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Abbreviations and Symbols 

ATXII 
cAMP 

D 600 

ScTXII 

STX 
TTX 

Toxin II fromAnemoniasulcata h 
Cyclic adenosine 3',5'-mono- 
phosphate m 
o~-Isopropyt-c~- [(N-met hyl-N- 
homoveratryl)-'),-amin opropyl]- I K 
3,4,5-trimethoxyphenylaceto- INa 
nitrile (gallopamil) 
Toxin II from Androctonus Isi 
australis Hector 
Saxitoxin PNa 
Tetrodotoxin 

*max 
F c 
AF c 

Peak force of contraction 
Change in peak force of con- [ ]a 
traction [ 1; 

Inactivation variable of Iqa 
channels 
Activation variable of Na 
channels 
Transmembrane/( current 
Transmembrane Na current 
through Na channels 
Transmembrane slow inward 
(Ca, Na) current 
Membrane permeability to Na 
ions 
Maximal rate of depolarization 
during the upstroke of the 
action potential 
Extraeellular concentration 
Intracellular concentration 

1 Introduction 

It  is now recognized  that  m a n y  tox ic  substances evolved by  plants or ani- 

mals act  by  interfer ing with the exc i ta t ion  process o f  nerve and muscle  
cells. Specifically,  these c o m p o u n d s  alter  the rapid and t ransient  increase 
in m e m b r a n e  permeabi l i ty  to  Na ions (PNa), tha t  initiates the ac t ion  
potent ia l .  Accord ing  to the general  m o d e  by  which  toxins  m o d i f y  the Na 
permeabi l i ty  mechanism,  or Na channels,  two groups  can be distinguished. 
The  first group o f  substances,  including t e t r o d o t o x i n  (TTX)  and saxi- 
t ox in  (STX),  blocks the  f low o f  Na ions t h rough  Na channels.  The  second 
group o f  toxins  mainta ins  an open  fo rm o f  the Na channel ,  t he r eby  pro- 
longing the  t ime during which  Na ions f low into the cell. This group com- 
prises alkaloids (cevera t rum alkaloids, ba t r acho tox in ,  aconi t ine) ,  the  diter-  
peno id  g rayanotox ins ,  and po lypep t ides  f rom scorpions,  sea anemones  
and coral and contains  the most  p o t e n t  and mos t  specific substances 
k n o w n  to increase the  Na permeabi l i ty  o f  exci table  membranes .  Toxins  
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which prolong the open state of Na channels will be referred to as Na 
channel-gate toxins to denote the specific function of the Na channel 
affected by these agents, i.e. the gating mechanism which controls the 
activation and inactivation of Na channels. 

While the general pharmacology of one subgroup of Na channel-gate 
toxins, the ceveratrum alkaloids, has been studied for more than a cen- 
tury, the basic mechanism of their action, as outlined above, has been 
elucidated only during the last 2 decades following the discovery of the 
ionic permeability changes responsible for membrane excitation (Hodgkin 
and Huxley 1952). For methodological reasons we possess more detailed 
information concerning the effect of Na channel-gate toxins on nerve 
fibres and nerve cells in culture than on myocardial and other excitable 
cells. This review, therefore, includes a brief description of effects on the 
type of preparation which yielded most information on the mechanism 
of action at the level of Na channels. For in-depth information of the 
effects of toxins on Na channels, the reader is referred to the reviews by 
Ulbricht (1969, 1974), Hille (1970), Narahashi (1974), Khodorov (1979), 
Ritchie (1979), Catterall (1980), and Lazdunski et al. (1980), and to the 
original literature cited in connection with individual toxins. 

This review deals with the direct cardiac effects of Na channel-gate 
toxins observed in isolated cardiac preparations. The main effects are 
a positive inotropic effect without a significant chronotropic effect and 
an arrhythmogenic effect. Early references to the direct cardiac effects 
of ceveratrum alkaloids are given in the reviews by Krayer and Acheson 
(1946) and Trautwein (1963). Trautwein (1963) also reviewed the litera- 
ture concerning the cardiac effects of aconitine. The Benforado review 
(1967) includes a chapter on the direct cardiac effects of ceveratrum 
alkaloids and concludes that "the mechanism by which the veratrum 
alkaloids exert their positive inotropic action on the heart is not known". 
The last 15 years have brought considerable progress in our understand- 
ing of the basic membrane action of ceveratrum alkaloids and other Na 
channel-gate toxins and of the relationship between ion fluxes through 
the sarcolemma and myocardial force of contraction. Perhaps the most 
impressive result is that the large group of chemically diverse Na channel- 
gate toxins represents a single class of inotropic agents. They possess a 
characteristic mode of action that differs from that of other cardioactive 
drugs, e.g., cardioactive steroids, catecholamines, and other agents 
thought to act by influencing the cellular concentration of cyclic nucleo- 
tides. 

In the intact animal organism, the direct cardiac effects of Na channel- 
gate toxins may not be recognized because of cardiovascular or cardio- 
cardiac reflexes following the stimulation of sensory nerves by the toxins. 
The Bezold-Jarisch effect exemplifies this action for many ceveratrum 
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alkaloids (Krayer 1961). The hypotensive and other circulatory effects 
of  ceveratrum alkaloids were reviewed by Benforado (1967),  Kupchan 
and Flacke (1967), and Krayer and Meilman (1977). The older literature 
on this subject was surveyed by Krayer and Acheson (1946) in their com- 
prehensive review of  the pharmacology of  veratrum alkaloids. Notably,  
certain Na channel-gate toxins lack a hypotensive effect; for example, 
some natural and semi-synthetic ceveratrum alkaloids (Kupchan and 
Flacke 1967) and at least one of the polypeptide toxins, namely antho- 
pleurin A, which has a direct positive inotropic effect on the myocardium 
in conscious dogs (Blair et al. 1978). 

2 Chemistry of Na Channel-Gate Toxins 

2.1 Alkaloids 

2.1.1 Ceveratrurn Alkaloids 

The veratrum alkaloids are steroid alkaloids that occur in liliaceous 
plants belonging to the genera Veratrum, Zygadenus, Stenanthiurn, and 
Schoenocaulon. These genera comprise a section of  the suborder Melan- 
thioideae (Kupchan et al. 1961). The terms ceveratrurn and jerveratrurn 
alkaloids were introduced to distinguish two chemically and pharmaco- 
logically different groups of  veratrum alkaloids (Fieser and Fieser i 959). 
The jerveratrum alkamines are secondary amines, contain only one to 
three atoms of  oxygen, and are found in unhydrolyzed plant extracts in 
part as the free alkamines and in part in combination with one molecule 
of  D-glucose as glucoalkaloids. Jerveratrum alkaloids do not prolong the 
open state of  Na channels. Somej erveratrum alkaloids, such as veratramine, 
antagonize the effect of  ceveratrum alkaloids (Krayer and George 1951), 
probably because they block Na channels (Ohta et al. 1973). The ceverat- 
rum alkamines are tertiary amines, are highly hydroxylic,  and contain 
seven to nine atoms of  oxygen. They usually occur esterified with various 
acids as ester alkaloids, but  are sometimes unconjugated. They have 
never been found as glycosides. The ceveratrum alkaloids can be formally 
derived from (22 S, 25 S)-5/3-cevanine. Their chemistry has been reviewed 
by Kupchan and By (1968). The structures of  the monoester  veratridine 
and the triester germitrine are shown in Fig. 1. The name veratrine is 
usually used for the total alkaloids of  the seeds of  Schoenocaulon offici- 
nale, it does not refer to a well-defined preparation of  constant composi- 
tion (Krayer and Acheson 1946; Kupchan et al. 1961). The use of  this 
and other mixtures of veratrum alkaloids for scientific purposes is dis- 
couraged. Jerveratrum alkaloids may antagonize the effect of  ceveratrum 
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Fig. 1. Chemical structures of 
the ceveratrum alkaloids vera- 
tridine and germitrine. (Drawn 
after Kupchan and By 1968) 

CH3H 

N?H/N~IH3 

OCHa / ~ / ; " - H I ~ /  "OH 

OH^O-( / ')-CO" ~ J ~ /  

Verat ridine 

CH3 H 

N ? / N ~ c H  3 

0 r/ "4/ ~ "~/ i " /  "OH 
.L - ° l ° " i  o, 

CH 3 0 0 CH 3 

Germitrine 

alkaloids, and there are more subtle differences between the effects of 
individual ceveratrum alkaloids (veratridine versus cevadine; Reiter 1963; 
veracevine and germine and their esters, Sect. 3.2; veratridine versus ger- 
mitrine, Sect. 4.2.5). 

2.1.2 Batrachotoxin 

Batrachotoxin is the most  toxic of  the steroid alkaloids extracted from 
the skin of  the Columbian arrow poison frog (Phyllobates aurotaenia). 
It is a pyrrolecarboxylate ester o f  the pregnane derivative batrachotoxi- 
nin A (Tokuyama et al. 1969). 

2.1.3 Aconitine 

Aconitine is the main alkaloid of  Aconitum napellus of  the plant family 
Ranunculaceae (List and HOrhamrner 1969). Like the ceveratrum alkalo- 
ids, aconitine is an ester o f  an alkamine with organic acids. The alkamine, 
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aconine, contains two cyclopentane rings, one piperidine ring, and three 
cyclohexane rings. In aconitine, aconine is esterified with benzoic acid 
and acetic acid. The structure of aconitine was reported by Wiesner et al. 
(1969). 

2.2 Diterpenoids 

Gyanotoxins are the toxic principles found in the leaves of various spe- 
cies of Rhododendron, Kalmia, and Leucothoe (Ericaceae). They are 
diterpenoids with a perhydroazulene skeleton and their chemical struc- 
tures have been determined (Kakisawa et al. 1965; Kumazawa and Iriye 
1970). 

2.3 Polypeptides 

2. 3.1 Scorpion Toxins 

Toxins of North African scorpions were first purified, characterized, and 
sequenced by Rochat, Miranda, Lissitzky, and colleagues (Miranda et al. 
1970; Rochat et al. 1970; Kopeyan et al. 1979). These toxins are basic 
polypeptides with molecular weights of approximately 7000. Each scor- 
pion species studied contained multiple toxins having extensive sequence 
homology (Rochat et al. 1970). The molecular weight of toxin II from 
Androctonus australis HECTOR (ScTXII) is 7249 (Miranda et al. 1970). 

2.3.2 Sea Anemone Toxins 

Anemone toxins were first isolated in pure form from Anemonia sulcata, 
shown to be basic polypeptides of 2500-5000 molecular weight and 
sequenced by Bdress, Wunderer, and their colleagues (BOress et al. 1975a,b, 
1977; Wunderer et al. 1976). The sequences of three toxins from Ane- 
monia sulcata and one from Anthopleura xanthogrammica were deter- 
mined (Wunderer et al. 1976; B~ress et al. 1977; Martinez et al. 1977; 
Wunderer and Eulitz 1978; Tanaka et al. 1977). Toxins I and II from 
Anemonia sulcata and anthopleurin A fromAnthopleura xanthogrammica 
consist of 47-49  amino acid residues and have substantial sequence 
homology. None of the anemone toxins has detectable sequence homol- 
ogy when compared to the scorpion toxins. 

2. 3. 3 Coral Toxin 

Goniopora toxin, a polypeptide with a molecular weight of 12 000, was 
isolated and purified from the coral Goniopora spp. (Hashimoto and 
Ashida 1973). 
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3 Mode of Action of Na Channel-Gate Toxins 

3.1 Methods of Analysis 

Different methods have been employed to study the effects of drugs on 
Na channels; electrophysiologic analysis of membrane voltage and mem- 
brane current, isotopic flux measurements of ion permeability, and direct 
binding studies of radiolabelled toxins. The results obtained with the 
latter two methods were recently reviewed (Catterall 1980), and have 
helped significantly to elucidate molecular aspects of the effects of 
toxins on the Na channel. The electrophysiologic approach, with its 
advantage of high time resolution, provides information allowing us to 
predict how the Na channel-gate toxins modify the transmembrane elec- 
trical activity of cells. This is particularly important for an understanding 
of the cardiac effect of these agents. The effects on the kinetics of Na 
channels are therefore reviewed in some detail. It has become customary 
to analyse the effects of  drugs on Na channels in terms of the conceptu- 
alization introduced by Hodgkin and Huxley (1952) to describe the nor- 
mal Na permeability changes in the squid giant axon. According to this 
theory, two voltage- and time-variant parameters, the activation variable 
rn and the inactivation variable h, govern the changes of the Na perme- 
ability during excitation. The Na permeability is turned on because of an 
increase of rn if the membrane is depolarized, and the turning off during 
maintained depolarization is due to a decrease of h. Repolarization turns 
off PNa because of a decrease in rn. This analysis was also used with some 
modifications to describe the behaviour of Na channels in other types of 
excitable cells, including cardiac cells (see Trautwein 1973). The hypo- 
thetical subunit of the Na channel, which gives adequate kinetics of 
opening and closing, is referred to as the gating mechanism, consisting of 
the rn gate and the h gate. 

3.2 Ceveratrum Alkaloids 

The veracevine ester veratridine has received the most attention among 
the various ceveratrum alkaloids. A detailed analysis of the effect of vera- 
tridine on the frog node of Ranvier was performed by Ulbricht (1969, 
1972a,b) using the voltage-clamp technique. Normally, the Na permeabil- 
ity of nerve fibres exhibits a fast and transient rise of about 1 ms dura- 
tion during a voltage-clamp depolarization. In contrast, the PNa observed 
in the veratridine-treated node, in addition to the normal Na permeability, 
develops over a period of several seconds during depolarization and is 
maintained as long as the membrane is clamped at the depolarized level. 
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The veratridine-induced PNa was quantitatively described by introducing 
an activation variable s (analogous to m) exhibiting the potential- and 
time-dependence observed and by omitting an inactivation term corres- 
ponding to h (UIbricht 1969). For a stepwise depolarization, the time 
course of s follows the equation s(t ) = s(t = ~o) (1 - e -  t/rs), where t is the 
time after the start of  the depolarization and r s is a time constant. The 
time constant of  activation of  the veratridine-induced PNa (~-s) is of  the 
order o f  seconds, i.e. about 104 -times larger than rm,  the time constant 
of  the normal PNa activation. The voltage-dependence of  the veratridine- 
induced PNa activation is less steep and shifted to more negative mem- 
brane potentials compared to that of  normal PNa" 

Veratridine seems to modify some of  those Na channels participating 
normally in the production of the action potential rather than to create 
new channels (Ulbricht 1969). This would explain why the appearance 
of  the alkaloid-induced PNa is accompanied by a decrease in the normal 
transient PNa" Furthermore,  normal and modified channels distinguish 
to comparable degrees between Na, Li, choline, and tromethamine,  and 
both are blocked by TTX at rates and to extents that are very similar 
(Ulbricht 1974). The concentration of  veratridine appears to determine 
the proportion of  Na channels that is modified, while at the level of  the 
single Na channel the interaction with veratridine appears to be a rever- 
sible all-or-none event (Ulbricht 1972a). 

At concentrations exceeding about 10 pmol/litre veratridine induces 
a sustained depolarization of  the node of  Ranvier due to an increase in 
PNa (Ulbricht 1969). It is caused by the two effects of  veratridine on Na 
channels; block of  inactivation and shift o f  activation to more negative 
potentials, thus allowing the spontaneous opening of Na channels at the 
level of  the normal resting potential. Some pharmacologically important 
effects of  veratridine occur at lower concentrations when the resting 
membrane potential shows very little, if any depolarization. At this stage 
of  veratridine action, the presence of  modified Na channels is apparent 
as a distinct delay in the final phase of  repolarization of  the action poten- 
tial (after-depolarization). The effect reflects the large value of  r s that 
determines the rate at which modified Na channels deactivate after repolari- 
zation (Ulbricht 1969). By this mechanism, veratridine greatly prolongs 
the phase of increased PNa and Na influx associated with each action 
potential. 

Other ceveratrum alkaloids are similar to veratridine in producing after- 
depolarizations in nerve fibres, but  individual alkaloids differ with 
respect to duration (Graham and Gasser 1931; Shanes 1952;Honerfiiger 
1973). The alkamines germine and veracevine induce after-depolariza- 
tions of  relatively short duration in crustacean nerve axons. The half-life 
of  after-depolarization decay is 6 8 ms (Honer]alger 1973). In the same 
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study it was shown that number and nature of the ester groups attached 
to the alkamine modify the duration of  after-depolarization. For example, 
replacement of  the 3~-hydroxyl in veracevine by an acetyl (cevacine), 
angeloyl (cevadine), or veratroyl group (veratridine) causes a progressive 
prolongation of the after-depolarization up to about 3 s (half-life) in the 
case ofveratridine. Even longer-lasting after-depolarizations were observed 
with the di-, tri-, and tetraester alkaloids in guinea-pig papillary muscle 
(Sect. 4.2.5). The semisynthetic germine ester germine-3-acetate produces 
an after-depolarization in curstacean nerve fibres that decays with a half- 
life of 4 0 - 7 0  ms. Voltage-clamp experiments on squid axons showed 
that this alkaloid induces a TTX-sensitive slow component  of Na perme- 
ability (Honer]alger 1973). After repolarization this component  of PNa 
deactivates about 20-times faster than the PNa induced by veratridine. 
This may indicate that all the various ceveratrum alkaloids react with 
Na channels, but differ in the degree to which they slow the m-gating 
process. 

3.3 Batrachotoxin 

A detailed voltage-clamp analysis carried out on the frog node of  Ranvier 
showed that batrachotoxin alters both the gating mechanism and ion 
selectivity of  Na channels (Khodorov and Revenko 1979). The Na chan- 
nels lose the ability to inactivate, and the voltage-dependence of  activa- 
tion is shifted by about 50 mV to more negative voltages. Therefore, 
a fraction of Na channels is permanently activated at the normal level of  
resting potential, resulting in depolarization. The time constant of  activa- 
tion is also affected by batrachotoxin, but to a much lesser extent than 
by veratridine. Batrachotoxin increases the relative permeability of the 
Na channels toward larger ions, including Ca ions. This finding, by Kho- 
dorov and Revenko (1979), is of particular interest with regard to the 
positive inotropic effect on myocardial cells of  batrachotoxin, as well as 
other Na channel-gate toxins (Chap. 4). If myocardial Na channels were 
to lose their ionic selectivity and become significantly permeable to Ca 
ions, this would explain a positive inotropic effect of the Na channel-gate 
toxins. It seems, however, that this effect of batrachotoxin on neural Na 
channels cannot be extended to cardiac Na channels, at least as far as the 
action of  veratridine and ScTXII is concerned. The Ca influx induced by 
these Na channel-gate toxins in cardiac cells in culture does not occur 
through Na channels, but by way of Na-Ca exchange (Sect. 5.3.2). 

Khodorov and Revenko (1979) further showed that the modification 
of  Na channels by batrachotoxin requires a specific functional state of  the 
Na channels, namely their open configuration. Thus the effect develops 
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much more rapidly if the node of Ranvier is stimulated repetitively in 
such a way that the Na channels are not inactivated by the holding poten- 
tial and the pulses are large enough to activate Na channels. The concen- 
tr~ition-effect relationship suggests that each channel receptor binds only 
one molecule of batrachotoxin. A study of the effect of batrachotoxin 
on the action potential of guinea-pig papillary muscle led to the same 
conclusion (Sect. 4.3.2). 

3.4 Aconitine 

The mode of action of aconitine on Na channels was elucidated in voltage- 
clamp experiments on the frog node of Ranvier (Schmidt and Schmitt 
1974; Mozhayeva et al. 1977), and was found to be very similar to that 
of batrachotoxin. Aconitine-modified Na channels lose the property of 
inactivation and open at more negative potentials than the normal resting 
potential. These channels open with a time constant about twice as large 
as normal Na channels. As with batrachotoxin, the development of the 
effect is speeded up by periodical depolarizations if they lead to an 
activation of Na channels. This suggests that the open configuration of 
the Na channel gate is more favourable for the interaction with aconitine. 
Aconitine, like batrachotoxin, reduces the selectivity of Na channels for 
monovalent cations (Mozhayeva et al. 1977). 

3.5 Grayanotoxins 

Grayanotoxins have been found to depolarize the membranes of various 
excitable cells (see Starkus and Narahashi 1978). As shown on the squid 
giant axon, this is due to a selective and TTX-sensitive increase in resting 
PNa (Narahashi and Seyama 1974). The effect of grayanotoxins on the 
time- and voltage-dependence of activation and inactivation of Na chan- 
nels has not been published in detail. 

3.6 Scorpion Toxins 

Venom of Leiurus quinquestriatus delays the repolarization of the action 
potential, reduces the resting membrane potential and induces spontane- 
ous activity in myelinated nerve fibres (Adam et al. 1966). Voltage-clamp 
experiments on the frog node of Ranvier showed that the main effect of 
the venom is to slow the inactivation of Na channels (KoppenhOfer and 
Schmidt 1968a,b). Venoms or toxins of other North African scorpions 
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(Buthus thamulus, B. eupeus, Androctonus australis HECTOR) have the 
same principal effect on nerve fibres (see Khodorov 1979). In the squid 
giant axon, which allows application of substances to either side of the 
axolemma, venom of B. thamulus is effective only if applied from the 
extracellular side (Narahashi et al. 1972). More recently, Catterall (1980) 
showed that a toxin purified from L. quinquestriatus venom increases 
the fraction of Na channels activated by veratridine, aconitine, or gray- 
anotoxin I in cultured neuroblastoma cells: His findings indicate that 
scorpion toxin and the group of alkaloidal and diterpenoid toxins (lipid- 
soluble toxins) bind to separate receptor sites of the Na channel which 
interact allosterically. 

In contrast to the venoms of North African scorpions, which modify 
Na inactivation, venom of the American scorpion Centruroides sculptura- 
tus alters the activation gate without modifying the h gate in the frog 
node of Ranvier (Cahalan 1975). This venom causes a shift of the activa- 
tion voltage-dependence by 40-50  mV in the hyperpolarizing direction, 
while the modification of the Na channel requires depolarization. 

While many Na channel-gate toxins alter the function of isolated car- 
diac muscle by modifying sarcolemmal Na channels, scorpion toxins seem 
to act mainly by releasing neurotransmitters from intracardiac nerve 
fibres, i.e. by their effect on neural Na channels (Sect. 4.6). 

3.7 Sea Anemone Toxins 

3. 7.1 Toxin H from A nemonia sulcata (A TXII) 

In the crayfish giant axon, ATXII has little or no effect on resting poten- 
tial, but produces a marked prolongation of the falling phase of action 
potentials (Rathmayer and B~ress 1976). As shown in the frog node of 
Ranvier, and crayfish giant axons, the main effect of ATXII is to slow 
the rate of the Na channel inactivation (Bergman et al. 1976; Romey 
et al. 1976). The activation of Na channels is not markedly altered. The 
curve relating steady-state inactivation to membrane potential shows 
a decrease in slope under the influence of ATXII, so that moderate depo- 
larizations inactivate a larger than normal fraction of Na channels. The 
receptor for ATXII does not seem to be accessible from inside the axo- 
lemma. Like scorpion toxin, ATXII increases the fraction of Na channels 
modified by veratridine (Catterall 1980). Scorpion toxin and ATX n 
appear to act at a common receptor site associated with the Na channel 
(Catterall 1980). 
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3. Z2 Anthopleurin A 

Low concentrations of anthopleurin A produce slow transient depolariza- 
tions and a prolongation of the repolarization phase in the crayfish giant 
axon, while high concentrations induce a sustained depolarization (Low 
et al. 1979). Voltage-clamp experiments show that anthopleurin A alters 
the kinetics of Na channels (Low et al. 1979). Modified Na channels are 
activated at more negative membrane potentials, and the inactivation is 
slowed as is the removal of activation after repolarization. 

3.8 Coral Toxin 

Goniopora toxin prolongs the falling phase of the action potential in 
rabbit myocardium (Fu]iwara et al. 1979), and this effect is abolished by 
TTX. This is so far the only available evidence indicating that the toxin 
slows the kinetics of Na channels. 

3.9 Silent Na Channels 

The basic effect of the various Na channel-gate toxins was discovered in 
excitable membranes that produce their action potential by the activa- 
tion of Na channels. However, it is becoming increasingly evident that 
neither the presence of a Na channel-dependent mechanism of excitation, 
nor excitability as such are prerequisites for Na channel-gate toxins to 
cause the appearance of persistently activated Na channels. Veratridine 
opens Na channels in the pancreatic I3-cell membrane which normally pro- 
duces impulses by the activation of Ca channels (Donatsch et al. 1977). 
The action potential of chick embryonic heart cells in an early stage of 
development is due to the activation of TTX-insensitive, slow Na-Ca chan- 
nels. Nevertheless, veratridine depolarizes these cells and the effect is 
blocked by TTX (Sperelakis and Pappano 1969; Bernard and Couraud 
1979; Romey et al. 1980). Polypeptide toxins also produce bioelectric 
effects that are blocked by TTX in slow cells of the chick embryo heart 
(Bernard and Couraud 1979; Romey et al. 1980). These effects are de- 
scribed in detail in Chap. 4. Veratridine produces a TTX-sensitive depolari- 
zation in non-spiking sensory dendrites of the crab (Lowe et al. 1978). In 
an inexcitable cell line derived from a rat brain tumor, veratridine or 
polypeptide toxins open TTX-sensitive Na channels (Romey et al. 1979). 
When exposed to Na channel-gate toxins, fibroblasts exhibit an increased 
uptake of Na that is blocked by TTX (Munson et al. 1979;PouyssOgur et al. 
1980). There are conflicting reports as to whether Na channel-gate toxins 
open Na channels in glial cells (Villegas et al. 1976; Tang et al. 1979). 
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As it is highly unlikely that the Na channel-gate toxins create Na-selec- 
tive and TTX-sensitive ionic channels in these membranes, it is generally 
assumed that Na channels pre-exist in a state which under normal condi- 
tions precludes their electrical activation. The term silent Na channels 
has been suggested by Romey et al. (1979). If these Na channels were in 
a state characterized by faster inactivation kinetics than activation kinet- 
ics, this would explain why they are normally electrically silent, but able 
to open in the presence of a toxin that specifically slows the inactivation 
(Romey et al. 1979). 

3.10 Antagonists 

3.10.1 Non-Competitive Antagonists 

TTX and STX are potent and selective blockers of Na channels and they 
have no other known action (Narahashi 1974). TTX and STX also block 
the flow of Na ions through Na channels modified by Na channel-gate 
toxins, and thus are specific antagonists of  Na channel-gate toxins. The 
blockers and the gate toxins modify different properties of the Na chan- 
nel. TTX and STX, in partially blocking concentrations, reduce the total 
available Na permeability, but do not alter the kinetics of the unblocked 
Na channels. In contrast, the gate toxins alter the kinetic (m and/or h) 
behaviour of the Na channels. This difference suggests different receptor 
sites at the Na channel for blockers and gate toxins respectively, and thus 
a non-competitive type of antagonism. Catterall (1975) investigated the 
nature of this antagonism by using the initial rate of Na influx into cul- 
tured neuroblastoma cells to quantify the effect of veratridine or batra- 
chotoxin. He has shown that activation of Na influx by the Na channel- 
gate toxins is non-competitively inhibited by TTX. Further proof that 
the receptors for TTX and Na channel-gate toxins are not identical was 
obtained in experiments on the specific binding of labelled TTX to nerve 
membrane preparations. This binding (and that of labelled STX) was 
unaffected even by high concentrations of Na channel-gate toxins (see 
Catterall 1980). 

Although the TTX-sensitivity of biological effects points to the involve- 
ment of Na channels, there are some instances in which the lack of sen- 
sitivity to TTX does not rule out the participation of Na channels. 
Examples of cells possessing TTX-insensitive Na channels are denervated 
skeletal muscle fibres (Redfern et al. 1970) and giant neurons of the snail 
Helix aspersa (Chamberlain and Kerkut 1969). These TTX-insensitive 
Na channels are susceptible to the action of Na channel-gate toxins such 
as veratridine (Leicht et al. 1971) or batrachotoxin (Albuquerque and 
Warnick 1972). 
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Normal Na channels and those modified by veratrine are blocked by 
the local anaesthetic lidocaine (frog node of Ranvier; Hille 1968). Lido- 
caine and tetracaine inhibit veratridine-induced Na uptake by embryonic 
cardiac cells (Fosset et al. 1977). 

An increase in external Ca concentration is known to reduce the 
depolarizing effect of veratridine (Ulbricht 1969). To understand this 
antagonism it is necessary to recall the effect of external Ca ions on nor- 
mal Na channels. An increase in [Ca]o shifts the voltage dependence of 
both activation and inactivation to less negative membrane potentials 
(Frankenhaeuser and Hodgkin 1957). Varatridine-modified Na channels 
lose the inactivation gate, but their activation gate is similarly sensitive to 
changes of [Ca]o as that of normal Na channels (frog node of Ranvier; 
Ulbricht 1969). Thus, increasing [Ca]o at a given level of depolarization 
reduces the fraction of activated veratridine-modified Na channels and 
may lead to repolarization. This may also explain why concentrations of 
external Ca higher than 2 mmol/litre inhibit the veratridine-induced Na 
uptake by embryonic cardiac cells (Fosset et al. 1977). It is not necessary 
to assume a specific, e.g. competitive, interaction between Ca ions and 
veratridine to account for this antagonism. However, the inhibition by 
external Ca ions of the veratridine-induced Na influx into neuroblastoma 
cells (Catterall 1975) and cardiac cells in culture (Galper and Catterall 
1979) appears to be of the competitive type. 

3.10.2 Competitive Antagonists 

The clarification of a pharmacological antagonism usually requires estab- 
lishing complete concentration-effect relationships in systems where the 
effect is a more or less direct measure of the degree of receptor occupancy 
by the drug. In the case of Na channel-gate toxins, Catterall (1975)was 
the first to obtain complete concentration-effect relationships for their 
effect on Na permeability by using the stimulation of 22 Na influx in 
cultured neuroblastoma cells. With this system he showed that there are 
competitive interactions among veratridine, batrachotoxin, aconitine, 
and grayanotoxin I (see Catterall 1980). The effect of saturating concen- 
trations of batrachotoxin is reduced by each of the other lipid-soluble 
toxins, suggesting that batrachotoxin is a full agonist, whereas veratridine, 
aconitine, and grayanotoxin are partial agonists acting at a common 
receptor site of the Na channel. A competitive antagonist without notice- 
able intrinsic effect on the Na channels has apparently not yet been 
found. 
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4 Cardiac Action of Na Channel-Gate Toxins 

4.1 Role of  Na Channels in the Cardiac Action Potential 

4.1.1 Na Channels in Different Cell Types of  the Heart 

During the last 15 years the application of  voltage-clamp techniques to 
cardiac tisssues has provided much information on the transmembrane 
ionic currents underlying the action potential of cardiac cells, which is 
important for an understanding of  the cardiac action of  Na channel-gate 
toxins. The reader is referred to the reviews by Trautwein (1973) and 
Reuter (1979) and to the articles by McAllister et al. (1975) and by 
Beeler and Reuter (1977). In the case of  mammalian ventricular myocar- 
dium, the action potential has been shown to result from the sequential 
and transient activation of  a fast inward Na current (INa), a secondary, 
slow inward current carried by Ca and Na ions, (Isi), and an outward K 
current (IK) (Trautwein 1973; Reuter and SchoIz 1977; McDonald and 
Trautwein 1978). The fast PNa system responsible for INa is very similar 
to that of nerve cells and the term Na channels, originally applied to the 
ionic pathwahs of  the Na conductance mechanism of  nerve cells (Hille 
1970), is now also used for that of  cardiac cells (Hondeghem and Katzung 
1977). The rapid upstroke of  the action potential is caused by the rapid 
increase of INa , and the first time derivative of  membrane potential dur- 
ing the upstroke (V) provides an indirect estimate of INa (Reuter 1979; 
Walton and Fozzard 1979). The electrotonic current resulting from the 
potential change during the upstroke is the stimulus for excitation of  
adjacent cells. Therefore, INa is the basis for conduction of the action 
potential, and conduction velocity is largely determined by the Vma x of  
the action potential. INa subsides completely within a few milliseconds 
after its activation, but the membrane potential remains at a positive level 
because of the now-apparent activation of  Isi. The subsequent repolariza- 
tion process is determined by the inactivation of Isi and the activation of 
I K . As in ventricular myocardial cells, a fast, inward Na current is respon- 
sible for the upstroke of  the action potential in Purkinje fibres and atrial 
muscle fibres (Trautwein 1973). The action potential of Purkinje fibres 
exhibits a higher value of  Vmax than the fibres of the working myocar- 
dium. This allows the Purkinje fibre to play its physiological role in dis- 
tributing excitation, leading to the nearly simultaneous contraction of  
the different parts of  the ventricles. In Purkinje fibres, INa is not com- 
pletely inactivated after the upstroke and participates in the ionic cur- 
rents flowing during the plateau phase (Attwell et al. 1979). Thus, the 
action potential duration of  Purkinje fibres, but not of  ventricular muscle 
fibres, is markedly shortened by the specific Na channel blocker TTX 
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(Coraboeuf et al. 1979). The slowly rising action potentials of cells of 
the sinoatrial node are insensitive to TTX (Yamagishi and Sano 1966) 
indicating that Na channels are not involved in producing the rising phase 
of the action potential. Yet the presence of Na channels in this cell type 
is indicated by the observation that hyperpolarization of pacemaker cells 
by application of carbachol produces an increase in Vmax of the action 
potential that is entirely suppressed by TTX (Kreitner 1975). Hyperpolar- 
ization by the voltage-clamp technique also reveals a fast Na current that 
is inactivated by depolarization and blocked by TTX (Noma et al. 1977). 
The upstroke of the action potential of atrioventricular nodal fibres 
shows two components (Ruiz-Ceretti and Ponce Zurnino 1976). The first 
of these is attributed to the activation of Na channels because it depends 
strongly on [Na]o and is inhibited by TTX. Its relatively low Vmax of 
about 13 V/s is accounted for by the low resting potential of nodal cells 
causing inactivation of the Na channels. The voltage-dependence of Vrnax 
of atrioventricular nodal action potentials corresponds to that of Na 
channels (Shigeto and Irisawa 1974). The second component of the 
action-potential upstroke is attributed to the slow inward current (Ruiz- 
Ceretti and Ponce Zumino 1976). 

In summary, electrophysiologic experiments revealed the presence of 
Na channels in the plasmalemma of cells of the sinoatrial and atrioventri- 
cular nodes, atrial and ventricular myocardium, and of Purkinje fibres. 
Na channel gate toxins are expected to modify the electrical activity of 
all cells possessing Na channels unless the Na channels lack the pharma- 
cologic receptor for alteration of the gating mechanism by the toxin. 

The effects of Na channel-gate toxins on membrane currents of cardiac 
cells under voltage-clamp conditions are largely unknown. However, 
there is substantial indirect evidence obtained by intracellular potential 
recording suggesting that these toxins affect the kinetics of INa in a way 
similar to their effect on neural Na channels. A slowing of INa inactiva- 
tion, as produced in the nerve membrane by sea anemone or scorpion 
toxins, or the removal of inactivation combined with a slowing of activa- 
tion in a fraction of Na channels, as produced by veratridine in the node 
of Ranvier, would add a component of Na current to the membrane cur- 
rents flowing during the plateau and repolarization phases of the cardiac 
action potential. This should drive the membrane potential from the 
normal level determined by the balance of Isi and I K towards the equilib- 
rium potential for Na ions (approx. + 50 mV) until the delayed inactiva- 
tion of the modified Na channels and normal repolarizing mechanisms 
allow a return of the membrane potential to the normal resting level. 
Indeed, a prolongation of the repolarization phase is the characteristic 
effect on cardiac cells of many Na channel-gate toxins. Strong evidence 
for a selective modification of INa by these agents is the prevention of 
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their effect on the action potential in Na-poor medium or in the presence 
of  TTX, i.e. under conditions where INa is absent and the action poten- 
tial occurs through the activation of Isi. 

4.1.2 Delayed Repolarization and Oscillatory After-Potentials 

The repolarization of the cardiac action potential proceeds in certain 
phases that are affected differently by individual Na channel-gate toxins. 
The first or early phase of repolarization to be distinguished in Purkinje 
fibres occurs immediately after the rapid upstroke and extends from the 
spike to the beginning of  the plateau phase. This early repolarization, 
which is absent or much less pronounced in atrial and ventricular muscle 
fibres, has received scant attention in the study of Na channel-gate toxins 
and seems to be little affected by these agents (Schmidt 1960; Heistracher 
and Pillat 1962; Hogan and Albuquerque 1971 ; Ar bel et al. 1975; Shimizu 
et al. 1979). The early phase of  repolarization is followed by the plateau 
phase and a phase of rapid repolarization during which the resting poten- 
tial level is approached. In purely descriptive terms, there are two ways 
in which the course of  repolarization following the plateau phase may be 
prolonged, and Na channel-gate toxins can be classified on this basis. 
First, repolarization can be slowed by a prolongation of  the plateau 
phase, i.e., by a broadening of the action potential at nearly all potential 
levels between the peak of the plateau potential and the resting potential. 
Second, repolarization can be slowed, more or less abruptly, at any point 
during the fast phase of  repolarization which follows the plateau phase; 
the latter and a variable, initial part of  the former then remain unaffected. 
This second modification is usually called depolarizing after-potential or 
after-depolarization. These terms should replace the term negative after- 
potential (e.g., Fig. 1 in Shanes 1958), which was introduced when elec- 
trical activity was measured with extracellular electrodes. The intracellu- 
lar potential is changed in the positive direction during an after-depolar- 
ization. 

It should be noted that a slowing of the rate of repolarization may have 
either an anti-arrhytl~mic or an arrhythmogenic effect, depending upon 
the level of  membrane potential at which the slowing occurs. A broaden- 
ing of  the plateau phase at near-zero membrane potential, where both 
INa and Isi are inactivated in the course of the action potential and 
unable to recover from inactivation, will make the cell refractory against 
premature action potentials for as long as the membrane is kept at this 
depolarized level. If, however, the rate of  repolarization is slowed at 
more negative levels of  membrane potential (negative to about - 20 mV), 
spontaneuous action potentials often arise from the prolonged repolariza- 
tion phase (Cranefield 1977). This is probably the most important cause 
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of the arrhythmias produced by Na channel-gate toxins. The coupling 
interval and the shape of the triggered action potential depend on the 
recovery kinetics of INa and Isi during the after-depolarization. As shown 
by Gettes and Reuter (1974) this recovery is voltage dependent, the time 
constant for recovery OfVma x increasing from less than 20 ms at - 8 0  mV 
to more than 100 ms at - 6 0  mV. When the membrane is further depolar- 
ized to - 9  mV, INa is completely inactivated and the time constant for 
recovery of" Isi ificreases from about 60 ms to about 250 ms. The critical 
toxin-induced prolongation of the repolarization phase which leads to 
re-excitation will therefore depend on the level of membrane potential at 
which the individual agent slows repolarization. In the case of  aconitine 
(see following sections), which slows repolarization at about - 6 0  mV, 
triggered activity occurs as soon as the action potential is prolonged by 
only about 30 ms (cat papillary muscle; Heistracher and Pillat 1962). 
In contrast, veratridine (see following sections), which prolongs the 
repolarization phase already at - 2 0  mV, induces spontaneous activity 
after prolonging the action potential by more than 400 ms (guinea-pig 
papillary muscle; Honer]alger and Reiter 1975). 

After-depolarizations, which result from a delay of the repolarization 
process, have to be distinguished from oscillatory after-potentials, which 
occur after the membrane has repolarized completely (Bozler 1943; 
Ferrier 1977). The latter phenomenon is frequently observed in cardiac 
cells under conditions of Ca overload and in association with after-con- 
tractions (Reiter 1962; Kaufmann et al. 1963). Oscillatory after-poten- 
tials result from an oscillatory inward current that is thought to be trig- 
gered by a phasic release of Ca ions from an intracellular store (Kass et al. 
1978a,b). Thus, an oscillatory Ca release from an intracellular store is 
regarded as the cause for both after-contractions and oscillatory after- 
potentials. Kass et al. (1978b) suggested that the oscillatory inward cur- 
rent may represent either the flow of  cations through a non-selective ion 
channel or the inward movement of  Na ions via an alectrogenic Na-Ca 
exchange mechanism activated by the rise in free intracellular Ca concen- 
tration. Although oscillatory after-potentials are inhibited by the specific 
Na channel blocker TTX (Kass et al. 1978b; Rosen and Danilo 1980), 
oscillatory after-potentials are not likely to be mediated by a delayed 
reopening of Na channels. The work by Kass et al. (1978b) suggests that 
any intervention which suppresses the intracellular Ca release responsible 
for the oscillatory after-potentials will also inhibit oscillatory after-poten- 
tins. TTX has a negative inotropic action (Sect. 4.2.5) and may thus 
inhibit oscillatory after-potentials indirectly by reducing intracellular Ca 
release. 

Cranefield (1977) has extended the term after-depolarization to include 
oscillatory after-potentials. He distinguishes between "early after-depolari- 
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zations", which interrupt the repolarization phase of the action potential, 
and "delayed after-depolarizations", which follow complete repolariza- 
tion. 

4.2 Ceveratrum Alkaloids 

4. 2.1 Sinoatrial Node 

There are no reports on the effects of ceveratrum alkaloids on intracellu- 
lar potentials in the sinoatrial node, but there is some information on the 
effects on atrial rate in the dog heart-lung preparation and in isolated 
guinea-pig atria. Benforado (1957) investigated the effects of  nine cevera- 
trium ester alkaloids (veratridine, cevadine, veratroylzygadenine, vanillo- 
ylzygadenine, germbudine, neogermitrine, germitetrine, protoveratrine A, 
and protoveratrine B) on the dog heart-lung preparation by means of 
electrocardiographic (ECG) recording. Only cevadine produced a consis- 
tent chronotropic effect, i.e. a sinus tachycardia. The general lack of 
chronotropic activity shows clearly that the marked bradycardia seen 
following administration of ester alkaloids to the intact animal has no 
direct cardiac component  (Benforado 1957). The mechanism of the posi- 
tive chronotropic effect of  cevadine is unknown. Cevine, the 3-~-hydroxyl 
isomer of  the alkamine veracevine, causes a bradycardia in the dog heart- 
lung preparation (Moe and Krayer 1943) by an unknown mechanism. 
Germine-3-acetate (31 -540  umol/litre) has a positive chronotropic effect 
on isolated guinea-pig atrium that is abolished by 0.5 t~mol/litre propra- 
nolol (Seifen 1969). This may indicate that germine-3-acetate affects the 
sinoatrial node by releasing catecholamines from intracardiac nerve fibres. 

4.2.2 Atrium 

Horackova and Vassort (1973, 1974) analysed the effect of the alkaloid 
mixture veratrine (veratrine sulphate, Sigma) on small atrial bundles of 
the frog heart. They used the double sucrose-gap technique to record 
both membrane potential and membrane current under membrane-poten- 
tial control. Veratrine prolongs the repolarization phase of the action 
potential, which agrees with the earlier findings that veratrine and one of  
its constituents, cevadine, prolong the action potential in isolated dog 
and rat atrial tissue (Brooks et al. 1955; Matsuda et al. 1953). The addi- 
tion of TTX (3 umol/litre) completely suppresses the effect of veratrine 
on the action potential of frog atrial preparations. Under voltage-clamp 
conditions, veratrine prolongs the phase of  inward current associated 
with moderate step depolarizations from the normal resting potential, 
and this induced inward current decays only slowly after repolarization 
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(inward "tail" current). The veratrine-induced inward current is abolished 
by TTX (3 pmol/litre), and veratrine fails to modify the remaining inward 
current (Isi) if external Na ions are replaced by sucrose. If Na ions are 
replaced by  Li, veratrine increases inward current, as in the presence of  
external NA. These findings indicate that veratrine prolongs the open 
state of  Na channels in frog atrial fibres. During a depolarizing pulse, the 
decay of  INa is slowed by veratrine, indicating that the h gate closes 
more slowly in a fraction of  Na channels. In the modified channels, the 
time constant o f  inactivation (rh) during depolarization by 40 mV from 
the normal resting potential is increased to 1 .1 -1 .9  s (18° -20°C) ,  i.e. 
by 3 orders of  magnitude. There is no obvious effect on the activation 
of  Na channels upon depolarization, but  the removal of  activation after 
repolarization is slowed, as indicated by the inward tail currents that 
decline exponentially with time constants of  0 . 4 -0 .7  s. This shows that 
veratrine has little or no effect on the rate constant am, but  markedly 
reduces ~m 1. These effects are not identical to the effect of  veratridine 
on Na channels in the frog node of  Ranvier (Sect. 3.2), although in both  
types of  cells, veratridine and veratrine, respectively, increase the Na 
inward current associated with the action potential. In the frog node of  
Ranvier, veratridine diminishes both  a m and ~m, i.e, ~'m is increased dur- 
ing depolarization as well as after repolarizatio n 2. Furthermore,  veratri- 
dine completely removes inactivation in the neural Na channels. It is not  
clear whether this discrepancy reflects a genuine difference 0etween 
neural and myocardial Na channels or whether the cardiac effects are due 
to ceveratrum alkaloids other than veratridine present in the alkaloidal 
mixture veratrine. 

Horackova  and Vassort (1973, 1974) were the first to show that the 
effect on sarcolemmal PNa and the positive inotropic effect of  veratrine 
are intimately linked. They found that the positive inotropic effect is 
abolished by TTX (3 umol/litre), which also blocks the veratrine-induced 
prolongation of  the action potential. The positive inotropic effect of  vera- 
trine on frog atrial muscle develops during identical repetitive depolariza- 
tions under voltage-clamp conditions indicating that it is related to the 
change of  membrane current  and not to the veratrine-induced alteration 
of  the duration of  the action potent ial .  As shown by Horackova  and 
Vassort (1974) the veratrine4nduced Na inward current does not  lead to 
an increase in the rate of  force development of  the s imul taneous  contrac- 
tion within a given excitation-contraction cycle. In a previously resting 

1 a m and /3 m are the rate constants for the activation and deactivation, respectively, 
of the m gate of the Na channels (Hod~kin and Huxley 1952). These rate constants 
are related to the time constant of the m gate by the equation 7rn = 1/(am + ~m) 

2 Ulbrieht (1969) uses the symbols c~ s and/3 s for the veratridine-modified Na channels 
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veratrine-treated muscle, the positive inotropic effect appears only during 
the course of several excitations above a critical frequency. This shows 
that the bioelectric and positive inotropic effect of veratrine are linked by 
a slowly responding accumulative process (Sect. 4.2.5). All the findings 
suggest that veratrine increases the force of contraction by increasing 
the intracellular Na concentration through its effect on the Na channels. 
An intracellular accumulation of  Na ions is expected to activate Na-Ca 
exchange (Chap. 5) which could explain the positive inotropic effect. 

4.2. 3 A trioventricular Node 

There are no reports on the effect of ceveratrum alkaloids on the trans- 
membrane electrical activity of cells of  the atrioventricular node. Using 
extracellular recording electrodes, Swain and McCarthy (1957) studied 
the effect of ceveratrum alkaloids on atrioventricular conduction in the 
dog heart-lung preparation. Veratrine, its main constituents veratridine 
and cevadine, and protoveratrine (a mixture of  the protoveratrines A 
and B) each slow atrioventricular conduction. In the case of veratrine 
this effect is particularly pronounced at high frequencies, while at low 
frequencies veratrine may even accelerate atrioventricular conduction. 
At high frequencies the effect of veratrine is characterized by alternation 
of atrioventricular conduction time. The spontaneous firing rate of the 
atrioventricular node recorded after elimination of the activity of  the 
sinoatrial node is enhanced by protoveratrine. 

4. 2. 4 PurMn]e Fibres 

Arbel et al. (1975) studied the effect of veratrine (Sigma) on the isolated 
ventricular conduction system of the dog heart with intracellular micro- 
electrodes. They found that superfusion of Purkinje fibres in the right 
bundle branch with solution containing 0 .1-1 ~g/ml veratrine causes 
a slowing of repolarization that affects the plateau phase and terminal 
repolarization phase of the action potential. The latter effect may result 
in the appearance of a distinct after-depolarization. Higher veratrine con- 
centrations induce oscillatory responses superimposed on the prolonged 
repolarization phase. The after-depolarization was followed in some 
experiments by a slight hyperpolarization. The prolonging effect on the 
repolarization phase is reversed by washout with veratrine-free solution. 
In ventricular muscle cells of the anterior papillary muscle dissected 
together with the bundle branch, the prolongation of  the action poten- 
tial by veratrine is less, both in absolute units and if related to the con- 
trol duration, than that recorded simultaneouSly from Purkinje fibres. 
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The effect on repolarization is interpreted as resulting from the persistent 
activation of Na channels because it is inhibited by TTX (0.3-3 ~mol/ 
litre). Arbel et al. (1975) note that TTX abolished the effect of veratrine 
on repolarization at a time when the Purkinje fibre is still excitable, indi- 
cating that at least a major fraction of the normal Na channels that medi- 
ate the upstroke of the action potential is not blocked by that concentra- 
tion of TTX. One might thus conclude that the Na channels activated by 
veratrine are more sensitive to TTX than normal Na channels. In this 
context it is of interest that even during the normal action potential of 
Purkinje fibres, a component of persistent and TTX-sensitive Na current 
was detected (Attwell et al. 1979); this explains why TTX has a marked 
shortening effect on the normal action potential of Purkinje fibres (Cora- 
boeuf et al. 1979). It appears that, in the absence (Coraboeuf et al. 
1979) as well as in the presence of veratrine (Arbel et al. 1975), the 
effect of TTX on the repolarization phase requires lower concentrations 
than its inhibitory effect on the rate of rise of the action potential. As 
pointed out by A ttwell et al. (1979), such a differential sensitivity does 
not necessarily indicate that the Na channels activated during upstroke 
of the action potential and those activated during the plateau phase differ 
in their sensitivity to TTX. Rather, the blockade of the same small frac- 
tion of Na channels by TTX may result in a larger effect on action potential 
duration than on upstroke velocity, if the small fraction of the Na current 
blocked by TTX is a large fraction of the net inward membrane current 
flowing during the plateau phase. Thus, the different sensitivity to TTX 
of the two phases of the action potential might be due to the fact that the 
upstroke is almost entirely the result of net inward Na current through 
Na channels, whereas during the plateau a considerable fraction of the 
inward ionic current is balanced by outward K current. This considera- 
tion applies equally to the situation when the action potential is pro- 
longed by Na channel-gate toxins. It is therefore not necessary to postu- 
late that veratrine activates an additional population of Na channels dif- 
fering by an abnormally high sensitivity to TTX from normal Na chan- 
nels responsible for the upstroke of the action potential. In the frog node 
of Ranvier, normal and veratridine-modified Na channels were identical 
in their sensitivity to TTX (Ulbricht 1974). 

Veratridine (0.1 umol/litre) has recently been shown to increase the 
force of contraction of canine Purkinje fibres stimulated at 1 Hz (Vassalle 
and Bhattacharyya 1980). The positive inotropic effect, as well as the 
prolongation of the action potential observed in the same study, are 
antagonized by the local anaesthetics procaine or benzocaine. 
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4.25 Ventricular Muscle 

Although the direct positive inotropic effect of  ceveratrum alkaloids had 
already been discovered at the beginning of  this century (see Krayer and 
Acheson 1946), analytical and quantitative studies of  this effect were per- 
formed only in recent years (Reiter 1963; Koch-Weser 1966; Horackova 
and Vassort 1973, 1974; Honerjdger and Reiter 1975, 1977a; Honerjdger 
1977, 1980). An understanding of  the cardiac effects of these alkaloids 
was only possible after Ulbricht (1969) had shown that veratridine alters 
the Na channels of  the excitable membrane. Detailed information on the 
effects of  individual ceveratrum alkaloids on ventricular myocardium was 
obtained in the isolated isometrically contracting papillary muscle of  the 
guinea pig (Honerj~iger and Reiter 1975, 1977a;Honerjdger 1977, 1980). 

In this section, various aspects of  the positive inotropic effect are 
described including the concentration-effect relationships, the modifica- 
tions of individual phases of  the isometric contraction curve and the 
differentiation of  the direct from a neurally mediated positive inotropic 
effect. Effects on transmembrane electrical activity are also described. 
Finally, the mechanism of positive inotropic action is discussed, as well 
as arguments suggesting that the positive inotropic effect is an indirect 
consequence of the modification of sarcolemmal Na channels leading to 
increased Na influx, intracellular Na accumulation and increased Na-Ca 
exchange. 

Positive Inotropic Effect 
The positive inotropic effect of  ceveratrum alkaloids on the isometrically 
suspended guinea-pig papillary muscle results from an increase in the rate 
of force development, while the time to peak force is unaltered or slightly 
shortened (Figs. 2, 3). The term klinotropic was introduced to denote 
influences on the steepness of  the contraction curve (Bohnenkamp 1922; 
Reiter 1972a). The positive inotropic effect of  ceveratrum alkaloids is 
thus of  the positive klinotropic type. With respect to their influence on 
the relaxation phase, two types of  effect can be distinguished. Veratri- 
dine (Fig. 2), as well as cevadine (Reiter 1963; Honerjgiger 1977), verace- 
vine, zygadenine, and veratroylzygadenine (Honerjdger 1977)markedly 
prolong relaxation time and thereby total contraction time. In contrast, 
no major effect on total contraction time is observed under the influence 
of germitrine (Fig. 3), other germine di- and triesters or the protovera- 
trines A and B (Honerjdger 1977). This varied effect on the relaxation 
phase is probably due to the different modifications of the repolarization 
phase by these alkaloids. Furthermore, TTX inhibits the effect of veratri- 
dine on relaxation in addition to that on the repolarization phase sugges- 
ting a causal connection (see Fig. 9). A direct effect on the rate of Ca 
sequestration by sarcoplasmic reticulum thus seems to be ruled out. 
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Fig. 2. The positive inotropic effect of veratridine. Isometric contraction records 
from an isolated guinea-pig papillary muscle contracting at 1 Hz and exposed to 
cumulatively increasing concentrations of veratridine. Note the prolongation of the 
relaxation phase. (From Honerjiiger and Reiter 1975) 
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Fig. 3. The positive inotropic effect of 
germitrine. Isometric contraction records 
from an isolated guinea-pig papillary mus- 
cle contracting at 1 Hz and exposed to 
cumulatively increasing concentrations of 
germitrine. Note that this ceveratrum 
alkaloid does not markedly alter the dura- 
tion of contraction. (From Honerf~'ger and 
Reiter 1977a, by permission of American 
Heart Association) 

Indeed, veratridine (1 #mol/1 to 1 mmol/1) is reportedly without  effect 
on Ca uptake by sarcoplasmic reticulum isolated from rabbit skeletal 
muscle (Johnson and Inesi 1969). 

The positive inotropic activity resides in the alkamine part of  the ceve- 
ratrum alkaloids, but  esterification increases the potency. The alkamines 
zygadenine and veracevine (each at 0.5 mmol/litre) produce a positive 
inotrpic effect, while germine (0.8 mmol/litre) and protoverine (5 mmol/  
litre) are inactive (Honer]iiger 1977). Graded, steady-state positive ino- 
tropic effects can be obtained with different concentrations of  cevera- 
trum alkaloids, suggesting a reversible binding reaction with the receptor 
for the positive inotropic effect. In fact, the positive inotropic effect of  
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Fig. 4. Concentration-effect relationships for the positive inotropic effect of cevera- 
trum ester alkaloids: Abscissa, molar concentration of alkaloid, logarithmic scale; 
ordinate, positive inotropic effect expressed as percent of the maximum increase in 
force of contraction obtained with each alkaloid. Means of at least six guinea-pig 
papillary muscles for each alkaloid (SEM < 7%).Germitetrine (1), protoveratrine A 
(2), germitrine (3), protoveratrine B (4), neogermitrine (5), desacetylgermitetrine (6), 
germerine (7), germbudine (8), veratroylzygadenine (9), neogermbudine (10), vera- 
tridine (11), cevadine (12), zygacine (13), and germine-3-acetate (14). (From Honer- 
]iiger 1977) 

veratridine disappears during washout with alkaloid-free medium, although 
only very slowly (Honer]dger and Reiter 1975). The concentration-depen- 
dence of  the positive inotropic effect obtained with 14 different cevera- 
trum ester alkaloids is shown in Fig. 4. The absolute maximum increase 
in force of  contraction, corrected for cross-sectional area of  individual 
muscles, does not  differ significantly among the various alkaloids. The 
concentration-effect  relationships are nearly parallel and relatively steep. 
Each curve extends over approximately 1.5 logarithmic units. The con- 
centration-effect relationship for the increase of  PNa by veratridine is 
less steep and compatible with a reversible one-to-one binding reaction 
between veratridine molecules and the receptor at the Na channel (Carte- 
rall 1975). Presumably, the concentration-effect curve for the positive 
inotropic effect of  ceveratrum alkaloids is limited by the capacity of  the 
muscle to increase force development and not  by  the ability of  cevera- 
trum alkaloids to increase sarcolemmal PNa (Honer]dger and Reiter 
1975, 1977a). The maximum positive inotropic effect o f  veratridine and 
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germitrine was found to be 68% and 81%, respectively, of that of  the car- 
dioactive steroid dihydro-ouabain tested on the same papillary muscle 
(Honerjdger and Reiter 1975, 1977a). 

Like other depolarizing interventions, veratridine causes a release of 
noradrenaline from intracardiac adrenergic nerve endings (Moss et al. 
1974). The release is mainly of the exocytotic type (Thoa et al. 1975; 
Ross and Kelder 1979). In addition, veratridine has a TTX-resistant, reser- 
pine-like noradrenaline-depleting effect on the storage vesicles, but this 
effect does not normally lead to increased release of noradrenaline from 
the nerve ending (Bdnisch et al. 1980). The positive inotropic effect of 
ceveratrum alkaloids, including veratridine, persists in muscles that have 
been depleted of noradrenaline by reserpine pretreatment (I£och-Weser 
1966; Honerjiiger and Reiter 1975, 1977a). This argues against the par- 
ticipation of a neural mechanism in the positive inotropic action under 
normal conditions (1 Hz contraction frequency). In contrast, concentra- 
tions of veratridine or cevadine exceeding those maximally effective at 
a frequency of 1 Hz increase the force of the rested-state contraction 
entirely by a neurally mediated mechanism (floner]iiger 1980). This posi- 
tive inotropic effect is absent in the presence of a neuroactive, but not 
yet cardioactive concentration of TTX (100 nmol/litre) and in muscles 
from reserpine-pretreated animals. It is inhibited by 50 nmol/litre ( - )p ro -  
pranolol, but not by the same concentration of the dextrorotatory enan- 
tiomer. The concentration-effect relationships for the direct and the 
neurally mediated positive inotropic effect of veratridine are illustrated 
in Fig. 5. While all these findings demonstrate that ceveratrum alkaloids 
affect isolated ventricular mammalian myocardium normally by a direct 
myotropic action, Basseches and Bianchi (1976) conclude, on the basis 
of their experiments on the perfused frog ventricle, that veratridine acts 
by enhancing transmitter release from cholinergic and adrenergic nerve 
fibres. The discrepancy may in part be due to the fact that Basseches and 
Bianchi (1976) used a field stimulus on their preparations which also 
excited both cholinergic and adrenergic nerve terminals. Under these con- 
ditions the frog ventricle may be more sensitive to the neural effects of 
veratridine. 

Transrnembrane Electrical Activity 
Veratridine prolongs the repolarization phase of the action potential in 
guinea-pig papillary muscle (Honerjiiger and Reiter 1975) and the effect 
of a relatively high concentration (2 umol/litre) is illustrated in Fig. 6. 
For this experiment the papillary muscle was stimulated only once every 
5 rain which, because of the frequency-dependence of the inotropic 
action, prevents the positive inotropic effect of veratridine. Secondary 
superimposed effects on the action potential expected to result from 
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Fig. 5. Concentration-effect relationships for the direct (left curve) and neurally 
mediated (right curve) positive inotropic effect of veratridine on guinea-pig papillary 
muscle. The direct (reserpine-insensitive) effect was measured on muscles contracting 
at 1 Hz and exposed to cumulatively increasing concentrations. The presynaptic 
(reserpine-sensitive) effect was obtained on muscles that were incubated at rest with 
a single concentration of veratridine to determine its effect on the subsequent rested- 
state contraction. Number of muscles is given in parentheses. The inset shows a con- 
trol rested-state contraction and a second one amplified by exposure of the resting 
muscle to 30/lmol/litre veratridine (V); calibration: 5 mN (vertical), 0.2 s (horizon- 
tal). (From Honerja'ger 1980) 
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Fig. 6 A--C. Effect of veratridine on the transmembrane action potential of guinea- 
pig papillary muscle and blockade of the effect by TTX. Before (A), 25 min after 
addition of 2 #mol/litre veratridine (B), and 7 rain after additonal application of 
TTX (10 #mol/litre) 1(C). Continuous microelectrode impalement. Stimulation fre- 
quency was 0.2 min- . The broad trace is the differentiation of the upstroke of the 
action potential and was obtained at the faster sweep speed. (From Honerjiz'ger 1977) 

increased  in t racel lu lar  Ca, n o t a b l y  an abbrev ia t ion  o f  the  ac t ion  p o t e n t i a l  
(Isenberg 1975; Bassingthwaighte et al. 1976),  are hence  avoided.  Vera-  
t r id ine  does  no t  a f fec t  the  rest ing m e m b r a n e  po t en t i a l  or  Vma x (Fig. 6). 
The  o v e r s h o o t  o f  the  ac t ion  po t en t i a l  is sl ightly r educed  (by  4 mV) .  The  

p la t eau  phase  assumes  an u p w a r d  concave  c o n t o u r  in con t ras t  to  the  con-  
vex  shape  p resen t  u n d e r  con t ro l  condi t ions .  The  repo la r i za t ion  phase  is 
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slowed particularly as it proceeds from +16 mV to 20 mV and from 
- 6 0  mV to the resting potential level. Additional application of TTX 
(10 gmol/litre) completely restores the original action potential duration 
while reducing Vma x by about 50% (Fig. 6C). The sensitivity of the vera- 
tridine effect to TTX strongly suggests that it is mediated by Na channels. 
As discussed in Sect. 4.2.4, the stronger effect of TTX on repolarization 
than on Vma x does not argue against the identity of  the Na channels 
responsible for the upstroke with those activated by veratridine during 
the plateau phase. A prolongation of the cardiac action potential may 
lead to an extracellular accumulation of K ions resulting in an after- 
depolarization (Cleeman and Morad 1976). In the presence of veratridine 
such an effect may play an additional role during the final phase of 
repolarization. 

Reiter (1963) pointed out that the monoesteralkaloids veratridine and 
cevadine differ in their effect on the repolarization phase. Cevadine pro- 
longs the plateau phase of  the action potential whereas veratridine pre- 
dominantly slows the subsequent phase of normally fast repolarization. 
This difference is reflected by the relaxation phase of the isometric con- 
traction. Cevadine slows the initial part and veratridine delays the final 
part of relaxation (Reiter 1963). 

The effect of the germine triester germitrine on action potential differs 
from that of veratridine in that only the very final phase of repolariza- 
tion is prolonged, causing the appearance of an after-depolarization lasting 
longer than 1 min (Honerj~ger and Reiter 1977a). As shown in Fig. 7, 
germitrine stops the repolarization process at a level about 6 mV positive 
to the resting potential. Thereafter the membrane depolarizes again 
slightly, to a maximum level about 9 mV positive to the resting potential, 
and then repolarizes very slowly. The original level of the resting poten- 
tial is eventually reached after a slight hyperpolarization (Fig. 8). The 
after-depolarization produced by di- and triesters of germine, as well as 
by the two tetraesters of protoverine, protoveratrine A and protovera- 
trine B (Fig. 8) must be distinguished from the oscillatory after-potentials 
observed under conditions of Ca overload. The latter occur after com- 
plete repolarization and in an oscillatory manner: They are of shorter 
duration and not mediated by Na channels (Sect. 4.1.2). The germitrine- 
induced after-depolarization is completely and reversibly blocked by 
10 ~mol/litre TTX, suggesting that it results from a delayed activation of 
Na channels (Honer]alger and Reiter 1977a). The amplitude of the after- 
depolarization increases with the concentration of germitrine. 

The demonstration of the germitrine effect requires a very low stimula- 
tion frequency (cf. Fig. 7). If a germitrine-treated muscle is stimulated 
repetitively at intervals shorter than the duration of the germitrine- 
induced after-depolarization, the resting potential shows a stepwise 
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Fig. 7 a,b. Effect of germitrine on the transmembrane action potential and contrac- 
tion of a guinea-pig papillary muscle stimulated once every 10 rain. The upper panels 
show the action potential and isometric contraction at a slow sweep speed and the 
upstroke of the action potential at a fast sweep speed. The records shown in the 
lower panels were obtained simultaneously with the corresponding upper records on 
a second oscilloscope at higher gain and very slow sweep speed. They show the mem- 
brane potential before and during a period of 1.5 min after the action potential. The 
action potential causes the interruption (arrow) of these traces. Records were obtained 
before (a) and 74 rain after (b) addition of 2/2mol/litre germitrine. Note incomplete 
repolarization (b, upper panel), which gives rise to an after-depolarization (b, lower 
panel). (From Honerja'ger and Reiter 1977a, by permission of American Heart Asso- 
ciation) 

decrease (Honer/alger and Reiter 1977a). This phenomenon is analogous 
to the well-known "summat ion"  of  after-depolarizations observed ifvera- 
tridine-treated nerve fibres are subjected to high-frequency stimulation 
(Ulbricht 1969). In the presence of high germitrine concentrations, the 
repetitive stimulation leads eventually to arrhythmic activity of  the papil- 
lary muscle if the after-depolarization reaches the threshold to eficit an 
action potential. At 80 nmol/litre germitrine, the maximally effective 
inotropic and non-arrhythmic concentration at 1 Hz frequency, the sum- 
mation of  after-depolarizations results in a decrease of  the resting poten- 
tial by about 10 mV in the steady-state (Honer]alger and Reiter 1977a). 

Mechanism o f  the Positive Inotropic Effect 
Studies of  the effects of  veratridine (Reiter 1963; Honerjdger and Reiter 
1975) and germitrine (Honer]ager and Reiter 1977a) revealed a close 
association o f  the bioelectric and inotropic effects in guinea-pig papillary 
muscle that strongly suggests a causal relationship. The results may be 
summarized as follows: 
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Fig. 8. After-depolarizations induced in guinea-pig papillary muscle by various ceve- 
ratrum ester alkaloids. High-gain records of transmembrane potential immediately 
before and after the stimulation of an action potential. The action potential causes 
the interruption of the traces at the time marked 0. Experimental procedure as in 
Fig. 7. The following alkaloid concentrations were used (/~mol/litre): germerine (4); 
neogermbudine (10); germbudine (8); desacetylgermitetrine (4); neogermitrine (2); 
germitrine (2); protoveratfine A (3); protoveratrine B (12); and germitetrine (4). 
Vertical calibration was 5 mV. (From Honer]alger 1977) 

1. Inotropically effective concentrations of veratridine or germitrine also 
produce changes of  the transmembrane electrical activity attributable 

to an increased PNa" 
2. TTX inhibits the bioelectric as well as the positive inotropic effect of  

veratridine or germitfine. 
3. While the bioelectric and inotropic effects appear to occur simultane- 

ously in repetitively stimulated preparations, a closer analysis reveals 
that the positive inotropic effect is in fact delayed with respect to the 
phase of  increased PNa produced by either veratridine (Honer]alger 
1977) or germitrine (Honer]alger and Reiter 1977a)and decays slowly 

in the non-excited muscle. 
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4. As a consequence of the delayed and transient inotropic response to 
the alkaloid-induced PNa' the positive inotropic effect does not mani- 
fest itself when contractions are separated by long rest intervals (e.g., 
5 min). The inotropic effect appears and grows as the frequency is 
increased from 0.004 Hz to 0.5 Hz. 

5. The positive inotropic response to the combination of a ceveratrum 
alkaloid with dihydro-ouabain is much larger than the sum of the 
responses to either drug alone. This synergism points to the impor- 
tance of the intracellular Na concentration in mediating the positive 
inotropic effect of ceveratrum alkaloids. The extent of the alkaloid- 
induced increase in [Nail must be enhanced by an additional inhibi- 
tion of the Na pump. 

TTX has proved a valuable tool in identifying the mechanism of the 
positive inotropic action of ceveratrum alkaloids and Na channel-gate 
toxins in general. The selective action of TTX in blocking Na channels of 
excitable membranes at an extracellular membrane site has been exten- 
sively documented (see Narahashi 1974). While suppressing INa, TTX 
does not significantly affect the slow inward current in frog atrial myo- 
cardium (Tarr 1971) or, at 47 gmol/litre, in dog ventricular myocardium 
(Beeler and Reuter 1970b). With regard to the analysis of changes in con- 
tractile activity it is important to note that TTX does not appear to 
penetrate through the plasmalemma as shown in studies on the squid 
giant axon (Narahashi et al. 1966; Ro]as and Rudy 1976). Thus, TTX is 
unlikely to interfere directly with any intracellular process of excitation- 
contraction coupling or the contraction of the contractile proteins. TTX 
may affect myocardial force of contraction by two recognized mecha- 
nisms 3. It abolishes the positive inotropic effect associated with field 
stimulation by blocking the excitability of intracardiac adrenergic nerve 
fibres (Feinstein and Paimre 1968). This effect requires very low concen- 
trations (31-63 nmol/litre) that have virtually no effect on the Na chan- 
nels of guinea-pig myocardial ceils as judged by the upstroke of the 
action potential (Baer et al. 1976). Similarly low concentrations of TTX 
likewise abolish the presynaptic (or "indirect") positive inotropic effect 
of  veratridine or cevadine (see p. 26). The second mechanism by which 
TTX affects myocardial force involves the blockade of sarcolemmal Na 
channels. At a frequency of 1 Hz, 10 #mol/litre TTX reduces 9max by 
about 50% and peak force of contraction by about 30% in noradrenaline- 
depleted guinea-pig papillary muscle (Honerjiiger and Reiter 1975). This 
direct negative inotropic action has to be taken into account when TTX 
is used as an antagonist of  positive inotropic agents. 

3 The citrate buffer present in the commercial preparation of TTX does not cause 
a significant inotropic effect of its own when tested at a concentration correspond- 
ing to 15/~mol/litre TTX (Honer]iiger and Reiter 1975) 
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The antagonistic effect of  TTX against both the bioelectric and ino- 
tropic effects of  veratridine is illustrated in Fig. 9. TTX completely and 
reversibly abolishes the positive inotropic effect of  veratridine. The 
negative inotropic effect of  TTX in the presence of  veratridine is much 
larger than that observed in its absence, showing the specific nature of  
the antagonism. As Fig. 10 shows, TTX antagonizes the positive ino- 
tropic effect of  ceveratrum alkaloids selectively. The effects of  represen- 
tatives of three other classes of  inotropic agents, a cardioactive steroid, 
a catecholamine and a methylxanthine are not, or much less, inhibited 
by TTX. Interestingly, the positive inotropic effect of  dihydro-ouabain, 
which also depends critically on Na influx (Reiter 1972a), is less sensi- 
tive to TTX than that of  the ceveratrum alkaloids veratridine, cevadine, 
and germitrine. In the case of  the steroid, the increase in intracellular 
Na concentration results from inhibition of the Na pump, and the extent  
of  this increase is diminished if passive Na influx is inhibited by TTX. 
This might explain the slight antagonism observed (Fig. 10). TTX is 
expected to be more effective in reducing the alkaloid-induced Na influx 
than the normal Na influx, on which the inotropic action of the steroid 
may depend, for the following reasons: Firstly, the normal Na influx 
probably occurs through TTX-sensitive Na channels as well as through 
TTX-insensitive ion channels such as slow (Ca, Na) channels (Reuter 
and Scholz 1977). Secondly, the Na influx induced by Na channel-gate 
toxins during the repolarization phase is probably more strongly inhibi- 
ted by TTX than the Na influx occurring during the upstroke, as sug- 
gested by the higher TTX sensitivity o f  the repolarization phase (Sect. 
4.2.5). 
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Fig. 9. Reversible inhibition of the effects of veratridine on action potential and con- 
traction by TTX in guinea-pig papillary muscle. The records were obtained (from left 
to right) before drug application, 50 min after addition of veratridine ( 1.6 gmol/litre), 
5 rain after additonal application of TTX (16/~mol/litre), and after washout of TTX 
during maintained exposure to veratridine. Muscle was from a reserpine-pretreated 
animal. Contraction frequency was 1 Hz. (From Honer]iiger and Reiter 1975) 
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Fig. 10. Specificity of TTX as an antagonist of inotropic drugs. Concentration-effect 
relationships obtained in the absence and presence of TTX (10//mol/litre) by cumu- 
lative drug additions. Ordinate: positive inotropic effect expressed as percent of the 
maximum effect obtainable under each condition, except in the case of theophylline 
where the absolute increase of force of contraction is given; abscissa: drug concentra- 
tion in logarithmic scale expressed in units of half-maximally effective concentrations 
in the absence of TTX. Means -+ SEM {vertical bars] of at least six guinea-pig papillary 
muscles. For the ceveratrum alkaloids (cevadine, veratridine, and germitrine) control 
and TTX experiments were done on separate muscles. Each of the other drugs was 
tested, both in the absence and presence of TTX on the same muscle. Contraction 
frequency was 1 Hz. (From Honer]iiger 1977) 
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The inhibitory effect of 10 tsmol/litre TTX is fully surmountable by 
increases in the concentration of the ceveratrum alkaloids (Fig. 10). 
This should not  be taken as evidence for a competitive type of antago- 
nism between the alkaloids and TTX. The antagonism between Na chan- 
nel-gate toxins and TTX at the level of Na channels is non-competitive 
(Sect. 3.10.1). The inotropically effective range of  alkaloid concentra- 
tions probably modifies only a small fraction of  Na channels, and this 
fraction can still be affected by the gate toxins at a TTX concentration 
(10/~mol/litre) that blocks only about 50% of the Na channels (Honer- 
]iiger and Reiter 1975). 

Although the inhibition of veratridine effects by TTX suggests a causal 
relationship between the bioelectric and the inotropic effect of veratri- 
dine, it remains uncertain whether veratridine increases force of contrac- 
tion by increasing Na influx or by prolonging the repolarization phase 
(thereby indirectly prolonging the phase of Ca influx through slow chan- 
nels). However, the prolongation of the action potential, under the con- 
ditions of Fig. 9, is restricted to negative levels of  membrane potential 
where a prolongation of repolarization per se produces little positive ino- 
tropic effect (Wood et al. 1969). In the case of germitrine the positive 
inotropic effect is even associated with a marked shortening of  the action 
potential duration, in addition to the reduction of the resting membrane 
potential reflecting the increased PNa (Honer]iiger and Reiter 1977a). 
This rules out a secondary effect on Isi as a cause of  the positive inotropic 
effect for this ceveratrum alkaloid. The strongest evidence in support of 
the hypothesis that ceveratrum alkaloids act by increasing inward Na cur- 
rent is provided by the voltage-clamp experiments of  Horackova and 
Vassort (1973, 1974) on frog atrial muscle (Sect. 4.2.2). 

The germitrine4nduced after-depolarization is particularly suitable for 
a study of the temporal relationship between the phase of  increased PNa 
and the positive inotropic effect. By choosing an appropriate alkaloid 
concentration, the amplitude of  the after-depolarization can be adjusted 
to a level which is well below the activation threshold for Isi ( -  40 mV; 
New and Trautwein 1972) and which leaves the muscle electrically excit- 
able throughout the course of  the after-depolarization. Test contractions 
elicited at various times during or after the alkaloid-induced after-depolari- 
zation (Fig. 11) reveal a phase during which the ability of the muscle to 
develop force is increased. This positive inotropic influence reaches its 
maximum 1 min after the conditioning stimulus and thereafter decays 
with a half-life of 2.5 min. In contrast, the after-depolarization attains a 
peak value about 10 s after the conditioning action potential and decays 
with a half-life of 32 s. Thus the phase of increased PNa clearly precedes 
the phase of increased contractility. This is compatible with a role of the 
intracellular Na concentration in mediating the positive inotropic effect. 
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Fig. 11. Temporal relationship between the germitrine-induced after-depolarization 
and the germitrine-induced positive inotropic effect as determined by single test con- 
tractions during and after the after-depolarization. Ordinate: membrane potential dur- 
ing the after-depolarization which followed an action potential elicited at 0 time ( 100% 
= 8.1 -+ 0.4 mV) (o) and peak force of test contraction minus peak force of prior rested- 
state contraction (100% = 79 + 16 rag) (o). The time-course of the after-depolariza- 
tion is shown by means + SEM of 27-29 records obtained from six muscles incubated 
with 2 #mol/litre germitrine for at least 1 h. The positive inotropic effect (means + 
SEM of six to eight muscles) was determined in different muscles. Inset shows enhance- 
ment of test contraction (trace 2) elicited 1 rain after the conditioning rested-state 
contraction (trace I), i.e. during the falling phase of the after-depolarization. (From 
Honer]~'ger and Reiter 1977a, by permission of American Heart Association) 

[Na]i will continue to rise during the period of  increased PNa and sub: 
sequently decline owing to the activity o f  the Na pump. Direct verifica- 
tion of  this point by the use of  an intracellular Na-sensitive micro-elec- 
trode would be o f  great interest. 

It is generally accepted that the contraction of  cardiac cells is directly 
linked to the increase in free Ca concentration of  the myoplasm. An 
increased intracellular Na concentration can mediate a positive inotropic 
effect indirectly by increasing the transsarcolemmal influx of  Ca ions, 
thereby loading cellular Ca stores that release Ca during contraction. 
I f  Na-Ca exchange is enhanced by the depolarization produced by the 
action potential (Sect. 5.3.4; Mullins 1979), an increased level of  [Na]i 
may not only increase the steady influx of  Ca ions but especially that 
occurring during the action potential. The evidence suggesting the exis- 
tence of  a Na-Ca exchange mechanism in the plasmalemma is discussed 
in Chap. 5. 



36 P. Honerj~iger 

Few attempts have been made to rule out alternative mechanisms of the 
positive inotropic effect by direct biochemical experiments. The activity 
of  Na, K-ATPase isolated from guinea-pig hearts is not affected by con- 
centrations of  ceveratrum alkaloids (veratridine, cevadine, protoveratrine 
A and B, germitetrine, desacetylgermitetrine) that are much higher than 
those causing a maximum positive inotropic effect on guinea-pig papil- 
lary muscle (Portius and Repke 1964). Veratridine, cevadine, and proto- 
veratrine lack an inhibitory effect on the active Na-K transport of  ery- 
throcytes (Kahn and Acheson 1955). Sperelakis and Pappano (1969) 
noted that veratrine did not significantly change the internal K and Na 
content of intact embryonic chick hearts during 15 min, which argues 
against inhibition of  the Na pump. There is apparently no report on 
whether inotropically effective concentrations of ceveratrum alkaloids 
influence the concentration of  cyclic nucleotides in myocardial cells. 
However, it should be noted that many functional characteristics of the 
inotropic action of ceveratrum alkaloids (and other Na channel-gate 
toxins) differ clearly from those associated with agents thought to act by 
increasing the cellular content of cyclic adenosine 3' ,5 '-monophosphate 
(cAMP) (Sect. 5.1). 

4. 2. 6 Cardiac Cells in Culture 

During the embryonic development of  chick and rat hearts, Vma x of  the 
cardiac action potential and the susceptibility of action potential and 
contraction to TTX were shown to increase progressively (Bernard and 
Gargouil 1968; Ishirna 1968; Shigenobu and Sperelakis 1971; Sperelakis 
and Shigenobu 1972; Pappano 1972; McDonald et al. 1972; DeHaan 
et al. 1975; McDonald and Sachs 1975; Ii]ima and Pappano 1979). Thus, 
in the early embryonic stage ( 2 - 4  days in ovo), cardiac cells seem to lack 
fast Na channels. The action potential is mainly due to the opening of 
a slow Na channel insensitive to TTX (Sperelakis and Shigenobu 1972). 
Cardiac cells cultured in the form of  monolayers invariably display TTX- 
insensitive action potentials even if the cells are taken from embryos older 
than 5 days. Cultured in aggregates, they generally retain the TTX sensi- 
itivity of the embryonic heart from which they were derived (McDonald 
et al. 1972;McLean and Sperelakis 1976). 

Sperelakis and Pappano (1969) investigated the effects of veratrine 
and veratridine on ventricular myoblasts obtained from 7-15-day chick 
embryos, but grown in monolayers. Veratridine (1 .5-15  ~mol/litre) 
depolarizes the cells within a few minutes to membrane potentials of 
about - 1 2  mV, and action potentials and beating cease. Before the 
depolarization begins, the repolarization phase of  the action potential is 
prolonged by veratridine. TTX (63 ~mol/litre), although without effect 
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on action potential magnitude or Vma x, prevents the depolarization and 
prolongation of the action potential by veratridine. The depolarization 
by veratridine also occurs in Na-free Li solution. Veratridine reduces the 
membrane resistance. This is not prevented by TTX and is attributed to 
an increased K permeability. In 3- and 16-day aggregates of chick embry- 
onic heart cells, veratridine produces depolarization and blocks the elec- 
trical and mechanical activities at concentrations exceeding 10 ~mol/litre 
(Romey et al. 1980). Romey et al. (1980) suggest that, like other Na 
channel-gate toxins, veratridine reveals Na channels that are normally in 
a silent form in monolayers or 3-day aggregates. 

The activation of  Na channels by veratridine leads to an increase of Na 
influx into the myoblasts as determined with 22Na (Fosset et al. 1977). 
The effect is inhibited by TTX, the half-maximally effective concentra- 
tion being 6.6 nmol/litre at a veratridine concentration of 22 ~mol/litre 
(Fosset et al. 1977). This degree of TTX sensitivity is similar to that of  
Vma x in cells at later stages of embryonic development (McDonald et al. 
1972; Romey et al. 1980), but much higher than that of  Na channels in 
adult guinea-pig ventricular myocardium (Baer et al. 1976; see also Fig. 6). 
Veratridine increases the influx of  Ca ions in addition to that of  Na ions 
(Sect. 5.3.2). Protoveratrine B also increases the Na uptake by cardiac 
cells of  the chick embryo (Couraud et al. 1976). 

4.3 Batrachotoxin 

Batrachotoxin belongs to the most toxic substances known. Its lethal 
effect on mammals, which occurs after parenteral administration of  less 
than 1 pg/kg or 1.86 nmol/kg, appears to be mainly due to its cardiac 
arrhythmogenic action (Daly and Witkop 1971). A study on anaesthetized 
rabbits showed that batrachotoxin produces a variety ofventricular arryth- 
mias, in addition to complete block of atrioventricular conduction (Kay- 
aalp et al. 1970). Predominant effects are the activation of multifocal 
ventricular ectopic beats interrupted by transient ventricular fibrillation 
or tachycardia. The terminal event is ventricular fibrillation. 

4.3.1 Purkin]e Fibres 

In spontaneously active Purkinje fibres isolated from the dog heart, the 
initial effect of batrachotoxin on the action potential is a prolongation 
of  the final phase of  repolarization (Hogan and Albuquerque 1971). 
It occurs at the lowest tested concentration of  1.9 nmol/litre at a time 
when there are no changes in the maximum diastolic membrane potential, 
Vmax, overshoot of  the action potential, or rate of  spontaneous diastolic 
depolarization. With increasing time of  exposure to the toxin, the delay 
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of repolarization progresses until the membrane fails to repolarize com- 
pletely during the diastolic interval. At this stage the upstroke velocity 
and overshoot of the action potential are depressed, as expected from 
the inactivating influence of  depolarization. The membrane potential of 
fibres depolarized by batrachotoxin is restored if the external Na con- 
centration is reduced to 1 mmol/litre. At a concentration of 4.7 ~mol/ 
litre, TTX prevents the effect of  batrachotoxin (1.9 nmol/litre) on the 
repolarization phase for as long as 30 min. These results clearly indicate 
the involvement of  Na channels in the effect of  batrachotoxin on the 
Purkinje fibre membrane. [logan and Albuquerque ( 1971 ) point out that 
"TTX did not  block the action potential of the Purkinje fiber in a con- 
centration which antagonized BTX [batrachotoxin] action". According 
to these authors, "resting sodium channels are opened by BTX" and 
"resting sodium channels in the electrogenic membrane may be function- 
ally different from the sodium channels for membrane excitation". The 
TTX concentration used (4.7 ~mol/litre) causes a partial inhibition of  
Vma x in dog Purkinje fibres (approx. 50%, Coraboeuf et al. 1979). That 
this concentration causes complete inhibition of the effect of  batracho- 
toxin, as opposed to partial inhibition of Vma x, does not argue against 
the identity of  the Na channels involved in generating the action poten- 
tial with those modified by batrachotoxin, as discussed in connection 
with the effect of  veratrine on dog Purkinje fibres (Sect. 4.2.4). Hogan 
and Albuquerque (1971) state that "the same sequence of alterations 
produced by BTX on the Purkinje fiber membrane was observed whether 
or not the tissue was being driven". Since their preparations were repor- 
tedly spontaneously active, this does not rule out a dependency of the 
effect of batrachotoxin on electrical activity. Such a dependency was 
reported to exist in the eel electroplaque (Bartels-Bernal et al. 1977), frog 
node of Ranvier (Sect. 3.3), and guinea-pig papillary muscle (Sect. 4.3.2). 

4.3.2 Ventricular Muscle 

similar to its effect on Purkinje fibres, batrachotoxin prolongs the repolari- 
zation phase of the action potential in guinea-pig muscle, and this effect 
is inhibited by TTX (Honer]iiger and Reiter 1977b). The results indicate 
that batrachotoxin causes its effect on the ventricular action potential by 
selectively prolonging the open state of Na channels. At low concentra- 
tions of the alkaloid (0 .75-60  nmol/litre), the effect on repolarization 
occurs only after a series of conditioning action potentials. The first 
action potential after addition of  batrachotoxin is unaltered even after 
prolonged exposure of the resting muscle to the toxin. During repetitive 
stimulation, the effect on action potential duration develops at a progres- 
sively increasing rate and eventually gives rise to spontaneous depolariza- 
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tions arising from the prolonged repolarization phase. For a given effect, 
measured in terms of  the prolongation of the action potential or the first 
appearance of  a coupled extrasystole, the product of batrachotoxin con- 
centration and number of preceding action potentials during exposure to 
that concentration of  batrachotoxin is virtually constant. The effect thus 
fits the quantitative requirements of an irreversible one-to-one binding 
reaction of  batrachotoxin molecules with sarcolemmal receptors that are 
accessible only during the action potential. As in the frog node of Ranvier 
(Sect. 3.3), the binding of  batrachotoxin seems to require specifically the 
opening of Na channels. Prolonged depolarization by exposure to a high-K 
solution does not lead to the expression of the batrachotoxin effect in 
guinea-pig papillary muscle. Removal of batrachotoxin from the bathing 
solution during continued stimulation of the muscle causes the effect to 
decrease gradually over several hours, indicating a very slow dissociation 
of  batrachotoxin. The dissociation of batrachotoxin (as manifested by 
the disappearance of its effect on the repolarization phase) does not 
require activity and can thus be demonstrated, even in the presence of  
toxin, simply by resting the muscle. 

Concomitantly with the prolongation of the action potential, batracho- 
toxin produces a positive klinotropic and positive inotropic effect and 
prolongs relaxation time in guinea-pig papillary muscle (Honer]iiger and 
Reiter 1977b). These effects persist in preparations from reserpine-pre- 
treated animals, and are prevented by the presence of TTX ( I0  #tool/ 
litre). The sensitivity to TTX suggests that the positive inotropic effect 
results from the increased Na influx induced by batrachotoxin. A reser- 
pine-resistant, TTX-sensitive positive inotropic effect of  batrachotoxin is 
also observed in the isolated cat papillary muscle (Shotzberger et al. 
1976). In guinea-pig papillary muscle (Honer]iiger and Reiter 1977b), 
the rested-state contraction elicited during incubation of the resting 
muscle with high concentrations of  batrachotoxin (0.6-1.2/~mol/litre) is 
increased in amplitude and rate of rise. This inotropic effect is absent in 
muscles from reserpine-pretreated guinea-pigs, pointing to the involve- 
ment  of  endogenous noradrenaline as in the case of high concentrations 
of  veratridine or cevadine (Sect. 4.2.5). 

4.4 Aconitine 

4.4.1 Sinoatrial Node and Atrium 

In a preparation consisting of  the sinoatrial node and extranodal tissue of 
the rabbit heart, aconitine (1 ug/ml) produces a bigeminal rythm, fol- 
lowed by flutter and irregular activity (Matsumura and Takaori 1959b). 
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The intracellular records demonstrate that both nodal and extranodal 
fibres participate in the abnormal rhythm. 

4.4.2 Purkinje Fibres 

Aconitine produces very similar effects on Purkinje fibres isolated from 
dog (Schmidt 1960), calf or sheep hearts (Heistracher and Pillat 1962). 
Aconitine increases the rate of spontaneous depolarization thus causing 
a positive chronotropic effect on isolated Purkinje fibres. At this stage of 
action, parameters of the transmembrane action potential are not altered. 
Subsequently, aconitine selectively slows the terminal part of repolariza- 
tion (at about - 6 0  mV) which results in the appearance of after-depolari- 
zation. The duration of the after-depolarization increases from beat to 
beat until premature action potentials arise from the prolonged repolari- 
zation phase. Following a stage of bigeminy and trigeminy, a flutter-like 
activity results and, finally, the preparations are arrested at a reduced 
membrane potential ( - 5 5  to - 4 5  mV). Decreasing the extracellular Na 
concentration to 10% of the normal level causes an immediate, though 
transient, interruption of the aconitine-induced spontaneous activity 
(Schmidt 1960). 

Peper and Trautwein (1967) analysed the effect of aconitine on sheep 
Purkinje fibres with a voltage-clamp technique. In the presence of aconi- 
tine (1 ug/ml) the current-voltage relation, obtained by changing the 
membrane potential at constant and relatively slow rates, shows an abnor- 
mal inward current with a maximum near - 60 inV. Application of TTX 
(63 umol/litre) blocks this current as well as the normal excitatory Na 
current. In Na-free solution, aconitine fails to affect the current-voltage 
relation. These findings suggest that aconitine abolished the inactivation 
gate in a fraction of Na channels, thus causing a persistently activated 
component of PNa" 

4.3.3 Ventricular Muscle 

Matsuda et al. (1959) describe the effects of amorphous aconitine 
(Merck) and of the purified alkaloids aconitine and mesaconitine on iso- 
lated right ventricular tissue of the dog heart. No essential difference was 
noted among the three alkaloidal preparations. A few minutes after drug 
administration (0.01-0.1 ug/ml), the muscle suddenly undergoes a flutter- 
like, automatic and rapid excitation. Non-stimulated, resting preparations 
do not become spontaneously active if aconitine is added, and aconitine 
does not affect the resting transmembrane potential in these fibres. The 
automatic activity is shown to result from one of two mechanisms. Most 
frequently, the first visible effect is a decrease of the resting potential, 
followed by oscillatory potential changes following each action potential 
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and superimposed on the decreased level of resting potential. Schrnidt 
(1960), in his study on dog ventricular trabeculae, reported no oscillatory 
after-potentials under the influence of aconitine, but only a slowing of  
the final repolarization phase, which then led to premature action poten- 
tials. This mechanism of arrhythmogenesis was observed less frequently 
by Matsuda et al. (1959). 

Heistracher and Pillar (1962) report the effects of aconitine (0 .05-  
1.0 gg/ml) on transmembrane potentials of the isolated cat papillary 
muscle. The initial electrophysiologic effect appears to be a prolongation 
of  the repolarization phase near its end (after-depolarization). The slow- 
ing ofrepolarization is less abrupt and less pronounced than that observed 
in dog ventricular muscle (Schmidt 1960). The after-depolarization may 
escape detection if the arrhythmogenic effect of  aconitine develops 
rapidly. In the second stage of  aconitine action, extrasystoles appear in 
the form of bigeminy or trigeminy. The premature action potentials seem 
to arise from the aconitine-induced after-depolarization. Subsequently, 
the papillary muscles show sustained high-frequency activity. The phase 
of  automatic activity is followed by the termination of activity owing to 
a reduction of the resting membrane potential to about - 5 5  mV in right 
ventricular muscle isolated from the rabbit heart (Matsumura and Takaori 
1959a). An as yet unexplained effect of aconitine is the appearance of  
spike-like depolarizations arising from the normal resting potential and 
having an amplitude of up to 40 mV (Heistracher and Pillat 1962). 

In the isolated cat papillary muscle, the time to development of aconi- 
tine-induced automaticity is inversely related to aconitine concentration 
(0.25-1 ~g/ml), diastolic tension (60%-140% or peak tension) and 
stimulation frequency ( 1 - 4  Hz) during the preautomatic period (Tanz 
et al. 1973). As also noted by earlier investigators, the aconitine arrhyth- 
mia is not  reversed by repeated washing of  the preparations. The cumula- 
tive effect of repetitive stimulation may indicate that myocardial Na 
channels, like neural Na channels (Mozhayeva et al. 1977), interact with 
aconitine only when they are in the open configuration. The aconitine- 
induced arrhythmia israpidly abolished by 3/~mol/litre TTX (Tanz 1974). 

Although aconitine clearly induces a long-lasting activation of Na 
channels in Purkinje fibres (Peper and Trautwein 1967) and probably 
also in ventricular muscle, there is apparently no evidence that aconitine 
produces a positive inotropic effect. In this respect, aconitine differs from 
all other cardioactive Na channel-gate toxins reviewed in this chapter. 
It may seem questionable therefore whether an increase in sarcolemmal 
Na t~ermeability is strictly linked to positive inotropic action. One pos- 
sible explanation for the failure of aconitine to produce a positive ino- 
tropic effect under the conditions used by previous investigators (e.g., 
Fig. 1 in Tanz et al. 1973) is that the transition to the state ofextrasystoles 
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and spontaneous activity occurs without a sufficiently long-lasting phase 
during which aconitine increases the Na influx associated with each 
~iction potential, but does not yet produce extrasystoles. In fact, while 
the stage of action characterized by the prolonged repolarization phase is 
easily demonstrated with many other Na channel-gate toxins, this has 
proven difficult with aconitine (Heistracher and Pillat 1962). A careful 
analysis o1~ the electrophysiologic and inotropic effect of aconitine in the 
prearrhythmic phase of action is clearly necessary to settle this point. 
We have recently observed that the arrhythmogenic effect of aconitine 
(0.5-1.0 ~mol/litre) is preceded by a small, but distinct positive klino- 
tropic and inotropic effect in guinea-pig papillary muscle (P. Honerj@er 
and A. Meissner, unpublished work). 

4.5 Grayanotoxins 

4.5.1 Sinoatrial Node 

In the isolated sinoatrial node preparation of the rabbit heart, grayano- 
toxin I (0.1 mmol/litre) decreases the maximum diastolic potential, 
increases the rate of spontaneous diastolic depolarization, thereby caus- 
ing an increase in firing frequency and, finally, inhibits the action poten- 
tials (Seyama 1978). These effects are fully reversible by washing with 
toxin-free medium. TTX (10 umol/litre) abolishes all effects on the trans- 
membrane potentials, indicating that grayanotoxin I activates Na chan- 
nels in the sinoatrial node. Thus, although this cell type is characterized 
by TTX-resistant electrical activity, the presence of Na channels can be 
demonstrated by pharmacological (Kreitner 1975) or electrical hyper- 
polarization (Noma et al. 1977) or by applying the Na channel-gate toxin 
grayanotoxin I (Seyama 1978). 

4.5.2 Atrium 

In resting right atrial strips obtained from the rabbit heart, grayanotoxin I 
(0.1 mmot/litre) produces a marked depolarization (by 26 mV), which 
is reversed by the withdrawal of external Na ions or the application of 
10 tamol/litre TTX (Seyama 1978). A less-pronounced depolarization is 
observed with lower concentrations of grayanotoxin I or a-dihydro-gray- 
anotoxin II applied to isolated and stimulated left atria of the guinea-pig 
(Akera et al. 1976; Ku et al. 1977). The addition of TTX (0.8 umol/litre) 
reverses the depolarization produced by grayanotoxin I (0.5/amol/litre) 
and partially restores the amplitude of the action potential, which is 
reduced by grayanotoxin I owing to the reduced resting potential (A kera 
et al. 1976). Thus grayanotoxin I presumably induces a persistent activa- 
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tion of  Na channels resulting in depolarization of  the resting membrane. 
Concentrations of grayanotoxin I that alter themembrane  potential also 
cause a positive klinotropic and positive inotropic effect under isometric 
conditions (Akera et al. 1976). This effect is inhibited by TTX (0.8/amol/ 
litre). The racemic mixture of  propranolol (10 ~mol/litre) also inhibits 
the positive inotropic effect of  both grayanotoxin I and a-dihydro-gray- 
anotoxin II (Ku et al. 1977). These authors state "that a portion of  the 
effects of  grayanotoxins on isometric contractile force may be mediated 
by a beta-adrenergic mechanism". However, the Na channel blocking 
action of propranolol (Morales-Aguillera and Vaughan Williams 1965) 
might be responsible for this antagonism. At 5 ~mol/litre, grayanotoxin I 
produces arrhythmia in isolated guinea-pig left atria (Akera et al. 1976). 
The grayanotoxins enhance the ouabain-sensitive uptake of the potassium 
analog rubidium by guinea-pig ventricular slices, which is interpreted as 
a stimulation of  the Na-K pump secondary to the toxin-induced increase 
of  Na influx (Ku et al. 1977). The grayanotoxins do not affect Na, K- 
ATPase isolated from rat brain or guinea-pig heart (Akera et al. 1976; 
Ku et al. 1977). 

4.5.3 Atrioventricular Node 

There are no reports on the effect of  grayanotoxins on the transmem- 
brane electrical activity of  cells of the atrioventricular node. In the dog 
heart-lung preparation, examined with extracellular electrodes, grayano- 
toxin I (andromedotoxin) prolongs the atrioventricular conduction time 
and increases the spontaneous firing rate of  the atrioventricular node 
if the faster rhythm of  the sinoatrial node is suppressed (Swain and 
McCarthy 1957). 

4. 5. 4 Purkin/e Fibres 

Conduction through the Purkinje system is reported to be slowed by 
grayanotoxin I (andromedotoxin) in the dog heart (Swain and McCarthy 
1957). This occurs at a time when ventricular myocardial conduction is 
not affected. Possibly, the effect on Purkinje fibre conduction is related 
to a depolarization as observed in atrila cells (Sect. 4.5.2). 

4. 5. 5 Ven tricular Muscle 

Hotta et al. (1980) studied 18 structurally related grayanotoxins which 
produced a concentration-dependent reversible positive inotropic effect 
on isolated guinea-pig papillary muscle. 
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4.6 Scorpion Toxins 

4. 6.1 Isolated Mammalian Heart 

Corrado et al. (1968) investigated the effects of crude dried venom of 
the Brazilian scorpion Tityus serruluatus on the isolated guinea-pig heart. 
In final concentrations of  approximately 1 gg/ml, the venom produces 
a short-lasting bradycardia followed by an increase of  force and frequency 
of  contractions. The effects are reversible and reproducible in the same 
preparation. The bradycardia is blocked by atropine and potentiated by 
neostigmine. The positive chronotropic and inotrpic action is abolished 
by propranolol or bretylium. It is absent in hearts of reserpine-pretreated 
guinea pigs. Hexamethonium neither affects the bradycardia nor the 
tachycardia in doses which abolish the nicotine-induced bradycardia and 
positive inotropic effect. Hence the venom probably acts on the post- 
ganglionic nerve terminals to cause the release of  acetylcholine and nor- 
adrenaline. Langer et al. (1975) have shown that a purified toxin from 
T. serrulatus increases the release of  3 H-noradrenaline from guinea-pig 
atria. Less extensive experiments were performed by other investigators 
with venoms of Leiurus quinquestriatus, Buthus minax, B. occitanus, and 
Androctonus australis HECTOR using the isolated heart of rabbits or 
guinea pigs. Similar to Tityus scorpion venom, the other scropion venoms 
seem to alter cardiac function mainly through the release of  neurotrans- 
mitters from intracardiac nerve fibres (Zlotkin et al. 1978). 

Coraboeuf et al. (1975) used the isolated rat heart to study the effects 
of pure ScTXIt on contraction and transmembrane electrical activity 
(at 24°-25°C).  ScTXII produces a reserpine-resistant positive inotropic 
effect that is associated with an increase in the height of the plateau of 
the ventricular action potential and a prolongation of the repolarization 
phase. The effect on the action potential persists for hours following 
a single injection of toxin into the coronary arteries. Resting potential 
and Vma x are only slightly altered. The lengthening of the action poten- 
tial produced by ScTXII is greatly diminished by injections of TTX, Ca- 
rich medium or procaine, and it is prevented during perfusion with 
low-Na solution. The atrial action potential is also prolonged by ScTXII. 
According to Coraboeuf et al. (1975), ScTX n increases plateau height 
by slowing down the inactivation of Na channels or by inducing an 
incomplete Na inactivation. The effect on the action potential might 
indirectly favour the penetration of Ca through the slow channel because 
of  a stronger and longer-lasting activation of the potential- and time- 
dependent slow inward Ca current, and this could explain the positive 
inotropic effect. The authors do not discuss the possibility of  increased 
Na-Ca exchange. 
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Confirming earlier investigations, Coraboeuf et al. (1975) find that 
ScTXII produces a positive inotropic effect also on isolated guinea-pig 
and rabbit hearts, but that this effect is absent in preparations obtained 
from reserpine-pretreated animals. Guinea-pig and rabbit ventricular 
action potentials are insensitive to the scropion toxin in doses that are 
markedly effective in the rat heart. As pointed out by Coraboeuf et al. 
(1975), this suggests the existence of  species differences in the sensitivity 
of  myocardial Na channels to scorpion toxin. 

4.6.2 Cardiac Cells in Culture 

ScTXII has marked effects on the mechanical and electrical activity of  
nerve-free myoblast cultures derived from the chick embryonic heart 
(Fayet et al. 1974; Bernard and Couraud 1979). ScTXII increases the 
frequency of  the spontaneous contractions, and this effect is followed by 
cell fibrillation and contracture (Fayet et al. 1974). The bioelectric cause 
of  these phenomena was elucidated by Bernard and Couraud (1979). 
They used cells from 11-day-old chick embryonic hearts cultured as 
aggregates in suspension. With their culture technique, they obtain two 
populations of  cells which differ in their value of Vma x ("fast" and 
"slow" cells). The effect of  ScTXII depends on the type of cell. 

Fast Cells. This population of cells has resting potentials between - 4 0  
and - 7 2  mV. Vma x exceeds 15 V/s and is significantly related to the 
level of the resting potential, reaching a value of 125 V/s at the most 
negative resting potential. TTX (0.4 #mol/litre) reduces Vmax by about 
90%. ScTXII (30 nmol/litre) causes approximately a tenfold increase in 
the duration of  the action potential, while it does not significantly alter 
Vma x. TTX (0.1 t~mol/litre) rapidly suppresses the toxin-induced modi- 
fication of  the action potential. D 600, the methoxy derivative of verapa- 
mil, at a concentration of  1 tsmol/litre, does not prevent prolongation of 
the action potential by ScTXII. These results suggest that ScTXtI prolongs 
the open state of  Na channels in cultured cells with expressed Na chan- 
nels, perhaps by slowing inactivation as in neural Na channels (Sect. 3.6). 

Slow Cells. This population of  cells has resting potentials between - 4 0  
and - 62 mV, and Vma x is 10 V/s or less, irrespective of the resting poten- 
tial, and unaffected by TTX at 0.4 pmol/litre. The low value of Vmax, its 
lack of  correlation with the level of the resting potential, and its insensi- 
tivity to TTX indicate that the upstroke of  the action potential is not  
mediated by fast Na channels. In these cells, ScTXII (30 nmol/litre), in 
addition to prolonging the repolarization phase of the action potential, 
increases Vma x significantly from 8.6 to 36.8 V/s on average, while having 
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no effect on the level of the resting membrane potential. Both effects are 
suppressed by TTX (0.1 #mol/litre). ScTXII restores action potentials in 
cells when electrical activity was previously reduced by D 600 (0.5 #mol/ 
litre). Bernard and Couraud (1979) conclude that ScTXII increases Vma x 
(in slow cells) and prolongs the repolarization phase of the action poten- 
tial (in both types of cells) by retarding the inactivation of Na channels. 
The fact that ScTXII conveys TTX sensitivity to the electrical activity of 
slow cells shows that these normally TTX-resistant cells contain silent Na 
channels (Sect. 3.9). 

Effect on Na and Ca Influx. ScTXII causes a TTX-sensitive increase of 
Na influx in embryonic cardiac cells (Couraud et al. 1976), as might be 
expected from the electrophysiological actions described above. The 
influx of Ca ions is enhanced as well. The effect of Na channel-gate 
toxins on Ca influx in cultured heart cells is discussed in the section on 
Na-Ca exchange (Sect. 5.3.2). 

4.7 Sea Anemone Toxins 

4. 7.1 Toxin H from Anemonia sulcata 

Isolated Mammalian Heart. In the heart-lung preparation of the cat, 
ATXII produces a positive inotropic effect (Alsen et al. 1976). The 
threshold concentration is approximately 2 nmol/litre, and a maximum 
positive inotropic effect occurs at around 100 nmol/litre. In the ino- 
tropic concentration range, ATXII has no significant chronotropic action. 
Toxic symptoms occur at 160 nmol/litre. They are characterized by 
periods ofventricular fibrillation alternating with periods of normal spon- 
taneous rhythm. In the isolated guinea-pig heart stimulated at 3 Hz, ATXII 
produces a half-maximal positive inotropic effect at about 5 nmol/litre 
on the ventricle and atrium (Alsen et al. 1976). Arrhythmia occurs at 
25 nmol/litre ATXII. 

Atrium. In guinea-pig atrium, ATXII (10 nmol/litre) prolongs the repolari- 
zation phase of the action potential at all levels of membrane potential 
and produces a positive klinotropic and positive inotropic effect (Ravens 
1976). The prolonged phase of repolarization is associated with a pro- 
longation of the relaxation phase of the isometric contraction. 

Ventricular Muscle. Ravens (1976) analysed the effects of ATXII on the 
transmembrane electrical activity and contraction of the isolated guinea- 
pig papillary muscle contracting at 1 Hz. At concentrations of 5 -20  nmol/ 
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litre, the toxin produces graded positive klinotropic and positive inotropic 
effects. They reach steady-state in about 30 rain and disappear within 
about 1 h of superfusion with toxin-free solution. Inotropic concentra- 
tions induce a prolongation of the action potential at negative levels of 
membrane potential. This prolongation is only partially reversed during 
a 1-h washout period. Concentrations up to 20 nmol/litre leave the rest- 
ing membrane potential and the amplitude of the action potential unaf- 
fected. Vma x is slightly reduced by 20 nmol/litre ATXII. The prolonged 
repolarization phase is associated with a prolongation of the relaxation 
phase of the isometric contraction. The effects of ATXII are not modi- 
fied by catecholamine depletion with reserpine. TTX (0.5 t~mol/litre) 
completely and reversibly inhibits the effect on action potential duration 
and the positive inotropic effect. ATXII (10 nmol/litre) fails to prolong 
the action potential and to increase force of contraction if extracellular 
K is raised from 2.7 to 14.7 mmol/litre, and raising the K concentration 
after the effects of ATXI! have developed causes their disappearance. 
The sensitivity to TTX of the toxin-modified repolarization phase sug- 
gests that it is due to the persistent activation of Na channels. This might 
result from a delayed inactivation of the Na channels, which is the main 
effect of ATXII on neural Na channels (Sect. 3.7.1). 

Cardiac Cells in Culture. Romey et al. (1980) analysed the effects of 
ATXII on cardiac cell aggregates in culture obtained from 3- and 1 &day- 
old chick embryo hearts, respectively. The younger cells exhibit low 
values of Vma x and their action potential is insensitive to TTX; they will 
be referred to as slow cells. The older cells show values of Vma x greater 
than 100 V/s and their action potentials are blocked by TTX (0.1 #tool/ 
litre); these cells will be called fast cells. Very similar to scorpion toxin 
(Sect. 4.6.2), ATXI1 produces different effects on slow and fast cells. 
In fast cells, ATXII only prolongs the falling phase of the action poten- 
tial and thus produces qualitatively the same effect as observed in adult 
guinea-pig myocardial cells (Ravens 1976). In slow cells, ATX n produces 
an increase of Vma x (from 12.5 to 25 V/s on average), in addition to pro- 
longing the falling phase of the action potential. The increase of Vma x 
occurs under conditions where any steady-state inactivation of the Na 
channels is prevented by a long-lasting hyperpolarizing prepulse. In fast 
cells, TTX (0.1 umol/litre) slows Vma x and abolishes the effect of ATXII 
on the repolarization phase. The same concentration of TTX blocks the 
two effects of ATXII on the action pontential of slow cells, namely the 
increase in Vma x and the prolongation of the falling phase. These results 
as well as those obtained with scorpion toxin (Sect. 4.6.2) suggest that 
the polypeptide toxins slow Na inactivation in fast cells, thereby pro- 
longing the repolarization phase of the action potential. In slow cells, 
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the polypeptide toxins cause the appearance of otherwise silent Na chan- 
nels, as suggested by the TTX-sensitive increase in Vrnax , and these Na 
channels seem to inactivate only slowly, as shown by the TTX-sensitive 
prolongation of the repolarization phase. Thus, ATXII reveals Na chan- 
nels which are not  normally expressed in embryonic heart cells derived 
at an early stage of  development. In addition, Romey et al. (1980) 
showed that ATXII exerts a positive inotropic effect on embryonic car- 
diac cells along with its effect on the action potential. The inotropic effect 
is blocked by TTX (0.1 pmol/litre) suggesting that it is causally related 
to the modification of  the Na channels by ATXII. The link may be 
increased Na-Ca exchange across the sarcolemma, as indicated by the 
observation that ATXII increases Ca influx as well as Na influx (Romey 
et al. 1980). The effect of Na channel-gate toxins on Ca influx is dis- 
cussed in the section on Na-Ca exchange (Sect. 5.3.2). 

4. Z2 Anthopleurin A 

Sinoatrial Node. At concentrations of 5 or 30 nmol/litre, anthopleurin A 
has no significant effect on the spontaneous heart rate of isolated atria 
from the rabbit, cat, guinea pig or rat (Shibata et al. 1976). 

Atrium. Anthopleurin A produces a reversible positive inotropic effect 
on isolated left atria from the rabbit, cat, guinea pig or rat at a contrac- 
tion frequency of  1.6 Hz (Shibata et al. 1976). Half-maximally effective 
concentrations are 1 -3  nmol/litre. The effect is not modified by propra- 
nolol (1 umol/litre). TTX (2 umol/litre) decreases the sensitivity of 
guinea-pig atria to the positive inotropic action of anthopleurin A 
(Shibata et al. 1978). Anthopleurin A (50 nmol/litre) does not alter the 
cAMP content of guinea-pig atria (Shibata et al. 1976). 

Purkin]e Fibres. Shimizu et al. (1979) studied the effects of anthopleurin 
A on the transmembrane electrical activity of  isolated canine Purkinje 
fibres and ventricular muscle fibres in a preparation containing fibres of  
the right bundle branch and of the anterior papillary muscle. In Purkinje 
fibres stimulated at 1.67 Hz, anthopleurin A (3 .9 -39  nmol/litre) pro- 
longs the repolarization phase of the action potential by prolonging the 
duration of  the plateau phase. It has little effect on the subsequent phase 
of repolarization, i.e. the times to 50% and 90% repolarization are pro- 
longed to an equal extent. The refractory period is increased along with 
the prolongation of the plateau phase of the action potential. At high 
concentrations of  the polypeptide (19 -39  nmol/litre), premature action 
potentials develop from the prolonged repolarization phase at potential 
levels between - 1 0  and - 5 0  mV. Up to the highest concentration tested 
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(39 nmol/litre), anthopleurin A does not significantly affect the resting 
membrane potential, amplitude or Vma x of the action potential. In con- 
centrations below 19 nmol/litre, anthopleurin A produces no significant 
change in the firing rate of  spontaneously active Purkinje fibres. Shimizu 
et al. (1979) did not  test whether TTX inhibits the effect of  anthopleu- 
rin A on the repolarization phase, as has been observed in the presence of  
batrachotoxin (Hogan and Albuquerque 1971) or veratrine (Arbel et al. 
1975). An inhibition by TTX would be expected if anthopleurin A slows 
the inactivation of  Purkinje fibre Na channels as it does that of  neural Na 
channels (Sect. 3.7.2) and ventricular myocardial Na channels. 

Ventricular Muscle. Anthopleurin A increases the force of contraction of  
isolated papillary muscles and ventricular strips of the guinea-pig heart 
driven at 1.6 Hz (Shibata et al. 1976). Half-maximally effective concen- 
trations are 4 .4 -4 .8  nmol/litre. At a threshold concentration near 2 nmol/  
litre, anthopleurin A also increases the force of  the isolated cat papillary 
muscle stimulated at 1 Hz (Scriabine et al. 1979): As shown in this study 
the positive inotropic and positive klinotropic effects of anthopleurin A 
are associated with a marked prolongation of the relaxation phase (at 
64 nmol/litre). Arrhythmia is produced by 120 nmol/litre. As in dog 
Purkinje fibres, but to a smaller extent, anthopleurin A increases the 
action potential duration and the refractory period in dog ventricular 
muscle fibres (Shimizu et al. 1979): The prolongation of the repolariza- 
tion phase is already manifest at positive levels of membrane potential. 
In this tissue, anthopleurin A, at concentrations of  up to 39 nmol/litre, 
does not affect the resting potential, Vma x, or the amplitude of the 
action potential. Using a voltage-clamp technique (single sucrose gap) on 
the isolated guinea-pig papillary muscle, Hashimoto et al. (1980) have 
recently shown that anthopleurin A (9 .7-39  nmol/litre) induces a main- 
tained inward current during depolarizing pulses superimposed on the 
outward current and reaching a maximum value between - 4 0  and 
- 2 0  inV. The inward current represents a persistent component  of Na 
flux through Na channels since it is blocked by TTX. TTX likewise 
abolishes the prolongation of the action potential produced by antho- 
pleurin A in guinea-pig papillary muscle (Hashimoto et al. 1980). Ochi 
and colleagues (Hashirnoto et al. 1980) were the first to suggest that 
anthopleurin A produces its positive inotropic effect by increasing Na 
influx. 

Anthopleurin A (50 nmol/litre) does not affect the activity of  Na, 
K-ATPase isolated from guinea-pig or dog hearts, of phosphodiesterase 
isolated from guinea-pig hearts, and it does not alter the cAMP content 
of  guinea-pig ventricle (Shibata et al. 1976). 
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4.8 Coral Toxin 

Tbe cardiac action of goniopora toxin was examined in isolated left atrial 
preparations of  the rabbit (Fu]iwara et al. 1979). At 30 nmol/litre, the 
polypeptide toxin prolongs the action potential at all levels of repolariza- 
tion, while no significant change is observed either in the resting mem- 
brane potential, the overshoot or Vmax" The effect on action potential 
duration persists during superfusion with toxin-free solution for 2 h. 
TTX (1 #mol/litre) abolishes the effect on the replarization phase. At 
3 - 1 0 0  nmol/litre goniopora toxin produces a positive inotropic effect 
that also persists during washout with toxin-free solution. In line with an 
irreversible binding reaction, the positive inotropic effect during exposure 
to a given concentration of the toxin does not reach a steady-state, but 
progresses and is eventually followed by arrhythmia characterized by 
coupled extrasystoles. Increasing the concentration of the toxin acceler- 
ates the development of the positive inotropic effect. Propranolol, phen- 
~tolamine or atropine (each at 1 /~mol/litre) do not modify the positive 
inotropic effect. The positive inotropic and arrhythmogenic effect are 
both abolished by TTX (1/~mol/litre). In atria depolarized by an elevated 
extracellular K concentration (27 mmol/litre) and treated with 0 .5/ lmol/  
litre isoprenaline to restore excitability (0.25 Hz), goniopora toxin fails 
to increase force of  contraction. The results suggest that goniopora toxin 
modifies the cardiac action potential by prolonging the open state of Na 
channels and that the positive inotropic effect is linked to the increase in 
sarcolemmal PNa" 

5 Sarcolemmal Na Permeability and Myocardial Force of Contraction: 
Na-Ca Exchange 

5.1 Introduction 

For an understanding of the positive inotropic action of the Na channel- 
gate toxins it is necessary to consider the role played normally by Na 
channels in the excitation-contraction cycle of  the heart. The most 
important function of the Na channels is to allow a rapid conduction of  
the excitation wave, originating in the sinoatrial or atrioventricular node, 
to all cells of  the atrial and ventricular myocardium. The nearly simul- 
taneous excitation of all atrial and ventricular cells assures the coordinated 
contraction of  these cells, i.e. the function of the heart as a pump. The 
process which couples sarcolemmal excitation to contraction of the myo- 
cardial cell does not seem to depend so much on the activation of Na 
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channels, but seems to be intimately related to events occurring during 
the plateau phase of the action potential, notably the Ca inward current 
(Beeler and Reuter 1970a,b,c; New and Trautwein 1972; Trautwein 
et al. 1975) and electrogenic Na-Ca exchange. Thus, contractions can still 
be elicited if Na channels are blocked by TTX or completely inactivated 
by sustained depolarization of  the sarcolemma. It is nevertheless very 
likely that Na channels, in addition to permitting the rapid conduction 
of  the cardiac action potential, influence excitation-contraction coupling, 
because their activation leads to an influx of  Na ions into the cell. Several 
lines of evidence, reviewed here, suggest that an increased concentration 
of  intracellular Na ions promotes an influx of  Ca ions across the sarco- 
lemma (Na-Ca exchange). This is expected to result in a positive inotropic 
effect. Na influx through Na channels is greatly enhanced by the Na 
channel-gate toxins, because they drastically prolong the time during 
which the Na channels are in the open state. 

The intracellular Na concentration may also affect the Ca transport by 
organelles of  the myocardial cell. If exposed to Na ions, cardiac mito- 
chondria (Carafoli and Crornpton 1978) release Ca. It seems difficult, 
however, to explain a maintained positive inotropic effect by a mecha- 
nism that depletes cellular stores and thus, eventually, the cell of Ca ions. 
A decrease of  the [K]/[Na] ratio may impair Ca uptake by cardiac sarco- 
plasmic reticulum (Katz and Repke 1967). 

Ravens (1976) suggested an explanation for the positive inotropic 
effect of  Na channel-gate toxins that does not involve changes of  intra- 
cellular Na concentration. According to this hypothesis, the toxin inter- 
acts with a sarcolemmal receptor controlling Na channel gating as well as 
a plasmalemmal Ca store that releases Ca during contraction. However, 
since TTX, a selective blocker of Na channels, abolishes the postive ino- 
tropic effect of  Na channel-gate toxins (see Chap. 4), it is not necessary 
to postulate that the positive inotropic effect of  these toxins results from 
a modification of  structures other than those regulating Na channel gating. 

5.2 Na-Ca Exchange in the Squid Giant Axon 

The giant axons of  certain species of  squid are particularly suitable for 
studying the role of  intracellular Na in regulating Ca flux across an excit- 
able membrane, because [Na]i can be selectively altered experimentally 
either by injection of a Na salt into the axoplasm of an intact axon 
(Baker et al. 1969) or by changing the concentration of  Na in the solu- 
tion used to perfuse an axon intracellularly (Di Polo 1979). Baker et al. 
(1969) showed that the intraaxonal injection of  NaC1 to raise [Na]i by 
67 or 120 mmol/litre in axons of  Loligo forbesi previously depleted of  
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intracellular Na causes an increase in the unidirectional influx of Ca ions 
by factors of 2 and 4, respectively. These experiments were performed 
with an external solution in which most of the Na was replaced by Li 
ions (Li-seawater). In other experiments of their study [Na] i was raised 
by prolonged stimulation at high frequency. This resulted in an increase 
of Ca influx irrespective of whether the influx was measured in Na-, Li- 
or dextrose-seawater. The additional demonstration of a component of 
Na efflux, which is insensitive to cardioactive steroids, but activated by 
external Ca ions, led to the hypothesis that the enhancement of Ca 
influx by internal Na involves a transmembrane ion exchange in which 
the exit of Na ions is linked to the entry of Ca ions (Baker et al. 1969). 

A detailed analysis of the component of Ca influx enhanced by intra- 
cellular Na ions was performed by Di Polo (1979) using the technique 
of intracellular dialysis on axons of the tropical squid Dorytheutis plei. 
The main findings of this study may be summarized as follows: An 
increase of [Na] i of 0 -120  mmol/litre increases Ca influx, and the Na i- 
dependent Ca influx requires a threshold level of [Ca2+]i of 40 nmol/litre 
and increases as [Ca2+]i is raised to 0.8 t~mol/litre. The Nai-dependent Ca 
influx requires the presence of ATP. The results of Baker et al. (1969) 
indicate that the entry of one Ca ion may be linked to the exit of more 
than two Na ions, which would make Na-Ca exchange sensitive to the 
membrane potential. In line with this prediction, both the Na efflux 
component (Baker and McNaughton 1976) and the Ca influx component 
(Di Polo 1979) constituting the Na-Ca exchange under physiological con- 
ditions, i.e. in the presence of ATP, were found to be augmented by 
depolarization. 

Baker et al. (1969) pointed out that the exchange of external Ca for 
internal Na which they observed may represent ion movements in a 
direction opposite to that occurring under normal conditions. The nor- 
mal function of a Na-Ca exchange system might be to pump Ca out of 
the cell in exchange for external Na, as suggested by Reuter and Seitz 
(1968). In this case the energy for the uphill transport of Ca ions from 
the cell could be provided by the downhill movement of Na ions, and the 
transmembrane gradient for Na ions would be maintained by the Na 
pump. Interestingly, although a Ca efflux-Na influx system operates in 
axons poisoned with cyanide (Blaustein and Hodgl~n 1969), later work 
has shown that 50%-90% of the Ca efflux from unpoisoned squid axons 
is independent of external Na ions and requires the presence of ATP 
(Baker and McNaugh ton 1978; Di Polo and Beaug~ 1979). 

The effect of intracellular Na ions on unidirectional Ca efflux has also 
been examined. Raising [Na]i from 5 to 75 mmol/litre in internally dia- 
lyzed axons of Loligo pealei inhibits the [Na]o-dependent component of 
Ca efflux (Blaustein 1977), but the uncoupled Ca efflux, which may 
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constitute the main part of  Ca efflux from intact axons (Baker and 
McNaughton 1978), is insenstitive to changes in intracellular Na concen- 
tration (Di Polo and Beaugd 1979). Thus, an increase of [Na]i will affect 
the intracellular Ca concentration of squid axon through an increase of  
Ca influx with little effect on Ca efflux. 

5.3 Nai-Ca o Exchange in Cardiac Preparations 

5. 3.1 Guinea-Pig Atrium 

Glitsch et al. (1970) examined the relationship between the intracellular 
Na concentration and Ca influx in resting left atria of  guinea pigs. They 
produced different levels of [Na]i by equilibrating the resting muscles in 
K-rich solution ([Na]i = 12.5 mmol/kg fibre water, as determined by 
flame photometry) ,  in normal solution ([Na]i = 20 mmol /kg)o r  in cold 
K-poor, Ca-poor solution ([Na]i = 60 mmol/kg). An intermediate level of  
Na i was established by high-frequency stimulation in K-poor, Ca-poor 
solution ([Na]i = 40.5 mmol/kg). Subsequently all preparations were 
placed for 10 min into a medium containing 4s Ca, 0.65 mmol/litre [K]o 
to prevent a decrease of [Na]i , and 0 .7 -7  ~mol/litre acetylcholine to 
prevent spontaneous activity of the atria. After the uptake period the 
preparations were washed for 25 min with inactive solution before the 
radioactive analysis was performed. Under these conditions, the increase 
of  [Nali was associated with an increase of  Ca uptake by the atria. 
A nearly fivefold increase in [Na]i caused in increase in Ca uptake by 
a factor of about 2.6. 

5.3.2 Cardiac Cells in Culture 

To define the relationship between Na fluxes and Ca fluxes in myocardial 
cells an approach different from that of  Glitsch et al. (1970) was used by 
Fosset et al. (1977). They analysed the Ca influx induced by veratridine 
in monolayer cultures of cardiac myoblasts obtained from 10-day-old 
chick embryos. Although these authors did not report the actual changes 
of [Nali in their experiments, the various concentrations of veratridine 
which they applied in a medium containing Na ions (140 mmol/litre) and 
ouabain increased Na influx and presumably caused a graded increase of 
[Na]i. No information on the transmembrane potential of the myoblasts 
is given in this article, but the work by Sperelakis and Lehmkuhl (1968) 
and Sperelakis and Pappano (1969) suggests that either ouabain or the 
lowest effective concentration of  veratridine (1.5 #mol/litre) used by 
Fosset et al. (1977) caused permanent depolarization and inexcitability 
and thus eliminated possible complications resulting from spontaneous 
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Fig. 12. Concentration-effect relation- 
ships for the enhancement of Na 
influx and Ca influx by veratridine in 
chick embryonic cardiac cells in cul- 
ture. The experiments were performed 
in the presence of 0.5 mmol/litre 
ouabain. (Drawn after Fosset et al. 
1977) 

activity of  cultured heart cells. Fosset et al. (1977) showed that veratri- 
dine increases Ca influx up to 25-fold (Fig. 12). They could exclude the 
possibility that this influx uses Na channels opened by veratridine, 
because veratridine fails to increase Ca influx if external Na is replaced 
by Li ions, i.e. under conditions where veratridine retains the ability to 
open Na channels thereby allowing the influx of  Li ions (Sperelakis and 
Pappano 1969). However, because it is abolished by TTX, the veratridine 
effect on Ca influx does require the opening of  Na channels. Veratridine- 
induced Ca influx is insensitive to manganese or cobalt ions or to the 
compound D 600 at concentrations at which these substances normally 
inhibit slow Ca channels. Thus, the veratridine-induced Ca influx is 
coupled to the presence of  an inwardly directed Na gradient and open 
Na channels, but  the Ca ions enter the cell neither through Na channels 
nor through slow Ca channels. These findings strongly suggest the exis- 
tence in cardiac cells of  a Ca uptake mechanism that is increased by intra- 
cellular Na accumulation (Fosset et al. 1977). 

Results very similar to those of  Fosset et al. (1977) were obtained by 
Couraud et al. (1976) who used ScTXII. The latter authors suggest that 
the sarcolemma of  cardiac cells in culture contains two types of  Ca chan- 
nels, the well-known slow Ca channel and a Ca channel that is "coupled 
to the passive Na action potential ionophore"  and therefore affected by 
the toxin. This interpretation disregards the observation by the authors 
themselves that ouabain greatly enhances the effect of  ScTXII on Ca 
influx, an observation which points to the importance of  intracellular Na 
accumulation in linking the effect of  the scorpion toxin on Na channels 
to its effect on Ca influx. It appears that all the results of  Couraud et al. 
(1976) are compatible with the concept that ScTXII increases Na influx 
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by opening Na channels and thereby indirectly activates an exchange of 
intracellular Na for extracellular Ca ions. An increase of both Na and Ca 
influx is also produced by ATXII (Romey et al. 1980). 

5. 3. 3 Purkinfe Fibres 

The experiments of Glitsch et al. (1970), Couraud et al. (1976) and 
Fosset et al. (1977) do not clarify whether the activating effect of intra- 
cellular Na ions on Ca influx involves an actual exchange of internal Na 
ions for external Ca ions, as in the squid giant axon (Baker et al. 1969). 
If the cardiac sarcolemma possesses a Na-Ca exchange system, raising the 
extracellular Ca concentration will increase Na efflux thereby reducing 
the intracellular Na concentration under conditions where [Na]i is not 
controlled by the Na pump. Using Na-sensitive glass micro-electrodes, 
Deitmer and Ellis (1978) indeed showed that raising the bath concentra- 
tion of Ca produces a decrease in the intracellular Na activity of sheep 
heart Purkinje fibres even when the Na-K pump is inhibited by strophan- 
tidin. 

5.3.4 Myocardial Contraction in Low Extracellular Na 

If extracellular Na is reduced in the presence of extracellular Ca, a con- 
tracture develops which is associated with a large increase in the influx of 
Ca into the heart cells (Niedergerke 1963). A study on frog atrial trabe- 
culae revealed that this contracture is transient and, after spontaneous 
relaxation, even a 100-fold increase in the bathing Ca concentration 
(from 0.1 to 10 mmol/litre) fails to induce any increase in tension (Chap- 
man 1974). The results obtained by Chapman (1974, 1979) stongly sug- 
gest that the increase in Ca influx resulting from the reduction of [Na] o 
critically depends on the presence of Na inside the cells. This points to 
the existence of a Na-Ca exchange mechanism. 

Voltage-clamp experiments on frog atrial trabeculae (Benninger et al. 
1976; Horackova and Vassort 1979a) indicate that the tonic component 
of tension (Sect. 6.1) results from a transmembrane Na-Ca exchange that 
is voltage-dependent and therefore activated by the depolarization used 
to elicit tonic tension. The tonic component of tension exists in addition 
to a phasic component that is related to both Is~ and intracellular Ca 
stores (Horackova and Vassort 1976, 1979b). 

5. 3.5 Inotropic Effect of  Cardioactive Steroids 

If one accepts the view that cardioactive steroids produce their positive 
inotropic effect by inhibiting the sarcolemmal Na pump, one has to con- 
clude that the myocardial cell possesses a mechanism that translates some 
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consequence of this membrane effect into an enhancement of the intra- 
cellular Ca transient during contraction (Allen and Blinks 1978) and thus 
into a positive inotropic effect. One consequence of the Na pump inhibi- 
tion by cardioactive steroids is an increase in intracellular Na concentra- 
tion (Lee et al. 1980). A Na-Ca exchange in the sarcolemma would thus 
provide exactly the mechanism to couple an inhibition of the Na pump 
to a positive inotropic effect. A kera and Brody (1978) and R eiter (to be 
published) reviewed the evidence in support of the theory that the posi- 
tive inotropic effect of cardioactive steroids results from their effect on 
[Na] i secondary to the inhibition of the Na pump. 

5.3. 6 Cardiac Membrane Vesicles 

A transmembrane Na-Ca ion exchange was demonstrated in membrane 
vesicles of presumed sarcolemmal origin. The vesicles were obtained by 
centrifugation techniques from the ventricle of the heart of the rabbit 
(Reeves and Sutko 1979), dog (Pitts 1979), and ox (Miyamoto and 
Racker 1980). Recent studies indicate that this Na-Ca exchange involves 
the exchange of more than two Na ions with one Ca ion and is thus elec- 
trogenic (Reeves and Sutko 1980; Philipson and Nishimoto 1980). Na 
channel-gate toxins have apparently not been used to alter Na fluxes of 
cardiac membrane vesicles. The demonstration of a toxin-activated and 
TTX-inhibited Na flux would provide strong evidence for the sarcolem- 
mal nature of such vesicles. The need for further purification of cardiac 
sarcolemmal membranes has been stressed by Sulakhe and St. Louis 
(1980). 

6 Comparison of Cardiac Actions of Na Channel-Gate Toxins 
with Those of Other Positive Inotropic Drugs 

As shown in Chap. 4, the cardiac action of Na channel-gate toxins has 
been analysed and characterized in terms of their influence on mechani- 
cal and electrical activity and on transsarcolemmal ion movements. The 
purpose of the following paragraphs is to compare some of these effects 
with those of other classes of positive inotropic agents on the same 
aspects of myocardial function. This will serve to reinforce the conclu- 
sion that Na channel-gate toxins represent a separate class of positive 
inotropic substances characterized by a distinct mode of action. The dis- 
cussion deals mainly with effects observed in isolated ventricular prepara- 
tions of the mammalian heart. 
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6.1 Isometric Contraction Curve 

Na channel-gate toxins increase the force of myocardial contraction by 
accelerating the rate of  force development, i.e. by a positive klinotropic 
effect (Figs. 2, 3). Hence, they act by increasing the intensity of the 
"active state" of  the contractile elements and differ in this respect from 
the relatively few interventions which, like the addition of fluoride, pro- 
duce a positive inotropic effect by prolongation of  the active state 
(Reiter 1972a). 

Na channel-gate toxins produce variable effects on the relaxation phase 
of  the isometric contraction. The relaxation time may be prolonged to 
such an extent that total contraction time is lengthened (Fig. 2, veratri- 
dine), or the prolongation may just compensate a simultaneous abbrevia- 
tion of time to peak force resulting in a nearly unchanged total contrac- 
tion time (Fig. 3, germitrine). The very marked prolongation of relaxation 
time, causing an increase in total contraction time, is observed in the 
presence of those toxins which slow repolarization during, or shortly 
after, the plateau phase of the action potential (e.g., cevadine, veratfidine, 
batrachotoxin, ATXII , anthopleurin A, goniopora toxin; see Chap. 4 for 
references). In contrast, relatively little effect on the total contraction 
time is produced by those toxins inducing a slight depolarization of the 
resting membrane potential (e.g., germitrine, grayanotoxins). It is well 
known that an electrical prolongation of  the repolarization phase (by 
injecting a depolarizing current with the sucrose-gap technique), at a 
level positive to about - 3 0  mV, is associated with prolonged relaxation 
phase of the contraction (Morad and Trautwein 1968). The resulting 
component  of  mechanical activity is maintained as long as the membrane 
is kept at the depolarized level of membrane potential and is therefore 
called "tonic" tension (Morad and Goldman 1973). The markedly pro- 
longed relaxation phase obse~wed with some of the Na channel-gate toxins 
can thus be explained in terms of the known dependence of mechanical 
activity on membrane potential. Recent studies indicate that Na channel- 
gate toxins may prolong relaxation time by an additional mechanism 
related to the increase in intracellular Na concentration rather than to 
the prolonged repolarization phase. Vassort and colleagues (Roulet et al. 
1979) have shown that veratrine prolongs the relaxation time of frog 
atrial trabeculae even if the preparation is activated by voltage-clamp 
depolarizations of  constant duration, i.e. if the prolongation of the action 
potential produced normally by veratrine is prevented. According to 
Roulet et al. (1979), the relaxation phase is directly influenced by an 
electrogenic sarcolemmal Na-Ca exchange mechanism. An increase in Na i 
is thus expected to decrease the efficiency of  the Na-Ca exchange to 
restore the low diastolic level of the free intracellular Ca concentration 
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after repolarization. This interpretation could also explain the prolonga- 
tion of relaxation time produced by Na channel-gate toxins which, like 
germitfine (Fig. 3), prolong the action potential only at membrane poten- 
tial levels far negative to - 3 0  mV (Sect. 4.2.5). 

Na channel-gate toxins have never been observed to abbreviate total 
contraction time by shortening relaxation time. Such a relaxant effect is 
typically produced by inotropic agents which elevate the cellular concen- 
tration of cAMP, for instance by/3-adrenoceptor agonists, histamine, or 
phosphodiesterase inhibitors (Korth 1978; Scholz 1980). While the ino- 
tropic effect of the toxins clearly differs in this respect from the cAMP- 
increasing drugs, it is difficult, if not impossible, to distinguish certain 
other positive inotropic agents from Na channel-gate toxins solely on the 
basis of  the modification of the isometric contraction curve. Thus, like 
germitrine, the cardioactive steroid dihydro-ouabain produces a positive 
klinotropic and inotropic effect with little effect on total contraction 
time (Reiter 1972b). 

6.2 Blockade of  Sarcolemmal Na Channels by Tetrodotoxin 

In the absence of  a competitive antagonist for Na channel-gate toxins 
which lacks intrinsic activity (cf. Sect. 3.10.2), the most specific way to 
test whether a positive inotropic agent acts by prolonging the open state 
of Na channels is to use the non-competitive antagonist TTX (or STX). 
TTX occludes Na channels and thereby prevents the effects of Na chan- 
nel-gate toxins on membrane potential and Na and Ca influx. In guinea- 
pig papillary muscle, a TTX concentration which reduces ~max by 50% 
(10 #mol/litre) has no inhibitory influence on the positive inotropic 
effect of noradrenaline or theophylline and slightly inhibits that of 
dihydro-ouabain, but prevents the positive inotropic effect of half-maxi- 
mally effective concentrations of cevadine, veratridine, and germitrine 
(Fig. 10). The fact that TTX fails to affect the positive inotropic effect 
of  noradrenaline and theophylline is in agreement with the view that 
these agents act by increasing the cellular concentration of cAMP and 
that such an increase mediates the enhancement of slow inward Ca cur- 
rent and of  the amount  of Ca releasable from, and sequestered by an 
intracellular Ca store (for references see Scholz 1980). TTX lacks an 
effect on slow inward Ca current and is not expected to gain access to 
the intracellular space during extracellular application (Sect. 4.2.5). 
Furthermore, even if applied directly to the sarcoplasmic reticulum as in 
the experiments on skinned cardiac fibres by Fabiato and Fabiato (1973), 
TTX does not affect the Ca release-sequestration cycle as judged from 
the unchanged mechanical activity. The finding that TTX less effectively 
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inhibits the positive inotropic effect of dihydro-ouabain than that of  
ceveratrum alkaloids, although the action of  both cardioactive steroids 
and Na channel-gate toxins depends on Na influx, has been discussed in 
Sect. 4.2.5. 

The use of  TTX for the classification of inotropic mechanisms requires 
some precautions. It is necessary to rule out that the agent in question 
acts primarily on neural Na channels to cause the release of noradrenaline 
from intracardiac nerve endings. Such an effect is also blocked by TTX; 
in fact by concentrations much lower than those required to block sarco- 
lemmal Na channels. Among the substances covered in this review only 
scorpion toxins were found to act mainly by a presynaptic mechanism. 
In the case of veratridine and cevadine, a neural effect is also demon- 
strable, but requires concentrations in excess of those affecting sarcolem- 
mal Na channels (Sect. 4.2.5). It is also important to note that the pat- 
tern of  inhibition by TTX depends on whether the Na channel-gate toxin 
acts reversibly or irreversibly. In the case of reversibly acting toxins, like 
veratridine (Honer]alger and Reiter 1975) or ATXII (Ravens 1976), TTX 
produces a stable inhibition if applied after the effects of  the gate toxins 
have attained steady-state. With irreversibly acting toxins, like batracho- 
toxin (Honer]alger and Reiter 1977b), the effect of TTX, when applied in 
a submaximally effective concentration, is to delay the development, but 
not  to prevent the effect of  the Na channel-gate toxin. It appears that 
the change in cardiac membrane potential, such as the delay of the 
repolarization phase, requires only a small fraction of  all Na channels to 
be modified (Horackova and Vassort 1973; Trautwein 1973). Thus TTX 
concentrations of  50 umol/litre or less, which reduce Vma x only up to 
80% in guinea-pig papillary muscle (Baer et al. 1976), leave a significant 
fraction of Na channels unblocked, and this unblocked fraction of Na 
channels may suffice to mediate a prolongation of the action potential or 
decrease of the resting potential in the presence of a very high concentra- 
tion of  Na channel-gate toxin (Honer/iiger and Reiter 1977b). Ito et al. 
(1979) observed that 1 ~mol/litre TTX failed to restore the membrane 
potential in guinea-pig papillary muscle depolarized by the irreversibly 
acting palytoxin, and they conclude that "the partial antagonism by 
TTX implies the possibility that PTX [palytoxin] did not act 'specifically' 
on the Na channel and produced a leaky state". However, their findings 
that TTX delayed the onset of  the palytoxin-induced depolarization and 
that reduction of [Na]o to 12.3 mmol/litre did restore the membrane 
potential in the presence of palytoxin are compatible with the view that 
palytoxin acts entirely by selectively opening Na channels. 
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6.3 Contraction Frequency 

The frequency dependence of the positive inotropic effect of veratridine 
(Honerjiiger and Reiter 1975) or germitrine (Honer]ager and Reiter 
1977a) differs from that of cAMP-increasing agents and, in certain details, 
from that of the cardioactive steroid dihydro-ouabain. The ceveratrum 
alkaloids lack a positive inotropic effect on the rested-state contraction 
(Sect. 4.2.5) whereas threshold effective concentrations at 1 Hz also 
increase the peak force of the rested-state contraction in the case of 
adrenaline and theophylline (cat papillary muscle; Bercsewicz and 
Reuter 1977) and noradrenaline and N 6 -2'-O-dibutyryl cAMP (guinea-pig 
papillary muscle; Seibel et al. 1978). Force-frequency relationships 
obtained with concentrations of dihydro-ouabain that are submaximally 
effective at 1 Hz (Ebner and Reiter 1977) are virtually identical to those 
obtained with veratridine or germitrine. Like the ceveratrum alkaloids, 
these concentrations ofdihydro-ouabain lack an effect on the rested-state 
contraction and produce a progressively increasing positive inotropic 
effect as the frequency is raised stepwise from 0.003 Hz to 0.5 Hz. Ceve- 
ratrum alkaloids lack a positive inotropic effect on the rested-state con- 
traction even at concentrations exceeding the maximally effective con- 
centration at a Hz by more than one order of magnitude (Sect. 4.2.5). 
In the cases of veratridine or cevadine, the demonstration of this lack of 
positive inotropic effect requires the elimination of their presynaptic 
effect (Sect. 4.2.5). In contrast, dihydro-ouabain increases the force of 
the rested-state contraction in concentrations that are maximally or 
supramaximally effective at 1 Hz (Ebner and Reiter 1977). In the cases 
of veratridine and germitrine, the phase of increased PNa is linked to the 
action potential, which explains the absence of a positive inotropic influ- 
ence under resting conditions. However, it is conceivable that agents 
which increase resting PNa' like grayanotoxin I in rabbit atrial fibres 
(Seyama 1978), also increase the rested-state contraction. 

6.4 Reduction of Extracellular Na Concentration 

Reducing the extracellular Na concentration by one-half greatly dimin- 
ishes the positive inotropic effect of cardioactive steroids, whereas the 
inotropic effect of catecholamines is unaffected (Reiter 1972a). Using 
this test, the ceveratrum alkaloids veratridine and cevadine were shown 
to be influenced in their effect on guinea-pig papillary muscle like the 
steroids (Reiter 1963), pointing to the importance of Na influx for the 
action of the alkaloids. 
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6.5 Variation ofExtracellular K Concentration 

The level of  the extracellular K concentration may influence the positive 
inotropic effect of Na channel-gate toxins by at least two different 
mechanisms, through its effect on transmembrane potential and on the 
activity of  the Na-K pump. Ravens (1976) showed that ATXII failed to 
prolong the action potential and to produce a positive inotropic effect in 
guinea-pig papillary muscle if the K concentration was raised from 2.7 to 
14.7 mmol/litre. The elevated K concentration caused a fall of the resting 
potential to about - 5 0  mV, which is expected to inactivate normal Na 
channels (Beeler and Reuter 1970a). In contrast to ATXII, agents which 
increase the cellular cAMP concentration retain their positive inotropic 
effect and increase amplitude and duration of  the action potential through 
their effect on Isi if Na channels are inactivated by depolarization (for 
references see Scholz 1980). Like the positive inotropic effect of  ATXII, 
that of  goniopora toxin on rabbit atrial preparations is prevented at an 
elevated (27 mmol/litre) extracellular K concentration (Fufiwara et al. 
1979). 

Reducing the K concentration below 5.9 mmol/litre enhances the 
positive inotropic effect of veratridine (Honer]iiger and Reiter 1975). 
The associated hyperpolarization of the resting potential from about 
- 8 0  mV at 5.9 mmol/litre [K]o has presumably little effect on the level 
of  steady-state inactivation of the Na channels, since this seems to be 
already minimal at - 8 0  mV (Chen et al. 1975). It seems more likely that 
the synergistic action of K withdrawal and veratridine is related to an 
inhibition of the Na pump by reduction of [K]o, which is expected to 
increase the extent of  the veratridine-induced intracellular Na accumula- 
tion and therefore the positive inotropic effect. This test does not  dis- 
crimiate between veratridine and dihydro-ouabain, the positive inotropic 
effect of  which is likewise enhanced by a reduction in extracellular K 
concentration (Reiter et al. 1966). In contrast, the inotropic effect of  
adrenaline (Reiter et al. 1966) or theophylline (Scholz and de Yazikof 
1971) is not  increased by a lowering of extracellular K concentration. 

6.6 Inhibition of  the Na Pump by Dihydro-Ouabain 

Dihydro-ouabain potentiates the positive inotropic effect of veratridine 
(Honer]iiger and Reiter 1975) and germitfine (Honer]iiger and Reiter 
1977a), whereas veratridine and noradrenaline act additively. The incre- 
ment  in intracellular Na concentration induced by Na channel-gate toxins 
is normally counteracted by the Na-K pump, the activity of  which is not 
directly influenced by Na channel-gate toxins. Hence, an inhibition of  



62 P. Honerj~iger 

the Na pump will enhance the extent of the increment in intracellular Na 
concentration caused by agents which increase Na influx. The synergistic 
action of  ceveratrum alkaloids and a specific Na pump inhibitor thus 
indirectly points to the critical role of intracellular Na concentration for 
the positive inotropic effect of Na channel-gate toxins. 

6.7 Propranolol 

(-+) Propranolol (5 /amol/litre) shifts the concentration-effect curve for 
the positive inotropic effect of veratridine to the right by a factor of  2 
(Honerjdger and Reiter 1975). The same concentration of (+) propranolol 
causes the same degree of  inhibition, although this isomer has only about 
1/60 the activity of racemic propranolol in blocking the effects of  
/3-adrenoceptor activation (Howe and Shanks 1966). The antagonism is 
thus unrelated to the blockade of ~-adrenoceptors by propranolol, but is 
readily explained by the inhibitory effect of propranolol on myocardial 
Na channels which is identical for both isomers of propranolol (Pollen 
et al. 1969). Similarly, the antagonism of  the positive inotropic effect of 
grayanotoxins by propranolol (10 gmol/litre, Sect. 4.5.2) may be entirely 
due to the blockade of  Na channels by propranolol. 

7 Summary and Conclusions 

In recent years the detailed analysis of the mode of action of various Na 
channel-gate toxins has revealed that they prolong the open state of Na 
channels by mechanisms that differ in some detail. The alkaloids veratri- 
dine, batrachotoxin, and aconitine modify both activation and inactiva- 
tion characteristics, while certain polypeptide toxins like ATXII pre- 
dominantly affect Na inactivation and one of the scorpion venoms selec- 
tively modifies Na activation. These mechanisms were clarified by vol- 
tage-clamp experiments on single nerve fibres. Less direct experiments 
were performed on myocardial cells, but they all indicate that the Na 
channels of cardiac sarcolemma are also modified by various Na channel- 
gate toxins. The modification of cardiac Na channels results in a prolon- 
gation of the repolarization phase of the cardiac action potential which, 
depending on the particular toxin, may become evident at any potential 
level between the plateau and close to the resting potential. In embry- 
onic cardiac cells, the application of Na channel-gate toxins revealed the 
presence of normally silent TTX-sensitive Na channels. 
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The prolonged phase of repolarization provides the depolarizing 
stimulus for coupled premature action potentials and thus explains the 
arrhythmogenic effect of  Na channel-gate toxins. This type of arrhyth- 
mia is not  specific for this kind of substances, but it is the consequence of  
a selective alteration of  Na channel kinetics and therefore is completely 
inhibited by TTX. 

With the exception of  aconitine, all Na channel-gate toxins with a 
demonstrable effect on myocardial Na channels were also shown to pro- 
duce a positive inotropic effect in the prearrhythmic stage of action. 
Thus, a direct positive inotropic effect is observed in the presence of 
steroid alkaloids, diterpenoids, and polypeptides. Such a uniform response 
of  the contractile mechanisms in the myocardial cell to substances of 
widely differing chemical structure suggests that the inotropic effect is 
somehow related to the known common mechanism of action of these 
toxins, i.e. the modification of the gating system of  sarcolemmal Na 
channels. 

The experimental evidence surveyed indicates that the mechanism of 
the positive inotropic effect of Na channel-gate toxins involves the 
following chain of  subcellular events: The initial step is the alteration of  
the sarcolemmal Na channels by the toxin. The essentiality of this step 
is deduced from the observation that TTX prevents or abolishes the 
positive inotropic effect at concentrations which also prevent or abolish 
the electrophysiologic changes resulting from the Na channel modifica- 
tion. The selectivity of action of TTX in blocking Na channels is well 
established. In addition, TTX was shown to cause comparatively little 
or no antagonism to the positive inotropic effect of drugs that do not 
affect Na channel kinetics (dihydro-ouabain, noradrenaline, theophyl- 
line). 

A cause-effect relationship requires that the causative event precedes 
the effect. This is clearly shown for Na channel-gate toxins in that the 
modified repolarization phase precedes the positive inotropic effect. 

The slowing of Na channel kinetics prolongs the time during which Na 
ions flow into the cell. In addition, the prolonged repolarization phase 
indirectly affects voltage- and time-dependent ionic currents other than 
Na current. The change in membrane potential, however, is not essential 
for the positive inotropic effect. As shown in voltage-clamp experiments 
on frog atrial trabeculae, the positive inotropic effect is still present if the 
prolongation of the action potential is prevented by submitting the pre- 
paration to depolarizations of constant amplitude and duration. Hence, 
the inotropic effect is coupled to the increase in Na current induced by 
the toxins. The importance of  Na influx is also indicated by the fact that 
the positive inotropic effect of  Na channel-gate toxins is potentiated by 
dihydro-ouabain, an inhibitor of  Na efflux. 
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How does an increase in Na influx media te  a positive ino t rop ic  effect?  

A wel l -documented  mechanism is the Na-Ca exchange,  which provides 

an increase in t ranssarcolemmal  Ca influx in response to an elevation o f  

the intracellular Na concent ra t ion .  In fact,  Na channel-gate toxins  were 
used to demons t ra te  the existence,  in cardiac cells, o f  a Na-Ca exchange 

mechanism because they  are convenient  chemical  tools  to  selectively pro- 

duce an increase o f  the intracellular Na concen t r a t ion  in small cells. 
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1 Introduction 

F.G. Knox and J.A. Haas 

This review discusses factors which influence renal sodium reabsorption 
in volume expansion. The factors are considered under seven headings: 
hemodynamic  factors; glomerular filtration rate; physical factors; seg- 
mental sodium reabsorption; hormonal factors; response of  the perinatal 
kidney to volume expansion; and gastrointestinal or hepatoportal control 
of  renal sodium excretion. The results discussed consist primarily of clear- 
ance, micropuncture,  microperfusion, and histologic studies. It seems 
justified to inject a word of  caution in regard to interpretation of  the data 
contained herein. In the majority of the studies, the animals were anesthe- 
tized, subjected to varying degrees of  surgical trauma, and subsequently 
given an extracellular volume expansion (ECVE). Inasmuch as these 
maneuvers are not physiologic, extrapolation of  the results to normal 
renal function should be done with caution. 

2 Renal Sodium Reabsorption 

2.1 Hemodynamic Factors 

2.1.1 Renal Blood Flow and Renal Vascular Resistance 

Expansion of the extracellular fluid volume (ECFV) by an infusion of 
isotonic saline has been shown to decrease renal vascular resistance and 
increase renal blood flow (Barger et al. 1961 ; Earley and Friedler 1965a; 
Wallin et al. 1971). In initial studies, the extent to which this increased 
renal blood flow alone results in increased sodium excretion was evalu- 
ated in clearance experiments in dogs by infusing vasodilators alone, or 
in the presence of  a saline load (Earley and Friedler 1965b). The results of  
these studies demonstrated that in hydropenic animals, increasing renal 
blood flow by vasodilators alone was accompanied by an increased 
sodium excretion in spite of  an unchanged filtered load. In animals receiv- 
ing a saline load, increased renal blood flow of  the same magnitude was 
associated with a threefold greater natriuresis. Further studies demon- 
strated that infusion of  iso-oncotic Ringer's solution, designed not to 
alter plasma protein concentration, resulted in large increases in arterial 
pressure, renal blood flow, and urinary sodium excretion. If the kidneys 
were vasodilated with acetylcholine prior to the iso-oncotic Ringer's 
loading, the additional natriuresis seen with the vasodilated kidney was 
significantly reduced (Martino and Earley 1967). These studies were 
taken as evidence that increases in renal blood flow, per se, can increase 
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sodium excretion, but can only partially account for the natriuresis accom- 
panying saline loading. The possibility exists, however, that the natriuretic 
effect seen with vasodilators is due to a direct action of the drug on the 
renal tubule and that the increased renal blood flow per se is not neces- 
sarily natriuretic. For example, secretin is a vasodilator which is not natri- 
uretic (Marchand et al. 1977a). Further, small infusions of saline which 
increase urinary sodium excretion may not result in increases in renal 
blood flow (Martino and Earley 1967). 

2.1.2 Intrarenal Distribution of  Blood Flow 

Volume expansion may be associated with increased medullary renal 
blood flow, since increased sodium excretion is accompanied by a decrease 
in urinary osmolality and the extraction ratio ofp-aminohippurate (PAH) 
(Earley and Friedler 1964, 1965a; Friedler and Earley 1966). This decrease 
in urinary osmolality, which could not be accounted for by changes in 
either antidiuretic hormone (ADH) or solute excretion, and the assump- 
tion that PAH is extracted only from blood perfusing the cortex, led 
Earley and Friedler to hypothesize that saline loading in the dog results 
in an increased medullary blood flow, and that there may be a causal 
relationship between this intrarenal distribution of blood flow and the 
associated natriuresis of ECVE. The issue of whether a change in the 
intrarenal distribution of blood flow is associated with the renal vasodila- 
tion seen with volume expansion has subsequently been studied with a 
variety of techniques. The different techniques used to measure intrarenal 
blood flow distribution include the use of extractable substances such as 
PAH, dye dilution, washout of inert gases like s s Kr and 133 Xe, H~ clear- 
ance, glomerular basement-membrane antibody technique, and radioac- 
tive-labeled microspheres. A description of the different methods and a 
discussion of their validity is given by Barger and Herd (1973). Initial 
studies which utilized the inert-gas washout or H2 clearance method to 
evaluate intrarenal distribution of blood flow reported that in volume 
expanded dogs, blood flow in the renal cortex increases, but there was 
not a significant change in the distribution of blood flow within the cor- 
tex (Munck et al. 1970; Loyning 1974). This finding was essentially con- 
firmed in a subsequent study also carried out in dogs. Bovee and Webster, 
utilizing the inert-gas washout method and PAH extraction, reported 
that the increase in renal blood flow during moderate saline loading is 
limited to the cortex, but during large saline loads, cortical and noncor- 
tical flows increase proportionately (Bovee and Webster 1971). These 
findings are in agreement with recent observations of Velasquez, who 
applied the dye-dilution technique for quantitation of intrarenal blood 
flow distribution, and reported that during the early phase of saline 
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diuresis renal vasodilatation is confined to the cortex, but during later 
stages of saline loading noncortical blood flow increases also ( Velasquez 
et al. 1973, 1975). 

Interestingly, a study in the rat utilizing the X e washout method found 
no significant change in either total renal blood flow or outer cortical 
blood flow after volume expansion with saline (Kinney and DiScala 1974). 
More recent results evaluating intrarenal distribution of blood flow dur- 
ing ECVE have been obtained with radioactive microspheres. These 
studies have shown that, in the dog, an intrarenal distribution of blood 
flow to inner cortical nephrons occurs (Blantz et al. 1971;Stein et al. 
1972; Bruns et al. 1974). Surprisingly, in the rat, an intrarenal distribu- 
tion of blood flow to the superficial cortex following volume expansion 
has been reported (Wallin et al. 1971). However, this discrepancy was 
attributed to an axial streaming of the microspheres caused by the renal 
vasodilation and reduced hematocrit accompanying volume expansion. 
The mechanism of cortical blood flow distribution during acute saline 
loading in the dog has been examined with microspheres (Migdal et al. 
1975); their data showed that hemodilution without volume expansion 
or with intravascular volume expansion alone resulted in a distribution of 
blood flow to the superficial cortex. This superficial distribution of blood 
flow was caused by a decreased hematocrit. During saline loading, distri- 
bution of blood flow to the inner cortex occurred, which was hypothesized 
to be a consequence of expansion of the intrarenal interstitial volume. 

Two mechanisms have been proposed whereby increased blood flow 
to inner cortical nephrons could affect renal handling of sodium during 
volume expansion. The first is the medullary washout hypothesis of 
Earley and Friedler (1965a,b). They proposed that saline loading pro- 
duces an increase in inner cortical and presumably medullary blood flow. 
This causes a reduction in medullary interstitial hypertonicity, thus 
reducing the osmotic movement of water out of the descending limb. 
A larger volume of tubular fluid with the same amount of sodium, but 
at a lower concentration, would enter the water impermeable ascending 
limb. Reabsorption of sodium to the same minimal concentration in the 
ascending limb would result in the delivery of a larger volume of fluid 
and an increased total amount of sodium beyond the loop of Henle. This 
alteration would be most marked in the inner cortical nephrons whose 
loops descend into the medulla. 

Another mechanism whereby intrarenal distribution of blood flow 
may modulate the natriuresis of ECVE is that it could result in a selec- 
tive decrease in the filtration fraction in inner cortical nephrons and con- 
sequent reduction in proximal sodium reabsorption. This hypothesis 
assumes a direct relationship between peritubular capillary protein oncotic 
pressure and proximal sodium reabsorption. This hypothesis is based on 



Factors Influencing Renal Sodium Reabsorption in Volume Expansion 79 

experimental observations in several different species. Perhaps the most 
convincing was a series of experiments in which Nissen made use of the 
unique blood supply to the kidney of  the cat (Nissen 1968). He calcu- 
lated the filtration fraction from the postglomerular circulation by com- 
paring the plasma concentrations of inulin and protein in the blood leav- 
ing the two venous drainage areas with the concentrations in cortical 
blood. He observed a greater fall of  the filtration fraction in the inner 
cortex than in the outer cortex after volume expansion. Micropuncture 
studies in the rat by Daugharty et al. (1972), who calculated superficial 
nephron filtration fraction (SNFF) from systemic and efferent arteriolar 
protein concentrations, and Barratt et al. (1973), who calculated SNFF 
by means of the antiglomerular basement membrane antibody technique, 
showed that the filtration fraction was reduced to a greater extent in the 
whole kidney compared to the superficial cortex during Ringer loading. 
Likewise in dogs, using the Hanssen technique and microspheres, esti- 
mated superficial nephron filtration fraction remained unchanged after 
volume expansion, but juxtamedullary filtration fraction decreases signi- 
ficantly (Bruns et al. 1974). 

2.2 Glomerular Filtration Rate 

2.2.1 Effect o f  Changes in GFR 

Associated with increases in renal blood flow, several studies have shown 
that glomerular filtration rate (GFR) is elevated by ECFV expansion 
(de Wardener et al. 1961; Levinsky and Lalone 1963; Davidrnan et al. 
1972). This observation is important as urinary sodium excretion repre- 
sents the difference between the filtered load of sodium and subsequent 
reabsorption by the tubules. Therefore, a parallel change in filtered load 
and sodium excretion seen following volume expansion could, theoreti- 
cally, explain the rise in sodium excretion seen following volume expan- 
sion, without necessarily invoking changes in tubular reabsorption. How- 
ever, de Wardener et al. showed that saline infusion increased urinary 
sodium excretion independent of changes in GFR. In these studies, GFR 
was prevented from increasing by simultaneously decreasing the perfu- 
sion pressure to the kidney (de Wardener et al. 1961). This observation 
was subsequently confirmed by a number of  other investigators who also 
demonstrated that when ECFV is acutely increased in the presence o f  
fixed adrenocortical activity, sodium excretion increased independently 
of changes in GFR (Levinsky and Lalone 1963;Rector et al. 1964). 
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2. 2. 2 Intrarenal Distribution of  GFR 

Whereas increases in GFR may not entirely account for the natriuresis of 
ECVE, the relationship between changes in ECFV and distribution of 
single neprhon glomerular filtration rate (SNGFR) may be important as 
it has been proposed that a redistribution of filtrate may modify urinary 
sodium excretion. 

Intrarenal distribution of filtrate before and after volume expansion 
has been evaluated with a number of techniques. The first is an indirect 
evaluation and involved comparing superficial SNGFR to total kidney 
glomerular filtration rate. 

The results are conflicting, with some studies reporting equal changes 
in whole kidney GFR and superficial SNGFR after volume expansion 
(Bartoli and Earley 1971; Mandin et al. 1971; Daugharty et al. 1972; 
Davidman et al. 1972), while others found redistribution of filtrate to 
outer cortical nephrons (Gertz et al. 1967; Barratt et al. 1973). These 
data should be critically evaluated for several reasons. First, an increased 
distribution of filtrate to outer cortical nephrons was found when a pre- 
viously punctured tubule was repunctured during acute volume expan- 
sion (Mandin et al. 1971; Stein et al. 1972). In contrast, no change in the 
intrarenal distribution of filtrate was found when a freshly punctured 
tubule was utilized. This difference has been atrributed to artifactual 
alterations in intratubular dynamics in the repunctured tubule due to the 
high tubular pressure associated with volume expansion, the so-called 
recollection artifact. However, in sharp contrast, a similar artifact was 
not noted in other studies in either the dog or rat, in which ECVE caused 
a proportional increase in both SNGFR and GFR (Brenner et al. 197 la; 
Schneider et al. 1972). Second, these results involve comparison of only 
superficial SNGFR and total kidney GFR, without direct measurement 
of SNGFR in deep nephrons. It has also been proposed that the disagree- 
ment between the results concerning the changes in SNGFR distribution 
following volume expansion could be explained on the basis of the degree 
of volume expansion. Herrera-Acosta concluded that a 10% body weight 
volume expansion did not change intrarenal filtrate distribution, whereas 
a progressive volume expansion to 15% of body weight results in a dis- 
proportionate increase in the filtration rate of superficial nephrons in 
comparison to total kidney GFR (Herrera-Acosta et al. 1972). 

Another method used to study the distribution of GFR is the ferro- 
cyanide technique. This method involves administering ferrocyanide, 
which distributes into the extracellular fluid volume and behaves like a 
glomerular indicator. After injection, the pedicle is ligated, the kidney 
removed and microdissected. The distance between the glomerulus and 
the distal front of the precipitated bolus is assumed to be proportional 
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to the nephron filtration rate. The advantage of  this method is that it 
allows for a more quantitative estimate of the ratio of both superficial 
and deep SNGFR. Although some studies do not find a change in intra- 
renal distribution (Bruns et al. 1974; Coelho 1974), others report an 
increase in the superficial distribution of SNGFR after either chronic or 
acute salt loading when the labeled ferrocyanide is given as a pulse injec- 
tion, i.e., Hanssen's technique (de Rouffignac and Bonvalet 1970; Baines 
1973). However, when the glomerular marker is infused, SNGFR increases 
proportionately in both superficial and juxtamedullary nephrons (Carriere 
et al. 1972; Coelho 1973; Clausen and Tyssebotn 1973; Poujeol et al. 
1975). This discrepancy was studied by Charbardes, and it was concluded 
that the apparent change in intrarenal distribution during ECVE observed 
with pulse injection is probably the result of  an artifactual streaming 
caused by the method of  administration of the label (Chabardes et al. 
1974). In addition, a redistribution of SNGFR after acute volume expan- 
sion using Hanssen's technique was found in young rats, but not in mature 
adults (Baines 1973). These studies suggest that structural changes with 
age may modify the response of SNGFR distribution to volume expansion. 

Finally, two early micropuncture studies examined directly, by micro- 
puncture of  both superficial and juxtamedullary nephrons, the effect of  
ECVE on the distribution of single nephron filtration rate in these 
nephron populations (Horster and Thurau 1968; Jamison and Lacy 
1971). Both studies showed a shift of  SNGFR distribution toward the 
superficial nephrons. However, the physiologic significance of  a change 
in the intrarenal distribution of SNGFR is speculative without knowing 
whether actual sodium transport is altered in these nephron populations 
during ECVE. In the acute volume expansion study in which sodium 
concentration in tubule fluid was measured along with inulin, sodium 
reabsorption was significantly reduced in superficial nephrons, and did 
not change in deep nephrons (Jamison and Lacy 1971). In contrast, 
a more recent study revealed that delivery of sodium to the bend of the 
loop of  Henle in the deep nephrons was greater than estimates of delivery 
in superficial nephrons during Ringer loading (Osgood et al. 1978). 

The hypothesis that the intrarenal distribution of  single nephron glo- 
merular filtration rate can affect urinary sodium excretion came from 
studies by Barger, who proposed that because the juxtamedullary or 
deep nephrons have long loops of Henle, it is possible that more sodium 
is removed from them than superficial nephrons with their short loop of  
Henle (Barger 1966). Thus, intrarenal distribution of  glomerular filtra- 
tion may modify sodium excretion during ECVE by shifting from deep 
"salt-saving" nephrons to superficial "salt-losing" nephrons. However, 
a micropuncture study in the Rhesus monkey,  a species with short loops 
of Henle, shows that the fraction of filtered sodium arriving in the early 
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distal tubule is similar to values reported for the dog, a species with long 
loops of Henle (Bennett et al. 1968). This would argue against the con- 
cept that the length of  the loop of Henle is an important factor in the 
magnitude of  sodium transport. 

2.3 Physical Factors 

2. 3.1 Plasma Oncotic Pressure 

On the basis of clearance studies in the dog, it was concluded that net 
fluid reabsorption is determined, in part, by the rate of removal of reab- 
sorbate by the capillary circulation (Martino and Early 1967). The rate of  
removal of  this reabsorbate is, in turn, dependent upon the net balance 
of colloid osmotic and hydrostatic pressures across the peritubular capil- 
lary wall. Evidence was presented supporting the hypothesis that these 
"physical forces" play an important role in the decreased proximal 
tubular reabsorption and increased sodium excretion seen in response to 
volume expansion. 

It was demonstrated that a saline infusion which depressed plasma 
protein concentration, without increasing arterial pressure or renal blood 
flow, increased urinary sodium excretion. Subsequent restoration of plas- 
ma protein concentration by systemic infusion of hyperoncotic albumin 
decreased sodium excretion in spite of an increase in arterial pressure and 
renal blood flow (Martino and Earley 1967). This observation was taken 
as evidence that depressed plasma protein is a major determinant of  the 
natriuresis seen with ECVE. Subsequent micropuncture and microperfu- 
sion studies, in a variety of experimental conditions designed to assess 
the importance of  plasma oncotic pressure by controlling other physical 
forces, presented data consistent with the postulate that changes in post- 
glomerular capillary oncotic pressure play a significant role in the regula- 
tion of  proximal sodium reabsorption (Lewy and Windhager 1968; Wind- 
hager et al. 1969; Spitzer and Windhager 1970). Brenner, utilizing both 
free-flow micropuncture and microperfusion techniques, demonstrated 
a direct relationship between oncotic pressure in efferent arterioles and 
absolute reabsorption by the proximal tubule of the rat (Brenner et al. 
1969b; Brenner and Troy 1971). The relationship between peritubular 
capillary oncotic pressure and proximal sodium reabsorption has also 
been studied in the volume expanded animal. During volume expansion, 
Brenner et al. (1971b) found that capillary microperfusion with hyper- 
oncotic albumin solution increased reabsorption by the proximal tubule 
and, similarly, Knox found that infusion of  hyperoncotic albumin solu- 
tion in the renal artery increased proximal sodium reabsorption in saline 
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loaded dogs (Knox et al. 1973). In micropuncture studies in rats, Daugh- 
arty compared the effects of  iso-oncotic and colloid-free volume expan- 
sion on proximal reabsorption (Daugharty et al. 1972). In rats in which 
the filtered load was kept  constant by means of aortic constriction, vol- 
ume expansion with colloid-free (Ringer's) solution resulted in a signifi- 
cant decrease in proximal reabsorption which was associated with a mar- 
ked reduction in peritubule protein concentration. In contrast, iso-on- 
cotic infusions resulted in no significant fall in proximal reabsorption 
and little change from control in peritubule protein concentration. Son- 
nenberg and Solomon, using free-flow micropuncture, observed that rela- 
tive to control hydropenic values, extracellular volume expansion with 
colloid-free Ringer's solution resulted in a significant decrease in proxi- 
mal reabsorption, whereas following comparable infusions of iso-oncotic 
fluid, no significant reduction could be detected (Sonnenberg and Solo- 
mon 1969). 

Several investigators, however, have failed to find a relationship 
between peritubule capillary oncotic pressure and reabsorption by the 
proximal tubule. Specifically, in the absence of saline loading, two studies 
found no difference in proximal sodium reabsorption between iso-oncotic 
perfusate versus oncotic-free perfusate (Rumrich and Ullrich 1968; 
Conger et al. 1973). Further, microperfusion studies showed that reduc- 
tions in absolute reabsorption induced by saline infusion were quantita- 
tively similar in tubules exposed to the reduced peritubule capillary 
oncotic pressure and in microperfused tubules with constant peritubular 
oncotic pressure (Holzgreve and Schrier 1975). Additionally, Kuschinsky 
et al. compared proximal fractional reabsorption and plasma protein con- 
centration in rats acutely or chronically infused with isotonic saline 
(Kuschinsky et al. 1970). During acute ECVE, proximal fractional reab- 
sorption (FR) was reduced from 61% to 42%, concomitant with a reduced 
plasma protein from 5.8% to 5.2%. However, during chronic saline infu- 
sion, fractional reabsorption (FR) was only slightly decreased to 52%, 
not  statistically different from a control group of  animals in which FR 
was 57%. In these two groups plasma protein concentration was reduced 
to a greater extent (from 5.9% to 3.6% in the control and chronically 
infused annimals, respectively). Ott et al. investigated the effect of 
increased peritubule capillary oncotic pressure on sodium reabsorption 
by the proximal tubule in hydropenic and volume expanded dog (Ott 
et al. 1975). While efferent oncotic pressure during albumin infusion was 
increased to the same degree in both groups, proximal sodium reabsorp- 
tion was increased only in the volume expanded animals. The results sug- 
gested that ECVE altered the effect of increased peritubule oncotoc pres- 
sure on sodium reabsorption by the proximal tubule. It was speculated 
that increased permeability of  the proximal tubule following saline loading 
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allowed for changes in peritubule capillary oncotic pressure to affect 
proximal reabsorption. Several studies support a role for altered perme- 
ability of the proximal tubule following ECVE. In electrophysiological 
studies, changes in permeability of the proximal tubule following saline 
loading in the necturus have been demonstrated (Bentzel et al. 1970; 
Boulpaep 1972; Maunsbach and Boulpaep 1980). Based on these data, 
it seems likely that increases in membrane permeability are a prerequisite 
for increased peritubule oncotic pressure to result in increases in isotonic 
reabsorption by the renal proximal tubule. 

Arterial hematrocrit is another physical factor which significantly 
influences urinary sodium excretion during ECVE. Knox et al. found in 
micropuncture experiments in dogs that acute reductions in arterial 
hematocrit were associated with a decrease in fractional reabsorption by 
the proximal tubule, despite maintenance of a normal extracellular fluid 
volume and no significant change in urinary sodium excretion (Knox 
et al. 1968). Clearance experiments have demonstrated a direct relation- 
ship between sodium excretion and blood viscosity during volume expan- 
sion (Schrier et al. 1970). Further studies in which hematocrit was either 
increased or decreased in both hydropenic or volume expanded animals, 
demonstrated that acute changes in hematrocrit significantly affect 
sodium excretion and renal hemodynamics in both conditions (Schrier 
and Earley 1970). Increasing hematocrit during hydropenia or ECVE 
decreased electrolyte excretion and renal blood flow. Decreasing hemato- 
crit during hydropenia was associated with an increase in electrolyte 
excretion. The effect of increasing or decreasing arterial hematocrit on 
proximal sodium reabsorption has been investigated in dogs (Burke et al. 
1971). It was demonstrated that fractional reabsorption by the proximal 
tubule can be increased or decreased by acutely increasing or decreasing 
the hematocrit. It seems likely that the effects of arterial hematocrit are 
mediated through changes in blood viscosity and subsequent effects on 
peritubule capillary hydrostatic pressures. 

It has also been demonstrated that after anesthesia and surgery animals 
have a markedly impaired ability to excrete a saline load. Keck and co- 
workers reported that this phenomenon was due to an increased hemato- 
crit, probably due to an increased permeability of the capillaries which 
results in a large extravasation of protein and fluid into the extravascular 
space (Keck et al. 1973). This observation was confirmed in the rat by 
Maddox, who reported a significant increase in hematocrit accompanied 
by a large fall in plasma volume following surgery (Maddox et al. 1977). 

Extracellular volume expansion has also been shown to depress net 
absorption of sodium and water by rat (Richet and Hornych 1969; 
Humphreys and Earley 1971), dog (Higgins and Blair 1971), cat (Gutrnan 
and Benzakein 1970), and rabbit (DiBona et al. 1974)small intestine. 
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From studies in the cat, it was postulated that ECVE reduces primarily 
the lumen to blood sodium flux, analogous to the process of tubular 
reabsorption in the kidney (Gutman and Benzakein 1970). On the other 
hand, two studies in the dog (Higgins and Blair 1971; I~Iumphreys and 
Earley 1971), one in the rat (Chanard et al. 1976), and one in the rabbit 
(DiBona et al. 1.974) found that ECVE leads to an increase in blood to 
lumen sodium flux. 

The mechanism whereby ECVE depresses intestinal sodium and water 
transport has been investigated. The results indicate an important role 
for physical factors in modulating intestinal transport. In vitro studies in 
dog jejunum showed that when serosal hydrostatic pressure was increased 
by 2 - 6  cm H~ O, fluid absorption was stopped, and further increases in 
serosal pressure resulted in fluid secretion (Hakim and Lifson 1969). 
In vitro studies in rats demonstrated that capillary hydrostatic pressure 
and colloid osmotic pressure exert opposite effects on transjejunal water 
transport (Lee 1973). Further, it has been reported that during ECVE 
in vivo, the decreased net absorption of sodium is accompanied by an 
increased permeability of the intestinal mucosa (Humphreys and Earley 
1971 ). It has also been demonstrated that saline infusion results in a dis- 
tension of intercellular spaces in the rabbit jejunum (DiBona et al. 1974). 
In addition, in vivo studies suggest that intestinal absorption increases 
when plasma oncotic pressure is increased by albumin infusion (Humph- 
reys and Earley 1971). These observations imply that capillary absorp- 
tion plays a role in intestinal absorption and that permeability changes 
modulate the net absorption of sodium and water, as may be the case for 
fluid reabsorption by the renal proximal tubule during ECVE. 

2.3.2 Peritubule Capillary Hydrostatic Pressure 

Earley et al., on the basis of clearance studies in dogs, concluded that the 
natriuretic effect of renal vasodilatation, induced either by infusion of 
vasodilators, plasma or iso-oncotic saline infusion, may in part result 
from decreased tubular reabsorption as a consequence of the transmis- 
sion of the increased pressure to the peritubular capillaries (Earley and 
Friedler 1966; Earley et al. 1966). It also has been proposed that the 
exaggerated natriuresis of hypertensive patients and rats when given a 
saline infusion may be due to a direct effect of the increased arterial pres- 
sure to decrease fractional reabsorption of sodium (Papper et al. 1960; 
Buckalew et al. 1969; Stumpe et al. 1970). In addition, a direct relation- 
ship between the natriuresis of volume expansion and renal perfusion pres- 
sure has been reported from studies in the isolated dog kidney (McDonaM 
and de Wardener 1965). Bank and co-workers, using split-drop techniques 
in saline loaded rats, reported that when renal perfusion pressure was 
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lowered to 70-90 mmHg, the reduction in fractional reabsorption which 
usually occurs in the proximal tubule was greatly minimized (Bank et al. 
1969). Associated with this finding was a concomitant decrease in urinary 
sodium excretion. From these results the authors suggested that the 
changes in proximal reabsorption during saline loading are related to the 
increase in peritubular hydrostatic pressure. In an attempt to determine 
whether transmitted increments in capillary hydrostatic pressure are 
related to decreases in sodium reabsorption during volume expansion, 
deep intrarenal venous pressure was used as a qualitative index of renal 
capillary pressure (Martino and Earley 1968). It was concluded, based on 
correlations between changes in intrarenal venous pressure and sodium 
excretion following either saline or plasma infusion, that increases in peri- 
tubular capillary hydrostatic pressure inhibit reabsorption. Stop-flow 
microperfusion with or without combined local microperfusion of peri- 
tubular capillaries has shown that, while hydrostatic pressure from the 
lumen is not an effective driving force for fluid reabsorption, increases in 
hydrostatic pressure from the contraluminal side markedly inhibit fluid 
reabsorption (Sato 1975). Finally, Kunau et al. showed that in rats under- 
going a saline diuresis an acute increase in renal perfusion pressure resulted 
in a marked increase in sodium excretion (Kunau and Lameire 1976). 
This natriuresis occurred in the absence of a change in either total GFR 
or superficial SNGFR. It was also observed that the natriuresis was not 
the result of an increased sodium delivery from the superficial late distal 
tubule. This led to the conclusion that it must be related to an inhibition 
of sodium reabsorption in either the collecting system or in deep nephrons. 

2. 3. 3 Interstitial Pressure 

Clearance experiments in dogs demonstrated that administration of dex- 
tran in isotonic saline leads to a natriuresis, whereas dextran in glucose 
does not (Schrier et al. 1968). Dextran in saline was associated not only 
with increased plasma volume, but also with increased interstitial volume, 
whereas dextran in glucose increased plasma volume alone. From this 
observation it was postulated that without expansion of the interstitial 
space, intravascular volume expansion may not be a sufficient stimulus 
to increase sodium excretion. 

Micropuncture techniques have been used to study the respective influ- 
ence of each of the Starling forces upon proximal tubular reabsorption 
during hydropenia and volume expansion. The Starling forces, hydro- 
static and oncotic pressures across the peritubular capillary wall, presum- 
ably mediate capillary uptake and passive backflux into the proximal 
tubular lumen through changes in renal interstitial pressure. Peritubular 
capillary uptake is determined not only by the  balance of the Starling 
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forces, i.e., the net reabsorption pressure, but also by the permeability 
surface area of the peritubular capillary. Thus, changes in either para- 
meter lead to changes in capillary uptake. The relationship between net 
reabsorption pressure and the permeability surface area of the peritubu- 
lar capillary (reabsorption coefficient) has been studied in the volume 
expanded rat with differing results. Tucker and Blantz measured proxi- 
mal reabsorption in rats during hydropenia and saline expansion. They 
concluded that changes in proximal reabsorption correlate best with 
changes in filtered load (Tucker and Blantz 1978). Quinn and Marsh con- 
cluded that it was unlikely the reabsorption coefficient was different 
between hydropenia, Ringer's expansion, and plasma volume expansion 
(Quinn and Marsh 1979). They found a strong correlation between abso- 
lute proximal reabsorption and net interstitial pressure, which was taken 
as evidence for a role for interstitial pressure in regulating proximal reab- 
sorption. However, interstitial pressure was directly measured only in 
saline loaded animals and was calculated for the other conditions. Stron- 
ger evidence for a positive correlation between renal interstitial pressure 
and sodium excretion during volume expansion has been presented by 
Marchand, who observed that reductions in renal perfusion pressure by 
renal artery constriction prior to volume expansion blocked both the 
increase in renal interstitial pressure as well as the increase in sodium 
excretion (Marchand 1978). Kallskog and Wolgast calculated peritubular 
protein concentration and measured interstitial space pressure (Kallskog 
and Wolgast 1973). In saline expansion, the interstitial hydrostatic pres- 
sure almost doubled, whereas interstitial oncotic pressure fell to almost 
zero. They concluded that the peritubular capillary has a large and a 
small pore system, and further postulated that the effective capillary area 
increases during saline loading due to expansion of the capillary pores. 

Experiments providing evidence that intrarenal factors are the initial 
determinants of the natriuresis of saline loading were performed by Fitz- 
gibbons et al. (1974). As mentioned previously, the natriuretic effect of 
saline loading has been demonstrated to persist in spite of a reduction of 
GFR to below preexpansion levels (de Wardener et al. 1961). However, 
Fitzgibbons reported that in the rat, reduction of renal artery pressure 
prior to the initiation of ECVE virtually abolished the natriuretic effect 
of volume expansion. From these findings, they hypothesized that ECVE 
can induce a natriuresis only if the kidney has been exposed to at least a 
transient increase in either interstitial hydrostatic pressure and/or renal 
plasma flow. Further, the results gave strong evidence against an impor- 
tant role for a reduction in plasma oncotic pressure or a circulating hor- 
mone as mediators of the natriuresis. This finding was confirmed in a 
micropuncture study in the rat by Osgood which demonstrated that 
volume expansion did not decrease proximal reabsorption or cause an 
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increase in urinary sodium excretion in immediate-clamp rats (Osgood 
et al. 1977). In contrast, comparable aortic clamping 40 rain after initia- 
tion of volume expansion did not prevent a fall in proximal reabsorption 
or an increase in urinary sodium excretion.Marchand evaluated the effect 
of reduced peritubule capillary oncotic pressure at reduced renal artery 
pressure on renal interstitial pressure and sodium excretion in the dog 
(Marchand 1978). He found that reducing renal artery pressure before 
volume expansion reduces or prevents increases in interstitial pressure 
and fractional sodium excretion, depending on the magnitude of reduc- 
tion of renal artery pressure. Studies, also performed in dogs, demon- 
strated a saline-induced natriuresis, although blunted, even though perfu- 
sion pressure was reduced prior to the accompanying volume expansion 
(Klemmer et al. 1978). This study suggested a possible species difference 
in the renal natriuretic response to volume expansion at reduced renal 
perfusion pressure between dogs and rats. In order to test the hypothesis 
that these conflicting results could be due to differences in preexpansion 
basal sodium excretion, Lameire manipulated the dietary salt intake to 
adjust preexpansion fractional excretion of sodium (FENa %) to the same 
level in both species (Lameire et al. 1979). Hydropenic or salt depleted 
dogs showed a small but significant increase in FENa % following a 7.5% 
body wt. volume expansion. In the rat, however, a significant natriuresis 
did not occur unless the rats were salt loaded. These results were inter- 
preted to mean that an appropriate intrarenal environment is necessary in 
the rat, but not the dog, for volume expansion to result in a significant 
natriuresis. Further, it was concluded that the natriuretic response to 
ECVE was not dependent on the moment of lowering the renal perfusion 
pressure. However, it should be emphasized that in both species, regard- 
less of preexpansion basal sodium excretion, prior reduction of renal per- 
fusion pressure markedly attenuated the magnitude of the natriuresis in 
response to volume expansion. 

2. 3. 4 Plasma Sodium Concentration 

It has been shown that following infusion of hypertonic saline there are 
increases in plasma sodium concentration, filtered sodium, and urinary 
sodium excretion (Kamm and Levinsky 1964). The difficulty in assessing 
the importance of plasma sodium concentration, per se, as a mediator of 
the natriuresis following hypertonic saline infusion is that, besides hyper- 
natremia, this experimental maneuver also leads to expansion of the 
ECFV and a fall in plasma oncotic pressure, all of which could by them- 
selves result in increased sodium excretion. In order to circumvent this 
problem, Kamm and Levinsky infused hypertonic saline directly into 
one renal artery of a dog. Despite a decreased filtered load below that of 
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preinfusion levels and a comparable volume expansion in the contralateral 
kidney, the results showed an ipsilateral increase in sodium excretion, 
which was attributed to an effect of hypernatremia per se to depress net 
tubular reabsorption of sodium (Kamm and Levinsky 1965). In order to 
determine whether a low plasma sodium could depress the natriuretic 
response to ECVE, Davis compared fractional sodium reabsorption in the 
proximal tubule in normal dogs and in dogs made hyponatremic by 
chronic administration of vasopressin, water, and ethacrynic acid. Hypo- 
natremic dogs expanded with hypotonic saline had a smaller decrease in 
fractional reabsorption than normal dogs expanded with an equal amount 
of isotonic saline (Davis et al. 1970). Experiments in dogs, which were 
infused with equal amounts of sodium chloride per kilogram of body 
weight as either hypotonic, isotonic, or hypertonic solutions, demon- 
strated that in spite of the fact that hypotonic saline led to a greater 
expansion of the blood volume and interstitial space, sodium excretion 
was significantly less in this group (Schrier et al. 1969). Thus, these 
studies suggest that plasma sodium concentration may influence the 
natriuretic response to volume expansion. 

2.3.5 Preexisting Extracellular Fluid Volume 

The effect of the level of the preexisting extracellular fluid volume on 
the response to acute volume expansion has been studied in the dog and 
rat. In the dog, animals on a high salt intake and deoxycorticosterone 
acetate (DOCA) administration have a greater diuretic and natriuretic 
response to either hyperoncotic albumin solution (Knox et al. 1970) or 
isotonic saline loading (Higgins 1971). However, in ratsaparadoxical 
effect of dietary salt intake on the renal response to hypertonic saline 
loads has been reported (Ben-Ishay 1973). Animals on a low salt regimen 
demonstrated an enhanced diuretic and natriuretic response to hyper- 
tonic saline loading compared with rats on a high salt diet. In contrast, 
studies in dogs maintained on a high sodium intake revealed that they did 
not have a significantly different natriuresis from those on a low sodium 
intake, following hypertonic saline infusion (Diaz-Buxo et al. 1976). This 
was also found to be the case whether or not dogs were in positive or 
negative sodium balance. However, the natriuretic response to isotonic 
saline loading was smaller in dogs in negative sodium balance compared 
with those in positive sodium balance. These findings suggest that hyper- 
natremia accompanying hypertonic saline infusion can override factors 
promoting sodium retention in sodium depleted dogs, but does not fur- 
ther augment sodium excretion in states of positive sodium balance. 
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2. 3. 6 Tubule Geometry 

A mechanism for glomerular-tubular balance was suggested by Gertz and 
others (Gertz et al. 1965; Brunner et al. 1966). In this proposal, the rate 
of proximal tubular reabsorption is thought to be proportional to intra- 
tubular volume, as a result of a direct relationship between tubular sur- 
face area and reabsorptive rate. Changes in filtration rate result in propor- 
tional changes in tubular surface area and subsequently sodium reabsorp- 
tion. It was proposed that the mechanism by which ECVE suppresses 
proximal reabsorption was the result of two factors, a decrease in intrin- 
sic reabsorptive capacity and a diminished tubular volume per given level 
of GFR (Rector et al. 1967). However, there is experimental evidence 
which indicates that tubule geometry does not significantly influence 
sodium reabsorption. Microperfusion studies, which changed either tubu- 
lar volume or radius, showed no significant correlation between reabsorp- 
tion and tubular shape or size (Morgan and Berliner 1969b; Burg and 
Orloff 1968). 

2.4 Segmental Sodium Reabsorption 

2.4.1 Acute ECVE 

There is much evidence from micropuncture studies in the dog and rat to 
indicate that the natriuresis of acute ECVE is associated with decreased 
sodium reabsorption by the renal tubule. Numerous studies have demon- 
strated that ECVE significantly decreases sodium reabsorption by the 
proximal tubule (Rector et al. 1964; Dirks et al. 1965; Cortney et al. 
1965). Because the resulting increase in sodium delivery from the proxi- 
mal tubule more than accounted for the increased urinary sodium excre- 
tion, it was first postulated that the proximal tubule was the sole regula- 
tor of the natriuresis of ECVE. This postulate was questioned, however, 
by studies which demonstrated that proximal sodium reabsorption can 
be depressed without/m ensuing natriuresis, suggesting that a saline load 
may also inhibit sodium reabsorption in a more distal nephron segment 
(Howards et al. 1968; Brenner and Berliner 1969; Knox et al. 1973; 
Knight and Weinman 1977). Evaluation of altered reabsorption during 
acute ECVE by the "distal" tubule can include the loop of Henle, distal 
convoluted tubule, and the collecting tubule. The discussion will first 
focus on evidence for and against the loop of Henle as an important 
mediator of the natriuresis of volume expansion. 

On the basis of studies in humans and dogs utilizing free-water clear- 
ance as an index of loop of Henle reabsorption, most (Eknoyan et al. 
1967; Stein et al. 1967; Leeber et al. 1968; Buckalew et al. 1970b; 
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Bennett 1973), but  not all (Barton et al. 1972), report that ECVE sup- 
presses sodium reabsorption in the loop of Henle. The demonstration that 
the collecting duct has a marked diluting capacity makes interpretation 
of free-water clearance data difficult. In contrast, micropuncture studies 
in which sodium reabsorption along the loop of  Henle is estimated by 
micropuncture of both proximal and distal tubules report increased abso- 
lute reabsotption after either isotonic or hypertonic saline infusion in the 
rat (Giebisch et al. 1964; Cortney et al. 1965; Landwehr et al. 1967; 
Stein et al. 1973; Kunau et al. 1974)or  the dog (Dirks and Seely 1970). 
Similarly, microperfusion studies, indicate that sodium reabsorption in 
the loop increased linearly as a function of the load delivered to it, and 
that ECVE, per se, does not affect its intrinsic reabsorptive capacity 
(Schnermann 1968; Morgan and Berliner 1969a). 

In many respects, the transport characteristics of  the distal convoluted 
tubule after volume expansion resemble the loop of  Henle. Hayslett, uti- 
lizing the sprit-drop technique, reported that reabsorption from the distal 
convoluted tubule is enhanced by saline infusion (Hayslett et al. 1967). 
Many free-flow micropuncture experiments have found increased abso- 
lute (Kunau et al. 1974; Knox and Gasser 1974; Khuri et al. 1975), and 
with one exception (Khuri et al. 1975), decreased fractional reabsorption 
along the distal tubule after volume expansion. In addition, micropunc- 
ture experiments in which increased sodium delivery to distal tubules 
was prevented by reduction of renal perfusion pressure revealed that 
ECVE had no effect on sodium transport along the superficial distal 
tubule (Diezi et al. 1980). These results are in agreement with microper- 
fusion studies which found that the rate of  sodium reabsorption paralleled 
sodium delivery to the distal tubule (Morgan and Berliner 1969a). 

Evidence that ECVE affects sodium transport in the collecting duct 
has been indirectly evaluated by comparison of  sodium delivery in super- 
ficial late distal tubules with final urine. Two studies reported diminished 
fractional sodium reabsorption in the collecting duct after Ringer's infu- 
sion when compared with a similar distal delivery of  sodium after albu- 
min infusion (Stein et al. 1973;Knox and Gasser 1974). Diezi compared 
urinary sodium excretion in nondiuretic and volume-expanded rats in 
which late distal sodium delivery was adjusted to similar levels by means 
of  aortic constriction (Diezi et al. 1980). Urinary sodium excretion was 
significantly higher in the volume-expanded animals. The comparison of  
late distal tubular fluid with final urine to estimate collecting duct reab- 
sorption assumes that homogeneity of  nephron function exists with 
regard to sodium handling. If nephron heterogeneity exists, changes in 
excretion could be due to either alterations in collecting duct reabsorp- 
tion per se, or could be due to the admixture of  fluid from superficial 
and juxtamedullary nephrons. In order to differentiate between these 
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possibilities, Diezi performed direct micropuncture of the base and tip of  
the papillary collecting duct. His results showed that after volume expan- 
sion, collecting duct fractional sodium reabsorption decreases and abso- 
lute sodium reabsorption increases (Diezi et al. 1973). Subsequently, in 
a similar protocol, Stein evaluated papillary collecting duct reabsorption 
as well as the possibility of nephron heterogeneity, by comparing the 
delivery of sodium to the end of the distal tubule superficial nephrons 
with papillary base delivery (Stein et al. 1976). They found that the deliv- 
ery of sodium to and reabsorption along the papillary collecting duct 
were markedly greater during Ringer loading than in hydropenia. Further, 
the amount of sodium delivered to the papillary base was greater than 
the delivery to the end of  the distal tubule of superficial nephrons during 
Ringer loading, suggesting that deeper nephrons deliver more sodium to 
the collecting duct. Finally, the difference in sodium excretion between 
Ringer loading and hyperoncotic albumin infusion was due to events 
occurring between the late distal tubule of  superficial nephrons and the 
base of the papillary collecting duct. Although these findings do not 
exclude the possibility that ECVE may alter collecting duct transport, 
they concluded that the natriuresis of Ringer loading was due, in part, 
to increased sodium delivery from inner cortical nephrons, and that the 
terminal part of the collecting duct reduces the magnitude of  the natri- 
uresis. In a subsequent study, direct micropuncture of the deep nephrons 
during volume expansion confirmed that delivery of sodium to the bend 
of the loop of Henle in juxtramedullary nephrons was greater than esti- 
mates of delivery in the superficial nephrons (Osgood et al. 1978). In 
addition, micropuncture studies by Reineck showed that the net addition 
of sodium between the late distal tubule and papillary base seen during 
Ringer loading is abolished if juxtamedullary nephron function is abol- 
ished by drug-induced necrosis (Reineck et al. 1980). With regard to the 
finding that in the presence of volume expansion, absolute sodium reab- 
sorption along the papillary collecting duct is enhanced, this is in sharp 
contrast to the conclusions drawn in several microcatheterization studies 
that either no net reabsorption or even net addition of  sodium occurs along 
the papillary collecting duct during Ringer loading (Sonnenberg 1974, 
1975; Wilson and Sonnenberg 1979). The difference between the findings 
have been ascribed to technique (micropuncture vs microcatheterization) 
and experimental protocol. In the studies by Sonnenberg, the degree of 
acute extracellular expansion was markedly greater than in the micropunc- 
ture studies and, in addition, urine was reinfused. Urine reinfusion has 
been shown to be natriuretic (Harris and Yarger 1976). Accordingly, the 
differences in results between the micropuncture and microcatheterization 
studies may be due to the urine reinfusion used in the latter, which in 
turn may depress sodium transport by the papillary collecting duct. 
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2.4.2 Chronic ECVE 

Chronic ECVE can be produced experimentally by the administration of  
mineralocorticoids and large amounts of  salt in the diet, followed by a 
return of  sodium excretion to control levels. As mentioned previously, 
this phenomenon is referred to as "DOCA escape". The nephron sites 
responsible for escape, and the response of  the "escaped" animal to volume 
expansion have been extensively discussed in a previous paper (Knox et 
al. 1980). In brief, superimposed volume expansion in the DOCA-escaped 
rat reveals that fractional reabsorption of sodium is diminished in the 
superficial nephron segment containing the pars recta and loop of Henle. 
Fractional reabsorption of  sodium is also decreased in deep nephrons 
proximal to the bend in Henle's loop. Finally, escape occurs from the 
sodium-retaining effects of  mineratocorticoids when sodium delivery 
from both superficial and deep nephrons is increased enough to overcome 
sodium reabsorption by the cortical collecting tubule which is stimulated 
by mineralocorticoids. 

Chronic ECVE is also a feature of models of heart failure and is charac- 
terized by the inability to excrete a saline load. Schneider evaluated 
proximal sodium reabsorption in dogs with aorta-vena cava (AV) fistulas 
to produce high output  heart failure (Schneider et al. 1971). When these 
animals are given a saline infusion, the normal inhibition of proximal reab- 
sorption occurs so that delivery from the proximal tubule is markedly 
increased. However, in these dogs, very little of the increased delivery of  
sodium appeared in the urine, whereas control dogs had the normal natri- 
uretic response. This observation indicates that sodium transport in some 
distal nephron segment is altered in response to changes in ECFV. Sturnpe 
and associates reported similar findings in rats with AV fistulas (Stumpe 
et al. 1973). Comparing the rats with AV fistulas with normal rats, they 
found similar delivery of sodium out of  the proximal tubule, but enhanced 
sodium reabsorption along the loop of Henle. In another model of chronic 
sodium retention, two studies showed that proximal tubular sodium reab- 
sorption was not significantly different in normal animals from animals 
with thoracic vena cava obstruction after saline loading (Auld et al. 1971 ; 
Levy 1972). Levy also found enhanced sodium reabsorption in the loop 
of  Henle in the AV fistula group, again suggesting that sodium reabsorp- 
tion at this nephron segment accounts for the inability of animals with 
experimental heart failure to excrete a saline load. 
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2.5 Hormonal Factors 

2.5.1 Renin-Ang )tensin-Aldosterone System 

It has been prop( ;ed that in the antidiuretic animal, glomerular filtration 
rate is governed y the orthograde flow of tubule fluid past the macula 
densa and this in turn may be mediated by the renin-angiotensin system 
(Schnermann et al. 1970). This hypothesis comes from the observation 
that in the antidiuretic state, interruption of flow to the macula densa 
with proximal tubule micropuncture results in a significantly higher 
single nephron glomerular filtration rate (SNGFR), compared to the 
SNGFR measured in the distal tubule beyond the macula densa. These 
experiments imply that distally measured SNGFR represents the true 
steady-state filtration rate. However, as stated previously, both proximal 
SNGFR and whole kidney GFR increase in response to extracellular vol- 
ume expansion (Davidman et al. 1972; Rector et al. 1964), and further, 
it has been demonstrated that the proximal-distal SNGFR difference is 
abolished during saline diuresis (Schnermann et al. 1971). If tubuloglo- 
merular feedback participates in the regulation of filtration rate, one 
would expect during volume expansion, when distal sodium chloride 
delivery is elevated, a decrease rather than an increase in filtration rate. 
Dev and co-workers postulated that this apparent discrepancy might be 
due to variations of sensitivity of the feedback system as a function of 
salt intake (Dev et al. 1974). They found that in rats with a sodium intake 
of greater than 6 mEq/day, the feedback sensitivity (i.e., proximal-distal 
SNGFR difference) was abolished. In an extension of these studies, 
Schnermann et al. measured feedback sensitivity by comparing proximal 
flow rate, filtration rate, and stop-flow pressure in response to loop of 
Henle perfusion in control rats and DOCA-saline treated rats (Schner- 
mann et al. 1975). The DOCA-saline treated rats exhibited a blunted 
feedback responsiveness compared to controls, accompanied by a signifi- 
cant decrease in juxtaglomerular renin activity. From these observations 
it was postulated that in animals, either acutely or chronically volume 
expanded, feedback response is blunted. This impaired feedback accounts 
for the increase in SNGFR and whole kidney GFR which accompanies 
ECVE. However, a subsequent study concluded that autoregulation of 
whole kidney and proximal filtration rate occurred in both sodium 
depleted and expanded animals in which there was a threefold to four- 
fold difference in measured renal renin content (Marchand 1978). 

Studies by de Wardener et al. demonstrated that acute ECVE increased 
sodium excretion depsite the administration of large doses of 9 a-fluoro- 
hydrocortisone and reductions in GFR (De wardener et al. 1961). These 
experiments were taken as evidence that increases in sodium excretion 
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following acute volume expansion were independent of changes in adreno- 
cortical hormone secretion. However, these experiments do not rule out 
the possibility that acute reductions of aldosterone secretion during vol- 
ume expansion may be a contributing mechanism for the natriuresis. This 
possibility was studied by comparing the natriuresis of volume expansion 
in the intact and adrenalectomized rat. One difficulty of evaluating renal 
function in the absence of mineralocortocoids is that this maneuver is 
achieved by adrenalectomy, which usually lowers blood pressure and 
results in a decreased GFR. Even so, it has been demonstrated that vol- 
ume natriuresis in response to either isotonic saline or blood volume 
expansion is similar in intact and adrenalectomized rats (Cortney 1969; 
Veress and Pearce 1974). 

Evaluating the effect of variations in endogenous secretion ofmineralo- 
corticoids on the natriuresis of ECVE is difficult. In order to achieve a 
stimulation of aldosterone secretion, animals are given a low sodium diet 
and/or administered a diuretic. These maneuvers also contract the ECFV, 
which in itself affects the renal response to ECVE (Higgins 1971). Given 
the fact that animals administered exogenous mineralocorticoids acutely 
respond with a diuresis of the same magnitude as untreated ones makes it 
unlikely that suppression of aldosterone secretion is the primary cause of 
the saline diuresis. When the ECFV is gradually increased by the chronic 
administration of mineralocorticoids, an initial retention of sodium is 
followed by a return of sodium excretion to control levels. This pheno- 
menon is referred to as escape from the sodium retaining effects of min- 
eralocorticoids (Knox et al. 1980). The importance of the state of sodium 
balance in determining the natriuretic response to saline loading has been 
discussed in Sect. 2.3.5). As mentioned before, an augmented diuretic 
response to ECVE has been demonstrated in DOCA-escaped dogs. This 
phenomenon has also been reported in normal humans given 9 ~-fluoro- 
hydrocortisone (Strauss and Earley 1959) and in patients with primary 
aldosteronism (Biglieri and Forsharn 1961). In normal subjects, infusion 
of isotonic saline suppresses aldosterone secretion, whereas patients with 
primary aldosteronism fail to do so (Espiner et al. 1967). However, both 
respond with marked natriuresis. This responsiveness of sodium excre- 
tion to ECVE reinforces the independence from aldosterone secretion. 

2.5. 2 Natriuretic Hormone 

Several studies have presented evidence suggesting that there is a natri- 
uretic hormone which contributes to the increase in urinary sodium 
excretion in response to changes in ECFV expansion. Attempts to prove 
the existence of a natriuretic hormone have employed several different 
techniques. The first, cross-circulation, was initially used by de Wardener 
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et al. (t 961 ). Cross-circulation involves joining the circulation of two ani- 
mals via a shunt. One animal serves as a donor and has its ECFV acutely 
or chronically expanded. In the second animal (recipient) ECFV is kept 
constant and urinary excretion of sodium is monitored. These cross-cir- 
culation studies induce an increase in urinary sodium excretion in the 
assay kidney, which is taken as evidence of a change in the circulating 
concentration of a natriuretic hormone. Expansion of the donor animal 
with saline has been performed by several groups (de Wardener et al. 
1961 ; Johnston and Davis 1966; Johnston et al. 1967; Blythe et al. 1971 ; 
McDonald et al. 1967). A number of similar experiments have been per- 
formed, except, instead of using saline, the donor animals has been 
expanded with blood or iso-oncotic albumin and the assay kidney is 
in situ (Bahlrnann et al. 1967; Pearce et al. 1969) or is isolated and per- 
fused (Lichardus and Pearce 1966; KaIoyanides and Azer 1971;KaIoya- 
nides et al. 1977). The cross-circulation experiments with saline have 
been criticized due to the dilution of the blood in the recipient animal 
(hematocrit, protein concentration), which in itself could result in a natri- 
uresis in the recipient animal. Two groups have addressed this problem in 
experiments in which they expanded the donor animal with equilibrated 
blood from a reservoir (Knox et al. 1968;Bengele et al. 1972). In these 
animals, as well as those expanded with saline, the sodium excretion in 
the recipient is usually only a small fraction of that in the donor. 

Another approach to detect a natriuretic hormone involves obtaining 
extracts of plasma, urine or tissue from volume-expanded donors and 
comparing the natriuresis when injected into bioassay rats with extracts 
from nonexpanded donors (Sealey et al. 1969; Viskoper et al. 1971; 
Brown et al. 1972; Gonick and Saldanha 1975). Again, the ensuing natri- 
uresis is usually modest and sometimes accompanied by an increase in 
GFR and/or renal blood flow (RBF). These findings raise questions 
regarding the specificity of the extract, as well as the physiologic signifi- 
cance. 

In vitro assays for natriuretic hormone have involved the measurements 
of ion transport by the isolated frog skin or toad bladder, the transport 
of p-aminohippurate by kidney slices, the activity of kidney ATPase and 
transport of sodium and potassium by renal tubule fragments (Bricker 
et al. 1968;Buckalew et al. 1970a; Clarkson et al. 1970;Nutbourne et al. 
1970; Katz and Genant 1971; Gruber et al. 1980). Many of the findings 
with in vitro assays have not been confirmed in other laboratories, and 
the question arises whether the results are relevant to a natriuresis in vivo. 
The evidence that the natriuresis of ECVE is due, in part, to a natriuretic 
hormone remains both equivocal and enticing. 
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2.5.3 Prostaglandins 

Saline loading results in an increase in the urinary excretion of PGA and 
PGE in humans (Papanicolaou et al. 1975), as well as significant changes 
in intrarenal PGA2 concentration in the rabbit (Attallah and Lee 1973). 
Following inhibition of PG synthesis by indomethacin administration, 
sodium excretion in chronically saline loaded rabbits decreased accompa- 
nied by a significant fall of PGA2 concentration in the outer medulla and 
papilla. Inhibition of prostaglandin synthesis by either fatty acid depriva- 
tion (Rosenthal et al. 1974), aspirin (Susic and Sparks 1975), or indo- 
methacin (Dusing et al. 1977b) has been shown to reduce the natriuresis 
of saline loading. Dusing and coworkers studied the effect of prostaglan- 
din synthesis inhibition in ECV-expanded rats on total renal plasma flow 
and its intrarenal distribution as well as on GFR (Dusing et al. 1977a). 
In ECV-expanded rats, indomethacin had no effect on GFR, but total 
renal plasma flow was significantly decreased, which was due to a decrease 
in outer cortical blood flow. To assess the specific sites of enhanced chlo- 
ride reabsorption in ECV-expanded rats treated with either indomethacin 
or meclofenamate, Higashihara performed free flow micropuncture experi- 
ments in the Munich-Wistar rats (Higashira et al. 1979). The results 
showed that inhibitors of prostaglandin synthesis increase chloride trans- 
port in the thick ascending loop of Henle, and/or the cortical and outer 
medullary collecting tubule. Several studies, however, have reported 
results which showed that inhibition of prostaglandin synthesis results in 
a significant natriuresis after saline infusion in rabbit, dog, and man 
(Oliw et al. 1978; Kirschenbium and Stein 1976; Mountokolakis et al. 
1978). In view of this controversy, the physiologic significance of prosta- 
glandins in mediating the natriuresis of volume expansion is, therefore, 
not settled. 

2.5.4 Antidiuretic Hormone 

The possibility that the natriuresis of ECVE is due to a dilution of anti- 
diuretic hormone, thus leading to a diuresis, has been eliminated. Exo- 
genous administration of vasopressin to assure a maximal reabsorption 
of water has little or no effect on the natriuresis of ECVE (de 14/ardener 
et al. 1961 ; Earley and Friedler 1965a). Further, acute hypophysectomy 
does not significantly alter the natriuretic response to volume expansion 
(Kaloyanides et al. 1977). 

2.5.5 Parathyroid and Thyroid Hormone 

Extracellular volume expansion with calcium-free Ringer's solution results 
in increases in parathyroid hormone (PTH) secretion as a result of a fall 
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in plasma ionized calcium concentration (Schneider et al. 1975). Micro- 
puncture studies in dogs have shown that infusion of parathyroid hor- 
mone results in decreased sodium and phosphate reabsorption by the 
proximal tubule (Agus et al. 1971). From these observations one could 
hypothesize that PTH may play an important role in the natriuresis 
accompanying ECVE. However, it has been demonstrated that while para- 
thyroid hormone significantly affects the phosphaturia of ECVE, the natri- 
uresis is not dependent on the presence of PTH (Schneider et al. 1975). 

Holmes and DiScala have shown that hypertonic saline infusion in 
hypothyroid rats resulted in fractional excretion of 45% of the filtered 
load, whereas no control animal excreted more than 12% (Holmes and 
DiScala 1970). This suggests that a thyroid hormone provides a basal 
support for sodium transport during ECVE. 

2.5.6 Neurohumoral 

It has been demonstrated that the natriuresis of blood volume expansion 
is virtually eliminated by high spinal cord section in the dog (Pearce and 
Sonnenberg 1965). Gilmore and Daggett observed a blunted natriuresis 
to volume expansion with 6% dextran in isotonic saline following chronic 
cardiac denervation (Gilmore and Daggett 1966). This was interpreted as 
being due to interruption of nonvagal afferent pathways from volume 
receptors near the heart. Knox et al. confirmed that cardiac denervation 
attenuates the natriuresis of saline loading, but found that proximal reab- 
sorption was depressed to a similar degree in response to ECVE as occurs 
in animals with cardiac innervation (Knox et al. 1967). Subsequently, 
McDonald and co-workers investigated the influence of afferent and 
efferent neural pathways on the natriuresis of ECVE (McDonald et al. 
1970). High spinal section, which interrupts both afferent and efferent 
pathways, markedly reduced the natriuretic response to volume expan- 
sion. However, cord transection at the T6 level, which preserved thoracic 
but not abdominal innervation, failed to blunt the natriuretic response. 
Further, interruption of afferent neural pathways by sectioning nerve 
roots from C8 to T6, did not impair the natriuresis of ECVE. In this same 
group of animals, vagotomy also failed to affect the natriuretic response. 
Similar findings in regard to vagotomy have been shown in response to 
blood volume expansion (Pearce and Lichardus 1967). These results 
strongly suggest that the adrenergic efferent rather than afferent pathways 
are important in the natriuresis associated with volume expansion in dogs. 

Studies have demonstrated that renal denervation in the volume 
expanded animals leads to an. additive natriuresis (Bengele et al. 1972; 
Bello-Reuss et al. 1977), which was due to a further decrease in proximal 
reabsorption (Bello-Reuss et al. 1977). Further, low frequency electrical 
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stimulation of the denervated rat kidney reverses the increase in sodium 
excretion seen in saline expansion (Bello-Reuss et al. 1976). These results 
are consistent with the notion that a tonic nerve influence on the kidney 
persists during volume expansion. Studies in the rabbit have, in fact, 
demonstrated decreased efferent neural traffic during blood volume 
expansion (Clement et al. 1972). 

Previous studies have assessed the interrelationship between the cate- 
cholaminergic system and ECFV expansion with adrenergic blockade, or 
measurement of catecholamine blood levels and urinary excretion during 
acute volume expansion. Gill observed an enhanced natriuresis to saline 
infusion following guanethidine administration (Gill et al. 1964). Alexan- 
der observed that sympathetic nerve activity, as shown by measurement of 
plasma dopamine ~-hydrooxylase and urinary norepinephrine, is sup- 
pressed during saline infusion (Alexander et al. 1974). Additional studies 
have confirmed that plasma levels of norepinephrine and epinephrine are 
reduced during acute saline loading in dogs (Faucheux et al. 1977; Carriere 
et al. 1978). These reductions were greater than could be accounted for 
by hemodilution alone. These data indicate that there may be a direct 
effect of volume expansion to lower circulating plasma catecholamines, 
and thereby reduce renal sympathetic tone during volume expansion. 

2.6 Response of the Perinatal Kidney to Volume Expansion 

When a perinatal mammal is given an ECVE, the result is a smaller abso- 
lute and fractional excretion of sodium compared to an adult receiving 
an equivalent sodium load. This response has been described in several 
different species (Aperia et al. 1972;Merlet-Benichou and de Rouffignac 
1977; Hurley et al. 1977; Bengele and Solomon 1974; Kleinman and 
Reuter 1974) and the reasons underlying the phenomenon have been 
ascribed to several different factors. Among these are rate of glomerular 
filtration, intrarenal distribution of blood flow, physical and hormonal 
factors, and inability of the proximal and/or distal tubule to decrease 
sodium reabsorption in response to a saline load. 

The attenuated natriuretic response to volume expansion in the neo- 
nate was initially attributed to a relatively small increase in glomerular 
filtration rate in association with volume expansion. Additionally, a 
change in the intrarenal distribution of blood flow was postulated to 
influence sodium handling. The results of studies in newborn and adult 
dogs, however, show that GFR increases similarly in response to volume 
expansion in dogs of all ages, and that there is no correlation between the 
blunted natriuresis and the change in intrarenal blood flow distribution in 
the newborn dog (Kleinman and Reuter 1974, Goldsmith et al. 1979). 
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The relationship between changes in physical factors and proximal 
reabsorption after volume expansion in the neonate is unknown. It has 
been shown that the oncotic pressure of young rats is lower than that of 
mature rats (Allison et al. 1972). This observation raises the possibility 
that in the neonate, volume expansion may not decrease peritubular 
oncotic pressure to the same extent as the mature animal. However, mor- 
phological studies demonstrate widening of lateral intercellular spaces 
during volume expansion in the neonate rat, quantitatively the same as 
in the mature rat (Misanko et al. 1979). 

Another possible explanation for the age-related differences in the 
natriuretic response to volume expansion is elevated blood levels of 
aldosterone present in the neonate (Beitens et al. 1972). It is possible 
that the neonate kidney is exposed to a greater salt-retaining stimulus 
due to the amount of aldosterone reaching the kidney, although there is 
a normal response to volume expansion in the mature animal pretreated 
with exogenous mineralocorticoids. It has been demonstrated that high 
sodium intake prior to volume expansion enhances the natriuretic 
response in puppies (Steichen and Kleinman 1975). 

Results of experiments in newborn dogs demonstrate that the natri- 
uretic response to volume expansion can be restored to adult levels by 
the administration of oxytocin. Furthermore, the effect was localized to 
a nephron segment beyond the proximal tubule (Kleinrnan and Banks 
1980). 

Two studies in newborn dogs were carried out to determine whether 
the attenuated natriuresis to volume expansion is due to enhanced proxi- 
mal or distal nephron sodium reabsorption. The protocol involved block- 
ing sodium reabsorption beyond the proximal tubule by administration 
of diuretics, with the rationale being that a change in sodium reabsorp- 
tion occurring during volume expansion could be attributed to the proxi- 
mal tubule (Kleinrnan 1975; Banks and Kleinman 1978). When distal 
tubular sodium reabsorption was blocked by administration of either 
amiloride or chlorothiazide and ethacrynic acid, saline expansion increased 
fractional sodium excretion in the neonate to the same degree as in the 
untreated volume-expanded adult. These results suggest that the proxi- 
mal tubule of adult and neonatal dogs respond similarly to volume expan- 
sion by decreasing proximal reabsorption, but that sodium excretion in 
more distal segments of the nephron is augmented in the neonate in 
response to volume expansion. 
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2.7 Gastrointestinal and/or Hepatoportal Control of Renal Sodium 
Excretion 

The hypothesis that a sodium ion receptor exists in the gut or portal cir- 
culation came from experiments which showed a greater natriuresis when 
a hypertonic sodium chloride load was given orally rather than intraven- 
ously. Lennane and Carey found that in both rabbit and man, oral sodium 
loading is followed by a greater natriuresis than intravenous sodium load- 
ing (Lennane et al. 1975a,b; Carey et al. 1976; Carey 1978). Because 
there were no significant changes in either urinary or plasma aldosterone 
levels between the oral and intravenous groups, it was suggested that the 
gastrointestinal tract influences renal sodium excretion by a mechanism 
independent of aldosterone. 

However, other investigators have been unable to confirm the hypo- 
thesis that a sodium receptor within the GI tract or portal circulation is 
important in regulating sodium excretion. Hanson found no difference in 
sodium excretion in dogs receiving hypertonic sodium chloride via the GI 
tract vs an intravenous infusion (Hanson et al. 1980). Similarly, results 
of experiments in rabbits could show no difference in urinary sodium 
excretion following either a gastrointestinal or intravenous administra- 
tion of hypertonic sodium chloride (Obika et al. 1981). Variations in 
food intake between the studies may account for the differences seen in 
dog, rabbit, and man. 

It has also been reported that the natriuretic response to a saline load 
is greater when the infusion is administered into the portal vein rather 
than into a systemic vein, suggesting that there are osmoreceptors within 
the portal or hepatic circulation controlling the natriuresis following oral 
sodium chloride loading. Passo reported that hypertonic infusions of 
sodium chloride into the hepatic portal vein of the cat results in a greater 
increase in sodium excretion than do comparable femoral vein infusions 
(Passo et al. 1972). Similar results were observed in the dog (Daly et al. 
1967; Strandhoy and Williamson 1970). However, using similar proto- 
cols, several studies have been unable to demonstrate an enhanced natri- 
uresis following hypertonic sodium chloride infusions into the portal 
vein of the dog (Schneider et al. 1970; Potkay and Gilmore 1970; Kap- 
teina et al. 1978). It is difficult to reconcile the differences reported in 
the above studies; therefore, experimental evidence for a GI or portal 
sodium receptor is not conclusive. 

Evidence has been presented that the liver may play an important role 
in renal tubular sodium reabsorption. Enhanced renal sodium reabsorp- 
tion and impaired renal concentrating ability may be associated with the 
heptatorenal syndrome (Shear et al. 1965). Liver damage produced by 
ligation of the common bile duct has been used as an experimental model 
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for the hepatorenal syndrome (Mullane and Gliedman 1970). It has 
been reported that dogs with ligation of the CBD have a blunted natri- 
uresis during ECVE, which was attributed to an enhanced proximal and 
distal tubular sodium reabsorption (Better and Massry 1972). In an 
ensuing study, it was noted that ECVE does not elicit a renal vasodila- 
tion in animals with CBD ligation, and it was speculated that this may 
be partly responsible for the blunted natriuresis (Melman and Massry 
1977). 

3 Summary 

This review summarizes factors influencing renal sodium reabsorption in 
volume expansion. The influence of  renal blood flow and intrarenal 
blood flow distribution on renal sodium excretion during extracellular 
volume expansion is unclear. There is no convincing experimental evi- 
dence that an increase in renal blood flow per se or a change in the intra- 
renal distribution of  renal blood flow is responsible for the natriuresis of 
ECVE. An increase in whole kidney glomerular filtration rate has been 
ruled out as the primary cause of the increase in sodium excretion follow- 
ing volume expansion, and several studies have shown that ECVE is not 
associated with a change in the intrarenal distribution of GFR. Several 
investigators propose that the primary variables regulating sodium trans- 
port during ECVE are physical factors in the peritubule circulation. 
There is much evidence to indicate that acute ECVE decreases sodium 
reabsorptibn by the proximal tubule. In animals with chronic ECVE, 
sodium transport along the loop of Henle is decreased. The role of  hor- 
monal factors in mediating the natriuresis of volume expansion is contro- 
versial. Although current evidence suggests that neurohumoral factors 
may be important, a role for other hormones, including "natriuretic 
hormone", is still not settled. In addition, there is no convincing experi- 
mental evidence to date to indicate that a sodium ion receptor exists in 
the gut or portal circulation. 
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For  the last 20 years, hormonal influences on the immune system have 
been subject to an immense amount of  research. The documentat ion 
accumulated thus far obviously differs from one endocrine organ to 
another and in some cases it has been one-sided. About  10 000 publica- 
tions have been dedicated to the role of  the thymus in immunology, 
whereas references to the role of  the thyroid or the gonads are scarce. 
Immunological work on the adrenal cortex has been considerable, but  
(with few exceptions) has dealt only with the immunosuppressive influ- 
ence of  corticoids administered in "unphysiological" amounts to intact 
animals. The concept of  a proper hormonal regulation of  the immune 
response, i.e., the role of  interactions of  several endocrines, under a pos- 
sible ultimate neurohormonal  control, emerged only recently, and its 
elucidation is largely a matter  for future research. The subject o f  the 
present review is, among other things, an at tempt to indicate possible 
directions for this research. Thus, the present review has to record immu- 
nological and endocrinological documentat ion.  Since a result o f  these 
considerations is that the proper endocrinological point of  view has for 
some reason been neglected so far by  immunologists (except,  o f  course, 
for the thymic hormones),  this point will be emphasized below. Immu- 
nological documentat ion will be summarized and limited to information 
necessary to understand present knowledge in endocrinology. 

1 The Thymus 

As stated above, more than 10 000 references may be found concerning 
the role of  the thymus in immunity [see reviews 216, 2 1 8 , 2 5 5 , 3 2 9 ,  and 
504]. From this t remendous bibliography some valid conclusions can be 
drawn. A chronological review presents a good idea of  the course of  this 
knowledge. 
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1.1 Immunological Consequences of Thymectomy 

The thymus of immunized rabbits contains no antibodies [62] and the 
thymus of immunized guinea pigs yields no antibodies in the incubation 
medium [191. However, thymectomy is followed by a severe decrease in 
antibody production in weanling guinea pigs injected with Salmonella 
antigens [115, 2681, rats [e.g. 24, 5251, rabbits [12, 35], and mice [e.g. 
15 ,252 ,256 ,261 ,362 ,  469,493, 557] suffer from a severe immunodefi- 
ciency when thymectomized at birth. This is not constant [e.g. 271,252, 
35, 484], but thymectomy in prepuberal mice results in immunodefic- 
ciency within a certain delay. The accelerated development of experimen- 
tal tumors, whether induced by polyoma virus [133, 315], by synthetic 
carcinogens [368] or by grafting malignant cells [e.g. 421 ], was explained 
as an immune deficiency. The rejection of allografts is delayed in mice 
and rats thymectomized at birth [e.g. 14, 41 ,348,  362, 3711, while in 
weanling rats, the rejection of skin allografts is only slightly delayed [ 123]. 

The immune deficiency was considered to be the reason for the charac- 
teristic wasting of thymectomized mice [e.g. 24] since axenic thymecto- 
mized mice do not waste [e.g. 543], and this was generally confirmed 
[410]. This immunodeficiency of thymectomized animals may be paral- 
leled with the abnormal composition of their immunoglobulins. In these 
animals, IgM is normal, IgG is deficient, and IgA is absent. Furthermore, 
sensitized, thymectomized animals fail to perform the switch from IgM 
production to IgG production during the immune response [see 67 for 
review]. 

The immunodeficiency of thymectomized animals (mostly mice) was 
confirmed by a large and still increasing number of techniques: 

1. The plaque-forming cell assay [273]. Plaque-forming cells are severely 
reduced in number in the spleen of thymectomized mice injected with 
sheep erythrocytes [e.g. 196, 371]. 

2. The rosette-forming cell test [e.g. 57]. Rosette-forming cells (with 
sheep erythrocytes) decreased in number in the spleen of neonatally 
thymectomized mice [e.g. 29]. 

3. The graft-vs-host reaction in its in vivo [57, 468] and in vitro form 
[22]. Spleen cells from thymectomized donors were found to be 
unable to induce the in vivo [e.g. 134, 347, 505] and the in vitro graft- 
vs-host reaction [509] (see review of previous documentations on the 
role in all these reactions [236]). 

The (relative) resistance of the immune system in thymectomized 
puberal mice implies three exceptions: 

1. The nude mouse, congenitally deprived of the thymus [549]. This 
mouse does not reject allografts; its spleen cells are unable to induce 
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the graft-vs-host reaction and its hemolysin production after sheep 
erythrocyte injection is conspicuously low. Normal reactions are 
reestablished in all these tests by a thymus graft [398]. This topic will 
be discussed below (see Sect. 1.9.1). 

2. The dwarf mouse [157,415].  
3.The thymectomized,  lethally irradiated mouse, restored with bone- 

marrow cell transfusion [e.g. 367]. These animals survive both thymec- 
tomy and irradiation, but they do not produce antibodies against a 
large number of  antigens, e.g., sheep erythrocytes [127,367] and skin 
allograft rejection is delayed [e.g. 361, 515]. This observation devel- 
oped into a valid and generally accepted experimental design. It may 
still raise a problem when used to demonstrate the influence of thymic 
extracts. Indeed, the efficiency of a thymic extract was shown to tend 
towards zero in irradiated guinea pigs[ 114].This was not demonstrated 
by immunological testing; nevertheless, it could explain the inefficiency 
of thymic hormones in irradiated mice [306]. 

1.2 Cell-to-Cell Interaction in the Immune Response 

Irradiated thymectomized mice, injected with lymphocytes from bone 
marrow or thymus, produced no antibodies when injected with erythro- 
cytes (as demonstrated with the plaque-forming cell test [367]. Antibody 
production was normal in similar mice injected with both thymic and 
bone-marrow cells [e.g. 102]. This could not be observed when the thymic 
cells were killed by ultrasound [ 102] or by a specific antiserum. Newborn 
mice (CBA or C 57bl)  were thymectomized, X-irradiated, and injected 
with sheep erythrocytes. Their antibody production was poor, as demon- 
strated by the plaque-forming cell test. It could be reestablished by injec- 
tion of  thymic and bone-marrow lymphocytes, but not with thymic cells 
alone [363,365,364] .  

Newborn thymectomized CBA mice were injected with syngeneic 
bone marrow and C 57bl thymocytes together with sheep erythrocytes. 
Then their spleen was searched for plaque-forming cells. If the test 
plaques were treated with anti-CBA serum, the number of plaque-form- 
ing cells decreased to near zero. Anti-C 57b 1 serum did not have a similar 
effect [363]. Thus, the antibody-producing cells differentiate from the 
receiver, but the (allogenic) thymus was necessary. In intact X-irradiated 
mice restoration of  the immune response was possible with bone-marrow 
cell transfusions (plaque-forming cell test); in thymectomized irradiated 
mice it was not (reviewed in [3651). 

CBA mice were thymectomized, X-irradiated, and injected with thymic 
and bone-marrow cells either from CBA or T6 T6 donors (T6 T6 thymus 
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+ CBA bone marrow or the opposite). Their spleen cells were injected 
into second recipients thymectomized, X-irradiated CBA, and previously 
immunized against T6 T6 mice. In addition, the second recipient was 
injected with sheep erythrocytes. Three combinations were possible: 

1. The second recipient mouse received spleen cells from a donor injected 
with T6 T6 thymus and CBA bone marrow. There was no net increase 
in plaque-forming cells in its spleen. 

2. The second recipient received spleen cells from a donor bearing CBA 
thymus and T6 T6 bone-marrow cells. In its spleen there was an explo- 
sive increase in the mitotic rate, but no increase in plaque-forming 
cells. 

3. The second recipient received CBA thymus and CBA bone-marrow 
cells. Mitosis and plaque-forming cells increased significantly in num- 
ber [131]. This interaction between at least two cells for immune 
response was confirmed by numerous in vitro assays [e.g. 43] (see 
below). 

The two (B and T) cells were incubated in two compartments of a 
double diffusion chamber with sheep erythrocytes added to one compart- 
ment only. Antibody production was limited to the B cell compartment, 
but when B cells were incubated with sheep erythrocytes only, no anti- 
bodies were produced [3]. Similar observations were made with Shigella 
antigens [ 1871. 

In fact, the cooperation between T and B cells was found to be insuf- 
ficient [e.g. 13,363]. Macrophages are also necessary [e.g. 185,201,208, 
317, 379, 436, see review 282]. Two different T cells seem necessary for 
this interaction: those killed by antilymphocyte serum (long-lived) and 
those disappearing shortly after thymectomy [185]. 

1.3 Role of the Thymus in Immunotolerance 

Immunotolerance was first observed in rabbits injected with antigen at 
birth [246]. This can be induced with repeated small doses or with a 
single massive dose of antigen. The effect of small doses was enhanced by 
cortisol injections [ 100]. 

Thymectomy was followed by a prolongation of immunotolerance 
beyond the normal time limit [104, 406, 493]. Thus, tolerance seemed 
to show just the absence of immunocompetent T cells. Still, these cells 
may be suppressed by thymectomy or by X-irradiation. In tolerant ani- 
mals, thymectomy prolonged the tolerance period, whereas irradiation 
shortened it [ 101 ]. Apparently, cells (killed by irradiation) are necessary 
to maintain the tolerance. Thymectomized, X-irradiated mice bearing 
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thymus grafts from tolerant donors [264] or infused with thoracic duct 
cells [99] or spleen cells [243] from tolerant donors became tolerant. 
This was confirmed in rats [237]. When the ( tolerant)spleen or thoracic 
duct cells were treated with anti-Thy 1 serum prior to the transfusion, 
this passive tolerance was not induced. Tolerance still does not seem to 
be specific to T cells. Thymectomized,  X-irradiated mice injected with 
bone-marrow and thymic cells became tolerant when either one of the 
two cells came from tolerant donors [98]. Enhancement  of  antibody pro- 
duction or tolerance depends on the ratio of T cells to B cells. Up to a 
certain limit T cells induce antibody production by B cells; over this limit 
they suppress it and may induce tolerance [ 184]. Be that as it may, the 
importance of  the thymus in induction of immunotolerance can be 
demonstrated. 

1.4 Role of the Thymus in Cytotoxic and Graft Immune Reactions 

The allograft rejection is a reaction of the cellular immunity.  Passive 
transfer of  immuni ty  against allografts was possible by cell transfer but 
not by injections of  serum from an immunized donor [e.g. 372, reviewed 
350]. An allograft is rejected at any rate by a normal animal, but recep- 
tors of  immune cells rejected it as if they had been immunized already 
by a first graft (i.e., in about half the time required for the rejection of  
the first graft). Passive transfer of  graft immunity  by serum was also pos- 
sible in rabbits [552]. Humoral immuni ty  is supposed to play a part in 
allograft rejection [see review 4781. Allografts included in diffusion cham- 
bers were not destroyed [e.g. 8]. Divergent observations are scarce: lym- 
phocytes of  an immunized mouse were included in millipore membranes 
and implanted into an unimmunized animal. Skin grafts of  the strain 
against which the lymphocyte  donor was immunized were rejected by 
the receptor as second grafts [302,385].  Drainage of  the thoracic duct in 
rats (i.e., deprivation principally of  small lymphocytes)  resulted in an sig- 
nificant delay in graft rejection [332]. Thymec tomy at birth was followed 
by a long delay in skin graft rejection in mice [176, 192, 361]. The role 
of the thymus is essential: X-irradiated, thymectomized CBA mice injected 
with syngeneic bone marrow and C3H thymic cells normally rejected 
C 57 B skin grafts but not C3H grafts. Mice injected with anti-Thy 1 
serum did not  reject skin allografts [428] (see review of previous docu- 
mentat ion [542]). Allograft rejection demonstrated the function of  cyto- 
toxic cells. Lymph-node cells from rats bearing a skin allograft kill kid- 
ney cells from the skin donor strain in vitro [ 541 ]. 

In cytotoxic cells [326], cytostatic activity (demonstrated by the inhibi- 
tion of  thymidine uptake) was distinguished from cytolytic activity 
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(demonstrated by the release of 51 Cr from the labeled target cells into 
the medium). 

Cytotoxic activity is supported by T cells [514]. It persists in lympho- 
cytes where B cells have been discarded [e.g. 234]. It can be acquired in 
vitro by cultivation of T cells (from thymus, lymph nodes or spleen) with 
target cells [see 327]. This differentiation implies DNA synthesis [388]. 
Cytotoxic T cells are of a peculiar type, characterized by specific anti- 
genic markers (see Sect. 1.7). They conserve their cytotoxic potential for 
months in vitro in the absence of the specific antigen. They have no "hel- 
per" function [see review 136]. This differentiation implies DNA synthe- 
sis [e.g. 388]. 

T cells are sufficient to manifest cytotoxic activity [94]. This observa- 
tion was not confirmed. Thymocytes (i.e., immature cells) added to the 
medium, enhanced the cytotoxic activity of (mature) previously sensi- 
tized spleen cells from CBA mice against BALB lymphocytes [520]. In 
fact, cytotoxic activity was observed in a multitude of cells: T cells, B cells, 
null lymphocytes, and macrophages [93]. Macrophages are required for 
cytotoxic activity [e.g. 521 ], but macrophages alone manifest only cyto- 
static and no cytolytic potency [e.g. 241,274, 275]. The cytotoxic activ- 
ity of macrophages may be induced by immunized T cells (immunized 
T cells conferred a cytotoxic potency to unimmunized bone-marrow 
cells) [e.g. 240]. Peritoneal macrophages from immunized mice were 
cytotoxic by themselves (supposed to be influenced by T cells in vivo 
[324]). It could be shown [84, 323] that the development of cytotoxic 
activity results from the synergy of two types of T cells, differing only in 
their antigenic markers (see Sect. 1.8). Cytotoxic activity needs the pres- 
ence of helper T cells in much the same way as does the differentiation 
of B cells into antibody producers. 

1.5 Suppressor T Cells 

Spleen cells stimulated with a mitogen (concanavalin A) added to the 
medium will reduce the number of plaque-forming cells from spleen cells 
incubated with sheep erythrocytes [160]. T cells added to the medium 
induce a decrease in thymus-independent antibodies by B cells [e.g. 205, 
206]. Injection of antilymphocyte serum in mice together with a thymus- 
independent antigen results in an enhanced production of antibodies 
[e.g. 35]. Mice were rendered tolerant against pneumococcal lipopolysac- 
charide by a massive injection at birth. Spleen cells of these mice, when 
added to the medium, will reduce the antibody production of normal 
spleen cells incubated with the same antigen to zero [ 152]. In nude mice 
(which produce thymus-independent antibodies in large amounts), the 
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injections of thymocytes from their haired littermates together with 
thymus-independent antigen were followed by a comparatively reduced 
antibody production [259]. 

In these experiments the suppression of antibody production appears 
to demonstrate the activity of a peculiar type of "suppressor" cells. 
Mouse thymocytes incubated with X-irradiated spleen lymphocytes will 
develop into suppressor cells and inhibit the 3 H-thymidine uptake in a 
mixed lymphocyte culture. This characteristic is suppressed by pretreat- 
ment with anti-Thy 1 serum, suppressor activity is supported by T cells 
[167] but not by these alone. Immunosuppressor function could be 
demonstrated in macrophages [565]. 

The development of thymic cells in either suppressor or helper cells de- 
pends on the amount of antigen injected. In the spleen cells of mice, injec- 
tion of 106 sheep erythrocytes induced the development of helper func- 
tion, whereas injection of 109 erythrocytes induced suppressor function. 
Does this difference show that the same cells possess both potentialities, or 
does it demonstrate the selective development of one of those cell types? 

T cells were incubated with macrophages sensitized to sheep erythro- 
cytes. These cells developed a suppressive influence when added to nor- 
mal spleen cells, and a helper influence when added to spleen cells 
deprived of T cells [572]. 

The normal immune response may thus be the algebraic sum of the 
helper and the suppressor functions [see e.g. 204, 268]. These functions 
are supported by different cells. They differ in their antigenic markers. 
Helper cells bear the Ly 1 marker, whereas suppressor cells are labeled 
Ly 2, Ly 3 [78, 160, 163]. Two cells are necessary for the development 
of cytotoxic activity. 

It is still open to discussion whether suppressor and cytotoxic activity 
are of different types or two aspects of the same potential. Cytotoxic 
and suppressor cells bear the same antigenic marker, but suppressor cells 
are killed by cyclophosphamide [437] and a suppressor activity against 
cytotoxic cells could be demonstrated in an allograft test [105]. A distinc- 
tion could be claimed between suppressor and cytotoxic cells [559]. 

1.6 Mechanism of the T Cell-B-Cell Interaction 

Ever since the notion of T and B cells has been defined, speculation has 
started on the mechanism of their interaction. As a result hypotheses 
began appearing in great numbers. Just by the wording, these hypotheses 
seemed to have provided advanced knowledge, or even better, an illusion 
of knowledge, but in reality were based on absolutely no facts whatso- 
ever. These hypotheses are obsolete. 
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Recent investigation has demonstrated that T cells influence the B cells 
by soluble substances delivered into the medium. Spleen lymphocytes 
cultivated with sheep erythrocytes develop few plaque-forming cells 
when previously treated with anti-Thy 1 serum. If T cells previously sen- 
sibilized to sheep erythrocytes are added, the development of  plaque- 
forming cells was significantly increased. The same effect was obtained 
by adding the supernatant of  T-cell cultures [455]. In the incubation 
medium IgG and IgM antibodies were found [455]. Spleen cells from 
neonatally thymectomized mice (which normally do not  differentiate 
into plaque-forming cells when incubated with sheep erythrocytes) 
develop plaque-forming cells when incubated with thymic lymphocytes 
or with the supernatant of their culture [e.g. 146, 235, 526]. Spleen cells 
from irradiated mice do not develop plaque-forming cells in a culture 
with sheep erythrocytes. This development is restored by addition of  
thymic lymphocytes from sensitized donors or by the supernatant of  
their culture medium [517]. Supernatants of  activated T cell cultures 
induced plaque-forming cell differentiation in spleen cells of  nude mice 
[211]. Mice were grafted with nonisologous skin. The regional lymph 
nodes were included in millipore chambers and implanted into intact 
mice of the first graft-bearer strain. The recipients rejected similar skin 
grafts in the time necessary for a secondary rejection [386]. 

Thymocytes from mice immunized against sheep erythrocytes were 
incubated with B cells (spleen cells treated with anti-Thy 1 antiserum) in 
the two compartments of  a diffusion chamber separated by a millipore 
membrane. The B cells developed numerous plaque-forming cells, even 
when they came from unimmunized mice or from nude mice [ 186] or 
when a dialyzing membrane separated the two compartments instead of  
a millipore membrane [ 186]. Supernatants of T-cell culture immunized 
against Toxoplasma induced the production of  anti-Toxoplasrna factor in 
nonimmunized macrophages [465]. 

The list of  work on this topic is by no means exhaustive. Ten demon- 
strations were repeated over and over again with reasonably predictable 
results. Thus, T cellsinfluence B cells by a compound they deliver into 
the medium. The bulk of  T cells can be defined to some degree as a dis- 
seminated endocrine gland. Apparently this compound is not specific, 
however, its production is induced by an antigen. Supernatants from 
mixed lymphocyte cultures could induce the development of  the immune 
response of B cells against sheep erythrocytes [11, 160, 197, 440, 532]. 
Divergent observations were reported, however. Mice were immunized 
against synthetic peptidic antigens. T cells from their spleen were incu- 
bated and the supernatant together with the bone marrow was injected 
into X-irradiated mice. In the spleen of the recipients plaque-forming 
cells were found to differentiate from the erythrocytes coated with the 
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same antigens, but not from the normal sheep erythrocytes [384]. This 
mediator secreted by T cells is probably not unique. Some of these fac- 
tors are peptides with a mol. wt. ranging around 40 000 [ 186]; glycolipidic 
compounds with a similar action were also isolated [566,569,584] .  The 
intimate mechanism of their action is unknown, but there is a suggestive 
parallel. Bacterial lipopolysaccharides mitogenic for B cells enhanced the 
immune response of B cells against sheep erythrocytes, a thymus-depen- 
dent reaction [276]. 

In fact, several mediators of different chemical nature were described. 
Ribonucleic acids from lymph nodes of rabbits bearing skin allografts 
injected into a normal rabbit induced in this animal the ability to reject 
similar skin allografts as if it had been immunized itself by a first graft 
[342]. Ribonucleic acids from spleen cells of immunized donors injected 
into thymectomized mice induced a normal immune response (plaque- 
forming cell test) in these animals [283]. Allograft rejection accelerated in 
rabbits injected with ribonucleic acid from lymph nodes of  rabbits bear- 
ing an allograft [269, 342, 70]. (Still, ribonucleic acids are not  supposed 
to be secreted into the medium.) The "suppressor" incubation medium 
of mouse spleen cells from donors rendered tolerant by a massive sheep 
erythrocyte injection contained a ganglioside which showed a suppressor 
influence in purified form [ 172]. 

Soluble mediators probably play a role in the interactions between 
macrophages and lymphocytes. Macrophages were incubated with an 
antigen. The supernatant of  this culture induced a specific helper cell dif- 
ferentiation when added to the incubation medium of T cells [ 171 ]. 

Cytotoxic action was found to be mediated by soluble products of  
lymphocytes (" lymphotoxines" [527]). Development of cytotoxic activ- 
ity in killer cells was found either to be dependent on a soluble product 
from helper cells [474] or enhanced by the supernatant of  a mixed lym- 
phocyte culture ("killing assisting factor" [393]). Supernatant of a lym- 
phocyte culture from mice tolerant to human globulin was found to 
render mice injected with it tolerant [95]. This (unidentified) compound 
is secreted by T cells, since pretreatment of the lymphocytes with anti- 
Thy 1 serum sppressed the reaction. In conclusion, the intricate cell-to- 
cell interactions, ultimately resulting from the immune response, appear 
to be mediated by compounds delivered by the different cells into the 
medium. The intimate mechanisms of  these reactions are unknown. 
Further information on the role of cAMP will be commented on in 
Sect. 6.1.3. The relation of the cell-to-cell activations mentioned above 
with the different hormones influencing the immune response awaits 
further research. 
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1.7 Distinction of  T and B Cells 

For many years it was believed that lymp,hocytes leave the thymus, 
which led to the conclusion that some of  the lymphocytes circulating in 
the blood or fixed in lymphatic tissues may be of  thymic origin. This was 
demonstrated first by two methods: 

1. The consequences of  thymectomy on the lymphocyte pool. Thymec- 
tomy was followed by lymphopenia and by atrophy of lymph nodes 
and spleen follicles [reviewed in 116]. In lymph nodes and spleen, the 
zones affected by this atrophy could be delimited (thymus-dependent 
zones [see e.g. 399, 400]). These zones include about 70% of  the 
lymph nodes and 20% of  the spleen. Lymphocytes in the thoracic duct 
are, for the most part, of  thymic origin. After labeling the thymus in 
situ with 3 H-thymidine, about 0.02%-0.12% of  the lymphocytes in 
the lymph nodes showed the label [533]. Thus, from one test to 
another the results were very different. 

2. The description of thymic lymphocytes of intracellular enzymes dif- 
fered from those of the lymph nodes' lymphocytes such as alkaline 
phosphatase [50]. By this test, 10% of  the circulating lymphocytes 
were identified to be of thymic origin, but no such lymphocytes were 
found in the lymph nodes. This research was placed on solid ground 
when the antigenic markers specific for the thymic lymphocytes [e.g. 
424, 426, 429, 456] were identified, detectable by specific purified 
antibodies [e.g. 422, 427]. They were different from those directed 
against the antigenic marker of B cells [424]. 

These observations made it possible to describe with validity other dif- 
ferences between T and B cells: 

The surface of T cells is smooth, that of B cells villous [456]. Drugs 
such as phytohemagglutinin [e.g. 169] or concanavalin A induce an 
increased proliferative activity in lymphocytes of  thymic origin only. 
It is possible to conclude from the phytohemagglutinin test that all cir- 
culating lymphocytes are of thymic origin [e.g. 145]. 

T cells and B cells have shown a different mobility in free-flow electro- 
phoresis [e.g. 442, 545,556].  In fact, this could be expected. In free-flow 
electrophoresis of normal mouse lymphocytes two populations could be 
separated, whereas those of  thymectomized, irradiated mice, restored 
with bone-marrow cells, migrated in a unique bulk [441 ]. 

In irradiated mice, injected bone-marrow cells migrate in the thymus,  
the bone marrow, and the lymph nodes. Thymocytes will not migrate 
into the thymus [ 193]. More elaborate techniques permitted the identifi- 
cation of  several subpopulations in T cells: 
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1. By the antigenic markers. Within the thymus the Thy 1 antigen is 
highly concentrated on the surface of cortical lymphocytes, whereas 
in the medulla and on the circulating lymphocytes the markers Ly 1, 
Ly 2, and Ly 3 are highly concentrated, and Thy 1 is low [e.g. 84, 
481]. The former are killed by an injection of cortisol in milligram 
dose, whereas the latter survive [65, 297]. 

2. The cortisol-resistant cells correspond to the mature, immunocompe- 
tent T cells, Cortisol was injected in milligram amounts into a first 
mouse. Its thymus cells were transfused into an X-irradiated mouse 
together with sheep erythrocytes. Plaque-forming cells in the spleen of 
the irradiated receptor were about 20 times more numerous than after 
the transfer of the same number of thymocytes from a normal mouse 
[106]. Cortisol is known to kill about 95% of the thymocytes [see 
147]. The cortisol-resistant cells in the medulla are derivatives of the 
cortisol-sensitive cortical thymocytes. When applied on the surface of 
the thymus, 3 H-thymidine labeled first the cortical cells, characterized 
by high density of Th 1 marker on the surface, then later the lympho- 
cytes in the mid-cortex, and lastly those in the medulla, which are 
known to be cortisol resistant [533]. 

1.8 Subpopulations of T Cells 

Antigenic differences seem to determine the function of the thymic cells. 
When leaving the thymus, different cells will sttle in the spleen and in the 
lymph nodes [456]. 

Research into antigenic markers may identify various subpopulations 
but of different significance: 

1. Different stages in the maturation of T cells 
2. Different types of mature T cells 
3. Four successive stages can be distinguished. 

1. Different stages in the maturation of T cells: 
a) The primitive (prethymic) lymphocyte located in the bone marrow. 

Its surface is smooth (not villous [499]. (Both smooth and villous lym- 
phocytes were found in the spleen of nude mice as well.) It bears a 
weak Thy 1 [499] antigenic marker which is not dependent on the 
thymus (it was found in the spleen of nude mice [328, 435]) and in 
the bone marrow of thymectomized rats [262]. It is assumed that 
these cells are predetermined to migrate into the thymus when leaving 
the bone marrow. This seems to result from the observation of Nakao 
and co-workers [387]. Bone-marrow lymphocytes were separated by 
sedimentation. Those bearing a weak Thy 1 antigenic marker were 
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thus separated from the so-called stem cells. Injected into irradiated 
mice these cells, and these only, repopulated the thymus. The stem 
cells did not. Yet fetal liver cells, i.e., B cells (refractory to anti-Thy 1 
antiserum), injected into splenectomized irradiated mice, repopulated 
in the thymus, lost their antigenic B-cell markers and became sensitive 
to anti-Thy 1 serum [214]. 

b) The proper thymocyte,  located within the thymus, bearing a high con- 
centration of Thy 1 antigen [e.g. 85,482].  

c) The postthymic immature lymphocyte,  still bearing a high density of 
Thy 1 antigen [482] and a low density of  Ly 1, Ly 2, and Ly 3 anti- 
gens. They lose the TL antigenic marker when leaving the thymus 
[297]. All these cells are immunoincompetent .  They acquire full 
immunocompetence at the periphery [482] or in contact with thymic 
epithelial cells [524]. 

d) The immunocompetent  mature T cells. According to Stutrnan [482], 
mostly immature immunoincompetent  lymphocytes leave the thymus. 
The few mature T cells within the thymus were said to remain (in 
grafted thymuses they were still of  the donor type one year after the 
operation [4821 ). (For a review see [580, 5811 ). 

2. Differences between mature T cells, related to their function: 
a) Helper T cells bear the Ly 1 antigenic marker, cytotoxic and suppres- 

sor cells the Ly 2 and Ly 3 marker [84, 86]. 
b) Helper and cytotoxic cells can be separated by sedimentation on a 

velocity gradient [513]. Suppressor and cytotoxic cells sedimented 
together and, since they are both Ly a- Ly 2÷, it is open to discussion 
whether they are different from each other. The fractionation by free- 
flow electrophoresis seemed to separate rather the immature port 
thymic precursors (small, sensitive to cortisol) from the mature T cells 
(larger, resistant to cortisol [ 1541 ). (For review see [205] ). 

In short, the differentiation of the different lymphocytes involved in 
the immune response appear to be in some way predetermined and not  
haphazard (those that do happen to reach the thymus on their migration 
from the bone marrow and those that do not). Still, all these cells circu- 
late in the same blood, and the hormonal influences they are subjected 
to may have different consequences from one cell to another. 

1.9 Role of the Thymus in Organization and Generation of  Immune 
Response (H. Wekerle) 

The thymic cortex is a reticular sponge of epithelium-derived cells, which 
form sparse intercellular contacts via desmosomes. The wide gaps between 



128 J. Comsa et al. 

the reticular meshwork are densely filled with small to medium-sized 
lymphocytes, those, particularly close to the reticulum cells, which dis- 
play frequent mitotic activity. A possibly specialized epithelial cell of  
the thymic cortex, which might have a central part in T-cell maturation 
by engulfing certain lymphoid components, will be described below. 
Principally, the thymic cortex appears to be the location where most of 
the lymphoid proliferation occurs. Nevertheless, it is not fully clear why 
this proliferation occurs and what becomes of the cellular progeny which 
will not leave the thymus. 

The thymic medulla is composed of more solid epithelium, which 
ultrastructurally is distinct from the cortical reticuloepithelial cells. It is 
still unclear which maturation processes occur in this region. These pro- 
cesses appear, however, to be relatively late in the T-cell developmental 
pathway, since here most of the T lymphocytes, already immunocompe- 
tent, appear to be concentrated. Treatment of  mice with high doses of 
corticoids results in a fast involution of the thymuses, principally of  the 
cortex. Whereas in the cortex practically all lymphoid cells are lost 
within hours, the fewer medullary thymocytes are mostly preserved. 
Immunological function tests reveal that the cortisone-resistant thymo- 
cytes are immunocompetent ,  being responsive in lectin-induced mito- 
genesis, in transplantation, and graft-vs-host reactions. 

Generally, a pathway of  lymphocyte migration can be observed in 
postnatal thymuses. Bone-marrow-derived, still incompetent  pre-T cells 
invade the organs across the capsules. Having undergone the developmen- 
tal steps leading to clonal diversity and propagation, the immunocompe- 
tent T cells appear to selectively leave the thymus via the high endothelial 
postcapillary venules to peripheralize into the lymph nodes and the spleen. 

1.9.1 Immunological Functions of T Lymphocytes 

Removal of  the thymus during embryonic or perinatal stages has grave 
effects on the morphology and the function of the immune system. Inde- 
pendently Miller and Good found that thymoprivic animals do not reject 
foreign tissue transplants. Moreover, removal of the thymus impairs the 
capacity of the immune system to mount  humoral antibody responses of  
the IgG type and to establish immunological memory. Delayed-type 
hypersensitivity reactivity and cellular immune responses against viral or 
related diseases are equally impaired. The depriving effects of thymec- 
tomy may be strong enough to prevent orderly growth of  developing 
infant animals. Generalized wasting disease may be the cause of  chronic 
infections by various agents. 

The impaired immune function corresponds to similarly grave changes 
in the lymphoid organ architecture. DeSousa et al. investigated the 



Hormonal Coordination of the Immune Response 129 

histology of  lymphoid organs from thymectomized mice. They found 
that the reduction of  the organ sizes results mainly from the loss of  lym- 
phoid population of  distinct fixed areas. The paracortical regions of  the 
lymph nodes and the pericapillary cuffs of  the spleeen were depleted. 
They are truly thymus-dependent areas, since restoration of  the thymo- 
privic animals with transferred thymocytes also restores these areas. In 
contrast, other areas of  the lymphoid organs, such as the primary follicles 
and the rims of  germinal centers, are not affected by thymectomy,  and 
are thus thymus-independent. 

1.9.2 T Lyrnphocyte Differentia tion Markers 

Thymus-dependent T lymphocytes are morphologically identical with 
the thymus-independent,  bone-marrow-derived B lymphocytes. Both 
subgroups can, however, be distinguished by several typical markers on 
their surface membranes. B lymphocytes bear classic immunoglobulin on 
their membranes. In contrast, T cells lack surface immunoglobulins. In 
addition, Ig B cells, in most cases bear on their membranes not only Ig, 
but also receptors for Fc parts of  extraneous immunoglobulins, and for 
C components. Most, but not all, of  the T lymphocytes lack these receptors. 

Positive T cell markers have been identified following allogeneic immuni- 
zation. The most prominent among them is the Thy-1 antigen, the ori- 
ginal 0 specificity. This antigen occurs in two allelic variants, Thy-1.1 
characteristic for the AKR/J murine strain, and Thy-1.2 for most of the 
other strains. Thy-1 antigens are present during T-cell differentiation 
within the thymus as well as later on peripheral immunocompetent  T cells. 
Moreover, it appears that low concentrations of  Thy-1 are present on the 
membranes of  pre-T cells, which have not been processed by the thymus. 
Except on T lineages, Thy-1 is found in brain tissue, and on certain myo- 
genic cell stages. In contrast to Thy-1 antigen, which is present on most 
sublines and differentiation stages of T cells, other T-cell markers are 
typical for limited stages or isolated functional sublines. Thus, they are 
true differentiation markers. Prime examples for intrathymic developing 
cells is the TL antigen system, which is not found on normal peripheral 
T cells, but on some thymus-dependent leukemias. Differentiation mar- 
kers of  peripheral as well as thymic, functionally definable subsets include 
antigens of  the Ly series. Characteristic combinations of Ly-1 and Ly-2.3 
antigens, which are genetically unrelated, are found on various T-cell 
subsets, such as T helpers, T suppressors, T killer cells, and T cells involved 
in delayed-type hypersensitivity (vide infra). Finally, certain T-cell sub- 
lines carry on their surfaces components of  the major histocompatibility 
gene complex (MHC) or of  associated genes. These include the I4  sub- 
region products of  the H-2 (the murine MHC system), which are found 
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only on suppressor T cells; antigens of the Qa series, which have been 
recognized only recently, seem to appear only at various mature stages, 
indluding certain helper populations. 

These alloantigenic markers concern only the murine immune system. 
Analogous antigens are being recognized, however, also in other mam- 
malian species, including man. This holds particularly true for the MHC- 
associated antigens and Thy-1 analogs. It should be mentioned, however, 
that human T cells exhibit an unique marker, namely receptors for un- 
treated sheep red blood cells (SRBC receptors), a property which has 
been highly instrumental in isolating peripheral human blood T and B 
lymphocytes. 

1.9.3 Role of  T Lymphocyte Sublines in the Organization of  
the Immune System 

As already mentioned, B lymphocytes are the precursors of  the effector 
cells in the humoral immune response, the plasma cells. The role of the 
T cells is by far more complex. They include not only precursors for 
thymus-dependent immune functions, such as killer cells in the graft- 
rejection response, or in the delayed-type hypersensitivity, but possibly 
more intriguing is that the T-cell sublines effect the regulation and dosage 
of immune responses, both on the cellular and on the humoral level. 
There are T-cell populations which help, or increase, the effector func- 
tion of either B cells or effector T cell precursors. On the other hand, 
other T-cell subsets, the suppressor T cells, counteract immune activation 
either by suppressing the activity of the effector cells directly, or more 
indirectly, by decreasing the activity of  the helper cells required. Obvi- 
ously, helper and antagonistic suppressor cells are vital components of 
regulatory systems necessary for fine dosage and self-limitation of  a given 
immune response, as will be discussed later. 

Thus, the original concept of clonal selection theories, which imply 
that a given antigen selects a passively waiting, preexisting lymphocyte 
clone with complementary receptors, is not totally tenable. Rather, the 
immune system appears to be a most complicated cybernetic network 
with many cellular components necessary to elicit one given response 
and to cause its termination. Obviously, these cells have to communicate 
with each other. Cellular communications within the immune system can 
principally occur either via soluble mediators, or via direct cell contacts, 
supposedly involving complementary receptor/ligand interactions. Both 
types of interactions have been described in the case of T cells and their 
reaction partners. Perhaps the best characterized mediator factor is the 
one emitted by suppressor T cells. It has been shown by Tada and his col- 
leagues that suppressor T cells can be activated by antigen in a particular 
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context to release factor(s) which can suppressively act upon effector 
lymphocytes. These factors are remarkable insofar as they possess regions 
complementary to the eliciting antigen. Thus they include genuine anti- 
gen receptors. Moreover, the structure of these antigen-binding regions in 
many respects resembles that of  comparable antibodies. The suppressive 
factors do not express, however, constant protein regions of  immuno- 
globulins. They rather express determinants of  the MHC and, specifically, 
of the I-J subregion, which has already been mentioned as being typical of 
suppressor T cells. There are claims that helper cells release analogous 
factors also characterized by antigen-binding regions and determinants of  
(non I-J subregion) loci of the MHC. These helper factors, quite obvi- 
ously, would not  suppress immune activation but would rather help its 
initiation and continuation. 

In addition to the antigen-specific, T-cell products involved in the 
regulation of the immune response, numerous antigen-unspecific factors 
have been identified, which can modulate effector activity. Among them, 
there are the T-cell replacing factor described by Schimpl and Wecker, 
which is thought to act in relatively late differentiation phases of  B cell 
activation. Other factors modulate in vitro mixed lymphocyte reactions 
and the in vitro generation of T killer cells, and others appear to promote 
growth of single T lymphocytes to clones. 

Direct intercellular interactions are not as accessible as humoral inter- 
actions in terms of  experimental investigations. There are, however, some 
stages of the ongoing immune response which undoubtedly depend on 
intercellular contact and recognition. The first stage of  any immune reac- 
tion is recognition of the immunogen by the responding, complementary 
lymphocyte.  A plethora of  experimental data indicate that in the case of 
T cells mere binding of  antigen to the complementary receptor regions is 
necessary (and this is true for many, if not all, T-cell sublines), however, 
it is by no means sufficient for recognition leading to T-cell activation 
and differentiation. The studies of  Zinkernagel [587, 588] and Doherty, 
of Shearer, and of  Rosenthal and associates showed that T cells have to 
recognize "their" antigen in the context of  determinants of the self MHC. 
Thus, a virus-specific effector T cell would only recognize "its" virus 
when it is presented on a somatic cell of the same organism, thus posess- 
ing the same MHC antigens as the T cell. The same is basically true for 
the recognition of  soluble or particulate antigen. Any antigen must be 
presented by an autologous cell, and this is done exclusively by the macro- 
phage or by its functional sublines. It is still unclear how the associative 
recognition of antigen plus self recognition is effected by the T cells. The 
following principles seem to be valid. T-cell recognition aimed at eliminat- 
ing a membrane-expressed (foreign) antigen, such as virus-infected cells, 
is associated with corecognition of  the classical transplantation antigens 
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(H-2K/D determinants in the mouse, HLA-A/B/C in humans). T-cell 
recognition, which leads to regulation and dosage of immune responses, 
in contrast, involves recognition of Ia determinants, which are equally 
coded for in the MHC, but which are predominantly expressed on lym- 
phoid cells and macrophages in the body. 

The requirement of Ia antigen identity is also marked in reaction 
stages subsequent to antigen recognition. They may be the most impor- 
tant examples of  contact interactions in the immune system. Ia antigen 
compatibility is apparently required for various stages of interactions 
between helper T cells and B cells as well as between suppressor cells and 
their respective targets, i.e., helper T cells and B cells. 

1.9.4 Generation of  Antigen Diversity in the Thymus 

One of the most intriguing problems in cellular and molecular immunology 
is how the structural diversity of  the antigen-complementary lymphocyte 
surface receptors is generated. For decennia, the core question was 
whether receptor diversity is precoded firmly in the genetic information 
("germ-line hypothesis") or whether it is rather the result of  somatic 
mutation. Recent experimental evidence, stemming from the work of  
Tonegawa et al., appears to favor a compromise. It appears now that 
most of  the structural information of  receptor amino acid sequences is, 
indeed, contained within the transmittable genetic information. It is, 
however, probably arranged in relatively small sequence fragments, 
which are somatically recombined to give rise to the structural diversity 
underlying the clonal complementarity. 

It is not  known how and where exactly the cellular events, basic to 
molecular diversification, are happening. In the case of  T cells, it is very 
probable that generation of  diversity occurs within the thymus. This may 
be particularly evident in generating MHC determinant corecognition by 
developing T cells. Jerne has postulated that incompetent  lymphoid pre- 
cursors, which express receptors for self antigens, enter the thymus and 
start to interact there with their complementary "self" MHC determi- 
nants present in thymic stromal components. As a consequence, the 
primitive cells start to divide. In the course of proliferation, selective 
mutations were thought to alter the self-recognition, T-cell receptors to 
receptor structures complementary to some foreign structure. Indeed, 
Zinkernagel et al. reported of experiments which support part of  this 
hypothesis. Their experiments suggest that the capacity of T cells to co- 
recognize self MHC determinants along with the foreign antigen struc- 
tures is acquired while in the thymus, probably following a selective inter- 
action with the thymic stroma. Wekerle and his colleagues very recently 
have found a new thymic reticular cell type, which could be involved in 
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that particular stage. These cells, thymic nurse cells (TNCs), are of epi- 
thelial origin as indicated by their ultrastructure and have the capacity to 
be invaded by viable T lymphocytes [585, 586]. Invasion appears to be 
the consequence of (self) recognition. Subsequently, the incorporated 
cells start to divide within their nurse cell. When the engulfed lympho- 
cytes are completely surrounded by internal epithelial membranes, which 
have several specializations indicative of secretory activity, it is possible 
that the particular microenvironment may lead to guided differentiation. 
This could result either in receptor diversification or in ramifications of 
the specialized, functional T-cell subsets. Thymical hormonal factors could 
act particularly stringently in this environment. (In addition to receptor 
diversification, specialization into various functionally specialized T-lym- 
phocyte subsets is assumed to occur within the thymus. It should be 
noted that incompetent  precursor cells enter the organ and that their 
immunocompetent  progeny leave it finally as specialized subsets, as indi- 
cated by functional tests as well as by suface marker analyses.) 

1.10 Substitutive Therapy for the Thymoprivic Condition 

Restoration of  normal reactions in thymectomized animals (and in nude 
mice) was attempted by several methods and demonstrated by several 
tests. These tests are not  equally significant. The most convincing is the 
survival test in animals known to waste and die following thymectomy,  
such as mice, hamsters, and guinea pigs. Certainly, this is only a basic 
test, and its results must be rechecked with specific immunological tests. 
However, thymic preparations previously tested on the survival of thym- 
ectomized animals acquire thus an outstanding validity when compared 
to those not tested in this way. This distinction is always made below. 

1.10.1 Thyrnic Grafts 

Wasting was prevented in thymectomized mice by thymic grafts [ 134] and 
their immune functions were restored [134, 486]. These mice rejected 
skin allografts normally [314, 318, 361 ], and their reactivity towards 
sheep erythrocytes (plaque-forming cell test)was restored [7, 130, 314]. 
This experiment was repeated over and over again with similar results. 
Conversely, immunocompetence of spleen cells in thymectomized rats 
(0 previously) was restored following their perfusion through a thymus 
[80]. The accelerated development of benzopyrene-induced skin tumor 
in thymectomized mice was abolished by thymic grafts [358]. Thymic 
grafts were able to restore the immunocompetence of  thymectomized 
animals when enclosed in diffusion chambers [7, 212, 448, 487, 549]. 
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Incubation of mouse thymocytes with thymic epithelium resutted in an 
enhancement of their activity in a mixed lymphocyte culture [379]. This 
was tested by numerous methods [7,320,  346]. 

Grafts of  thymuses deprived of thymocytes (by previous X-irradiation 
or by previous incubation in vitro [e.g. 252, 521, 524] were similarly 
active. In nude mice, thymic grafts, enclosed in diffusion chambers, 
induced a decrease in the lymphocytes bearing a (weak) Thy-1 marker 
[435]. 

These experiments support the supposition of a hormonal influence of 
the thymus. 

1.10.2 Transfusion of Thymic or T Cells 

Wasting of thymectomized mice was prevented by transfer of thymocytes 
[e.g. 165,553]. These animals recovered normal immune potency. Similar 
results were obtained with transfer of spleen cells [e.g. 363,486].  In pre- 
puberal thymectomized and X-irradiated mice this technique was exten- 
sively used to restore immune functions [e.g. 363, 127]. The increased 
sensitivity to polyoma virus in thymectomized mice was suppressed by 
transfer of spleen cells [3131. Every study has reported that the results of  
this therapy are transitory, although the influence of thymic epithelial 
grafts lasts as long as the graft itself. If the effect of  thymocytic transfer 
results from the influence of thymic hormones, this could indicate that 
thymocytes carry the hormone but do not produce it themselves. 

1.10. 3 Cell-Free Thymic Preparations 

The ideal way to at tempt substitutive therapy in thymectomized animals 
was to use the supernatant of  thymic epithelial cell cultures. However, to 
obtain this compound in amounts sufficient to prevent wasting in dozens 
of thymectomized mice is wishful thinking. This technique was limited 
to miniaturized tests under cell-culture conditions. 

A single injection of thymic culture supernatant accelerated the devel- 
opment  of lymphatic organs in newborn mice [351 ]. 

The (weakly) Thy-1 spleen cells of nude mice acquired an increased 
reactivity in a mixed lymphocyte culture, when previously incubated on 
a monolayer culture of thymic epithelium [445]. The supernatant of 
thymic epithelial cultures, added to  the incubation medium of spleen 
cells from nude mice gave them the capacity to differentiate into plaque- 
forming cells [307]. Mice were immunized against rat fibroblasts, thym- 
ectomized, and X-irradiated. Spleen cells from these mice, when injected 
into the hind paw of rats, induced only a very weak swelling of the popli- 
teal lymph nodes of the recipient. The swelling of  the lymph nodes was 
significantly enhanced when the spleen cells were previously incubated 
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with the supernatant of  a monolayer culture of  thymic epithelium. After 
incubation with the supernatant of thymus culture, spleen cells from 
nude or thymectomized mice induced a graft-vs-host reaction and a sen- 
sitivity to concanavaline A. This was not the case with spleen cells from 
intact normal mice [3 24, 356]. Thus, the supernatant of  a thymus epithe- 
lial culture proved to exert a specific influence on lymphocytes. It acted 
inasmuch as it substituted for the thymus. 

1.10.4 Thyrnic Extracts 

The simplest cell-free preparation is the supernatant of homogenized 
thymic tissue washed by an appropriate solvent (water, saline etc.) and 
separated by centrifugation. The first preparations were tested for their 
stimulatory influence on lymphatic cell proliferation in newborn animals 
[242, 351] and in rats made leucopenic by irradiation [83]. Injected into 
intact mice, the supernatant of  a thymus homogenate induced an increase 
in labeled thymidine and glycocoll uptake of  the lymphocytes in the 
thymus, the lymph nodes, and the spleen. Immunological tests with simi- 
lar compounds are few. Supernatants of homogenized Sprague-Dawley 
rat thymus, injected into neonatally thymectomized Sprague-Dawleys 
bearing Wistar rat skin grafts, accelerated the rejection from 60 days 
(in untrated rats) to 12 days [81 ]. A crude aqueous extract from acetone- 
defatted calf thymus enhanced the antibody productions of  irradiated 
rabbits [357]. A crude extract of rabbit thymus prolonged the survival 
and delayed the tumor  development in thymectomized mice grafted with 
Lewis sarcoma [4631. 

Experimental testing of  crude organ preparations is rarely satisfactory. 
The action of these preparations is always the expression of a sum of the 
actions of several compounds. This sum may be algebraic: protein frac- 
tions isolated from the thymus were shown to inhibit lymphocytic pro- 
liferation [289] and various aspects of the immune response [87,381,  
405]. A dialyzable, nonpeptidic (pronase-resistant) immunosuppressive 
fraction could be isolated from calf thymus by precipitations with mer- 
cury nitrate [560]. The description of several extraction and fractiona- 
tion methods made the use of  crude thymic extracts very soon obsolete. 

1.10.4.1 Purified Extracts 
Commonsense tells us that several truths must be emphasized from a 
biological point of view before discussing this topic. 

1. An organ extract expected to contain a hormone is worth as much as 
the bioassay tests proposed for its activity. This truism is valid as long 
as the hormone is not obtained in a pure state and its composition is 
not known exactly. 
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2. One test is no test. Several tests may be valid and yet in contradiction 
to each other. They may have different meanings. 

3. There is only one way to distinguish a hormone from a specific cellular 
constituent. By definition a hormone is secreted. This can be demon- 
strated by two experiments: 

a) The hormone (or its characteristic activity) is present in normal ani- 
mals in the corresponding gland and elsewhere. 

b) Following extirpation of the gland, the hormone (or its activity) dis- 
appears entirely. 

There are two sorts of biological tests: 
a) Global tests. The typical example is the survival test, if available (as 

for the thymus in mice, hamsters, and guinea pigs). This, however, is 
only a first step, just demonstrating indubitably the existence of the 
hormone. 

b) More elaborate tests which elucidate the mechanism of the hormone 
action considered. These tests attempt to define which functions are 
lost following, e.g., thymectomy, and which thymic extracts are able 
to restore these functions. These tests make much use of isolated 
organs or cells. It is obvious that these tests performed in vitro are 
more convincing if the cells used come from thymectomized animals. 

1.10.4.2 Peptidic Extracts 

Extracts Known to Ensure Survival of Thymectomized Animals: 
Thymosin (A.L. GoMstein and co-workers) 
Thymosin was obtained from a saline thymic extract by heating it to 
80°C (precipitate discarded) and by successive precipitation with acetone 
and ammonium sulfate. Further purification was attained by successive 
chromatography on Sephadex, carboxymethyl cellulose, and diethyl- 
aminoethyl cellulose [222, 224, 258, 217,218]. A homogeneous peptide 
was thus obtained and its amino acid sequence determined [571]. Several 
consecutive reviews of this work were published [217, 218]. Of the thym- 
extomized mice injected neonatally with thymosin, 70% survived with 
no obvious disorders, whereas only 34% of the untreated mice survived. 
The dose injected was thus just below the optimal dose (which perhaps 
would restore the mice 100%). In these mice the blood lymphocyte 
count (decreased following thymectomy) was restored to (about) normal. 
Thymosin seems to exert a stimulatory growth influence on lymphocytes. 
It hastens the regeneration of lymphatic tissue following X-irradiation 
[220] or cortisol injections (in enormous amounts [450]). 

Thymosin was injected into neonatally thymectomized C57 B 1 mice at 
1 mg daily (a partially purified compound). Spleen cells from these mice 
were injected into newborn BALB mice in which they induced graft-vs-host 
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reaction, whereas spleen cells from untreated thymectomized mice did 
not. Similar doses of  spleen extracts injected were found to be inactive 
[315]. Since the spleen contains ten times less hormone than the thymus 
[ 121,329] ,  this dose was probably insufficient. Injected into thymecto- 
mized mice thymosin enhanced the proliferation of  their spleen cells in 
mixed lymphocyte culture [423]. 

Thymectomized mice injected neonatally with thymosin normally 
rejected skin allografts [219,243].  They rejected normally, after a transi- 
tory growth, sarcomas induced by Moloney virus [ 558 ], whereas there was 
no rejection of  those tumors in neonatally thymectomized untreated 
mice. Conversely, injections of  an antithymosin antiserum induced a sig- 
nificant delay in allograft rejection [248] .In thymectomized mice injected 
with anti thymocyte serum thymosin had no effect on tumor  aUograft 
rejection [4231. 

The influence of  thymosin on humoral immune response in thymecto- 
mized mice was less significant [219, 248, 483]. (Nevertheless, thymosin 
injections could not restore the ability of  neonatally thymectomized 
mice to reject allografts or their spleen cells to induce a graft-vs-host 
reaction in newborn mice [4831.) In thymectomized, X-irradiated rats 
(900 rad) reconstituted with isologous bone-marrow thymosin injections 
had no influence on lymphatic tissue regeneration and antibody produc- 
tion [306]. We should recall that in irradiated guinea pigs the influence 
of  thymic hormone tended toward zero [ 111 ]. 

In nude mice, thymosin injections induced an increase in the number 
of  plaque-forming cells after an injection of  sheep erythrocytes [63]. 
When incubated with thymosin, spleen cells of  nude mice developed 
plaque-forming cells [ 11 ]. Incubation of  bone-marrow lymphocytes with 
thymosin resulted in the appearance of antigenic markers specific for 
T cells on the spontaneous rosette-forming cells [30]. The enzyme termi- 
nal deoxynucleotidyl-transferase, characteristic for thymocytes,  was 
induced in bown-marrow cells of thymectomized or nude mice [401]. 

In humans suffering from immune deficiency thymosin was largely 
used. The first case report (as far as we know) was that of  a girl suffering 
from almost constant recurrence of infections constained for years with 
antibiotics. She was unable to develop positive cutaneous reactions after 
an infection (Candida sepsis) or vaccination (mumps) or to produce anti- 
bodies when challenged with various antigens. Spontaneous rosette-form- 
ing cells in her blood were significantly rare. All these abnormalities were 
suppressed by repeated thymosin injections [529]. Thymosin therapy for 
immunodeficient  patients resulted in an improved general condition, an 
increased blood lymphocyte count, and in an increased number of rosette- 
forming cells [225,529] .  In cancer patients similar results were obtained 
on lymphocyte count and the number of  rosette-forming cells. 
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"The clinical response must be considered anecdotical" [217, 447]. 
Incubation with thymosin induced the development of antigenic markers 
in human lymphocytes (from healthy subjects and one cancer patient 
[503]). Incubation with thymosin of circulating human lymphocytes 
resulted in an increase in the number of rosette-forming cells [528]. The 
same influence was found with fetal calf serum [82]. The authors con- 
sider this observation as (primary) evidence for the delivery of thymosin 
into the circulation. Still, serum of nude mice has shown the same influ- 
ence (T.D. Luckey, unpublished communication). 

Thymosin Activity Tested In Vitro. Thymosin was added to the incuba- 
tion medium of lymphocytes. The cells, thus treated, were tested for 
their degree of differentiation and maturation. Incubation with thymosin 
induced the appearance of antigenic markers of thymocytes in mouse 
bone-marrow lymphocytes, in lymphocytes from nude mice or from 
14-day-old fetuses [295]. The maturation of spleen cells from mouse 
fetuses and newborn mice was hastened (as demonstrated by their ability 
to induce graft-vs-host reaction and their behavior in mixed lymphocyte 
culture) by previous incubation with thymosin [ 108, 221 ]. Bone-marrow 
cells from newborn mice were incubated with thymosin and injected into 
thymectomized, X-irradiated mice together with normal bone-marrow 
cells. In the spleen of the recipients, normal numbers of plaque-forming 
cells were found, just as if they had received bone marrow and thymo- 
cytes [359]. In bone marrow incubated with thymosin, the number of 
cells killed by an (brain!) anti-Thy 1 antiserum increased [358, 503]. 
Lymphocytes from nude mice, from fetal mouse fiver or from bone mar- 
row differentiated into T cells as evidenced by specific antigenic markers, 
by their ability to ensure helper function and to form T-cell rosettes with 
sheep erythrocytes [451]. Thus, thymosine was proved to be active in 
thymectomized and in congenitally thymoprivic mice. This is demon- 
strated by the survival test and by a large range of immunological tests. 

Extracts from a culture of thymic epithelial cell, prepared with the 
thymosin method, showed immunostimulant properties similar t-o those 
of thymosin [563]. But it must be said that the survival test was per- 
formed only once with a very crude preparation. The last steps of purifi- 
cation were only tested by the rosette test, and the reliability of these 
results may be questionable (Luckey and co-workers). 

Thymic Hurnoral Factor ( Trainin and co-worker) 
Preparation [301,508, 506]. A centrifuged, thymic homogenate in 0.1 M 
phosphate buffer at pH 7.4 was fractionated by successive dialyses (dis- 
carding by the first molecules of 120 000 and by the second molecules of 
6000). The second dialysate contained the hormone in purified form. 
Precipitation by ammonium sulfate was not carried out. 
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Injections of  the thymic humoral factor reduced the incidence of 
wasting in neonatally thymectomized mice to 20% (from 60% in untreated 
mice [ 510] ). This treatment prevented thymoprivic atrophy of lymphatic 
tissue and the decrease in the number of  circulating lymphocytes. Thym- 
ectomized mice thus treated rejected skin allografts normally [507, 505]. 

The authors made much use of  the in vitro graft-vs-host reaction test 
[22]. Spleen cells from neonatally thymectomized mice were found 
unable to induce the growth of an allogenic spleen fragment when added 
to the medium. This capacity was restored by repeated injections of 
thymic humoral factor [505]. Spleen cells from thymectomized mice 
acquired the graft-vs-host ability when incubated with thymic humoral 
factor [509]; such treatment also increased the survival rate of  thymo- 
cytes when cortisol was added to the medium. Thymocytes incubated 
with thymic humoral factor induced the in vitro graft-vs-host reaction. 
In other words, they behaved like the few mature T cells present in the 
thymus,  which are also resistant against cortisol [511]. This indicates 
that thymic humoral factor is involved in some way in the maturation 
process of  thymocytes.  

This supposition was substantiated by further experiments. Prepuberal 
mice were thymectomized,  X-irradiated, restored with bone marrow, and 
injected with sheep erythrocytes. Spleen cells from these mice did not 
differentiate into plaque-forming cells, even when the mice received 
thymic humoral factor injections. The normal reaction was restored 
when the mice received injections of  thymocytes together with the hor- 
mone, or thymocytes preincubated with the hormone [439]. Mice were 
injected with anti-lymphocyte serum. Spleen cells from these mice did 
not induce the in vitro graft-vs-host reaction, even when thymocytes 
were added. The reaction was restored when thymocytes and thymic 
humoral factor were added together [327]. Lymphocytes from thymec- 
tomized mice reacted poorly in mixed lymphocyte cultures. Normal 
reaction was restored when thymic humoral factor was added. The addi- 
tion of  thymic humoral factor had no effect on lymphocytes from thym- 
ectomized, X-irradiated mice, unless thymocytes (inactive by themselves) 
were added together with the hormone. Thymic cells from a mouse, pre- 
viously injected with 5 mg of cortisol, enhanced the mixed lymphocyte 
reaction by themselves, but in this system thymic humoral factor had no 
additional influence [516]. This indicated: 

1. That the target of  thymic humoral factor as the immature thymocytes,  
in which it induces the maturation to T cells. 

2. That the cells able to respond to thymic humoral factor are in some 
way predisposed to do so. (Could this explain the inactivity of  the 
thymic hormone in irradiated animals mentioned above?) 
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Mouse fetal liver lymphocytes, i.e., B cell precursors (only?), incubated 
with thymic humoral factor, induced the in vitro graft-vs-host reaction 
[2"13]. Yet, spleen cells from thymectomized mice preincubated with 
thymic humoral factor did not induce the in vitro graft-vs-host reaction 
[486], and thymic humoral factor did not induce transplantation immun- 
ity in nude mice [408; see also 579]. 

The mechanism for the action of thymic humoral factor is not known. 

Homeostatic Thymic Hormone (Comsa and co-workers) 
Preparation [see 113], from a crude acidic extract (H~ SO4 M) fraction- 
ated successively by ammonium sulfate precipitation and isoelectric pre- 
cipitation in 60% alcohol solution (pH 7 for impurities, pH 6.2 for the 
active fraction) a homogeneous compound was obtained by successive 
chromatography on Sephadex and hydroxyapatite (elution with potas- 
sium phosphate buffer at pH 6.75 in a molarity gradient). 

Wasting in thymectomized guinea pigs was prevented by using partially 
purified thymic extract and a purified fraction of this same extract [see 
113]. It was a complete success, since all thymectomized guinea pigs thus 
treated survived in good condition, whereas only 60%-70% of neonatally 
thymectomized mice were preserved from wasting by administering 
thymosin or thymic humoral factor injections. Wasting after thymectomy 
is less frequent in guinea pigs (50%-60%) than in mice (70%, according 
to A. Goldstein and co-workers). In rats thymectomized at 30 days, injec- 
tions of homeostatic thymic hormone prevented the consequences of 
thymectomy on the endocrine glands and on lymphatic tissue [see 1131. 

Circumstantial evidence was obtained to support the supposition that 
this hormone is secreted. It was found in the thymus, in the lymph nodes, 
and in the spleen or normal prepuberal rats, in the ratio 10:3:1 [124]. 

Three days after thymectomy, it disappeared from the lymph nodes 
and the spleen [121]. Its secretion is influenced by the adenohypophysis, 
the adrenal cortex, the thyroid, and the gonads (see Sect. 6.2). 

Immunological tests performed with this compound are scarce. In 
infantile thymectomized guinea pigs, it restored the antibody production 
against HO Salmonella antigen [ 115]. In thymectomized and hypophys- 
ectomized rats it restored the influence of hypophyseal growth hormone 
on antibody production [125] and on allograft rejection [123]. The 
acceleration of allograft rejection, induced by corticotropin, was sup- 
pressed by a simultaneous injection of thymic hormone ("The thymic 
hormone is immunostimulant and immunosuppressive. It all depends on 
the hypophyseal hormone it has to face") [ 123]. 

Thymosin or homeostatic thymic hormone delayed the death of mice 
injected with a supernatant of Yersinia pestis culture [141]. This may 
indicate an immunostimulant influence, among others. 
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With the allograft rejection test it could be seen that the thymic hor- 
mone is only needed for the primary reaction: Skin allografts were 
rejected by normal rats within 7.1 -+ 1.0 days and by thymectomized rats 
in 9.8 -+ 1.3 days. Second grafts implanted in those rats were rejected in 
4.6 --- 0.5 and 4.4 --- 0.4 days, respectively. 

The hormone of  Bernardi and Comsa exerted a chemotactic influence 
on lymphocytes. However, it cannot be said on which one it was [ 125]. 
This has been presumed [349, 245, see review] with no direct evidence. 

Considering the intricate interactions between the homeostatic thymic 
hormone and other hormones, this topic will be resumed below (see 
Sects. 2 -6) .  

Thymic Polypeptidic Hormones Not Tested with the Survival Tests 
Thymopoietin ( G. GoMstein and co-workers) 
Preparation. An extract with 0.1 M ammonium carbonate was fraction- 
ated by heating to 70°C, dialyzed, and successive chromatographies on 
Sephadex and hydroxyapatite and polyacrylamide electrophoresis were 
carried out [228]. By this method two different homogeneous fractions 
were obtained, both active in GoMstein's test. Both peptides were ob- 
tained in a pure state and their amino acid sequence was determined 
[461]. 

The starting point of  this work was the observation of an accelerated 
neuromuscular transmission in thymectomized animals, which can be 
prevented by thymic grafts [230]. Conversely, the neuromuscular chron- 
axy was found to be decreased in thymectomized rats [420]. From calf 
thymus, an extract could be prepared which, by repeated injections, 
induced a neuromuscular block in guinea pigs [226]. The neuromuscular 
disorder induced by this compound (named thymin, now called thymo- 
poietin) is described in detail in [231]. The guinea pigs served as a basis 
for bioassay using thymopoietin.  

Culture of bone-marrow lymphocytes or of  the B-cell fraction from 
mouse spleen lymphocytes with thymopoiet in added resulted in the 
appearance of  TL and Thy 1 antigenic markers [42,296]. Spleen lympho- 
cytes from nude mice treated with thymopoiet in acquired the antigenic 
markers TL and Thy 1 and developed a helper influence toward B cells, 
as shown by the plaque-forming test [450]. In the B-cell fraction of  
mouse spleen lymphocytes, the addition of thymopoiet in to the medium 
induced the appearance of TL antigenic marker [43]. The cells contain- 
ing terminal deoxynucleotidyl-transferase from mouse bone marrow are 
lysed by anti-Thy 1 antiserum after pretreatment with thymopoiet in 
(in other words, they differentiated into prothymocytes [232]). In a one- 
way mixed mouse lymphocyte culture, thymopoiet in induced an increase 
in the cyclic AMP content [488]. In thymocyte  precursors thymopoietin,  
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added to the medium, induced the appearance of antigenic markers 
specific for T cells (TL, Ly 1, Ly 2, Ly 3, Ly 5). 

But thymopoietin was unable to restore the normal reaction to PHA 
0.2 concanavalin A of lymphocytes from thymectomized mice [574]. 

Serum Thymic Factor (Bach and co-workers) 
The compound was isolated from blood serum by two dialyses (active 
fraction is dialyzed in the first step and retained in the second) the suc- 
cessive chromatographies on Sephadex and carboxymethyl cellulose, 
thin-layer chromatography, and high-voltage electrophoresis were carried 
out [32]. The composition of the serum thymic factor was determined 
[ 129, 417]. (For an extensive review see [27] ). 

Bioassay of this compound is performed by the azathioprine test. Aza- 
thioprine, added to the medium, killed few of the spontaneous rosette- 
forming cells from mouse bone marrow but killed significantly more 
rosette-forming cells from bone-marrow cells preincubated with thymo- 
sin [30]. This test was further developed [33]. 

According to the following descriptions, azathioprine was added to 
the medium: 

At 1 ug/ml it totally suppresses rosette-forming cells from the thymus 
and up to 20% from the spleen. 

At 50/~g/ml it suppresses 70% from the lymph nodes. 
At 100 ug/ml it suppresses up to 20% only from the spleen of thymecto- 

mized mice. 

Mice were thymectomized or injected with anti-Thy 1 antiserum. The 
rosette-forming cells did not decrease in number. However, the azathio- 
prine-sensitive cells decreased and the azathioprine-resistant cells increased. 
Incubation of these cells with thymosin or normal mouse serum resulted 
in an increase in the number of azathioprine-sensitive cells. Serum from 
thymectomized or from nude mice did not have this effect [26]. 

Thus, the highly azathioprine-sensitive, rosette-forming cells were pre- 
sumed to be of thymic origin. Spontaneous rosette-forming cells from 
bone marrow are insensitive to anti-Thy 1 antiserum. Preincubation with 
normal mouse serum resulted in the appearance of spontaneous rosette- 
forming cells sensitive to anti-Thy 1 antiserum in bone-marrow cells from 
normal, thymeectomized, or nude mice. Nude mouse serum did not have 
this influence. This potency of normal mouse serum decreased by half 
within 150 min following thymectomy, remained constant at this de- 
creased level for 1 week, and began slowly decreasing again later on [28]. 
The serum thymic factor was found in human serum. Its level is high in 
children and decreases with age. It decreased to zero in a patient thym- 
ectomized for myasthenia gravis [33]. 
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The serum thymic factor is prepared from pig serum (the serum thymic 
factor content decreased in the serum following thymectomy in pigs 
[309]. Serum thymic factor, added to the medium, increased the resis- 
tance of thymocytes against cortisol (circumstantial evidence of their 
maturation). It induced the appearance of specific T-cell antigenic mar- 
kers and an increase in cyclic AMP content in these cells [21 ]. In normal 
mice, one single injection of serum thymic factor increased about 5 - 8  
times the number of rosette-forming spleen cells [561]. 

The validity of induction of antigenic markers, characteristic o fT  cells, 
as a test for thymic hormone action cells was questioned. Thus differen- 
tiated, they did not necessarily show T-cell properties in other tests, such 
as helper function or graft-vs-host reaction. Only thymopoietin,  thymo- 
sine, and thymic humoral factor were found to be able to induce in vitro 
a total T-cell maturation [479]. Furthermore, serum thymic factor injec- 
tions in thymectomized mice did not restore the normal reaction of  their 
lymphocytes to phytohemagglutinin and to concanavalin A [574]. 

A demonstration of thymic origin of  the serum thymic factor was 
at tempted [33]. Grafts of  thymic epithelium (thymomas or thymic grafts 
borne 8 days previously by a first recipient, in which thymocytes are 
known to be dead), enclosed in millipore chambers, were implanted into 
neonatally thymectomized mice. In the spleen of these mice the azathio- 
prine-sensitive, rosette-forming cells increased in number. This proves that 
thymic epithelium exerts its influence through a millipore membrane. 
Nevertheless, some doubts arose as to whether serum thymic factors are 
secreted by the thymus. A thymic extract was prepared from calf thy- 
mus using Bach's method. This extract did not induce the development 
ofT-cell rosettes when injected into nude mice. On the other hand, serum 
thymic factor activity was found in similar calf thymus extracts when 
this factor was added to the thymus homogenate before the extraction. 
Thus, the extraction did not destroy the serum thymic factor presumably 
contained in the thymus [2841. This observation rejects by no means the 
idea that the thymus is involved in the production of serum thymic fac- 
tor. Its site of production remains, however, to be found. 

Lymphocyte Stimulating Hormone (Luckey and co-workers) 
A saline thymic extract was precipitated with 20% ammonium sulfate. 
The precipitate was dissolved in water and precipitated with methanol. 
The redissolved precipitate was fractionated by successive chromato- 
graphy on diethylaminoethyl cellulose and Sephadex. It was proved 
homogeneous by polyacrylamide electrophoresis [329,434].  

The original bioassay test for monitoring the extraction and purifica- 
tion is based essentially on the acceleration of the development of the 
lympho nodes in newborn mice [351]. The influence of this compound 
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on the immune response was demonstrated. Injected into new-born mice, 
the fraction known to induce the accelerated lymph node maturation 
induced also the increase in the number of plaque-forming cells against 
sheep erythrocytes in the spleen of unimmunized newborn mice (back- 
ground plaque-forming cells) and of newborn mice injected with sheep 
erythrocytes [91, 247, 434]. From the impurities discarded by electro- 
phoresis, a fraction was identified which antagonized the lymphocyte- 
stimulating factor. 

Lymphocyte-stimulating activity was found in calf spleen extracts pre- 
pared and fractionated by Luckey's method (about six times less than 
that from calf thymus). This may be correlated with the observations of 
Comsa and co-workers [ 124, 121] who found a roughly similar relation 
in the rat thymus and spleen content of homoeostatic thymic hormone. 

Thymus Polypeptide Fraction (Milcu and Potop) 
The preparation is described in [334]. It is a crude extract, and although 
not tested with the survival test, it was proved active in thymectomized 
rats with an impressive number of metabolic tests [356]. Its influence on 
the immune response was demonstrated by the observation of an increased 
antibody production in hamsters injected with influenza virus and in 
X-irradiated rabbits injected with HO Salmonella antigen. As far as we 
know, the influence on immune response has not been tested in thymec- 
tomized animals. 

This extract was shown to delay the development of malignant tumors 
induced by carcinogens (such as methylcholanthrene or dimethylamino- 
azobenzene) or grafts (Guerin's tumor) in rats. This was also observed in 
cultures from a cancer derived from buccal epitheliums (KB tumor) 
[356]. It was also alluded to above that there is a delayed influence of 
the thymus on cancer development and an acceleration of cancer devel- 
opment in thymectomized animals. This has generally been interpreted 
as a thymic influence on cancer immunity. The observations made on 
cancer cultures hardly fit into this hypothesis. 

1.10.4.3 Lipidic Extracts 
The first attempt to prevent the consequences of thymectomy in guinea 
pigs with a lipidic thymic extract was mede by Bomskov and co-workers 
[see 113]. It was a total failure. 

Isakovic and co-workers [270] extracted calf thymus with chloroform 
and methanol. The extract, suspended in saline, was injected into neo- 
natally thymectomized rats. This treatment prevented the delay in growth 
and the decrease in lymphocyte count following thymectomy. Rats, thus 
treated, were immunized against bovine serum albumin at 60 days, and the 
delayed hypersensitivity test was performed 18 days later. The reaction 
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decreased in untreated thymectomized rats and was normal in those 
injected with the extract. 

The Thymosterines (Potop and Milcu) 
Calf thymus was extracted with acetone and the residue was extracted 
with ether. Phospholipids were discarded by cold acetone from the dried 
etheric extract. The residue was fractionated by successive chromatogra- 
phies [see 421 for details]. 

First fractionation separated two fractions: III B stimulating and IIB 
inhibiting tumor development. By several chromatographies of I I B  a 
steroidic fraction was obtained (fraction S) strongly inhibiting tumor 
development. This fraction was named Thymosterin. Fraction S inhibited 
in vitro the development of KB tumor and human thyroid cancer cul- 
tures. In vivo, it delayed the growth of carcinogen-induced and grafted 
tumors, such as Jensen's, Walker's, and Ehrlich's sarcoma and Gu+rin's 
adenocarcinoma. Tumor grafts in thymosterin-injected rats showed signs 
of regression, such as necrosis and fibrosis. Walker sarcoma grafts decreased 
in size in thymosterin-injected rats, and these rats survived without 
exception when all untreated tumor-graft rats were dead. 

The influence of this extract on immune response was tested on mice 
injected with sheep erythrocytes. Hemolysin titers and plaque-forming 
cell development were significantly increased in mice injected with the 
partially purified fraction I IB .  Thus, the influence of thymosterin on 
tumor development in vivo can be understood as expressing the stimula- 
tion of immune functions. The influence of thymosterin on tumor devel- 
opment in vitro cannot. The immunostimulant action and the retardant 
action on tumor cultures are certainly two different phenomena. Since 
the immunostimulant effect was demonstrated with the partially purified 
fraction B (and, as far as we know, not with the presumably pure thymo- 
sterin), it is open to discussion whehter these two actions express the 
activity of the same chemical entity. 

2 The Adrenal Cortex 

Adrenalectomized and normal rabbits were injected with typhoid vaccine. 
The adrenalectomized animals produced three times more antibodies 
[267]. Normal and adrenalectomized rats were injected with sheep eryth- 
rocytes. Lymphocytes from their lymph nodes and spleen were incubated 
and the hemolysin released into the medium was determined. It was 
lower in adrenalectomized rats [433]. Thus from the very start the obser- 
vation appeared controversial. 
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Adrenalectomy was said either to result in an accelerated rejection of 
skin allografts in mice [e.g. 90, 319, 353] or to show no influence [48, 
351]. Still, these observations raise some doubt. The adrenalectomized 
mice were "protected" from the consequences of adrenalectomy on elec- 
trolyte metabolism by repeated injections of desoxycorticosterone in 
large amounts (1-2 .5  mg once a week, as microcrystalline suspensions). 
This is a very important source of error. Strictly speaking, the authors 
never saw a truly adrenoprivic mouse. Allograft rejection was slightly 
accelerated in adrenalectomized mice protected just by NaC1 added to 
the drinking water [89, 90, 238]. 

In Sprague-Dawley rats grafted with DA rat skin (a H 1 incompatibil- 
ity) adrenalectomy resulted in a slight delay in skin allograft rejection 
from 7.1 -+ 1.3 days in normal rats to 12.2-  1.5 days in adrenalectomized 
animals. Additional thymectomy was followed by an additional delay 
(to 15.9 -+ 1.6 days). In Sprague-Dawley rats grafted with DB rat skin, 
adrenalectomy had no influence on the graft rejection [48]. 

Most of  the experiments on the influence of  the adrenal cortex on the 
immune response were performed on normal animals injected with large 
doses of  corticosteroids (see [576] for a recent review). 

The earliest experiments, performed with adrenocortical extracts of an 
unknown composition, showed that repeated injections of these extracts, 
together with, before or immediately after the injection of an antigen 
into normal rabbits [96, 195, 18] enhanced antibody production. This 
was explained as a result of the well-known deleterious influence of 
adrenocortical hormones on lymphocytes [147]. The increased amounts 
of  antibodies in the serum were supposed to be a result of their release 
from the lysed lymphocytes. This explanation is not exhaustive. The 
lysis of lymphocytes takes place within hours after corticoid injection, 
whereas the increase in the antibody level in the serum is gradual, occur- 
ring over several weeks [96]. In addition, the mature, differentiated lym- 
phocytes, participating in the immune response, are not lysed by corti- 
coids [e.g. 106, 107]. Cortisone or cortisol injections in milligram amounts, 
before or together with the antigen but not afterward [166], were shown 
to result in a decreased production of antibodies [e.g. 52, 53, 61, 143, 
153, 179, 190 ,200 ,203 ,250 ,  2 5 3 , 3 3 5 , 3 4 1 , 3 5 2 ,  373]. 

In mice, injection of 2.5 mg cortisol resulted in a decrease of  in vitro 
spontaneous killer activity of their spleen cells [257]. In mice, IgM and 
IgG hemolysin production is totally suppressed when cortisone is given 
4 days previous to the antigen (sheep erythrocytes). Administered after 
the antigen, cortisone injection results in suppression of IgG antibodies 
only [ 168]. In previously immunized rabbits, a single cortisone injection 
suppressed the secondary response [ 191 ]. Sheep erythrocytes are lysed 
with a significant delay by macrophages of rabbits injected with cortisone 
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[280]. In frogs, cortisone injections were followed by an increased anti- 
body production [60]. 

In all these experiments cortisone or cortisol was administred in large, 
arbitratily chosen, doses. A quantitative relation between the injected 
corticoid and the injected antigen dose could be roughly demonstrated: 
in rats, cortisone injections (4 mg) suppressed the anti-sheep-erythrocyte 
antibody production. This could be restored if the antigen dose was 
increased a 1000-fold [54]. In mice, the production of hemolytic anti- 
bodies against sheep erythrocytes was totally suppressed by an injection 
of 5 mg corticosterone, whereas 1.0 mg or 2.5 mg were followed by a 
partial suppresion only. Desoxycorticosterone was found to be inactive 
[389]. In rats, single injections of 5 mg desoxycorticosterone were fol- 
lowed by an enhanced antibody production [97]. 

Allograft rejection was delayed by cortisone injections in rabbits [58], 
guinea pigs [476], and rhesus monkeys [305]. Desoxycorticosterone was 
inactive [305]. Aldosterone injections also delayed the allograft rejection 
in rats but so did spironolactone [48]. Metopyrone inhibited the in vivo 
graft-vs-host reaction [1]. Thus, corticoids and corticoid antagonists 
showed similar effects. The development of grafted [5, 374] or virus- 
induced [3451 tumors was accelerated by cortisone injections. 

In all these experiments, steroids were administered in milligram 
amounts to intact animals. These observations were not entirely con- 
firmed in doses closer to normal conditions. Adrenalectomized or adrenal- 
ectomized and thymectomized Sprague-Dawley rats were grafted with 
DA rat skin. They were implanted with pellets of aldosterone, cortico- 
sterone, desoxycorticosterone or cortisol, alone or in combination. They 
resorbed daily 1 /ag of aldosterone or 130/~g of  the other steroids. Those 
are mounts  just sufficient to ensure survival. In these animals: 

Adrenalectomy was followed by a slight delay in the allograft rejection 
(from 7.1 -+ 1.3 to 12.2 -+ 1.6 days). 

Additional thymectomy was followed by an additional delay (15.8-+ 
1.3 days). 

Implants of  aldosterone, corticosterone or desoxycorticosterone partially 
suppressed this delay (8 .5-10.0  days) in both adfenalectomized and 
adreno-thymectomized animals. 

Implants of two steroids reestablished at least the normal rejection period 
(6 .7-7 .0  days). A third implant had no additional influence. 

Cortisol implants were by themselves inactive, but additional cortisol 
implants delayed the rejections in animals implanted with one or 
several of the other steroids [ 120]. 

There was no difference between the corticoid effect in adrenalec- 
tomized and adreno-thymectomized rats. Furthermore, in adreno-thym- 
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ectomized rats injected daily with the Bernardi-Cornsa thymic hormone 
preparations, this additional t reatment  had no influence on the allograft 
rejection [ 117]. As soon as corticoids were administered, the influence of  
the thymus disappeared. 

From this experiment we can identify under physiological conditions: 
(a) three immunostimulant  corticosteroids (aldosterone, corticosterone, 
and desoxy.corticosterone) and (b) a minor immunosuppressive steroid, 
cortisol (this is not  exactly under physiological conditions, since rats do 
not  produce cortisol). 

This conclusion is oversimplified. Under adequate conditions all corti- 
costeroids known thus far have shown an immunostimulant  effect. 

Rabbits were immunized against bovine serum albumin or diphtheria 
toxoid, and 4 0 - 1 0 0  days later their lymphocytes were incubated with 
sheep erythrocytes  coated with the same antigens. These erythrocytes  
were lyzed if the medium contained at least 1 ng/ml and less than 0.1 gg/ 
ml cortisol [ 10]. Without added cortisol, the hemolysis occurred only if 
the incubation medium contained 25% fetal calf serum.In higher concen- 
trations cortisol added to the medium suppressed antibody production 
in vitro [109], [e.g. 380], cortisone (70 #g/ml was ineffective on the in 
vitro antibody production of  immunized lymphocytes  [ 179]. It should 
be noted that metopyrone  injections inhibited the graft-vs-host reaction 
in rats [ 1]. In conclusion, the dose-response curves of  corticoids on the 
immune response appear to be bell shaped. 

Cortisol acts as an immunostimulant  at 1 ng/ml of medium and as an 
immunosuppressive at 0.1 #g/lnl [ 10]. 

Aldosterone acts as an immunostimulant  at 1/~g/day [ 117], as a partially 
immunosuppressive at 1 rag/day, and as a totally immunosuppressive 
at 5 mg/day [389]. 

Desoxycorticosterone still acts as an immunostimulant  at 5 mg/day [97]. 

The immunosuppressive dose range is unknown.  Perhaps it exists since 
desoxycorticosterone was prophlogistic at milligram doses and antiphlogis- 
tic at 25 mg/day [432]. This is, of  course, a rough estimate. The results 
may differ within enormous limits according to the test used. For instance, 
cortisol was found to be immunostimulant  on incubated human B cells 
when added in such enormous concentrations as 10 s [567]. 

Stress was generally followed by a depression of  the immune response. 
This was obtained by overcrowding [473, 518], by training to avoid elec- 
troshock announced by a light-signal [473, 547], by adaptation to high 
altitues [77], by ether anesthesia [207] or by short exposure to a temper- 
ature of  37°C [416]. In fact, the observations are not  easy to interpret.  
During the general adaptation syndrome, distinguishable stages should be 
considered: (a) the alarm stage, lasting several hours, and characterized 
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by a relative adrenocortical insufficiency; (b) the resistance stage, lasting 
for weeks, characterized by an enhanced corticoid production and by 
symptoms of hyperadrenocorticism and (c) the terminal exhaustion 
stage, characterized by adrenal deficiency. Thus, the effects of  stress are 
certainly different in terms of duration. Examination of  the adrenals is a 
necessary complement to those experiments. It was performed by Gisler 
[207] who found an approximately twofold increase in the plasma corti- 
costerone level in mice following ether anesthesia. A detailed dose- 
response curve of  corticosterone on immune response would be useful. 
The experiments quoted above simply indicate the possibility of  plotting 
this curve. It is generally believed that corticosteroids inhibit the immune 
response inasmuch as they kill cells [e.g. 147, 150]. Which cells are killed? 
Adrenalectomy is followed by thymic hypertrophy,  but the hormone 
content of  this big thymus decreases [ 124, 137]. 

Administered in large amounts, cortisol induces a wave of  pyknoses in 
the thymus and to a lesser extent in the lymph nodes [see 147]. Small 
lymphocytes were primarily killed by this method [ 182, 151 ]. Added to 
the medium, cortisol (0.01 /~g/ml) or corticosterone (0.1 ~g/ml) shor- 
tened the survival time of lymphocytes [291,462,  519]. At 2.0/~g/ml 
cortisol killed the small lymphocytes from embryonic mouse thymus. 
At 50 ug/ml it killed all cells [430]. The surviving cells show an increased 
helper potency [106] and an increased potency to induce the graft-vs- 
host reaction [65, 107]. Following a single injection of 2 mg of cortisol 
the spontaneous Thy 1 positive, rosette-forming cells did not decrease in 
number, while total lymphocyte count decreased by 90% [33]. In con- 
clusion, cortisol killed the immature cells only. This observation was con- 
firmed over and over again. 

Cortisol appeared to kill other cells, besides the small (immature) thy- 
mic lymphocytes. In mice injected with 15 mg of  cortisol, the mono- 
nuclear cells disappeared from the blood [497]. Three hundred micro- 
grams of  cortisone/g body wt. were injected into mice. Spleen cells from 
these mice did not differentiate into cytotoxic cells when incubated with 
allogenic spleen cells, however, they developed helper cell function. It was 
concluded that another member of  the cell-to-cell interaction was killed 
[316]. Speculatively this cell was identified as the macrophage. Spleen 
cells from mice, stressed by ether anesthesia, produced few plaque-forming 
cells with sheep erythrocytes. Addition of syngeneic T cells did not 
result in any increase in their number, whereas a significant increase in 
plaque-forming cells was observed following the addition of  syngeneic 
B cells and macrophages. In conclusion, stress results in damaging B cells 
and macrophages, but not T cells [207]. It remains open to discussion as 
to how stress resulted in this effect. It should be noted that at weak con- 
centrations (10- 8) cortisol induced an increased proliferative activity 
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in incubated lymphocytes  [430, 539]. Dose response curves of  these cor- 
ticoid influences are much needed. From these observations, it is not  
possible to understand the immunostimulant influences of  corticoids 
administered in small amounts. Concerning this peculiar aspect of  this 
phenomenon,  we only know that the rejection of  a second skin allograft 
is not  influenced by  adrenalectomy in rats which had already rejected a 
similar first graft: 

Rejection time (days) 
First Graft Second Graft 

Normal rats 7.1 -+ 1.3 4.3 + 0.5 
Adrenalectomized 12.2 +- 1.5 4.4 -+ 0.5 
Adrenalectomized and thymectomized 15.9 -+ 1.6 4.6 +- 0.5 

Thus, the immunostimulant effect of  the adrenal cortex appears to 
express an influence of  corticosteroids on the differentiation of  immuno- 
competent  cells. As soon as this occurs, corticoids are no longer neces- 
sary. The influence of  corticoids and of  thymic hormones seems to be 
exerted on the same stage of  the immune response. 

3 The Thyroid 

To our knowledge, the first observation concerning the role of  the thyroid 
in immune response was made by  Houssay and Sordelli [260]. Thyroid- 
ectomized rabbits and horses were injected with sheep erythrocytes,  
typhoid vaccine or tetanus or diphteria toxoid.  They produced less anti- 
toxins than intact ones, whereas the agglutinin and hemolysin titers of  
their serum were equal to those of  intact animals. 

Rats were thyroidectomized at birth. They were injected with sheep 
erythrocytes at the age of  2 months. Plaque-forming cells in their spleen 
decreased in comparison with intact rats. Daily thyroxine injection 
(10 micrograms/animal, the reason for this dose is not explained) restored 
the normal reaction [ 173]. 

Humans were injected with sheep erythrocytes or antigens of  Shigella 
flexneri, Salmonella typhi or Escherichia coli. The antibody production 
was higher in Graves' disease patients and lower in hypothyroid  patients 
than in healthy subject [501]. 

Guinea pigs were inoculated with tuberculosis bacilli and injected with 
a lethal dose of  tuberculin. In intact animals this induced a rise in body  
temperature,  but in thyroidectomized animals it did not. Serum from 
tuberculosis-injected guinea pigs was injected into normal animals to- 
gether with tuberculin. The temperature of  recipients rose if the serum 
donor were intact, but  not  if the donor  were thyroidectomized [288]. 
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One-month-old male Sprague-Dawley rats received DA skin grafts. The 
recipients were thyroidectomized, thyroidectomized and thymectomized,  
thyroidectomized and adrenalectomized or subjected to all three opera- 
tions. Thyroidectomy by itself delayed graft rejection (7.1 -+ 1.1 days - 
9.7 -+ 1.3 days). In thymectomized, adrenalectomized and thymo-adrenal- 
ectomized rats the rejection (delayed already by these operations) was 
not  further delayed by thyroidectomy. Daily thyroxine injections (5 ~g/ 
100 g, the dosage known to be sufficient to prevent thiouracil goiter) 
restored the normal rejection in thyroidectomized rats, but had no influ- 
ence on thymectomized,  adrenalectomized or thymo-adrenalectomized 
[ 118]. Thus, at least in the peculiar case of graft immunity: 

1. The immune response is depressed by thyroidectomy and restored 
to normal by thyroxine in thyroidectomized animals. 

2. Neither thyroidectomy nor thyroxine influences the immune re- 
sponse in the absence of  the thymus or the adrenals. 

The influence of the thyroid on the immune response appears to be 
mediated by the thymus and the adrenal. (Both thymus and adrenal are 
atrophic following thyroidectomy, see Sect. 6.2.2-6.2.4.)  

4 The Gonads 

Female mice are better humoral immune responders than males [e.g. 46, 
215, 477]. F (C 57bl × BALB) mice were injected with erythrocytes 
from BPS mice. Their serum was fractionated in order to separate 7S and 
19S antibodies. In males hemagglutinins were present in the 19S fraction 
only, whereas in females both fractions contained hemagglutinin [45]. 

Skin allograft rejection was faster in females than in males [90, 238, 
472]. Castration was followed by an accelerated allograft rejection in 
males, less so in females [90, 238, 472]. Syngeneic grafts of ovaries in 
males and of  testes in females had no significant influence on allograft 
rejection [90, 238, 4721. Testosterone injections (650 ~g three times 
weekly) delayed the rejection in castrates [89]. In rats similar results 
were observed [ 119], the production of hemagglutinins against allogeneic 
mouse erythrocytes increased in castrates but hemagglutinin production 
against sheep erythrocytes decreased. Estradiol injections in male mice 
were followed by an increased antibody production (e.g. 2.5 ug daily 
[ 287], 10/~g [477] ). Allograft rejection was delayed following estradiol 
injection (50/~g three times weekly) in X-irradiated mice reconstituted 
with syngeneic bone marrow [496]. The development of adjuvant arthri- 
tis (by injection of  Freund's adjuvant) or autoimmune thyroiditis (by 
injection of thyreoglobulin) was delayed in female rats by daily injections 
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of 0.5 mg estradiol and in males by daily injections of 0.5 mg testosterone 
[279]. In F (C 57bl × BALB) mice injected with BP8 erythrocytes, hem- 
agglutinin production was increased in castrates and was depressed in 
castrates bearing estradiol implants (the daily resorption rate was not 
determined [45]). Skin allograft rejection was delayed by estradiol injec- 
tion (500 ~g daily) in rabbits bearing a corneal graft from the skin donor 
strain [583]. Thus, the enhancement of immune response by estradiol 
was not generally confirmend. 

Thymectomized male rats were injected with estradiol (200 #g daily 
for 16 days). Their serum was added to the incubation medium of human 
lymphocytes. These ceils produced less rosettes with sheep erythrocytes 
than those incubated with normal rat serum [578]. 

Castrated Sprague-Dawley rats (males and females) rejected DA skin 
allografts in 5 -6  days (intact animals in 7.1 -+ 1.0 days). Implants of 
estradiol in females (daily resorption rate 0.4 ~g) and of testosterone in 
males (daily resorption rate 40 /~g) restored the normal rejection. In 
thymectomized castrates of both sexes, the grafts were rejected as in 
thymectomized rats (9.8 - 1.6 days) and sex hormone implants were of 
no influence. In thymectomized castrates daily injections of the Bernardi- 
Cornsa thymic hormone preparation (100/~g) was followed by rejection 
within normal time limits, whereas the same injections were of no influ- 
ence on those castrated alone. Thus, in this experiment the influence of 
the gonads on allograft rejection appeared to express the influence of the 
gonads on the thymus [ 119]. Receptors for estradiol were demonstrated 
on the surface [577] and in the cytosol [568] of thymocytes. 

Female thymectomized CBA mice were mated with T6 T6 males. They 
rejected T6 T6 skin grafts in normal time limits. This is not due to sex 
hormones. Pseudopregnancy had no similar effect. The extirpation of the 
fetuses on the 10th day of pregnancy (placenta left in place) resulted in 
a significant delay in the graft rejection which can only be explained by 
the passage of hormones from the fetus to the mother [and not by pas- 
sage of cells from the F (CBA X T6 T6) fetus] [394]. In female nude mice 
mated with CBA males the pregnancy did not enhance the immune 
response against sheep erythro cytes [ 570]. 

Progesterone injections had no effect on skin allograft rejection in nor- 
mal mice and rabbits [e.g. 351]. In spayed female rats bearing implants 
of progesterone (they resorbed 400 ug daily of the steroid), skin allo- 
grafts were rejected in 9.3 +- 0.9 days, whereas spayed controls did so in 
5.8 -+ 1.0 days. In spayed females bearing similar progesterone implants 
associated with estradiol implants (they resorbed daily 0.4 #g of the 
latter), skin allografts were rejected within 7.6 -+ 1.1 days. In other words, 
these rats reacted like normal females (rejection within 7.1 -+ 0.8 days) and 
not like castrates. Estradiol + progesterone -- 1:1000 is the well-known 
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ratio of these hormones which induces a pseudopregnancy in spayed 
females. Administration of estradiol and progesterone under these condi- 
tions was thus observed to suppress the consequences of ovariectomy on 
the immune response as well [119]. Spleen cells of pregnant mice showed 
a decreased activity in mixed lymphocyte culture but an increased plaque- 
forming cell activity. These modifications could be reproduced with 
injections of human chorionic gonadotropin but not of progesterone. 

Osoba observed that [3941 (see above): 

1. Pregnant thymectomized mice reject skin grafts like normal animals. 
2. Extirpation of the fetuses but not of the placentas results in a signifi- 

cant delay in rejection. 
3. Pseudopregnancy has no similar consequences. 

These observations seem to exclude the influence of the corpus lute- 
urn and to emphasize the influence of the placenta on the immune 
response. An immunostimulant influence seems to emanate from the 
fetus (perhaps from its thymus). These observations allude to the contro- 
versial problem of the mother-fetus tolerance. Mating between animals 
histoincompatible to each other results in a normal pregnancy and the 
offspring are reared normally. Immunosuppressive influences seem, there- 
fore, to be active during pregnancy. Experimental analysis of this phe- 
nomenon is scarce. The attempts to reproduce the influence of pregnancy 
with hormone injections were not always performed under valid condi- 
tions, that is: 

In castrated animals 
Parallel experiments with injections of progesterone alone and with pro- 

gesterone associated with estradiol in the well-known ratio of 1000: 1, 
which induces the pseudopregnancy reaction in the gonaducts of ovar- 
ectomized animals. 

According to Osoba an immunostimulant influence seems to emanate 
from the fetus itself and the placenta seems to exert an inhibitory influ- 
ence. In fact, the role of the placenta is a matter for future research. The 
placenta is a plurivalent endocrine gland. The list of the hormones pro- 
duced by the placenta is not yet complete, but an immunosuppressive 
influence may emanate from estriol, which the placenta produces in large 
amounts. 

5 The Adenohypophysis 

The description of the consequences of hypophysectomy on the immune 
response are divergent from one author to another. Hypophysectomized 
mice were injected with sheep erythrocytes but few plaque-forming cells 
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developed in their spleen. The normal reaction was restored by injections 
of  growth hormone or corticotropin [209, 210]. Plaque-forming cells and 
serum agglutinin titers were significantly low in hypophysectomized rats 
injected with sheep erythrocytes [397]. Hypophysectomized Sprague- 
Dawley rats grafted with DA rat skin rejected those grafts with a signifi- 
cant delay [123]. Hypophysectomized Wistar-Furth rats produced fewer 
antibodies against sheep erythrocytes and rejected skin allografts later 
than normal rats [575]. Divergent observations were registered too. 
Hypophysectomized rats reacted normally to sheep erythrocyte injec- 
tions [ 159,277]. We cannot explain these divergencies. 

The consequences of  hypophysectomy on immune response were 
revealed only after a subsequent X-irradiation [502]. In these animals, 
both skin allograft rejection and hemagglutinin production after sheep 
erythrocyte injection were significantly depressed [277]. 

The observations on immune response in Snell-Bagg dwarf mice were 
explained. These mice are dwarves inasmuch as they suffer from a severe 
adenohypophyseal deficiency (see Sect. 6.2.2). Dwarf mice are severely 
immunodeficient. Following sheep erythrocyte injection they develop 
significantly few plaque-forming cells in the spleen [36, 37, 277]. Serum 
agglutinin titers were low after sheep erythrocyte or Brucella injections 
[157]. Dwarf mice did not reject allografts [175]. The secondary immune 
response of dwarf mice to sheep erythrocytes was normal [38]. Neverthe- 
less, thymocytes or spleen cells from dwarf mice induced the in vivo 
graft-vs-host reaction if injected into F (SB × AKR) mice [ 158]. 

6 Influence of Hypophyseal Hormones on the Immune Response 

6.1 Growth Hormone 

Growth hormone injections in hypophysectomized mice were followed 
by restoration of the immune response [209, 210]. Growth hormone 
injection in dwarf mice was followed by activation of  the immune response 
[e.g. 175, 397]. Thyreotropin and thyroxine had a similar effect [37]. 
The enhancement of  the immune response (number of plaque-forming 
cells in the spleen after injection of sheep erythrocytes) was particularly 
significant when growth hormone and thyroxine were injected together 
[413]. The thymus is involved in this effect of growth hormone. In thym- 
ectomized dwarf mice, growth hormone injections had no effect on the 
immune response, but they induced normal growth [174]. This involve- 
ment  of the thymus in the influence of the growth hormone on the 
immune response was observed in hypophysectomized rats. In hypophys- 
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ectomized and thymectomized rats the dose-response ratio of  growth 
hormone to growth was low although some effect was observed [see 329 
for review]. However, the growth hormone injections had no effect on 
the immune response of these rats. Hypophysectomized and thymecto- 
mized rats produced no antibodies against human serum albumin. The 
normal response was restored by injections of  growth hormone and the 
Bernardi-Comsa thymic preparation, not by growth hormone or thymic 
hormone alone [125]. Skin allograft rejection was delayed to the same 
extent in hypophysectomized and in hypophysectomized thymectomized 
rats. In those only hypophysectomized, the normal reaction was restored 
by growth hormone injections; in those thymectomized and hypophys- 
ectomized, growth hormone and thymic hormone injections had the 
same effect (but not growth hormone or thymic hormone alone [ 123]). 
These observations may explain the influence of thyreotropin or thyro- 
xine on the immune response of dwarf mice. Thyroxine is a permissive 
factor for the secretion of  thymic hormone [ 124] and indeed thyroxine 
injections enhanced the immune response in dwarf mice, but not  in neo- 
natally thymectomized mice [ 16] of  normal strains. 

6.2 Corticotropin 

The humoral immune response was depressed by corticotropin injections. 
Antibody production against ovalbumin [190], pneumococcal antigen 
[203, 621, horse serum [250], typhoid vaccine [373], and bovine serum 
albumin [341,389]  was severely inhibited following corticotropin injec- 
tion in large doses. There were remarkably few plaque-forming cells in 
the spleen of  intact mice when these were injected with corticotropin 
and sheep erythrocytes. 

On the allograft immune response corticotropin influence was less 
obvious. A slight delay was observed in mice [3511 and no influence was 
observed on rhesus monkeys [305], rabbits [9], guinea pigs, pigs or 
humans [ 170]. These experiments were carried out on intact animals. 
The corticotropin dosage is difficult to understand, since corticotropin 
doses were expressed in units of weight from the start, regardless of  the 
successive purifications. 

In hypophysectomized and thymectomized rats, daily injections of 
300 milliunits of  corticotropin were followed by a remarkably accelerated 
skin allograft rejection (17.8 -+ 1.2 days - 6.7 -+ 0.8 days). Additional 
injections of  the Bernardi-Comsa thymic hormone preparation resulted 
in a nearly complete suppression of  the corticotropin effect (rejection in 
15.2 -+ 1.2 days) [ 123]. From previous experiments it was known that 
thymic hormone is a synergist to growth hormone and that it antagonizes 
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corticotropin. The immunological tests mentioned above gave results 
consistent with this notion. 

There is little to be said about the influence of other adenohypophyseal 
hormones on the immune response. The restoration of a normal response 
to sheep erythrocytes with thyreotropin injections [175] has been men- 
tioned already. In hypophysectomized and thymectomized rats thyreo- 
tropin injections had no influence on skin allograft rejection (J. Comsa 
and H. Leonhardt, unpublished observations). Thus, the influence of 
thyreotropin may be mediated by the thymus via the thyroid, see Sect. 3. 

Pancreatectomy was followed in rats by a delayed rejection of skin 
allografts and no change in the immune response to sheep erythrocytes, 
Brucella antigen or bovine serum albumin. As far as we know, this is the 
first attempt to investigate the influence of the pancreas on immune 
functions. 

7 Mechanisms of Hormonal Influence on the Immune Response 

This problem can be considered from two aspects: 

1. Events on the cellular of subcellular level which may enable us to 
understand the hormonal influences. 

2. All the hormones mentioned above are present in normal animals. 
Intricate interactions between them were demonstrated by several 
tests. To what extent could these interactions influence the immune 
response? Can we imagine a hormonal coordinating mechanism for 
immune functions? 

7.1 Cellular and Subcellular Aspects of Hormonal Action 

The following summary is by far inexhaustive. This would unreasonably 
exceed the limits of this review. 

7,1.1 The Corticosteroids 

Corticoids enter the cells, are fixed to a transcortin analog in the cytosol 
[e.g. 322,383,497;  see 187], traverse the cell thus bound, and are finally 
fixed to specific receptors in the nucleus [e.g. 449, 466, 546]. This is 
completed within minutes [466]. The nuclear receptor was thought to be 
a histone [467] or an acidic protein [e.g. 2]. The binding protein is per- 
haps essential for corticoid action within the nucleus. Purified "chroma- 
tin" is able to induce RNA synthesis in vitro. This synthesis is depressed 
by protein-bound cortisol, but not by free steroids [446]. The presence 
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of  specific corticoid receptors on lymphocytes is essential for the cyto- 
toxic corticoid effect. Incubated with cortisol, the corticoid receptors of  
lymphocytes decrease with time in the surviving cells [49]. (The cells 
bearing a dense receptor net are killed.) 

Corticoids increase the stability of  cellular and subcellular membranes. 
Hemolysis by antibodies or by physiochemical agents is inhibited by cor- 
ticosteroids [e.g. 4, 272]. Hamster kidney cells infected with rubella virus 
are not lysed by antirubella serum if cortisol is added to the medium 
[498]. Intracellularmembranes were also found to be stabilized by adding 
cortisol [ 162]. Cortisol inhibited the release of lysosomal enzymes into 
the cytosol [532, 534]. Corticoids interfere with glucose metabolism. 
Glucose transport and phosphorylation [69, 3831, glucose uptake [281, 
375], and ATP synthesis [391] are inhibited by adding cortisol (at 10 - 7 -  
10 -6 M concentration). Metabolism by the pentose cycle was found to be 
enhanced [69], this action is blocked, however, by puromycin [376,339].  
It was concluded that cortisol induces the synthesis of a proteidic inhibi- 
tor of  glucose metabolism. 

Corticoids inhibit DNA and RNA synthesis [see 495 for review]. Thy- 
midine uptake [339, 340, 376], DNA polymerase [290], and thymidine- 
kinase activity [241] are depressed, also uridine uptake [199, 551], ade- 
nine uptake [77], RNA polymerase activity [2, 68, 194, 340], and DNAse 
activitiy is enhanced [443]. 

Corticoids inhibit protein synthesis in most tissues (except in the liver). 
Amino acid uptake [e.g. 64, 181,227, 375,537] is depressed in presence 
of  cortisol and so is the activity of various transaminases [e.g. 64]. The 
inhibition of lymphokine synthesis [ 523] is particularly relevant to our 
topic. Amino acid release by incubated lymphocytes is enhanced in pres- 
ence of cortisol [489]. Thus, cortisol appears to inhibit the anabolism 
and to promote the catabolism of nucleic acids and proteins. These 
effects were obtained with cortisol at high concentrations ( 10 -7 - 10 -6 M). 
They are supposed to be direct with no second messenger needed [495]. 
Yet cortisol injections depressed the adenylate-cyclase activity in X-irra- 
diated rats [285]. 

It is interesting to note that the stimulating effect of cortisol at low 
concentrations on lymphocyte proliferation in vitro (10-a M [ 539] ) was 
supposed to be mediated by cyclic AMP. It should also be noted that the 
stabilizing effect on lysosome membranes in vitro was observed at low, 
but still immunostimulant  concentrations [ 144]. These two observations 
are the only ones possibly related to the immunostimulant influence of  
corticoids within the physiological range. 



158 J. Comsa et al. 

7.1.2 Peptidic Hormones 

It is generally accepted that peptidic hormones do not enter the cell. 
Thus a "second messenger", transporting the hormonal message from the 
cell membrane (to the nucleus?), becomes relevant. 

7.1.3 Cyclic Adenosine Monophosphate (cAMP) 

Added to the medium, cyclic AMP stimulates lymphocyte proliferation 
[333]. Injection of sheep erythrocytes into immunized mice resulted in 
an increase in the cyclic AMP level in their spleen lymphocytes within 
2 - 1 0  min [418]. When (butyryl)- cyclic AMP was added to the medium 
[e.g. 70, 266, 530], plaque-forming cells increased in number in spleen 
cells from mice immunized against sheep erythrocytes. Adenylcyclase 
stimulating catecholamines (e.g., epinephrine) enhanced the immune 
response [70] and so did those drugs which inhibit phosphodiesterase 
[72]. This is, however, only valid up to a certain point. When added in 
excessive amounts, cyclic AMP inhibited plaque-forming cell differentia- 
tion [73]. The cytolytic activity of immunized C57 b 1 mouse spleen cells 
against DBA mastocytoma was inhibited by cyclid AMP [254]. Plaque- 
forming cell formation was inhibited in mouse spleen cells by cyclic AMP 
added to the medium. (Was it added in excess in these two experiments?) 
Rosette-forming cells increased in number in human lymphocytes by 
administration of drugs which increase the cyclic MP content of lym- 
phocytes and then decreased when dibutyryl-cyclic AMP was added to 
the medium [99] (perhaps in excess, see above). 

7.1.4 Synthetic Polyribonucleotides 

The enhancing effect of  poly (A:U) on the immune response [ 56, 72, 74, 
73, 266, 343] at low concentrations (high concentrations show an oppo- 
site effect [72]) was interpreted as an enhancing influence on cyclic AMP 
synthesis [70]. Poly (A:U) injected into neonatally thymectomized mice 
induces a normal rosette-forming cell differentiation and a normal allo- 
graft rejection [126]. Still poly (A:U) added to the medium enhanced 
cytotoxic activity of spleen cells cultivated with allogenic cells in normal 
mice but not in the nude ones (the thymus was necessary [56]). Prosta- 
glandins were also said to enhance the immune response [265] and the 
prostaglandin synthesis inhibitors did as well [531 ]. In this new field the 
observations are still confusing. 

Poly (A:U), prostaglandin E2 or cyclic AMP, added to the medium, 
induced the potency of  graft-vs-host reaction in spleen cells from thym- 
ectomized mice; incubation of mouse lymphocytes with thymic humoral 
factor resulted in an increased cyclic AMP content [299]. Incubation of 
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spleen cells from nude mice with thymopoietin, cyclic AMP or poly 
(A:U) induced the appearance of antigenic markers and helper function 
[451]. Neither thymosin [20] nor serum thymic factor [20] induced an 
increased cyclic AMP content in thymocytes when added to the medium. 
Also, incubation of thymocytes with serum from normal or thymecto- 
mized pigs induced an increased cyclic AMP content in these cells, 
whereas the serum thymic factor produced by synthesis did not [34]. 

Perhaps, this partly confusing picture could be somewhat clarified if 
we knew the consequences of thymectomy on the cyclic AMP level of 
lymphocytes. Remarkable as it may sound, we do not. 

7.2 Hormonal Interactions 

The hormones mentioned thus far are simultaneously present in the 
organism. The hormonal influence on immune response (i.e., its action 
directly on the immune system or mediated by another endocrine) is 
expressed by an algebraic sum. This assertion is self-evident. Thus far, the 
documentation concerning this topic is poor. Elements of the hormonal 
interactions in general must be noted. (Observations mentioned without 
references are described in extenso [ 114]). Hormonal interactions must 
be seen from two different aspects: 

1. The reciprocal influence between gland A and gland B 
2. The interaction between the hormones of gland A and gland B in their 

circulating form 

These two aspects probably are linked to each other in some way. 
However, we can only assume this up to now. 

7.2.1 Consequences of  Thymectorny on the Endocrines 

Following thymectomy, a transitory stimulation of the thyroid, and the 
gonads, and the adrenal cortex was observed in guinea pigs and rats [ 114]. 
These endocrines returned to normal in rats and in those guinea pigs 
which recovered from thymectomy. In those which waste (examined sub 
finem) degenerative changes were observed. This was the case in thymec- 
tomized mice. As far as we know, the endocrines were examined in 
wasted mice only [ 155]. This is insufficient. Degenerative changes in the 
endocrines occur in wasted animals, whatever the reason for wasting may 
be (e.g., in the terminal stage of deficiency diseases). The consequences 
of thymectomy on the adrenal cortex seem ambiguous at first sight. Evi- 
dence of stimulation was noted [see 114, 140]. However, the corticoste- 
roid content of the systemic blood was found to be decreased [ 137, 177] 
whereas aldosterone content was increased [ 177]. Still, the corticosterone 
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level increased in the efferent blood of  the adrenal [79,470].  This discre- 
pancy is believed to result from an accelerated denaturation of cortico- 
sterone in thymectomized animals, perhaps mediated by the stimulated 
thyroid. Indeed, thyroxine injections were followed by an accelerated 
reduction of  ring A in steroid molecules [550]. A methodical investiga- 
tion of the steroid turnover rate in thymectomized animals would be of  
interest. 

In the adenohypophysis, thymectomy was followed by signs of stimu- 
lation of, more or less, all cells. The sequence of  the events is different 
from one species to another. In rats [114, 1371 and in mice [55], the 
stimulation of ~ cells occurs early. In guinea pigs [ 114], 6 cells precede 
the ~ cells, which show signs of stimulation only in recovering animals. 
In wasted guinea pigs the adenohypophysis is completely dedifferentiated 
(consisting only of  small chromophobes). In mice, the stimulation of 

cells appears before the onset of  wasting [415]. In thymectomized axenic 
mice, which do not waste following thymectomy,  similar changes in the 
adenohypophyseal cells occurred [415, 475]. 

Further research concentrated on the ~ cells. Electron microscopy 
indicated an enhanced endoplasmic reticulum and an almost total disap- 
pearance of secretion grains [562, 475] in thymectomized mice. This 
evidence of an increased activity is consistent with the increase in the 
growth hormone level in the serum [ 137]. We noted that following thym- 
ectomy the efficiency of  the growth hormone is decreased (by the loss of 
its synergist). This results in an increased growth hormone secretion by 
a negative feedback effect. 

All these changes were prevented by thymic grafts in mice [54] or by 
daily injections of the Bernardi-Comsa thymic hormone preparation [see 
113]. The increase in the serum growth hormone level following thymec- 
tomy was prevented by injections of the same compound [562]. 

The nude mouse is supposed to suffer from a severe thymic deficiency. 
But thymosin could be prepared from the rudimentary thymus of nude 
mice [573]. The histological picture of  the endocrines shows to a certain 
extent that of  thymectomized mice at the terminal wasting stage. The 
thyroid shows degenerative changes. In the adrenal at the age of 50 days, 
the reticular zone of the adrenal cortex is peculiarly large. At 90 days the 
cortex is shrunken. The growth hormone cells of the adenohypophysis 
show the same picture as in thymectomized mice. Blood thyroxine levels 
are low. Corticosterone levels temporarily increased (at 14 days) and 
later decreased. Sex steroids decreased. In vitro, adrenals of nude mice 
produce less corticosterone, more desoxycorticosterone, and as much 
aldosterone as those of normal mice. Addition of corticotropin to the 
medium results in normalization of the steroids produced [408, 409]. 
Thymic grafts in nude mice suppressed all degenerative changes in the 
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endocrines. The consequences of thymic extract injection on the endo- 
crines of nude mice have not been investigated as far as we know. 

7.2.2 Thymus-Thyroid 

Following thyroidectomy, the thymus undergoes atrophy of the senile 
type in infant guinea pigs [see 114]. The hormone content of the thy- 
mus, the lymph nodes, and the spleen decreased in thyroidectomized 
rats. This could be prevented by daily injections of 5/~g of thyroxine, the 
minimal dose for preventing thiouracil goiter [ 124]. In guinea pigs, the 
minimum dose necessary was 2 /~g daily. Increased thyroxine amounts 
induced thymic hypertrophy (up to 16 ~g). Larger amounts, however, 
resulted in a relative atrophy with histological signs of intense stimula- 
tion, which points to the picture of human thymus in Graves' disease. 
The lymphocytosis induced by thyroxine injections is mediated by the 
thymus. In doses inducing lymphocytosis in normal guinea pigs, thyro- 
xine injections are followed by lymphopenia in thymectomized animals 
[114]. 

The thyroid seems to regulate in some way the thymus functions. 
Thymic hypertrophy induced by castration is inhibited by simultaneous 
thyroidectomy [344] as well as an increase in the hormone content of 
the thymus in castrates [ 124]. 

The influence of the thyroid on the thymus is probably direct. Thymic 
hormones and thyroxine are mutual antagonists (demonstrated with the 
Bernardi-Comsa compound [see 1141 and with thymosin [see 127]. The 
influence of the thymus on the thyroid (the thyroid stimulation follow- 
ing thymectomy) is more intricate. The thymus antagonizes thyreotropin 
and it decreases the thyreotropin secretion [see 114]. 

7.2.3 Thymus-Adrenal 

The influence of the adrenal on the thymocytes was described above. In 
addition, an adrenal influence on the thymic glandular epithelium seems 
probable. Adrenalectomy is followed by thymic hypertrophy [see 114 
for review], but the hormone content of this enlarged thymus is low 
[ 124, 137] and increased above the normal level in adrenalectomized rats 
with corticosterone or desoxycorticosterone [ 124]. 

The influence of the thymus on the adrenal cortex is intricate. The 
stimulated condition of the adrenal cortex following thymectomy (pre- 
vented by thymic hormone injections) was mentioned above. The adrenal 
of thymectomized rats was incubated in vitro. Addition of thymosin to 
the medium was followed by an increased oxygen consumption. The 
oxygen consumption of adrenals from thymectomized mice previously 
injected with thymosin or with homeostatic thymic hormone was low 
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(equal to that of  normal mice if homeostatic thymic hormone was 
injected, but still 30% higher after thymosin injections [140] ). Obviously, 
two mechanisms interplay: (a) the antagonistic action of the thymus 
toward corticotropin (see above) and (b) a possible direct action of the 
thymus on the adrenal cortex. 

The thyroid seems to play a permitting role on the adrenal's influence 
on the thymus. The "big empty thymus"  of adrenalectomized rats is not 
seen in tyhroidectomized and adrenalectomized rats. In these rats, the 
thymus shrinks just as in those thyroidectomized alone. 

7.2.4 Thymus-Adenohypophysis 

Following hypophysectomy the thymus shrinks, and the picture is that 
of senile involution. The lobules shrink, the cortex is narrow but particu- 
larly well delimited from the medulla, there are no lymphocytes in the 
medulla, and the lymph nodes shrink [452]. Thymidine uptake is de- 
creased in the thymus and in the spleen [293]. The validity of this test 
could be questioned because hypophysectomy had no effect on thymi- 
dine uptake in the testes [293]. 

Antigrowth hormone antiserum induced a similar thymic atrophy 
[411]. The hormone content of  the thymus decreased as well as the 
stores of thymic hormone [124, 128, 137] in the lymph nodes and the 
spleen. Daily injections of growth hormone,  corticotropin or thyreotro- 
pin prevented these changes [ 124]. The shrunken lymph nodes of hypo- 
physectomized rats are restored to normal by growth hormone injections. 

These observations may demonstrate: 
1. An influence of growth hormone on thymic lymphocytes, this is an 

acquired characteristic. There are specific receptors for growth hormone 
on the surface of lymphocytes [e.g. 397]. Im lymphocyte cultures 
growth hormone addition is followed by an increased mitosis rate [333], 
an increased thymidine and uridine uptake [397,490].  This action is sup- 
posed to be mediated by cyclic AMP since addition of coffeine to the 
medium decreased the minimal efficient growth hormone concentration 
by two-thirds [333]. Growth hormone seemed to favor the maturation of 
thymocytes.  Thymectomized mice, injected with sheep erythrocytes, 
develop few plaque-forming cells. Injection of growth hormone and thy- 
mocytes was followed by an increase in the plaque-forming cell number, 
whereas neither growth hormone alone, nor thymocytes alone had any 
effect [ 16]. Injection of newborn Long-Evans rat spleen cells in newborn 
Ch River rats (of Sprague-Dawley origin) induced runting syndrome only 
when injected together with growth hormone. The influence of  growth 
hormone thus appears to be exerted on Stutman's postthymic immature 
cells. 
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2. An influence of  growth hormone on the secretory thymic reticulo- 
epithelium. This ir purely hypothetical. 

It has also been documented that growth hormone is a synergistic to 
thymic hormone (see above). 

A clear-cut difference appears between the stimulatory influence of  
growth hormone on the thymus and the synergism between growth hor- 
mone on the thymus and the synergism between growth hormone and 
thymic hormone. 

It has been mentioned already that corticotropin injections restored 
the hormone content of the thymus, the lymph noces, and the spleen in 
hypophysectomized rats. The mechanism of  this phenomenon is open to 
discussion. It can be understood as being mediated by the adrenal cortex 
(see above) but a direct influence of  corticotropin on the isolated rat 
thymus has also been observed [137]. The restoration of the hormone 
content in the thymus of  hypophysectomized rats by thyreotropin can 
certainly be understood as being mediated by the thyroid. 

Injections of  an antigrowth hormone antiserum in 27-day-old mice 
resulted in a wasting syndrome similar to that induced by neonatal thym- 
ectomy. The thymus of  these animals shrunk and their immune response 
became deficient. In their hypophyses the growth-hormone cells were 
modified as in thymectomized mice. Their thymuses shrunk [475]. Injec- 
tions of an antithymus antiserum had no similar effect, perhaps because 
it was principally an anti thymocyte serum. For this test, antithymic anti- 
sera should be prepared with cells from the secretory thymic reticuloepi- 
thelial cells. 

The dwarf mouse suffers from a severe adenohypophyseal deficiency 
[e.g. 40, 321, 471]. This deficiency is conditioned by the adenohypo- 
physis itself and not by the hypothalamus. The graft of a syngeneic nor- 
mal hypophysis in the sella turcica of  dwarf mice was followed by normal 
growth [88]. Substitutive therapy with adenohypophyseal and other hor- 
mones to some extent produced confusing results. Dwarf mice resumed 
growth when injected with growth hormone, thyreotropin [47] or thy- 
roxine [236, 390, 472]. Bioassay and polyacrylamide electrophoresis of a 
crude hypophyseal extract of  dwarf mice demonstrated a severe growth 
hromone deficiency [321 ]. Thus, dwarf mice are dwarves inasmuch as 
they are deficient in growth hormone (in fact, the other hypophyseal 
hormones have not been researched as far as we know). 

The thymus, the lymph nodes, and the splenic white pulp are atrophic 
in dwarf mice. At 20 days the thymus shows senile atrophy, and at 
60 days the terminal stage of deficiency diseases [36]. Yet this thymus 
was proven functional (see Sect. 5). Thyroid and adrenals are atrophic. 

The restoration of  dwarf mice by thyreotropin or thyroxine injections 
raises some problems. The restoration of the immune response by thyroxine 
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may result from the influence of thyroxine on the thymus. We know, 
indeed, that thyreotropin restored the thymus function in hypophysec- 
tomized rats. Unfortunately, we do not know which changes in the thy- 
mus of dwarf mice are induced by thyroxine. In any case, this explana- 
tion is unsatisfactory since thymic hormone was shown to be of no influ- 
ence on the immune response in hypophysectomized animals, unless 
growth horrhone had also been injected (see above). Thus, we could sus- 
spect that thyroxine injections in dwarf mice induced an increased 
growth hormone secretion also. It is, indeed, open tO discussion whether 
the adenohypophysis of dwarf mice is asleep or dead. In the first case, 
thyroxine may induce a chain of events in the adenohypophysis of thy- 
roidectomized rats, the growth hormone content tending toward zero. 
It is restored with thyroxine injections [321]. There is circumstantial 
evidence that the well-known hypertrophy of the adrenal cortex follow- 
ing thyroxine injections is mediated by the adenohypophysis [e.g. 164]. 
Corticotropin injections resulted in an increased growth hormone secre- 
tion [e.g. 480, 555]. In dwarf mice growth hormone injections showed a 
gonadotropic effect. Puberty was induced and fertilization, pregnancy, 
and breeding were possible [39]. An intricate interaction within the cells 
of the adenohypophysis could be possible in the particular case of the 
dwarf mouse which is injected with one or another hypophyseal hor- 
mone. This presumption indicates that the adenohypophysis of the 
dwarf mouse is only in a deep resting state (asleep) and is still able to 
respond to stimulation. 

In comparing this hypophysis-to-hypophysis interaction, could a thy- 
mus-to-thymus interaction be acquired? The thymus also secretes several 
hormones. The answer is short and simple: We just do not know. 

Thus, an intricate network of hormonal interaction appears to influ- 
ence the immune functions. The notion of a coherent coordinative mech- 
anism for these functions can be imagined. This suspicion could be sup- 
ported further from the observations made on the nervous system's 
involvement in these interactions. Destruction of hypothalamic areas was 
followed by a depression of the immune response; their stimulation by 
faradization enhanced it [294]. Serum corticosterone level, action poten- 
tial of the hypothalamic ventromedian area, and the number of plaque- 
forming cells in the spleen increased in demonstratively parallel curves 
following sheep erythrocyte injections in rats [54]. The stimulatory 
influence of antigens on these mechanisms seems to be exerted at differ- 
ent levels and not on the hypothalamus alone. Corticosterone produc- 
tion by incubated adrenals was increased, following addition of an anti- 
gen (enterotoxin) to the medium [224], and the corticotropin release of 
incubated hypophyses was also increased by the addition of E. coli 
endotoxin [491,358]. 
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The thymus may exert an influence on this mechanism. RNA synthesis 
increased in the hypothalamus of thymectomized rats incubated in vitro. 
This was prevented by thymosin or homeostatic thymic hormone injec- 
tions. Added to the medium, both hormones caused a decrease in RNA 
synthesis in the incubated hypothalamus of intact rats [ 142]. This seems 
to indicate a negative feedback effect of thymectomy on the hypothala- 
mus. This entirely new field awaits further research. 

8 Possible Alimentary Influences 

The picture of coordinatory mechanisms of immune functions is not 
complete if alimentary factors are not taken into account. The experi- 
mental documentation on this is poor. However, a superabundant num- 
ber of clinical documentations are available concerning immune distur- 
bances in underfed human subjects. Avitaminosis A, pantothenic acid, 
and pyridoxal deficiency in rats and avitaminosis C in guinea pigs resulted 
in a decreased antibody production. Thiamine, riboflavine, and folic acid 
deficiency were of no influence [see review 23]. Pair-fed controls showed 
a normal immune response, however, their thymus was also atrophic. 
Thus, this influence of specific deficiencies on the immune response did 
not result from the underfeeding which is by definition a consequence of 
avitaminoses. Rat fed a pyridoxine-deficient diet had no immunocom- 
petent mature T cells in the thymus. Thymocytes from these rats acquired 
immunocompetence when incubated on a monolayer of thymic reticulo- 
epithelium from normal rats, but not if the reticuloepithelial cells were 
taken from pyridoxine-deficient rats [540]. This suggests that pyridoxine 
deficiency may interfere with the immune response inasmuch as it inhibits 
thymic hormone production. This is perhaps not the only way. Lympho- 
cytes from BALB mice incubated with irradiated C3H lymphocytes 
developed cytotoxic functions, which decreased in time after the anti- 
genic lmyphocytes were added after more than 20 days of culture. After 
35 days of culture, the ability to develop cytotoxic functions was lost. 
It was restored by addition of pyridoxal to the medium [464]. 

Here again a new field of interest opens. As long as our documentation 
on this subject remains as poor as it is, the coordinatory mechanisms of 
immune functions will not be completely understood. 
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9 General Conclusions 

J. Comsa et al. 

This review contains evidence for the influence of  nearly all hitherto 
known hormones on the immune response. As stated above, the docu- 
mentat ion for this evidence differs quantitatively from one hormone to 
another: abundant  for the thymus,  in general it is scarce for the other 
endocrines, because the attention of  immunologists has thus far focused 
more or less exclusively on the thymus. This is unjustifiable. There is 
valid evidence for pluriglandular influences on the immune response. 
Korneva's observations indicate an influence of  the hypothalamus [294]. 

It was postulated for the thymus,  that its influence is needed for the 
differentiation of  the immune system ( thymec tomy is o f  no consequences 
in animals whose immune system is already mature). This is not  entirely 
valid. Endocrine mutilation resulted in immune disturbances in pre- 
puberal animals, as wag shown above. 

A difference mfist be made between mature lymphocytes  and senti- 
tized lymphocytes.  In the lymphocytes ,  the first contact with an antigen 
results in changes which are under hormonal influences. Once these 
changes have occurred, hormones are apparently no longer needed (the 
secondary immune response is not influenced by endocrine mutilation. 

The mechanism for these hormonal influences differs from one endo- 
crine to another. Some act directly on the immune system. The synergic 
growth hormone, the thymus,  and the cort icosteroids are examples of  
this condition. Some endocrines influence the immune system inasmuch 
as they stimulate or inhibit other glands. This may occur in two different 
ways: 

1. An interaction between two hormones in their circulating form (such 
as the interaction thymus-corticotropin) 

2. An influence of  a hormone on a gland itself; the influence of  the thy- 
roid and the gonads is mediated by the thymus. 

A scheme (Fig. 1) summarizes those interactions. 
Do these observations themselves just ify the postulate of  a hormonal 

coordination of  the immune response? At first glance, no. It requires the 
demonstration of  an induction of  the hormonal reaction by  a specific 
stimulant. The stimulant may act directly (the isolated perfused pancreas 
secretes increased amounts of  insulin if the glucose content of  the perfu- 
sion liquid is increased). The reaction may result from an intricate mech- 
anism involving several organs (energetic metabolism increases in the 
cold, under the influence of  the thyroid and the adrenal cortex, but  not 
in hypophysectomized animals). In order to accept the postulate of  a hor- 
monal coordination of  the immune response, we must observe, that the 
presence of  an antigen within the organism results in an increased activity 
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Fig. 1. Summary of the hormonal coordi- 
nation of the immune response. 
Stimulating influences, - . . . .  //inhibiting 
influences. 1, adenohypophysis; 2, thy- 
roid; 3, thymus; 4, gonads; 5, adrenal; 
6, lymphocytes. Abbreviations: BC, thy- 
mic hormone (Bernardi-Comsa); TS, tes- 
tosterone; OF., estradiol; X, unknown; 
STH, growth hormone; TSH, thyreotro- 
pin; ACTH, corticotropin; T4 Ta, thyroid 
hormone 
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of the endocrines mentioned above. This evidence is given partially by 
the observations of Besedowsky and Sorkin [54]: in presence of sheep 
erythrocytes there is a parallel increase of the action potentials in the 
hypothalamus, the corticosterone content of the blood, and the number 
of plaque-forming cells in the spleen. It would be of supreme interest to 
extend this fundamental observation to the other endocrines known to 
influence the immune system. 

Be that as it may, our knowledge of these mechanisms will remain 
incomplete as long as alimentary factors are not taken into account. The 
observations of Willis-Carr and St. Pierre are of great interest in this con- 
text [540]. Earlier documents are not entirely satisfactory, concluding 
(in our opinion somwhat quickly) that most alimentary factors are of 
little or no influence on the immune system [see 23]. This conclusion is 
in striking contradiction to the everyday clinical routine. It is universally 
known that patients suffering from malnutrition are highly sensitive to 
infection that can develop with a peculiarly poor reaction and a catas- 
trophal prognosis. This suggests the hypothesis of a state of immunodefi- 
ciency in these patients. To our knowledge, no attempt has yet been 
made to verify this hypothesis. 

On the other hand, it is known that malnutrition results in an intricate 
hormonal deficiency. A characteristic pattern of thymic atrophy is an 
early consequence of every deficiency disease. Later, the adenohypophy- 
sis is severely affected (malnutrition was called the nonsurgical hypo- 
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physectomy).  This, in turn,  affects the thyroid,  the adrenal, and the 
gonads. The documenta t ion  reviewed allows us to postulate a link between 
hormonal  deficiency and immune deficiency (to some extent  underfed 
subjects suffer f rom immune deficiency inasmuch as they suffer f rom 
hormonal  deficiencies). 

One may conceive that the thymus is of  primary importance in this 
syndrome.  Its a t rophy is peculiarly early and pecularly severe. In dys- 
peptic infants underfed for  therapeutic reasons the thymus may lose 90% 
of  its normal weight and its hormone content  tends toward zero [see 
329]. In the late 1940s an at tempt  at substitutive therapy with thymic  
extract  was made in these patients with encouraging results [see 329]. 

In our opinion, interesting new aspects of  the physiopathology of  the 
immune response may appear if: 

1. The pluriglandular coordinat ion of  the immune response were to be 
considered (instead of  the exclusive concentrat ion on the thymus).  

2. The accidental, acquired forms of  immunodefic iency were also inves- 
tigated (research has so far focused on congenital forms). 
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