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1 Introduction

Upon exposure to a multitude of stimuli, phagocytes, i.e., neutrophils,
eosinophils, monocytes, and macrophages, undergo the so-called res-
piratory burst, which is characterized by activation of the hexose mono-
phosphate shunt, increased oxygen consumption, and activation of the
plasma membrane-bound NADPH oxidase. This enzyme catalyzes the
formation of superoxide anions (O;) at the expense of oxygen and
NADPH. Oz may enzymatically or spontaneously dismute to H,O, and
may subsequently be converted to a variety of active oxygen species such
as singlet oxygen and hydroxyl radical (Babior 1984; Rossi 1986; Di-
Gregorio et al. 1989; Cadenas 1989).

The respiratory burst in phagocytes was discovered by Baldrige and
Gerard (1933), who observed increased oxygen consumption in
phagocytosing canine neutrophils. More than two decades later, Stidhelin et
al. (1957) reported that glucose metabolism via the hexose monophosphate
shunt is activated during phagocytosis of guinea pig neutrophils. Sbarra and
Karnovsky (1959) showed that the stimulated oxygen consumption during
phagocytosis is not prevented by inhibitors of mitochondrial respiration,
suggesting its nonmitochondrial origin. In 1961, Iyer et al. presented indirect
evidence for the assumption that H,O; is produced during the respiratory
burst. Subsequent studies suggested that a particulate NADPH oxidase is
involved in H»O, formation and increased oxygen consumption during
phagocytosis (Rossi et al. 1969, 1972; Romeo et al. 1971; Patriarca et al.
1971).1n1973, Babior et al. reported that O3 is generated in phagocytosing
neutrophils.

It should be emphasized that NADPH oxidase is not the only source of
O7 incellular systems. For example, O3 is generated in the cyclooxygenase
pathway of arachidonic acid, in xanthine oxidase reactions, and in the
electron transport chain of mitochondria (Slater 1984; Cadenas 1989; Koner
et al. 1989).

Reactive oxygen intermediates are assumed to play a role in the killing
of bacteria, fungi, parasites, and tumor cells and in the pathogenesis of
myocardial ischemia reperfusion injury, adult respiratory distress
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syndrome, cerebral vascular damage, tumorigenesis, and noninfectious
acute and chronicinflammatory processes (Nathan et al. 1980; Nathan 1982;
Dallegri et al. 1989; Hammond et al. 1985; Weitzman et al. 1985; Malech
and Gallin 1987, Johnston 1988; Blake et al. 1987; Lunec et al. 1987;
Halliwell et al. 1988; Weiss 1989; Kloner et al. 1989). Thus, as reactive
oxygen species potentially possess both beneficial and deleterious effects,
the production of the primary radical, O3, would be expected to be carefully
regulated.

The present review does not deal with the chemistry or biochemistry of
oxygen radicals, as reviews on this topic are available (Klebanoff 1980; Roos
1980; Badwey and Karnovsky 1980; Halliwell and Gutteridge 1984; Slater
1984; Fridovich 1986, 1989; Naqui et al 1986; Britigan et al. 1987; Cadenas
1989).

Certain aspects of signal transduction processes in phagocytes have
been reviewed by Omann et al. (1987a), Hamilton and Adams (1987),
Sandborg and Smolen (1988), Dillon et al. (1988), Sha’afi and Molski (1988),
Riches et al. (1988), and Adams (1989). Becker (1990) reviewed the history
of the research on signal transduction in neutrophils. Various aspects
concerning the structure and regulation of NADPH oxidase have been
reviewed by Babior (1978a,b, 1984), Badwey et al. (1979), Roos (1980),
Badwey and Karnovsky (1980, 1986), Baggiolini (1984), McPhail and
Snyderman (1984), Forman and Thomas {1986), Rossi (1986), Tauber
(1987), Sandborg and Smolen (1988), Lambeth (1988), Jesaitis and Allen
(1988), Dillon et al. (1988), and Segal (1989a,b).

The methods available to measure the respiratory burst have been
reviewed (Absolom 1986). A commonly employed method to measure the
respiratory burst is based on the superoxide dismutase-inhibitable reduc-
tion of ferricytochrome ¢ or derivatives of ferricytochrome ¢ by Oz (Drath
and Karnovsky 1975; Butler et al. 1982; Nasrallah et al. 1983; Bellavite et
al. 1983; Markert et al. 1984; Rajkovic and Williams 1985a; Pick 1986;
Turrens and McCord 1988; Morel et al. 1988). H,O; production is also a
widely used measure to assess the respiratory burst (Rajkovic and Williams
1985a; Pick 1986). Another method to assess the activity of NADPH
oxidase is the measurement of oxygen consumption that is insensitive to
inhibitors of mitochondrial respiration, e.g., to NaN3, KCN, and antimycin
(Absolom 1986). In addition, various chemiluminescence methods have
been described to measure oxygen radical formation (Sagone et al. 1976;
Trush et al. 1978; Roos 1980; Welch et al. 1980; Schopf et al. 1984; Halstensen
et al. 1986; Roberts et al. 1987; Wymann et al. 1987a; Lock et al. 1988;
Johansson and Dahlgren 1989). Moreover, Oz -dependent reduction of
nitro blue tetrazolium (NBT) to insoluble formazan (Baehner et al. 1975;
Schopf et al. 1984; Absolom 1986; Pick 1986; DiGregorio et al. 1989) and
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measurement of hexose monophosphate shunt activity (Borregaard et al.
1984) reflect activation of the respiratory burst.

We review the literature on the regulation of NADPH oxidase with
special respect to relevant publications from the past 4 years. The literature
search for this review was concluded in January 1991. While we deal with
a broad spectrum of aspects, we are aware of the fact that we cannot
consider all literature available on this subject.

As is outlined below, the literature on NADPH oxidase regulation is
controversial in many areas. Unfortunately, it is often difficult to analyze the
reasons for conflicting reports. Some discrepancies are explained by cell type-
and species-specific properties of the respiratory burst, by differences in the
experimental procedures, by differences in the stimuli and inhibitors used, and
by differences in their concentrations. Some aspects of the species specificity
of the respiratory burst have been reviewed by Styrt (1989).

It is known that activation of NADPH oxidase in intact phagocytes
under in vitro conditions is affected by various factors during cell isolation
such as temperature, centrifugal forces, presence of serum, dextran, Ficoll-
Hypaque, and buffer constituents (Berkow et al. 1984; English et al. 1988;
Tennenberg et al. 1988). The storage time and storage conditions after cell
isolation influence O3 formation as well (English et al. 1981a, 1988; J.J.
Zimmerman et al. 1985, 1989; Dahlgren et al. 1987). The assay conditions
during measurement of O3 formation such as time of contact with stimulus
and the state of adherence are also of importance (Dahinden et al. 1983b;
English et al. 1988). Moreover, the density of adherent and suspended
neutrophils strongly affects the amount of O3 and H,O» generated per cell
(Mege et al. 1986; Peters et al. 1990). Finally, the density of adherent
neutrophils determines the requirement for extracellular Ca** of O3 for-
mation (Ishihara et al. 1990).

Another difficulty is certainly the fact that there are substantial inter-
and intraindividual differences in the magnitude of the respiratory burst
activated by various stimuli in neutrophils (J.J. Zimmerman et al. 1985, 1989;
Pontremoli et al. 1988; Seifert et al. 1991a). It is also not known exactly how
far the in vitro assay conditions for measurement of the respiratory burst
activity reflect the in vivo conditions. For example, in vivo, phagocytes are
exposed simultaneously to plasma proteins and/or extracellular matrix
proteins, lipids, cytokines, and other intercellular signal molecules, and the
phagocytes may interact with endothelial cells, platelets, lymphocytes,
and/or their secretory products. Most in vitro studies are performed with
purified cell populations, and the phagocytes are suspended in artificial,
defined buffer solutions which are devoid of many components normally
present in the blood or in the extravascular fluid. Discussion of all these
aspects is, of course, beyond the scope of this review.



2 NADPH Oxidase:
A Superoxide-Forming Enzyme System

2.1 Catalytical Properties

NADPH oxidase (EC 1.6.99.6) catalyzes the univalent reduction of O, to
Oy according to the reaction: 2 O, + NADPH — 2 O; + NADP” + H".
NADPH oxidase has also been shown to catalyze the divalent reduction of
O; to H;0; under certain experimental conditions (Green and Wu 1986;
Green and Pratt 1987). The K, value for NADPH of NADPH oxidase
amounts to 30-80 pM, that for NADH to 0.4-0.9 mM, and that for oxygen
to about 10 uM (Babior et al. 1975, 1976; Gabig and Babior 1979; Cohen et
al. 1980a; Lew et al. 1981; Chaudhry et al. 1982; Wakeyama et al. 1982;
Yamaguchi et al. 1983; Suzuki et al. 1985; Tamura et al. 1988). NADPH
oxidase shows a pH optimum at about 7.0 and is inhibited by various SH
reagents (see also Sect. 4.3.3) but not by inhibitors of the respiratory chain
(Babior et al. 1975, 1976; McPhail et al. 1976; Iverson et al. 1977; Tauber
and Goetzl 1979; Cohen et al. 1980a; Green and Schaefer 1981; Gabig et al.
1981).

In the case of rabbit peritoneal neutrophils, NADPH oxidase not only
catalyzes the formation of O3 but also possesses NADPH diaphorase
activity (EC 1.6.99.1) as measured by superoxide dismutase-insensitive
reduction of ferricytochrome ¢ (Laporte et al. 1990). Transition of NADPH
oxidase from the diaphorase to the O -forming enzyme is enhanced by
arachidonic acid and stable guanine nucleotides and is accompanied by a
substantial increase in the Ky, for NADPH. Iodonium compounds reduce
O3 formation but not diaphorase activity, and arachidonic acid at high
concentrations or Triton X-100 induces reappearance of diaphorase
activity.

The thermolability and the sensitivity to inhibition by salts have been
obstacles for the purification of this enzyme (Babior and Peters 1981; Green
and Pratt 1988; Wakeyama et al. 1982; Sakane et al. 1987a). Glutaraldehyde,
glycerol, ethylene glycol, and dimethyl sulfoxide have been reported to
stabilize NADPH oxidase (Tauber and Goetzl 1979; Sakane et al. 1987).
The stabilizing effect of glutaraldehyde is apparently due to its protein
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cross-linking ability, as its monovalent analogue, butyraldehyde, is without
stabilizing effect (Sakane et al. 1987).

The particulate NADPH oxidase from stimulated human neutrophils
has been solubilized with various detergents (Gabig et al. 1982; Gabig and
Babior 1979; Tauber and Goetzl 1979; Light et al. 1981; Tamura et al. 1988).
Early studies showed that the solubilized NADPH oxidase passes through
membrane filters retaining species with molecular masses over 300 kDa
(Gabig et al. 1978). Using a gel filtration technique, Tauber and Goetzl
(1979) reported that entities with apparent molecular masses of 150 kDa
and of over 300 kDa show NADPH oxidase activity, and that the solubilized
NADPH oxidase possesses at pl of 7.6-8.3. In agreement with the data
obtained for the particulate enzyme, the K, for NADPH of the Triton
X-100-solubilized NADPH oxidase amounts to 33 uM and that for NADH
t0 930 uM (Gabig and Babior 1979). Solubilization of NADPH oxidase with
deoxycholate plus Tween 20 results in a twofold increase in enzyme activity
and in the K, for NADPH (Tamura et al. 1988). Similar to the particulate
enzyme, the solubilized NADPH oxidase shows maximal activity at pH
7.0-7.5 (Gabig and Babior 1979; Tauber and Goetzl 1979).

2.2 Cofactor Requirements

The activity of solubilized NADPH oxidase is modulated by phospholipids.
Phosphatidylethanolamine but not phosphatidylcholine or phosphatidyl-
serine were found to enhance the activity of the Triton X-100-solubilized
NADPH oxidase from human neutrophils (Gabig and Babior 1979). The
activity of the human neutrophil NADPH oxidase solubilized by deoxycho-
late plus Tween 20 is substantially augmented by phospholipids, in the order
of effectiveness phosphatidylserine > cardiolipin > phosphatidylethanol-
amine > phosphatidylinositol, whereas phosphatidylcholine is inactive
(Tamura et al. 1988). NADPH oxidase activity shows a quadratic depend-
ence on the protein concentration of the solubilized preparation, and this
property results in lower activity than expected with low protein concentra-
tions (Gabig et al. 1978; Tamura et al. 1988). The addition of phospholipids
to the solubilized enzyme restores the relation between protein concentra-
tion and enzyme activity to a linear function (Gabig et al. 1978; Gabig and
Babior 1979; Tamura et al. 1988).

NADPH oxidase is regulated by divalent cations, but the results ob-
tained by various groups are not consistent. Ca** at micromolar concentra-
tions has been shown to inhibit O3~ formation in phagocytic vesicles from
rabbit alveolar macrophages, and preincubation of phagocytic vesicles with
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ethylene glycol tetraacetate (EGTA) desensitizes NADPH oxidase to
inhibition by Ca® *(Lew and Stossel 1981) The activity of NADPH oxidase
from myristic acid-stimulated guinea p1§ neutrophils has been reported to
be enhanced by Mg** but not by Ca®* (Yamaguchi et al. 1983). Mg
enhances Viax and reduces the Ky, for NADPH, and the effect of Mg*" i
maximal at 40-50 uM (Yamaguchi et al. 1983). NADPH oxidase from
phorbol myristate acetate (PMA) treated human neutrophils and
monocytes is 1nh1b1ted by ethylened1am1netetraacetate (EDTA) and is
stimulated by both Mg and Ca" (Green et al. 1983; Suzuki et al. 1985). In
addition, Ca* and Mg?* protect the enzyme against thermal inactivation
(Suzuki et al. 1985). These authors suggested that divalent cations do not
interact with NADPH or modulate its binding to NADPH oxidase, but
rather that they bind to a structural or regulatory component of the enzyme
(Suzuki et al. 1985; see also Sect. 5.1).

The particulate NADPH oxidase is regulated by adenine nucleotides.
Early studies suggested that NADPH oxidase is inhibited by AMP, ADP,
ATP, and the nucleotide analogue, 2',5'-ADP (Badwey and Karnovsky
1979; Babior and Peters 1981). Some years later, Melloni et al. (1986b)
reported that ATP increases particulate NADPH oxidase activity from
PMA-stimulated human neutrophils. This stimulation of O3 formation is
accompanied by the release of a neutral serine protease from the membrane
into the incubation medium and by the phosphorylation of membrane
proteins (Melloni et al. 1986b; see also Sect. 3.1.1.4). The stimulatory effects
of ATP have been suggested to involve protein kinase C-mediated phos-
phorylation reactions (Melloni et al. 1986; see also Sects. 3.3.1.8, 5.1.4.3).

2.3 Some Effects of Various Stimuli on the Catalytic Properties
of NADPH Oxidase

Exposure of phagocytes to different substances which per se at the con-
centrations applied are not sufficient to activate the respiratory burst, may
result in enhanced O3 formation upon exposure to a second stimulus, and
this process is referred to as priming. Various aspects and examples of
priming processes are described in Sects. 3.2.2.2 and 3.3.

Resident macrophages possess a lower capacity to undergo a
respiratory burst upon exposure to PMA than macrophages which have
been primed, i.e., “activated” by infection of the host with bacteria or
“elicited” by intraperitoneal injection of various substances (Bellavite et al.
1981; Johnston and Kitagawa 1985). The priming of macrophages is as-
sociated with an increase in NADPH oxidase activity (Bellavite et al. 1981).
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Primed murine peritoneal macrophages generate larger amounts of O3
upon stimulation with PMA than resident macrophages, and the K, for
NADPH of NADPH oxidase is lower in the former cells (Bellavite et al.
1981; Sasada et al. 1983; Berton et al. 1985a). NADPH oxidase from
lipopolysaccharide (L.PS) treated macrophages shows a higher Viax and a
lower K, for NADPH than the enzyme from resident cells, and LPS-treated
macrophages contain larger amounts of NADPH than control cells (Sasada
et al. 1983). The content of cytochrome b-xs apparently does not increase
in primed macrophages, but these macrophages may utilize a higher num-
ber of cytochrome b-2s molecules than the nonprimed cells (Berton et al.
1986a). Tsunawaki and Nathan (1984) did not find substantial differences
in the Vi of NADPH oxidase and the cellular content of cytochrome b-xs
in primed and resident macrophages. In contrast, the Km for NADPH of
NADPH oxidase was found to be inversely related to the macrophages’
ability to generate H,O, (Tsunawaki and Nathan 1984). These data suggest
that an increase in the affinity of NADPH oxidase for NADPH contributes
to priming of macrophages for an augmented respiratory burst.

In neutrophils, various chemoattractants activate NADPH oxidase in
the presence of cytochalasin B (CB) in a time- and concentration-depend-
ent manner (McPhail and Snyderman 1983; see also Sect. 3.3.1). The
temporal pattern of NADPH oxidase activation caused by the Ca™
ionophore A 23187 or by PMA is different from that induced by chemoat-
tractants, and activation of the enzyme by the latter two agents does not
depend on the presence of CB (see also Sect. 3.2.5). The analysis of the K,
values for NADPH and NADH of NADPH oxidase suggests that the same
oxidase is activated by various stimuli acting through different signal
transduction pathways (McPhail and Snyderman 1983). Activation of the
respiratory burst in human neutrophils by formyl peptides is associated with
a decrease in the K, of NADPH oxidase for oxygen (Edwards et al. 1983).
In human neutrophils, priming for an enhanced resplratory burst by cell-
permeant diacylglycerols, the Ca®* ionophore, ionomycin, LPS and exsuda-
tion is accompanied by an enhanced capacity of NADPH oxidase for
divalent reduction of oxygen (Follin and Dahlgren 1990; see also Sect. 2.1).
Chemoattractants plus PMA interact synergistically to activate NADPH
oxidase in human neutrophils (Bender et al. 1983). The effects of chemoat-
tractants are concentration- and time-dependent and result in an increase
in Vmax of NADPH oxidase but not in an alteration of the K, for NADPH
(Bender et al. 1983).
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2.4 Structural Components

NADPH oxidase is an enzyme system which apparently consists of multiple
components. These components are localized in the plasma membrane, in
specific granules, and in the cytosol of phagocytes. A number of com-
ponents has been suggested to be involved in the redox chain of NADPH
oxidase, including Flavine adenine dinucleotide (FAD), quinones, and a
phagocyte-specific cytochrome referred to here as cytochrome b.s. The
electron flow may proceed as follows: NADPH — FAD protein — quinones
(?) — cytochrome b4 — Oz The identity and functional organization of
the redox components of NADPH oxidase is still a matter of intense debate.
Table 1 summarizes some properties of putative plasma membrane-as-
sociated components of NADPH oxidase and of purified preparations of
NADPH oxidase, and Table 16 summarizes some properties of putative
cytosolic components of the enzyme system, in the following operationally
referred to as cytosolic activation factors (see also Sect. 5.1.5).

When this review was in the final stages of preparation, a standardized
nomenclature was suggested for these components of NADPH oxidase
which are widely accepted to be involved in its activation (Clark 1990). The
a-subunit of cytochrome b.ys is referred to as p22-phox (p, protein; 22,
apparent molecular mass by sodium dodecyl sulfate (SDS)-polyacrylamide
gel electrophoresis; phox, phagocyte oxidase). The f-subunit of cytochrome
by is designated gp91-phox (gp, glycoprotein). By analogy, the cytosolic
47-kDa and 67-kDa proteins are referred to as p47-phox and p67-phox (see
also Sect. 5.1.5.2).

2.4.1 NADPH-Binding Component, Flavoproteins,
and Low Molecular Mass Components

NADPH binds to a proximal component of the redox chain, possibly to a
flavoprotein. The dye Cibacron blue inhibits O3 formation in membranes
from PM A-activated guinea pig neutrophils, which effect may be due to the
dye’s ability to interact with the NADPH-binding component of NADPH
oxidase (Yamaguchi and Kakinuma 1982). Affinity-labeling techniques
have been used to identify the NADPH-binding component of NADPH
oxidase. The 2'3’-dialdehyde derivative of NADPH serves both as an
electron donor and as a competitive antagonist for NADPH (Umei et al.
1986). Inhibition of Oz formation by the NADPH analogue is prevented
by NADPH, and NADPH dialdehyde has been shown to label a protein
with an apparent molecular mass of 65-67 kDa, in the following referred to
as 66-kDa protein (Umei et al. 1986). Pretreatment of the NADPH oxidase
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preparation with p-chloromercuribenzoate or with NADPH at excess
prevents affinity labeling of the protein (Umei et al. 1986). An arylazido
analogue of NADP inhibits NADPH oxidase from PMA-activated bovine
neutrophils and affinity-labels a 66-kDa protein as well (Doussiere et al.
1986). A protein with similar apparent molecular mass is enriched during
the purification of NADPH oxidase (Doussiere and Vignais 1985; see also
below). These data suggest that a 66-kDa protein carries the NADPH-bind-
ing site and acts as NADPH dehydrogenase. Unexpectedly, the results of
recent studies suggested that the NADPH-binding component of NADPH
oxidase is one of the cytosolic activation factors (Sha’ag and Pick 1988;
Volpp et al. 1988; Nunoi et al. 1988; Smith et al. 1989a,b; Takasugi et al. 1989;
see also Sect. 5.1.5).

Solubilized NADPH oxidase from stimulated bovine neutrophils has
been partially purified by ion-exchange chromatography, gel filtration, and
isoelectric focusing (Doussiere and Vignais 1985). The apparent molecular
mass of the purified NADPH oxidase is 65 kDa, with a pl of 5.0. With respect
to the sensitivity to inhibitors, pH optimum, and Ku, the purified enzyme
possesses similar properties as the crude enzyme, but the purified enzyme
has been reported to contain neither FAD nor cytochrome b.s. An an-
tibody raised against purified NADPH oxidase obtained after isoelectric
focusing inhibits O3 generation in intact neutrophils and the activity of the
particulate NADPH oxidase (Doussiere and Vignais 1988). This antibody
recognizes four membrane-associated antigens with apparent molecular
masses of 16, 18, 54, and 65 kDa. Another antibody raised against the
65-kDa protein excised from SDS polyacrylamide gels does not inhibit
O; formation in intact neutrophils, but it inhibits the particulate enzyme.
In neutrophils, this antiserum recognizes proteins with apparent molecular
masses of 54 and 65 kDa (Doussiere and Vignais 1988). These data suggest
that the 16- and 18-kDa proteins which are present in low amounts in the
active NADPH oxidase preparation following isoelectric focusing are
catalytic components of the respiratory burst enzyme.

A monoclonal antibody against purified NADPH oxidase from pig
neutrophils reduces V.« but does not affect its K, (Berton et al. 1989).
The antibody apparently does not interfere with the NADPH-binding
component but recognizes a heterodimer with apparent molecular masses
of 14 and 16-18 kDa (Berton et al. 1989). How far these components are
related to those described by Doussiere and Vignais (1988), is not yet
known. Interestingly, a monoclonal antibody raised against a particulate
preparation of PMA-stimulated guinea pig neutrophils, induces a
respiratory burst in intact neutrophils and recognizes a 10-kDa antigen
which may also be associated with NADPH oxidase (Berton et al. 1986b).
Furthermore, antineutrophil cytoplasmic antibodies which are present in
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the plasma of patients with certain forms of necrotizing vasculitis and
glomerulonephritis induce a respiratory burst in human neutrophils (Falk
et al. 1990; see also Sect. 6.2). Finally, monoclonal antibodies against the
sialoglycoprotein sialophorin show stimulatory effects on the respiratory
burst in human monocytes; this process is accompanied by activation of
phosphoinositide turnover, increase in cytoplasmic Ca**, and activation of
protein kinase C (Wong et al. 1990).

A flavoprotein has been postulated to be involved in the redox chain
of NADPH oxidase (Babior and Kipnes 1977; Light et al. 1981; Wakeyama
et al. 1982). This assumption is supported by the findings that FAD and the
FAD analogues 8-F-FAD, 8-phenyl-FAD, and 8-S-FAD are cofactors for
O formation, whereas the 2e” donor 5-carba-deaza-FAD is inhibitory
(Light et al. 1981; Parkinson and Gabig 1988). Membranes of human
neutrophils contain FAD and cytochrome b.xs at similar concentrations
(Lutter et al. 1984; Gabig and Lefker 1984b, 1985; Green and Pratt 1988).
FAD is reduced by NADPH under anaerobic conditions, and the
flavoprotein is resolved from cytochrome b_us with concomittant loss of
enzymatic activity (Lutter et al. 1984; Gabig and Lefker 1984b, 1985; Green
and Pratt 1988). The redox intermediate of the flavoprotein may be a
neutral semiquinone (Kakinuma et al. 1986). The putative flavoprotein of
NADPH oxidase possesses characteristics of the dehydrogenase/electron
transferase class and may have an apparent molecular mass of 51 kDa,
as revealed by gel filtration (Parkinson and Gabig 1988; Green and Pratt
1988).

Solubilized NADPH oxidase from activated human neutrophils has
been partially purified by red Sepharose dye affinity chromatography
(Markert et al. 1985; Glass et al. 1986). The K, for NADPH and turnover
number of the purified NADPH oxidase are in agreement with the data
obtained for the crude enzyme, and the purified preparation contains FAD
(Glass et al. 1986). This purified NADPH oxidase has been suggested to
consist of subunits with apparent molecular masses of 32, 48, and 67 kDa
(Glass et al. 1986). In contrast, other preparations of partially purified
NADPH oxidase have been reported to contain only very small amounts
of FAD or no FAD (Serra et al. 1984; Bellavite et al. 1984, 1986; Berton et
al. 1985b).

NADPH oxidase from fatty acid-activated pig neutrophils has been
enriched by isoelectric focusing (Kakinuma et al. 1987). NADPH oxidase
activity focuses at pI 5.0, exhibits a molecular mass of 67 kDa, and contains
FAD. An antibody raised against the purified flavoprotein partially inhibits
NADPH oxidase (Fukuhara et al. 1988). The antibody recognizes a major
antigen with a molecular mass of 70-72 kDa and minor antigens with
molecular masses of 16-18 and 28-32 kDa.
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NADPH cytochrome c reductase has been suggested to represent the
flavoprotein component of NADPH oxidase, at least in the case of guinea
pig phagocytes (Sakane et al. 1983, 1984, 1987b; Tamoto et al. 1989). This
reductase contains FAD, has an apparent molecular mass of 80 kDa, a pH
optimum at 7.0-7.4, shows a much lower K, for NADPH than for NADH,
and is not inhibited by NaNj. In the presence of phospholipids, purified
NADPH cytochrome c reductase oxidizes NADPH and generates O3
upon addition of partially/purified cytochrome b.s (Sakane et al. 1987). In
addition, NADPH cytochrome c reductase reduces cytochrome b.,4s under
anaerobic conditions, and the reductase is phosphorylated upon stimulation
of phagocytes with PMA (Sakane et al. 1987; Tamoto et al. 1989; see also
Sect. 3.1.1.1).

The 45-kDa protein that is labeled with iodonium compounds such as
diphenylene iodonium has been suggested to be a component of NADPH
oxidase as well (Cross and Jones 1986; Ellis et al. 1988). Diphenylene
iodonium prevents NADPH-dependent reduction of FAD and of
cytochrome b.pss and inhibits Oz formation in mononuclear phagocytesand
in human neutrophils presumably by interfering with the flavoprotein
(Cross and Jones 1986; Hancock and Jones 1987; Ellis et al. 1988). In
contrast, diphenylene iodonium does not inhibit phagocytosis, chemotaxis,
or motility of neutrophils. These data point to the specificity of the effects
of diphenylene iodonium on NADPH oxidase and suggest that this com-
pound is of potential value as an anti-inflammatory agent (Cross 1987).
Recently, the 45-kDa diphenylene iodonium binding protein has been
purified by affinity chromatography (Yea et al. 1990). The purified protein
binds FAD and has an isoelectric point of 4.0, and polyclonal antibodies
against this protein inhibit the activity of the solubilized NADPH oxidase
as well as O3 formation in the cell-free system (Yea et al. 1990; see also Sect.
5.1). The above results support the concept that the 45-kDa protein is the
FAD-carrying redox component of NADPH oxidase.

2.4.2 Quinones

The role of quinones as further components of the redox chain of NADPH
oxidase is very controversial, and the experimental data available do not
convincingly support a role of quinones as part of the redox cascade. Some
authors reported that neutrophils contain ubiquinone-10 and ubiquinone-
50 and suggested that these redox carriers link the flavoprotein to
cytochrome b.4s (Cunningham et al. 1982; Crawford and Schneider 1982,
1983; Gabig and Lefker 1985). This assumption is supported by the finding
that certain quinones may show stimulatory effects on the respiratory burst
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(Crawford and Schneider 1982). In addition, the redox state of ubiquinone-
50 has been suggested to change according to the functional state of the
neutrophils, and NADPH oxidase activity and ubiquinone have been
reported to be enriched in phagolysosomes (Crawford and Schneider 1982,
1983).

In contrast, other authors reported that ubiquinone-1 does not accept
electron equivalents from intermediate redox components of NADPH
oxidase (M. Murakami et al. 1986). Cross et al. (1983) showed that ubi-
quinone is present only in mitochondria, not in particulate fractions en-
riched in NADPH oxidase activity and cytochrome b.us, suggesting that
quinones do not play a role in the regulation of O3 formation. Moreover,
neutrophils and neutrophil “cytoplasts,” i.e., neutrophils depleted of in-
tracellular organelles and consisting only of the plasma membrane and
cytosol, do not contain ubiquinone-50 (Lutter et al. 1984). Finally, various
preparations of partially purified NADPH oxidase were found to contain
no or only very low amounts of quinones (Markert et al. 1985; Glass et al.
1986; Bellavite et al. 1986).

2.43 Cytochrome b5

Cytochrome b.y4s is a hemoprotein with absorption maxima at 426, 528, and
558 nm and s alsoreferred to as cytochrome bsss (Pember et al. 1984; lizuka
et al. 1985a; Lutter et al. 1985; Yamaguchi et al. 1989). Cytochrome b.ss is
a heterodimer consisting of a 20- to 23-kDa a-subunit and a glycosylated
B-subunit. The molecular mass of latter component amounts to 74-115kDa,
depending on the type of phagocyte (Harper et al. 1984; Dinauer et al. 1987,
Teahan et al. 1987; Parkos et al. 1987, 1988a,b; Yamaguchi et al. 1989;
Nugent et al. 1989; Kleinberg et al. 1989). This large variation in apparent
molecular mass of the f-subunit of cytochrome b.45 in various cell types is
explained by the fact that the glycosylation pattern of this protein shows
cell type specificity (Kleinberg et al. 1989). The deglycosylated B-subunit
shows a molecular mass of 58 kDa (Kleinberg et al. 1989). The inhibition
of glycosylation of proteins by tunicamycin in HL-60 cells does not abolish
the cells’ capacity to generate O3, indicating that glycosylation of
cytochrome b5 is not obligatorily required for activation of the respiratory
burst (Kleinberg et al. 1989).

The a-subunit of the cytochrome is assumed to carry heme, and the
B-subunit is supposed to play a role in the functional assembly of the dimer
(Yamaguchi et al. 1989; Verhoeven et al. 1989; Heyworth et al. 1989a;
Nugent et al. 1989). The amino acid sequence deduced from the cDNA
encoding the «-subunit of cytochrome b.,4s shows no apparent homology
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to other known cytochromes, but it contains certain structural motifs
common to other heme-carrying proteins (Parkos et al. 1988b). The gene
for the B-subunit of cytochrome b.xss has also been cloned, and its identity
has been confirmed by comparison with the amino acid sequence of the
purified cytochrome and by immunological studies (Royer-Pokora et al.
1986; Teahan et al. 1987; Dinauer et al. 1987). The gene for the B-subunit is
defective in most cases of X-chromosomal chronic granulomatous disease
(CGD), and neither the a- nor the B-subunit is expressed in phagocytes of
these patients (Royer-Pokora et al. 1986; Teahan et al. 1987; Dinauer et al.
1987; Parkos et al. 1989) (see also Sect. 6.1). Interestingly, RNA for the
B-subunit is found only in phagocytes, whereas RNA encoding the o-sub-
unit occurs also in other cell types (Parkos et al. 1988b). As the a-subunit
is expressed only in phagocytes, these data support the view that the
B-subunit is of importance for the stability of the dimer (Parkos et al. 1988b).
Recently, cytochrome b.z4s has been shown to be associated with the
22-kDa GTP-binding protein, rapl (Quinn et al. 1989) (see also Sects. 3.2.1,
5.1.4).

There is substantial experimental evidence for the assumption that
cytochrome b.ys is the terminal redox component of NADPH oxidase.,
Cytochrome b.p4s has been identified in various types of phagocytes includ-
ing neutrophils, eosinophils, HL-60 cells, and mononuclear cells (Segal et
al. 1981). Cytochrome b.p4s possesses a midpoint redox potential of -245 mV
which renders the cytochrome capable of catalyzing the univalent reduction
of molecular oxygen to O3 at the expense of electrons delivered from the
putative flavoprotein (Segal and Jones 1978; Segal et al. 1981; Cross et al.
1984, 1985; Gabig and Lefker 1984b; Pember et al. 1984; Lutter et al. 1985;
Aviram and Sharabani 1986). Certain heterocyclic bases bind to heme iron
in cytochromes and inhibit O3 formation, which process is accompanied by
inhibition of reduction of cytochrome b.s (Iizuka et al. 1985b; Ellis et al.
1989). The oxygen affinity for O3 formation in intact neutrophils and the
oxygen tension at which cytochrome b.s is oxidized to 50% of its aerobic
steady-state level are similar, and there is a correlation between Oz forma-
tion and reduction of cytochrome b5 (Morel and Vignais 1984; Edwards
and Lloyd 1988; Ellis et al. 1989). Under anaerobic conditions, cytochrome
b.a4s is reduced by NADPH (Cross et al. 1984). The K, values for NADPH
of NADPH oxidase with respect to O3 formation and for cytochrome b
reduction are similar, and the calculated aerobic rate of cytochrome b
reduction correlates with the rate of Oz formation under various ex-
perimental conditions (Cross et al. 1985). Interestingly, an antibody raised
against hepatic cytochrome Puss from guinea pig inhibits particulate
NADPH oxidase obtained from PMA-stimulated guinea pig neutrophils in
a concentration-dependent manner, suggesting that cytochrome b.ss and
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cytochrome Py4sp share some common epitopes (Takayama et al. 1984).
Finally, NADPH oxidase activity has been reported to copurify with
cytochrome b.yss (Serra et al. 1984; Bellavite et al. 1984, 1986; Berton et al.
1985b). In contrast to the above data, Markert et al. (1985), Glass et al.
(1986), Doussiere and Vignais (1985) and Kakinuma et al. (1987) did not
obtain positive evidence for the presence of cytochrome b.s in partially
purified NADPH oxidase preparations.

Recent functional studies support a role of cytochrome b5 as the redox
component of NADPH oxidase. An antibody raised against the cytoplas-
mic carboxy-terminal domain of the f-subunit of the cytochrome inhibits
fatty acid-induced O3 formation in a cell-free system (Rotrosen et al. 1990)
(see also Sect. 5.1). Additionally, synthetic peptides corresponding to the
carboxy-terminus of the f-subunit inhibit activation of O3 formation when
added to the assay mixture prior to but not after arachidonic acid. Moreover,
these peptides have inhibitory effects on activation of NADPH by phorbol
esters and chemotactic peptides in electropermeabilized human
neutrophils. These data indicate that a cytoplasmic domain in the B-subunit
of cytochrome b.545s mediates interactions with other components involved
in the activation of NADPH oxidase.

2.5 Cellular Localization of NADPH Oxidase

The cellular localization of NADPH oxidase is also a subject of discussion.
Early cytochemical and functional studies have shown that the formation
of reactive oxygen intermediates in neutrophils occurs within the
phagosomes and at the plasma membrane (Briggs et al. 1975; Goldstein
etal. 1977; Dewald et al. 1979; Babior et al. 1981; Tsunawaki et al. 1983).

Cytochrome b.ys and the putative flavoprotein are localized both in
the plasma membrane and in the specific granules of human neutrophils
(Segal and Jones 1979, 1980; Millard et al. 1979; Clark et al. 1987; see also
Sect. 5.1.2). In addition, specific granules contain substantial amounts of
a-subunits of guanine nucleotide-binding proteins (G-proteins; Rotrosen
et al. 1988; see also Sect. 3.2.1.1). Granule-associated cytochrome b_ys has
beenreported to be translocated to the plasma membrane upon stimulation
of phagocytes with PMA or a Ca®" jonophore (Borregaard et al. 1983;
Higson et al. 1985). As the time courses of PMA-induced cytochrome b
translocation and O; formation are in parallel, these findings suggest that
translocation plays a role in the activation of NADPH oxidase (Borregaard
et al. 1983; Higson et al. 1985). Translocation of the flavoprotein from
intracellular granules to the plasma membrane has also been observed in
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stimulated neutrophils (Borregaard and Tauber 1984). Moreover, human
neutrophils with a congenital defect in specific granules and neutrophil
cytoplasts have been reported to generate lower amounts of O3 than
control neutrophils upon stimulation with PMA, chemoattractants, or a
Ca®* ionophore (Ohno et al. 1985; see also Sect. 6.2).

Correlations between translocation of putative components of
NADPH oxidase and the extent of O3 generation have not been observed
in other experiments. For example, it has been reported that there is no
correlation between the amount of cytochrome b.4s translocated to the
plasma membrane and the amount of O3 generated (Ohno et al. 1985).
Parkos et al. (1985) reported that PMA induces translocation of cytochrome
b.4s but not of flavin components from specific granules to the plasma
membrane. In addition, the concentrations of these redox components in
the plasma membrane have been shown not to change considerably upon
stimulation of neutrophils with chemoattractants (Parkos et al. 1985).
Furthermore, neutrophil cytoplasts and intact neutrophils have been
reported to generate O3 to similar extents upon stimulation with soluble
and particulate stimuli (Roos et al. 1983). Moreover, membranes from
resting and PMA-stimulated neutrophil cytoplasts contain similar amounts
of FAD and cytochrome b.s (Lutter et al. 1984). Finally, the Ca®"
ionophore- but not the chemoattractant-induced O3 formation depends on
the presence of intracellular granule components (Dahlgren et al. 1989).
These data suggest that the structural components of NADPH oxidase are
present in a functioning state in the plasma membrane and in the cytosol,
and that translocation of redox components is not necessarily required for
enzyme activation (Roos et al. 1983; Parkos et al. 1985; see also Sect. 5.1).

The subcellular distribution of the a-subunit of cytochrome b.ys in
human neutrophils, eosinophils, and monocytes was studied by im-
munogold labeling with a monoclonal antibody (Ginsel et al. 1990). This
technique has the advantage of avoiding cross-contamination of cell frac-
tions isolated by differential centrifugation techniques. In neutrophils, the
a-subunit is present on the cytosolic surface of the membrane of specific
granules and the plasma membrane. In eosinophils and monocytes, the
a-subunit also shows a dual localization in intracellular compartments and
in the plasma membrane.



3 Activation of NADPH Oxidase

3.1 Some General Mechanisms Involved in the Activation
of NADPH Oxidase

3.1.1 Protein Kinase C

In many cell types, stimulation of plasma membrane receptors with inter-
cellular signal molecules results in the activation of phospholipase C, which
catalyzes phosphoinositide degradation to hydrophilic inositolphosphates
and to lipophilic diacylglycerol. A number of reviews on this topic are
available (Michell 1975; Berridge 1984, 1987, 1989; Hokin 1985; Majerus et
al. 1986; Abdel-Latif 1986).

Protein kinase C plays a crucial role in the signal transduction pathways
activated by numerous intercellular signal molecules (Nishizuka 1984,1986,
1988, 1989). In the presence of phospholipids, diacylglycerol activates
protein kinase C by increasing the apparent affinity of the enzyme for Ca®*
(Nishizuka 1984, 1986, 1988, 1989). The importance of protein kinase C in
signal transduction processes is supported by the findings that tumor-
promoting phorbol esters, e.g., PMA, and cell-permeant diacylglycerols
activate protein kinase C and mimic receptor agonist-induced cell activation
in some instances (Castagna et al. 1982; Ashendel 1985; Nishizuka 1984,
1986, 1988, 1989).

Protein kinase Cis a family consisting of several isoenzymes, which are
assumed to play different functional roles (Coussens et al. 1986; Ohno et al.
1987; Nishizuka 1988, 1989). This assumption is supported by the fact that
protein kinase C isoenzymes are differentially distributed among various
cell types and in compartments of a given cell type (Nishizuka 1989). In
addition, isoenzymes of protein kinase C show quantitative differences with
respect to the activation by lipids. For example, the y-isoenzyme is activated
by arachidonic acid at lower concentrations than the a- and B-isoenzymes
(Sekiguchi et al. 1987; Nishizuka 1989; see also Sects. 3.1.2,3.2.4,5.1.3).
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Table 2 summarizes some properties of various substances which may
directly or indirectly activate the respiratory burst through activation of
protein kinase C.

3.1.1.1 Phorbol Esters

Neutrophils possess large amounts of protein kinase C, and the purified
enzyme shows regulatory properties similar to protein kinase C in other cell
types (Nishizuka 1984, 1986; Huang and Oshana 1986; Christiansen and
Juhl 1986). Human myeloid cells, i.e., undifferentiated HL-60 cells, have
been reported to contain the a-, -, and y-isoenzyme of protein kinase C,
and the a-isoenzyme is the most abundant form (Makowske et al. 1988). In
human neutrophils, the - and o-isoenzyme of protein kinase C comprise
60% and 35% of the total protein kinase C activity, and no y-isoenzyme is
present (Pontremoli et al. 1990). Interestingly, human neutrophils also
contain a Ca**- and phospholipid-dependent protein kinase which utilizes
GTP instead of ATP as substrate (Stoehr and Smolen 1990). Myeloid
differentiation is associated with an increase in amount of the o- and
p-isoenzyme or of all three isoforms (Makowske et al. 1988). However, it is
not yet known whether isoenzymes of protein kinase C play different roles
in the regulation of NADPH oxidase.

It has been known for several years that neutrophils and mononuclear
phagocytes of various species, including man, undergo a respiratory burst
upon exposure to phorbol esters, and PMA is one of the most potent and
effective activators of NADPH oxidase known so far (DeChatelet et al.
1976; Bass et al. 1978, 1983; Suzuki and Lehrer 1980; Badwey et al. 1980;
Weiss et al. 1980; Hafeman et al. 1982). Primed peritoneal macrophages
show higher capacities than resident cells to generate O; upon stimulation
with PMA (Bryant et al. 1982; Weinberg and Misukonis 1983; Badwey et
al. 1983; Chung and Kim 1988; see also Sect. 2.3). Unlike resident murine
peritoneal macrophages, bone marrow derived murine macrophages
generate O3 upon exposure to zymosan but not to PMA (Philips and
Hamilton 1989; see also Sects. 3.2.2, 3.3.1.5). The ability of bone marrow-
derived macrophages to respond to PMA is restored, at least in part, by
treatment with LPS or with the cytokines, granulocyte-macrophage colony-
stimulating factor (GM-CSF), tumor necrosis factor-a. (TNF-o.), interferon-
y (IFN+), or interleukin-la (IL-1o; Phillips and Hamilton 1989; see also
Sect. 3.3.1.3). Thus, the responsiveness of resident peritoneal macrophages
to PMA may be the result of in vivo exposure to cytokines (Phillips and
Hamilton 1989). With respect to the rat, peritoneal macrophages show a
greater capacity than alveolar macrophages to generate O upon stimula-
tion with PMA (Peters-Golden et al. 1990).
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Activation of Oz formation by PMA does not depend on the presence
of extracellular Ca®* or on an increase in cytoplasmic Ca®* (Sha’afi et al.
1983; Bass et al. 1983; Kiyotaki and Bloom 1984; Di Virgilio et al. 1984;
Nasmith and Grinstein 1987a). However, under certain experimental con-
ditions, i.e., when human neutrophils are seeded at low densities in
microtiter plates, PMA-induced O3 formation is dependent, atleastin part,
on the presence of extracellular Ca®* (Ishihara et al. 1990). The PMA-in-
duced respiratory burst is characterized by a lag time, requires temperatures
above 17°C, has a pH optimum at 7.0, and is long lasting (Newburger et al.
1980a; Lehrer and Cohen 1981; Manara and Schneider 1985; J.J. Zimmer-
man et al. 1985). The lag time and the rate of PMA-induced O3 formation
in neutrophils are differently affected by temperature, pH, SH reagents, the
concentration of PMA, and by other parameters (Newburger et al. 1980a).
Interestingly, the magnitude of the PMA-induced respiratory burst in rat
alveolar macrophages varies by about two- to threefold among individual
phagocytes (DiGregorio et al. 1987).

There is a close correlation between the ability of various phorbol esters
to activate protein kinase C and to induce O;" formation (Robinson et al.
1985). In addition, the occupancy of phorbol ester binding sites with agonists
is in parallel with the rate of Oz formation (Tauber et al. 1982). There are,
however, certain dissimilarities between the effects of various phorbol
esters on the respiratory burst, pointing to their functional nonequivalence
(Gaudry et al. 1990). Upon stimulation with PMA, protein kinase C is
translocated from the cytosol to the phagocyte plasma membrane, and this
process precedes Oz formation and may explain the observed lag time
(Kraft and Anderson 1983; Myers et al. 1985; Wolfson et al. 1985; Gennaro
et al. 1986). A monoclonal antibody against an unidentified macrophage
antigen recognizes a 90-kDa protein in neutrophil membranes and delays
PMA-induced protein phosphorylation and Oz formation, and phos-
phorylation occurs prior to the respiratory burst (Pontremoli et al. 1986d).

PMA induces the phosphorylation of numerous proteins in human
myeloid cells (Andrews and Babior 1983; Helfman et al. 1983; Kiyotaki and
Bloom 1984; Irita et al. 1984a,b; Feuerstein and Cooper 1984; Gennaro et
al. 1985; Ohtsuka et al. 1986; Gaut and Carchman 1987). At the time being,
most attention focuses on a 44- to 49-kDa protein or group of proteins (in
the following referred to as 47-kDa protein) which is phosphorylated in
neutrophils of healthy subjects but not in those of patients with autosomal-
recessive CGD and is one of the cytosolic activation factors (see also Sects.
5.1.5, 6.1). There is a close correlation between phosphorylation of the
47-kDa protein and O3 formation induced by PMA or a cell-permeable
diacylglycerol, and the phosphorylated 47-kDa protein is apparently as-
sociated with cytochrome b.54s (Badwey et al. 1989a; Heyworth et al. 1989a).
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Subsequent to phosphorylation, the 47-kDa protein is rapidly dephos-
phorylated and its continuous phosphorylation is required to maintain
O3 formation in PMA-stimulated neutrophils (Heyworth and Badwey
1990).

Although a large body of data points to the central role of the 47-kDa
protein as target for PMA, a role of additional protein kinase C-dependent
and/or -independent mechanisms cannot be excluded. For example, PMA
has been reported to induce phosphorylation of the a- and $-subunit of
cytochrome b5, but the time courses of cytochrome b phosphorylation and
05 formation do not correlate (Garcia and Segal 1988). PMA has also been
shown to induce phosphorylation of a 31.5-kDa protein which may be
associated with cytochrome b.,4s (Papini et al. 1985; see Table 1). In addition,
PMA induces phosphorylation of NADPH cytochrome ¢ reductase of
guinea pig phagocytes, and this covalent modification correlates with the
activation of O3 formation (Tamoto et al. 1989; see also Sect. 2.4.1).

PMA and cell-permeable diacylglycerols induce the accumulation of
diradylglycerol, i.e. diacylglycerol and alkylacylglycerol, and diacylglycerol
may amplify activation of protein kinase C (Rider et al. 1988; Reibman et
al. 1988). Alkylacylglycerol has been shown to modulate diacylglycerol- and
chemoattractant-induced O formation in a complex manner (Bauldry et
al. 1988; Rider et al. 1988; Bass et al. 1989; see also Sect. 3.2.2.2). With respect
to monocytic differentiation of HL-60 cells, PMA has been suggested to act
by protein kinase C-independent mechanisms (Morin et al. 1987). PMA
also induces rapid and substantial alterations in the plasma membrane
fluidity of neutrophils, and alterations in the activity of phospholipase A,
may contribute to PMA-induced activation of NADPH oxidase as well
(Stocker et al. 1982; Stocker and Richter 1982; Henderson et al. 1989). Quite
recently, it has been shown that various inhibitors of phospholipase A, blunt
PMA-induced O3 formation in neutrophil cytoplasts, whereas exogenous
arachidonic acid restores the respiratory burst (Henderson et al. 1989; see
also Sects. 3.1.2, 3.2.4). Moreover, PMA-induced reduction of the intracel-
lular ATP concentration has been claimed to be involved in the regulation
of NADPH oxidase (Schinetti and Lazarino 1986). Finally, the potentiating
effect of PMA on chemoattractant-induced O3 formation is discussed to
involve protein kinase C-independent mechanisms (Sha’afi 1989; see also
Sect.32.2.2).

It is well known that activators of protein kinase C and Ca”* ionophores
can interact synergistically to activate various cell functions (Berridge 1984,
1987; Nishizuka 1984,1986,1989; Abdel-Latif 1986). In phagocytes, the Ca*
ionophore A 23187 potentiates the PMA-induced respiratory burst, result-
ing in a reduction of the lag time and in an enhanced rate of O3 formation
(Dale and Penfield 1984; Robinson et al. 1984; Strnad and Wong 1985a).
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This synergism requires extracellular Ca® (Robinson et al. 1984). Ca**
ionophores reduce the ECs, for PMA-induced O3 formation. This syner-
gism between phorbol esters and Ca”* ionophores is explained, at least in
part, by the fact that an increase in cytoplasmic Ca** enhances the affinity
of protein kinase C for phorbol esters without altering the number of
binding sites (Dougherty and Niedel 1986; French et al. 1987). Synerglstlc
activation of Oy formation by activators of protein kinase C and Ca*-
mobilizing agents has been reported to be accompanied by increased
phosphorylation of the 47-kDa protein (Heyworth et al. 1989b).

Exposure of murine and human peritoneal macrophages and human
neutrophils to PMA desensitizes them to undergo a second respiratory
burst upon subsequent stimulation with phorbol esters (Berton and Gordon
1983c; Gbarah et al. 1989). Desensitization of the respiratory burst to PMA
in macrophages is associated with a reversible reduction in the number of
phorbol ester binding sites (Berton and Gordon 1983c). In contrast,
Kitagawa and Johnston (1986) did not find a decrease in the number or
affinity of phorbol ester binding sites during deactivation of the respiratory
burst. Interestingly, neutrophils have been reported to contain endogenous
inhibitors of protein kinase C which may play an inhibitory role in the
regulation of NADPH oxidase (Balazovich et al. 1986b; Huang and Oshana
1986).

3.1.1.2 Diacylglycerols

Like the physiologically relevant diacylglycerols which bear long-chain
saturated and unsaturated fatty acids, cell-permeant diacylglycerols ac-
tivate protein kinase C. Cell-permeant diacylglycerols are widely used to
study the role of protein kinase C in signal transduction processes
(Nishizuka 1984, 1986; Kreutter et al. 1985; Morin et al. 1987).

The diacylglycerols substituted with two short-chain saturated fatty
acids, dihexanoylglycerol and dioctanoylglycerol, and the diacylglycerol
substituted with one Jong-chain unsaturated fatty acid and one short-chain
saturated fatty acid, 1-oleoyl-2-acetylglycerol (OAG), are effective ac-
tivators of Oz formation in neutrophils, but they are several orders of
magnitude less potent than PMA (Fujita et al. 1984; Cox et al. 1986; Seifert
et al. 1991a). Similar to phorbol esters, activation of NADPH oxidase by
cell- permeant dlacylglycerols does not depend on the presence of ex-
tracellular Ca® (Fujita et al. 1984). The effectiveness of OAG to induce
Oy formation is substantially enhanced by its incorporation into multi-
lamellar liposomes (Tsusaki et al. 1986). In analogy to PMA, OAG and A
23187 interact synergistically to activate the respiratory burst (Penfield and
Dale 1984). Cell-permeant diacylglycerols and phorbol esteres induce
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similarpatterns of protein phosphorylation including the 47-kDa protein
(Fujita et al. 1984; Badwey et al. 1989c). Interestingly, didecanoylglycerol
has been reported to induce exocytosis but not O3 formation, suggesting
that different species of protein kinase C are involved in the activation of
different cell functions (Cox et al. 1986; see also Sect. 3.1.1.1).

There are, however, several differences between the effects of cell-per-
meant diacylglycerols and phorbol esters. Unlike in human neutrophils,
OAG isa much less effective activator of Oy formation than PMA in HL-60
cells (Wong and Chew 1986; Cox et al. 1986; Bonser et al. 1986). Membranes
of PMA-treated human neutrophils possess a higher NADPH oxidase
activity than membranes of OA G-stimulated cells. In addition, the kinetics
of the PMA- and OAG-induced respiratory burst are different (Wong and
Chew 1986). These differences are explained, at least in part, by the fact
that diacylglycerols but not phorbol esters can be rapidly metabolized
(Wong and Chew 1986). Activation of the respiratory burst by phorbol
esters and diacylglycerol also differs with respect to the requirement for
cytoplasmic Ca”, i.e., cytoplasmic Ca>* above 1 uM enhances OAG- but
not PMA-induced O3 formation (Christiansen et al. 1988a). Prostaglandin
E; (PGE;) has been reported to inhibit the respiratory burst triggered by
diacylglycerols but not that induced by phorbol esters (Dale and Penfield
1985; see also Sect. 4.1), whereas we did not observe stimulatory or in-
hibitory effects of various cAMP-increasing agents on dioctanoylglycerol-
induced O3 formation in human neutrophils (unpublished results). With
respect to the phosphorylation of membrane proteins, diacylglycerol and
PMA are not equivalent as well (Kiss and Luo 1986). Under certain
experimental conditions, the inhibitors of protein kinase C, staurosporine,
and 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7) inhibit diacylgly-
cerol-induced phosphorylation of the 47-kDa protein but not O forma-
tion, whereas the effects of phorbol esters on both parameters are inhibited
in parallel by the protein kinase C inhibitors (Badwey et al. 1989c; see also
Sect. 3.2.2.3). In agreement with these data, staurosporine does not com-
pletely inhibit O3 formation in human neutrophils induced by diocta-
noylglycerol at 100 uM, whereas the effect of PMA at a maximally effective
concentration is abolished by staurosporine (Seifert, unpublished results).
Finally, PMA but not OAG has been reported to induce monocytic dif-
ferentiation of HL-60 cells (Kreutter et al. 1985; Morin et al. 1987). These
data indicate that the mechanisms by which PMA and diacylglycerol ac-
tivate protein kinase C in myeloid cells are similar but not identical, and
that a protein kinase C-independent pathway may be involved in the
activation of Oz formation by diacylglycerols.
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3.1.1.3 Other Agents

In addition to phorbol esters and diacylglycerols, various other agents have
been suggested to activate NADPH oxidase via protein kinase C (see Table
2). The widely used inhalation anesthetic halothane has been shown to
enhance PMA-induced O3 formation in guinea pig neutrophils (Tsuchiya
et al. 1988). This effect of halothane is counteracted by H-7, and halothane
activates purified protein kinase C and induces phosphorylation of a47-kDa
proteinin these phagocytes (Tsuchiya et al. 1988). The inhalation anesthetic
and tumor promoter chloroform activates O3 formation and also purified
protein kinase C (Roghani et al. 1987; Tsuchiya et al. 1988). In contrast,
other authors reported that halothane at therapeutically relevant con-
centrations inhibits the respiratory burst induced by various stimuli, possib-
ly by interfering with Ca”* mobilization, by causing membrane perturbation
or by directly interfering with components of NADPH oxidase (Welch and
Zaccari 1982; Welch 1984; Nakagawara et al. 1986; Tsuchiya et al. 1988,;
Lieners et al. 1989). Inhibition of the respiratory burst by halothane has
been suggested to contribute to the reduced bactericidal activity of
neutrophils following exposure to these agents (Welch and Zaccari 1982;
Welch 1984; Nakagawara et al. 1986; Lieners et al. 1989). Atleast in the case
of op-adrenergic synapses in rat brain, halothane may interfere with the
interaction of receptors with G-proteins (Baumgartner et al. 1990).

Bryostatin is a macrocyclic lactone from the marine bryozoan Bugula
neritina and is structurally dissimilar to phorbol esters (Kraft et al. 1986).
Unlike PMA, bryostatin does not induce monocytic differentiation of
HL-60 cells (Kraft et al. 1986). Bryostatin binds to the phorbol ester binding
sites in human neutrophils and HL-60 cells, activates purified protein kinase
C, induces protein phosphorylation patterns similar to PMA, and induces
O3 formation in human neutrophils (Berkow and Kraft 1985; Kraft et al.
1986; Wender et al. 1988).

The tumor promoter mezerein is also an activator of O3 formation in
human neutrophils (Balazovich et al. 1986a). Mezerein competitively
inhibits binding of phorbol esters to purified protein kinase C and has been
reported to stimulate protein kinase C by a mechanism similar to that of
diacylglycerol and PMA (Miyake et al. 1984; O’Flaherty et al. 1985b). In
contrast, Balazovich et al. (1986a) reported on a lack of stimulatory effect
of mezerein on protein kinase C in human neutrophils. Mezerein has been
reported not to induce protein kinase C translocation and to induce a
protein phosphorylation pattern different from that induced by PMA
(Balazovich et al. 1986a). These data suggest that protein kinase C-depend-
ent and -independent pathways are involved in the activation of NADPH
oxidase by mezerein. Finally, the non-PMA type tumor promoters
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palytoxin and thapsigargin have been reported to activate O3 formationin
human neutrophils by a mechanism independent of protein kinase C (Kano
et al. 1987).

The diterpene resiniferatoxin, which is an irritant but not a tumor
promoter, activates the respiratory burst in elicited murine peritoneal
macrophages (Evans et al. 1990). Resiniferatoxin is only a poor activator of
protein kinase Cbut is more potent than PMA in activating a Ca®*-inhibited
kinase referred to as resiniferatoxin kinase. This kinase may play a part in
the activation of NADPH oxidase by zymosan (see also Sect. 3.3.1.5.5).

Benoxaprofen had been used as a nonsteroidal anti-inflammatory drug
until it was withdrawn because of severe phototoxicity (Allen 1983).
Benoxaprofen has been reported to induce chemiluminescence and O3
formation in human neutrophils (Anderson and Eftychis 1986; Lukey et al.
1988). The effect of benoxaprofen is synergistically enhanced by UV radia-
tion and is inhibited by H-7. In addition, benoxaprofen activates purified
protein kinase C in a concentration-dependent manner. These data suggest
that the benoxaprofen-induced dermatotoxicity is attributable, at least in
part, to protein kinase C-mediated activation of NADPH oxidase in human
neutrophils (Anderson and Eftychis 1986; Lukey et al. 1988).

Exogenous phospholipase C derived from bacteria such as Clostridium
perfringens and Bacillus cereus activates the respiratory burst in macro-
phages and in neutrophils (Pick and Keisari 1981; Grzeskowiak et al. 1985;
Styrt et al. 1989). Exogenous phospholipase C and NaF have been reported
synergistically to stimulate the respiratory burst, whereas phospholipase C
blunts activation by latex beads (Styrt et al. 1989; see also Sect. 3.3.2.12.2).
Exogenous phospholipase C induces the hydrolysis of various classes of
plasma membrane phospholipids, among other effects resulting in the
formation of diacylglycerol (Grzeskowiak et al. 1985). Unlike fMet-Leu-
Phe and ionomycin induce similar increases in cytoplasmic Ca®™, whereas
only the chemotactic peptide is an effective activator of O3 formation.
Unlike formyl peptide induced activation of NADPH oxidase, thatinduced
by exogenous phospholipase C aé)parently does not involve phos-
phoinositide degradation and Ca™ mobilization. Phospholipase C-
mediated activation of NADPH oxidase is qualitatively similar to that
induced by PMA, suggesting that the effects of phospholipase C are
mediated through the release of diacylglycerol and activation of protein
kinase C (Grzeskowiak et al. 1985).

3.1.1.4 The Role of Ca**/Phospholipid-Independent Protein Kinase C

In addition to native protein kinase C, proteolytically modified protein
kinase C has been suggested to play a role in the regulation of NADPH
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oxidase. Upon stimulation of neutrophils with PMA, the neutral Ca**-de-
pendent protease calpain is translocated to the plasma membrane (Melloni
et al. 1985). Calpain cleaves protein kinase C into an active catalytic and
into an inactive fragment (Melloni et al. 1986a; Pontremoli et al. 1986b;
Kishimoto et al. 1989). Proteolytically activated protein kinase C is no
longer regulated by phospholipids and Ca*. Native protein kinase C has
been suggested to mediate phosphorylation of membrane proteins, and the
proteolytically activated kinase is assumed to phosphorylate predominantly
cytosolic proteins (Pontremoli et al. 1986¢). A monoclonal antibody against
calpain inhibits the protease in intact human neutrophils and prevents
appearance of Ca”*/phospholipid-independent form of protein kinase C
(Pontremoli et al. 1988). The inhibition of calpain is accompanied by a
prolonged association of protein kinase C with the plasma membrane,
enhanced phosphorylation of membrane proteins and an augmented
respiratory burst (Pontremoli et al. 1988).

The regulatory domain of protein kinase Cisinactivated by the product
of the respiratory burst, H,O,, resulting in an increase in the activity of
Ca®*/phospholipid-independent protein kinase C (Gopalakrishna and
Anderson 1989). The catalytic domain of protein kinase Cis apparently less
sensitive to inhibition by H>O; (Gopalakrishna and Anderson 1989). This
dual activation and inactivation of protein kinase C upon exposure to HO,
may provide an effective on/off signal mechanism, but its role in the
termination of the respiratory burst is not yet known (see also Sects.
3.3.1.13,52).

3.1.2 Fatty Acids

Fatty acids have for several years been well known as activators of the
respiratory burst. The role of fatty acids in the activation of NADPH
oxidase in cell-free systems is dealt with in Sect. 5.1. Unsaturated fatty acids,
especially arachidonic acid, have been suggested to play a role as intracel-
lular signal molecules for activation of NADPH oxidase (Bromberg and
Pick 1983; see also Sect. 3.2.4). This section describes some results concern-
ing activation of NADPH oxidase by exogenous fatty acids in intact cells.

3.1.2.1 Lipid Specificity

Saturated and unsaturated fatty acids and the detergent SDS induce a
respiratory burst in guinea pig neutrophils (Kakinuma 1974; Kakinuma and
Minakami 1978; Washida et al. 1980). Activation of the respiratory burst
correlates with hydrophobic binding of fatty acids to neutrophil plasma
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membranes (Kakinuma 1974; Kakinuma and Minakami 1978; Washida et
al. 1980). In human neutrophils, cis-unsaturated fatty acids activate O3
formation in the presence of extracellular Ca®* (Badwey et al. 1981, 1984;
H.J. Cohen et al. 1986; Morimoto et al. 1986). In contrast, trans-unsaturated
and saturated fatty acids have been reported to activate NADPH oxidase
in intact human neutrophils in the absence of extracellular Ca2+, whereas
Ca® is inhibitory (Yamaguchi et al. 1986; Tanaka et al. 1987). Thus, ionic
interactions between Ca”" and fatty acids may determine their ability to
activate the respiratory burst (Yamaguchi et al. 1986). Fatty acid-induced
activation of NADPH oxidase is accompanied by changes in cell morphol-
ogy (Badwey et al. 1984). Arachidonic acid is a similarly effective activator
of NADPH oxidase in human neutrophils and differentiated HI-60 cells,
as are PMA and dioctanoylgylcerol (Seifert et al. 1989¢c, 1991). Although
there are certain similarities between fatty acid- and chemoattractant-in-
duced O formation, it must be emphasized that arachidonic acid at
concentrations which activate the respiratory burst is cytotoxic (Badwey et
al. 1984; H.J. Cohen et al. 1986; Jesaitis et al. 1986; Tsunawaki and Nathan
1986).

3.1.2.2 Mechanistic Aspects

Although much work has been done in this field, the mechanism by which
fatty acids activate NADPH oxidase is still incompletely understood. The
stimulatory effects of fatty acids are apparently independent of their
oxygenation products, as cis-mono-unsaturated and trans-unsaturated fatty
acids are no substrates for lipoxygenases and cyclooxygenase, but they are
activators of O3 formation (Kinsella et al. 1981; Needleman et al. 1986). In
addition, inhibitors of lipoxygenases and cyclooxygenase do not inhibit fatty
acid-induced O3 formation in guinea pig macrophages (Bromberg and Pick
1983). Cis-unsaturated fatty acids have been suggested to activate O3
formation by increasing the membrane fluidity (Klausner et al. 1980; Bad-
wey et al. 1984). In contrast, activation of NADPH oxidase by saturated
and trans-unsaturated fatty acids cannot be explained by this mechanism,
as these lipids are known not to increase membrane fluidity (Klausner et
al. 1980). The involvement of Ca**, protein kinase C and proteases in the
activation of NADPH oxidase by fatty acids has been suggested by the
findings that fatty acids increase cytoplasmic Ca®, and that inhibitors of
calmodulin, protein kinase C, and proteases inhibit O formation (Cur-
nutte et al. 1984; Morimoto et al. 1986). In contrast, staurosporine shows
only a very moderate inhibitory effect on arachidonic acid-induced O3
formation in human neutrophils (Seifert, unpublished results; see also Sects.
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3.2.2.3,3.2.3.1,3.2.8). Fatty acids and cell-permeant diacylglycerols interact
synergistically to activate O3 formation (Ozawa et al. 1989).

cis-unsaturated but not saturated fatty acids activate protein kinase C
(McPhail et al. 1984b; Murakami and Routtenberg 1985; Hansson et al.
1986; Linden et al. 1986; Murakami K et al. 1986, 1987; Sekiguchi et al. 1987,
Seifert et al. 1988c). The physiological relevance of this protein kinase C
activation is, however, not generally accepted (Dell and Severson 1989).
The acetylenic analogue of arachidonic acid, eicosatetraynoic acid (ETYA),
activates protein kinase Cbut not the respiratory burst (Badwey et al. 1981,
1984; Seifert et al. 1988c). Conversely, the trans-stereoisomer of oleic acid,
elaidic acid, activates the respiratory burst but not protein kinase C
(Murakami and Routtenberg 1985; Yamaguchi et al. 1986; Tanaka et al.
1987; Seifert et al. 1988c). These dissociations suggest that fatty acids do not
activate NADPH oxidase through direct stimulation of protein kinase C.
Another mechanistic possibility is that fatty acids act by stimulation of
phospholipases C and A; (Irvine et al. 1979; Takenawa and Nagai 1981;
Maridonneau-Parini and Tauber 1986; see also Sect. 5.1.3).

Positively charged alkylamines, e.g., -cetyltrimethylammonium
bromide, inhibit O3 formation in intact neutrophils induced by various
agents, including PMA, A 23187, arachidonic acid, and chemotactic pep-
tides (Miyahara et al. 1987, 1988). In addition, alkylamines inhibit the
activity of the particulate NADPH oxidase and fatty acid-induced O
formation in the cell-free system (Cross et al. 1984; Miyahara et al. 1987,
1988; see also Sects. 2.1, 5.1.3). In contrast, alkylalcohols do not inhibit
O3 formation, and the inhibitory effect of alkylamines is antagonized by
negatively charged agents (Miyahara et al. 1987, 1988). These results
indicate that charge-dependent processes are required for both activation
and activity of NADPH oxidase. The mechanism by which alkylamines
inhibit NADPH oxidase may involve dissociation of cytosolic components
of the enzyme from the plasma membrane (Ohtsuka et al. 1990a).

3.2 Mechanisms Involved in the Activation of NADPH Oxidase
by Receptor Agonists

3.2.1 Guanine Nucleotide Binding Proteins (G-Proteins)

Among the large number of intercellular signal molecules which activate
the respiratory burst, the chemotactic peptides are those most extensively
studied with respect to the characterization of the signal transduction
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pathways. In many cases, other intercellular signal molecules act through
similar mechanisms.

G-proteins are a family of heterotrimeric membrane-attached transducer
molecules which functionally couple cell surface receptors to intracellular
effector systems such as adenylyl cyclase, cGMP phosphodiesterase of rods
and cones, phospholipase C, and ion channels (Stryer and Bourne 1986;
Gilman 1987, Casey and Gilman 1988; Neer and Clapham 1988; Milligan 1988;
Birnbaumer et al. 1989).

3.2.1.1 Interaction of Plasma Membrane Receptors
with G-Proteins in Phagocytes

Many studies showed that formyl peptide receptors and receptors for other
chemoattractants such as complement CSa and leukotriene B4 (LTB4)
mediate cell activation via G-proteins (see also Sect. 3.3.1). Guanine
nucleotides modulate the agonist affinity of formyl peptide receptors, i..,
GTP or stable GTP analogues convert a portion of the receptors from a
high-affinity to a low-affinity state (Koo et al. 1982, 1983; Snyderman et al.
1984; Snyderman 1984; Sklar et al. 1987; see also Sect. 3.3.1.1). Recently,
Gierschik et al. (1989a) have shown that divalent cations and high-affinity
agonist binding are not required for a functional interaction of formyl
peptide receptors with G-proteins in differentiated HL-60 cells. The formyl
peptide N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMet-Leu-Phe)
stimulates binding of stable guanine nucleotides to plasma membranes of
human myeloid cells (Matsumoto et al. 1987; Gierschik et al. 1989a).
fMet-Leu-Phe, LTB,, and CS5a stimulate high-affinity GTPase activity in
neutrophil membranes which is desensitized and resensitized (Hyslop et al.
1984; Okajima et al. 1985; Matsumoto et al. 1986, 1987; Feltner et al. 1986;
Wilde et al. 1989; McLeish et al. 1989a,b; see also Sect. 3.3.1.1.3). These
chemoattractants also stimulate the photolabeling of 40-kDa proteins in
differentiated HL-60 cells using the photoreactive analogue of GTP, [o-
*2P]GTP azidoanilide (Offermans et al. 1990). The G-proteins which couple
to formyl peptide receptors are ADP-ribosylated by pertussis toxin both in
intact cells and in isolated plasma membranes, and this covalent modifica-
tion uncouples receptors from G-proteins (Bokoch and Gilman 1984; Ohta
et al. 1985; Verghese et al. 1986¢; Gierschik and Jakobs 1987). In plasma
membranes, these G-proteins are also substrates for cholera toxin-induced
ADP ribosylation under certain experimental conditions (Verghese et al.
1986¢; Gierschik and Jakobs 1987, Iiri et al. 1989).

Treatment of phagocytes with pertussis toxin or cholera toxin is as-
sociated with a reduction of chemoattractant-stimulated GTPase activity in
comparison to control membranes (Okajima et al. 1985; Feltner et al. 1986;
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McLeish et al. 1989a). A mixture of purified isoforms of the inhibitory
G-protein for adenylyl cyclase G; has been reported to reconstitute
chemotactic peptide-stimulated GTPase activity in neutrophil membranes
(Okajima et al. 1985). Purified formyl peptide receptors and G-proteins
incorporated into phospholipid vesicles functionally interact as well (Wil-
liamson et al. 1988).

Stable GTP analogues stimulate phosphoinositide degradation in per-
meabilized neutrophils and in neutrophil membranes. This process is en-
hanced by fMet-Leu-Phe and is inhibited by pertussis toxin (C.D. Smith et
al. 1985, 1986; Bradford and Rubin 1986). Chemoattractant-induced phos-
phoinositide degradation in pertussis toxin-treated membranes has been
reported to be reconstituted with a purified mixture of G; and with G,, the
major G-protein of the brain, and both preparations of G-proteins are
similarly effective (Kikuchi et al. 1986). This nonselectivity of the effects of
G-proteins indicates that further reconstitution studies will have to be
performed with clearly defined subtypes of G-proteins.

The G-proteins coupling to formyl peptide receptors have been purified
from neutrophils and HL-60 cells (Dickey et al. 1987; Oinuma et al. 1987,
Uhing et al. 1987; Gierschik et al. 1986, 1987; Polakis et al. 1988). Myeloid
cells contain two major G-proteins of the G; family, i.e., G, and Gi, whose
a-subunits have molecular masses of 41 and 40 kDa, with G, being the
major pertussis toxin substrate in phagocytes (Suki et al. 1987; Didsbury
and Snyderman 1987; Murphy et al. 1987; Goldsmith et al. 1987; Milligan
1988; Rudolph et al. 1989a). The results of a recent study by Gierschik et
al. (1989b) suggest that formyl peptide receptors interact functionally with
both Gy and Gis. Specific granules of neutrophils contain large amounts of
a 40- to 41-kDa pertussis toxin substrate, suggesting that this intracellular
pool of G-proteins is translocated to the plasma membrane (Rotrosen et al.
1988; see also Sects. 2.5, 3.3.1.1, 5.1.2). In addition, human neutrophils
contain substantial amounts of cytosolic Gia, but its functional meaning is
not known (Rosenthal et al. 1987; Rudolph et al. 1989a,b; see also Sect.
5.1.4). Finally, myeloid cells contain Gs, the G-protein which activates
adenylyl cyclase (see Sect. 4.1). Recently, Strathmann et al. (1989) identified
cDNAs of yet unknown a-subunits of G-proteins. These results raise the
question of whether these or other G-proteins, in addition to the known
ones, are involved in signalling processes in phagocytes (see also below).

Table 3 summarizes some data concerning the involvement of G-
proteins in the activation of phagocytes by various classes of receptor
agonists (see also Sect. 3.3.1). Until recently, almost all receptors in
phagocytes have been assumed to couple functionally to pertussis toxin-
sensitive G-proteins, but an increasing number of recent studies clearly
point to the importance of pertussis toxin-insensitive signal transduction
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pathwaysactivated by receptor agonists in these cells. For example, it has
been suggested that priming of the respiratory burst by chemotactic pep-
tides, unlike activation of NADPH oxidase by these chemoattractants,
involves pertussis toxin-insensitive signal transduction pathways (Karnad
et al. 1989; see also Sect. 3.3.1.1.4).

Treatment of neutrophils, differentiated HL-60 cells, and mononuclear
phagocytes with pertussis toxin inhibits the functional responses induced
by formyl peptides with the exception of priming, e.g., phosphoinositide
degradation, increase in cytoplasmic Ca®*, activation of Na*/H* exchange,
membrane depolarization, protein phosphorylation, exocytosis, release of
arachidonic acid, chemotaxis, shape change, aggregaion, actin polymeriza-
tion, and O3 formation (Molski et al. 1984; Bokoch and Gilman 1984;
Okajima and Ui 1984; Lad et al. 1985b,c; Krause et al. 1985; Ohta et al. 1985;
Goldman et al. 1985b; Brandt et al. 1985; Spangrude et al. 1985; Okamura
et al. 1985; Satoh et al. 1985; Shefcyk et al. 1985; Volpi et al. 1985; Verghese
et al. 1985a, 1986a,b; Dillon et al. 1987; Dubyak et al. 1988; Seifert et al.
1989b,d, 1990; McLeish et al. 1989a,b). In contrast to Oz formation induced
by intercellular signal molecules, e.g., fMet-Leu-Phe, platelet-activating
factor (PAF), LTBs, purine and pyrimidine nucleotides, and C5a, those
induced by A 23187, PMA, diacylglycerol, fatty acids, or lectins, which
circumvent receptor stimulation, are pertussis toxin insensitive.

Table 3 also lists a number of examples for intercellular signal molecules
which activate functions of myeloid cells in a pertussis toxin-sensitive-
and/or -insensitive manner, and the table shows that various cell functions
activated by one given receptor agonist may show a differential pertussis
toxin sensitivity. These data suggest that different classes of G-proteins
(pertussis toxin-sensitive and/or pertussis toxin-insensitive) and possibly
low molecular mass GTP-binding proteins (see Sect. 3.2.1.2) are involved
in the signal transduction pathways. In addition, ADP-ribosylated G-
proteins may interact to different degrees with different types of plasma
membrane receptors, and specific populations of G-proteins may be in-
volved in the signal transduction pathway activated by a given type of
receptor agonist (Dubyak et al. 1988; Ashkenazi et al. 1989). Another
attractive hypothesis to explain the (partial) pertussis toxin insensitivity of
effects of some stimuli is that certain substances, e.g., mastoparan of wasp
venom, compound 48/80, substance P, and positively charged lipopeptides,
directly activate G-proteins rather than act through receptors (Higashijima
et al. 1988; Seifert et al. 1990; Mousli et al. 1990; see also Sects. 3.3.1.2.1,
33.1.2.6).

Studying the effects of various guanine nucleotides on arachidonic
acid-induced activation of NADPH oxidase in electropermeabilized
human neutrophils, Lu and Grinstein (1990) suggested that two different
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GTP-binding proteins are involved in the activation of NADPH oxidase;
one may be a pertussis toxin-sensitive G-protein, and the other may be a
GTP-binding protein in the vicinity of NADPH oxidase.

3.2.1.2 Low Molecular Mass GTP-Binding Proteins

Human myeloid cells have recently been found to contain various GTP-
binding proteins with molecular masses of 20-26 kDa, which are no sub-
strates for pertussis toxin or cholera toxin, i.e., the ras-related GTP-binding
proteins rho, racl, rac2, and rapl (Bokoch and Parkos 1988; Didsbury et al.
1989; Polakis et al. 1989; Quinn et al. 1989). Purified rap1 from human
neutrophils binds guanine nucleotides, and this process is modulated by
Mg2+ but not by the Bfy-complex of G-proteins or phosphorylation by
cAMP-dependent protein kinase (Bokoch and Quilliam 1990). Interest-
ingly, certain small GTP-binding proteins are associated with formyl pep-
tide receptors (Polakis et al. 1989), and cytochrome b.s is associated with
rapl (Quinn et al. 1989). Moreover, the 47-kDa protein shows sequence
homology with the ras p21 GTPase-activating protein (also referred to
as ras-GAP; Volpp et al. 1989b; Lomax et al. 1989; see also Sects. 5.1.4,
5.1.5).

The GTP-binding proteins rho, racl, and rac2, but not rapl are sub-
strates for Clostridium botulinum ADP ribosyltransferase C3 (Braun et al.
1989; Quilliam et al. 1989; Didsbury et al. 1989). Apparently, C. botulinum
ADP ribosyltransferase C3 is probably the active component (as a con-
taminant) in preparations referred to as botulinum D toxin, which by itself
does not possess ADP ribosyltransferase activity (Ohashi and Narumiya
1987; Mege et al. 1988a, 1989; Banga et al. 1988; Aktories et al. 1988;
Matsuoka et al. 1989; Braun et al. 1989; Quilliam et al. 1989). Treatment of
neutrophils with C. botulinum ADP ribosyltransferase C3 does not inhibit
fMet-Leu-Phe-induced increase in cytoplasmic Ca>*, exocytosis, cytoskele-
tal changes, or O3 formation (Mege et al. 1988a). These data suggest that
the substrates for ADP ribosyltransferase C3 are not involved in the
regulation of agonist-induced Oz  formation, at least in the case of
chemotactic peptides.

3.2.1.3 NaF

Studies with NaF provided important information on the role of G-
proteins in the activation of NADPH oxidase (see also Sect. 5.1.4.2). Rall
and Sutherland (1958) had just reported that NaF stimulates cAMP
formation in liver homogenates, when Sbarra and Karnovsky (1959)
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showed that NaF activates the respiratory burst in intact neutrophils. The
NaF-inducedrespiratoryburstinhumanneutrophilsisareversible process
and depends on the presence of extracellular Ca™*, and other halides are
inactive (Curnutte and Babior 1975; Curnutte et al. 1979; Della Bianca
et al. 1988; Gabler et al. 1989). Unlike in human neutrophils, activation
of the respiratory burst by NaF in guinea pig phagocytes apparently does
not depend on Ca®* (Della Bianca et al. 1988; Toper et al. 1987). During
myeloid differention, neutrophils acquire the ability to reduce NBT upon
exposure to NaF (Zakhireh and Root 1979). Like PMA, NaF is a very
effective activator of O3 formation, and respiratory burst shows a lag
time and is long lasting (Curnutte et al. 1979; see also Sect. 3.1.1.1). The
delayed onset of the NaF-induced respiratory burst may be due to the
fact that fluoride must first cross the plasma membrane and bind to its
intracellular target prior to inducing cellular activation (Curnutte et al.
1979; Della Bianca et al. 1988). NaF is required at concentrations of about
20-40 mM to maximally activate NADPH oxidase (Curnutte et al. 1979;
Della Bianca et al. 1988).

A clue to explain the molecular mechanism by which NaF activates
NADPH oxidase was the discovery that NaF stimulates G, and other
G-proteins, and that the effects of NaF are enhanced by aluminium salts
(Howlett et al. 1979; Sternweis et al. 1981; Sternweis and Gilman 1982;
Gilman 1987). Fluoride in the presence of aluminium, probably as AlFy,
has been suggested to activate G-proteins by mimicking the y-phosphate
group of GTP (Bigay et al. 1985; Chabre 1989). However, other yet un-
known modes of action of fluoride on G-proteins cannot be ruled out
(Stadel and Crooke 1989).

The above results suggest that in neutrophils, NaF may activate G-
proteins as in other systems. The data on the pertussis toxin sensitivity of
the effects of NaF in neutrophils are not consistent. In human neutrophils,
the NaF-induced phosphoinositide degradation, increase in cytoplasmic
Ca™, and respiratory burst are not inhibited by pertussis toxin (Strnad and
Wong 1985b; Strnad et al. 1986; Della Bianca et al. 1988). These findings
are in agreement with the assumption that pertussis toxin-catalyzed ADP
ribosylation of G-proteins of the G;-family and of G, inhibits the interaction
of G-proteins with activated receptors but does not prevent activation of
G-proteins by NaF or stable guanine nucleotides (Jakobs et al. 1984; Gilman
1987, see also Sect. 5.1.4). In contrast, Gabler et al. (1989) reported that
NaF-induced O3 formation in human neutrophils is pertussis toxin sensi-
tive. The NaF-induced activation of NADPH oxidase and protein kinase C
translocation but not the increase in cytoplasmic Ca®* have been reported
to be pertussis toxin-sensitive events in guinea pig neutrophils (Toper et al.
1987).
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NaF induces phosphoinositide degradation, increase in cytoplasmic
Ca®, and translocation and activation of protein kinase C in phagocytes
(Strnad and Wong 1985b; Strnad et al. 1986; English et al. 1986; Hauschildt
et al. 1988a; Della Bianca et al. 1988). As the effects of NaF on these
parameters occur prior to activation of the respiratory burst, and as the
NaF-induced respiratory burst is inhibited by H-7, these data suggest that
protein kinase C is involved in the signal transduction pathway (see also
Sect. 3.2.2.3). In contrast, recent data indicate that the mechanism of action
of NaF on the respiratory burst is more complex. In Caz‘“-depleted
neutrophils, NaF does not induce phosphoinositide degradation, increase
in cytoplasmic Ca”™, or O3 formation (Della Bianca et al. 1988). Priming
of Ca®*-depleted neutrophils with PMA restores NaF-induced activation
of NADPH oxidase but not that of phospholipase C (Della Bianca et al.
1988). These results suggest that activation of NADPH oxidase by NaF
does not necessarily depend on phospholipase C activation (see also
Sects.3.2.2.1,3.2.2.5,5.1.4). NaF not only activates phospholipase C but
also phospholipase D (Olson et al. 1990). There are, however, differences
in the sensitivity to inhibition by ethanol of the effects of NaF and
fMet-Leu-Phe.

In electropermeabilized neutrophils, NaF induces a respiratory burst
which is rapid in onset (Hartfield and Robinson 1990). In this system, Mg®*
is required and ATP potentiates the effects of NaF, whereas stable GDP
analogues are inhibitory and pertussis toxin is without effect. Protein kinase
C-dependent and -independent pathways have both been suggested to be
involved in NaF-induced activation of NADPH oxidase in electroper-
meabilized neutrophils.

With regard to O3 formation, NaF and fMet-Leu-Phe may interact
in a synergistic or in an antagonistic manner (Wong 1983; Toper et al.
1987). In neutrophils, NaF on one hand stimulates phospholipase C, but
on the other hand NaF also activates adenylyl cyclase via G, (Ham et al.
1983; Wong 1983; Saad et al. 1987; Gilman 1987; Bokoch 1987; see also
Sect. 4.1). As an increase in cAMP inhibits O3 formation, the competi-
tive activation of G; and of the G-proteins activating phospholipase C
and/or NADPH oxidase may explain the opposite effects of NaF (see
also Sect. 4.1).

3.2.2 Protein Kinase C

In phagocytes, chemoattractants induce degradation of phosphati-
dylinositol 4,5-biphosphate through phospholipase C, resulting in the
formation of diacylglycerol and inositol 1,4,5-triphosphate, with sub-
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sequent activation of protein kinase C and Ca®* mobilization (Dougherty
et al. 1984; Bradford and Rubin 1985) (see also Sect. 3.1.1). Interestingly,
human neutrophils also contain phosphatidylinositol 3,4-biphosphate
and phosphatidylinositol 3,4,5-triphosphate (Traynor-Kaplan et al.
1989). Upon stimulation with chemoattractants, phosphatidylinositol
3,4,5-triphosphate accumulates, and there is a correlation between ac-
cumulation of this phospholipid and O3 formation (Traynor-Kaplan et
al. 1989). Moreover, the results of recent studies point to the importance
of phospholipase D induced degradation of phosphatidylcholine as a
source of phosphatidic acid and its dephosphorylation product,
diacylglycerol (Exton 1988; Billah et al. 1989; Anthes et al. 1989; see also
Sect. 3.2.2.1).

The role of protein kinase C in the activation of NADPH oxidase by
receptor agonists is a subject of current debate. On one hand, it has been
suggested that chemoattractants, in analogy to phorbol esters and cell-per-
meant diacylglycerols, activate NADPH oxidase through protein kinase
C-mediated phosphorylation of specific proteins (Takenawa et al. 1985;
Gavioli et al. 1987; Nath et al. 1989; see also Sect. 3.1.1). There are, indeed,
some correlations between receptor-mediated activation of phos-
phoinositide degradation and protein kinase C and activation of NADPH
oxidase. On the other hand, a number of reports have called into question
the central role of protein kinase C in receptor-mediated activation of
NADPH oxidase.

3.2.2.1 Correlations and Dissociations Between Activation
of Phospholipases C and D and Protein Kinase C, on one Hand,
and NADPH Oxidase, on the Other

LTB,, ionomycin, concanavalin A (ConA), and fMet-Leu-Phe have been
reported to increase cytoplasmic Ca® and to induce diacylglycerol release,
but only the latter two agents activate the respiratory burst (Korchak et al.
1988b). In contrast, other authors reported that LTB, activates NADPH
oxidase in neutrophils, although it is much less effective than fMet-Leu-Phe
(see below and Sect. 3.3.1.7.1). The chemotactic peptide-induced accumula-
tion of diacylglycerol is potentiated by CB and is abolished by pertussis toxin
(Honeycutt and Niedel 1986). Diacylglycerol accumulation precedes Oz
formation, and changes in the concentration of diacylglycerol correlate with
the kinetics of O3 formation (Rider and Niedel 1987). In comparison to
fMet-Leu-Phe, LTB, induces only a small and short-lasting respiratory
burst (Truett et al. 1988; Reibman et al. 1988; see also Sect. 3.3.1.7.1). Both
agonists induce a rapid increase in the concentration of diacylglycerol, but
only fMet-Leu-Phe induces sustained diacylglycerol accumulation which
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depends on extracellular Ca®* and is enhanced by CB. The diacylglycerol
released during this sustained phase may be derived from phosphatidyl-
choline rather than from phosphoinositides (Truett et al. 1988; Reibman et
al. 1988; see also below).

An interesting new approach to study the role of phospholipase C in
the regulation of NADPH oxidase was recently presented by Smith et al.
(1990). These authors reported that 1-[6-[[17B-3-methoxyestra-1,3,5(10)-
trien-17-ylJamino}hexyl]-1H-pyrrole-2,5-dione  (U-73122) may inhibit
chemoattractant-induced activation of phospholipase C in human
neutrophils. This assumption is supported by the finding that U-73122
inhibits  agonist-induced production of inositolphosphates and
diacylglycerol and the rise in cytoplasmic Ca®*. Apparently, U-73122 does
not directly affect protein kinase C (Smith et al. 1990). The inhibition of the
above phospholipase C-related events by U-73122 correlates with inhibi-
tion of Oz formation and exocytosis (Smith et al. 1990).

Human myeloid cells possess a phospholipase D which is activated by
chemotactic peptides and catalyzes the degradation of phosphatidylcholine
to phosphatidic acid and choline (Exton 1988; Pai et al. 1988a,b, 1989; Truett
et al. 1989; Gelas et al. 1989; Billah et al. 1989). Activation of phospholipase
D may be a Ca”*- and GTP-dependent process, and phosphatidic acid can
be converted to diacylglycerol by a phosphohydrolase (Billah et al. 1989;
Anthes et al. 1989). In addition, phosphatidic acid per se may act as a signal
molecule (Nayar et al. 1984; Murayama and Ui 1987). Interestingly, phos-
phatidic acid substituted with short-chain saturated fatty acids has recently
been shown to activate the respiratory burst in guinea pig neutrophils in a
concentration-dependent manner (Ohtsuka et al. 1989). Activation of
NADPH oxidase by phosphatidic acid is independent of Ca®* and may
involve phosphorylation of the 47-kDa protein (Ohtsuka et al. 1989; see
also Sect. 5.3). A role of phospholipase D in the activation of NADPH
oxidase by fMet-Leu-Phe is further supported by the results of a recent
report showing that certain aliphatic alcohols inhibit both chemotactic
peptide-induced release of phosphatidic acid and O3 formation (Bonser et
al. 1989; see also Sects. 3.3.1.5, 3.3.2.7). Recently, the inhibitor of phos-
phatidic acid phosphohydrolase propranolol (Billah et al. 1989) was shown
to inhibit the accumulation of diacylglycerol without inhibiting the forma-
tion of phosphatidic acid in fMet-Leu-Phe-stimulated human neutrophils
(Rossi et al. 1990). In the presence of CB, the chemotactic peptide induces
a short-lasting respiratory burst which is reinitiated by propranolol (Rossi
et al. 1990). Propranolol also potentiates the fMet-Leu-Phe-induced
respiratory burst in the absence of CB; this process is associated with
accumulation of phosphatidic acid and inhibition of formation of
diacylglycerol (Rossi et al. 1990). These data point to phosphatidic acid
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having a role as intracellular signal molecule in the activation process of
NADPH oxidase by receptor agonists.

Several dissociations between activation of NADPH oxidase by PMA
and opsonized zymosan have been documented (Newburger et al. 1980a,b;
Andre et al. 1988; Huizinga et al. 1989; Phillips and Hamilton 1989; see also
Sects. 3.3.1.5, 3.4.3, 6.2). Recently, Koenderman et al. (1989b,c) reported
that there is no correlation between diacylglycerol release and activation of
oxygen consumption induced by opsonized zymosan, fMet-Leu-Phe, PAF,
or PAF plus fMet-Leu-Phe in human neutrophils (see also Sect. 3.3.1.6).
The initial phase of the respiratory burst induced by opsonized zymosan is
not accompanied by diacylglycerol release and is not affected by
staurosporine, whereas the later phase of zymosan-induced NADPH
oxidase activation is associated with diacylglycerol formation and
staurosporine sensitivity (Koenderman et al. 1989b,c). Finally, the
stimulatory effects of opsonized zymosan on Oz formation are less
sensitive to inhibition by alcohols than those of fMet-Leu-Phe (Bonser
et al. 1989; see also above).

Priming of the respiratory burst by PAF in human eosinophils but
not its activation has been shown to be accompanied by diacylglycerol
accumulation (Koenderman et al. 1989c). In addition, eosinophilia may
be associated with an enhanced respiratory burst in response to zymosan
and intermediate accumulation of diacylglycerol (Koenderman et al.
1989c; see also Sect. 3.4.3.1.1). These data suggest that diacylglycerol
accumulation in neutrophils and eosinophils may be important in the
propagation of the respiratory burst by receptor agonists rather than in its
initiation.

Similar to phorbol esters and cell-permeant diacylglycerols, chemotac-
tic peptides induce translocation of protein kinase C from the cytosol to the
plasma membrane (Pike et al. 1986; Nishihira et al. 1986; Horn and Kar-
novsky 1986; Pontremoli et al. 1986b; Christiansen 1988; Christiansen et al.
1988a,b). Translocation of protein kinase C by fMet-Leu-Phe precedes
O3 formation, but there is no close correlation between translocation of
protein kinase C and its activation (Christiansen 1988). In comparison to
PMA, the fMet-Leu-Phe-induced association of the kinase with the plasma
membrane is less tight and depends on the presence of CB (Pontremoli et
al. 1986a; Christiansen et al. 1988a; see also Sect. 3.2.5). Pertussis toxin
inhibits fMet-Leu-Phe-induced O3  formation in parallel with protein
kinase C translocation (Christiansen 1990). Protein kinase C translocated
by PMA but not that translocated by fMet-Leu-Phe is active in the absence
of Ca®* and added phospholipids (Pontremoli et al. 1986a). It should be
emphasized that translocation of protein kinase C to the plasma membrane
by fMet-Leu-Phe depends critically on the experimental conditions. For
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example, Ca”* at physiologically relevant cytoplasmic concentrations in the
extraction buffer per se may lead to the association of protein kinase C with
the plasma membrane (Phillips et al. 1989). Moreover, the chemotactic
peptide-induced translocation of protein kinase C in the absence of CB is
observed only when special homogenization techniques are applied (Horn
and Karnovsky 1986). Interestingly, fMet-Leu-Phe also induces the trans-
location of diacylglycerol kinase to the plasma membrane (Ishitoya et al.
1987). This translocation may play a role in the termination of the
respiratory burst as this enzyme and protein kinase C compete for
diacylglycerol (see also Sects. 3.2.2.4,3.3.1.1.3).

Chemotactic peptides induce protein phosphorylation in neutrophils
(Schneider et al. 1981; Andrews and Babior 1984). The characteristics of
protein phosphorylation induced by PMA and fMet-Leu-Phe are similar
but not identical (Andrews and Babior 1984). Like PMA, fMet-Leu-Phe
induces phosphorylation of the 47-kDa protein, and the kinetics of phos-
phorylation correlate with O;” formation (Schneider et al. 1981; Ohtsuka et
al. 1987; Reibman et al. 1988; Badwey et al. 1989a; see also Sect. 3.1.1).
Activation of NADPH oxidase by opsonized latex beads, NaF, and A 23187
is also associated with the phosphorylation of the 47-kDa protein
(Heyworth and Segal 1986). In contrast, H-7 has been reported to block
fMet-Leu-Phe-induced phosphorylation of the 47-kDa protein without
blunting O3 formation (Sha’afi et al. 1988; see also Sect. 3.2.2.3). Recently,
the local anesthetics tetracaine, bupivacaine, cocaine, and lidocaine were
shown to inhibit O3 formation induced by PMA, A 23187, and fMet-Leu-
Phe (Haines et al. 1990). Interestingly, local anesthetics do not affect
phosphorylation of the 47-kDa protein, suggesting that phosphorylation of
this protein is an insufficient signal for the activation of NADPH oxidase
(Haines et al. 1990; see also Sect. 3.1.1).

3.2.2.2 Priming by Activators of Protein Kinase C

PMA at nonstimulatory concentrations primes phagocytes for enhanced
O3 formation upon exposure to chemoattractants (McPhail et al. 1984a;
Bender et al. 1987; Tyagi et al. 1988; Ohsaka et al. 1988; Sha’afi et al. 1988;
Smith et al. 1988c; Seifert et al. 1989a). The respiratory burst induced by
fMet-Leu-Phe, C5a, PAF, or LTB, at low concentrations (1-10 nM) in
PMA-primed human neutrophils correlates with oscillations in cell shape
(Wymann et al. 1989). In the presence of the chemoattractants at high
concentrations (50-100 nM), these oscillations are apparent only in the
presence of 17-hydroxywortmannin (see also Sect. 4.3.1). The mechanism
of priming by PMA has been suggested to involve membrane depolariza-
tion, enhanced generation of diacylglycerol, and activation of protein kinase
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C-independent processes (Tyagi et al. 1988; Ohsaka et al. 1988; Sha’afi
1989). In fact, PMA may block agonist-induced activation of phospholipase
C in human myeloid cells with parallel potentiation of exocytosis and O3
formation, and priming by PMA apparently does not depend on phos-
phorylation of the 47-kDa protein (Della Bianca et al. 1986a, 1988; Sha’afi
et al. 1988; Cockcroft and Stutchfield 1989b; Wenzel-Seifert and Seifert
1990; see also Sect. 3.2.2.5). In contrast, Gay and Stitt (1990) suggested that
chemotactic peptides and phorbol esters synergistically activate the
respiratory burst through synergistic translocation of protein kinase C to
the plasma membrane.

In addition to PMA, OAG potentiates fMet-Leu-Phe-induced O3
formation (Dewald et al. 1984; Bass et al. 1987, 1988; Smith et al. 1988a).
OAG shortens the lag time, increases the rate of O3 formation, and
prolongs the respiratory burst (Bass et al. 1988). OAG-induced priming
apparently does not depend on extracellular Ca”" and may involve activa-
tion of phospholipase A, (Dewald et al. 1984; Bauldry et al. 1988). As H-7
inhibits priming by OAG, its effects have been suggested to be mediated
by protein kinase C (Smith et al. 1988a). In contrast, Bass et al. (1988) did
not observe translocation of protein kinase C to the plasma membrane by
OAG, and the protein kinase C inhibitor 1-(5-isoquinolinesulfonyl)
piperazine (C-1) did not prevent priming (see also Sect. 3.2.2.3).

In addition to diacylglycerides, human neutrophils contain substantial
amounts of alkylacylglycerides (Tyagi et al. 1989a). In neutrophils primed
with PMA or CB, but not in unprimed cells, fMet-Leu-Phe induces the
release of alkylacylglycerol presumably through activation of phos-
pholipases C and/or D (Anthes et al. 1989; Billah et al. 1989; see also Sect.
3.2.2.1). Alkylacylglycerol may regulate the activity of protein kinase C in
an inhibitory or in a stimulatory manner (Ford et al. 1989; Bass et al. 1989).
Alkylacylglycerol has been shown to potentiate chemotactic peptide-in-
duced O3 formation and to inhibit the stimulatory effects of diacylglycerol
(Bauldry et al. 1988; Bass et al. 1989). Priming by alkylacylglycerol may
involve activation of phospholipase A» and shows properties which are
different from those of diacylglycerol-induced priming (Bauldry et al. 1988;
Bass et al. 1989).

3.2.2.3 Studies with Protein Kinase C Inhibitors

Many studies with protein kinase C inhibitors have been performed to
clarify the role of this kinase in the activation of NADPH oxidase by
phorbol esters, diacylglycerols, and especially by intercellular signal
molecules. Table 4 summarizes some data on the effects of protein kinase
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C inhibitors and of agents which interfere with Ca**-dependent processes
on the respiratory burst.

The polycationic cyclic peptide antibiotic polymyxin B inhibits protein
kinase Cin vitro by interacting with phospholipids (Mazzei et al. 1982; Wise
et al. 1982). Polymyxin B does not inhibit cAMP- or cGMP-dependent
protein kinases, but unfortunately the specificity of the antibiotic is
hampered by the fact that it also inhibits calmodulin-sensitive myosin
light-chain kinase and Ca**-activated K* channels (Mazzei et al. 1982; Wise
et al. 1982; Varecka et al. 1987). Paradoxically, polymyxin B mimics certain
effects of PMA on protein phosphorylation and phospholipid metabolism
in HL-60 cells (Kiss et al. 1987; Kiss and Anderson 1989). The effects of
polymyxin B on the respiratory burst have not been studied very extensive-
ly. In human neutrophils, polymyxin B does not inhibit O3 formation
induced by PMA and fMet-Leu-Phe, whereas the antibiotic partially in-
hibits phorbol ester- and chemotactic peptide-induced O3 formation in
dibutyryl cAMP-differentiated HL-60 cells (Seifert and Schichtele 1988;
seealso Sect.3.4.4.1.3). Aida et al. (1990) reported that polymyxin B inhibits
PMA-induced O3 formation in human neutrophils, is without inhibitory
effect on the fMet-Leu-Phe-induced respiratory burst, and potentiates that
induced by, OAG. The latter effect of polymyxin B has been suggested to
be protein kinase C independent (Aida et al. 1990).

Sphingosine is another commonly employed inhibitor of protein kinase
C, but the usefulness of sphingoid long-chain bases as protein kinase C
inhibitors in studies dealing with intact cells is a matter of debate (Wilson
et al. 1986; Bazzi and Nelsestuen 1987; Pittet et al. 1987; Krishnamurthi et
al. 1989; Merrill and Stevens 1989). Sphingosine and sphinganine have been
shown to inhibit fMet-Leu-Phe- and PMA-induced O; formation and
protein phosphorylation in human neutrophils (Wilson et al. 1986). These
observations have been confirmed by Pittet et al. (1987), but these authors
attributed the inhibitory effects of sphingosine to cytotoxicity rather than
to inhibition of protein kinase C. A subsequent study suggested that the
addition of sphingosine and sphinganine to cells from a stock solution
containing albumin minimizes cytotoxicity (Lambeth et al. 1988).

Staurosporine and K-252a are the most potent inhibitors of protein
kinase C presently available, and they act presumably by interfering with
the ATP binding site of the kinase (Tamaoki et al. 1986; Kase et al. 1987).
In agreement with their effects on purified protein kinase C, staurosporine
and K-252a are very potent and effective inhibitors of protein phosphoryla-
tion and O3 formation induced by PMA, chemoattractants, and lipopeptides
in human neutrophils (Smith et al. 1988b; Thelen et al. 1988b; Dewald
et al. 1989; Seifert et al. 1990). Unexpectedly, at concentrations in the
nanomolar range staurosporine was found to enhance the chemoattractant-
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induced respiratory burst in human neutrophils, suggesting that protein
kinase C may also play an inhibitory role in receptor agonist-induced O3z
formation (Combadiere et al. 1990; see also Sect. 3.3.2.5). Staurosporine at
nanomolar concentrations effectively inhibits PMA-induced O3 formation
in neutrophils, but subsequent stimulation with fMet-Leu-Phe results in
substantial O; formation. (Robinson et al. 1990). This activation of
NADPH oxidase is accompanied by inhibition of phosphorylation of the
47-kDa protein. A kinase other than the one activated by PMA may play
a role in this activation of NADPH oxidase, and phosphorylation of the
47-kDa protein may be of minor relevance. Unfortunately, staurosporine
and K-252a cannot be regarded as specific as they are potent inhibitors of
other kinases as well (Smith et al. 1988; Riiegg and Burgess 1989). In
addition, staurosporine does not inhibit platelet aggregation induced by
certain activators of protein kinase C (Schichtele et al. 1988). Moreover,
staurosporine paradoxically induces exocytosis of specific granules from
neutrophils and shows some functional similarities with PMA in this regard
(Dewald et al. 1989).

The isoquinolinesulfonamide H-7 is one of the most extensively studied
protein kinase C inhibitors with respect to the effects on NADPH oxidase
(Hidaka et al. 1984). Closely related to H-7 is the isoquinolinesulfonyl-
piperazine analogue C-1 (Gerard et al. 1986). Similar to staurosporine, H-7
and C-1 inhibit protein kinase C and other kinases by interfering with their
ATP binding sites, and therefore these compounds are not specific phar-
macological tools (Hidaka et al. 1984; Gerard et al. 1986; Schéchtele et al.
1988). Moreover, H-7 shows effects in intact cells which are apparently
unrelated to inhibition of protein kinases (Love et al. 1989).

The results concerning the effects of H-7 and C-1 on O3 formation are
controversial. Wright and Hoffman (1986, 1987) reported that H-7 inhibits
neither PMA- nor fMet-Leu-Phe-induced Oz formation in human
neutrophils. Berkow et al. (1987b) and Sha’afi et al. (1988) showed that H-7
inhibits the stimulatory effect of PMA but not that of fMet-Leu-Phe on the
respiratory burst. In contrast, other investigators reported that H-7
inhibits, at least in part, the PMA- and fMet-Leu-Phe-induced respiratory
burst (Fujita et al. 1986; Sha’afi et al. 1986; Shibanuma et al. 1987; Nath and
Powledge 1988; Holian et al. 1988; Seifert and Schéchtele 1988). The effects
of H-7 are apparently species specific,as H-7 inhibits PMA-induced priming
in rabbit but not in human neutrophils (Sha’afi et al. 1988; see also Sect.
3222).

C-1 inhibits PMA-induced Oz formation but not that induced by
fMet-Leu-Phe or C5a (Gerard et al. 1986). In contrast, Nath and Powledge
(1988) and Nath et al. (1989) reported that C-1 inhibits fMet-Leu-Phe-in-
duced O3 formation in a temperature-dependent manner. Finally, C-1 has



Mechanisms Involved in the Activation of NADPH Oxidase by Receptor Agonists 51

been shown to enhance fMet-Leu-Phe-induced exocytosis and to inhibit
chemotaxis (Harvath et al. 1987; Salzer et al. 1987).

The antipsychotic drugs chlorpromazine and trifluoperazine and the
naphthalenesulfonamide ~ N-(6-aminohexyl)-5-chloro-1-naphthalenesul-
fonamide (W-7) are used primarily as inhibitors of calmodulin, but they also
inhibit protein kinase Cand the Ca**-dependent protease calpain I (Tanaka
T. et al. 1982; Wise et al. 1982; Schatzman et al. 1983; Tomlinson et al. 1984;
Brumley and Wallace 1989). Surprisingly, the data on the effects of these
drugs on the respiratory burst are less controversial than those on other and
more potent inhibitors of protein kinase C. A substantial number of reports
showed that chlorpromazine, trifluoperazine, and W-7 inhibit both the
phorbol ester- and chemoattractant-induced O3 formation and phos-
phorylation of the 47-kDa protein (Elferink 1979; Cohen et al. 1980b;
Alobaidi et al. 1981; Smith et al. 1981; Takeshige and Minakami 1981;
Elferink and Deierkauf 1985; Heyworth and Segal 1986; Wright and Hof-
fman 1986,1987; Shibanuma et al. 1987; Seifert and Schiichtele 1988; Holian
et al. 1988). Paradoxically, W-7 per se has been reported to induce a
short-lasting respiratory burst in alveolar macrophages (Holian et al. 1988).
Taking into consideration the inhibitory profile of these substances, it has
been suggested that the effects of these compounds on Oz formation are
due to inhibition of calmodulin-dependent processes (Alobaidi et al. 1981;
Smith etal. 1981; Takeshige and Munakami 1981; Smolen et al. 1982; Wright
and Hoffman 1986, 1987; Shibanuma et al. 1987) or to inhibition of protein
kinase C (Shibanuma et al. 1987; Heyworth and Segal 1986; Holian et al.
1988). In addition to inhibiting proximal parts of the signal transduction
process, W-7 and trifluoperazine may directly interfere with components of
NADPH oxidase (Cohen et al. 1980b; Alobaidi et al. 1981; Sakata et al.
1987a; Seifert and Schichtele 1988; see also Sect. 5.1.3.3).

The ether lipid, 1-O-hexadecyl-2-O-methylglycerol (AMG-Cyq) is a
recently introduced inhibitor of protein kinase C (Kramer et al. 1989).
AMG-C;¢ has been reported not to inhibit cAMP- or Ca**/calmodulin-de-
pendent protein kinases (Kramer et al. 1989). In addition, AMG-C is
apparently not cytotoxic and does not interfere with fMet-Leu-Phe-induced
phosphoinositide degradation and increase in cytoplasmic Ca®* (Kramer et
al. 1989). Moreover, the drug apparently does not directly interfere with
NADPH oxidase (Kramer et al. 1989). AMG-Cisinhibits the phorbol ester-
and chemotactic peptide-induced respiratory burst in human neutrophils
(Kramer et al. 1989). With respect to phorbol esters, there is a close
correlation between inhibition of the respiratory burst and phosphorylation
of the 47-kDa protein by AMG-Cie. The correlation between inhibition of
NADPH oxidase and phosphorylation of the 47-kDa protein is less strin-
gent with fMet-Leu-Phe, suggesting that AMG-C¢-sensitive and -insensi-
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tive signal transduction pathways are involved in chemotactic peptide-in-
duced O3 formation (Kramer et al. 1989).

Both inhibitory and stimulatory effects of vitamin E on the
respiratory burst have been reported (Baehner et al. 1982; Butterick et
al. 1983; Leb et al. 1985), and neutrophils from vitamin E-deficient rats
show increased oxygen consumption and HO; release in comparison to
control cells (Harris et al. 1980). The inhibitory effects of vitamin E on
O; formation are possibly due among others to inhibition of protein
kinase C and to its radical-scavening properties (Mahoney and Azzi 1988;
Cadenas 1989).

Flavonoids are plant-derived compounds with antiallergic and anti-in-
flammatory properties (Middleton 1984). Various flavonoids, e.g.,
kaempferol, morin, fisetin and quercetin, inhibit the respiratory burst in
human neutrophils induced by soluble and particulate stimuli (Tauber et al.
1984; Pagonis et al. 1986). The ability of flavonoids to inhibit the respiratory
burst correlates with their hydrophobicity. The mechanism by which these
agents inhibit NADPH oxidase may involve interference with protein
kinase C-mediated protein phosphorylation (Blackburn et al. 1987). This
assumption is supported by the finding that flavonoids inhibit purified
protein kinase C, but, paradoxically, quercetin has also been reported to
show stimulatory effects on this enzyme (Ferriola et al. 1989; Picq et al.
1989).

The selenium-containing heterocyclic compound ebselen inhibits
PMA-induced O3 formation in human neutrophils (Cotgreave et al. 1989).
Ebselen may inhibit protein kinase C or may directly inhibit NADPH
oxidase through interaction with SH groups (see also Sect. 4.3.3).

The biscoclaurine alkaloids cepharanthine, tetrandrine, and isotetran-
dine inhibit O3 formation in guinea pig neutrophils induced by various
stimuli including PMA and fMet-Leu-Phe (Matsuno et al. 1990). Evidence
was presented by these authors that the effects of biscoclaurine alkaloids
are mediated through an inhibition of protein kinase C.

The effects of retinoids on the respiratory burst are very complex. On
the one hand, retinoids have been suggested to suppress O; formation
through inhibition of protein kinase C, but on the other, retinoids have also
been reported to be effective activators of the respiratory burst (see Sect.
3.3.24).

The hexa-anionic hydrophobic compound suramin, activates purified
protein kinase Cin the presence of Ca® and in the absence of phospholipid
and inhibits the enzyme activated by phospholipid, Ca’* and diacylglycerol
(Mahoney et al. 1990). The inhibitory effect of suramin on protein kinase
C may be due to competition with ATP (Mahoney et al. 1990). In addition,
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suramin at very high concentrations inhibits the phorbol ester-induced
respiratory burst in human neutrophils (Mahoney et al. 1990).

The above data clearly show that studies with protein kinase C in-
hibitors are difficult to interpret. Neither the failure nor the effectiveness
of a compound to inhibit O3 formation answers the question conclusively
whether protein kinase C plays a role in the process or not. Among the
factors which contribute to this unsatisfying situation are the lack of
specificity of protein kinase Cinhibitors, cell type, and stimulus specificities
of NADPH oxidase activation and possibly the involvement of various
isoenzymes of protein kinase C, which may possess different physiological
roles and differential sensitivities to inhibitory drugs.

3.2.2.4 Studies with Inhibitors of Diacylglycerol Kinase
and Diacylglycerol Lipase

Diacylglycerol kinase catalyzes the phosphorylation of diacylglycerol to
phosphatidic acid and may play a role in the termination of protein kinase
C activation by removing the former lipid (Abdel-Latif 1986). Some
years ago, 6-[2{4-[(4-fluorophenyl)phenylmethylene}-1-piperidinyljethyl]-
7-methyl-5H-thiazolo-[3,2-al]pyrimidin-5-one (R 59022) was introduced as
an inhibitor of diacylglycerol kinase which apparently does not affect the
activity of other enzymes of phosphoinositide metabolism (de Chaffoy de
Courcelles et al. 1985). In intact platelets, R 59 022 amplifies OAG-induced
activation of protein kinase C and thrombin-induced release of
diacylglycerol (de Chaffoy de Courcelles et al. 1985). These data suggest
that R 59 022 functions in an analogous manner as do inhibitors of phos-
phodiesterases which potentiate agonist-induced accumulation of cAMP
(see Sect. 4.1).

In neutrophils, R 59 022 enhances O3 formation induced by OAG and
A 23187 and that induced by the receptor agonists fMet-Leu-Phe, PAF, IgG,
opsonized zymosan, and lipopeptide (Dale and Penfield 1987, Muid et al.
1987, Gomez-Cambronero et al. 1987; Mege et al. 1988c; Seifert et al. 1990).
Unfortunately, not only inhibition of diacylglycerol kinase but also activa-
tion of phospholipase D may contribute to the stimulatory effects of R 59
022 on chemoattractant-induced O3 formation (Mahadevappa 1988; see
also Sect. 3.2.2.1). In guinea pig neutrophils, R59022 potentiates formyl
peptide- but not PMA-induced O3 formation and phosphorylation of the
47-kDa protein (Ohtsuka et al. 1990b). Additionally, R59022 potentiates
agonist-stimulated formation of diacylglycerol and inhibits the formation
of phosphatidic acid. These data indicate that, at least in this system, the
effects of R59022 are mediated via inhibition of diacylglycerol kinase with
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subsequent accumulation of diacylglycerol, resulting in enhanced activation
of protein kinase C.

Degradation of diacylglycerol to monoacylglycerol by diacylglycerol
lipase is another pathway to remove this intracellular signal molecule
(Abdel-Latif 1986). 1,6-Di(O-(carbamoyl)cyclohexanone oximine)hexane
(RHC 80267) has been reported to be a potent and relatively selective
inhibitor of diacylglycerol lipase (Sutherland and Amin 1982). RHC 80267
has no effect on O formationinduced by fMet-Leu-Phe, IgG, or opsonized
zymosan, suggesting that removal of diacylglycerol through diacylglycerol
lipase does not play a crucial role in the termination of the agonist-induced
respiratory burst (Muid et al. 1987). In contrast, RHC 80267 potentiates
OAG-induced O3 formation (Dale and Penfield 1987). Finally, in-
domethacin has been reported to potentiate OAG-induced O3 forma-
tion, presumably by inhibition of diacylglycerol lipase and kinase (Dale
and Penfield 1985, 1987; see also Sect. 4.2.2).

3.2.2.5 The Inhibitory Role of Protein Kinase C
in Receptor Agonist-Induced Cell Activation

In many cell types, protein kinase C plays not only a stimulatory role but
also an inhibitory role in agonist-induced cell activation (Nishizuka 1984,
1986, 1988, 1989; Lefkowitz and Caron 1986; Sibley et al. 1987). Phorbol
esters uncouple receptors, e.g., fi-, f2- and au-adrenergic receptors, from
intracellular effector systems through protein kinase C-mediated phos-
phorylation of receptor proteins (Lefkowitz and Caron 1986; Sibley et al.
1987).

Pretreatment of human myeloid cells with PMA blunts phos-
phoinositide degradation and increase in cytoplasmic Ca® induced by
various intercellular signal molecules, i.e., fMet-Leu-Phe, ATP, PAF, and
LTB, (Naccache et al. 1985a; Della Bianca et al. 1986a; C.D. Smith et al.
1987; Kikuchi et al. 1987; Cockcroft and Stutchfield 1989b; Yamzaki et al.
1989). In addition, activators of protein kinase C may modulate binding of
PAF and LTB, to their receptors (Yamzaki et al. 1989; O’Flaherty et al.
1989; McCarthy et al. 1989). Phorbol esters may disrupt the signal transduc-
tion cascade by uncoupling formyl peptide receptors from G-proteins and
activated G-proteins from phospholipase C (C.D. Smith et al. 1987; Kikuchi
et al. 1987). Phosphorylation of G-proteins may be involved in this desen-
sitization process (Katada et al. 1985; Pyne et al. 1989).

With respect to Oz formation, inhibitory effects of phorbol esters are
apparently stimulus dependent. On one hand, fMet-Leu-Phe enhances the
ability of neutrophils to generate O3 upon stimulation with PMA, and
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PMA does not prevent subsequent stimulation of O formation by fMet-
Leu-Phe (English et al. 1981b; Bender et al. 1987). In addition, PMA
increases the binding of formyl peptides to their receptors in human
neutrophils in a concentration-dependent manner (Bender et al. 1987).
Moreover, PMA and fMet-Leu-Phe interact in an additive or synergistic
manner to activate O3 formation in neutrophils or HL-60 cells (Bender et
al. 1983; Seifert et al. 1989a; Wenzel-Seifert and Seifert 1990). Finally,
pretreatment of neutrophils with PMA results in inhibition of phos-
pholipase C but in potentiation of respiratory burst induced by NaF or
fMet-Leu-Phe (Della Bianca et al. 1986a; see also Sects. 3.2.1.3, 3.2.2.2,
323.1).

Onthe other hand, it has been reported that PM A decreases the binding
of C5a to its receptors and blunts the stimulatory effects of this intercellular
signalmolecule on O3 formation in human neutrophils (Bender et al. 1987).
In addition, pretreatment with PMA desensitizes human neutrophils and
human peritoneal macrophages to undergo a respiratory burst upon
stimulation with opsonized and unopsonized bacteria (Gbarah et al. 1989;
see also Sects. 3.3.1.5,3.3.2.12.1). These data suggest that different types of
receptors show differential sensitivity to sensitization and/or desensitization
by protein kinase C. However, in comparison to adrenergic receptors
(Lefkowitz and Caron 1986; Sibley et al. 1987), much less information on
the molecular basis of these processes at phagocyte receptors is available
(see also Sects. 3.3.1.1.3,3.3.1.1.4,4.1.3).

3.2.3 Calcium and Calmodulin

Ca” plays an important role as intracellular signal molecule, mainly in the
regulation of calmodulin-dependent enzymes (Rasmussen and Waisman
1983; Tomlinson et al. 1984). Following receptor-mediated activation of
phospholipase C, inositol 1,4,5-triphosphate is released from phos-
phatidylinositol 4,5-biphosphate and mobilizes intracellular Ca** from non-
mitochondrial stores (Streb et al. 1983; Berridge and Irvine 1984; DiVirgilio
et al. 1985; Krause and Lew 1987; Volpe et al. 1988; Jaconi et al. 1988;
Perianin and Snyderman 1989). In addition, fMet-Leu-Phe induces
mobilization of plasma membrane-bound Ca** and induces Ca** influx from
the extracellular space (Nacchache et al. 1979; Schell-Frederick 1984; Rossi
etal. 1985; Andersson et al. 1986a; von Tscharner et al. 1986a,b; Di Virgilio
et al. 1987; Nasmith and Grinstein 1987b). The question whether the
fMet-Leu-Phe-induced Ca®* influx via plasma membrane ion channels
depends on an increase in cytoplasmic Ca®* is a subject of present debate
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(von Tscharner et al. 1986b; Nasmith and Grinstein 1987b). Moreover,
inositol 1,3,4,5-tetrakisphosphate has recently been suggested to be in-
volved in receptor-mediated Ca®" influx in myeloid cells (Pittet et al. 1989).

3.2.3.1 Correlations and Dissociations Between
Activation of Ca”™*-Dependent Processes and NADPH Oxidase

Similar to the role of protein kinase C, the role of Ca’ in the receptor-
mediated activation of NADPH oxidase is very controversial (see Sect.
3.2.2.1). There are certain correlations between activation of O3 formation
and an increase in cytoplasmic Ca*,and Ca** ionophores, i.e., A 23187 and
ionomycin, may activate the respiratory burst in various types of phagocytes
(Schell-Frederick 1974; Romeo et al. 1975; McPhail and Snyderman 1983;
Dale and Penfield 1985, 1987, Wymann et al. 1987b; Christiansen et al.
1988a; Seifert et al. 1989c; Dahlgren and Follin 1990). In addition, Ca®
ionophores prime phagocytes for an enhanced respiratory burst upon
subsequent stimulation with chemotactic peptides, cytokines, cell-per-
meant diacylglycerols, phorbol esters, and other stimuli (McPhail and
Snyderman 1983; McPhail et al. 1984a; Dale and Penfield 1984; Robinson
et al. 1984; Strnad and Wong 1985a; Finkel et al. 1987; Dahlgren 1989;
Koenderman et al. 1989a; see also Sects. 3.1.1, 3.3.1.3).

With regard to the chemoattractant-induced respiratory burst, an in-
crease in cytoplasmic Ca** precedes O formation. Inhibition of the in-
crease in cytoplasmic Ca* and removal of extracellular Ca**are associated
with suppression of fMet-Leu-Phe-induced O3 formation (Serhan et al.
1983; Hallett and Campbell 1984; Nakagawara et al. 1984; Lew et al. 1984b;
Sklar and Oades 1985; Lazzari et al. 1986; Dahlgren 1987; Hruska et al. 1988;
Seifert et al. 1990). Extracellular Ca® restores the ability of phagocytes to
generate Oy upon exposure to chemotactic peptides (Stickle et al. 1984).
In contrast, the zymosan-induced respiratory burst in Kupffer’s cells does
not depend on extracellular Ca®* (Dieter et al. 1988).

The putative inhibitor of intracellular Ca®* release, 34,5-
trimethoxybenzoic acid 8-(diethylamino)-octyl ester (TMB 8), inhibits
PMA- and fMet-Leu-Phe-induced O; formation (Matsumoto et al. 1979;
Smith and Iden 1981; Smolen et al. 1981; Smolen 1984; Korchak et al.
1984a,b; Elferink and Deierkauf 1985). In addition, organic Ca** channel
blockers of different chemical classes, e.g., verapamil, diltiazem, and
dihydropyridines at very high concentrations, inhibit Oz formation induced
by a variety of stimuli, including PMA and fMet-Leu-Phe in a stereo-un-
specific manner (Di Perri et al. 1984; Elferink and Deierkauf 1984; Della
Bianca et al. 1985; Irita et al. 1986; Elferink and Deierkauf 1988; Zimmer-
man et al. 1989). Apparently, these drugs do not inhibit O3™ formation via
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blockade of voltage-dependent Ca** channels. This view is supported by the
fact that neutrophils possess Ca**-activated cation channels which are not
sensitive to dihydropyridines, and high-affinity binding sites for
dihydropyridines are also missing in myeloid cells (von Tscharner et al.
1986a; Pennington et al. 1986; Mitsuhashi et al. 1989). Verapamil does not
inhibit fMet-Leu-Phe-induced Ca®* influx from the extracellular space, and
the concentrations of Ca®* channel blockers required to inhibit O3 forma-
tion are much higher than those required for the blockade of Ca®* channels
in other tissues (Elferink and Deierkauf 1984; Pennington et al. 1986).
Organic Ca™* channel blockers inhibit protein kinase C, may directly inter-
fere with components of NADPH oxidase, or may show anesthetic-like
membrane effects (Della Bianca et al. 1985; Irita et al. 1986; Elferink and
Deierkauf 1988; Schichtele et al. 1989). Paradoxically, the dihydropyridine
felodipine has been shown to stimulate phosphorylation of protein kinase
C substrates in platelets (Sutherland and Walsh 1989). 3,7-Dimethoxy-4-
phenyl-N-1H-tetrazol-5-yl-4Hfuro[3,2-b]indole-2-carboxamide  (CI-922)
has been reported to inhibit A 23187- and receptor agonist-induced O3
formation presumably through interference with calmodulin-dependent
processes (Wright et al. 1987a,b). The effects of the calmodulin antagonists
W-7, chlorpromazine, and trifluoperazine and of purified calmodulin on
O3 formation are described in Sects. 3.2.2.3 and in 5.1.3.3.

Neutrophils possess a Na*/Ca®* exchanger which mediates Ca® influx
in the resting state (Simchowitz et al. 1990). The order of effectiveness of
various cations (e.g., La*,Zn*,Sr*,Cd*)and analogues of amiloride (e.g.,
benzamil, phenamil) in inhibiting Na*/Ca*" exchange and fMet-Leu-Phe-
induced O3 formation is similar. Additionally, the above substances inhibit
the fMet-Leu-Phe-induced rise in cytoplasmic Ca®*. These data suggest that
Na*/Ca®* exchange contributes to the chemotactic peptide-mediated in-
crease incytoplasmic Ca®* and is involved in the activation of NADPH oxidase.

During the past few years a rapidly increasing number of studies have
provided evidence for the assumption that cytoplasmic Ca** does not play
a key role or may even be of no relevance in receptor-mediated activation
of the respiratory burst. Some of the evidence available in the literature
pointing against a crucial role of Ca** in the regulation of NADPH oxidase
by receptor agonists is summarized below. In 1983, Pozzan et al. showed
that fMet-Leu-Phe and iononycin induce similar increases in cytoplasmic
Ca**, whereas only the chemotactic peptide is an effective activator of O3
formation. Interestingly, fMet-Leu-Phe induces a maximal increase in
cytoplasmic Ca®* without activating O3 formation (Korchak et al. 1984b).
In 1985, Apfeldorf et al. reported that a murine monoclonal antibody
induces an increase in cytoplasmic Ca®* but not O3 formation in human
neutrophils.
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Inadherent neutrophils and cultured human monocytes the fMet-Leu-
Phe-induced O3 formation and increase in cytoplasmic Ca” do not corre-
late (Rebut-Bonneton et al. 1988; Bernardo et al. 1988), and fMet Leu-Phe
activates oxygen consumption in electropermeabilized and Ca**-depleted
human neutrophils (Grinstein and Furuya 1988). 1,25-Dihydroxyvitamin
Ds-differentiated U-937 cells generate O3 upon exposure to opsonized
zymosan and PMA but not upon stimulation with fMet-Leu-Phe, although
fMet-Leu-Phe induces an increase in cytoplasmic Ca** (Polla et al. 1989).
In neutrophil cytoplasts, fMet-Leu-Phe induces a respiratory burst inde-
pendently of extracellular Ca®* (Torres and Coates 1984). The fact that
fMet-Leu-Phe, C5a, LTB4, and PAF induce a rapid increase in cytoplasmic
Ca®, but that only fMet-Leu-Phe and C5a are effective activators of
NADPH oxidase, provides another example for the dissociation of Ca®*
mobilization and O3 formation (Hartiala et al. 1987). With respect to
priming of O3 formation by PAF, both Caz+~dependent and -independent
pathways may exist (Koenderman et al. 1989a). In human blood monocytes,
an increase in cytoplasmic Ca®* is not sufficient for the activation of O3
formation (Kemmerich and Pennington 1988).

The onset of the respiratory burst by fMet-Leu-Phe, PAF, LTBs4, or C5a
is faster than that by PMA or ionomycin, suggesting that chemoattractants
and the latter two agents activate NADPH oxidase by different mechanisms
(Wymann et al. 1987b). PMA reduces the lag time of chemotactic peptide-
induced H>O; formation, and chemoattractants have been suggested to
activate the respiratory burst through Ca**/protein kinase C-dependent and
-independent mechanisms (Wymann et al. 1987b; Dewald et al. 1988; see
also Sects. 3.2.2.2, 43.1). In human neutrophiis primed with PMA, the
fMet-Leu-Phe-induced O3 formation is potentiated, whereas the release
of inositol triphosphate and increase in cytoplasmic Ca®" are blocked due
to inhibition of phospholipase C (Deﬂa Bianca et al. 1986a; see also Sects.
322.1,3.2.2.2,3.2.2.5). In addition, Ca**-depleted neutrophils primed with
PMA undergo a respiratory burst in the absence of phosphoinositide
turnover (Grzeskowiak et al. 1986) Furthermore, ConA plus fMet-Leu-
Phe activate NADPH oxidase in Ca’ -depleted human neutrophlls without
activating phospholipase C or increasing cytoplasmic Ca® (Rossi et al
1986). NaF also does not induce phosphomosmde degradation, Ca’*
mobilization, or oxygen consumption in Ca**-depleted neutrophils, but
priming with PMA restores the ability of NaF to activate NADPH oxidase
without an effect on phospholipase C (Della Bianca et al. 1988; see also
Sects. 3.2.1.3, 5.1.4.2). Finally, the results of a recent study indicate that
priming of the respiratory burst by fMet-Leu-Phe involves phospholipase
C- and Ca**-independent signal transduction pathways (Karnad et al. 1989)
(see also Sects. 3.2.1.2,33.1.1.4).
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3.2.4 Phospholipase A; and Arachidonic Acid

Intercellular signal molecules, e.g., chemotactic peptides, PAF, and ATP,
induce the release of arachidonic acid in a variety of phagocytes, e.g., guinea
pig, rabbit and human neutrophils, HL-60 cells, and guinea pig macro-
phages, presumably through activation of phospholipase A; (Brombergand
Pick 1983; Bokoch and Gilman 1984; Okajima and Ui 1984; Ohta et al. 1985;
Tao et al. 1989; Nakashima et al. 1989; Cockcroft and Stutchfield 1988b). In
contrast, other authors reported that fMet-Leu-Phe is only a poor stimulus
for arachidonic acid release unless cells are primed with OAG or A 23187
(Clancy et al. 1983; Billah and Siegel 1987; Bauldry et al. 1988). Interestingly,
recent studies indicate that G-proteins are involved in the regulation of
phospholipase A, in various cell types including phagocytes (Okajima and
Ui 1984; Ohta et al. 1985; Burch et al. 1986; Jelsema and Axelrod 1987;
Jelsema 1987; Axelrod et al. 1988; Nakashima et al. 1989; Cockcroft and
Stutchfield 1989b). fMet-Leu-Phe, CSa, and LTB, have been reported to
activate phospholipase A, in membranes of rabbit neutrophilsin a Ca**-de-
pendent manner (Bormann et al. 1984), but this finding was not confirmed
in a subsequent study (Matsumoto et al. 1988).

3.2.4.1 Correlations and Dissociations Between
Activation of Arachidonic Acid Release and NADPH Oxidase

As is the case of protein kinase C and cytoplasmic Ca”™, there is evidence
for and against the hypothesis that arachidonic acid or one of its
lipoxygenase products serves as intracellular signal molecule for the activa-
tion of NADPH oxidase. On one hand, various chemically unrelated stimuli
induce the release of arachidonic acid and a respiratory burst in guinea pig
macrophages (Bromberg and Pick 1983). Most importantly, unsaturated
fatty acids activate O3 formation both in intact phagocytes and in cell-free
systems (Badwey et al. 1981, 1984; Bromberg and Pick 1983; Boukili et al.
1986; see also Sects. 3.1.2, 5.1.3). In addition, the respiratory burst induced
by various agents including fMet-Leu-Phe has been reported to be en-
hanced by exogenous unsaturated fatty acids and/or exogenous phos-
pholipase A; (Lackie and Lawrence 1987; Ginsburg et al. 1989). Certain
lysophosphatides potentiate the respiratory burst as well (Ginsburg et al.
1989). In contrast, inhibitory effects of fatty acids on receptor-mediated
Oz formation have also been observed (see Sect. 4.1.2).

A phospholipase Aj-activating protein which possesses antigenic and
biochemical similarities with mellitin activates O, formation and release of
arachidonic acid in human neutrophils in a concentration-dependent man-
ner without inducing cytotoxicity (Bomalaski et al. 1989). Moreover, in-
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hibitors of phospholipase A,, e.g., p-bromophenacyl bromide and mepa-
crine (quinacrine), and inhibitors of lipoxygenases, e.g., ETYA, nor-
dihydroguaiaretic acid, esculetin, and BW755C, have been reported to
inhibit the agonist-induced respiratory burst (Bokoch and Reed 1979;
Smolen and Weissmann 1980; Rossi et al. 1981b; Kaplan et al. 1984;
Maridonneau-Parini and Tauber 1986; Maridonneau-Parini et al. 1986;
Sakata et al. 1987b). Interestingly, deficiency of polyunsaturated fatty acids
is associated with decreased chemotactic peptide-induced O3 formation,
possibly due to perturbation of arachidonic acid metabolism (Palmblad et
al. 1988b; Gyllenhammar and Palmblad 1989). Recently, arachidonic acid
has been suggested to play a role in the mobilization of Ca** from intracel-
lular stores in human neutrophils (Beaumier et al. 1987). Finally, the
antileprosy agent, clofazimine, potentiates Oz formation and arachidonic
acid release in human neutrophils induced by various stimuli including
fMet-Leu-Phe and PMA (Anderson et al. 1988). As the potentiating effect
of clofazimine is abolished by p-bromophenacyl bromide, it was suggested
that clofazimine potentiates Oz formation by a phospholipase Az-depend-
ent mechanism, and that this priming effect on the respiratory burst con-
tributes to its antimycobacterial activity.

On the other hand, it has been reported that there is no close correlation
between the effects of lipoxygenase inhibitors on O3 formation and produc-
tion of LTB4 (Ozaki et al. 1986b), and blockade of arachidonic acid release
in neutrophils by combining inhibitors of diacylglycerol Kinase,
diacylglycerol lipase, and phospholipase A (R 59 022 plus RHC 80267 plus
indomethacin) does not substantially affect O3 formation induced by IgG
or opsonized zymosan (Muid et al. 1988). Several dissociations between the
release of arachidonic acid and activation of the respiratory burst have been
observed in murine macrophages (Tsunawaki and Nathan 1986). As is the
case for protein kinase C inhibitors, the specificity of some commonly used
inhibitors of arachidonic acid metabolism is of concern. For example,
p-bromophenacyl bromide, quinacrine, nordihydroguaiaretic acid, and
ETYA may inhibit the respiratory burst through nonspecific mechanisms
or via suppression of glucose uptake from the extracellular space rather
than through inhibition of arachidonic acid metabolism (Schuliz et al. 1985;
Tsunawaki and Nathan 1986). In addition, several inhibitors of
lipoxygenases and phospholipase A at nontoxic concentrations do not
inhibit the respiratory burst in murine peritoneal macrophages (Schultz et
al. 1985). Moreover, ETYA and esculetin may directly inhibit NADPH
oxidase (Ozaki et al. 1986; Seifert and Schultz 1987a; see also Sect. 5.1.3).
The results of studies with glucocorticoids, which inhibit the release of
arachidonic acid, are also controversial (see Sect. 4.2.1).
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3.2.5 Cytoskeleton

Cyclic alterations in morphology, e.g., lamellipod extensions and retrac-
tions, which are regulated by the cytoskeleton, have recently been suggested
to play a part in chemoattractant-induced O3 formation (Wymann et al.
1989). The major component of the cytoskeleton in neutrophils is actin,
which exists in a globular monomeric form (G-actin) and in a double helical
form (F-actin, Omann et al. 1987a; Sandborg and Smolen 1988).
Cytochalasins, especially CB, are widely used experimental tools to study
the role of actin filaments in the regulation of NADPH oxidase.
Cytochalasins are fungal metabolites which permeate cell membranes and
cause morphological and metabolic alterations, e.g., inhibition of glucose
transport, in various cell types (Korn 1982). Cytochalasins bind to actin
filaments and inhibit their elongation (Flanagan and Lin 1990; Brown and
Spudich 1981).

3.2.5.1 Cytochalasins

CB and other cytochalasins potentiate chemoattractant-induced O3 for-
mation (Lehmeyer et al. 1979; O’Flaherty et al. 1980; Williams and Cole
1981; Cooke et al. 1985; Al-Mohanna et al. 1987). In addition, CB has been
shown to potentiate receptor-mediated release of diacylglycerol and in-
crease in cytoplasmic Ca”*, and the concentrations of CB which half-maxi-
mally inhibit actin polymerization and potentiate O;” formation, are similar
(Honeycutt and Niedel 1986; Treves et al. 1987; Al-Mohanna and Hallett
1987).

The mechanism by which cytochalasins potentiate receptor-mediated
O; formation is only incompletely understood. The exposure of
phagocytes to the chemoattractants fMet-Leu-Phe or C5a is associated
with actin polymerization and an increase in cytoskeleton-bound actin
(White et al. 1983a; Sha’afi and Molski 1987; Sklar et al. 1985a; Howard and
Wang 1987; Omann et al. 1987a; Banks et al. 1988). This receptor-mediated
process is interrupted by CB (White et al. 1983; Omann et al. 1987a). LTB.4
and PAF but not fMet-Leu-Phe induce rapid oscillations of actin
polymerization (Omann et al. 1989). The mechanism by which chemoat-
tractants induce actin polymerization, has been suggested not to involve
activation of phospholipase C or protein kinase C or the increase in
ctyoplasmic Ca®* but rather more direct regulation by G-proteins (Banks
et al. 1988; Bengtsson et al. 1988; Downey et al. 1989; Rao et al. 1989;
Therrien and Naccache 1989; Omann et al. 1989). Not only CB but also
dihydro-CB, which apparently does not interfere with glucose transport,



62 Activation of NADPH Oxidase

potentiates chemotactic peptide-induced O3 formation in human
neutrophils (Jesaitis et al. 1986). The effect of dihydro-CB on Oz formation
is maximal when added to phagocytes prior to fMet-Leu-Phe. A competi-
tive antagonist at formyl peptide receptors inhibits the effect of dihydro-CB,
suggesting that permanent stimulation of formyl peptide receptors is essen-
tial for potentiation of O3 formation. Dihydro-CB enhances binding of
fMet-Leu-Phe to formyl peptide receptors and inhibits the formation of
slowly dissociating complexes of agonist-occupied receptors with the cyto-
skeleton (Jesaitis et al. 1984, 1985, 1986; Omann et al. 1987a,b). In addition,
dihydro-CB inhibits desensitization of formyl peptide receptors, which
process is correlated with the association of receptors to the cytoskeleton.
Thus, internalization of formyl peptide receptors may play a role in the
termination of neutrophil responses to fMet-Leu-Phe, and this process is
prevented by cytochalasins (Jesaitis et al. 1986; see also Sect. 3.3.1.1.3).

Neutrophils possess cryptic formyl peptide receptors which are ex-
pressed upon storage of the cells at room temperature, and this process
results in enhanced O3 formation (Dahlgren et al. 1987). In contrast, this
phenomenon is not seen in dimethyl sulfoxide-differentiated HL-60 cells
(see also Sects. 1,3.3.1.1.4,3.4.4.1.3). We observed that CB is a considerably
less effective potentiator of fMet-Leu-Phe-induced O3 formation in
dimethyl sulfoxide-differentiated HL-60 cells than in neutrophils (un-
published results), suggesting that the regulation of expression of formyl
peptide receptors is different in the two cell types. This assumption is also
supported by the finding that chemotactic peptide-induced O3 formation
in differentiated HL-60 cells is more sensitive to homologous desensitiza-
tion than that in human neutrophils (Lee et al. 1989; McLeish et al. 1989b;
Seifert et al. 1989b; see also Sect. 3.3.1.1.3).

In electropermeabilized neutrophils, phalloidin inhibits depolymeriza-
tion of actin following stimulation with formyl peptides, and this process is
accompanied by inhibition of NADPH oxidase (Al-Mohanna and Hallett
1990). These data suggest that agonist-induced actin polymerization plays
a part in the termination of the respiratory burst (Al-Mohanna and Hallett
1990; see also Sect. 3.3.1.1.3).

Certain cytochalasins including CB have been reported to activate, at
least to a limited extent, the respiratory burst in rabbit alveolar macro-
phages, guinea pig neutrophils and differentiated HL-60 cells (Nakagawara
and Minakami 1975; Takeshige et al. 1980; Okamura et al. 1980; Bentley
and Reed 1981; Sugimoto et al. 1982; Wenzel-Seifert and Seifert 1990). In
human neutrophils, CB is only a weak activator of O3 formation, but it
substantially activates NBT reduction (Elferink et al. 1990b). The involve-
ment of G-proteins in CB-induced NBT reduction is suggested by the
finding that pertussis toxin inhibits this process (Elferink et al. 1990). There
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are some reports in the literature that cytochalasins also affect O3 forma-
tion induced by stimuli which circumvent receptor stimulation. For ex-
ample, CB potentiates OAG-induced O3 formation but not that induced
by phorbol esters (Lehmeyer et al. 1979; O’Flaherty et al. 1980; Ozaki et al.
1986a). In contrast, cytochalasin E has been reported to alter the kinetics
of PMA-induced O3 formation (Badwey et al. 1982). Finally, cytochalasins
have been reported to inhibit the respiratory burst induced by various
agents, e.g., digitonin, latex beads, substance P, and opsonized zymosan
(Williams and Cole 1981; Hallett and Campbell 1983; Serra et al. 1988;
Elferink and Deierkauf 1989b; see also Sect. 3.3).

3.2.5.2 Botulinum C2 Toxin

The problems associated with the use of cytochalasins to study the role of
actin filaments in receptor-mediated activation of O3 formation, i.e., the
lack of specificity of the substances, are avoided by the use of the binary
toxin of certain Clostridium botulinum strains, botulinum C2 toxin.
Botulinum C2 toxin possesses ADP ribosyltransferase activity and prevents
actin polymerization by ADP-ribosylating G-actin of various cell types
including platelets and neutrophils (Aktories et al. 1986a,b, 1987). ADP-
ribosylated actin acts as a capping protein and inhibits further actin
polymerization (Weigt et al. 1989). In neutrophils, botulinum C2 toxin
inhibits fMet-Leu-Phe-induced actin polymerization without substantially
altering the binding or dissociation dynamics of formyl peptides or Ca”™
mobilization (Al-Mohanna et al. 1987; Norgauer et al. 1988, 1989). How-
ever, botulinum C2 toxin slows endocytosis of ligand/receptor complexes
(Norgauer et al. 1989). In analogy to CB, botulinum C2 toxin potentiates
the fMet-Leu-Phe-, ConA-, and PAF-induced respiratory burst in human
and rat neutrophils (Al-Mohanna et al. 1987; Norgauer et al. 1988). The
effects of botulinum C2 toxin and CB are additive only at submaximally
stimulatory concentrations of either agent, and the effect of botulinum C2
toxin is not evident in CB-treated cells (Al-Mohanna et al. 1987; Norgauer
et al. 1988). These data support the view that CB and botulinum C2 toxin
potentiate receptor agonist-induced O3 formation, at least in part, by a
mechanism which they have in common. In contrast, botulinum C2 toxin
does not potentiate PMA-induced O™ formation (Norgauer et al. 1988).

3.2.5.3 Miscellaneous Agents

Substances which disrupt microtubules also enhance chemotactic peptide-
induced O3 formation. Among these substances are colchicine, which is
used in the treatment of acute gouty arthritis, the antifungal agent griseoful-
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vin, and the anti-neoplastic agents, vincristine, vinblastine and podophyl-
lotoxin (Kitagawa and Takaku 1982). In contrast, Al-Mohanna and Hallett
(1987) did not find a stimulatory effect of colchicine on fMet-Leu-Phe-in-
duced O3 formation. Minta and Williams (1986) also reported on a lack of
inhibitory effect of colchicine on O3 formation in human neutrophils.
Somewhat unexpectedly, deuterium oxide, which is assumed to stabilize
microtubules, has been reported to potentiate fMet-Leu-Phe-induced O3
formation as well (Kitagawa and Takaku 1982).

3.2.6 Cyclic Nucleotides
3.2.6.1 The Role of cAMP

The role of chemotactic peptides in the regulation of adenylyl cyclase, which
catalyzes the formation of cAMP from ATP, is controversial. Whereas
Verghese et al. (1985b) and Bokoch (1987) reported that chemotactic
peptides neither inhibit nor stimulate adenylyl cyclase in neutrophil plasma
membranes, Saad et al. (1987) reported an inhibition of adenylyl cyclase by
fMet-Leu-Phe at concentrations above 1 uM in a pertussis toxin-sensitive
manner. It should be emphasized, however, that these concentrations of
fMet-Leu-Phe are considerably higher than those required to induce
neutrophil activation (Seifert et al. 1989a,b,d).

Neutrophils possess cAMP-dependent protein kinase, and several
proteins are phosphorylated by this kinase (Tsung et al. 1975; Helfman et
al. 1983; Huang et al. 1983a,b; Kramer et al. 1988a). In addition, neutrophils
possess high- and low-affinity cAMP phosphodiesterases (Grady and
Thomas 1986).

In intact phagocytes, fMet-Leu-Phe induces a transient increase in
cAMP (Jackowski and Sha’afi 1979; Simchowitz et al. 1980a,b; Smolen et
al. 1980; Pryzwansky et al. 1981; Verghese et al. 1985b; Elliott et al. 1986;
Cronstein et al. 1988; Iannone et al. 1989). The chemotatic peptide-induced
rise in cAMP is apparently not due to direct activation of adenylyl cyclase
(Verghese et al. 1985b). The results of a recent study indicate that the
increase in cAMP subsequent to stimulation with fMet-Leu-Phe is due to
endogenous adenosine which may activate adenylyl cyclase through
adenosine A; receptors (Iannone et al. 1989; see also Sect. 4.1.1.4).

It has been discussed whether the chemotactic peptide-induced in-
crease in cAMP represents a stimulatory signal in neutrophil activation
(Jackowski and Sha’afi 1979; Simchowitz et al. 1980a,b; Smolen et al. 1980,
Pryzwansky et al. 1981). Under certain experimental conditions, the fMet-
Leu-Phe-induced increase in cAMP and O3 formation are dissociated
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(Smolen et al. 1980). In addition, the inhibitor of adenylyl cyclase, 9-
(tetrahydro-2-furyl)adenine (SQ 22,536), blunts the fMet-Leu-Phe-in-
duced increase in cAMP, whereas O3 formation is not abolished (Harris et
al. 1979; Simchowitz et al. 1983). Thus, an increase in cAMP is apparently
not a critical signal in the activation of Oz formation.

Other authors suggested that the chemoattractant-induced rise in
cAMP is an inhibitory signal (Hopkins et al. 1983; Korchak et al. 1984d,
Claesson and Feinmark 1984; Verghese et al. 1985b). Formation of pros-
taglandins of the E series subsequent to chemoattractant-induced
release of arachidonic acid may contribute, at least in part, to cAMP-in-
duced inhibition of the respiratory burst (Mallery et al. 1986; Bjornson et
al. 1989; see also Sects. 3.2.4,4.1.1.1).

3.2.6.2 The Role of cGMP

In addition to cAMP, cGMP plays a role in the regulation of certain cell
functions (Goldberg and Haddox 1977, Waldman and Murad 1987,
Tremblay et al. 1988). The formation of cGMP from GTP is catalyzed by
soluble and particulate guanylyl cyclases, and cGMP activates a cGMP-de-
pendent protein Kinase. In addition, cGMP may directly modulate the
activity of ion channels and phosphodiesterases (Waldman and Murad
1987; Tremblay et al. 1988).

Human neutrophils possess a soluble guanylyl cyclase which requires
Mn** or Mg and is stimulated by NO-generating compounds, e.g., sodium
nitroprusside (Lad et al. 1985e). In intact neutrophils, fMet-Leu-Phe does
not induce an increase in cGMP (Smolen et al. 1980). In comparison to
protein kinase C, neutrophils possess a considerably lower activity of cGMP-
dependent protein kinase (Helfman et al. 1983, Pryzwansky et al. 1990).

Stimulation of neutrophils with chemotactic peptides is accompanied
by the association of cGMP-dependent protein kinase to specific com-
ponents of the cytoskeleton (Pryzwansky et al. 1990). Human mononuclear
phagocytes and neutrophils show both cAMP and c¢GMP phos-
phodiesterase activity (Prigent et al. 1990).

In comparison to protein kinase C, Ca**, and cAMP, the role of cGMP
in the regulation of NADPH oxidase has been only very poorly studied and
is obscure. Several years ago, exocytosis induced by A 231876 or opsonized
zymosan in human neutrophils was suggested to be associated with an
increase in cGMP (Ignarro and George 1974; Smith and Ignarro 1975).
Human neutrophils and monocytes have been shown to possess high-af-
finity binding sites for muscarinic agonists (Dulis et al. 1979; Lopker et al.
1980), and muscarinic cholinergic agonists have been reported to enhance
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exocytosis and cGMP accumulation (Ignarro and George 1974; Smith and
Ignarro 1975; Weissmann et al. 1975). In addition, carbachol has been
reported to activate O3~ formation in human neutrophils (Fiilp et al. 1988).
We reexamined the latter issue and found that carbachol at concentrations
between 10 nM and 10 pM does not activate O3 formation in human
neutrophils in the presence or absence of CB. Inaddition, carbachol at these
concentrations does not inhibit or stimulate O3 formation induced by
fMet-Leu-Phe at 10 nM-1 uM (unpublished results; see also Sects. 1,
3.3.1.2.4,6.2.4). The cell-permeant analogue of cGMP, dibutyryl cGMP, has
been reported to inhibit chemoattractant-induced exocytosis and O3 for-
mation (Fujita et al. 1984; Schroder et al. 1989), whereas dibutyryl cGMP
does not affect zymosan-induced O3 formation in rat neutrophils (Smith
et al. 1980). A differential sensitivity of various receptors to desensitization
has also been observed with PMA (Bender et al. 1987; see also Sect. 3.2.2.5).
We found that both dibutyryl cAMP and dibutyryl cGMP inhibit O3
formation induced by fMet-Leu-Phe in human neutrophils (Ervens et al.
1991). Dibutyryl cGMP is more effective than dibutyryl cAMP to inhibit
O; formation induced by fMet-Leu-Phe at a submaximally effective con-
centration (50 nM ) but does not affect O formationinduced by fMet-Leu-
Phe at a maximally effective concentration (1 M) (Ervens et al. 1991). In
contrast, dibutyryl cGMP potentiates O> formation induced by C5a at
submaximally and maximally effective concentrations and dibutyryl cGMP
antagonizes inhibition of O3 formation caused by dibutyryl cAMP.
Dibutyryl cGMP inhibits PAF-induced O3 formation to alesser extent than
dibutyryl cAMP and has no effect on that induced by LTB4. Dibutyryl
cAMP and dibutyryl cAMP have no effect on O3 formation induced by
NaF, y-hexachlorocyclohexane, PMA, arachidonic acid, and A 23187 (Er-
vens et al. 1991). These data suggest that dibutyryl cAMP generally desen-
sitizes chemoattractant-stimulated O3  formation (see also Sect. 4.1).
Dibutyryl cGMP desensitizes fMet-Leu-Phe- and PAF-stimulated O3 for-
mation but sensitizes C5a-induced O3 formation (see also Sect. 3.3.1.5.1).
The lack of effect of cyclic nucleotides on O3 formation induced by agents
other than receptor agonists indicates that cAMP and cGMP modulate
early steps of signal transduction processes initiated by chemoattractants
(Ervens et al. 1991).

Serotonin plays a role in the pathogenesis of inflammatory processes
(Owen 1987) and has been reported to increase the concentration of cGMP
in human monocytes (Sandler et al. 1975a,b; Williams et al. 1986). Serotonin
enhances the PMA- induced respiratory burst in resident mouse peritoneal
macrophages and in PU5-1.8-F7 macrophages (Silverman et al. 1985; see
also Sect. 3.3.2.3). In human neutrophils, serotinin at concentrations up to
10 uM does not activate O3 formation in the presence or absence of CB,
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but serotonin shows a weak inhibitory effect on chemotactic peptide-in-
duced O3 formation (Seifert, unpublished results).

Activation of the respiratory burst by GM-CSF, elastin peptides,
methionine enkephalin, and tuftsin has been claimed to be accompanied by
an increase in cGMP (Stabinsky et al. 1980; Fiilop et al. 1986; Foris et al.
1986; Coffey et al. 1988; see also Sects. 3.3.1.3.5.2,3.3.1.4.3,3.3.2.3). Finally,
sodium nitroprusside has been reported to induce a respiratory burst in
guinea pig peritoneal macrophages, but this effect has been suggested tobe
independent of guanylyl cyclase activation (Pick and Keisari 1981).

In addition to the cyclic purine nucleotides cAMP and cGMP, the cyclic
pyrimidine nucleotide cCMP, which is an endogenous substance in mam-
malian cells, was suggested to modulate activation of NADPH oxidase
(Ervens and Seifert 1991). This assumption is supported by the finding that
a cell-permeant analogue of cCMP differentially modulates Oz formation
in human neutrophils stimulated by various agents; that stimulated by
fMet-Leu-Phe is inhibited, that stimulated by PAF and y-hexachlorocyclo-
hexane is potentiated, and that stimulated by NaF, A23187, PMA, and
arachidonic acid is unaffected. Additionally, evidence was presented by
these authors that cAMP, cGMP, and cCMP are functionally nonequi-
valent.

3.2.7 Protein Tyrosine Phosphorylation and Protein Phosphatases

During the past 2 years, substantial evidence has been accumulated that
phosphorylation of tyrosine residues of proteins and dephosphorylation of
proteins by (tyrosine) phosphatases play a role in the activation of the
respiratory burst. In contrast, protein tyrosine phosphorylation may be less
crucial for activation of actin polymerization and exocytosis (Trudel et al.
1990). Human neutrophils and HL-60 cells possess protein tyrosine kinase
and phosphotyrosine phosphatase activity, and the latter enzyme is in-
hibited subsequent to stimulation with fMet-Leu-Phe or PMA (Kraft and
Berkow 1987; Boutin et al. 1989). In rabbit neutrophils, chemotactic pep-
tides induce tyrosine phosphorylation of various proteins in a pertussis
toxin-sensitive manner, whereas PMA is inactive in this respect (C.K.
Huang et al. 1988). In human neutrophils, both chemotactic peptides and
phorbol esters have been reported to induce tyrosine phosphorylation of
proteins (Gomez-Cambronero et al. 1989b). The inhibitor of protein
tyrosine kinase a-cyno-3-ethoxy-4-hydroxy-5-phenylmethyl-cinnamamide
(ST 638) inhibits the cytosolic but not the particulate protein tyrosine kinase
in human neutrophils (Berkow et al. 1989). ST 638 has been reported to
inhibit Oz formation induced by fMet-Leu-Phe, opsonized zymosan, and
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NaF but not that induced by PMA or A 23187, suggesting that tyrosine
phosphorylation of proteins plays a role in the G-protein-mediated activa-
tion of NADPH oxidase (Berkow et al. 1989; Gomez-Cambronero et al.
1989b). Formyl peptxde-mduced protem tyrosine phosphorylation may
involve an increase in cytoplasmic Ca®* and, at least in part, H-7-sensitive
protein kinases (Huang et al. 1990). Erbstatin is an inhibitor of protein
tyrosine kinases isolated from culture fluid of Streptomyces viridosporus
(Naccache et al. 1990). This compound inhibits fMet-Leu-Phe-induced
protein tyrosine phosphorylation, cytosolic acidification, and O3 forma-
tion, whereas actin polymerization and the increase in cytoplasmic Ca**and
exocytosis are not inhibited by erbstatin. Additionally, erbstatin does not
inhibit O3 formation stimulated by PMA and A 23187. In electroper-
meabilized human neutrophils, the stable GTP analogue and activator of
G-proteins, guanosine 5'-0-[3- thlo]trlphosphate (GTP[yS]), activates
oxygen consumption in the presence of Mg?* and ATP (Nasmith et al. 1989;
see also Sect. 5.1.4). In addition, GTP[yS] but not a cell-permeant
diacylglycerol induces tyrosine phosphorylation of various proteins, sug-
gesting that G-proteins are involved in the regulation of protein tyrosine
kinases (Nasmith et al. 1989).

A role of protein (tyrosine) phosphatases in the regulation of NADPH
oxidase is supported by the finding that ATP or adenosine 5'-0-[3-
thio]triphosphate (ATP[yS]) is required for activation of the respiratory
burst by fMet-Leu-Phe in electropermeabilized human neutrophils, and
that activation of oxygen consumption in the presence of ATP but not in
the presence of ATP[yS] is blocked upon addition of formyl peptide an-
tagonists (Nasmith et al. 1989; Grinstein et al. 1989). In addition, ATP[yS]
but not ATP or the nonphosphorylating analogue of ATP, adenosine 5'[f,
y-imido]triphosphate ([p, YNH]ATP), per se induces a respiratory burst in
electropermeabilized human neutrophils. These data suggest that ATP[yS]
induces thiophosphorylation and activation of regulatory proteins, and that
these thiophosphoproteins are resistant to dephosphorylation (Eckstein
1985; Grinstein et al. 1989). Apparently, specific protein kinases are active
in neutrophils in the absence of stimuli, and the accumulation of phos-
phoproteins but not that of thiophosphoproteins can be prevented by active
protein phosphatases (Grinstein et al. 1989; see also Sects. 3.3.1.8; 5.1.4.3).
This view is supported by the recent finding that the inhibitor of phos-
phatases, vanadate, induces a respiratory burst in electropermeabilized
human neutrophils which process is associated with protein tyrosine phos-
phorylation (Grinstein et al. 1990).

Platelet-derived growth factor (PDGF) is an important intercellular
signal molecule for the activation of various cell types of mesenchymal
origin and may play a role in malignant cell transformation (Hunter and
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Cooper 1985). The plasma membrane receptor for PDGF possesses protein
tyrosine kinase activity (Ek and Heldin 1982; Hunter and Cooper 1985).
The role of PDGF in the activation of the respiratory burst is controversial.
Tzeng et al. (1984) reported that PDGF at physiologically relevant con-
centrations activates O3 formation in human neutrophils to a similar extent
as does fMet-Leu-Phe or C5a. In addition, PDGF has been shown to
increase cytoplasmic Ca®* and to induce exocytosis, adherence, and ag-
gregation in neutrophils (Tzeng et al. 1984). In contrast, Nathan (1987) did
not find a stimulatory effect of PDGF on the respiratory burst in adherent
human neutrophils. We also did not observe stimulatory effects of PDGF
on O3 formation in suspended human neutrophils (unpublished results).
Inhibitory effects of PDGF on the respiratory burst were also reported.
Wilson et al. (1987) found that PDGF at picomolar concentrations inhibits
O3 formation in human neutrophils induced by chemoattractants, whereas
the respiratory burst stimulated by PMA and arachidonic acid is not
affected.

3.2.8 Proteases

Proteolytic processes are discussed to play a role in the regulation of the
respiratory burst. Some experiments with exogenous proteases support a
role of proteolytic processes in the activation of NADPH oxidase, and
exogenous proteases may be of pathophysiological relevance as poten-
tiators and/or activators of the respiratory burst in inflammatory processes.
Neutrophil membranes possess chymotrypsinlike protease and neutral
endopeptidase activity (Tsung et al. 1978; Duque et al. 1983; Painter et al.
1988). Exogenous cathepsin G, chymotrypsin, and elastase have been
reported to potentiate fMet-Leu-Phe-induced O3 formation in neutrophils
(Kusner and King 1989). O3 formation stimulated by PMA or arachidonic
acid is potentiated by certain proteases as well (Kusner and King 1989). A
monoclonal antibody which inhibits chymotrypsinlike proteases has been
shown to inhibit fMet-Leu-Phe-induced O; formation (King et al. 1987).
In addition, various exogenous proteases such as trypsin, chymotrypsin,
pronase or papain, or the neutrophil proteases elastase and cathepsin G
have been reported to enhance the respiratory burst in macrophages
(Johnston et al. 1981; Speer et al. 1984). Finally, chymotrypsin and trypsin
induce a respiratory burst in isolated rat glomeruli (Basci and Shah 1987,
see Sect. 3.4.4.2.2).

The interpretation of studies dealing with the effects of protease in-
hibitors is complicated by the fact that some of these substances may show
other effects than inhibition of proteases. Various inhibitors of proteases,
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e.g., phenylmethylsulfonyl fluoride (PMSF), tosyl-L-phenylalanyl
chloromethyl ketone (TPCK), and aprotinin, have been reported to inhibit
O3 formation induced by various stimuli including fMet-Leu-Phe and
proteases in various types of phagocytes (Kitagawa et al. 1979, 1980a;
Goldstein et al. 1979; Hoffman and Autor 1982; Duque et al. 1983; Basci
and Shah 1987). However, the effects of chloromethyl ketones on Oz
formation may be attributable to inhibition of SH groups rather than to
inhibition of serine proteases (Tsan 1983). Recently, Conseiller and Lederer
(1989) have suggested that the inhibitory effects of TPCK on O3 formation
are not due to reduction of the cellular content of SH groups or to inhibition
of proteases or protein kinase C but due to interference with protein
components which are involved the maintenance of O formation. In fact,
TPCK binds to a protein with an apparent molecular mass of 15 kDa in
human neutrophils (Conseiller et al. 1990). However, the identity of this
protein remains to be clarified. PMSF has been suggested to interfere with
fMet-Leu-Phe-induced actin polymerization and O formation through
protease-independent mechanisms as well (Rao and Castranova 1988). In
addition soy bean trypsin inhibitor has been reported to inhibit O3 forma-
tion (Abramovitz et al. 1983b; Basci and Shah 1987). However, it has been
shown that superoxide dismutase present in soy bean trypsin inhibitor
scavenges O3 and explains the “inhibition’ of O3 formation (Abramovitz
et al. 1983a). Finally, the protease-binding glycoprotein, o-macroglobulin,
has been reported to inhibit O3 formation in murine peritoneal macro-
phages (Hoffman et al. 1983; Sottrup-Jensen 1989).

3.3 Activation of NADPH Oxidase by Various Classes of Stimuli

The effects of activators of protein kinase C on the respiratory burst are
described in Sect. 3.1.1 (see Table 2). Table 3 summarizes those activators
of phagocytes which presumably act through pertussis toxin-sensitive
and/or -insensitive G-proteins (see also Sects. 3.2.1, 3.3.1). Among the
activators of the respiratory burst are peptides, proteins, lipid mediators,
microbial agents, particulate agents, and drugs. Tables 5-9 summarize data
concerning activation and/or potentiation of the respiratory burst by these
agents.
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3.3.1 Agents Presumably Acting Through Plasma Membrane Receptors
and G-Proteins

Among this group of activators of NADPH oxidase are bacterial formyl
peptides and structurally related peptides, cytokines, extracellular matrix
proteins, complement components and immunoglubulins, PAF, leuko-
trienes, and extracellular nucleotides (see Tables 3, 5-7).

3.3.1.1 Formyl Peptides

Bacteria initiate proteins synthesis with N-fMet, and formylated peptides
have been purified from culture fluid of Escherichia coli and Staphylococcus
aureus (Carp 1982; Marasco et al. 1984; Rot et al. 1987). Bacteria-derived
N-formyl peptides are chemoattractants for neutrophils and mononuclear
phagocytes, and fMet-Leu-Phe is probably the most extensively studied
formyl peptide (Schiffmann et al. 1975; Bennett et al. 1980b). N-Formylated
peptides are also derived from mitochondria of eukaryotic cells as they use
N-fMet for initiation of protein synthesis as well (Carp 1982). Thus, formyl
peptides may be of relevance as activators of the respiratory burst in vVivo
not only in bacterial infections but also in other processes which are
associated with the destruction of endogenous cell structures (Carp 1982;
see also Sect. 1). Various derivatives of formyl peptides, which are useful
pharmacological tools to study the properties of formyl peptide receptors,
have been synthesized (Showell et al. 1976, 1981; Kraus et al. 1984; Allen
et al. 1986a).

3.3.1.1.1 Formyl Peptide Receptors
Formyl peptides bind to specific formyl peptide receptors in phagocytes
(Williams et al. 1977; Sha’afi et al. 1978; Schiffmann et al. 1980; Zigmond
and Tranquillo 1986; Walter and Marasco 1987). The formyl peptide recep-
tor is a glycosylated 50- to 70-kDa molecule and has been solubilized,
purified, and reconstituted into phospholipid vesicles (Niedel et al. 1980;
Dolmatch and Niedel 1983; Baldwin et al. 1983; Hoyle and Freer 1984;
Malech et al. 1985; Marasco et al. 1985; Allen et al. 1986b, 1989; Huang
1987). Recently, the cDNA sequence for the formyl peptide receptor which
encodes a protein of 350 amino acids was isolated (Boulay et al. 1990). In
analogy to B-adrenoreceptors and retinal rhodopsin (Sibley et al. 1987), the
formyl peptide receptor apparently possesses seven hydrophobic
membrane-spanning regions (Boulay et al. 1990).

Formyl peptide receptors undergo dynamic alterations upon occupa-
tion with agonist,and they have been identified not only in the plasma
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membrane but also in intracellular compartments, especially in specific
granules (Fletcher and Gallin 1983; Gardner et al. 1986). This intracellular
pool serves as a reserve of receptors, which may be translocated to the
plasma membrane upon stimulation (Fletcher and Gallin 1983; Gardner et
al. 1986). Following occupation with agonists, formyl peptide receptors
become associated with the cytoskeleton and are internalized (Niedel et al.
1979; Sklar et al. 1984; Anderson and Niedel 1984; Painter et al. 1984).
Internalized receptor-ligand complexes may then be transported to in-
tracellular compartments and may be degraded (Niedel et al. 1979; Ander-
son and Niedel 1984; Painter et al. 1984; see also Sect. 3.2.5.1,3.3.1.1.3).

3.3.1.1.2 Activation of O3 Formation

Upon exposure to chemotactic peptides, neutrophils and mononuclear
phagocytes of various species undergo a reversible respiratory burst
(Holian and Daniele 1979, 1981; Yasaka et al. 1982; Dewald and Baggiolini
1985; Jesaitis et al. 1986; Seifert et al. 1989b). The extent of activation of the
respiratory burst by chemotactic peptides is both species and cell type
specific, and some types of phagocytes, e.g., bovine neutrophils, do not
possess functional formyl peptide receptors (Gary et al. 1978; Styrt 1989).
There is considerable interindividual variability in the effectiveness of
formyl peptides to induce O3 formation in human neutrophils (Seifert et
al. 1991). At 37°C, fMet-Leu-Phe initiates O3 formation in human
neutrophils with a lag time of about 10 s, which time increases with
decreasing temperature (Sklar et al. 1981a). Activation of O3 formation
requires the presence of formyl peptides at higher concentrations and
higher percentages of receptor occupancy with agonist than those necessary
forincrease in cytoplasmic Ca®*, membrane depolarization, and chemotaxis
(Yuli et al. 1982; Sklar et al. 1984). Membrane fluidization by aliphatic
alcohols such as pentanol and butanol increases the apparent affinity of
formyl peptide receptors and enhances chemotaxis, whereas O3 formation
is depressed (Yuli et al. 1982; see also Sects. 3.2.2.1,3.3.2.7). In contrast, the
polyene antibiotic, amphotericin B, decreases the affinity of formyl peptide
receptors and inhibits chemotaxis, whereas Oz formation is unaffected
(Lohr and Snyderman 1982). The high-affinity state of the formyl peptide
receptor has been suggested to transduce chemotaxis, whereas the low-af-
finity state of the receptor has been suggested preferentially to mediate
activation of NADPH oxidase ('Yuli et al. 1982; Gallin and Seligmann 1984;
see also Sect. 3.2.1.1). Interestingly, fMet-Leu-Phe per se induces changes
in membrane fluidity, which may play a role in the regulation of recep-
tor/cytoskeleton interactions, Ca® fluxes, and O formation
(Cherenkevich et al. 1982a,b; Valentino et al. 1986). Maintenance of O3
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formation requires continuous de novo formation of agonist-receptor com-
plexes (Sklar et al. 1981b, 1984; Rossi et al. 1983). Finally, NHj;, which is
metabolite of certain bacteria, has been reported to decrease the affinity of
formyl peptide receptors for agonists (Coppi and Niederman 1989; see also
Sect. 3.4.2.2).

3.3.1.1.3 Termination and Desensitization of O5 Formation

The mechanisms involved in termination of the respiratory burst are ap-
parently complex (see also Sects. 3.1.1.4,32.2.4,3225,3.25, 6.2.1). O3
formation ceases while a substantial number of formyl peptide receptors
remain occupied with agonist, and the addition of formyl peptide an-
tagonists to phagocytes after initiation of the respiratory burst by agonists
rapidly terminates this response (Rossi et al. 1983; Sklar et al. 1981b, 1984b;
Seifert et al. 1989b; Grinstein et al. 1989). The respiratory burst is associated
with the oxidation of methionine residues of neutrophil proteins, and
oxidation of the methionine residue of fMet-Leu-Phe may play a role in the
cessation of O3 formation, as the imhibition of degradation of chemotactic
peptides enhances the respiratory burst (Clark 1982; Fliss et al. 1983; Rossi
et al. 1983). fMet-Leu-Phe sulfoxide and fMet-Leu-Phe sulfone bind less
avidly to formyl peptide receptors and are much less potent activators of
O3 formation than fMet-Leu-Phe itself (Harvath and Aksamit 1984). In
addition, proteolytic degradation of agonist may be involved in the termina-
tion of biological responses to chemotactic peptides (Yuli and Snyderman
1986; Painter et al. 1988).

The repeated exposure of neutrophils and differentiated HL-60 cells to
chemotactic peptides shifts the concentration response curve for various
cellular functions including O3 formation to the right and decreases the
maximum extent of the response, a process referred to as homologous
desensitization (English et al. 1981a; Seligmann et al. 1982; McPhail et al.
1984a; Lefkowitz and Caron 1986; Sibley et al. 1987; Seifert et al. 1989b; Lee
et al. 1989; McLeish et al. 1989b). The maximum rate of Oz formation is
considerably reduced when the agonist is presented over a period of several
minutes, and desensitization to fMet-Leu-Phe is accompanied by a decrease
in phosphoinositide degradation and Ca® mobilization (De Togni et al.
1985a,b). In human neutrophils, O> formation is less sensitive to
homologous desensitization than aggregation (Lee et al. 1989).
Homologous desensitization of fMet-Leu-Phe-induced O3 formation in
HL-60 cells is associated with a substantial decrease in the number of formyl
peptide receptors without alteration in affinity (McLeish et al. 1989b). In
addition, homologous desensitization is accompanied by a functional altera-
tion in the interaction of formyl peptide receptors with G-proteins (Mc-
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Leish et al. 1989b). Possibly, phosphorylation of formyl peptide receptors
is involved in their uncoupling from G-proteins, as has been shown for other
systems (Lefkowitz and Caron 1986; Sibley et al. 1987, Mueller and Sklar
1989; see also Sects. 3.2.2.5,4.1.3). Desensitization is a reversible process
as removal of the agonist restores responsiveness to formyl peptides in a
time-dependent manner, indicating that the signal transduction com-
ponents including NADPH oxidase are not irreversibly altered (English et
al. 1981a).

In PMA- or fMet-Leu-Phe-stimulated rat neutrophils, the amount of
O3 generated per cell is inversely related to the cell number in the assay
cuvette, suggesting that NADPH oxidase activation is a self-limiting
process, possibly due to the formation of H,O, (Mege et al. 1986). Inactiva-
tion of protein kinase C by H,O, may play a role in this process (Gopalak-
rishna and Anderson 1989). In contrast, Rajkovic and Williams (1985b) did
not find an inhibitory effect of H,O, on O3 formation.

Eklund and Gabig (1990) isolated a lipid thiobis ester from cytosol of
unstimulated human neutrophils which deactivates NADHPH oxidase
obtained from PMA- or opsonized zymosan-stimulated phagocytes. In
addition, this ester deactivates NADPH oxidase in the cell-free system in a
reversible manner (Eklund and Gabig 1990). The authors suggested that
this compound may play a role as endogenous inhibitor of the respiratory
burst (see also Sect. 3.3.1.1.3).

3.3.1.1.4 Sensitization of O3 Formation

In addition to desensitization, homologous sensitization of formyl! peptide-
induced O; formation has been described. fMet-Leu-Phe at submaximally
effective concentrations can prime for itself, leading to enhanced NADPH
oxidase activation upon reexposure to the agonist (McPhail and Snyderman
1984; Pontremoli et al. 1989; Karnad et al. 1989; see also Sect. 3.3.1.1.3).
Recent results indicate that pertussis toxin-insensitive signal transduction
pathways may play a role in this homologous sensitization (Karnad et al.
1989).

Physical conditions may affect the extent of the respiratory burst
induced by fMet-Leu-Phe, and these factors may be of considerable impor-
tance for the correct interpretation of experimental results (see also Sects.
1, 6.2). Neutrophils isolated at room temperature show increased expres-
sion of plasma membrane formy! peptide receptors in comparison to cells
isolated at 4°C, and these differences correlate with the maximal rates of
O3 generation (Tennenberg et al. 1988; Dahigren et al. 1987). We have
repeatedly observed that neutrophils isolated from buffy coat stored over-
night at 4°C show a greater respiratory burst upon stimulation with fMet-
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Leu-Phe than cells isolated from fresh buffy coat (unpublished results).
Interestingly, the number of formyl peptide receptors in guinea pig and
human exsudate neutrophils is severalfold higher than in the corresponding
blood neutrophils, and this process is associated with priming for enhanced
O formation upon exposure to the chemotactic peptides (Zimmerli et al.
1986).

3.3.1.2 Miscellaneous Peptides

3.3.1.2.1 Substance P

The tachykinin substance P is an undecapeptide, functions as
neurotransmitter, and is present in certain peripheral endings of sensory
neurones. Substance P has been suggested to play a role in the
pathogenesis of neurogenic inflammation (Pernow 1983; Foreman and
Jordan 1984; Foreman 1987; Wozniak et al. 1989). Substance P is struc-
turally related to formyl peptides in its C-terminal portion. Substance P
binds to specific plasma membrane receptors which can be divided into
subtypes (Watson 1984, 1987; Regoli et al. 1987). High-affinity binding
sites for substance P have been identified on guinea pig macrophages
(Marasco et al. 1981). Substance P has been reported to bind to formyl
peptide receptors in rabbit neutrophils, and antagonists at formyl pep-
tide receptors compete with substance P (Marasco et al. 1981; Bonora et
al. 1986; Watson 1987). In addition, a C-terminal formyl tetrapeptide
analogue of substance P is a partial agonist at formyl peptide receptors
with respect to activation of exocytosis (Bonora et al. 1986). Substance
P has been reported to activate the respiratory burst in guinea pig
macrophages and in human neutrophils (Hartung and Toyka 1983; Serra
et al. 1988). The C-terminal octapeptide is a more effective activator of
the respiratory burst than substance Pitself, and the N-terminal fragment
isinactive (Serra et al. 1988). The concentrations of substance P required
to activate neutrophils are considerably higher than those occurring in
vivo (Serra et al. 1988). However, substance P at concentrations lower
than those required to activate NADPH oxidase potentiates the
respiratory burst induced by fMet-Leu-Phe or C5a, suggesting that the
tachykinin may act as priming agent rather than as activator of NADPH
oxidase (Perianin et al. 1989; Wozniak et al. 1989; see also Sects. 3.3.1.6,
33.1.7,33.1.8).

Activation of NADPH oxidase by substance P is accompanied by
phospholipase C activation and Ca* mobilization. CB enhances substance
P-induced phosphoinositide turnoverand Ca®* mobilization, but,somewhat
surprisingly, CB inhibits the respiratory burst (Serra et al. 1988; see also
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Sect. 3.2.5.1). Unlike the respiratory burst induced by fMet-Leu-Phe, that
induced by substance P is only partially pertussis toxin-sensitive (Serra et
al. 1988). These data indicate that substance P and chemotactic peptides
activate NADPH oxidase by similar but not identical mechanisms. Inter-
estingly, substance P at similarly high concentrations as those required for
the activation of the respiratory burst has very recently been shown directly
to activate G-proteins (Serra et al. 1988; Mousli et al. 1990). Thus, it is
attractive to study in more detail the possibility that substance P activates
neutrophils by other mechanisms than by “substance P receptors” (see also
Sect. 3.3.1.2.6).

Priming of the respiratory burst by substance P is rapid in onset and
reaches a maximum after 15-60 min (Wozniak et al. 1989). Priming by
substance P is temperature dependent, is not abolished by removal of the
agonist, and is accompanied by an increase in fMet-Leu-Phe-induced for-
mation of lipoxygenase products of arachidonic acid (Wozniak et al. 1989;
see also Sect. 3.2.4.1). Thus, priming of the respiratory burst by substance
P shows some similarities to the effects of certain cytokines (see also Sect.
3.3.1.3.5).

3.3.1.2.2 Gramicidin

Gramicidins are linear pentadecapeptide ethanolamide antibiotics with a
formyl group at the N-terminus (Bamberg et al. 1976). Gramicidin forms
transmembrane ion channels, leading to depolarization and cell activation
(Hladky and Haydon 1972; Bamberg et al. 1976; Jacob 1988). Recently,
gramicidin from Bacillus brevis was reported to induce increase in cytoplas-
mic Ca*, exocytosis, and O3 formation in rabbit peritoneal neutrophils
(Jacob 1988). Gramicidin is similarly potent but less effective than fMet-
Leu-Phe. A competitive antagonist at formyl peptide receptors prevents
activation by gramicidin, suggesting that this peptide is partial agonist at
formyl peptide receptors (Jacob 1988).

3.3.1.2.3 Tuftsin

The tetrapeptide tuftsin (Thr-Lys-Pro-Arg) is part of a leukophilic y-
globulin and is released from the carrier molecules by proteases (Nishioka
et al. 1972, 1973a; Najjar 1983; Goldman and Bar-Shavit 1983). Tuftsin has
been purified and has been chemically synthesized (Nishioka et al. 1972,
1973a,b). Tuftsin regulates growth, phagocytosis, immunogenic responses,
and motility of myeloid cells (Najjar and Nishioka 1970; Tzehoval et al. 1978;
Goldman and Bar-Shavit 1983; Najjar 1983; Bump and Najjar 1988). The
N-terminus of substance P is structurally related to tuftsin (Bar-Shavit et al.



88 Activation of NADPH Oxidase

1980; Serra et al. 1988). Neutrophils and monocytes possess high-affinity
binding sites for tuftsin which cross-react with substance P, suggesting that
tuftsin receptors may be considered a subtype of substance P receptors
(Stabinsky et al. 1978; Bar-Shavit et al. 1980; Fridkin and Gottlieb 1981;
Watson 1984). Tuftsin has been shown to activate O” formation in murine
macrophages with a biphasic concentration-response function (Tritsch and
Niswander 1982; several years ago it was reported to stimulate NBT dye
reduction in human neutrophils (Spirer et al. 1975; Fridkin et al. 1977),
whereas the N-terminal fragment of substance P does not induce a
respiratory burst in human neutrophils (Serra et al. 1988). Upon reexamina-
tion of this topic, we did not find a stimulatory effect of tuftsin up to 100 uM
on O3 formation in human neutrophils, regardless of whether {Met-Leu-
Phe or CB were present or not (unpublished results).

3.3.1.2.4 Opioid Peptides and Morphine

Opioid peptides have been suggested to be involved in the regulation of cell
functions of the immune systeme (Foster and Moore 1987; Sibinga and
Goldstein 1988). Human neutrophils have been reported to possess high-
affinity binding sites for dihydromorphine (Lopker et al. 1980). Various
opioid peptides, e.g., f-endorphin, dynorphin, and methionine enkephalin
and morphine have been claimed to activate the respiratory burst in
neutrophils and macrophages (Sharp et al. 1985,1987; Foris et al. 1986; Nagy
et al. 1988). The respiratory burst induced by opioids has been reported to
be long lasting and to follow biphasic concentration-response functions. In
contrast, morphine, methionine enkephalin, f-endorphin, and the opioid
antagonist naloxone have also been reported to inhibit the fMet-Leu-Phe-
or PMA-induced respiratory burst (Simpkins et al. 1985, 1986; Moon et al.
1986; Diamant et al. 1989). Other authors, however, reported that various
opioids including morphine, -endorphin, and methionine enkephalin show
no stimulatory effect on the respiratory burst in human neutrophils and
HL-60 cells (Diamant et al. 1989; Seifert et al. 1989a). In addition, we did
not obtain any positive evidence for an inhibitory role of opioids in the
regulation O3 formation in human neutrophils and HL-60 cells (Seifert et
al. 1989a; see also Sects. 1,6.2.4).

3.3.1.2.5 Somatotropin

The adenohypophyseal hormone somatotropin regulates growth processes.
Recently, native and recombinant forms of somatotropin were shown to
potentiate the opsonized zymosan-induced respiratory burst in porcine
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blood-derived mononuclear phagocytes (Edwards et al. 1988).
Somatotropin is similarly effective as IFN-y (see also Sect. 3.3.1.3.2), and
the effects of somatotropin are abolished by treatment with an antibody
specific for somatotropin (Edwards et al. 1988). In addition, administration
of somatotropin to hypophysectomized rats at concentrations that sig-
nificantly stimulate growth primes peritoneal macrophages for an enhanced
respiratory burst (Edwards et al. 1988).

3.3.1.2.6 Lipopeptides

In addition to LPS, the outer cell wall of gram-negative bacteria contains
lipoprotein (Braun 1975; see also Sect. 3.3.2.2). Native lipoprotein and
synthetic lipopeptides are effective activators of lymphocytes and macro-
phages (Melchers et al. 1975; Bessler and Ottenbreit 1977; Hauschildt et al.
1988b; Reitermann et al. 1989; Deres et al. 1989; Steffens et al. 1989).
Stimulation of B-lymphocytes by lipopeptides is apparently independent of
phospholipase C and protein kinase C activation, whereas lipopeptide-in-
duced activation of macrophages may involve both phospholipase C-de-
pendent and -independent pathways (Hauschildt et al. 1988b; Steffens et al.
1989).

The synthetic lipoamino acid N-palmitoyl-S-[2,3-bis(palmitoyloxy)-
(2RS)-propyl}-(R)-cysteine (Pam3Cys), which is derived from the N-terminus
of bacterial lipoprotein, attached to (S)-seryl-(S)-lysyl-(S)-lysyl-(S)-lysyl-
(S)-lysine [Pam3Cys-Ser-(Lys)s] (Reitermann et al. 1989), activates Oz
formation and lysozyme release in human neutrophils with an effectiveness
amounting to about 15% of that of fMet-Leu-Phe (Seifert et al. 1990). In
contrast, the lipopeptides Pam;Cys-Ala-Gly, Pam;Cys-Ser-Gly, Pam;Cys-
Ser, Pam;Cys-OMe, and PamiCys-OH do not activate O; formation,
suggesting that positively charged amino acids are important for stimulatory
effects of lipopeptides on NADPH oxidase (Seifert et al. 1990; see also
below). Pertussis toxin inhibits Pam3Cys-Ser-(Lys)s-induced O3 formation
by 85%, whereas lipopeptide-induced exocytosis is pertussis toxin-insensi-
tive (Seifert et al. 1990; see also below). Oz formation induced by
Pam;Cys-Ser-(Lys)s and fMet-Leu-Phe is enhanced by CB, PMA, and R
59 022 (Seifert et al. 1990; see also Sects. 3.2.2, 3.2.5.1). Various activators
of adenylyl cyclase and removal of extracellular Ca”" differently inhibit
O3 formation by fMet-Leu-Phe and Pam3Cys-Ser-(Lys)4 (Seifert et al.
1990; see also Sects. 3.2.3, 4.1). Unlike O3 formation induced by fMet-
Leu-Phe, that induced by Pam;Cys-Ser-(Lys), is not augmented by PAF,
UTP or TNF-a (Seifert et al. 1990). PamsCys-Ser-(Lys)s synergistically
enhances fMet-Leu-Phe-induced O3 formation and primes neutrophils to
respond to the chemotactic peptide at nonstimulatory concentrations



90 Activation of NADPH Oxidase

(Seifert et al. 1990). Evidence has been presented for the assumption that
PAF and extracellular purine and pyrimidine nucleotides, on one hand, and
lipopeptides, on the other, are functionally nonequivalent potentiators of
the respiratory burst (Seifert et al. 1990; see also Sects. 3.3.1.6,3.3.1.8).

The above data suggest that Pam3Cys-Ser-(Lys), activates neutrophils
through G-proteins, involving pertussis toxin-sensitive and -insensitive
processes (see also Sect. 3.2.1). The signal transduction pathways activated
fMet-Leu-Phe and Pam3Cys-Ser-(Lys)4 are similar but apparently not iden-
tical.

The physiological role of lipoproteins in the regulation of neutrophil
functions in vivo is not yet known, but in inflammatory processes bacterial
lipoproteins and chemotactic peptides may interact synergistically to ac-
tivate O3 formation, leading to enhanced bactericidal activity.

There are certain structural and functional similarities between
Pam;Cys-Ser-(Lys)s, on one hand, and substance P and mastoparan, on
the other. These substances carry positive charges, and they mimic
certain but not all aspects of receptor agonist-induced cell activation
(Serra et al. 1988; Higashijima et al. 1988; Seifert et al. 1990; Mousli et
al. 1990). In addition, both substance P and Pam;Cys-Ser-(Lys)4-induced
activation of human neutrophils is partially pertussis toXin-insensitive
(Serra et al. 1988; Seifert et al. 1990). These data raise the question
whether lipopeptides interact directly with G-proteins as do substance P
and mastoparan (Seifert et al. 1990b). Interestingly, the effects of mas-
toparan may also be partially pertussis toxin-insensitive (Higashijima et
al. 1988), but to our knowledge there is no report in the literature dealing
with the effects of mastoparan on the respiratory burst in intact
phagocytes (see also Sect. 5.1.4). Surprisingly, we found that in cell-free
systems derived from HL-60 cells mastoparan inhibits arachidonic acid-
induced O; formation in the absence and in the presence of guanine
nucleotides (unpublished results; see also Sect. 5.1.4).

Recently, certain wasp venom chemotactic peptides were reported to
stimulate the respiratory burst and exocytosis in human neutrophils
(Nagashima et al. 1990). Substitution of lysine for proline at the 7th position
of these peptides results in a substantial loss of stimulatory activity, suggest-
ing that cationic functions in these peptides impair the activation of
NADPH oxidase (Nagashima et al. 1990). Whether or not activation of
NAPDH oxidase by these peptides is mediated through plasma membrane
receptors or through direct interaction with G-proteins remains to be
clarified (see also Sect. 3.3.1.2.6).

Other cationic peptides play a role in the regulation of NADPH oxidase
as well. Eosinophil granule major basic protein is a cationic polypeptide
with an apparent molecular mass of 13.8 kDa which is localized in eosinophil



Activation of NADPH Oxidase by Various Classes of Stimuli 91

granules (Moy et al. 1990). This protein activates the respiratory burst in
neutrophils as assessed by chemiluminescence and O formation. In addi-
tion, eosinophil granule major basic protein interacts synergistically with
fMet-Leu-Phe or PAF to activate NADPH oxidase. Moy et al. (1990)
suggested that the interaction between this protein and neutrophils con-
tributes to the pathogenesis of some reactions in allergy.

3.3.1.2.7 Endothelin-1

Endothelin-1is a very potent vasoconstrictor and enhances fMet-Leu-Phe-
induced O3 formation about twofold (Ishida et al. 1990). The priming effect
of endothelin-1 requires an incubation time of 10 min to become evident
and is apparently independent of an increase in cytoplasmic Ca**.

3.3.1.3 Cytokines

Cytokines are a heterogeneous group of peptide intercellular signal
molecules which regulate functions of various cells of the immune system,
including those of phagocytes, and are produced by a variety of cell types
such as lymphocytes, mononuclear phagocytes, endothelial cells, and
fibroblasts (Murray and Cohn 1980; Billingham 1987; Dinarello and Mier
1987; Martin and Resch 1988; Mizel 1989; Groopman et al. 1989).

In the past few years, much progress has been achieved concerning the
role of cytokines in the regulation of NADPH oxidase. These studies have
been greatly facilitated by the availability of human recombinant cytokines.
The number of cytokines which is assumed to be involved in the regulation
of the NADPH oxidase is increasing continuously. Interestingly, there is a
substantial heterogeneity in the signal transduction pathways activated by
various cytokines, and in many instances, the molecular mechanisms un-
derlying the effects of cytokines on NADPH oxidase are still incompletely
understood. Finally, the results of some studies suggest that stimulatory
effects of cytokines on NADPH oxidase are of therapeutic relevance.

3.3.1.3.1 Interleukin-1

IL-1is produced by mononuclear phagocytes and by neutrophils, activates
T-lymphocytes, stimulates the production of other cytokines, and induces
fever (Martin and Resch 1988; Canning and Neill 1989; Groopman et al.
1989). Human neutrophils possess high-affinity binding sites for IL-1 and
internalize this cytokine (Parker et al. 1989). The role of IL-1 in the
regulation of the respiratory burst is controversial. Some authors reported
that IL-1 has no stimulatory effect on the respiratory burst in macrophages
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and neutrophils (Georgilis et al. 1987; Ding et al. 1988, Dularay et al. 1990),
whereas others reported stimulatory effects of IL-1 on neutrophil activa-
tion, including potentiation of fMet-Leu-Phe-induced O3z formation (R.J.
Smith et al. 1985, 1987; Sullivan et al. 1989). Recombinant IL-1c has been
reported to induce H,O; formation in human neutrophils and to potentiate
the respiratory burst induced by opsonized zymosan, which latter effect is
evident after a treatment for 10 min (Ozaki et al. 1987). In contrast, Sullivan
et al. (1989) reported that recombinant IL-1 but not IL-le primes
neutrophils for enhanced O3 formation upon exposure to chemotactic
peptides. Interestingly, IL-1a has been reported to induce a long-lasting
respiratory burst in adherent human skin fibroblasts (Meier et al. 1989; see
also Sect. 3.4.4.2.4).

3.3.1.3.2 Interferon-y

IFN+yis produced by stimulated T-lymphocytes and plays an important role
in the activation of phagocytes (Lengyel 1982; Hamilton and Adams 1987).
High-affinity binding sites for IFN-y have been identified on mononuclear
phagocytes and neutrophils (Celada et al. 1984; Hamilton and Adams 1987,
Hansen and Finbloom 1990). Purified and recombinant IFN-y prime
mononuclear phagocytes of various species including man for an enhanced
respiratory burst and formation of reactive nitrogen oxide intermediates
(R-NO; Nathan et al. 1983, 1984; Murray et al. 1985a,b; Iyengar et al. 1987,
Thelen et al. 1988a; Ding et al. 1988; see also Sect. 3.4.1). The enhanced
respiratory burst in IFN-y primed macrophages may be of importance for their
antiprotozoal activity (Murray et al. 1985b). In human neutrophils, IFN-y
enhances the respiratory burst induced by ConA, fMet-Leu-Phe, immune
complexes, and PMA (Berton et al. 1986¢; Cassatella et al. 1988). In human
monocytes, IFN-y has been reported to potentiate Oz formation induced by
PMA but not that induced by fMet-Leu-Phe (Thelen et al. 1988a).

The effects of IFN-y are slow in onset and require incubation periods
longer than 1 h (Berton et al. 1986¢c; Hamilton and Adams 1987, Perussia
et al. 1987; Cassatella et al. 1988; Thelen et al. 1988a; Ding et al. 1988). On
one hand, activation of phagocytes by IFN-y has been suggested to involve
Ca”- and protein kinase C-dependent mechanisms (Hamilton et al. 1985;
Hamilton and Adams 1987). In U-937 cells, IFN-y induces a rapid increase
in cytoplasmic Ca”* and the formation of inositol phosphates (Klein et al.
1990). However, the authors pointed out that additional mechanisms are
likely to be involved in the activation of U-937 cells by IFN-y. On the other
hand, Cassatella et al. (1988) did not find alterations in the formation of
inositol phosphates or changes in Ca®* transients in IFN-y-treated human
neutrophils. In addition, Thelen et al. (1988a) did not find stimulatory
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effects of IFN-y on cytoplasmic Ca®™ or on the cellular content of protein
kinase C in human monocytes.

Priming of neutrophils by IFN-y depends on the presence of serum in
the incubation medium and is ablished by actinomycin and cycloheximide,
suggesting that de novo protein synthesis is required for potentiation of the
respiratory burst (Berton et al. 1986c; Cassatella et al. 1988). In fact, IFN-y
has been shown to induce the biosynthesis of specific proteins in human
neutrophils (Humphreys et al. 1989; Rubin et al. 1989). Exposure of
neutrophils, monocyte-derived macrophages, U-937 cells, and HL-60 cells
to IFN-y results in an increase in transcription of the B-subunit of
cytochrome b.y4s, and the effect of IFN-y on B-chain expression is synergis-
tically enhanced by TNF (Newburger et al. 1988; Cassatella et al. 1989b; see
also Sects. 3.3.1.3.8,6.1).

Cassatella et al. (1985) reported that treatment of human macrophages
with IFN-y is associated with a decrease in the K;» for NADPH of NADPH
oxidase, whereas V. is unaffected. In contrast, Thelen et al. (1988a) did
not find changes in the affinity of NADPH oxidase for NADPH in [FN-y-
treated human monocytes. In addition, these authors did not observe
changes in the cellular content of cytochrome b.,45. In human neutrophils,
the cellular content of cytochrome b.s and the kinetic properties of
NADPH oxidase do not change upon treatment with IFN-y (Cassatella et
al. 1988). Treatment of the human eosinophilic cell line EoL-1 with IFN-y
results in an increase in the number of binding sites for phorbol esters and
in enhanced expression of formyl peptide receptors (Yoshie et al. 1989; see
also Sect. 3.4.4.1.1). These data indicate that the effects of IFN-y on the
respiratory burst are cell type specific.

3.3.1.3.3 Interferon-o and Interferon-p

On one hand, IFN-a and IFN-B have been reported to antagonize the
stimulatory effects of IFN-y on the respiratory burst in mononuclear
phagocytes (Nathan et al. 1984; Garotta et al. 1986; Ding et al. 1988). In
addition, IFN-a but not IFN-B has been reported to inhibit the transcription
of the B-subunit of cytochrome b.,45 (Newburger et al. 1988). On the other
hand, JFN-a shows stimulatory effects on the respiratory burst in EoL-1
cells (Yoshie et al. 1989). Moreover, IFN-a and IFN-B have been reported
to enhance LPS- and bacteria-induced priming of the respiratory burst in
J774 murine macrophages (Tosk et al. 1989).



94 Activation of NADPH Oxidase

3.3.1.3.4 Tumor Necrosis Factor

Stimulated macrophages produce TNF-a, which has a molecular mass of
17 kDa, and which induces tumor cell killing, cachexia, and lethal shock.
Activated B-lymphocytes secrete a structurally and functionally related
cytokine, referred to as TNF-$ or lymphotoxin (Aggarwal et al. 1985;
Beutler and Cerami 1986, 1989; Urban et al. 1986; Klebanoff et al. 1986;
Berkow and Dodson 1988; Ferrante et al. 1988; Imamura et al. 1988).
Human neutrophils and U-937 cells possess high-affinity binding sites for
TNE, and the TNF receptor may have a molecular mass of 100-120 kDa
(Shalaby et al. 1987; Stauber and Aggarwal 1989). TNF is rapidly internal-
ized following binding to plasma membrane receptors (Shalaby et al.
1987).

TNF enhances monocyte cytotoxicity and neutrophil phagocytosis,
inhibits chemotaxis and promotes neutrophil adherence (Shalaby et al.
1985, 1987; Philip and Epstein 1986; Kharazmi et al. 1988; Kownatzki et al.
1988b, 1989). TNF has been reported to activate O3 formation in human
neutrophils in a concentration-dependent manner (Tsujimoto et al. 1986;
Yuo et al. 1989a). TNF-induced O3 formation is not accompanied by
membrane potential changes, and Ca** mobilization and is inhibited by an
increase in cAMP (Yuo et al. 1989; see also Sect. 4.1). In contrast, other
authors reported that TNF does not substantially activate the respiratory
burst in neutrophils (Klebanoff et al. 1986; Berkow et al. 1987c; Berkow and
Dodson 1988; Ferrante et al. 1988). The ability of TNF to induce a
respiratory burst in human neutrophils apparently depends on the state of
adherence of the cells. Kownatzki et al. (1988b, 1989) and Neumann and
Kownatzki et al. (1989) showed that TNF is a poor activator of O3
formation in suspended neutrophils, whereas the cytokine is a very potent
and effective stimulus in adherent cells (see also Sect. 3.4.2). In human
neutrophils and in EoL-1 cells, TNF potentiates O3 formation induced by
various stimuli including opsonized zymosan, fMet-Leu-Phe, and PMA
(Lebanoff et al. 1986; Berkow et al. 1987c; Larrick et al. 1987; Shalaby et al.
1987; Kharazmi et al. 1988; Berkow and Dodson 1988; Ferrante et al. 1988;
Yoshie et al. 1989). In contrast, Yuo et al. (1989a) did not find a stimulatory
effect of TNF on PMA-induced O3 formation in human neutrophils. The
potentiating effect of TNF on O3 formation requires a preincubation
period of approximately 15 min to become maximal, and a monoclonal
antibody against TNF inhibits TNF-induced priming (Berkow et al. 1987c;
Atkinson et al. 1988; Yuo et al. 1989a). In addition to neutrophils, TNF
induces a respiratory burst in macrophages and primes these cells for
enhanced O3 formation (Hoffman and Weinberg 1987; Ding et al. 1988).
In EoL-1 cells, the effects of TNF on chemiluminescence are potentiated
by IFN-y and are additively augmented by IFN-a (Yoshie et al. 1989).
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The mechanism by which TNF activates phagocytes is under current
investigation and is not yet conclusively established. In HL-60 cells, TNF
stimulates GTP[yS] binding to plasma membranes and stimulates a
high-affinity GTPase in a pertussis toxin-sensitive manner (Imamura et
al. 1988). We did not find a stimulatory effect of TNF-c on high affinity
GTPase activity in membranes obtained from undifferentiated and
dibutyryl cAMP-differentiated HL-60 cells (unpublished results). In
addition, pertussis toxin blocks TNF-induced release of myeloperoxi-
dase inhuman neutrophils, whereas TNF-induced lactoferrinrelease is only
slightly inhibited by the toxin (Richter et al. 1989). Moreover, pertussis toxin
does not inhibit TNF-a-induced H,O, formation in adherent human
neutrophils, suggesting that activation of the respiratory burst by TNF does
not involve pertussis toxin sensitive G-proteins (Meurer and Maclntyre 1989;
Berkow and Dodson 1988; see also Sect. 3.2.1).

Activation of O3 formation by TNF does not depend on extracellular
Ca” but may require cytoplasmic Ca®* (Tsujimoto et al. 1986; Richter et al.
1989). In contrast, Meurer and Mclntyre (1989) reported that the effect of
TNF-a depends on the presence of extracellular Ca**. Removal of TNF
after priming does not abolish its potentiating effect (Ferrante et al. 1988).
Activation of the respiratory burst by TNF in human neutrophils is not
accompanied by the formation of inositol phosphates and release of
arachidonic acid (Laudanna et al. 1990; see also Sects. 3.2.2.1,3.2.3.1). TNF
has been reported not to induce changes in formyl peptide receptor expres-
sion, in the kinetics of NADPH oxidase, or in protein kinase C activity
(Berkow and Dodson 1988). Interestingly, a 64-kDa protein with unknown
function has been reported to be phosphorylated upon stimulation with
TNF (Berkow and Dodson 1988), and TNF may cause conversion of low-
and high-affinity formyl peptide receptors to a single class of binding sites
with intermediate affinity without a change in the number of plasma
membrane formyl peptide receptors (Atkinson et al. 1988). Increases in
F-actin and potentiation of the formyl peptide-induced membrane
depolarization may be additional mechanisms by which TNF primes
phagocytes for enhanced O3 formation (Berkow et al. 197c; Yuo et al.
1989a; see also Sect. 3.4.2.2).

3.3.1.3.5 Colony-Stimulating Factors

The colony-stimulating factors are a family of cytokines secreted by
various cell types including lymphocytes, mononuclear phagocytes, en-
dothelial cells and fibroblasts (Morstyn and Burgess 1988; Groopman et
al. 1989). Among these cytokines are GM-CSF, granuloycte colony-
stimulating factor (G-CSF), macrophage colony-stimulating factor (M-
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CSF), and the multicolony-stimulating factor (IL-3). These cytokines are
glycoproteins which regulate the production, differentiation, and func-
tional maturation of precursor cells of the myeloid and monocytic lineage
(Lopez et al. 1983; Gasson et al. 1984; Welte et al. 1985; Wong et al. 1985;
Metcalf 1985, 1986; Souza et al. 1986; Groopman et al. 1989). In contrast
to G-CSF and M-CSE, GM-CSF has dual effects on both cell lineages
(Lopez et al. 1983; Gasson et al. 1984; Welte et al. 1985; Wong et al. 1985;
Metcalf 1985, 1986; Souza et al. 1986; Groopman et al. 1989). Plasma
membrane receptors for these intercellular signal molecules have been
characterized in a variety of myeloid cell lines including human
neutrophils and HL-60 cells (Walker and Burgess 1985; Nicola and
Peterson 1986; Gasson et al. 1986; DiPersio et al. 1988). Most attention
concerning the role of colony-stimulating factors in the regulation of
NADPH oxidase has focused on the effects of GM-CSF in human
neutrophils, whereas considerably less information is available on the
corresponding effects of G-CSF, M-CSF, and IL-3.

M-CSF is a potentiator of the respiratory burst in macrophages (Wing
et al. 1985). M-CSF and IL-3 have been reported not to activate the
respiratory burst in adherent human neutrophils (Nathan 1989). Recently,
Phillips and Hamilton (1990) showed that M-CSF inhibits priming of the
respiratory burst in murine macrophages by various agents such as GM-
CSF, TNF-a, IFN-y, and LPS.

Granulocyte Colony-Stimulating Factor. G-CSF is a potent activator of
the respiratory burst in adherent human neutrophils but not in adherent
monocytes or in suspended neutrophils (Nathan 1989) (see also Sect. 3.4. 3)
In human neutrophils, G-CSF potentiates fMet-Leu-Phe- and lectin-in-
duced O3 formation but not that induced by PMA or Ca®" ionophores
(Kitagawa et al. 1987; Yuo et al. 1987, 1989b; Ohsaka et al. 1989). The effect
of G-CSF on O; formation requires a preincubation time of only 5-10 min
(Kitagawa et al. 1987; Yuo et al. 1987). G-CSF has been reported to
stimulate agonist-induced membrane depolarlzatlon but the cytokine ap-
parently does not affect the cytoplasmic Ca®* concentration, number, or
affinity state of formyl peptide receptors (Yuo et al. 1989b). The effect of
G-CSF is temperature dependent, is apparently independent of de novo
protein synthesis, and is desensitized in a homologous manner (Yuo et al.
1989b; Ohsaka et al. 1989; see also Sect. 3.3.1.1.3).

Granulocyte/Macrophage Colony-Stimulating Factor. In neutrophils,
GM-CSF inhibits migration and promotes adhesion, phagocytosis, and
release of arachidonic acid metabolites (Arnaout et al. 1986; Fleischmann et
al. 1986; Dahinden et al. 1988). GM-CSF potentiates O3 formation induced
by fMet-Leu-Phe, C5a, PAF, and LTB, but not that induced by PMA or
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opsonized zymosan in these phagocytes (Weisbart et al. 1985, 1986, 1987,
Lopez et al. 1986; Nathan 1989; Sha’afi et al. 1989; Mege et al. 1989).
GM-CSF-induced potentiation of O3 formation is time dependent and
requires 1-2 h to become maximal (Weisbart et al. 1985, 1986; English et al.
1988). Similar to G-CSF and TNF, GM-CSF is a very potent and effective
activator of the respiratory burst in human neutrophils, which adhere to
serum- or plasma-derived proteins or to the basement membrane protein
laminin, whereas in suspended neutrophils the cytokine per se does not
activate NADPH oxidase (Nathan 1989; see also Sect. 3.4.3).

Pertussis toxin-sensitive G-proteins may be involved in GM-CSF-in-
duced activation of neutrophils as the toxin inhibits GM-CSF-stimulated
expression of c-fos mRNA and GM-CSF-induced potentiation of Ca**
mobilization in human neutrophils (McColl et al. 1989; Mege et al. 1989).
Moreover, pertussis toxin inhibits GM-CSF-induced protein tyrosine phos-
phorylation and potentiation of arachidonic acid-induced O3 formation
(Corey and Rosoff 1989; Gomez-Cambronero et al. 1989b; see also Sect.
32.7). Furthermore, plasma membranes from GM-CSF-treated
neutrophils show higher basal and chemoattractant-stimulated GTPase
activities than control membranes, and this effect is pertussis toxin-sensitive
as well (Sha’afi et al. 1989; Gomez-Cambronero et al. 1989a). Finally,
pertussis toxin has been reported to inhibit GM-CSF-induced release of
lactoferrin and myeloperoxidase in human neutrophils (Richter et al. 1989).

The mechanism by which GM-CSF activates the respiratory burst is not
associated with actin polymerization and does not take place in the presence
of CB (Mege et al. 1989). GM-CSF is without effect in neutrophil cytoplasts,
suggesting that granule and/or nucleus components are essential (Mege et
al. 1989). As cycloheximide has been reported not to inhibit priming by
GM-CSEF, this process has been suggested not to depend on the de novo
synthesis of proteins (Mege et al. 1989). In contrast, Edwards et al. (1989)
showed that GM-CSF induces de novo synthesis of proteins in human
neutrophils.

Priming by GM-CSF has been suggested to be independent of
membrane potential changes, Ca®* mobilization, phosphoinositide
degradation, and translocation or activation of protein kinase C, but GM-
CSF may prime neutrophils for enhanced diacylglycerol release and in-
crease in cytoplasmic Ca* upon exposure to chemoattractants (Sullivan et
al. 1987, 1989b; English et al. 1988; Naccache et al. 1988a; Mege et al. 1989;
Corey and Rosoff 1989; Richter et al. 1989; Tyagi et al. 1989b). In addition,
GM-CSF enhances fMet-Leu-Phe-induced release of arachidonic acid,
suggesting that phospholipases play a role in the priming process (Corey
and Rosoff 1989; see also Sect. 3.2.4). Enhanced activation of phospholipase
D may be involved in priming of neutrophils by GM-CSF as well (Bourgoin
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et al. 1990). GM-CSF also enhances fMet-Leu-Phe-induced membrane
depolarization and cell acidification (Sullivan et al. 1987, 1988; Naccache et
al. 1988a). Naccache et al. (1988a) did not find an effect of GM-CSF on the
intracellular pH. In contrast, Gomez-Cambronero et al. (1989a) reported
that GM-CSF increases the intracellular pH in human neutrophils.
Moreover, potentiation of O3 formation by GM-CSF has been suggested
to involve an increase in cGMP (Coffey et al. 1988; see also Sect. 3.2.6.2).
Finally, GM-CSF has been reported to potentiate chemoattractant-induced
release of PAF, which in turn, may potentiate O3 formation as an autocrine
signal molecule (Wirthmueller et al. 1989; Yamazaki et al. 1989; see also
Sect. 3.3.1.6).

An increase in cytoplasmic Ca® per se has been suggested to be not
sufficient substantially to activate the respiratory burst by chemoattractants
(see also Sect. 3.2.3). Priming with GM-CSF alters the regulatory processes
for NADPH oxidase activation in such a way that stimulation with Ca*'-
elevating agents results in a greatly enhanced respiratory burst (Naccache
etal. 1988a,b; Sullivan et al. 1989a). Priming of phagocytes by GM-CSF does
not require extracellular Ca’ and is not reversible upon removal of the
cytokine (English et al. 1988). Incubation of neutrophils with GM-CSF is
associated with an increase in the number of low-affinity formyl peptide
receptors (Weisbart et al. 1986). With respect to O3 formation, circulating
neutrophils are hyporesponsive to fMet-Leu-Phe, and the responsiveness
increases with the expression of formyl peptide receptors after leaving the
circulation (English et al. 1988; see also Sect. 3.3.1.1.4). This up-regulation
of formyl peptide receptors is markedly enhanced by GM-CSF, suggesting
that GM-CSF primes neutrophils for an enhanced respiratory burst, at least
in part, via alteration in the expression of formyl peptide receptors. Addi-
tionally, priming by GM-CSF may involve functional alterations at the level
of G-proteins, as this cytokine potentiates the NaF-induced respiratory
burst in intact neutrophils and the one induced by GTP analogues in
electropermeabilized cells (McColl et al. 1990). Results similar to those for
GM-CSF were obtained with TNF-oo (McColl et al. 1990; see also Sect.
3.3.1.34).

GM-CSF-induced cell activation is associated with the tyrosine phos-
phorylation of various proteins with molecular masses of 40-118 kDa
(Sha’afi et al. 1989; Gomez-Cambronero et al. 1989b). The protein tyrosine
phosphorylation patterns induced by fMet-Leu-Phe and GM-CSF are not
identical, and the stimulatory effect of GM-CSF on O3 formation is sup-
pressed by the protein tyrosine Kkinase inhibitor ST 638 (Gomez-
Cambronero et al. 1989b). A 40-kDa protein which is a substrate for
tyrosine phosphorylation has been suggested to be Giop, and the 78- or
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92-kDa substrate may be the GM-CSF receptor (Gomez-Cambronero et
al. 1989b; see also Sect. 3.2.7).

In macrophages, GM-CSF also potentiates the respiratory burst (Reed
et al. 1987). The signal transduction pathways activated by GM-CSF in
neutrophils and in macrophages may be different. Unlike neutrophil activa-
tion, macrophage activation by GM-CSF is obviously unrelated to the
stimulation of phospholipases (Corey and Rosoff 1989; Coleman et al.
1989). In addition, macrophage activation by GM-CSF is accompanied by
an activation of adenylyl cyclase, whereas in neutrophils, GM-CSF ap-
parently leads to an inhibition of adenylyl cyclase (Coffey et al. 1988;
Coleman et al. 1989; see also Sects. 3.2.6.1,4.1).

3.3.1.3.6 Interleukin-8

Neutrophil-activating peptide 1 (NAP-1, also referred to as IL-8) is a
cytokine produced by various cell types including human mononuclear
phagocytes (Peveri et al. 1988; Thelen et al. 1988b; Baggiolini et al. 1989).
IL-8 consists of 72 amino acids and shows little homology to other cytokines
(Walzet al. 1987; Lindley et al. 1988; Furuta et al. 1989). Human neutrophils
possess low- and high-affinity binding sites for [L-8 which are different from
the receptors for formyl peptides and GM-CSF (Besemer et al. 1989). IL-8
is an effective activator of human neutrophils, and it increases cytoplasmic
Ca®™ and induces shape change, exocytosis, and O;” formation with similar
Kinetics as do chemotactic peptides (Thelen et al. 1988b). Similar to fMet-
Leu-Phe, the respiratory burst induced by IL-8 s thibited by pertussis toXin,
staurosporine, and 17-hydroxy wortmannin (Thelen et al. 1988b; see also
Sect. 4.3.1). These data suggest that fMet-Leu-Phe and IL-8 act via G-
proteins and by similar signal transduction pathways. IL-8 is a more potent
activator of neutrophils than fMet-Leu-Phe and may be of relevance in the
pathogenesis of inflammatory processes (Baggiolini et al. 1989). In human
monocytes, [L-8 is not stimulatory (Baggiolini et al. 1989).

3.3.1.3.7 Leukocyte Inhibitory Factor and Interleukin-6

Human leukocyte-inhibitory factor (LIF) is produced by activated lym-
phocytes and binds to neutrophil plasma membranes (Rocklin et al. 1981;
Klempner and Rocklin 1982; Meshulam et al. 1982; Masucci et al. 1984).
LIF stimulates adherence, phagocytosis, and fMet-Leu-Phe-induced
chemotaxis and inhibits random migration (Borish and Rocklin 1985, 1987;
Schainberg et al. 1988). In addition, LIF potentiates O formation induced
fMet-Leu-Phe or a Ca* ionophore (Borish and Rocklin 1985; Borish et al.
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1986). The mechanism by which LIF potentiates the respiratory burst may
be explained, at least in part, by increased expression of formyl peptide
receptors (Borish et al. 1986). Possibly, LIF is identical with one of the
above-described cytokines.

Finally, recombinant IL-6 has recently been reported to stimulate
exocytosis and to potentiate fMet-Leu-Phe-induced O3 formation in
neutrophils, but at present little information is available on the signal
transduction processes involved (Borish et al. 1989).

3.3.1.3.8 Cytokines and the Respiratory Burst: Therapeutic Implications
The ability of monocytes of cancer patients to generate H>O, upon exposure
to PMA is unimpaired in comparison to thealthy subjects, but administra-
tion of human recombinant IFN-y to cancer patients substantially enhances
their monocytes’ ability to undergo a respiratory burst (Nathan et al. 1985).
Alveolar macrophages from patients with acquired immune-deficiency
syndrom (AIDS) show no impaired ability to generate H>O; in comparison
to healthy subjects, and IFN-y primes the AIDS patients’ macrophages for
an enhanced respiratory burst (Murray et al. 1985c). It has been suggested
that IFN-y is useful as a macrophage-activating agent in AIDS patients
suffering from opportunistic infections and in certain cancer patients.

In some patients with “variant CGD” (see also Sect. 6.1.3), treatment
with TFN-y results in an increased transcription of the B-subunit of
cytochrome b.us and in an increase in V. of NADPH oxidase, whereas
the abnormal K, for NADPH is not altered (Ezekowitz et al. 1987).
Subcutaneous injection of IFN-y to patients with X-chromosomal CGD has
been reported to result in an increase in the cellular content of cytochrome
b.o4s and in a substantial and long-lasting enhancement of the phagocytes’
ability to generate O (Ezekowitz et al. 1988). IFN-y may render myeloid
progenitor cells capable of expressing at least in part, a corrected phenotype
which is also present in the daughter cells (Ezekowitz et al. 1990). In
addition, cultured monocytes of certain patients with X-chromosomal or
autosomal recessive CGD acquire the ability to generate O3 upon stimula-
tion with PMA subsequent to treatment with IFN-y (Sechler et al. 1988; see
also Sect. 6.1.1).

The ability of colony-stimulating factors to enhance cytotoxic functions
of neutrophils may be of therapeutic value in the treatment of life-threaten-
ing infections and for the augmentation of host defense in im-
munodepressed patients (Morstyn and Burgess 1988; Morstyn et al. 1989,
Groopman et al. 1989). For example, in AIDS patients, GM-CSF has been
reported to enhance phagocytosis and intracellular killing of bacteria
(Baldwin et al. 1988). In addition, colony-stimulating factors may induce
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maturation of myeloid cells including their respiratory burstin patients with
myeloid leukemia or myelodysplasticsyndrom (Morstyn et al. 1989; Groop-
man et al. 1989; Geissler et al. 1989). Neutrophils of certain patients with
myelodysplastic syndrome show a decreased respiratory burst activity upon
exposure to fMet-Leu-Phe, which is significantly increased upon ad-
ministration of G-CSF (Yuo et al. 1987). Moreover, administration of
G-CSF to patients with malignant lymphoma results in a rapid and long-
lasting enhancement of the neutrophils’ capacity to generate O3 upon
stimulation with chemotactic peptides (Ohsaka et al. 1989).

3.3.1.4 Matrix Proteins

Extracellular matrix proteins may be of importance for the regulation of
the respiratory burst when phagocytes leave the blood stream or when
blood vessels are injured, resulting in the exposure of phagocytes to these
extracelluar proteins. The effects of laminin, collagen, and elastin on the
respiratory burst in phagocytes have been studied separately, but the extent
to which these proteins interact is not yet known.

3.3.1.4.1 Laminin

Laminin is a 800- to 1000-kDa glycoprotein which is ubiquitously present
inbasement membranes (von der Mark and Kiihl 1985). Laminin stimulates
chemotaxis and adherence of neutrophils (Terranova et al. 1986). These
‘processes are apparently mediated via specific plasma membrane receptors
(Yoon et al. 1987). fMet-Leu-Phe and PMA stimulate the expression of
laminin receptors on the plasma membrane by mobilization of intracellular
receptor pools (Yoon et al. 1987). Conversely, laminin increases the number
of formyl peptide receptors at the plasma membrane without changing their
affinity state, which process is associated with enhanced fMet-Leu-Phe-
stimulated O formation (Pike et al. 1989; see also Sects. 3.3.1.3..5, 3.4.3).

3.3.1.4.2 Collagen

Collagens are a group of complex and structurally heterogenous matrix
proteins (Bornstein and Sage 1980). Certain collagen degradation products
are chemotactic for neutrophils (Laskin et al. 1986). In addition, the C-ter-
minal peptide of the a1(I) chain of collagen has been reported to activate
O3 formation, chemiluminescence, and exocytosis in human neutrophils
(Monboisse et al. 1987). Activation of neutrophils by collagen depends on
extracellular Ca*, but the signal transduction processes underlying the
effects this matrix protein, e.g., the role of receptors, G-proteins, and protein
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kinases, has not yet been reported (Monboisse et al. 1987). Recent data
show that two different peptide sequences in the C-terminal portion of the
al(I) chain of collagen are required to mediate neutrophil activation
(Monboisse et al. 1990).

3.3.1.4.3 Elastin

Elastin is another extracellular matrix protein, and degradation of elastin
may play a role in the pathogenesis of atherosclerosis and emphysema
(Filop et al. 1986; Varga et al. 1989). Human phagocytes possess high-af-
finity binding sites for elastin peptides (Varga et al. 1989). Soluble elastin
peptides, i.e., k-elastin, have been reported to stimulate phosphornosrtrde
degradation, increase in cytoplasmic Ca®™, and O3 formation in human
neutrophils and mononuclear phagocytes through pertussis toxin-sensitive
G-proteins (Fiilop et al. 1986; Varga et al. 1989).

3.3.1.5 Complement Components and Immunoglobulins

3.3.1.5.1 Complement C5a

C5a is glycoprotein fragment released from component 5 upon activation
of the complement cascade and modulates numerous neutrophil functions
(Gennaro et al. 1985; Johnson and Chenoweth 1985; Wymann et al. 1987b;
Damerau 1987; Jose 1987; Banks et al. 1988; Shirato et al. 1988). Human
neutrophils possess about 5-10 x 10° high-affinity CSa binding sites per cell,
i.e., a number comparable to those of formyl peptide and LTB4 receptors
(Huey and Hugli 1985). The C5a receptor of human neutrophils may be a
48- to 52-kDa protein (Chenoweth and Hugli 1978; Johnson and
Chenoweth 1985; Rollins and Springer 1985; Huey and Hugli 1985). Human
eosinophils also possess C5a receptors, but they show properties different
from those of human neutrophils (Gerard et al. 1989).

C5a is a very potent activator of the respiratory burst in human
neutrophils, and its effectiveness is comparable to that of chemotactic
peptides (Goldstein et al. 1975; Gennaro et al. 1984; Wymann et al. 1987b).
Chemotactic peptides and C5a activate NADPH oxidase through similar
mechanisms, but these aspects have been studied in greater detail with the
former agents (see also Sects. 3.2.2,3.2.3,3.2.4,3.2.5). The respiratory bursts
induced by C5a, fMet-Leu-Phe, PAF, and LTB4 show similarities with
respect to kinetics (Wymann et al. 1987b). Similar to activation of O3
formation by chemotactic peptides, that induced by C5a depends on ex-
tracelullar Ca>*, is associated with an increase in cytoplasmic Ca®* and actin
polymerization, and is pertussis toxin sensitive (Gennaro et al. 1984; Shirato
et al. 1988; Banks et al. 1988). In contrast, concerning the regulation of



Activation of NADPH Oxidase by Various Classes of Stimuli 103

NADPH oxidase by cGMP, there are marked differences between fMet-
Leu-Phe and CS5a (Ervens et al. 1991; see also Sect. 3.2.6.2). There are
additional differences in the regulation of formyl peptide and C5a receptors
by activators of protein kinase C (Bender et al. 1987; see also Sect. 3.3.2.5).
Moreover, there is a close correlation between the expression of formyl
peptide receptors and receptors for C3b, C3bi, and IgG but not between
expression of the latter receptors and C5a receptors (van Epps et al. 1990).

3.3.1.5.2 Complement C3b and C3bi

In addition to C5a, C3b and C3bi play a role in the regulation of phagocyte
functions. C3b and C3bi bind to CR1 and CR3 receptors, respectively, and
their expression is increased by warming of the cells and by stimulation with
formyl peptides (Fearon 1980; Fearon and Collins 1983; Berger et al. 1984;
Arnaout 1990; Hoogerwerf et al. 1990; van Epps et al. 1990). C3b com-
ponents act as opsonins of particles and microorganisms and promote
adherence and phagocytosis of these particles (Goldstein et al. 1976; Wright
and Silverstein 1983; Berger et al. 1984, Andersson et al. 1988; Arnaout
1990; Hoogerwerf et al. 1990; van Epps et al. 1990). Particle-bound C3b and
C3bi activate the respiratory burst in human neutrophils (Goldstein et al.
1975; Roos et al. 1981; Gordon et al.; Hoogerwerf et al. 1990), and inhibition
by a neutrophil-specific monoclonal antibody of the respiratory burst in-
duced by serum-opsonized zymosan may be due to altered expression of
C3b receptors (Nauseef et al. 1983a). Macrophages have been reported to
secrete C3b components, resulting in local opsonization of zymosan par-
ticles (Ezekowitz et al. 1985). Zymosan coated with C3b components by
incubation with human macrophages has been shown to induce a
respiratory burst in human neutrophils, whereas unopsonized zymosan is
only a very poor activator of NADPH oxidase in these cells (Ezekowitz et
al. 1985; see also Sect. 3.3.2.12.1). These data suggest that synthesis and
secretion of complement components by macrophages play a role in the
opsonization of pathogens and in the interaction of macrophages with
neutrophils (Ezekowitz et al. 1985). In contrast to the above results, some
authors also reported on a lack of stimulatory effect of C3b and C3bi on the
respiratory burst in various types of phagocytes (Wright and Silverstein
1983; Gordon et al. 1985).

33153 IgG

Immune complexes or particles opsonized with immune complexes induce
phagocyte activation, e.g., phagocytosis, exocytosis,and O formation, with
concomitant phosphoinositide degradation, release of arachidonic acid, and
increase in cytoplasmic Ca®* and protein phosphorylation (Goldstein et al.
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1975; Johnston and Lehmeyer 1976; Johnston et al. 1976, 1984; Yamamoto
and Johnston 1984; Green et al. 1984; Young et al. 1984; Sato et al. 1987,
Willis et al. 1988; Tosi and Berger 1988; Blackburn and Heck 1988; Shirato
et al. 1988). The protein phosphorylation patterns induced by PMA and
immune complexes in murine peritoneal macrophages are similar
(Johnston et al. 1984). Neutrophil activation by IgG complexes is less
dependent on extracellular Ca®* than that induced by C5a (Shirato et al.
1988).

Immunoglobulin concentrates for intravenous injection enhance ac-
tivation of NADPH oxidase in neutrophils (Marodi et al. 1990). Monomeric
human IgG potentiates fMet-Leu-Phe-induced Oz formation in human
neutrophils through a mechanism which is similar, at least in part, to the one
of CB (Aaku et al. 1990; see also Sect. 3.2.5.1). Monomeric human IgG per
se does not activate the respiratory burst and does not potentiate O3
formation induced by PMA or ConA (Aaku et al. 1990). Moreover, IgG
covalently coupled to polyacrylic acid activates Oz formation in human
neutrophils with an effectiveness comparable to that of PMA and opso-
nized zymosan (Klauser et al. 1990).

With respect to the role of G-proteins in the IgG-induced activation of
the respiratory burst, the results are not consistent. The results of some
studies suggest that the physical state of the immune complexes determines
which type of signal transduction pathways is activated, as stimulation of
the respiratory burst by soluble IgG aggregates, but not by surface-bound
IgG, is pertussis toxin sensitive (Blackburn and Heck 1988, 1989; Shirato et
al. 1988). In addition, surface-bound IgG stimulates binding of guanine
nucleotides and high-affinity GTPase in neutrophil membranes in a pertus-
sis toxin insensitive manner (Blackburn and Heck 1989; see also Sect. 3.2.1).
These data suggest that activation of human neutrophils by surface-bound
IgG involves pertussis toxin-insensitive G-proteins (Blackburn and Heck
1989). In contrast, Feister et al. (1988) found that IgG-induced O3 forma-
tion but not exocytosis is inhibited by pertussis toxin.

Phagocytes possess various types of functionally nonequivalent plasma
membrane receptors for the Fc region of IgG, and the nomenclature of
these receptors is a subject of present discussion (Messner and Jelinek 1970;
Silverstein et al. 1977; Fleit et al. 1982; Jones et al. 1985; Willis et al. 1988,
Sato et al. 1987; Huizinga et al. 1988; Anderson and Looney 1986; Looney
et al. 1986; Tosi and Berger 1988; Shirato et al. 1988; Blackburn and Heck
1988; Unkeless et al. 1988). For example, neutrophils have been reported
to express 1-2 x 10* “FcII” (40 kDa) and 1-2 x 10° “FcIII” (50-80 kDa)
receptors per cell (Huizinga et al. 1989). Apparently, the FclI receptor is
involved in the activation of the respiratory burst by IgG, as neutrophils of
patients with paroxysmal nocturnal hemoglobinuria show strongly reduced
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Fclll receptor expression but normal Fcll receptor expression and a normal
respiratory burst upon stimulation with IgG immune complexes (Huizinga
et al. 1989; see also Sect. 6.2.1). Cross-linking of Fc receptors is required for
the activation of O3 formation, and its maintenance depends on the
continuous de novo formation of cross-linked agonist/receptor complexes
(Willis et al. 1988; Pfefferkorn and Fanger 1989a). In addition, there is a
correlation between the number of cross-linked Fc receptors and NADPH
oxidase activity (Pfefferkorn and Fanger 1989a). Subsequently, cross-linked
Fc receptors become associated to the cytoskeleton, and deactivation of
NADPH oxidase precedes internalization of Fc receptors (Pfefferkorn and
Fanger 1989a,b; see also Sect. 3.2.5). Recent data from Crockett-Torabi and
Fantone (1990) show that activation of the respiratory burst in human
neutrophils by soluble immune complexes involves Fcll and Fclll recep-
tors, whereas activation by insoluble immune complexes involves only Felll
receptors. CB potentiates the effects of soluble immune complexes on
O3 formation, and cAMP-increasing agents and pertussis toxin are in-
hibitory. By contrast, these substances show no substantial effect on O3
formation stimulated by insoluble immune complexes. In this context it
should be noted that the stimulatory effects of the phosphatidyl inositol-
linked, 55-kDa glycoprotein CD 14 on cytoplasmic Ca®* and the respiratory
burst in human neutrophils and monocytes apparently do not involve
occupation of Fc receptors (Lund-Johansen et al. 1990). Finally, IgG frag-
ments generated by the action of neutrophil elastase have been shown to
inhibit O formation in these cells induced by PMA and fMet-Leu-Phe but
not that triggered by opsonized zymosan (Eckle et al. 1990).

33154 IgA

In addition to IgG, IgA has been suggested to play a role in the activation
of the respiratory burst in human neutrophils. The presence of IgA recep-
tors has been demonstrated on phagocytes of various species, and these
receptors may be glycosylated 60-kDa proteins in human neutrophils
(Gorter et al. 1988a,b; Albrechtsen et al. 1988). Heat-killed bacteria op-
sonized with IgA have been reported to induce H,O, formation in human
neutrophils, and IgA and complement components may synergistically
activate the respiratory burst (Gorter et al. 1987, 1989). Recently, Shen and
Collins (1989) have shown that IgA induces O3 formation in human
monocytes, and that the effects of IgA are mediated through specific
receptors.
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3.3.1.5.5 Opsonized Particles

Opsonized particles, e.g., bacteria, fungi, zymosan, latex beads, and crystals,
are effective activators of the respiratory burst and of phagocytosis in
neutrophils and macrophages; the latter process is also referred to as
opsonophagocytosis (Allen et al. 1972; Root et al. 1975; Goldstein et al.
1975; Roos et al. 1981; Gudewicz et al. 1982; Abramson et al. 1982;
Hendricks et al. 1982; Ezekowitz et al. 1985; Green et al. 1987; Meshulam
et al. 1988; Gbarah et al. 1989). Most studies concerning the mechanism of
respiratory burst activation by particulate stimuli were carried out with
opsonized zymosan (see also Sects. 3.2, 4.1, 4.2). Zymosan is a cell wall
component of the yeast Saccharomyces cerevisiae and consists of the
carbohydrate polymers B-glucan and a-mannan. Among the serum com-
ponents which adhere to zymosan are complement components and im-
munoglobulins (Goldstein et al. 1975; Roos et al. 1981; Ezekowitz et al. 1985;
Lambeth 1988).

Opsonized zymosan induces a sustained respiratory burst which is
delayed in onset (Allen et al. 1972; Root et al. 1975; Goldstein et al. 1975;
H.J. Cohen et al. 1981; Gudewicz et al. 1982; Smith et al. 1984b; Gennaro
et al. 1984; Wymann et al. 1987b; Andre et al. 1988; Meshulam et al. 1988;
Shirato et al. 1988; Banks et al. 1988; Lambeth 1988). Activation of the
respiratory burst by opsonized latex particles depends on the concentration
and size of the particles, and human neutrophils do not generate O3 until
a critical ratio of particles to neutrophils is reached (Green et al. 1987).
Above this critical value, O formation varies in a linear manner with the
ratio of particles to cells (Green et al. 1987). In addition, the rate of O3
formation is a function of the square of the radius of the particles (Green
et al. 1987).

Activation of O3 formation by opsonized zymosan is preceded by
membrane depolarization, is inhibited by N-Ethylmaleimide (NEM) and
TMB-8, has been reported to be potentiated by CB, depends on extracel-
lular Ca®*, and is desensitized in a homologous manner (H.J. Cohen et al.
1981; Smith et al. 1984; see also Sect. 3.3.1.1.3). In contrast, Elferink and
Deierkauf (1989b) reported on inhibitory effects of CB on O3 formation
induced by opsonized zymosan (see also Sect. 3.2.5.1). Opsonized zymosan
increases cytoplasmic Ca®* predominantly through influx from the extracel-
lular space (Sawyer et al. 1985; Meshulam et al. 1988). Activation of
macrophages and neutrophils by opsonized zymosan is associated with
activation of phosphoinositide degradation and release of arachidonic acid
(Waite et al. 1979; Garcia Gil et al. 1982; Emilsson and Sundler 1984; Leslie
and Detty 1986; Meshulam et al. 1988). In addition, opsonized zymosan
induces protein kinase C translocation in neutrophils (Deli et al. 1987; see
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also Sect. 3.2.2). Furthermore, sphingosine, H-7, and K252a inhibit the
respiratory burst induced by opsonized bacteria in human neutrophils and
macrophages (Gbarah et al. 1989).

Similar to the situation for chemotactic peptides, there are some doubts
on the importance of protein kinase Cin the activation of NADPH oxidase
by opsonized zymosan. For example, rat and murine bone marrow-derived
macrophages generate O3 only upon stimulation with opsonized zymosan
and not upon stimulation with PMA (Andre et al. 1988; Phillips and
Hamilton 1989). In addition, the zymosan-induced respiratory burst can be
dissociated, at least in part, from phosphoinositide degradation (Koender-
man et al. 1989b,c). Furthermore, the respiratory burst in human
neutrophils induced by yeast opsonized with IgG or C3b components does
not obligatorily depend on the activation of phospholipases A,, C, or D or
on an increase in cytoplasmic Ca®* (Della Bianca et al. 1990; see also Sects.
3.22,3.2.3, and 6.2). Both protein kinase C-dependent and -independent
pathways may be involved in the activation of the respiratory burst by
IgG-opsonized particles (Gresham et al. 1990). O3 formation induced by
IgG-opsonized particles alone is apparently protein kinase C-independent,
whereas the one induced by the combination of IgG-opsonized particles
and cytokines may involve activation of protein kinase C (Gresham et
al. 1990).

3.3.1.6 Platelet-Activating Factor

PAF is a mediator of inflammatory and hypersensitivity reactions and is
synthesized in a various cell types including endothelium, platelets, mast
cells, basophils, mononuclear phagocytes, and neutrophils (Hanahan 1986;
Vargaftig and Braquet 1987; Braquet et al. 1987). Interestingly, PAF may
induce PAF synthesis in human neutrophils (Yamazaki et al. 1989).
Neutrophils and monocytes possess high-affinity binding sites for PAF, and
GTP in a concentration-dependent manner decreases PAF binding (O’-
Flaherty et al. 1986; Ng and Wong 1986, 1988).

PAF induces phosphoinositide degradation, release of arachidonic acid,
Ca’™ mobilization, actin polymerization, and Oz formation in human
neutrophils, eosinophils and mononuclear phagocytes (Shaw et al. 1981;
Yasaka et al. 1982; Chilton et al. 1982; Naccache et al. 1986; S.J. Huang et
al. 1988; Storch et al. 1988; Barzaghi et al. 1989; Kroegel et al. 1989;
Randriamampita and Trautmann 1989; Uhing et al. 1989; Tao et al. 1989;
Yamazaki et al. 1989; Parnham et al. 1989; Omann et al. 1989). PAF
antagonists inhibit the stimulatory effects of PAF on phagocytes (Rouis et
al. 1988; Dent et al. 1989; Barzaghi et al. 1989; Kroegel et al. 1989). Pertussis
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toxin inhibits the PAF-induced respiratory burst, whereas the PAF-induced
activation of phospholipase C in differentiated U-937 cells and the increase
in cytoplasmic Ca®* in human monocytes are pertussis toxin-insensitive
events (Lad et al. 1985c; Naccache et al. 1986; S.J. Huang et al. 1988; Ng and
Wong 1989; Barzaghi et al. 1989). PMA has been reported to suppress or
to enhance PAF-induced O3 formation (Naccache et al. 1985b; Gay et al.
1986; S.J. Huang et al. 1988; see also Sects. 3.2.2,2,3.2.2.5).

PAF is a considerably less potent and effective activator of O3 forma-
tion in human neutrophils than fMet-Leu-Phe (Dewald and Baggiolini
1986; Gay et al. 1986; Seifert et al. 1989b). This finding is in agreement with
the fact that PAF induces more transient activation of phospholipase C and
increase in cytoplasmic Ca®* than do chemotactic peptides (Naccache et al.
1986). PAF and fMet-Leu-Phe synergistically activate NADPH oxidase,
suggesting that one important physiological function of PAF is to potentiate
the effects of chemotactic peptides (Ingraham et al. 1982; Dewald and
Baggiolini 1985; Gay et al. 1986; Seifert et al. 1991). This assumption is
supported by the recent finding that PAF, generated by thrombin-stimu-
lated endothelial cells, potentiates chemotactic peptide-induced O3 forma-
tion (Vercellotti et al. 1989). This interaction of endothelial cells and
neutrophils may play a role in the pathogenesis of tissue injury during sepsis
and other thrombin-generating disorders (Vercelotti et al. 1989). We found
that uracil or adenine nucleotides may further increase the extent of
NADPH oxidase activation induced by fMet-Leu-Phe plus PAF in
dibutyryl cAMP-differentated HL-60 cells (unpublished results; see also
Sect. 3.3.1.8). With respect to the interaction of PAF with zymosan, the
results are controversial. Poitevin et al. (1984) reported that PAF enhances
chemiluminescence induced by zymosan, whereas Gay et al. (1986) did not
find a synergistic interaction between these stimuli. Priming for enhanced
O3 formation by PAF is not inhibited by removal of the agonist and does
not depend on the presence of extracellular divalent cations (Gay et al. 1984,
1986). The mechanism by which PAF primes neutrophils for enhanced
Oz formation may involve increased expression of chemoattractant recep-
tors, mcreased formation of diacylglycerol, and increase in cytoplasmic Ca**
and Ca**-independent processes (Shalit et al. 1988; Koenderman et al.
1989a,b; see also Sects. 3.2.2, 3.2.3). Finally, PAF was suggested to play a
role as intracellular signal molecule in the activation of NADPH oxidase
by formyl peptides as is supported by the finding that antagonists at PAF
receptors blunt the fMet-Leu-Phe-induced O; formation in rabbit
neutrophils (Stewart et al. 1990).
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3.3.1.7 Products of the Lipoxygenase Pathway

Hydroperoxyeicosatetraenoic  acids, hydroxyeicosatetraenoic  acids
(HETES), leukotrienes, and lipoxines are probably involved in the
pathogenesis of various diseases such as bronchial asthma, rheumatoid
arthritis, and dermatitis (B. Henderson et al. 1987; Salmon and Higgs 1987,
Samuelsson et al. 1987; Piper and Samhoun 1987; Barnes and Costello 1987,
Barnes et al. 1988). These lipid mediators are synthesized by a variety of
cell types including eosinophils, macrophages, monocytes, and neutrophils
(Rouzer et al. 1980; Ford-Hutchinson et al. 1980; Sun and McGuire 1984;
Verhagen et al. 1984; Goldyne et al. 1984; Mclntyre et al. 1987; Haines et
al. 1987).

3.3.1.7.1 Leukotrienes

Neutrophils, HL-60 cells, and mononuclear phagocytes possess specific
bindingsites for LTB4 (Goldman and Goetzl 1982; Kreisle and Parker 1983,
Lin et al. 1984, 1985; Goldman et al. 1985a; Sherman et al. 1988; Cristol et
al. 1988). In addition, LTB4 stimulates high-affinity GTPase activity in
plasma membranes of myeloid cells in a pertussis and cholera toxin-sensi-
tive manner (McLeish et al. 1989a; see also Sect. 3.2.1). Similar to fMet-Leu-
Phe, LTB. stimulates GTP[yS] binding to plasma membranes of
differentiated HL-60 cells, but the interaction of LTB4 receptors with
G-proteins is apparently different from that of formyl peptide receptors
with G-proteins (McLeish et al. 1989a).

Volpi et al. (1984) suggested that LTB4 does not stimulate phos-
pholipase C. In contrast, a number of other studies showed that LTB,
induces phosphoinositide degradation and increases cytoplasmic Ca®* in
neutrophils (White et al. 1983b; Lew et al. 1984a, 1987; Holian 1986;
Andersson et al. 1986; Mong et al. 1986). Similar to formyl peptide recep-
tors, LTB4 receptors are associated to the cytoskeleton subsequent to
occupancy with agonists (Naccache et al. 1984; see Sect. 3.2.5). In com-
parison to fMet-Leu-Phe, LTB. induces a short-lasting activation of phos-
phoinositide degradation and increase in cytoplasmic Ca®* and actin
polymerization, and it apparently does not induce membrane depolariza-
tion (Fletcher 1986; Lew et al. 1987, Omann et al. 1987b, 1989). Activation
of phospholipase C and increase in cytoplasmic Ca** by LTB, are pertussis
toxin-sensitive events (Molski et al. 1984; Mong et al. 1986; Holian et al.
1986; Andersson et al. 1986b).

LTB. induces a respiratory burst in neutrophils and in mononuclear
phagocytes (Gagnon et al. 1989; Dewald and Baggiolini 1985, 1986; Seifert
et al. 1989d). LTBy s a less effective activator of O3 formation than PAF in
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human neutrophils (Palmblad et al. 1984; Sumimoto et al. 1984; Gay et al.
1984; Prescott et al. 1984; Dewald and Baggiolini 1985, 1986; Fletcher 1986;
Omann et al. 1987b; Seifert et al. 1989d,1991). In analogy to fMet-Leu- Phe
activation of Oz formation by LTB, depends on extracellular Ca®, is
potentiated by CB, and is subject to homologous desensitization (Claesson
and Feinmark 1984; Sumimoto et al. 1984). LTB, potentiates chemotactic
peptide-induced O3 formation, but LTB, is apparently less effective than
PAF in this respect (Gay et al. 1984; Dewald and Baggiolini 1985; Fletcher
1986; Seifert et al. 1989d). We observed that O3 formation synergistically
induced by fMet-Leu-Phe plus LTB4 is further stimulated by purine and
pyrimidine nucleotides in dibutyryl cAMP-differentiated HL-60 cells (un-
published results; see also Sect. 3.3.1.8). Seifert et al. (1989b) reported on
synergistic activation of NADPH oxidase by PAF and LTB4, but Dewald
and Baggiolini (1985) did not find a synergism between these stimuli.
Moreover, LTB4 has been reported not to affect O formation induced by
PMA or opsonized zymosan (Gay et al. 1984). The mechanism by which
LTB, potentiates O3 formation, apparently does not involve alterations in
the number or affinity of formyl peptide receptors (Gay et al. 1984; Fletcher
1986).

In comparison to LTB4, only very limited information is available on
the effects of other leukotrienes on the respiratory burst. The unstable
epoxide leukotriene As (LTA4) per se does not stimulate O3” formation in
human neutrophils but potentiates the fMet-Leu-Phe-induced respiratory
burst (Beckham et al. 1985). LTA4 is a less effective stimulus than LTBa,
supporting the view that LTA, rather serves as a precursor for LTB4 (and
LTC;) than as intercellular signal molecule (Beckham et al. 1985).

The sulphidopeptide Ieukotnenes LTCs and LTD4 activate phos-
pholipase C and induce Ca®* mobilization in phagocytes (Lew et al. 1987;
Koo et al. 1989). Activation of neutrophils by LT'C4 and LTD4 may involve
plasma membrane receptors distinct from LTB4 receptors (Koo et al. 1989;
Thomsen and Ahnfelt-Ronne 1989). In addition, LTC,s and LTD4 receptors
may couple functionally to pertussis toxin-sensitive G-proteins in these cells
(Koo et al. 1989). LTC; at concentrations of 1-10 pM has been reported to
stimulate directly protein kinase C (Hansson et al. 1986), whereas Sherman
et al. (1989) did not find substantial stimulatory effects of LTC4 on the
yv-isoenzyme of protein kinase C from bovine cerebellum. With respect to
the respiratory burst, Hartung (1983) reported that LTC, activates NADPH
oxidase in guinea pig macrophages, but this mode of activation of NADPH
oxidase was not further characterized in detail.
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3.3.1.7.2 Lipoxin A and 5-Hydroxyeicosatetraenoic Acid

Lipoxins are formed by the action of 5- and 15-lipoxygenase on arachidonic
acid (Samuelsson et al. 1987). Lipoxin A at submicromolar concentrations
has been reported to activate Oy formation in human neutrophils and to
stimulate migration (Serhan et al. 1984; Palmblad et al. 1987). Activation
of the respiratory burst by lipoxin A may be directly mediated by protein
kinase C, as lipoxin A at concentrations of 1-3 uM has been reported to
stimulate this kinase (Hansson et al. 1986; Sherman et al. 1989). Inhibitory
effects of lipoxin A on fMet-Leu-Phe-induced phosphoinositide turnover
in human neutrophils were also observed (Grandordy et al. 1990). A
detailed characterization of the signal transduction mechanisms involved in
lipoxin A-induced O3 formation, however, is still missing.

In addition to leukotrienes and lipoxins, 5S-HETE may play arole in the
regulation of O3 formation. Various HETEs themselves have little or no
effect on O3 formation (Goetzl et al. 1980; Shak et al. 1983; O’Flaherty et
al. 1985a; O’Flaherty and Nishihara 1987; Badwey et al. 1988). Among
various HETEs, 5S-HETE has been found to potentiate diacylglycerol- or
phorbol ester-induced O3 formation (O’Flaherty et al. 1985a; O’Flaherty
and Nishihara 1987; Badwey et al. 1988). Neutrophil activation by 5-HETE
may be associated with Ca®* mobilization and translocation of protein
kinase C from the cytosol to the plasma membrane (O’Flaherty and
Nishihara 1987). Badwey et al. (1988) reported that the effect of S-HETE
does not depend on extracellular Ca®* and that synergistic activation of
O formation by 5-HETE and phorbol esters is not associated with a
redistribution of protein kinase C. However, 5-HETE stimulates binding of
phorbol esters to intact neutrophils, and sphingosine and H-7 inhibit syner-
gistic activation of O3 formation (Badwey et al. 1988). These data suggest
that 5-HETE potentiates O3 formation by modulation of the activity of
protein kinase C (see also Sect. 3.2.2.3).

3.3.1.8 Purine and Pyrimidine Nucleotides

Purine and pyrimidine nucleotides are released from various cell types such
as neurones, chromaffin cells, platelets, and endothelium (Shirasawa et al.
1983; Butcher et al. 1986; Forsberg et al. 1987; Hardebo et al. 1987). In
addition, nucleotides are released into the extracellular space under
pathological conditions such as trauma, hypoxia, and cell death (Gordon
1986). Extracellular purine nucleotides interact with purinoceptors, which
are classified according to the effectiveness of nucleotides to induce cell
activation (Burnstock and Kennedy 1985; Gordon 1986; Williams 1987).
The existence of purinoceptors in human myeloid cells is suggested by the
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finding that ATP binds to human neutrophils in a specific, reversible, and
saturable manner (Balazovich and Boxer 1990). Moreover, extracellular
nucleotides may also mediate their effects by other mechanisms than
through plasma membrane receptors, e.g., by ectoprotein kinase-mediated
phosphorylation of membrane proteins (Dusenbery et al. 1988).

In 1982, Ford-Hutchinson showed that ATP effectively induces ag-
gregation of rat neutrophils, but the role of extracellular purine and
pyrimidine nucleotides in the regulation of the respiratory burst remained
unexplored until the past 2 years. Two recent studies showed that purine
and pyrimidine nucleotides induce aggregation of human neutrophils as
well (Freyer et al. 1988; Seifert et al. 1989d). In addition, ATP and UTP
induce phosphoinositide degradation, release of arachidonic acid, Ca®*
mobilization from intracellular stores, and Ca®* influx from the extracel-
lular space in mononuclear phagocytes, human neutrophils, and HL-60
cells (Sung et al. 1985; Steinberg and Silverstein 1987; Greenberg et al.
1988; Kuhns et al. 1988; Dubyak et al. 1988; Cohen et al. 1989; Cockcroft
and Stutchfield 1989a,b; Wenzel-Seifert and Seifert 1990). Furthermore,
adenine nucleotides induce protein kinase C translocation and phos-
phorylation of endogenous proteins in human neutrophils (Balazovich
and Boxer 1990). ATP also supports proliferation of hemopoietic stem
cells in vitro (Whetton et al. 1988).

Various naturally occurring purine and pyrimidine nucleotides, espe-
cially ATP, ITP, GTP,and UTP, were recently found to potentiate fMet-Leu-
Phe-induced O; formation in human neutrophils and dimethyl
sulfoxide-differentiated HL-60 cells (Kuhns et al. 1988; Ward et al. 1988c;
Seifert et al. 1989a,b,d). Kuhns et al. (1988) and Seifert et al. (1989b,d)
reported that extracellular nucleotides per se do not activate O3 formation
in human neutrophils, whereas Kuroki and Minakami (1989) reported on
a direct stimulatory effect of ATP on O3 formation in these cells (see also
Sects. 1, 3.3.1.1.4). In dibutyryl cAMP-differentiated HL-60 cells, purine
and pyrimidine nucleotides per se induce O3 formation (Seifert et al.
1989b). Activation of the respiratory burst by extracellular nucleotides in
dibutyryl cAMP-differentiated HL-60 cells is reversible, depends on ex-
tracellular Ca®, is potentiated by CB and chemotactic peptides, and is
inhibited by pertussis toxin, the latter finding suggesting that the effects of
extracellular nucleotides are mediated via G-proteins (Seifert et al. 1989b).
The stimulatory effects of purine and pyrimidine nucleotides on O3 forma-
tion are desensitized in a homologous manner (Seifert et al. 1989b.d; see
also Sect. 3.3.1.1.3). A recent study showed that the effects of adenine
nucleotides on O3 formation in human neutrophils do not depend on the
presence of intracellular granules (Walker et al. 1989). Potentiation of
fMet-Leu-Phe-induced O3 formation in human neutrophils by extracel-
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lular purines shows a specificity for nucleotides which is different from that
of other known purinoceptors, i.e., Px and P,y purinoceptors (Burnstock
and Kennedy 1985; Gordon 1986). Axtell et al. (1990) have put forward the
interesting hypothesis that potentiation of fMet-Leu-Phe-induced O3 for-
mation by adenine nucleotides is due to modification of cytosolic com-
ponents of NADPH oxidase (see also Sect. 5.1.5). In rat alveolar
macrophages, ATP induces an increase in cytoplasmic Ca** but does not
prime the cells for enhanced O3 formation upon exposure to immune
complexes (Hagenlocker et al. 1990). These results suggest that an increase
in cytoplasmic Ca”™ is not sufficient to prime these macrophages for an
augmented respiratory burst (Hagenlocker et al. 1990).

ATP-induced O3 formation in HL-60 cells is less sensitive to inhibition
by pertussis toxin and cAMP-increasing agents than that induced by UTP
(Seifert et al. 1989b; see also Sect. 4.1.3). In addition, adenine nucleotide-
induced phospholipase C activation, release of arachidonic acid, increase in
cytoplasmic Ca”™*, exocytosis, and potentiation of O3 formation show par-
tial or complete pertussis toxin insensitivity in human neutrophils and
HL-60 cells (Kuhns et al. 1988; Dubyak et al. 1988; Cockcroft and
Stutchfield 1989a,b; Wenzel-Seifert and Seifert 1990; see also Sect. 3.2.1).
However, with regard to the increase in cytoplasmic Ca>* and exocytosis in
dibutyryl cAMP-differentiated HL-60 cells, the effects of UTP are also only
partially inhibited by pertussis toxin (Wenzel-Seifert and Seifert 1990). The
specificity of adenine nucleotides and the corresponding uracil nucleotides
to potentiate O3 formation in human neutrophils is also quite different
(Seifert et al. 1989d). These data suggest that pyrimidine nucleotides do not
activate myeloid cells through purinoceptors but through distinct
pyrimidinoceptors (Seifert and Schultz 1989).

With regard to the physiological relevance of nucleotide-induced ac-
tivation of phagocytes, studies reporting on the interaction of neutrophils
with platelets are of particular interest. Platelets have been shown to
potentiate fMet-Leu-Phe-induced O3 formation in human neutrophils, and
ATP and ADP have been identified as the stimulatory factors released by
platelets (Ward et al. 1988a,b). In contrast, McGarrity et al. (1988a,b, 1989)
reported that platelet-derived adenine nucleotides inhibit fMet-Leu-Phe-
induced O3 formation, and that the conversion of ATP and ADP to
adenosine may be responsible, at least in part, for this effect (McGarrity et
al. 1989; see also Sect. 4.1.1.4). Finally, Dallegri and collaborators (1989) did
not obtain positive evidence for an inhibitory effect of platelets on op-
sonized zymosan-induced H,O; formation in human neutrophils.

Apparently, the effects of platelets and of ATP on the respiratory burst
in neutrophils depend critically on the experimental conditions employed.
For example, platelets at low concentrations enhance the respiratory burst,
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whereas at high concentrations they are inhibitory (Naum et al. 1990).
Additionally, the time of contact between neutrophils and platelets is an
important determinant.

3.3.1.8.1 The Effects of Guanine Nucleotides

Guanine nucleotides potentiate O3 formation not only in intact neutrophils
but also in cell-free systems (see also Sect. 5.1.4). As guanine nucleotides
modulate the functional state of G-proteins (see Sect. 3.2.1), the question
arises whether these nucleotides potentiate O3 formation in intact
neutrophils directly through activation of G-proteins.

The nucleotide specificity for potentiation of O3 formation by guanine
nucleotides in intact human neutrophils and in cell-free systems is quite
different. In intact human neutrophils, GTP[yS], GTP, and guanosine 5'-O-
[2-thio]diphosphate (GDP[pS]) are effective potentiators of fMet-Leu-
Phe-induced O3 formation (Seifert et al. 1989d). Unexpectedly, GDP[BS]
was found to enhance the stimulatory effect of GTP[yS] (Seifert et al.
1989d). In contrast, guanosine 5'-[B,y-imido]triphosphate ([B,y-NH]GTP)
and guanosine 5'-[B,y-methylene]triphosphate ([B,y-CH,]JGTP) do not
potentiate O formation in intact phagocytes (Seifert et al. 1989d).

In cell-free systems, GTP[yS] and [B,y-NH]GTP are similarly effective
potentiators of O3 formation, whereas [B,y-CH2]JGTP and GTP are much
less effective (Seifert et al. 1986, 1988b). In addition, GDP[BS] does not
enhance O3 formation in cell-free systems but competitively antagonizes
the stimulatory effects of GTP[yS] (Seifert et al. 1986). Moreover, guanine
nucleotides are hydrophilic molecules which are unlikely to cross the plasma
membrane (Seifert et al. 1989d). These data suggest that the effects of
guanine nucleotides on O3 formation in intact human neutrophils are
medated through purinoceptors and those of guanine nucleotides in cell-
free systems directly through G-proteins (see also Sect. 5.1.4).

With respect to the effects of guanine nucleotides in intact cells, there
are apparently certain differences between human and rabbit neutrophils.
In intact rabbit neutrophils, GTP[yS] has been reported to activate O3
formation, whereas GTP, ATP, and GDP[BS] are inactive (Elferink and
Deierkauf 1989a). Polyarginine, which permeabilizes plasma membranes
and s an activator of the respiratory burst, potentiates the effect of GTP[yS],
and GTP[yS] prevents lactate dehydrogenase release caused by polyar-
ginine (Elferink 1988; Elferink and Deierkauf 1989a; Ginsburg et al. 1989).
Pertussis toxin does not inhibit GTP[yS}-induced O3 formation in rabbit
neutrophils and partially inhibits that induced by GTP[yS]plus polyarginine
(Elferink and Deierkauf 1989a). GTP[yS] has been suggested to permeate
the plasma membrane of rabbit neutrophils and to activate NADPH
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oxidase directly through G-proteins (Elferink and Deierkauf 1989a; El-
ferink et al. 1990a).

3.3.2 Miscellaneous Stimulatory Agents

3.3.2.1 Lectins

Plant lectins are polypeptides which bind to specific sugar residues of
plasma membrane glycoproteins and induce cell activation presumably by
cross-linking and immobilizing cell surface receptors (Barondes 1981; Lis
and Sharon 1986; Perez et al. 1986). In membranes of human neutrophils
and mononuclear phagocytes, various lectin-binding glycoproteins have
been identified, e.g., members of the adhesion glycoprotein family and the
183-kDa “mannose receptor” (Ozaki et al. 1984; Christiansen and Skubitz
1988; see also Sect. 3.3.2.12.1). The effects of ConA in U-937 cells are
mediated through a glycoprotein with an apparent molecular mass of 140
kDa (Balsinde and Mollinedo 1990). Very recent results show that
stimulatory effects of ConA on NADPH oxidase in phagocytes are
mediated by the CD11c antigen (Lacal et al. 1990). There are certain
similarities and dissimilarities between activations of NADPH oxidase by
lectins and chemotactic peptides.

ConA is probably the most extensively studied plant lectin with respect
to the effects on NADPH oxidase, but other lectins, e.g., wheat germ
agglutinin and phytohemagglutinin, activate the respiratory burst as well.
Lectins induce a sustained and reversible respiratory burst in phagocytes,
and the effect of ConA is antagonized by a-D-glucopyranoside and o-
methyl-mannoside (Romeo et al. 1973, 1974; Cohen et al. 1980; Pick and
Keisari 1981; H.J. Cohen et al. 1982, 1984; Lambeth 1988). The ConA-in-
duced respiratory burst is not substantially inhibited by pertussis toxin
(Verghese et al. 1985a; Rossi et al. 1986; Lad et al. 1986; Lu and Grinstein
1989). As GDP and GDP[BS] inhibit ConA-induced oxygen consumption
in electropermeabilized human neutrophils, it has been suggested that
pertussis toxin-insensitive G-proteins are involved in the signal transduc-
tion pathway (Lu and Grinstein 1989; see also Sect. 3.3.1.8.1).

Similar to fMet-Leu-Phe, ConA induces phosphoinositide degradation
and an increase in cytoplasmic Ca** in human neutrophils (Rossi et al. 1986).
The ConA-induced O3 formation is inhibited by removal of extracellular
Ca® and is potentiated by CB (Cohen et al. 1980, 1984; Scully et al. 1986).
We observed that ConA, unlike fMet-Leu-Phe, only marginally induces
O3 formation in human neutrophils in the absence of CB (unpublished
results). ConA interacts synergistically with other activators of the
respiratory burst, e.g., with PMA and chemotactic peptides (Kitagawa et
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al. 1980b; Cohen et al. 1980; Dorio et al. 1987). In Ca**-depleted neutrophils,
fMet-Leu-Phe plus ConA induce a respiratory burst without phos-
phoinositide degradation, suggesting that phospholipase C-independent
processes are involved in the activation of NADPH oxidase by lectins
(Rossi et al. 1986; see also Sects. 3.2.2, 3.2.3). Additionally, activation of
phospholipase C, release of arachidonic acid, and an increase in cytoplasmic
Ca®* are apparently not critically involved in the activation of NADPH
oxidase by ConA-opsonized particles (Rossi et al. 1989). In analogy to
fMet-Leu-Phe, activation of the respiratory burst by ConA in electroper-
meabilized human neutrophils depends on ATP and Mg, pointing to the
importance of phosphorylation reactions in the signal transduction pathway
(Lu and Grinstein 1989; Grinstein et al. 1989; see also Sects. 3.2.7, 5.1.4.3).

Unlike fMet-Leu-Phe, ConA increases cytoplasmic Ca®* primarily via
influx from the extracellular space and induces diacylglycerol release from
a phospholipid pool which is different from that mobilized by chemotactic
peptides (Korchak et al. 1988a). Somewhat unexpectedly, ConA has been
reported to induce translocation of protein kinase C from the plasma
membrane to the cytosol (Costa-Casnellie et al. 1986; see also Sect. 3.2.2.1).
Moreover, ConA specifically activates the respiratory burst in PMA-dif-
ferentiated U-937 cells (Balsinde and Mollinedo 1988).

3.3.2.2 Lipopolysaccharides

LPS are glycolipids present in the outer cell wall of gram-negative
bacteria (Liideritz et al. 1978; Braun 1975). LPS plays a role in the
induction of the pathopysiological changes following infection with
gram-negative bacteria, e.g., hypotensive shock, disseminated intravas-
cular coagulation, and metabolic changes (Liideritz et al. 1978; Ulevitch
et al. 1984; Kitagawa and Johnston 1985; Goldman et al. 1986; Hamilton
and Adams 1987; Worthen et al. 1988) The “lipid A” component of LPS
is responsible for most of the biological effects of LPS (Hall and Munford
1983; Munford and Hall 1986). In phagocytes, LPS binds to the plasma
membrane and stimulates phagocytosis, adherence, and release of
arachidonic acid (Dahinden et al. 1983a; Cooper et al. 1984; Leslie and
Detty 1986; Aderem et al. 1986b; Hamilton and Adams 1987). With
regard to the respiratory burst, lack of effects, stimulatory and inhibitory
effects of LPS have been reported.

On one hand, LPS has been reported to activate the respiratory burst
in adherent but not in suspended neutrophils (Dahinden et al. 1983a,b;
Seifert et al. 1990; see also Sect. 3.4.3). On the other, Nathan (1987)
reported that LPS does not substantially activate HO> formation in ad-
herent human neutrophils. Exposure of neutrophils to LPS for 30-60 min
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primes the cells for enhanced O formation upon subsequent stimulation
with PMA or fMet-Leu-Phe (Guthrie et al. 1984). In addition, LPS primes
mononuclear phagocytes for an enhanced respiratory burst (Johnston et al.
1978; Sasada and Johnston 1980; Pabst and Johnston 1980; Pabst et al. 1982;
Cooper et al. 1984; Kitagawa and Johnston 1985).

The molecular mechanism by which LPS potentiates O3 formation is
only incompletely understood, and the effects of LPS may be cell type-
specific. In human neutrophils, priming of the respiratory burst by LPS is
pertussis toxin-insensitive (Forehand et al. 1989). In contrast, pertussis toxin
has been reported to inhibit LPS-induced activation of murine P388D;
macrophages and LPS-induced cytokine production in U-937 cells (Jakway
and DeFranco 1986; Daniel-Issakani et al. 1989). In U-937 cells, LPS may
reduce or enhance pertussis toxin-catalyzed ADP ribosylation of Gy, and
LPS has been reported to induce phosphorylation of G in these cells
(Daniel-Issakani et al. 1989). These data suggest that pertussis toxin-sensi-
tive and -insensitive signal transduction pathways are involved in the
activation of phagocytes by LPS.

In macrophages and B-lymphocytes, LPS has been reported to induce
phosphoinositide degradation, Ca** mobilization, release of arachidonic
acid, alterations in gene expression and protein synthesis (Cooper et al.
1984; Rosoff and Cantley 1985; Leslie and Detty 1986; Hamilton and Adams
1987; Prpic et al. 1987). In addition, lipid A has been reported directly to
activate protein kinase C in RAW 264.7 macrophages (Wightman and
Raetz 1984). Interestingly, LPS induces myristoylation of a 68-kDa protein
in macrophages (Aderem et al. 1986a). Myristoylation of the 68-kDa
protein may augmentsubsequent phosphorylation of this protein by protein
kinase C (Rosen et al. 1989). Finally, the LPS-induced generation of pros-
taglandins with subsequent increase in cAMP has been suggested to be
involved in the activation of murine peritoneal macrophages (Benninghoff
et al. 1989; see also Sects. 3.2.6.1, 4.1).

Alterations in the expression of formyl peptide receptors and enhanced
synthesis of PAF are additional mechanisms to explain the stimulatory
effects of LPS on neutrophils (Kitagawa and Johnston 1985; Goldman et
al. 1986; Worthen et al. 1988). LPS enhances chemotactic peptide-induced
actin polymerization in human neutrophils (Howard et al. 1990). The role
of membrane potential changes in LPS-induced activation of phagocytes is
controversial (Larsen et al. 1985; Forehand et al. 1989). Priming of human
neutrophils by LPS depends on Ca** mobilization but apparently does not
depend on alterations in protein kinase C activity or in the cellular content
of cytochrome b.ys (Forehand et al. 1989). Moreover, priming with LPS is
not associated with a change in the K,, for NADPH of NADPH oxidase
(Forehand et al. 1989). Finally, activation of the respiratory burst in
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neutrophils by LPS has been reported to require the presence of serum
(Wilson et al. 1982).

LPS prevents potentiation of the respiratory burst by IFN-y and TNF-o
in murine peritoneal macrophages (Ding and Nathan 1987; see also 3.4.1).
Inhibitors of cyclooxygenase partially antagonize the inhibitory effect of
LPS, whereas prostaglandins and dibutyryl cAMP mimic its effects (Ding
and Nathan 1987). These data suggest that cyclooxygenase products formed
in response to LPS increase cAMP and thus inhibit H,O, formation (see
also Sect. 4.1). LPS also inhibits immune complex-induced H,O, formation
in murine peritoneal macrophages treated with IFN-y but not that in
untreated cells (Johnston et al. 1985). Finally, in cultured human blood
monocytes, LPS inhibits the respiratory burst induced by opsonized par-
ticles or by PMA, and glucocorticoids partially block the inhibitory effects
of LPS (Rellstab and Schaffner 1989; see also Sect. 4.2.1).

During the past few months, some interesting new data concerning
modulation of the respiratory burst by LPS have been published. Heiman
et al. (1990) reported that a nontoxic derivative of lipid A, monophosphoryl
lipid A, inhibits LPS-induced priming of neutrophils for enhanced O3
formation. Monophosphoryl lipid A may inhibit the binding of LPS to
cellular binding sites. Kharazmi et al. (1990) showed that the various types
of LPS isolated from Pseudomanoas aeruginosa strains are functionally
nonequivalent with respect to their effects on the respiratory burst. These
data suggest that the chemical composition of LPS critically determines its
biological effects on NADPH oxidase. Aida and Pabst (1990) reported that
plasma is required for priming by LPS of the respiratory burst in human
neutrophils. These authors suggested that plasma prevents inactivation of
LPS. Cassatella et al. (1990) studied the effect of LPS on gene expression
in human neutrophils, suggesting that enhanced expression of the B-subunit
of cytochrome b.us accounts for the stimulatory effect of LPS on the
respiratory burst. Like LPS, IFN-y enhances expression of the p-subunit of
the cytochrome as well (Cassatella et al. 1990; see also Sect. 3.3.1.3.2). In
human neutrophils, LPS and TNF-a induce the synthesis and myristoyla-
tion of a 82-kDa protein (Thelen et al. 1990). This protein is apparently the
neutrophil homologue of the mristoylated, alanine-rich C-kinase substrate,
referred to as "MARCKS", which is present in various other cell types. LPS
and TNF-a do not induce phosphorylation of MARCKS but potentiate its
phosphorylation induced by PMA and fMet-Leu-Phe (see also Sect.
3.3.1.34).
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3.3.2.3 Muramyl Peptides

Muramyl! peptides are the smallest active moieties of bacterial cell walls
which can replace killed Mycobacteria in Freund’s complete adjuvant
(Adam et al. 1981; Karnovsky 1986; Kotani et al. 1986; Bahr and Chedid
1986). Muramyl peptides show a broad spectrum of biological effects, such
as immunoadjuvant activity, pyrogenicity, antitumor activity, contraction of
smooth muscle, nonspecific protection against infection, promotion of
slow-wave sleep, and activation of macrophages (Adam et al. 1981; Kar-
novsky 1986; Kotani et al. 1986; Bahr and Chedid 1986). In macrophages,
high-affinity binding sites for muramyl peptides have been identified (Sil-
verman et al. 1986). Muramyl peptides potentiate the respiratory burst
induced by PMA and opsonized zymosan in mononuclear phagocytes
including human monocytes (Cummings et al. 1980; Pabst and Johnston
1980; Pabst et al. 1982; Silverman et al. 1985). Interestingly, serotonin also
potentiates the respiratory burst in mononuclear phagocytes and inhibits
binding of muramyl peptides (Silverman et al. 1985). In addition, serotonin
antagonists inhibit the binding of serotonin and muramyl peptides and the
respiratory burst induced by these stimuli (Silverman et al. 1985). These
data suggest that muramyl peptides and sertonin act via the same receptor
(see also Sect. 3.2.6.2).

In suspended human neutrophils, muramyl dipeptides per se do not
activate O, formation, but they have been reported to act as primers for
an enhanced respiratory burst (Wright and Mandell 1986; Seifert et al.
1990).

The Bacillus anthracis toxin, anthrax toxin, consists of three proteins,
i.e., edema factor, lethal factor, and protective antigen, which act in binary
combinations (Blaustein et al. 1989). Protective antigen plays a role in the
penetration of lethal factor and edema factor into the cytosol (Blaustein et
al. 1989). Edema factor is a calmodulin-dependent adenylyl cyclase, but the
mode of action of lethal factor is not known (Blaustein et al. 1989).
Protective antigen plus edema factor or lethal factor inhibit LPS- or
muramyl dipeptide-induced potentiation of O; formation in human
neutrophils (Wright and Mandell 1986). In contrast, anthrax toxin does not
inhibit fMet-Leu-Phe- or PMA-induced O3 formation in human neutro-
phils, suggesting that LPS and muramyl dipeptide activate neutrophils by
mechanisms different from those of chemotactic peptides or phorbol esters
(see also Sect. 3.3.2.2).
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3.3.2.4 Retinoids

The role of retinoids in the regulation of NADPH oxidase is very controver-
sial, and the results of studies performed with these drugs are difficult to
interpret.

Protein kinase C may be an important intracellular target of action of
retinoids, and these substances may modulate the activity of this enzyme in
a very complex manner. Some authors reported that retinoids inhibit
protein kinase C (Taffet et al. 1983; Cope 1986). In contrast, Lochner et al.
(1986) reported that all-trans retinal does not substantially inhibit protein
kinase C in neutrophils, and Ohkubo et al. (1984) showed that retinoic acid
may activate protein kinase C under certain experimental conditions.

On one hand, retinoic acid and all-frans retinal have been reported to
activate O3 formation in human and guinea pig neutrophils (Badwey et al.
1986, 1989b). The mechanism by which retinoids activate NADPH oxidase
has been suggested to involve activation of phospholipase C, increase in
membrane fluidity, and association of protein kinase C with the plasma
membrane (Badwey et al. 1986, 1989b; Lochner et al. 1986). Seifert and
Schiichtele (1988) found that retinoic acid but not retinal activates Oz
formation in human neutrophils, whereas retinoids fail to activate NADPH
oxidase in dibutyryl cAMP-differentiated HL-60 cells. Retinoids have also
been reported to potentiate the fMet-Leu-Phe-induced respiratory burst in
human neutrophils and HL-60 cells (Cooke and Hallett 1985; Seifert and
Schichtele 1988). Unlike O3 formation induced by PMA, that induced by
retinal is not substantially inhibited by H-7 or staurosporine, suggesting that
these stimuli activate the respiratory burst through different mechanisms
(Badwey et al. 1989b; see also Sect. 3.2.2.3).

On the other hand, inhibitory effects of retinoids on the respiratory
burst have been repeatedly observed. Retinoids inhibit fMet-Leu-Phe-in-
duced O3 formation in human neutrophils in the presence of CB (Camisa
etal. 1982; Seifert and Schichtele 1988). In addition, certain retinoids inhibit
PMA -induced O3 formation in neutrophils (Witz et al. 1980; Cooke and
Hallett 1985; Seifert and Schichtele 1988). Paradoxically, in HL-60 cells
retinoids have been found to potentiate PMA-induced Oz formation
(Seifert and Schichtele 1988).

3.3.2.5 Digitonin

Digitonin and saponin are bulky detergents related to cholesterol and
activate the respiratory burst in various types of phagocytes (Zattiand Rossi
1967; Cohen and Chovaniec 1978a,b; Yamashita et al. 1985). Activation of
O; formation by digitonin in guinea pig neutrophils is characterized by a
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lag phase and by reversibility (Cohen and Chovaniec 1978a,b). Digitonin
activates Oz formation with a biphasic concentration-response function
and in a pH- and temperature-dependent manner. NADPH has been
reported to enhance O; formation, suggesting that NADPH crosses the
plasma membrane and serves as electron donor for O3 formation. NEM
and EGTA inhibit digitonin-induced O3 formation when added to cells
prior to the stimulus, and Ca®* is required for activation of O3 formation
by digitonin (Cohen and Chovaniec 1978a,b). These data suggest that
activation of O3 formation by digitoninis a Ca**-dependent and NEM-sen-
sitive process (Cohen and Chovaniec 1978b; see also Sect. 4.3.3).

3.3.2.6 Hexachlorocyclohexanes

Hexachlorocyclohexanes are a group of isomeres and show some structural
similarity to inositol. y-Hexachlorocyclohexane, also referred to as y-ben-
zene hexachloride or lindane, is used as insecticide and ectoparasiticide.
Hexachlorocyclohexanes are very lipophilic, accumulate in plasma
membranes, and have complex effects on phosphoinositide metabolism
(Hokin and Brown 1969; Fisher and Mueller 1971; Omann and Lakowicz
1982; Meade et al. 1984; Parries and Hokin-Neaverson 1985). Interestingly,
activations of the respiratory burst by hexachlorocyclohexanes and recep-
tor agonists show some properties that they have in common.

The a-,y-and d-isomers of hexachlorocyclohexane but not the B-isomer
activate the respiratory burst in alveolar macrophages, human neutrophils,
and differentiated HL-60 cells (Holian et al. 1984; Kuhns et al. 1986; English
et al. 1986; Seifert et al. 1989c, 1991). y-Hexachlorocyclohexane is a
similarly effective activator of O3™ formation as PMA, but the insecticide is
several orders of magnitude less potent than the phorbol ester (English et
al. 1986; Seifert et al. 1989c, 1991). In contrast to O3 formation,
hexachlorocyclohexanes inhibit chemotaxis and actin polymerization
(Kaplan et al. 1988).

Similar to chemotactic peptides, hexachlorocyclohexanes activate
phosphoinositide degradation and induce an increase in cytoplasmic Ca®*
(Holian et al. 1984; English et al. 1986). Hexachlorocyclohexane-induced
O; formation is a reversible process and is reactivated by chemotactic
peptides (Holian et al. 1984). In contrast to activation of NADPH oxidase
by PMA, thatinduced by hexachlorocyclohexanes is terminated by removal
of the stimulus, and particulate fractions of PMA- but not of
hexachlorocyclohexane-treated cells generate O3~ (English et al. 1986).
These data suggest that the permanent presence of hexachlorocyclo-
hexanes is required for NADPH oxidase activation, and that these agents
activate Oy generation by a mechanism distinct from that of PMA. Inter-
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estingly, y-hexachlorocyclohexane has a weak stimulatory effect on protein
kinase purified from rat brain (Seifert, unpublished results).

3.3.2.7 Alcohols

The role of short-chain aliphatic alcohols in the regulation of the
respiratory burst is controversial, and several mechanisms may be in-
volved in their effects. On one hand, hypertonic glycerol has been
reported to induce O3 formation in various types of phagocytes (Kaneda
and Kakinuma 1986). Glycerol-induced O3 formation is reversible and
is associated neither with cytotoxicity nor with exocytosis but with
marked changes in morphology (Kaneda and Kakinuma 1986). In addi-
tion, ethanol at concentrations of 0.1-0.5 M has been reported to be a
weak activator of O3 formation in rat alveolar macrophages (Dorio et
al. 1988). On the other hand, aliphatic alcohols have been reported to
inhibit receptor agonist- and PMA-induced O3 formation (Yuli et al.
1982; Dorio et al. 1988; Bonser et al. 1989). The mechanism by which
alcohols modulate the respiratory burst may involve alteration of the
affinity state of formyl peptide receptors and of the activity of G-
proteins, of phospholipases C and D, and of protein kinase C (Hoek et
al. 1987; Rubin and Hoek 1988; Dorio et al. 1988; Rooney et al. 1989;
Bonser et al. 1989; see also Sects. 3.2.2.1,3.3.1.1.1).

3.3.2.8 Thymol

Thymol is used as antiseptic and antifungal agent. Thymol activates Oz
formation in neutrophils of various species including guinea pig, primates, and
man (Suzuki et al. 1987; Suzuki and Furuta 1988). In guinea pig neutrophils,
thymol induces O3 formation with a lag time of 30's (Suzuki and Furuta 1988).
The precise mode of action of thymol is not known. Activation of NADPH
oxidase by thymol does not depend on extracellular Ca®™, is associated with a
decrease in the cellular content of ATP, is inhibited by trifluoperazine, and is
subject to homologous desensitization. In addition, exposure of cells to thymol
potentiates PMA-induced O3 formation.

3.3.2.9 Bleomycin

The induction of pulmonary fibrosis is an important unwanted effect of the
antineoplastic agent bleomycin. Interestingly, bleomycin has been shown
to enhance O3 formation in alveolar macrophages of guinea pigs, suggest-
ing that activation of the respiratory burst in mononuclear phagocytes may
contribute to bleomycin-induced fibrosis (Conley et al. 1986). Glucocor-
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ticoids partially inhibit this effect of bleomycin (see also Sect. 4.2.1), but the
molecular mode of action of bleomycin is still undefined.

3.3.2.10 Neuraminidase

Exogenous neuraminidase induces the release of sialic acid from human
neutrophils (Henricks et al. 1982). Upon stimulation with opsonized
staphylococci, neuraminidase-treated neutrophils generate larger amounts
of O3 than control cells, suggesting that Fc receptor-mediated activation of
NADPH oxidase is facilitated by removal of sialicacid (Henricks et al. 1982;
see also Sect. 3.3.1.5). Exogenous neuraminidase also enhances O forma-
tion in phagocytosing neutrophils (Suzuki et al. 1982). In contrast, ex-
ogenous neuraminidase does not affect binding of fMet-Leu-Phe to formyl
peptide receptors and fMet-Leu-Phe-induced O3 formation in neutrophils.
The results of these studies suggest that enhancement of O3 formation by
neuraminidase is stimulus dependent.

3.3.2.11 1,25-Dihydroxyvitamin D;

1,25-Dihydroxyvitamin D; primes murine peritoneal macrophages and
human monocyte-derived macrophages for enhanced O3 and H,O, forma-
tion (M.S. Cohen et al. 1986; Gluck and Weinberg 1987). In addition,
peritoneal macrophages from vitamin D;s-deficient mice show an impaired
respiratory burst, and incubation of the vitamin D;-deficient phagocytes
with the hormone in vitro partially restores the respiratory burst (Gavison
and Bar-Shavit 1989). These data suggest that 1,25-dihydroxyvitamin D;
plays a role in the functional maturation of macrophages (Gavison and
Bar-Shavit 1989; see also Sects. 3.4.4.1.2,3.4.4.1.3).

3.3.2.12 Particulate Stimuli

In addition to opsonized particles (see also Sect. 3.3.1.5.5), unopsonized
particles, e.g., zymosan, bacteria and latex beads, may activate the
respiratory burst and phagocytosis in various types of phagocytes.

3.3.2.12.1 Unopsonized Fungal and Bacterial Components

Phagocytes possess mannose/fucose-specific plasma membrane “recep-
tors,” and ingestion of particles through mannose-specific mechanisms has
also been referred to as lectinophagocytosis (Stahl et al. 1978, 1980; Warr
1980; Shepherd et al. 1982; Largent et al. 1984; Gbarah et al. 1989; see also
Sect. 3.3.2.1).
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Unopsonized zymosan has been reported effectively to activate the
respiratory burst in primed murine macrophages (Berton and Gordon
1983b). Culture of primed murine peritoneal macrophages in the presence
of IgG causes desensitization to zymosan-induced O3 formation (Valletta
and Berton 1987). Unopsonized zymosan also activates Oz formation in
suspended or adherent murine alveolar macrophages (Sugar and Field
1988). Opsonization of zymosan with complement does not enhance the
effect of zymosan, suggesting that functional complement receptors are not
present in these cells (Sugar and Field 1988). Various unopsonized fungi,
zymosan, and the polysaccharide mannan have been shown to stimulate
H,O, formation in murine neutrophils (Danley and Hilger 1981). In addi-
tion, mannan enhances zymosan-induced H»O, formation. Furthermore,
the primary constituent of mannan, D-mannose, but not other monosac-
charides, inhibits the stimulatory effects of zymosan or mannan. The in-
hibitory effect of 2-deoxy-D-glucose on the respiratory burst may be
explained by inhibition of glycolysis (Danley and Hilger 1981). Finally,
mannose does not inhibit H>O, formation induced by PMA or opsonized
Sephadex beads. These data suggest that activation of the respiratory burst
in murine neutrophils by unopsonized fungal components involves man-
nose-specific mechanisms.

In human neutrophils and macrophages, unopsonized zymosan is not
an effective activator of the respiratory burst (Goldstein et al. 1975; Roos
et al. 1981; Ezekowitz et al. 1985; Meshulam et al. 1988). In contrast,
opsonized and unopsonized Candida albicans hyphae have been shown to
be similarly effective activators of the respiratory burst in human
neutrophils (Meshulam et al. 1988). Activation of O3 formation by unop-
sonized hyphae is accompanied by phosphoinositide degradation and Ca®*
mobilization. Unlike the respiratory burst induced fMet-Leu-Phe, that
induced by hyphae is not accompanied by plasma membrane depolarization
and is partially pertussis toxin-insensitive (Meshulam et al. 1988). In
hamster alveolar macrophages, phagocytosis of unopsonized particles is
associated with an inhibition of the respiratory burst (Kobzik et al. 1990).

Recently, unopsonized type 1 fimbriated Escherichia coli has been
reported to induce a respiratory burst in human neutrophils and peritoneal
macrophages through a mannose-specific mechanism (Gbarah et al. 1989).
Chemiluminescence induced by these bacteria is abrogated by prior ex-
posure to PMA and is inhibited by sphingosine, H-7, and K-252a (Gbarah
et al. 1989). The authors interpreted their results in such a way that protein
kinase C is involved in the mannose-specific activation of the respiratory
burst (see also Sects. 3.2.2.3,3.2.2.5). Positive charges may play a role in the
activation of the respiratory burst by fimbrinated E. coli strains (Steadman
et al. 1990).
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3.3.2.12.2 Latex Particles

Latex particles induce oxygen consumption and H,O; formation in human
neutrophils after a short lag time (Segal and Coade 1978; Hallett and
Campbell 1983; Curnutte and Tauber 1983; Cooke and Hallett 1985). In
contrast to opsonized zymosan, latex particles do not induce substantial
release of O3 into the extracellular space (Curnutte and Tauber 1983). In
addition, CB inhibits the latex bead-induced respiratory burst (Hallett and
Campbell 1983; see also Sect. 3.2.5). Furthermore, chemotactic peptides but
not latex beads induce myeloperoxidase release (Hallett and Campbell
1983). The kinetics of oxygen consumption induced by PMA and that
induced by latex beads are similar, and latex beads but not chemotactic
peptides compete with PMA in a simple common-target manner (Cooke
and Hallett 1985). Finally, retinal inhibits the respiratory burst induced by
latex beads but not that induced by fMet-Leu-Phe (Cooke and Hallett 1985;
see also Sect. 3.3.2.4). These data suggest that protein kinase C plays a
central role in the latex bead-induced respiratory burst, and that these
particles and chemotactic peptides activate NADPH oxidase by different
mechanisms (Cooke and Hallett 1985).

3.3.2.12.3 Crystals

Chronic inhalation of mineral dusts, e.g., of quartz or of asbestos, may
lead to pulmonary diseases characterized by accumulation of
mononuclear cells and neutrophils (Craighead and Mossman 1982;
Mossman et al. 1983; Kamp et al. 1989). In addition, asbestos induces
epithelial damage, fibrosis, and malignant tumors (Craighead et al. 1982;
Mossman et al. 1983). Besides lysosomal enzyme release, activation of
the respiratory burst in mononuclear phagocytes and neutrophils may
be a mechanism by which asbestos and quartz induce tissue damage
(Davies et al. 1974; Donaldson and Cullen 1984; Elferink and Ebbenhout
1988; Cantin et al. 1988; Kamp et al. 1989). Somewhat unexpectedly,
activation of NADPH oxidase by asbestos has been shown to be pertussis
toxin sensitive (Elferink and Ebbenhout 1988). Similar to chemotactic
peptldes the respiratory burst induced by asbestos depends on extracel-
lular Ca**, but it is not known whether asbestos binds to specific receptor
proteins (Elferink and Ebbenhout 1988). The long- or short-term ap-
plication of asbestos or quartz to sheep potentiates PMA-induced O3
formation in alveolar macrophages (Cantin et al. 1988). These data
suggest that mineral dust inhalation primes macrophages for enhanced
O; formation in vivo and contributes to the pathogenesis of pulmonary
fibrosis.
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Urate crystals play a major role in the pathogenesis of acute and chronic
gouty arthritis (Woolf and Dieppe 1987). The inflammatory potential of
urate crystals is modulated by surface charge and protein coating. Upon
exposure to monosodium urate crystals, human neutrophils undergo a
respiratory burst (Simchowitz et al. 1982). Coating of monosodium urate
with IgG potentiates O3 formation in human neutrophils (Abramson et al.
1982; see also Sect. 3.3.1.5). The mechanism by which uncotated urate
crystals activate NADPH oxidase may involve the synthesis of leukotrienes
and Ca®* mobilization (Poubelle et al. 1987; Terkeltaub et al. 1990). In
addition, recent data suggest that both pertussis toxin-sensitive and -insen-
sitive mechanisms are involved in urate crystal-induced neutrophil activa-
tion (Terkeltaub et al. 1990). In contrast, the induction of pleuritis by
calcium pyrophosphate crystals in rats has been reported to depress the
respiratory burst of the corresponding peritoneal macrophages (Bird et al.
1985).

3.4 Miscellaneous Aspects of NADPH Oxidase Activation

3.4.1 Relation of the Respiratory Burst to the Synthesis
of Reactive Nitrogen Oxide Intermediates: Role of Arginine

R-NO, e.g., hydroxylamine and nitric oxide, has been suggested to play a
role in phagocyte-induced cytotoxicity, carcinogenesis, vasodilation, and
inhibition of platelet aggregation (Hibbs et al. 1987a,b, 1988; Iyengar et al.
1987; Ding et al. 1988; Rimele et al. 1988; Stuehr et al. 1989; Stuehr and
Nathan 1989; Salvemini et al. 1989). IFN-y and LPS induce the parallel
synthesis of reactive oxygen species and R-NO in murine macrophages, and
combinations of certain cytokines or of cytokines with LPS synergistically
induce R-NO synthesis (Iyengar et al. 1987; Ding et al. 1988; see also Sects.
3.3.1.3, 33.2.2). In addition to macrophages, human neutrophils and
dibutyryl cAMP-differentiated HL-60 cells have been shown to release
R-NO in the absence or presence of chemoattractants (Wright et al. 1989;
Schmidt et al. 1989). The effectiveness order of fMet-Leu-Phe, PAF, and
LTRB, to induce the formation of R-NO and O3 in these phagocytes is the
same, suggesting that the initial signal transduction steps for both processes
are identical (Schmidt et al. 1989). In contrast to O formation, the fMet-
Leu-Phe-induced release of R-NO in suspended human neutrophils is
delayed in onset, is long lasting, and is not potentiated by CB (Schmidt et
al. 1989 and unpublished results). Superoxide dismutase potentiates
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chemoattractant-induced release of R-NO and neutrophil-induced inhibi-
tion of platelet aggregation and counteracts neutrophil-induced contraction
of smooth vascular muscle, probably by preventing O3 -induced degrada-
tion of R-NO (Gryglewski et al. 1986; Schmidt et al. 1989; Salvemini et al.
1989; Ohlstein and Nichols 1989). O3 and nitric oxide react to form
peroxynitrite which rapidly decomposes and generates a potent oxidant
(Beckman et al. 1990). It has been suggested that the parallel synthesis and
release of O3 and nitric oxide from phagocytes through formation of
peroxynitrite represents an additional mechanism by which these cells exert
their cytotoxic actions (Beckman et al. 1990).

The inhibitors of arginine-metabolizing enzymes L-canavanine and
NS-monomethyl-L-arginine prevent synthesis of R-NO, suggesting that the
terminal guanidino nitrogen atoms of L-arginine are physiological precur-
sors for R-NO synthesis (Ding et al. 1988; Marletta et al. 1988; Hibbs et al.
1988; Schmidt et al. 1989). In addition, N°-monomethyl-L-arginine inhibits
fMet-Leu-Phe-induced chemotaxis, and arginine or dibutyryl cGMP an-
tagonize this effect (Kaplan et al. 1989). These data suggest that R-NO
through activation of soluble guanylyl cyclase and subsequent formation of
cGMP is involved in the regulation of chemotaxis (Kaplan et al. 1989; see
also Sect. 3.2.6.2). In contrast, bacterial killing and activation of the
respiratory burst are not affected by L-canavanine or N° -monomethyl-L-
arginine (Ding et al. 1988; Schmidt et al. 1989, and unpublished results).
J774.C3C macrophages, which cannot undergo a respiratory burst, release
R-NO, and the combination of LPS plus IFN-y enhances R-NO release but
decreases H,O, production (Iyengar et al. 1987; Ding et al. 1988; see also
Sects. 3.3.2.2, 3.44.1.5). These data suggest that activation of NADPH
oxidase and the synthetisis of R-NO are independently regulated proces-
ses.

L-Arginine, however, plays a role in the regulation of the respiratory
burst. The extracellular fluid in injured tissue contains L-arginine only at
very low concentrations, probably due to degradation of the amino acid by
macrophage-derived arginase (Albina et al. 1989a,b). In resident and
primed rat peritoneal macrophages, Oz formation is enhanced following
incubation in L-arginine-deficient medium, whereas L-arginine at con-
centrations above 0.1 mM inhibits Oz formation (Albina et al. 1989a,b). In
contrast, N®-monomethyl-L-arginine counteracts inhibition of the
respiratory burst by L-arginine (Albina et al. 1989b). These data suggest
that depletion of L-arginine primes macrophages for enhanced O3 forma-
tion, and that oxidative metabolism of L-arginine through L-arginine
deiminase inhibits the respiratory burst (Albina et al. 1989a,b). Finaily,
N°-monomethyl-L-arginine slightly enhances O3 formation in rat mast
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cells, possibly due to inhibition of release of R-NO which may react with
O3 (Salvemini et al. 1990; see also Sect. 3.4.4.2.4).

3.4.2 Relation of the Respiratory Burst to Ion Fluxes
3.4.2.1 Na'/H' Exchange

The Na’/H" exchange is involved in the regulation of the cytosolic H* and
Na® concentrations in many cell types including phagocytes (Grinstein and
Furuya 1984; Grinstein et al. 1984; Seifter and Aronson 1986; Grinstein and
Rothstein 1986). The intracellular Na* concentration is maintained at much
lower concentrations than in the extracellular space by active extrusion of
Na" through Na*/K*-ATPase. The driving force for H" extrusion through
Na*/H" exchange is the energy of the inwardly directed electrochemical
gradient of Na’.

Upon exposure to fMet-Leu-Phe or PMA, neutrophils undergo a
transient acidification followed by alkalinization (Grinstein et al. 1985, 1986,
1988; Grinstein and Furuya 1986a,b). The acidification may be attributable
to the generation of H* through activation of the respiratory burst, i.e.,
hexose monophosphate shunt and NADPH oxidase, as neutrophils of
CGD patients do not undergo acidification (Grinstein et al. 1986, 1988;
Grinstein and Furuya 1986a,b; Wright et al. 1986). In contrast, Naccache et
al. (1989) suggested that acidification is not directly linked to activation of
NADPH oxidase. The delayed alkalinization is discussed to be due to
activation of the amiloride-sensitive Na*/H" exchange by protein kinase C
(Besterman and Cuatrecasas 1984; Simchowitz 1985a,b; Grinstein et al.
1985, 1986, 1988; Grinstein and Furuya 1986a,b). Amiloride has been used
as a pharmacological tool in order to clarify the role of the Na*/H" exchange
in the regulation of NADPH oxidase.

The role of the Na'/H" exchange in the regulation of O3 formation is
controversial. In the absence of extracellular monovalent cations, fMet-
Leu-Phe does not induce O3 formation in human neutrophils, and extracel-
lular Na* restores their capacity to generate O; in a concentration-
dependent manner (Simchowitz and Spilberg 1979). Activation of the
respiratory burst by opsonized zymosan, ConA, and PMA depends, at least
in part,onextracellular Na* (Wright et al. 1986, 1988; Nasmith and Grinstein
1986). In the absence of extracellular Na*, PMA does not cause alkaliniza-
tion but only acidification in human neutrophils (Nasmith and Grinstein
1986). Relieving acidification restores the ability of PMA maximally to
stimulate the respiratory burst (Nasmith and Grinstein 1986; Wright et al.
1988). These data suggest that Na is not obligatorily involved in the
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activation of NADPH oxidase but indirectly inhibits the activation process
by inhibiting Na*/H" exchange.

Berkow et al. (1987a) reported that amiloride inhibits Na® influx in
human neutrophils without affecting PMA-induced O; formation, and
in cultured rat Kupffer’s cells, activation of the respiratory burst does not
depend on extracellular Na® or on intracellular pH changes (Dieter et al.
1987). Amiloride prevents fMet-Leu-Phe-induced alkalinization and
partially inhibits O3 formation (Simchowitz 1985a; Berkow et al. 1987a).
The amount of O3 generated correlates with the extent of intracellular
alkalinization, but alkalinization per se is not sufficient to activate the
respiratory burst, as fMet-Leu-Phe may induce alkalinization without a
respiratory burst (Simchowitz 1985a). The interpretation of the results
of studies reporting on the effects of amiloride is hampered by the fact
that amiloride does not only inhibit Na*/H" exchange but among others
inhibits protein kinases including protein kinase C and modulates the
activity of G-proteins (Davis and Czech 1985; Besterman et al. 1985;
Anand-Srivastava 1989). Molski et al. (1986) showed that most of the
fMet-Leu-Phe-stimulated Na® influx is not coupled to H” efflux. In addition,
H-7 blocks fMet-Leu-Phe-induced cell alkalinization without inhibiting
O; formation, indicating that an increase of the intracellular pH is not
obligatorily required for activation of O3 formation.

3.4.2.2 Membrane Depolarization

Neutrophils show a resting potential of -30 to -75 mV which is maintained
primarily by K* conductance (Korchak and Weissmann 1978; Kuroki et al.
1982; Majander and Wikstrom 1989). Upon exposure to various stimuli such
as PMA, ConA, A 23187, zymosan, and fMet-Leu-Phe, the membrane
rapidly depolarizes and slowly repolarizes (Korchak and Weissmann 1978;
Jones et al. 1981; Kuroki et al. 1982; Cameron et al. 1983; Sullivan et al.
1984). The question of how far Na* influx contributes to depolarization is
matter of debate (Korchak and Weissmann 1980; Jones et al. 1981;
Kuroki et al. 1982; Majander and Wilkstrom 1989).

Membrane depolarization precedes O3 formation, and fMet-Leu-Phe-
induced membrane potential changes correlate with the respiratory burst
(Korchak and Weissmann 1978; Whitin et al. 1980; Seligmann and Gallin
1980; Jones et al. 1981; Korchak et al. 1983; Cameron et al. 1983; Fletcher
and Seligmann 1986). In addition, neutrophils of CGD patients do not
undergo membrane depolarization and do not generate O3 upon exposure
to PMA, fMet-Leu-Phe, or ConA (Whitin et al. 1980; Seligmann and Gallin
1980; Castranova et al. 1981). Moreover, under certain experimental con-
ditions depolarization may be sufficient to induce a respiratory burst (Rossi
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et al. 1981a). These data support a role of membrane depolarization is the
regulation of NADPH oxidase.

In contrast, the membrane depolarization induced by A 23187 has been
reported to be not impaired in neutrophils of CGD patients, and inhibition
of membrane depolarization by EGTA has no inhibitory effect on the
PMA-induced respiratory burst in murine peritoneal macrophages (Selig-
mann and Gallin 1980; Castranova et al. 1981; Lepoivre et al. 1982; Sullivan
et al. 1984). On one hand, partial depolarization of neutrophils by a high K*
buffer has been reported to inhibit fMet-Leu-Phe- and PMA-induced O3
formation (Martin et al. 1988). On the other hand, depolarization by
increasing the extracellular K* concentration has been shown to have no
effect on O3 formation in the presence of fMet-Leu-Phe (Kuroki et al.
1982). Moreover, the concentration of PMA required to induce membrane
depolarization is lower than that to activate the respiratory burst (Seeds et
al. 1985). Finally, spontaneous depolarization of neutrophils without a
respiratory burst and activation of H,O, formation by fMet-Leu-Phe
without membrane depolarization have been observed (Seeds et al. 1985).
These data suggest that membrane depolarization may precede activation
of NADPH oxidase but is not sufficient to induce its activation.

NADPH oxidase has been suggested to be electrogenic (L.M. Hender-
son et al. 1987, 1988a,b). The release of O3 from phagocytes into the
extracellular space would be expected to be associated with substantial
membrane potential changes if no compensating ions crossed the plasma
membrane (L.M. Henderson et al. 1987, 1988a,b). In neutrophil cytoplasts,
the PMA-induced respiratory burst is associated with membrane
depolarization, and the electroneutral amiloride-sensitive Na*/H* exchange
cannot contribute to the compensation for charge translocated by NADPH
oxidase (see also Sect.3.2.5). The inhibitor of NADPH oxidase diphenylene
iodonium prevents membrane depolarization in neutrophil cytoplasts and
acidification in stimulated neutrophils. The extent of depolarization is
modulated by the pH gradient across the plasma membrane, and blockers
of H' efflux enhance PMA-induced membrane depolarization and inhibit
acidification of the extracellular medium and O3 formation. Extracellular
NH,Cl restores the ability to generate O3, possibly due to the movement
of NH," across the plasma membrane. These data suggest that NADPH
oxidase is electrogenic, that NADPH oxidase activity is limited by the
movement of ions as charge compensators, and that H" efflux compensates
for the release of O3 and membrane depolarization (L.M. Henderson et
al. 1987, 1988a,b).
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3.4.2.3 Anion Transport

The stilbene sulfonic acids 4'4-diisothiocyanostilbene-22'-disulfonic acid
(DIDS) and 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid
(SITS), have been suggested to block anion transport processes (Korchak
et al. 1980, 1982). In addition, these agents may inhibit neutrophil Mg**-
ATPase and may react with receptor agonists (Korchak et al. 1982; Vostal
etal. 1989). The results of studies concerning the effects of these compounds
on the respiratory burst are controversial. DIDS and SITS have been
reported to inhibit O3 formation induced by zymosan opsonized in fresh
serum but not that induced by zymosan opsonized in heat-decomplemented
serum or by PMA (Tauber and Goetzl 1981). DIDS does not inhibit O3
formation induced by PMA and fMet-Leu-Phe but that induced by LTB4
and PAF (Smith et al. 1984a). DIDS and SITS inhibit exocytosis and
aggregation but not O3 formation induced by immune complexes and A
23187 in human neutrophils (Korchak et al. 1980; Kaplan et al. 1982).

3.4.3 Adherence

Most of the in vitro studies on the regulation of the respiratory burst in
neutrophils have been carried out with suspended cells. However, in vivo,
neutrophils may adhere to surrounding tissues upon activation (Hoffstein
et al. 1985; Nathan 1987; Kownatzki and Uhrich 1987). Therefore, studies
with adherent neutrophils are of considerable interest with respect to the
activation of the respiratory burst in vivo (see also Sect. 1). Certain extracel-
lular matrix proteins show stimulatory effects on the respiratory burst in
human neutrophils (see also Sect. 3.3.1.4).

The results of various authors show that adherence may result in an
augmentation of the respiratory burst in neutrophils. In comparison to
suspended cells, fMet-Leu-Phe induces a greatly prolonged respiratory
burst in neutrophils which adhere to petri dishes or polystyrene surfaces
coated with serum, fibronectin, or human umbilical vein endothelial cells
(Dahinden et al. 1983b; Nathan 1987). A variety of stimuli including LPS
and cytokines have been reported to activate NADPH oxidase only in
adherent but not in suspended neutrophils (Dahinden and Fehr 1983;
Dahinden et al. 1983a; Nathan 1987; see also Sects. 3.3.1.3, 3.3.2.2). The
onset of the respiratory burst in adherent human neutrophils is delayed
(Nathan 1987). The CR3 receptor may play an important role in mediating
the adherence-dependent respiratory burst in human neutrophils (Entman
et al. 1990; Shappell et al. 1990; see also Sects. 3.3.1.5.2 and 6.2.1). Nylon-
adherent human neutrophils generate considerably higher amounts of
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O3 than nonadherent cells upon stimulation with fMet-Leu-Phe, C5a, PAF,
or A 23187 but not exposure to PMA (Kownatzki and Uhrich 1987).
Adherence of neutrophils to nylon fibers is also associated with increased
chemiluminescence (Clifford et al. 1984). Interestingly, adherence of
neutrophils to plastic surfaces is accompanied by actin polymerization, the
extent of which is additively enhanced by fMet-Leu-Phe (Southwick et al.
1989). In contrast to actin polymerization induced by fMet-Leu-Phe, that
induced by adherence is slow in onset, long lasting, and not inhibited by
pertussis toxin (Southwick et al. 1989). These data suggest that the
mechanism by which chemotactic peptides and adherence induce actin
polymerization is different (see also Sect. 3.2.5). Activation of the
respiratory burst in plastic-adherent neutrophils may involve Ca**-depend-
ent processes and activation of protein kinase C (Ginis and Tauber
1990).

In contrast to the above studies, Hoffstein et al. (1985) reported that
neutrophils which adhere to protein-coated surfaces, show a reduced
respiratory burst in comparison to suspended cells upon exposure to fMet-
Leu-Phe and PMA but not upon exposure to opsonized zymosan. This
inhibition of O3 formation by surface contact has been reported to be rapid
in onset and to be reversible upon resuspension of the cells (Hoffstein et al.
1985).

The respiratory burst in mononuclear phagocytes is also affected by the
state of adherence. In primed mouse peritoneal macrophages, surface
contact per se has been shown to induce a respiratory burst which depends
on extracellular Mg* or Ca® and is prevented by the local anesthetic
lidocaine (Berton and Gordon 1983a). Prolonged maintenance of macro-
phages as monolayer cultures is associated with a progressive loss of their
ability to undergo a respiratory burst (Berton and Gordon 1983a). This
decrease in respiratory burst activity is prevented by maintaining the
phagocytes in a nonadherent state (Berton and Gordon 1983a). Primed
murine peritoneal macrophages generate only low amounts of O3 in
suspension, but when the macrophages are allowed to adhere to a glass
surface, PMA is a very effective activator of the respiratory burst (M.S.
Cohenetal. 1981). Interestingly, adherence of J774.1 macrophages to a glass
surface is associated with a transient activation of phosphoinositide
degradation (Zabrenetzky and Gallin 1988). Suspended murine alveolar
macrophages do not generate Oz upon exposure to PMA, but PMA
induces a massive respiratory burst in adherent macrophages cultured for
48 h (Sugar and Field 1988). Zymosan and Blastomyces dermatitidis conida
induce O3 formation both in suspended and in adherent macrophages, but
both stimuli are more effective in adherent than in suspended cells (Sugar
and Field 1988).
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Human monocytes cultured in vitro differentiate into macrophages
(Nakagawara et al. 1981; Sasada et al. 1987). This differentiation process
has been reported to be associated with an initial increase and a delayed
decrease in the ability to undergo a respiratory burst (Nakagawara et al.
1981; Sasada et al. 1987). Human monocytes cultured under conditions
preventing adherence retain their ability to generate O3 upon stimulation
with PMA (Zeller et al. 1988).

3.4.4 Properties of the Respiratory Burst
in some Specialized Cell Types

Most of the studies concerning the respiratory burst have been carried out
with neutrophils or with mononuclear phagocytes. The magnitude and the
stimulus-specificity of the respiratory burst among neutrophils of various
species varies considerably (Badwey et al. 1980, 1983; Styrt 1989). In
addition, macrophages primed by various agents show great differences in
their ability to undergo a respiratory burst (Badwey et al. 1980, 1983). The
regulation of the respiratory burst in neutrophils and mononuclear
phagocytes in general is dealt with in other sections of this review.

This section focuses on characteristics of the respiratory burst in some
specialized cell types, which are summarized in Table 10. It is generally
assumed that the respiratory burst is a specialized property of phagocytes,
but an increasing number of studies indicates that “respiratory burst-like
processes” occur also in nonphagocytic cell types. This field is still in its
beginnings, but we anticipate that research in this area will reveal many
interesting and unexpected results.

3.4.4.1 Phagocytes

3.4.4.1.1 Eosinophils
Eosinophils comprise 2%-3% of the circulating leukocytes in healthy
subjects. Eosinophils may accumulate in the skin and in the respiratory and
gastrointestinal tract, and eosinophilia may be associated with allergic,
neoplastic, or parasitic disease (Butterworth and David 1981). Thus,
eosinophils are assumed to play a role in the pathogenesis of allergic
reactions and inflammatory tissue injury, in the Killing of helminths, and in
host defense against bacteria (Butterworth and David 1981; Pincus et al.
1981; Yazdanbakhsh et al. 1987, Petreccia et al. 1987).

Early studies suggested that there are quantitative differences in the
respiratory burst activity between human neutrophils and eosinophils (De-
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Chatelet et al. 1977). The results of studies on this subject are not consistent.
Controversial results are explained, at least in part, by the difficulties in
obtaining a sufficiently high number of eosinophils from healthy subjects
and in separating these cells from neutrophils (Petreccia et al. 1987; Yaz-
danbakhsh et al. 1987a).

The chemotactic tetrapeptide Val-Gly-Ser-Glu has been shown to
enhance zymosan-induced O; formation in eosinophils and to inhibit
the one in human neutrophils (Beswick and Kay 1981). fMet-Leu-Phe
has been reported to induce a respiratory burst in eosinophils, but in
these cells the chemotactic peptide is apparently less effective than in
neutrophils (Yazdanbakhsh et al. 1987a,b). In contrast, Yamashita et al.
(1985) did not find a stimulatory effect of fMet-Leu-Phe on O3 forma-
tion in eosinophils. Upon exposure to PMA, digitonin, or NaF
eosinophils show a higher respiratory burst activity than neutrophils
(Roos et al. 1984; Yamashita et al. 1985; Shult et al. 1985; Petreccia et al.
1987; Yazdanbakhsh et al. 1985, 1987a). In comparison to neutrophils,
IgG- and complement-coated particles are less potent but similarly
effective stimulators of HO; formation in human eosinophils, suggesting
cell type differences in the plasma membrane receptors for these agonists
(Yazdanbakhsh et al. 1985; see also Sect. 3.3.1.5). Activation of O3
formation by opsonized zymosan and PMA in eosinophils and
neutrophils differs with respect to the kinetics,and CB has been reported
to potentiate A 23187- or ConA-induced O3 formation in human
neutrophils but not in eosinophils (Yamashita et al. 1985; Petreccia et al.
1987; see also Sect. 3.2.5). NADPH oxidases of neutrophils and
eosinophils possess the same Ky, values for substrates, but the enzyme
of eosinophils shows a higher V.« (Yamashita et al. 1985). These data
indicate that the respiratory burst in eosinophils and neutrophils is
different with respect to the activation process, activity, stimulus
specificity, and kinetics. These cell-type specific properties of the
respiratory burst in eosinophils have been suggested to be of relevance
in host defense against parasites and in inflammatory tissue injury
(Petreccia et al. 1987).

With respect to the activity of the respiratory burst in eosinophilia, the
results are controversial. Both increased and decreased activity of the
respiratory burst in the patients’ eosinophils has been observed (Bass et al.
1980; Pincus et al. 1981; Winquist et al. 1982; Prin et al. 1984). These results
indicate that eosinophils from eosinophilic subjects are functionally
heterogenous and that eosinophils from eosinophilic and normal subjects
are not functionally equivalent (see also Sect. 6.2.3).
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- 34.4.1.2 U-937 Cells

In comparison to HL-60 cells, only a relatively limited number of studies
on the regulation of the respiratory burst in the human promonocytic cell
line U-937 have been performed. Upon exposure to a variety of agents,
including dibutyryl cAMP, PMA, 1,25-dihydroxyvitamin Dj, dimethyl sul-
foxide, and IFN-y, U-937 cells acquire the ability to undergo a respiratory
burst upon exposure to various stimuli including PMA and opsonized
zymosan (Clement and Lehmeyer 1983; Harris and Ralph 1985; Harris et
al. 1985; Roux-Lombard et al. 1986; Balsinde and Mollinedo 1988; Banks
etal. 1988; Barzaghi et al. 1989; Saussy et al. 1989). Differentiation of U-937
cells is associated with an increase in the cellular content of cytochrome b.y45
(Balsinde and Mollinedo 1988). Interestingly, differentiation of U-937 cells
with various agents may result in the differential expression of signal
transduction components required for the activation of NADPH oxidase
by specific stimuli (Harris and Ralph 1985; Balsinde and Mollinedo 1988,;
Polla et al. 1989; see also Sects. 3.2.3.1, 3.3.2.1). Finally, recent studies
showed that pertussis toxin-insensitive G-proteins are involved in the
activation of phospholipase C by PAF and leukotrienes in dimethyl sul-
foxide-differentiated U-937 cells, but the regulation of NADPH oxidase
was not analyzed in these investigations (Barzaghi et al. 1989; Saussy et al.
1989; see also Sects. 3.2.1,3.3.1.6,3.3.1.7).

3.44.1.3 HL-60 Cells

HL-60 cells are a popular model system to study signal transduction proces-
ses in human myeloid cells in general and regulation of NADPH oxidase in
particular. Certain cytokines, 1,25-dihydroxyvitamin D3, or PMA induce
monocytic differentiation of HL-60 cells (Harris and Ralph 1985; Trinchieri
et al. 1986; Collins 1987, Thompson et al. 1988). Dimethyl sulfoxide,
dimethyl formamide, retinoic acid, and the cAMP-increasing agents PGE,,
cholera toxin, and dibutyryl cAMP induce neutrophilic differentiation of
HL-60 cells (Collins et al. 1978, 1979; Newburger et al. 1979; Breitman et
al. 1980; Chaplinski and Niedel 1982; Kitagawa et al. 1984; Harris and Ralph
198S; Collins 1987; Thompson et al. 1988).

Differentiated HL-60 cells generate O3 upon exposure to various
agents including chemotactic peptides, PMA, A 23187, arachidonic acid,
and y-hexachlorocyclohexane (Seifert et al. 1989c). The expression of
formyl peptide receptors and of cytosolic activation factors and increases
in the activity of protein kinase C and in the amount of cyctochrome b.s
may contribute to the induction of the respiratory burst during myeloid
differentiation (Chaplinski et al. 1982; Roberts et al. 1982; Kitagawa et al.
1984; Newburger et al. 1984; Harris and Ralph 1985; Zylber-Katz and
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Glazer 1985; Collins 1987; Makowske et al. 1988; see also Sects. 2.4.3,3.1.1,
33.1.1,5.1.6,6.1).

In general, regulation of the respiratory burst in dimethyl sulfoxide-dif-
ferentiated HL-60 cells and human neutrophils is assumed to be similar
(Thompson et al. 1988; see also Sect. 3.2.5.1). In contrast, there are substan-
tial differences in oxidative metabolism between 1,25-dihydroxyvitamin
Ds-differentiated HL-60 cells and human monocytes (Thompson et al.
1988). With respect to the effects of protein kinase C inhibitors, retinoids,
and purine and pyrimidine nucleotides on O3 formation in intact cells and
to the regulation of NADPH oxidase in cell-free systems, there are substan-
tial differences between dibutyryl cAMP-differentiated HL-60 cells and
human neutrophils (Seifert and Schichtele 1988; Seifert et al. 1989b,c,d). In
addition, there are differences in the regulation of NADPH oxidase in the
cell-free system between dimethyl sulfoxide- and dibutyryl cAMP-differen-
tiated HL-60 cells and dimethyl sulfoxide-differentiated HL-60 cells and
human neutrophils, respectively (Seifert and Schultz 1987a,b; Seifert et al.
1988a, 1989a,b,c). Moreover, substantial differences in the activation of
O; formation by fMet-Leu-Phe and PMA between dibutyryl cAMP- and
retinoic acid-differentiated HL-60 cells have been observed (Rao et al.
1989).

3.4.4.1.4 Kupffer’s Cells

Kupffer’s cells are tissue macrophages of the liver and are involved in the
elimination of material taken up in the gastrointestinal tract (Bhatnagar et
al. 1981; Matsuo et al. 1985; Laskin et al. 1988). Activation of the respiratory
burst in Kupffer’s cells has been suggested to play a role in hepatocyte
damage in inflammatory processes of the liver (Arthur et al. 1986; Rieder
et al. 1988a). The availability of techniques to isolate and to culture
Kupffer’s cells has facilitated studies on the respiratory burst in these cells
(Bhatnagar et al. 1981; Matsuo et al. 1985; Lepay et al. 1985; Arthur et al.
1986; Laskin et al. 1988; Rieder et al. 1988a). In general, the respiratory
burst in Kupffer’s cells shows properties similar to those of peritoneal
macrophages, but there are quantitative differences between both cell types
(Laskin et al. 1988; Rieder et al. 1988a). Various stimuli, e.g., zymosan
particles, C5a, and PMA, have been reported to activate the respiratory
burst in Kupffer’s cells (Bhatnagar et al. 1981; Arthur et al. 1986; Laskin et
al. 1988; Rieder et al. 1988a). Treatment of the host with bacteria or
exposure to LPS, muramyl dipeptide, or IFN-y primes Kupffer’s cells for an
enhanced respiratory burst (Matsuo et al. 1985; Lepay et al. 1985; Arthur
et al. 1986; Rieder et al. 1988a).
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34415 J774.16 Cells

The macrophagelike cell line J774.16 was established from a murine
reticulum cell sarcoma (Damiani et al. 1980). J774 cells undergo a
respiratory burst upon stimulation with PMA, aggregated immunoglobulin,
or zymosan (Damiani et al. 1980; Tanaka Y. et al. 1982; Tosk et al. 1989).
Bacteria or LPS prime J774 macrophages for an enhanced respiratory burst,
asdo IFN-aand IFN-p (Tosk et al. 1989; see also Sect. 3.3.1.3.3). The variant
cell clone, J774.C3C, does not undergo a respiratory burst but still possesses
the ability to generate R-NO (Iyengar et al. 1987; see also Sect. 3.4.1).
J774.C3C cells have been reconstituted with an O3 -generating system using
zymosan particles covalently coupled to glucose oxidase (Tanaka Y. et al.
1982). The molecular basis of the defective respiratory burst in J774.3C3
cells apparently does not involve alterations of glucose transport, changes
in hexose monophosphate shunt activity, changes in protein kinase C-
mediated phosphorylation reactions, or reduction in the cellular content of
cytochrome b.ys (Kiyotaki et al. 1984). The defect of the respiratory burst
in J774.C3C cells has been suggested to be associated with a structural or
functional abnormality of cytochrome b.xs (Kiyotaki et al. 1984).

3.4.4.2 Other Cell Types

3.44.2.1 B-Lymphocyte Cell Lines

There is increasing evidence for the assumption that lymphocytic cell lines
may undergo a respiratory burst. Recently, fMet-Leu-Phe has been shown
to induce phosphoinositide degradation in human peripheral blood lym-
phocytes, but the question whether the chemotactic peptide induces O3
formation in these cells, has not been investigated {Schubert and Miiller
1989; see also Sect.3.3.1.1). Activation of human natural killer cells has been
suggested to be associated with enhanced chemiluminescence, and Sendai
virus has been reported to induce a respiratory burst in rat thymocytes
(Helfand et al. 1982; Kolbuch-Braddon et al. 1984). However, contaminat-
ing monocytes and neutrophils may have contributed, at least in part, to the
respiratory burst (Maly et al. 1988). In addition, mitogen-stimulated human
lymphocytes have been reported to reduce NBT but not to generate H,O,
or O3 (Melinn and McLaughlin 1987).

Ebstein-Barr virus (EBV) transformed B-lymphoblasts may show
toxicity against tumor cells (Bersani et al. 1987). Certain EBV-transformed
human B-lymphocyte cell lines have been shown to generate O;” upon
exposure to PMA, a contamination with phagocytes being unlikely
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(Volkman et al. 1984). In contrast, EBV-transformed lymphocytes from
CGD patients do not generate Oz (Volkman et al. 1984). EB V-transformed
F1 and HELL cells but not EBV-negative U-266 plasmocytoma cells or
EBV-positive Burkitt lymphoma WIL-2 cells possess the ability to undergo
a respiratory burst (Maly et al. 1988). F1 and HELL cells but not WIL-2 or
U-266 cells contain cytochrome b.as and the 45-kDa diphenylene
iodonium-binding protein, and diphenylene iodonium inhibits PMA-stimu-
lated O3 formation in F1 and HELL cells (Maly et al. 1988, 1989; see also
Sect.2.4.1). In addition, the lymphoma cell lines P3HR-1, Jijoye, and RPMI
1788 contain cytochrome b.ss and generate O3 upon exposure to PMA
(Hancock et al. 1989). The K, for NADPH of NADPH oxidase amounts
to about 250 pM for P3HR-1 and RPMI 1788 cells and to about 30 pM for
Jijoye cells (Hancock et al. 1989). Moreover, NADH is amuch less effective
substrate for NADPH oxidase in these cells than is NADPH (Hancock et
al. 1989). Finally, nontransformed B-lymphocytes may generate reactive
oxygen intermediates in vivo, as human tonsillar B-lymphocytes have been
shown to contain cytochrome b.y4s and to reduce NBT upon stimulation
with PMA or immunoglobulins (Maly et al. 1989). Kobayashi et al. (1990)
showed that most peripheral B-lymphocytes but not T-lymphocytes or
natural killer cells possess cytochrome b.»4s and reduce NBT upon stimula-
tion. Interestingly, cytochrome b.ys is not found in pre-B-lymphocytes or
pre-B cells and disappears during the terminal differentiation of B-lym-
phocytes to plasma cells (Kobayashi et al. 1990). These data suggest that some
human B-lymphocyte cell lines possess an electron transport chain closely
related to that present in neutrophils or monocytes, and that human B-lym-
phocytes may possess cytotoxic properties.

Recently described substances which activate NADPH oxidase in
EBV-transformed lymphocyte cell lines include PAF (Leca et al. 1990),
TNF-o, IL-1B, LPS, NaF, A 23187, and ionomycin (Hancock et al. 1990).

3.4.4.2.2 Mesangial Cells, Tubular Epithelial Cells, and Glia Cells

The presence of a respiratory burst in mesangial cells was suggested by the
finding that PMA induces chemiluminescence in isolated rat glomeruli
(Shah and Nauun-Bedigian 1981). Unlike in other cell types, the PMA-in-
duced respiratory burst in rat glomeruli is sensitive to inhibition by various
cAMP-increasing agents (Miyanoshita et al. 1989; see also Sect. 4.1). In
cultured rat mesangial cells, opsonized zymosan induces Oz and H,O,
formation and eicosanoid release, and CB inhibits the respiratory burst
(Baud et al. 1983; see also Sects. 3.2.5,3.3.1.5). Inhibitors of lipoxygenases
and glucocorticoids inhibit the respiratory burst in mesangial cells (Baud et
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al. 1983, 1986; see also Sects. 3.2.4,4.2.1). In addition, human complement
components and normal human serum have been reported to synergistical-
ly activate O3 and H,O5 formation in cultured rat mesangial cells (Adler
et al. 1986). Furthermore, certain proteases have been reported to activate
the respiratory burst in glomeruli (Basci and Shah 1987; see also Sect. 3.2.8).
Finally, human mesangial cells were recently shown to generate Oz and
H,O; upon stimulation with opsonized zymosan, whereas unopsonized
zymosan and PMA are only weakly active or inactive (Radeke et al. 1990).
The cytokines, TNF-a and IL-le, induce a very long-lasting release of
reactive oxygen species in mesangial cells (Radeke et al. 1990). The
respiratory burst in mesangial cells may play a role in the pathogenesis of
renal inflammatory processes and glomerular damage (Baud et al. 1983;
Adler et al. 1986; Radeke et al. 1990).

In addition to mesangial cells, tubular epithelial cells are discussed as
playing a part in the pathogenesis of renal injury in various conditions
(Rovin et al. 1990). This view is supported by the recent finding that
epithelial cells from the proximal tubulus, the cortical collecting duct, and
the papillary collecting duct from rabbit generate reactive oxygen species
in the absence of chemical stimulation (Rovin et al. 1990). Opsonized
zymosan and heat-aggregated IgG enhance this basal formation of O3 and
H»O; in a time- and concentration-dependent manner. The identity of the
enzyme involved in the formation of reactive oxygen species in tubular
epithelial cells is not yet known.

Upon exposure to PMA, microglia cells from neonatal and adult rats
generate O3, and the respiratory burst is enhanced by IFN-y (Woodroofe
etal. 1989). In addition, murine glia cellshave been reported toreduce NBT,
and these cells show enhanced chemiluminescence upon stimulation with
PMA, zymosan, or antibody-coated bovine erythrocytes (Sonderer et al.
1987). These data suggest that the respiratory burst in glia cells plays a role
in immunopathological reactions of the brain.

3.4.4.2.3 Thyroid Cells, Epidermis Cells, and Chondrocytes

The synthesis of thyroid hormones by thyroid peroxidase requires iodina-
tion of tyrosine residues in thyreoglobulin, and this reaction depends on
H>0, (Deme et al. 1985; Nakamura et al. 1987, 1989). Plasma membrane
fractions of thyroid cells possess an H,O;-generating and NADPH-oxidiz-
ing enzyme system which shows some properties similar to NADPH
oxidase of phagocytes. The K., for NADPH of the thyroid enzyme amounts
to 35 uM, and NADH is a much less effective electron donor. KCN does
not inhibit H,O; formation, whereas Ca** and ATP enhance H.O, forma-
tion (Deme et al. 1985; Nakamura et al. 1987). The primary product of the
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enzyme reaction has been suggested to be O3, and H,O, may be provided
by dismutation of O;” (Nakamura et al. 1989).

Murine epidermal cells generate H,O, upon stimulation with PMA, a
process which may play a role in PMA-mediated tumor promotion in skin
(Robertson et al. 1990).

Rabbit articular chondrocytes generate H,O, upon exposure to ConA,
and IFN-y and TNF show priming effects (Tiku et al. 1990). In comparison
to alveolar macrophages, chondrocytes generate larger amounts of H,O,.
Production by chondrocytes of reactive oxygen intermediates may play a
part in the cartilage matrix degradation that occurs in arthritis.

3.4.4.2.4 Carotid Body, Fibroblasts, Fat Cells, and Endothelial Cells

The rat carotid body possesses an NADPH oxidase which shows certain
properties similar to the ones of NADPH oxidase in neutrophils (Acker et
al. 1989). NADPH oxidase of the carotid body has been suggested to play
a role as sensor for the oxygen concentration in the arterial blood (Acker
et al. 1989). The presence of an NADPH oxidase in the rat carotid body is
further supported by the finding that this tissue shows a typical spectrum of
cytochrome b and that diphenylene iodonium inhibits H,O; formation
(Cross et al. 1990).

In adherent cultured human skin fibroblasts, IL-1 and TNF-o. were
found to induce a long-lasting respiratory burst (Meier et al. 1989; see also
Sect. 3.4.3). Oz formation in fibroblasts is not inhibited by NaN; or KCN
and is enhanced by NADPH, suggesting that an NADPH oxidase similar
to that in phagocytes is involved in the generation of reactive oxygen
intermediates in these cells (Meier et al. 1989).

Murrell et al. (1990) reported that cultured human fibroblasts generate
and release O3, and that O3 at the concentrations released may stimulate
proliferation of the fibroblasts. Prolonged autocrine stimulation of
fibroblast replication by O3” may contribute to the pathogenesis of fibrosis
(Murrell et al. 1990).

Several years ago, insulin was reported to stimulate H,O, formation in
rat epididymal fat cells (May and de Haen 1979). Nerve growth factor
induces the formation of HyO; in adipocytes as well (Mukherjee and
Mukherjee 1982). The formation of H,Os is linked to the metabolism of
glucose, and H,O; has been suggested to play a role as intracellular signal
molecule for some effects of insulin (May and de Haen 1979). It remains to
be determined whether an NADPH oxidase-related enzyme system is
involved in the formation of HyO,.

In 1984, Rosen and Freeman reported that endothelial cells generate
and release O7". Subsequently, Matsubara and Ziff (1986a) showed that
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PMA enhances O; formation in cultured human umbilical vein endo-
thelial cells. Similar to O3 formation in neutrophils, PMA-triggered
O3 formation in endothelial cells does not depend on the presence of
extracellular Ca®* (Matsubara and Ziff 1986a; see also Sect. 3.1.1.1). The
calcium ionophore A 23187 also augments O; formation in endothelial
cells. A 23187 and the phorbol ester interact synergistically to enhance
Oy release (Matsubara and Ziff 1986a; see also Sect. 3.1.1.1). In addition
to the above stimuli, bradykinin, IFN-y, and IL-1 show stimulatory
effects on O3 formation in human endothelial cells (Matsubara and Ziff
1986b; Holland et al. 1990). The physiological role of endothelium-in-
duced O3 formation may be complex. O3 or Oz -derived radicals may
inactivate endothelium-derived nitric oxide and related reactive nitrogen
oxide intermediates which induce vasodilation (see also Sect. 3.4.1). In
addition, O, may induce vasoconstriction and has been suggested to play
a role in the pathogenesis of certain types of arterial hypertension (Wei
et al. 1985; Auch-Schwelk et al. 1989; see also Sect. 6.2.4).

3.44.2.5 Sea Urchin Eggs

Decades ago, Otto Warburg observed that fertilization of sea urchin eggs
is associated with increased oxygen consumption; this process is referred to
as “the respiratory burst of fertilization” (cited in Foerder et al. 1978). The
complex biochemical changes accompanying fertilization have been
reviewed (Shapiro et al. 1981; Garbers 1989).

A number of studies showed that fertilization is associated with the
formation of reactive oxygen intermediates, e.g., H.O,, and that H,O,
may prevent polyspermy (Foerder et al. 1978; Turner et al. 1985; Weid-
man et al. 1985; Heinicke and Shapiro 1989). H,O; is generated by the
“respiratory burst oxidase,” and the H,O, formed by this enzyme
provides the substrate for an “ovoperoxidase.” The latter enzyme cross-
links tyrosine residues of surface glycoproteins of the egg and forms an
impermeable fertilization membrane (Foerder and Shapiro 1977; Foer-
der et al. 1978, Shapiro et al. 1981; Turner et al. 1985; Weidman et al.
1985; Heinicke and Shapiro 1989). In addition, the H,O, formed may be
toxic for sperm (Shapiro et al. 1981).

The respiratory burst oxidase is activated by fertilization or by A 23187
and is a partially KCN-sensitive NAPDH:O; oxidoreductase, and H,O; is
the initial product (Foerder et al. 1978; Turner et al. 1985; Heinecke and
Shapiro 1989). Recent data indicate that O3 is also formed during fertiliza-
tion (Takahashi et al. 1989). In a cell-free system, the respiratory burst
oxidase is activated by Ca™ at physiologically relevant concentrations and
by ATP and is inhibited by H-7, staurosporine, phenothiazines, and NEM
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(Heinicke and Shapiro 1989; see also Sects. 3.2.2.3,4.3.3, 5.1). These data
show that the regulation of the NADPH oxidase of sea urchin eggs and of
phagocytes is similar in some respects (Shapiro et al. 1981), and that kinases
may be involved in the activation process.

3.4.4.2.6 Plant Cells

Finally, plant cells, e.g., radish, possess enzymes related to NADPH oxidase
of animals (Vianello and Macri 1989). The formation of reactive oxygen
intermediates in plant cells may be involved in the regulation of various
processes, such as resistance to plant pathogens, growth, seed germination,
and biosynthesis of lignin (Vianello and Macri 1989). A detailed discussion
of the structure, catalytical properties, regulation and function of plant
NAD(P)H oxidases is, however, beyond the scope of this review.



4 Imhibition of NADPH Oxidase

The respiratory burst is inhibited by numerous agents. In many cases, the
precise mechanisms underlying inhibition of the respiratory burst are not
yet known and are a subject of controversial discussion. The effects of
protein kinase C inhibitors on the respiratory burst are dealt with in Sect.
3.2.2.3 and in Table 3. The inhibitory effects of cAMP-increasing agents on
NADPH oxidase are summarized in Table 11 and are discussed with in Sect.
4.1. Table 12 summarizes the effects of various anti-inflammatory drugs on
the respiratory burst (see Sect. 4.2), and Table 13 deals with the inhibitory
effects of microbial products on NADPH oxidase (see Sect. 4.3.1). Finally,
Tables 14 and 15 summarize data on miscellaneous inhibitors of the
respiratory burst. Some of these agents are described in more detail in Sects.
4.3.2 and 4.3.3 and in various other sections of this review. Recently, Cross
(1990) presented a critical and extensive review on inhibitors of NADPH
oxidase.

4.1 cAMP-Increasing Agents

Neutrophils and mononuclear phagocytes possess G, and adenylyl cyclase.
Similar to other cell types, adenylyl cyclase in phagocytes is activated by
stable guanine nucleotides, NaF, forskolin, and various intercellular signal
molecules, i.e., prostaglandins, §-adrenergic agonists, and histamine (Stolc
1977, Verghese and Snyderman 1983; Lad et al. 1984; Verghese et al. 1985b;
Meurs et al. 1986; Bokoch 1987; Motulsky et al. 1987). Unexpectedly,
pertussis toxin was recently found to inhibit the increase in cAMP in human
monocytes induced by B-adrenergic agonists and PGE;, whereas that stimu-
lated by forskolin is not affected (Griese et al. 1990). The inhibitory effect
of pertussis toxin cannot be explained by the involvement of G as this
G-protein is not a substrate for pertussis toxin (Gilman 1987). Unexpected
effects of cAMP-increasing receptor agonists on signal transduction proces-
ses were also recently observed in HL-60 cells (Mitsuhashi et al. 1989). In
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agreement with these authors, we found that PGE,, isoproterenol, and
histamine increase cytoplasmic Ca** in undifferentiated HL-60 cells (un-
published results; see aiso 4.1.1).

4.1.1 Receptor Agonists

Prostaglandins, B-adrenergic agonists, and histamine induce an increase in
intracellular cAMP in various myeloid cell types including neutrophils,
HL-60 cells and U-937 cells, and phosphodiesterase inhibitors potentiate
receptor-mediated cAMP accumulation (Bourne and Melmon 1971; Busse
and Sosman 1976; Hamachi et al. 1984; Gespach and Abita 1982; Gespach
et al. 1982, 1985, 1986; Ham et al. 1983; Rivkin et al. 1975; Lad et al. 1985a;
Verghese et al. 1985a).

Prostaglandins, -adrenergic agonists, and histamine are similarly ef-
fective inhibitors of the chemotactic peptide-induced O formation in
human neutrophils, and the maximum rate of O3 formation somewhat is less
sensitive toinhibition by cAMP-increasing agents than the absolute amount
of O; generated (Burde et al. 1989; Seifert et al. 1991). Other cAMP-in-
creasing intercellular signal molecules, e.g., dopamine, glucagon, and
vasointestinal peptide do not inhibit fMet-Leu-Phe-induced O, formation
in human neutrophils (Seifert, unpublished results).

4.1.1.1 Prostaglandins Including Prostacyclin

In parallel with the increase in cAMP, various prostaglandins, e.g., PGE;,
PGE,, PG 6-keto-E;, PGD,, and PGF;, inhibit stimulated O3 formation,
exocytosis, and LTB4 release in neutrophils (Rivkin et al. 1975; Weissmann
et al. 1980; Ham et al. 1983; Fantone and Kinnes 1983; Fantone et al. 1983;
Lad et al. 1985a; Gryglewski et al. 1987). Inhibition of O; formation by
prostaglandins in neutrophils shows stimulus specificity, as is the case of
other cAMP-increasing agents. For example, PGE; has been reported to
inhibit the respiratory burst induced by intercellular signal molecules such
as fMet-Leu-Phe, PAF, ATP, UTP, and combinations of these agents,
whereas that induced by arachidonic acid, PMA, or A 23187 is insensitive
toinhibition (Lim et al. 1983; Fantone and Kinnes 1983; Fantone et al. 1984;
Penfield and Dale 1985; Gryglewski et al. 1987; Channon et al. 1987; Seifert
et al. 1989b; Burde et al. 1989). In contrast, PGE, has been reported to
inhibit the PMA-induced respiratory burst in murine macrophages primed
with LPS (Metzger et al. 1981).

Inhibition of the respiratory burst by prostaglandins may be of
relevance in vivo. The bactericidal defect of neutrophils in thermally injured
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guinea pigs may be due, at least in part, to the increased formation of PGE;
in the phagocytes (Bjornson et al. 1989). Exogenous PGE; mimics this
defect, and inhibitors of cyclooxygenase antagonize inhibition of bac-
tericidal activity (Bjornson et al. 1989; see also Sect. 4.2.2).

As far as the effects of prostacyclin on the respiratory burst are con-
cerned, the results are inconsistent. For example, Gryglewski et al. (1987)
did not find an inhibitory effect of prostacyclin and its stable analogue
iloprost on receptor-mediated O7” formation in human neutrophils. In a
recent study, Hecker et al. (1990) did not obtain positive evidence for an
inhibitory role of prostacyclin and iloprost in the regulation of NADPH
oxidase in human neutrophils either. We found that iloprost is a much less
effective inhibitor of fMet-Leu-Phe-induced O formation in human
neutrophils than PGE; (unpublished results). In contrast, Weissmann et al.
(1980), Fantone and Kinnes (1983), Fantone et al. (1984), Mehta et al.
(1988), and Werns and Lucchesi (1988) reported on inhibitory effects of
prostacyclin and its stable analogues on neutrophil activation including the
respiratory burst. Recently, another stable analogue of prostacyclin,
beraprost, has been shown to inhibit fMet-Leu-Phe-induced phos-
phoinositide turnover and O3 formation in rat neutrophils (Kainoh et al.
1990). Inhibition of O3 formation by prostaglandins of the E-type series
and by prostacyclin has been suggested to be of potential therapeutic value
in the prevention of oxygen radical-induced cell damage in myocardial
infarction, stroke, peripheral vascular disease, and inflammatory reactions
(Weissmann et al. 1980; Werns and Lucchesi 1987, 1988; Gryglewski et al.
1987; see also Sect. 1).

4.1.1.2 B-Adrenergic Agonists

Rabbit mononuclear phagocytes have been shown to possess - and
Br-adrenoceptors, and human neutrophils and HL-60 cells have been
suggested to possess adrenoceptors of the Ba-subtype (Tecoma et al.
1986; Mueller et al. 1988; Sager et al. 1988; Tenner et al. 1989).
Physiologically occurring and synthetic B-adrenergic agonists inhibit
chemoattractant-induced Oz formation, which effect is abrogated by
B-adrenergic antagonists (Schopf and Lemmel 1983; Lad et al. 1985a;
Tecoma et al. 1986; Muelier et al. 1988). The inhibitory effects of p-
adrenergic agonists on O3 formation and their stimulatory effects on
intracellular cAMP are potentiated by inhibitors of phosphodiesterases
(Lad et al. 1985a). About 40% of the plasma membrane B-adrenoceptors
must be occupied with agonist for maximal inhibition of fMet-Leu-Phe-
induced O; formation, and the inhibitory effects of B-adrenergic
agonists are very rapid in onset (Mueller et al. 1988). p-Adrenergic
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agonists have been reported not to inhibit substantially the respiratory
burst induced by opsonized zymosan, PMA, OAG, and NaF (Mack et
al. 1986; Mueller and Sklar 1989).

4.1.1.3 Histamine

Among other substances, histamine is released from mast cells and
basophils during acute allergic and inflammatory reactions (Lagunoff et al.
.1983; Warner et al. 1987). As far as the effects of histamine on phagocyte
functions are concerned, the results are not consistent.

A number of studies conclusively showed that histamine induces cAMP
accumulation in various types of phagocytes including human neutrophils
and undifferentiated and differentiated HL-60 cells (Gespach and Abita
1982; Gespach et al. 1982,1985,1986; Mitsuhashi et al. 1989). As various H;
agonists mimic the effects of histamine on cAMP accumulation, and as H;
antagonists counteract their effects, it was suggested that neutrophils and
HIL-60 cells possess H, receptors which functionally couple to adenylyl
cyclase (Gespach and Abita 1982; Gespach et al. 1982, 1985, 1986; Mit-
suhashi et al. 1989).

With respect to cell functions, histamine has been reported to inhibit
zymosan-induced exocytosis in human neutrophils (Busse and Sosman
1976). In addition, histamine inhibits chemotaxis and fMet-Leu-Phe-in-
duced exocytosis, membrane depolarization, and Oz formation in human
neutrophils, but, paradoxically, histamine stimulates chemokinesis (Selig-
mann et al. 1983). In analogy to prostaglandins and B-adrenergic agonists,
histamine does not inhibit PMA-induced O3 formation (Seligmann et al.
1983; Penfield and Dale 1985; Tecoma et al. 1986). Histamine does not
interfere with the binding of fMet-Leu-Phe to formyl peptide receptors, as
is the case for B-adrenergic agonists but apparently not for prostaglandins
(Fantone et al. 1983; Seligmann et al. 1983; Tecoma et al. 1986; Gryglewski
et al. 1987).

The H; agonist impromidine is a more potent inhibitor of O; formation
than histamine, and the partial H; and H; agonist betahistine is less potent
and effective than histamine (Burde et al. 1989). The inhibitor of the
cAMP-specific phosphodiesterase Ro 20-1724 additively enhances the
inhibitory effects of histamine on O3 formation (Burde et al. 1989). In
addition, the H; antagonist famotidine competitively antagonizes the effect
of histamine with a pA; value of 7.5 (Burde et al. 1989). Furthermore,
histamine and impromidine inhibit fMet-Leu-Phe-induced O3 formation
in dibutyryl cAMP- and dimethyl sulfoxide-differentiated HL-60 cells,
although to a lesser extent than in neutrophils (Burde et al. 1989). Finally,
certain H; and H; antagonists at relatively high concentrations inhibit the
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respiratory burst (Taniguchi and Takanaka 1984; Ozaki et al. 1984; Burde
et al. 1989, 1990; Seifert, unpublished results).

Unexpectedly, histamine via Hz receptors apparently not only activates
adenylyl cyclase but also stimulates phospholipase C in HL-60 cells (Mit-
suhashi et al. 1989). These two signal transduction processes would be
expected to interact in an antagonistic manner (see also Sect. 3.2.2). Recent-
ly, the effects of a large series of guanidine-type H; agonists structurally
derived from impromidine (Buschauer 1989) on O3 formation in human
neutrophils were studied in our laboratory (Burde et al. 1990). All com-
pounds studied inhibit fMet-Leu-Phe-induced O3 formation, but the struc-
ture/activity relationship for the neutrophil H; receptor differs substantially
from that for the H; receptor in a standard model, the guinea pig atrium
(Burde et al. 1990). These data suggest that the H, receptor in human
myeloid cells shows cell type-specific properties. With respect to the postu-
lated Ca**-mobilizing properties of H, receptors (Mitsuhashi et al. 1989),
Burde et al. (1989, 1990) did not obtain positive evidence for a stimulatory
effect of Hz agonists on O3 formation in human neutrophils.

The situation concerning the role of histamine in the regulation of
phagocyte functions is even more complex. Human mononuclear
phagocytes have been suggested to possess not only H; receptors but also
Hj receptors which functionally couple to phospholipase C (Gespach et al.
1985, 1986; Cameron et al. 1986; Driver et al. 1989). Activation of phos-
pholipase C through H; receptors would be expected to be associated with
an activation of NADPH oxidase. In agreement with this hypothesis,
zymosan-bound histamine has been reported to activate O3 formation in
guinea pig alveolar macrophages via H; receptors, and histamine has been
shown to induce release of eicosanoids in human neutrophils (Diaz et al.
1979; Puustinen and Uotila 1984; see also Sects. 3.2.2,3.2.4). In contrast, we
did not obtain positive evidence for a stimulatory role of H; receptors in the
regulation of NADPH oxidase in human neutrophils under various ex-
perimental conditions using betahistine (Burde et al. 1989) and other more
selective H; agonists (unpublished results).

4.1.1.4 Adenosine

Adenosine is a degradation product of adenine nucleotides and is released
into the extracellular space from various cell types (Gordon 1986; see also
Sect. 3.3.1.8). The effects of adenosine on the respiratory burst are not
consistent. On one hand, adenosine has been reported to inhibit the
respiratory burst in various types of phagocytes including human
neutrophils and HL-60 cells (Cronstein et al. 1983, 1985, 1988; Schrier and
Imre 1986; Seifert et al. 1989b,d). Inhibition of O3 formation by adenosine
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depends on its permanent presence, and the order of potency of various A;
and A, agonists suggests that adenosine acts through A; receptors (Roberts
et al. 1985; Cronstein et al. 1985, 1988; Nielson and Vestal 1989; Eppell et
al. 1989). The adenosine antagonist 8-phenyitheophylline, antagonizes in-
hibition of the respiratory burst caused by adenosine (Roberts et al. 1985).
On the other hand, adenosine has been reported to stimulate the respiratory
burst in certain types of phagocytes and to enhance chemotaxis (Tritsch and
Niswander 1983; Schrier and Imre 1986; Rose et al. 1988; Ward et al. 1988c).
In human mononuclear phagocytes, the inhibitory effects of adenosine on
phagocytosis depend on the differentiation state of the cells (Eppell et al.
1989; see also Sect. 3.4.3). Stimulatory effects of adenosine on neutrophil
chemotaxis are explained by the fact that these phagocytes do not only
possess A receptors but also A; receptors which latter promote chemotaxis
(Cronstein et al. 1990). Interestingly, A; receptors may couple to pertussis
toxin-sensitive G-proteins in neutrophils and may enhance the IgG-
mediated respiratory burst (Salmon and Cronstein 1990). In addition to
activation of adenosine receptors, adenosine may act through inhibition of
methylation reactions (Pike and Snyderman 1982; Garcia-Castro et al.
1983).

The question of the mechanism by which adenosine inhibits O3 forma-
tion is a subject of current discussion. A, receptors interact with G, resulting
in activation of adenylyl cyclase and cAMP accumulation (Nielson and
Vestal 1989). In human monocytes, adenosine has been reported to induce
a small and variable increase in cAMP, which is enhanced by a phos-
phodiesterase inhibitor (Elliott et al. 1986). In human neutrophils, neither
adenosine nor the A; agonist 5'-N-ethylcarboxamidoadenosine (NECA)
has been found to increase cAMP (Cronstein et al. 1988). In the presence
of the phosphodiesterase inhibitor Ro-20 1724, A, agonists increase cAMP
in human neutrophils, but Ro-20 1724 does not potentiate the inhibitory
effect of NECA on O3 formation (Cronstein et al. 1988). These data suggest
that inhibitory effects of adenosine on O3 formation do not necessarily
depend on adenylyl cyclase activation and cAMP accumulation.

4.1.2 Other cAMP-Increasing Agents

The diterpene forskolin directly activates adenylyl cyclase and shows a
weak inhibitory effect on chemotactic peptide-induced O3 formation in
human neutrophils and diminishes the PMA-induced respiratory burst in
rat glomeruli (Burde et al. 1989; Miyanoshita et al. 1989). In addition to
their stimulatory effects on O3 formation, cis-unsaturated fatty acids may
also inhibit O3 formation induced by fMet-Leu-Phe and NaF (Wong and
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Chew 1984; see Sects. 3.1.2, 3.2.4). This effect may be due to an increase in
membrane fluidity, which phenomenon is associated with activation of
adenylyl cyclase (Houslay and Gordon 1983). Cholera toxin ADP-ribosy-
lates G and leads to its peristent activation through inhibition of its intrinsic
GTPase activity (Gilman 1987). Treatment of phagocytes with cholera toxin
leads to cAMP accumulation and results in inhibition of chemotaxis,
arachidonic acid release, exocytosis, and O3 formation (Bourne et al. 1973;
Rivkin et al. 1975; Bokoch and Gilman 1984; Seifert et al. 1989b). Unexpec-
tedly, cholera toxin shows no inhibitory effect on fMet-Leu-Phe-induced
O, formation in human neutrophils, whereas the effects of the chemotactic
peptide and UTP in dibutyryl cAMP-differentiated HL-60 cells and the
effect of a synthetic lipopeptide in neutrophils are partially inhibited by the
toxin (Gabler et al. 1989; Seifert et al. 1989b, 1991).

The inhibitor of cAMP-specific phosphodiesterases, Ro 20-1724, and
unspecific inhibitors of phosphodiesterases, e.g., the methylxanthines 3-
isobutyl-1-methylxanthine, theophylline, and pentoxifylline inhibit the
respiratory burst (Lad et al. 1985a; Bessler et al. 1986; Burde et al. 1989). In
contrast, the cAMP-specific phosphodiesterase inhibitor rolipram has been
reported to increase cAMP in human neutrophils without significantly
inhibiting O3 formation (Elliott and Leonard 1989). The effects of methyl-
xanthines on Oz formation are complex. Methylxanthines above 100 pM
inhibit phosphodiesterases and inhibit the respiratory burst presumably via
an increase in cAMP (Schmeichel and Thomas 1987; Yukawa et al. 1989).
In contrast, methylxanthines below 100 puM act as competitive antagonists
at A, receptors and potentiate fMet-Leu-Phe-induced O3 formation in
human neutrophils and eosinophils (Schmeichel and Thomas 1987; Yukawa
et al. 1989). Adenosine desaminase mimics the stimulatory effects of
methylxanthines, and adenosine counteracts the stimulatory effects of these
agents, suggesting that endogenous adenosine plays an inhibitory role in
the regulation of NADPH oxidase (Schmeichel and Thomas 1987; see also
Sect.4.1.1.4). Finally, the cell-permeant analogue of cAMP, dibutyryl cAMP,
inhibits chemotactic peptide-induced O3 formation (Kitagawa and Takaku
1982; Lad et al. 1985a; Bessler et al, 1986; Kramer et al. 1988a; Burde et al.
1989).

4.1.3 Mechanistic Aspects

The molecular mechanism by which cAMP-increasing agents inhibit the
respiratory burst is not yet known exactly. Most but not all reports show
that O3 formation induced by intercellular signal molecules is inhibited by
cAMP-increasing agents, whereas O3 formation induced by stimuli which
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circumvent receptor stimulation, e.g., NaF, PMA, and A 23187, is not
affected (Kitagawa and Takaku 1982; Seligmann et al. 1983; Penfield and
Dale 1985; Mack et al. 1986; Miyanoshita etal. 1989). Oy formation induced
by various classes of receptor agonists shows differential sensitivity to
inhibition by cAMP-increasing agents (Gryglewski et al. 1987, Seifert et al.
1989b; Burde et al. 1989). Interestingly, the same is apparently true for
protein kinase C-mediated desensitization of receptor agonist-mediated
O7 formation (Bender et al. 1987; see also Sect. 3.2.2.5). These data raise
the possibility that receptors for intercellular signal molecules, e.g., formyl
peptide receptors, are targets for phosphorylation by cAMP-dependent
protein kinase (Mueller and Sklar 1989). Phosphorylated formyl peptide
receptors may be uncoupled from the G-proteins, a process referred to as
heterologous desensitization (Lefkowitz and Caron 1986; Sibley et al. 1987;
see also Sect. 3.2.2.5). Heterologous desensitization has been observed in
numerous cellular systems (Lefkowitz and Caron 1986; Sibley et al. 1987).
In addition, prostaglandins have been suggested to inhibit neutrophil func-
tions by interference with the binding of formyl peptides to the plasma
membrane (Fantone et al. 1983; Seligmann et al. 1983; Tecoma et al. 1986;
Gryglewski et al. 1987).

G-proteins and phospholipase C may be additional targets for cAMP-
mediated inhibited of NADPH oxidase. cAMP-dependent protein kinase
hasbeensuggested to phosphorylate G-proteins of the G; family in differen-
tiated HL-60 cells, and in the phosphorylated state these G-proteins may
be uncoupled from effector systems, e.g., phospholipase C and/or NADPH
oxidase (Misaki et al. 1989; see also Sect. 3.2.2.5). In fact, CAMP-increasing
agents have been reported to inhibit phosphomosmde degradation, resyn-
thesis of degraded phosphoinositides, and Ca* influx from the extracellular
space in phagocytes (Farkas et al. 1984; Della Bianca et al. 1986b; Kato et
al. 1986; Takenawa et al. 1986; Misaki et al. 1989). Moreover, the y-isoen-
zyme of phospholipase C has recently been shown to be phosphorylated by
cAMP-dependent protein kinase in vitro (Kim et al. 1989). In contrast,
adenosine and theophylline apparently do not inhibit phosphoinositide
degradation in human monocytes (Elliott and Leonard 1989).

Isoproterenol has only little effect on actin polymerization induced by
chemotactic peptides (Tecoma et al. 1986). With respect to Ca®* mobiliza-
tion, the results are controversial. On one hand, the inhibitory effect of
cAMP-increasing agents on phagocyte activation has been suggested to be
not due to interference with Ca”* mobilization (De Togni et al. 1984; Kato
et al. 1986; Takenawa et al. 1986; Cronstein et al. 1988). Paradoxically,
p-adrenergic agonists, prostaglandins of the E series and histamine have
been shown to induce an increase in cytoplasmic Ca®* in differentiated
HL-60 cells (Mitsuhashi et al. 1989). On the other hand, inhibitory effects
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of isoproterenol and adenosine on Ca** mobilization have been observed
(Tecoma et al. 1986; Nielson and Vestal 1989).

A number of proteins is phosphorylated by cAMP-dependent protein
kinase in neutrophils and HL-60 cells (Helfman et al. 1983; Farkas et al.
1984; Misaki et al. 1989). Activation of NADPH oxidase by various stimuli
is associated with the phosphorylation of a 47-kDa protein (see also Sects.
3.1.1,3.2.2,5.1.5, 6.1). Interestingly, the 47-kDa protein is apparently also a
substrate for cAMP-dependent protein kinase (Kramer et al. 1988a). In
contrast to the protein kinase C-induced phosphorylation of the 47-kDa
protein, that induced by cAMP-dependent protein kinase is associated with
aninhibition of O; formation (Kramer etal. 1988a). Itis not known whether
protein kinase C and cAMP-dependent protein kinase phosphorylate the
47-kDa protein at the same site, but it has been shown in other systems that
phosphorylations catalyzed by different protein kinases may be functionally
nonequivalent (Naka et al. 1983, Nastainczyk et al. 1987; Jahn et al. 1988).

We studied the role of cAMP-dependent protein kinase in the regula-
tion of Oz formationin a cell-free system from dimethyl sulfoxide-differen-
tiated HL-60 cells (see also Sect. 5.1). Neither cAMP nor the catalytic
subunit of cAMP-dependent protein kinase shows an inhibitory effect on
arachidonic acid-induced O3 formation both in the absence and presence
of guanine nucleotides (unpublished results).

4.1.4 cAMP-Decreasing Agents

The role of cAMP-decreasing agents in the regulation of the respiratory
burst is obscure, and there are only few experimental data (see also Sect.
3.2.6.1). Human neutrophils possess oz-adrenergic receptors, whose activa-
tion causes inhibition of adenylyl cyclase and decrease in the cAMP con-
centration via G-proteins of the G;family, i.e., presumably through the same
G-proteins which mediate phagocyte activation by chemoattractants
(Panosian and Marinetti 1983; Verghese and Snyderman 1983; Verghese et
al. 1985a; see also Sect. 3.2.1.1). Apparently, the primary structure of
Gi-proteins alone is not sufficient to determine which effector system, i.e.,
phospholipase C in the case of chemoattractants and adenylyl cyclase in the
case of op-adrenergic agonists is regulated by a given subtype of G;
(Gierschik et al. 1989b). The ap-adrenergic agonists B-HT 933 and B-HT
920 (Hammer et al. 1980; Starke 1987) at concentrations up to 100 uM, do
not activate O3 formation in human neutrophils in the presence or absence
of CB (Seifert, unpublished results). In addition, B-HT 933 and B-HT 920
neither enhance nor inhibit fMet-Leu-Phe-induced O3 formation in these
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cells. Furthermore, B-HT 933 and B-HT 920 fail to antagonize inhibition
of fMet-Leu-Phe-induced O3 formation caused by PGE; or histamine at
submaximally or maximally effective concentrations (Seifert, unpublished
results).

Calcitonin has been reported to inhibit cAMP accumulation in human
monocytes in a pertussis toxin-sensitive manner (Stock and Coderre 1982,
1987). With respect to human neutrophils, thyrocalcitonin does not activate
O; formation and does not affect the fMet-Leu-Phe-induced respiratory
burst (Seifert, unpublished results).

In adherent but not in suspended human neutrophils, TNF-a induces a
sustained decrease in the intracellular cAMP concentration (Nathan and
Sanchez 1990). It has been suggested that this effect of TNF-a depends on
the expression of integrins and is involved in the prolonged activation of the
respiratory burst induced by this cytokine (see also Sect. 3.3.1.3.4).

Finally, GM-CSF has been reported substantially to inhibit adenylyl
cyclase in human neutrophils (Coffey et al. 1988). How far this effect is
causally linked to the GM-CSF-induced potentiation of O;" formation,
remains unknown (see also Sects. 3.2.6.1,3.3.1.3.5.2).

4.2 Anti-inflammatory Drugs

4.2.1 Glucocorticoids and Cyclosporin A

Glucocorticoids are widely used as anti-inflammatory and immunosuppres-
sive agents. The results of studies concerning the effects of glucocorticoids
on phagocyte functions in general and on the respiratory burst in particular
are not consistent. On one hand, dexamethasone has been reported to
inhibit prostaglandin release but not O3 formation in cultured rat Kupffer’s
cells (Dieter et al. 1986). Miiller-Peddinghaus and Wurl (1987) also did not
observe inhibitory effects of glucocorticoids on the respiratory burst in
various types of phagocytes. Moreover, a recent study has shown that
dexamethasone does not inhibit exocytosis in human neutrophils induced
by fMet-Leu-Phe (Schleimer et al. 1989).

In contrast, other authors reported on inhibitory effects of glucocor-
ticoids on the respiratory burst and phagocytosis in various types of
phagocytes (Oyanagui et al. 1978; Lehmeyer and Johnston 1978; Drath and
Kahan 1983, 1984; Rieder et al. 1988b). Long-term incubation with
glucocorticoids has been reported to inhibit oxidative metabolism in cul-
tured human monocytes, and priming with IFN-y or LPS blocks the effects
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of glucocorticoids (Szefler et al. 1989). The mechanism by which LPS and
IFN-y antagonize inhibition of the respiratory burst caused by steroids may
involve among others interference with the secretion of cytokines (Szefler
et al. 1989). In guinea pig macrophages and in rat mesangial cells,
dexamethasone inhibits O3 formation induced by various stimuli (Baud et
al. 1986; Maridonneau-Parini et al. 1989). Inhibition by dexamethasone of
O; formation requires a lag time and depends on the stimulation of
intracellular glucocorticoid receptors and on de novo protein synthesis
(Baud et al. 1986; Maridonneau-Parini et al. 1989). In guinea pig macro-
phages, the effect of dexamethasone has been reported to be mimicked by
lipocortin I, a glucocorticoid-induced protein which covers substrates of
phospholipases (Maridonneau-Parini et al. 1989; Machoczek et al. 1989). In
rat mesangial cells, exogenous arachidonic acid counteracts the inhibitory
effect of dexamethasone on the respiratory burst, provided that conversion
of the fatty acid to prostaglandins is prevented (Baud et al. 1986; see also
Sects. 3.2.4,3.4.4.2.2). Recently, hydrocortisone at very high concentrations
was shown to inhibit PMA-induced O; formation in intact human
neutrophils and O3 formation in a cell-free system (Umeki and Soejima
1990). Apparently, these effects of glucocorticoids on the respiratory burst
in human neutrophils are not related to modulation of protein synthesis.

The fungal cyclic undecapeptide cyclosporin A is used as immunosup-
pressive agent in patients following organ transplantation and suppresses
antibody production and cell-mediated immunity (Bennett and Norman
1986). Cyclosporin A may interfere with the activation of phagocytes. The
cyclic peptide binds with high affinity to human neutrophils and has been
suggested to inhibit phospholipase A; (Kharazmi et al. 1985; Niwa et al.
1986). In vitro, cyclosporin partially inhibits O;” formation in rat alveolar
macrophages, but in vivo cyclosporin A does not inhibit O;" formation in
rat alveolar macrophages and neutrophils (Drath and Kahan 1983, 1984).
Recently, cyclosporin A at therapeutically relevant concentrations has been
reported to inhibit the PMA-induced respiratory burst in resident murine
peritoneal macrophages in vitro, whereas activation of NADPH oxidase by
ConA and receptor agonists is not affected by the undecapeptide (Chiara
et al. 1989). Cyclosporin A apparently neither interferes directly with
NADPH oxidase nor interferes with glucose transport (Chiara et al. 1989).
At least in certain cellular systems, cyclosporines may inhibit protein Kinase
C- and calmodulin-dependent processes (Gschwendt et al. 1988; RJ.
Walker et al. 1989). With respect to phagocytes of human origin, cyclosporin
A hasbeen reported to be without inhibitory effect on the respiratory burst
in neutrophils and monocytes in vitro (Janco and English 1983; Kharazmi
etal. 1985).
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4.2.2 Nonsteroidal Anti-inflammatory Drugs

Nonsteroidal anti-inflammatory drugs at relatively high concentrations
have been reported to inhibit various neutrophil functions such as aggrega-
tion, exocytosis, and O3 generation. The experimental data, however, are
controversial. Among the nonsteroidal anti-inflammatory drugs which
have been shown to inhibit the respiratory burst are phenylbutazone,
diclofenac, acetyl salicylate, piroxicam, ibuprofen, indomethacin, and
mefeamic acid, and the effects of these drugs show substantial stimulus and
cell-type specificity (Bokoch and Reed 1979; Perianin et al. 1983; Kaplan et
al. 1984; Abramson et al. 1985; Neal et al. 1987a; Weissmann 1987). In
contrast, other authors did not find substantial inhibition of the respiratory
burst by various anti-inflammatory drugs including piroxicam, phenyl-
butazone, and sulfinpyrazone (Miiller-Peddinghaus and Wurl 1987).

Some authors reported that indomethacin inhibits agonist-induced
O; formation in human neutrophils (Bokoch and Reed 1979; Maridon-
neau-Parini et al. 1986; Neal et al. 1987a), whereas others did not find
inhibitory effects of indomethacin on the respiratory burst (Bromberg and
Pick 1983; Kaplan et al. 1984; Tsunawaki and Nathan 1986). Paradoxically,
indomethacin per se has been reported to activate O3 formation in guinea
pig macrophages and to enhance O3 formation induced by various stimuli
(Bromberg and Pick 1983; Dale and Penfield 1985, 1987). The potentiating
effect of indomethacin on O3 formation may be explained by inhibition of
diacylglycerol kinase (Dale and Penfield 1985, 1987; see also Sect 3.2.2.4).
Similar controversial results have been obtained for other anti-inflam-
matory drugs, e.g., for acetyl salicylate (Bokoch and Reed 1979; Kaplan
et al. 1984; Maridonneau-Parini et al. 1986; Tsunawaki and Nathan 1986).

The mechanisms by which nonsteroidal anti-inflammatory agents
inhibit the respiratory burst may be complex. Certain nonsteroidal anti-in-
flammatory drugs, e.g., diclofenac, ibuprofen, phenylbutazone, sulfin-
pyrazone, meclofenamate and tolmetin, have been suggested to interfere
with the binding of chemotactic peptides to the plasma membrane (Dahin-
den and Fehr 1980; Perianin et al. 1987; Skubitz and Hammerschmidt 1986;
Shelly and Hoff 1989). Acetylsalicylate and related compounds may inhibit
phospholipase C in human monocytes and differentiated U-937 cells, and
indomethacin and meclofenamate may inhibit phospholipase A, (Kaplan
et al. 1978; Franson et al. 1980; Bomalaski et al. 1986; Muid et al 1988; see
also Sects. 3.1.2,3.2.2, 3.2.4). In addition, certain nonsteroidal anti-inflam-
matory drugs have been reported to interfere with early steps of cell
activation, e.g., with Ca®* mobilization (Northover 1985; Abramson et al.
1985; Kaplan et al. 1984; see also Sect. 4.1).
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Sulfasalazine consists of 5-aminosalicyclic acid joined to sulfapyridine
via an azo-linkage and is used in patients with colitis ulcerosa. Sulfasalazine
has been reported to inhibit receptor agonist-induced Oz formation in
human neutrophils, whereas 5-aminosalicylic acid and sulfapyridine are
inactive (Neal et al. 1987b). These authors suggested that sulfasalzine not
only serves as a precursor for 5-aminosalicyclic acid but also per se possesses
anti-inflammatory properties. Sulfasalazine may inhibit neutrophil activa-
tion by interfering with the binding of formyl peptides to plasma membrane
receptors (Stenson et al. 1984).

4.2.3 Chloroquine, Mepacrine, and Gold Compounds

Chloroquine and mepacrine possess anti-inflammatory and immunosup-
pressive properties, and mepacrine may improve pulmonary function in
adult respiratory distress syndrome (Neal et al. 1987a; Panus and Jones
1987). Inhibition of the respiratory burst by mepacrine or chloroquine
shows stimulus specificity (Hurst et al. 1986; Neal et al. 1987a). Mepacrine
inhibits membrane depolarization at lower concentrations than O3 forma-
tion, and phospholipid turnover is less sensitive to inhibition by mepacrine
than O3 formation (Tauber and Simons 1983) (see also Sect 3.4.2.2). The
mechanism by which quinacrine and mepacrine inhibit the respiratory burst
may involve inhibition of phospholipase A, and of glucose transport and
more direct inhibition of NADPH oxidase (Cross et al. 1984; Schultz et al.
1985; Tsunawaki and Nathan 1986; Maridonneau-Parini et al. 1986; Hender-
son et al. 1989; see also Sects. 3.1.2, 3.2.4).

Gold compounds, e.g., triethylphosphine gold, sodium aurothiomalate,
and auranofin, are used in the treatment of rheumatoid arthritis (Crooke
et al. 1986). The mode of action of gold compounds may involve suppression
of T-lymphocyte proliferation and inhibition of phagocyte functions, e.g.,
chemotaxis, exocytosis, phagocytosis, and production of leukotrienes (Davis
etal. 1983; Hafstrom et al. 1984; Sung et al. 1984; Crooke et al. 1986; Parente
et al. 1986b). Gold compounds are taken up by phagocytes in a time- and
concentration-dependent manner which does not require metabolicenergy
(Snyder et al. 1986, 1987). Triethylphospine gold strongly inhibits fMet-Leu-
Phe-induced O3 formation (Davis et al. 1983; Sung et al. 1984). In analogy
to the situation with the above-discussed anti-inflammatory agents, the
effects of gold compounds on the respiratory burst are complex and depend
on the specific gold compound, stimulus, and cell type studied. Sodium
aurothiomalate inhibits chemiluminescence in blood monocytes from heal-
thy volunteers and from patients with rheumatoid arthritis (Harth et al.
1983), and auranofin has been shown to inhibit the PMA-, NaF and
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fMet-Leu-Phe-induced respiratory burst in human neutrophils (Davis et al.
1982; Schultz et al. 1985). In contrast, auranofin does not inhibit O3
formation induced by A 23187 (Hafstrom et al. 1984), and sodium
aurothiomalate does not affect PMA- and fMet-Leu-Phe-induced O3
formation in human neutrophils (Minta and Williams 1986). The
mechanism by which gold compounds inhibit NADPH oxidase is currently
under investigation. Auranofin has been suggested to interfere with formyl
peptide receptors and with certain components of the cytoskeleton
(Hafstrom et al. 1984). Interestingly, recent studies showed that gold com-
pounds may modulate the activity of protein kinase C. Auranofin and
sodium aurothiomalate reduce the cytosolic activity of protein kinase C, but
auranofin induces neither degradation of the kinase nor its translocation to
the plasma membrane (Parente et al. 1986a, 1989). In addition, auranofin
has been shown to inhibit PMA-induced protein phosphorylation in human
neutrophils (Parente et al. 1989). Furthermore, auranofin, sodium
aurothiomalate, and gold thioglucose have been reported to inhibit partially
purified protein kinase C in vitro (Parente et al. 1989; Froscio et al. 1989;
Mahoney et al. 1989). Finally, gold compounds may directly inhibit
NADPH oxidase and do not act as radical scavengers (Minta and Williams
1986).

4.3 Miscellaneous Inhibitory Agents

4.3.1 Protozoal, Fungal, and Bacterial Products

Various products or bacteria, fungi, and protozoa modulate the respiratory
burst. The effects of pertussis toxin on the respiratory burst are dealt with
in Sects. 3.2.1 and 3.3.1 and are summarized in Table 3. The effects of
botulinum C2 toxin and CB and described in Sect. 3.2.5, those of anthrax
toxin in Sect. 3.3.2.3, and those of cholera toxin in Sect. 4.1. The inhibitory
properties of LPS, of polymyxin B from Bacillus polymyxa, of staurosporine
from Streptomyces species, and of K-252a from Nocardiopsis species on the
respiratory burst are described in Sects. 3.2.2.3 and 3.3.2.2. Some additional
effects of infections on the respiratory burst are described in Sect 6.2.2.

In addition to pertussis toxin, Bordetella species release adenylyl cyclase
as toxin into the extracellular space (Hanski 1989). Adenylyl cyclase enters
target cells, e.g., neutrophils and monocytes, is activated by Ca®'/cal-
modulin, and leads to a supraphysiological increase in cAMP (Pearson et
al. 1987; Hanski 1989). This exogenous adenylyl cyclase effectively inhibits
the respiratory burst induced by various particulate and soluble stimuli
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including opsonized zymosan and PMA without affecting cell viability
(Pearson et al. 1987; see also Sect. 4.1).

Candida albicans hyphae release yet incompletely characterized factors
which inhibit the fMet-Leu-Phe-, A 23187-, and opsonized zymosan- but
not the PMA-induced respiratory burst in neutrophils (Smail et al. 1988).
These factors do not substantially inhibit chemoattractant-induced
chemotax1s or phosphoinositide degradation and increase in cytoplasmic
Ca®™. Apparently, these factors do not act at the level of formyl peptide
receptors, of G-proteins, or of NADPH oxidase but at yet unknown steps
on the signal transduction process (Smail et al. 1988; see also Sects. 3.2.2.1,
3.2.3).

Intact microorganisms may show inhibitory effects of NADPH oxidase.
For example, Histoplasma capsulatum yeast inhibits priming of the
respiratory burst by IFN-y in murine macrophages, suggesting that inges-
tion of these yeast cells induces cellular deactivation (Wolf et al. 1989). In
contrast, opsonized Histoplasma capsulatum shows stimulatory effects on
the respiratory burst in human neutrophils (Schnur and Newman 1990).
Moreover, Chlamydia trachomatis partially inhibits fMet-Leu-Phe- and
PMA-induced O3 formation in human neutrophils (Tauber et al. 1989b).
The effect of Chlamydia is rapid in onset and has been suggested to take
place at the level of NADPH oxidase (Tauber et al. 1989b).

The wortmannins are fungal products and are very potent and effective
inhibitors of chemoattractant-induced exocytosis and O3 formation in
human neutrophils, whereas activation by PMA is unaffected (Dewald et
al. 1988). Apparently, the wortmannins do not mterfere with phospholipase
C, protein kinase C, or increase in cytoplasmic Ca®* and NADPH oxidase
(Dewald et al. 1988). The wortmannins have been shown to be very useful
pharmacological tools to analyze signal transduction sequences in
neutrophils. Two signal transduction sequences have been postulated to be
initiated by chemotactic peptides, and both processes are required for
activation of NADPH oxidase. One process is Ca®*/protein klnase C de-
pendent and wortmannin resistant, and the other process is Ca® inde-
pendent but wortmannin sensitive (Dewald et al. 1989; see also Sects. 3.1.1,
322, 32.3). The results of a recent study suggest that wortmannin may
interfere with chemotactic peptide-induced activation of phospholipase D
(Reinhold et al. 1990; see also Sect. 3.2.2.1).

Leishmania donovani causes kala azar, multiplies in macrophages, and
is sensitive to inactivation by products of the respiratory burst (Murray 1981;
Pearson and Steigbigel 1981; Murray and Cartelli 1983). One of the factors
which contribute to the parasites’ ability to circumvent destruction by the
host may be a tartrate-resistant acid phosphatase from the external surface
of the promastigotes which inhibits O3~ formation in human neutrophils
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(Remaley et al. 1984). The mechanism by which the phosphatase inhibits
the respiratory burst is obviously related to its catalytic activity, as a
phosphatase inhibitor abolishes the effect of the enzyme on NADPH
oxidase (Remaley et al. 1984). In addition, a lipophosphoglycan from
Leishmania donovanii has been reported to inhibit protein kinase C, and
this compound may play a role in the inhibition of the respiratory burst of
the host cell as well (McNeely and Turco 1987). Related mechanisms to
those described above may play a role in the suppression of the respiratory
burst in the host cell by phagocytosed Toxoplasma gondii (Wilson et al.
1980).

4.3.2 Endogenous Proteins

When cells or intact organisms are stressed by elevated temperatures,
trauma, or certain chemicals, they respond by synthesizing a number of
proteins, referred to as heat-shock proteins (Currie and White 1981;
Schlesinger et al. 1982; Lindquist 1986; Pelham 1986; Subjeck and Shyy
1986; Maridonneau-Parini et al. 1988). The heat-shock response is found in
many cell types including neutrophils and monocytes and is assumed to be
involved in the protection of the cell from injury (Polla et al. 1987; Deguchi
et al. 1988; Maridonneau-Parini et al. 1988). Recent studies raised the
interesting possibility that heat-shock proteins play a role in myeloid dif-
ferentiation processes (Richards et al. 1988; Yufu et al. 1989). Exposure of
human neutrophils to elevated temperatures or heavy metals is associated
with the synthesis of a variety of heat shock proteins and reversible inhibi-
tion of O; formation (Maridonneau-Parini et al. 1988). This inhibition of
the respiratory burst apparently does not depend on cytosolic pH or thiol
group oxidation (Maridonneau-Parini et al. 1988). Moreover, in neutrophil
cytoplasts and in intact guinea pigs elevated temperatures inhibit the
respiratory burst (Malawista and van Blaricom 1987; Bjornson et al.
1989). One possible interpretation of these findings is that the synthesis
of heat-shock proteins represent an endogenous mechanism to inhibit
the respiratory burst and hence to protect tissues from oxidative damage.

C-Reactive protein is composed of five 21-kDa subunits, which are
arranged in cyclic symmetry (Miiller and Fehr 1986). C-Reactive protein
is synthesized in the liver and is present in serum at low concentrations
(Buchta et al. 1987a,b). Following acute trauma or infection, the plasma
concentration of C-reactive protein increases greatly, a phenomenon
referred to as acute phase response, and C-reactive protein accumulates
ininflamed and injured tissue (Buchta et al. 1987a,b). C-Reactive protein
rapidly binds to high-affinity binding sites on the plasma membrane of
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human neutrophils (Buchta et al. 1987a,b). Aggregated human IgG
prevents binding of C-reactive protein, suggesting its association with Fc
receptors (Buchtaet al. 1987b;see also Sect 3.3.1.5.3). C-Reactive protein
may play arole in the regulation of various neutrophil functions including
motility, phagocytosis, and O3 formation (Kilpatrick and Volanakis 1985;
Miiller and Fehr 1986; Buchta et al. 1987a,b; Filep and Foldes-Filep
1989). C-Reactive protein does not activate the hexose monophosphate
shunt but at low concentrations enhances PMA-induced O3 formation
in human neutrophils (Miiller and Fehr 1986; Buchta et al. 1987a). In
contrast, C-reactive protein at higher concentrations inhibits the effect
of PMA (Buchta et al. 1986). In addition, C-reactive protein has been
shown to inhibit fMet-Leu-Phe- and PAF-induced O; formation in a
time- and concentration-dependent manner (Filep and Folders-Filep
1989). C-Reactive protein reduces the binding of the chemotactic pep-
tide and PAF to the plasma membrane (Filep and Folders-Filep 1989),
and an increase in cAMP may also play a role in the inhibition of
neutrophil activation by C-reactive protein (Buchta et al. 1987a; see also
Sect 4.1). These data suggest that C-reactive protein plays a protective
role against oxygen radical-induced tissue injury in the acute phase of
inflammatory processes.

Haptoglobin is another acute phase protein (Oh et al. 1990). Hap-
toglobin has been reported to bind to specific sites on human neutrophils
and toinhibit Oz formation induced by fMet-Leu-Phe, opsonized zymosan,
and arachidonic acid whereas the respiratory burst induced by PMA is not
affected by the acute-phase protein (Oh et al. 1990). These authors sug-
gested that haptoglobin interferes with the receptor ligand interaction in
neutrophils. In addition, the acute phase reactant oy-acid glycoprotein was
shown to inhibit the respiratory burst stimulated by various agents (Laine
et al. 1990).

The fibrinogen degradation product fragment E; is present in blood of
patients with disseminated intravascular coagulation. Fragment E; has been
reported to inhibit receptor agonist-, OAG-, and PMA-induced O3 forma-
tion in neutrophils (Kazura et al. 1989). The mechanism by which fragment
E; inhibits the respiratory burst may involve interference with agonist
binding to plasma membrane receptors and inhibition of protein kinase C.
Inhibition of the respiratory burst by fragment E; may contribute to the
impaired host defense against bacterial infections in disseminated intravas-
cular coagulation (Kazura et al. 1989).

The major surfactant-associated protein is a glycoprotein with an ap-
parent molecular mass of 28-36 kDa and is involved in the metabolism of
lung surfactant compounds (Weber et al. 1990). This protein inhibits the
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respiratory burst in canine phagocytes, which effect is counteracted by
treatment with collagenase (Weber et al. 1990). These data suggest that the
surfactant-associated protein plays a role in the regulation of the respiratory
burts in alveolar macrophages.

Finally, the cytokine IL-4 has been recently reported to inhibit the
stimulatory effect of IFN-y on the respiratory burst in human monocytes
(Lehn et al. 1989). The inhibitory effect of IL-4 is evident when added prior
to or together with IFN-y to the cells and is accompanied by a decrease in
cytotoxic activity of the phagocytes (Lehn et al. 1989; see also Sect 3.3.1.3.2).
Inhibitory effects of IL-4 on the respiratory burst in human mononuclear
phagocytes were also reported by Abramson and Gallin (1990). IL-1
partially antagonizes the inhibitory effects of IL-4. In contrast, O3 forma-
tion in human neutrophils is not inhibited by IL.-4 (Abramson and Gallin
1990). The molecular mode of action of IL-4 on the respiratory burst
remains to be determined and may involve alterations in the biosynthesis
of proteins (Abramson and Gallin 1990).

IL-4 has not only inhibitory but also stimulatory effects on the
respiratory burst. In murine bone marrow-derived macrophages, IL-4
primes for an enhanced respiratory burst upon exposure to PMA or
zymosan (Phillips et al. 1990). IL-4 and TNF-a interact in a synergistic
manner to prime for enhanced O; formation, whereas IL-4 and IFN-y
interact in an antagonistic manner.

4.3.3 SH Reagents

A number of studies concerning the effects of SH reagents on NADPH
oxidase have been performed (see also Sects. 2.1,2.2,3.1.1). Inintact guinea
pig neutrophils, showdomycin, a very slowly penetrating SH reagent, does
not inhibit O3 formation induced by various stimuli, suggesting that SH
groups at the extracellular surface of the plasma membrane are not involved
in NADPH oxidase activation. In contrast, the cell-permeant SH reagent
NEM inhibits receptor agonist-, lectin-, digitonin-, and cytochalasin-in-
duced O3 formation but not that induced by A 23187 or NaF, suggesting
the existence of NEM-sensitive and -insensitive activation pathways (Tsan
et al. 1976; Yamashita 1983; Yamashita et al. 1984). In addition, NEM
terminates O3 formation induced by various stimuli, but NEM does not
affect the activity of the particulate NADPH oxidase (Akard et al. 1989).
In the cell-free system, NEM has been shown to inactivate cytosolic com-
ponents but not membrane components of NADPH oxidase (Akard et al.
1988). These data suggest that NEM interferes with an activation step of
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NADPH oxidase, and that continuous replenishment of cytosolic com-
ponents is required for maintenance of O3 formation (Akard et al. 1988;
see also Sects. 5.1.2,5.1.5).

Ethacrynic acid and apomorphine have been suggested to inhibit the
respiratory burst by reacting with SH groups (Elferink et al. 1982, 1987). In
addition, ozone and certain unsaturated aldehydes, e.g., acrolein and
crotonaldehyde, inhibit O3 formation (Witz et al. 1987). The latter two
agents have been shown to decrease the cellular content of free SH groups
(Witz et al. 1987).

Cross-linking agents, e.g., disuccinimidyl suberate and dithiobis (suc-
cinimidylpropionate), inhibit Oz formation in human neutrophils induced
by avariety of agents. In contrast, monovalent analogues of the cross-linkers
are inactive, and dithiothreitol counteracts the inhibitory effects of cross-
linkers (Aviram and Henis 1984; Aviram et al. 1984). It has been suggested
that cross-linkers interfere with the activation process of NADPH oxidase
but not with its activity (Aviram et al. 1984).



5 Reconstitution and Regulation
of NADPH Oxidase Activity in Cell-free Systems

Studies concerning the mechanisms of NADPH oxidase activation in intact
cells rely primarily on correlations and/or dissociations between various
parameters and on the use of drugs which are assumed to interfere with
certain steps of signal transduction processes. The results of several studies
with intact and electropermeabilized phagocytes suggest that receptor
agonist-mediated activation of NADPH oxidase does not necessarily
depend on activation of phospholipase C and protein kinase C and on
increase in cytoplasmic Ca®* (see also Sects. 3.2.2,3.2.3). Unfortunately, the
interpretation of studies with various drugs such as protein kinase C in-
hibitors may be hampered by their lack of specificity (see also Sects. 3.2.2.3,
3.2.2.4). In addition, the respiratory burst is activated by stimuli which
circumvent G-proteins and mimic certain aspects of receptor-induced ac-
tivation, e.g., phorbol esters, cell-permeant diacylglycerols, fatty acids, and
Ca® ionophores. Thus, studies with intact phagocytes can hardly answer
the question whether activation of the respiratory burst by receptor agonists
is due to direct interaction of G-proteins or low molecular mass GTP-bind-
ing proteins with NADPH oxidase or due to indirect activation through the
formation of intracellular signal molecules.

These limitations are overcome by the use of cell-free systems which
allow very effective manipulation of the experimental conditions. As is
pointed out below, the cell-free systems have certain limitations as well. For
example, in comparison to intact cells, relatively few agents, i.e., fatty acids,
guanine and adenine nucleotides, phorbol esters, and phosphatidic acid,
activate NADPH oxidase in the cell-free system, but most other stimuli
described in Sect. 3.3 are apparently inactive.



178  Reconstitution and Regulation of NADPH Oxidase Activity in Cell-free Systems

5.1 Reconstitution and Regulation of NADPH Oxidase A ctivity
by Fatty Acids and Sodium Dodecyl Sulfate

5.1.1 Historical Remarks

The establishment of cell-free systems for the reconstitution of NADPH
oxidase activity with components from resting phagocytes was a
breakthrough for the understanding of NADPH oxidase regulation. Cell-
free systems were first described by Heyneman and Vercauteren (1984) and
Bromberg and Pick (1984). Heyneman and Vercauteren (1984) reported
that oleic or linoleic acid activate O3 formation in postnuclear fractions of
horse neutrophils. Bromberg and Pick (1984) obtained similar results with
guinea pig macrophages and showed that particulate and cytosolic com-
ponents are required for reconstitution of NADPH oxidase activity. Sub-
sequently, analogous reconstitution systems have been established for
human neutrophils (Curnutte 1985; McPhail et al. 1985; Seifert et al. 1986),
human monocytes (Thelen and Baggiolini 1990), differentiated HI.-60 cells
(Seifert and Schultz 1987b; Nozawa et al. 1988), pig neutrophils (Fujita et
al. 1987; Tanaka et al. 1988), and bovine neutrophils (Ligeti et al. 1988;
Doussiere et al. 1988). In these systems, fatty acids or SDS, membranes, and
the cytosolic fraction of phagocytes are all required to reconstitute O3
formation, and omission of one of these components abolishes enzyme
activity.

5.1.2 Some General Aspects

Asis the case for intact phagocytes, there are certain functional differences
between the cell-free systems from various types of phagocytes, but prin-
cipally their regulatory properties are similar. With respect to the kinetic
and catalytic properties of NADPH oxidase, to the insensitivity to inhibition
by KCN and NaNjs, to the pH optimum, and to the salt sensitivity, the
cell-free systems for NADPH oxidase activation and NADPH oxidase
preparations from activated cells show similar properties (Bromberg and
Pick 1984, 1985; Heyneman and Vercauteren 1984; Curnutte 1985; McPhail
et al. 1985; Curnutte et al. 1987b; Fujita et al. 1987; Clark et al. 1987; Pick et
al. 1987; Ligeti et al. 1988; Pilloud et al. 1989b; Nozaki et al. 1990; see also
Sect. 2.1).

Not only neutrophil plasma membranes but also the specific granules
contain the membrane components of NADPH oxidase (Clark et al. 1987).
The kinetic properties of the plasma membrane-bound and granule-as-
sociated enzyme are very similar, and both components interact additively
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to reconstitute O3 formation in the presence of cytosol (Clark et al. 1987).
These data suggest that the enzyme associated to specific granules repre-
sents an intracellular storage pool for NADPH oxidase which is translo-
cated to the plasma membrane upon stimulation (see also Sect. 2.5).
Preliminary data indicate that neutrophil granules contain a protein which
inhibits activation of NADPH oxidase in the cell-free system (Aviram and
Faber 1990).

The membrane-associated components of NADPH oxidase from rest-
ing phagocytes have been solubilized using various detergents. Curnutte et
al. (1987a) prepared deoxycholate extracts of human neutrophil plasma
membranes and reconstituted NADPH oxidase activity by combining this
extract with neutrophil cytosol and SDS. The solubilized enzyme shows
kinetic properties similar to those of the plasma membrane-associated
enzyme (Curnutte et al. 1987a). Pick et al. (1987) solubilized the membrane
component of NADPH oxidase from resting guinea pig macrophages with
the nonionic detergent, n-octylglucoside. Delipidation of the solubilized
NADPH oxidase reduces its activity, and various phospholipids restore
enzyme activity (Shpungin et al. 1989; see also Sect. 2.1). Activation of the
solubilized NADPH oxidase of pig neutrophils in the cell-free system is also
a phospholipid-dependent process (Nozaki et al. 1990). The membrane
component of NADPH oxidase from differentiated HL-60 cells was solubil-
ized with n-octylglucoside, whereas other detergents were much less effec-
tive in this regard (Seifert 1988, and unpublished results). As is the case for
NADPH oxidase in native plasma membranes of HL-60 cells, the solubil-
ized enzyme is reversibly activated by arachidonic acid and guanine
nucleotides, suggesting that solubilization does not result in the loss of these
regulatory properties, especially regulation by G-proteins (Seifert and
Schultz 1987b; Seifert 1988; see also Sect. 5.1.4). Unfortunately, the solubil-
ized NADPH oxidase of HL-60 membranes is very instable and loses its
activity at 4°C within 3 h (Seifert, unpublished results), possibly due to
delipidation or to loss of the quarternary structure of cytochrome b.ys
(Shpungin et al. 1989; Nugent et al. 1989).

5.1.3 Activation by Fatty Acids

5.1.3.1 Lipid Specificity

Arachidonic acid, other cis-unsaturated fatty acids, trans-unsaturated fatty
acids, and SDS activate NADPH oxidase in crude membrane preparations

and in purified plasma membranes of neutrophils and macrophages from
various sources (Bromberg and Pick 1984, 1985; Heyneman and Ver-
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cauteren 1984; Curnutte et al. 1987a,b; Fujita et al. 1987; Seifert and Schultz
1987a,b; Ligeti et al. 1988; Nozawa et al. 1988). In membranes of human
neutrophils, saturated fatty acids, esters of unsaturated fatty acids and
ETYA do not activate the enzyme (Seifert and Schultz 1987a). In addition,
Triton X-100, Lubrol PX, and sodium cholate do not activate O3 formation
in various systems (Bromberg and Pick 1985; Seifert and Schultz 1987a). In
contrast, certain saturated fatty acids, e.g., lauric acid, activate NADPH
oxidase in membranes of porcine neutrophils (Tanaka et al. 1987, 1988).
The extent of O3 formation depends on the ratio of fatty acid to membrane
phospholipids rather than on the concentration of the fatty acid (Ligeti et
al. 1988). Fatty acids and SDS may activate NADPH oxidase due to their
anionic amphiphilic character (Bromberg and Pick 1985). This assumption
is supported by the finding that positively charged alkylamines but not
neutral amphiphilic alkylalcohols inhibit fatty acid-induced O3 formation
in cell-free systems of guinea pig neutrophils and in intact cells (Miyahara
et al. 1987, 1988; see also Sect. 3.1.2.2). Fatty acids induce translocation of
cytosolic components of NADPH oxidase to the plasma membrane
(Tanaka et al. 1988). and treatment of intact phagocytes with various stimuli
prior to cell disruption renders O3 formation in the cell-free system less
dependent on the participation of cytosolic components, (McPhail et al.
1985; Bromberg and Pick 1985). In intact cells, activation of NADPH
oxidase is accompanied by the association of the 47-kDa protein with the
plasma membrane (Heyworth et al. 1989a; see also Sects. 3.1.1.1,3.2.2,
5.1.5, 6.1.2). Recently, Clark et al. (1990) showed that activation of
NADPH oxidase by phorbol esters in intact cells and by arachidonic acid
in the cell-free system is associated not only with the translocation of the
47-kDa protein to the plasma membrane but also with translocation of
the 66-kDa protein. Doussiere et al. (1990) reported on arachidonic
acid-dependent translocation of proteins with apparent molecular mas-
ses of 17, 45, 53, and 65 kDa to the plasma membrane in the cell-free
system.

5.1.3.2 Fartty Acids and the Role of Protein Kinase C

There has been a discussion on the question whether the effects of fatty
acids on O3 formation in cell-free systems are mediated via protein Kinase
C or not (see also Sect. 3.1.2.2).

SDS has been shown to activate Oz formation in the cell-free system
independently of phosphoinositide degradation (Traynor et al. 1989). In
addition, solubilization of the membrane component of NADPH oxidase
results in depletion of phosphoinositides from the enzyme preparation
without loss of NADPH oxidase activity (Traynor et al. 1989). Further-
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more, various phosphoinositides inhibit SDS-induced O3 formation in a
cell-free system from human neutrophils (Aviram and Sharabani 1989a).

It is well known the cis-unsaturated fatty acids activate protein kinase
Cin the absence or presence of Ca®, depending on the preparation of kinase
studied (McPhail et al. 1984b; Murakami and Routtenberg 1985; Hansson
et al. 1986; K. Murakami et al. 1986, 1987; Linden et al. 1986; Sekiguchi et
al. 1987; Seifert et al. 1988c; Verkest et al. 1988) (see also 3.1.1). In addition,
ETYA and frans-unsaturated fatty acids with the exception of elaidic acid
activate protein kinase C (Seifert et al. 1988c). In contrast, saturated fatty
acids and SDS are not effective activators of protein kinase C (McPhail et
al. 1984b; Murakami and Routtenberg 1985; K. Murakami et al. 1986;
Seifert et al. 1988c). Ca** enhances fatty acid-induced activation of protein
kinase C (McPhail et al. 1984b; K. Murakami et al. 1986; Sekiguchi et al.
1987; Seifert et al. 1988c), possibly by increasing the hydrophobicity of
protein kinase C (Walsh et al. 1984). In addition to Ca®*, Zn>* may stimulate
or inhibit protein kinase C (Murakami et al. 1987; Csermely et al. 1988).

With respect to NADPH oxidase, ETYA does not activate O, forma-
tion but is an inhibitor of fatty acid-induced O3 formation in the cell-free
system (Seifert and Schultz 1987a). Saturated fatty acids, elaidic acid and
SDS effectively activate O3 formation in cell-free systems of different cell
types, but they do not activate protein kinase C (Bromberg and Pick 1984,
1985; Curnutte et al. 1987b; Fujita et al. 1987; Tanaka et al. 1987; Seifert and
Schultz 1987a; Pick et al. 1987; Tanaka et al. 1988; Babior et al. 1988; Ligeti
et al. 1988). Fatty acids activate O3 formation in the absence of exogenous
Caz““, and chelation of endogenous Ca* does not prevent O3 formation
(Seifert and Schultz 1987a; Ligeti et al. 1988). In addition, Ca® and Zn*
inhibit arachidonic acid-induced O3 formation (Bromberg and Pick 1984;
Fujita et al. 1987; Seifert et al. 1988a). O3 formation induced by fatty acids
and SDS is not inhibited by H-7 (Seifert and Schultz 1987a; Miyahara et al.
1987) or by staurosporine (Seifert, unpublished results), and purified
protein kinase Cis no substitute for neutrophil cytosol and does not enhance
O3 formation in the presence of neutrophil cytosol (Seifert and Schultz
1987a; see also Sects. 3.2.2.3,5.2).

Neutrophils of patients with autosomal recessive CGD apparently
possess normal protein kinase C activity, and undifferentiated HL-60 cells
possess a functionally intact phospholipase C/protein kinase C system as
well (Zylber-Katz and Glazer 1985; Stutchfield and Cockcroft 1988;
Caldwell etal. 1988; Makowske et al. 1988; Wenzel-Seifert and Seifert 1990).
In contrast, both types of phagocyte cytosol fail to reconstitute O3~ forma-
tion in the cell-free system (Curnutte 1985; Curnutte et al. 1987b, 1988;
Seifert and Schultz 1987b; Parkinson et al. 1987; Nozawa et al. 1988; see also
Sect. 5.1.5). In addition, there is a chromatographic dissociation between
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protein kinase C and the components which reconstitute O3 formation
(Curnutte et al. 1986, 1987b). The removal of ATP from the reaction
mixtures by preincubation with hexokinase and glucose or dialysis of
cytosol does not abolish Oz formation in the cell-free system, suggesting
that kinase-mediated reactions are not obligatorily or are only partially
involved in the activation of NADPH oxidase (Gabig and English 1986;
Clark et al. 1987; Seifert and Schultz 1987a; Fujita et al. 1987; Ligeti et al.
1988). However, ATP enhances O3 formation, indicating that kinase reac-
tions play a facultative role in the regulation of O3 formation (Clark et al.
1987; Seifert and Schultz 1987a; see also Sect. 5.1.4.3). Finally, ATP[yS] is
only a very poor substrate for protein kinase C, but this nucleotide effec-
tively enhances O formation in membranes of HL-60 cells (Wise et al.
1982; Seifert et al. 1988b; see also Sect. 5.1.4.3). From all these data it was
concluded that protein kinase Cis notinvolved in the activation of NADPH
oxidase by fatty acids in cell-free systems.

5.1.3.3 The Role of Calmodulin

Besides protein kinase C, calmodulin has been suggested to play a role in
fatty acid-induced O3 formation, as certain calmodulin antagonists inhibit
arachidonic acid-induced O3 formation (McPhail et al. 1986). In addition,
calmodulin has been reported to enhance the activity of NADPH oxidase
obtained from stimulated phagocytes (Jones et al. 1982). In contrast, chela-
tion of Ca®* by EGTA does not prevent activation of NADPH oxidase by
fatty acidsin cell-free systems (Seifert and Schultz 1987a; Sakata et al. 1987a;
Nozawa et al. 1988). In addition, purified calmodulin does not enhance
O3 formation in cell-free systems, and calmodulin antagonists inhibit
arachidonic acid-induced O; formation presumably by blocking
hydrophobic interaction of fatty acids with NADPH oxidase rather than by
inhibiting calmodulin-dependent processes (Sakata et al. 1987a; see also
Sect. 3.2.3.1). Thus, an involvement of calmodulin in the regulation of
NADPH oxidase in cell-free systems is not likely.

5.1.3.4 Other Mechanistic Aspects

ETYA is a potent inhibitor of lipoxygenases and cyclooxygenase and
inhibits O3 formation induced by cis-polyunsaturated fatty acids, which are
substrates for lipoxygenases and cyclooxygenase, and O3 formation in-
duced by cis-monounsaturated and trans-unsaturated fatty acids, which are
no substrates for these enzymes (Kinsella et al. 1981; Needleman et al. 1986;
Seifert and Schultz 1987a). In addition, bis(tert-butyl)peroxide does not
activate O3 formation in the cell-free system, and soybean lipoxygenase is
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no substitute for phagocyte cytosol (Seifert and Schultz 1987a). These
results indicate that oxygenated metabolites of unsaturated fatty acids are
not involved in activation of NADPH oxidase by fatty acids in cell-free
systems. Inhibition by ETYA of Oz formation may be explained by un-
specific effects of the fatty acid (see also Sects. 3.1.2.2, 3.2.4.1) or by
competitive antagonism of ETYA with unsaturated fatty acids at sites which
are not localized on arachidonic acid-metabolizing enzymes (Seifert and
Schultz 1987a). It is also unlikely that fatty acids activate NADPH oxidase
by increasing membrane fludity, as saturated and trans-unsaturated fatty
acids have been reported to be inactive in this respect (Klausner et al. 1980;
Badwey et al. 1984; see also Sect. 3.1.2).

NADPH oxidase of human, bovine, and porcine neutrophils, once
activated by arachidonic acid, apparently does not depend on the per-
manent presence of arachidonic acid and cytosol, suggesting that an ac-
tivated complex consisting of membrane components, cytosolic
components and fatty acid is formed (Clark et al. 1987; Curnutte et al. 1987b;
Gabig et al. 1987; Fujita et al. 1987; Doussiere et al. 1988).

Bovine serum albumin, which binds fatty acids (Badwey et al. 1984),
rapidly terminates arachidonic acid-induced Oz formation in HL-60
membranes, as is the case for intact human neutrophils (Badwey et al. 1984;
Seifert and Schultz 1987b; see also Sect. 3.1.2). In a cell-free system from
porcine neutrophils, removal of fatty acids by bovine serum albumin
prevents O3 formation, and readdition of fatty acids restores enzyme
activity in the presence of cytosol (Tanaka et al. 1988).

Recently, Fujimoto et al. (1990) suggested that SDS specifically modu-
lates the functional state of the 66-kDa protein (see also Sect. 5.1.5). SDS
may activate the 66-kDa protein in the presence of the membrane com-
ponents of NADPH oxidase and may inactivate the 66-kDa protein when
the membrane components of the oxidase are absent.

5.1.3.5 Physiological Relevance of Fatty Acid-Induced Activation
of NADPH Oxidase in Cell-free Systems

As has been pointed out above, there are certain similarities between fatty
acid-induced activation of NADPH oxidase in intact cells and in cell-free
systems. With respect to the dependency on Ca®, there are substantial
differences between the two systems (see Sects. 3.1.2, 3.2.4). Arachidonic
acid induces arachidonic acid release in intact human neutrophils but not
in neutrophil plasma membranes (Maridonneau-Parini and Tauber 1986).
In addition, inhibitors of phospholipase A; block arachidonic acid-in-
duced O3 formation in intact phagocytes but not in the cell-free system,
and phospholipase A; does not activate NADPH oxidase in the cell-free
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system (Maridonneau-Pariniand Tauber 1986).Inaddition, we found that
mellitin, which activates phospholipase A, (Schoch and Sargent 1980),
inhibits arachidonic acid-induced O3 formation in a cell-free system
from HL-60 cells in the absence and in the presence of guanine
nucleotides, and mellitin per se does not activate NADPH oxidase
(unpublished results). These data suggest that activation of the respi-
ratory burst by arachidonic acid in intact cells but not in cell-free systems
may involve phospholipase A,.

In most studies with cell-free systems, fatty acids are required at
supraphysiological concentrations to activate the respiratory burst
(Heyneman and Vercauteren 1984; McPhail et al. 1985; Seifert and Schuitz
1987a,b). Arachidonic acid at concentrations which activate the respiratory
burst in cell-free systems may be cytotoxic to intact neutrophils and macro-
phages (H.J. Cohen et al. 1986; Tsunawaki and Nathan 1986). However,
arachidonic acid at a concentration as low as 16 pM has been shown to
activate O3 formation in plasma membranes of human nuetrophils, and
this concentration of the fatty acid may be within the physiological range in
intact cells (Tsunawaki and Nathan 1986; Seifert et al. 1986; Seifert and
Schultz 1987a). Thus, the question of the extent to which activation of
NADPH oxidase by fatty acids in cell-free systems reflects a physiological
process is still open (see also Sect. 5.1.1.4).

5.1.4 The Role of G-Proteins

The results of studies with cell-free systems discussed above suggest the
existence of protein kinase C/Ca”*-independent signal transduction path-
ways for the activation of NADPH oxidase. Thus, much work hasbeen done
to answer the question whether NADPH oxidase is regulated in a more
direct way by G-proteins.

5.1.4.1 Guanine Nucleotides

The stable GTP-analogues GTP[yS] and [B,y-NH]GTP are potent ac-
tivators of G-proteins (Gilman 1987) and enhance fatty acid-induced
O; formation several-fold when added prior to or together with the fatty
acid to the reaction mixture (Seifert et al. 1986, 1988b; Seifert and Schultz
1987a,b; Gabig et al. 1987; Ligeti et al. 1988; Doussiere et al. 1988). In
addition, stable guanine nucleotides reinitiate Oz formation in
membranes of HL-60 cells after the arachidonic acid-induced respiratory
burst had ceased (Seifert and Schultz 1987b; Seifert et al. 1988b). Activa-
tion of NADPH oxidase by arachidonic acid follows a first-order reac-
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tion course (Aviram and Sharabani 1989b). GTP[yS] increases Vimax of
NADPH oxidase without affecting the K, for NADPH, but the kinetic
of O3 formation is sigmoid (Aviram and Sharabani 1989b). These data
suggest that two processes are involved in the activation of NADPH
oxidase, and that two separate pools of NADPH oxidase are present in
neutrophil membranes (Aviram and Sharabani 1989b). In a cell-free
system from resting macrophages, stable guanine nucleotides prevent
loss of SDS-stimulated NADPH oxidase activity (Aharoni and Pick
1990).

G-proteins are assumed to bind guanine nucleotides at a nucleotide
binding site in the presence of Mg?* (Gilman 1987; Hingorani and Ho 1987;
Yamazaki et al. 1987). In agreement with this suggestion, it has been
reported that the stlmulatory effects of guanine nucleotides on O;” forma-
tion require Mg”* to be maximal (Selfert and Schultz 1987a; Gablg et al.
1987; Ligeti et al. 1988). However, even in the absence of Mg and in the
presence of EDTA, GTP[yS] stimulates O, formation at least to some
extent (Seifert and Schultz 1987b; Seifert et al. 1988b). This finding may be
explained by the fact that Mg is tightly bound to membranes, phos-
pholipids and/or G-proteins and is only slowly removed by EDTA (Codina
et al. 1984; Seifert and Schultz 1987b). In intact cells, Mg®* also plays an
important role in the activation process of NADPH oxidase (Gabler 1990).

GTP and [B,y-NH]ATP do not potentiate fatty acid-induced O3 forma-
tion, and GDP and GDP[fS] inhibit O3 formation in the absence and
presence of GTP[yS] (Secifert et al. 1986; Seifert and Schultz 1987b; Gabig
et al. 1987; Ligeti et al. 1988; Doussiere et al. 1988). In addition, GDP and
GDP[BS] terminate arachidonic acid- and GTP[yS]-stimulated O forma-
tion in membranes of HL-60 cells (Seifert and Schultz 1987b). In contrast,
other nucleoside diphosphates do not ihibit O3 formation (Seifert and
Schultz 1987b). These results indicate that GDP and GDP[BS] compete
with G-protein-activating ligands, i.e., with endogenous GTP and less
effectively with exogenous GTP[yS], and promote inactivation of G-
proteins (Eckstein et al. 1979; Eckstein 1985; Gilman 1987) and subsequent
deactivation of NADPH oxidase.

The stimulatory effects of stable GTP analogues on O3 formation in
the cell-free system of human neutrophils are not inhibited by pertussis
toxin or cholera toxin (Seifert et al. 1986; Gabig et al. 1987). In addition, the
effects of GTP[yS], ATP[yS], and NaF on O3 formation in a cell-free
systems from dimethyl sulfoxide-differentiated HL-60 cells are completely
pertussis toxin insensitive (Seifert, unpublished results). Gabig et al. (1987)
put forward the attractive hypothesis that cholera toxin- and pertussis
toxin-insensitive G-proteins, distinct from either G; or a G-protein of the
Gi-family, are involved in the regulation of NADPH oxidase. Indeed, the
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22-kDa GTP-binding protein, rap1, which is associated with cytochrome
b.245,1s not a substrate for pertussis toxin or cholera toxin (Quinn et al. 1989;
see also Sects. 2.4.3,3.2.1.2,5.1.5).

However, other possibilities to explain the toxin-insensitivity of the
effects of GTP[yS] cannot be ruled out, as pertussis toxin insensitivity of
effects of GTP[yS] has been reported for other effector systems regulated
by G-proteins of the G; family (Jakobs et al. 1984; Cockcroft and Stutchfield
1988). As far as inhibition of adenylyl cyclase is concerned, the onset of the
effects of GTP[yS] is delayed in membranes of pertussis toxin-treated cells,
but the maximal effect is unaffected (Jakobs et al. 1984). In membranes of
pertussis toxin-treated human neutrophils, neither the onset nor V.« of
GTP[yS]-stimulated O3 formation is affected by the toxin (Seifert et al.
1986). The same is true for HL-60 cells (Seifert, unpublished results). These
results are in agreement with the assumption that ADP ribosylation of
G-proteins by pertussis toxin impairs the interaction of G-proteins with
agonist-occupied receptors but not the interaction of G-proteins with stable
guanine nucleotides (Gilman 1987).

GTP[yS] has been suggested to interact with a cytosolic component
prior to stimulation of membrane-bound G-proteins and formation of an
active complex consisting of membrane components, cytosoliccomponents,
arachidonic acid, and GTP[yS] (Ligeti et al. 1988; Doussiere et al. 1988).
Guanine nucleotides apparently promote translocation of a cytosolic com-
ponent to the plasma membrane (Ligeti et al. 1989). Gabig et al. (1990)
suggested that the cytosolic GTP-binding protein in its GTP[yS]-bound
form is stabilized or activated by unsaturated fatty acids (see also Sect.
5.1.3). Seifert et al. (1989¢) and Ishida et al. (1989) also obtained functional
evidence for the participation of specific cytosolic components in the
guanine nucleotide-dependent activation of NADPH oxidase. The identity
of these cytosolic components is not yet known (see also Sects. 5.1.4.4,
5.1.5.2.3). Candidates are the 47-kDa protein (see Sect. 5.1.5.2.3) and a
cytosolic 23-kDa GTP-binding protein (Ligeti et al. 1989; Stasia et al. 1989).
Moreover, human neutrophil cytosol contains a-subunits of G-proteins of
the Gi-family, i.e., Gz (Rosenthal et al. 1987; Rudolph et al. 1989a,b; Volpp
et al. 1989a). a-Subunits in neutrophil cytosol are regulated by GTP[yS] and
Mg** asis suggested by changes of their hydrodynamic properties (Rudolph
et al. 1989b).
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5.1.42 NaF

Similar to intact cells, NaF, presumably as AlFy (Sternweis and Gilman
1982; Bigay et al. 1985), stimulates O3 formation in cell-free systems of
human neutrophils and HL-60 cells, i.e., the halide potentiates fatty acid-
induced O3 formation (Seifert et al. 1986; Gabig et al. 1987; Seifert 1988;
see also Sect. 3.2.1.3). NaF slightly reduces the activation rate of NADPH
oxidase but increases Vax (Aviram and Sharabani 1989b).

5.1.4.3 Nucleoside Diphosphate Kinase

Nucleoside disphosphate kinase catalyzes the phosphorylation of GDP
to GTP by ATP and may play a role in regulation of various G-protein-
regulated effector systems such as adenylyl cyclase and phospholipase C
(Kimura and Nagata 1979; Totsuka et al. 1982; Kimura and Johnson
1983; Anthes et al. 1987, Wieland and Jakobs 1989). ATP is not
obligatorily required for reconstitution of NADPH oxidase activity but
substantially enhances O3 formation (Seifert and Schultz 1987a; Clark
et al. 1987; Seifert et al. 1988a,b; Ligeti et al. 1988; see also Sect. 5.1.3.2).
In addition to GTP[yS], ATP[yS] potentiates O3 formation in HL-60
membranes, but ATP[yS] is less potent and effective than GTP[yS]
(Seifert et al. 1988b). This finding may be explained by the following
mechanism.

The thiophosphoryl group of ATP[yS] is transferred to phosphate
acceptors by various kinases including nucleoside diphosphate kinase (Cas-
sidy et al. 1979; Eckstein 1985). HL-60 membranes possess a nucleoside
diphosphate kinase which catalyzes the thiophosphorylation of GDP by
ATP[yS] to GTP[yS], resulting in activation of NADPH oxidase (Seifert et
al. 1988b). This thiophosphorylation does not require added GDP, indicat-
ing that endogenous GDP in the cytosol and/or membrane is sufficient for
serving as thiophosphoryl group acceptor (Seifert et al. 1988b). Indeed, it
has been shown that GDP is tightly bound to G-proteins (Godchaux and
Zimmerman 1979; Ferguson et al. 1986). In HL-60 cells, GDP bound to
G-proteins may serve as acceptor for phosphate groups in nucleoside
diphosphate kinase-mediated reactions as well. In HL-60 cells, G-proteins
or low molecular mass GTP-binding proteins and nucleoside diphosphate
kinase may be closely associated proteins, as is the case for other systems
(Ohtsuki et al. 1986, 1987; Uesaka et al. 1987; Ohtsuki and Yokoyama 1987,
Kimura and Shimada 1988; see also Sects. 2.4.3, 3.2.1.2, 5.1.5). The
stimulatory effect of ATP[yS] but not that of GTP[yS] on O formation is
abolished by the inhibitors of nucleoside diphosphate kinase, UDP, and
ADP (Goffeau et al. 1967; Kimura and Shimada 1983; Seifert et al. 1988b).
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The activity of nucleoside diphosphate kinase absolutely depends on Mg**
(Parks and Agarwal 1973), and chelation of Mg** by EDTA abolishes the
stimulatory effect of ATP[yS] but not that of GTP[yS] on NADPH oxidase
(Seifert et al. 1988b). Moreover, phosphorylation of endogenous GDP to
GTP by creatine kinase and creatine phosphate prevents thiophosphoryla-
tion of GDP to GTP[yS] by ATP[yS] and potentiation of Oz formation
(Seifert et al. 1988b). In addition to HL-60 cells, thiophosphorylation of
GDP to GTP[yS] by ATP[yS] has been shown to take place in atrial
myocytes and in platelets, and this process is associated with persistent
activation of the corresponding G-protein-regulated effector systems
(Otero et al. 1988; Wieland and Jakobs 1989).

5.1.4.4 Some Open Questions

The studies described above provided substantial evidence for the assump-
tion that NADPH oxidase is regulated by G-proteins and/or low molecular
mass GTP-binding proteins. However, a number of problems remain to be
resolved. For example, is NADPH oxidase, in analogy to adenylyl cyclase
andretinal cGMP phosphodiesterase, under the direct control of G-proteins
(Gilman 1987) or are additional, possibly cytosolic components required?
The role of cytosolic G-proteins in the regulation of NADPH oxidase is not
known, and the relation between the cytosolic 23-kDa GTP-binding protein
identified by Ligeti et al. (1989) to NADPH oxidase activation and rap1
(Quinn et al. 1989) remains to be established (see also Sects. 2.4.3,3.2.1.2,
5.1.5). The 23-kDa GTP-binding protein has been purified (Stasia et al.
1989). Itis a substrate for protein kinase Cin vitro, is apparently no substrate
for Clostridium botulinum ADP-ribosyltransferase C3, and is not identical
with calmodulin or the a-subunit of cytochrome b.»5 (Stasia et al. 1989). In
addition, the identity of several other putative low molecular mass com-
ponents of NADPH oxidase remains to be clarified (see also Sect. 2.4.1,
Table 1). Furthermore, the precise role of pertussis toxin-sensitive and/or
-insensitive G-proteins and/or of low molecular mass GTP-binding proteins
in the regulation of NADPH oxidase by various types of receptor agonists
and stimuli circumventing receptor stimulation is not known. Finally, it
remains to be established whether the 47-kDa protein which possesses a
nucleotide-binding domain and shows homology to ras p21 GTPase-ac-
tivating protein, interacts with rapl (Quinn et al. 1989; Lomax et al. 1989;
Volpp et al. 1989b).

NADPH oxidase preparations obtained from phagocytes treated with
chemotactic peptides prior to cell disruption generate Oz” (McPhail and
Snyderman 1983). In contrast, in disrupted phagocytes, fMet-Leu-Phe does
not stimulate O3 formation, whereas in electropermeabilized neutrophils,
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the chemotactic peptide stimulates a respiratory burst (McPhail et al. 1985;
Grinstein and Furuya 1988; Nasmith et al. 1989). In our laboratory, we have
undertaken many efforts during the past 4 years to demonstrate a
stimulatory effect of fMet-Leu-Phe on O3 formation in cell-free systems
from human neutrophils and HL-60 cells, but for unknown reasons all
experiments gave negative results (unpublished resuits). In contrast,
chemotactic peptides stimulate high-affinity GTPase and phospholipase C
in plasma membranes of neutrophils and HL-60 cells (Hyslop et al. 1984;
Okajima et al. 1985; C.D. Smith et al. 1985, 1986; Kikuchi et al. 1986;
Williamson et al. 1988; Wilde et al. 1989). These data suggest that com-
ponents required for receptor-mediated activation of NADPH oxidase are
destroyed during cell disruption and/or that the integrity of cellular struc-
tures is required for this process.

Purified G-proteins of the G; family or G, reconstitute chemotactic
peptide-stimulated GTPase and phospholipase C activity (Okajima et al.
1985; Kikuchi et al. 1986). So far, we have not found stimulatory effects of
purified G, or G; from porcine brain (Rosenthal et al. 1986) on O3
formation in cell-free systems from HIL-60 cells under a variety of ex-
perimental conditions (unpublished results). Recently, we studied the
effects of various recombinant ras-proteins in cell-free systems. As in our
experiments with purified G-proteins, we failed to detect stimulatory effects
of recombinant ras proteins on O3 formation (unpublished results).

With respect to immunological studies, we did not observe any in-
hibitory effect of antibodies raised against the f-subunits of G-proteins or
of an antibody raised against a highly conserved sequence of a-subunits of
G-proteins (common peptide; Rosenthal et al. 1986; Rudolph et al. 1989a;
Hinsch et al. 1988) on fatty acid-induced O;™ formation in cell-free systems
in the absence or the presence of GTP[yS] under various experimental
conditions (unpublished results). In contrast, a number of reports show that
antibodies raised against certain components of NADPH oxidase may
inhibit O3 formation in intact cells or of the activated enzyme (Doussiere
and Vignais 1988; Fukuhara et al. 1988; Berton et al. 1989; see also Sect.
2.4).

5.1.5 Cytosolic Activation Factors

Much progress has been made in the past 2 years with regard to the
characterization of the cytosolic activation factors of NADPH oxidase.
Initial studies suggested that this factor or one of these factors may be
protein kinase C (McPhail et al. 1984b, 1985). However, subsequent studies
provided convincing evidence for the assumption that protein kinase C is
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not involved in the activation of O3 formation in this cell-free system (see
also Sect. 5.1.3.2). Some of the properties of the cytosolic activation factors
for NADPH oxidase are described in Sects. 2.4.1,3.1.1.1, and 3.2.2.1.

5.1.5.1 Some General Properties

The cytosolic factor is heat labile and sensitive to proteolytic inactivation
(Bromberg and Pick 1985; Seifert and Schultz 1987a; Seifert et al. 1989c;
Fujita etal. 1987; Ligeti et al. 1988; Bolscher et al. 1989). Activation of intact
human neutrophils with PMA is associated with the consumption and/or
depletion of cytosolic components of NADPH oxidase (Umeki 1990; see
also Sect. 3.1.1.1). The occurrence of the cytosolic activation factor is
apparently cell type-specific. Crude cytosols of neutrophils and macro-
phages of various species and of HL-60 cells differentiated with vitamin Ds,
dimethyl sulfoxide, or retinoic acid have been shown to reconstitute O3
formation in the cell-free system (Bromberg and Pick 1984; Fujita et al.
1987; Seifert and Schultz 1987a,b; Parkinson et al. 1987; Ligeti et al. 1988;
Nozawa et al. 1988; Seifert et al. 1989c).

In contrast to the above cells, cytosol of undifferentiated HL-60 cells
and neutrophil cytosol of patients with autosomal recessive, cytochrome
b.ass-positive CGD is inactive (Curnutte 1985; Curnutte et al. 1987b, 1988;
Seifert and Schultz 1987b; Parkinson et al. 1987; Nozawa et al. 1988; see also
Sect. 6.1.2). Neutrophil cytosol of autosomal recessive CGD patients does
not inhibit the activity of control cytosol, indicating that the defect is due to
the lack of stimulatory factors rather than to the presence of inhibitory
factors (Curnutte et al. 1988). In contrast, neutrophils of these CGD
patients possess a functionally intact membrane component of NADPH
oxidase but do not generate O, upon stimulation with various agents
(Curnutte et al. 1986, 1987a,b, 1988). These results underline the impor-
tance of the cytosolic activation factors for NADPH oxidase regulation in
intact cells and the physiological relevance of the cell-free system.

Cytosols of brain, kidney, or liver of the rat, lymph node and thymus of
the guinea pig, human lymphocytes and platelets as well as cytosols of the
murine phagocytic cell lines P338; and MOPC 315 myeloma cells do not
reconstitute O formationin the cell-free system (Seifert and Schultz 1987a;
Pick and Gadba 1988; Bolscher et al. 1989). Somewhat unexpectedly,
cytosol of guinea pig thymus, lymph node lymphocytes, brain and mouse
myeloma MOPC 315 cells has recently been reported to contain a factor
with a molecular mass of 30-52 kDa, referred to as oy, which reconstitutes
O3 formation in a cooperative manner with the phagocyte-specific factor
o, (Pick et al. 1989).
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5.1.5.2 Involvement of Multiple Cytosolic Activation Factors
in the Regulation of NADPH Oxidase

The analysis of cytosolic activation factors by functional studies and protein
purification studies revealed an unexpected complexity both within a given
type of phagocyte and within various types of phagocytes. Table 16 sum-
marizes some properties of the putative cytosolic activation factors in
various cell types. Unfortunately, the nomenclature of cytosolic activation
factors is still a matter of debate. At present, each group of authors prefers
its own classification, and even within a given group the terms may change
rapidly. In the following, we use the terms used by these authors, and we
will attempt to compare the identity of the cytosolic activation factors.

5.1.5.2.1 Functional Studies

The results of functional studies suggest that more than one cytosolic
activation factor is involved in the regulation of NADPH oxidase. The
analysis of the kinetics of NADPH oxidase activation in a fully soluble
system revealed that the enzyme is activated in a three-stage process
(Babior et al. 1988). According to this model in the first step, the membrane
component of NADPH oxidase (M) takes up a cytosolic factor (S) to form
the complex [MeS]. In the second step, this complex is converted into the
precatalytic species [MeS]*. In the third step, this complex takes up two
additional, possibly identical cytosolic components, termed C, and Cg. This
process results in the formation of a low-activity (i.e., high Kn) NADPH
oxidase ([MeS]*C,) and subsequently in the formation of a high-activity
(i.e., low Kin) NADPH oxidase ([MS]*C,Cp).

Cytosol of dimethyl sulfoxide-differentiated HL-60 cells has been
reported to reconstitute Oz formation in the absence and presence of
GTP[yS], whereas cytosol of dibutyryl cAMP-differentiated HL-60 cells
reconstitutes enzyme activity only in the presence of GTP[yS] (Seifert et al.
1989¢). In addition, cytosolic proteins of dimethyl sulfoxide- and dibutyryl
cAMP-differentiated HL-60 cells at submaximally stimulatory amounts
synergistically stimulate O3 formation in the presence but not in the
absence of GTP[yS]. These data suggest that two cytosolic activation factors
are involved in the regulation of NADPH oxidase which are differently
expressed in HL-60 cells (Seifert et al. 1989c). Apparently, one factor is
involved in the maintenance of basal, fatty acid-induced O3 formation, the
other factor mediates G-protein-mediated O3 formation, and the two
factors interact synergistically to reconstitute G-protein-regulated O3 for-
mation (Seifert et al. 1989c; see also Sects. 5.1.4.1,5.1.4.4).
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The functional defect of a cytosolic activation factor in dibutyryl cAMP-
differentiated HL-60 cells raises the question of the extent to which O3
formation in cell-free systems reflects O3 formation in intact cells. Intact
dimethyl sulfoxide-differentiated HL-60 cells generate O3 at substantially
higher rates than dibutyryl cAMP-differentiated HL-60 cells upon stimula-
tion with A 23187, PMA, arachidonic acid, and y-hexachlorocyclohexane,
whereas the chemotactic peptide is a more effective activator of O3 forma-
tion in dibutyryl cAMP-differentiated HL-60 cells (Seifert et al. 1989c).
Thus, HL-60 cells may be a useful model system to study the roles of
cytosolic activation factors in the activation of NADPH oxidase by various
stimuli in intact phagocytes which are yet incompletely understood (see also
Sect. 3.4.4.1.3).

Recent data obtained by Levy et al. (1990a,b) show that, in fact,
cytosolicactivation factors for NADPH oxidase are differentially expressed
in human myeloid cells. Specifically, cytosol from monocytes cultured for 6
days is virtually depleted of the 47-kDa protein but not of the 66-kDa
protein (Levy et al. 1990a; see also Sect. 3.4.3). Conversely, cytosol from
HL-60 cells cultured for 3 days in the presence of retinoic acid is devoid of
the 66-kDa protein, whereas the 47-kDa protein is present. These authors
suggested that these cytosols provide suitable model systems to study the
defects in cytosolic activation factors present in autosomal recessive CGD.
During the differentiation of HL-60 cells, the 47-kDa protein is detected
earlier than the 66-kDa protein, and the latter protein is apparently the
limiting cytosolic component for NADPH oxidase activation (Levy et al.
1990b).

Preincubation of neutrophil cytosol with 2'3'-dialdehyde NADPH
prevents activation of NADPH oxidase in the cell-free system, apparently
by covalently reacting with a 66-kDa protein (Smith et al. 1989a,b; Takasugi
et al. 1989). Neutrophil cytosol treated with 2'3’-dialdehyde NADPH loses
its ability to reduce the lag time for NADPH oxidase activation and to
convert the enzyme from the high K, form to the low K., form (Smith et
al. 1989b). 2'3'-Dialdehyde NADPH-treated neutrophil cytosol plus
neutrophil cytosol from CGD patients with a defect in the 47-kDa protein
reconstitute this functional abnormality (Smith et al. 1988b). These results
suggest that the 66-kDa protein carries the NADPH-binding site of
NADPH oxidase, and that its translocation from the cytosol to the plasma
membrane is an early step in the activation of NADPH oxidase (see also
Sect. 2.4.1 and below).

Data from Kleinberg et al. (1990) show that the 47-kDa protein but not
the 66-kDa protein shortens the lag time of NADPH oxidase activation in
the cell-free system. Additionally, experiments with a peptide that cor-
responds to a cytoplasmic carboxy-terminal domain of the B-subunit of
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cytochrome b.ys indicate that the 47-kDa protein is required early in the
activation of NADPH oxidase, whereas the 66-kDa protein is essential for
subsequent reactions resulting in the formation of the catalytically active
NADPH oxidase.

5.1.5.2.2 Protein Purification Studies

The concept that multiple cytosolic activation factors are involved in the
regulation of NADPH oxidase is also supported by the results of protein
purification studies. Initial studies suggested that in cytosol of human
neutrophils a single peptide with an apparent molecular mass of 10 kDa
reconstitutes Oz formation (Clark et al. 1987). Other authors suggested
that various peptides and/or proteins with apparent molecular masses of
40-250 kDa reconstitute enzyme activity in cell-free systems of human
neutrophils (Curnutte et al. 1987b; Gabig et al. 1987). We also found that
various molecules with apparent molecular masses of 40-300 kDa, as
revealed by gel filtration, support Oz formation in cell-free systems of
dimethyl sulfoxide-differentiated HL-60 cells (unpublished results).

The cytosolic activation factor from dimethyl sulfoxide-differentiated
HL-60 cells is stable at 4°C for at least 2 weeks and is recovered in a
functionally active state by ammonium sulfate precipitation at 35%-45%
saturation (Seifert, unpublished results). In addition, the cytosolic activa-
tion factor from these cells binds to the dye orange A and to Heparin-
Sepharose CL-6B and is eluted from these matrixes with 1-M KCI. The
above procedures lead to approximately 5-fold, 10-fold, and 20-fold in-
creases in specific activity of the cytosolic activation factor, and the com-
bination of ammonium sulfate precipitation with subsequent
chromatography on orange A results in a 25-fold enrichment in specific
activity (unpublished results). The dyes blue B, red A, and green B are
considerably less effective in binding the cytosolic activation factor than
orange A (unpublished results). The cytosolic activation factor also binds
to fast-flow phenyl Sepharose CL-4B, but we failed to elute the factorin a
functionally active state from this matrix (unpublished results).

The cytosolic activation factor from guinea pig macrophages has been
purified by chromatography on 2'5'-ADP-agarose and has been suggested
to carry the NADPH binding site of NADPH oxidase (Sha’ag and Pick
1988; see also Sect. 2.4.1 and above). Further analysis suggested that two
components, referred to as oy and o, are both required for reconstitution
of O3 formation (Pick et al. 1989). The o; factor is inactivated by proteases
and by heat but not by NEM, may possess a molecular mass of 30-52 kDa,
and is present not only in phagocytes but also in nonphagocytic cell types
(Pick et al. 1989; see also Sect. 5.1.5.1). Unlike the oy factor, the o is
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inactivated by NEM (see also Sect. 4.3.3), may possess a molecular mass of
150440 kDa, and is apparently phagocyte-specific (Pick et al. 1989).
Recently, Sha’ag and Pick (1990) characterized the nucleotide-binding
properties of the o, factor and showed that this protein contains a domain
which recognizes the phosphate group at the ribose 2’ position in adenosine
and another domain which recognizes purine nucleoside triphosphates.

Porcine neutrophil cytosol was analyzed by gel filtration chromatog-
raphy (Fujita et al. 1987; Ishida et al. 1989). Two components, operationally
termed C; and G, have been reported to be involved in the reconstitution
of NADPH oxidase activity. C; alone is not very effective in reconstituting
O; formation, but its effectiveness is potentiated either by GTP[yS] or by
C,. Gy alone is inactive, and the effects of C; and GTP[yS] in the presence
of C, are additive. C; has an apparent molecular mass of 300 kDa, and C,
shows a molecular mass of 50 kDa as revealed by gel filtration. Analysis of
C; by affinity chromatography on 2'5'-ADP agarose revealed that C;
consists of at least two components, one mediating GTP-dependent and the
other mediating GTP-independent regulation of NADPH oxidase (Ishida
et al. 1989; see also Sects. 5.1.4.1,5.1.5.2.1).

Chromatography of bovine neutrophil cytosol on Mono-Q and Mono-S
columns resulted in the separation of two factors neither of which alone
reconstitute O3 formation (Pilloud et al. 1989b). However, upon recom-
bination both factors support O3 formation (Pilloud et al. 1989b). In a
subsequent study, these authors provided evidence for the assumption that
several proteins with apparent molecular masses ranging from 17 to 65 kDa
may be involved in the reconstitution of Oy formation in the bovine
neutrophil-derived cell-free system (Doussiere et al. 1990).

Using GTP-agarose affinity chromatography, a cytosolic activation
complex for NADPH oxidase has been purified (Volpp et al. 1988).
Polyclonal antibodies against this complex recognize a 47- and a 67-kDa
protein, and there is a close correlation between the occurrence of the 47-
and 67-kDa proteins and the amount of cytosolic activation factor in various
cell types and column fractions (Volpp et al. 1988). Using anion exchange
chromatography, Nunoi et al. (1988) identified a 47- and a 65-kDa protein
in neutrophil cytosol, both of which are required for the reconstitution of
O;" formation. The 47-kDa protein has operationally been termed
neutrophil cytosol factor 1 (NCF-1), and the 65-kDa protein NCF-2. Inter-
estingly, a third yet unknown factor, termed NCF-3, is required for the
reconstitution of NADPH oxidase activity (Nunoi et al. 1988). Autosomal
recessive CGD is associated with the more common defect of NCF-1 or
with the less common defect of NCF-2 but apparently not with a defect of
NCF-3 (Nunoi et al. 1988; Clark et al. 1989; see also Sect. 6.1.2).
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By isoelectric focusing, four cytosolic activation factors in human
neutrophil cytosol have been identified (Curnutte et al. 1989a). These
factors have been operationally termed C1, C2, C3, and C4 and possess pl
values of 3.1, 6.0, 7.0 and 9.1, respectively. As combinations of these four
factors do not support O formation, a hitherto unknown fifth component
has been suggested to be required for reconstitution of NADPH oxidase
activity (Curnutte et al. 1989a). Autosomal recessive CGD may be as-
sociated with a defect in C2 or in C4 (Curnutte et al. 1989a).

Cytosolic activation factors from human neutrophils have been charac-
terized by chromatography on carboxymethyl Sepharose (Bolscher et al.
1989). When tested separately, neither the column-bound protein nor the
unbound protein reconstitute O3 formation, but the combination of the
wash fraction with a fraction eluting at 125 mA{ NaCl restore enzyme
activity. These results suggest that O3 formation depends on the presence
of at least two cytosolic activation factors, one of which binds to car-
boxymethyl Sepharose. The component which does not bind to this matrix
is referred to as soluble oxidase component I (SOC I), and the component
binding to the column is termed SOC II. SOC II copurifies with a 47-kDa
protein which is missing in autosomal-recessive CGD, and SOC 1I from
control neutrophils reconstitutes the defect in neutrophil cytosol of these
patients (Bolscher et al. 1989). This group also isolated a cytosolic factor
which may specifically participate in GTP[yS]-dependent activation of
NADPH oxidase (Bolscher et al. 1990).

A protein with an apparent molecular mass of 63-kDa was purified from
cytosol of porcine neutrophils (Tanaka et al. 1990). Partial amino acid
sequence analysis showed thatit corresponds to the 66-kDa protein. Tanaka
et al. (1990) detected neither heme nor flavin in the purified protein,
suggesting that it acts as a regulatory component of NADPH oxidase and
not as an electron transport component. Additionally, an antibody raised
against this purified protein cross-reacts with a 65-kDa protein in human
neutrophils and reduces the effectiveness of cytosol to reconstitute
NADPH oxidase activity in the cell-free system. Precipitating the 47- and
66-kDa proteins with anionic amphiphiles, Chiba et al. (1990) did not obtain
positive evidence for the presence of FAD or FMN in them.

Recently, Teahan et al. (1990) reported on the purification of the
phosphorylated form of the 47-kDa protein from human neutrophils by
chromatography onion-exchange and hydroxyapatite columns. Inaddition,
polyclonal antibodies against this protein were raised (Teahan et al. 1990).

Apparently, the 47-kDa protein identified by Volpp et al. (1988) cor-
responds to NCF-1 (Nunoi et al. 1988), C4 (Curnutte et al. 1989a),and SOC
1I (Bolscher et al. 1989). The cytosolic factor S (Babior et al. 1988) has been
suggested to be a nonphosphorylated form of the 47-kDa protein (Curnutte
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et al. 1989b). In addition, one of the two C; components described by Ishida
et al. (1989) may be identical with the 47-kDa protein. Thus, one of the
cytosolic activation factors for NADPH oxidase represents the 47-kDa
protein which is defective in most cases of autosomal recessive CGD (see
also Sects. 3.1.1.1,3.2.2.1,5.1.5.2.3,6.1.2).

The 67-kDa protein characterized by Volpp et al. (1988) is apparently
identical with NCF-2 (Nunoi et al. 1988), C2 (Curnutte et al. 1989a), and
possibly with one of the C; components (Ishida et al. 1989). The similarity
of the molecular mass of NCF-2 with a cytosolic 65- to 67-kDa protein which
is labeled by NADPH analogues (Smith et al. 1989a,b; Takasugi et al. 1989),
suggests that NCF-2 may carry the NADPH-binding site of NADPH
oxidase (see also Sect. 2.4.1). The o factor identified by Pick et al. (1989)
may be identical with NCF-3 (Nunoi et al. 1988), SOC-1 (Bolscher et al.
1989), and C1 (Curnutte et al. 1989a), and o (Pick et al. 1989) may be
composed of the 47- and 66-kDa proteins. The identity of other cytosolic
components, e.g., the fifth cytosolic component postulated by Curnutte et
al. (1989a), and the defect of the cytosolic activation factor(s) mediating
GTP-dependent activation of O3 formation in dibutyryl cAMP-differen-
tiated HL-60 cells (Seifert et al. 1989¢) remain to be clarified (see also Sect.
5.1.4.4).

5.1.5.2.3 Molecular Cloning and Expression of Recombinant Proteins

Recently, NCF-1, also termed NCF-47K, has been cloned and function-
ally expressed in bacteria (Lomax et al. 1989; Volpp et al. 1989b). The
c¢DNA for NCF-47K codes for a 41.4- to 41.9-kDa protein with a calcu-
lated pI value of 10.4. The protein possesses an arginine- and serine-rich
COOH-terminal domain with putative phosphorylation sites for protein
kinases and an N-terminal glycine. The protein shows homologies to
phospholipase C, src protein kinases, and o-fodrin and possesses a
nucleotide-binding domain. In addition, the protein carries a segment
consisting of 33 amino acids with about 50% identity to ras p21 GTPase-
activating protein. These properties of NCF-47K suggest that this
protein participates in GTP-dependent regulation of NADPH oxidase,
but the precise mode of interaction of NCF-47K with other components
of NADPH oxidase remains to be determined (see also Sects. 2.4.3,3.2.1,
5.1.4). Finally, recombinant NCF-47K has been shown functionally to
reconstitute the defect of the 47-kDa protein in neutrophil cytosol of
autosomal recessive CGD patients in the cell-free system (Lomax et al.
1989; Volpp et al. 1989b).

The cDNA for NCF-2 has also been cloned and recombinant NCF-2
(presently also referred to as 1-p67) partially restores the functional defect
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of neutrophil cytosol of CGD patients with a defect of the 67-kDa protein
(Leto et al. 1989, 1990). The cDNA for NCF-2 encodes a protein with 526
amino acids and possesses acidic middle and COOH-terminal regions (Leto
et al. 1990). These regions share homology to sequence motifs present in
the non-catalytic region of src-related protein kinases (Leto et al. 1990).
This sequence motif was also found in a specific isoenzyme of phospholipase
C, a-fodrin, ras p21 GTPase-activating protein and NCF-1 (Lomax et al.
1989; Volpp et al. 1989b; Leto et al. 1990). These structural similarities
suggest that NCF-1 and NCF-2 share common functions in the regulation
of NADPH oxidase (Leto et al. 1990).

5.2 Reconstitution and Regulation of NADPH Oxidase Activity
by Phorbol Esters

Activation of NADPH oxidase by fatty acids in the cell-free system is
independent of protein kinase C and Ca™ (see Sects. 5.1.32, 5.1.3.3).
Tsunawaki and Nathan (1986), Seifert and Schultz (1987a), and Traynor et
al. (1989) did not find a stimulatory effect of PMA, diacylglycerol, or inositol
1,4,5-trisphosphate on O3 formation in cell-free systems derived from
human neutrophils and murine macrophages. In contrast, other authors
succeeded in establishing a protein kinase C-dependent cell-free activation
system for NADPH oxidase (Cox et al. 1985, 1987; Tauber et al. 1989a).

Protein kinase C-mediated activation of NADPH oxidase in neutrophil
membranes requires not only the presence of PMA but also the addition of
Ca®* and exogenous phospholipids, e.g., phosphatidylserine (Cox et al.
1985). Protein kinase C present in neutrophil cytosol as well as purified
protein kinase C from rat brain reconstitute O3 formation (Cox et al. 1985).
However, the system reconstituted by combination of neutrophil
membranes, PMA, phospholipids, Ca**, and protein kinase C is consider-
ably less effective in catalyzing O3 formation than the system consisting of
neutrophil membranes, neutrophil cytosol plus fatty acids or SDS (Cox et
al. 1987). The pH optimum and K, for NADPH of NADPH oxidase
activated via protein kinase C are in agreement with the values obtained
for NADPH oxidase activated through the protein kinase C-independent
pathway in a cell-free system (Cox et al. 1987).

In addition to native protein kinase C, the proteolytically activated,
Ca*Iphospholipid-independent protein kinase C has been reported to
stimulate O3 formation in plasma membranes from resting human
neutrophils in the presence of ATP and Mg** (Tauber et al. 1989a). The
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proteolytically activated protein kinase C is more effective in activating
05 formation than native protein kinase C, and neither PMA nor Ca** is
required for reconstitution of O3 formation with the former kinase. Unex-
pectedly, activation of Oz formation by proteolytically activated protein
kinase C depends on phosphatidylserine (Tauber et al. 1989a). Phos-
phatidylserine has been suggested to interact directly with a component of
NADPH oxidase rather than with protein kinase C (see also Sects. 2.1,
5.1.2). These results show that protein kinase C-dependent and -inde-
pendent pathways for the activation of NADPH oxidase exist not only in
intact cells but also in cell-free systems.

Very recently, Burnham et al. (1990) showed that short chain
diacylglycerols such as dioctanoylglycerol potentiate SDS-induced O3 for-
mation in a cell-free system from human neutrophils. Apparently,
diacylglycerols do not increase the sensitivity of SDS towards cytosolic
components, and they do not mimic the effects of GTP[yS]. By contrast,
PMA and mezerein do not substantially enhance SDS-induced O3 forma-
tion. Although diacylglycerols potentiate SDS-induced phosphorylation of
the 47-kDa protein, various experimental data suggest that their effects are
apparently not mediated through protein kinase C.

5.3 Reconstitution and Regulation of NADPH Oxidase Activity
by Phosphatidic Acid

In intact neutrophils, chemoattractants induce the release of phosphatidic
acid through activation of phospholipase D, and phosphatidic acid has
recently been shown to stimulate the respiratory burst in intact phagocytes
(Anthes et al. 1989; Billah et al. 1989; Ohtsuka et al. 1989). Moreover, there
is a correlation between the chemotactic peptide-induced activations of
phospholipase D and NADPH oxidase in human neutrophils (Bonser et al.
1989; see also Sect. 3.2.2.1).

The role of phosphatidic acid in the regulation of NADPH oxidase in
cell-free systems is controversial. Bellavite et al. (1988) made the very
interesting observation that phosphatidic acid activates NADPH oxidase
in detergent extracts from membranes of resting pig neutrophils. Unlike
fatty acid-induced O3 formation, that induced by phosphatidic acid has
been reported not to depend on the presence of neutrophil cytosol. The
phosphatidic acid-activated NADPH oxidase shows structural and catalytic
properties similar to NADPH oxidase from activated cells or to NADPH
oxidase activated by fatty acids plus cytosol (Bellavite et al. 1988; see also
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Sects. 2.1,5.1.2). In contrast, phosphatidic acid has been reported to inhibit
SDS-induced O3 formation in a cell-free system from human neutrophils
(Aviram and Sharabani 1989a). We did not find stimulatory effects of
phosphatidic acid on O3 formation in cell-free systems from dimethyl
sulfoxide-differentiated HL-60 cells under various experimental conditions
(unpublished results). These data suggest that the effects of phosphatidic
acid on NADPH oxidase in cell-free systems are species and/or cell type
specific.



6 Pathology of NADPH Oxidase

6.1 Chronic Granulomatous Disease

Much information on the structure and regulation of NADPH oxidase is
derived from studies on neutrophils from CGD patients (see also Sects.
243, 3111, 51.5). CGD is a rare inherited disease; it occurs with a
frequency of about 1:1 000 000 and may be divided into X-chromosomal
and autosomal-recessive forms (Tauber et al. 1983). CGD usually becomes
apparent in childhood and is characterized by recurrent infections with
granuloma formation (Babior 1978b; Tauber et al. 1983). The clinical
manifestations of CGD have been reviewed by Tauber et al. (1983). The
patients’ symptoms are the result of a defect of NADPH oxidase in their
phagocytes, i.e., neutrophils and mononuclear phagocytes (Baehner and
Karnovsky 1968; Hohn and Lehrer 1975; Curnutte et al. 1975). Upon
stimulation, phagocytes of CGD patients do not undergo a respiratory
burst, as revealed by hexose monophosphate shunt activity, oxygen con-
sumption, Oz formation, and NBT reduction (Baehner and Nathan 1967,
Nathan et al. 1969; Curnutte et al. 1974; Musson et al. 1982). Surprisingly,
PMA has been reported to induce H,O;-dependent oxidation of 2'7'-
dichlorofluorescein in neutrophils of CGD patients, suggesting that some
PMA -activable oxidase is present in these phagocytes (Hassan et al. 1988).
Table 17 summarizes some of the characteristics of NADPH oxidase in the
various CGD forms.

6.1.1 Defect of Cytochrome b.s

Most cases of X-chromosomal CGD are characterized by a defect of
cytochrome b5, whereas most cases of autosomal-recessive CGD do not
show apparent defects of the cytochrome (Segal et al. 1983; Royer-Pokora
et al. 1986; Segal 1987; Teahan etal. 1987; Dinauer et al. 1987). Hybridization
of monocytes from a cytochrome b.4s-negative, X-chromosomal CGD
patient with monocytes from a cytochrome b5 -positive patient resulted
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in functional reconstitution of the respiratory burst (Hamers et al. 1984). In
addition to the above CGD forms, very rare cases of autosomal-recessive,
cytochrome b.ss-negative, and X-chromosomal cytochrome b.s-positive
CGD have been described (Weening et al. 1985; Okamura et al. 1988b;
Dinauer et al. 1989).

Both the a- and the B-subunits of cytochrome b.4s are absent in
neutrophils of patients with X-chromosomal and autosomal-recessive,
cytochrome b.ys-negative CGD (Verhoeven et al. 1989; Parkos et al.
1989). The absence of both subunits of cytochrome b.4s in these CGD
patients may be explained by the fact that stable expression of either
subunit of the cytochrome depends on the presence of the other subunit
(Parkos et al. 1989; Dinauer et al. 1989; see also Sect. 2.4.3). The B-sub-
unit of cytochrome b.,45is encoded by the X-chromosome, and mutations
affecting expression or structure of this gene result in the former type of
CGD (Royer-Pokora et al. 1986; Teahan et al. 1987; Parkos et al. 1989;
Verhoeven et al. 1989; Dinauer et al. 1989). It has been suggested that
the gene for the a-subunit of cytochrome b 45 is defective in the correspond-
ing autosomal-recessive form of CGD (Parkos et al. 1989). Recent data
show that, in fact, autosomal recessive CGD may be due to defects in the
gene encoding the a-subunit of cytochrome b.4s (Dinauer et al. 1990).
Finally, the membrane-associated phosphorylated 47-kDa protein is
missing in neutrophils of X-chromosomal cytochrome b.xs-negative
CGD patients, suggesting that activation of NADPH oxidase depends
on the phosphorylation of this protein and its subsequent association
with cytochrome b.,45 in the plasma membrane (Heyworth et al. 1989a).

6.1.2 Defect of Cytosolic Activation Factors

In neutrophils of healthy subjects, the 47-kDa protein is phosphorylated upon
stimulation with a variety of agents including phorbol esters and chemotactic
peptides, supporting a key role of this protein in the activation of NADPH
oxidase (see also Sects. 3.1.1.1,3.2.2.1,5.1.5). In contrast, the 47-kDa protein is
not phosphorylated in patients with autosomal-recessive cytochrome b.s-
positive CGD (Segal et al. 1985; Hayakawa et al. 1986; Heyworth and Segal
1986; Okamura et al. 1988a,b). In addition, purified protein kinase C does not
phosphorylate the 47-kDa protein of autosomal-recessive CGD patients in
vitro (Kramer et al. 1988b). The 47-kDa protein is localized both in the cytosol
and in the membrane fraction of stimulated neutrophils, and recent studies
have shown that the 47-kDa protein is one of the cytosolic activation factors
for NADPH oxidase (Kramer et al. 1988b; Heyworth et al. 1989a; see also
Sects. 5.1.5.2.2,5.1.5.2.3). Most patients with autosomal recessive CGD show
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a defect of the 47-kDa protein, and few patients show a defect of the 66-kDa
protein (Nunoi et al. 1988; Clark et al. 1989).

6.1.3 Variant Chronic Granulomatous Disease

In some CGD patients, the kinetics of NADPH oxidase, i.e., Vi and Ky
for NADPH, are altered (Lew et al. 1981; Shurin et al. 1983; Newburger et
al. 1986). Patients with this type of CGD, also referred to as variant CGD,
generate low but detectable amounts of O3 upon exposure to various
stimuli, and the clinical symptoms are less severe than in patients with the
other forms of CGD (Newburger et al. 1986; Ezekowitz et al. 1987). Variant
CGD isinherited in an autosomal-recessive or an X-chromosomal manner,
and severe infections may be associated with a further decrease in their
neutrophils’ capacity to generate O; (Newburger et al. 1986; see also Sect.
6.2.2). The role of IFN-y in the treatment of CGD is described in Sect.
3.3.1.38.

6.2 Other Pathological States

Quantitative and/or qualitative alterations of the respiratory burst have
been observed in various diseases, but in many cases the results are con-
troversial. Some of the reasons which may explain these conflicting results
are dealt with in Sect. 1. Table 18 summarizes some pathological states in
which the activity of the respiratory burst is assumed to be altered.

6.2.1 Hematological Disorders

Neutrophils possess a myeloperoxidase which is located in the azurophilic
granules and catalyzes the formation of HOCI with HO; and CI as
substrates (Roos 1980; Rossi 1986; Edwards and Swan 1986; Sandborg and
Smolen 1988). An antibody raised against human myeloperoxidase has
been reported to enhance fMet-Leu-Phe-induced O3 formation in human
neutrophils, and inhibition of myeloperoxidase partially inhibits inactiva-
tion of NADPH oxidase (Jandl et al. 1978; Edwards and Swan 1986). In
addition, neutrophils of certain patients with myeloperoxidase deficiency
have been reported to show enhanced phagocytosis and prolonged activa-
tion of the respiratory burst, as assessed by oXygen consumption, hexose
monophosphate shunt activity, and O; and H,O, formation (Klebanoff and
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Hamon 1972; Rosen and Klebanoff 1976; Nauseef et al. 1983b; Stendahl et
al. 1984). These data suggest that myeloperoxidase or some of its products
plays a role in the termination of the respiratory burst (see also Sect.
33.1.1.3).

In patients with glucose-6-phosphate dehydrogenase deficiency,
NADPH cannot be generated in the hexose monophosphate shunt, result-
ing in substrate depletion for NADPH oxidase (Roos 1980). Neutrophils
of patients with glucose-6-phosphate dehydrogenase deficiency do not
undergo a respiratory burst upon stimulation, and the functional defect is
similar to that in CGD (Baehner et al. 1972; Cooper et al. 1972; Gray et al.
1973; Roos 1980; see also Sect. 6.1).

The neutrophil glutathione redox system is involved in the protection
of the cell against oxidative damage (Roos 1980; see Sect. 1). Glutathione
synthetase deficiency has been reported to be associated with a shortened
respiratory burst (Roos et al. 1979; Roos 1980). In addition, glutathione
peroxidase deficiency has been reported to be accompanied by a decreased
ability to generate reactive oxygen intermediates (Matsuda et al. 1976; Roos
1980). Selenium is a cofactor for glutathione peroxidase, and O3 formation
is decreased in selenium-deficient rat neutrophils (Baker and Cohen 1983).
These data suggest that a decrease in glutathione peroxidase activity leads
to H,Oz accumulation and resuits in inhibition of NADPH oxidase (see also
Sect. 3.3.1.1.3).

Chediak-Higashi syndrome is a rare disorder of human neutrophils and
is characterized by giant lysosomes, delayed fusion of these granules with
phagosomes and increased susceptibility to infections (Tauber 1981; New-
burger et al. 1983; Volkman et al. 1984). Neutrophils and EBV-transformed
B-lymphocyte cell lines of patients with Chediak-Higashi syndrome have
been reported to show an increased respiratory burst in comparison to
control subjects (Volkman et al. 1984; see also Sect. 3.4.4.2.1). Neutrophils
from a patient with a syndrome showing morphological similarities and
biochemical dissimilarities to Chediak-Higashi syndrome generated O3 at
substantially reduced rates upon stimulation with PMA, whereas O3 for-
mation induced by zymosan was not substantially affected (Newburger et
al. 1980b; see also Sect. 3.2.2.1,3.3.1.5.5).

Neutrophils from patients with paroxysmal nocturnal hemoglobinuria
show a normal respiratory burst upon stimulation with IgG complexes and
opsonized zymosan, whereas O3 formation upon stimulation with PMA is
impaired (Tauber et al. 1983; Huizinga et al. 1989). The binding of phorbol
esters to their binding sites is not impaired, suggesting that the defect of the
PMA -induced signal transduction pathway is localized distally to protein
kinase C but proximally to NADPH oxidase (Tauber et al. 1983; see also
Sects.3.2.2.1,3.3.1.5.5).
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CR3 receptor deficiency is a very rare inherited condition which is
characterized by life-threatening infections (Arnaout 1990). Phagocytes of
these patients show various defects of adhesion-dependent functions such
as aggregation, phagocytosis and binding of C3bi (Arnaout 1990). In addi-
tion, neutrophils of patients with a defect of the CR3 receptor show
impaired respiratory burst upon exposure to C3bi-coated latex particles and
a defect of adherence-dependent H>O, formation (Hoogerwerf et al. 1990;
Shappell et al. 1990; see also Sects. 3.3.1.5.2,3.4.3).

6.2.2 Infections

The activity of the respiratory burst has been reported to be altered in
bacterial, viral, fungal, and protozoal infections (see also Sect. 4.3.1).
Neutrophils from patients with bacterial infections have been reported to
be hyperresponsive to PMA or fMet-Leu-Phe in comparison to control
neutrophils, i.e., the phagocytes are primed (Bass et al. 1986; Briheim et al.
1989; see also Sects. 3.2.2.2, 3.3.1.1.4). Priming of neutrophils in bacterial
infections affects about 40% of the cell population, but the size of the
population primed shows considerable interindividual variation (Bass et al.
1986; see also Sect. 1). It has been suggested that the increase in responsive-
ness of the respiratory burst during infection may contribute to host defense
and to the pathogenesis of tissue damage (Bass et al. 1986).

Vaccinia virus has been shown to stimulate oxygen consumption and
chemiluminescence in human neutrophils, and opsonization of the virus sub-
stantially enhances the respiratory burst (Jones 1982). In contrast, influenza
virus has been reported to depress various neutrophil functions including the
respiratory burst (Abramson et al. 1984; Cassidy et al. 1989). The decrease in
neutrophil bactericidal activity may contribute to the enhanced susceptibility
to bacterial infections subsequent to infection with influenza virus. Influenza
virus may bind to sialic acid-containing receptors on neutrophils through its
hemagglutinin glycoprotein, and this process leads to a rapid and long-lasting
inhibition of the respiratory burst (Cassidy et al. 1989).

Stimulatory effects of influenza virus on the respiratory burst have also
been observed. Recently, Hartshorn et al. (1990a,b) reported that influenza
A virus induces H,O, formation but not O3 formation in human
neutrophils. The respiratory burst induced by the virus is anteceded by an
increase in cytoglasmic Ca®* which does not depend on the presence of
extracellular Ca™. In addition, the virus induces membrane depolarization
and formation of inositol phosphates. Furthermore, pertussis toxin does
not inhibit the influenza A virus-induced responses (Hartshorn et al.
1990a,b).
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Recently, plasma of patients with the arenavirus infection Lassa fever
has been shown to inhibit the respiratory burst induced by fMet-Leu-Phe
in neutrophils of healthy subjects (Roberts et al. 1989). The mechanism by
which plasma of patients with Lassa fever inhibits the respiratory burst, may
involve interaction with yet unknown steps of the signal transduction
process (Roberts et al. 1989). Finally, infection of porcine alveolar macro-
phages with pseudorabies virus is associated with a reduction in zymosan-
induced O3 formation (Iglesias et al. 1989), and intraperitoneal
cytomegalovirus infection in the rat causes a significant decrease in
zymosan-induced O3 formation in macrophages (Engels et al. 1989).

6.2.3 Pulmonary and Allergic Disorders

Neutrophils of patients with atopic dermatitis have been reported to show
no alterations of Oz formation, but macrophages of these patients show a
moderate enhancement of O3 formation upon exposure to opsonized
zymosan (Mrowietz et al. 1988). Concomitant infections in these patients
are associated with increased O3 formation in macrophages and decreased
O3 formation in neutrophils (see also Sect 6.2.2). Eosinophils form atopic
individuals show an increased respiratory burst upon stimulation with
fMet-Leu-Phe or PAF (Koenderman and Bruijnzeel 1989), and alveolar
macrophages from patients with allergic asthma have been reported to be
permanently activated, i.e., they continuously generate inositolphosphates
and O; (Damon et al. 1988; see also Sect. 3.4.4.1.1). Upon exposure to
chemotactic peptides, these cells show only a slight increase in phos-
phoinositide degradation but enhanced O formation (Damon et al. 1988).
The enhanced O3 formation may be due to in vivo priming by PAF, LTBs,
or other intercellular signal molecules (Damon et al. 1988; see also Sects.
3.3.1.6,3.3.1.7). Moreover, the activity of the respiratory burst in neutrophils
of patients with chronic obstructive airway disease has been reported to be
increased (Renkema et al. 1989).

Coal workers’ pneumoconiosis is associated with increased basal and
PMA-stimulated O3 formation in their alveolar macrophages in com-
parison to control subjects (Wallaert et al. 1990). These data suggest that
alveolar macrophages from pneumoconiotic patients are primed, and that
enhanced O3 formation plays a part in the pathogenesis of lung injury in
this condition (Wallaert et al. 1990). Idiopathic pulmonary fibrosis is also
associated with an augmentation of basal and stimulated formation of
reactive oxygen intermediates in the corresponding alveolar macrophages
(Strausz et al. (1990).
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Sarcoidosis is characterized by the accumulation of T-lymphocytes and
macrophages in the alveoli, resulting in chronic inflammatory injury of the
lung (Cassatella et al. 1989a). The activity of the respiratory burst in alveolar
macrophages from patients with active sarcoidosis has been shown to be
significantly higher than that in the corresponding celis from patients with
inactive sarcoidosis patients or from healthy subjects (Fels et al. 1987,
Cassatella et al. 1989a). Interestingly, IFN-y primes macrophages of patients
with inactive sarcoidosis but not those of patients with active sarcoidosis for
enhanced O3 formation (Cassatella et al. 1989a). In contrast, blood
monocytes of patients with active sarcoidosis show no increased respiratory
burst activity, indicating that priming of macrophages in sarcoidosis is a local
process. IFN-y has been suggested to prime the respiratory burst in vivo, and
this process may be involved in the pathogenesis of sarcoidosis (Cassatella et
al. 1989a; see also Sect. 3.3.1.3.2).

Cigarette smoking alters the morphology of alveolar marcophages and
impairs their phagocytic activity (Finch et al. 1982; Fisher et al. 1982).
Nicotine has been suggested to bind to noncholinergic nicotine binding sites
on human phagocytes, suggesting that the effects of nicotine are mediated
via specific receptors (Davies et al. 1982). Alveolar macrophages from
smokers have been reported to generate substantially greater amounts of
H>O, than those of nonsmokers, and the increased release of reactive
oxygen intermediates may contribute to the development of emphysema
(Greening and Lowrie 1983). In contrast, Thomassen et al. (1988) reported
that alveolar macrophages from smokers generate less O3 than control
macrophages. Totti et al. (1984) reported that nicotine is chemotactic to
neutrophils and does not affect O3 formation. In contrast, Sasagawa et al.
(1985) reported that nicotine is not chemotactic for human neutrophils,
whereas nicotine inhibits fMet-Leu-Phe-induced O3 formation.

6.2.4 Essential Hypertension

There is a current discussion concerning the regulation of NADPH oxidase
in neutrophils of hypertensive patients. Hypertensive subjects receiving no
antihypertensive medication have been suggested to generate O3 at rates
about three- to fourfold higher than those of healthy subjects upon exposure
to fMet-Leu-Phe at a maximally effective concentration (Pontremoli et al.
1989). In contrast, neutrophils of hypertensive patients have shown to be
less sensitive to homologous priming by fMet-Leu-Phe (see also Sect.
3.3.1.1.4). No differences between hypertensive and normotensive subjects
are apparent with respect to the activity of the membrane components and
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of the cytosolic activation factors of NADPH oxidase in the cell-free system
(see also Sect. 5.1.1). Pontremoli et al. (1989) suggested that the functional
organization of NADPH oxidase in the plasma membrane of neutrophils
is altered in essential hypertension.

Seifert et al. (1991) reexamined the regulation of O3 formation in
untreated patients with essential hypertension and in age- and sex-matched
normotensive subjects. In this study, neutrophils were stimulated with
various intercellular signal molecules including fMet-Leu-Phe, PAF, and
LTB4 and stimuli which circumvent receptor activation, i.e., PMA, dioc-
tanoylglycerol, y-hexachlorocyclohexane and arachiclonic acid. In addi-
tion, the inhibitory effects of isoproterenol, PGE; and histamine on
fMet-Leu-Phe-induced O3 formation were assessed. With respect to none
of the parameters studied were significant differences evident between the
hypertensive and the normotensive subjects, suggesting that regulation of
NADPH oxidase is not altered in essential hypertension (see also Sects. 1,
3262, 33.1.2.4). With respect to cytoplasmic Ca”, there are also no
differences between neutrophils of normotensive and hypertensive subjects
(Lew et al. 1985).

6.2.5 Myotonic Dystrophy

Myotonic dystrophy is an autosomal dominant disease which is charac-
terized by progressive myotonia and muscle weakness (Friedenberg et al.
1986). Patients with myotonic dystrophy show a variety of abnormalities of
plasma membrane functions, suggesting that a defect in membrane struc-
ture is underlying this disease. Several neutrophil functions are abnormal
in patients with myotonic dystrophy (Friedenberg et al. 1986). Neutrophils
of patients with myotonic dystrophy have been reported to generate less
O; than those of healthy subjects upon stimulation with fMet-Leu-Phe or
PMA (Mege et al. 1988b). This defect of O3 formation is apparently not
due alterations in the K, values of NADPH oxidase, alterations in
membrane potential, or alterations in the regulation of protein kinase C
(Mege et al. 1988b).

6.2.6 Diabetes Mellitus

Bacterial infections in patients with diabetes mellitus are more severe and
prolonged than in healthy subjects, and diabetes mellitus is associated with
blood vessel and kidney damage (Brownlee et al. 1988; Taylor and Agius
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1988). Human monocytes and U-937 cells have been reported to possess
insulin receptors, but their role in the regulation of the respiratory burst is
not known (Schwartz et al. 1975; Grunberger et al. 1983; Carpentier et al.
1984; Taylor 1986). Chemiluminescence and O3 formation in monocytes of
patients with poorly controlled diabetes have been found to be significantly
enhanced in comparison to control subjects (Kitahara et al. 1980). In
addition, neutrophils from diabetic patients generate larger amounts of
O3 than those from control subjects, suggesting that diabetic neutrophils
are primed, and that increased activity of the respiratory burst may con-
tribute to cell damage in this disease (Wierusz-Wysocka et al. 1987).

In contrast, Shah et al. (1983) reported that diabetic neutrophils
generate O3 at lower rates than control cells upon stimulation with PMA
or opsonized zymosan. The addition of insulin to diabetic neutrophils in
vitro has been reported to be without effect on Oz formation (Shah et al.
1983). The impaired activation of the respiratory burst in diabetes mellitus
has been suggested to contribute to the increased morbidity and mortality
in these patients (Shah et al. 1983).

6.2.7 Renal Disorders

Patients with chronic renal failure and patients undergoing chronic
hemodialysis are susceptible to bacterial and fungal infections (Lewis and
van Epps 1987). A number of studies have been performed addressing the
question whether the activity of the respiratory burst is altered in
phagocytes of these patients. Both increased and decreased activity of the
respiratory burst has been observed in chronic renal failure, but it is not yet
possible to explain all the reasons for the controversial experimental data
(see also Sect. 1).

On one hand, the PMA - or opsonized zymosan-induced chemilumines-
cence in neutrophils from patients with chronic renal failure has been
reported to be significantly higher than in healthy subjects (Eckardt et al.
1986), and neutrophils of patients with cystinosis show increased
chemiluminescence upon exposure tosoluble stimuli but not upon exposure
to particulate stimuli (Morell et al. 1985). Serum and dialysis fluid from
patients with chronic renal failure have been suggested to contain a yet
unidentified low molecular mass factor which stimulates the respiratory
burst, and restoration of renal function by kidney transplantation may be
associated with the disappearance of this factor (Rhee et al. 1986).
Neutrophils of hemodialysis patients may be primed for an enhanced
respiratory burst prior to dialysis (Jacobs et al. 1989). In addition,
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chemiluminescence may be increased after dialysis, and this effect is ex-
plained, at least in part, by priming of neutrophils by certain dialysis
membranes (Nguyen et al. 1985).

On the other hand, the ability of neutrophils of patients with chronic
renal failure to undergo arespiratory burst has been reported tobe impaired
prior to hemodialysis, and the defect may be restored subsequently to
dialysis (Hirabayashi et al. 1988). In addition, the respiratory burst has been
reported to be impaired in patients with chronic renal failure not undergo-
ing dialysis (Hirabayashi et al. 1988). Whereas basal H;O, production in
neutrophils from patients undergoing continuous ambulatory peritoneal
dialysis is reduced in comparison to healthy subjects, no diffgrences are
apparent in PMA-stimulated neutrophils (Hirabayashi et al. 1988). In
contrast, Lucchi et al. (1989) reported that phagocytes of patients with
chronic renal failure undergoing or not undergoing dialysis show an en-
hanced basal chemiluminescence, but neutrophils of these patients show
decreased chemiluminescence upon exposure to opsonized zymosan.
Dialysis per se may result in inhibition of the respiratory burst stimulated
by PMA and receptor agonists (M.S. Cohen et al. 1982). With respect to
chemotactic peptides, a decrease in the number of formyl peptide receptors
may contribute to this inhibition (M.S. Cohen et al. 1982). Moreover, the
PMA- but not the fMet-Leu-Phe-induced chemiluminescence in diluted
whole blood has been shown to be decreased prior to dialysis (Nguyen et
al. 1985). Finally, exposure of human monocytes to various dialysis
membranes may be associated with a decreased activity of the respiratory
burst (Roccatello et al. 1989).

Recently, Horl et al. (1990) reported on the purification of a protein
with an apparent molecular mass of 28 kDa and a pI of 4.0-4.5 from uremic
serum. This protein shows no similarity to serum proteins associated with
inflammatory states, inhibits the respiratory burst in neutrophils, and may
be responsible, at least in part, for impaired activation of NADPH oxidase
in uremia.

6.2.8 Osteopetrosis

Osteopetrosis is a hereditary disease which is characterized by a failure of
normal bone remodeling, resulting in excessive bone formation.
Neutrophils of patients with malignant infantile osteopetrosis show an
impaired plasma membrane depolarization response upon exposure to
PMA or fMet-Leu-Phe (Beard et al. 1986). In addition, the patients’
neutrophils and blood monocytes show a severely impaired respiratory
burst as assessed by NBT reduction (Beard et al. 1986). In the rat, a defect
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of osteoclasts is responsible for skeletal sclerosis and reduced bone resorp-
tion, and the percentage of NBT-positive resident peritoneal macrophages
in osteopetrotic rats is reduced in comparison to control animals (Schneider
1982). In addition, the intensity of NBT reduction is reduced in macro-
phages of osteopetrotic rats. These data suggest that the respiratory burst
is defect in macrophages of osteopetrotic rats (Schneider 1982).

6.2.9 Glycogen Storage Disease

Glycogen storage disease type 1b is associated with susceptibility to infec-
tion (Kilpatrick et al. 1990). In comparison to patients with glycogen storage
disease type la, who are not prone to infections, or to healthy subjects,
neutrophils and monocytes of patients with type 1b disease show decreased
respiratory burst activity. Their phagocytes show also decreased abilities of
fMet-Leu-Phe and ionomycin to increase cytoplasmic Ca*. These data
suggest that the defect of NADPH oxidase activation in glycogen storage
disease type 1b may be associated with a defect in the regulation of the
cytoplasmic Ca”* concentration.



7 Age- and Sex-Related Alterations
of the Activity of NADPH Oxidase

In comparison to alveolar macrophages from adult rabbits, these of neona-
tal animals show a substantially decreased respiratory burst (Sugimoto et
al. 1980). This finding may explain, at least in part, the susceptibility of
neonatal animals to bacterial infections (Sugimoto et al. 1980). Newborn
calf neutrophils generate less O; than neutrophils from fetal and adult
animals upon stimulation with PMA (Clifford et al. 1989). The decreased
activity of the respiratory burst in neutrophils from newborn calves has been
reported to persist for about 7-10 days (Clifford et al. 1989). In neutrophils
of human neonates and adults, PMA-induced O; formation is similar in
magnitude, and there are no substantial differences in the respiratory burst
among healthy adults and children with ages ranging from 11-18 months
(Curnutte et al. 1974; Shigeoka et al. 1981). In contrast, neonates stressed
by various factors such as premature delivery, respiratory distress
syndrome, hypocalcemia, or sepsis show enhanced PMA-induced O3 for-
mation in comparison to control subjects (Shigeoka et al. 1981). Moreover,
NADPH oxidase of neutrophils from vaginally delivered children has been
reported to show a higher V. than that of children delivered by caesarean
section or that of adults, suggesting that parturition is associated with
priming of the respiratory burst (Ambruso et al. 1987).

Neutrophil functions of elderly individuals are discussed to be impaired.
For example, the chemoattractant-induced phosphoinositide degradation
in neutrophils of persons older than 65 years has been reported to be
decreased in comparison to younger subjects (Fiilop et al. 1989). However,
with respect to the respiratory burst, Niwa et al. (1989) did not obtain
positive evidence for a defect in neutrophils of aged humans. Studying the
regulation of NADPH oxidase in normotensive and hypertensive subjects
with ages ranging from 17 to 64 years, Seifert et al. (1991) did not find a
correlation between the age of the subjects and fMet-Leu-Phe-induced
O3 formation in the neutrophils.

In the rat, aging is associated with a decreased ability of peritoneal
macrophages to undergo a respiratory burst (Davila et al. 1990). This defect
is restored by implantation of syngeneic pituitary grafts from young rats.
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Regulation of the respiratory burst may be sex related. Neutrophils of
women have been reported to show a relatively higher ability to generate
O3 than those of men, whereas neutrophils from women may generate less
prostaglandins than men (Mallery et al. 1986). The ability of neutrophils
from women to release prostaglandins correlates with the menstrual cycle,
and O formation and prostaglandin formation may be inversely related
functions (see also Sect. 4.1). These sex-related differences in the
respiratory burst may be attributable, at least in part, to variations in the
concentration of circulating sex steroids (Mallery et al. 1986). We did not
find significant differences between male and female subjects with regard
to fMet-Leu-Phe-induced O3 formation in neutrophils (Seifert et al.
1991).
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During the past few years, our knowledge of the regulation of the
respiratory burst hasincreased tremendously. The reader of this review may
be confused by the conflicting data and the multitude of mechanisms
involved and may ask the crucial question of what, as a condensed scheme,
NADPH oxidase regulation actually is. The reader may be disappointed by
the fact that we cannot yet give a conclusive answer to this question.

We did not include schematic presentations depicting the regulation of
NADPH oxidase for several reasons. It is evident from the data discussed
in this review that more questions have been raised in recent years than
have been answered. Besides Ca** and protein kinase C, additional signal
transduction mechanisms are presently discussed to be involved in the
regulation of NADPH oxidase, e.g., phospholipase D activation, protein
tyrosine phosphorylation, and direct control by G-proteins and/or low
molecular mass GTP-binding proteins. The number of intercellular signal
molecules which activate NADPH oxidase through pertussis toxin-sensi-
tive or -insensitive mechanisms has increased substantially, and several
studies suggest that Ca”* and protein kinase C play less crucial roles in
receptor agonist-induced activation of O3 formation than was previously
assumed. In addition, the relative importance of the biochemical changes
which precede or accompany O; formation cannot yet be exactly es-
timated. Moreover, arecent study suggests that chemotactic peptides, which
have been shown to activate phagocytes through pertussis toxin-sensitive
G-proteins in all studies published so far, primes the respiratory burst
through pertussis toxin-insensitive mechanisms (Karnad et al. 1989). Fur-
thermore, a “classical” activator of protein kinase C, i.e.,dioctanoylglycerol,
has recently been suggested to activate NADPH oxidase through protein
kinase C-independent mechanisms (Badwey et al. 1989c). Finally, there is
substantial evidence for the assumption that numerous cytosolic activation
factors are involved in the regulation of NADPH oxidase, but it is still
unknown how many there are. In pars pro toto, the above mentioned
problems clearly show that it is yet premature to present a generally
acceptable model of the regulation of NADPH oxidase.
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The question arises of what may be important future hines of investiga-
tion concerning the physiology, biochemistry, and pharmacology of
NADPH oxidase regulation.

With respect to physiology, one pertinent question regards how
NADPH oxidase is regulated in vivo. In vivo, phagocytes are likely to
interact simultaneously with a multitude of cell types and stimulatory and
inhibitory signal molecules. In what manner different cell types and signal
molecules interact to regulate NADPH oxidase is still very incompletely
understood. In particular, the interaction of phagocytes with platelets,
endothelium, lymphocytes, fibroblasts, and extracellular matrix proteins
remains to be studied. In addition, the interaction of various types of
cytokines and other intercellular signal molecules must be analyzed in much
more detail. Moreover, recognition of the fact that NADPH oxidase-re-
lated enzyme systems apparently occur in many cellular systems, such as
lymphocytes, fibroblasts, glia cells, and carotid body, raises the question of
how these enzymes are regulated, and what their physiological function may
be.

With regard to the biochemistry of NADPH oxidase regulation, there
are also many interesting routes to pursue. For example, it is to yet be
clarified which type of plasma membrane receptor interacts with which type
of G-proteins and/or low molecular mass GTP-binding proteins. In addi-
tion, the relative importance of the putative intracellular signals for the
activation of NADPH oxidase deserves clarification. Another line of inves-
tigation must focus on the pathobiochemistry of signal transduction path-
ways for NADPH oxidase in various disease states, as this type of research
is still in its infancy (see Sect. 6.2). Most importantly, we anticpate that the
cloning and expression of additional cytosolic activation factors (see Sect.
5.1.5.2.3) and their manipulation by site-directed mutagenesis will greatly
help to understand the complex interaction of the regulatory and structural
components of NADPH oxidase. Moreover, it is an ambitious undertaking
to reconstitute purified and/or recombinant components of NADPH
oxidase to a functionally intact enzyme system. In particular, the question
must be answered as to why chemoattractants do not activate NADPH
oxidase in cell-free systems derived from phagocytes.

In comparison to the physiology and biochemistry of NADPH oxidase,
its pharmacology is perhaps the least elaborated part. With respect to
stimulation of the respiratory burst, certain cytokines may be of therapeutic
value as activators and/or primers of NADPH oxidase, resulting in im-
proved host defense (see Sect. 3.3.1.3.8). It is probable that substantial
progress will be achieved in this area during the next few years.

With respect to inhibitors of NADPH oxidase, the situation is some-
what unsatisfying. Many inhibitors known so far are rather nonspecific, and
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inhibitory effects of certain drugs on the respiratory burst in vitro, e.g.,
glucocorticoids, cyclosporin A, and nonsteroidal anti-inflammatory drugs,
are of questionable clinical relevance. Thus, there is a need for potent and
selective inhibitors of NADPH oxidase, and in this area the diphenylene
iodonium compounds are certainly a promising class of substances. The
search for inhibitors of O;” formation of microbial origin may be another
promising approach. Unexpectedly, we found very recently that cyclosporin
H, which is generally assumed to be immunologically inactive, potently and
effectively inhibits fMet-Leu-Phe-induced O; formation in human
neutrophils (unpublished results).

Finally, a substantial portion of the research on NADPH oxidase
regulation relies on the use of drugs which are assumed to interfere with
various signal transduction processes, among others phospholipid degrada-
tion, protein kinase C activation, Ca® mobilization, and organization of the
cytoskeleton. Unfortunately, many drugs used for these purposes are non-
specific. For example, there is much confusion and controversy in the field
of protein kinase C inhibitors. Therefore, it is very important to develop
potent and selective pharmacological tools to interfere with the above
mentioned processes.
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