
two-phase commit protocol.

Example 4.6 Bean-M anaged Transaction Demar cation

public class OrderProcessorEJB implements javax.ejb.SessionBean {
EJBContext ejbContext;
// ...

public void checkCustomerAccount(PurchaseOrder po) {
jJavax.sgl .DataSource ds;
Javax.resource.cci.ConnectionFactory cf;
jJava.sqgl.Connection cx1;
Javax.resource.cci.Connection cx2;

Javax.transaction.UserTransaction ut;

try {
Context nc = new InitialContext();

// Get Connection to Order database

ds = (Javax.sqgl .DataSource)nc. lookup(
""java:comp/env/jdbc/OrderDB™);

cx1l = ds.getConnection();

// Get Connection to CustomerAccount database
cf = (ConnectionFactory)nc. lookup(

39

"jJava:comp/env/eis/CustomerAccountDB™);
cx2 = cf.getConnection();
// Start a transaction that includes Order and Account
// databases
ut = ejbContext.getUserTransaction();

// Start the transaction
ut._begin();

// Do updates on Order and CustomerAccount databases
// using connections cx1 and cx2. The container
// enlists cx1 and cx2 with the transaction manager.

// Commit the transaction
ut.commit(Q);

// Close the connections
cxl.close();
cx2.close();

}
catch (Exception e) {
//. ..
}
}
//. ..

}

4.5 Conclusion

This chapter described the transactional concepts and the types of transactions supported by the Connector
architecture. To guarantee the consistency and integrity of the data, we recommend that any access to an EIS be
done under the scope of a transaction.

Chapter 5 shows you how the Connector architecture's security contract helps to manage and ensure EIS
connectivity security.

40

Chapter 5. Managing Security

Security is an important requirement for all enterprise applications. The importance of security applications and
systems s increasing as more businesses deploy distributed applications and conduct more of their operations
over the Internet. Sensitive information routinely passes over Internet connections between user Web browsers
and Web servers and containers. The same sensitive information passes between Web servers and application
servers and between an application server and connected EISs.

It iscritically important that an enterprise safeguard the integrity of its business information. Loss or inaccuracy
of information or any unauthorized access to information can be extremely costly. At the same time, applications
must be able to access EISs without creating security threats to the EIS resources.

Enterprise applications must clearly establish both the requirements and architecture for a secure EIS integration
environment. Because the Connector architecture focuses on EIS integration for J2EE applications, it provides
mechanisms and a set of standard APIs to support secure integration with EISs. It defines a security management
contract that extends the J2EE security model to include support for secure connectivity to EISs. The J2EE
security model defines the security that is applied to client accessto the Web tier, and then from the Web tier to
the EJB tier. (See Figure 5.1.)

Figure5.1. J2EE Security Model

Connector Security
Contract

/]

EJE Tier /

Clignt

h

b

Web Tier

EIS

The Connector security management contract allows support for different security mechanisms to protect an EIS
against security threats such as unauthorized access and loss or inaccuracy of information. To begin with, the
security management contract helps ensure that users (also referred to as principals) are who they say they are.
The correct identification of principalsis referred to as authentication. Once a user is authenticated, the security
contract hel ps determine authorization and access control privileges. Authorization and access control determine
whether a user is permitted to access a specific EIS resource. Authorization is typically performed in an
ElS-specific manner.

The security contract also ensures the security of the communication links between an application server and an
EIS. It accomplishes this by supporting protocols that provide authentication, integrity, and confidentiality
services. The contract also provides for protecting communication by using a secure communication protocol,
such as secure socket layer (SSL).

The security management contract is both security mechanism independent and technology independent. Because
of this independence, application servers and EISs can support the security contract regardless of their own
different levels of support for security technology and mechanisms. For example, the security contract supports
an EIS or application server regardless of whether the EIS or application server uses basic user password-based
authentication, a Kerberos-based end-to-end security environment, or just its own application server or
EIS-specific security mechanism.

5.1 Security Concepts

A security contract is an agreement between arequestor (or caller) and atarget service in which the accessto the
service requires authentication of the requestor's identity. In addition, the requestor may require proper
authorization and access privileges to access this service. Optionally the communication between a requestor and
the target services may be encrypted so that the communication is secure and protected.

5.1.1 Authentication

The term authentication refers to the security mechanism by which the requestor (or caller) and the service
provider prove to one another that they are acting on behalf of specific users or systems. Authentication
establishes the identities of the participating entities and proves that the entities are really instances of these
identities. Authentication can be performed in one direction or it can be bidirectional. If bidirectional, it is called
mutual authentication. If an entity participatesin a call without establishing its identity or proving an identity,
that entity isreferred to as unauthenticated.

41

When calls are made from a client program run by a user, the caller identity is that of the user. A caller may also
be an application component acting as an intermediary in acall chain that originated with some user. In that case,
the identity may be associated with that of the user, and the component is considered to be impersonating the user.
It is aso possible for an application component to call another component using its own identity unrelated to that
of itscaler.

In a J2EE application, a user goes through a client container to interact with enterprise components in the Web or
EJB tiers, and then subsequently to interact with enterprise resources in the EIS tier. These resources may be
protected or unprotected. A protected resource includes authorization mechanisms that restrict access to some
subset of non-anonymous, or known, identities. To access a protected resource, a user must present a credential
such that itsidentity can be evaluated against the resource authorization policy.

When J2EE application components integrate with EISs, the components may use different security mechanisms
and operate in different protection domains than the EIS resources. In such cases, either the calling container or
the application component can manage authentication to the resource for the calling component. When the calling
container manages authentication to the EIS resource, it is referred to as container-managed EIS sign-on. When
the application component manages the authentication, it is called application-managed EIS sign-on. We describe
these sign-on concepts in more detail later in this chapter.

5.1.2 Authorization

Authorization is a security mechanism through which it is verified whether the user (or requestor) has the
authority to access the requested resource or service. Authorization mechanisms limit the interactions of users or
systems with resources so that additional security constraints (such as confidentiality and integrity) may be
enforced. An authorization mechanism allows only an authenticated caller to access resources.

The Java 2 platform, Standard Edition (J2SE) provides these authorization mechanisms, and they can be used to
control access to code and resources based on identity properties, such as the location and signer of the calling

code. The J2EE application programming model provides additional authorization mechanismsto limit access to
called components based on who is using the calling code, rather than just the calling code's signer and location.

Although there are two basic approaches to defining access control rules—capabilities and permissions—the
J2EE application programming model focuses on permissions. The permissions approach looks at who can do
something. The capabilities approach focuses on what a caller can do. In the J2EE architecture, the deployer maps
the permission model of the application (which has been supplied by the application assembler through the
deployment descriptor) to the capabilities of usersin the operationa environment, thus establishing the
container-enforced access control rules associated with a J2EE application.

5.1.3 Security Definitions
The following terms have been used in this chapter:

e EndUser— Anend userisan entity, either aperson or a service, that acts as a source of arequest to an
application.

e Principal— A principal isan entity that can be authenticated by an authentication mechanism. A
principal isidentified using a principa name and authenticated using authentication data. The content and
format of the principal name and the authentication data depend on the authentication mechanism.

e Security Attributes— A principal has aset of security attributes associated with it. These security
attributes are related to the authentication and authorization mechanisms. Examples are security
permissions and credentials for aprincipal.

e Credential— A credential contains or references security information that can authenticate a principal to
additional services. A principal acquires a credential upon authentication or from another principal that
allowsits credential to be used. The latter processistermed principal delegation. An X.509 certificate and
aKerberos serviceticket are examples of credentials.

e |nitiating Principal— The security principal representing the end user that interacts directly with the
application. An end user can authenticate using either aWeb client or an application client.

e Caller Principal— A principa that is associated with an application component instance during a method
invocation. For example, an enterprise bean instance can call the getCal lerPrincipal method to get the
principal associated with the current security context.

42

e ResourcePrincipal— A security principal under whose security context a connection to an EIS instance
is established.

e Security or Protection Domain— A scope within which certain common security mechanisms and
policies are established. An enterprise can contain more than one security domain. Thus an application
server and an EIS can be in the same security domain or they can be in different security domains.

e Security Context— An object that encapsul ates the shared state information regarding security between
two entities.

In a managed multi-tiered application server-based environment, application components are deployed in Web or
EJB containers. When a method gets invoked on a component, the principal associated with the component
instance istermed a caler principal.

The relationship between an initiating principal and acaller principal depends on the principal delegation option
for inter-container and inter-component calls. The relationship of aresource principal and its security attributes,
such asits credentials and access privileges, to an initiating or caller principal depends on how the system
administrator or deployer has set up the resource principal. We describe thisin detail |ater in the chapter.

5.2 Security Model for EIS Connections

What does the security model look like from the perspective of an application component? Typically the
application component requests that a connection be established under the security context of a resource principal.
Once the connection is established, all invocations that the application component makes to the EIS instance
occur under the security context of the resource principal.

The application component provider has two choices for the design of the EIS sign-on. The component provider
uses an element in the deployment descriptor to indicate the component's sign-on approach. The two sign-on
approaches are:

1. Container-managed sign-on— The application component lets the container take the responsibility of
configuring and managing the EIS sign-on. The container determines the user name and password for
establishing a connection to an EIS instance.

2. Component-managed sign-on— The application component code manages the EIS sign-on by
including code that performs the sign-on process to an EIS.

Let's examine two examples that illustrate these two approaches.

5.2.1 Container-Managed Sign-On

With contai ner-managed sign-on, the component devel oper designs the enterprise bean so that the container
manages EIS sign-on. That is, the developer wants the application server and the deployer to be responsible for
managing EIS sign-on. To indicate this, the devel oper sets the res-auth deployment descriptor element to
Container.

The deployer sets up and configures the EIS sign-on security information. The deployer sets the name of the user
that connects to the EIS instance and configures the authentication data, typically the user's password, needed to
verify that the user isreally who she says sheis.

At this point, the component can establish a connection to the EIS instance without being concerned about
security. The component invokes the getConnection method on the ConnectionFactory instance and does not
need to pass any security-related parameters, as Code Example 5.1 shows.

Example 5.1 Container-Managed Sign-On

// Business Method in an application component
Context initctx = new InitialContext();

// perform JINDI lookup to obtain a connection factory
Javax.resource.cci.ConnectionFactory cxf =
(Javax.resource.cci .ConnectionFactory)initctx. lookup(*'java:comp/env/eis/MainframeCxFactory");

// Invoke factory to obtain a connection. The security

// information is not passed in the getConnection method
Javax.resource.cci.Connection cx = cxf.getConnection();

43

5.2.2 Component-Managed Sign-On

In component-managed sign-on, the component devel oper includes code in the component to manage the EIS
sign-on. When the devel oper takes this approach, he or she sets the deployment descriptor res-auth element to
Application. Thisindicates that the component code is designed to perform programmatic sign-on to the EIS.
The application component must pass explicit security information, typically the user's name and password, to the
ConnectionFactory when invoking the getConnection method. Thisisillustrated in Code Example 5.2.

Example 5.2 Component-M anaged Sign-On

// Method in an application component
Context initctx = new InitialContext();

// perform JINDI lookup to obtain a connection factory
Javax.resource.cci.ConnectionFactory cxf =
(Javax.resource.cci.ConnectionFactory)initctx. lookup("'java:comp/env/eis/MainframeCxFactory');

// Invoke factory to obtain a connection
com.myeis.ConnectionSpeclmpl properties = //..

// get a new ConnectionSpec

properties.setUserName(""...");

properties.setPassword(...");

Javax.resource.cci.Connection cx = cxf.getConnection(properties);

5.3 Understanding EIS Sign-On

Sign-on to an EIS happens when creating a new physical connection to the EIS. EIS sign-on typically requires the
execution of one or more of the following steps:

o Determine aresource principal under whose security context the physical connection to the EIS will be
established.

« Authenticate the resource principal if it has not already been authenticated.

o Establish a secure communication between the application server and the EIS. Once such a
communication is established, additional security mechanisms, such as data confidentiality and data
integrity, may be applied to the communication between the application server and the EIS.

« Provide access control for the EIS resources.

These steps are explained in the next sections.

5.3.1 Setting a Resour ce Principal

When an application component requests a connection from a resource adapter, the connection request is always
made under the security context of aresource principal. The deployer sets the resource principal for the
connection's security context using one of severa approaches—configured identity, principal mapping, or caller
impersonation.

In the configured identity approach, aresource principal has its own configured identity and security attributes,
and these can be independent of the identity of the principal initiating the connection request. For example, in an
application, the connectionsto an EIS are always established under the security context of avalid EIS user
account, and this user account is always used regardless of the initiating or caller principal. That is, if the caller
principal is A, the configured resource principals can be B and C on two different EIS instances. The three
principas—A, B, and C—are independent entities.

Principal mapping is another approach to establishing a resource principal. With this approach, the container
manages the mapping of the resource principal from the identity or security attributes of the initiating or caller
principal. When this approach is used, the resource principal may not inherit identity or security attributes of the
principal from which it is mapped. Instead, the resource principal getsitsidentity and security attributes based on
the principal mapping. For example, if the caller principal hasidentity A, a mapped resource principal can be
mapping (A,EISL) and mapping (A, EIS2) on two different EIS instances.

Caller impersonation is athird approach. When aresource principal impersonates a caller principal, the caler's
identity and credentials are delegated to the EIS instance. It is even possible for a caller principal to be a delegate

of aninitiating principal. When this occurs, the resource principal transitively impersonates the initiating
principal.

5.3.2 Authenticating a Resour ce Principal

An application server and an EIS collaborate to ensure the proper authentication of aresource principal that
establishes a connection to an underlying EIS. Although the Connector's security architecture is independent of
any particular security mechanism, the architecture does identify two commonly supported authentication
mechanisms:

e Basic user-password authentication mechanism specific to an EIS
o Kerberos version 5-based authentication mechanism

An application server should support these identified authentication mechanisms, and it may also support other
authentication mechanisms for EIS sign-on.

5.3.3 Authorizing a Resour ce Principal

Once authentication is accomplished, the next step is authorization—ensuring that a principal has proper
authorized access to the EIS resources. Authorization can be accomplished either at the EIS or at the application
server. If an EIS performs authorization, it does so in its own EIS-specific manner. For example, an EIS may
restrict certain users to executing only a subset of available functions.

The application server can also perform authorization checking. For example, the application server can authorize
aprincipal to create a connection to an EIS only if the principal is authorized to do so. Application servers that
use J2EE containers, such as EJB and servlet containers, can define their security authorization policies either
programmatically or declaratively.

5.3.4 Establishing a Secure Communication

It isimportant that the communication between an application server and an EIS be secure. Whenever two
separate entities communicate, there is always the risk of such security threats as data modification or loss of data.

Establishing a secure association counters such threats. A secure association is a shared security information that
allows a component on the application server to communicate securely with an EIS. The establishment of a secure
association can include several steps:

e Theresource principal is authenticated to the EIS. This may also require mutual authentication.

« Communicating entities negotiate a quality of protection, such as confidentiality or integrity.

e A pair of communicating entities—an application server and an EIS instance—establish a shared security
context using the credentials of the resource principal. The security context encapsul ates shared state
information, required so that communication between the application server and the EIS can be protected
through integrity and confidentiality mechanisms. Examples of shared state information that is part of a
security context are cryptographic keys and message sequence numbers.

A secure association between an application server and an EIS is always established by the resource adapter
implementation. Note that a resource adapter library runs within the address space of the application server. A
resource adapter can use any security mechanism to establish the secure association.

Once a secure association is established successfully, the connection is associated with the security context of the
resource principal. Subsequently all application-level invocations to the EIS instance using the connection happen
under the security context of the resource principal.

5.4 Managing Security

Various roles areinvolved in the devel opment of an application and EIS integration. Each role hasits own
particular involvement with the security architecture and its own set of responsibilities. Here we examine how
security management impacts the roles of application component provider, deployer, application server vendor,
EIS vendor, resource adapter provider, and system administrator.

45

5.4.1 Role of the Application Component Provider

The application component provider does not have the burden of securing the application. Instead, the provider
can focus on devel oping the application's business logic and integrating with EISs. He or she has only to
declaratively specify the security requirements for the application in the deployment descriptor. Other roles, such
as the application server vendor, resource adapter provider, and deployer, are responsible for satisfying the overal
security requirements for applications and for managing the security environment.

The component provider can also manage security at the application level by using a simple programmatic
interface. Using this interface, the provider can include code to allow access control decisions based on the
method caller's security context (that is, the caller's principal and role). The component provider can also
incorporate a programmatic sign-on to an EIS.

5.4.2 Role of the Deployer

The deployer specifies security policies that ensure an application component's secure access to the underlying
EIS. Using tools specific to the environment, the deployer adapts an application's security requirements for
connecting to an EISto the actual security mechanisms that the application server and the EIS offer.

The deployer performs several tasks for each connection factory reference declared in the application
component's deployment descriptor. To start, the deployer provides a connection factory with a specific security
configuration, such as user name and password, for creating and managing connections to an EIS instance. The
deployer aso binds the connection factory reference to the connection factory instance registered in the JNDI
namespace. This binding is done in the deployment descriptor. If security is to be managed by the
container—when the res-auth deployment descriptor element is set to Container—the deployer also hasto
configure the necessary security information for EIS sign-on.

5.4.3 Role of the Application Server Vendor

The application server vendor provides an environment that ensures secure access to connected EISs. The
environment includes specific security policies and mechanisms to support the security requirements of deployed
application components and resource adapters. The vendor may also provide support for asingle sign-on
mechanism that spans the application server and its supported EISs.

Additionally the application server vendor provides the tools that the deployer usesto set up the security
information for resource principals and EISs. The vendor also supplies tools to support the management and
administration of a security domain. Security domain administration includes setting and maintaining the
underlying authentication services and trusts between domains. These tools are almost always specific to the
vendor's own technology and thus vary among application servers.

5.4.4 Other Roles

The EIS vendor, resource adapter provider, and system administrator also have roles in security management for
EISintegration. The EIS vendor must provide a security infrastructure and environment that supports the security
requirements of client applications. The EIS vendor may set up a separate security domain with its own security
policies. Or, it may set up its security environment to be part of the enterprise-wide security domain.

The resource adapter provider implements the security management contract of the Connector architecture and
provides aresource adapter that supports the security requirements of the underlying EIS. The resource adapter
provider uses the deployment descriptor to specify the resource adapter's security capabilities and requirements.

Last, the system administrator coordinates security tasks with the administrators of the various EISs deployed in
the operational environment. Some system administrator tasks are

e Setting up an operational environment based on the technology and requirements of the authentication
service.

o Configuring user accounts for the application server and the EIS. This user account information is used to
authenticate users who request to be connected to an EIS.

« Establishing password synchronization between the application server and an EIS. With password
synchronization, the application server passes the user's password to the EIS when the EIS requires
authentication. This ensures that the user's security information is the same on both the application server
and the EIS.

46

5.5 Security Example

Here we examine how the Connector architecture security contract applies to the order management application
introduced in Chapter 2. Recall that ACl's order management application integrates with two separate databases, a
customer database residing on a mainframe and an order database, arelational DBMS. The order management
application also interacted with an inventory management application, alogistics application, and afinancial
application.

From the security point of view, we are most interested in the order management application's relationship to the
inventory management and logistics applications, as shown in Figure 5.2

Figure5.2. Order Management Application Architecture

M

Customer
Database

e

Order
Database
Order Management
J2EE Application Inventory Management
Application

Logistics Application

5.5.1 Security Environment

ACI has divided the management of its information systemsinto different departments. Asaresult, oneIT
department manages the mainframe inventory management application and a different IT department manages the
ERP system logistics application. These two applications are also in different security domains. Each application
system supportsits own EIS-specific security policy and security technology and mechanisms. (See Figure 5.3.)

Figure 5.3. Example Security Environment
Mainframe Security Domain

ACI

:

|

|

L .) | |Inventory Management
Application Security Domain : Application

| Mainframe System

|

1

—————————————————————— 1
Application Server \

[}

I

i

: Logistics Application
........................... 1 : ERP s},sm,m

i

i

I

I

|
|
I
I
i
[}
i L
Web HTTR/S] y| Order Management
Browser [Application
I
I
i
I
I
|
|
|
[}
[}

ERFP System Security Domain

In our example, we assume that the mainframe inventory management application supports basic user-password
authentication. We al so assume that the ERP system supports a K erberos-based security mechanism.

47

To handle security between the order management application and the inventory management application, the
mainframe system administrator has created an inventory management account called OrderApplicationUser.
This account is primarily set up for the order management application to use. The OrderApplicationUser account
isallowed access only to the business objects and functions that pertain to inventory management as required by
the order management application. The system administrator sets up the user password and specific access rights
for this account.

A similar user account handles security between the order management application and the ERP logistics
application. The ERP system administrator has configured an existing logistics application account called
AppUser for the order management application to use. The system administrator also configures this account to
use the Kerberos-based security mechanism of the ERP system.

The application server administrator, as part of the operational environment of the application server, configures
access to an organization-wide LDAP-based directory service. This directory contains account information,
including name, password, role, and access rights, for al the employees in the organization.

Not only are the inventory management and logistics applications physically separate from each other, they are
also physically separate from the application server configuration for the order management application. This
physical separation requires that a secure communication be established between the application server and the
ElISs. The resource adapter for each EIS assumes the responsibility for setting up the secure communication.

5.5.2 Example Deployment

The order management application consists of a set of enterprise beans responsible for connecting to and
accessing the inventory management and logistics EISs.

These enterprise beans rely on container-managed sign-on. As aresult, the EJB container assumes the
responsibility for managing sign-on to both EISs, and it manages EIS sign-on based on the deployment
configuration.

When deploying the order management application and the two resource adapters, the deployer configures the
security information in the application server required to create connections to the inventory management and
logistics applications. The deployer performs the principal mapping configuration as shown in Figure 5.4.

Figure 5.4. >Principal Mapping for Order Management Application

Inventory Management
Application
Mainframe System

<Resource Principal: OrderApplicationUser=

Order Management
Application

<Initiating Principal: Customer=

Logistics Application
ERP System

<Resource Principal: AppUser=

Principal mapping configuration ensuresthat all connections to the logistics application are established under the
security context of the AppUser, the resource principa for the ERP system security domain. Similarly, all
connections to the inventory management application are established under the security context of the
OrderApplicationUser.

The application server handles the principa mapping for al authenticated initiating principals—that is, customers
accessing the order management application—when the order management application connects to either the ERP
system or the mainframe system. A customer accesses either EIS under the security context of the appropriate
configured resource principal: OrderApplicationUser for the inventory management application and AppUser for
the logistics application.

48

5.6 Conclusion

This chapter explained the support provided by the Connector architecture for secure EIS integration. It
introduced and explained the relevant security concepts and terminology. It aso described the types of sign-on to
ElSs—either component or container managed—and showed how each such sign-on is handled and the trade-offs
of these different approaches.

Handling security involves the participation of different players or roles, and the chapter briefly described the
responsibilities of theseindividuals. Last, it extended the order management application example to show how
security might be handled within the Connector security management framework.

Chapter 6 focuses on communication between applications and EISs, particularly the Connector architecture's
support for asynchronous communication.

49

Chapter 6. Asynchronous Messaging

Different forms of interaction modes are used for communication between applications and EISs. The 1.0 version
of the Connector architecture provides support for synchronous communication with EISs. The 2.0 version of the
Connector architecture adds support for asynchronous communication between applications and EISs. This
chapter focuses on the support that the Connector architecture provides for asynchronous communication.

The chapter aso describes the Java™ Message Service (JMS) in the context of the Connector architecture. For
those readers not familiar with IMS, it includes a brief primer on IMS and explains its relationship with the
Connector architecture and EIS integration. Scenarios illustrate this relationship.

It helps to understand synchronous communication to better understand asynchronous communication in relation
to EIS integration. We begin with a short discussion of synchronous communication before we delve into the
details of asynchronous communication.

6.1 Synchronous Communication

Synchronous communication between an application that is deployed and operational on an application server and
an EIS follows a request-response interaction model. In this type of synchronous communication, an application
initiates a request to the target EIS. The application then blocks its processing in the request invocation thread
while it waits for aresponse from the EIS. The application continues its execution after it receives the response.
Figure 6.1 shows this synchronous request-response model, though it does not show the involvement of aresource
adapter and an application server in the synchronous invocation processing.

Figure 6.1. Synchronous Request-Response M odel

Client
Application EIS

Request

Response H

The 1.0 version of the Connector architecture supports a synchronous request-response interaction mode where an
application component that is deployed and operational on an application server initiates the synchronous request.
The application server and the resource adapter for the underlying EIS manage transaction and security as part of
the synchronous request-response interaction mode. They base this support on the 1.0 Connection architecture
system contracts. The resource adapter takes the responsibility of propagating the security and transaction context
to its underlying EIS using an EIS-specific communication protocol.

Keep in mind that the Connector architecture does not define any EIS-specific communication protocol. However,
you should note that the 1.0 version of the CCI does provide support for two additional communication modes.
These modes are:

e SYNC_SEND— Theclient application does a synchronous send to the target EIS.
e SYNC_RECEIVE— The client application does a synchronous receive from the target EIS.

Most EISs use the preceding synchronous request-reply interaction model. An EIS defines a remote function
call-based API, which it exposes to applications that want to issue synchronous requests to the EIS. For example,
an EIS might define an API that includes a remote function to create an account receivable itemin the EIS. This
remote function is callable by a client application. When an enterprise application deployed on an application
server wants to interact with the EIS to create an account receivable item, it invokes this remote function on the
EIS and waits until it receives areply. The reply contains the results of the function's execution on the EIS. Such
an interaction is considered synchronous because the invocation thread of the calling application waits
synchronously during the time the function executes on the EIS. The invocation thread of the calling application
continues when the remote function returns.

50

A synchronous mode of interaction leads to atight coupling between an application deployed on an application
server and an EIS. Thistight coupling raises several issues that should be taken into consideration when
integrating applications with EISs.

6.1.1 Issuesto Consider

In atightly coupled scenario, application performance may be closely tied to the performance of an EIS. Consider
a scenario where an application that is deployed on an application server needs to access an EIS to process
client-initiated requests. The application itself may be designed to handle multiple concurrent client requests. The
application may employ either a multithreaded implementation or multiple application instances may be running
on multiple application server processes on a cluster of nodes. When an application instance receives a client
regquest, it synchronously invokes an EIS function. The invocation thread in the application processis then
blocked from further processing until it receives areply from the target EIS.

Suppose that the target EIS has a limited-load capacity. That is, unlike the application, the EIS is capable of
handling only alimited number of concurrent requests at any particular instance. Although the application is
capable of handling many more concurrent client requests, it may find when communicating synchronously with
the EIS that the EIS may be unable to process the same number of concurrent requests. In addition, the same EIS
may support alimited number of concurrent connections. This scenario istypical for ElSsthat offer limited
scalability. In atightly coupled synchronous integration, the application's response time and throughput for client
requests may drop because the application threads must wait for synchronous invocations on the EIS to complete.
Thusit's easy to see how synchronous communication tightly couples the application's response time to the
performance and throughput of the target EIS. Even though the application is capable of scaling up and handling
alarge number of concurrent client requests, an EIS with alimited-load capacity may constrain the application's
response time.

Asynchronous communication between an application and an EIS addresses this performance issue, which we
explain later in this chapter in the section “ Asynchronous Communication.”

6.1.2 Dependency on Specific Middlewar e M echanisms

In nonstandard integration platforms, synchronous remote function calls typically expose the underlying
distribution and transaction management mechanisms. These mechanisms may be based on a middleware
standard or they may be vendor specific.

When the synchronous communication APl exposes these mechanisms and an application uses such an API, the
application may become tightly coupled to the middleware mechanisms for transactions, distribution, and security.
Thistight coupling causes problems if the same application needs to integrate with other types of EISs. The
application has been conducting its EIS communication in accordance with some vendor-specific mechanism, and
it now faces the technical challenge of redesigning its communication model to handle a different middleware
mechanism.

The Connector architecture addresses this problem by defining EIS-independent system contracts and an
independent client API. The resource adapter abstracts its protocol and ElS-specific mechanisms on its
implementation. These abstractions are not exposed to either the application or the container.

6.1.3 Dependency Between EISand Application

The tight coupling that results from synchronous communication also raises issues in terms of the relationship
between the application and the EIS. There may be too much dependency between the application and the EIS.

For example, the application’'s performance is impeded if communication fails between the application and the
EIS. When such a communication failure occurs, such asif the EISis down or otherwise unavailable, the
application’'s synchronous request may return immediately with areply indicating an error. When this happens,
the application may need to retry the synchronous invocation that failed.

Or, the EIS may successfully execute the application's request but, because of acommunication failure, the EIS
may fail to send areply to the application. To handle these situations, the application must include logic to time
out the blocked request; otherwise, it will hang indefinitely waiting for a response. The logic must also include
the ability to initiate aretry of the failed request. This situation creates atight coupling between the application
and the EIS.

51

These issues must be considered based on the requirements of your integration scenario and the capabilities of the
target EIS.

6.2 Asynchronous Communication

With asynchronous communication, an application sends a request to an EIS. The application thread that sent the
request (the request sender) continues its own processing—that is, the thread does not block—while the EIS
handles the request asynchronously. The request sender does not have to wait for the EIS processing to complete
and for the reply to come back. Instead, the thread returns after sending the message and it can continue
processing client requests. Figure 6.2 shows this asynchronous interaction model.

Figure 6.2. Asynchronous Communication

Client
Application EIS
L Request J
[]
Response |:|
L] ‘

In this book we focus on asynchronous message-based communication, of which there are two forms:
gueue-based communication and publish-subscribe messaging.

In queue-based communication, or point-to-point messaging, an application sends a message to a message queue.
A message queue is independent from both the sender and receiver applications. The message queue acts as a
message buffer between the communicating applications. The sender application sends a message to this queue,
and the receiver application receives its messages from the queue. In this form of communication, an application
and an EIS can be senders and receivers relative to the message queue.

The publish-subscribe messaging mechanism operates differently from queue-based messaging. In this
mechanism, a publisher application publishes messages on a specific topic. Multiple applications, called
subscribers, can subscribe to this topic and receive the messages published by the publisher. The
publish-subscribe facility takes responsibility for delivering the published messages to the subscribing
applications based on the subscribed topic.

To put publish-subscribe messaging in more technical terms, a publishing application publishes its message to a
well-known node, called atopic, within a content-based hierarchy. Y ou can think of a publish-subscribe system
as amessage broker that gathers and distributes messages. The topic serves as the intermediary between message
publishers and message subscribers.

Regardless whether queue-based or publish-subscribe messaging is used, a message represents structured data
exchanged through asynchronous message-based communication. A message carries information used within a
single enterprise's business processes or across the business processes of multiple enterprises. For example, a
message can represent information required to invoke an EIS function. A message can also carry the results of
this function invocation.

When asynchronous communication is used, an application and an EIS are said to be loosely coupled. With a
loosely coupled integration between atarget EIS and an application, an application thread can continue
processing client requests without blocking on EIS performance or communication glitches. The application is
not tightly coupled to the EIS or the communication delivery mechanism, asis the case with synchronous
communication.

52

6.3 Connector Architecture 2.0 Message Handling

We explained earlier that the 1.0 version of the Connector architecture focuses on a synchronous request-response
interaction mode between an application and EIS. An application that is operational on an application server
initiates a synchronous request and receives a synchronous response. This form of synchronous request-response
communication is suitable for amajority of application integration scenarios that use an application server asan
integration platform.

Additional interaction modes provided by the CCl, such as SYNC_SEND and SYNC_RECEIVE, provide support
for additional integration scenarios. For example, aresource adapter can be developed for a message bus that
supports asynchronous message-based communication. However, interactions between an application and this
message bus that take place through the resource adapter are considered synchronous because they are supported
by the SYNC_SEND and SYNC_RECEIVE interaction modes.

However, many EIS integration scenarios require loosely coupled asynchronous communication between the
applications and the EISs. The 2.0 version of the Connector architecture addresses asynchronous integration with
ElSs, and thisis an important feature of the architecture. The 2.0 version of the Connector architecture intends to
support the following interaction modes:

e Asynchronous inbound communication

e Asynchronous outbound communication

e Synchronous inbound communication

e JMS-based communication

Keep in mind that, at the time this book went to press, the design details for this support had not yet been
finalized.

6.3.1 Asynchronous Inbound Communication

An EIS initiates asynchronous inbound communication and targets the communication for an application that is
deployed and operational on an application server. In this interaction mode, an EIS initiates an asynchronous
request for the target application and a message-driven bean acts as a consumer of this asynchronous request. (See
the section “Message-driven Bean” later in this chapter for more information on message-driven beans.)

Note that because this interaction mode does not involve a message queue, it cannot guarantee request delivery or
reliable messaging.

The resource adapter and the application server take responsibility for dispatching the incoming request to the
message-driven bean using a set of system contracts defined between the application server and the resource
adapter. The Connector architecture 2.0 specification defines the system-level contracts for handling
asynchronous inbound communication. (These contracts are extended from the system contracts defined in the 1.0
version of the Connector architecture.) Figure 6.3 shows this interaction mode.

Figure 6.3. Asynchronous Inbound Communication

Message-driven Resource
Bean Adapter EIS
- Request
Dispatches

6.3.2 Asynchronous Outbound Communication

In an asynchronous outbound communication mode, an application component on the application server sends an
asynchronous request to the target EIS. A resource adapter for the underlying EIS takes responsibility for sending
thisrequest to the target EIS. The resource adapter uses the Connector-defined system contracts with the
application server to dispatch this request to the target EIS. Figure 6.4 illustrates this interaction mode.

Figure 6.4. Asynchronous Outbound Communication

53

Application Resource
Component Adapter EIS

f}_____________lx

Request .

Similar to asynchronous inbound communication, this interaction mode also does not involve a message queue
and thus cannot guarantee request delivery or reliable messaging.

6.3.3 Synchronous | nbound Communication

With synchronous inbound communication, an EIS initiates a synchronous request-response interaction with an
application on the application server. Note that this mode is the opposite of the synchronous request-reply
initiated by an application. In synchronous inbound communication, a resource adapter and an application server
use the Connector system contracts to dispatch the incoming synchronous request to an appropriate type of target
application component. This incoming synchronous request may involve propagation of the transaction and
security context. For example, an incoming request may lead the target application to participate in the
ElS-initiated transaction. In such a case, it is not necessary that a message-driven bean be the target component.

Figure 6.5 illustrates the synchronous inbound communication mode.

Figure 6.5. Synchronous Inbound Communication

Message-driven Resource
Bean Adapter EIS
Request J_
o___Dispatches
Response
T

6.3.4 IM S-based Communication

It is aso possible for an application on the application server and an EIS to integrate using a JM S provider for
either queue-based or publish-subscribe-based communication. In this mode, a IM S provider acts as a Connector
architecture-based resource adapter—that is, it implements the extended set of system contracts specified in the
2.0 version of the Connector architecture—and uses a standard manner to plug in to an application server.

Currently there is no standard system-level plug ability contract that enables multiple IMS providersto plug in to
an application server. A J2EE-based application server implements support for the IMS API by providinga JMS
provider with the application server. Then Java applications use the IMS API to access the underlying enterprise
messaging systems supported by the packaged JM S provider.

The section “ Java Message Service” later in this chapter provides more details about this interaction mode.

6.4 Communication Trade-offs

Tightly coupled integration is typical in scenarios where an application that is deployed on an application server
needs to aggregate its access to multiple EISs and perform transactions on these EISs. Usually, in this scenario, an
application server acts as an EIS integration server.

For example, a J2EE-compliant application server in atightly coupled EIS integration provides its platform and
services layered on top of a synchronous interaction model with back-end EISs. When an application deployed on

54

this application server receives a client request, it performs synchronous access to one or more EISs. The
application server manages the connections to the target EISs and increases the scalability of deployed
applications. In addition, the application can initiate transactions across multiple EISs. The application server may
propagate the transaction and security context to the target EISs as part of the synchronous interactions.

In addition, many existing EISs and applications support a synchronous request-reply model of interaction.
Although it is possible to adapt such synchronously modeled EISs to an asynchronous messaging model, such
adaptation entails additional costs and infrastructure. The section “ J2EE Platform and EAI” later in this chapter
describes such loosely coupled integration in more detail.

Y ou must decide whether or not your application uses synchronous communication and thus is tightly coupled
with an EIS. It is best to make this decision after considering the following factors:

o Easeof integration versusmore services— An asynchronous message-based communication using a
gueue or a publish-subscribe system provides more quality of services, such as message routing and
reliable delivery, compared to the synchronous request-reply programming model. However, these
additional services require a more advanced, and costly, programming model.

o Typeof application scenario— A tightly coupled integration is more suitable in those application
server-based integration scenarios where

o An application needs to access one or more EISs synchronously for processing a client request.

o An application can afford atighter coupling with an EIS in terms of request processing and error
handling.

o Anapplication initiates a transaction across multiple EISs as part of processing a client request.

e Infrastructurerequirements— An asynchronous message-based integration requires an enterprise to
invest in message brokers or message bus-based integration platforms. Currently such message brokers are
not based on any standard architecture. Most message broker vendors provide vendor-specific adapters for
popular ElSs. These adapters are specific to a message broker product and require an in-depth knowledge
of the message broker's proprietary APIs and message format. Such requirements add to the complexity of
building these vendor-specific adapters and also lock you into using a particular vendor.

In addition, keep in mind that application server environments are becoming the standard for many enterprises.
Such standardization increases the need for an enterprise application integration solution that is based on an
application server environment and that supports EIS integration requirements for applications deployed on an
application server. It appears to be more cost effective to invest in an EAI solution that integrates well with an
application server environment than in one that does not integrate well.

6.5 Enterprise Messaging Technologies

Enterprise messaging systems, which are also called messaging-oriented middleware (MOM) products, provide
support for asynchronous message-based communication.

Because asynchronous messaging is considered to be peer-to-peer communication, an application can act as both
producer (or sender or publisher) and consumer (or receiver or subscriber) of an asynchronous message. In a
typical scenario, an application connects and establishes a session with a messaging system using the system's
API. For example, the IMS API isastandard Java APl defined for enterprise messaging systems. Once the
session is established, the application can produce and consume messages using the API defined by the
underlying messaging system.

What sorts of services do these enterprise messaging systems provide? An enterprise messaging system may
provide support for both publish-subscribe and queue-based messaging. In addition, a messaging system may
provide the following services: message routing, transaction management, reliable message delivery, message
priority and ordering, and message transformation.

e Messagerouting— A messaging system can process and route messages to one or multiple peer
applications. The messaging system uses the routing in formation carried within amessage. This
information could include the names of the source and destination for a message, for example.

e Transaction management— A messaging System can act as a transactional resource manager. When
the messaging system provides this service, a client application uses a transaction model to interact with
the messaging system. For example, a client application can produce a set of messages and use a
transaction to group the messages into a single atomic unit of work. When the transaction commits, the
messaging system sends the set of messages as one unit. If the transaction rolls back, the messaging
system discards the entire set of messages produced by the application within the rolled back transaction.

55

e Reliable message delivery— A messaging system can provide different levels of message delivery
semantics, from making an attempt to deliver the message (called at-most-once delivery) to guaranteeing
that the message is delivered (called exactly-once delivery). When a messaging system promises
exactly-once delivery, the messaging system guarantees that it will do the following:

o Properly produce the message on behalf of the source application.
o Déliver the message reliably to the destination.
o Ensurethat the message is properly consumed by the consumer application.

To accomplish exactly-once delivery and to support reliable message delivery, the messaging system uses
atransacted persistent messaging facility. This facility ensures that committed messages are not lost if the
messaging system suffers afailure of some kind. By contrast, with at-most-once delivery, an application
sends a non-persistent message. It's possible that this message can be lost. This can happen, for example,
if the messaging system fails.

e Messagepriority and ordering— Some enterprise messaging systems permit applications to assign
priorities to messages and to indicate a delivery order. An application can assign a higher or lower priority
to its messages, so that the messaging system delivers higher priority messages ahead of lower priority
ones. An application can also indicate that the messaging system should deliver the messagesin serial
order. The scope of serial ordering could be within a destination, and that destination could be a specific
topic or queue based on the type of messaging system in use, or it could be across destinations, depending
on the particular messaging system'’s capabilities. The messaging system can guarantee that it delivers
messages serially in the order sent by the application.

e Messagetransformation— Some more advanced messaging systems support message transformation
and use of rules engines. When a message flows through such a messaging system, the system transforms
the message based on the system's configured set of rules and defined message schemas. For example, the
messaging system could transform the format of a particular message to one that is better understood by
the intended consumer. The message system first transforms the message, then routes the message to the
appropriate consumer applications. It is also possible for an enterprise messaging System to integrate with
amessage repository that provides a messaging client with information on message schemas, metadata for
message transformations, and a set of configured rules.

6.6 Java Message Service

The Java Message Service (JMS) is a standard Java API defined for enterprise messaging systems. It is meant to
be a common messaging API that can be used across different types of messaging systems. A Java application
usesthe IMS API to connect to an enterprise messaging system. Once connected, the application uses the
facilities of the underlying enterprise messaging system (through the API) to create messages and to communicate
asynchronously with one or more peer applications.

The M S specification includes the concepts of aclient, API, provider, and messaging system, asillustrated in
Figure 6.6.

Figure 6.6. IMS API and JM S Provider
JMS AP

JMS Client _
Application —H JMS Provider ‘
\ Messaging System

6.6.1 IMS Overview

A IMS provider implements the IMS API for an enterprise messaging system and provides access to the services
provided by the underlying message system. Vendors who provide application servers also include aJM S
provider implementation as part of an application server. Currently, aJMS provider is plugged in to an
application server in avendor-specific manner. The Connector architecture 2.0 version defines a standard for
plugging a JMS provider in to an application server. This standard means that a JM S provider can be treated
similarly to aresource adapter in terms of the system-level contracts that are based on the Connector architecture
2.0 version. However, aJMS provider will have aJMS API asaclient API for its underlying enterprise

messaging system.

56

A client application, which we call aJMS client, uses the IMS API to access the asynchronous messaging
facilities provided by the enterprise messaging system. Because JM S supports peer-to-peer messaging, both
source (or producer) and destination (or consumer) applications act as clients to the IMS provider. Note that a
client application can be an application client or some J2EE component. The section “Message-driven Bean” later
in this chapter discusses the message-driven bean that acts as a message consumer based on the EJB component
model.

A JMS domain identifies the type of asynchronous message-based communication that a JM S provider and an
underlying enterprise messaging system support. The two domain types are queue-based point-to-point or
publish-subscribe. The application programming model for a Java application that uses the IMS API differs
depending on the type of domain that the application uses. For example, a Java application uses the queue-based
interfaces QueueConnectionFactory and MessageQueue, among other queue-based interfaces, to interact with a
point-to-point domain. (The JM S specification defines these interfaces.)

6.6.2 IMSInterfaces

This section isintended to be a brief primer on the IMS API specification. For more complete information, you
should refer to the online version of the IMS API specification. (Refer to the Preface for the URL to this
specification.)

A Java application uses the IMS interfaces as part of its application programming model to access the messaging
facilities that the IM S provider and the underlying enterprise messaging system provide. Here we briefly present
the IM S interfaces for facilities common to both queue and publish-subscribe messaging domains. Later, we
show how to use these interfaces in different application scenarios.

6.6.2.1 JIM'S Common Facilities

The IMS API specifies aset of Javainterfaces that are part of the common facilities in the javax.jms package.
Y ou should refer to the IM S specification for more details on these interfaces.

e TheDestination interface— Encapsulates the representation of a destination address. An application
sends or publishes a message to a destination. Examples of destinations are message queues or topics (see
the next section, “JMS Publish-Subscribe Model”). A destination is configured as an administered object in
the INDI namespace.

« The ConnectionFactory interface— Represents afactory of connections to an enterprise messaging
system. When instantiated, a ConnectionFactory instance is first configured with the configuration
required for creating connections to the messaging system. It is then registered in the INDI namespace. An
application looks up a ConnectionFactory instance and uses it to create a connection to the enterprise
messaging system. In this sense, the IMS programming model is similar to the Connector
architecture-based application programming model.

e TheConnection interface— Represents an active connection to an enterprise messaging system. Once a
connection is established, a Java application can use the messaging facilities of the connected messaging
system.

e The Session interface— Represents a single-threaded context for producing and consuming messages.
Note that a Session instance can be specified as transacted. A transacted session enables an application to
use a transaction model for producing and consuming messages.

e TheJMSMessageinterface— Encapsulates the representation of a message. Each IMS messageis
composed of header (a set of standard fields) and body sections. The JIM S specification lists the standard
header fields, which can include destination of the message, delivery mode, message identifier, timestamp,
and priority. In addition to the standard fields, a message header can contain application-specific and IMS
provider-specified fields. The datain the message body can be described by one of these types:

StreamM essage, M apMessage, TextMessage, ObjectM essage, or BytesM essage.

e TheMessageProducer interface— Isused by a Java application to send messages to adestination. If a
Java application creates a MessageProducer without supplying a destination, it must pass a destination as
input to each message sent.

e TheMessageConsumer interface— |sused by a Java application to receive messages from a
destination. A Java application can receive messages synchronously by using the synchronous receive
option, or it can have a JMS provider deliver the message asynchronously through a MessageL istener. A
Java application can configure a message selector to filter the messages that are delivered to a consumer.

In addition to these interfaces, IMS specifies the Java interfaces that extend the common interfaces for supporting
both publish-subscribe and queue-based point-to-point messaging domains.

57

6.6.2.2 JM S Publish-Subscribe M odel

The IMS API enables a Java application (acting as a JIM S client) to interface with a publish-subscribe message
facility. A IMS client can publish messages to atopic. As noted previously, atopic gathers and distributes
messages that are addressed to it. An example of atopic isastock quote provider for a specific ticker symbol or a
node representing purchase order acknowledgments. A messaging system arranges topics in a hierarchy and
associates access control lists (ACLs) with these topics. The ACL associated with atopic controls whether or not
aparticular IMS client is authorized to subscribe to that topic.

A topic represents aform of association between the publisher and subscriber. One or more IM S clients act as
subscribers to a specific topic. Publishers publish messages to this topic. The publish-subscribe messaging facility,
in turn, delivers these published messages to the subscribers. Throughout the process, publishers and subscribers
remain independent of each other. Figure 6.7 shows the IM S publish-subscribe model.

Figure 6.7. IM S Publish-Subscribe M odel

JMS Client
<Subscriber=
Topic /”i*
JMS Client O
<Publisher> Publish-subscribe
Messaging System \
JMS Client
<Subscriber=

When a subscriber subscribes to atopic, that subscription can be durable or nondurable. A nondurable
subscription lasts only during the lifetime of the subscriber. When a subscriber uses a nondurable subscription on
atopic, then, when that subscribing JMS client is inactive, the subscriber misses messages that the publisher has
sent to this topic. However, the IMS publish-subscribe facility retains messages for an inactive subscriber if the
subscriber created a durable subscription on atopic. The requirements of an application dictate the use of durable
versus nondurabl e subscriptions.

JMSS extends the common Java interfaces (these were discussed in the section “IJM S Common Facilities”) so that
they support the publish-subscribe messaging facility. These publish-subscribe interfaces are as follows:

e TheTopicinterface— Encapsulates aprovider-specific identity or address for adestination in a
publish-subscribe messaging domain. A IM S client publishes and subscribes to a specific topic.

e TheTopicConnectionFactory interface— Actsasafactory for connectionsto a JM S publish-subscribe
messaging system.

e TheTopicConnection interface— Represents an active connection to a JM S publish-subscribe
messaging system. A JM S client uses a TopicConnection instance to create one or more TopicSession
instances.

e TheTopicSession interface— Represents a single-threaded context for aJMS client so that the client
can publish and receive messages. A JM S client uses a TopicSession instance to create TopicPublisher
and TopicSubscriber instances.

e TheTopicPublisher interface— Isused by aJMS client to publish messages on atopic.

e« TheTopicSubscriber interface— Isused by aJMS client to receive messages that have been published
to a specific topic. By default, a TopicSubscriber represents a nondurable subscription. When a
subscription is nondurable it means that a JIM S client can only receive messages when the client is active.
A IJMS client can create a durable TopicSubscriber so that it registersits intention to recelve messages
published even when the client was inactive.

6.6.2.3 JM S Queue-based M od€l

JMSS also supports a queue-based model using point-to-point messaging. With IMS queue-based messaging, a
JMS client, acting as a sender, sends messages to a specific message queue. The message queue, in turn, delivers
the message to the receiver application. The JIMS message queue facility provides the point-to-point
communication between two applications.

58

Figure 6.8 shows the IM S queue-based model. The diagram shows two JM S clients. The sender actsasaJMS
client and sends a message to a message queue. Note that a messaging system provides a message queue, and the
message queue is a pre-configured resource that is statically created. The receiver isaJMS client that consumes
the message and optionally acknowledges its receipt.

Figure 6.8. IMS Queue-based M essaging M odel

JMS Client ,()) o JMS Client
<Sender> Queue <Receiver>

Cueve-based
Messaging Syslem

JMSS extends the common Java interfaces (discussed earlier in “JMS Common Facilities”) to support the
point-to-point queue-based messaging facility. These queue-based interfaces are as follows:

e TheQueueinterface— Encapsulates aprovider-specific identity or address for adestinationin a
gueue-based messaging system. A JMS client sends and receives messages to and from a queue. Typically,
gueues are long-lived static resources that are created and del eted by the messaging system administrator.

o The QueueConnectionFactory interface— Actsasafactory for connectionsto a JM S queue-based
messaging system.

« The QueueConnection interface— Represents an active connection to a JM S queue-based messaging
system. A JMS client uses a QueueConnection to create one or more QueueSession instances.

e The QueueSession interface— Represents a single-threaded context for aJM S client to send and
receive messages to and from a specific queue. A IMS client uses a QueueSession instance to create
QueueSender and QueueReceiver instances.

e TheQueueRecever interface— Isused by aJMS client to recelve messages that have been delivered to
aqueue.

e TheQueueSender interface— Isused by aJMS client to send messages to a queue.

6.7 JMS and EAI

In atypical EAI configuration based on asynchronous messaging, a message broker provides support for
asynchronous messaging using publish-subscribe or queue-based mechanisms, message routing, and
transformation.

Multiple enterprise applications and EISs use adapters to plug in to these message brokers. These adapters are
specific to each EIS and enterprise application and developed for a specific message broker product. A J2EE
application—that is, an application deployed and operational on a J2EE application server—can access this
message broker using a standard JIM S provider.

Because these applications and EISs can act as both message producers and consumers, their integration appears
as a hub-and-spoke model with a message broker as the hub. For example, afinancial accounting application can

subscribe to messages that carry information on financial transactions. A message broker delivers messages from
applications and EISs to the financia accounting application. (See Figure 6.9.)

Figure 6.9. M essage Broker Hub-and-Spoke M odel

59

JQEE EIS A

Applur.atucn
JMS Cuslﬂm
Provider Adapter

Message Broker

— / \

Applucauan I

Custom Custom
Adapter Adapter

A custom adapter adapts an EIS or enterprise application into the message broker. An adapter may also layer
additional functionality in the form of message transformation and support for higher level business process
abstractions. As aresult of this adaptation, the EIS can integrate with other applications that use the services of
the message broker. Most message broker vendors provide their own vendor-specific adapters for popular EISs.
Development of these adapters requires an in-depth knowledge of the message broker's proprietary APIs and its
message formats. Requiring such knowledge adds to the complexity of building custom adapters.

A message broker vendor may provide a JM S provider such that a JM'S client can access the services of a
message broker for EAI purposes. A JMS provider for a message broker enables Java applications to access the
message broker using the IMS API. The M S provider maps the IMS API to the underlying messaging
facilities—queue-based or publish-subscribe asynchronous messaging—and the message formats supported by
the message broker. A IM S provider, through this mapping, becomes more of a JM S-based adapter for the
underlying message broker.

6.8 J2EE Platform and EAI

The J2EE 1.3 platform requires that application server vendors support the IMS API. Earlier versions of the J2EE
platform only recommended that JM S be supported. However, the majority of application server vendors had
already supported the IMS API because of itsimportance for asynchronous messaging.

JMS combined with the Enterprise JavaBeans 2.0 architecture message-driven beans together provide support for
loosely coupled asynchronous integration scenarios using a J2EE application server. With IMS and
message-driven beans, J2EE components—whether they are servlets or enterprise beans—may act as message
producers. The EJB 2.0 specification defines a message-driven bean as an enterprise bean component type that
acts as a message consumer for JIMS messages.

A J2EE-based application server can act as an enterprise application integration server, and it can use
asynchronous messaging and the Connector architecture to integrate applications and EISs. J2EE components act
as both message producers and consumers relative to EISs and existing applications. The JMS provider in the
application server takes the responsibility for delivering and routing messages across message producers and
consumers. Application components need only drive the business processes and message transformations. In this
environment, communication among application components can be either synchronous or asynchronous. EISs
and existing applications plug in to the application server using either synchronous resource adapters or aloosely
coupled asynchronous resource adapter.

Figure 6.10 shows the integration server approach based on a J2EE application server.

Figure 6.10. J2EE Application Server Integration Approach

60

JZEE Application Server

) j EISA

|| Resource
Web Adapter
Component
4 W EISB
- Resource
JMS Adapler
Provider
F Y
T EISC
h i
JMS
Provider
EJB 4 » EISD
Web
Clients | Resource

Wb Adapter
Component
Application
Client Message-driven
Bean J

JZ2EE Application Server

This approach differs from a message broker hub-and-spoke model, which is based on a proprietary message
broker and custom adapters. Here, a J2EE-based integration server is built on the standard J2EE platform and
APIs. Resource adapters are based on the standard J2EE Connector architecture. Application development is
simplified because integrated applications and business processes can be devel oped using the standard J2EE
application programming model.

This model also ssimplifies development of Web applications and services that integrate with multiple EISs and
existing applications. In short, this approach captures the key advantages of the standard J2EE
platform—simplified application development, a standard component model, support for tools, no vendor lock-in,
and simplified connectivity to EISs and relational database—and applies these advantages to EAI.

6.9 Message-driven Bean

The EJB 2.0 specification defines a new type of enterprise bean called a message-driven bean. A message-driven
bean extends the EJB architecture model to support consumers of asynchronous messages, thus enabling
EJB-based applications to integrate with IMS.

The EJB model for message-driven beans differs from that for session and entity beans. The EJB model for
session and entity beans indicates that an EJB client views an entity or session bean as a server-side component
with home and remote interfaces. An EJB client can synchronously invoke session beans and entity beans. When
the EJB client makes such an invocation, the EJB container dispatches a synchronous invocation to the
appropriate EJB instance.

A message-driven bean acts as a consumer of asynchronous messages. It implements business logic that isdriven
by the receipt and consumption of asynchronous messages. A client accesses a message-driven bean by sending
an asynchronous message to a JM S destination, either a queue or topic. When the EJB container receives the IMS
message, it invokes the linked message-driven bean. (See Figure 6.11.)

Figure 6.11. Message-driven Bean

61

J2EE Application Server

EJB Container

|
|
[
|
[
|
[
|
I
I
; Destinati
Message-driven ________e_sfgatmn ! - JMS
Bean [Client
—
I
I
I
I
I
I
I
I
I
I

JMS
Provider

Contrary to session and entity beans, a message-driven bean does not have aremote or local interface. A IMS
client views a message-driven bean through its associated JM S destination.

A JMS client acting as a message producer uses the IMS API to send or publish a message to a JM'S destination.
The client does not directly know that a message-driven bean may be the message consumer for a message sent to
aspecific IMS destination.

When a JM S client sends a message to a JM S destination, the EJB container creates an instance of the
message-driven bean class that is specified as the message consumer for that destination. The message-driven
bean instance receives the message and handles it based on its implementation. For example, a message-driven
bean might handle the received message by invoking other entity beans and driving some business logic.

A message-driven bean instance does not maintain any conversational state on behalf of any client. In that sense,
amessage-driven bean is conceptually similar to a stateless session bean. An EJB container can pool multiple
instances of a message-driven bean class and use these instances to handle concurrent processing of multiple
asynchronous messages.

6.10 Example

Asyou recall, the order management application presented in Chapter 2 in “ Example Scenario” uses IMSto
integrate in aloosely coupled manner with the financial applications on the ERP system. Here, we use this
example to explain how you can use asynchronous message-based communication, in the form of IMS and
message-driven beans, to integrate Java applications with existing applications.

Our example shows how the order management and financial accounting applications use a message queue to
perform an asynchronous point-to-point, message-based communication. Keep in mind that the financial
application may also be integrated using a synchronous communication approach, depending on the application
integration scenario. (See Figure 6.12.)

Figure 6.12. Using Asynchronous Point-to-Point M essaging

OrderManagement 3 () i :] » Fimancial App
Application FinAccounltQueue <ERP>

Clueue-based
Messaging Syslem

Code Example 6.1 shows the order management application code that produces a message targeted for the
financial accounting application on the ERP system. The message carries certain information, such as account
receivable information, that indicates to the financial system how to account for an order processing transaction.

Example 6.1 Session Bean as a M essage Producer
public class OrderManagementBean implements SessionBean {

62

private javax.jms.QueueConnectionFactory factory;
private Context ctx;
// ...

public void updateFinancialAccounts(PurchaseOrder po) {
Javax. jms.QueueConnection qcx;
Javax. jms._QueueSession gs;

try {
// Obtain the initial JNDI naming context

Context context = new InitialContext();

// Get a QueueConnectionFactory
Javax. jms.QueueConnectionFactory qcf =
(QueueConnectionFactory) context.lookup(*'java.comp/env/jms/FinAccountQueueFactory™);

// Lookup a queue configured in the JNDI context
// for component®s environment
Javax.jms._.Queue queue = (Queue)context.lookup(*'java.comp/env/jms/FinAccountQueue');

qcx = qcf.createQueueConnection();
gs = qcx.createQueueSession(true, Session.AUTO_ACKNOWLEDGE) ;

// Create a message producer
jJavax.jms.QueueSender sender = qgs.createSender(queue);

// Create ObjectMessage that carries PurchaseOrder.

// This message enables the financial application

// to receive PurchaseOrder and accounting information
// for the financial transaction.
Javax.jms.ObjectMessage msg = gs.createObjectMessage();
msg.setObject(po);

// Send the message with Purchase order
qcx.start(Q);

sender.send(msg) ;

gs.close();

qcx.close();

}
catch (Javax.jms.JMSException je) {

// ...
3

catch (NamingException ne) {
// ..
}

// ... Additional methods not shown
b

As background to the example, bear in mind that, because of the EJB 2.0 specification of the programming model
and deployment descriptor, the enterprise bean code refers to a connection factory using alogical name called
resource manager connection factory reference. Thisreferenceis aspecial entry in an enterprise bean's
environment. The deployer binds the resource manager connection factory reference to the actual connection
factory configured in the container.

At the start of the code snippet, OrderM anagementBean |ooks up a QueueConnectionFactory, which isthe
resource manager connection factory for QueueConnection. The lookup operation uses the name
FinAccountQueueFactory, which is alogical name declared in the java:comp/env/jms JNDI subcontext.

After the bean obtains the QueueConnectionFactory, it looks up a IMS Queue using JNDI. The environment entry
jJms/FinAccountQueue is the resource environment reference name that refersto this IMS queue, and that name
was assigned by the OrderM anagementBean provider. A resource environment reference allows an enterprise
bean to refer to an administered resource, such as a JM S Destination, using alogical name.

Now, the bean uses the QueueConnectionFactory to create a QueueConnection to the IMS provider. It then uses
the QueueConnection to create a QueueSession. Using the QueueSession, the bean creates a QueueSender.

At this point, the bean starts the QueueConnection so that the QueueConnection can begin delivering messages to
its message consumers. Finally, the OrderM anagementBean creates an ObjectM essage to send the PurchaseOrder
to the message consumers for this message queue. The QueueSender . send method sends the message to the

message queue.

63

The financia application in this asynchronous communication scenario acts as a message consumer. It receives
the purchase order and updates the financial accounts related to this order processing transaction. Because the
financial application is an existing application and is not Java-based, it must adapt into the message queue system
through a custom adapter. A custom adapter enables the financial application to receive messages through

message (ueues.

After updating the financial accounts for the order processing transaction, the financial application sends a
message that acknowledges the completion of the financial accounting transaction. In this case, the financial
application acts as a message producer and sends the message to a configured message queue. This queueis
configured to manage the financial accounting system's acknowledgment messages.

As noted previously, message-driven beans enable EJB-based applications to consume asynchronous messages.
An EIS or legacy application can act as a message producer and send messages to a JM S destination (Queue or
Topic) associated with a message-driven bean. The message-driven bean consumes these messages. (See Figure
6.13)

Figure 6.13. Queue-based Messaging System

OrderManagemeant
Application

4’{ j Mnuwledgmentuu&ue)—r Financial App
AccountingMDB <ERP>
& Clueue-based

Messaging System

Code Example 6.2 shows how the order management application provides a message-driven bean called
AccountingM DB that consumes acknowledgment messages. This message-driven bean acts as a message listener
for the messages sent on the message queue that handles the financia accounting acknowledgment messages.
From the perspective of the financial application, the message-driven bean is hidden behind this message queue.

Example 6.2 M essage-driven Bean as M essage Consumer

public class AccountingVMDB implements javax.ejb.MessageDrivenBean,
Javax. jms.MessageListener {
// ...
// Not shown: Constructor, ejbCreate, ejbRemove,
// setMessageDrivenContext

public void onMessage(Message message) {

try {
ObjectMessage objectMessage = (ObjectMessage)message;

AccountingAck ack = (AccountingAck)message.getObject();
// process the financial application acknowledgment

}
catch (Exception e) {

/7 ...
}

}
}

The AccountingM DB implements two interfaces: javax.elb.MessageDrivenBean and javax.jms.MessageL istener.
AccountingM DB defines an onMessage method that takes a single parameter of the type javax.jms.Message. In
addition, the bean classincludes ejbCreate and ejbRemove methods to handle calls related to the life cycle of a
message-driven bean.

6.11 Conclusion

In this chapter, we explained how asynchronous messaging can be used for enterprise application integration. We
described the key differences between synchronous and asynchronous communication and introduced JM S with a
brief primer.

JMS API currently provides support for asynchronous messaging in the J2EE platform. JM S can be used together
with the 1.0 version of the Connector architecture to support different types of integration scenarios, both loosely
coupled and tightly coupled. The 2.0 version of the Connector architecture adds support for asynchronous
integration between J2EE applications and EISs. This enables the Connector architecture to support asynchronous
integration scenarios.

Chapter 7 describes the CCl API provided by the Connector architecture.

65

Chapter 7. Common Client Interface

The Connector architecture provides a common client interface for different types of EISs. Thisinterface, called
the Common Client Interface (CCI), is an application contract (a set of APIs) between application components
and the resource adapter. This chapter describes the interfaces and methods of the CCI.

Two types of contracts exist between application components and a resource adapter: system contracts and an
application contract (also referred to as aclient interface). See Figure 7.1. Because the system contracts are
independent from the application contract, a resource adapter may implement its own API that is specific for its
EIS. Although a resource adapter must support the system contracts, the same adapter may choose to support its
own, or even some other, EIS-specific client API instead of the CCI.

Figure 7.1. Application and System Contracts

Container-Component

Contract
’f;pplicatinn Cumpnne_nD
Container e
Common Client Interface
Connection Poal
Manager System
Contracts
Resource Adapter
. Security
Tﬁnsammn Service
anager Manager |

Application Server El5-Specific Interface

Enterprise Information
System

Because a resource adapter—the software component that enables J2EE platform components, such as enterprise
beans, JSPs, and servlets, to access and interact with an underlying resource manager—is specific to its EIS, there
istypically adifferent resource adapter for each type of database or EIS. The CCI provides an API that is
common across heterogeneous EISs. As aresult, enterprise application integration (EAI) vendors do not have to
adapt their products to each specific EIS client API. An EAI vendor can use the CCl as a standard way to plugin
resource adapters for heterogeneous EISs. A vendor builds an application integration framework using the CCl,
and this framework provides a higher level functionality to the underlying EISs.

The CCI client API relies on simple remote function calls. It provides sufficient functionality that applications
can create and manage connections to an EIS, execute an interaction, and access data records.

In addition, the CCl is also designed to be “toolable.” By “toolable” we mean that the CCI leverages the
JavaBeans architecture and the Java Collection framework so that devel opment tools can incorporate the CCl into
their architecture. In this case, the CCl functions as a plug-in contract for an application devel opment tool that
simplifies application devel opment by supplying additional functionality over aresource adapter.

7.1 Overview of the CCI

The Connector architecture CCl defines a set of interfaces and classes whose methods allow aclient to perform
typical EIS connection, remote function execution, and data access operations. These interfaces and classes,
which are all found in the javax.resource.cci package, divide functionally into four categories. connection,
interaction, data, and metadata.

Clients or application components use the connection interfaces to represent connections, specifically a
connection factory and an application-level connection. Interaction interfaces enable a component to execute or
drive an interaction with an EIS instance. Application components use the data interfaces to represent the data
structures that are involved in an interaction with an EIS instance. Last, the metadata interfaces provide meta
information about a resource adapter implementation and an EIS connection. Two additional classes provide error
information.

66

Figure 7.2 shows the classes and interfaces of the CCl and their relationships to each other. The sections that
follow discuss each of the interfaces. We also include sample code to illustrate how an enterprise bean might use
these various interfaces. (If you are not familiar with UML diagrams and symbols, see Figure 1 in the Preface for
an explanation.)

Figure 7.2. Common Client I nterface Class Diagram

=<Interface>>
ConnactionFactary
{javax.rasource_cci)

| crealas

=<|nterface=> <<Inlarface>> <<|nterface>>
Coannaction Interachion InteractionSpec
{javax.rasource_cci) uses (javax.resource. o) uses (javax.resource.cci)
Q.n
0.1
(FEYES
<<Interfaca>>
LocalTransaction
{javax. resource.cci)
0.n
<<|marface>> creates
RecordFactory - - <[ptefaca==
(javax.resource. o) Record
{javax resource.coi)

<<Interface=>
MappedRecord
(javax resource.cci)

<<lntarface>>
IndexedRecord
(javax.resource.cci)

=<|nterface>>
ResuliSet
[javax.resource.cci)

A client or application component that uses the CCI to interact with an underlying EIS does so in a prescribed
manner. The component must establish a connection to the EIS's resource manager to perform any interactions
with the EIS The component establishes this connection using the ConnectionFactory methods. The Connection
instance represents a connection handle to the EIS, and it is used for subsequent interactions with the EIS. (Refer
to Chapter 12, Connection Management Contract, to see how a ManagedConnection represents the actual physical
connection.)

Once the component has obtained a Connection instance, it can use that instance for any number of interactions
with the EIS. These interactions are represented by Interaction instances.

The component performs its interactions with the EIS, such as executing a stored procedure or remote function,
using an Interaction object. The application component uses an InteractionSpec object to specify properties
related to the target interaction on the EIS. When the application component reads data from the EIS (such as
from database tables) or writes to those tables, it does so using a particular type of Record, for example, a
MappedRecord, IndexedRecord, or ResultSet. Just as the component uses the ConnectionFactory to create
Connection instances, it uses a RecordFactory to create Record instances.

7.2 CCl Programming Example
Before we delve into the details of each of the interfaces, let's look at a simple example—a session bean that uses

the CCI interface and a sampl e resource adapter to access arelational database. (The sample resource adapter in
this example can be found with the J2EE SDK.) Although our example application component is a session bean,

67

our discussion focuses on the connector-specific code within the session bean, rather than the enterprise
bean-specific code.

Our session bean component first looks up the relational database's resource adapter and its ConnectionFactory.
We do the look up in the session bean's setSessionContext method, using the INDI Context. lookup method.
We use the 1ookup method to obtain three pieces of information: the user's name, password, and a reference to
the resource adapter's ConnectionFactory. (See Code Example 7.1.)

Example 7.1 Using the 1ookup M ethod

public void setSessionContext (SessionContext sc) {
try

this.sc = sc;

Context ic = new InitialContext();

user = (String) ic.lookup(*'java:comp/env/user™);

password = (String) ic.lookup(*java:comp/env/password™);

cf = (ConnectionFactory) ic.lookup(*java:comp/env/CCIEIS™);

The session bean uses the resource adapter's ConnectionFactory to obtain a connection to the database. (Later in
the example, when the bean needs to create record objects, it uses the same ConnectionFactory object to obtain
references to the adapter's RecordFactory.) When requesting the connection, the bean must identify itself for
security purposes, and it does so using the name and password values. The bean does not pass these values
directly to the ConnectionFactory. Instead, the bean creates an instance of a ConnectionSpec object to hold these
values and passes that object to the ConnectionFactory's getConnection method. The getConnection method
returns a connection to the database. (See Code Example 7.2.)

Example 7.2 Getting a Connection

Connection con = null;

try {
ConnectionSpec cSpec = new CciConnectionSpec(user, password);

con = cf.getConnection(cSpec);

Now that the session bean has obtained the connection to the database, it can invoke functions to access and
update the database. For example, suppose the bean wants to add a record or row to one of the database's tables.
To accomplish this, the bean might invoke a database stored procedure to add the record. Because the stored
procedure (or other method that accesses the EIS) must be invoked using the Interaction interface's execute
method, the bean first creates an Interaction object. It does so by invoking the Connection object's
createlnteraction method. The bean aso instantiates an InteractionSpec object so that it can pass such
properties as the schema, catalog, and function names to the execute method. (The schema and catal og pertain to
the database, whereas the function name is the name of the procedure to be invoked.) The bean then sets up these
property values, as shown in Code Example 7.3.

Example 7.3 Setting Up I nteractionSpec Values

Interaction ix = con.createlnteraction();
CcilnteractionSpec iSpec = new CcilnteractionSpec();
iSpec.setSchema(user);

iSpec.setCatalog(null);
iSpec.setFunctionName(""AddRecord™) ;

The bean might also have to set up two Record objects—one is an input record to pass parameters to AddRecord
and the other is an output record to hold the returned results, if there are any. Our example bean gets areference
to a RecordFactory from the ConnectionFactory object, and then uses the RecordFactory's
createlndexedRecord method to create an IndexedRecord object which it designates as the input record.

An input record maps the input parameters passed to a stored procedure. Keep in mind that a stored procedure's
input parameters may be solely for input (called IN parameters) or they may hold output or returned values as
well (in which case they are referred to as INOUT parameters). An output record maps equivalent output
parameters of the stored procedure, referred to asthe OUT and INOUT parameters.

The bean sets up the input record by using the Record object's add method to insert the input values into the

record. Once the input record is properly defined, the bean uses the Interaction object's execute method to invoke
the AddRecord stored procedure, which inserts the new record or row into the table. (See Code Example 7.4.)

68

Example 7.4 Using the execute M ethod

RecordFactory rf = cf.getRecordFactory();

IndexedRecord iRec = rf.createlndexedRecord(*InputRecord");
boolean flag = iRec.add(name);

flag = iRec.add(nhew Integer(qty));

ix.execute(iSpec, iRec);

In asimilar manner, the session bean might invoke a database stored procedure to read all the records from a
particular database table. It would still create an input record and passit as a parameter to the execute method
even if it did not need to pass input parameters to the function. The bean merely creates the input record but does
not set any values into the record. When the bean executes the stored procedure, the results would be returned to
an output record, as shown in Code Example 7.5.

Example 7.5 Using execute to Return an Output Record

iSpec.setFunctionName("'ReadRecords™) ;
RecordFactory rf = cf.getRecordFactory();
IndexedRecord iRec = rf.createlndexedRecord(*"InputRecord™);
Record oRec = ix.execute(iSpec, iRec);
Iterator iterator = ((IndexedRecord)oRec).iterator();
while (iterator.hasNext()) {
//read in data from each entry
}

Notice that the execute method returns an OutputRecord. In our example, the bean casts the OutputRecord to an
IndexedRecord type. Because an IndexedRecord holds its elementsin an ordered, indexed list based on
javauutil.List, the bean uses a Java Iterator to access the elements of the list.

Y ou may have noticed in this example that the session bean did not include any transaction code. That is because
the bean used container-managed transaction demarcation rather than bean-managed transaction demarcation.
Simply put, the bean allowed the EJB container to handle the transaction demarcation, rather than including code
to handle the transaction itself.

The CCI defines a Local Transaction interface that may be used by an enterprise bean to manage local transactions
on an underlying resource manager. An enterprise bean manages alocal transaction when the bean uses
bean-managed transaction demarcation. We recommend that enterprise beans use contai ner-managed transaction
demarcation.

If we want to use alocal transaction, we could rewrite the session bean in the previous example and have it use
the methods of the Local Transaction interface to do transaction management. In this case, the session bean would
first explicitly create the transaction context by calling the Connection object's getLocal Transaction method.
The method returns a Local Transaction instance to the component. The bean then starts the transaction using the
Local Transaction object's begin method, proceeds to do its transactional work—invoking the stored procedure to
insert the new record into the database table—and finally commits the transaction by calling the Local Transaction
object's commit method. Here's how the code might look for a session bean using alocal transaction to insert a
database record. (See Code Example 7.6.)

Example 7.6 Inserting a Database Record Within a Local Transaction

iSpec.setFunctionName(""AddRecord™) ;

RecordFactory rf = cf.getRecordFactory();

IndexedRecord iRec = rf.createlndexedRecord(*"InputRecord™);

boolean flag = iRec.add(name);

flag = iRec.add(new Integer(qty));

Javax.resource.cci.LocalTransaction transaction = con.getLocalTransaction();
transaction.begin();

ix.execute(iSpec, iRec);

transaction.commit();

This example was meant to give you an overview of how to code with the CCl API. The next sections discuss the
CClI interfaces and methods in greater detail.

69

7.3 Connection Interfaces
The CCI API provides four connection interfaces.

o ConnectionFactory— Provides an application component with a Connection instance to an EIS.

e Connection— Represents an application-level connection handle to the underlying EIS.

o ConnectionSpec— Provides ameans for an application component to pass connection request-specific
properties to the ConnectionFactory when making a connection request.

e LocalTransaction— Used for application-level local transaction demarcation. Keep in mind that alocal
transaction is managed totally internal to a resource manager, with no involvement of an external
transaction manager.

7.3.1 ConnectionFactory Interface

The ConnectionFactory interface provides an application component with an interface for getting a connection to
an ElS instance. An application component uses INDI APIsto first look up a ConnectionFactory instance from
the INDI namespace. Then, it uses the ConnectionFactory instance to obtain a connection to the EIS instance. The
ConnectionFactory interface defines the following publ ic methods. (See Code Example 7.7.)

Example 7.7 ConnectionFactory Interface

package javax.resource.cci;

public interface ConnectionFactory extends java.io.Serializable, javax.resource.Referenceable {
public Connection getConnection() throws ResourceException;
public Connection getConnection(ConnectionSpec properties) throws ResourceException;
public ResourceAdapterMetaData getMetaData() throws ResourceException;

}

The principal methods of the ConnectionFactory are the getConnection methods. The two getConnection
methods both obtain a connection to an EIS instance, which they return as a Connection object. An application
component uses getConnection With no parameters when it requires the container to manage the EIS sign-on.
Because the container manages the sign-on, the application component does not need to pass any security
information to the ConnectionFactory. It is recommended that applications obtain a connection using this form of
the getConnection method, thus letting the container handle the EIS sign-on.

A component uses the second form of the getConnection method when it manages the EIS sign-on (referred to
as component-managed sign-on). A component that manages EIS sign-on needs to pass security information and
connection parameters to the Connection factory. The parameters and security information are passed through the
ConnectionSpec object, shown asthe properties parameter.

This ConnectionSpec properties object contains only client-specific properties, such as user name, password,
and language, rather than information related to the EIS target configuration.

7.3.2 ConnectionSpec | nterface

An application component uses the ConnectionSpec interface to pass properties specific for a connection request
to the getConnection method

The ConnectionSpec interface defines two standard properties relevant for a connection: UserName and Password.
A resource adapter that implements the ConnectionSpec interface can add its own additional properties.

Because it isintended that the ConnectionSpec interface be implemented as a JavaBean, applications use access
(getter) and mutation (setter) methods to access the individual properties. For example, a ConnectionSpec
implementation class would include setUserName and setPassword methods, in addition to getUserName and
getPassword methods.

7.3.3 Connection Interface

The Connection interface is a representation of an application-level connection handle. An application component
uses this connection handle to access an EIS instance. (Note that the Connection instance represents alogical
connection to an EIS; it is a ManagedConnection instance that represents the actual physical connection. See
Chapter 12, Connection Management Contract, for more information on the ManagedConnection interface.)

A component needs to obtain a connection before it can initiate any interactions with the EIS. However, once it
obtains a Connection object, it can use the same object for any number of EIS interactions. (We have aready

70

shown how an application component gets a Connection instance by calling the ConnectionFactory
getConnection method.)

Code Example 7.8 shows the methods defined by the Connection interface.

Example 7.8 Connection I nterface

package javax.resource.cci;

public interface Connection {
public Interaction createlnteraction() throws ResourceException;
public ConnectionMetaData getMetaData() throws ResourceException;
public ResultSetInfo getResultSetInfo() throws ResourceException;
public LocalTransaction getLocalTransaction() throws ResourceException;
public void close() throws ResourceException;

}

Most application components typically use the createlnteraction and close methods. Before an application
component can begin some interaction with an EIS instance, it must first create a new Interaction instance. The
component does this by invoking the Connection instance's create Interaction method. This method creates a
new Interaction instance, and this instance is associated with the Connection instance. When a component has
completed its work with the EIS, it should invoke the close method to close the connection to the EIS.

Application components that are interested in managing their own local transactions, such as enterprise bean
components that use bean-managed transaction demarcation (and thus include code to handle transactions), will
use the getLocal Transaction method. The getLocal Transaction method creates a new Local Transaction
object. The Local Transaction object provides the context for the transaction, and it enables the component to
demarcate resource manager local transactions. (See the next section, “Local Transaction Interface,” for more
information on using the Local Transaction interface.)

The Connection interface also defines methods that return EIS information. The getMetaData method returns
meta information about the EIS instance currently associated with the Connection instance. The
getResultSetInfo method returns meta information on the result set functionality supported by the connected
EIS instance.

7.3.4 Local Transaction I nterface

The Local Transaction interface defines a transaction demarcation interface for transactions that are local to a
resource manager. These are transactions that are managed internal to the EIS resource manager with no
assistance or coordination from an external transaction manager. Thisinterface is part of the javax.resource.cci
package, and it is meant to be used for application-level local transaction demarcation. It differs from the system
contract-level Loca Transaction interface, which is defined in the javax.resource.spi package, and which is used
by the container for local transaction management. (See Chapter 4, Working with Transactions, for a more complete
discussion of transactions.)

A resource adapter that supplies a CCl implementation is not required to implement the Local Transaction
interface. When the Local Transaction interface is supported, an application component obtains a

Local Transaction instance using the Connection interface getLocal Transaction method. The component uses
the Local Transaction instance to demarcate a resource manager local transaction on the underlying EIS instance.
Keep in mind that the local transaction is associated with the Connection instance.

The Local Transaction interface defines the following methods. (See Code Example 7.9.)

Example 7.9 Local Transaction I nterface M ethods

package javax.resource.cci;

public interface LocalTransaction {
public void begin() throws ResourceException;
public void commit() throws ResourceException;
public void rollback() throws ResourceException;

}

A component that includes code to manage its own transaction first obtains areference to alocal transaction using
its Connection instance's getLocal Transaction method. The component then uses the Local Transaction
methods to start and complete its transaction. Before invoking transactional code (that is, code that accesses or
updates the EIS) the component must start the transaction. It does so using the begin method. The begin method
startsalocal transaction on an EIS instance.

71

The component then performs its transactional work, such as modifying data held by the EIS. When this work
completes, the component can either commit the changes, or it can roll back whatever changes occurred and
restore the EIS datato the state it wasin prior to the start of the transaction. The commit method commits the
current local transaction and releases all locks held by the underlying EIS instance. The rol Iback method undoes
the current local transaction.

7.4 Interaction Interfaces

The CCI API defines two interfaces for interactions between an application component and the EIS. An
application uses these interfaces to execute operations on the underlying EIS. The two interfaces are

e Interaction— Provides ameansfor an application component to execute EIS functions, such as stored
procedures.

e InteractionSpec— Holds properties pertaining to an application component's interaction with an EIS.
For example, a property might specify the target EIS function.

An application component uses the methods of the Interaction interface to execute EIS functions. For example, if
the underlying EIS is arelational database, a component might instantiate an Interaction instance to execute the
database's stored procedures. Along with an Interaction instance, a component uses an I nteractionSpec to pass
properties for driving the interaction with the EIS. For example, the InteractionSpec object might hold the name
of the EIS function, such as the stored procedure function, along with database schema and catal og information,
such as the identity of the user, and so forth.

7.4.1 Interaction Interface

The Interaction interface defines methods that enable an application component to execute EIS functions. An
application component must create an instance of the Interaction interface from a Connection instance. The
Interaction instance is associated with the Connection instance for as long as the component interacts with the
EIS.

The Interaction interface is defined as shown in Code Example 7.10.

Example 7.10 Interaction Interface

package javax.resource.cci;
public interface javax.resource.cci.lInteraction {
public Connection getConnection();
public void close() throws ResourceException;
public boolean execute (InteractionSpec ispec, Record input, Record output) throws ResourceException;
public Record execute (InteractionSpec ispec, Record input) throws ResourceException;

}

The execute methods are the important methods of the Interaction interface. Both variants of the method execute
aspecified EIS function on behalf of the application component. One form of the execute method has three input
parameters. an InteractionSpec instance, an input record, and an output record. The other form has two input
parameters. an InteractionSpec instance and an input record, and this form returns an output record.

When you use the CCl execute method to invoke some EIS function, such as invoking a stored procedure, you
first must set up an InteractionSpec instance, asit is this object which holds the information identifying the EIS
function to be invoked. Y ou also may need to create instances of input and output records. Y ou create an instance
of an input record if you're passing a parameter to the EIS function. If the EIS function you're executing returns
data, you may also need to create an output record instance. These input and output records are instances of the
supported Record types, which are IndexedRecord, M appedRecord, or ResultSet. The next section, “Data
Representation Interfaces,” discusses these record typesin more detail.

Although a component creates an Interaction instance from a Connection instance, it can use the Interaction
interface’'s getConnection method to check the Connection object to which the Interaction instance is associated.
When the component has completed its processing work with the EIS—it has executed al the EIS functions it
intended to execute—it should use the close method to close the Interaction instance and allow the resource
adapter to release resources held for the instance. Note that closing the Interaction instance does not affect the
Connection instance.

72

7.4.2 InteractionSpec I nterface

The InteractionSpec interface defines and holds the properties that drive a component's interaction with an EIS
instance. An application component must use both the InteractionSpec and the Interaction instances together to
access an EIS function.

The CCI defines a set of standard properties for an InteractionSpec. The implementation of the InteractionSpec,
which is either a derived interface or an implementation class, should only support a standard property if that
property applies to the underlying EIS supported by this CCI implementation. The CCI provides the definition of
the InteractionSpec interface shown in code Example 7.11.

Example 7.11 InteractionSpec | nterface

package javax.resource.cci;

public interface InteractionSpec extends java.io.Serializable {
public static final int SYNC_SEND = O:
public static final int SYNC_SEND RECEIVE = 1:
public static final int SYNC RECEIVE = 2:

}

The CCl's standard properties include FunctionName and an InteractionVerb. FunctionName iSastring that
represents the name of the EIS function. InteractionVerb is an integer that represents the mode of the
interaction with the EIS. Execution of an interaction can encompass either a send or receive operation without a
synchronous response, or it can send and receive synchronously. By default, an interaction sends and receives
synchronously. (Note that the Java M essage Service supports asynchronous message delivery. See Chapter 6,
Asynchronous Messaging, for more information.) The InteractionSpec implementation can go further than the CCl
and can support additional properties specific to a CCl implementation.

The InteractionSpec interface defines several other standard properties, but these may not be supported by al
implementations. The ExecutionTimeout property is an integer that specifies (in milliseconds) how long an
Interaction instance waits for an EIS to perform the requested function. It also defines standard properties that
pertain only to ResultSet. (See “ Data Representation Interfaces.”)

Because InteractionSpec implementations are JavaBeans, they must follow standard JavaBeans requirements.
They must define getter and setter methods for each of their properties and also extend the Serializable interface.
They also may implement their properties as bound or constrained properties.

For example, our sample resource adapter might define a CcilnteractionSpec implementation class for the
InteractionSpec interface. This particular implementation class chooses to define three properties, two of which
are applicable only to the underlying EIS (Schema and Catalog), plus the required FunctionName property. It
must also define getter and setter methods for each of these properties because the properties are private and
cannot be directly accessed by application components. Thus our example CcilnteractionSpec might look as
shown in Code Example 7.12.

Example 7.12 Implementation of an I nteractionSpec I nterface

public class CcilnteractionSpec implements InteractionSpec extends java.io.Serializable {
private String Schema;
private String Catalog;
private String FunctionName;

public String getSchema();

public void setSchema(String schema);

public String getCatalog();

public void setCatalog(String catalog);
public String getFunctionName();

public void setFunctionName(String function);

}

Later, an application component, before invoking an EIS function called UpdateOrder, might set the
CcilnteractionSpec properties as follows:

CcilnteractionSpec iSpec = new CcilnteractionSpec();
iSpec.setSchema (“'User™);

iSpec.setCatalog (null);

iSpec.setFunctionName (“'UpdateOrder™);

73

7.5 Data Representation Interfaces

Records encapsulate the information that passes between an application component and an EIS. The following
five interfaces pertain to data representation:

e Record— The Record interface isthe base interface for the different kinds of records. Records may be
MappedRecord, IndexedRecord, or ResultSet, and they each extend from the base Record interface.

e RecordFactory— Creates a Record instance.

e IndexedRecord— Represents a Record based on the java.util.List interface.

e MappedRecord— Represents a Record based on the java.util.Map interface.

e ResultSet— Represents tabular data.

The Record interface is the base interface for structuring input and output record data to the Interaction interface's
execute methods. It defines methods for getting and setting record identification and descriptive information,
such as name and format. These methods are used by tool developers.

A resource adapter for an EIS extends the base Record interface to support different record types. The Record
interface may be extended to support these three types.

e javax.resource.cci.lndexedRecord— An IndexedRecord is an ordered and indexed collection. It
extends both Record and java.util.List interfaces.

e javax.resource.cci.MappedRecord— A MappedRecord is a key-value pair-based collection. It extends
both Record and java.util.Map interfaces.

e javax.resource.cci.ResultSet— A ResultSet represents tabular data. It is the extension of both the
Record and java.sgl.ResultSet interfaces.

Code Example 7.13 shows the definition of the Record interface.

Example 7.13 Record I nterface

package javax.resource.cci;
public interface Record extends java.lang.Cloneable {
public String getRecordName();
public void setRecordName(String name);
public void setRecordShortDescription(String description);
public String getRecordShortDescription();
public boolean equals(Object other);
public int hashCode();
public Object clone() throws CloneNotSupportedException;

}

An application component uses the RecordFactory interface to create MappedRecord or IndexedRecord instances.
(See Code Example 7.14.)

Example 7.14 RecordFactory Interface

package javax.resource.cci;

public interface RecordFactory {
public MappedRecord createMappedRecord(String recordName) throws ResourceException;
public IndexedRecord createlndexedRecord(String recordName) throws ResourceException;

}

The component passes the record name to be created to both these methods. For example, arecord name can be a
pointer to a specific record found in the EIS's metadata repository.

The MappedRecord interface represents a key-value map-based collection of record elements. It extends both the
Record and java.util.Map interfaces, as follows:

package javax.resource.cci;
public interface MappedRecord extends Record, java.util_Map {}

The IndexedRecord interface represents an ordered collection of record elements based on the java.util .List

interface. Thisinterface allows a component to access record elements by their integer index (position in the list)
and search for elementsin thelist.

74

package javax.resource.cci;
public interface IndexedRecord extends Record, java.util.List {}

The ResultSet interface represents a JDBC result set, that is, tabular data. The Interaction interface's execute
method can return a ResultSet instance. The CCl ResultSet interface is based on the JDBC ResultSet interface. It
extends the Record and java.sgl.ResultSet interfaces as follows:

package javax.resource.cci;
public interface ResultSet extends Record, java.sql.ResultSet {}

7.6 Metadata Interfaces

The CCI defines two interfaces that pertain to metainformation. The ConnectionMetaData interface provides
basic meta information about an EIS connection. The other interface, ResourceAdapterMetaData, focuses on a
resource adapter implementation.

An application component that has already established a connection to an EIS instance, through a Connection
instance, uses the methods of the ConnectionMetaData interface to retrieve information about that connected EIS
instance. The component gets a ConnectionM etaData instance by invoking the Connection's getMetaData
method. (See Code Example 7.15.)

Example 7.15 ConnectionM etaData I nter face

package javax.resource.cci;

public interface ConnectionMetaData {
public String getElISProductName() throws ResourceException;
public String getEISProductVersion() throws ResourceException;
public String getUserName() throws ResourceException;

}

The first two methods, getElSProductName and getElSProductVersion, return information about the EIS
instance. The getUserName method returns the user name for the active connection. Thisis the user namethat is
known to the EIS, and it corresponds to the name of the resource principal that established the EI'S connection.
(Refer to Chapter 5, Managing Security, for more information about resource principals.)

The ResourceAdapterMetaData interface provides information about the capabilities of a resource adapter
implementation. A component uses the ConnectionFactory's getMetaData method to obtain a
ResourceAdapterM etaData instance. Keep in mind that a component can get information about a resource adapter
for an EIS without having to first establish a connection to the EIS. Typically, tools vendors use these methods.

The ResourceAdapterM etaData interface defines the methods shown in Code Example 7.16.

Example 7.16 Resour ceAdapter M etaData I nterface

package javax.resource.cci;

public interface ResourceAdapterMetaData {
public String getAdapterVersion();
public String getAdapterVendorName();
public String getAdapterName();
public String getAdapterShortDescription();
public String getSpecVersion();
public String[] getlnteractionSpecsSupported();
public boolean supportsExecuteWithlnputAndOutputRecord();
public boolean supportsExecuteWithlnputRecordOnly();
public boolean supportsLocalTransactionDemarcation();

}

The interface defines methods that return version and other identifying information about the resource adapter.
Another method returns various I nteractionSpec implementations supported by this adapter. The last three
methods return information about how the Interaction implementation handles its execute method(s) and
whether it supports local transaction demarcation.

75

7.7 Exception Interfaces

The CCI defines two exception interfaces. ResourceException and ResourceWarning. ResourceException serves
astheroot interface of the CCI exception hierarchy. When thrown, it provides both an error code and a string
describing the error. These error codes and messages are specific to the resource adapter. ResourceException also
provides alink to another exception, particularly if ResourceException isthrown due to alower level problem.

ResourceWarning provides information on any warnings that occur related to interactions with an EIS. A
ResourceWarning is tied to the Interaction instance. An application component calls the Interaction interface's
getWarning method to access the first warning returned from the EIS. The component can access additional
warnings, if any occurred, because they are linked to the first warning.

7.8 Code Examples

The following code snippets summarize the CCl APIs that might be used by application components. Refer to
Chapter 8, Tools and Frameworks, to see how tools vendors build value-added functionality over the CCI.

7.8.1 Obtaining a Connection

Y ou obtain a Connection instance to an EIS instance after looking up a ConnectionFactory instance from the
JNDI namespace. In this example, the component obtaining the connection instance lets the EJB container
manage the EIS sign-on. The code first establishes a INDI naming context. It then uses the Context's 1ookup
method to find the ConnectionFactory instance for the particular EIS. Last, the component calls the
getConnection method on the ConnectionFactory to obtain the new connection to the EIS.

Javax.naming.Context nc = new InitialContext();
Javax.resource.cci.ConnectionFactory cf =

(ConnectionFactory)nc. lookup(*'java:comp/env/eis/ConnectionFactory™);
Javax.resource.cci.Connection cx = cf.getConnection();

Once the component has established the connection, it can create an Interaction instance by invoking the
Connection object's create Interaction method, as follows:

Javax.resource.cci.lInteraction ix = cx.createlnteraction();
7.8.2 Using an I nteractionSpec Object

Y ou can create a new instance of an InteractionSpec implementation class or you can use the INDI APIs to look
up apre-configured InteractionSpec instance in the INDI namespace. Here's an example of what the code to do
this might look like. Note that you must substitute the specific EIS function name as the parameter in the call to
setFunctionName.

com.wombat.cci.InteractionSpeclmpl ixSpec = // ...

ixSpec.setFunctionName("'<EIS_SPECIFIC_FUNCTION_NAME>");
ixSpec.setlInteractionVerb(InteractionSpec.SYNC_SEND RECEIVE);

7.8.3 Using a Generic Record

In this section, we show you how to create and use two generic CCl records:. a MappedRecord and an
IndexedRecord. Y ou create a generic record instance using a RecordFactory.

Javax.resource.cci.RecordFactory rf = // ... get a RecordFactory
Y ou use a RecordFactory's createMappedRecord method to create a generic MappedRecord. Y ou use the name

of the record, as stored in a metadata repository for a specific EIS, as a pointer to the meta information for the
particular record type. Note that the metadata repository stores record meta information.

76

Javax.resource.cci.RecordFactory rf = // ... get a RecordFactory
Javax.resource.cci .MappedRecord input =
rf.createMappedRecord("'<NAME_OF RECORD>");

In this example, the code uses the created MappedRecord as input for an interaction. Because it isinput, you
populate the generic MappedRecord instance with input values. In this code snippet, the component adds values
based on the meta information it has accessed from the metadata repository.

iﬁbut.put("<key: elementl>", new String("'<VALUE>"));
input._put('<key: element2>", _...);

Next, you invoke the RecordFactory's create IndexedRecord method to create a generic IndexedRecord. The
IndexedRecord is used to hold output values returned by the execution of the interaction with the EIS.

Jjavax.resource.cci . IndexedRecord output = rf.createlndexedRecord(**'<NAME_OF_RECORD>'");

At this point, the component is ready to execute the interaction with the EIS. To do this, it invokes the Interaction
object's execute method:

boolean ret = ix.execute(ixSpec, input, output);

When the execution completes, the component can extract data from the output IndexedRecord. In this example,
the component uses a Java Iterator to extract the data.

jJava.util.lterator iterator = output.iterator();
while (iterator.hasNext()) {

// Get a record element and extract value
3

7.8.4 Using a ResultSet

When using a ResultSet, it is recommended that you first set the requirements for the ResultSet that will be
returned by the execution of an Interaction. However, setting the requirementsis optional. If they are not
explicitly set, the CCl implementation uses default values for the ResultSet. The following code snippet shows
how to set the ResultSet requirements:

com.wombat.cci. InteractionSpeclmpl ixSpec =
// .. get an InteractionSpec;

ixSpec.setFetchSize(20);
ixSpec.setResultSetType(ResultSet.TYPE_SCROLL_INSENSITIVE);

Now you are ready to execute an Interaction object that returns a ResultSet. Do this execution as follows:

Javax.resource.cci.ResultSet rs = (Javax.resource.cci.ResultSet) ix.execute(ixSpec, input);

Y ou now must extract the data from the ResultSet, which you do by iterating over the ResultSet. In this example,
we position the cursor on the first row of the ResultSet and then iterate forward through the ResultSet contents.
The getX XX methods indicate methods that retrieve column values.

}é:beforeFirst();
while (rs.next()) {

// get the column values for the current row using getXXX method
}

Y ou are not restricted to iterating over a ResultSet from the first row through the last row. It isjust as easy to
iterate over a ResultSet from the last row through the first row. The next code snippet shows a backward iteration
through the ResultSet:

}é:afterLast();
while (rs.previous()) {

77

// get the column values for the current row using getXXX method

}

For more information on ResultSet, refer to the JIDBC references listed in the Preface.

7.8.5 Using a Custom Record

Y ou can use the base Record interface to represent an EIS-specific custom record, and then use the CCI methods
for this custom record.

Toillustrate, we have included an example in which we define an interface called CustomerRecord that supports
asimple JavaBeans-based getter and setter method design pattern for itsfield values. We also define a
PurchaseOrderRecord, which is another custom record. A development tool generates the implementation classes
for these custom records. (Refer to Chapter 8, Tools and Frameworks, for more details on using development tools.)
For example, our CustomerRecord interface might be defined as follows:

public interface CustomerRecord extends javax.resource.cci.Record, javax.resource.cci.Streamable {
public void setName(String name);
public void setld(String custld);
public void setAddress(String address);

public String getName();
public String getld(Q);
public String getAddress();

}

Our example creates an empty instance of the CustomerRecord. This instance holds output generated from the
execution of an interaction.

The Interaction object expects a purchase order record as input. A purchase order is represented by the
PurchaseOrderRecord, which is another example of a custom record. The component creates a new
PurchaseOrderRecord instance for input to the interaction. It also sets properties on this instance, as follows:

PurchaseOrderRecord purchaseOrder = // ... create an instance
purchaseOrder.setProductName(*'...");
purchaseOrder.setQuantity("...");

// ...

Now, the component is ready to execute the interaction. The interaction popul ates the output CustomerRecord
instance.

// Execute the Interaction

boolean ret = ix.execute(ixSpec, purchaseOrder, customer);

// Check the CustomerRecord

System.out.printIn(customer.getName() + ":" + customer.getld() + ":" + customer.getAddress());

7.9 Conclusion

This chapter provided an in-depth view of the CCl, particularly focusing on the interfaces and classes of the CCI.
It described how application devel opers might use the CCl methods defined in these interfaces and classes to
perform data access operations on that EIS. The chapter showed how an application component uses the CCI API
to establish EIS connections and to execute interactions with an EIS. It also explained how to use the CCl's data
representation interfaces to represent the various data structures potentially returned from an EIS.

Chapter 8 shows how tools vendors can add functionality over the CCI.

78

Chapter 8. Tools and Frameworks

Tools and frameworks play an important role in EIS integration, particularly in handling the differencesin EISs.
Y ou have certainly seen by now that EISs are heterogeneous in nature. EISs differ in their client APIs, their
applications programming models, and their transaction and security support. This heterogeneity is a mgjor
challenge in EIS integration.

Tools are particularly important when developing products that focus on enterprise application integration. Tools
provide support for end-to-end application development and deployment, and they simplify EIS integration.

For several reasons, developersfind it difficult to use client APIs that lack tool support. In some cases, the client
APl may be tied to a programming model that is specific to one EIS. Devel opers must familiarize themselves
with that particular EIS and its API. Or, the APl may not use object-oriented abstractions, but instead require
remote calls to access business functions on an ERP system. Devel opers must learn the protocols for accessing
the ERP system'’s business functions. Or, the client APl may also expose system-level concepts, requiring
developers to become proficient in areas outside their expertise. For example, the API might expose the devel oper
to transaction management and security issues.

Many developers are aso accustomed to models that make extensive use of visual or graphical tools for
application composition and development, such as the JavaBeans component model. These developers may have
adifficult time using an API that does not support these graphical development tools, and they may resort to
hand-coding both data and function access.

To provide a solution to this issue, the Connector architecture defines a Common Client Interface (CCl) that
provides support for application development tools and EAI frameworks. The CCl istargeted toward tools and
EAI framework vendors. The CCI provides a means for tools vendors to develop their products free from the
complexity of EISintegration. Tools vendors can layer their products on top of the CCI or any other system
contract. The CCI or system contract insul ates the vendors from the details of managing transactions, security,
and connection pooling. The application server and resource adapter handle these details according to the contract
specifications.

8.1 Types of Tools

Both the J2EE programming model and the Connector architecture encourage and promote the use of toolsto
simplify development during the system integration phase. Although different vendors provide the actual tools, it
is often possible to link multiple tools so that devel opers have an end-to-end development environment. Vendor
tools provide such functionality as metadata extraction, analysis and design, code generation, integrated
debugging and runtime management, XML support, business process modeling, and application assembly and
deployment.

o Metadata extraction and visualization— Metadata includes such information as input and output
records for a function, function names, interaction specifications, and type mapping. A tool often groups
metadata for a specific EIS based on the functional characteristics and business-level abstractions that the
EIS exposes. For example, atool might group all EIS functions for afinancial accounting application with
an associated set of accounting records. A devel oper uses these tools to visualize the metadata for both
datarecords and EIS functions, analyze the requirements of application integration, select appropriate
records and functions, and develop applications that invoke EIS functions.

e Analysisand design— A developer may start with a use case analysis of application integration
scenarios and then develop an analysis and design model for the application under development. This
process includes an analysis of EIS specific metadata and importing that datainto the model. The majority
of analysis and design tools provide support for the J2EE application programming model. For example, a
tool can be used to model entity and session beans and to generate implementation artifacts.

o Codegeneration— Tools provide support for the generation of object-based abstractions that simplify
application development. These abstractions hide the complexity of programming against alow
EIS-specific client API or CCl by exposing a high-level JavaBeans-based abstraction for devel opers to use.
Generated abstractions based on JavaBeans offer a simple and consistent application programming model.
Depending on the type of abstraction—either data or function oriented—and the programming model, an
abstraction may be called a business object, a command bean, a data access object, or arecord bean. Some
tools go a step further and generate enterprise beans, JSPs, and servlet components that may abstract
access to EIS functions or may aggregate access across multiple ElSs.

79

I ntegrated debugging and runtime management— Tools may provide support for debugging
integrated applications. They may also help manage a running application by supporting error logging and
error tracing.

e XML support— A new class of tools has recently emerged that supports XML for inter-enterprise
messaging and Web services. These tools support the transformation of data formatted specifically for an
EISto an XML representation. Such tools may also support a“ push-button” generation of Web services
facades over EIS-specific abstractions. For example, an enterprise bean component that aggregates access
to multiple EISs and defines a set of business methods can be transformed by atool to aWeb service. The
tool generates awrapper that serves as a Web services facade.

e Businessprocess modeling— Tools may layer business process modeling on the top of an EIS
integration framework. These tools expose business process abstractions and enable business
domain-specific applications to be modeled using such abstractions.

e Application assembly and deployment— Tools provide support for assembling component-based

applications. These assembled applications can then be packaged and deployed across multiple tiers.

Deployment tools provide wizards that simplify the numerous steps of the deployment process.

8.2 Connector Architecture Tools Support

The CCI defines a standard client API for application components. The CCI enables application components and
EAI frameworks to drive interactions across heterogeneous EISs using acommon client API.

EAI vendors who are developing EAI frameworks rely on the Connector architecture's CCI and vendor-specific
metadata repository. The tool vendor provides an application integration framework that sits on top of the
functionality provided by resource adapters from different EISs. The vendor uses the CCl as a standard way to
plug in different resource adapters with the integration framework. That is, the framework uses the standard CCI
interfaces to drive its interactions with the connected EISs through their resource adapters.

The vendor's development tool might also use a metadata repository, which maintains meta information about
functions on an EIS system, to drive its CCl-based interactions with an EIS. The repository contains type
mapping information and information about the data structures used for invocation parameters. See Figure 8.1

Figure 8.1. EAl Framework

Enterprise Application |ntegration L
Framewark

Common Client JOBC
Interface API

Resource Adapter _‘ i JDBC Driver
. IR

Metadata
Repositary

How does a devel opment tool that adds functionality to a resource adapter fit within this framework? The tool
uses the CCl as a plug-in contract to the resource adapter. The tool generates Java classes that are based on the
metainformation it extracts from a metadata repository. These classes encapsul ate CCl-based interactions, and
they also expose a simple application programming model (based on the JavaBeans framework) to application
developers. An application component can use these generated Java classes to access the EIS.

Keep in mind that an application development tool can also compose or generate an application component that in
turn uses the generated Java classes to access the EIS. Figure 8.2 illustrates this approach.

Figure 8.2. Enterprise Application Development T ool

80

_?_Ef'f_'?lef_ﬂjf@'_iﬂ_nlﬂff‘ih Application Components or
Java Classes

Common Client JDBC

Enterprise Application Interface APl

Development Tool

Resource Adapter —‘ JDBC Driver
i !

Metadata L
Repository

8.3 EIS Access Objects

A component can access data and functionsin an enterprise information system in several ways, either directly by
using the corresponding client API or indirectly by abstracting the complexity and low-level details of an
enterprise information system access API into higher level access objects.

Access objects may be referred to by different names, depending on whether an access object is data or function
oriented and the exposed programming model of abstractions. An access object may be called a command bean, a
data access object, or a custom record. Different types of access objects differ in form, scope, and structure.

The advantages to using EIS access objects are as follows:

e An access object can adapt the low-level programming API used for accessing EIS data and/or functions
to an easy-to-use API that can be designed to be consistent across various types of enterprise information
systems. For example, an access object may follow a design pattern that maps EIS function parameters to
setter methods and EIS return values to getter methods. The application component provider uses a
function by first calling the appropriate setter methods, then calling the method corresponding to the EIS
function, and finally calling the getter methods to retrieve the results.

e A clear separation of concern between access objects and components enables a component to be adapted
to different EIS resources. For example, a component can use an access object to adapt its persistent state
management to a different database schema or to a different type of database.

e By supporting the JavaBeans model, access objects can be made composable. This simplifies the
application development effort because components can be composed out of access objects or can be
linked with generated access objects using application development tools.

Because access objects primarily provide a programming technique to simplify application development, the
Connector architecture recommends that application component providers consider using them anywhere they

need to access data or functionsin an EIS. In some cases, tools may be available to generate such access objects.
In other cases, component providers must hand-code these access objects.

8.3.1 Command Bean

A command bean abstracts access to an EIS function or to a stored procedure. Generally, atool generates a
command bean.

Figure 8.3 illustrates how a command bean works with an application component. The command bean interfaces
with the resource adapter for an EIS.

Figure 8.3. Command Bean

81

Component Interface

Cnmnmndﬁ\)
Bean @ ,| Resource
Application) Common Client Adapter

Enterprise
Information
System

Code Example 8.1 shows the code for acommand bean that accesses an EIS to check inventory levels.

Example 8.1 Command Bean Code

import javax.resource.cci.™;
import javax.resource.*;

public class ChecklInventoryCommand extends com.example.tool.Command {
private MappedRecord input;
private MappedRecord output;
private RecordFactory rf;

public ChecklnventoryCommand(Connection cx, RecordFactory rf) {
super(cx);
this.rf = rf;

}
public void setProductld(String productld) throws CommandException {
try {
if (input == null) {
input = rf_createMappedRecord(*"PRODUCT_INFO_RECORD'™);
}
input.put("’PRODUCT_ID", productid);
} catch (ResourceException re) {
throw new CommandException(re);
}
}

public int getProductQuantity() throws CommandException {
if (output == null) {
throw new CommandException(’Command not executed);
}

Integer quantity = (Integer)output.get("'PRODUCT_QUANTITY'™);
return quantity.intValue(Q);

}

public void execute() throws CommandException {

try {
InteractionSpeclmpl ixSpec = new InteractionSpecimpl();

ixSpec.setFunctionName("'GET_PRODUCT_QUANTITY™);
ixSpec.setlnteractionVerb(InteractionSpec.SYNC_SEND RECEIVE);

output = rf.createMappedRecord("'PRODUCT_INVENTORY_RECORD™);

Interaction ix = cx.createlnteraction();
ix.execute(ixSpec, input, output);

} catch (ResourceException re) {
throw new CommandException(re);

}

}
}

A command bean such as CheckInventoryCommand hides the low-level aspects of programming accessto a
particular type of EIS function to which the command bean is associated. Without a command bean,
programming access to the EIS function is through the EIS's client-side API or the CCI. With a command bean,
an application component accesses the EIS by programming to the interface exposed by the command bean. This
relieves the application component of having to know how to program to the EIS's specific API.

Code Example 8.2 shows the use model for a command bean. It is easy to see in this example how simpleit isto
use a command bean. The InventoryManagerEJB enterprise bean code invokes a setter method, setProductlid,

82

to set the input parameter, productld, to the command bean. It then executes the command by invoking the
command . execute method and calls the command . getProductQuantity method to get the output parameters.

Example 8.2 Using a Command Bean

public class InventoryManagerEJB implements SessionBean {
private javax.resource.cci.ConnectionFactory cf;

public int getQuantityAvailable(String productld)
throws InventoryException {
try {

Connection cx = getConnection();

ChecklnventoryCommand command =
new ChecklnventoryCommand(cx, cf.getRecordFactory());
command .setProductld(productid);
command .execute();
cx.close();
return command.getProductQuantity();

catch (Exception e) {
throw new InventoryException();

b
}
/7. .
b
8.3.2 Record

A record isthe Java representation of a data structure. It isused as input or output to an EIS function. A record
has both development-time and runtime aspectsto it.

An implementation of arecord can be either a custom implementation or a generic implementation.

e Acustomrecord implementation is generated at development time by atool. Thetool bases its generation
of a custom record implementation on the metadata it accesses from a metadata repository, and the custom
record implementation includes type mapping and data representation. A custom record implementation
does not need to access the metadata repository at runtime. (See Figure 8.4.)

Figure 8.4. Custom Record | mplementation

Compaonent Builder Tool

Component

k J

goenerales

cuslom recornd

Generator » Record

I

Common Client Interface
or El5-Specific Client API

Resource Adapter

Metadata
Repository

Runtime

Development Time

e Ageneric record implementation uses a metadata repository at runtime for its meta information. For
example, ageneric record may access type mapping information from the repository at runtime.

The metadata used in arecord representation and type mapping may be available in a metadata repository in one
of the following forms:

83

e Metainformation expressed in an EIS-specific format. For example, an ERP system has its own
descriptive format for its meta information.

« Dataformatted according to the programming language that has been used for writing the target EIS
function, for example, COBOL structures used by CICS transaction programs.

o Standard representation of data structures as required for EIS functions. The standard representation is
aggregated in a metadata repository based on the meta information extracted from multiple EISs.

Code Example 8.3 is an example of a custom record generated by atool. In this example, the CustomerRecord
interface extends the Record interface to represent an EIS-specific custom record. CustomerRecord supports a
simple getter and setter design pattern for its field values. A development tool generates the implementation class
of the CustomerRecord interface.

Example 8.3 Generating a Custom Record

public interface CustomerRecord extends javax.resource.cci.Record, javax.resource.cci.Streamable {
public void setName(String name);
public void setld(String custld);
public void setAddress(String address);

public String getName();
public String getld();
public String getAddress();

}

Code Example 8.4 shows how an application component might use two custom records—PurchaseOrderRecord
and CustomerRecord. The application component uses setter and getter methods to access properties for both
CustomerRecord and PurchaseOrderRecord. This JavaBeans-based design pattern simplifies application
development and abstracts the complexity of the underlying client API or CCl.

Example 8.4 Using a Custom Record

CustomerRecord customer = // ... create an instance
PurchaseOrderRecord purchaseOrder = // ... create an instance
purchaseOrder.setProductName(*'...");
purchaseOrder.setQuantity(*'...");

// Execute the Interaction

boolean ret = ix.execute(ixSpec, purchaseOrder, customer);

// Check the CustomerRecord

System.out._printIn(customer.getName() + ":" + customer.getld() + ":" + customer.getAddress());

8.3.3 Data Access Object
A data access object encapsul ates access to persistent data, such as data that is stored in an EIS or database. Data
access objects have the advantage of providing a consistent API across different types of EISs or databases. A

data access object istypically generated by atool. (See Figure 8.5.)

Figure 8.5. Data Access Object

Data Access
Object Ea Resource

Application Common Client pdaptar
Component Interface

Information

|
|
| Enterprise
: System

Code Example 8.5 shows a data access object that provides access to al productsin a product catalog. In this
example, ProductCatalogDAO is a data access object generated by atool. This data access object abstracts the use
of CCI and provides asimple interface for getting productsin the product catalog. The ProductCatalogDAO
extends a DA O base class that may be specific to atool or EAl framework.

An important benefit of a data access object isthat it decouples the user of a data access object from the APIs and
mechanisms used for accessing the underlying database or EIS. For example, if the ProductCatalogDAO class
uses adifferent client API to implement access to the database, the programming model for the user of thisDAO
does not get impacted. Also, provided that the interface to the DAO remains the same, changes to the schema or
function specification in the underlying EIS also do not impact the code of a user component. Using DAOs means
that application component code is easier to maintain and simpler to understand.

Example 8.5 Example of a Data Access Object

public class ProductCatalogDAO extends com.example.tool .DAO {
private RecordFactory rf;

public ProductCatalogDAO(Connection cx, RecordFactory rf) {
super(cx);
this.rf = rf;

}

public Collection getAllProducts() throws DAOException {
try {
MappedRecord input = rf.createMappedRecord("'PRODUCT INPUT_RECORD™);
input.put(""'ORDER-ID", "*'");

IndexedRecord output = rf.createlndexedRecord(*'PRODUCT_INFO_RECORD™);

InteractionSpeclmpl ixSpec = new InteractionSpeclmpl();
ixSpec.setFunctionName("'"GET_PRODUCTS™") ;
ixSpec.setlInteractionVerb(InteractionSpec.SYNC_SEND RECEIVE);
Interaction ix = cx.createlnteraction();

ix.execute(ixSpec, input, output);

Java.util._lterator iterator = output.iterator();
while (iterator.hasNext()) {

// Get a record element and extract value

// Add element to the collection

b
// Return Collection

catch(ResourceException re) {

}
}
}

Code Example 8.6 shows how an application component might use the ProductCatalogDAO data access object.
The application component first instantiates the ProductCatalogDAO object. Then it invokes a getter method to
get the list of products in the product catalog.

Example 8.6 Using a Data Access Object

public Collection getAllProducts() {

try {
Connection cx = getConnection();

ProductCatalogDAO dao = new ProductCatalogDAO(cx, cf.getRecordFactory());
Collection products = dao.getAllProducts();

cx.close();

return products;

catch (Exception e) {
// ... Handle Exception
}

}

An access object can aggregate access to other access objects, thus providing a higher level of abstraction and
functionality. For example, aPurchaseOrder aggregate access object can access a purchase order business
function using a command bean and can also use a data access object to maintain persistent attributes of the

purchase order. An aggregate access object can aso encapsulate logic to process multiple access objectsin a
specific order. Such aggregate access objects are generated by tools.

8.4 Guidelines for Access Objects

Here are some guidelines to follow in developing access objects:

85

e An access object should not make assumptions about the environment in which it will be deployed and
used.

e An access object should be designed to be usable by different types of components. For example, if an
access object follows the set-execute-get design pattern described previously, its programming model
should be consistent across both enterprise beans and JSP pages.

e An access object should not define declarative transaction or security requirements of its own. It should
follow the transaction and security management model of the component that usesiit.

« All programming restrictions that apply to acomponent apply to the set of access objects associated with
it. For example, an enterprise bean is not allowed to start new threads, to terminate a running thread, or to
use any thread synchronization primitives. Therefore, access objects associated with an enterprise bean
should conform to the same restrictions as the enterprise bean.

8.5 EJB 2.0 Container-Managed Persistence

The Connector architecture has been designed to work closely with the EJB architecture specifications. As such,
the Connector architecture is affected by the changes to container-managed persistence (CMP) that have been
made with the EJB 2.0 specification. Here we provide an overview of the EJB 2.0 CMP implementation and in
particular show how these changes relate to the Connector architecture.

The EJB 2.0 specification defines a CMP contract for the management of persistent state and relationships for the
entity beans. Resource adapters based on the Connector architecture can use the EJB 2.0 CMP contract for their
APIsto the underlying database. (For a complete specification of CMP, refer to the EJB 2.0 specification.)

According to the EJB CMP programming model, a bean provider develops a set of entity beans for an application
and specifies the relationships between these beans. For each entity bean, the bean provider specifies an abstract
persistence schemathat defines a set of methods for accessing the container-managed fields and relationships for
the entity bean. The bean provider specifies this persistence schemain the deployment descriptor.

The deployer uses container-provided tools to determine how persistent fields and relationships are mapped to the
underlying persistence mechanism, such as a database accessed through a resource adapter. The deployer also
uses tools to generate additional classes and interfaces that enable the container to manage the persistent fields
and relationships of the entity beans at runtime.

CMP enables entity beans to be logically independent of the underlying persistence mechanism, and this has
several advantages. Container-provided tools can use the CCI or JDBC to provide access to the underlying data
store. A CMP-based entity bean can be deployed across different containers and persistent data stores without any
significant changes to the entity bean class or its client view. CMP also leads to a simple programming mode for
managing persistence for entity beans. The bean provider does not write any persistence mechanism-related calls
in the entity bean class. The bean provider implements only the business logic methods and relies on the
container-provided tools to generate the implementation code for persistent state management.

An entity bean with CMP consists of three parts: its implementation class, an interface that defines its client-view
methods, and a home interface that defines create, remove, home, and finder methods. The abstract persistence
schema consists of a set of properties, with each property representing afield or relationship that is part of the
persistent state of the entity bean. The entity bean defines a set of accessor (setter and getters) methods for these
persistent fields and relationships.

The code snippet in Code Example 8.7 shows an OrderBean entity bean class.

Example 8.7 Entity Bean with CMP

// Entity Bean class

public abstract class OrderBean implements javax.ejb._EntityBean {
// Getters and setters for CMP fields
public abstract int getOrderStatus();
public abstract void setOrderStatus(int orderStatus);

public abstract Date getOrderDate();
public abstract void setOrderDate(Date date);

// Getters and setters for relationship fields
public abstract Customer getCustomer();
public abstract void setCustomer(Customer customer);

// Business methods

86

public void someBusinessMethod(...) {
// Implementation of business method here ...
// This method uses setter and getter method to
// access persistent state

}
,

Note that the OrderBean entity bean implementation has no database access calls. Instead, the container manages
the bean's persistence at runtime. The bean provider codes all access to persistent data using the setter and getter
methods defined for the container-managed persistent and relationship fields.

The deployer uses container-provided tools to map the abstract persistence schema of an entity bean to the
physical schema required by the underlying persistence mechanism. A tool uses the entity bean's deployment
descriptor, which contains the specification of container-managed fields and relationships for the bean, to perform
this mapping. Thistool generates the concrete implementation class for each entity bean abstract class provided
by the bean provider.

The concrete implementation class contains the actual code that implements the setter and getter methods for
these container-managed fields and relationships based on the underlying persistence mechanism. A concrete
implementation class manages the relationships between the entity beans and manages the access to the persistent
state. It can manage persistence by using the client interface exposed by a resource adapter for the underlying EIS.
Figure 8.6 illustrates this.

Figure 8.6. Using Connector Architecturefor CMP

Container-managed
Persistence Contract

e

|

|

I

I

OrderBean Resource |
< i =

<Enlity Bean Client AP Adapter |

|

|

|

|

EJB Container

Enterprise
Information
System

8.6 Conclusion

We've seen in this chapter how tools vendors can use the Connector architecture CCl to insulate their products
from the low-level, system details of an EIS and such system services as security, transaction management, and
connection pooling. This chapter also discussed the different types of access objects available to application
components. It provided code samples to illustrate each of these access objects and also showed how an
application component might use such objects.

Chapter 9 discusses XML and how it is used in the Connector architecture to represent data and facilitate
messaging.

87

Chapter 9. XML and the Connector Architecture

XML, or eXtensible Markup Language, was developed by the World Wide Web Consortium (W3C). XML isto
datawhat the Java programming language is to computer languages—XML is a platform-independent way of
representing data. XML provides such benefits as portability, extensibility, validation support, wide support, and
readability.

XML is becoming akey technology for enterprise application and business-to-business integrations. In fact, XML
is becoming the strategic instrument for defining corporate data across application domains. It also servesas a
foundation for the next generation of Web service technologies.

Java and the J2EE platform provide a set of APIsthat make it easier to use XML. These APIs help with such
tasks as parsing, transforming, representing, and sending XML entities. In addition, the J2EE platform and the
Connector architecture together offer the infrastructure that allows developers to build scalable XM L-based Web
services. The combination of XML-formatted data and applications written using Java and J2EE provides a
powerful solution for corporate, Web-enabled, computing environments.

9.1 Enterprise Application Integration and XML

Using XML and J2EE technologies together makes it easier to integrate the many disparate applications present
in atypical enterprise environment into one cohesive system. Much of thisintegration involves the distribution of
data among the various applications.

The J2EE platform supplies the connectivity to the middieware services, such as databases, messaging systems,
object request brokers, Web servers, and application servers. The J2EE platform also provides tools for
developing enterprise applications. With XML, developers have away of representing Java object data and
transmitting that data across Java and non-Java middleware. XML also provides away of standardizing and
structuring data.

XML isemerging as the standard medium for exchanging data between enterprise applications. As such, it has
become a key technology in both enterprise application integration and business-to-business (B2B) applications.
Enterprises gain several key benefits by using XML in enterprise application integration and B2B situations,
including portability, extensibility, validation support, technology support, and readability.

o Portability— XML isbased on an open standard. A company that uses XML is not locked into a
particular product or vendor.

o Extensibility— XML defines a metalanguage that can be used to define document formats specific to
an enterprise's purpose. For example, XML technology permits a company to define a document format
specific to a particular application. Currently avariety of industries are defining document formats
applicable to their specific industry domains. (See “Defining Document Types and Formats” later in this
chapter.)

o Validation support— Combining XML with Javafor Web-based applications in the enterprise
facilitates electronic data exchange and application integration. Automated exchange of data, such asin an
e-commerce environment, requires the ability to validate data format and ensure content correctness.

XML provides direct support for validating document content and structure. Enterprises can define what
constitutes avalid XML document, and a standard XML parser can validate the document content by
ensuring that all required fields are correctly included in the document.

e Widetechnology support— Many technologies and products support XML today. For example, XML
parsers are available to process XML documents and convert them into data structures useful for
programming. Transformation of XML documents into different formatsis also well supported. In
particular, the Java and J2EE platforms provide several APIsto simplify XML manipulation and handling.
(These are discussed in “ Java Technologies Supporting XML” later in this chapter.)

o Readability— Because XML documents are text documents, people can read them with no trouble if
they find this necessary. This feature makes XML invaluable in terms of debugging considerations,
especially when compared to data kept in binary format. For example, suppose you have two companies,
A and B, that engage in a business-to-business transaction. If company A sends an invalid document to
company B, it is much easier to locate the error in atext document than in abinary datafile. In addition,
people can potentially process XML documents manually in situations when automated processing is not

appropriate.

88

9.2 Overview of XML Concepts

XML isatext-based markup language designed to deliver structured documents or content over the Web. Markup
isaset of tags and other codes that are used to describe the contents of text. XML uses aform of structured
markup called generalized markup that a variety of applications can interpret.

XML itself specifies neither tags nor semantics, nor does it specify the relationships between tags. Instead, it
provides afacility that lets you define a set of tags and the structural relationships between them. Thus XML isa
language for defining sets of tags or markup languages for different purposes. In addition, because XML enforces
astrict set of rules, any standard XML parser can handle each of these specia-purpose XML formats.

Applications that process XML documents define and apply semantics to the tags. Or, an XML document can
have a stylesheet associated with it. Stylesheets contain rules describing how an application should interpret the
markup embedded in the text. XML makesit is easy to generate high quality print and online renditions of a
document. In fact, the same text marked up with XML can use different stylesheets—one stylesheet might
determine its printed look, whereas another stylesheet controls how it displays on a browser.

In addition, XML markup tags specify the structure of atext document. By embedding XML markup tags into
text, you enable the text to be read and understood by a computer. Each piece of text has alabel and a notation.
Not only can the computer format the text, it can also store and process the document according to the notation
regarding the types of text in the document. It can even search for a particular type of text.

A significant strength of XML isthat it enables text to be passed and used among different applications and
different platforms. This characteristic of XML has helped it to become avery popular technology in recent years.
In particular, enterprises are increasingly using XML to exchange data between applications. This use extends to
exchanging XML documents within an enterprise and, more and more, to exchanging XML documents between
companies and across platforms.

To use XML effectively, you should understand the following concepts:

e XML syntax— Thereisaset of rulesfor forming XML tags and defining XML documents.

e Document Type Definitions, or DTDs— DTDs define the elements, attributes, and rules for the XML
tags used by a particular document or set of documents.

o eXtensible Style Language, or XSL— XSL isalanguage for defining style sheets for XML content.

« XML APIsthat allow applicationsto process XML documents, such asJAXP, SAX, and
DOM— SAX, or Simple API for XML, isastandard interface for event-based XML parsing. The DOM
(Document Object Model) interface provides a set of objects to represent XML documents. It allows
applications to dynamically access and update the content, structure, and style of XML documents.

We discuss these concepts in more detail throughout this chapter.

9.3 Defining Document Types and Formats

Valid XML documents, which are structured text documents, must be “well formed.” A well-formed document is
one in which its markup syntax correctly adheresto XML parser rules. An XML document is also valid when its
content conforms to the rules specified in a Document Type Definition, or DTD. There is also an emerging
standard, called XML schema, that supports the expression of these DTD rules.

The DTD specifiesthe rules for the structure of a particular document or set of documents. That is, the DTD
describes the elements and structure of avalid XML document. The DTD rules may be included within the XML
document itself. Or, the DTD can be a separate document that may be associated with one or more XML
documents.

For example, you might use an XML document to represent a customer order. The document must contain the
order number, plus customer-related information and information about the items ordered. Y ou can set up the
DTD to specify these requirements. Applications that process this customer order use the DTD to validate the
XML customer order document for structural errors.

The structure of an XML document is formed using markups. As noted earlier, markups are tags that describe the
contents of documents. An XML tagis merely alabel applied to a piece of data. The label tells you what the

89

tagged data means; however, it does not tell you how to display or present the data. (Y ou use a script or a
stylesheet to determine how to present the XML data.)

Code Example 9.1 shows a fragment of an XML document:

Example 9.1 XML Sample Document

<purchase-order priority="Urgent'>
<item>
<item-i1d>493</item-id>
<type>Book</type>
<name>EAl Overview</name>
<price>39.95</price>
</item>
</purchase-order>

Each markup tag has a start and end tag. The start and end tags, together with the data they enclose, form an
element. For example, one of the elementsin Code Example 9.1 is <price>39.95</price>. Thiselement has
<price> asthe start tag and </price> as the end tag, and together they enclose the data 39. 95.

Attributes are another key concept of XML. Elements may have attributes, and these attributes provide additional
information about that element. Attributes are name-value pairs that occur within an element'’s start and end tags,
appearing immediately after the element name.

The element purchase-order in Code Example 9.1 has the attribute priority:

<purchase-order priority="Urgent'>

Notice that the priority attribute isfollowed by an equals sign (=), then the attribute value within double quotes
("Urgent"). If an element has multiple attributes, these attribute name-value pairs are separated by commas.

9.4 Java Technologies Supporting XML

Both XML and the Java programming language were designed for the Web environment. Asaresult, thereisa
natural synergy in the two technol ogies—they work well together, particularly for Web-based applications.

By using XML and Java together, developers get the maximum benefits of portable data and code. XML
documents are portable because they must adhere to a set of rules known to every XML parser. Most platforms
will have an XML parser available that can parse and use data contained in the XML document.

Likewise, the Java programming language has been designed to be a completely portable language that runs
without modification on any platform. Severa Javatechnologies directly support XML processing. These APIs
make it easier to handle and manipulate XML entities in Java applications. These technologies are all devel oped
under the Java Community Process, with industry-wide participation. This section briefly describes these
technologies.

9.4.1 Java API for XML Processing (JAXP)

The Java API for XML Processing (JAXP) includes several Java APIs for parsing and manipulating XML
documents. JAXP is part of the J2EE 1.3 platform. JAXP itself includes several technologies, asfollows:

e« Simple API for XML Parsing (SAX)

e Document Object Model (DOM)
e XSL Transformation (XSLT)

9.4.1.1 Simple API for XML Parsing
The Simple API for XML Parsing, commonly referred to as SAX, is apublic domain APl developed by the
members of the XML-DEV mailing list. The SAX parser processes an XML document using an event-driven

paradigm. Here is how SAX works.

An application developer first defines a number of callback handlers. Callback handlers are methods that the SAX
parser invokes at various times as it processes a document. The application developer embeds in the callback

90

handlers business logic for processing particular XML data. For example, in the code snippets (Code Examples 9.2
and 9.3) that follow, the SAX parser calls a callback handler that has been implemented with two callback
methods. It calls the startElement method when it encounters a start tag. Similarly, the SAX parser callsthe
endElement method when it encounters an end tag.

Code Example 9.2 shows how to use the SAX API and JAXP. Notice how the example uses the API to create a
default handler and then a new instance of a SAX parser factory. The example then uses the factory's
newSAXParser method to obtain areferenceto a SAX parser. Finaly, it invokes the parser's parse method on its
XML document, mycontent.xml. The callback handler is defined in the MyHandlerlmpl class.

Example 9.2 Defining a SAX Callback Handler

DefaultHandler handler = new MyHandlerImpl();
SAXParserFactory factory = SAXParserFactory.newlnstance();
SAXParser parser = factory.newSAXParser();
parser.parse("'http://myserver/mycontent.xml", handler);

The MyHandlerlmpl class provides the implementation of the callback handler in this example. (See Code
Example 9.3.) The MyHandlerImpl class implements the logic for the callbacks from the SAX parser. That is, it
includes the implementations of the startElement and endElement callback handler methods. In our example,
the callback handlers merely print a message when a start tag or an end tag is encountered:

Example 9.3 Using a SAX Callback Handler

public class MyHandlerImpl extends DefaultHandler {
public void startElement(String uri, String name, String gName, Attributes attr) throws SAXException {
System_out._printIn(''Start of element: " + name);

public void endElement(String uri, String name, String gName) throws SAXException {
System.out.printIn("End of element: " + name);

}
}

9.4.1.2 Document Object Model (DOM)

The Document Object Model (DOM) was developed by the World Wide Web Consortium. DOM consists of a
core specification and several optional specifications. Its Java interfaces are all defined in the org.w3c.dom
package. Keep in mind that JAXP 1.1 requires support for only the DOM Level 2 core specification; JAXP does
not require support for the optional specifications.

DOM represents an XML document as atree model. It defines APIs to traverse and manipulate the nodes of the
tree. Nodes are the basic building blocks in the DOM standard. Nodes represent elements, text, declarations, and
other entities of an XML document. The DOM API defines methods for

e Obtaining nodeinformation— An application can use the methods provided by the DOM API to
obtain information about a node. For example, there are methods to obtain the type, name, and value of
the node.

e Nodenavigation— The DOM API aso defines methods that enable navigation among nodes. Using
these methods, an application can navigate from anode to its parent, children, or siblings.

« Node maintenance— DOM provides a set of methods to insert, remove, or replace nodes on the tree.

For example, you can create a DOM tree from a document by using the DocumentBuilder object's parse method.
The method parses a specified XML document and builds a tree structure, modeling its elements and other
entities. Code Example 9.4 shows how to create a DOM tree:

Example 9.4 Creatinga DOM Tree

DocumentBui lderFactory factory = DocumentBuilderFactory.newlnstance();
DocumentBuilder builder = factory.newDocumentBuilder();
Document doc = builder.parse('http://myserver/mycontent.xml');

Similar to the SAX parser, the code first creates a new instance of a DocumentBuilderFactory, then uses the

factory to instantiate a new DocumentBuilder object. It can then invoke the DocumentBuilder object's parse
method on the particular XML document.

9.4.1.3 XSL Transformation

91

The XML Stylesheet Language (XSL), and its related XSL Transformation (XSLT) standard, specify the
formatting of an XML document. An XML document may have one or more different XSL stylesheets associated
with it. The stylesheet specification determines the format in which the XML document can be displayed or
printed. The stylesheet'srelated XSLT standard defines the mechanism to transform an XML document into a
specific format. For example, an application can use XSLT and an XML stylesheet to convert an XML document
into an HTML document for displaying in aWeb browser.

Besides using XSLT to determine presentation format, developers are using XSLT more and more to convert one
XML document to another XML document. Thisis particularly useful in enterprise application integration (EAI)
and business-to-business (B2B) integration scenarios.

Although various efforts are underway to define standard XML schemas for different business domains, this
degree of standardization is not yet areality. Today most companies still use their own custom XML schemas for
business documents. Because each company's XML schema s different, one company cannot simply exchange its
business documents with another company. To exchange XML business documents between different companies,
it is necessary to convert documents from one schemato another. In cases such asthis, companies can either use
XSLT to perform the conversion or they can write their own code to perform the conversion manually. It is easier
to define a stylesheet and use XSLT to perform conversions between XML schemas than to write code to perform
the conversion. Thisis particularly true when two documents contain the same information but have minor
structural differences.

XSLT isalso useful in enterprise application integration. If an enterprise has XML as the common data format,
XSLT can be used to transform data to the format required by different applications within the enterprise.

Code Example 9.5 shows how to use JAXP and XSLT to transform an XML document. The example code first
sets up two URLs—one to reference the stylesheet for the document and the other URL to reference the source
document itself. Then the code creates a new instance of a TransformerFactory and uses the factory to create a
transformer instance, passing it the stylesheet URL. Last, the code invokes the transformer instance's transform
method to perform the actual transformation of the source XML document to a new XML document, based on the
instructions in the stylesheet.

Example 9.5Using XSLT to Transform an XML Document

String stylesheetURL = "http://myserver/mystylesheet.xml";

String sourceURL = "http://myserver/mycontent.xml";

TransformerFactory factory = TransformerFactory.newlnstance();

Transformer transformer = factory.newTransformer(new StreamSource(stylesheetURL));

// Transform source xml to system output
transformer.transform(new StreamSource(sourceURL), new StreamSource(System.out));

Code Example 9.6 shows the contents of an XSL stylesheet that converts occurrences of the customer tags
<customer> to client tags <client>.

Example 9.6 XSL Stylesheet

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="1.0">
<xsl:template match="customer'>
<client><xsl:apply-templates/></client>
</xsl:template>
</xsl:stylesheet>

9.4.2 Java Architecturefor XML Binding (JAXB)

The Java Architecture for XML Binding (JAXB) puts XML documents at the same conceptual level as Java
objects. It enables applications to manipulate XML documents just as they might manipulate Java objects. By
using XML data binding, Java programmers can use the same Java constructs with which they are familiar to
manipulate XML documents, thus making it easier to write document-handling applications. Developers do not
need sophisticated knowledge of XML to handle XML documents because the documents are represented
appropriately as Java objects.

JAXB technology includes a schema compiler that generates Java classes based on a schema, typically
represented as aDTD. The compiler-generated Java classes provide both access (get) and mutation (set) methods
to the XML document data and they enforce the constraints specified in the XML schema. The Java classes aso
provide methods for marshalling, unmarshalling, and validation of the data represented by the graph of Java

92

objects. Unmarshalling is the process of building an object representation of XML data. Marshalling is the reverse
process. Validation is the process of checking whether the objects conform to the specified DTD.

9.4.3 Java API for XML Messaging (JAXM)

The Java API for XML Messaging (JAXM) provides a standard way to send XML messages over the Internet. It
is based on the Simple Object Access Protocol (SOAP) technology and can be extended to work with higher level
messaging protocols such as ebXML, a standard developed jointly by OASIS (Organization for the Advancement
of Structured Information Standards) and UN/CEFACT (United Nations Centre for Trade Facilitation and
Electronic Business).

Using JAXM, applications can easily send and receive JAXM messages between each other in a synchronous or
asynchronous manner. JAXM provides aframework for exchanging XML business documents, such as purchase
orders and invoices, between enterprises. JAXM can also be used to interact with a remote Web service through
SOAP messaging.

9.4.4 Java API for XML-based RPC (JAX-RPC)

The Java API for XML-based RPC (JAX-RPC) makes it possible to access Web services using remote procedure
calls (RPC). Although Java already provides two APIs for RPCs—Remote Method Invocation (RMI) and
CORBA-based Java Interface Definition Language (IDL)—JAX-RPC is geared principally toward Web services
and it uses XML asits data format.

Both JAXM and JAX-RPC provide access to Web services. However, JAX-RPC hides the complexity of
handling SOAP messages. It aso provides afamiliar Java RPC programming style. Applications using JAX-RPC
can also take advantage of the strong type checking on parameters that the Java programming language offers.

9.4.5 Java API for XML Registries (JAXR)

The Java API for XML Registries (JAXR) provides a standard way to access XM L-based business registries over
the Internet. A business registry can often be thought of as electronic yellow pages. As more and more businesses
conduct transactions using the Internet, it becomes increasingly important to have a central repository where
businesses can supply information, such as the format of purchase orders, needed for transactions to take place.
Using business registries, companies can interact with each other in aloosely coupled fashion.

Most business registries today are based on ebXML or UDDI. Similar to the Java Naming and Directory Interface
(INDI), JAXR hides the implementation details of registries and provides Java applications with a uniform way to
interact with different types of XML-based registries.

Code Example 9.7 shows how to locate registries of businesses whose names contain “EAL.” JAXR supports the
SQL query mechanism, which isillustrated in this example.

Example 9.7 Using JAXR to L ocate a Registry

RegistryService rs = connection.getRegistryService();
SQLQueryManager sgm = rs.getSQLQueryManager();
BulkResponse result = sqgm.submitQuery("'SELECT id FROM RegistryEntry WHERE name LIKE %EAI%');

This code fragment first obtains a reference to the RegistryService. Then it obtains areference to the
SQLQueryManager. Other kinds of query mechanisms, such as the BusinessQueryManager, are also supported.
Finally, the code submits an SQL query. The BulkResponse object result will contain a unique identifier for each
entry in the RegistryEntry that has “EAI” in its name.

9.5 XML and Connector Architecture

The J2EE Connector architecture and XML are complementary technologies. They can be used together to enable
enterprise application integration (EAI) or business-to-business (B2B) interactions. The Connector architecture
and XML address two important areas of EAl and B2B: EIS data access and the establishment of a common data
format.

The Connector architecture focuses on EIS data access—it provides a standard way to integrate heterogeneous
ElSs and legacy applications. XML addresses the data format issues—it defines a common data format that many

93

platforms, applications, and tools support. XML APIs, such as JAXP, SAX, DOM, and XSLT, enable
applications to easily handle and manipulate data that isin XML format.

9.5.1 XML and Connector Scenario

Our enterprise application example illustrates the use of JAXP and the Connector architecture. Recall the example
scenario for ACl's order processing application. As part of the ordering process, ACI's order processing
application needs to communicate with the Fulfillment Service provider, an external application, to schedule the
shipping of products to customers. In this scenario, the Fulfillment Service provider isimplemented by a different
company.

Because the fulfillment transaction involves two separate companies, it isimportant to define acommon data
format and messaging protocol between the two business entities. XML is a perfect choice for the data format
because it is portable and platform independent. It is also a human-readable format, and this allows a certain
degree of manual processing if necessary.

In terms of exchanging messages between the two companies, we find it useful to use JAXM. JAXM technology
sends and receives SOAP messages using HTTP(S) as transport. SOAP and HTTP(S) are widely adopted
standards. In addition, most companies allow HTTP(S) to pass through their corporate firewalls. This makes
HTTP(S) an ideal transport protocol for business-to-business transactions.

Although XML technology is suitable for conducting business-to-business transactions, most enterprise data still
resides in multiple EISs within the corporation. Thisis where the Connector technology comesin. The Connector
technology, in this case, is used to extract and aggregate enterprise data from multiple enterprise systems. The
datais converted into XML format using XML APIs and then sent to the external business entity using XML
messaging or similar technologies. The application scenario isillustrated in Figure 9.1

Figure9.1. Using XML and the Connector Architecturefor ACI'sOrder Processing

Firewall Firewsall
J2ZEE Server
Connector Technology
gg Java | Order | XML Fulfiliment
e :“Dﬂ*’f?:;i!;?' LAY Service
B I H
2 P (SOAP + Provider
Customer / HTTR{S))
Database £

/

Order Processing Application
uses XML APIs to convert
Java to XML,

9.5.2 Example Application Processing

The order processing application, to conduct its interaction with the external shipping fulfillment application,
must pass certain customer information to the shipping application. The order application ensures that the
customer information exchanged between the two business entitiesis formatted using XML.

The order application must first extract the required customer information, such as the customer ship-to address,
from the customer database. Because the customer database is stored on a mainframe system and is separate from
the order processing application, the application uses the Connector technology to access the customer EIS. Code
Example 9.8 illustrates how the order application uses the Common Client Interface API defined by the Connector
architecture to access the EIS within an enterprise bean.

Example 9.8 Accessing the Customer EIS

// access EIS and get customer address

Context ic = new InitialContext();

ConnectionFactory cf = (ConnectionFactory) ic.lookup("java:comp/env/CustomerEIS™);
Connection con = cf.getConnection();

Interaction ix = con.createlnteraction();

ElISInteractionSpec spec = new ElSInteractionSpec();
spec.setFunctionName(*'getCustomerRecord™);

94

RecordFactory rf = cf.getRecordFactory();

IndexedRecord input = rf.createlndexedRecord(*'customerid™);
input.add(new String(custid));

CustomerRecord cust = (CustomerRecord)ix.execute(ix, input);
// ...

The order application uses a ConnectionFactory instance to establish a connection to the customer EIS. It then
instantiates an Interaction object and sets the function name it intends to call, getCustomerRecord, in the
associated ElSlInteractionSpec. The application uses the RecordFactory object to create an indexed record,
customer I1d, which is an input record. The variable cust holds the returned customer data.

CustomerRecord is a custom CCI record implementation supported by the EIS resource adapter. (See Chapter 7,
Common Client Interface, for more information about CCl.) CustomerRecord is used to represent customer
information, such as the shipping address. It follows the JavaBean pattern of declaring variables as private fields
and having public get and set methods to access these fields. (See Code Example 9.9.)

Example 9.9 Customer Record I mplementation

public class CustomerRecord implements Record {
private int custid;
private String addressl;
private String address2;
private String city;
// ... more Fields
public int getCustld() {
return custid;
}

public setCustld(int custid) {
this.custid = custid;
}

// ... more get/set methods
}

Before the application can send the customer information to the shipping fulfillment provider, we need to convert
the CustomerRecord object to an XML document. We do this conversion using the JAXP API by constructing a
DOM object from the CustomerRecord object.

Code Example 9.10 shows how to construct a DOM object from the CustomerRecord object:

Example 9.10 Constructinga DOM Object from a Java Object

CustomerRecord cust = ... // get customer record using Connector
DocumentBuilderFactory factory = DocumentBuilderFactory.newlnstance();
DocumentBuilder builder = factory.newDocumentBuilder();

Document doc = builder.newDocument();

Element elem = doc.createElement(‘'customer');

doc.appendChild(elem);

Element eleml = doc.createElement(*'custid™);
eleml.appendChild(doc.createTextNode (String.valueOf(cust.getCustld()));
elem.appendChild(eleml);

eleml = doc.createElement("addressi'™);
eleml_appendChild(doc.createTextNode(cust.getAddressi()));
elem_appendChild(eleml);

// ...

Recall that a DOM object is atree structure in which the nodes of the tree represent the XML elements. The
example creates a new document object. Then, it creates node el ements from the properties of a CustomerRecord
object and appends each element to the tree as a child or node. The example first instantiates a new
DocumentBuilderFactory, then usesit to create a new DocumentBuilder object. It uses the DocumentBuilder
object's newbocument method to create the XML document. The example invokes the DocumentBuilder object's
createElement method for customer to create the initial node in the tree. It then adds this variable as the top
node to the tree using the document object's appendChi Id method. For each subsequent variable in the
CustomerRecord, such as custid, address1, and so forth, it uses the same createElement method to create a
new element, which it then appends to the top node with the appendChi Id method. Notice that each variable is
converted to a Java String object before it is appended to the DOM object.

The resulting XML document represented by the DOM object would be similar to this:

<customer>
<custid>384659844</custid>

95

<addressl1>445 XYZ Drive</addressl>

</customer>

Finally, the order processing application uses JAXM to send the fulfillment request to the external service
provider. Code Example 9.11 illustrates how thisis done.

Example 9.11 Sending a JAXM Message

// Obtain connection and create JAXM message

Context ctx = new InitialContext();

ConnectionFactory cf = (ConnectionFactory) ctx.lookup(*'JAXMProvider');
Connection con = cf.getConnection();

MessageFactory mf = con.getMessageFactory();

Message m = mF.createMessage();

// Populate the message with DOM object

Document doc = ... // constructed from a CustomerRecord
SOAPPart soapPart = m.getSOAPPart()

SOAPEnvelope soapEnv = soapPart.getSOAPEnvelope();
DOMSource domSrc = new DOMSource(doc);
soapEnv.setContent(domSrc);

// Send the message
Endpoint endPoint = new Endpoint("http://fulfillment.com/service™);
con.send(m, endPoint);

In Code Example 9.11, the code first creates a JAXM connection using a JAXM connection factory. It then creates
aJAXM message object and populates that object with the DOM object representing the customer information.
Finally, the code sends the JAXM message to the external fulfillment server

9.6 XML Support in Connector Architecture

You'll notice in Code Example 9.11 that the enterprise data represented in Java objects was converted to an XML
DOM data structure. This conversion is necessary because most resource adapters today use Javato represent the
EIS data types. Using Java types has the benefits of strong typing and seamless integration with other Java-based
applications. However, EAl scenarios that use XML as the common data format will require frequent conversions
between Java types and XML format.

To avoid these conversions, some resource adapters have begun to support the use of XML to interact with EISs.
For example, aresource adapter might represent its input and output records using XML. A resource adapter can
support XML in the 1.0 version of the Connector architecture by providing a custom record that represents an
XML document. (See Code Example 9.12.)

Example 9.12 Using a Custom Record to Represent an XML Document
package com.resourceadapter;

import javax.resource.cci.Record;
import org.w3c.dom.Document;

public class XMLRecord implements Record {
private Document doc;

public Document getDocument() {
return doc;
}

public setDocument(Document doc) {
this.doc = doc;
}

The resource adapter uses the XMLRecord as the data structure for its input and output records. Let's consider our
example application again. Suppose this time we use a resource adapter that can return results as XM LRecords.
The customer information returned by the EIS will bein XML format. There is no need to convert between Java
objectsand XML.

However, it is possible that the XML format returned by the EIS might be different than the format required by
the external fulfillment service provider. If so, it isuseful to use XSLT technology at this point. The application

96

can use XSLT to transform the XML datait receives from the EIS before using JAXM to send it to the fulfillment
provider.

In the 2.0 version of the Connector architecture, the Common Client Interface will likely be enhanced to provide
built-in XML support. In addition to supporting the existing record types—such as IndexedRecord,
MappedRecord, and ResultSet—the 2.0 version of the Connector architecture plans to add a standard XML

record type. With a standard XML record type, it will not be necessary for a CCl-based resource adapter to define
its own record structure to represent XML data.

9.7 Conclusion

This chapter presented an overview of XML concepts and described the Java and J2EE XML -related technologies.
These technologies, such as JAXP, JAXM, and JAXR, make it easier for developersto use XML in their
applications.

The chapter also showed how devel opers can use the J2EE Connector architecture and XML to integrate
enterprise applications and accomplish business-to-business interactions. Using the Connector architecture and
XML together helps establish a common data format and simplifies EIS data access. XML defines acommon data
format supported by many platforms and applications, while the Connector defines a standard for EIS data access
among EISs. Resource adapters that adhere to the Connector architecture contracts can support the use of XML
for datainteractions with EISs.

The next chapter describes how developers build a resource adapter, the system-level software library that
applications use to connect to an EIS.

97

Chapter 10. Building a Resource Adapter

A resource adapter is a system-level software library that applications use to connect to an enterprise information
system (EIS). EIS vendors, middleware or application server vendors, or even end users of legacy systems
provide aresource adapter. This chapter shows the steps involved in building a resource adapter, plusit includes
code snippets for a sample resource adapter.

A resource adapter implements the EIS adapter-side of the Connector system contracts. These contracts include
connection management, transaction management, and security. A resource adapter also provides a client-level
API that applications use to access an EIS. The client level API can be the common client interface (CCl) or an
API specific to the resource adapter or the EIS.

A resource adapter can be used within an application server environment, referred to as a managed environment.

The application server interacts with the resource adapter using the system contracts while J2EE components use
the client API to access the EIS. A resource adapter can also be used in atwo-tier or non-managed scenario. In a

non-managed scenario, an application directly interacts with the resource adapter using both the system contracts
and the client API to connect to the EIS.

10.1 Implementing a Resource Adapter

A resource adapter consists of the Java classes that implement the system contracts, the client-level API, either
the CCI API or an adapter-specific API, and an XML deployment descriptor that describes the capabilities of the
resource adapter. The Java classes and the deployment descriptor are packaged together into a Java ARchive
(JAR) format with afile extension of . rar.

The implementation of aresource adapter can be partitioned into three parts: system contracts, client API, and
EIS communication.

e System contracts— A resource adapter must implement the three system contracts defined in the
Connector specification: connection management, transaction management, and security. These system
contracts enable an application server to interact with resource adaptersin a standard manner. In general,
the system contracts are not exposed to J2EE components, which is the case with managed scenarios.
However, in a non-managed scenario, an application needs to use parts of the system contracts to connect
to an EIS. (Recall that in a managed scenario, the J2EE application server acts as an intermediary and
handles most system contract issues, such as connection management, for the application component.
However, in a non-managed scenario, the application deals directly with the resource adapter to connect to
the EIS without the services of the application server.) This chapter focuses on the implementation of the
system contracts from the perspective of both managed and non-managed environments.

o Client API— Applications use the client API to access the EIS. A resource adapter can either implement
the Common Client Interface (CCl) or it can implement an API specific to its EIS or itself. For example, a
resource adapter can choose to support JDBC as the client API. (Refer to Chapter 7, Common Client
Interface, for more information about implementing CCl as the client API.)

e EIScommunication— A resource adapter has to communicate with the EIS, which it does using an
EIS-specific protocol. An adapter either implements this communication support or buildsit on top of a
low-level communication library provided by the EIS. The J2EE Connector architecture does not specify a
protocol or interface between aresource adapter and an EIS. A resource adapter also hasto handle
marshalling and unmarshalling between EIS and Java data types. This book does not discuss the
implementation of the EIS communication module because that is specific to each EIS.

Various implementation options are available to a resource adapter. Because the J2EE Connector architectureis
designed to support adiverse set of enterprise information systems, the architecture alows resource adapters to
implement different capabilities depending on the underlying EIS support. The XML deployment descriptor
included with the resource adapter indicates the supported capabilities. (See “ Resource Adapter Deployment
Descriptor” later in this chapter for more information about the deployment descriptor.)

In general, aresource adapter has these implementation options:

Client API

Transaction support level
Authentication mechanism
Reauthentication support

98

10.1.1 Client API

As noted previoudly, the client API is the means by which application components access the underlying EIS. The
Common Client Interface (CCl), which is specified by the Connector architecture, is the recommended client API.
CCl isdesigned so that it can be implemented and used across heterogeneous EISs.

In general, it is best if aresource adapter provides CCl asits client APl instead of inventing anew client API.
This enables CCl-based resource adapters to provide support for EAl vendors and application devel opment tools
vendors. Of course, if astandard or widely accepted Java APl already exists to accessthe EIS, it is
understandable that the resource adapter might want to provide this standard API rather than the CCI.

10.1.2 Transaction Support Level

The J2EE Connector architecture defines three transaction levels that a resource adapter can support:
NoTransaction, Local Transaction, and X ATransaction. Transaction support levels areincrementa. That is, if a
resource adapter supports Local Transaction level, it must also support NoTransaction. If an adapter supports
XATransaction level, it must also support NoTransaction and Local Transaction.

We recommend that a resource adapter support X ATransaction because this capability alows an application to
access multiple EISs in the same transaction. If aresource adapter supports Local Transaction, an application can
only access at most one EIS in the same transaction and still maintain proper transaction semantics.

10.1.3 Authentication M echanism

An application has to authenticate with an EIS before it can connect and access the EIS. The J2EE Connector
architecture defines two types of authentication mechanisms: basic password authentication and Kerberos V5.

The basic password mechanism is probably the most commonly used mechanism to sign on with an EIS. This
mechanism relies on a PasswordCredential object that contains a username and a password identifying the user or
component desiring to sign on to the EIS. An application server passes this PasswordCredential object to the
resource adapter for authentication.

Kerberos is a distributed authentication protocol created by the Massachusetts Institute of Technology. It is
supported by a GenericCredential object. A GenericCredential encapsulates generic credential data such asa
Kerberos ticket. An application server passes a GenericCredential object to the resource adapter for
authentication.

The Connector architecture requires that an application server support the basic password mechanism. It is
optional for an application server to support Kerberos and GenericCredential. Therefore, a resource adapter
should always support the basic password mechanism to ensure general pluggability into application servers.

10.1.4 Reauthentication Support

Reauthentication refers to the process of changing the security context of existing connectionsto the EIS. Recall
that a connection is a handle that applications use to access the EIS. Typically, a connection is associated with a
security context, and the EIS uses the security context to enforce access control. This association normally occurs
when an application initialy creates a connection.

A resource adapter has the option to support reauthentication of existing connections. Reauthentication allows an
application server to switch the security context of an existing connection without creating a new connection.
This reauthentication capability enables an application server to support more advanced connection pooling.

10.2 System Contract Interfaces

To properly support the J2EE Connector architecture system contracts, a resource adapter needs to implement
several Javainterfaces. Table 10.1 lists these system contracts interfaces, grouped together by package, and
provides a brief description of each interface's function.

In addition to implementing these interfaces, a resource adapter also needs to provide an implementation of a

connection factory and a connection. If aresource adapter supports CCl, its connection factory and connection
classes must implement the ConnectionFactory and Connection interfaces defined in the javax.resource.cci

99

package. Otherwise, if the adapter is providing its own client API, the resource adapter's connection factory and
connection classes can implement any Javainterface.

The next sections discuss these system contracts and the other relevant interfaces.

10.2.1 Implementing Connection M anagement

A resource adapter has to provide the means to manage connections. To begin with, the adapter must be able to
handle the basic steps for creating a connection.

Table 10.1. System Contracts | mplemented by Resour ce Adapters

Interface Name

Description

Package javax.resource.spi

ConnectionManager

Implemented by a resource adapter to provide connection management support in a
nonmanaged environment.

ConnectionRequestinfo

Encapsulates security and client-specific information. A connection factory creates an object
that implements this interface, and the resource adapter passes it unmodified to a managed
connection factory.

LocalTransaction

Provides methods for local transaction demarcation. Resource adapters at LocalTransaction
and XATransaction levels must implement this interface.

ManagedConnection

Represents a physical connection to an EIS.

ManagedConnectionFactory

Represents a factory for managed connections.

IManagedConnection MetaData

|Pr0vides information about the managed connection.

Package javax.transaction.xa

XAResource

Provides methods for distributed XA transaction demarcation. Provides support for two-phase
commit.

To help you understand what is involved in these steps, we present a simplified view of what happens when a
J2EE component requests a connection in a J2EE-managed environment. (See Figure 10.1.)

Application
Componant

Figure 10.1. Requesting a Connection

Application Managed Conneclion JHDI
Server Factory Context
javax. resourca.cei. Managed
ConnectionFactary Connection
1. lookup

b

2. getConnection

9. return javax.resource.cci.Connection

3. Cnnn&minnhlanagar.all!maiacnnnacljan

4. Application server relrieves a
ManagedConnection from its connection pool or
creates a new ManagedConnection using
ManagedConnectionFaclory.,

5. addConnectionEventListener
{ConnectionEventListener)

&. Application server performs transactional setup for the
ManagedConneaction instance. Application server gets
LocalTransaction or XAResource objects from the
ManagedConnection instance.

7. getConnection

8. return javax. resource.col. Connection
"

&l

The following interactions happen in this scenario:

100

1. A J2EE component uses INDI to look up a connection factory that has been implemented by the resource
adapter.

2. The J2EE component calls the getConnection method on the connection factory.

3. The connection factory delegates the request to the ConnectionManager. In a managed environment, the
ConnectionManager isimplemented by the application server.

4. The ConnectionManager might retrieve an existing connection from the connection pool to satisfy the
request. Or, it might call the ManagedConnectionFactory to create a new physical connection, represented
by a ManagedConnection object.

5. The application server may register one or more listeners with the ManagedConnection so that it can
receive notification on connection events. Closing a connection is an example of a connection event.

6. The application server performs transaction demarcation, if necessary. It obtains Local Transaction and
XAResource objects from the ManagedConnection.

7. The application server requests a connection handle by calling the getConnection method on the
ManagedConnection.

8. The application returns the connection handle to the connection factory.

9. The connection factory returns the connection handle to the J2EE component.

10.2.2 Connection Factory

J2EE application components use a connection factory to create connections to an EIS. The connection factory
may have to implement several interfaces.

A connection factory is usually bound in a INDI namespace. As aresult, it implements two JNDI-related
interfaces: java.io.Serializable and javax.resource.Referenceable. In addition, if a resource adapter supports CClI,
the connection factory also needs to implement the javax.resource.cci.ConnectionFactory interface. However, if
the adapter does not support CClI, it implements some other connection factory interface specified by the resource
adapter.

When aresource adapter creates a connection factory, it must associate the connection factory object to a
ConnectionM anager.

The relevant methods in a connection factory are the getConnection methods. Typically, a connection factory
interface has two getConnection methods, one of which takes no parameters and returns a connection object.
For example:

Javax.resource.cci.Connection getConnection()
throws javax.resource.ResourceException;

When a J2EE application uses this form of the getConnection method, the application server is responsible for
passing the client security information to the resource adapter.

The second form of the getConnection method takes as parameters client security information, such as username
and password, as follows:

Javax.resource.cci.Connection getConnection(javax.resource.cci.ConnectionSpec spec)
throws javax.resource.ResourceException;

This form of the getConnection method encapsulates the security information in a ConnectionSpec object.
When aresource adapter receives arequest from agetConnection method, it isrequired to call the

al locateConnection method of the associated ConnectionManager. (Remember that the association between
the ConnectionManager and the ConnectionFactory is made when the ConnectionFactory is created.)

101

In the managed environment, the application server provides the ConnectionManager implementation. Thus, in
the managed environment, an application server has the capability of intercepting a connection creation request
and hooking in connection pooling or other value-added services. The ConnectionManager implementation is
required to either return an appropriate ManagedConnection from the connection pool or request a new

M anagedConnection from the ManagedConnectionFactory.

In anonmanaged environment, however, the resource adapter provides a default ConnectionM anager
implementation. The ConnectionManager does not provide any pooling or value-added services.

10.2.3 Managed Connection Factory

Applications use a connection factory to create connections, whereas application servers use a managed
connection factory to create managed connections. A managed connection represents a physical connection to an
EIS.

A resource adapter must provide an implementation of the ManagedConnectionFactory interface. A
ManagedConnectionFactory must implement the java.io.Serializable interface, as well asthe equals and
hashCode methods. Here we highlight the more significant methods defined in ManagedConnectionFactory:

e createConnectionFactory— Thismethod returns an instance of a connection factory that can be used
by applications. Associated with the connection factory are the ManagedConnectionFactory and,
optionally, a ConnectionManager. (See “ ConnectionManager” later in this chapter.)

e createManagedConnection— Thismethod creates a new ManagedConnection.

e matchManagedConnections— Thismethod returns from the set of ManagedConnection instances a
ManagedConnection that matches the security and client information.

In addition to implementing methods defined in the ManagedConnectionFactory interface, a resource adapter
must provide get and set methods for the configuration properties. These get and set methods must follow the
JavaBean programming pattern. A configuration property contains information for connecting to an EIS, such as,
for example, hostname and port number.

For example, the J2EE reference implementation provides a sample CCI XA resource adapter. This CCI XA
resource adapter defines a configuration property called XADataSourceName. The adapter's

M anagedConnectionFactory implementation contains get and set methods for this configuration property,
getXADataSourceName and setXADataSourceName.

10.2.4 ConnectionM anager

The ConnectionManager interface provides a hook so that the resource adapter, in the case of a managed
environment, can pass a connection request to the application server. In a managed J2EE environment, the
application server provides the implementation of the ConnectionManager interface.

However, in a nonmanaged J2EE environment, a resource adapter provides a default implementation of the
ConnectionManager interface. In anonmanaged environment, a resource adapter does not provide connection
pooling or other services. As aresult, the resource adapter's implementation of the ConnectionManager interface
can be very simple—the ConnectionManager only needs to delegate the connection request to the
ManagedConnectionFactory. For example, aresource adapter might implement the ConnectionManager

al locateConnection method as follows:

public Object allocateConnection(ManagedConnectionFactory mcf, ConnectionRequestinfo info)
throws ResourceException {
ManagedConnection mc = mcFf.createManagedConnection(null, info);
return mc.getConnection(null, info);

}
10.2.5 ManagedConnection

A ManagedConnection interface represents a physical connection to an EIS. It provides access to XAResource
and Local Transaction implementations for transaction demarcation. It also allows an application server to register
for connection event notifications. A J2EE application component does not interact directly with a
ManagedConnection. Instead, it interacts with an application-level connection handle returned by a
ManagedConnection.

102

A resource adapter is responsible for properly checking security and identification before issuing a connection
handle to an application. When an application server calls the ManagedConnection interface's getConnection
method, the server passes Subject and ConnectionRequestinfo instances to the method. The Subject and
ConnectionRequestinfo objects contain client-specific information and security information. The resource adapter
needs to ensure that the getConnection method returns a connection handle only when security and
client-specific information is consistent with the ManagedConnection.

For example, suppose a ManagedConnection instance is authenticated with user A. It then receives a
getConnection call that passesin user B asthe subject parameter. How should the resource adapter handle this
disparity? If the resource adapter does not support reauthentication, it should throw a SecurityException. If the
adapter supports reauthentication, the adapter should switch the ManagedConnection's security context to user B
and return a corresponding connection handle.

It is possible to have multiple connection handles associated with the same ManagedConnection. An application
server might call getConnection multiple times to enable sharing of a ManagedConnection across multiple
connection handles. As aresult, it isimportant that no states are kept in the connection handles. They should be
treated as a statel ess pipe, or pointer, to the ManagedConnection.

It is aso possible to change the association of a connection handle from one ManagedConnection instance to
another. The ManagedConnection's associateConnection method allows a connection handle to be associated
with a ManagedConnection instance that is different from its original creator. For example, suppose we have two
ManagedConnection instances—mc1 and mc2—and a connection handle called chandle. The following code
snippet illustrates switching a connection handle from one ManagedConnection to another.

chandle = mcl.getConnection(subject, info);

// initially chandle is associated with mcl
mc2.associateConnection(chandle);

// chandle is now associated with mc2 and is not associated with mcl

At the start of the code snippet, the getConnection method executes and the connection handle is associated with
the ManagedConnection mc1. After the associateConnection call, the connection handle is now associated with
ManagedConnection mc2 and it is no longer associated with mcl.

Keep in mind that a connection handle can be associated with only one ManagedConnection at any given time.
When an application server switches a connection handle's ManagedConnection association, all EIS access
through the connection handle must be redirected to the newly associated M anagedConnection instance.

In addition, when an application server callsassociateConnection, it must make sure that it is passing a
compatible connection handle. For example, a connection handle from another resource adapter would be
incompatible and thus would not be avalid candidate for switching.

10.2.6 Connection Handle

A J2EE application uses a connection handle to access an EIS. The connection handle is an object returned by the
ManagedConnection. The connection handle implements a connection interface that provides methods to interact
with an EIS.

If aresource adapter implements CCI, the connection handle must implement the javax.resource.cci.Connection
interface. Otherwise, the adapter implements a connection interface that is specific to the resource adapter. For
example, one of the sample resource adapters in the J2EE reference implementation implements the
java.sgl.Connection interface because this sample adapter uses SQL to interact with the EIS rather than CCI.

Regardless of the connection interface that a connection handle implements, it must include a close method that

allows an application to release the connection. Refer to the three system contract chapters (Chapters 12, 13, and
14) for more details.

10.3 Managing Transactions

Transactions can be managed either at the Local Transaction level or at the XATransaction level. The resource
adapter and its underlying resource manager manage alocal transaction. Such atransaction cannot span multiple

103

ElSs. A transaction manager that is external to the resource adapter manages XATransactions, also referred to as
global transactions. Typically, an external transaction manager resides on the application server.

10.3.1 Using L ocal Transactions

Recall the three levels of transaction support: NoTransaction, Local Transaction, and XATransaction. The
NoTransaction support level indicates that the resource adapter does not support transactions. When a resource
adapter supports either Local Transaction or XATransaction level, it needs to provide an implementation of the
Local Transaction interface.

The Local Transaction interface allows an application server to demarcate the local transaction boundaries of a
ManagedConnection. Local transactions are managed internally by an EIS. If aresource adapter does not support
transactions, the ManagedConnection getLocal Transaction method should throw a NotSupportedException.

Refer to Chapter 13, Transaction Management Contract, for more details on the Local Transaction interface.

10.3.2 Handling XAResour ce Transactions

When aresource adapter supports XATransaction level, it needs to provide an implementation of the
XAResource interface. The XAResource interface is defined in the Java Transaction API (JTA) to support
distributed transaction processing. In an XATransaction, an external transaction manager coordinates multiple
resource managers to achieve transaction semantics. In the J2EE environment, the application server typically
implements the transaction manager. The X AResource interface is the contract between the transaction manager
and a resource manager, such as an ERP system.

Keep in mind that when a resource adapter supports XATransaction level, it can participate in global transactions.
With global transactions, it is possible that access to the EIS can be together with other resource managers. In this
case, updates to the resource managers either all commit or all rollback. This uniform behavior makesit much
simpler for an application to maintain data integrity across multiple EISs. As aresult, we strongly recommend
that a resource adapter support the XATransaction level.

Refer to Chapter 13, Transaction Management Contract, for more details on X ATransactions.

10.4 Implementing Security Management

A resource adapter needs to ensure that appropriate security management takes place whenever a new connection
is created. The resource adapter authenticates a client when establishing the connection.

When an application requests a resource adapter to create a new connection, the application must pass appropriate
security credentials to the resource adapter for authentication. The application has several different options for
passing this security information to the adapter. The resource adapter must follow certain prescribed protocols for
handling the security credentials, depending on how the security datais passed to it.

Security information that passes between an application and a resource adapter is contained within either a
Subject or ConnectionRequestinfo object. The ConnectionRequestinfo interface is a generic interface that a
resource adapter can use for representing connection request-specific data.

A Subject object represents a group of related security information for asingle entity, such asauser's principal. It
includes the entity's identity or identities, because a subject may have multiple identities, aswell asits
security-related attributes, such as passwords and cryptographic keys, for example. Each identity is represented as
aprincipal within the Subject object. The security-related attributes are referred to as credentials. A Subject object
may contain a PasswordCredential or a GenericCredentia object. Recall that the PasswordCredential object
contains a username and a password identifying the user or component desiring the connection. A
GenericCredential encapsulates generic credential data such as aKerberos ticket.

10.4.1 Container-Managed Sign-on
An application can rely on the application server to pass security credentials to the resource adapter. When the

application server passes the security credentials for the application, it is considered to be container-managed
sign-on.

104

When this option is used, the application server passes a Subject instance in two connection-related methods:. the
ManagedConnectionFactory's createManagedConnection and the ManagedConnection's getConnection
methods. Depending on the particular deployment configuration, the Subject instance contains either a
PasswordCredential or a GenericCredential. When a resource adapter receives a non-null Subject instance, it must
use the security credentials contained in the Subject instance to authenticate with the EIS. Note that the
ConnectionRequestinfo object may contain additional, resource adapter-specific security information, although
thisis not required.

10.4.2 Application-M anaged Sign-on

It's also possible for an application to pass security information, such as username and password, directly when it
calls the getConnection method of the connection factory. This approach for passing security information is
called application-managed sign-on.

When an application uses this approach, the connection factory encapsulates the security informationin a
ConnectionRequestinfo object. The application server, in turn, passes the unmodified ConnectionRequestinfo
object to both the ManagedConnectionFactory's createManagedConnection method and the
ManagedConnection's getConnection method. The application server passes null for the Subject instance. When
aresource adapter receives anull Subject, it must use the security information encapsulated in the
ConnectionRequestinfo for the connection request.

10.4.3 Using the ConnectionRequesti nfo I nterface

The ConnectionRequestinfo interface enables a resource adapter to pass its own request-specific data structure
across the connection request flow. A resource adapter extends the ConnectionRequestinfo interface to support its
own data structures for the connection request.

In addition to security information, ConnectionRequestinfo may also be used to pass client-specific information
such as encoding style. However, it is best to minimize the use of ConnectionRequestinfo for passing information
other than security information. It is recommended that all information related to an EIS configuration be defined
as configuration properties in the ManagedConnectionFactory.

The following code snippet is an example of implementing the ConnectionRequestinfo interface so that it can be
used to pass username and password information from the connection factory.

public class CciConnectionRequestinfo implements ConnectionRequestinfo {
private String user;
private String password;

10.5 Handling Connection Events

The J2EE Connector architecture defines an event listener mechanism that enables an application server to
receive event callbacks from aresource adapter. To use this mechanism, the application server must register one
or more connection event listeners with the resource adapter. The application server does this by first
implementing the ConnectionEventListener interface. Then it registers a connection event listener with a
ManagedConnection object by invoking the ManagedConnection's addConnectionEventListener method.

When might it be useful for a server to register itself as a connection event listener? For example, when an
application closes a connection handle, a resource adapter is required to send a connection_closed event to all
registered listeners. Sending this event alows an application server to put the connection back into the connection
pool, making it available for further use.

Hereis asummary of when aresource adapter needs to fire a connection event:

e A connection isclosed.

e Anerror has occurred that makes the corresponding managed connection invalid and unusable.
e A local transaction is started.

e A local transaction is committed.

e A local transaction isrolled back.

105

Note that a resource adapter should fire an event only when the action is performed by an application viathe
client-level API. A resource adapter must not fire an event when the action is performed by an application server
viathe system contracts. For example, if an application server starts alocal transaction using the
javax.resource.spi.Local Transaction interface, aresource adapter should not fire a connection event for this
action.

10.6 Distributing a Resource Adapter

To distribute a resource adapter to enterprise sites and developers, it's necessary to properly package the adapter.
The packaging process includes creating a deployment descriptor file and ensuring that all resource adapter files
are correctly inserted into the proper archive module.

10.6.1 Packaging a Resour ce Adapter

A resource adapter consists of the XML deployment descriptor file and a set of Javainterfaces and
implementation classes. These files are packaged using the Java ARchive (JAR) format into a Resource ARchive
file (RAR). A RAR fileisthe unit of distribution for a resource adapter. For example, a resource adapter called
eisA. rar might include the following files:

META-INF/ra.xml
impl.jar
client.jar

The ra.xml file represents the resource adapter deployment descriptor. (See * Resource Adapter Deployment
Descriptor.”) The deployment descriptor file must be stored as /META-INF/ra.xml.

All resource adapter interfaces and classes must be packaged into one or more JAR files. However, the resource
adapter devel oper has a certain amount of leeway in determining how to partition the classesinto JAR files. This
packaging example, hastwo JAR files: impl _jar and client_jar. The impl _jar file contains the
implementation of the resource adapter, and the client_jar file contains interfaces and classes that are exposed
to applications that use the resource adapter.

We recommend that a resource adapter be implemented entirely in the Java programming language, if at all
possible. However, it is possible to package platform-dependent librariesin a RAR file. For thisto work, a
deployer needs to manually extract the appropriate platform-dependent library and configure the application
server to usethislibrary.

Keep in mind that, because each RAR file should only contain one resource adapter, you should package multiple
resource adapters into separate RAR files.

10.6.2 Resour ce Adapter Deployment Descriptor

Every resource adapter includes an XML deployment descriptor file. The deployment descriptor describes the
capabilities of aresource adapter and provides a deployer with enough information to properly configure the
resource adapter in an application server-based environment. An application server aso relies on the information
in the deployment descriptor so that it knows how to interact properly with the resource adapter.

The deployment descriptor file is meant to be read-only for a deployer or resource adapter user. In other words, a
resource adapter provider sets the deployment descriptor, and the deployer should never modify it. For example,
it isan error to change the transaction-support element in aresource adapter's deployment descriptor. Such a
change may result in incorrect application server and resource adapter interactions.

Hereisasummary of the information contained in a resource adapter deployment descriptor:

Genera information about the resource adapter
Interface and implementation classes
Transaction support level

Authentication information

Security permissions

Configuration properties

106

The configuration properties define information required to connect to an EIS. The ManagedConnectionFactory
implementation further defines the setter and getter methods to the same properties. For example, if the hostName
and portNumber properties are defined in the deployment descriptor, the M anagedConnectionFactory
implementation must define get and set methods for these properties. getHostName, setHostName,
getPortNumber, and setPortNumber.

The properties in the deployment descriptor provide atemplate that allows the deployer and tools devel oper to
configure connection factories. The deployment descriptor provides the property name and type, and it may also
provide an optional default value. Multiple connection factory instances can be configured using the same
resource adapter. However, the actual configuration property values are not stored back to the read-only
deployment descriptor. Instead, the application server stores them separately in its own copy or representation of
the deployment descriptor.

Code Example 10.1 shows an example of a deployment descriptor for the CCl sample local transaction black box
resource adapter bundled with J2EE reference implementation.

Example 10.1 Deployment Descriptor Example
<?xml version="1.0" encoding="UTF-8"7?>

<IDOCTYPE connector PUBLIC "-//Sun Microsystems, Inc.//DTD Connector 1.0//EN*
"http://java.sun.com/j2ee/dtds/connector_1 0.dtd">

<connector>
<display-name>CciBlackBoxLocalTx</display-name>
<vendor-name>Java Software</vendor-name>
<spec-version>1.0</spec-version>
<eis-type>JDBC Database</eis-type>
<version>1.0</version>
<resourceadapter>
<managedconnectionfactory-class>
com.sun.connector.cciblackbox.CciLocalTxManagedConnectionFactory
</managedconnectionfactory-class>
<connectionfactory-interface>
Javax.resource.cci.ConnectionFactory
</connectionfactory-interface>
<connectionfactory-impl-class>
com.sun.connector.cciblackbox.CciConnectionFactory
</connectionfactory-impl-class>
<connection-interface>
Javax.resource.cci.Connection
</connection-interface>
<connection-impl-class>
com.sun.connector.cciblackbox.CciConnection
</connection-impl-class>
<transaction-support>LocalTransaction</transaction-support>
<config-property>
<config-property-name>ConnectionURL</config-property-name>
<config-property-type>java. lang.String</config-property-type>
<config-property-value>
jdbc:cloudscape:rmi:CloudscapeDB;create=true
</config-property-value>
</config-property>
<authentication-mechanism>
<authentication-mechanism-type>BasicPassword</authentication-mechanism-type>
<credential-interface>
Javax.resource.security.PasswordCredential
</credential-interface>
</authentication-mechanism>
<reauthentication-support>false</reauthentication-support>
</resourceadapter>
</connector>

10.7 Using an Adapter in the Runtime Environment

When aresource adapter is used within a J2EE application server, the adapter is executed under a default Java
security permission set. The security permission set restricts aresource adapter's ability to access system
resources. By default, a resource adapter is allowed to access the file systems, read system properties, and connect
to remote hosts. If aresource adapter requires additional security permissions, it must document the permissions
in the deployment descriptor. When a deployer configures the resource adapter, he or she must explicitly grant the

107

extra security permissions requested. The method to grant permissions is specific to an application server. In the
J2EE reference implementation, for example, the deployer must manually edit a security policy file.

Keep in mind that some J2EE components, such as enterprise beans, are normally granted fewer permissions than
aresource adapter would be granted. For example, an enterprise bean is not alowed to access the underlying file
systems. To ensure that a resource adapter can still access system resources when it is called from a J2EE
component such as an enterprise bean, the resource adapter must enclose all its system access invocationsin
doPrivileged blocks, asfollows:

AccessController.doPrivileged(new PrivilegedAction() {
public Object run() {
// perform system access operations here
}

DE

10.8 Conclusion

This chapter described how a developer might implement a resource adapter, providing code snippets to illustrate
the process. It showed how to provide aclient APl and appropriate connection, transaction, and security support,
according to the EIS adapter-side of the Connector architecture's system contracts. In addition, the chapter
described how to set up a deployment descriptor for aresource adapter, and how to package and distribute the
adapter so that it can be used in a runtime environment.

The next three chapters discuss the three Connector system contracts—connection management, transaction
management, and security—in greater detail.

108

Chapter 11. Resource Adapter Packaging and Deployment

In Chapter 10, Building a Resource Adapter, we described how to build a resource adapter. After you have
developed and built a resource adapter, you must package and deploy it on a J2EE application server to make it
available to J2EE applications. This chapter describes how to package and deploy a resource adapter.

First, we begin with some background on packaging and deployment, and then we focus on how the deployment
process occurs within an application server environment.

Deployment is the process whereby software modules are installed into an operational environment. In the J2EE
operational environment, al J2EE applications are composed of one or more J2EE modules. A J2EE module
represents the basic unit of composition for a J2EE application. That is, a module consists of one or more J2EE
application components and one module-level deployment descriptor. J2EE application components are enterprise
beans, servlets, and JSPs. The deployment descriptor isan XML file that describes how the module should be
deployed. The deployment descriptor describes specific configuration requirements that are resolved at
deployment by the deployer. A deployer is an expert in the target operational environment who installs, and
possibly customizes, software modules into the operational environment.

Within the context of the J2EE platform, a resource adapter corresponds to a J2EE module. In most regards, a
resource adapter module is just like other J2EE modules, such as enterprise bean modules, application client
modules, and Web client modules. Like other modules, the resource adapter must be deployed into an application
server. To that end, the J2EE Connector architecture supports the modular and portable deployment of a resource
adapter into a J2EE application server. However, whereas most other J2EE modules contain multiple application
components in addition to the deployment descriptor, a resource adapter module contains exactly one component:
aresource adapter.

Figure 11.1 shows how the composition of aresource adapter module compares with the composition of other
J2EE modules. Theicon labeled “DD” in the diagram represents the deployment descriptor file. One J2EE
application isillustrated in the figure. It is composed of four J2EE modules: an EJB module, a Web client module,
an application client module, and a resource adapter module. The J2EE application isa unit of deployment. In
addition, the figure also shows a standalone EJB module and resource adapter module. A J2EE module can aso
be directly deployed into a J2EE application server.

Figure 11.1. Deploying a Resour ce Adapter Module

109

Components JZEE Modules JZEE Application

EJB

EJB

ElB

Web Client

Deployment
Taal

Resource
Adapter
Module g

EJB

EJB

EJB

Resaurce
Adapter
Module &

o0]

11.1 Deployment Approaches

Similar to the other J2EE modules, a resource adapter module must be deployed and configured before it can be
made available for other J2EE components and applications to use. There are two approaches or options for
deploying a resource adapter:

o Standalone deployment— The resource adapter is deployed as a standalone module.
o Bundled deployment— The resource adapter isfirst assembled into a J2EE application and then it is
deployed as part of that J2EE application.

The next sections discuss these two resource adapter deployment approaches.

11.1.1 Standalone Deployment

A resource adapter module can be deployed as a standalone unit into an application server. When deployed in this
manner, the J2EE platform ensures that the resource adapter is available to al J2EE applications running on the
application server. The principal benefit of using this deployment option isto allow multiple J2EE applications to
share a single resource adapter.

Y ou use this deployment option if the majority of the J2EE applicationsin your operational environment use the
same type and version of aresource adapter. That way, you need only deploy the resource adapter once, rather
than having to deploy the adapter separately for each application.

Keep in mind, though, that this option has some disadvantages for the individua deploying the application at the
operational site. The deployer must resolve the external resource adapter dependencies—such as aresource
factory reference that manages a connection—for the J2EE application. The deployer also must be sure to deploy
the correct version of the resource adapter.

110

In Figure 11.1, the resource adapter module 6 (which appears at the bottom of the figure) is deployed as a
standal one unit.

11.1.2 Bundled Deployment

All J2EE modules can be assembled together with other J2EE modules into one J2EE application. Because a
resource adapter is one type of J2EE module, it can be assembled or bundled with other J2EE modulesinto an
application. For example, athree-tier J2EE application may contain aresource adapter module for EIS
connectivity, an EJB module for business logic, and a Web client module for Web presentation. Referring again
to Figure 11.1, resource adapter module 5 is bundled together with EJB module 1, Web client module 2, and
application client module 3 into one J2EE application.

When you bundle a resource adapter module within an application and then deploy that application, the J2EE
platform makes that resource adapter available only to the modules and components within the same application.
The bundled resource adapter is not visible to other applications deployed in the same application server.

The bundled deployment option enables you to ship the J2EE application together with the resource adapter. By
doing so, the deployer (at the operational site) need not resolve any external resource adapter dependencies. This
also ensures that the deployer does not mistakenly install an incorrect version of aresource adapter, a scenario
best avoided.

11.2 Packaging a Resource Adapter

Packaging a resource adapter entails defining the deployment descriptor for the adapter and including all elements
of the resource adapter. Generally a packaged resource adapter includes these elements:

The Java classes and interfaces that implement the functionality of the resource adapter

Any utility Java classes the resource adapter uses

The resource adapter's platform-dependent native libraries

Help files and documentation

The deployment descriptor containing descriptive meta information that ties together al the elements of
the resource adapter

A resource adapter is packaged into a Resource Adapter Archive (RAR) file using the Java Archive (JAR) format.
A resource adapter archivefileisidentified by the file extension . rar. For example, you might package the
resource adapter myEIS into the archive filemyEIS. rar.

A resource adapter RAR file must contain a correctly formatted deployment descriptor. The implementation—the
Java classes and interfaces—of aresource adapter is typically packaged in one or more JAR files, and these JAR
files are in the resource adapter module. (Note that JAR files use the . jar extension.) The deployer must ensure
that al the JAR files are loaded in the operational environment. It's possible that the resource adapter module may
contain platform-specific native libraries. If so, the deployer must also ensure that these native libraries are
installed in the operational environment.

For example, you might have the following files in aresource adapter module:

/META-INF/ra.xml
/howto.html
/images/icon.jpg
/ra_jar
/cci.jar
/win.dll
/solaris.so

In this example, the file ra_xml isthe deployment descriptor, Thefiles ra. jar and cci . jar contain the Java
interfaces and implementation classes for the resource adapter. Last, win.d11 and solaris.so represent native
libraries that the adapter uses.

Aswe've noted, each resource adapter module includes a deployment descriptor. A deployment descriptor is an

XML file containing deployment-specific information about the resource adapter. The deployment descriptor
defines the contract between a resource adapter provider and a deployer. The file contains declarative information

111

about the resource adapter and is intended for the deployer's use. The information in the descriptor enables the
deployer to deploy the resource adapter in atarget operational environment.

Before deploying a resource adapter, the deployer should examine the resource adapter deployment descriptor to
understand the resource adapter's capabilities and requirements. In particular, the deployer needs to pay attention
to the following elements of the deployment descriptor, all of which pertain to the resource adapter: version
information, transactional support, configuration properties, authentication mechanisms, and security permissions.

Version information— The deployer must ensure that he or she is deploying the correct version of the
resource adapter for a particular application.
Transactional support— The deployment descriptor includes a transaction support level that
determines the transactional capability of a resource adapter. There are three levels of transactional
support:
o NoTransaction— At thislevel, the resource adapter does not support any transaction semantics.
o LocaTransaction— When thislevel of support is specified, the resource adapter supports only
local transactions internal to a particular EIS resource manager.
XATransaction— When thislevel is specified, the resource adapter supports both local and XA
transactions. With XA transaction support, the resource adapter can participate in aJTA (or global)
transaction involving multiple EISs.

The deployer must ensure that the resource adapter meets the transactional needs of the J2EE applications
intending to use the resource adapter. That is, the deployer ensures that the resource adapter's transaction
support level is sufficient to support the transactional requirements of the J2EE applications. For example,
if a J2EE application needs to access two EISsin the same transaction, the transaction support level of
both resource adapters should be X ATransaction.

(See Chapter 4, Working with Transactions, and Chapter 13, Transaction Management Contract, for more
information on handling transactions.)

Configuration properties— The deployment descriptor specifies the properties for the configuration of
multiple connection factories. The deployer needs to configure at least one connection factory for each

resource adapter. The deployer may have to configure more than one connection factory for each resource
adapter. The J2EE applications use these connection factories to create connections to the underlying EIS.

Each connection factory has a corresponding managed connection factory that the application server uses.
Each managed connection factory requires configuration information, such as server and connection port
information, typically specified as name-value pairs. The configuration properties in the deployment
descriptor define atemplate for the name-value pairs that must be specified for each managed connection
factory. For example, aresource adapter may define the following configuration properties:

o ServerName— Name of the server for the EIS instance
o PortNumber— Port number for establishing a connection to an EIS instance

The deployer must specify the proper configuration properties for each managed connection factory. But
why would an operational site want to have more than one managed connection factory for asingle
resource adapter? Different managed connection factories alow the same resource adapter to be used to
connect to different EIS instances of the same type. Each managed connection factory must be configured
with different property values, reflecting the particular EIS instance for which it provides a connection.

(See Chapter 3, Managing Connections, and Chapter 12, Connection Management Contract, for more
information.)

Authentication mechanisms— The resource adapter deployment descriptor specifies the authentication
mechanisms that the resource adapter supports. A resource adapter may support one or both of the
following authentication mechanisms:
o BasicPassword— Thisisauser password-based authentication mechanism that is specific to an
EIS.
o Kerbvs— Thisrefersto Kerberos version 5-based authentication mechanism.

Depending on the authentication mechanism supported by the resource adapter, the deployer ensures that
the proper security mechanism is set up in the operational environment.

Security permissions— Every resource adapter is granted the same default set of Java security
permissions. A resource adapter may request additional security permissions (such as thread creation)

112

beyond this default permission set. The deployment descriptor lists these additional or changed security
permissions. If the resource adapter requests additional security permissions, or wants to change the
security permissions, the deployer needs to evaluate the security implications of the changed or additional
permissions and decide whether or not to grant the extra permissions in the operational environment.

11.3 Deployment and Configuration

Deployment entails two actions: installation and configuration. The deployer installs a resource adapter module
on an application server and then configuresit into the target operational environment.

Generaly most application servers provide some tools to simplify the deployment process. However, the tools
cannot handle all the deployment steps, and the deployer may need to perform some deployment tasks manually.

After aresource adapter is deployed successfully, the deployer should configure the application server based on
the configuration information contained in the resource adapter deployment descriptor. For example, the deployer
may need to configure the security authentication mechanism and grant extra security permissions requested by
the resource adapter.

The deployer performs certain tasks to configure a resource adapter. The deployer

« Configures one or more property sets per ManagedConnectionFactory instance to create connections to
different underlying EIS instances. Values for the fields in a property set are specified in the deployment
descriptor. Note that each property set provides a specific configuration for creating a connection to a
specific EIS instance.

o Configures the application server mechanisms for transaction management based on the resource adapters
level of transaction support

o Configures security in the target operational environment based on the resource adapter's security
requirements, the adapter's authentication mechanism, and its credentials interface. The deployment
descriptor specifies the security requirements. The deployer needs to consider the security mechanisms
supported by the application server.

11.4 Connection Factory Creation

For a J2EE application component to use a deployed resource adapter, the application component needs to be able
to look up a connection factory and create a connection using the connection factory. This requires the deployer
to perform an additional step after deploying aresource adapter. The deployer must create one or more
connection factories for the resource adapter and then must bind these connection factories to the INDI
namespace.

A J2EE application uses the JNDI to locate and look up a connection factory for a resource adapter. The
application then uses the connection factory to create a connection to the resource adapter's underlying EIS.

A deployer uses the tools provided by the application server to create connection factories. Keep in mind that
each connection factory has an associated managed connection factory. The resource adapter deployment
descriptor defines the set of configuration properties that need to be defined for each managed connection factory.
The deployer configures each configuration property for the managed connection factory based on the property's
name, type, and description as specified in the deployment descriptor.

11.5 Using Packaging and Deployment Tools

Generally you package and deploy a resource adapter using the tools that are part of your particular application
server. Although each application server'stool is different, functionally they all accomplish similar tasks. We use
the J2EE Software Development Kit (SDK) Version 1.3 deployment tool, called deploytool, to illustrate some of
these packaging and deployment tasks. Using the J2EE SDK, we will deploy a sample resource adapter that has
been provided with the SDK.

Note that you can download the J2EE SDK from http://java.sun.com/j 2ee/download.html.

113

http://java.sun.com/j2ee/download.html

Two sample resource adapters come with the J2EE SDK. The CciBlackBoxLoca Tx supports local transactions,
and the CciBlackBoxXA supports global transactions. We use deploytool to deploy these adapters onto the server
called localhost.

Aswe've already noted, resource adapters may contain configuration properties. Properties are name-value pairs
containing information specific to the resource adapter and its underlying EIS. Configuration properties are
defined in the deployment descriptor of each resource adapter's RAR file.

Deployment tools let you view and set up the configuration properties for a resource adapter. For example, you
can view and edit the properties that provide general information about a resource adapter—these properties
provide such information as the adapter name, version description, vendor name, licensing requirements, type of
EIS supported, and supported specification version. Y ou can also edit aresource adapter's default configuration
properties, security properties, and RAR file.

Figure 11.2 shows some of the properties for a resource adapter, including its managed connection factory, its
ConnectionFactory interface and implementation, and its Connection interface and implementation.

Figure 11.2. deploytool Configuration Properties

E:Applu..ﬂ-.-n Deplyment Took CollakBoul scalls - (=]
Lol ol ol S— I R
<elle@a BaR& =0 24 ¢ &
[T=[) inspecting: FilesAosource Adapler s, CoiBlackiood ocallx
& Qiestctons
& O Fesource Adaplers
A CeiBlackBodocalTs
0@ SEE:‘H‘:*‘”'““[’W Managed Conmection Faciun: .
§ E o alhost _mmmmmﬂ x|
&0 coiblac koot rae Conmction Factony
Interf ace: _
L cell B0y T Transaction Suppor:
wm _ Local -
ORI ORREC] OOl kb CC onnaction actony ¥ —
fonsscecertcomaces < | Dowaee. |
Irryplizrmsiant ation: _
:m:—:lh.uﬂ:h.tdtm =|
R & Aoapter Display Marme:
CoBlackBoal o alTe

Figure 11.3 shows exampl e screens that you might see for the configuration properties, security, and RAR file.

Figure 11.3. Configuration, Security, and RAR Properties

114

frespecting: Fils Aosource Adapti s-CoimlackRomd ocally

General | Configus tlon Propestis | Sucurity RAR File.

Coafigus stlon Properties Tor Connection Factonies

Progerty Type Cradaul Value |

o ecliorUIRL Eting] dbcelowdscapeamiCloudecan 3

HE

nspecting: File s Rescarce Adapters. CoiftsckBoxd ocal Tx:
General | Configur stion Properties | Securiy | RAR Pl
AAnheic stion Mechanisms
| Passwodd
|| Herberos Version 5.0
"] Reauthentication Suppored

S ity Per i sions

Spetfication 1]

General | Configuration Proporties. Sacurly FAR fike
Archive File Hamss

Coljdediose] Nbiconmechoroiblackbox-borar
RAFE Display Mame:
[lC-LIEIIul:IBu:IJJMI'-': |

Confenks:

-] METAINF

DY criblackboete jar

Generally adeployment tool shows the available resource adapters and the adapters that have been deployed on a
particular server. The top screen in Figure 11.4 shows that the J2EE deploytool has two avail able resource adapter
files, CciBlackBoxLocal Tx and CciBlackBox XA, and that currently only the cciblackbox-xarar adapter has been
deployed to the localhost server. The lower screen shows atypical dialog box for deploying aresource adapter
fileto a specific server. You indicate the resource adapter that you want to deploy and the name of the target
server on which it should be deployed.

Figure 11.4. Deploying a Resour ce Adapter

115

[L L e ———) =0 =]
Mo EM Tools {wp _ _
@@ BERE a0 g€ ¢ &
CIFikes lmrspacting: Files Ao sow co Adapters.CoiflackBoxd ocalTy
&S ropacdyers oners | Contpratkn Propws Secuty ARFI
® [Resnury Acapiees
A Cobtl ko o iTx
W CoBuYBmn Manaped Connection Factony
? B Serae pe—— = - -
@ B ocakust o Coa el Txb aclivy =
:Fh eb gtk tor Comnaction Factony
e face)
Jorstmatd egotnr e CeLC oeeEcliond actony ¥ | Transaction Suppor:
Irnpbe: e afbonc Lecal -
EOMEUREONmBETN LEiblackhin: CeiCannactisnf actory | —_————
. ‘Warsion inbormalion...
~Comnection
interlace: |
s oo CoCELC el il [Deseripties...
ey alwong)
ComusuncontCton Coiblac koo CoiCanneciion -
Rirtaurco kdspher Displyy Wame:
."_": SlachBorl ot &l
L —
\]
Please select the ohject to he deployed and the server to which it
should be deployed:
Object to Dephiny:
|7 CoiliackBand ocallx -
Targed Server:
localhast -

Thas server can send hack a client JAR file. Tt contains the extra
RMUTIOF stub ¢lasses that client applications written to access this
application will need al runtine,

Feoturm Chend Rar
Cliend JAR File: Mam:

R .

vl Sanv obsjact bedore deploying

| I-H_ Candel | < Back Hext = [Fumsh

After you have deployed a resource adapter, you must set up at least one connection factory for that adapter. Y our
application uses a resource adapter's connection factory to establish a connection to an adapter's underlying EIS

instance. When you create a connection factory for an adapter, you specify a INDI name to identify the
connection factory.

Y ou use your application server's deployment tool to view, create, and edit these connection factories. For
example, we use the J2EE deployment tool to look at the connection factories aready set up for our two resource
adapters. The cciblackbox-tx resource adapter has a connection factory whose JINDI name is eis/newFactory,
and the cciblackbox-xa resource adapter's connection factory isidentified as eis/myfactory. (See Figure 11.5.)

Figure 11.5. Viewing a Resour ce Adapter's Connection Factory

116

E;sﬁ.upli-:d'lmn Deployment Tool

File Edit Tools Help

F1 CeiBlackBoxLocalTy
4 CeiBlackBoxd
P M@ gavers
¢ & localhost
B4 ceiblackbox-torar
£ cciblackbos-sa rar

REees Fere =n ¢4 ¢ [E
Filas fnspecting: Servers Jocalhost
’ ?D Resource Adaglers [ﬁ’m

~Deplayed Connection Faclories

® 4 cciblackbowtberar
& gisinewr actony

© [coiblackbonxs rar
& aisimylaclony

i

| Delete...

Deployment tools also provide a means to create a new connection factory for a resource adapter. Figure 11.6

shows a sample screen to create a new connection factory with a JNDI name of eis/testFactory for the
cciblackbox-tx resource adapter.

Figure 11.6. Creating a New Connection Factory

Eﬁhew Connection Factory

Resource Adapter

cciblackbox-tx.rar
Connection Factory JNDI Name:
' eisfestFacton |
~Configuration Properties

| Froperty
ConnectionUJRL

Type Value

jdbecloudscapermi:Clou...

string

~Recovery Settings
User Name:
l |

Password:

l |

Lok] | .

The tools also provide a means to undeploy a particular resource adapter from a specific server. When you
undepl oy an adapter, you remove its association with the specified server.

11.6 Conclusion

This chapter summarized the packaging and deploying of a resource adapter. It explained the elements that make
up aresource adapter module and showed what a deployer must do to configure a resource adapter.

117

Most deployers use specia deployment tools provided by their own application server to accomplish these
packaging and deployment tasks. We used the J2EE SDK and its deployment tool to illustrate the typical

functionality provided by these tools.

Chapter 12 discusses some of the features that are expected to be included in future rel eases of the Connector
architecture.

118

Chapter 12. Connection Management Contract

Thisis an advanced chapter that discusses the Connector architecture's connection management contract. The
connection management contract supports connection pooling and management. This chapter provides an “under
the hood” view of the contract. It examines the interfaces and classes that are specified in the Connector
architecture specification.

Keep in mind that these system-level details are intended for application server and resource adapter providers.
However, application developers may find it useful to understand what is happening behind the scenes, especialy
if they are interested in gaining insight into the subtleties of the connection management concepts and
mechanisms.

12.1 Connection Management Contract

An application component uses a connection factory to access a connection instance, which the component then
uses to connect to the underlying EIS. A resource adapter acts as a factory of connections.

Connection pooling manages connections that are expensive to create and destroy. Connection pooling of
expensive connections leads to better scalability and performance in an operational environment.

The goal of the Connector architecture is to enable efficient, scalable, and extensible connection pooling
mechanisms, not to specify a mechanism or implementation for connection pooling. The goal is accomplished by
defining a standard architected contract for connection management with the providers of connections—that is,
resource adapters. An application server uses the connection management contract to implement a connection
pooling mechanism in its own implementation-specific way.

The connection management contract provides the following features:

e A consistent application programming model for connection acquisition for both managed and
nonmanaged (two-tier) applications.

e A generic mechanism by which an application server can provide different quality of services
(QoS)—transactions, security, advanced pooling, error tracing/logging—for its configured set of resource
adapters.

e Support for connection pooling.

12.2 Contract Overview

The application server uses the deployment descriptor mechanism to configure the resource adapter in the
operational environment.

The resource adapter provides connection and connection factory interfaces. A connection factory actsasa
factory for EIS connections. For example, the javax.sgl.DataSource and java.sgl.Connection interfaces are
JDBC-based interfaces for connectivity to arelationa database. The CCl defines
javax.resource.cci.ConnectionFactory and javax.resource.cci.Connection as interfaces for a connection factory
and a connection, respectively.

The application component does a lookup of a connection factory in the INDI namespace. It uses the connection
factory to get a connection to the underlying EIS. The connection factory instance delegates the connection
creation request to the ConnectionManager instance.

The ConnectionManager enables the application server to provide different quality of servicesin the managed
application scenario. These quality of services include transaction management, security, error logging and
tracing, and connection pool management. The application server provides these servicesin its own
implementation-specific way. The Connector architecture does not specify how the application server implements
these services.

The ConnectionManager instance, on receiving a connection creation request from the connection factory, does a
lookup in the connection pool provided by the application server. If no connection in the pool can satisfy the
connection request, the application server uses the ManagedConnectionFactory interface (implemented by the
resource adapter) to create a new physical connection to the underlying EIS. If the application server finds a

119

matching connection in the pooal, it uses the matching ManagedConnection instance to satisfy the connection
request.

If anew ManagedConnection instance is created, the application server adds the new ManagedConnection
instance to the connection pool.

The application server registers a ConnectionEventListener with the ManagedConnection instance. This listener
enables the application server to get event notifications related to the state of the ManagedConnection instance.
The application server uses these notifications to manage connection pooling, manage transactions, clean up
connections, and handle any error conditions.

The application server uses the ManagedConnection instance to get a connection instance that acts as an
application-level handle to the underlying physical connection. An instance of type javax.resource.cci.Connection
is an example of such a connection handle. An application component uses the connection handle to access EIS
resources.

The resource adapter implements the X AResource interface to provide support for transaction management. The
resource adapter al'so implements the Local Transaction interface so that the application server can manage
transactions internal to a resource manager. Chapter 13, “ Transaction Management Contract,” describesthis
transaction management contract between the application server (and its transaction manager) and the resource
adapter (and its underlying resource manager).

Figure 12.1 depicts the connection management interfaces—ConnectionM anager, ConnectionFactory, Connection,
M anagedConnectionFactory, ManagedConnection, and ConnectionEventListener. In this diagram, the solid lines
represent architected contracts, and the dotted lines represent implementation-specific interactions.

Figure 12.1. Architecture Diagram: M anaged Application Scenario

Application Companent
+ v
Application Server Resocurce Adapter
ConneclionManager — l ConnectionFactory | | Connection |
+
SecurityService
Managear
MPQDI = {ManagedCunnediunFadnw
anager ;
— Managedﬂann&dlm‘
— LocalTransaction
Transaction
Managar —r XAResource |
E
[ConnectionEveniListenear _—

Enterprise Information Systam (EIS)

The definitions of these interfaces and classes are shown in “ Connection Management Classes and Interfaces” later in
this chapter.

120

12.3 Scenarios

The scenarios presented in this section in the form of sequence diagrams illustrate the scope of the connection
management contract. They show how the resource adapter and application server work together to manage
connection requests, either by creating new connections or matching existing connections to these requests. Each
scenario illustrates the methods of the connection management interfaces. (For complete information on these
connection management interfaces, you should refer to the J2EE Connector Architecture Specification, v. 1.0.)

In this section, the CCI interfaces—javax.resource.cci.ConnectionFactory and
javax.resource.cci.Connection—represent connection factory and connection interfaces, respectively.

Figure 12.2, the object diagram for the connection management contract, clearly shows the flow of control
between the various objects on the application server and resource adapter.

Figure 12.2. Object Diagram for Connection Management Contr act

Application
Component
Application Server Resource Adapter
i
) ConnectionFactory
ConnectionManager Connection
Q. allocateConnection
L) L1
Application Server 3 v
Specific A 3
' A
'l.~ 1
ManagedConnectionFactory v

SecurityService Al

Manager S N ;C:) !

’

I
createManagedConnection- “ !
matchManagedConnections " 4
ManagedConnection
Paal

Manager addiremoveConnectionEveniListener

getConnection

Transaction
Manager

1

Application Server
Specific

EIS Specific

. . Connection Eveant Nolifications
ConnectionEventListenar

v

Enterprise Information System (EIS)

12.3.1 Creating New Connections

Figure 12.3 shows the object interaction diagram for creating a new connection. This diagram provides detailed
information about each step of the connection management contract.

Figure 12.3. Creating a New Connection

121

Resource Adapter Resource Adapler

. javax resource.coi. | Application| | Transaction|| ManagedConnection Managed A
Application CannectionFactony Sarver Manager Factory Connaction Resource
Component

1. getConnection

2. ConnectionManager.allecateConnaction

Application Server looks up
candidate conneclion sat
from the connection poal.

3. createManagedConnection

*

4. <=greale=>

5. addConnectionEveniListener
L

&. Optional:setLogWriter

Application Server performs transactional
setup for ManagedCannection instanca
in steps 7, B, and

I
7. gelXAResource

8. Transaction.enlistResource(XARasowce)
* |

8, XAResource.start(XID)
|

i
10. getConnecticn{3ubject, ConnectionRequestinfo)

*

11, return javax, resource.coi.Connection

]

12. return javax.resource.col. Connection

The following object interactions happen in this scenario:

1. An application component calls the getConnection method on a ConnectionFactory instance to obtain a
connection to an EIS instance. This ConnectionFactory instance is obtained from a INDI |ookup.

2. The ConnectionFactory instance, which at its instantiation was associated with a ConnectionM anager
instance provided by the application server, delegates the request to its associated ConnectionManager
instance by calling the ConnectionManager's al locateConnection method. That is, the resource adapter
essentially passes the connection request to the application server. The application server then manages
the interaction between the ConnectionManager and the connection pool manager, and does so in an
application server-specific manner.

3. The application server, using its own connection lookup criteria, checks the connection pool for
ManagedConnection instances that can handle the current connection request. If the server finds a suitable
ManagedConnection instance, it uses that ManagedConnection instance to create a connection handle.
Then it merely returns the connection handle to the resource adapter. However, if the server finds no
suitable match, it needs to create a new physical connection to the EIS, which it does by creating a new
ManagedConnection instance. To do this, the server calls the ManagedConnectionFactory's
createManagedConnection method. Note that both the ManagedConnection and
ManagedConnectionFactory interfaces are implemented by a resource adapter.

4. The ManagedConnectionFactory instance creates a new physical connection, represented as a
ManagedConnection instance, and returns this instance to the application server. The
ManagedConnectionFactory instance creates a new physical connection to the underlying EIS to handle
the createM anagedConnection method. This new physical connection is represented by a
ManagedConnection instance. The ManagedConnectionFactory uses the security information (passed as a
Subject instance), ConnectionRequestinfo, and its default set of configured properties (port number,

122

server name) to create a new ManagedConnection instance. (Refer to the security contract for more details
on the createM anagedConnection method.)

5. The application server calls the addConnectionEventListener method and registers a
ConnectionEventListener with the new ManagedConnection instance so that the server can receive event
notifications for this connection. These event notifications enabl e the application server to manage
connection pooling. The application server also does the required transactional setup for the
ManagedConnection. (See Chapter 4 for more information on transaction management.)

6. The application server may call the setLogWriter method to manage error logging and tracking.

The application server performs atransactional setup for the ManagedConnection instance. (Steps 7 through 9
pertain to this transactional setup.)

7. The application server calls the getXAResource method on the ManagedConnection instance.

8. The application server enlists the transaction with the transaction manager, by calling the
Transaction.enlistResource method.

9. The transaction manager starts the transaction by invoking the XxAResource . start method on the
XAResource instance.

10. The application server calls the ManagedConnection instance's getConnection method to obtain an
application-level connection handle. It is this connection handle that the application server returns to the
resource adapter.

11. The application server returns the connection handle to the resource adapter's ConnectionFactory instance.

12. The resource adapter returns the application-level connection handle (either the newly created one or the
one that the server retrieved using the connection pool) to the application that initiated the connection
reguest.

12.3.2 Matching Existing Connections

In many cases, the application server finds a set of ManagedConnection instances in its connection pool that it
considers potential matches for the connection request from an application component. In this situation, the
application server calls on the resource adapter to ascertain the correct matching connection for the connection
request.

The application server uses the methods of the ManagedConnectionFactory to find a matching existing
connection, or to create a new connection if a match cannot be found. An application server uses the
ManagedConnectionFactory's matchManagedConnection method to enable the resource adapter to perform
connection matching from a candidate set of connections. The application server findswhat it believesto be a
candidate set of connection instances from its connection pool, based on its application server-specific criteria,
and it then passes this set of connections to the matchManagedConnection method. The
matchManagedConnection method, in turn, tries to find a matching connection from this candidate set of
connections—in terms of security and connection state requirements—using criteriainternal to the resource
adapter.

Figure 12.4 shows the object interaction diagram for the connection matching scenario. (Note that the initial steps
are the same as in the previous scenario.) The object interactions are:

Figure 12.4. Matching ManagedConnections

123

Resource Adapler Resource Adapler

jAvaX, resouUroR. ol

Applicatien | copnectionFactory
Component

Application || Transaction || ManagedConnection Managed XA
Server Manager Factory Connection Resource

1. getCannection

2. ConnectionManager allccaleConnection

Application Server looks up
candidate connection set
from the connection pool.

3. matchManagedConnections
i il
Casza: Malching ManagedCannection
fourd
I [

4, nddcanpedlnnEvenlLlslener

&, Opticnal:setlogWriter{PrintWriter)

k

setup for ManagedConnection instance
in steps & and T:

I l

&. Transactien.enlistResource XAResource)
¥

Application Server performs transactional ‘

7. XAResource.start{X10D)

8. getConnection(Subject, ConnectionRequestinfa)
[[

9. raturn javas resource.co, Connection
—

10. return javax_ resource.cci.Connection

1. The application component calls the getConnection method to request a connection.

2. The ConnectionFactory delegates the connection request to the ConnectionManager instance by invoking
the al locationConnection method.

3. Usingitsown internal implementation, the application server identifies the candidate set of
ManagedConnection instances for this connection request from its connection pool. Then the application
server calls the ManagedConnectionFactory method matchManagedConnections to pass the resource
adapter the candidate connection set, security information, and any information related to the connection
request. ThismatchManagedConnections enables the resource adapter, using its own internal criteria, to
do the connection matching in the ManagedConnectionFactory instance. The matchManagedConnections
method returns a ManagedConnection instance that the resource adapter considers an acceptable match for
the connection request. Because the resource adapter knows best about the internal specifics of the
ManagedConnection instances, it helps the application server achieve optimal connection matching.

4. The application server callsthe addConnectionEventListener method and registersa
ConnectionEventListener with the matched ManagedConnection instance. This enables the application
server to receive event notifications for connection-related events. These event notifications enable the
application server to manage connection pooling. The application server also does the required
transactional setup. (See Chapter 4 for more information on transaction management.)

5. The application server optionaly may call the setLogWriter method on the ManagedConnection instance
to manage error logging and tracing.

The application server performs a transactional setup for the ManagedConnection instance (steps 6 and 7).

124

6. The application server enlists the transaction with the transaction manager by calling the
Transaction.enlistResource method.

7. Thetransaction manager starts the transaction by invoking the XxAResource . start method on the
XAResource instance.

8. The application server now can call the getConnection method on the ManagedConnection instance to
obtain a new application-level connection handle.

9. The application server returns the connection handle to the resource adapter.

10. The resource adapter, in turn, passes the connection handle to the application.

12.3.3 Handling Connection Events

J2EE Connector architecture provides an event callback mechanism that enables an application server to receive
event notifications from a ManagedConnection instance. An application server uses the connection event
mechanism to manage connection pooling. It uses these event notifications to clean up any invalid or terminated
connections, and also to manage local transactions.

An application server registers a ConnectionEventListener for each ManagedConnection instance in its
connection pool. The ConnectionEventListener receives both close and error events (ConnectionEvents) for the
connection.

A ConnectionEvent provides information about the source of a connection-related event. It contains such
information as the type of the connection event, the ManagedConnection instance that generated the connection
event, a connection handle associated with this ManagedConnection instance, and possibly an exception
indicating the connection-related error.

To understand connection management, we discuss the steps that happen when an application component initiates
aclose of aconnection. Figure 12.5 shows the object interaction diagram for handling connection event
notifications.

Figure 12.5. Connection Event Notification

Resource Adapter Raesource Adapter
o javax resource.cci. || Application || Transaction| | ManagedConnection Managed KA
Application | ConnectionFactory || Server Manager Faclory Conneclion Resource
Component
1. close
—i

2. Internal: Resource Adapler implemantation specific

ManagedConneaclion
nolifies all registered
ConnectionEvantLisianars.

3. connectionClosed|(ConnectionEvent:
 CONNECTION_CLOSED})

Steps 4 and 5 occur in the
case of a JTA Transaction.
T
4. Transaction.delistResourca
(XAResource)

5. XAResource.end{X10)

£. ManagedCannection.clearup

Application Server returns
ManagedConnection instance
to connection pool

W

The steps are as follows:

125

1. The application component releases an allocated connection handle using the close method on the
Connection instance.

2. The Connection instance, in turn, delegates the method to its associated M anagedConnection instance in
the resource adapter. Note that each resource adapter uses its own mechanism to establish this association.

3. The ManagedConnection instance starts the actual close operation. First, the ManagedConnection instance
notifies all registered listeners of the close request by invoking the ConnectionEventListener method
connectionClosed with the event type set to CONNECT10ON_CLOSED.

The application server, when it receives notification of the close event, performs transaction management
related cleanup of the ManagedConnection instance. (See Chapter 4 for transaction management
information.)

The application server performs atransactional setup for the ManagedConnection instance (steps 4 and 5).

4. The application server delists the transaction with the transaction manager, by calling the
Transaction.delistResource method.

5. The transaction manager ends the transaction by invoking the XxAResource . end method on the
XAResource instance.

6. The application server calls the cleanup method on the ManagedConnection instance that raised the close
event. This method prepares the instance to be reused for subsequent connection requests. When the
cleanup method completes, the server puts the ManagedConnection instance in the pool of available
connections.

12.3.4 Nonmanaged Environment

The connection management contract enables a resource adapter to be used in atwo-tier application directly from
an application client. For applications running in a two-tier nonmanaged environment, an application client can
use aresource adapter to connect to an underlying EIS.

In a nonmanaged environment, either an application developer or the resource adapter provides the
ConnectionManager implementation class. The ConnectionManager class provided by the resource adapter is the
default. Other third-party vendors may provide additional quality of services components.

When an application requests a connection from the ConnectionFactory instance, the ConnectionM anager
instance interposes on the connection request and delegates it to the ManagedConnectionFactory instance. The
ManagedConnectionFactory instance creates the physical connection to the EIS, and this connection is
represented by a ManagedConnection instance. The ConnectionManager obtains an application-level handle to
the physical connection represented by the ManagedConnection instance. The ConnectionManager returns the
application-level handle to the ConnectionFactory, which, in turn, passes the handle to the application. To be
consistent with the application programming model in the managed environment, an application should use the
JNDI namespace to look up a ConnectionFactory instance.

Figure 12.6 illustrates the connection management contract in the nonmanaged environment. Here we show the
object interactions for the creation of a connection in a nonmanaged environment. Figure 12.7 shows the object
interaction diagram for this scenario.

Figure 12.6. Nonmanaged Environment

126

Application Component

/ |

Resource Adapter

ConnectionFactory Connection

ConnectionManager

| ’

ManagedConnectionFactory

ManagedConnection

Enterprise Information System (EIS)

Figure 12.7. Creating a Connection in a Nonmanaged Environment

127

Resource Adapter

Connection
Manager

javax. resource. cei.
ConnectionFactory

ManagedConnection
Factory

Managed

Application Conneclion

Client

1. gelConnection

=

2. allocateConnection

3. createManagerConnection

4. <<creatg=>

5. getConnection{Subject,
ConnectionRaquestinfo

.
o

6. return javax resource.cci. Connection

7. refurn javax.resource.cci.Connection

+

Here are the steps:

1.

An application component looks up a ConnectionFactory instance from the JNDI namespace. It invokes
the getConnection method on the ConnectionFactory instance to request a connection to an underlying
EIS.

The ConnectionFactory instance uses the al locateConnection method to pass the request to the default
ConnectionManager instance provided by the resource adapter.

The ConnectionManager instance calls the createManagedConnection method on the
M anagedConnectionFactory instance to create a new physical connection to the EIS.

The ManagedConnectionFactory instance creates a new ManagedConnection instance to represent the
physical connection. It initializes the ManagedConnection instance state.

The ConnectionManager instance calls getConnection on the ManagedConnection instance to obtain an
application-level connection handle. It isimportant to emphasize that getConnection does not create a
new physical connection to the EIS; instead, it produces an application-level connection handle that an
application uses to access the underlying physical connection represented by the M anagedConnection
instance.

The ConnectionManager returns the application-level handle to the ConnectionFactory instance.

The ConnectionFactory instance returns the application-level handle to the application initiating the
reguest.

12.4 Connection Management Classes and Interfaces

Now that we've presented the scenarios describing the connection management contract and examined the object

interactions, let's focus on the specific classes and interfaces.

There are two principal packages of interest: javax.resource.spi and javax.resource.cci. The
javax.resource.cci package defines the two connection interfaces, ConnectionFactory and Connection, to which
an application component relates. The javax.resource.spi package defines the system contracts between the

application server and the resource adapter.

128

12.4.1 ConnectionFactory and Connection | nterfaces

Application components use two key connection interfaces. connection factory and connection. A connection
factory provides an interface for establishing a connection to an EIS instance. A connection provides connectivity
to an underlying EIS.

The Connector architecture supports a consistent application programming model across clients that use both the
Common Client Interface (CCl) and an EIS-specific API. To achieve this consistent programming model, the
Connector architecture specifies an interface template to be used as a design pattern for both the connection
factory and the connection interfaces. The CCl interfaces (defined in the javax.resource.cci package)
ConnectionFactory and javax.resource.cci.Connection are based on this design pattern.

A resource adapter provides implementations for both the ConnectionFactory and the Connection interfaces.
Code Example 12.1 shows the ConnectionFactory interface.

Example 12.1 ConnectionFactory I nterface

package javax.resource.cci;
public interface ConnectionFactory
extends java.io.Serializable, javax.resource.Referenceable {
public Connection getConnection()
throws ResourceException;
public Connection getConnection(
Javax.resource.cci.ConnectionSpec properties)
throws ResourceException;

}

The javax.resource.cci .ConnectionFactory interface defines multiple variants of the getConnection
method. An application invokes this method when requesting a connection to an underlying EIS instance.
Different resource adapters may add more getConnection methods if they require additional flexibility in
connection requests beyond those offered by the default interface specification.

Code Example 12.2 shows the definition of the Connection interface.

Example 12.2 Connection Interface

package javax.resource.cci;
public interface Connection {
public void close() throws ResourceException;

}
The javax.resource.cci .Connection interface defines a close method. An application invokes the close

method to indicate that it no longer requires the connection to the EIS. This allows the resource adapter or
application server to release the connection and free system resources, if necessary.

12.4.2 Connection Management Contract

The interfaces most relevant for resource adapters and application servers are contained in the
Javax.resource.spi package. See Appendix A.

The javax.resource.spi.ConnectionManager provides a hook for a resource adapter to pass a connection request to

an application server. An application server provides different quality of services as part of its handling of the
connection request. (See Figure 12.8.)

Figure 12.8. Adding Servicesto a Connection Request

ConnectionManager ConnectionFactory

SecurityService
Manager

ron | . ,
| Manager | ManagedConnectionFactory

Transaction
Manager

The ConnectionManager interface defines the al locateConnection method. A resource adapter's connection
factory instance invokes the al locateConnection method so that it can delegate a connection request to the
ConnectionManager instance.

It is the application server that provides the implementation of the ConnectionManager interface. Thisis ageneric
implementation that is not tied to a specific resource adapter or connection factory interface. Through this
ConnectionManager interface, the server provides its additional services, including security, connection pool
management, transaction management, and error logging. After the application server has used its “ hooked-in”
services, it delegates the connection request to a ManagedConnectionFactory instance implemented by a resource
adapter.

Code Example 12.3 shows the ConnectionM anager interface.

Example 12.3 ConnectionM anager |nterface

package javax.resource.spi;
public interface ConnectionManager extends java.io.Serializable {
public Object allocateConnection(
ManagedConnectionFactory mcf,
ConnectionRequestinfo cxRequestinfo)
throws ResourceException;

}

The ManagedConnectionFactory interface is afactory of both ManagedConnection instances and connection
factory instances. It defines a number of methods of interest, as shown in Code Example 12.4.

Example 12.4 M anagedConnectionFactory I nterface

package javax.resource.spi;
public interface ManagedConnectionFactory extends java.io.Serializable {

public Object createConnectionFactory(ConnectionManager connectionManager) throws ResourceException;
public Object createConnectionFactory() throws ResourceException;
public ManagedConnection createManagedConnection(
Javax.security.auth.Subject subject, ConnectionRequestinfo cxRequestinfo) throws ResourceException;
public ManagedConnection matchManagedConnections(java.util.Set connectionSet,
jJavax.security.auth.Subject subject, ConnectionRequestinfo cxRequestinfo) throws ResourceException;

130

The createConnectionFactory method creates a connection factory instance that can be used in either managed
or nonmanaged scenarios. The createManagedConnection method creates a new physical connection
(represented by a ManagedConnection instance) to an underlying EIS instance. The matchManagedConnections
method enables the application server to use a resource adapter-specific criterion for matching a
ManagedConnection instance in order to service a connection request. The application server finds a candidate set
of ManagedConnection instances from its connection pool based on application server-specific criteria and passes
this candidate set to the matchManagedConnections method.

An instance of the ManagedConnection interface represents a physical connection to the underlying EIS. Code
Example 12.5 shows the methods of this interface that pertain to the connection management contract.

Example 12.5 M anagedConnection I nterface

package javax.resource.spi;
public interface ManagedConnection {
public Object getConnection(javax.security.auth.Subject subject, ConnectionRequestinfo cxRequestinfo)
throws ResourceException;
public void destroy() throws ResourceException;
public void cleanup() throws ResourceException;

// Nethods for Connection and transaction event notifications

public void addConnectionEventListener(ConnectionEventListener listener);
public void removeConnectionEventListener(ConnectionEventListener listener);
public ManagedConnectionMetaData getMetaData() throws ResourceException;

}

Creating a ManagedConnection instance for a physical connection resultsin the allocation of EIS and resource
adapter resources, such as memory and network socket resources. Because these resources are often costly and
scarce, in amanaged environment the application server typically pools ManagedConnection instances to
CONSErve resources.

Keep in mind that the Connector architecture does not specify how the application server should implement
connection pooling, although it does recommend that the server should structure its connection pooling to be
efficient with resources.

The ManagedConnection interface method getConnection creates a new application-level connection handle,
which istied to the physical connection represented by the M anagedConnection instance.

The ManagedConnection interface also includes the addConnectionEventListener method, which allows a
connection event listener to register its interest with a ManagedConnection instance. Its
removeConnectionEventListener method removes a previously registered connection event listener
(represented by a ConnectionEventListener instance) from a ManagedConnection instance. Last, the interface's
getMetaData method obtains metadata information for a ManagedConnection instance and its connected EIS
instance. It returns this data as a M anagedConnectionM etaData instance.

The ManagedConnectionM etaData interface provides identifying information about a ManagedConnection and
the connected EIS instance if avalid physical connection exists to the EIS instance.

The application server implements the javax.resource.spi.ConnectionEventListener interface. It uses the
ManagedConnection.addConnectionEventListener method to register a connection listener with a
ManagedConnection instance.

package javax.resource.spi;
public interface ConnectionEventListener {
public void connectionClosed(ConnectionEvent event);
public void connectionErrorOccurred(ConnectionEvent event);

// Local Transaction Management related events

public void localTransactionStarted(ConnectionEvent event);
public void localTransactionCommitted(ConnectionEvent event);
public void localTransactionRolledback(ConnectionEvent event);

}

A javax.resource.spi.ConnectionEvent class provides information about the source of a connection-related event.
A ConnectionEvent instance contains the following information:

131

e Type of connection event

« ManagedConnection instance that has generated the connection event. A ManagedConnection instance is
returned from the ConnectionEvent.getSource method.

« Connection handle associated with the ManagedConnection instance

e Optionaly, an exception indicating a connection-related error

12.4.3 Support for Error Handling

The connection management contract provides support for error logging and tracing for both the managed and
nonmanaged environments. This enables the application server to detect resource adapter errors and to use error
information for debugging purposes.

The ManagedConnectionFactory interface defines two methods for error logging. The setLogWriter method
registers a character output stream, or log writer, with a ManagedConnectionFactory instance. All error logging
and tracing messages for the instance are output to this log writer. The getLogWriter method returns the current
log writer for the ManagedConnectionFactory instance.

The application server manages the association of alog writer with a ManagedConnectionFactory instance. When
the ManagedConnectionFactory instanceisfirst created, no log writer is associated with the instance and logging
isdisabled. Invoking setLogWriter on the instance enables error logging and tracing for the instance. Note that
the error information is at the system level, and it is used primarily by the application server administrator. Most
application developers would not be directly interested in this error information

12.5 Conclusion

At this point, you have seen the classes and interfaces that play key rolesin the connection management contract.
This chapter also described scenarios and object interactions related to the connection management contract.

A J2EE application server uses the connection management contract to support connection pooling and to hook in
its quality of services. Connection pooling leads to better scalability and performance in a managed multi-tier
environment.

Chapter 13 describes the transaction management contract.

132

Chapter 13. Transaction Management Contract

This chapter describes the transaction management contract supported by the J2EE Connector architecture. The
transaction management contract is defined between an application server and an EIS resource adapter. This
chapter focuses on the system-level aspects of transaction management.

A resource manager can support two types of transactions:

e A transaction that is controlled and coordinated by a transaction manager external to the resource manager.
The Connector architecture refersto such atransaction asaJTA, XA, or global transaction.

« A transaction that is managed internal to a resource manager. The coordination of such transactions
involves no external transaction managers. The Connector architecture refers to such atransaction as a
local transaction.

The transaction management contract extends the connection management contract to provide support for the
management of both local and XA transactions.

An application component deployed on an application server uses the transactional services provided by that
application server, and, in doing so, the component performs transactional access to one or more resource
managers. The application server manages these transactions using the services of its transaction manager. A
transaction manager coordinates transactions across multiple resource managers. It also provides additional
low-level services that enable the transactional context to be propagated across systems. The services provided by
a transaction manager are not visible directly to an application component.

Both local and global transactions can be demarcated by either the container or by the application component.
When performed by the container, transaction demarcation is referred to as container-managed transaction
demarcation. When performed by the application component, it is called component-managed transaction
demarcation. (Refer to Chapter 5, Managing Security which describes transaction management from the application
programming model perspective.)

13.1 Transaction Management Contract
Figure 13.1 depicts the three key interfaces of the transaction management contract:

Figure 13.1. Transaction Management Contract

133

Application Component

Application Server Resource Adapter
¥

ConnectionManager Cnnn&ctiﬂnFaclﬂry| | Connection

—
ManagedConnection
—»
LocalTransaction
Transaction .
Manager XAResource

ConnectionEveniListener —

Enterprise Information System (EIS)

o javax.resource.spi.ManagedConnection
e javax.transaction.xa X AResource
e javax.resource.spi.Local Transaction.

The diagram shows only the interfaces and flows that are relevant to transaction management. It does not depict
the flows that pertain to connection management. In the diagram, the bold lines represent the architected contracts
in the Connector architecture.

A ManagedConnection represents a physical connection to the underlying EIS. The ManagedConnection
interface defines two methods that pertain to the transaction management contract. These two methods,
getxAResource and getLocal Transaction, provide an application server with access to the two transaction
management interfaces:

e javax.transaction.xa X AResource
o javax.resource.spi.Local Transaction

See Code Example 13.1.

Example 13.1 ManagedConnection I nterface

package javax.resource.spi;
public interface ManagedConnection {
public XAResource getXAResource() throws ResourceException;
public LocalTransaction getLocalTransaction()
throws ResourceException;

}

Depending on the transaction support level of aresource adapter, these methods throw appropriate exceptions.
For example, if the transaction support level for aresource adapter is NoTransaction, invoking the
getXAResource method throws a ResourceException.

The application server invokes the getLocal Transaction method on a ManagedConnection instance to create a
new Local Transaction instance. Similarly, the application server invokes the getXxAResource method on a
ManagedConnection instance to create a new X AResource instance. The application server's transaction manager
uses the X AResource instance to associate and disassociate a transaction with the underlying EIS resource

134

manager instance, and aso to perform a two-phase commit. Notice that the transaction manager itself does not
directly use a ManagedConnection instance.

Figure 13.2 depicts the object diagram for transaction management. The bold arrows in the diagram represent the
architected contracts, and the dotted line arrows represent object instantiations.

Figure 13.2. Object Diagram for the Transaction M anagement Contract

Resource Adaptar

n,
"

LocalTrangaction
Y

Application Server (){

getLocalTransaction " o
getXAResource ManagedConnection

XAResource .

Transaction >
Manager

ElS specific

w -

Enterprise Information System (EIS)

The application server invokes two methods on the ManagedConnection instance in the resource adapter:
getLocalTransaction and getXAResource. Thisis an architected interface. The ManagedConnection instance
performs two transaction-specific operations. It creates anew Local Transaction instance and a new X AResource
instance.

Although not shown on the diagram, the interfaces between the EIS and M anagedConnection, X AResource, and
Local Transaction are specific to the underlying EIS. For example, a resource adapter implementation can use a
low-level EIS-specific API to interface with the underlying EIS.

13.2 Local Transaction Management

Transactions managed internal to aresource manager are local transactions. If a single resource manager instance
participates in a transaction, regardless of whether that transaction is component managed or container managed,
the application server has two choices for managing the transaction:

e The application server can use the transaction manager to manage this transaction. The transaction
manager uses a one-phase commit optimization to coordinate the transaction for this single resource
manager instance.

e The application server can let the resource manager coordinate this transaction internally without
involving an external transaction manager.

Keep in mind that, had the application component used the XA interface to manage transactions on the resource
manager, there would have been additional performance overhead. This performance overhead occurs even when
accessing a single resource manager because the XA interface involves the external transaction manager.

To avoid the overhead of using an XA transaction in a single resource manager scenario, the application server
can optimize this scenario by using alocal transaction instead of an XA transaction.

Figure 13.3 shows alocal transaction managed internal to an EIS instance.

Figure 13.3. Local Transaction M anagement

135

<<g@ssion bean>> Client API
InventoryManager * Inventory Management
Application
<<Mainframe System>>
Loca
Application Server Transaction
Contract

13.2.1 Example L ocal Transaction

Code Example 13.2 shows the code for the business method getQuantityAvai lable in the InventoryManagerEJB.
The method uses alocal transaction, and container-managed transaction demarcation to interact with the

inventory management application. The underlying EJB container takes responsibility for managing the local
transaction using the transaction management contract. When the transaction compl etes, the mainframe system's
transactional resource manager ensures that all read and write access to the inventory management application is
either entirely committed or rolled back.

Example 13.2 Local Transaction on a Single EI' S Resour ce M anager

public class InventoryManagerEJB implements SessionBean {
private javax.resource.cci.ConnectionFactory cf;
// ..

public int getQuantityAvailable(String productld) throws InventoryException {

try {
Connection cx = getConnection();

// Operations on the underlying EIS resource manager
// ...

cx.close();

return command.getProductQuantity();

by
catch (Exception e) {
throw new InventoryException();

3
3
/7 ...
}

13.2.2 Local Transaction Management Contract | nterfaces

Thelocal transaction management contract has two parts: a Local Transaction interface and event notification.
The application server manages local transactions using the javax.resource.spi.Local Transaction interface, which
makes the application server's management of transactions transparent to an application component.

The local transaction management contract also specifies the local transaction-related event notifications. A
resource adapter notifies the application server of eventsrelated to the local transaction'sbegin, commit, and
rol Iback methods.

The javax.resource.spi.Local Transaction interface defines the contract between an application server and resource
adapter for local transaction management. A resource adapter implements the Local Transaction interface so that it
can provide support for local transactions performed on the underlying EIS resource manager. The

Local Transaction interface defines three methods: begin, commit, and rol Iback. An application server uses the
methods of the Local Transaction interface to manage local transactions for a resource manager.

Code Example 13.3 shows the definition of the Local Transaction interface.

Example 13.3 L ocal Transaction I nterface

package javax.resource.spi;

public interface LocalTransaction {
public void begin() throws ResourceException;
public void commit() throws ResourceException;
public void rollback() throws ResourceException;

}

An application server invokes the Local Transaction begin method to explicitly start alocal transaction. When the
work of the transaction completes, the application server commits the transactional changes made to the EIS by

136

calling the commit method. Or, the application server can undo whatever changes were made by calling the
rol Iback method. The rol Iback method rolls back the EIS to the state it was in prior to the start of the
transaction. Both the commit and rol Iback methods end the current transaction.

An application server implements the javax.resource.spi.ConnectionEventListener interface so that it can register
itself as alistener with the appropriate ManagedConnection instance. An application server registers a
ConnectionEventListener instance to a ManagedConnection instance by invoking the ManagedConnection
instance's addConnectionEventListener method. Code Example 13.4 shows the local transaction-related
methods of the ConnectionEventListener interface.

Example 13.4 ConnectionEventListener I nterface

package javax.resource.spi;

public interface ConnectionEventListener {
// Local Transaction Management related events
public void localTransactionStarted(ConnectionEvent event);
public void localTransactionCommitted(ConnectionEvent event);
public void localTransactionRol ledback(ConnectionEvent event);

}

The ConnectionEventListener interface specifies three methods that pertain to local transaction management:
localTransactionStarted, local TransactionCommitted, and local TransactionRol ledback. When aloca
transaction starts, a ManagedConnection instance callsthe local TransactionStarted method to notify its
registered listeners that the transaction has started. Similarly, a ManagedConnection instance calls the

local TransactionCommitted method to notify its listeners that the transaction has committed, and it calls
local TransactionRol ledback to notify its registered listeners that the transaction has been rolled back.

13.3 XAResource Transaction Management

The X AResource transaction management contract is based on the X/Open transaction model. The
javax.transaction.xa. X AResource interface is a Java mapping of the industry standard XA interface based on the
X/Open CAE specification. In the J2EE environment, the Java Transaction API (JTA) represents the Java
mapping of the XA specification.

The application server uses a transaction manager to support a transaction management infrastructure that enables
an application component to perform transactional access across multiple EIS resource managers. The transaction
manager manages transactions across multiple resource managers and supports the propagation of the transaction

context across distributed systems.

The transaction manager supports a JTA X AResource-based transaction management contract with aresource
adapter and its underlying resource manager. An EIS supports JTA transactions by implementing the
XAResource interface through its resource adapter. The transaction manager uses the X AResource interface to
manage transactions across the multiple underlying resource managers.

The XAResource transaction management contract supports a two-phase commit protocol that ensures that a
transaction across multiple resource managers either entirely commits or entirely rolls back. If even one resource
manager is not prepared for commit, the transaction manager rolls back the transaction across all participating
resource managers.

For example, an application might perform transactional work that makes updates to a mainframe transaction
processing (TP) system and to an ERP system. The application client invokes one EJB component, X, which
invokes the transaction programs on the TP system. EJB component X calls EJB component Y, which accesses
the ERP system. Figure 13.4 illustrates this scenario.

Figure 13.4. Transactions Across Multiple Resour ce Manager s

137

Client Application Server

(e)—(er)

Transaction Manager

Lo

XAResource-Based
Contract

TP System ERP System

In this scenario, the application server uses the services of atransaction manager. The transaction manager
supports a transaction management infrastructure that enables the application component to perform transactional
access across the two EIS resource managers, the TP system and the ERP system.

What is happening between the transaction manager and the ERP and TP systems? The transaction manager and
resource adapters support a transaction management contract that is based on the JTA XAResource interface. To
participate in aJTA (or global) transaction managed and coordinated by this transaction manager, the EIS
supports the X AResource interface. In our example, the ERP system supports JTA transactions by implementing
the XAResource interface in its resource adapter. Likewise, the resource adapter for the TP system implements
the XAResource interface. The transaction manager can then use the methods of the X AResource interface to
manage transactions across both underlying resource managers.

The EJB components in Figure 13.4 access the ERP and TP systems using their respective client-access API.
Behind the scenes, the application server enlists the connections to the two systems obtained from their respective
resource adapters as part of the JTA transaction. When the transaction compl etes, the transaction manager
performs a two-phase commit across both resource managers. As previously noted, this ensures that all read and
write access to both the ERP and TP system resources is either entirely committed or entirely rolled back.

13.3.1 XAResource I nterface

The XAResource interface is a Java JTA mapping of the standard XA interface. The XA interface is based on the
X/Open CAE specification. It defines methods pertaining to managing a two-phase commit XA transaction. See
Code Example 13.5.

Example 13.5 XAResour ce | nterface

package javax.transaction.xa;
public interface XAResource {
public void commit(Xid xid, boolean onePhase) throws XAException;
public void end(Xid xid, int flags) throws XAException;
public void forget(Xid xid) throws XAException;
public int prepare(Xid xid) throws XAException;
public Xid[] recover(int flag) throws XAException;
public void rollback(Xid xid) throws XAException;
public void start(Xid xid, int flags) throws XAException;

}

A resource adapter for an EIS resource manager implements the X AResource interface. By implementing this
interface, the resource adapter gains the ability to participate in JTA transactions that are controlled by an external
transaction manager. The external transaction manager uses the X AResource interface to communicate
transaction-related information through the resource adapter to the EIS resource manager. For example, the
transaction manager uses the X AResource interface to communicate such information as transaction association,
completion, and recovery to the resource manager.

A resource adapter typically implements the X AResource interface using alow-level library available for the
underlying EIS resource manager. This library either supports a native implementation of the XA interface or
provides a proprietary vendor-specific interface for transaction management.

In addition, aresource adapter is responsible for maintaining a one-to-one relationship between the
ManagedConnection and X AResource instances. This means that, for each time a

138

ManagedConnection.getXAResource method is called, the resource adapter must return the same X AResource
instance.

A transaction manager can use any X AResource instance, assuming that the X AResource instance refersto the
proper resource manager instance, to initiate transaction completion. The X AResource instance used during the
transaction completion process need not be the one initially enlisted with the transaction manager for this
transaction.

A resource adapter supports a one-phase commit optimization protocol by implementing the X AResource commit
method when the boolean flag onePhase is set to true.

13.3.2 Java Transaction API (JTA)

The Java Transaction APl (JTA) is a specification of standard interfaces between a transaction manager and the
other parties that are involved in a distributed transaction processing system. These other partiesinclude
application programs, resource managers, and an application server. One of the real benefits of standard JTA
interfacesisthat JTA allows applications to access the application server's transaction management servicesin a
way that isindependent of any specific implementation.

A JTA transaction is a transaction managed and coordinated by the J2EE platform, and such atransaction can
span multiple components and EISs. If a component is managing its own transaction demarcation, the component
beginsa JTA transaction using the javax.transaction.User Transaction interface.

A principal benefit of a JTA transaction isthat it enables combining multiple components and EIS accesses into a
single transaction with little programming effort. To illustrate, suppose component A beginsa JTA transaction
and then invokes a method on component B. Because thisisa JTA transaction, the platform will transparently
propagate the transaction context from component A to component B. Likewise, if component B updates atable
in arelational database, the update is automatically under the same transaction scope without the need to do extra
programming. Last, applications using enterprise beans with container-managed transaction demarcation do not
need to programmatically begin or commit transactions; the EJB container automatically handles this.

The Java Transaction Service (JTS) API isaJava binding of the CORBA Object Transaction Service (OTS) 1.1
specification. JTS specifies the implementation of a transaction manager that supports JTA and propagates
transactions between distributed servers. A JT'S transaction manager provides the services and management
functions to support transaction demarcation, manage transactional resources, synchronize transactions, and
propagate transaction context. A vendor uses the JTS API to implement a transaction processing infrastructure for
enterprise middleware. An application server vendor can use this JTS implementation as the underlying
transaction manager.

The JTA TransactionManager interface enables the application server to control the transaction boundaries for its
application components. For example, an EJB container uses the TransactionManager interface and the calling
thread's transaction context to demarcate transaction boundaries when it manages the transactional state for its
EJB components.

The JTA Transaction interface enables the application server to enlist and delist transactional connections with

the transaction manager. Thisisimportant because the transaction manager must be able to coordinate the
transactional work performed by all enlisted resource managers within a transaction.

13.3.3 Two-Phase Commit Protocol

In this section, we describe the steps taken by the transaction manager to commit a transaction across multiple
resource manager instances. These steps are executed after the transaction manager calls the XxAResource.end
method for each enlisted resource manager instance. (See Figure 13.5.)

Figure 13.5. Transaction Completion Steps

Resource Manager Resource Manager
Instance Instance

TransactionManager XAResource ‘ ‘ AAResource

Transaction manager has called XAResource.end on each
participating resource manager instance,

1. XAResource.prepare

=

1. XAResource. prepara

v

Case: All resource manager instances
vole to cormmit.

2. XAResource.commit

»

2. XAResource.commit

k.

1. The transaction manager invokes the prepare method on the X AResource instances associated with each
resource manager participating in aJTA or global transaction. The prepare method notifies each resource
manager instance to prepare for the transaction commit. A resource manager can veto the transaction
commit operation.

2. If al resource managers participating in the transaction agree to commit, the transaction manager invokes
the commi t method on each X AResource instance to commit the transaction. If even one resource
manager does not vote for the commit, the transaction manager rolls back the transaction by calling the
rol Iback method on all participating X AResource instances.

13.4 Requirements for Transaction Management Contract
A resource adapter can be classified based on its level of transaction support, as follows:

e Level NoTransaction— The resource adapter supports neither resource manager local nor JTA
transactions. It does not implement the X AResource or Local Transaction interfaces.

e Leve LocalTransaction— The resource adapter supports resource manager local transactions by
implementing the Local Transaction interface.

e Level XATransaction— The resource adapter supports both resource manager local and JTA
transactions by implementing the Local Transaction and X AResource interfaces, respectively.

Depending on its transactional capabilities and the requirements of its underlying EIS, aresource adapter can
choose to support any of the preceding transaction levels.

Note that a resource adapter is not required to support the JTA X AResource-based transaction contract. If it does
support this contract, the resource adapter must adhere to certain implementation requirements specified by the
Connector architecture. Although these requirements apply to the resource adapter and the resource manager
together, they may be split between them in any way that the resource manager and adapter deem appropriate.
(Refer to the J2EE Connector architecture specification for more details on these requirements.

An application server is required to support resource adapters with al three levels of transaction
support—NoTransaction, Local Transaction, and X ATransaction.

In addition, a J2EE-compliant application server provides support for several transaction scenarios. In brief, a
J2EE application server supports

e Transactionsthat span multiple components and transactional resources— Thisincludes such
resources as JDBC connections, JM S sessions, and resource adapter connections at the XATransaction
level.

e Transactionsthat comprise servlets or JSPsthat access multiple enterprise beans— Each such
component (servlet, JSP, or enterprise bean) may acquire one or more connections to access transactional
resources.

140

e Transactionsthat involve resour ce adapters at the XATransaction level— This means that multiple
application components can access each such resource adapter from within a single transaction.

e Transactionsin which accessto a nontransactional resource is combined with accessto one or more
transactional resources within a single transaction— For example, in a container-managed transaction,
an enterprise bean accesses JDBC and JM S resources and also accesses a nontransactional EIS using the
EIS's resource adapter.

The application server supports only these scenarios and no additional transaction scenarios. Although it is
possible that a particular J2EE application server might optionally support another scenario, a J2EE application
should not rely on this support.

13.5 Connection Sharing

Connection sharing, which refers to sharing connections within the same transaction scope, typicaly resultsin a
more efficient use of resources and better performance. A container may attempt to share connections within the
same transaction scope when multiple connections acquired by a J2EE application use the same resource
manager.

Connections to resource managers that are acquired by J2EE applications are considered potentially shared or
shareable. A J2EE application component that intends to use a connection in an unshareable way needs to leave a
deployment hint to that effect to prevent the container from sharing the connection. Otherwise, the container
assumes a connection to be shareable if no deployment hint is provided. Examples of an application's unshareable
usage of a connection include changing the connection's security attributes, isolation levels, character settings, or
localization configuration. J2EE application components may use the optiona deployment descriptor element
res-sharing-scope to indicate whether a connection to a resource manager is shareable or unshareable. (Refer
to the EJB specification for a description of this deployment descriptor element.)

Containers do not share connections that are marked unshareable. If a connection is marked shareable, itis
transparent to the application whether the connection is actually shared or not, provided that the application is
properly using the connection in a shareable manner.

Connection sharing may be useful with local transactions. We present a scenario that illustrates using the
connection sharing mechanism to enable aloca transaction to span multiple components.

In Figure 13.6, the stateful session beans A and B use contai ner-managed transaction demarcation with the
transaction attribute set to Required. Both EJBs A and B access a single EIS resource manager as part of their
business logic. Both EJBs use the same local transaction-capabl e resource adapter.

Figure 13.6. Connection Sharing

Client (F
Invocation k

i

\Container /

Local Transaction
Contract

A local transaction is associated with a single physical connection. Both EJB components in this scenario share
the same physical connection under the local transaction scope.

In this scenario, the container takes responsibility for managing connection sharing. To share a physical
connection in the local transaction scope, the container assumes the connection to be shareable unlessit has been

141

marked unshareable in the deployment descriptor element res-sharing-scope. The container uses connection
sharing in amanner that is transparent to the application components.

13.6 Transaction Scenarios

To illustrate the transaction management contract, we describe two typical transaction scenarios and illustrate
these scenarios with object interaction diagrams. The first scenario covers transaction setup, and the second
scenario focuses on transaction cleanup.

13.6.1 Transaction Setup

The first scenario illustrates how transactions are set up for a ManagedConnection. The scenario begins with the
client invoking a method on an enterprise bean. The method is invoked as part of a transaction, because either the
client was aready participating in atransaction or the EJB container started a transaction before the invocation of
the bean method. (See Figure 13.7.)

Figure 13.7. Transaction Setup for ManagedConnection I nstances

Resource Adapter Rasource Adapter

javax resaurce.col, | | Applcation || Transaction| | ManagedConnection Managed XA
g'm"'lﬂ"f-f'“‘?":L ConnectionFactory || Server Manager Factory Connection Resource
GFPOnen

1. gelConnection

2, ConnectionManager.allocateConnection

3. Application server obiains
Managed Conneclion,

Case: Transaction Managar coordinated JTA ransaction

4, getXAResource

5. Transaction.enlisiResource{ XARescurce)

6. XAResource.stari{XID,flag)

7. getConnection{Subject, ConnectionReguestinio)
8, return javax.resource.cci.Connection
E—

9. return javax resource.ccl. Connection

Notice that the enterprise bean instance calls the getConnection method on the ConnectionFactory instance. The
connection management contract specifies how the resource adapter del egates the connection request to the
application server. Thisis step 2 in the diagram. (See Chapter 3, Managing Connections, for more information on
delegating connection requests.)

The following steps take place in this scenario:
1. The application component calls the getConnection method on the ConnectionFactory instance.

2. Theresource adapter del egates the connection request to the application server using the
ConnectionManager al locationConnection method.

3. At thispoint, the application server controls the connection request. The server either obtains an existing
ManagedConnection instance from the connection pool or it creates a new ManagedConnection instance.
The server then registersitself as a ConnectionEventListener with the ManagedConnection instance so
that it can receive connection and transaction-related event notifications.

4. The application server may decide that the transaction manager should manage the current transaction as a
JTA transaction. If so, steps 4 through 6 occur (shown in the gray areain Figure 13.7). In step 4, the server

142

proceeds to perform transactional setup on the ManagedConnection instance. It begins by invoking the
ManagedConnection getxAResource method to obtain the X AResource instance associated with the
ManagedConnection instance.

5. The application server uses the Transaction.enlistResource method to enlist the XAResource
instance with the transaction manager for the current transaction context. (The enl istResource method is
aJTA method.)

6. The transaction manager invokes the X AResource start method to associate the current transaction with
the underlying resource manager instance. This enables the transaction manager to inform the
participating resource manager that al units of work performed by the application on the underlying
ManagedConnection instance should now be associated with this transaction.

7. The application server calls the getConnection method on the ManagedConnection to obtain a new
application-level connection handle. The underlying physical connection is represented by a
ManagedConnection instance.

8. The application server returns the connection handle to the resource adapter.

9. Theresource adapter passes the connection handle to the application component that initiated the
connection request.

13.6.2 Transaction Cleanup

Transactional cleanup occurs when an application component initiates a request to close a connection. Figure 13.8
illustrates the object interactions that occur during a connection close initiated by an application and the
subsequent transaction cleanup.

Figure 13.8. Transaction Cleanup

Resource Adapler Resource Adapter
i javax resource.cci. || Application || Transaction | ManagedConnection Managed A,
Application | ConnectionFactory || Server Manager Factory Cennecion Resource
Component

1. close

2. Internal; Resource adapter implementation specific

ManagedConnection
notifies all registered
ConnectionEventListenars

3. connectionClased

Casea: JTA Transachon:

4. Trangaction.delistResourceXAResource.flag)

5. XAResourcaaend(XI0D flag)

&. ManagedConnection.cleanup

7. Application server returns
the ManagedConnection
instance o connection poal

| |

The following steps take place in this scenario.

1. The application component starts the process by calling the close method on the Connection instance to
release an application-level connection handle.

2. The Connection instance, using a resource adapter-specific implementation, delegates the connection
close operation to its associated M anagedConnection instance.

3. The ManagedConnection instance notifies al its registered listeners that it has received a connection close
request from the application component. It does this by using the ConnectionEventListener interface's

143

connectionClosed method and passing a ConnectionEvent instance with event type set to
CONNECT I0ON_CLOSED.

Steps 4 and 5 occur if the ManagedConnection is participating in a transaction manager-enlisted JTA transaction.
These two steps perform the necessary transaction disassociation. When the application server receives the
connection close notification, it performs transactional cleanup for the ManagedConnection instance.

4. The application server usesthe Transaction.del istResource method to first disassociate the
XAResource instance that corresponds to the ManagedConnection instance from the transaction manager.

5. The transaction manager then invokes the XAResource .end method to inform the resource manager that
further operations on the ManagedConnection instance are no longer associated with the transaction. Note
that the transaction is represented by the Xid parameter passed to the method. This method disassociates
the transaction from the underlying resource manager instance.

6. The application server initiates the cleanup of the physical connection instance after the JTA transaction
completes by invoking the ManagedConnection cleanup method.

7. The application server returns the ManagedConnection instance to the connection pool. This
ManagedConnection instance is now available to the server to service future connection allocation
requests from any application component.

13.7 Conclusion

This chapter showed how the transaction management contract extends the connection management contract to
add support for local and global JTA (or XA) transactions.

An external transaction manager manages an XA transaction that spans multiple resource managers. The
transaction management contract supports JTA transactions using the X AResource interface, which is part of JTA
and is based on the X/Open XA specification. The X AResource interface supports the two-phase commit
protocol.

A local transaction can only span a single resource manager, which manages such local transactions internally.
The transaction management contract supports local transactions using the Local Transaction interface.

The Connector architecture allows aresource adapter to be at different transaction levels so that an adapter can be
developed for ElISs that have different transactional capabilities. That is, a resource adapter may be
nontransactional, or it may support only local transactions. The highest level of transaction support iswhen a
resource adapter supports both local and XA transactions. The J2EE application server isrequired to support
resource adapters at all transaction levels.

144

13.7 Conclusion

This chapter showed how the transaction management contract extends the connection management contract to
add support for local and global JTA (or XA) transactions.

An externa transaction manager manages an XA transaction that spans multiple resource managers. The
transaction management contract supports JTA transactions using the X AResource interface, which is part of JTA
and is based on the X/Open XA specification. The X AResource interface supports the two-phase commit
protocol.

A local transaction can only span a single resource manager, which manages such local transactions internally.
The transaction management contract supports local transactions using the Local Transaction interface.

The Connector architecture allows aresource adapter to be at different transaction levels so that an adapter can be
developed for ElSs that have different transactional capabilities. That is, a resource adapter may be
nontransactional, or it may support only local transactions. The highest level of transaction support iswhen a
resource adapter supports both local and XA transactions. The J2EE application server isrequired to support
resource adapters at all transaction levels.

145

Chapter 14. Security Management Contract

The Connector architecture provides a security management contract to support secure integration with EISs. The
security management contract extends the J2EE security model to include support for secure connectivity to EISs.

The security management contract is defined to be independent of any particular security technology or
mechanism. It allows the use of different security mechanismsto protect an EIS against security threats such as
unauthorized access and loss or inaccuracy of information. The contract supports authentication of users,
ensuring that they are who they say they are. It also enforces authorization and access control privileges for
authenticated users.

The security contract also provides support for security mechanisms that, in turn, support secure communication
links between an application server and an EIS. It accomplishes this by supporting protocols that provide
authentication, integrity, and confidentiality services. The contract also supports secure communication protocols
such as secure socket layer (SSL).

This chapter focuses on the interfaces and classes supported by the security management contract. These
interfaces and classes enable the EIS or J2EE application server to use different security mechanisms and
technologies for EIS sign-on. Refer to Chapter 5, Managing Security, for more information on security concepts and
EIS sign-on.

14.1 Interfaces and Classes

The security contract extends the connection management contract to support EIS sign-on. The security contract
uses the following interfaces and classes:

e javax.security.auth.Subject class— Represents an end user or component requesting a connection and
on whose behalf EIS sign-on is performed.

e java.security.ResourcePrincipal interface— Representsaresource principal.

e javax.resource.spi.security.GenericCredential interface— Represents a security credential
independent of any particular mechanism.

e javax.resource.spi.security.PasswordCredential class— Represents a security credential that holds a
user name and a password.

Before we delve into the details of these classes and interfaces, let's look at the class hierarchy, shown in Figure
141

Figure 14.1. Security Interface Hierarchy

=<glass>>
javax. security.auth. Subjaect

7]

0-n 0-n
=<=glass>> =<interface>>
PasswordCredential java security. Principal
0-n

=zinterface=>
GenericCradential

14.1.1 Subject Class

The Subject class, which is defined by the JAAS specification (see the Preface for the reference for this
specification), contains security information for a single entity, such as an end user. Thisinformation includes the
entity's security-related identities and attributes, such as passwords and cryptographic keys. A principal represents
an identity within a Subject class—the principal actually binds a name to a Subject—and a subject instance can
contain multiple identities.

A subject may also own security-related attributes, and these attributes are referred to as credentials. Credentials

may be shared or kept private. Credentials that are sensitive require special protection, such as private
cryptographic keys, and these credentials are stored within a private credential set. Credentials that are intended to

146

be shared, such as public key certificates or Kerberos server tickets, are stored within a public credential set.
Different access permissions may be associated with different credential sets.

The Subject class defines agetPrincipals method that retrieves al principal s associated with a Subject instance.
All credentials within a subject's public or private credential set may be retrieved with either the
getPublicCredentials method or the getPrivateCredentials method

14.1.2 Principal Interface

The java.security.Principal interface represents aresource principal. An EIS connection is established under the
security context of aresource principal. The interface is defined as shown in Code Example 14.1. (Note that this
classis part of the Java 2 Standard Edition platform.)

Example 14.1 Principal I nterface

package java.security;
public interface Principal {
public boolean equals(Object another);
public String getName();
public String toString();
public int hashCode();

}

The getName method is of most interest because it returns the name of the resource principal. The application
server uses the Principal interface, or an interface derived from this interface, to pass aresource principal to a
resource adapter. Thisis defined as part of the security management contract. It passes the resource principa as
part of a subject.

14.1.3 PasswordCredential

The PasswordCredential class holds the user's name and password. An application server uses the
PasswordCredential class to pass the user name and password to the resource adapter via the security contract.
Code Example 14.2 shows the definition of this class.

Example 14.2 Passwor dCredential Class

package javax.resource.spil.security;
public final class PasswordCredential
implements java.io.Serializable {

public PasswordCredential (String userName, char[] password) { ... }

public String getUserName(Q) { ... }

public char[] getPassword() { --- }

public ManagedConnectionFactory getManagedConnectionFactory() { -.-- }

public void setManagedConnectionFactory(ManagedConnectionFactory mcf) { ... }
public boolean equals(Object other) { ... }

public int hashCode() { -.- }

}

The getUserName method retrieves the name of the resource principal. (Recall that the Principal interface
represents a resource principal.) The getManagedConnectionFactory method returns the
M anagedConnectionFactory instance for which the application server has set a user name and password.

14.1.4 GenericCredential Interface

The GenericCredential interface defines a security mechanism-independent representation of the security
credentials of aresource principal.

The interface provides a Java wrapper to the mechanism-specific security credentials. For example, the
GenericCredential interface can be used to wrap Kerberos credentials. It isimportant that there be a wrapper
interface such as this because the security system contract is defined to be security mechanism-independent and
thus it does not define any standard representation of security credentials. Each security mechanism-specific
representation of security credentials can differ, and GenericCredential provides a uniform wrapper interface for
such credentias

A J2EE application server passes a GenericCredential instance as part of a subject, according to the security
management contract. (Thisis discussed later in this chapter.) A resource adapter uses the GenericCredential

147

interface to extract information about a security credential. With this information, the resource adapter can
manage an EIS sign-on for aresource principal.

The GenericCredential interface defines several methods that obtain information about a security credential. (See
Code Example 14.3.)

Example 14.3 GenericCredential I nterface

package javax.resource.spil.security;
public interface GenericCredential {
public String getName();
public String getMechType();
public byte[] getCredentialData() throws javax.resource.spi.SecurityException;
public boolean equals(Object another);
public int hashCode();

}

The getName method retrieves the name of a GenericCredential instance's associated resource principal, whereas
the getMechType method returns the instance's security mechanism type. The getCredentialData method
obtains the credential representation, which it returns as an array of bytes. The architecture does not define a
standard format for the returned credential data.

14.1.5 ManagedConnectionFactory I nterface

Code Example 14.4 shows the methods on the ManagedConnectionFactory interface that are relevant to the
security contract:

Example 14.4 M anagedConnectionFactory

package javax.resource.spi;
public interface ManagedConnectionFactory
extends java.io.Serializable {

public ManagedConnection createManagedConnection(javax.security.auth.Subject subject,
ConnectionRequestinfo cxRequestinfo) throws ResourceException;

}

During the INDI lookup, or during the deployment of a resource adapter, the application server configures the
ManagedConnectionFactory instance with a set of configuration properties. These properties include default
security information and EIS instance-specific information, such as hosthame and port number, required for
initiating a sign-on to the underlying EIS during the creation of a new physical connection.

The default security configuration on a M anagedConnectionFactory instance can be overridden by security
information provided either by a component, with component-managed sign-on, or by the container, with
container-managed sign-on.

The application server uses the createManagedConnection method when it requests a resource adapter to create
anew physical connection to the underlying EIS.

14.2 Security Management Contract

Figure 14.2 shows what happens from a security point of view between the resource adapter and the application
server when an application component calls the getConnection method to request an EIS connection.

Figure 14.2. Security Management Contract

148

— Architected contract
—— Implementation specific Application Componeant
Application Server Rescurce Adapter
w
ConnectionManager I ConnetlionFactory
—
k)
i
I ManagedConnactionFaciory
Security Service
Manager

W

Enterprise Information System (EIS)

14.2.1 Resour ce Adapter to Application Server Contract

Recall that when an application component requests a connection to an EIS, the resource adapter receives the
request and passesit to the application server. It does this by having its ConnectionFactory instance invoke the
al locateConnection method on the application server's ConnectionManager. The application server can now
add its security services, among other services. Code Example 14.5 shows the definition of the

al locateConnection method on the ConnectionManager.

Example 14.5 ConnectionM anager |nterface

package javax.resource.spi;
public interface ConnectionManager extends java.io.Serializable {

public Object allocateConnection(ManagedConnectionFactory mcf, ConnectionRequestinfo cxRequestinfo)
throws ResourceException;
}

The resource adapter callsthe al locateConnection method in one of two ways:

1. CallingtheallocateConnection method with the container-managed sign-on option— It usesthis
option when the application server manages EIS sign-on. The application component passed no security
information in the getConnection method. Instead, the application server uses its configured security
policies and mechanisms, such as principal mapping, to provide the required security information.

2. Calling the allocateConnection method with the component-managed sign-on option— When this
option is used, the application component provides explicit security information through the
ConnectionSpec parametersin its call to the getConnection method. The resource adapter, in turn, passes
this security information to the application server in the ConnectionRequestinfo parameter of the
allocationConnection method.

14.2.2 Application Server to Resource Adapter Contract

Regardless of which option the resource manager uses when invoking the ConnectionManager's

al locateConnection method, the application server's security service manager integrates with the
ManagedConnectionFactory provided by the resource adapter. The ManagedConnectionFactory defines one
method of interest to the security contract, createManagedConnection. (See Code Example 14.4.)

An application server uses the createManagedConnection method to request that the resource adapter create a
new physical connection to the EIS. Refer to Chapter 12, Connection Management Contract, for more details on how
an application server locates a ManagedConnectionFactory and invokes the createManagedConnection method.

An application server has the option of providing some specific security services, such as principal mapping,
principal delegation, and single sign-on, before it calls the ManagedConnectionFactory provided by the resource
adapter as part of the security management contract. (Refer to Chapter 5, Managing Security, for more details.) That
is, the application server could map the caller principal to the resource principal prior to caling
createManagedConnection to create the new connection. In this case, the connection is created under the
security context of the resource principal.

When sign-on is managed by the container (the resource manager invoked the ConnectionManager's

al locateConnection method with the container-managed sign-on option), the application server creates a new
Subject instance using its own security information configuration before invoking the
createManagedConnection method.

An application server has the following three options when invoking the createManagedConnection method.
The resource adapter has specific responses to each option.

1. Theapplication server can invoke the createManagedConnection method by passing in anon-null
Subject instance that holds a single resource principal, represented by the java.security.Principal interface,
and the principal’s password-based credentials, represented by the PasswordCredential class. (Recall that
the PasswordCredential class holds the user name and password.)

Response: The resource adapter invokesthe Subject.getPrivateCredentials method to verify that the
Subject instance contains a PasswordCredential instance. If there is a PasswordCredentia instance, the
resource adapter extracts the user name and password. Using the user name and password, the resource
adapter authenticates the resource principal that corresponds to this user name to the EIS when creating
the connection.

2. The application server can invoke the createManagedConnection method by passing in a non-null
Subject instance that holds a single resource principal, represented by the java.security.Principal interface,
and its security credentials. Here the GenericCredentia interface represents the security credentials. A
typical exampleis a Subject instance with Kerberos credentials.

Response: The resource adapter uses the resource principal and its credentials (from the Subject instance)
for the EIS sign-on process. The resource adapter must explicitly check that the Subject instance carries a
GenericCredential instance, which it does using the Subject's getPrivateCredentials and
getPublicCredentials methods. Once it determines that it carries a GenericCredential, the resource
adapter extracts the credentials and principal information using the GenericCredential interface's get
methods. The resource adapter then uses the resource principal and its extracted credentials for EIS
sign-on.

3. The application server can invoke the createManagedConnection method by passing a null Subject
instance. Invoking the method in this manner serves as a request to the resource adapter to manage the EIS
sign-on in its implementation-specific manner, and it is the option the application server uses for
component-managed sign-on. The ConnectionRequestinfo instance holds the security information, and the
application server does not provide any additional security information or a Subject instance.

Response: The resource adapter has two options for handling this scenario:

a. It can extract security information passed through the ConnectionRequestinfo instance. The
resource adapter must also authenticate the resource principal, which it does by combining the
M anagedConnectionFactory instance's configured security information with the
ConnectionRequestinfo security information. In case of conflict, the ConnectionRequestinfo
information overrides the M anagedConnectionFactory information.

b. When the ConnectionRequestinfo instance holds no security configuration, the resource adapter
uses the default security configuration on the ManagedConnectionFactory instance to do its
authentication.

14.3 Conclusion

This chapter covered the security-related interfaces that are available to aresource adapter. It explained how a
resource adapter uses these interfaces to implement the security management contract.

150

Chapter 15. Future Directions

Up to this point, this book has focused on version 1.0 of the J2EE Connector architecture. This chapter provides a
preview of the features that we anticipate will be available in future versions of the Connector architecture, and
especialy version 2.0 of the architecture. We will also briefly look at the future relationship between the J2EE
platform and EAI.

15.1 Connector Architecture 2.0

The main goal of the Connector architecture version 2.0 is to further enable pluggability to the J2EE platform.
The Connector architecture is being developed and expanded to allow vendorsto easily extend the functionality
or connectivity of the J2EE platform on their application servers. In the Connector architecture version 1.0, we
concentrated on traditional enterprise information systems, such as enterprise resource planning systems and
mainframe transaction processing monitors. In version 2.0, we will look to support a broader range of EISs,
including messaging, business-to-business, and telecommunication systems and applications.

The following main features of the Connector architecture version 2.0 are proposed:

e Asynchronous resource adapter support

o JavaMessage Service provider pluggability

e XML support in the Common Client Interface

o Metadata support in the Common Client Interface

Because the Connector specification is developed under the Java Community Process, the exact feature set will
ultimately be determined by the Connector expert group. What we present here is a set of proposed features as
described in the Connector 2.0 JSR.

15.1.1 Asynchronous Resour ce Adapter Support

The Connector architecture version 1.0 supports an interaction model that is principally synchronous request and
reply. With this type of interaction model, a J2EE application calls an EIS function and then waits to receive the
EIS reply before proceeding further.

The Connector architecture version 2.0 extends the interaction model to support both asynchronous inbound and
outbound interactions. In the asynchronous outbound direction, a J2EE application can call an EIS function and
immediately continue processing without waiting for the reply from the EIS. In the asynchronous inbound
direction, an external EIS can initiate arequest into a J2EE application. Figure 15.1 illustrates this.

Figure 15.1. Asynchronous Request to J2EE Application

Connector 1.0 Connector 2.0
Application EIS Application EIS
Server Server
Synchronous Request Reply Asynchronous Quitbound

Application EIS
Server

Asynchronous Inbound

The advantage of an asynchronous resource adapter isthat it enables support for more complex integration
scenarios. This can be particularly significant if a J2EE application needs to perform atime-consuming EIS task.
For example, by using such an asynchronous resource adapter, a J2EE application can asynchronously request the
task and continue processing without blocking. When the EIS completes the task, it can send a notification
asynchronously to the application.

151

To support an asynchronous resource adapter, the Connector architecture version 2.0 will need to extend the
existing system contracts. This includes extending the connection management, transaction, and security contracts.
In addition, the Connector architecture will be defining new system contracts, including contracts for thread
management and a dispatch interface.

15.1.2 Java M essage Service Provider Pluggability

All J2EE 1.3-compatible application servers are required to provide support for the Java Message Service (IMS)
API and for message-driven beans. However, at the same time, the J2EE platform does not specify a standard
architecture for the integration of a JM S provider and a J2EE application server. To support this requirement, a
J2EE vendor has to integrate its application server with a JMS provider in an implementation-specific manner.

There are problems when a vendor must rely on its own implementation-specific approach for integrating its
application server with aJM S provider. Principally, such implementation-specific approaches require that the
vendor perform a different and distinct integration effort for each IMS provider and application server
combination. If avendor wants its application server to support several IMS providers, or if the vendor has more
than one application server product, considerable effort may be necessary to provide a complete integration
solution. In addition, these implementation-specific approaches make it difficult for end usersto plug in their
preferred IMS provider to their application server.

The Connector architecture version 2.0 will address this issue by standardizing the contracts between aJMS
provider and a J2EE application server. Once a vendor builds a Connector 2.0 resource adapter for a particular
JMS provider, that IMS provider can then be integrated into any Connector 2.0-compatible application server
without additional integration effort.

This IMS provider pluggability feature will also leverage the contracts that the Connector 2.0 architecture defines
for the asynchronous resource adapter support. (See the preceding section, “ Asynchronous Resource Adapter
Support.”) This leverage is possible because a JIMS provider can be thought of as an external EIS that needs to be
integrated with an application server in an asynchronous manner.

15.1.3 XML Support in Common Client I nterface

XML is playing an increasingly important role in the area of enterprise application integration. XML is useful for
standardizing data format, particularly for datathat must be shared among various entities. For example, some
userswould like to export data stored in an EIS in XML format. Other users would also like to interact with an
EIS by exchanging XML documents. Currently these scenarios can be supported using the Connector architecture
version 1.0. Such support is achieved by using an EIS-specific API provided by a resource adapter.

However, the Connector architecture version 2.0 intends to augment this support. With Connector 2.0, the
Common Client Interface will be enhanced to provide first-class XML support. To prevent reinventing the wheel,
Connector 2.0 will leverage and align with the existing XML-related APIs, including Java API for XML Parsing
and Java API for XML binding.

15.1.4 Common Client I nterface M etadata Support

Because of the complexity of most EISs, developers rely on tools to help them construct applications that access
an EIS. For example, atool might generate JavaBeans or enterprise beans to ssimplify EIS data access in
applications.

Generally most tools leverage the CCI to access the target EIS. The CCI enables atool to use a uniform way to
access the EIS. However, just having a uniform approach does not solve the entire problem. A tool needs to
obtain meta information about the target EIS to be able to generate the appropriate data access objects. The
Connector architecture version 1.0 has no standard APIs as part of the CCI to retrieve EIS metadata. Instead, a
tool has to obtain thisinformation in some EIS-specific manner. As aresult of this limitation, most tools work
only with a pre-defined set of resource adapters or EISs.

The Connector architecture version 2.0 extends the CCI to provide an API for retrieving metainformation. The
API can be used to obtain such information as alist of EIS function names, as well as the corresponding input and
output record types. This functionality will greatly simplify the integration between tools and EISs. It should
make it possible for users to use a development tool with arbitrary third-party resource adapters. In other words,
this feature enables design-time pluggability between devel opment tools and resource adapters.

152

15.2 J2EE and EAI

With the addition of such technologies as APIs capable of processing XML, Java Message Service, and the
Connector architecture, the J2EE 1.3 platform is becoming the standard integration platform for the enterprise.

In the past, application servers and EAl middleware software were largely viewed as technologies designed to
solve different problems, but today that is changing. The boundary between application servers and EAI
middleware software is becoming more and more blurred. We see more application server vendors adding
integration support to their products. They are bundling various Connector-compliant resource adapters into their
products along with providing workflow and business processing features. EAI vendors, on the other hand, are
moving away from proprietary programming models and instead they are adding J2EE support, including support
for the Connector architecture.

Web services are often viewed as the next-generation technology for enterprise application integration. With the
development of the latest XML technologies, including JAXM, JAX-RPC, JAXB, and JAXR, the next version of
the J2EE platform promises to be the ideal platform for developing and deploying Web services and for
supporting the next wave of enterprise and business-to-business integration.

15.3 Conclusion

This chapter provided a brief ook at the new features of the next version of the Connector architecture
specification. Version 2.0 of the architecture will make it easier for tools to integrate with resource adapters and
ElSs. It will increase the availability of asynchronous communication modes and a'so simplify integrating IMS
with the J2EE platform and J2EE application servers. There will also be enhanced support for XML and metadata.
With integrated support of Connector architecture, JIMS and XML technologies, the J2EE platform iswell
positioned to be the best EAI platform.

153

Chapter 16. The SAP Connector

Stephan Heik and Stefan Schneider™

[Stephan Heik has been a Java devel opment architect at SAP since 1998. There he took part in the development of a RAD
framework for implicit persistency. In 2000, he joined In-Q-My Technologies, a 100% subsidiary of SAP, which develops
its own J2EE application server. He has worked on different Java technol ogies and has focused on JSP/Servlet and EJB.
Stephan holds a Master's degree in mathematics from the University of Osnabrueck.

Stefan Schneider is a Staff Engineer at Sun Microsystems GmbH, where he's been working with Sun's software partners on
client-server technologies since 1994. Before he was devel opment manager at GOPAS Software developing
object-relational mapping database products for three years. Stefan holds a PhD from the University of Karlsruhe, where he
worked on object-oriented database technol ogies for computer-aided design applications.

The J2EE connector for the SAP System (referred to in this chapter as the SAP Connector) is a plug-in that
supports standardized access from a J2EE server to amySAP.com system (referred to in this chapter asa SAP
system). It supports the J2EE Connector architecture specification version 1.0 described in previous chapters of
this book and is considered an accessible back-end service.

SAP AG's mySAP.com product is one of the most comprehensive products to operate entire enterprises that has
been released in the last decade. Its success is based on the integration of all relevant business workflowsin one
customi zable, homogenous environment.

SAP R/3 systems, which is the former name of the mySAP.com product, began by leveraging SAP's expertise
gained with SAP R/2 in the financial, material management, sales, and distribution domains. It extended the SAP
R/2 functionality quickly to all business processes of an enterprise.

Today's SAP systems are able to simultaneously process transactions for several thousand online users, a
common situation in most Fortune 500 compani es today.

mySAP.com's virtual ABAP machine enables enterprises to run the same business application on all major
operating systems and relational database systems available in the market.

Connecting external applications to mySAP.com systemsis not trivial because asingle SAP transaction triggers
other corporate activities on the fly. The results of online transactions typically become available to all other users
instantaneoudly.

The SAP Connector uses existing and published connectivity components for R/3, and these components are used

in other contexts as well. The following sections provide an overview of the different connectivity layers beneath
the SAP Connector. They should give you a better understanding of where and when to use which components.

16.1 Architecture of SAP Systems

The mySAP.com system, as of R/3 version 4.6D, may consist of large federations of SAP R/3 systems using
specialized components to route and process presentation layer and business application layer transactions. The
architecture presented within this context is limited to asingle SAP R/3 system because thisis the level of interest
to a SAP Java connector.

The R/3 three-tier client/server architecture consists of a presentation layer, an application layer, and a database
layer. Figure 16.1 illustrates the SAP architecture.

Figure 16.1. SAP Architecture

154

SAP Gui .
A |
(C++, Java, HTML) Browser ny Client
3 'ﬂ\ -~ .‘_.‘f L x . - -‘_.‘f i
e =2 IS P
SAP-Specific e | LeT -7 R{emote)
Protocal e L b F{unction)
. e T C(all)
.-f'f r'ﬂ-\ f“"{f‘-‘ .\‘\.
- E/ - " - -E'{ \1 +
SAP Web AppServer 1 SAP Web AppServer 2 SAP Web AppServer 3

b

Database Server

The database layer is of minor interest in the context of this document because the relational database is accessed
exclusively through the R/3 application layer. The database layer consists of relational database products, and all
major database products are currently supported. Although the database may be of minor interest in the J2EE
context, it is however the storage medium for all data. Typically, several thousand tables are needed to store all
information important to an enterprise. Keep in mind that the size of live SAP databases often reaches the
terabyte level.

SAP's application layer consists of an application server using avirtual machine that is able to execute SAP's
proprietary programming language, called ABAP. The virtual ABAP machine hides al the details of the
underlying operating system. The programming language ABAP is tightly integrated into the following:

ABAP development workbench

Version and configuration management system

A database-neutral SQL interface

A platform-independent screen description language DY NPRO
A datadictionary tracking all objects and function calls

SAP's presentation layer uses proprietary communication protocols such as DY NPRO and RFC (remote function
call). The most important presentation layer products are as follows:

e Thetraditional SAP GUI for Windows or Java platforms— This user interface targets power users
with heavy datainput.

e Thelnternet Transaction Server (ITS)— ThelTSrenders GUI transactions and propagates them to
browser-based end users.

e TheRFC library— Thislibrary isthe programmatic way to access back-end R/3 systems.

J2EE-based applications using the Connector architecture and the SAP resource adapter will access SAP systems
just like any other application through the RFC library as low-level access technology.

16.1.1 SAP's Remote Function Call

Prior to release 4.6D, the typical ways to integrate external systems consisted of exchanging idoc documents or
using SAP's RFCs. For example, the appropriate way to access a SAP system to execute a SAP transaction
contained in afunction module such as an interactive user was to use the SAP RFC call interface.

The SAP RFC isimplemented as alibrary with a C call API. Thelibrary is available for al platforms supported
by SAP. It is cumbersome to directly access this library from Java applications because older versions of the RFC
library do not meet the Java Virtual Machine requirements, especially as to multithreading and multithreading
safety. In addition, the exception handling and error processing of RFC calls were designed for a C programming
environment, and this adds to the complexity of using the library in a Java application.

155

For application developers, the value of the RFC is based on the fact that SAP supports awell-defined set of calls
and these calls are not going to change from version to version. These calls are referred to as Business
Application Function Calls, or BAPI for short. Using the set of BAPIs ensures that a published and supported
subset of the available RFC-enabled function calls are being used to access a SAP system.

16.1.2 The Java Connector (JCO)

SAP provides afreely available solution to the previously mentioned problems. This solution is called Java
Connector (abbreviated as JCO or JayCo). JCO is a Java language wrapper to the RFC library that allows any
Java application access to SAP systems. A Java application does not have to be a J2EE application to use JCO.
The current JCO library is not a 100% pure Java application due to the nature of the incorporated RFC library.
SAP'slegacy platform-dependent implementation of the back-end communication (RFC), as of revision 4.6D,
will be enhanced by a Simple Object Access Protocol (SOAP) based protocol layer starting with release 6.10.

16.2 Architecture of the SAP Connector

JCO isimportant to the SAP Connector because it is being used as alower level transport mechanism. The benefit
of the SAP Connector, as opposed to the JCO or any other Javalibrary, isits seamless integration with the
following features of a J2EE server:

« Portability across J2EE servers supporting the Java Connector architecture

e Support for connection pooling and connection sharing

e Useof transactionsin a J2EE-typical way, either viaexplicit UserTransactions (using the
JTA-specification) or via container-managed transactions, which can be defined for enterprise beans

e Support for security mapping of usersin a J2EE server to usersin the SAP system, either via
user/password or certificates

Figure 16.2 shows the architecture of the SAP Connector, referred to in the diagram as the SAP resource adapter.

Figure 16.2. Architecture of the SAP Connector

156

Application
Component

Q

Application
Server

SAP Resource Adapter

Java Connector
JCO

Q

RFC library

Q

mySAP
Application

16.2.1 Connection Management of the SAP Connector

The SAP Connector supports connection pooling and connection sharing. Note that the J2EE server provides this
feature automatically for every J2EE Connector. Application developers can influence the connection
management by specifying the particular connection that can be reused and under which circumstances it should
be reused.

J2EE Connectors may support the reauthentication of connections. Thisimplies that a connection that has been
opened for one user can later be reused for another user. The underlying SAP system does not support this feature
because it assumes that the user does not change connections from within an open connection.

16.2.2 Transaction Management of the SAP Connector
In general, J2EE Connectors are able to support the following transactions:

1. Local transactions—These are simple begin-commit/rollback transactions that are completely
independent from other systems and transactions.

2. XAResour ce-based transactions—T hese transactions alow a two-phase commit over different systems
or transactions.

3. Notransactionsat all

The ability of SAP connectors to support the preceding featuresis limited by the functionality of the underlying
remote function call (RFC) layer. Therefore, it is necessary to look closer at the transactional aspects of the
underlying RFC layer to understand the behavior of the SAP J2EE connector.

The SAP Connector supports local transactions because adequate support for these kinds of transactions exists on

the back-end SAP system. However, the SAP Connector does not support XAResource-based transactions. Such
support is not possible because SAP R/3 doesn't support two-phase commit.

157

Regarding underlying functionality, the SAP system executes an automatic database-commit at the end of every
remote function call. This automatic commit does not allow database transactions to cover multiple function calls.

A workaround for this limited functionality is the SAP asynchronous update technology, which is being
implemented in many RFCs. This technology gathers all database statements and executes them on the database
after a specific commit function (or rollback function) is called. The remote function calls in question do not
execute database statements directly. The execution of the database statementsis triggered by a separate RFC that
commits or aborts the submitted database statements. (The separate RFC can be either aBAPI_COMMIT or
BAPI_ROLLBACK.)

Although this feature is used to implement transactions spanning multiple RFCs, it is currently cumbersome to
use because there is no comfortable way to determine whether or not a RFC uses the “update technology” option.
Future versions of the SAP Connector will tackle thisissue in order to provide an environment that is easier for
software developers to use.

16.2.3 Security Management of the SAP Connector
The SAP Connector applies the following security strategy:

1. Usage of asubject— A subject isan object that represents a user in the J2EE server. The subject may
contain passwords and certificates for the user in question. The subject may contain different passwords
and certificates for every connected system. The subject actually describes the mapping between usersin
the J2EE server and users in connected systems. This mapping can be maintained by the administrator of a
J2EE server, and it is used automatically when a connection to another system is established.

The SAP Connector currently supports the UserName/Password information of a subject. Certificates are
not supported yet, but it is anticipated that such support will follow soon.

2. Usage of ConnectionSpec— If either no subject is defined or the defined subject has no specific
parameters for the SAP Connector, the ConnectionSpec is used. The ConnectionSpec is an object that is
always given as a parameter when getting a connection. It can be of any class because it is used only via
reflection. If the ConnectionSpec supports the getUserName and getPassword methods, those
user/password pairs are used to log on to the SAP system. Certificates are not supported here. Although
those two methods are optional, the ConnectionSpec supports other methods that are not optional, namely,
getClientNumber and getLanguage.

3. Usage of the default User Name/Passwor d— If the ConnectionSpec does not contain the
UserName/Password pair, the default UserName/Password pair is used. The administrator of the J2EE
server must maintain thisinformation for every SAP Connector.

16.2.4 The Common Client I nterface of the SAP Connector

The Common Client Interface (CCl) is a generic application interface (API) alowing any external system to
exchange data. The SAP Connector uses this API in the following manner:

1. InteractionSpecinterface— The SAP Connector gathersall relevant information, such as the function
name, through the input record. The InteractionSpec interface is therefore not required as a parameter.
(The parameter can be set to null.)

2. Record interface— Thisinterfaceisused to specify all parameters of a specific function call. The
parameters are basically the input and output parameters. The SAP connector supports MappedRecord but
not IndexedRecord types. The function name of the RFC must be specified to create an instance of a
MappedRecord, for example, RecordFactory.createMappedRecord("BAPI_BANK_CREATE"). A
MappedRecord has three mandatory entries: “import,” “export,” and “tables.” The type for these keys
must be ResultSet (see next list item).

The output record has to be identical to the input record.

If outputRecord = Interaction.execute(null, inputRecord) iscalled, outputRecord refersto the
same object to which inputRecord refers.

Anexceptionisraised if interaction.execute(null, inputRecord, outputRecord) iscaled and
outputRecord does not refer to the same object to which inputRecord refers. The reason for this design
decision is execution performance. This approach avoids unnecessary copies of the tables that are aways
used as input and output parameters for calls to the SAP system.

158

3. ResultSet interface— A ResultSet is an interface that permits the parsing and manipulation of tables.

The SAP Connector uses this interface for tables as well as for any other input and output data.

Parameter ResultSets are the result sets returned as values of MappedRecord data types, for example,
ResultSet=mappedRecord.get(""import')). A parameter ResultSet data structure contains exactly one
row. Applying row manipulating methods such as resul tSet.next does not work and instead raises an
exception. The column names are the parameter names to the function as they are defined in the SAP
system. The value of each parameter must match the data type of the corresponding data type of the SAP
function call. (See the SAP Java Connector documentation to understand the compl ete type mapping
between BAPIs and result sets.)

Structure ResultSets are returned by the parameter ResultSet in the getObject method, for example,
ResultSet.getObject(structureName). The handling of structure ResultSetsisidentical to that of
parameter ResultSets. They consist of a single row, and the columns are the parameters of the structurein
guestion.

Table ResultSets are returned by the parameter ResultSet in the getobject method, for example,
ResultSet.getObject(tableName). As opposed to the other ResultSets, these can have multiple rows.
Their usage isidentical to that of a structure ResultSet.

Note that the input parameters do not need to be specified completely. Scalar parameters that are optional to the
SAP function call can be |eft out.

16.3 Example

The following example should help you to understand how everything comes together. The example includes the
SAP Connector and is freely available through http://www.ingmy.com. The complete example also provides a
simple JSP-based front end that allows calls to the bean in the example.

The class BankBean, which is described in this section, provides code examples that show how to perform the
following tasks:

Configure the SAP Connector through the connect method.
Obtain alist of banks (BAPI BAPI_BANK_GETLIST).
Transform the result set into an array.

Create a new instance of abank (BAPI BAPI_BANK_CREATE).

16.3.1 Package and Class Declaration

Code Example 16.1 illustrates the package and class declarations.

Example 16.1 Package and Class Declar ations
package com.ingmy.test.sapadapter;

import java.util._*;

import java.io.PrintStream;

import java.rmi.RemoteException;
import javax.ejb.*;

import javax.naming.*;

import javax.resource.cci.*;
import java.sgl_ResultSetMetaData;
import java.sgl.SQLException;

public class BankBean implements SessionBean {

SessionContext m_sessionContext;
public void ejbActivate() {}
public void ejbCreate() throws RemoteException, CreateException {}
public void ejbPassivate() {}
public void ejbRemove() {}
public void setSessionContext(SessionContext sessionContext) {
m_sessionContext = sessionContext;
}
}

http://www.inqmy.com/

16.3.2 Member Variables

Code Example 16.2 shows the member variables used to configure the class. They cover the information about the
SAP system to which the client connects and the bank country of interest.

The connect method allows for the configuration of the instance and sets all private variables.

Example 16.2 Member Variables

private static String m_resourceAdapter;
private static String m_sapClient;
private static String m_saplanguage;
private static String m_bankCountry;

public void connect(String resourceAdapter, String sapClient,
String saplLanguage, String bankCountry) {
m_resourceAdapter = resourceAdapter;
m_sapClient = sapClient;
m_saplLanguage saplLanguage;
m_bankCountry bankCountry;

}
16.3.3 Getting the Bank List

The method in Code Example 16.3 extracts banks up to the maximum number given as a parameter. The method
relies on the bank country and the connection information specified in the previously called connect method.

Example 16.3 Getting the Bank List

public Object[][] callBapiBankGetList(int maxRows) {
Connection connection = null;
try { // lookup J2EE Connector
InitialContext initialcontext = new InitialContext();
ConnectionFactory connectionfactory = (ConnectionFactory)
initialcontext. lookup(*'java:comp/env/EISConnections/" + m_resourceAdapter);

// connect with default-info
SAPConnectionSpec connectionSpec = new SAPConnectionSpec(m_sapClient, m_saplLanguage);
connection = connectionfactory.getConnection(connectionSpec);

// get InteractionObject and create input-record

Interaction interaction = connection.createlnteraction();

MappedRecord parameters = connectionfactory.getRecordFactory() .createMappedRecord
("'BAPI_BANK_GETLIST™);

ResultSet importResultSet = (ResultSet)parameters.get("import™);

ResultSet exportResultSet (ResultSet)parameters.get(“'export™);

ResultSet tablesResultSet (ResultSet)parameters.get(‘'tables™);

// set input-parameters
importResultSet._updatelnt(""MAX_ROWS'"™, maxRows);
importResultSet.updateString("'BANK_CTRY", m_bankCountry);

// call function
interaction.execute(null, parameters);

// extract results
ResultSet bankList = (ResultSet)tablesResultSet.getObject("'BANK_LIST"™);

// transform into Object[][]
Object result[][] = transformResultSetToArray(bankList);
return result;
} catch (Exception e) {
e.printStackTrace(); // helpful for debugging
throw new EJBException(e.getMessage());

}

// ...
}

16.3.4 Creating a New Bank

The cal I1BapiBankCreate method creates a new bank in the SAP system. It accepts the required parameters as
String types and converts them into the appropriate types. See Code Example 16.4.

160

Example 16.4 Creating a Bank

public void callBapiBankCreate(String bankKey, String bankName, String bankCity) {
Connection connection = null;
try { // lookup J2EE Connector
InitialContext initialcontext = new InitialContext();
ConnectionFactory connectionfactory = (ConnectionFactory)
initialcontext. lookup(*'java:comp/env/EISConnections/" + m_resourceAdapter);
RecordFactory recordfactory = connectionfactory.getRecordFactory();

// connect with default-info
SAPConnectionSpec connectionSpec = new SAPConnectionSpec(m_sapClient, m_saplLanguage);
connection = connectionfactory.getConnection(connectionSpec);

// get InteractionObject and create input-record

Interaction interaction = connection.createlnteraction();

MappedRecord parameters = connectionfactory.getRecordFactory() .createMappedRecord
("'BAPI1_BANK_CREATE™);

ResultSet importResultSet (ResultSet)parameters.get("import™);

ResultSet exportResultSet (ResultSet)parameters.get(“'export™);

ResultSet tablesResultSet (ResultSet)parameters.get(‘'tables™);

// set input-parameters

importResultSet.updateString("'BANK_CTRY", m_bankCountry);
importResultSet.updateString("'BANK_KEY'", bankKey);

ResultSet bankAddressResultSet = (ResultSet) importResultSet.getObject("'BANK_ADDRESS™);
bankAddressResultSet.updateString("'BANK_NAME"™, bankName);
bankAddressResultSet.updateString("'CITY", bankCity);

// call function
interaction.execute(null, parameters);

// check results
ResultSet returnResultSet = (ResultSet)exportResultSet.getObject(""RETURN™);
String resultMessage = returnResultSet.getString(""MESSAGE"™);

if (resultMessage != null && resultMessage.trim().length() = 0) {
throw new Exception(Error-Message from SAP-system: " + resultMessage);

}
} catch (Exception e) {
e.printStackTrace(); // helpful for debugging
throw new EJBException(e.getMessage());
3} finally {
try {
connection.close();
} catch (Exception e) {

}
}
}

private Object[][] transformResultSetToArray(ResultSet rs) throws SQLException {
ResultSetMetaData rsm = rs.getMetaData();

// convert into array

Vector allLines = new Vector();

Object line[] = new String[rsm.getColumnCount()];

for (int pos = 0; pos < line.length; pos ++)
line[pos] = rsm.getColumnName(pos + 1);

allLines.add(line);

// position on Ffirst line
while (rs.next()) {
line = new Object[rsm.getColumnCount()];
for (int pos = 0; pos < line.length; pos++)
line[pos] = rs.getObject(pos + 1);
allLines._add(line);
}

Object allLinesArray[]1[] = new Object[allLines.size()][rsm.getColumnCount()];
allLines.copylnto(allLinesArray);

return allLinesArray;

161

Chapter 17. Developing Applications with JCA -based Tools
Michael Beisiegel, Piotr Przybylski, and Gary Bist™

[Michael Beisiegel isa Senior Technical Staff Member working for the architecture team of IBM 's Application and
Integration Middleware (AIM)Division in Somers,NY .He isresponsible for IBM 's connector/adapter run-time and tools
architecture.He is IBM 's expert on the J2EE Connector Architecture effort.He joined IBM in 1989 and began working for
the 390 software development organization at the IBM Lab in Boeblingen,Germany.L ater, he took an assignment
(1998-2000)to lead the development effort of the VisualAge for Java Enterprise Access Builder (EAB)and the Common
Connector Framework (CCF)at the IBM Toronto Lab in Canada.He received his M.S.(1989)in Electrical Engineering from
the University of Kaiserslautern,Germany.

Piotr Przybylski is an Advisory Staff Member at the IBM Toronto Laboratory working on Connector architecture and
tools.Piotr Przybylski joined IBM in 1996,working on tools and libraries to access enterprise applications from Java.He has
contributed to several releases of the Visual Age for Java Enterprise Access Builder (EAB) and Common Connector
Framework (CCF).He received his B.S.in Computer Science from Concordia University in Montreal in 1994 and hisM.S.in
Computer Science from the University of Waterloo in 1996.

Gary Bist isatechnical writer at the IBM Toronto Lab.He has developed product documentation for the EAB featurein
VisualAge for Javafor the past 3 years.He also has been an educator,developing coursesin Visual Age for Java and
DB2,IBM 'srelationa database.He holds an M.A.in English from the University of Western Ontario.

Michael and Piotr are developers from IBM who designed and devel oped many of the JCA tools shown.Gary is atechnical
writer who has documented many of the same tools.

We would like to thank Mike Andrea,Sandy Minocha,Kevin Sutter,and Leigh Davidson for their help with this article.
© Copyright International Business Machines Corporation 2001. All rights reserved.

IBM,CICS,IMS,MQSeries,Visua Age,and WebSphere are trademarks of International Business Machines Corporationin
the United States,or other countries,or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc.,in the
United States or other countries.

J.D.Edwards and OneWorld are registered trademarks of J.D.Edwards & Company.
Oracleis aregistered trademark of Oracle Corporation.

PeopleSoft is aregistered trademark of PeopleSopft,Inc.

SAPisaregistered trademark of SAP AG.

Windows is aregistered trademark of Microsoft Corporation in the United States,or other countries,or both.

Tools make the difference when you want to apply architecture to application development. Tools turn
architecture into products. In this section, you will see the practical aspects of the J2EE™ Connector Architecture
(JCA) by using JCA-based tools from IBM® to build, test, deploy, and run a J2EE enterprise bean application.
Let's begin with abrief overview of the Enterprise Access Builder (EAB) feature in IBM's VisualAge® for
Java™, Enterprise Edition, Version 4.0. EAB contains the JCA-based tools that we will use to build our
application.

17.1 Enterprise Access Builder (EAB) 101

To an application developer, a connector is a set of related classes that |ets an application access business logic
and datain an Enterprise Information System (EIS). A ssmple analogy is to think of these connector classes
collectively as a pipeline that allows you to flow request and response data between your application and the EIS.

In Figure 17.1, the connector classes are between the application classes and the server with the EIS, in this case a
CICS™ transaction server. In Visua Age for Java, the connector classes are subset into the EAB classes, which
interact with your application, and the specific connector classes, in this case, the CICS connector classes. When
we say EAB classes, we mean the classes generated by using the EAB tools and EAB runtime libraries. Note that
an application never directly accesses specific connector classes.

162

Figure 17.1. Application, Connector, and EI S Relationship

Client
Application
Connector Classes
/Web ar
Application [f* Enterprise [+—* Specific S Netwark
Classes Access Connector
Builder Classes
Classes (e.g., CICS
Connector)
== |
=]
==
|
—|
—
34

Servar wilh resource
{e.g., Server with
CICS records)

This separation means that once you are familiar with the EAB tools, you can develop an application in an
identical way for any connector supported by VisualAge for Java because your application only interacts with the
EAB classes. The application that we will devel op accesses CICS transactions. But using the same EAB tools, we
could write an application to access IM ™ transactions, MQSeries™ messaging queues, PeopleSoft® ERP data,
Oracle® applications and so on. (The connectors that come with Visual Age for Java are listed at the end of this
section.) Using EAB, then, is a standard way to develop any connector-related application.

17.2 JCA Application Development Process

What isthe JCA application development process? How does EAB fit into it? Although there are no absolute
rules for developing a JCA-based application, Figure 17.2 shows a process that many developers using EAB have
found effective when creating an application. It begins by developing the application in VisualAge for Java. By
developing, we mean using the EAB tools to generate code that can access an EIS through the JCA connector and
be called by your application. Once the code is generated, another tool in VisualAge for Javais used to test it. The
WebSphere® Test Environment emulates the server, in this case, the WebSphere Application Server.

Figure 17.2. JCA Application Development Process

163

VisualAge for Java

oosop | | 2 em B o S
application. application. through Web service.

-
¥
Develop
Resource 3. Deplay
Adapter. application,
3
b A 4
w 4. Add runtime
=3
\ = Resource Adapter.
— Metwork = 3. Create
= ——] Web Service.
= I = 34
CICS records WebSphere
an server Application Server

Testing a JCA-based application before you deploy it isavery good idea. Testing lets you address any problems
in your application while still in the development environment. Remember that deployment of an application and
setup of that application on a server take time. Y ou do not want to find errorsin your application after you have
invested time in deployment because then you must return to the development environment, fix the problems, and
redeploy until you get it right. Those who have painfully experienced redeployment will find the WebSphere Test
Environment a valuable tool.

After testing, comes deployment of the application. At this point, you are switching from a development
environment to a production environment. How you use your deployed application varies, of course, according to
your needs. Any application, however, would need to install the runtime resource adapter at the application server.
The runtime resource adapter is packaged in a Resource Adapter ARchive (RAR) file. It contains a deployment
descriptor, help files, and the interface, implementation and helper classes of the resource adapter. If you wereto
develop a Web service from an enterprise bean, as seen in our diagram, the final step would be to accessit over
the Web.

17.2.1 Overview of the Application

Let'swalk through how we will build our application. We will follow the standard JCA application development
process mentioned previously to develop our application. We will use Visual Age for Java, Enterprise Edition,
Version 4.0; WebSphere Application Server, Advanced Edition, Version 4.0; the devel opment version of the
CICS ECI connector included in VisualAge for Java; and the CICS ECI connector RAR file included with the
CICS Transaction Gateway, Version 4.0. We will develop and run our application on Windows 2000 Professional.
Our application will call a CICS transaction that requires as input a customer number and that will return the
name of the customer that matches the customer number. Obvioudly, it is a simple application, but it will
demonstrate the heart of the JCA architecture, which isto interact with EIS systems asif the data on the EIS
systemsis available in the local application.

We will use the EAB session bean tool to create our enterprise bean. The tool first defines the connection
information; that is, the type of connection and configuration. In the next stage, it imports a COBOL file, which
defines the input and output data structure for the CICS transaction accessed.

Then records representing COBOL structures are generated in the application; that is, input and output records.
The tool handles code generation, data type conversion, “endianness” issues, and optimization. The code
generated will, a runtime, handle the marshalling and unmarshalling of the different data representation formats
used by the application and EIS system. Afterwards, we will use arelated editing tool, which can be
automatically invoked after record generation, to further specify connection information necessary for the Java
Naming and Directory Interface (JNDI) at runtime. With thisinformation, afactory object at runtime can generate
a connection when needed by the application.

164

To test our application within VisualAge for Java, that is, before deployment, we will use the WebSphere Test
Environment. Asits name implies, it emulates an application server within a devel opment environment. Once we
know our application works, we will switch to the production environment. We will add the CICS ECI RAR file
to the application server. Then we will deploy the application to the application server using another tool. Finally,
we will run our application again from the application server.

We will show you all of the above as we step you through our tools. Note that Visua Age for Java comes with
similar step-by-step samples that et you try out these JCA-based tools in a safe environment.

17.2.2 Using the EAB Session Bean T ool

Launch the EAB session bean tool from within VisualAge for Java's EJB Development Environment. This
environment is an IDE for developing enterprise beans. In the EJB Development Environment, create an EJB
group, in order to contain an enterprise bean, and then launch the tool. An initial page gives you the option of
migrating a session bean; that is, if you had an existing session bean created in the preceding IBM Common
Connector Framework (CCF) architecture, you could migrate it to the JCA architecture at this point. On the first
page, shown in Figure 17.3, enter the basic information such as the project, package, and name of the session bean.
Also, enter the connection information.

Figure 17.3. Initial Information for EAB Session Bean

SmartGuide)

Create EAB Session Bean . i
Project ILearning Browse...
Package: [eabtools Browse...

Class name: [Customer

[v Editwhen finished

Connection Information:

Class name: hd.CunnEttiDnFa ctoryConfiguration Browse. .

Lt

com.ibm.ivj.eab.command.ConnectionFactoryConfiguration

| Mext = | Finish Cancel

The connection information is the critical information at this point. In particular, the choice of a managed
connection factory and the type of managed connection factory affects the subsequent properties that appear in
the tool. The property sheet for connection information, which opens when you click Edit, is shown in Figure 17.4.
You can fill in al the connection properties immediately or wait until after the code is generated and use the
session bean editor tool. All of the properties are documented in the online help, if you happen to get lost. The
key connection properties are the INDI-related information (res_ref, res_type, and res_auth) and the type of

managed connection factory, and its properties specifying the address of the CICS gateway and the CICS server
name.

Figure 17.4. Connection Properties

165

= SmartGuide

Eventually you reach the method page. A method for an EAB session bean comprises interaction properties and
an input and an output record. Starting with the input record, the session bean tool |ets you import an existing
COBOL structure to create your input record bean. If you import a COBOL file, it leads to the page shown in
Figure 17.5. In the foreground is the COBOL file.

Figure 17.5. Importing the COBOL Source Structure

identification diwvision.

program-id. TADERCS9,

environment division.

dara divis=siaon.

working-storage sSection.

LINKAGE SECTION.

0L DFHCOMMAREL.
CustomerNunber PIC Xi5).
FirstWame PIC A(15).
LastNaune PIC A(25).
Street PIC Xi20).
Cicy PIC Aj20).
Country PIC Ai(l0).
Fhone PIC X(15).
Po=talCode PIC Xi7).

TE | procedure division.

166

In the following page, select an option called Generate as javax.resource.cci.Record interface. This option means
that your input and output record beans will comply with JCA. The other options shown on that page can impact
the performance of your session bean. The performance implications of these options are discussed in
“Connectorsin J2EE” (see the References at the end of this chapter). In most cases, the default options offer the
best performance. Y ou are aso given the opportunity to change critical machine-to-machine properties such as
code page and endianness.

Completing similar fields generates an output record. The completed input and output record beans, as specified
in the method page, are shown in Figure 17.6. The invocation of the getCustomerInfo method would result in the
customer number being passed from the application to the input record and then to the EIS. Then customer
information would be returned from the EIS in the output record and then to the application. The function called
has to be expressed in terms understood by the EIS. In the connector architecture, you do this using an
InteractionSpec class. In our application, we specified an EClInteractionSpec class. Figure 17.6 shows how to
specify the class.

Figure 17.6. Method Page with Interaction to EIS Properties
smartGuide X

Method name: [getCustomerinfo

Method implementation;

" Use existing command:

Claeenane: |

' Specify method logic:
InteractionSpec:

Class name: |t:um.cunnecturz.ciES.ECHnteractiunEpec Browse..,

Edit...
Input record bean:

I irmnle C|SmartGuide x|

v Imple Property Value
Class ni| — commarealLength ® -1
- executeTimeout ® ¥ 0
functiontame B

Outputrec [nteractionverh ® * 1

Cillseil o replyLength ® ¥ B
{+ Sele
Cus

0K Cancel

At this point, you generate the session bean. If you had selected to edit the session bean when finished in the first
page (see Figure 17.3), you would automatically launch the EAB Session Bean editor after generation.

17.2.3 Using the Session Bean Editor

Application developers greet visual tools with suspicion. Exactly what is going on underneath? IBM has tried to
strike a balance between those who want a fully automatic code generator and those who want more control over
the generated code. Editors are provided so that devel opers can make modifications to the code after generation.
The EAB Session Bean editor, for example, lets you edit the generated session bean. The information is grouped
into connection information and methods (input and output records). Review the values you entered when
building the session bean, make any changes you wish, and save the session bean. Figure 17.7 shows the session
bean editor. Now it istimeto test, while still in the devel opment stage, that your enterprise bean can, in fact, get
the data expected from the EIS.

Figure 17.7. EAB Session Bean Editor with Connection Properties

167

D EAB Session Bean Editor 2 = I ﬂlll

EJB Tasks Propery Help

COCNE)
“& eabfools.CustomerBean BEF] o ibm v eab cormmand ConnectionF act
- Methods
~ s
Property Value
connectionSpec ® null
- contextF actoryName ®
® logWriter ® * null
& managedConnectionFactory ® |com.ibm.connector2 cics.ECIManagedConnectio...
res_auth® Y Application
~res_ref_name " ¥ CICS_ECI_HOST_A
—res_type ® v corm.ibrm.connector? cics. ECIConneclionFactony

17.2.4 Testing the Application in the WebSphere Test Environment

Once you have built your application with the EAB tools, you need to test it while still in the devel opment
environment. Asindicated earlier, it's better to verify in the development environment that you can get your data
from the EIS than to deploy your application into the production environment and then find out it does not work.
IBM created the WebSphere Test Environment for this very reason. Asits name implies, it emulates the
application server within the VisualAge for Java IDE. Testing does not need to be elaborate, but it should verify
that you can get the expected values from the EIS. Also, atest should check for error conditions, such asincorrect
input, or failure at the server end, such asfailure of a gateway.

Begin in the EJB Development Environment where your previous tool will have created your enterprise bean.
Figure 17.8 shows the customer enterprise bean we created in the enterprise beans pane. Note that the method,
getCustomerInfo, isin the Members pane. Begin to test your enterprise bean by adding that method to the EJB
remote interface. Then generate your deployed code, which creates code similar to the code you would actually
create if you really had deployed an application to an application server. Then, while still in the EJB Devel opment
Environment, generate an access bean for your enterprise bean. The access bean isasimplified client interface to
an enterprise bean.

Figure 17.8. Testing the Enter prise Bean in the EJB Development Environment

IC,] workbench [Administrator] _ _|Of x|
File Edit ‘Workspace EX Twypes Members Window Help

B

sCustomel8/6./2
4 (@ SEABSessionamplef ormef;
+ |8 EABSImpIsE rityS an
+ B/ IBMEJBSamples 35

1@Tﬁﬂ¢.’fwmﬂ1ﬂ;| — LILI

< Source

com.ibm comnector? cics ECIInteractionSpec interactionS «|

try
Entmtiunﬁpun = new ml.ihl.mmuﬂhmE.Bics.EﬂIIn_l

in_ts:ggct.im_ﬁpec;qsatmpn_:t ionName(' TADERC39"): -
> |

o

Once everything is ready in the EJB Development Environment, launch the WebSphere Test Environment. This
runtime environment emul ates the actual application server from within the VisualAge for Java IDE. Figure 17.9
shows the console window for the test environment. Y our enterprise bean needs the persistent name server to be

168

up and running, as is shown. The persistent name server is necessary to support applications using JNDI. The
WebSphere Test Environment has its own database, and so it can emulate persistence. Add your enterprise bean
to the server configuration, just as you would add an enterprise bean to aregular application server. Optionally,
you may wish to set an option that lets you step through code aline at atime. This debugging feature can be
extremely helpful when you do experience a failure and need to pinpoint precisely the line that caused it.

Figure 17.9. WebSphere Test Environment with the Persistent Name Server Running

nghﬁphere Test Environment Control Center = |EI|__!ﬂ
Persistent Name Server

sl INanme Server

= Servers
5 Serviet Engine
i=QF crsistent Name
----- JSP Execution Monitor Op
DataSource Configuratior

Stop Name Server

Bootstrap port 300

Database URL Jidbe:dbZ sample
Database driver [idbc.idbDriver =)
Database ID |

Database passwaord |

Trace level [Lowy |

4 | __WSEEQJE;_] Anply |

Persistent Name Server is started

Finally, write some additiona simple client code, which creates an input record. In our case, we passed a
customer number to the enterprise session bean running in the WebSphere Test Environment. Then, capture the
returning output from the CICS server and print the result to the console. A fragment of code for the client bean
we created is shown in Code Example 17.1. The point of the test isto show that your application can access the
CICS Transaction Server and return correct values, in this case, the customer's first name.

Example 17.1 Sample Client Code

Context initial = new InitialContext();

Object objref = initial.lookup(*'"MyCustomerBean™);
CustomerBeanHome home = (CustomerBeanHome)PortableRemoteObject.narrow(objref, CustomerBeanHome.class);
CustomerBean customer = home.create();

// Create an input record
CustomeriInfoRecord input = new CustomerlInfoRecord();

// Pass customer number as input
input.setCustomerNumber (*'12345");

// Get output record
CustomerInfoRecord output = customer.getCustomerinfo(input);

// Print the Ffirst name of the customer
System.err._printIn(output._getFirstName());

17.2.5Moving Your Application to the WebSphere Application Server

Once you have developed and tested your application, it istime to move from the development environment to
the production environment and put the application onto an application server. Deployment is a two-stage process:
first, deploying the RAR file and setting up optimal runtime values at the application server, and second,
deploying the application itself.

When deploying the application, you need to export a Java archive file (JAR file) containing the application and
the libraries the application accesses. Exporting a JAR file is handled through the EJB Devel opment Environment
tools. The JAR file can contain either an individual EAB session bean or a group of session beans. Include in the
JAR fileal thelibraries used by the exported beans that are not provided by the WebSphere Application Server.

For example, you will need to include in the archive the generated records representing the COBOL copybooks
but not the CICS ECI connector classes.

17.2.6 Deploying the RAR File

A runtime JCA resource adapter is shipped in a Resource Adapter Archive (RAR) file. Y ou need to make that
resource adapter accessible to the WebSphere instance running the application. Deployment of the RAR file into
WebSphere is done using the WebSphere Administrative Console. From the console menu, select an option to
add a J2C resource adapter. Then browse the file system and locate the RAR file. Once the file contents are read,
the administrative console displays the properties of the resource adapter as defined by its deployment descriptor.
The XML deployment descriptor provides information about the service that the resource adapter is providing,
with details such as the properties descriptions and their default values. Figure 17.10 shows the list of resource
adapter properties as described in its XML deployment descriptor.

Figure 17.10. Resour ce Adapter Properties

% WebSphere Advanced Administrative Console Hi=]E
Consols View Tools Help.

R erme————

eloe 2| xE ©

VebSphers Admin IEI Name |
= Virual Hosts

1 SamerGroups
2 MNodes

= Enterprise Appl : :
1 Resources Custom conneclion properiies:

0 JDBC Provi
£ JavaMail & Name Deseription |_DataType | Value

£ URL Provid ServarSecur.. ((OPTIONALYFull Qualifie., |java lang, Sir

= 3 J2¢ Resout]| [Tracelevel |[(OPTIONAL)The level oft... [java.lang.int... |1
3 =8 KeyRingPas. [The Password for the Ke . |javalang.Str |
B Jac Forumber [The por number the gate... java.lang. Str... 2008

AW sapRA Connactian._ [The URL oftha CICS Tra_ |java lang.Str

0 JMS Provide ClientSecurity [(OPTIONAL)Fully Qualifiz... java.lang. 5tr...|
TranMame [The Transaction name fo... | java lang, Str..
TPMMame The TPM id for programs | java lang str. |
Fassword (A Password for the User... |javalang. St |
UserMame A user Name 10 access java lang, 8tr

Serverblame |[The CICS Server as defin...|javalang. Str..|

o s | Rese | e |

Y ou can aso view additional information besides the configurable properties. For example, you can look at
version numbers. These numbers tell you the specification level of the connector architecture and the version of
the EIS necessary for communication. Other information tells you the authentication mechanism supported. More
instructions concerning the libraries used by the connector are found in the HowTo.html file contained in the
RARfile.

The next step isto create the instance of the JCA connection factory and configure its properties. The connection
factory, asits name implies, provides connections to the EIS. From the menu, select Create J2C Connection
Factory, and the administrative consol e tool creates an editable properties set associated with the particular
connection factory instance. Specify all the information needed by the resource adapter to connect to the
particular instance of the EIS. For the CICS ECI connector, specify at least the ServerName and ConnectionURL
properties that determined the CICS server to connect to and the address of the CICS transaction gateway,
respectively. These values determine the server and gateway that will be accessed through all the connections
created by this instance of the connection factory. The resource adapter documentation provides the detail s of
these two properties and all the other properties.

Next, you can specify the INDI lookup name, instead of the provided default name, under which the new
connection factory instance will be available to the components, as shown in Figure 17.11. The components use
the INDI lookup name to retrieve the instance of the connection factory. The instance is used, in turn, to create a
connection to the EIS.

Figure 17.11. Specifying the INDI L ookup Name of the Connection Factory

170

General |Advanced] Cunnactiunsl

Mame: *ClCSConnectionFactory
JMDI binding path: ieiaICIGB_Ecr_HOST_A
Description:

J2C resource adapter: *CICSResourceAdapter

Apply | Reset | Help |

17.2.7 Specifying the Connection Pooling Properties

The last step in the deployment of the connection factory instance is to specify the management properties to be
used when pooling the physical connections to the EIS. Connection pooling can significantly improve
performance, so these values deserve some attention. Typically, a system administrator sets up the values of the
properties based on the system requirements, load, and availability as shown in Figure 17.12. The properties that
can be specified include

Figure 17.12. Connection Pooling Values

. ¥ WebSphere Advanced Administrative Console Hi=1E
Console View Tools Help
o0 2|x&| %

YebSphere Admini Name [Deschption I J2C Resource Adapter I

2 Vitual Hosts | (g

1 SemerGroups

2 Nodes Genersl Mﬂnﬁ&ﬂ] Connections |

T Enterprise Appli

1 Resources Connection pooling

+-00 JDBC Provig
e "'5 YA "'f@wﬂwﬁrﬁ'ﬁﬂ;;@jnu & a_l 25205
il ot " .
sfl. = P._‘,I Jﬁﬁm I m erj m
g T8 ﬁ G ;W i sih“ra,.inn
| £ i 0= - .

B spRE , SELLNGS
& 0 JHE iy v IRUsEd St e B et 13
g POl \FCCE 2
| | Fokoalnen [EUEP0CL A
s " e | Al HEesel bimt

J | .i]__ E Ea % St

« Reap Time— Theinterval, in seconds, between runs of the garbage collector. Garbage collection can be
disabled by setting Reap Time or Unused Timeout to the default value of 0. The garbage collector discards
all connections that have been unused for the time specified by Unused Timeout.

e Unused Timeout— Theinterval, in milliseconds, after which the unused connection is discarded.
Setting this value to the default value of O disables the garbage collector.

e Connection Timeout— Theinterval, in milliseconds, after which a ResourceAllocationException is
thrown if the maximum number of connections has been reached. If Connection Timeout is set to the
default value of 0, the pool manager waits indefinitely until a connection can be allocated; that is, until the

171

number of connections falls below the maximum number of connections or a connection becomes
available for reuse.

e Maximum Connections— The maximum number of connections that can be created by a particular
managed connection factory instance. Once this number is reached, no new connections are created and
the requester waits or a ResourceAllocationException is thrown. If Maximum Connectionsis set to the
default of 0, the number of connections can grow indefinitely.

e Minimum Connections— The minimum number of managed connections that should be maintained. If
this number is reached, the garbage collector will not discard any managed connections.

e Pool Name— The name used by the pool manager to group managed connections created by different
managed connection factories.

e Subpool Name— The name used by the pool manager to further subgroup pools of managed
connections within a particular pool.

17.2.8 Assembling and Deploying the Application onto the WebSphere Application Server

The first step in assembling and deploying the application is to create the Enterprise Application Archive (EAR
file) from the JAR file exported from the development environment. At this time, you can also add Web
components such as JSPs or HTML filesto your EAR file. Using the WebSphere Application Assembly Tooal,
provide the name for anew EAR file and the location of the JAR file with the application code. Look at the
deployment descriptor for your application. Y ou can also modify the deployment descriptor at this point, too.
Figure 17.13 shows the resource references section of the deployment descriptor that describes the resource
adapter used by an application.

Figure 17.13. Resour ce Refer ence Section of the Deployment Descriptor

L' Application Assembly Teol REE

(File Edit Miew Window Help
B RLEEXT Qa8

[% Application Assembler - Fiworkingiwas_applic ations 'cics_kwswwsComvor... 5 =1 B3

king'was_applicatio ns‘u:iv:s_lvzl.rE Mame | Type rmgnﬁc
razion Beans B) eis/CICS_ECI_HOST_A, javaxresou.. Applicatic
| kKWSS ession
| KWECGomveter?
-3 Enyvironment Eniries
- EJB Refarences ﬂ | LI
Sn M- ocource Reforancas '
-1 Security Role References| | General | Eingings
O Melhod Extensions Aresource reference is alogical name used to locate a con
ity Beans These objects define connections to edernal resources sui
curity Roles messaging systems.
thad Petrnissions MNarne: [isICICS_ECI_HOST_A
intainer Transactions]
as Descriphion: [Comverted
Type: *|iava res ouree. eci. ConnectionF actary
Authorization: *lapplication

The EAR file created by the Application Assembly Tool can now be deployed into the WebSphere Application
Server. Using the Administrative Client tool, the Install Enterprise Application wizard guides you through the
steps necessary to deploy your application. Select the WebSphere server, provide your application name, and,
finally, add the location of your EAR file. Next, the wizard will take you through severa panels, allowing you to
specify deployment options for the application. One option, mapping of the resource references to resources, is
particularly helpful.

When you create your application, you specify aresource reference name (res_ref_name, see Figure 17.4). Itisa
name used by the application to look up the instance of the connection factory in the INDI context at runtime.
When the application is deployed, the value of the res_ref_name retrieved from the deployment descriptor
overrides the value you specified during creation of your application. This alows the deployer, by modifying the
deployment descriptor, to set the lookup name to the value specific to the server on which the application is
deployed. In WebSphere, this can be achieved even easier. The deployment tool lets you map the res_ref_name
specified in your application to the resource name on the server without requiring you to modify the deployment
descriptor. Figure 17.14 shows the page that lets you perform the mapping operation between the resource
reference of the application and the resource defined on the particular server.

172

Figure 17.14. Mapping Resour ce References

_ % Inztall Enteiprize Application Wizard

Mapping Resource References to Resources
Each resource reference defined in your application must be mappedto a resource.,

;'IE Select a resourca referance from the llst below and click the Selact Resource button to selact
a resourca. For more informatlon on the Resource Reference, click the Detalls bution.

Regource Referance JHDI Name Details... l

glsimyECIConnection{kWsC.

Select Resource.. I

@ Seleci Resource
CICSConnectionF actory =]

l Ok [Gancall

Hew | <pack | wed= || B || cancel

17.2.9 Using the Deployed Application

You are finished at this point. After deployment, there are several ways to use a session bean that accesses a CICS
server. You can access the session bean directly from aclient program. Y ou can aso provide access to it from a
servlet or use it with other enterprise bean components as a part of a more complex business application.

17.2.10 Accessing Session Beansas Web Services

Setting up a session bean as a Web serviceis anew way of providing easy accessto EIS systems. In this section,
we will show you how a session bean could be made available as a Web service.

The WebSphere Application Server support for the Simple Object Access Protocol (SOAP) lets you expose a
session bean as a Web service. Here's how to take advantage of that support with JCA-based applications today.
Begin by creating a SOAP deployment descriptor specifying the particular session bean you would like to expose
as Web service. The information to include in the deployment descriptor includes the service URN, the list of
exposed methods, and the session bean home interface name as well as other information. Code Example 17.2
shows the SOAP deployment descriptor for the session bean we created previously.

Example 17.2 SOAP Deployment Descriptor

<isd:service xmlns:isd="http://xml_apache.org/xml-soap/deployment" id=""urn: customerinfo-service'>
<isd:provider type=''com.ibm.soap.providers.WASStatelessEJBProvider" scope="Application"
methods=""getCustomerInfo'>
<isd:java class="eabtools/Customer" />
<isd:option key="FullHomelnterfaceName" value="eabtools.CustomerHome" />
<isd:option key="ContextProviderURL" value="iiop://localhost:900" />
<isd:option key="FullContextFactoryName" value=""com.ibm.ejs.ns.jndi.CNInitialContextFactory" />
</isd:provider>
<isd:faultListener>org.apache.soap.server _DOMFaultListener</isd:faultListener>
<isd:mappings>
<isd:map xmlns:x=" urn: customerinfo-service " gname="Xx:customer"
encodingStyle=""http://schemas.xmlsoap.org/soap/encoding/" javaType="eabtools.CustomerRecord"
Java2XMLClassName=""org.apache.soap.encoding.soapenc.BeanSerializer”
xml2JavaClassName=""org.apache.soap.encoding.soapenc.BeanSerializer/>
</isd:mappings>
</isd:service>

Finally, use the WebSphere tool, the SOAPEARENabl er, to add the EAR file containing the session bean to the
WebSphere SOAP configuration. After WebSphere SOAP is configured with your deployment descriptor and you
deploy the EAR file, the session bean connecting to the EIS can be accessed as a Web service.

To describe this service, you will need to use other IBM toolsto create the corresponding Web Services

Description Language (WSDL) file. The WSDL file shown in Code Example 17.3 describes the service offered by
the server.

173

Example 17.3 WSDL File

<?xml version="1.0" encoding="UTF-8"7?>

<definitions name="exportejb_Service-interface"
targetNamespace=""http://www.exportejbservice.com/exportejb-interface"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/""
xmIns:tns="http://www.exportejbservice.com/exportejb"
xmlIns:xsd="http://www.w3.0rg/1999/XMLSchema'">

<message hame=""IngetCustomerInfoRequest'>
<part name="methl_ inTypel™ type='xsd:eabtools.CustomerRecord"/>
</message>

<message hame="'OutgetCustomerInfoResponse'>
<part name="methl outType" type='xsd:eabtools.CustomerRecord"/>
</message>

<portType name="‘exportejb_Service">
<operation name='getCustomerlinfo''>
<input message="'IngetCustomerInfoRequest'/>
<output message="OutgetCustomerInfoResponse’/>
</operation>
</portType>

<binding name="exportejb ServiceBinding" type="exportejb_Service">
<soap:binding style=
"rpc'" transport="http://schemas.xmlsoap.org/soap/http'/>
<operation name='getCustomerinfo''>
<soap:operation soapAction="urn:customerinfo-service'/>
<input>
<soap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace=""urn:customerinfo-service"
use="‘encoded" />
</input>
<output>
<soap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace=""urn:customerinfo-service" use="encoded"/>
</output>
</operation>
</binding>

<types>
<xsd:schema targetNamespace=""http://www.exportejbservice.com/exportejb"
xmlns="http://www.w3.0rg/1999/
XMLSchema/**>
</xsd:schema>
</types>

</definitions>

Once you have the WSDL representation of your service, you can make the service available. Availability is
achieved by sharing the WSDL file with the intended users of the service. Depending on your service type, you
can either directly send the WSDL file to specific users or, if your serviceisto be used publicly, you can publish
its description through a public registry. For example, you could publish publicly using the Universal Description,
Discovery and Integration (UDDI) standard registry.

17.3 Future Directions

The J2EE Connector Architecture makes the J2EE platform the preferred platform for enterprise application
integration. In particular, this architecture does an excellent job in making connectors a pluggable system
component. It also provides a common client programming model for accessto EIS resources. A common client
programming model simplifieslife for both programmers and tool vendors.

It isimportant to understand that when the connector architecture discusses EISs, the discussion is not limited to
legacy enterprise systems. We will see the JCA architecture evolve into a service connector architecture for inter-
and intra-enterprise service invocation. Besides extending the runtime architecture itself (inbound connectivity,
XML support, provider pluggability, and so forth), it isimportant that the next version of the JCA architecture
provide pluggability into tool environments (that is, metadata, import and generation support).

174

IBM will continue to play aleading role in the evolution and support of the J2EE Connector Architecture.

17.4 Conclusion

We have shown you how to get up and running with the JCA architecture today, using tools that are currently
available. Although you could hand-code your own application to access EIS systems, the cost in development
and maintenance time is enormous. For example, you would have to code your own Quality of Service (QoS) and
you would need to access proprietary EIS interfaces. These tools simplify the process by generating most of the
code you will need to access many EIS systems and the code generated is nonproprietary. At runtime, the code
will handle the marshalling and unmarshalling needed to pass data from your application to the EIS system while
maintaining data integrity in all environments.

We have aso shown you tools to help in the deployment of your application along with the RAR fileto the
application server, as you move your application from the development to the production environment. And we
have shown how JCA-based applications are suited to the move to XM L-based ways of exchanging data. With a
few changes to some files, an application becomes a Web service, available publicly or privately for clients
requesting this kind of service. Last, we have indicated how IBM will lead and support future JCA architecture
directions.

Our section ends with alist of the current connectors that come with VisualAge for Java and some references you
will find helpful. If you wish to follow IBM's commitment to the JCA architecture and to Javain general, you
should bookmark IBM's WebSphere Developer Domain (www.ibm.com/websphere/devel oper). Technical articles on
tools and products that will support the JCA architecture are posted at this popular Web site.

17.4.1 Connectorsin VisualAge for Java, Enterprise Edition, Version 4.0

Connector support is an ongoing story. The following list is the current set of connectors available in VisualAge
for Java. Asindicated earlier, you only need to know how to use the EAB toolsin general in order to develop an
application for any one of these connectors.

CICSECI and CICSEPI Connectors— Accesses CICS transactions.

Host-on-Demand (HOD) Connector— Accesses 3270, 5250, CICS, and VT hosts.

IM™ TOC Connector— Accesses IMS transactions.

J.D. Edwards® Connector— Accesses Enterprise Resource Planning (ERP) data from the J.D.
Edwards OneWorld® system.

e MQSeries Connector— Accesses MQSeries messaging software.

o Oracle Applications Connector— Accesses data from Oracle applications.

o PeopleSoft Connector— Accesses ERP data from PeopleSoft systems.

e SAP® R/3 Connector— Accesses the business object repository in SAP R/3.
17.4.2 References

e Green, John, Sandy Minocha, and Gary Bist. “Connectors in J2EE,” WebSphere Developer Domain
Technical Journal, May 2001. This article extends the subjects discussed here with material on managed
and nonmanaged connections, connection pooling, performance recommendations, Quality of Service,
JNDI, and other important areas linking connectors with J2EE. Available at
www.ibm.com/websphere/devel oper.

e Monson-Haefel, Richard. Enterprise JavaBeans. O'Reilly, 1999. Though we have built a session bean
with our EAB tool and avoided a discussion on enterprise beans themselves, many developers will want a
better understanding of the enterprise bean architecture behind the tool. This book will help.

e Oya, Tsutomu, Bob Brown, Martin Smithson, and Tomohiro Taguchi. CCF Connectors and Database
Connection Using WebSphere Advanced Edition. IBM Redbooks, 2000. This book looks at other
connectors, particularly the IMS and MQSeries connectors. Though based on the previous architecture,
Common Connector Framework (CCF), the materia is still applicable. Remember that IBM provides
migration tools to move CCF applications to J2EE. Available at www.ibm.com/redbooks.

« Picon, Joaquin, Regis Coqueret, Andreas Hutfless, Gopal Indurkhya, and Martin Weiss. Design and
Implement Serviets, JSPs, and EJBs for IBM WebSphere Application Server. IBM Redbooks, 2000. This
book looks at enterprise beans and their cousins, servlets and JSPs, from the application server perspective.
It coverscritical runtime areas such as scalability, caching, and performance trade-offs. Available at
www.ibm.com/redbooks.

e Rowan, Ed. Mastering Enterprise JavaBeans. John Wiley & Sons, 1999. Another classic book on
enterprise bean development with many examples. Look at the new sections on J2EE.

175

http://www.ibm.com/websphere/developer
http://www.ibm.com/websphere/developer
http://www.ibm.com/redbooks
http://www.ibm.com/redbooks

Seelemann, Irene, Cyrus Soleimany, Richard Gregory, and Agnes Lisowska. “Working with the New ERP
Connectors Available in VisualAge for Java,” VisualAge Developer Domain, September 2001. This article
looks at connectors in the Enterprise Resource Planning (ERP) arena. Tools, identical to the ones we have
shown, are used to access datain J.D. Edwards, Oracle applications, and PeopleSoft ERP systems.
Available at www.ibm.com/vadd.

The product documentation for VisualAge for Java, Enterprise Edition, Version 4.0, product
documentation contains many samples similar to the one shown here. In the online help, look in the
Samples section under the Enterprise Access Builder. In the Concepts section, you will find topics about
the JCA connector architecture, managed connections, connection pooling, JNDI, and comparisons of
JCA with the older Common Connector Framework (CCF) architecture. The Tasks section has topics that
show you how to migrate applications coded previoudy in CCF to JCA, and information on deployment.
The online help topics are also available as a compilation in PDF format.

176

http://www.ibm.com/vadd

Chapter 18. Embracing the J2EE Connector Architecture: The BEA WebLogic Experience

Deb June and Mitch Uptont
[Deb June is Connector Technical Lead, eCommerce Server Division, at BEA Systems.
Mitch Upton is Application Integration Architect, eCommerce Integration Division, at BEA Systems.

Bea Systems Inc.'s commitment to the development of the J2EE platform runs deep, and this commitment is
amply demonstrated by the ongoing evolution of its flagship WebLogic Server product, widely acknowledged to
be the industry's top J2EE-compliant application server. WebL ogic has maintained its reputation as the first
application server on the market to offer robust implementations of new J2EE specifications by emphasizing
aggressive development of important components like the J2EE Connector Architecture. WebL ogic Server 6.1,
released in the summer of 2001, supports the J2EE Connector Architecture Specification Version 1.0.

In addition to supporting the J2EE Connector Architecture 1.0 in WebL ogic Server, BEA has been proactivein its
support of Enterprise Application Integration technology through its WebL ogic Integration product, which was
also available in the summer of 2001. WebL ogic Integration (WLI) 2.0 complements and extends the J2EE
Connector Architecture by providing value-added features such as bi-directional and asynchronous
communication with Enterprise Information Systems. WL also provides facilities for allowing business analysts
to define customized, business-focused interfaces to Enterprise Information Systems. These interfaces, called
Application Views, allow a business analyst to use the capabilities of Enterprise Information Systems from within
WL I's Business Process Management system. The combination of Business Process Management and Application
Views allows business analysts to rapidly wire together enterprise class applications that are able to respond to
ever-changing business needs. In addition to initiating interactions with an Enterprise Information System,

WebL ogic/WLI-enabled applications can also respond to events that originate inside of an Enterprise Information
System.

As part of BEA's ongoing commitment to J2EE standards, BEA is actively participating in the expert group
(under the Java Community Process) for the J2EE Connector Architecture 2.0 specification. BEA will use the
new concepts and technol ogies employed in the WebLogic Server 6.1 and WebLogic Integration 2.0 products as a
guidein itsinteraction with the expert group for Connector Architecture 2.0.

This chapter discusses the WebL ogic server-specific implementation of the J2EE Connector architecture.

18.1 WebLogic Server's Implementation of the J2EE Connector Architecture
Specification

The release of WebL ogic Server 6.1 provides support for the J2EE Connector Architecture Specification Version
1.0 by implementing the application server requirements for the Connection Management, Security Management,
and Transaction Management contracts. As with other J2EE components such as EJBs and Web Applications, a
resource adapter also uses WebL ogic Server's deployment, configuration, monitoring and logging facilities. These
facilities provide resource adapters and tools providers an environment for quickly and easily testing their
implementations and a mature, full-featured runtime environment for integrating Enterprise Information Systems.

18.1.1 WebL ogic Server Supplementary Deployment Descriptor

In addition to supporting the features of the standard resource adapter configuration file, ra.xml, WebLogic
Server 6.1 defines an additional deployment descriptor file. Thisfile, called weblogic-ra.xml, contains
parameters specifically used for configuring and deploying a resource adapter within WebL ogic Server. This
deployment descriptor file contains elements for

« Defining the connection pool and logging parameters for the implementation of the Connection
Management system contract

e Security Principal Mapping for the implementation of the Security Management system contract

e A Configuration Property Mapping to complement the config-property elements of the ra.xml deployment
descriptor file

o Some additional elements for deploying a J2EE Connector Architecture-based resource adapter within the
WebLogic Server environment

177

WebL ogic Server requires aresource adapter archive (.RAR file) to include aweblogic-ra.xml deployment
descriptor filein addition to the ra.xml deployment descriptor file specified in the J2EE Connector 1.0
specification. However, if a standard resource adapter acquired from a Resource Adapter Provider is deployed in
WebL ogic Server without aweblogic-raxml file, atemplate weblogic-ra.xml file populated with default
element values will automatically be added to the resource adapter archive. This automatic resource file
generation simplifies the process of establishing the parameters necessary to deploy the resource adapter in
WebL ogic Server and expedites the overall Enterprise Application Integration process.

18.1.1.1 Configuring Error Logging and Tracing Facilitiesfor the Resour ce Adapter

The J2EE Connector Architecture specification describes how a resource adapter can produce tracing and logging
messages by implementing the ManagedConnectionFactory.set and getLogWriter methods. The
weblogic-ra.xml descriptor file supports two elements that allow administrators to configure logging and
tracing for resource adapters deployed in WebL ogic Server. The logging-enabled element can be used by a
resource adapter deployer to enable or disable logging for a specific ManagedConnectionFactory at deployment
time. The log-Ffilename element is provided to specify the filename to write the logging information that the

M anagedConnectionFactory produces.

These elements, in conjunction with the ManagedConnectionFactory.set and getLogWriter methods, enable
the ManagedConnectionFactory to produce tracing and logging messages that can be used to diagnose and
troubleshoot possible problems that occur with the resource adapter and its interactions with the WebL ogic Server
subsystems at both design time and runtime.

18.1.1.2 Configuring Resour ce Adapter Properties

The ra.xml deployment descriptor file supports a set of config-property elements used to specify the
configuration settings for a ManagedConnectionFactory instance. The default values of these configuration
properties are typically set by the resource adapter provider. However, if a configuration property is not set, it is
the responsibility of the resource adapter deployer to provide a value for the property.

WebL ogic Server provides the means to set configuration properties through the use of the
map-config-property element in theweblogic-ra.xml deployment descriptor file. To configure a set of
configuration properties for a resource adapter, the deployer specifies amap-config-property-name and
map-config-property-value pair for each property.

The map-config-property element can also be used to override the values specified in the ra.xml deployment
descriptor file. Upon WebL ogic Server startup, the map-config-property valuesin theweblogic-ra.xml file
will be compared against the config-property vauesin the ra.xml file and if the configuration property names
match, WebLogic Server will use the map-config-property-value for the corresponding configuration
property name.

18.1.1.3 Configuring Security Credentials

In BEA WebLogic Server 6.1, the Resource Principal on whose behalf the EIS-side sign-on is performed is
implemented by means of a Security Principal Mapping mechanism. This mapping allows a resource principal to
be determined from the identity of theinitiating/caller principal for the application component requesting an EIS
connection.

The Security Principal Map is specified in the security-principal-map element in theweblogic-ra.xml
deployment descriptor file. Each resource principal known to WebLogic Server is mapped to a corresponding
user name and password. The password is encrypted using an encryption tool that transforms aweblogic-ra.xml
file containing clear text passwords into a new weblogic-ra.xml file containing encrypted passwords. Using the
WebL ogic Server Administration Console, the common tool for configuring J2EE components within WebLogic
Server, the encryption tool is automatically invoked when new or modified mappings are committed.

A default resource principal can be defined for the Connection Factory in the security-principal-map element.
This default resource principal is used whenever the current identity is not matched el sewhere in the security
principal map. The default resource principal is an optional element, however. It must be specified in some form

if container-managed sign-on is supported by the resource adapter and used by any client.

In addition, the deployment-time population of the Connection Pool with ManagedConnections is attempted using
the defined “ default” resource principal if oneis specified.

178

18.1.1.4 Linking to a Resour ce Adapter Reference

As defined in the J2EE Connector specification, the Java classes needed to implement the resource adapter
system contracts are specified in the ra.xml deployment descriptor file. On deployment of the resource adapter,
these classes are loaded and the instantiated objects are configured using information from theweblogic-ra.xml
deployment descriptor file.

WebL ogic Server provides an optimization to the loading and configuration of resource adapter object instances.
An element caled ra-1ink-ref is supported in the weblogic-ra.xml deployment descriptor file. This element
allows the specification of alink from one Resource Adapter to another resource adapter representing the same
EIS but having adifferent configuration. The linked resource adapter can then simply instantiate any required
Java objects using the referenced resource adapter and configure those objects as needed for the new Resource
Adaptor instance. This performance optimization eliminates the need to load Java classes that have previously
been loaded by the referenced resource adapter.

18.1.2 Extended Connection Pool Services

BEA WebL ogic Server supports an advanced connection pooling facility by providing optional settings and
services to configure and automatically maintain the size of the connection pool.

18.1.2.1 Decreasing Runtime Perfor mance Cost for M anagedConnection Creation

Creation of ManagedConnections can be expensive. The actual cost of the creation process is dependent upon the
complexity of the Enterprise Integration System that the ManagedConnection is representing. As aresult, the
resource adapter deployer may decide to prepopul ate the connection pool with an initial number of
ManagedConnections on startup of WebL ogic Server and therefore avoid paying the performance price for
creating these connections when they are later requested. This behavior can be configured with the
initial-capacity element in theweblogic-ra.xml deployment descriptor file. Note, however, that it may not
be possible to prepopul ate M anagedConnections for certain resource adapters. For instance, thisistrue for
resource adapters that must create M anagedConnections using runtime parameters that are only known at the time
of a connection request.

As stated in the J2EE Connector specification, when a connection is requested the application server can first try
to match the type of connection being requested with any existing and available ManagedConnection in the
connection pool. However, if amatch is not found, a new ManagedConnection may be created to satisfy the
connection request. As mentioned above, the creation of a ManagedConnection can be an expensive runtime
operation. WebL ogic Server provides a setting that allows a number of additional ManagedConnections to be
created and added to the pool whenever a match is not found. This feature allows the deployer greater control
over when to incur the performance hit of connection pool growth. The behavior can be configured using the
capacity-increment element in theweblogic-ra.xml descriptor file.

Because there is no initiating security principal or request context information available at WebL ogic Server
startup, the initial ManagedConnections are created with a default security context. The number of initial
ManagedConnections that are created is controlled by the initial-capacity setting. When additional
ManagedConnections are created (in batch sizes controlled by the capacity-increment e ement), the first
ManagedConnection is created with the known initiating principal and client request information—the security
context association—of the connection request. The remaining ManagedConnections, up to the
capacity-increment limit, are created using the same default security context as used when creating the initial
ManagedConnections.

18.1.2.2 Controlling Connection Pool Growth

As more ManagedConnections are created over time, the amount of system resources consumed by the
connection pool increases. The amount of resources consumed as each new ManagedConnection is added is
dependent on the Enterprise Integration System involved, but it is possible that the consumption of alarge amount
of system resources could affect the performance of the overall system.

To control the effect of connection pool growth on system resources, WebL ogic Server provides the resource
adapter deployer a means for specifying the maximum allowed number of allocated ManagedConnections. This
value can be established using the maximum-capacity element in theweblogic-ra.xml descriptor file. If anew
ManagedConnection (or more than one ManagedConnection in the case of capacity-increment being greater
than one) needs to be created during a connection request, WebL ogic Server will ensure that no more than the
maximum number of allowed ManagedConnections are created.

179

If the maximum number has been reached, WebL ogic Server will attempt to recycle a ManagedConnection from
the pool. In the case of arecycling attempt, WebL ogic Server looksin the free pool for the least commonly
requested ManagedConnection. If there are no connections to recycle, awarning will be logged indicating that the
attempt to recycle failed and that the connection request could not be granted.

18.1.2.3 Controlling Connection Pool Shrinkage

Although setting the maximum number of ManagedConnections prevents the server from being overloaded by
more allocated M anagedConnections than it can handle, it does not efficiently manage the amount of system
resources that is needed if the connection request level diminishes over time. WebLogic Server provides aservice
that monitors the activity of ManagedConnections in the connection pool when resource adapters are in use.

If connection pool usage decreases and remains at this diminished level for an extended period of time, the size of
the connection pool will be reduced to the smallest amount necessary to adequately and efficiently service the
current connection request level. This service isturned on by default. However, to turn off this service the
resource adapter deployer can set the shrinking-enabled element in theweblogic-ra.xml descriptor file to
false. The shrink-period-minutes element in theweblogic-ra.xml descriptor fileisused to control how
frequently WebL ogic Server calculates the need for connection pool size reduction and selectively removes
unused ManagedConnections from the pool if needed.

18.1.3 Exampleweblogic-ra.xml Deployment Descriptor

Code Example 18.1 shows aweblogic-ra.xml deployment descriptor file associated with the
blackbox-notx.rar provided with the J2EE 1.3 package.

Example 18.1 Sample Deployment Descriptor

<?xml version="1.0" encoding="UTF-8"7>
<IDOCTYPE weblogic-connection-factory-dd PUBLIC "-//BEA Systems, Inc.//DTD WeblLogic 6.0.0
Connector//EN" "http://www.bea.com/servers/wls600/dtd/weblogic-ejb-jar.dtd">
<weblogic-connection-factory-dd>
<connection-factory-name>LogicalNameOfBlackBoxNoTx
</connection-factory-name>
<jndi-name>eis/BlackBoxNoTxConnectorJINDINAME</jndi-name>
<pool-params>
<initial-capacity>1</initial-capacity>
<max-capacity>10</max-capacity>
<capacity-increment>1</capacity-increment>
<shrinking-enabled>false</shrinking-enabled>
<shrink-period-minutes>15</shrink-period-minutes>
</pool-params>
<map-config-property>
<map-config-property-name>ConnectionURL
</map-config-property-name>
<map-config-property-value>jdbc:cloudscape:demo;create=true
</map-config property-value>
</map-config-property>
<security-principal-map>
<map-entry>
<initiating-principal>*</initiating-principal>
<resource-principal>
<resource-username>default</resource-username>
<resource-password>{3DES}Gx31+wWRT/ IRhDghSmgzVA==
</resource-password>
</resource-principal>
</map-entry>
<map-entry>
<initiating-principal>foo</initiating-principal>
<resource-principal>
<resource-username>foo_user</resource-username>
<resource-password>{3DES}Ow7TRhtU3ZU=</resource-password>
</resource-principal>
</map-entry>
</security-principal-map>
</weblogic-connection-factory-dd>

18.1.4 Deployment Descriptor Editor
WebL ogic Server 6.1 introduced a new feature to its graphical Administration Console called the Deployment

Descriptor Editor (or DD Editor, for short). This tool enables the Administrator to view and configure deployment
descriptor values for the J2EE components deployed within a WebLogic Server domain.

180

For aresource adapter, the elements of the ra.xml and weblogic-ra.xml deployment descriptor files can be
viewed and their values modified. Once values have been modified, they can be validated against the DTD for the
corresponding deployment descriptor file by the click of asingle button in the interface. After the modified
element values have been validated, the newly configured values can be written to a persistent resource adapter
archive. If it isdesirable to use these newly saved valuesin the current WebL ogic Server runtime instance, the
resource adapter is simply redeployed. The resource adapter can be redeployed from either the Administration
Console or from the command line. Either method conveniently eliminates the need to manually extract the
contents of the resource adapter archive and then edit the deployment descriptor fileswith an XML editor every
time the resource adapter needs to be reconfigured.

18.1.5 Monitoring a Resour ce Adapter in the WebL ogic Server Environment

Once aresource adapter is deployed and is actively being accessed, it isimportant for the administrator to

monitor the activity of the connection pool so that bottlenecks or other performance inefficiencies can be quickly
identified. If the administrator determines that a bottleneck or inefficiency exists, the DD Editor can then be used
to tune the connection pool to correct the problem. The Administration Console provides atool for monitoring the
overall health of deployed J2EE components. For a resource adapter component, this tool allows the monitoring
of several activity states applicable to ManagedConnections and their corresponding Connection handles. (See

Figure 18.2.)

Figure 18.2. Business Process M anagement Component

SAP Ordar
R Creata PO %:rg’ PO Crealad Adapter for PO Craated Processing
Client ok SAP R/ Application
BAPI call to function to Wiew
UpdatePO UpdataPO

PQOCreated
UpdatePO
Update GetCregt | Credit
Orders R,ati:'lgl Raling

Process Sendice

L

Figure 18.1 shows the ManagedConnection activity for a sample resource adapter since the time of its deployment
in WebL ogic Server. Based on the Connections Created Total Count, Free Connections High Count, and
Connections Matched Total Count, we can conclude that only one ManagedConnection has been allocated and
used to match 338 connection requests. If other connection requests had been received that did not match this
ManagedConnection, we would expect to see a Connections Rejected Total Count greater than zero. If anew
ManagedConnection needed to be created to satisfy a connection request but the maximum number of allocated
ManagedConnections had been exceeded, the connection pool would need to destroy the least used
ManagedConnection from the free pool and recycle the ManagedConnection connection pool slot for use by a
new ManagedConnection that satisfied the connection request. In this scenario, the Connections Destroyed Total
Count and Recycled Total would have been greater than zero.

Figure 18.1. Monitoring M anagedConnection Activity

181

Al Wetdsgic Serwer Congole - Micragolt Tnteshet Euplores [_1#] =]

G Edt Yew Fpooes Jois pen [|
[| bk« = - Q] @] Disewch [DFeeeres Frstoy | [F- & o - &

|| Ackdress [i] bitn: {flocbusst 17001 oonscieactons|inbe s snfr ame setictor Tistisssaf dse s tebarfr ame dunl_corsole_frame 596177 | (#Go | [unks |

examples> BlackBoxNoTx rar> Resource Connectors> BlackBoxMNo T .-""_‘.‘
f Connector Connection Pool Runtimes 't} ﬂ = ? '{’ hea

(& Customize this visw .

B || F Lol intranet

The Administration Console also provides information to monitor the Connection handle activity on the
ManagedConnections, such as which Connection handles are currently active, which are involved in a transaction,
and which are shared by more than one connection request.

18.2 WebLogic Integration 2.0

BEA WebL ogic Integration (WLI) provides a WebL ogic-based integration solution that supports open industry
standards for connecting applications both within and between enterprises. It delivers application server,
application integration, business process management, and Business-to-Business integration functionality that
supports a build to integrate approach to enterprise application life-cycle management. The goal of WebL ogic
Integration isto speed development and deployment efforts, minimize the pain of integration, and lower the cost
of ownership for IT investments.

The application integration component of WLI uses the J2EE Connector Architecture by building upon the
Connector Architecture implementation in WebLogic Server 6.1 and adding the following value-added features:

Bi-directional asynchronous communication with Enterprise Information Systems

The definition of XM L-based and business oriented interfaces to Enterprise Information Systems
Rapid, smplified development and packaging of resource adapters

Simplified communication model based on the concept of “services’ to do work against an Enterprise
Information System, and “events’ to notify interested parties of work having been done against an
Enterprise Information System. This communication model is embodied within an Application View.

WLI provides these additional features through the WLI Integration Framework and Adapter Devel opment Kit
(ADK). The Integration Framework is designed to host resource adapters that implement the value-added features
defined by WLI. The Integration Framework provides services to these enhanced adapters and hosts Application
Views that expose the adapter's capabilities as user-configured business-focused interfaces. The ADK provides
base resource adapter implementations, and devel opment frameworks that allow adapter devel opersto rapidly
build resource adapters. Resource adapters built with the ADK are based on the J2EE Connector Architecture 1.0
specification, and can operate in any Connector Architecture 1.0 based application server. These same adapters
can provide value-added features when running within the WLI Integration Framework and WebL ogic Server.

18.2.1 Application Views

WLI defines all communication between Enterprise Information Systems and application components in terms of
events and services. Events represent an occurrence of interest within an Enterprise Information System. An event
isaJavaobject containing an XML document, making the data contained in the object available to any XML
capable tool. The event contains XML data that describes the occurrence within the Enterprise Information
System and the context in which it occurred. Services are business functions that can retrieve information from
and cause changes within an Enterprise Information System. Services take request datain the form of an XML
document, and return responses as an XML document. Because both the request and response are represented in

182

XML, the data contained in them is available to any XML capable tool. Events and services are implemented
using the capabilities of a WLI-compliant resource adapter. Thus, the combination of events, services, and a
resource adapter bridges Enterprise Information System-specific data structures and capabilities into standard
XML-based data structures and capabilities.

An Application View collects a set of events and services into an easy-to-use Enterprise Information
System-neutral interface. Thus an Application View can be used to detect occurrences within, retrieve
information from, and cause changes within an Enterprise Information System. Clients using an Application View
can therefore make use of al the capabilities of an Enterprise Information System without knowing the
communication and usage details of that system.

An Application View is used for a specific business purpose, and defines the events and services necessary to
fulfill this business purpose. The Application View has a name and descriptive text that represents its business
purpose.

Application Views are hosted within the WLI Integration Framework. The Integration Framework provides
facilities for maintaining the metadata used to describe the Application View, and to deploy/undeploy the
Application View within arunning WebLogic Server instance. The Integration Framework also manages the
relationship and communication between an Application View and its associated resource adapter.

For example, an Application View might be defined to handle the creation and maintenance of purchase orders
within an SAP R/3 system. Such an Application View would use a resource adapter for the SAP R/3 system, and
might be named “ Order Processing”. It might define events that indicate the creation of new purchase orders
(“POCreated”), and the modification or deletion of existing purchase orders (“POUpdated” or “PODeleted”). It
might also define services for creating new purchase orders (“ CreatePO”) and updating or deleting existing
purchase orders (“UpdatePO” or “DeletePO”). This Application View thus provides an interface that alows the
user to detect specific occurrences within SAP R/3 and to use a specific set of SAP R/3 functions. Because an
Application View definesits events and services to use XML, the user can interact with SAP R/3 without having
to use SAP R/3 data structures or communication methods.

An Enterprise Information System specialist defines an Application View at the request of a business analyst.
This specialist applies knowledge of the Enterprise Information System to define events and services that meet
the business needs described to him by the business analyst. Once the Application View is defined, the business
analyst uses it within the Business Process Management component of WLI. Within the Business Process
Management component, the business analyst uses business logic to wire together events and services from the
Application View. In our example, the Business Analyst may define a business process called “ Update Orders”
that detects new purchase ordersviaa“POCreated” event, and updates them with information derived from other
resources in the enterprise (for example, credit rating information), using the “UpdatePO” service. The Business
Process Management component provides tools for extracting XML data from the incoming event, and
composing the request XML document for the service.

18.2.2 Adapter Development Kit (ADK)

The J2EE Connector Architecture 1.0 specification defines a set of interfaces that must be implemented by a
resource adapter that is based on the Connector architecture. The implementation of these interfaces can be
development intensive. In addition, many adapter implementations contain a large set of common functionality. It
would be wasteful for each adapter developer to independently implement this common functionality. The WLI
Adapter Development Kit provides several application frameworks that embody common functionality required
by adapters, allowing adapter devel opers to concentrate on adding value-added functionality specific to their
Enterprise Information System.

The ADK can be used to rapidly build resource adapters that support the J2EE Connector Architecture. Resource
adapters written using the ADK can be plugged into any J2EE compliant application server such as WebLogic
Server 6.1. WLI defines adapters as having capabilities that are a superset of the capabilities defined by the
Connector Architecture 1.0. WLI defines several components of an adapter to represent unique subsets of these
capabilities. WLI defines adapters as being composed of three components:

e Service Adapter— Providesthe ability to invoke functions within the Enterprise Information System
and is used to implement Application View services

o Event Adapter— Provides the ability to detect occurrences within an Enterprise Information System
and is used to implement Application View events

o Design-time Component— Provides the ability to browse metadata within an Enterprise Information
System, and is used to define the events and services that make up an Application View

183

Adapters, as defined by the Connector Architecture 1.0 specification, fulfill the basic requirements of a WLI
service adapter. Event adapters and design-time components of an adapter have no direct analog in the Connector
Architecture 1.0 specification. The Connection Architecture 2.0 specification will address issues such as the
implementation of additional WLI service adapter and event adapter features.

18.2.2.1 Service Adapters

A service adapter enables the execution of Application View services against an Enterprise Information System.
The ADK provides an entire framework dedicated to the creation of service adapters. A service adapter written
using the ADK fully supports Connector Architecture 1.0 based resource adapter. A service adapter is essentially
a J2EE Connector Architecture based adapter that uses an enhanced form of Common Client Interface (CCl) to
communicate with application components.

This enhanced CCI uses XML as the data structure for request and response data from an Enterprise Information
System function and is named XML Common Client Interface (XCCI). The XCCI interface defines a custom CCI
Record type that contains an XML document and is called a DocumentRecord. The DocumentRecord provides
for the ssmple manipulation and extraction of XML data based on declarative hierarchical string expressions
called XPaths. XPath is a standard XML datalocation facility specified by the W3C.

Any adapter that implements the X CCl interface can be used to implement services on an Application View
hosted within the WLI Integration Framework. For example, an adapter that implements only the standard CCI
interface needs to extend (to use the X CCl interface) before it can be used to implement servicesin WLI.

J2EE Connector Architecture-based adapters that do not implement the X CCI interface may be used as the
starting point for implementing a WL service adapter. Essentially, the adapter developer would build an XCCl
interface that uses the underlying non-X CCl adapter. The ADK supports the development of such a hybrid
adapter, and allows adapter devel opers to reuse existing adapters to reduce the effort and investment necessary to
write a service adapter.

Service adapters are used by the WLI Integration Framework to implement services defined for an Application
View. An Application View service corresponds directly to afunction implemented by the service adapter. This
function is accessed via the Interaction.execute method defined in CCl. The execute method takes a request
Record, and a metadata object called an InteractionSpec. The InteractionSpec object contains the name of the
function on the service adapter and, depending on the adapter implementation, any data needed by the function.
An Application View service is aways associated with an InteractionSpec object. At runtime, the Integration
Framework handles mapping a service invocation on an Application View to the actual function on the service
adapter by invoking Interaction.execute on the adapter.

The Integration Framework passes the request document provided by the user and the InteractionSpec object
defined for the service to the Interaction.execute method. The execute method then invokes the named function
on the service adapter passing data from the request document and InteractionSpec. The function on the service
adapter thus has two “channels’ of information to work with. The information in these two channels, taken
together, must represent a set of information sufficient to perform the operation represented by the function on the
service adapter. Placing more data in the InteractionSpec object allows the user to provide less data in the request
document. This makes the function, and thus the service, easier to use. Thus, services can be used to hide
complexity from the user (by placing more data into the InteractionSpec).

18.2.2.2 Event Adapters

An event adapter enables an application component to detect occurrences within an Enterprise Information
System. The event adapter is used to implement events defined on Application Views representing business
interfaces to that Enterprise Information System. Event adapters and the functions they perform are not defined
by the Connector Architecture 1.0 specification. However, the capabilities of an event adapter are critical to
achieving robust integration with an Enterprise Information System. Such capabilities will be addressed directly
by the Connector Architecture 2.0 specification. BEA is committed to working with the Connector Architecture
2.0 expert group in defining these capabilities for the new specification.

An Event Adapter has the ability to listen and respond to events occurring within an EIS. The Event Adapter
responds to events within an EIS by delivering an event object containing an XML payload into the WLI
Integration Framework. The Integration Framework then notifies any application component interested in this
type of event by delivering them a copy of the event object. This functionality provides bi-directional
communication between the application component and the EIS. The WLI Integration Framework provides the
infrastructure to host Event Adapters and to manage event subscriptions from application components.

184

An Event Adapter is composed of two main components; the event generator and the event router. The event
generator iswritten by the adapter devel oper, and is specific to the Enterprise Information System. The event
router is provided by the Integration Framework and is not specific to any Enterprise Information System. The
event generator handles the detection of occurrences within the EIS and the creation of event objects that
represent those occurrences. The event generator then hands the event objects over to the event router for delivery
to application components. The event router maintains the subscription information from Application Clients that
indicates each client's interest in certain types of events. The event router, upon receiving an event from the event
generator, determines which application components are interested in the current type of event, and handles the
delivery of the event into the Integration Framework.

The Event Adapter component of an adapter islogically separate from the service adapter component and is
generally deployed separately. The service adapter is always deployed in the application server, and the event
adapter is generally, though not always, deployed in a separate application server or servlet engine instance. The
event router islogically associated with asingle EIS instance, and not with the application server, and is thus
deployed “closely” to the EIS. Theterm “close” in this case refers to the speed and reliability of the interprocess
communication between the EIS and the event generator component of the event adapter. In most cases, the event
adapter will actually run within an application server or servlet engine running on the same machine as the EIS.
Figure 18.3 shows the relationship between the EIS, the event adapter, and subscribing application components.

Figure 18.3. Component Relationships

App Sarver or Serviet Engine I
Application
Application
y Ewent y Ewvant » G
EIS Generator Event Routar - Application
Event (EIS- Object (Wl Companent
Maotification specific) "ML provided) M
and Data (
(EIS-specific) | Payload) ' | Event Object
A FyY) (=ML
Payload)
Collated/Unique ‘
Event Subscriptions . Eub?-;?imﬁnn
\'—W——""/ \“—ﬂ-—— 1}
Same Machine Different Machines,
or Fast Network Possibly Across
Connection Firgwall

From this diagram, we see that the event generator is completely isolated from the application components that
will ultimately receive the eventsiit creates. This allows the event generator to focus completely on the task of
detecting EIS occurrences, and the events that represent them.

The ADK provides an entire framework for the creation of event generator components. This framework includes
basic event generator implementations and utility classes for the creation of events.

18.2.2.3 Design-Time Components

The design-time component of an adapter is used to allow the user (business analyst or EIS specialist) to
interactively define new Application Views using that adapter. The design-time component allows the user to
“browse” metadata in the EIS and to interpret this metadata in terms of events and services. Asthe user browses
the EIS, he or she defines events and services and collects them into an Application View.

How the user sees the metadata in the EIS, and what metadata corresponds to events and what metadata
corresponds to services, is the choice of the adapter developer. The ADK includes a working sample database
adapter (with source code), and a template adapter that serves as the starting point for new adapter development.
The sample adapters each include a design-time component.

The database sample adapter defines events to represent inserts, deletes, or updates on rows in a database table. It
defines services to represent the execution of SQL statements against the database. The database adapter allows
the user to browse the tables defined in the database, and the columns defined for those tables. To create an event
definition, the user selects atable, and indicates whether the event isto be fired for inserts, deletes, or updates on
that table. To create a service, the user typesin a SQL statement. The table browser can be used to assist the user
in entering valid table and column names in that SQL statement. Other adapters will define events and servicesto
represent different occurrences and functions, respectively, within the EIS.

185

The ADK provides base classes and Java Server Pages (JSP) templates for writing a JSP-based (Web-browser
based) design-time interface. The design-time component, as supported by the ADK, is packaged as a J2EE Web
application archive (WAR) file. Other client interface types (e.g., Swing GUI) are possible using the client
application programming interface (API) for the WLI Integration Framework. However, the ADK only provides
direct support for JSP-based design-time interfaces.

The design-time component can communicate with the EIS in any way the adapter developer wishes. However,
the recommended approach, and the one employed by the design-time component of the database sample adapter,
isto communicate with the EIS via the service adapter. This allows the design-time component to leverage the
abilities already developed for the service adapter, and to guarantee similar results at both design-time and
runtime. The service adapter for the DBM S sampl e adapter includes functions that help the design-time
component retrieve and interpret the metadata for the database.

18.3 BEA Partners Adopting the J2EE Connector Architecture

The significant impact that the J2EE Connector Architecture is having on the industry has been clearly
demonstrated in recent months by the high level of interest in the technology that has been shown by BEA's
partners. By leveraging the capabilities of the WebLogic Server and WebL ogic Integration products, system
integrators and independent software vendors have aready begun to build J2EE Connector Architecture-based
resource adapters. These resource adapters will enable customers to leverage existing IT investments and build
enterprise wide e-business solutions by integrating business-critical applications. Application integration tools
built on top of the Connector Architecture will help to automate business processes both within the enterprise and
over the public Internet for partners and customers alike.

The system integrators and independent software vendors that have shown interest in the Connector Architecture
provide awide array of software and services, including the production and integration of complex software
systems like ERP, Supply Chain, Web to ERP, Web to mainframe, and Wireless Applications. These vendors
cater to an extensive range of global markets such as finance, banking, health care, manufacturing,
telecommunications, and government. The list of BEA partners that have already adopted the Connector
Architecture and produced Resource Adapters includes such prominent companies as KPMG, Clarify (a Nortel
Networks Company), Kana, Bull, Actional, Attunity, Stellcom, EzCommerce, Insevo (formerly B2B-ERP), Arsin
Corporation, CSC, Infogain Corporation, and AMS. The resource adapters built by these companies support
DBMS and ERP systems such as Oracle, CICS, DB2, VSAM, SAP, and even wireless messaging systems.

It is clear from this strong partner response that acceptance of the Connector Architecture is quickly growing not
just among application server vendors but among ISVs and system integrators as well. In the long run, this strong

adoption rate will mean nothing but good things for end users, who will be able to achieve alevel of legacy
application integration that was previously unobtainable.

18.3.1 Reference

Portions of this chapter are excerpted from the BEA WebLogic Server Programmer's Guide. Copyright BEA
Systems, Inc. 2001. Reprinted with permission of BEA Systems. All rights reserved.

186

Appendix A. API Reference

The J2EE Connector architecture defines a set of classes and methods for implementing both the application
server side and resource adapter side of its system contracts. It also defines classes and interfaces for the CCI.
This appendix provides areference to these classes and methods, as defined by the Connector specification.

The connector interfaces and classes are al found within the javax.resource package. The interfaces and classes
are further organized into three packages beneath javax.resource:

e javax.resource.cci— Defines APIsfor the Common Client Interface.

e javax.resource.spi— Defines APIsfor system contracts.
e javax.resource.spi.security— Defines APIsfor security contract.

A.1 javax.resource Package

The javax.resource package is the Connector architecture's top-level package. It includes one interface,
Referenceable, and this interface extends the javax.naming.Referenceable interface.

This package also includes two exceptions. NotSupportedException and ResourceException.
NotSupportedException is thrown to indicate that the caller, either a resource adapter or an application server for

system contracts, cannot execute an operation because the operation is not supported. ResourceException is the
root exception for the Connector architecture's exception hierarchy.

A.1.1 Referenceable I nterface

The Referenceabl e interface extends the javax.naming.Referenceabl e interface. It provides support for the INDI
Reference mechanism, and this mechanism allows a connection factory to be registered in the INDI namespace.
Note that the implementation and structure of the Reference interface is specific to an application server.

An implementation class for a connection factory interface must implement both the java.io.Serializable and
javax.resource.Referenceabl e interfaces to support INDI registration.

Thisinterface inherits the getReference method from the javax.naming.Reference interface.

sctReference

public void setReference(javax.naming.Reference reference)

Sets the Reference instance. The deployment code calls this method to set the Reference that the getReference
method can return later.

PARAMETERS:

reference la Reference instance

A.2 javax.resource.cci Package

The javax.resource.cci package defines the Common Client Interface API.

A.2.1 Connection I nterface

A Connection represents an application-level handle that uses a client to access the underlying physical
connection. A ManagedConnection instance represents the actual physical connection associated with a

Connection instance.

A client gets a Connection instance by using the getConnection method on a ConnectionFactory instance. A
Connection instance can be associated with zero or more Interaction instances.

187

close

public void close() throws ResourceException;

Initiates close of the connection handle at the application level. Once a connection has been closed, a client
should not use that closed connection to interact with an EIS.

EXCEPTIONS:

IResourceException |thrown when the close operation on a connection handle fails

createl nteraction

public Interaction createlnteraction() throws ResourceException;

Creates an Interaction instance and associates it with this Connection instance. An Interaction enables an
application to execute EIS functions.

RETURNS:
an Interaction instance for the Connection

EXCEPTIONS:

IResourceException thrown when the method fails to create an Interaction

getL ocal Transaction

public LocalTransaction getLocalTransaction() throws ResourceException;

Returns a L ocal Transaction instance that enables a component to demarcate resource manager local transactions
on the Connection. Some resource adapters may not allow a component to use the Local Transaction interface to
demarcate local transactions on a Connection. If so, the getLocal Transaction method should throw a
NotSupportedException.

RETURNS:

aLocal Transaction instance

EXCEPTIONS:

ResourceException thrown when the method fails to return a LocalTransaction instance because of a resource adapter
error

NotSupportedException|thrown if this Connection does not support demarcation of resource manager local transactions

getMetaData

public ConnectionMetaData getMetaData() throws ResourceException;

Gets the information on the underlying EIS instance that is represented through an active connection.
RETURNS:

a ConnectionMetaData i nstance representing information about the EIS instance

EXCEPTIONS:

ResourceException |thrown when the method fails to get information about the connected EIS instance. The error may be
internal to the resource adapter, specific to the EIS, or communication related.

getResultSetlnfo

188

public ResultSetinfo getResultSetinfo() throws ResourceException;
Gets the information on the ResultSet functionality supported by a connected EIS instance.
RETURNS:

a ResultSetInfo instance representing ResultSet functionality supported by the EIS instance

EXCEPTIONS:
ResourceException thrown when the method fails to get ResultSet related information
NotSupportedException thrown if ResultSet functionality is not supported

A.2.2 ConnectionFactory Interface

ConnectionFactory provides an interface that an application can use to get a connection to an EIS instance. A
resource adapter is responsible for providing an implementation of the ConnectionFactory interface. The
application code looks up a ConnectionFactory instance from the INDI namespace, and then uses that instance to
get an EIS connection.

The ConnectionFactory interface extends two interfaces: java.io.Serializable and javax.resource.Referenceable.
An implementation class for ConnectionFactory is required to implement both these interfaces to support JINDI
registration.

getConnection

public Connection getConnection() throws ResourceException;
public Connection getConnection(ConnectionSpec properties)
throws ResourceException;

Gets a connection to an EIS instance. An application component should use the first variant of getConnection
when the component wants the container to manage EIS sign-on. Thisisreferred to as container-managed sign-on.
When using this variant, the component does not pass any security information with the method.

A component should use the second getConnection variant, with the javax.resource.cci.ConnectionSpec
parameter, if it needs to pass any resource adapter-specific security information and connection parameters. This
variant of the method is often used in the component-managed sign-on case. An application component passes
security information, such as user name and password, via the ConnectionSpec instance.

Note that the properties passed through the getConnection method should be specific to the client, such as user
name, password, and language. These properties should not be related to the configuration of atarget EIS instance,
such as port number and server name.

The ManagedConnectionFactory instance is configured with a complete set of properties required for the creation
of aconnection to an EIS instance.

PARAMETERS:

properties|the Connection parameters and security information specified within a ConnectionSpec instance. (This
parameter is used only in the second variant of the method.)

RETURNS:

a Connection instance

EXCEPTIONS:

ResourceException {thrown when the method fails to get a connection to the EIS instance. Examples of possible failures are:

e invalid specification of input parameters

e invalid configuration of a ManagedConnectionFactory instance. (For example, it may be configured with
an invalid server name.)

e anerror internal to the application server, such as an error related to connection pooling

189

a communication error

an error specific to the EIS, such asthe EISis not active
an error internal to the resource adapter

an error related to security, such asan invalid user
afailureto allocate system resources

getM etaData

public ResourceAdapterMetaData getMetaData() throws ResourceException;

Gets metadata for the resource adapter. Note that the metadata information is about the resource adapter and not
the EIS instance. Y ou can invoke this method without first establishing an active connection to an EIS instance.

RETURNS:
a ResourceAdapterM etaData instance representing information about the resource adapter

EXCEPTIONS:

IResourceException |thrown when the method fails to get metadata information about the resource adapter

getRecordFactory

public RecordFactory getRecordFactory() throws ResourceException;
Gets a RecordFactory instance. The RecordFactory is used for the creation of generic Record instances.
RETURNS:

a RecordFactory instance

EXCEPTIONS:
ResourceException thrown when the method fails to create a RecordFactory
NotSupportedException thrown when the operation is not supported

A.2.3 ConnectionM etaData I nterface

The ConnectionM etaData interface provides information about an EIS instance connected through a Connection
instance. A component calls the Connection.getMetabData method to get a ConnectionM etaData i nstance.

getEl SProductName

public java.lang.String getElISProductName() throws ResourceException;

Returns the product name of the underlying EIS instance connected through the Connection that produced this
metadata

RETURNS:
the product name of the EIS instance

EXCEPTIONS:

]ResourceException |thrown when the method fails to get the information for the EIS instance

getEl SProductVersion

public java.lang.String getEISProductVersion() throws ResourceException;

190

Returns the product version of the underlying EIS instance connected through the Connection that produced this
metadata.

RETURNS:
the product version of the EIS instance

EXCEPTIONS:

]ResourceException thrown when the method fails to get the information for the EIS instance

getUser Name

public java.lang.String getUserName() throws ResourceException;

Returns the user name for an active connection as known to the underlying EIS instance. The name corresponds
to the resource principal under whose security context a connection to the EIS instance has been established.

RETURNS:
a String representing the user name

EXCEPTIONS:

]ResourceException |thrown when the method fails to get the information for the EIS instance

A.2.4 ConnectionSpec | nterface

An application component uses the ConnectionSpec interface to pass connection request-specific properties to the
ConnectionFactory.getConnection method.

It is recommended that you implement the ConnectionSpec interface as a JavaBean so that it supports tools. Y ou
must use the getter and setter methods pattern to define the properties on the ConnectionSpec implementation
class.

The CCI specification defines a set of standard properties for a ConnectionSpec. The properties are defined either
on aderived interface or an implementation class of an empty ConnectionSpec interface. In addition, aresource
adapter may define additional properties specific to its underlying EIS.

A.2.5IndexedRecord I nterface

The IndexedRecord interface represents an ordered collection of record elements based on the java.util.List
interface. Thisinterface allows a client to access elements by their integer index (position in the list) and search
for elementsin thelist.

IndexedRecord extends javax.resource.cci.Record, java.util.List, and java.io. Seriadizable. It inherits its methods
from the Record and List interfaces.

A.2.6 Interaction I nterface

The Interaction interface enables a component to execute EIS functions. An Interaction instance supports two
execute methods that enable a component to interact with an EIS instance:

e Oneform of the execute method takes an input Record, an output Record, and an InteractionSpec. This
method executes the EIS function represented by the InteractionSpec and updates the output Record.

e A second form of the method takes an input Record and an InteractionSpec. This method executes the EIS
function represented by the InteractionSpec and produces the output Record as areturn value.

An Interaction instance is created from a Connection and is required to maintain its association with the

Connection instance. Execution of the close method releases all resources maintained by the resource adapter for
the Interaction. However, the close of an Interaction instance should not close the associated Connection instance.

191

clearWarnings

public void clearWarnings() throws ResourceException;

Clears dl the warnings reported by this Interaction instance. After acall to this method, the getwarnings method
will return null until anew warning is reported for this Interaction.

EXCEPTIONS:

IResourceException |thrown when the method fails to clear the resource warnings associated with the Interaction

close

public void close() throws ResourceException;
Closes the current Interaction and releases all the resources held for this instance by the resource adapter. The

close of an Interaction instance does not close the associated Connection instance. It is recommended that
Interaction instances be closed explicitly to free any held resources.

EXCEPTIONS:

ResourceException|thrown when the method fails to close the Interaction instance. Invoking close on an already closed
Interaction should also throw this exception.

execute

public boolean execute(InteractionSpec ispec, Record input,
Record output) throws ResourceException;

public Record execute(lInteractionSpec ispec, Record input)
throws ResourceException;

Executes an interaction represented by the InteractionSpec. The first form of the method invocation takes an input
Record and updates the output Record. The second form of the method takes an input Record and returns an
output Record if the execution of the Interaction is successful.

PARAMETERS:

]ispec |the InteractionSpec representing a target EIS data or function module

input the Input Record

output the Output Record

RETURNS:

Thefirst form returns true if the execution of the EIS function is successful and the output Record has been
updated; otherwise, it returns false. The second form returns the output Record if execution of the EIS functionis
successful; otherwise, it returns null.

EXCEPTIONS:

ResourceException thrown when the method operation fails. Examples of possible errors are:

invalid specification of an InteractionSpec, input, or output record structure
errorsin the use of input or output Record

invalid connection associated with this Interaction

acommunication error

an error specific to the EIS

an error internal to the resource adapter

NotSupportedException thrown when the operation is not supported

getConnection

192

public Connection getConnection();

Gets the Connection associated with the Interaction.
RETURNS:

the Connection instance associated with the Interaction

getWarnings

public ResourceWarning getWarnings() throws ResourceException;

Gets the first ResourceWarning from the chain of warnings associated with this Interaction instance.
RETURNS:

the ResourceWarning at the top of the warning chain

EXCEPTIONS:

IResourceException |thrown when the method fails to get the ResourceWarnings associated with the Interaction

A.2.7 InteractionSpec I nterface

An InteractionSpec holds the properties that drive an Interaction with an EIS instance. An Interaction uses the
I nteractionSpec to execute the specified function on an underlying EIS.

The CCI specification defines a set of standard properties for an InteractionSpec. An InteractionSpec
implementation is not required to support a standard property if that property does not apply to its underlying EIS.

The InteractionSpec standard properties are:

e FunctionName— the name of an EIS function
e InteractionvVerb— the mode of interaction with an EIS instance. The mode can be one of these values:
o SYNC_SEND— Thisfield indicates that the execution of an Interaction performs only a send to the
target EIS instance. There is no synchronous response in terms of an output Record or ResultSet.
o SYNC_SEND_RECEIVE— Thisfield indicates that the execution of an Interaction sends a request to
an ElIS instance and synchronously receives a response.
o SYNC_RECEIVE— Thisfield indicates that the execution of an Interaction results in a synchronous
receive of an output Record.
e ExecutionTimeout— the number of milliseconds an Interaction waits for an EIS to execute the
specified function

The following standard properties can be used to give hints to an Interaction instance about ResultSet
requirements:

FetchSize
FetchDirection
MaxFieldSize
ResultSetType
ResultSetConcurrency

A CCI implementation can provide additional properties beyond that described in the InteractionSpec interface.
Note that the format and type of the additional properties are specific to an EIS and are outside the scope of the
CCI specification.

The InteractionSpec interface must be implemented as a JavaBean for toolability support. Thus the

I nteractionSpec implementation class must provide getter and setter methods for each of its supported properties,
and properties can only be defined through these methods. The getter and setter methods convention should be
based on the JavaBeans design pattern.

193

An implementation class for the InteractionSpec interface is required to implement the java.io.Seridlizable
interface.

A.2.8 LocalTransaction I nterface

A Local Transaction defines a transaction demarcation interface for resource manager local transactions. Note that
thisinterface is used for application-level local transaction demarcation. There is a comparable system
contract-level Local Transaction interface defined in the javax.resource.spi package that the container uses for
local transaction management.

A local transaction is managed internal to a resource manager. No external transaction manager isinvolved in the
coordination of such transactions.

A CCI implementation may implement the Local Transaction interface, but thisis not required. When a CCI
implementation supports the Local Transaction interface, the Connection.getLocalTransaction method should

return a Local Transaction instance. A component can then use the returned Local Transaction to demarcate a
resource manager local transaction (associated with the Connection instance) on the underlying EIS instance.

begin
public void begin() throws ResourceException;

Beginsalocal transaction on an EIS instance.

EXCEPTIONS:

ResourceException |thrown when the method fails to begin a local transaction. The method may fail because of a resource
adapter internal error or an EIS-specific error, or because the Connection is already participating in a
local or JTA transaction.

commit

public void commit() throws ResourceException;
Commits the current local transaction and releases all locks held by the underlying EIS instance.

EXCEPTIONS:

ResourceException thrown when the method fails to commit a local transaction. Possible reasons for the method to fail are:

aresource adapter internal error

an ElS-specific error

the Connection is already participating in an active JTA transaction

there has been a violation of integrity constraints, deadlock detection, or a communication failure during
transaction completion

aretry requirement has occurred

e thetransaction context isinvalid. The commit operation was invoked without an active transaction
context.

rollback

public void rollback() throws ResourceException;
Rolls back the current resource manager local transaction.

EXCEPTIONS:

ResourceException {thrown when the method fails to roll back a local transaction. The method may fail because of:

e aresource adapter internal error
e an ElS-specific error
e the Connectionisaready participating in an active JTA transaction

194

e thetransaction context isinvalid. The rollback operation was invoked without an active transaction
context.

A.2.9 MappedRecord Interface

The MappedRecord interface is used for key-value map-based representations of record elements. The
MappedRecord interface extends both the Record and java.util.Map interfaces.

A.2.10 Record Interface

The Record interface is the base interface for representing an input or output record to the execute methods
defined on an Interaction.

It is possible to extend the Record interface to form one of the following representations:

o MappedRecord— A record represented by a key-value pair-based collection. Thisinterface isbased on
the java.util.Map interface.

e IndexedRecord— A record represented by an ordered and indexed collection. Thisinterface isbased on
the java.util.List interface.

o JavaBean-based representation of an EIS abstraction— For example, a custom record generated to
represent a purchase order in an ERP system.

e javax.resource.cci.ResultSet— An interface that extends both java.sgl.ResultSet and
javax.resource.cci.Record. A ResultSet represents tabular data.

A MappedRecord or IndexedRecord can contain another Record. Thus you can use MappedRecord and
IndexedRecord to create a hierarchical structure of any arbitrary depth. A basic Javatype is used as the |eaf
element of a hierarchical structure represented by a MappedRecord or IndexedRecord.

clone

public java.lang.Object clone() throws
java.lang.CloneNotSupportedException;

Creates and returns a copy of this object. The precise meaning of “copy” may depend on the class of the object.
This method overridesthe java.lang. Object.clone method.

EXCEPTIONS:

java.lang.CloneNotSupportedException thrown when the object's class does not support the Cloneable interface.
Subclasses that override the clone method can also throw this exception to
indicate that an instance cannot be cloned.

equals

public boolean equals(java.lang.Object other);
Checksif thisinstance is equal to another Record.

PARAMETERS:

lother the other Record instance

RETURNS:
true, if the two instances are equal

getRecordName

public java.lang.String getRecordName();

195

Gets the name of the Record.
RETURNS:
a String representing the name of the Record

getRecor dShortDescription

public java.lang.String getRecordShortDescription();

Gets a short description string for the Record. Application development tools primarily use this property.
RETURNS:

a String representing a short description of the Record

hashCode

public int hashCode();

Returns the hashCode for the Record instance.
RETURNS:

the hash code of thisinstance

setRecordName

public void setRecordName(java.lang.String name);
Sets the name of the Record.

PARAMETERS:

Iname the name of the Record

setRecor dShortDescription

public void setRecordShortDescription(Java.lang.String description);
Sets a short description string for the Record. Application development tools primarily use this property.

PARAMETERS:

/description lthe description of the Record

A.2.11 RecordFactory Interface

The RecordFactory interface is used for creating MappedRecord and IndexedRecord instances. Note that the
RecordFactory isonly used for creation of generic record instances. A CCI implementation provides an
implementation class for the RecordFactory interface.

createl ndexedRecord

public IndexedRecord createlndexedRecord(java.lang.String recordName) throws
ResourceException;

Creates an IndexedRecord. The method takes the name of the record that is to be created by the RecordFactory.

The name of the record acts as a pointer to the metainformation (stored in the metadata repository) for a specific
record type.

196

PARAMETERS:

]recordName the name of the Record

RETURNS:

an IndexedRecord

EXCEPTIONS:

ResourceException thrown when the method fails to create an IndexedRecord. Examples of possible errors are:

e invalid specification of arecord name
e anerror internal to the resource adapter
o failureto access the metadata repository

INotSupportedException |thrown when the operation is not supported

createM appedRecord

public MappedRecord createMappedRecord(java. lang.String recordName) throws ResourceException;

Creates a MappedRecord. The method takes the name of the record that is to be created by the RecordFactory.
The name of the record acts as a pointer to the metainformation (stored in the metadata repository) for a specific
record type.

PARAMETERS:

\recordName the name of the Record

RETURNS:
aMappedRecord

EXCEPTIONS:

ResourceException thrown when the method fails to create a MappedRecord. Examples of possible errors are:

o invalid specification of arecord name
e anerror internal to the resource adapter
o failureto access the metadata repository

NotSupportedException |thrown when the operation is not supported

A.2.12 Resour ceAdapter M etaData | nterface

The ResourceAdapterM etaData interface provides information about capabilities of a resource adapter
implementation. Note that this interface does not provide information about an EIS instance that is connected
through the resource adapter.

A CCI client uses aConnectionFactory .getMetaData method to get metadata information about the resource
adapter. The getMetaData method does not require an active connection to an EIS instance.

The ResourceAdapterM etaData can be extended to provide more information specific to a resource adapter
implementation.

getAdapter Name

public java.lang.String getAdapterName();

Gets the name of the resource adapter in aform capable of being displayed by atool.

197

RETURNS:
a String representing the name of the resource adapter

getAdapter ShortDescription

public java.lang.String getAdapterShortDescription();

Gets a short description of the resource adapter in aform capable of being displayed by atool.
RETURNS:

a String describing the resource adapter

getAdapter Vendor Name

public java.lang.String getAdapterVendorName();
Gets the name of the vendor that provided the resource adapter.
RETURNS:

a String representing the name of the resource adapter vendor

getAdapterVersion

public java.lang.String getAdapterVersion();
Gets the version of the resource adapter.

RETURNS:

a String representing the version of the resource adapter

getlnteractionSpecsSupported

public java.lang.String[] getlnteractionSpecsSupported();

Returns an array of fully qualified names of InteractionSpec types supported by the CCI implementation for this
resource adapter. Note that the fully qualified class nameisfor the implementation class of an InteractionSpec.
Tools vendors may use this method to find information on the supported InteractionSpec types. The method
should return an array of length O if the CCl implementation does not define specific InteractionSpec types.

RETURNS:

an array of fully qualified class names of InteractionSpec classes supported by this resource adapter's CCl

implementation

getSpecVersion

public java.lang.String getSpecVersion();

Returns a string representation of the version of the Connector architecture specification supported by the

resource adapter.
RETURNS:
a String representing the supported version of the Connector architecture

supportsExecuteWithl nputAndOutputRecord

198

public boolean supportsExecuteWithlnputAndOutputRecord();

Returnstrue if the implementation class for the Interaction interface implements the public boolean
execute(InteractionSpec ispec, Record input, Record output) method; otherwise, the method returns
false.

RETURNS:

a boolean whose value depends on the method support

supportsExecuteWithl nputRecordOnly

public boolean supportsExecuteWithlnputRecordOnly();

Returns true if the implementation class for the Interaction interface implements the public Record
execute(InteractionSpec ispec, Record input) method; otherwise, the method returns false.

RETURNS:
a boolean whose value depends on the method support

supportsL ocal TransactionDemar cation

public boolean supportsLocalTransactionDemarcation();

Returns true if the resource adapter implements the Local Transaction interface and supports local transaction
demarcation on the underlying EIS instance through the Local Transaction interface.

RETURNS:

true if the resource adapter supports resource manager local transaction demarcation through the
Local Transaction interface; otherwise, returns false

A.2.13 ResultSet I nterface
A ResultSet interface represents tabular datathat is retrieved from an EIS instance by the execution of an

Interaction. The CCI ResultSet is based on the IDBC ResultSet. This interface extends the
javax.resource.cci.Record and java.sgl.ResultSet interfaces.

A.2.14 ResultSetl nfo I nterface

The ResultSetInfo interface provides information on the support provided for ResultSet by a connected EIS
instance. A component calls the Connection.getResultinfo method to get the ResultSetInfo instance.

A CCI implementation is not required to support the ResultSetinfo interface. The implementation of this interface
is provided only if the CCI supports the ResultSet facility.

deletesAreDetected

public boolean deletesAreDetected(int type) throws ResourceException;
Indicates whether a ResultSet has been deleted.

PARAMETERS:

‘type the type of the ResultSet

RETURNS:

true if the ResultSet has been deleted; otherwise, returns false

EXCEPTIONS:

IResourceException thrown when the method fails

insertsAreDetected

public boolean insertsAreDetected(int type) throws ResourceException;

Indicates whether a visible row insert can be detected by calling ResultSet. rowlnserted.

PARAMETERS:

'type the type of the ResultSet

RETURNS:

trueif result set typeis changed; otherwise, returns false

EXCEPTIONS:

IResourceException thrown when the method fails

othersDeletesAreVisible

public boolean othersDeletesAreVisible(int type) throws ResourceException;
Indicates whether deletes made by others are visible.

PARAMETERS:

'type the type of the ResultSet

RETURNS:

true if deletes by others are visible for the ResultSet type; otherwise, returns false

EXCEPTIONS:

IResourceException thrown when the method fails

othersinsertsAreVisble

public boolean otherslnsertsAreVisible(int type) throws ResourceException;
Indicates whether inserts made by others are visible.

PARAMETERS:

'type the type of the ResultSet

RETURNS:

true if inserts by others are visible for the ResultSet type; otherwise, returns false

EXCEPTIONS:

IResourceException |thrown when the method fails

othersUpdatesAreVisible

200

public boolean othersUpdatesAreVisible(int type) throws ResourceException;
Indicates whether updates made by others are visible.

PARAMETERS:

'type the type of the ResultSet

RETURNS:

true if updates by others are visible for the ResultSet type; otherwise, returns false

EXCEPTIONS:

IResourceException |thrown when the method fails

ownDeletesAreVisible

public boolean ownDeletesAreVisible(int type) throws ResourceException;

I ndicates whether deletes are visible.

PARAMETERS:

'type the type of the ResultSet

RETURNS:

trueif deletes are visible for the ResultSet type; otherwise, returns false

EXCEPTIONS:

IResourceException |thrown when the method fails

ownlnsertsAreVisible

public boolean ownlnsertsAreVisible(int type) throws ResourceException;

Indicates whether inserts are visible.

PARAMETERS:

'type the type of the ResultSet

RETURNS:

trueif inserts are visible for the ResultSet type; otherwise, returns false

EXCEPTIONS:

IResourceException thrown when the method fails

ownUpdatesAreVisible

public boolean ownUpdatesAreVisible(int type) throws ResourceException;

Indicates whether updates are visible.

PARAMETERS:

'type the type of the ResultSet

201

RETURNS:

true if updates are visible for the ResultSet type; otherwise, returns false

EXCEPTIONS:

IResourceException |thrown when the method fails

supportsResultSetType

public boolean supportsResultSetType(int type) throws ResourceException;

Indicates whether a resource adapter supports a specific ResultSet type.

PARAMETERS:

'type the type of the ResultSet

RETURNS:

true if the ResultSet type is supported; otherwise, returns false

EXCEPTIONS:

IResourceException thrown when the method fails

supportsResultTypeConcurrency

public boolean supportsResultTypeConcurrency(int type,

int concurrency)
throws ResourceException;

Indicates whether a resource adapter supports the concurrency type in combination with the given ResultSet type.

PARAMETERS:

'type the type of the ResultSet
Iconcu rrency |ResuItSet concurrency type defined in java.sgl.ResultSet

RETURNS:

true if the specified combination is supported; otherwise, returns false

EXCEPTIONS:

IResourceException |thrown when the method fails

updatesAreDetected

public boolean updatesAreDetected(int type) throws ResourceException;

Indicates whether a visible row update can be detected by calling the Resul tSet. rowUpdated method.

PARAMETERS:

'type the type of the ResultSet

RETURNS:

true if changes can be detected by the ResultSet type; otherwise, returns false

EXCEPTIONS:

202

]ResourceException thrown when the method fails

A.2.15 Streamable I nterface

The Streamabl e interface enables a resource adapter to extract data from an input Record or to set datainto an
output Record as a stream of bytes.

The Streamabl e interface provides a resource adapter's view of the data that has been set in a Record instance by a
component.

A component does not directly use the Streamable interface. A resource adapter implementation uses this
interface. A component uses Record or one of its derived interfaces to manage records.

read

public void read(jJava.io.lInputStream istream) throws java.io.lOException;
Reads data from an InputStream and initializes fields of a Streamable object.

PARAMETERS:

]istream |InputStream that represents a resource adapter specific internal representation of fields of a Streamable object

write

public void write(Java.io.OutputStream ostream) throws
jJava.io. I0Exception;

Writes fields of a Streamable object to an OutputStream.

PARAMETERS:

|ostream |OutputStream that holds the value of a Streamable object

A.2.16 Exception ResourceWar ning Class

ResourceWarning provides information on warnings related to the execution of an interaction with an EIS.
Warnings are silently chained to the object whose method caused it to be reported. ResourceWarning extends
ResourceException.

A.3 javax.resource.spi Package

The javax.resource.spi package defines a set of interfaces for the application server implementing the system
contracts.

A.3.1 ConnectionEvent Class

The ConnectionEvent class provides information about the source of a connection-related event. The class
implements the java.io.Serializable interface and extends java.util.EventObject.

A ConnectionEvent instance contains the following information:

e Thetype of the connection event
« The ManagedConnection instance that generated the connection event. The ConnectionEvent method
getSource returns a ManagedConnection instance.

e The connection handle associated with the ManagedConnection instance. A connection handleis required
for the CONNECTION_CLOSED event and is optional for other event types.

« Optionaly, an exception indicating the connection-related error. Note that this exception is used for
CONNECTION_ERROR_OCCURRED.

203

This class defines the following types of event notifications. Each event notification is defined asapublic
static final int.

e CONNECTION_CLOSED— Event notification that an application component has closed the connection
e LOCAL_TRANSACTION_STARTED— Event notification that a resource manager Local Transaction
was started on the connection
e LOCAL_TRANSACTION_COMMITTED— Event notification that a resource manager
L ocal Transaction was committed on the connection
e LOCAL_TRANSACTION_ROLLEDBACK— Event notification that a resource manager
Local Transaction was rolled back on the connection
e CONNECTION_ERROR_OCCURRED— Event notification that an error occurred on the connection.
This event indicates that the ManagedConnection instance is now invalid and unusable.

A.3.2 ConnectionEventListener Interface

The ConnectionEventListener interface provides an event callback mechanism to enable an application server to
receive notifications from a ManagedConnection instance. An application server uses these event notifications to
manage its connection pool, clean up any invalid or terminated connections, and manage local transactions.

An application server implements the ConnectionEventListener interface. It registers a connection listener with a
ManagedConnection instance by using the ManagedConnection.addConnectionEventListener method.

Thisinterface extends the java.util.EventListener interface.

connectionClosed

public void connectionClosed(ConnectionEvent event);

Notifies that an application component has closed the connection.

A ManagedConnection instance notifies its registered set of listeners by calling the
ConnectionEventListener.connectionClosed method when an application component closes a connection

handle. The application server uses this connection close event to put the ManagedConnection instance back into
the connection pool.

PARAMETERS:

]event |event object describing the source of the event

connectionErrorOccurred

public void connectionErrorOccurred(ConnectionEvent event);

Notifies of a connection-related error. The ManagedConnection instance calls the
ConnectionEventListener.connectionErrorOccurred method to notify its registered listeners of the
occurrence of aphysical connection-related error. The event notification happens just before a resource adapter
throws an exception to the application component using the connection handle. The connectionErrorOccurred
method indicates that the associated ManagedConnection instance is now invalid and unusable. The application
server handles the connection error event notification by initiating its application server-specific cleanup—such
as removing the ManagedConnection instance from the connection pool—and then calling the
ManagedConnection.destroy method to destroy the physical connection.

PARAMETERS:

levent levent object describing the source of the event

local TransactionCommitted

public void localTransactionCommitted(ConnectionEvent event);

Notifies that a resource manager local transaction was committed on the ManagedConnection instance.

204

PARAMETERS:

]event |event object describing the source of the event

local TransactionRolledback

public void localTransactionRol ledback(ConnectionEvent event);
Notifies that a resource manager local transaction was rolled back on the ManagedConnection instance.

PARAMETERS:

]event |event object describing the source of the event

local TransactionStarted

public void localTransactionStarted(ConnectionEvent event);
Notifies that a resource manager local transaction was started on the M anagedConnection instance.

PARAMETERS:

levent levent object describing the source of the event

A.3.3 ConnectionM anager | nterface

The ConnectionManager interface provides a hook for the resource adapter to pass a connection request to the
application server.

An application server provides the implementation of the ConnectionManager interface. This implementation is
not specific to any particular type of resource adapter or connection factory interface.

The ConnectionManager implementation del egates the quality of services (QoS) role to the application server.
The application server provides these services, which consist of security, connection pool management,
transaction management, and error logging/tracing. An application server implements these servicesin ageneric
manner, independent of any resource adapter and EIS-specific mechanisms. The Connector architecture does not
specify how an application server implements these services, and each implementation is specific to an
application server.

After a connection request has been initiated and an application server has hooked in its services with the resource
adapter, the connection request is delegated to a ManagedConnectionFactory instance. The

M anagedConnectionFactory determines whether to create a new physical connection or to match the request to an
aready existing physical connection.

A class that implements the ConnectionManager interface is also required to implement the java.io.Serializable
interface.

In anonmanaged application scenario, either an application developer provides the ConnectionM anager
implementation class or aresource adapter provides a default ConnectionManager implementation. In both cases,
third-party vendors can provide quality of services as separate components.

allocateConnection

public java.lang.Object allocateConnection
(ManagedConnectionFactory mcf, ConnectionRequestinfo cxRequestinfo) throws
ResourceException;

A connection factory instance for a resource adapter callsthe al locateConnection method to pass a connection
reguest to the ConnectionManager instance.

205

The ConnectionRequestiInfo parameter represents information specific to the resource adapter for handling the
connection request.

PARAMETERS:

mcT used by the application server to delegate a request for connection matching or creation

cxRequestinfo |connection request information

RETURNS:
a connection handle with an EIS-specific connection interface

EXCEPTIONS:

ResourceException thrown when the method fails indicates an application server- specific exception

ApplicationServerinternal Exception

SecurityException thrown when a security-related error occurs

ResourceAllocationException thrown when the method fails to allocate system resources for the connection request

ResourceAdapterinternalException |thrown when a resource adapter-related error condition occurs

A.3.4 ConnectionRequesti nfo | nterface

The ConnectionRequestinfo interface enables a resource adapter to pass its own request-specific data structure
across a connection request flow. A resource adapter extends this empty interface to support its own data
structures for a connection request.

Typically aresource adapter uses this interface to handle application component-specified per-connection request
properties, such as client ID and language. The application server passes these properties to the resource adapter
with matchManagedConnection and createManagedConnection calls. These properties remain opaque to the
application server during the connection request flow.

A resource adapter can use this additional per-request information from the matchManagedConnection and
createManagedConnection callsto do connection creation and matching.

equals

public boolean equals(java.lang.Object other);

Checks whether this ConnectionRequestinfo instance is equal to another instance of ConnectionRequestinfo.
Because ConnectionRequestinfo is defined specific to a resource adapter, the resource adapter isrequired to
implement this method. The conditions for equality are specific to the resource adapter.

PARAMETERS:
]other |the other ConnectionRequestinfo instance
RETURNS:

true if the two instances are equa

hashCode

public int hashCode();
Returns the hashCode of the ConnectionRequestinfo.
RETURNS:

the hash code of thisinstance

206

A.3.5LocalTransaction I nterface

The Local Transaction interface provides support for transactions that are managed internal to an EIS resource
manager. Such transactions do not require an external transaction manager.

A resource adapter implements the javax.resource.spi.Local Transaction interface to provide support for local
transactions that are performed on the underlying resource manager. If aresource adapter supports the

Local Transaction interface, then the application server can choose to perform local transaction optimization.
Local transaction optimization is when the application server uses alocal transaction instead of a JTA transaction
for asingle resource manager case.

Refer also to the next section, “ ManagedConnection Interface.”

begin

public void begin() throws ResourceException;
Beginsalocal transaction.

EXCEPTIONS:

ResourceException thrown when the method fails indicates an error condition related to the local transaction
management

L ocal TransactionException

ResourceAdapterinternalException [thrown when a resource adapter-related error condition occurs

IEISSystemException |thrown when an EIS instance-specific error condition occurs

commit

public void commit() throws ResourceException;
Commits alocal transaction.

EXCEPTIONS:

ResourceException thrown when the method fails indicates an error condition related to the local transaction
management

L ocal TransactionException

ResourceAdapterinternalException [thrown when a resource adapter-related error condition occurs

IEISSystemException |thrown when an EIS instance-specific error condition occurs

rollback

public void rollback() throws ResourceException;
Performs arollback of alocal transaction.

EXCEPTIONS:

ResourceException thrown when the method fails indicates an error condition related to the local transaction
management

L ocal TransactionException

ResourceAdapterinternalException [thrown when a resource adapter-related error condition occurs

EISSystemException thrown when an EIS instance-specific error condition occurs

A.3.6 ManagedConnection Interface

A ManagedConnection instance represents a physical connection to the underlying EIS. A ManagedConnection
instance provides access to two interfaces:

o javax.transaction.xa X AResource

207

e javax.resource.spi.Local Transaction
A transaction manager uses the XAResource interface to both associate and dissociate a transaction with the
underlying EIS resource manager instance. It also uses thisinterface to perform atwo-phase commit protocol.
Note that the transaction manager does not directly use the ManagedConnection interface.

The application server uses the Local Transaction interface to manage local transactions.

addConnectionEventL istener

public void addConnectionEventListener
(ConnectionEventListener listener);

Adds a connection event listener to the ManagedConnection instance. A registered ConnectionEventListener
instance is notified of connection events, including connection close and error events and events on the
ManagedConnection instance related to local transactions.

PARAMETERS:

]Iistener |aneM/ConnecﬂonEvenﬂJﬁenerk)beregSuﬂed

associateConnection

public void associateConnection(java.lang.Object connection)
throws ResourceException;

Changes the association of an application-level connection handle with a ManagedConnection instance. This
method is used by the container. The container is responsible for locating the correct ManagedConnection
instance. Once it has located the correct instance, the container calls the associateConnection method.

The resource adapter is required to implement the associateConnection method. The method implementation
should dissociate the connection handle, which is passed to the method as a parameter, from its currently
associated M anagedConnection instance and then associate the new connection handle with itself.

PARAMETERS:

]connection |anappHcaﬁonJevelconnecﬂon handle

EXCEPTIONS:

ResourceException thrown when the method fails to associate the connection handle with this
ManagedConnection instance

IIIIegaIStateException |thrown when this method is invoked from an illegal state

]ResourceAdapterInternaIException |thrown when a resource adapter-related error condition occurs

cleanup

public void cleanup() throws ResourceException;

Performs a connection cleanup on the ManagedConnection instance. An application server calls this method to
force such cleanup on the ManagedConnection instance.

The cleanup method initiates a cleanup of the client-specific state maintained by a ManagedConnection instance.
Successful cleanup should invalidate all connection handles that were created using this ManagedConnection
instance. Any attempt by an application component to use the connection handle after a cleanup of the underlying
ManagedConnection instance should result in an exception.

Cleaning up a ManagedConnection instance is always driven by an application server. An application server

should not invoke the cleanup method while an incompl ete transaction associated with the ManagedConnection
instance isin progress.

208

Invoking the cleanup method on an already cleaned-up connection should not throw an exception.

Cleaning up a ManagedConnection instance resets its client-specific state and prepares the connection to be put
back into a connection pool. The cleanup method, however, should not cause a resource adapter to close the
physical pipe and to reclaim system resources associated with the physical connection.

EXCEPTIONS:
ResourceException thrown when the method fails
lllegalStateException thrown when this method is invoked from an illegal state. This error might occur if a

current in-process local transaction does not allow connection cleanup.
ResourceAdapterinternalException [thrown when a resource adapter-related error condition occurs

destroy

public void destroy() throws ResourceException;

Destroys the physical connection to the underlying resource manager. To manage the size of the connection pool,
an application server can explicitly call the destroy method to destroy a physical connection. A resource adapter
should destroy all allocated system resources for this ManagedConnection instance when this method is called.

EXCEPTIONS:

IResourceException |thrown when the method fails

IIIIegaIStateException |thr0wn when this method is invoked from an illegal state
getConnection

public java.lang.Object getConnection
(Javax.security.auth.Subject subject,
ConnectionRequestinfo cxRequestinfo) throws ResourceException;

Creates a new connection handle for the underlying physical connection represented by the ManagedConnection
instance. The application code uses this connection handle to refer to the underlying physical connection. A
connection handle is tied to its ManagedConnection instance in a resource adapter implementation-specific way.

The ManagedConnection instance uses the Subject and additional ConnectionRequestinfo data to set the state of
the physical connection. Note that the ConnectionRequestinfo datais specific to a resource adapter and opague to
an application server.

PARAMETERS:

]Subj ect |JAAS (Java Authentication and Authorization Service) subject representing the security context

ICXRequestl nfo |C0nnectionRequestInfo instance

RETURNS:

a generic Object instance representing the connection handle. For the CCl, the connection handle created by a
ManagedConnection instance is of the type javax.resource.cci.Connection.

EXCEPTIONS:

ResourceException thrown when the method fails

SecurityException thrown when a security-related error occurs

CommException thrown when the method fails to communicate with the EIS instance

EISSystemException thrown to indicate an internal error condition in the EIS instance. This exception occurs if
the EIS instance is involved in setting the state of the ManagedConnection.

ResourceAdapterinternalException thrown when a resource adapter-related error condition occurs

getL ocal Transaction

209

public LocalTransaction getLocalTransaction() throws ResourceException;

Returns a javax.resource.spi.Local Transaction instance. The container uses the Local Transaction interface to
manage local transactions for an RM (resource manager) instance.

RETURNS:

a Local Transaction instance

EXCEPTIONS:

IResourceException |thrown when the method fails
]ResourceAdapterInternaIException |thrown when a resource adapter-related error condition occurs
getLogWriter

public java.io.PrintWriter getLogWriter() throws ResourceException;

Getsthe log writer for this ManagedConnection instance. The log writer is a character output stream to which all
logging and tracing messages for this ManagedConnection instance are printed. The ConnectionM anager
manages the association of the output stream with the ManagedConnection instance, based on connection pooling
requirements.

The log writer associated with a ManagedConnection instance can be set specifically for the instance by the

application server. Or, the log writer for the ManagedConnection instance can be the default log writer set from
the ManagedConnectionFactory instance that created this connection.

RETURNS:
a character output stream associated with this ManagedConnection instance

EXCEPTIONS:

]ResourceException thrown when the method fails

getMetaData

public ManagedConnectionMetaData getMetaData() throws ResourceException;

Gets the metadata information for this connection's underlying EIS resource manager instance. The
ManagedConnectionMetaData interface provides information about the underlying EIS instance associated with
the ManagedConnection instance.

RETURNS:

a ManagedConnectionMetaData instance

EXCEPTIONS:

ResourceException thrown when the method fails
NotSupportedException thrown if the operation is not supported
getXAResource

public javax.transaction.xa.XAResource getXAResource()
throws ResourceException;

Returns a javax.transaction.xa. X AResource instance. An application server enlists this X AResource instance with

the transaction manager if the ManagedConnection instance is used in a JTA transaction coordinated by the
transaction manager.

210

RETURNS:

an X AResource instance

EXCEPTIONS:

IResourceException |thrown when the method fails

NotSupportedException thrown if the operation is not supported
ResourceAdapterinternalException thrown when a resource adapter-related error condition occurs

removeConnectionEventL istener

public void removeConnectionEventListener
(ConnectionEventListener listener);

Removes an already registered connection event listener from the ManagedConnection instance.

PARAMETERS:

|I istener |a registered ConnectionEventListener to be removed

setLogWriter

public void setLogWriter(Java.io.PrintWriter out)
throws ResourceException;

Sets the log writer for this ManagedConnection instance. The log writer is a character output stream to which all
logging and tracing messages for this ManagedConnection instance are printed. An application server manages
the association of an output stream with the ManagedConnection instance based on the connection pooling
requirements.

When a ManagedConnection object isinitially created, the default log writer associated with the object is
obtained from the ManagedConnectionFactory. An application server uses the setLogWriter method to set alog
writer specific to this ManagedConnection for logging or tracing errors.

PARAMETERS:

]out |a character output stream to be associated with the log writer

EXCEPTIONS:
ResourceException thrown when the method fails
ResourceAdapterinternalException thrown when a resource adapter-related error condition occurs

A.3.7 ManagedConnectionFactory Interface

A ManagedConnectionFactory interface is afactory of both ManagedConnection and EIS-specific connection
factory instances. The M anagedConnectionFactory interface supports connection pooling by providing methods
for matching and creating ManagedConnection instances.

The ManagedConnectionFactory interface extends the java.io.Serializable interface.

createConnectionFactory

public java.lang.Object createConnectionFactory()
throws ResourceException;

public java.lang.Object createConnectionFactory
(ConnectionManager cxManager) throws ResourceException;

Creates a connection factory instance. The first form of the method initializes the connection factory instance
with a default ConnectionManager that is provided by the resource adapter.

211

The second form of the method initializes the connection factory instance with the passed ConnectionManager
parameter. In a managed scenario, the application server provides the ConnectionManager.

PARAMETERS:

]cxManager |a ConnectionManager to be associated with the created EIS connection factory instance

RETURNS:

an EIS-specific connection factory instance or ajavax.resource.cci.ConnectionFactory instance

EXCEPTIONS:
IResourceException |thrown when the method fails
IResourceAdapterInternaIException |thrown when a resource adapter-related error condition occurs

createM anagedConnection

public ManagedConnection createManagedConnection
(Javax.security.auth_Subject subject,
ConnectionRequestinfo cxRequestinfo) throws ResourceException;

Creates a new physical connection to the underlying EIS resource manager. A ManagedConnectionFactory
instance uses the security information and additional ConnectionRequestinfo to create this new connection. The
security information is passed as the subject parameter. The ConnectionRequestinfo is specific to the resource
adapter and is opaque to the application server.

PARAMETERS:

subject security information for the caller

cxRequestinfo additional resource adapter-specific connection request information
RETURNS:

a ManagedConnection instance

EXCEPTIONS:

ResourceException

thrown when the method fails

SecurityException

thrown when a security-related error occurs

EISSystemException

thrown when an internal error condition occurs in the EIS instance

ResourceAllocationException thrown when the method fails to allocate system resources for the connection request

ResourceAdapterinternalException |thrown when a resource adapter-related error condition occurs

equals

public boolean equals(jJava.lang.Object other);

Checksiif this ManagedConnectionFactory is equal to another ManagedConnectionFactory. This method
overrides the equals method in the java.lang.Object class.

RETURNS:

true if the two instances are equal; otherwise, returns false

PARAMETERS:

lother lanother ManagedConnectionFactory instance

getLogWriter

212

public java.io.PrintWriter getLogWriter() throws ResourceException;

Getsthe log writer for this ManagedConnectionFactory instance. The log writer is a character output stream to
which all logging and tracing messages for this ManagedConnectionFactory instance are printed.

An application server manages the association of an output stream with the ManagedConnectionFactory instance.
When a ManagedConnectionFactory object is created, the log writer isinitially null. That is, logging isinitially
disabled.

RETURNS:

aPrintWriter

EXCEPTIONS:

]ResourceException thrown when the method fails

hashCode

public int hashCode();

Returns the hash code for the ManagedConnectionFactory instance. This method overrides the hashCode method
in the java.lang.Object class.

RETURNS:
the hash code for the ManagedConnectionFactory instance

matchM anagedConnections

public ManagedConnection matchManagedConnections
(Java.util.Set connectionSet, javax.security.auth_Subject subject,
ConnectionRequestinfo cxRequestinfo) throws ResourceException;

Returns a matched connection from the candidate set of connections. A ManagedConnectionFactory instance
finds a matching connection using the security information passed to it through the subject parameter, plus the
information provided through the ConnectionRequestinfo parameter and additional resource adapter-specific
criteria. Note that the criteria used for matching are specific to aresource adapter and are not prescribed by the
Connector specification.

This method returns a M anagedConnection instance that is the best match for handling the connection allocation
request.

PARAMETERS:

lconnectionSet a candidate connection set

subject security information pertinent to the caller

cxRequestinfo additional resource adapter-specific connection request information
RETURNS:

a ManagedConnection if the resource adapter finds an acceptable match in the candidate connection set;
otherwise, returns null

EXCEPTIONS:

ResourceException thrown when the method failsthrown when a security-related error occurs
SecurityException thrown when a security-related error occurs

NotSupportedException thrown if the operation is not supported
ResourceAdapterinternalException thrown when a resource adapter-related error condition occurs
setLogWriter

213

public void setLogWriter(jJava.io.PrintWriter out)
throws ResourceException;

Sets the log writer for this ManagedConnectionFactory instance. The log writer is a character output stream to
which all logging and tracing messages for this ManagedConnectionFactory instance are printed.

An application server manages the association of an output stream with the ManagedConnectionFactory instance.
When a ManagedConnectionFactory object is created, the log writer isinitially null; that is, logging is disabled.
Associating alog writer with a ManagedConnectionFactory instance enables logging and tracing for that

M anagedConnectionFactory instance.

The ManagedConnection instances created by a ManagedConnectionFactory “inherit” the
ManagedConnectionFactory log writer. An application server can override thisinherited log writer using the
ManagedConnection method setLogWriter to set specific logging and tracing for the ManagedConnection
instance.

PARAMETERS:

]out |a PrintWriter representing an output stream for error logging and tracing

EXCEPTIONS:
]ResourceException |thrown when the method fails
]ResourceAdapterInternaIException |thrown when a resource adapter-related error condition occurs

A.3.8 ManagedConnectionM etaData | nter face

The ManagedConnectionM etaData i nterface provides information about the underlying EIS instance associated
with a ManagedConnection instance. An application server uses thisinformation to get runtime information about
a connected EIS instance.

The ManagedConnection.getMetaData method returns a ManagedConnectionM etaData instance.

getEl SProductName

public java.lang.String getEISProductName() throws ResourceException;

Returns the product name of the underlying EIS instance connected through the ManagedConnection instance.
RETURNS:

the product name of the EIS instance

EXCEPTIONS:

]ResourceException thrown when the method fails

getEl SProductVersion

public java.lang.String getEISProductVersion()
throws ResourceException;

Returns the product version of the underlying EIS instance connected through the M anagedConnection instance.
RETURNS:
the product version of the EIS instance

EXCEPTIONS:

]ResourceException thrown when the method fails

214

getM axConnections

public int getMaxConnections() throws ResourceException;

Returns the maximum limit for the number of active concurrent connections that an EIS instance can support
across client processes. The method returns zero (0) if an EIS instance either does not know or does not have a
maximum limit.

RETURNS:

the maximum number of active concurrent connections supported by an EIS instance

EXCEPTIONS:

]ResourceException thrown when the method fails

getUser Name

public java.lang.String getUserName() throws ResourceException;

Returns the name of the user associated with the ManagedConnection instance. The name corresponds to the
resource principal under whose security context a connection to the EIS instance has been established.

RETURNS:
the name of the user

EXCEPTIONS:

]ResourceException |thr0wn when the method fails

A.3.9 ApplicationServer I nter nalException Class

An ApplicationServerinternal Exception indicates that an internal error to the application server has occurred.

A.3.10 CommException Class
A CommException indicates errors related to failed or interrupted communication with an EIS instance. Common

error conditions represented by this exception type are communication protocol errors and invalidated connection
errors due to a server failure. This class extends ResourceException.

A.3.11 EI SSystemException Class

An EISSystemException indicates EIS-specific system-level error conditions. Error conditions that cause this
exception to be thrown include:

o Failureor inactivity of an EISinstance
e Communication failure
e An EIS-specific error in the creation of anew physical connection

This class extends ResourceException.

A.3.12 | llegal StateException Class

An lllegal StateException is thrown from amethod if the caller—either a resource adapter or an application server
for system contracts—isin an illegal or inappropriate state for the method invocation. This class extends
ResourceException.

215

A.3.13 LocalTransactionException Class

A Local TransactionException represents error conditions related to the local transaction management contract.
This class extends ResourceException. Note that the JTA specification specifies the

javax.transaction.xa. X AException class for exceptions related to X AResource-based transaction management
contracts.

The Local TransactionException is used for the local transaction management contract to indicate the following
error conditions:

« Invalid transaction context when a transaction operation is executed. For example, it isan error to call a
Local Transaction commit method without an active local transaction.

o Attempting to roll back atransaction in the Local Transaction commit method.

e Attempting to start alocal transaction from the same thread on a ManagedConnection that is aready
associated with an active local transaction.

e Any resource adapter or resource manager-specific error condition related to local transaction
management. Examples of such error conditions are violation of the integrity of resources, deadlock
detection, communication failure during transaction completion, retry required error, or any internal error
in aresource manager.

A.3.14 Resour ceAdapter I nter nal Exception Class

A ResourceAdapterinternal Exception indicates the occurrence of an error internal to the resource adapter.

A.3.15 Resour ceAllocationException Class

A ResourceAllocationException indicates an error resulting from the insufficient alocation of resources.

A.3.16 SecurityException Class

A SecurityException indicates an error condition related to the security contract between an application server
and aresource adapter. This class extends ResourceException. A SecurityException represents such error
conditions as:

o Invalid security information (represented as a Subject instance) passed across the security contract. Invalid
security information might be credentials that have expired or that have an invalid format.

e Lack of support for a specific security mechanism in an EIS or resource adapter.

« Failureto create a connection to an EIS because of failed authentication or authorization.

« Failureto authenticate aresource principal to an EIS instance.

« Failureto establish a secure association with an underlying EIS instance.

e An access control exception to indicate the denial of arequested access to an EIS resource or arequest to
create a new connection.

A.4 javax.resource.spi.security Package

The javax.resource.spi.security package defines security-related interfaces.

A.4.1 GenericCredential Interface

The GenericCredential interface defines a security mechanism-independent interface for accessing the security
credential of aresource principal. The GenericCredential interface provides a Javawrapper over an underlying
representation of a security credential. For example, the GenericCredential interface can be used to wrap
Kerberos credentials.

The Connector architecture does not define standard formats or requirements for security mechanism-specific
credentials. For example, a security credential wrapped by a GenericCredential interface can have a native
representation that is specific to an operating system.

The GenericCredential interface enables a resource adapter to extract information about a security credential. The
resource adapter can then manage EIS sign-on for aresource principa by either:

216

e Using the credentials in an EIS-specific manner if the underlying EIS supports the security mechanism
type represented by the GenericCredential instance.

e Using the GSS-API (Generic Security Service-API) if the resource adapter and underlying EIS instance
support GSS-API.

equals

public boolean equals(java.lang.Object another);

Testsif this GenericCredential instance refers to the same entity as the supplied object. The two credentials must
be acquired over the same mechanism and must refer to the same principal.

PARAMETERS:
]another |the Object to which GenericCredential is to be compared
RETURNS:

true if the two GenericCredentials refer to the same entity; otherwise, returns false

getCredentialData

public byte[] getCredentialData() throws SecurityException;

Gets security data for a specific security mechanism represented by the GenericCredential. For example, this
method gets authentication data required for establishing a secure association with an EIS instance on behalf of
the associated resource principal.

The getCredentialData method returns the credential representation as an array of bytes. Note that the
Connector architecture does not define a standard format for the returned credentia data.

RETURNS:
a connection handle with an EIS-specific connection interface

EXCEPTIONS:

ISecurityException |thrown when a security-related error occurs

getM echType

public java.lang.String getMechType();

Returns the mechanism type for the GenericCredential instance. The mechanism type definition for
GenericCredential should be consistent with the Object Identifier (OID) representation specified in the GSS
specification. In the GenericCredential interface, the mechanism type is returned as a stringified representation of
the OID specification.

RETURNS:

mechanism type

getName

public java.lang.String getName();
Returns the name of the resource principal associated with a GenericCredential instance.
RETURNS:

name of the principal

217

hashCode

public int hashCode();

Returns the hash code for this GenericCredential instance. This method overrides the hashCode method in
javalang.Object.

RETURNS:

hash code for this GenericCredential

A.4.2 PasswordCredential Class

The PasswordCredential class acts as a holder for user name and password. This class extends java.lang.Object
and implements java.io.Seriaizable.

equals

public boolean equals(java.lang.Object another);

Compares this PasswordCredential instance with the specified object for equality. The two instances are the same
if they are equal in user name and password. This method overrides the equals method in the java.lang.Object
class.

PARAMETERS:
]another |the Object to which PasswordCredential is to be compared
RETURNS:

trueif the specified object is a PasswordCredential whose user name and password are equal to thisinstance;
otherwise, returns false

getM anagedConnectionFactory

public ManagedConnectionFactory getManagedConnectionFactory();

Gets the target ManagedConnectionFactory for which the application server has set the user name and password.
A ManagedConnectionFactory uses this field to determine if it should use this PasswordCredential instance for
sign-on to the target EIS instance.

RETURNS:

a ManagedConnectionFactory instance for which the user name and password have been specified

getPassword

public char[] getPassword();

Returns the user password. Note that this method returns a reference to the password. It isthe caller's
responsibility to zero out the password information after it is no longer needed.

RETURNS:
the password

getUser Name

public java.lang.String getUserName();

218

Returns the name of the user associated with a PasswordCredential instance.
RETURNS:
name of the user

hashCode

public int hashCode();

Returns the hash code for this PasswordCredential instance. This method overrides the hashCode method in
javalang.Object.

RETURNS:
hash code for this PasswordCredentia

setM anagedConnectionFactory

public void setManagedConnectionFactory(ManagedConnectionFactory mcf);

Sets the target ManagedConnectionFactory instance for which the user name and password have been set by the
application server.

PARAMETERS:

|mcf |a ManagedConnectionFactory instance for which the user name and password have been specified

219

Glossary

Access objects

High-level objects that abstract the complexity and low-level details of an EIS access API. Access objects
may be command beans, data access objects, and custom records.

ACID

The acronym for the four properties guaranteed by transactions. atomicity, consistency, isolation, and
durability.

Application assembler

An individual who combines enterprise beans, and possible other application components, into larger,
deployable application units.

Application client

A first-tier client component that executesin its own Java virtual machine. Application clients have access
to some J2EE platform APIs (JNDI, JDBC, RMI-110P, IMS).

Application server

A generic term for amiddle-tier component server that is compatible with the J2EE platform.

Authentication

A step that occurs as part of the security process, during which a user proves his or her identity to the
enterprise network security manager.

Authorization

A step that occurs as part of the security process, during which the target application or database server
verifies whether or not that user has the authority to access the requested application or data.

Bean developer

The programmer who writes the enterprise bean code implementing the business logic and produces
enterprise beans.

Bean-managed persistence

An approach to managing entity object state persistence where the entity bean itself manages the accessto
the underlying state in a resource manager.

Bean-managed transaction demarcation

220

An approach to managing transactions where the bean devel oper manages transaction boundaries
programmatically from within the application code.

Business entity

A business object representing some information maintained by an enterprise.

Business process

A business object that encapsulates an interaction of a user with business entities.

Caller principal

A principal associated with an application component instance during a method invocation.

Command bean

A JavaBean used by an application to encapsulate a call to another application or a database call.
Enterprise applications frequently use this design pattern.

Commit

The point in atransaction when all updates to any resources involved in the transaction are made
permanent.

Common Gateway Interface CGI

One of the interfaces for developing dynamic HTML pages and Web applications.

Common Object Request Broker Architecture CORBA

A language-independent, distributed object model specified by the Object Management Group (OMG).

Compensating transaction

A transaction or operation that undoes the work of a previously committed transaction.

Component

An application-level software unit supported by a container. The J2EE environment defines four types of
components. enterprise beans, Web components, applets, and application clients.

Connection factory

An object that produces connections.

221

Connector
A standard extension mechanism for containers to provide connectivity to enterprise information systems.

A connector is specific to an enterprise information system and consists of a resource adapter and
application development tools for enterprise information systems.

Connector architecture
An architecture for the integration of J2EE applications with enterprise information systems. There are
two parts to this architecture: aresource adapter provided by an enterprise information system vendor and
the J2EE server that allows this resource adapter to plug in. This architecture defines a set of contracts that

aresource adapter has to support to plug in to a J2EE product, for example, transactions, security, and
connection management.

Container

A standardized runtime environment that provides services to components. Servicesinclude life cycle
management, security, deployment, and runtime services.

Container-managed persistence

An approach to managing entity object state persi stence where the container manages the transfer of data
between the entity bean instance variables and the underlying resource manager.

Container-managed transaction demarcation

An approach to managing transactions where the EJB container defines the transaction boundaries by
using the transaction attributes provided in the deployment descriptor.

Conversational business process
A business process with asingle actor. A conversational business process means that a single actor

engages in a conversation with the application. An example of a conversational business processis an
application that displays a sequence of forms to the user and validates the data input by the user.

Credential

A credentia contains or references security information that can authenticate a principal to additional
Services.

Declarative transaction demarcation

Container-managed transaction demarcation. Also referred to as declarative transactions.

Deployer
The deployer is an expert in the target operational environment who installs J2EE software modules into

the operational environment, usually a container. The deployer may also customize the software modules
for the target operational environment.

222

Deployment descriptor
An XML document that contains the declarative information about the enterprise bean. The deployment

descriptor directs a deployment tool to deploy enterprise beans with specific container options and
describes configuration requirements that the deployer must resolve.

Document Object Model DOM

Aninterface that provides a set of objects to represent XML documents, allowing applicationsto
dynamically access and update the content, structure, and style of XML documents.

Document Type Definition DTD

DTDs define the elements, attributes, and rules for the XML tags used by a particular document or set of
documents.

ear file

An enterprise application archive file that contains a J2EE application.

EJB container

A programming environment for the development, deployment, and runtime management of enterprise
beans.

ejb-jar file

A Java ARchive (JAR) file that contains one or more enterprise beans with their deployment descriptor.

EJB server
Software that provides services to an EJB container. For example, an EJB Container relies on atransaction
manager that is part of the EJB server to perform the two-phase commit across all participating resource
managers. The J2EE architecture assumes that an EJB container is hosted by an EJB server from the same

vendor, so it does not specify the contract between these two entities. An EJB server may host one or
more EJB containers.

EJB server provider

A vendor that supplies an EJB server.

End user

In security terms, an end user is an entity that acts as a source of a request.

Enterprise Application Integration EAI

The process by which an enterprise integrates its existing applications and systems and adds new
technol ogies and applications.

223

Enterprise bean

A component that is part of a distributed enterprise application and that implements a business process or
business entity. There are two types of enterprise beans. session beans and entity beans.

Enterprise bean class

A Javaclass that implements the business methods and the enterprise bean object life cycle methods.

Enterprise bean deployment

The process of installing an enterprise bean in an EJB container.

Enterprise bean objects

Distributed objects that implement the enterprise bean's remote interface. The EJB container implements
these objects.

Enterprise Information System EIS

The services that support the enterprise information systems that manage and store enterprise-critical data
and functions.

Enterprise Resource Planning ERP

Applications that cover the complete range of enterprise business functions, including inventory
management, production control, human resources, financials, and logistics.

Entity bean

A type of enterprise bean that can be shared by multiple clients and the state of which is maintained in a
resource manager. An entity bean can implement a business entity or a business process.

Entity object

Distributed objects that implement an entity bean's remote interface. These objects are object-oriented
representations of real-life business entities and business processes.

Home interface

One of two interfaces for an enterprise bean. The home interface defines zero or more methods for
creating and removing an enterprise bean. For session beans, the home interface defines create and
remove methods, whereas for entity beans, the home interface defines create, finder, and remove methods.

HTTP

224

Hypertext Transfer Protocol. The Internet protocol used to fetch hypertext objects from remote hosts.
HTTP messages consist of requests from client to server and responses from server to client.

HTTPS

HTTP layered over the SSL protocol.

Hypertext Markup Language HTML

A markup language for hypertext documents on the Internet. HTML enables the embedding of images,
sounds, video streams, form fields, references to other objects with URLS, and basic text formatting.

Initiating principal

The security principal representing the end-user that interacts directly with the application.

ISV

Independent software vendor.

Java API for XML Messaging JAXM

A Java standard, based on SOAP technology, for sending XML messages over the Internet.

Java API for XML Processing JAXP

Java APIsfor parsing and manipulating XML documents.

Java API for XML Registries JAXR

Java APIsthat provide a standard way to access XM L-based business registries over the Internet.

Java API for XML-based RPC JAX-RPC

Java APIsthat make it possible to access Web services using remote procedure calls.

Java Architecture for XML Binding JAXB

A Javaarchitecture that enables applications to manipulate XML documents in the same way they
manipul ate Java objects.

Java™ 2 Platform, Enterprise Edition J2EE
An environment for devel oping and deploying enterprise applications. The J2EE platform consists of a set

of services, application programming interfaces (APIs), and protocols that provide functionality for
devel oping multi-tiered, Web-based applications.

225

Java™ 2 Platform, Standard Edition J2SE

The core Java technology platform.

JavaServer Pages™ JSP
An extensible Web technology that uses template data, custom elements, scripting languages, and

server-side Java objects to return dynamic content to aclient. Typically, the template dataisHTML or
XML elements, and in many cases the client is a Web browser.

Markup

A set of tags and other code used to describe the content of text.

Persistence

The protocol for making an object's state durable.

Primary key

An object that uniquely identifies an entity bean within a home.

Principal

An entity that can be authenticated by an authentication mechanism. It isidentified using a principal name
and authenticated using authentication data.

Protection domain

See [Security domain]

Remote interface

One of two interfaces for an enterprise bean. The enterprise bean remote interface defines the business
methods callable by a client.

Remote Method Invocation RMI

A technology that allows an object running in one Java virtual machine to invoke methods on an object
running in adifferent Java virtual machine.

Resource adapter

A system level software library used by an application server or a client to connect to a resource manager.
A resource adapter may provide additional services beyond the connection API.

Resource manager

226

A resource manager provides access to a set of shared resources. A resource manager participatesin a
transaction. An example of aresource manager is arelational database management system (RDBMS).

Resource manager connection

An object that represents a session with a resource manager.

Resource manager connection factory

An object used for creating a resource manager connection.

Resource principal

A security principal under whose security context a connection to an EIS instance is established.

RMI-IIOP
A version of RMI implemented to use the CORBA 110OP protocol. RMI-110P provides interoperability

with CORBA aobjects implemented in any language if all the remote interfaces are originally defined as
RMI interfaces.

Rollback

The point in atransaction when all updates to any resources involved in the transaction are reversed.

Secure Socket Layer SSL
A security protocol that provides privacy over the Internet. The protocol allows client-server applications

to communicate in atamper-free way that cannot be eavesdropped. Servers are always authenticated, and
clients are optionally authenticated.

Security attributes

A caller'sidentity attributes and shared authorization attributes contained in the caller's credential.

Security context

An object that encapsul ates the shared state information regarding security between two entities.

Security domain

A scope within which certain common security mechanisms and policies are established. An enterprise
can contain more than one security domain. Thus an application server and an EIS can be in the same
security domain or they can be in different security domains.

Session bean

227

A type of enterprise bean that implements a conversational business process. The state of a session beanis
maintained by the container and is not externalized to a resource manager.

Session bean objects

Distributed objects that implement a session bean's remote interface.

Simple API for XML SAX

A standard interface for event-based XML parsing.

Simple Object Access Protocol SOAP

An XML-based protocol for accessing objects.

Stateful session bean

A type of asession bean class that retains state on behalf of its client across multiple method invocations
by the client.

Stateless session bean

A type of a session bean class that does not retain any client-specific state between client-invoked
methods. All instances of a statel ess session bean are identical.

System Administrator
The system administrator configures and administers the enterprise computing and networking

infrastructure, which includes the EJB server and container. The system administrator is also responsible
for most security-related administration responsibilities.

Transaction
An atomic unit of work that modifies data. A transaction encloses one or more program statements, all of

which either complete or roll back. Transactions enable multiple users to access the same data
concurrently.

Transaction attribute
A value specified in an enterprise bean's deployment descriptor that is used by the EJB container to

control the transaction scope when the enterprise bean's methods are invoked. A transaction attribute can
have the following values: Required, Requi resNew, Supports, NotSupported, Mandatory, Never.

Transaction manager
Provides the services and management functions required to support transaction demarcation,

transactional resource management, synchronization, and transaction context propagation. A transactional
manager coordinates transactions across multiple resource managers.

228

Transaction service

A transaction service is the same as a transaction manager.

War file

A Web archive file containing the class files for servlets and JSPs.

Web application

An application built for the Internet with Java technologies, such as JavaServer Pages and servlets, as well
as with non-Java technologies, such as CGI and Perl.

Web component

A component, such as a servlet or JSP page, that provides servicesin response to HTTP requests.

Web container

A programming environment for the development, deployment, and runtime management of servlets and
JavaServer Pages.

XA transaction

A transaction that is controlled and coordinated by a transaction manager external to the resource
manager.

XML
eXtensible Markup Language. A markup language that allows you to define the tags, or markup, needed
to identify data and text in XML documents. The deployment descriptors are expressed in XML.
XML Schema
A standard that supports the expression of DTD rules for XML documents.
XML tag
A label applied to a piece of data that indicates the meaning of the data.
XSL

eXtensible Style Language. A language for defining style sheets for XML content.

XSL Transformation XSLT

N
N
({o)

A standard associated with XSL that defines the mechanism to transform an XML document into a
specific format.

230

	J2EE Connector Architecture and Enterprise Application Integration.pdf
	Table of Content
	Foreword
	Preface
	Conventions Used in This Book
	Graphics
	
	Figure 1. UML symbols and associations

	Typographic Conventions
	
	Table?1. Typographic Conventions

	Other Sources of Information
	Contents of the Book

	Acknowledgments
	Chapter 1. Enterprise Application Integration
	1.1 What Is Enterprise Application Integration?
	
	Figure 1.1. A Typical Enterprise Domain

	1.2 Web-driven Application Integration
	
	Figure 1.2. Web-driven Application Integration

	1.3 Enterprise Information Systems
	
	Figure 1.3. Enterprise Information System Environment

	1.4 Challenges in EIS Integration
	1.5 Enterprise Application Integration Approaches
	1.5.1 Two-Tier Client-Server Approach
	Figure 1.4. EIS Resource Adapter Approach to EAI
	Figure 1.5. Using the Java Native Interface

	1.5.2 Using Synchronous Adapters
	Figure 1.6. Using a Synchronous Adapter

	1.5.3 Using Asynchronous Adapters
	Figure 1.7. Using Asynchronous Adapters

	1.5.4 Queue-Based Approach
	Figure 1.8. Using a Message Queue for EIS Integration

	1.5.5 Publish-Subscribe Approach
	Figure 1.9. Using a Publish-Subscribe System for EIS Integration
	Figure 1.10. Using a JMS Provider
	Figure 1.11. Using a Message Broker for EIS Integration

	1.5.6 Application Server-Based Integration
	Figure 1.12. Application Server-Based Enterprise Application Integration

	1.6 J2EE Connector Architecture and EAI
	
	Figure 1.13. Application Integration Layers
	Figure 1.14. Application Integration on the J2EE Platform

	1.7 Conclusion

	Chapter 2. J2EE Connector Architecture Overview
	2.1 What Is the J2EE Platform?
	
	Figure 2.1. J2EE Support for Multi-tier Applications

	2.1.1 Components and Containers
	Figure 2.2. J2EE Components and Containers

	2.1.2 J2EE Technologies

	2.2 J2EE Connector Architecture Overview
	2.2.1 Connector Architecture Contracts
	Figure 2.3. Connector Architecture: System and Application Contracts

	2.2.2 System-Level Contracts
	2.2.3 Application Contract
	2.2.4 Packaging and Deployment
	2.2.5 Why Use the Connector Architecture?
	2.2.5.1 Scope of Integration
	2.2.5.2 Application Development
	2.2.5.3 Tools Integration

	2.3 Example Scenario
	2.3.1 Application Requirements
	2.3.2 Example Architecture
	Figure 2.4. ACI Order Management System
	2.3.2.1 Application Process
	2.3.2.2 Roles
	2.3.2.3 Application Interfaces with EISs
	Figure 2.5. Interfaces Between Order Management Application and EISs

	2.4 Conclusion

	Chapter 3. Managing Connections
	
	
	Figure 3.1. Managed and Non-managed Environments

	3.1 Connection Management Contract
	3.2 Connection Management Architecture
	
	Figure 3.2. Connection Management

	3.3 Application Programming Model
	
	Example 3.1 Establishing a Connection

	3.4 Conclusion

	Chapter 4. Working with Transactions
	
	
	Figure 4.1. Transaction Management Contract

	4.1 Introduction to Transactions
	4.1.1 Characteristics of Transactions
	4.1.2 Commit Protocols
	4.1.3 Key Issues with Transactions

	4.2 Developing Transactional Applications
	4.2.1 Using the J2EE Platform
	4.2.2 Using Enterprise Beans
	4.2.3 Using JTA Transactions
	Example 4.1 Demarcating Transactions
	Example 4.2 JTA and Bean-Managed Transaction Demarcation
	Example 4.3 Using One JTA Transaction to Update Two Databases

	4.2.4 Compensating Transactions
	Example 4.4 Using a Compensating Transaction

	4.3 Transaction Levels
	4.4 Sample Application Transaction Scenario
	
	Figure 4.2. OrderProcessor session bean
	Example 4.5 Container-Managed Transaction Demarcation
	Example 4.6 Bean-Managed Transaction Demarcation

	4.5 Conclusion

	Chapter 5. Managing Security
	
	
	Figure 5.1. J2EE Security Model

	5.1 Security Concepts
	5.1.1 Authentication
	5.1.2 Authorization
	5.1.3 Security Definitions

	5.2 Security Model for EIS Connections
	5.2.1 Container-Managed Sign-On
	Example 5.1 Container-Managed Sign-On

	5.2.2 Component-Managed Sign-On
	Example 5.2 Component-Managed Sign-On

	5.3 Understanding EIS Sign-On
	5.3.1 Setting a Resource Principal
	5.3.2 Authenticating a Resource Principal
	5.3.3 Authorizing a Resource Principal
	5.3.4 Establishing a Secure Communication

	5.4 Managing Security
	5.4.1 Role of the Application Component Provider
	5.4.2 Role of the Deployer
	5.4.3 Role of the Application Server Vendor
	5.4.4 Other Roles

	5.5 Security Example
	
	Figure 5.2. Order Management Application Architecture

	5.5.1 Security Environment
	Figure 5.3. Example Security Environment

	5.5.2 Example Deployment
	Figure 5.4. >Principal Mapping for Order Management Application

	5.6 Conclusion

	Chapter 6. Asynchronous Messaging
	6.1 Synchronous Communication
	
	Figure 6.1. Synchronous Request-Response Model

	6.1.1 Issues to Consider
	6.1.2 Dependency on Specific Middleware Mechanisms
	6.1.3 Dependency Between EIS and Application

	6.2 Asynchronous Communication
	
	Figure 6.2. Asynchronous Communication

	6.3 Connector Architecture 2.0 Message Handling
	6.3.1 Asynchronous Inbound Communication
	Figure 6.3. Asynchronous Inbound Communication

	6.3.2 Asynchronous Outbound Communication
	Figure 6.4. Asynchronous Outbound Communication

	6.3.3 Synchronous Inbound Communication
	Figure 6.5. Synchronous Inbound Communication

	6.3.4 JMS-based Communication

	6.4 Communication Trade-offs
	6.5 Enterprise Messaging Technologies
	6.6 Java Message Service
	
	Figure 6.6. JMS API and JMS Provider

	6.6.1 JMS Overview
	6.6.2 JMS Interfaces
	6.6.2.1 JMS Common Facilities
	6.6.2.2 JMS Publish-Subscribe Model
	Figure 6.7. JMS Publish-Subscribe Model
	6.6.2.3 JMS Queue-based Model
	Figure 6.8. JMS Queue-based Messaging Model

	6.7 JMS and EAI
	
	Figure 6.9. Message Broker Hub-and-Spoke Model

	6.8 J2EE Platform and EAI
	
	Figure 6.10. J2EE Application Server Integration Approach

	6.9 Message-driven Bean
	
	Figure 6.11. Message-driven Bean

	6.10 Example
	
	Figure 6.12. Using Asynchronous Point-to-Point Messaging
	Example 6.1 Session Bean as a Message Producer
	Figure 6.13. Queue-based Messaging System
	Example 6.2 Message-driven Bean as Message Consumer

	6.11 Conclusion

	Chapter 7. Common Client Interface
	
	
	Figure 7.1. Application and System Contracts

	7.1 Overview of the CCI
	
	Figure 7.2. Common Client Interface Class Diagram

	7.2 CCI Programming Example
	
	Example 7.1 Using the lookup Method
	Example 7.2 Getting a Connection
	Example 7.3 Setting Up InteractionSpec Values
	Example 7.4 Using the execute Method
	Example 7.5 Using execute to Return an Output Record
	Example 7.6 Inserting a Database Record Within a Local Transaction

	7.3 Connection Interfaces
	7.3.1 ConnectionFactory Interface
	Example 7.7 ConnectionFactory Interface

	7.3.2 ConnectionSpec Interface
	7.3.3 Connection Interface
	Example 7.8 Connection Interface

	7.3.4 LocalTransaction Interface
	Example 7.9 LocalTransaction Interface Methods

	7.4 Interaction Interfaces
	7.4.1 Interaction Interface
	Example 7.10 Interaction Interface

	7.4.2 InteractionSpec Interface
	Example 7.11 InteractionSpec Interface
	Example 7.12 Implementation of an InteractionSpec Interface

	7.5 Data Representation Interfaces
	
	Example 7.13 Record Interface
	Example 7.14 RecordFactory Interface

	7.6 Metadata Interfaces
	
	Example 7.15 ConnectionMetaData Interface
	Example 7.16 ResourceAdapterMetaData Interface

	7.7 Exception Interfaces
	7.8 Code Examples
	7.8.1 Obtaining a Connection
	7.8.2 Using an InteractionSpec Object
	7.8.3 Using a Generic Record
	7.8.4 Using a ResultSet
	7.8.5 Using a Custom Record

	7.9 Conclusion

	Chapter 8. Tools and Frameworks
	8.1 Types of Tools
	8.2 Connector Architecture Tools Support
	
	Figure 8.1. EAI Framework
	Figure 8.2. Enterprise Application Development Tool

	8.3 EIS Access Objects
	8.3.1 Command Bean
	Figure 8.3. Command Bean
	Example 8.1 Command Bean Code
	Example 8.2 Using a Command Bean

	8.3.2 Record
	Figure 8.4. Custom Record Implementation
	Example 8.3 Generating a Custom Record
	Example 8.4 Using a Custom Record

	8.3.3 Data Access Object
	Figure 8.5. Data Access Object
	Example 8.5 Example of a Data Access Object
	Example 8.6 Using a Data Access Object

	8.4 Guidelines for Access Objects
	8.5 EJB 2.0 Container-Managed Persistence
	
	Example 8.7 Entity Bean with CMP
	Figure 8.6. Using Connector Architecture for CMP

	8.6 Conclusion

	Chapter 9. XML and the Connector Architecture
	9.1 Enterprise Application Integration and XML
	9.2 Overview of XML Concepts
	9.3 Defining Document Types and Formats
	
	Example 9.1 XML Sample Document

	9.4 Java Technologies Supporting XML
	9.4.1 Java API for XML Processing (JAXP)
	9.4.1.1 Simple API for XML Parsing
	Example 9.2 Defining a SAX Callback Handler
	Example 9.3 Using a SAX Callback Handler
	9.4.1.2 Document Object Model (DOM)
	Example 9.4 Creating a DOM Tree
	9.4.1.3 XSL Transformation
	Example 9.5 Using XSLT to Transform an XML Document
	Example 9.6 XSL Stylesheet

	9.4.2 Java Architecture for XML Binding (JAXB)
	9.4.3 Java API for XML Messaging (JAXM)
	9.4.4 Java API for XML-based RPC (JAX-RPC)
	9.4.5 Java API for XML Registries (JAXR)
	Example 9.7 Using JAXR to Locate a Registry

	9.5 XML and Connector Architecture
	9.5.1 XML and Connector Scenario
	Figure 9.1. Using XML and the Connector Architecture for ACI's Order Processing

	9.5.2 Example Application Processing
	Example 9.8 Accessing the Customer EIS
	Example 9.9 CustomerRecord Implementation
	Example 9.10 Constructing a DOM Object from a Java Object
	Example 9.11 Sending a JAXM Message

	9.6 XML Support in Connector Architecture
	
	Example 9.12 Using a Custom Record to Represent an XML Document

	9.7 Conclusion

	Chapter 10. Building a Resource Adapter
	10.1 Implementing a Resource Adapter
	10.1.1 Client API
	10.1.2 Transaction Support Level
	10.1.3 Authentication Mechanism
	10.1.4 Reauthentication Support

	10.2 System Contract Interfaces
	10.2.1 Implementing Connection Management
	Table?10.1. System Contracts Implemented by Resource Adapters
	Figure 10.1. Requesting a Connection

	10.2.2 Connection Factory
	10.2.3 Managed Connection Factory
	10.2.4 ConnectionManager
	10.2.5 ManagedConnection
	10.2.6 Connection Handle

	10.3 Managing Transactions
	10.3.1 Using Local Transactions
	10.3.2 Handling XAResource Transactions

	10.4 Implementing Security Management
	10.4.1 Container-Managed Sign-on
	10.4.2 Application-Managed Sign-on
	10.4.3 Using the ConnectionRequestInfo Interface

	10.5 Handling Connection Events
	10.6 Distributing a Resource Adapter
	10.6.1 Packaging a Resource Adapter
	10.6.2 Resource Adapter Deployment Descriptor
	Example 10.1 Deployment Descriptor Example

	10.7 Using an Adapter in the Runtime Environment
	10.8 Conclusion

	Chapter 11. Resource Adapter Packaging and Deployment
	
	
	Figure 11.1. Deploying a Resource Adapter Module

	11.1 Deployment Approaches
	11.1.1 Standalone Deployment
	11.1.2 Bundled Deployment

	11.2 Packaging a Resource Adapter
	11.3 Deployment and Configuration
	11.4 Connection Factory Creation
	11.5 Using Packaging and Deployment Tools
	
	Figure 11.2. deploytool Configuration Properties
	Figure 11.3. Configuration, Security, and RAR Properties
	Figure 11.4. Deploying a Resource Adapter
	Figure 11.5. Viewing a Resource Adapter's Connection Factory
	Figure 11.6. Creating a New Connection Factory

	11.6 Conclusion

	Chapter 12. Connection Management Contract
	12.1 Connection Management Contract
	12.2 Contract Overview
	
	Figure 12.1. Architecture Diagram: Managed Application Scenario

	12.3 Scenarios
	
	Figure 12.2. Object Diagram for Connection Management Contract

	12.3.1 Creating New Connections
	Figure 12.3. Creating a New Connection

	12.3.2 Matching Existing Connections
	Figure 12.4. Matching ManagedConnections

	12.3.3 Handling Connection Events
	Figure 12.5. Connection Event Notification

	12.3.4 Nonmanaged Environment
	Figure 12.6. Nonmanaged Environment
	Figure 12.7. Creating a Connection in a Nonmanaged Environment

	12.4 Connection Management Classes and Interfaces
	12.4.1 ConnectionFactory and Connection Interfaces
	Example 12.1 ConnectionFactory Interface
	Example 12.2 Connection Interface

	12.4.2 Connection Management Contract
	Figure 12.8. Adding Services to a Connection Request
	Example 12.3 ConnectionManager Interface
	Example 12.4 ManagedConnectionFactory Interface
	Example 12.5 ManagedConnection Interface

	12.4.3 Support for Error Handling

	12.5 Conclusion

	Chapter 13. Transaction Management Contract
	13.1 Transaction Management Contract
	
	Figure 13.1. Transaction Management Contract
	Example 13.1 ManagedConnection Interface
	Figure 13.2. Object Diagram for the Transaction Management Contract

	13.2 Local Transaction Management
	
	Figure 13.3. Local Transaction Management

	13.2.1 Example Local Transaction
	Example 13.2 Local Transaction on a Single EIS Resource Manager

	13.2.2 Local Transaction Management Contract Interfaces
	Example 13.3 LocalTransaction Interface
	Example 13.4 ConnectionEventListener Interface

	13.3 XAResource Transaction Management
	
	Figure 13.4. Transactions Across Multiple Resource Managers

	13.3.1 XAResource Interface
	Example 13.5 XAResource Interface

	13.3.2 Java Transaction API (JTA)
	13.3.3 Two-Phase Commit Protocol
	Figure 13.5. Transaction Completion Steps

	13.4 Requirements for Transaction Management Contract
	13.5 Connection Sharing
	
	Figure 13.6. Connection Sharing

	13.6 Transaction Scenarios
	13.6.1 Transaction Setup
	Figure 13.7. Transaction Setup for ManagedConnection Instances

	13.6.2 Transaction Cleanup
	Figure 13.8. Transaction Cleanup

	13.7 Conclusion
	13.7 Conclusion

	Chapter 14. Security Management Contract
	14.1 Interfaces and Classes
	
	Figure 14.1. Security Interface Hierarchy

	14.1.1 Subject Class
	14.1.2 Principal Interface
	Example 14.1 Principal Interface

	14.1.3 PasswordCredential
	Example 14.2 PasswordCredential Class

	14.1.4 GenericCredential Interface
	Example 14.3 GenericCredential Interface

	14.1.5 ManagedConnectionFactory Interface
	Example 14.4 ManagedConnectionFactory

	14.2 Security Management Contract
	
	Figure 14.2. Security Management Contract

	14.2.1 Resource Adapter to Application Server Contract
	Example 14.5 ConnectionManager Interface

	14.2.2 Application Server to Resource Adapter Contract

	14.3 Conclusion

	Chapter 15. Future Directions
	15.1 Connector Architecture 2.0
	15.1.1 Asynchronous Resource Adapter Support
	Figure 15.1. Asynchronous Request to J2EE Application

	15.1.2 Java Message Service Provider Pluggability
	15.1.3 XML Support in Common Client Interface
	15.1.4 Common Client Interface Metadata Support

	15.2 J2EE and EAI
	15.3 Conclusion

	Chapter 16. The SAP Connector
	16.1 Architecture of SAP Systems
	
	Figure 16.1. SAP Architecture

	16.1.1 SAP's Remote Function Call
	16.1.2 The Java Connector (JCO)

	16.2 Architecture of the SAP Connector
	
	Figure 16.2. Architecture of the SAP Connector

	16.2.1 Connection Management of the SAP Connector
	16.2.2 Transaction Management of the SAP Connector
	16.2.3 Security Management of the SAP Connector
	16.2.4 The Common Client Interface of the SAP Connector

	16.3 Example
	16.3.1 Package and Class Declaration
	Example 16.1 Package and Class Declarations

	16.3.2 Member Variables
	Example 16.2 Member Variables

	16.3.3 Getting the Bank List
	Example 16.3 Getting the Bank List

	16.3.4 Creating a New Bank
	Example 16.4 Creating a Bank

	Chapter 17. Developing Applications with JCA -based Tools
	17.1 Enterprise Access Builder (EAB) 101
	
	Figure 17.1. Application, Connector, and EIS Relationship

	17.2 JCA Application Development Process
	
	Figure 17.2. JCA Application Development Process

	17.2.1 Overview of the Application
	17.2.2 Using the EAB Session Bean Tool
	Figure 17.3. Initial Information for EAB Session Bean
	Figure 17.4. Connection Properties
	Figure 17.5. Importing the COBOL Source Structure
	Figure 17.6. Method Page with Interaction to EIS Properties

	17.2.3 Using the Session Bean Editor
	Figure 17.7. EAB Session Bean Editor with Connection Properties

	17.2.4 Testing the Application in the WebSphere Test Environment
	Figure 17.8. Testing the Enterprise Bean in the EJB Development Environment
	Figure 17.9. WebSphere Test Environment with the Persistent Name Server Running
	Example 17.1 Sample Client Code

	17.2.5 Moving Your Application to the WebSphere Application Server
	17.2.6 Deploying the RAR File
	Figure 17.10. Resource Adapter Properties
	Figure 17.11. Specifying the JNDI Lookup Name of the Connection Factory

	17.2.7 Specifying the Connection Pooling Properties
	Figure 17.12. Connection Pooling Values

	17.2.8 Assembling and Deploying the Application onto the WebSphere Application Server
	Figure 17.13. Resource Reference Section of the Deployment Descriptor
	Figure 17.14. Mapping Resource References

	17.2.9 Using the Deployed Application
	17.2.10 Accessing Session Beans as Web Services
	Example 17.2 SOAP Deployment Descriptor
	Example 17.3 WSDL File

	17.3 Future Directions
	17.4 Conclusion
	17.4.1 Connectors in VisualAge for Java, Enterprise Edition, Version 4.0
	17.4.2 References

	Chapter 18. Embracing the J2EE Connector Architecture: The BEA WebLogic Experience
	18.1 WebLogic Server's Implementation of the J2EE Connector Architecture Specification
	18.1.1 WebLogic Server Supplementary Deployment Descriptor
	18.1.1.1 Configuring Error Logging and Tracing Facilities for the Resource Adapter
	18.1.1.2 Configuring Resource Adapter Properties
	18.1.1.3 Configuring Security Credentials
	18.1.1.4 Linking to a Resource Adapter Reference

	18.1.2 Extended Connection Pool Services
	18.1.2.1 Decreasing Runtime Performance Cost for ManagedConnection Creation
	18.1.2.2 Controlling Connection Pool Growth
	18.1.2.3 Controlling Connection Pool Shrinkage

	18.1.3 Example weblogic-ra.xml Deployment Descriptor
	Example 18.1 Sample Deployment Descriptor

	18.1.4 Deployment Descriptor Editor
	18.1.5 Monitoring a Resource Adapter in the WebLogic Server Environment
	Figure 18.2. Business Process Management Component
	Figure 18.1. Monitoring ManagedConnection Activity

	18.2 WebLogic Integration 2.0
	18.2.1 Application Views
	18.2.2 Adapter Development Kit (ADK)
	18.2.2.1 Service Adapters
	18.2.2.2 Event Adapters
	Figure 18.3. Component Relationships
	18.2.2.3 Design-Time Components

	18.3 BEA Partners Adopting the J2EE Connector Architecture
	18.3.1 Reference

	Appendix A. API Reference
	A.1 javax.resource Package
	A.1.1 Referenceable Interface

	A.2 javax.resource.cci Package
	A.2.1 Connection Interface
	A.2.2 ConnectionFactory Interface
	A.2.3 ConnectionMetaData Interface
	A.2.4 ConnectionSpec Interface
	A.2.5 IndexedRecord Interface
	A.2.6 Interaction Interface
	A.2.7 InteractionSpec Interface
	A.2.8 LocalTransaction Interface
	A.2.9 MappedRecord Interface
	A.2.10 Record Interface
	A.2.11 RecordFactory Interface
	A.2.12 ResourceAdapterMetaData Interface
	A.2.13 ResultSet Interface
	A.2.14 ResultSetInfo Interface
	A.2.15 Streamable Interface
	A.2.16 Exception ResourceWarning Class

	A.3 javax.resource.spi Package
	A.3.1 ConnectionEvent Class
	A.3.2 ConnectionEventListener Interface
	A.3.3 ConnectionManager Interface
	A.3.4 ConnectionRequestInfo Interface
	A.3.5 LocalTransaction Interface
	A.3.6 ManagedConnection Interface
	A.3.7 ManagedConnectionFactory Interface
	A.3.8 ManagedConnectionMetaData Interface
	A.3.9 ApplicationServerInternalException Class
	A.3.10 CommException Class
	A.3.11 EISSystemException Class
	A.3.12 IllegalStateException Class
	A.3.13 LocalTransactionException Class
	A.3.14 ResourceAdapterInternalException Class
	A.3.15 ResourceAllocationException Class
	A.3.16 SecurityException Class

	A.4 javax.resource.spi.security Package
	A.4.1 GenericCredential Interface
	A.4.2 PasswordCredential Class

	Glossary

