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1 Introduction 

E v e r  s ince the  initial w o r k  of  A x e l r o d  and  c o w o r k e r s  ( A x e l r o d  a n d  
T o m c h i c k  1958; A x e l r o d  et  al. 1958), c a t e c h o l - O - m e t h y l t r a n s f e r a s e  
( C O M T )  has  b e e n  c o n s i d e r e d  to be  o n e  of  the  m a j o r  e n z y m e s  re-  
spons ib le  fo r  inac t iva t ion  of  the  c a t e c h o l a m i n e  n e u r o t r a n s m i t t e r s .  
T h e  e n z y m e  ca ta lyzes  the  t r an s f e r  o f  a m e t h y l  g r o u p  f r o m  S - a d e n -  
o s y l m e t h i o n i n e  ( A d o M e t )  to a c c e p t o r  ca t echo l  subs t r a t e s ,  which  
inc lude  the  c a t e c h o l a m i n e  n e u r o t r a n s m i t t e r s  d o p a m i n e ,  n o r e p i n e -  
ph r ine ,  and  e p i n e p h r i n e .  A l t h o u g h  O - m e t h y l a t i o n  of  the  ca t echo l -  

1Department of Pharmacology and Therapeutics, State University of New York at 
Buffalo, School of Medicine and Biomedical Sciences, Buffalo, New York 14214, 
USA 
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amine neurotransmitters results in their inactivation, until recently 
there has been little clinical interest in COMT because of the lack 
of any effective pharmacological agents which could inhibit COMT 
activity in vivo without production of serious side effects. However, 
the recent development of highly selective, tight binding COMT 
inhibitors has rekindled interest in the use of COMT inhibitors as a 
possible treatment for depression and/or as an adjunct therapy along 
with L-DOPA for treatment of Parkinson's disease (Mannisto and 
Kaakkola 1990). 

Multiple forms of COMT have been identified and characterized 
in a variety of tissues and animal species (Inscoe et al. 1965; Traiger 
and Calvert 1969; Assicot and Bohuon 1970, 1971; Verity et al. 1972; 
McCormick et al. 1972; Aprille and Malamud 1975; Roffman et al. 
1976; Huh and Friedhoff 1979; Rivett et al. 1983a,b). Two major 
classes of COMT have been defined based on their subcellular 
location and include a soluble cytosolic form and a membrane-bound 
species (MB-COMT). As will be described in detail below, these 
transferases possess distinct biochemical and physical properties and 
appear to be localized within different cell types. The soluble form 
of COMT is generally regarded as the predominant form in most 
tissues, whereas the membrane-bound species is assumed to be a 
minor constituent contributing only a minor fraction to the total 
COMT activity (Guldberg and Marsden 1975; Kopin 1986). This 
supposition is primarily based on the observation that, in the majority 
of tissues examined, the Vmax for the soluble form of COMT is 
considerably greater than that observed for the membrane-bound 
enzyme. In this case, the Vmax is equated with the presumed func- 
tional activity in vivo. 

Due to the relatively low COMT activity associated with the 
membrane fraction, the question has previously been raised as to 
whether this form of COMT actually represents a distinct molecular 
entity or is simply an artifact resulting from nonspecific binding of the 
soluble enzyme to membranes during subcellular fractionation 
(Broch and Fonnum 1972; Borchardt et al. 1974; Tong and d'Iorio 
1977; Borchardt and Cheng 1978; Goldberg and Tipton 1978). 
However, more recent studies (Grossman et al. 1985; Rivett et al. 
1983a; Jeffery and Roth 1984) have established that the membrane- 
bound species of COMT is a separate and biochemically distinct 
entity from the soluble enzyme. Although these studies have revealed 
that MB-COMT actually possesses a higher affinity for the cate- 
cholamine substrates, the ramifications of this have not been appro- 
priately investigated and little consideration has been given to 
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the physiological significance or function of the membrane-bound 
enzyme. In light of this, there needs to be a reevaluation of the 
role and capacity of this enzyme regarding the O-methylation of 
catecholamines and structurally related drugs. Accordingly, this 
review article will focus attention on the membrane-bound form 
of COMT and attempt to establish its role and contribution to the 
O-methylation of the catecholamine neurotransmitters and structurally 
related drugs. 

2 Contribution of Soluble COMT and MB-COMT to O-Methylation 
of Catecholamines 

At least three forms of COMT have been identified in mammalian 
tissues: two soluble forms, COMT I and II, and one membrane- 
bound form. The two soluble forms of COMT differ in their mole- 
cular weights with COMT I possessing a molecular weight (MW) 
of approximately 24000 and COMT II of around 48000 (Huh and 
Friedhoff 1979). Although the large MW species of the soluble 
transferase has been suggested to be a dimer of the lower MW form, 
the two enzymes do not appear to be interconvertible upon their 
isolation and partial purification. Furthermore, these enzymes appear 
to possess unique biochemical properties including pI value, pH 
optima, meta to para methylation ratios, and substrate specificity 
(Marzullo and Friedhoff 1975). The proportion of the two soluble 
transferases varies with the particular tissue examined, with COMT | 
being the predominant enzyme in all cases. Several tissues, including 
brain, apparently lack COMT II. As noted above, it is generally 
assumed that the O-methylating activity associated with the soluble 
cell fraction accounts for the majority of the COMT activity observed 
in essentially all tissues examined. 

The relative distributions of the soluble and membrane-bound 
forms of COMT have been found to vary widely. Except for the 
catechol estrogens, which possess similar K m values for both forms of 
COMT (Reid et al. 1986), all other catechol substrates tested have 
lower Km values for MB-COMT. In almost all tissues, the activity 
associated with the membrane fraction consistently accounted for 
only a minor fraction of the total transferase activity (Guldberg and 
Marsden 1975; Kopin 1986), with one notable exception, mouse 
liver. In the latter case, this enzyme was reported to account for 
approximately 70% of the total COMT activity (Aprille and Malamud 
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1975). This can be compared to rat liver which, for example, was 
estimated to contain only 5% of the total COMT activity in the 
membrane fraction (Tong and d'Iorio 1977). This and similar data 
in other tissues have consistently been used to substantiate the 
preponderance of the soluble transferase responsible for the O- 
methylation of catecholamines in vivo. 

What can account for this difference in the proportion of MB- 
COMT and soluble COMT between mouse and rat liver? Is this 
difference simply attributed to species variation or are there other 
factors or circumstances which might explain these seemingly dis- 
crepant observations? Examination of the two studies (Aprille and 
Malamud 1975; Tong and d'Iorio 1977) reveals that the concentra- 
tion of the catechol substrate employed to estimate soluble and 
MB-COMT activities in the two studies was different. The con- 
centration of substrate used to estimate the two rat liver COMT 
activities was 1000~tmol/1 and is representative of that used in the 
majority of studies in which COMT activity has been and still is 
assessed. In contrast, the study of COMT activity in mouse liver 
was performed at a substrate concentration of 12~tmol/1. Can this 
difference in substrate concentration account for the variation 
observed in the relative proportion of the activity of membrane- 
bound and soluble COMT? 

The answer to this question is yes. Kinetically, it is known that 
the measured activities of any two enzymes are directly proportional 
to the concentration of substrate employed relative to their respective 
Km values. For two competing enzymes which possess considerably 
different Km values, the relative activities of each will be greatly 
influenced by the concentration of substrate used in the assay. 
Accordingly, the low Km enzyme will exhibit proportionally higher 
activity when incubations are performed at low substrate concen- 
trations than when a similar experiment is performed at higher 
substrate concentrations. Obviously, the reverse is true for the high 
Km enzyme. This, in fact, is the situation for soluble and membrane- 
bound forms of COMT. The Km values differ widely between these 
enzymes with the Km value for MB-COMT being approximately 100 
times lower than that for the soluble enzyme. Differences in substrate 
concentration, as employed in the two studies (Aprille and Malamud 
1975; Tong and d'Iorio 1977) noted above with rat and mouse liver 
COMT, may likely result in variation of the relative proportion of the 
two activities observed in each species. At low concentrations of 
substrate, the activity associated with the high-affinity form of COMT 
(MB-COMT) is likely to predominate until the substrate concen- 
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tration is raised above saturation, at which point the contribution 
of soluble COMT activity will increase and eventually prevail. 
Accordingly, differences in substrate concentration may likely 
account for the disparity in the estimated proportion of the two forms 
of COMT in mouse and rat liver. 

Essentially all of the studies which have attempted to estimate the 
percentage contribution of MB-COMT activity utilized kinetic con- 
ditions which were optimized for the soluble form of the transferase, 
i.e., high substrate concentrations. Since the soluble form of COMT 
has both a higher Km and Vmax value for the catecholamines, the high 
nonphysiological concentrations of the substrates employed, such as 
in the rat liver study noted above, clearly favor the soluble enzyme 
when comparing relative activities. Under these conditions, the 
estimated percentages for O-methylation will indicate higher soluble 
COMT activity relative to the activity associated with the membrane 
fraction. These estimated activities for soluble COMT and MB- 
COMT, however, probably do not accurately reflect the functionally 
relevant activities of these enzymes in vivo since the high substrate 
concentrations used to determine these values in vitro are not likely 
representative of catecholamine levels within the cell. 

As a consequence of differences in the kinetic constants for 
soluble and MB-COMT, it can be anticipated that the concentration 
of catechol substrate will greatly influence the observed metabolic 
contribution of each species to the overall O-methylation of sub- 
strate. As noted above, at low concentrations of catecholamines, 
O-methylation by the low K m membrane-bound form of COMT 
would predominate, and only when this enzyme becomes saturated 
with substrate does the contribution of the high Kin,  soluble form of 
COMT become significant. This is an important point since this 
relationship should undoubtedly hold true in vivo as well as in vitro. 
This correlation, in fact, has been observed experimentally in several 
intact organelle preparations including rat heart and submaxillary 
gland and cat nictitating membrane (for review see Trendelenburg 
1980, 1988). In each of these systems, a functionally active O- 
methylating system has been described which rapidly and efficiently 
metabolizes low concentrations of catecholamines and structurally 
related drugs such as isoproterenol. As will be described in detail 
below, the data obtained with these tissue preparations were con- 
sistent with a low Km form of COMT being responsible for O- 
methylation of these substrates. At low concentrations of the 
catechols, O-methylation followed a Michaelis-Menten kinetic 
relationship and only after this low K m form of COMT was saturated 
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was there a significant increase in the tissue to medium ratio of the 
catechols. At still higher concentrations of substrate, the low-affinity, 
high Km form of COMT could also be observed experimentally. 
These studies demonstrate that the high-affinity form of COMT, 
presumably the membrane-bound species, has the potential of 
regulating tissue levels of catecholamines. 

Most review articles (Guldberg and Marsden 1975; Kopin 1986) 
have also implied that, in the CNS, the soluble form of COMT is the 
functionally predominant O-methyltransferase involved in cate- 
cholamine metabolism. These conclusions, as noted above, were 
based on studies which again employed high concentrations of the 
catechol substrate to assay both soluble COMT and MB-COMT 
activities and therefore, probably do not accurately reflect conditions 
within the CNS. The consequence of this is the underestimation of 
the potential contribution and importance of the membrane-bound 
form of COMT to the overall inactivation of the catecholamine 
neurotransmitters. In support of this, studies by Rivett et al. (1982) 
have suggested that the membrane-bound species in human brain 
may be the more prevalent and functionally significant form of 
COMT at concentrations of the catecholamine neurotransmitters that 
are likely to be physiologically relevant. 

3 Biochemical Properties of MB-COMT 

Much of the initial literature describing the biochemical properties of 
MB-COMT was often confusing and misleading because of the lack 
of knowledge as to the actual existence of this enzyme as a separate 
and physically distinct entity. As noted above, since MB-COMT had 
been presumed to contribute a relatively low percentage to the total 
COMT activity in the majority of tissues examined, it was originally 
believed that this form of COMT was an artifact caused by the 
nonspecific binding of the soluble enzyme to the microsomal fraction 
of cells. In support of this were data demonstrating that many of the 
biochemical and kinetic properties of the two enzymes were very 
similar (Borchardt et al. 1974; Rivett et al. 1982; Jeffery and Roth 
1984, 1985). These included kinetic mechanism, Ca 2+ inhibition, pH 
optimum, Mg 2+ requirement, and similar Km values for the methyl 
donor AdoMet. For example, both enzymes in human brain are 
inhibited approximately 50% at 1 gmol/1 of Ca 2+ and both enzymes 
possess a pH optimum between 7.5 and 8.0 (Jeffery and Roth 1984). 
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+ Kr b [A][C] * [A][B] [C] 

Fig. 1. Reaction mechanism and rate equation for soluble COMT and MB-COMT 
O-methylation of dopamine. AdoMet, S-adenosyl-L-methionine; AdoHcy, S- 
adenosyl-L-homocysteine; DA, dopamine; 3-MT, 3-methoxytyramine. The binding 

2+ of Mg to COMT (indicated in the box) occurs via a rapid equilibrium mechanism. 
Kia , dissociation constant for Mg2+; Kib  , dissociation constant for AdoMet; K,,,A , 
KmB, and Kmc Km for Mg 2+, AdoMet, and dopamine, respectively. (Jeffery and 
Roth 1987) 

Similarly, both the membrane-bound  and soluble enzymes have been 
repor ted (Jeffery and Roth 1987) to proceed via a sequential ordered  
reaction mechanism with Mg 2+ binding in a rapid equilibrium 
sequence prior to addition of AdoMet ,  as illustrated in Fig. 1 for the 
O-methylat ion of dopamine.  

Other  data supporting the concept that MB-COMT arises from 
the nonspecific binding of the soluble enzyme to cellular membranes  
is derived f rom studies which demonst ra ted  that the K m values for 
catecholamine binding to Triton X-100-solubilized MB-COMT were 
equivalent to those of the cytosolic enzyme (Borchardt  et al. 1974). 
For example,  the Km values for several catechol substrates including 
norepinephrine  increased almost 50-fold and became essentially 
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identical to those of the cytosolic enzyme when rat liver MB-COMT 
was solubilized with Triton X-100. These data imply that the low K~ 
value for substrate binding to MB-COMT is imparted by the inter- 
action of the enzyme within the membrane, and, when solubilized, 
the properties of the enzyme convert to those of the cytosolic trans- 
ferase. Consistent with the concept that the membrane-bound and 
soluble forms of COMT may be identical was the observation that 
polyclonal antibodies prepared to the soluble enzyme partially cross- 
reacted with MB-COMT (Creveling et al. 1973; Borchardt et al. 
1974; Borchardt and Cheng 1978). 

The above data imply that membrane-bound and soluble COMT 
are most likely structurally very similar and may be identical. This 
latter conclusion, however, is not adequately justified by the limited 
results noted above. In fact, a variety of more recent biochemical and 
physical evidence demonstrates that the two enzymes are structurally 
distinct. For example, it has been established that MB-COMT is an 
integral membrane protein since high salt concentrations failed to 
release the enzyme from the membranes (Jeffery and Roth 1984) and 
solubilization requires the presence of a detergent. These studies 
have also revealed that the change in the K~ value for MB-COMT 
observed upon solubilization with Triton X-100 was simply caused by 
apparent competitive inhibition of the enzyme by Triton X-100. 
Thus, the increase in the Km value upon solubilization of MB-COMT 
noted previously is not indicative of the two species of COMT being 
identical. In addition, the fact that the polyclonal antibodies raised 
against soluble COMT are capable of cross-reacting with MB-COMT 
is not unexpected, since the two enzymes possess similar biochemical 
properties and most likely have some antigenic sites in common. 

Although it is reasonable to assume that the two forms of COMT 
have considerable structural similarity, it is also clearly evident that 
differences exist in the physical structure and biochemical properties 
of the soluble and membrane-bound species. The data to support this 
include differences in the MWs of the two species (Grossman et al. 
1985; Heydorn et al. 1986), differences in the Km value for the 
acceptor substrates (Rivett et al. 1982, 1983a; Jeffery and Roth 
1984), differences in the localization of the two enzyme forms (Rivett 
et al. 1983a,b), and preparation of antibodies to the soluble enzyme 
which do not cross-react with MB-COMT (Assicot and Bohuon 
1969). 

From a functional perspective, the major biochemical difference 
between the membrane-bound and soluble forms of COMT is the 
fact that Km values for the catecholamines are consistently 1-2 
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orders of magnitude lower for the membrane-bound species than for 
the soluble enzyme (Tong and d'Iorio 1977; Borchardt and Cheng 
1978; Rivett et al. 1983a). For example, in human brain the Km for 
dopamine with MB-COMT is 3gmol/1, whereas, at 260gmol/1, 
this kinetic constant for the soluble transferase is almost 100 times 
greater (Rivett et al. 1983a). Similarly, structural analogues, such 
as tropolone, that act as reversible dead-end inhibitors of COMT, 
possess a higher affinity for the membrane-bound form of the trans- 
ferase (Jeffery and Roth 1984). This latter observation is expected 
since these inhibitors compete with the acceptor substrates for 
binding to the same site on COMT. For example, the Ki value for 
tropolone binding to MB-COMT was found to be 5 gmol/1 compared 
to 45 gmol/l for the soluble enzyme. This difference in affinity of 
inhibitors for the two forms of COMT has considerable clinical 
relevance, since the new COMT inhibitors that have been developed 
for treatment of depression and Parkinson's disease are catechol 
derivatives and likely to compete for substrate binding. The dif- 
ference in Km values is not true for all substrates, since the catechol 
estrogens have been shown (Reid et al. 1986) to possess similar 
kinetic constants for both soluble and MB-COMT from rabbit 
thoracic aorta. 

Consistent with the observed differences in the kinetic constants 
for substrate binding between the membrane-bound and soluble 
enzymes is the observation that the pI values and MWs of the two 
forms of COMT in rat liver are different (Grossman et al. 1985). The 
pI value for the membrane-bound species is 6.2, whereas the pI value 
for the soluble enzyme is approximately 5.2. Using antibodies 
prepared to the soluble enzyme form of COMT, Grossman et al. 
(1985) have reported that the subunit MW for the rat membrane- 
bound form, based on SDS-polyacrylamide gels, is approximately 
26 000 whereas the soluble COMT possess a MW of only 23 000. This 
difference in the MW of the two enzyme species was also confirmed 
by Heydorn et al. (1986). Several recent studies (Tilgmann and 
Kalkkinen 1990; Salminen et al. 1990; Lundstrom et al. 1991; Bertocci 
et al. 1991) with rat and human COMT cDNA suggest that there is a 
single gene responsible for synthesis of both soluble and MB-COMT 
and that the MB-COMT contains an additional hydrophobic portion 
of 21 amino acids on the 5' NH2-terminal end which is responsible for 
insertion of the enzyme into the endoplasmic reticulum. Initiation of 
transcription can begin at either of two start codons (ATG), which 
determines whether the 21 hydrophobic amino acid domain will be 
coded for. 
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Most studies have assumed that MB-COMT is associated with the 
endoplasmic reticulum or plasma membrane and therefore have 
employed the microsomal fraction to assay MB-COMT activity. In 
contrast to these studies, Grossman et al. (1985) have observed that a 
major fraction of MB-COMT immunological activity was associated 
with the mitochondrial outer  membrane and not the microsomal 
fraction. If this is true, then the two major catecholamine degrading 
enzymes, monoamine  oxidase (MAO),  an outer mitochondrial 
membrane marker,  and MB-COMT reside on the same membrane 
surface. Future immunohistochemical studies with specific antibodies 
towards MB-COMT are required to determine the precise subcellular 
location of this enzyme. 

4 MB-COMT in Human Brain 

There are five major enzymes known to be involved in the catabolism 
of catecholamines in brain. These are the type A and B forms of 
MAO,  membrane-bound and soluble forms of COMT, and the M 
form of phenol sulfotransferase. Although these enzymes have been 
extensively studied in a variety of animals and tissues, little is known 
about their relative contributions to the overall degradation of 
the catecholamine neurotransmitters.  Since abnormal levels of the 
catecholamines have been implicated in a variety of behavioral and 
neurological disorders, it would be important to ascertain the relative 
contribution of each of the enzymes to the overall inactivation of 
these endogenous agents in the CNS. Animal models for studying the 
catabolic fate of catecholamines in humans are not totally applicable, 
since the levels and properties of the five enzymes vary greatly 
between humans and common laboratory animals (Roth et al. 1982). 

In order to determine the contribution of each of the five en- 
zymes to the overall inactivation of catecholamines in human brain, 
Rivett et al. (1982) developed an in vitro kinetic model  for human 
brain metabolism of dopamine and norepinephrine.  This model 
at tempted to evaluate the relative activities of the five enzymes in 
human frontal cortex at various concentrations of the catecholamines. 
This was accomplished by insertion of the measured velocities and 
the known kinetic constants into the appropriate rate equations 
established for each enzyme. By varying the catecholamine concen- 
tration in each of the rate equations, the relative activity of each 
enzyme was then determined and the percent contribution of each 
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Fig. 2. Results obtained from kinetic modeling studies for dopamine metabolism in 
human brain. The average percent metabolic contribution of MAO A (A), MAO B 
(B), soluble COMT (S), MB-COMT (MB), and phenol sulfotransferase (PST) as 
determined from homogenates obtained from 3-8 specimens of human frontal 
cortex. The calculated values at various concentrations of dopamine for soluble and 
MB-COMT and PST were determined at saturating concentrations of both the 
methyl donor, AdoMet, and the sulfate doner, 3'-phosphoadenosine-5'-phosphosul- 
phate (PAPS), respectively. The values for dopamine deamination by both MAO A 
and B were calculated at an oxygen concentration of 218 ~tmol/1. (Rivett et al. 1982) 

was calculated. This model  only endeavored  to determine the total 
enzymatic capacity of each reaction and did not a t tempt  to take into 
account the selective localization of  the five enzymes or the pre- 
ferential t ransport  of catecholamines into specific cells in the CNS. 

Results of  these modeling studies (Fig. 2) indicated that, at all 
concentrat ions of dopamine,  deaminat ion by M A O  A and B was the 
predominant  reaction. At  dopamine concentrat ions below 1 ~tmol/l, 
the relative contr ibution of O-methylat ion by the membrane -bound  
form of C O M T  to the overall metabolism of dopamine was appro- 
ximately 20% and essentially equivalent to that of M A O  B. Sur- 
prisingly, the percent  contribution by the soluble form of C O M T  at 
dopamine concentrat ions less than 100~tmol/1 was less than 5%,  
suggesting that its capacity to degrade the catecholamines was 
considerably less than that of the membrane -bound  transferase. 

A slightly different picture was observed for norepinephrine 
metabol ism (Fig. 3). In this case, O-methylat ion by the membrane-  
bound  form of C O M T  was the predominant  pathway at norepine- 
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Fig. 3. Results obtained from 
kinetic modeling studies for 
norepinephrine metabolism in 
human brain. The average 
percent contribution of MAO 
A (A), MAO B (B), soluble 
COMT (S), MB-COMT 
(MB), and phenol sulfo- 
transferase (PST) as deter- 
mined from homogenates 
obtained from 3-8 specimens 
of human frontal cortex. The 
concentration of AdoMet and 
PAPS were considered satu- 
rating and the concentration 
of oxygen was assumed to be 
218 gmol/1 as described in the 
legend of Fig. 2. (Rivett et ah 
1982) 

phrine concentrat ions less than 1 gmol/1. At  higher concentrations 
of norepinephrine,  at which point MB-COMT approaches saturation 
(Kin = 3.9 gmol/1), deaminat ion by the A form of M A O  became the 
principal degradative pathway. As with dopamine,  the soluble form 
of C O M T  was estimated to contribute less than 5% to the overall 
inactivation of norepinephrine.  

As illustrated in these figures, O-methylat ion of both dopamine 
and norepinephrine  by MB-COMT,  as compared to that by the 
soluble enzyme,  predominates  at concentrat ions less than 10gmol/l. 
For dopamine,  the point of intersection at which the soluble enzyme 
contributes a higher percentage to the overall O-methylat ion occurs 
at approximately 20gmol/l .  For norepinephrine,  the point of inter- 
section occurs at even a greater  concentrat ion,  around 300 gmol/1. It 
can be calculated, based on the kinetic model  described above, that 
at a concentrat ion of dopamine and norepinephrine of 10gmol/1, 
the soluble form of C O M T  would contribute only 34% and 12%, 
respectively, to the total O-methylat ing activity. At  a substrate 
concentrat ion of 1000gmol/l, the soluble transferase would con- 
tribute approximately 90% and 70%, respectively. These latter 
values, obtained at the nonphysiologically high concentrations of 
the catecholamines,  are typical of the percentages reported in the 
li terature for the proport ion of soluble enzyme in various tissues. It 
can further  be calculated, for tissues containing the lowest proportion 
of MB-COMT,  such as the liver and kidney, where the ratio of the 
Vmax for MB-COMT/soluble  C O M T  is 0.0029 (Rivett et al. 1983b), 
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that at lgmol / l  dopamine,  MB-COMT would contribute approxi- 
mately 40% to the total O-methylating activity. These data further 
illustrate how, in the past, erroneous conclusions have been drawn 
concerning the potential significance of MB-COMT. 

Since the kinetic model described above for catecholamine 
metabolism was obtained with autopsied human brain specimens, it 
is reasonable to question whether the calculated values reported 
actually reflect activities of the various enzymes within the intact 
living system. In addition, crude homogenates were used to estimate 
enzyme activities, and access of substrates to the enzymes within 
different cells of the brain may be limiting. This is true for all the 
enzymes, since the A form of MAO is known to be present in 
neurons whereas the B form predominantly resides in astrocytes 
(Francis et al. 1985), although it may also be present in serotonergic 
neurons (Levitt et al. 1982). Similarly, the soluble form of COMT 
is associated with astroglia, whereas MB-COMT predominates in 
neuronal cells (Rivett et al. 1983a; see discussion below). Recent  
immunohistochemical studies have further confirmed that phenol 
sulfotransferase is exclusively present in neuronal cells in human 
brain (Zou et al. 1990). Thus, it is likely that access of the catechol- 
amines to the different enzymes will influence the extent to which 
they will contribute to the overall inactivation of the catecholamines. 

5 Significance of MB-COMT 

In order to lend credence to the kinetic model  described above for 
human brain, it would be advantageous if a prototype whole cell or 
organ system were available which expresses a similar relationship for 
soluble and MB-COMT activity, since this may provide a direct 
approach to evaluating the relative contribution of the two enzymes 
to the O-methylation of the catecholamine neurotransmitters.  Fort- 
unately, a number  of systems have been described in the literature 
which are capable of efficiently O-methylating the catecholamines by 
both a high- and low-affinity form of COMT. As will be described 
below, the kinetic properties for the O-methylation of catechol- 
amines in these organ systems are consistent with the reaction 
proceeding with a form of COMT which possesses a high affinity for 
catecholamines. These studies further confirm that the concentration 
of catecholamines within the tissues appears to be regulated by this 
high-affinity form of COMT. 
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Within the past two decades, studies by Trendelenburg and 
coworkers (Trendelenburg et al. 1971; Graefe and Trendelenburg 
1974; Bonisch et al. 1974, 1978; Major et al. 1978; Fiebig and 
Trendelenburg 1978; Henseling 1983; Trendelenburg 1980, 1984a,b, 
1988; Grohmann and Trendelenburg 1985, 1988; Grohmann 1987) 
and others (Paiva and Guimaraes 1978, 1984; Garland and Martin 
1984; Magaribuchi et al. 1987) have examined and characterized the 
extraneuronal uptake and disposition of the catecholamine neuro- 
transmitters and isoproterenol in a variety of tissues, including rat 
heart and submaxillary gland, cat nictitating membrane, guinea pig 
trachea, rabbit aortic rings, and dog saphenous vein strips. Extensive 
kinetic studies have been performed on the transport, deamination, 
and O-methylation of these substances, and results of these studies 
have revealed that uptake of the catecholamines into these tissues is 
characterized by both saturable and nonsaturable processes. The 
saturable process is distinguished by a low-affinity (high Kin) and 
high-capacity carrier (high Vmax)- For example, the Km values for iso- 
proterenol and norepinephrine in rat heart have been estimated to be 
approximately 100 and 250gmol/1, respectively, and the Vmax values 
for both are in the order of 50-80 nmoles/min/g tissue (Trendelenburg 
1980). Similar kinetic constants have also been obtained for the other 
systems noted above. 

The catecholamine taken up into the tissues can be rapidly 
metabolized by either MAO or COMT. In the presence of an MAO 
inhibitor, O-methylation of the catecholamines displayed saturation 
kinetics and obeyed Michaelis-Menten kinetics (Trendelenburg 1980, 
1984). In contrast to what might have been expected based on 
current dogma concerning the functional significance of the two 
forms of COMT, the apparent Km value for O-methylation was found 
to be low compared to that for either uptake or deamination. The 
estimated Km values for O-methylation were consistently in the order 
of 1-51amol/l. This can be contrasted to the concentration of cat- 
echolamine, 15-40 lamol/1, outside the tissue which apparently half- 
saturated MAO. The fact that soluble COMT and MAO have similar 
Km values in vitro, yet the extracellular concentrations which half- 
saturated these enzymes were found to be different, implies that O- 
methylation is not occurring with the soluble form of COMT. In cat 
nictitating membrane (Graefe and Trendelenburg 1974) and rat 
submaxillary gland (Major et al. 1978), two apparent Km values 
for O-methylation of norepinephrine were observed, one with high 
affinity with a Km value approximately 7 gmol/1 and the other with a 
Km value around 100-300 gmol/l. These data are consistent with the 
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existence of two forms of COMT, one with high substrate affinity, 
presumably MB-COMT, and the other with a considerably lower 
affinity, presumably soluble COMT. Although Km values estimated 
for intracellular enzymes based on extracellular substrate concen- 
trations may not be accurate, it appears to be more than coincidence 
that the kinetic constants determined in the whole organ systems 
described above are strikingly similar to the reported Km values for 
membrane-bound and soluble COMT, respectively (Rivett et al. 
1982). 

Based on the data obtained with the kinetic model for human 
brain, the question must be asked as to how important is extra- 
neuronal O-methylation of accumulated catecholamines compared to 
deamination in the organ systems described above. In rat heart, the 
rate constants for O-methylation of the catecholamines have been 
found to exceed those for deamination by MAO (Grohmann 1987). 
Thus, it can be concluded that, since the Km value is lower and the 
rate constant greater for O-methylation than for deamination, the 
activity of extraneuronal COMT must exceed that of extraneuronal 
MAO activity, at least in rat heart. This implies that MB-COMT has 
a greater capacity to inactivate the catecholamine neurotransmitters 
in these systems. However, the relative contribution and importance 
of COMT to the overall inactivation of the catecholamines is, of 
course, dependent on the concentration of substrate outside the 
tissue. At high extracellular concentrations of catecholamines, the 
high-affinity form of COMT (MB-COMT) becomes saturated, 
causing either deamination and/or O-methylation by the low-affinity 
form of COMT to become the predominant pathway for catechol- 
amine metabolism (Trendelenburg 1984, 1988). At low extracellular 
concentrations of substrate, at which point MB-COMT is not satu- 
rated, the rate of O-methylation is determined by the rate of uptake. 
Under these conditions, the tissue to medium ratio of the catechol- 
amine is very low, since essentially all the neurotransmitter taken 
into the cell is rapidly O-methylated. Therefore, O-methylation by 
presumably MB-COMT can regulate tissue levels of catecholamine. 
Only after this high-affinity form of COMT is saturated does the 
tissue to medium ratio increase. 

Prior studies have analyzed the relative activities of the two forms 
of COMT in various rat tissues including rat ventricles (Rivett et al. 
1983b). By applying the same method as that used for the kinetic 
model for catecholamine metabolism in human brain, the percent 
contribution of each form of COMT can be computed in each of the 
rat tissues examined. For example, it was reported that the Vmax 
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for O-methylation of dopamine by rat heart soluble COMT and 
MB-COMT was 147 + 9 and 4.01 + 0.49pmol/min/mg protein, 
respectively (see Table 1). Upon substituting these values into the 
appropriate rate equation, it can be calculated that, at dopamine 
concentrations less than 5gmol/1, greater than 75% of the total 
O-methylating activity would proceed via MB-COMT. These results 
are remarkably consistent with those of Trendelenburg and co- 
workers described above and further establish the predominance of 
MB-COMT in rat heart. 

6 Localization of MB-COMT 

The distribution of the membrane-bound and soluble forms of 
COMT has been examined in a variety of animal tissues, including 
those of the rat, as indicated by the data in Table 1 (Rivett et al. 
1983b). The data are expressed both in terms of Vmax and as the first 
order rate constant, k -- VmJKm, which approximates the relative 
turnover of the substrate, dopamine, in the different tissues. As 
indicated, the Vm~x value for MB-COMT is highest in rat liver but 
this value represents less than 0.3% of that for the soluble enzyme 
species. In comparison, the ratio of Vmax/Km in rat liver reveals that 
the rate constant for dopamine O-methylation by MB-COMT is 
considerably higher, being 80% of that determined for the soluble 
enzyme. Of the other peripheral tissues examined, striatal muscle 
and heart displayed the highest ratio of membrane-bound to soluble 
COMT activity when expressed either as Vmax or as the rate constant, 
Vmax/Km, and indicate that the rate of dopamine turnover in these 
tissues is actually greater for MB-COMT. The maximum ratio was 
found in brain tissue, with the hippocampus, cerebellum, striatum, 
and cortex exhibiting the greatest MB-COMT activity. Applying a 
technique similar to that reported above for kinetic modeling of 
human brain, it can be calculated that at 10 gmol/1 dopamine almost 
85% of the total O-methylation in the rat striatum would proceed via 
MB-COMT. Even at 100 gmol/1 dopamine approximately 43% of the 
total O-methylation would occur via the membrane-bound enzyme. 

Several studies have also attempted to determine the cellular 
location of the membrane-bound and soluble forms of COMT. In the 
early 1970s Jarrott and coworkers (Jarrott and Iversen 1971; Jarrott 
and Langer 1971; Jarrott 1971, 1973) published a series of papers 
suggesting that COMT resides in both neuronal and extraneuronal 
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compartments. This was based on the observation that sympathetic 
denervation of rat and rabbit vas deferens, cat nictitating membrane, 
and rabbit submaxillary gland resulted in extensive loss of COMT 
activity. Similarly, Marsden et al. (1971) have observed a decrease in 
COMT activity in rat sympathectomized submaxillary gland. These 
studies suggested that the decrease in O-methylating activity upon 
denervation resulted from selective loss of neuronal COMT. Jarrott 
(1971) noted that the loss of COMT activity was also associated with 
selective alterations in the kinetic properties of the enzyme sug- 
gesting that different forms of COMT may be present in the neuronal 
and extraneuronal sites. In contrast to these findings, a more recent 
study by Branco et al. (1984) implied that the loss of COMT activity 
observed by Jarrott and coworkers may have occurred at extra- 
neuronal sites and may only have been a secondary response to the 
sympathetic denervation. 

One of the major questions that remains concerning MB-COMT 
is its subcellular localization. Head et al. (1985) have previously 
suggested that a small percentage of isoproterenol O-methylation can 
occur on the extracellular surface of plasma membranes in rabbit 
intact thoracic aorta. This enzyme was shown to be sensitive to C a  2+ 

since removal of the Ca 2+ (lmmol/1) resulted in approximately an 
eightfold stimulation of the extracellular O-methylation of isopro- 
terenol. The intracellular activity known to be associated with the 
high-affinity form of COMT, which was 100 times greater than the 
extracellular O-methylating activity, was not influenced by the 
C a  2+ concentration in the tissue bathing media. Prior studies by 
Weinshilboum and Raymond (1976) demonstrated that rat liver 
soluble COMT is inhibited approximately 60% at lmmol/1 Ca 2+. 
Similarly, Jeffery and Roth (1984) reported that both human mem- 
brane-bound and soluble COMT are inhibited approximately 50% at 
this concentration of Ca 2+. Thus, if MB-COMT is exposed to the 
extracellular surface, its activity would be greatly diminished by the 
high extracellular Ca 2+ concentrations, whereas the activity of the 
intracellular enzyme would be minimally altered due to exposure to 
relatively low levels of Ca 2+. 

The presence of COMT in plasma membranes has also previously 
been suggested by Traiger and Calvert (1969), Raxworthy et al. 
(1982), and Aprille and Malamud (1975) for rat adipocytes, rat liver, 
and mouse liver, respectively. In contrast to these findings, Grossman 
et al. (1985) have suggested that MB-COMT is actually present in the 
outer mitochondrial membrane. Clearly, future studies are needed to 
delineate the precise location of MB-COMT. 
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Fig. 4. Time course of 
changes in COMT activities 
after kainic acid lesioning 
of rat striatum. The data 
represent the mean + S.E. of 
the percent of the enzyme 
activities in lesioned striatum 
as compared to that in the 
control contralateral striatum 
from 5-8  rats. Soluble COMT 
(0) ;  MB-COMT (©); glu- 
tamic acid decarboxylase (A) 
(neuronal marker); glutamine 
synthetase (m) (astroglial 
marker). (Rivett et al. 1983a) 
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DAYS AFTER INdECTION 

In regard to the cellular location of COMT in brain, immuno- 
histochemical studies using antibody to the soluble form of COMT 
have localized the soluble enzyme to nonneuronal  elements such as 
the astroglia (Kaplan et al. 1979). Although MB-COMT activity can 
be measured in the CNS, these immunohistochemical  studies have 
failed to reveal the presence of this enzyme in brain even though the 
antibody used in these experiments was reported to cross-react with 
the membrane-bound species. In order to determine the cellular 
location of MB-COMT in the CNS, kainic acid lesioning studies 
of rat striatum were performed by Rivett et al. (1983a). For these 
studies, membrane-bound and soluble COMT activities were mea- 
sured up to 7 days after stereotaxic lesioning of rat striatum with 2 ~tg 
of the neurotoxin kainic acid. As illustrated in Fig. 4, lesioning of rat 
striatum with kainic acid occurred within 2 days of treatment and 
resulted in a loss of MB-COMT activity of approximately 20%. 
There was a statistically significant correlation between the ratio of 
lesioned to control activity for MB-COMT and the neuronal marker  
enzyme glutamate decarboxylase. Since kainic acid selectively 
destroys neuronal cell bodies at the site of injection but leaves intact 
the presynaptic nerve endings, these results suggest that the MB- 
COMT is at least partially localized within the neuronal cells intrinsic 
to the rat striatum. The decrease in MB-COMT activity observed can 
be contrasted with that of the soluble enzyme which increased almost 
200% at the same time period after kainic acid lesioning. The in- 
crease in soluble COMT activity paralleled that of the astroglial 
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marker enzyme glutamine synthetase. This is consistent with immu- 
nohistochemical evidence demonstrating that this form of the enzyme 
is localized within astroglia, since these cells are known to proliferate 
after kainic acid lesioning. These results suggest that the low Km MB- 
COMT may be localized, in part, within the rat striatal postsynaptic 
neurons, whereas the high Km soluble enzyme is almost exclusively 
associated with the proliferating glial cells. 

Previous studies have also demonstrated no change in total 
COMT activity (measured at high substrate concentration) in rat 
striatum upon lesioning of the substantia nigra (Marsden et al. 1972). 
Accordingly, studies involving kainic acid lesioning of rat substantia 
nigra were performed to determine whether a selective alteration in 
either membrane-bound or soluble COMT activity occurs in order to 
demonstrate which form of COMT is present in the dopaminergic 
nerve terminals that project into the striatum (Francis et al. 1987). 
These lesioning studies revealed no change in activity in either form 
of COMT and strongly suggested that neither transferase is present in 
the dopaminergic presynaptic terminals in the rat striatum. Similar 
results were reported upon lesioning rat substantia nigra with 6- 
hydroxydopamine (Kaakkola et al. 1987). 

Where in the neuronal cells this membrane-bound form of 
COMT is located has not been determined, although this is likely to 
be an important factor in controlling the extent of O-methylation in 
brain. Both astrocytes, which contain soluble COMT, and neurons 
intrinsic to the striatum, which contain MB-COMT, possess a low- 
affinity uptake system for the catecholamine neurotransmitters; thus 
accessibility of these substrates to either form of COMT may be 
limiting. If MB-COMT is present on the outer surface of the 
plasma membrane facing the synaptic cleft, then transport into the 
postsynaptic neuronal cell would not be required for O-methylation. 
Since MB-COMT has previously been suggested to be present on the 
plasma membranes of several tissues, it is tempting to speculate that 
it may be similarly present on the postsynaptic membranes facing 
the dopaminergic nerve terminals in the striatum. However, it is 
important to point out that the activity of this enzyme would be 
attenuated by extracellular Ca 2+. Conceivably this enzyme could be 
located on the inner surface of the plasma membrane, possibly tightly 
coupled to the catecholamine transport carrier. In this case, the 
inwardly facing MB-COMT would be exposed to low intracellular 
Ca 2+ concentrations. Future immunohistochemical studies are 
needed to help determine the precise location of MB-COMT within 
the neurons in the CNS and in other peripheral organelles. 
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7 Genetic Regulation of Soluble COMT and MB-COMT 

As discussed above, whether soluble COMT and MB-COMT result 
from posttranslational processing of the same gene product or are 
the consequence of two separate genes has not been fully resolved. 
Although extensive studies (for review see Weinshilboum and 
Raymond 1977a; Weinshilboum 1989) have previously examined the 
inheritance characteristics of the soluble form of COMT in humans, 
few studies have attempted to examine the inheritance properties for 
MB-COMT or whether the two forms of COMT are genetically 
regulated in a similar manner in vivo. 

Studies by Weinshilboum and coworkers (Weinshilboum and 
Raymond 1977a; Sladek-Chelgren and Weinshilboum 1981) have 
revealed that soluble COMT is expressed in a bimodal distribution in 
the human population. About 25% of the population in the U.S. 
displays either low or high COMT activity and the remaining 50% 
possess intermediate values of soluble COMT activity. The data 
demonstrate that a pair of alleles at a specific gene locus is respons- 
ible for both high and low COMT activity. Individuals homozygous 
for the high COMT allele express high COMT activity and indi- 
viduals possessing the two low COMT alleles exhibit low COMT 
activity. Heterozygous individuals display intermediate COMT 
activity. 

Weinshilboum and coworkers (Weinshilboum and Raymond 
1977b; Weinshilboum et al. 1978; Goldstein et al. 1980) have simi- 
larly demonstrated that soluble COMT activity in livers from various 
rat strains is under genetic control. For example, they reported that 
COMT activity in the Fischer-344 strain was consistently 60% of 
the value obtained in livers from Wistar-Furth rats. Upon selective 
mating of the two strains of rats, it was shown that a pair of alleles 
was responsible for regulating COMT activity. Based on the in- 
heritance characteristics in the F2 generation, low COMT activity 
appears to be an autosomal recessive trait. 

In contrast to the extensive genetic studies performed with sol- 
uble COMT, the inheritance characteristics of MB-COMT, for the 
most part, have been ignored. It was recently reported (Roth et al. 
1990) that the specific activity of MB-COMT in the livers of Fischer- 
344 rats was 40% lower than in the Wistar-Furth strain. This dif- 
ference in liver MB-COMT activity was essentially identical to that 
observed for the soluble enzyme in the two rat strains as noted above 
(Weinshilboum et al. 1978). There were also small differences 
observed in the K m values for dopamine in the two rat strains in- 
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dicating that the two forms of MB-COMT may be structurally dis- 
tinct. Since the ratio of activity for MB-COMT in the two animals 
strains is similar to that of the soluble enzyme, a common genetic 
factor may regulate the activity of these enzymes. 

There are several possible explanations for the similarity in the 
ratios of the soluble and membrane-bound forms of COMT activity 
in these rat strains. A single gene may code for both the membrane- 
bound and soluble enzymes and the differences in the properties of 
the two enzymes may result from posttranslational modification of 
the gene product. As noted above, Lundstrom et al. (1991) and 
Bertocci et al. (1991) have recently suggested that there is a single 
gene for COMT with a small 2100MW NHz-terminal hydrophobic 
peptide responsible for binding of MB-COMT to the endoplasmic 
reticulum membranes. Expression of either the soluble COMT or 
MB-COMT is dependent on transcription initiation from either 
of two start codons, resulting in the production of a 26000 or 
30 000 MW polypeptide, respectively. 

8 New COMT Inhibitors as Anti-Parkinson's Disease and 
Antidepressant Agents 

Unlike the MAO inhibitors, which have been extensively used for the 
treatment of depression, the administration of COMT inhibitors for 
the treatment of behavioral or neurological disorders associated with 
catecholamine deficiencies has until recently proven unsuccessful. 
Initial attempts with structural analogues of the methyl donor 
AdoMet which effectively inhibited COMT were disappointing since 
these highly charged molecules were unable to get into the cell or 
cross the blood-brain barrier. Similarly, the catechol analogues that 
were initially tested were relatively weak inhibitors of COMT. 
However, in recent years several catechol analogues have been 
developed and found to be highly potent and selective inhibitors of 
COMT both in vitro and in vivo. These catechol drugs have been 
experimentally tested for their potential use in treating Parkinson's 
disease and depression. 

The first of these drugs which will be discussed, OR-462 (nite- 
capone), has been found to be a.tight binding inhibitor of the soluble 
form of COMT (Mannisto et al. 1988; Nissinen et al. 1988; Linden et 
al. 1988; Schultz and Nissinen 1989; Mannisto and Kaakkola 1990). 
The Ki value for binding to rat liver soluble COMT was 0.7nmol/1; 
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the affinity of this drug for MB-COMT has not been reported. After 
an oral dose of 3 mg/kg of OR-462 to rats, duodenal COMT activity 
was totally inhibited within 15min, whereas liver COMT was in- 
hibited approximately 40% at this time. Full recovery of activity 
occurred within 12h after administration. Importantly, rat striatal 
COMT activity was shown not to be inhibited by this drug, suggesting 
that OR-462 is incapable of crossing the blood brain barrier. 

When OR-462 was administrated in combination with L-DOPA 
and carbidopa, serum levels of dopamine increased significantly with 
a concomitant fall in the formation of the O-methylated product, 3- 
O-methyldopamine (Nissinen et al. 1988; Linden et al. 1988). In rat 
striatum, dopamine levels increased along with homovanillic acid and 
3-MT, indicating that O-methylation was not inhibited in the brain. 
In two behavioral Parkinson disease models, OR-462 potentiated the 
locomotive action in reserpine-pretreated rats and increased con- 
tralateral turning behavior in rats unilaterally injected (striatum) with 
6-hydroxydopamine over that observed with L-DOPA plus carbidopa 
treatment alone. 

The above data demonstrate that OR-462 may be a useful drug 
for the treatment of Parkinson's disease when used in conjunction 
with L-DOPA and the aromatic amino acid decarboxylase inhibitor, 
carbidopa. The data above suggest that OR-462 is a highly potent 
and selective peripheral inhibitor of COMT activity and thus has the 
potential to preferentially prevent formation of the potentially toxic 
metabolite 3-O-methyl-DOPA in the periphery upon administration 
of L-DOPA. When used in conjunction with carbidopa, this drug may 
be useful in lowering the dose of L-DOPA required to alleviate the 
symptoms of Parkinson's disease. 

In a similar fashion, DaPrada and coworkers (Zurcher et al. 1989, 
1990) have developed a COMT inhibitor, Ro 40-7592, which inhibits 
both central and peripheral COMT activity. The drug is currently in 
preclinical trials as a potentially useful agent for treatment of either 
depression or Parkinson's disease. With rat liver, the ICso value for 
Ro 40-7592 was approximately ten times lower than that for OR-462 
and, similarly, the EDs0 value for inhibition of rat liver COMT 
activity after po admifiistration was ten times lower than that for OR- 
462. However, the effects of the two drugs on increasing dopamine 
levels after administration of L-DOPA and a DOPA decarboxylase 
inhibitor are similar. The major functional difference between the 
two drugs is that Ro 40-7592 is capable of crossing the blood-brain 
barrier and inhibiting COMT activity in the CNS. Ro 40-7592 has 
been shown in rat liver homogenates to be a more potent inhibitor of 
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MB-COMT than of the soluble transferase (da Prada, personal 
communication). 

The two COMT inhibitors described here represent a new class 
of therapeutic agents for the treatment of Parkinson's disease and 
depression. As to which form of COMT, membrane-bound or 
soluble, is being inhibited by these drugs in vivo has not been ascer- 
tained. Similarly, whether either or both of these forms of COMT 
have to be inhibited to produce an adequate therapeutic response is 
not known. Since catechol substrates and inhibitors of COMT such as 
tropolone have a higher affinity for MB-COMT (Jeffery and Roth 
1984), possibly this form of the transferase is preferentially inhibited 
by these drugs. 

9 Conclusions 

This review has attempted to put into proper perspective the poten- 
tial role of MB-COMT in the O-methylation of the catecholamine 
neurotransmitters and structurally related drugs. From the studies 
described here, it can be concluded that the membrane-bound form 
of COMT is a structural and biochemical entity distinct from the 
soluble enzyme. Although both the soluble and membrane-bound 
enzymes are capable of O-methylating the catecholamine neuro- 
transmitters, evidence is presented which suggests that the MB- 
COMT may be the predominant species at physiologically relevant 
concentrations of these neurotransmitters in human brain and 
possibly other tissues. MB-COMT is ubiquitously distributed in 
almost all tissues and the highest levels are found in the liver. 
However, the highest ratio of membrane-bound to soluble COMT is 
found in brain tissue suggesting that MB-COMT may be selectively 
localized in neuronal cells in the CNS. This was further suggested by 
kainic acid lesioning studies which demonstrated a loss of MB-COMT 
activity after neuronal lesioning with this neurotoxin. 

The importance of MB-COMT in the degradation of catechol- 
amines is revealed by kinetic model studies with human brain and by 
metabolic studies using several different organ systems. These data 
suggest that MB-COMT is responsible for the O-methylation at low 
and physiologically relevant concentrations of the catecholamine 
neurotransmitters and that the soluble enzyme activity predominates 
after saturation of the membrane-bound form. 

Many questions still need to be answered in regard to the role 
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and  con t r i bu t ion  of  M B - C O M T  to the  ca tabo l i sm of  the  ca techol -  
amines  and  drugs in the  intact  animal .  Specific ques t ions  r ema in  as to 
the  subcel lu lar  local iza t ion o f  M B - C O M T  and  w h e t h e r  it is loca l ized  
on  the  p lasma m e m b r a n e  of  cells facing the  ex t race l lu la r  space  or  
facing inward ly  w h e r e  it may  be  coup l ed  to the  c a t e c h o l a m i n e  t rans-  
po r t  sys tem.  Answers  to these  ques t ions  are  of  par t i cu la r  r e l evance  in 
l ight of  the  d e v e l o p m e n t  of  new p o t e n t  inhib i tors  of  C O M T  which  
have  the  po ten t i a l  to be used  for  t r e a t m e n t  of  dep res s ion  a n d / o r  
Pa rk inson ' s  disease.  
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1 Introduction 

The function of transporting epithelia as selective permeability 
barriers between the transcellular and interstitial compartments 
depends upon the establishment and maintenance of functional 
polarity within the epithelial cell. Net transepithelial Na + transport 
across the epithelium requires spatial localization of the (Na+/K +) 
ATPase to the basolateral plasma membrane (Cala et al. 1978; 
Farquhar and Palade 1966; Keynes 1969; Mills and Ernst 1975; 
Stirling 1972), and Na+-selective ion channels to the apical or luminal 
plasma membrane (Garty and Benos 1988; Sariban-Sohraby and 
Benos 1986a). This sodium entry channel is rate limiting for overall 
transepithelial transport, is inhibited by the diuretic drug amiloride, 
and is regulated hormonally, specifically by the peptide hormone 
vasopressin and the steroid hormone aldosterone. The first experi- 
mental evidence that this amiloride-sensitive entry pathway may be 
an ion channel came from blocker-induced current noise experiments 
in which the deduced single-site turnover number (approximately 10 6 

ions per second per site) is consistent with channel-mediated trans- 
port (Lindemann and Van Driessche 1977). However, the most 
compelling evidence for this transport system being an ion channel 
has come from the direct recording of quantal current jumps gen- 
erated by the spontaneous opening and closing of individual transport 
molecules. Single-channel activity has been measured either by the 
patch clamp technique (Cantiello et al. 1989; Frings et al. 1988; 
Gogelein and Greger 1986; Hamilton and Eaton 1985, 1986; Light 
et al. 1988; Ling and Eaton 1989; Palmer and Frindt 1987a; Vigne 
et al. 1989) or in planar lipid bilayers into which amiloride-sensitive 
Na + channels have been incorporated (Olans et al. 1984; Sariban- 
Sohraby et al. 1984b). Interestingly, electrophysiological, kinetic, and 
pharmacological evidence accumulated over the past 3 years indicates 
that there may not be a unique class of amiloride-sensitive Na + 
channel, but rather a family of epithelial Na + channels. This feature 
would be consistent with the observations made for voltage-gated 
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Na +, Ca 2+, and K + channels (Catterall 1988; Hille 1984; Jan and Jan 
1990; Rehm and Tempel 1991). 

Amiloride-sensitive Na + channels can be broadly classified as 
having either high or low sensitivity to the drug [i.e., an apparent 
equilibrium inhibitory dissociation constant (Ki) of less than or 
greater than l p.M at >100mM extracellular Na + concentration, 
respectively]. Na + channels with a relatively high affinity for amiloride 
are typically found in high-resistance epithelia like frog skin, toad 
urinary bladder, or mammalian collecting tubules. In addition, there 
are at least two types of high amiloride affinity channels that differ in 
their Na + versus K + selectively and their open state conductances. 
For example, Na + channels from renal cortical collecting tubules 
(CCT) and toad urinary bladder have Na+/K + selectivity ratios 
greater than 10:1 and a conductance less than 10pS, while Na + 
channels from renal inner medullary collecting tubule cells and 
human sweat duct have low Na+/K + selectivity (less than 5:1) and 
relatively high conductance (greater than 15pS) (Benos 1989; Smith 
and Benos 1991), although some low-selective, low-conductance 
channels have been described (Verrier et al. 1989). 

Recently, a second class of amiloride-sensitive Na + channel has 
been reported that displays a low affinity for amiloride (i.e., an 
inhibition constant greater than l g M  at high Na + concentrations). 
These low amiloride affinity Na + conductive pathways have been 
found in rabbit blastocyst trophectodermal cells (Robinson et al. 
1991), rat and porcine brain endothelia (Vigne et al. 1989), porcine 
kidney cortex (Barbry et al. 1987, 1990b), rabbit type II pneumocytes 
(Matalon et al. 1991), rabbit proximal tubules (PT) (Gogelein and 
Greger 1986), LLC-PK1 cells (Cantiello and Ausiello, personal 
communication; Moran and Moran 1984), rat colonic enterocytes 
(Bridges et al. 1988), and in the basolateral membrane of the toad 
urinary bladder (Moran et al. 1980). This class of channels differs not 
only in their amiloride affinity but also in their ion selectivity and 
kinetic properties. Preliminary evidence suggests that the two 
aforementioned classes of epithelial Na + channels differ in their 
biochemical composition as well (see below). Hence, they may 
originate from different genes or result from alternative splicing from 
the same gene. Table 1 summarizes the properties of the known low 
amiloride affinity epithelial Na + channels and their pharmacological 
profiles for inhibition by various analogs of amiloride. Interestingly, 
even within this low amiloride affinity category, one can distinguish 
at least three different types of channels. The Na + channels from 
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Table 1. Order of inhibitory potency of amiloride and analogs for various low 
amiloride affinity epithelial Na + channels 

System Order of potency (Ki) Reference 

Rat and pig brain 
endothelium 
Pig kidney cortex 

LLC-PK1 cells 

Rabbit blastocysts 
(7-day) 
Toad urinary 
bladder 
Alveolar type II 
cells 
Rat colonic cells 

Phenamil > benzamil > amiloride 
(0.04 ,M) (0.4 laM) (2.4 I~M) 
Phenamil > benzamil > amiloride, EIPA 
(0.07 ~tM) (0.25 gM) (6 gM) 
EIPA > amiloride > phenamil 
(4.8 gM) (28.4 IaM) (65.8 laM) 

Phenamil > amiloride > EIPA > benzamil 
(15 gM) (20 gM) (25 gM) (80 gM) 
EIPA > amiloride > phenamil 
(2.6 gM) (3.4 laM) (10 gM) 
EIPA > amiloride > phenamil 
(20 ,M) (50 ,M) (50 ,M) 
Amfloride > phenamil EIPA > benzamil 
(4.1 ,M) (9.9 ,M) (10.6 laM) 

Vigne et al. 
(1989) 
Barbry et al. 
(1987, 1990a) 
Cantiello and 
Ausiello 
(personal 
communication), 
Moran and 
Moran (1984) 
Robinson et al. 
(1991) 
Asher et al. 
(1987) 
Matalon et al. 
(1991) 
Bridges et al. 
(1988) 

endothel ium and pig kidney cortex seem to have a relatively high 
affinity for inhibition by the amiloride analog phenamil,  with the 
lowest affinity for inhibition by amiloride itself and ethylisopropyl 
amiloride (EIPA).  In LLC-PK1 cells the low amiloride affinity 
channel has a much higher sensitivity to E I P A  as compared to 
amiloride or phenamil.  Also,  there appears to be a third type of low 
amiloride affinity channel in rabbit blastocysts, alveolar type II cells, 
toad urinary bladder  cells, and rat colonic cells. These channels 
barely distinguish be tween  the various analogs of amiloride, that is, 
all Ki values are within a factor of 5. 

Recently,  another category of amiloride-sensitive Na + channels 
has also been described. These channels are, again, poorly selective 
be tween  Na + and K + and even allow Ca 2+ to pass. These channels 
are gated by c G M P  and are found in sensory organs, e.g.,  olfactory 
epithelium and rod outer  segments. They are inhibited with a low 
affinity by amiloride and have been cloned (Kaupp et al. 1989). 
Nonselective low amiloride affinity channels have also been described 
in inner ear hair cells, but  the gating of these channels by cGMP has 
not yet been determined (Jorgensen and Ohmori  1988). 

In this review, we will first summarize what is known about  the 
macroscopic and single-channel propert ies of these different cat- 
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egories of amiloride-sensitive Na + channels, and the use of amiloride 
as an inhibitor of these ion channels. We will then turn to a con- 
sideration of the biochemical properties of these channels and how 
these properties relate to the physiological function of the various 
regulatory molecules. We will then discuss the regulation of these 
channels by various hormones,  ions, and ligands. Fourth,  we will 
depict what is known thus far about the molecular biology of these 
channels. Fifth, we will detail the involvement (or dysfunction) 
of epithelial Na + channels in an important genetic disease of chil- 
dren and young adults, namely cystic fibrosis (CF), and the use of 
amiloride as a therapeutic agent. We will conclude with a perspective 
on future experimentation. 

2 Characteristics of Epithelial Na + Channels 

2.1 Macroscopic Measurements 

2.1.1 Short-Circuit Current 

Koefoed-Johnsen and Ussing first postulated in 1958 that the apical 
or luminal membrane of sodium-reabsorbing epithelia such as frog 
skin and toad urinary bladder was Na + selective while the basolateral 
membrane was dominated by a K + conductance. Na + movement  
through the basolateral membrane was accomplished by the actions 
of a ouabain-sensitive Na +- and K+-activated adenosine triphos- 
phatase (Na+/K + ATPase) or Na + pump.  These initial observations 
formed the paradigm for analyzing Na + transport across these 
epithelia, even up to the present day. 

Figure 1 illustrates the transepithelial Na + movement  that occurs 
in a wide variety of epithelia. Na + ions enter a polarized epithelial 
cell through specific pathways (channels) in the apical membrane,  
and are pumped  out of the cell across the basolateral membrane by 
the Na+/K + ATPase. Apical entry of sodium through this Na + 
channel occurs down the ion's electrochemical potential energy 
gradient. Na + entry at the apical membrane is the rate-limiting step 
for net transport across the epithelial layer (Biber and Curran 1970; 
Helman and Fisher 1977; MacKnight et al. 1980; Nagel et al. 1981; 
Rick et al. 1978). Experimental observations consistent with the 
apical entry step being rate limiting are: (a) apical Na + entry as well 
as transepithelial Na + influx is rapidly and completely inhibited by 
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Fig. 1. Schematic model for transepithelial Na + reabsorption in a typical epithelium. 
The ouabain-sensitive Na+/K + ATPase is localized in the basolateral membrane, 
while amiloride-sensitive Na + selective channels are located in the apical or luminal 
(and often referred to as mucosal) membrane. A relatively low (10 raM) intracellular 
Na + activity is maintained by the Na+/K + ATPase. That fact, coupled with the 
negative electrical potential difference across the apical membrane, creates a large 
inwardly directed electrochemical gradient from Na + movement 

the diuretic, K+-sparing drug amiloride (which has no appreciable 
effect on Na+/K + ATPase  activity at the concentrations used to 
inhibit high amiloride affinity sodium channels, see below);  (b) the 
resistance of the apical membrane  is 7 5 % - 9 0 %  of the total trans- 
epithelial electrical resistance; and (c) the short-circuit current (a 
measure  of net Na + transport) across an entire epithelial layer is 
identical to amiloride-sensitive Na + transport  across the apical 
membrane  alone. The amiloride-sensitive Na + channel is, therefore,  
a critical regulatory protein involved in the maintenance of systemic 
Na + balance through Na + reabsorpt ion in the distal nephron,  and 
serves key functions in the large airways, exocrine sweat ducts, colon, 
and other  epithelia. 

The idea that the apical membrane  of the frog skin behaves as 
a Na+-selective electrode was supported by early microelectrode 
measurements  that demonst ra ted  "correct"  polarity of the apical 
membrane  potential  for Na + reabsorpt ion under  in vivo or in vitro 
conditions (Cerei j ido and Curran 1965; Ussing and Windhager  1964). 
The quest ion of  the magnitude and direction of the Na + electro- 
chemical potential  energy gradient was addressed in microelectrode 
studies (Helman and Fisher 1977; Helman et al. 1979; Nagel 1976; 
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Nagel et al. 1981) and electron probe studies (Rick et al. 1978) in 
frog skin epithelia. Under most experimental conditions, the apical 
membrane potential is negative with respect to the outer bathing 
solution, and, in addition, when the tissue is bathed with high [Na +] 
Ringer solution, a large chemical gradient for Na + exists across the 
apical membrane. Intracellular Na + concentration was found to be 
approximately 10-13mM. The decrease in the steady state intra- 
cellular Na + concentration and the hyperpolarization of the apical 
membrane potential when external sodium was reduced suggested 
that a large electrochemical gradient favoring inward Na + movement 
across the apical membrane was present under most conditions. In 
addition, Na + movement through amiloride-sensitive Na + channels 
was found to be in excellent agreement with that predicted by the 
flux ratio equation over a wide range of electrochemical potential 
energy gradients (Benos et al. 1983a; Palmer 1982a). Thus, Na + 
movement across the apical membrane can be entirely accounted for 
by free diffusion in which the Na + ions obey independence (Benos 
et al. 1983a; Palmer 1982a). Further, surface charge does not appear 
to influence the rate of Na + flow through these apical entry pathways 
(Benos et al. 1981). 

Another major question that arose in early studies concerned the 
nature of the pathway for apical Na + movement. What are the 
characteristics of the Na + ion interaction with the apical membrane 
and how does Na + translocation occur? In early studies, Cereijido 
et al. (1964) and Biber et al. (1966) concluded that Na + could not 
enter the epithelial cells by electrodiffusion because the permeability 
coefficient of Na + across the apical membrane decreased with an 
increase in external Na + concentration. Likewise, rapid uptake 
measurements of 22Na+ across the apical membrane of frog skin 
showed that the influx saturated with increasing external Na + con- 
centration (Biber and Curran 1970; Mullen and Biber 1978). An 
apparent explanation for this saturation behavior of Na + influx came 
from two different sets of experiments by Lindemann and colleagues 
(Fuchs et al. 1977; Lindemann 1984; Lindemann and Voute 1976) on 
current-voltage relations and step changes in external [Na+]. In these 
experiments, the basolateral membranes of frog skin were first 
depolarized with solutions containing high K + concentrations. 
Under these conditions, the authors reasoned that the transepithelial 
electrical properties were dominated by the apical membrane because 
the increase in basolateral membrane conductance resulted in total 
transepithelial resistance falling almost entirely across the apical 
membrane. The~efore, the applied transepithelial voltage difference 
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would essentially be equivalent to the apical membrane potential. 
These predications were confirmed by several investigators (Benos 
et al. 1983a; Lindemann 1980; Thompson et al. 1982). This high 
serosal K + treatment obviates the need for measuring intracellular 
voltages with the more experimentally challenging application of 
microelectrodes. 

In the first set of experiments, instantaneous current-voltage 
(I-V) curves for the amiloride-sensitive apical entry pathway were 
determined by recording the current response to a voltage staircase in 
the absence and presence of 0.1 mM amiloride. The I-V curve of the 
Na + entry pathway was determined by subtraction. It was assumed 
that amiloride did not affect the paracellular shunt pathway, an 
assumption that may not be strictly true (Helman and Fisher 1977). 
The I-V curve could be fitted by the Goldman-Hodgkin-Katz (GHK) 
constant field current equation. The authors estimated the Na + 
permeability (PNa) of this membrane to be approximately 3 x 
10-Scm/s at 5 .5mM external Na +. Further,  PNa decreased with 
increasing Na + concentrations. Comparable results were found for 
toad urinary bladder (Palmer et al. 1980). Thompson et al. (1982) 
extended these observations and found that the I-V relations of 
the amiloride-sensitive Na + entry system in K+-depolarized rabbit 
descending colon likewise conformed to the GHK equation over the 
voltage range -120  to +50 mV. Thus, all groups concluded that Na + 
entry does occur by electrodiffusion through homogeneous  channels. 
I-V curves well described by the GHK equation were also measured 
from microelectrode recordings in the frog skin and Necturus urinary 
bladder (Delong and Civan 1984; Lindemann 1984). 

Current transients after an abrupt change in external Na + con- 
centration ([Na+]o) were also measured using K+-depolarized prep- 
arations. These measurements were done with a fast flow chamber so 
that the halftime for solution replacement was on the order of 10 ms. 
Upon increasing [Na+]o, the short-circuit current rose rapidly and 
within 1 or 2 s, reached a peak value (Ip) followed by relaxation over 
the next 2 - 5 s  to a lower steady state value (Iss). The declining 
current was attributed to a slow decrease in PNa in response to an 
increase in [Na+]o. In fact, when Iv was plotted against [Na+]o, no 
saturation was observed at least up to 100mM Na + concentration. 
On the other hand, when Iss versus [Na+]o was plotted, the typical 
saturation behavior of the macroscopic current was observed with a 
half maximal Na + concentration of 5 - 2 0 m M .  The slow decline in 
current could be prevented and the increased transport rate main- 
tained by adding a variety of compounds,  including p-chloromer- 
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curibenzoate (p-CMB), benzimidazolylguanidine (BIG), mersalyl, 
and Tween 80 (see Garty and Benos 1988, Benos 1982, Lindemann 
and Voute 1976 for discussion). These observations have led to a 
model (called Na + self-inhibition) of epithelial Na + channel regula- 
tory activity in which the binding of Na + to an externally accessible 
regulatory site induces a relatively slow (over several seconds) con- 
formational closing of the pathway (Lindemann and Voute 1976). 
Compounds like p-CMB that block this Na + self-inhibition would act 
as antagonists either by binding at the regulatory site or by binding to 
another site on the channel, leading to stabilization of the open 
configuration of the pathway. The idea that external Na + can down- 
regulate its own rate of transport into the cell has been proposed as a 
physiologically important regulatory phenomenon. Furthermore, it 
has been speculated that endogenous compounds functionally similar 
to those listed above might release the Na + entry pathway from 
inhibition and act as physiological luminal antidiuretic compounds. 
An important prediction for this substrate inhibition model was that 
the entry pathways themselves do not saturate with an increase in 
[Na+]o, although this prediction was not borne out by experiment 
(Olans et al. 1984; Palmer et al. 1990). The saturation behavior of 
the macroscopic short-circuit current would be due to a reduction in 
the total number of conducting units as the [Na+]o is increased. Thus, 
it would appear that the phenomenon of self-inhibition results from 
the direct effects of external Na + on the Na + entry pathway itself 
rather than from indirect effects on intracellular Na +, calcium, or 
pH. This idea has dominated the interpretation of apical membrane 
Pya even at the single-channel level (see below). 

2.1.2 Noise Analysis 

Current fluctuation (noise) analysis has been used extensively to 
acquire information about channel properties in both biological and 
artificial membrane preparations. This experimental approach is 
useful for deducing molecular characteristics of single channels, such 
as channel conductance, channel density, and the rate constants 
associated with channel opening and closing, as compared to multi- 
channel behavior. Detailed explanations of this technique are beyond 
the scope of this review; the reader is referred to Benos (1983) and 
Lindemann (1980, 1984) for further information. Because epithelial 
Na + channels display spontaneous current fluctuations that are very 
slow, i.e., frequencies less than 1 or 2Hz, current fluctuations can 
only be measured through these pathways by the addition of sub- 
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maximal concentrations of reversible blocking agents like amiloride. 
From these measurements,  models can be constructed so that the 
number  of ions flowing through a single conducting site and the total 
number  of conducting sites can be calculated under a given set of 
experimental conditions. Lindemann and Van Driessche (1977) 
demonstrated for the first time that the mechanism of apically located 
amiloride-sensitive Na + transport must be via a channel because the 
rate of ion movement  through individual entry sites was too fast for a 
carrier type of transport mechanism. Later Van Driessche and 
Lindemann (1979) showed that there was a decrease in the density of 
conducting ion channels with increasing Na + concentrations with no 
evidence of saturation of individual channels, at least up to 60mM 
external Na + activity. These results supported earlier evidence of a 
self-inhibition model of Na + entry. However,  as indicated, single- 
channel measurements do not support these model-dependent  
deductions. One possible explanation for the difference between 
macroscopic and single-channel saturation effects is that single- 
channel properties deduced from the noise experiments of Lindemann 
and Van Driessche may have been influenced by Ki depolarization, 
e.g., alterations in intracellular adenosine 3', 5'-cyclic monophos- 
phate (cAMP) levels. We will return to this point later (see Sect. 
4.3.2). Nonetheless, the importance of these elegant measure- 
ments was that mechanism of Na + transport through the apical 
membrane was determined in a preparation not easily amenable to 
measurement  by patch electrodes. 

2.2 Single-Channel Measurements 

Although the use of macroscopic techniques such as short-circuit 
current measurements,  noise analysis, and intracellular microelec- 
trodes generated a considerable amount  of information concerning 
the kinetics, inhibition, and regulation of Na + movement  through 
amiloride-sensitive channels (Abramcheck et al. 1985; Biber et al. 
1966; Palmer et al. 1980; Sariban-Sohraby and Benos 1986a), the 
elucidation of specific molecular characteristics in an unambiguous 
fashion was not possible until the development  of techniques such 
as patch clamping and planar lipid bilayer reconstitution. These 
techniques have permitted individual amiloride-sensitive Na + 
channels to be characterized at the single-channel level in terms of 
their conductance, cation selectivity, and open state probability in a 
manner  free from constraints imposed by any model. 
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2.2.1 Single- Channel Characteristics 

Single amiloride-sensitive Na + channel activity was first demon- 
strated by Benos and colleagues (Sariban-Sohraby et al. 1984b; Olans 
et al. 1984). Channel activity was observed after incorporation of 
apical membrane vesicles from A6 cells (a cell line derived from the 
toad kidney) into planar lipid bilayers. These Na + channels exhibited 
the following characteristics: the single-channel conductance ranged 
from 4 - 8 0 p S  at 200mM NaC1; the channel was perfectly cation 
selective, with a Na+/K + selectivity ratio of 2: 1; amiloride reduced 
the open time conductance in a dose-dependent  manner  when in the 
cis (or vesicle-containing) chamber, with a Ki of 0.1taM, and it 
induced a flickering-type (slow) inhibition when present in the trans 
chamber. Subsequently, many measurements  of single amiloride- 
sensitive Na + channels have been made in a variety of epithelial 
preparations using the patch clamp technique. 

Hamilton and Eaton (1985, 1986) have observed two different 
types of amiloride-sensitive channel in native intact A6 cells: (a) a 
channel with a single-channel conductance of 1 - 3 p S  and a Na+/K + 
selectivity ratio greater than 20:1, and (b) a channel with a single- 
channel conductance of 7 - 1 0 p S  and a Na+/K + selectivity ratio of 
3 -4 :  1. The highly selective channel was open - 1 0 %  of the time, 
whereas the low cation selective channel was open - 3 0 %  of the time. 
The primary effect of amiloride was to reduce channel mean open 
time (tope,) and increase channel mean closed time as the cell was 
hyperpolarized. The fact that 1/topen was linearly dependent  on the 
amiloride concentration suggests an interaction of one amiloride 
molecule with one channel to produce the block. However,  it is 
possible that the channel could contain more than one amiloride 
binding site, and that these additional sites could be located in 
regions different than the channel pore. Although amiloride pro- 
duced channel flickering at negative potentials, the single-channel 
conductance and the Na + versus K + selectivity were not altered by 
amiloride. Hamilton and Eaton (1986) argued that their membrane 
patches contained functionally distinct epithelial Na + channels, 
and that the type of channel observed may depend on the specific 
transport and/or growth requirements (i.e., cells grown on imper- 
meable versus permeable supports) of the epithelial cells. Likewise, 
Frings et al. (1988) have measured four kinetically different types of 
epithelial cation channels in toad urinary bladder with conductances 
ranging from 5 to 59pS. These channels vary in their cation selec- 
tivity and sensitivity to amiloride. The physiological relevance of the 
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different channels observed by Hamilton and Eaton (1986), Frings 
et al. (1988), and Sariban-Sohraby et al. (1984b) is not clear, and 
may be an artifact of the experiment. Perturbation of apical mem- 
brane integrity with patch electrodes or reconstitution may induce 
channel conduction and kinetic states not normally apparent. For 
example, excising a patch could eliminate important intracellular 
regulatory elements. 

Palmer and Frindt (1986), using the patch clamp technique, have 
measured single amiloride-sensitive Na + channels in the apical 
membrane of the rat CCT. These channels exhibited several prop- 
erties associated with Na + channels in other tight epithelia. The CCT 
channels had a single-channel conductance of 5pS and a PNa+/PK+ 
selectivity of I>10. Spontaneous transitions between open and closed 
states occurred more frequently in the presence of 0.5 ~tM amiloride. 
Amiloride reduced channel mean open and closed times and de- 
creased the average open channel probability by -70%,  without 
affecting single-channel conductance. Subsequently, single-channel 
activity has been measured in the rabbit straight PT (Gogelein and 
Greger 1986), toad urinary bladder (Frings et al. 1988), human sweat 
ducts (Joris et al. 1989), rat inner medullary collecting duct (IMCD) 
(Light et al. 1988), rat and porcine brain endothelia (Vigne et al. 
1989), and porcine thyroid cells (Verrier et al. 1989). The open state 
conductance of single amiloride-sensitive Na + channels in these 
tissues varied greatly. For example, the conductance was 2.6pS in 
porcine thyroid follicular cells and 28 pS in rat IMCD. Channels with 
a high PNSPK+ selectivity were observed in both rabbit straight PT 
and toad urinary bladder; however, the toad bladder channel showed 
high amiloride affinity (apparent Ki of 0.1 ~tM), whereas the rabbit 
straight PT channel had a low affinity for amiloride (apparent Ki of 
10~tM), although amiloride was added to the cytoplasmic site of the 
patch. Rat IMCD, human sweat duct, porcine thyroid, and porcine 
and rat brain endothelia expressed relatively nonselective mono- 
valent cation channels. Although the first three tissues had an 
apparent K~ for amiloride of <0.5~tM, amiloride blocked brain 
endothelial channels with an apparent K~ of 10~tM. Amiloride 
typically exerted a flickering-type block in rabbit straight PT, rat 
IMCD, human sweat duct, and porcine and rat brain endothelia. One 
interesting aspect of the amiloride block in rat IMCD was that the 
channels were inhibited by amiloride only at voltages more negative 
than +40 mV (Light et al. 1988). Table 2 compares the characteristics 
of single amiloride-sensitive Na + channels in these tissues, and Fig. 2 
presents typical patch clamp tracings of single amiloride-sensitive 
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F i g .  2A-G. Patch clamp recordings Vp 
of single amiloride-sensitive Na + (rnV) 
channels. A Rat CCT (Palmer and 
Frindt 1986). B Toad urinary A +75 
bladder (Frings et al. 1988). C A6 
cells grown on impermeable 
supports (Hamilton and Eaton B 0 
1985). D A6 cells grown on 
permeable supports (Eaton and 
Hamilton 1988). E Human sweat 
duct (Joris et al. 1989). F Rabbit 
straight PT (Gogelein and Greger 
1986). G Brain endothelial cells C o 
(Vigne et al. 1989). The arrows 
represent the baseline current with 
no channels open. Vp is the 
potential (in mV) applied to the 
patch. The transmembrane potential D o 
(Vm) is the potential at the 
cytoplasmic surface of the patch 
relative to the potential at the outer 
surface of the membrane. In this 
figure, the Vps were chosen so that E 
all of the Vms would be at negative 
(i.e., physiological) values 
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Na + channels  r eco rded  f rom various epithel ia .  The  channel  l ifet imes 
are highly variable.  For  example ,  when  A6 cells are grown on im- 
pe rmeab le  suppor ts  (Fig. 2C), a fast (mil l isecond) channe l  is observed;  
in contrast ,  channels  of A6 cells grown on pe rmeab le  supports  (Fig. 
2D) open  and  close more  slowly (on the o rde r  of  seconds) .  The  
h u m a n  sweat  duct  channel  (Fig. 2E) undergoes  rapid t ransi t ions 
be tween  the open  and  closed states,  while the brain endothe l ia l  
channel  (Fig. 2G) remains  open  for  several seconds at a t ime.  A plot  
of  open  state conduc tance  versus PNa+/PK+ selectivity is p resen ted  in 
Fig. 3. It is appa ren t  that  no corre la t ion  exists be tween  s ingle-channel  
conduc tance  and  N a + / K  + selectivity. H o w e v e r ,  in the channels  
examined  to date ,  s ingle-channel  conduc tance  is low when  the Na+/  
K + selectivity rat io />10. 

A deta i led  examina t ion  of  the kinetic proper t ies  of  amilor ide-  
blockable  cat ion channels  reveals unexp la ined  dif ferences  be tween  
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Fig. 3. Relat ionship between single epithelial Na + channel  conductance and Na + 
versus K + selectivity. Each datum point is an average of the values given in Table 2 

the observed behavior of single channels and that predicted from 
macroscopic short-circuit current measurements and noise analysis 
(Garty and Benos 1988; Sariban-Sohraby and Benos 1986a). For 
example, both bilayer and patch clamp studies reveal channels having 
a much lower Na + versus K + selectivity than previously described 
using transepithelial tracer fluxes (Benos et al. 1980) and measure- 
ments of apical membrane conductance after basolateral depolar- 
ization with high concentrations of K + (Palmer 1982b). Na + channels 
observed in bilayer and patch clamp experiments are in an environ- 
ment different from that in native epithelia. The lipid composition 
of reconstituted vesicles probably varies from that of the natural 
membrane and reconstituted Na + channels, or channels present 
in membrane patches may no longer be associated with proteins 
involved in channel regulation. As indicated earlier, removal of these 
important control elements could alter channel characteristics. 

2.3 Amiloride As an Inhibitor of Epithelial Na + Channels 

2.3.1 The Chemistry of Amiloride 

Amiloride,  a K+-sparing diuretic whose synthesis was first described 
by Cragoe et al. (1967), is the most commonly used inhibitor of 
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epithelial Na + transport (Benos 1982, 1988; Kleyman and Cragoe 
1988). This compound consists of a substituted pyrazine ring with 
amino groups at ring positions 3 and 5, a chloride at ring position 6, 
and an acylguanidinium moiety attached to ring position 2 (Fig. 4). 
Protonation occurs on the guanidinium group, making amiloride a 
weak base with a pKa of 8.7 in aqueous solution (Smith et al. 1979). 
Thus, at physiologial pH (7.35-7.45), amiloride exists primarily as a 
monovalent cation with the positive charge resonating within the 
terminal amidinium fragment. These acid-base properties permit 
amiloride to penetrate biological and artificial membranes (Benos 
et al. 1983b; Dubinsky and Frizzell 1983; Leffert et al. 1982). 
Amiloride, in the uncharged form, has a permeability coefficient 
of 10-7cm/s (Benos et al. 1983b) and can accumulate intracellularly 
via nonionic diffusion. The charged form of amiloride may possibly 
also enter cells by substituting for amino acids on Na+-dependent 
amino acid transport systems that are present, for example, in 
hepatocytes, PT, and the small intestine (Benos et al. 1983b). 
Another possible mechanism for the intracellular accumulation of 
amiloride involves amiloride substituting for the organic cation on the 
organic cation/H + exchanger, a transporter in the luminal membrane 
of renal PT that may play a role in organic cation secretion (Wright 
and Wunz 1989). Using rabbit renal brush-border membrane vesicles 
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Fig. 4. The structure of amiloride and some of its analogs 
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(BBMV) to study amiloride transport across the luminal membrane 
of PT cells, Wright and Wunz (1989) showed that [14C] amiloride 
uptake was stimulated in the presence of an outwardly directed H + 
gradient; this uptake was inhibited, in the presence or absence of a 
pH gradient, by unlabeled amiloride or the quaternary amine tetra- 
ethylammonium (TEA). Furthermore, Na + had no direct effect 
on proton-driven amiloride transport by BBMV, suggesting that 
amiloride's interaction with the Na*/H + exchanger is restricted to 
that of a nontransported inhibitor. Thus, amiloride flux into BBMV 
appears to involve a carrier-mediated exchange for H + that is 
separate from the Na+/H + exchanger and is shared with other 
organic cations. 

Many analogs of amiloride have been synthesized and proven 
useful as pharmacological tools to define amiloride-sensitive Na + 
transport pathways. The major classes of amiloride analogs contain 
modifications at pyrazine ring positions 6 and 5 or at one of the 
nitrogens on the terminal amidinium group (Benos 1988; Kleyman 
and Cragoe 1988; Benos et al. 1991). In bromoamiloride, the -C1 
moiety at ring position 6 is replaced with -Br; this analog can irre- 
versibly inhibit Na* transport after irradiation with ultraviolet light 
(Benos and Mandel 1978). EIPA contains an alkyl group substitution 
at ring position 5. Phenamil, benzamil, and dichlorobenzamil possess 
hydrophobic substitutions of the terminal nitrogen atom of the 
guanidinium moiety; phenamil and benzamil are the most potent 
inhibitors of epithelial Na + channels, with a Ki of approximately 
10nM (Kleyman and Cragoe 1988). Benos et al. (1986, 1987) syn- 
thesized [3H]methylbromoamiloride and used it as a molecular probe 
to purify a 730-kDa protein from bovine renal papillae and cultured 
A6 cells. Barbry et al. (1987) used [3H]phenamil to purify a 185-kDa 
protein from pig kidney cortex (see Sect. 3 for details). Figure 4 
shows the structures of these amiloride analogs. 

Amiloride acts on the entry step of Na + across the mucosal 
(apical) surface of the epithelial cells (Biber 1971). Inhibition of 
epithelial Na + transport by amiloride is generally rapid and re- 
versible. The apparent equilibrium dissociation constant (Ki = the 
concentration of amiloride required to block 50% of Na + transport) 
varies among amiloride-sensitive Na + transport systems and has 
proven useful in characterizing these systems. For example, Na + 
channels found in high transepithelial electrical resistance epithelia 
typically have a Ki of < l g M  at physiological Na* concentrations, 
whereas Na+/H + and Na+/Ca 2+ exchangers have Ki's in the micro- 
molar and millimolar ranges, respectively (Benos 1988; Benos et al. 
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1991). Sodium-coupled solute transport systems, such as the Na+/ 
glucose cotransporter, also tend to have relatively low affinities for 
amiloride (Cook et al. 1987; Harris et al. 1985; Benos et al. 1991). As 
indicated earlier, a new class of amiloride-sensitive Na + channels has 
been discovered with a Ki for amiloride of >1 gM. 

The use of amiloride as a Na + transport inhibitor is not without 
problems. At high concentrations (>0.1mM),  amiloride produces 
many nonspecific effects including inhibition of protein synthesis 
(Leffert et al. 1982; Lubin et al. 1982; Yamaguchi et al. 1986) and 
inhibition of enzymatic functions such as protein kinase C (PKC) 
(Besterman et al. 1985); the tyrosine kinase activity of the receptors 
for insulin, epidermal growth factor, and platelet-derived growth 
factor (Davis and Czech 1985); and the Na+/K+-ATPase (Soltoff 
and Mandel 1983). Additionally, amiloride at concentrations of 
10-100gM inhibits cell differentiation (Levenson et al. 1980) and 
selectively blocks the low-threshold Ca 2+ channel (Tang et al. 1988). 
Thus because amiloride, when used at high concentrations for 
extended periods, can be toxic to intact cells and tissues, caution 
must be exercised in deducing mechanism of transport based solely 
on amiloride inhibition. 

To inhibit epithelial Na + transport (as well as Na+/H + and Na+/ 
Ca 2+ exchange), amiloride must carry a positive charge (Benos 
et al. 1976, 1991; Kaczorowski et al. 1985; L'Allemain et al. 1984). 
Furthermore, the inhibition patterns of epithelial Na + channels and 
the Na+/H + and Na+/Ca 2+ exchangers by amiloride analogs are 
unique (see Kleyman and Cragoe 1988; Benos 1988 for reviews). For 
example, replacement of the terminal amidinium fragment with a 
benzyl group potentiates the ability of the compound to inhibit both 
the Na + channel and the Na+/Ca 2+ exchanger, but diminishes 
blocking effectiveness towards the Na+/H + exchanger. Alternatively, 
alkyl substitutions on ring position 5 eliminate inhibitory activity 
towards the epithelial Na + channel but magnify inhibitory activity 
towards both the Na+/H + and Na+/Ca 2+ exchangers. The remainder 
of this section will focus on the use of amiloride as a tool to study 
epithelial Na + channels. 

2.3.2 Kinetics and Voltage Dependence of Amiloride Block 

Earlier studies on the kinetics of amiloride inhibition have shown the 
block of the Na + channel to be competitive, noncompetitive, or 
mixed with respect to Na + (Benos 1982). On this basis, Benos et al. 
(1979) hypothesized that the receptor sites for amiloride and the Na + 
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translocation site are distinct. The kinetic differences observed 
between various epithelial tissues may be due to variations in the 
properties of the binding site for amiloride. Competitive inhibition 
would be seen if amiloride and Na + interacted at this inhibitory site 
to exclude each other, whereas noncompetit ive kinetics would 
be observed if Na + did not affect amiloride binding at this site. 
Although competit ion between amiloride and Na + can be demon- 
strated in many cases, both cations may not necessarily interact with 
the same site. For example, if an interaction of Na + with the channel 
were to produce a conformational change, then amiloride could be 
prevented from binding to some other site (Garty and Benos 1988). 

One major criticism of these earlier experiments is that changes 
in the apical membrane potential were not considered when apical 
Na + and amiloride concentrations were varied (Sariban-Sohraby and 
Benos 1986a). Palmer (1984) and Hamilton and Eaton (1985) showed 
that the magnitude of the apparent amiloride Ki in toad urinary 
bladder and A6 cells, respectively, appears to depend on the mem- 
brane voltage. They estimated that amiloride senses 14%-45% of 
the total electrical field across the apical membrane.  Therefore, 
alterations of apical Na + concentrations that change the apical 
membrane potential could substantially alter the blocking ability of 
protonated amiloride, and the results could be confused with a 
competitive effect of Na + on amiloride block (Hamilton and Eaton 
1985). Michaelis-Menten kinetic analysis assumes that the Na + 
channel density remains constant while both Na + and amiloride 
concentrations are varied (Li and Lindemann 1983). Using current 
fluctuation analysis, Warncke and Lindemann (1985), Abramcheck 
et al. (1985), Helman et al. (1986), Baxendale and Helman (1986), 
and Helman and Baxendale (1990) have shown that varying the 
amiloride and the external Na + concentrations or changing the 
transmembrane voltage affects the density of conducting Na + 
channels in the membrane.  Thus, two major assumptions used in the 
determination of macroscopic inhibitory constants, namely, voltage 
independence of amiloride block and constant channel density, may 
not be valid. 

An  examination of the relationship between the Ki value of 
amiloride and the initial (i.e., in the absence of amiloride) apical 
membrane voltage in frog skins under different experimental con- 
ditions, such as high or low external Na + concentrations or hormone 
treatment,  reveals that the absolute magnitude of the Ki depends on 
voltage (Sariban-Sohraby and Benos 1986a). If a voltage-dependent 
term for amiloride inhibition and the dependence of apical mem- 
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brane potential on external Na ÷ concentration are incorporated into 
a purely noncompetitive inhibitory model based upon Michaelis- 
Menten kinetics, previously observed deviations from simple non- 
competitive kinetics, and competitive or mixed inhibition can be 
accounted for. The competitive inhibitory kinetics between amiloride 
and Na ÷ in a particular species, as compared with the noncompetitive 
behavior in other species, can thus occur because differences in the 
magnitude of the change in apical membrane potential or changes in 
functional channel density when [Na ÷] is reduced may result in larger 
differences in the apparent Ki. 

The hypothesis that amiloride and Na ÷ interact at separate loci in 
frog skin epithelium is supported by the following observations: 

1. The fractional electrical distance within the electrical field for 
the amiloride blocking site (0.43) is significantly different from 
that for Na + (0.24) (Sariban-Sohraby and Benos 1986a). 

2. By incorporating a voltage-dependent block term and the 
dependence of apical membrane potential on [Na+]o into a 
purely noncompetitive model, competitive or mixed inhibition 
curves can be generated (Benos, unpublished observations). 

3. A noncompetitive, voltage-dependent amiloride block model 
is more parsimonious and can account for the observed 
species and tissue differences in the interaction of amiloride 
and Na +. 

4. Preliminary experiments measuring amiloride inhibition of 
single Na + channel currents in planar lipid bilayer membranes 
at constant applied potential but at different Na + concen- 
trations indicate that amiloride inhibition of single-channel 
conductance is independent of [Na +] in the range of 30-  
200 mM Na + (Benos, unpublished results). 

5. Models in which the functional Na + channel density is allowed 
to vary as a function of either Na + or amiloride concentrations 
or membrane voltage cannot account for experimentally 
observed deviations in inhibitory kinetic data (Benos et al. 
1979). However, other interpretations exist (see Sect. 2.3.3). 
In summary, the different kinds of amiloride inhibitory 
kinetics observed may be due largely to the voltage-dependent 
block of Na + entry channels by amiloride. Another factor 
that may partially explain the variability in kinetics studies 
concerns the possibility that there could be more than one 
amiloride binding site, some within the channel's pore and 
others located at a distance away from the channel orifice. 
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2.3.3 Mechanism of Amiloride Block 

Although many of the chemical and kinetic aspects of the amiloride- 
channel interaction have been characterized, the precise mechanism 
of amiloride block and the exact site of its interaction with the Na + 
channel remains unresolved. Theoretically, amiloride could block 
Na + transport either by physically plugging the channel (Cuthbert 
1976) or by binding to some regulatory site and somehow changing 
the conformation of the channel protein (Benos et al. 1980). The 
voltage dependence of amiloride inhibition allows an estimation of 
the depth of the amiloride binding site in the channel (Van Driessche 
and Erlij 1983; Li and Lindemann 1982). The data suggest that the 
guanidinium group penetrates the channel from the luminal side to a 
distance that is 10%-15% of the total electrical distance (Garty and 
Benos 1988). However,  a potential-dependent  conformational change 
in the Na + channel protein itself could affect the binding of amiloride 
to a site outside of the electrical field across the membrane (Smith 
and Benos 1991). 

Li and Lindemann (1982) and Van Driessche and Erlij (1983) 
have measured the effects of internal Na + on the blocking kinetics of 
amiloride in an attempt to localize the amiloride binding site. If 
amiloride acts by plugging the Na + channel, its inhibitory activity 
should be relieved by inducing a channel-mediated cell-to-lumen Na + 
flow. This is precisely the result that the aforementioned investigators 
obtained. These experiments support the idea that the amiloride 
binding site is within the Na + channel itself. 

Woodhull  (1973) first showed that ions that bind to sites within 
the pore will exhibit a voltage-dependent block of the channel- 
mediated current since the blockers must cross part of the trans- 
membrane electric field to reach their binding sites. Therefore, any 
impermeant  cation that enters and plugs the Na + channel's pore will 
exhibit a voltage-dependent block. Palmer's observations on the 
voltage dependence of amiloride block (Palmer 1984, 1990; Palmer 
and Andersen 1989) provide further evidence for an amiloride 
binding site within the Na + channel (Palmer 1991). Another  amiloride 
analog, 6-chloro-3,5-diaminopyrazine-2-carboxamide (CDPC), a 
pyrazine derivative that lacks a guanidinium moiety and, therefore, 
lacks a positive charge, also blocks Na + channels, but with a much 
lower inhibitory constant than amiloride. Although the mechanism of 
the block is similar, the off-rate constant for CDPC block is faster 
than that for amiloride (Baxendale and Helman 1986; Helman and 
Baxendale 1990) due to the weak affinity of CDPC (apparent Ki 
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-100  gM) compared to amiloride (apparent Ki -100nM).  Also, the 
CDPC block was voltage independent at voltages higher than 60 mV 
(Palmer 1991), implying that the voltage dependence of the amiloride 
block arises from an interaction between the charge on the blocker 
and the electric field. On this basis, Palmer suggests that the amiloride 
molecule actually penetrates the conduction pathway. Also, the 
voltage dependence of guanidine block is very similar to that of 
amiloride, although guanidine blocks epithelial Na + channels with a 
Ki of around 100mM (Palmer 1985a). Other observations consistent 
with an amiloride binding site within the pore concern the effects of 
extracellular Na + and K + on the voltage dependence of amiloride 
inhibition (Palmer and Andersen 1989). The increase in Ki resulting 
from competitive interactions of both Na + and K + with amiloride 
(Palmer 1984) can be explained by either a cork or allosteric model. 
The reduction of the voltage dependence of amiloride block in the 
presence of K + is consistent with the idea that both amiloride and K + 
enters the conduction pathway, and are mutually exclusive (Palmer 
1992). An increase in voltage simultaneously drives amiloride and K + 
into the pore, thus making K + even more effective in competing with 
amiloride. The fact that changing the mucosal Na + concentration 
did not reduce the voltage dependence of amiloride block can be 
explained by assuming that amiloride acts as a molecular cork, 
because the same transmembrane voltage that drives both Na + and 
amiloride into the mucosal site of the pore also forces Na + out the 
cytoplasmic side. If the entry and exit steps were equally voltage 
dependent, then increasing the voltage would not lead to Na + 
accumulation within the pore. In support of this idea, guanidine, an 
impermeant channel blocker, reduced the voltage dependence of 
amiloride block, whereas Li +, a permeant alkali cation, did not. 

Once the interaction between the positively charged guanidinium 
moiety of amiloride and the channel protein is established, this ami- 
loride-channel complex may be stabilized by additional interactions. 
By studying the structure-activity relationship of amiloride analogs, 
Li et al. (1985) concluded that the duration of the block is dependent 
on an interaction between the halogen at the 6-position and another 
channel site. The amino group at the 5-position stabilizes the ami- 
loride block by increasing the electron density at the 6-position. 

2.3.4 Models of the Na+-Conducting Pore 

Based on the analysis of voltage-dependent block of Na + currents by 
impermeant ions, Palmer (1991) predicted a structural model for the 
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epithelial Na + channel. In this model,  the outer mouth of the channel 
is lined with negative charges and indiscriminately attracts cations. 
The diameter of this outer portion of the channel must be at least 5 .& 
wide. The pore of the channel then narrows to exclude all but the 
smallest cations, and a final narrowing physically and energetically 
excludes all ions except Na +, H +, and Li +. Because ion movement  
through channels can be described as a series of energy barriers, with 
energy wells in between, Palmer (1991) was interested in determining 
whether the known Na + channel properties could be accounted for 
by Eyring rate theory, (see Palmer and Andersen 1989) which allows 
calculation of the rate of ion movement  through the pore based upon 
its energy profile. In Palmer's model,  two binding sites are specified 
within the pore that correspond to two putative blocking sites: one 
for amiloride (at - 1 5 %  of the electric field) and the other for K + (at 
- 3 0 %  of the electric field). Na + is therefore constrained to interact 
with the amiloride binding site on its passage through the pore. 
Further,  the two binding sites cannot be occupied simultaneously. 
This assumption is consistent with a Na + flux ratio exponent of 1 
measured for epithelial Na + channels (Benos et al. 1983a; Palmer 
1982b). The kinetic scheme for conduction can be written as: 

Nag + (0, 0) (Na +, 0) k.=-~ (0, Na ÷) ~ (0, 0) + Na~ 

where Nag, Na~- are Na + on the outer and inner sides of the mem- 
brane, respectively, and (0, 0), (Na +, 0), (0, Na +) are the channel in 
its unoccupied form, with the outer site occupied by Na +, and with 
the inner site occupied by Na +, respectively. 2 

This model predicts a single-channel conductance at 100raM 
mucosal [Na ÷] and 10mM cytoplasmic [Na÷]; it also predicts an 
apparent Km for Na + of 50 mM. Also, the occupancy of the channel 
by a Na ÷ ion is virtually independent  of membrane potential between 
0 and 200mV, thus accounting for the voltage independence of 
competit ion between Na ÷ and amiloride. Further,  the I-V relation- 
ship is similar to that predicted by the constant field equation. Thus, 
this kinetic model of the apical Na + channel in tight epithelia is 
consistent with the known electrophysiological characteristics of Na + 

2This conduction scheme is valid as long as external and internal Na + concentrations 
are kept relatively low (i.e., below 150mM); however, raising extracellular Na + 
levels would increase the probability that the outer and inner sites would be occupied 
by Na + simultaneously. The values of the rate constants used are given in Palmer 
(1991). 
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m o v e m e n t  th rough these channels.  However ,  Pa lmer  (1991) provides 
an alternative kinetic mode l  that  can also account  for the electro- 
physiological propert ies  of the channel.  This model  specifies a single 
energy barrier placed at 15% of the electric field (Palmer  and 
Ande r sen  1989). It predicts occupancy by Na + that  also is inde- 
penden t  of m e m b r a n e  voltage, and predicts an appropr ia te  I-V 
relationship.  In this model ,  amiloride and K + do not  possess distinct 
blocking sites. 3 There  are at present  no data extant  favoring one 
model  over the other.  Fur ther  exper iments ,  such as the genera t ion of 
a comple te  Na + activation curve, must  be pe r fo rmed  to de te rmine  an 
accurate kinetic model  of epithelial Na + conduct ion.  

2.3.5 Amiloride-Sensitive Channels in Sensory Systems 

Recently,  amiloride-sensit ive cation channels with a low PNa+/PK+ 
selectivity have been characterized electrophysiologically in ol- 
factory, lingual, auditory,  and visual epithelia. These  channels  are 
believed to play impor tan t  roles in the signal t ransduct ion pathways 
involved in sensory percept ion.  Fur ther ,  these channels  have been 
localized to lingual and auditory epithelia in indirect immunof luore-  
scent studies using polyclonal antibodies raised against purified 
bovine kidney Na + channel  prote in  (Simon et al. 1991, Hackney  
et al. 1991). 

Exposure  of the cilia of olfactory receptor  cells to odorants  
st imulates adenylate  cyclase, thus raising intracellular c A M P  levels 
(Pace et al. 1985; Sklar et al. 1986; Boekhof f  et al. 1990). Adenyla te  
cyclase activation, which is GTP  dependen t ,  probably involves 
receptor-coupled  GTP  binding proteins (Jones and Reed  1989). 
A cyclic nucleot ide-gated,  ca t ion-permeable  channel  is believed to 
open  upon  binding of cGMP,  thus depolarizing the m e m b r a n e  of the 
olfactory receptor  cell (Nakamura  and Gold 1987; Dhal lan  et al. 
1990). An  interact ion of odorants  with the olfactory epi thel ium elicits 
an inwardly directed Na+-dependen t  short-circuit current  (Takagi 
et al. 1969). Isolated olfactory receptor  cells f rom the nasal mucosa  

3The question of whether amiloride and K + (or for that matter amiloride and Na +) 
occupy different binding sites cannot be resolved by considering only the depth to 
which each molecule penetrates the electric field. For example, it is conceivable that 
Na +, K ÷, and amiloride interact with the channel at only one site. The voltage 
dependence of amiloride block would be lower than that of K ÷ (or Na ÷) because 
only part of the charge (which is spread over the entire amiloride molecule) can 
enter the pore. 
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of the frog have been examined using the patch clamp technique by 
Frings and Lindemann (1988). Amiloride (50 ~tM) produced a rapid, 
complete, and reversible block of the odorant-induced depolarization 
of olfactory receptor cells by effectively clamping the membrane 
potential to values near - 8 0 m V .  In the absence of odorants (e.g., 
cineole, amyl acetate, and isobutyl methoxypyrazine), amiloride had 
no effect on these cells. The authors concluded that amiloride may 
inhibit chemosensory transduction of olfactory receptor cells by 
blocking Na+-dependent pathways that open in the presence of 
odorants. 

An amitoride-blockable Na + current has also been observed 
in isolated taste receptor cells from the frog tongue (Avenet and 
Lindemann 1988). Under whole-cell patch clamp conditions (held at 
- 8 0 m V  inside the cell), approximately half of the cells had an 
inward Na + current of 10-700 pA. However, this inward Na + current 
was inhibited by amiloride in ony 56% of these cells (Ki = 0.3 ~tM). 
The cation selectivity of this current was highly variable, with a PNa+/ 
PK+ ranging between 1 and 100. Furthermore, while the amiloride- 
blockable current was weakly voltage dependent, it was not voltage 
gated. In addition, amiloride inhibited only partially the Na +- 
dependent short-circuit current of the intact mucosa and only a 
fraction of the nerve response to salt intake (DeSimone et al. 1984; 
Simon and Garvin 1985; DeSimone and Ferrell 1985; Brand et al. 
1985), suggesting that taste cells possess more than a single elec- 
trogenic Na + transport pathway. Depolarization of taste receptor 
cells, which express amiloride-sensitive Na + channels in their apical 
membranes, may transduce the "salty" taste sensation (Avenet and 
Lindemann 1988). Interestingly, these same taste cells also express 
tetrodotoxin-blockable, voltage-gated Na + channels, but these do not 
appear to be involved in taste transduction (Avenet and Lindemann 
1988). 

Jorgensen and Ohmori (1988) used a whole-cell patch clamp 
technique to examine the effects of amiloride on mechanoelectrical 
transduction (MET) currents in dissociated hair cells (sensory re- 
ceptors in the inner ear) of the chick. The channels in these sensory 
receptors, which reside in the apical membrane, are mechanically 
gated and do not discriminate well between monovolent cations 
(Hudspeth 1982; Ohmori 1985, 1988; Corey and Hudspeth 1979), 
although the majority of the receptor current is carried by K +, the 
dominant cation in the endolymph of the inner ear (Citron et al. 
1956). The transduction process also requires a minimal concentra- 
tion of Ca 2+ (Sand 1975; Hudspeth and Corey 1977; Jorgensen 1983; 
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Ohmori 1985). Amiloride (apparent Ki of 50gM) reversibly blocked 
the MET channel in a dose- and voltage-dependent manner that was 
independent of the mechanical gating of the channel (Jorgensen and 
Ohmori 1988). 

Amiloride and its analogs have also been shown to inhibit 
channels in vertebrate rod photoreceptors. A derivative of amiloride, 
3',4'-dichlorobenzamil (DCPA), completely blocked the light- 
regulated current (i.e., the current produced by cGMP-activated 
channels) recorded from frog rod photoreceptors (Nicol et al. 1987). 
A cGMP-activated current in excised patches of rod plasma mem- 
brane and a cGMP-induced Ca 2+ flux from rod disk membranes were 
also inhibited by DCPA with apparent K~ of 1 and 10gM, respec- 
tively. In subsequent studies, Pearce et al. (1988) demonstrated that 
amiloride (apparent Ki of - 3 0 g M )  blocked the 8-bromoguanosine 
3',5'-cyclic monophosphate (8-BrcGMP)-activated Ca 2÷ release from 
bovine rod outer segment disks. The light-regulated current recorded 
from the physiologically intact rod photoreceptor was also blocked by 
DCPA. The DCPA block in intact rod outer segments retaining the 
mitochondria-rich ellipsoid portion of their inner segments (outer 
segment- inner  segment, OS-IS) differed depending on the Ca 2÷ 
concentration. At 1 mM Ca 2+, the DCPA inhibition of the cGMP- 
activated current in these intact preparations was similar to that 
in excised patches of rod membrane, but at 10nM Ca 2÷, DCPA 
reversed that polarity of the photoresponse. Nicol et al. (1987) 
suggested that the different blocks of DCPA in high and low Ca 2+ 
may be due to a Ca 2+ concentration-dependent modulation of the 
conformational state of the light-regulated (i.e., cGMP-activated) 
channel. This channel could possess two different conductance states, 
one blocked by DCPA, and another induced in low-Ca 2+ media and 
modified but not blocked by DCPA. Another interpretation provided 
by these authors is that two different light-regulated channels may be 
present in the rod outer segment membrane, one carrying an inward 
Na ÷ current and the other carrying an outward K + current. 

The channels that conduct the light-regulated current in rod 
photoreceptors are relatively nonselective (PNa+/PI~+ ~ 2) (Yau and 
Nakatani 1984; Hodgkin et al. 1985) Using the whole-cell patch 
clamp technique, Gray and Attwell (1985) and Bodoia and Detwiler 
(1985) estimated the single-channel conductance of the cGMP- 
activated channel in rod photoreceptors to be - 0 . 1 p S  in l m M  
external Ca 2+. However, Ca 2+ and Mg 2+ (at physiological concen- 
trations) have been shown to decrease the cGMP-activated conduc- 
tance in rod photoreceptors (Lamb et al. 1985; Yau and Haynes 
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1986; Haynes and Yau 1985). Haynes et al. (1986) observed a single- 
channel conductance of - 2 5  pS in the absence of divalent cations in 
excised patches of rod outer segment membrane.  With Ca 2+ or Mg 2+ 
present in the cGMP-containing solution, Haynes et al. (1986) 
observed a flickering block of the open channel. These authors 
suggested that this block by divalent cations may explain the pecu- 
liarly small apparent single-channel conductance previously deduced 
from noise measurements  on intact cells (Gray and Attwell 1985; 
Bodoia and Detwiler 1985). 

In summary, amiloride and its analogs continue to serve as useful 
probes for characterizing epithelial Na + channels. Although the 
blocking mechanism(s) and amiloride interaction site(s) are begin- 
ning to be deciphered, the great apparent diversity of amiloride- 
sensitive Na + channels guarantees the unmasking of further com- 
plexities. The recent discoveries of amiloride-blockable channels in 
sensory organs and low amiloride affinity epithelial Na + channels 
(see Sect. 3) add yet another enigma to the intricacies of epithelial 
Na ÷ transport. 

3 Biochemistry of Epithelial Na ÷ Channels 

When compared to voltage-sensitive Na ÷ channels, which were 
purified as early as 1978 (Agnew et al. 1978) and cloned in 1984 
(Noda et al. 1984), our knowledge of epithelial Na ÷ channel bio- 
chemistry and molecular biology is still rudimentary. One of the main 
reasons for this slow biochemical achievement is that,  while there are 
rich sources of voltage-sensitive Na ÷ channels, such as eel electroplax 
and brain synaptosomes, there is no convenient source of amiloride- 
sensitive Na + channel protein. Furthermore,  excitable membrane 
Na + channels can be studied using a number  of high-affinity mole- 
cular probes that specifically bind to at least four distinct regions of 
Na ÷ channels producing different physiological effects (Catterall 
1986). In contrast, molecular probes of epithelial Na ÷ channels have 
been limited to amiloride analogs. It was only in 1986 that the first 
report of the isolation and purification of an amiloride-sensitive Na + 
channel appeared (Benos et al. 1986). This channel was purified from 
bovine renal papillary collecting tubules and A6 cells, an amphibian 
kidney cell line. It is important  to point out the limited quantities of 
epithelial Na ÷ channel protein that can be obtained from these iso- 
lation procedures, especially in comparison to the amount  of voltage- 
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sensitive Na + channel protein isolated from excitable membranes. In 
a standard preparation for the isolation of voltage-sensitive Na ÷ 
channel protein from a single eel electroplax (Agnew et al. 1978), 
approximately 0 .5 -1mg of homogeneous channel protein can be 
obtained. To isolate a comparable amount of epithelial Na ÷ channel 
protein, approximately 50000 12-cm diameter A6 cell filters or 7140 
bovine kidneys are required. Approximately 0.4gg purified protein 
from forty 12-cm diameter filter dishes of A6 cells, and -0 .07gg  
protein per bovine kidney are routinely recovered. 

As discussed earlier, epithelial Na t channels can be broadly 
classified as having high or low sensitivity to amiloride (i.e., Ki of less 
than or greater than l gM at physiological Na + concentrations, 
respectively). Therefore, it is more informative and easier to discuss 
epithelial Na t channels by dividing them into two main groups based 
upon their sensitivity to amiloride. The first group includes the 
so-called classic epithelial sodium channels present in the apical 
membranes of high electrical resistance epithelia, such as frog skin, 
toad urinary bladder, mammalian colon, bovine renal papillary 
collecting duct, and amphibian renal A6 cells (Smith and Benos 
1991). These channels have a high affinity for amiloride with a K~ < 
0.5 gM at high external Na + concentrations. As recently proposed by 
Oh and Benos (1992), these channels will be referred to as the 
H-type channel ( "H"  denotes high amiloride affinity). The second 
group has a low affinity to amiloride with a Ki > l g M  and will 
be referred to as the L-type channel ("L" denotes low amiloride 
affinity). These L-type Na t conductive pathways have been found in 
a variety of sources over the past few years, including blastocyst 
trophectodermal cells, brain endothelia, rat colonic enterocytes, 
porcine kidney, porcine kidney LLC-PK1 cells, lung alveolar type II 
cells, and the basolateral membrane of the toad urinary bladder 
(Smith and Benos 1991). 

3.1 The H-type Na + Channel 

Benos et al. (1986, 1987) have described the biochemical character- 
istics of the H-type Na + channel isolated from bovine kidney papillae 
and amphibian A6 cells. They found that the native H-type Na t 
channel protein has a molecular mass averaging 730kDa and is 
comprised of at least six nonidentical subunits held together by 
disulfide bonds with apparent molecular masses of 315, 150, 95, 70, 
55, and 40kDa. Amiloride-sensitive Na t uptake was noted after 
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Table 3. Amiloride binding proteins 

D.J. Benos et al. 

Probe Source Mr Reference 

[3H]Methylbromo- Purified sodium channels 1 3 0 - 1 8 0 ,  Benos et al. 
amiloride from bovine kidney and A6 55-60 (1987) 

cells 
Anti-idiotypic Purified sodium channels 140, 50 Kleyman et al. 
antibody (RA 6.3) from A6 cells (1990) 
[3H]Bromobenzamil Crude membranes from 176, 77, 47 Kleyman et al. 

bovine kidney cortex (1986) 
NMBA Crude membranes from 130, 75-80, Kleyman et al. 

bovine kidney cortex and A6 50 (1989) 
cells 

[3H]Phenamil and Purified proteins from 105 Barbry et al. 
[3H]Bromobenzamil porcine kidney (1990b) 
RA 6.3 and NMBA Crude membranes from rat 135 Oh et al. 

lung (1991) 

NMBA, 2'-methoxy-5'-nitrobenzamil 

reconstitution of the purified Na + channels into liposomes, indicating 
preservation of transport function (Sariban-Sohraby and Benos 
1986b). 

The identification of the amiloride binding subunit of the H-type 
channel has been made possible by using three different approaches 
(Table 3): (a) the development  of irreversible photosensitive amiloride 
analogs with subsequent radioactive synthesis (Benos et al. 1987; 
Kleyman et al. 1986; Barbry et al. 1990b); (b) the combination 
of photosensitive amiloride analogs with anti-amiloride antibodies 
(Kleyman et al. 1989); and (c) anti-idiotypic antibodies raised against 
anti-amiloride antibodies (Kleyman et al. 1991). Benos et al. (1987) 
found that one of the H-type Na + channel subunits isolated from 
bovine kidney papilla, namely, the 150kDa polypeptide, bound a 
photoreactive amiloride analog, [3H]-methylbromoamiloride (Ki < 
0.5gM), exclusively. It should be emphasized that, for unknown 
reasons but possibly related to the degree of glycosylation, the 
apparent molecular mass of this subunit varied between 130 and 180 
kDa from preparation to preparation, even under identical gel 
separation conditions. They also noted, although infrequently, 
specific labeling of a second lower molecular mass component  at 
55-60kDa.  The H-type Na + channel, present in membrane vesicles 
isolated from bovine kidney cortex, was also photoaffinity labeled 
using another photoreactive amiloride analog, [3H]-bromobenzamil 
(Kleyman et al. 1986). This analog (Ki = 5nM) was specifically 
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photoincorporated into three polypeptides with molecular masses of 
176, 77, and 47kDa. Its photoincorporation into all three poly- 
peptides was blocked by addition of excess benzamil or amiloride in a 
dose-dependent manner. 

Kleyman et al. (1986, 1989) developed anti-amiloride antibodies 
and used the photoreactive amiloride analog 2'-methoxy-5'-nitro- 
benzamil (NMBA; Ki = 80 nM) in combination with these antibodies 
to identify the amiloride binding subunit(s) of the H-type amiloride- 
sensitive Na ÷ channel from A6 cells. They found that NMBA strongly 
labeled a polypeptide with an apparent molecular mass of 130kDa 
in membrane vesicles from bovine kidney cortex and A6 cells. In 
addition, polypeptides with an apparent molecular mass of 75- 
80kDa and 50kDa were specifically, but weakly, labeled with 
NMBA. Kleyman et al. (1991) have also developed monoclonal anti- 
idiotypic antibodies against polyclonal anti-amiloride antibodies 
and found that one of the anti-idiotypic antibodies, called RA 6.3, 
mimicked the effect of amiloride in inhibiting sodium transport across 
A6 cell monolayers. RA 6.3 specifically reacted strongly with a 
polypeptide having an apparent molecular mass of about 140kDa, 
and reacted weakly and variably with a 50kDa polypeptide on 
immunoblots of purified H-type Na ÷ channels from A6 cells. These 
results suggest either the existence of multiple amiloride binding sites 
in the channel complexes, or that the lower molecular mass poly- 
peptides may be degradation products of the larger ones. This issue is 
unclear at present. Kinetic studies concerning the stoichiometry of 
the interaction between amiloride and the Na + channel are also 
controversial, i.e., values range between a 1:1 binding stoichiometry 
to multiple (>2) amiloride molecules binding per channel (Garty and 
Benos 1988). Nevertheless, there is no doubt that the 150kDa 
subunit of H-type Na ÷ channels contains an amiloride binding site. 
Recently, it was reported that ankyrin and fodrin copurified with the 
H-type Na ÷ channel isolated from bovine kidney (see Sect. 4.5), and 
ankyrin bound directly to the 150kDa channel subunit, the same 
subunit that bound amiloride (Smith et al. 1991). 

The monoclonal anti-idiotypic antibody, RA 6.3, has also been 
used to characterize biochemically the H-type Na ÷ channel (Kleyman 
et al. 1991). Under nonreducing conditions, RA 6.3 specifically 
immunoprecipitated a 725kDa protein from metabolically labeled 
A6 cells. Under reducing conditions, four major nonidentical poly- 
peptides with apparent molecular masses of 260-230, 180, 140-110, 
and 70 kDa were evident. Essentially the same results were obtained 
if the apical membrane proteins were radiolabeled in the intact 
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Table 4. Structure-function relationship of a H-type Na + channel 

Subunit M r (kDa) Speculative function Reference 

c~ 315 Effector site of vasopressin; 
cAMP mediated 
phosphorylation 

13 150 Amiloride and ankyrin 
binding site; may form a 
conductive channel 

7 95 Site of aldosterone-induced 
methylation 

8 70 

55 

40 

Aldosterone-inducible protein 

May be another amiloride 
binding site 
Effector site of atrial 
natriuretic peptide (ANP); 
oq_3-subunit of Gi protein 

Sariban-Sohraby et al. (1988) 

Benos et al. (1987), Smith 
et al. (1991), Sariban- 
Sohraby and Fisher (1990) 
Sariban-Sohraby et al. 
(1984a), Kemendy and 
Eaton (1990) 
Palvesky et al. (1990), Cox 
(1991) 
Benos et al. (1987), Kleyman 
et al. (1991) 
Mohrmann et al. (1987) 
Ausiello et al. (1992) 

cell using an impermeant reagent, and then immunoprecipitated. 
Following this procedure, an additional 50 kDa polypeptide, perhaps 
corresponding to the 55kDa subunit described by Benos et al. 
(1987), was also immunoprecipitated although this polypeptide was 
not detected consistently. Benos et al. (1987), on the other hand, 
reported that the 55kDa subunit was consistently present in the 
purified channel complex. This discrepancy might be explained by the 
different composition of reducing sample buffers between the two 
studies; Benos et al. (1987) used strong reducing sample buffers 
containing 13raM dithiothreitol (DTT) and 6 M urea, whereas 
Kleyman et al. (1991) used a mild disulfide reducing buffer con- 
taining l m M  DTT without urea. The 55 kDa subunit thus seems to 
be bound tightly to the channel complex and may require relatively 
strong reduction as well as vigorous noncovalent bond disruption in 
order to be dissociated. 

In summary, the biochemical characterization studies on the 
H-type Na + channels by two groups, Benos and Kleyman, are in 
close agreement, especially in view of the size of the native Na + 
channel (about 730kDa), the number of subunits and their sizes 
(multimeric--possibly hexameric--structure),  and location of the 
amiloride binding subunit (the 150kDa subunit). Interestingly, 
Edwardson et al. (1981), using radiation inactivation analysis, mea- 
sured a target size of 650kDa for the native benzamil binding site 
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in bovine kidney cortex. The 150kDa subunit of the H-type Na + 
channel is very likely to be a membrane spanning protein, having an 
amiloride binding site on its extracellular surface and an ankyrin 
binding site on the cytoplasmic side. It may also form a conductive 
Na ÷ channel by itself, as single-channel activity by the amiloride 
binding subunit (i.e., the 150kDa polypeptide) of the H-type Na ÷ 
channel from A6 cells was recently measured by Sariban-Sohraby and 
Fisher (1990) by patch clamping liposomes containing the recon- 
stituted subunit. Table 4 summarizes our current understanding of 
the structure-function relationship of a H-type sodium channel. 

3.2 The L-type Na + Channel 

Compared to the H-type Na ÷ channel, little is known about the 
biochemistry of L-type Na + channels. A candidate for L-type Na + 
channel has been isolated by Barbry and collaborators. They have 
purified and characterized an amiloride binding protein from the 
pig kidney outer medulla and cortex (Barbry et al. 1987, 1990b). 
Pharmacological inhibitory profiles of amiloride and its analogs on 
Na + uptake into native pig kidney membrane vesicles are different 
from those of classic H-type Na ÷ channels in that a low amiloride 
affinity (Ki = 6gM) and equal inhibitory potency of EIPA and 
amiloride were found, (Barbry et al. 1986). This protein was further 
purified and reconstituted into lipid vesicles to show electrogenic 
amiloride-sensitive Na ÷ transport,  suggesting that the amiloride 
binding protein by itself may function as a Na + channel in pig kidney 
(Barbry et al. 1990b). Barbry et al. (1989) further demonstrated that 
both crude pig kidney membrane preparations and amiloride binding 
proteins purified from pig kidney membranes have both high and low 
amiloride binding sites, although there is a 14-fold larger number  of 
low amiloride affinity binding sites ( g  d = 4gM) than high amiloride 
affinity binding sites ( K  d = 0.1  ~tM). However,  there is only one 
detectable size of purified protein, namely, a protein with a total 
molecular mass of 185kDa, This protein consists of two nearly 
identical 105 kDa polypeptides crosslinked by disulfide bonds (Barbry 
et al. 1990b). 

At  present,  it is not known whether  these two amiloride inter- 
action sites are located on two different isoforms of this Na + channel 
with a similar structure not resolvable by gel electrophoresis, or on 
a single type of Na ÷ channel protein where the amiloride affinity 
changes under different physiological conditions. Recently, Barbry 
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et al. (1990a) cloned this human amiloride binding protein from a 
human kidney cDNA library by using an oligonucleotide probe 
synthesized against the purified 105kDa subunit from pig kidney. 
Transfection into eukaryotic cell lines showed that the cloned cDNA 
coded for an amiloride binding protein with high amiloride affinity 
( K  d = 0.1 gM), suggesting that this protein may be a part of a 
H-type Na ÷ channel in the pig kidney. This protein is glycosylated, 
but does not contain any consensus phosphorylation sites, and its 
hydropathy plot is not similar to that of most membrane spanning 
proteins in that there are no hydrophobic helices. 

Because the amiloride binding subunit of the classic H-type Na ÷ 
channel is likely to be an integral membrane protein as previously 
discussed, the protein with high amiloride binding affinity purified 
and cloned by Barbry and collaborators does not seem to have any 
structural homology with the H-type Na ÷ channel. Further, poly- 
clonal antibodies raised against the amiloride binding protein isolated 
by Barbry's group do not cross-react on Western blots with the H- 
type Na ÷ channel from bovine kidney (unpublished observations). 
Barbry et al. (1990a) also failed to detect amiloride-sensitive Na ÷ 
channel activity in transfected mammalian cells or in a Xenopus 
oocyte expression system. Therefore, they suggested that either (a) 
the amiloride binding subunit and the channel subunit might be 
distinct, and the observation of electrogenic sodium transport in 
reconstituted purified amiloride binding proteins might be due to 
contaminating channel subunits, or (b) alternative splicing in trans- 
fected cells might remove a protein segment which is short but 
essential for channel activity. This latter suggestion is unlikely 
because the cloned protein is not a membrane spanning protein. 
Because of these uncertainties in the nature of the amiloride binding 
protein cloned by Barbry et al. (1990a), further work on the puri- 
fication and characterization of L-type Na ÷ channels from pig kidney 
as well as other sources is necessary to understand more completely 
the biochemistry and molecular biology of the L-type Na ÷ channel. 

Recently, the existence of low amiloride-sensitive Na + conductive 
pathways in freshly isolated alveolar type II cells of rabbit lungs has 
been demonstrated by Matalon et al. (1991). They found that 50% of 
the electrogenic Na + uptake into lung alveolar type II membrane 
vesicles was inhibited by 10gM amiloride. In addition, at concen- 
trations of 0.1 and 1 gM, amiloride and its analogs, benzamil and 
EIPA, all inhibited Na ÷ transport similarly. At concentrations higher 
than 10gM, EIPA blocked a significantly higher fraction of the 
electrogenic Na + transport than the other two inhibitors. Therefore, 
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they proposed that alveolar type II cells may have a type of Na ÷ 
channel distinct from the classic H-type Na + channel. 

Polyclonal antibodies against purified H-type Na ÷ channels 
from bovine kidney have been used on Western blots of membrane  
proteins from rat alveolar type II cells (Oh et al. 1991). The speci- 
ficity of these antibodies against epithelial sodium channels has been 
well characterized through immunocytochemical  studies (Brown 
et al. 1989; Tousson et al. 1989), and recently used to immuno- 
localize L-type Na ÷ channels in rat lung alveolar type II cells (Hu 
et al. 1991), canine lingual epithelial cells (Simon et al. 1992), and 
guinea pig cochlear hair cells (Hackney et al. 1992). The antibodies 
cross-reacted with 135 kDa polypeptides of the lung cell membranes.  
Anti-idiotypic antibodies against anti-amiloride antibodies, RA 6.3 
(Kleyman et al. 1991), and NMBA photolabeling studies consistently 
recognized the same molecular mass protein, suggesting that the 135 
kDa polypeptide in lung alveolar type II cells could be an amiloride 
binding subunit of the L-type Na ÷ channel (Oh et al. 1991). Because 
the anti-Na ÷ channel antibodies reacted with at least four different 
subunits of the H-type Na ÷ channels from bovine kidney and A6 
cells (Sorscher et al. 1988; Tousson et al. 1989), but with only one 
presumed subunit of the L-type Na ÷ channel, the hypothesis of a 
single type of Na + channel with two different amiloride affinity stages 
is unlikely to be true. Instead, it would be more reasonable to suspect 
the existence of different amiloride-sensitive Na + channels with 
distinct biochemical structures, consistent with the findings of widely 
variable kinetic and pharmacological characteristics of amiloride- 
sensitive Na + channels. However,  because the size of the actual 
amiloride binding protein is comparable in both H- and L-type Na ÷ 
channels, we cannot as of yet exclude the possiblity of a conservation 
of this subunit. 

4 Regulation of Epithelial Na ÷ Channels 

4.1 Hormonal  Regulation 

4.1.1 Aldosterone 

The adrenal steroid hormone aldosterone is a regulator of Na + 
reabsorption in tight epithelia. Aldosterone enters the cell and binds 
to a receptor, which in turn elicits an increase in protein synthesis 
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and a concomitant two- to fourfold increase in Na + transport. 
Although the mineralocorticoid receptor is commonly viewed as 
being situated within the nucleus, recent immunocytochemical studies 
using antibodies directed against the receptor suggest that the re- 
ceptor is also distributed throughout  the cytoplasm (Gasc et al. 
1991). The increase in Na + transport subsequent to aldosterone 
treatment is primarily due to an increase in apical Na + permeability; 
however aldosterone also induces the Na+/K + ATPase pump (Garty 
1986; Garty and Benos 1988). The response of an epithelium to 
aldosterone consists of three phases: (1) a latent period of 20-90 min 
in which intracellular "priming" events occur; (2) an early response 
in which there is a two- to fourfold increase in Na + transport, due 
entirely to an increase in apical membrane PNa; and (3) a longer 
response (>6h)  in which there is de novo synthesis of Na+/K + 
ATPase and an increase in certain enzymes important in energy 
metabolism. During this later period there is a continued increase in 
short-circuit current (Isc) resulting from new pump synthesis (Garty 
1986). 

The first major insight into how aldosterone may augment apical 
PNa was provided by Palmer et al. (1982). Using amiloride-induced 
current fluctuation analysis, these authors observed that a 4- to 6-h 
treatment of the toad bladder with aldosterone evoked an increase in 
both Isc and the density of Na + channels situated within the apical 
membrane without affecting single-channel current. Thus, aldo- 
sterone appeared to regulate the number  of apical Na + channels 
rather than the single-channel conductance. Based upon these data, it 
was proposed that aldosterone either (a) induces the synthesis and/or 
insertion of new channels or a regulatory protein into the apical 
membrane;  or (b) activates preexisting quiescent channels situated 
within the apical membrane.  Because one of the effects of this 
hormone is induction of protein synthesis, the first mechanism was 
favored by a number  of investigators; however, recent electrophy- 
siological and biochemical studies have provided evidence in support 
of the latter mechanism. 

Palmer and Edelman (1981) observed that treatment of the toad 
urinary bladder with diazosulfonic acid (DSA), a protein modifying 
agent, reduces Na + transport to 60%-70% of the control values. 
Exposure of DSA-treated bladders to aldosterone resulted in an 
increase in Isc; however, the increase was less than in non-DSA- 
treated bladders. The DSA-induced inhibition of Na + transport was 
the same for basal and aldosterone-stimulated tissues. These inves- 
tigators interpreted these results to mean that conductive and non- 
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conductive channels were equally affected by DSA. Thus, aldosterone 
activated channels that preexisted in the apical membrane.  A similar 
conclusion was reached by Garty and Edelman (1983), who demon- 
strated that trypsinization of the apical membrane of the toad bladder 
resulted in an irreversible decrease in both basal and aldosterone- 
stimulated Isc. The fact that trypsin affected the aldosterone-activated 
channels suggested that they were already present within the apical 
membrane in a nonconductive but trypsin-sensitive form. More 
recently, the effects of aldosterone on individual Na + channel activity 
was examined in A6 cells using the patch clamp technique. Ling et al. 
(1990) reported that exposure of A6 cells to aldosterone increased 
the density of functional channels detectable in the apical membrane 
with a time course similar to that for the increases in Isc observed in 
intact epithelia. Aldosterone also increased the mean open time and 
open probability of the single channels. These authors likewise 
concluded that aldosterone activates preexisting quiescent channels. 

At  the biochemical level, Kleyman et al. (1989) used NMBA 
photolabeling, in combination with anti-amiloride antibodies, to 
determine if aldosterone alters the cellular pool and apical expression 
of Na + channels in A6 cells. A6 cell monolayers were exposed to 
aldosterone for 16 h, subsequently photoaffinity labeled with NMBA, 
and solubilized for gel electrophoresis and immunoblotting. NMBA 
that bound to channel protein was detected by anti-amiloride anti- 
bodies. Densitometric scans of the immunoblots revealed no detect- 
able differences between control or aldosterone-treated cells, thereby 
demonstrating that the cellular pool and apical expression of Na + 
channels in A6 cells is not altered in response to aldosterone stimu- 
lation. Immunoprecipi tat ion of surface radiolabeled Na + channels 
with antiamiloride anti-idiotypic antibodies also failed to detect a 
difference between control and aldosterone-treated A6 cell mono- 
layers (Kleyman et al. 1990), further corroborating the idea that 
the apical expression of epithelial Na + channels is not altered by 
aldosterone. Additional evidence supporting aldosterone-induced 
activation of quiescent channels comes from the work of Tousson 
et al. (1989), who have shown immunocytochemically,  using poly- 
clonal antibodies directed against the channel, that aldosterone 
treatment does not stimulate fusion of Na + channel-containing 
vesicles with the apical membrane.  

The mechanism by which aldosterone activates Na + channels 
remains unclear. However,  two alternative mechanisms have been 
proposed to explain the aldosterone-induced increase in trans- 
epithelial Na + transport; these are summarized in Fig. 5. Sariban- 
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Fig. 5. Schematic diagram summarizing two 
aldosterone-induced activation of epithelial Na + channels. One explanation is that 
aldosterone induces a post-translational modification which activates quiescent 
channels situated within the apical membrane (1). Sariban-Sohraby et al. (1984a) 
have presented evidence that aldosterone may activate Na + channels through the 
methylation of a channel subunit(s) or surrounding lipids. An alternative explanation 
is that one of the aldosterone induced proteins, namely the 70-kDa protein (Palvesky 
et al. 1990; Cox 1991), is a channel subunit or a regulatory protein that complexes 
with the channel, thereby activating inactive Na + channels preexisting within the 
apical membrane (2) 

Sohraby et al. (1984a) observed that incubating apical membrane 
vesicles derived from A6 cells with the methyl donor S-adenosyl- 
L-methionine leads to a twofold increase in amiloride-blockable 
PN~,- Vesicles prepared from aldosterone-treated cells had a twofold 
higher rate of 22Na+ uptake than controls, and this flux could not 
be further stimulated by S-adenosyl-L-methionine. In addition, 
aldosterone was observed to increase the amount  of methylated 
proteins and lipids within the membrane.  Based upon these data 
the authors suggested that aldosterone stimulates transmethylat ion of 
the channel or surrounding lipids, through the induction of a specific 
methyltransferase or through elevation of the cellular concentration 
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of S-adenosyl-L-methionine by acting upon other cytoplasmic en- 
zymes (Sariban-Sohraby et al. 1984a). While such observations are 
strongly suggestive of a role of transmethylation of apical Na ÷ 
channels or regulatory components by aldosterone, much work 
remains to be done. In this regard, Kemendy and Eaton (1990) 
determined the effect of 3-deazaadenosine on aldosterone-induced 
sodium transport at the single-channel level in A6 cells. They found 
that incubating control cells with this methylation inhibitor for 4 -5  h 
decreased the single-channel open probability (Po) from 0.26 to 0.02 
and decreased the number of apparent open channels per patch from 
2.1 to 0.4. In addition, they found that by depriving cells of serum 
and aldosterone for 3 days, Po was decreased to 0.04. Subsequent 
addition of aldosterone returned Po to 0.26, and also increased the 
apparent number of channels per patch from one to four. No channel 
activity could be detected in aldosterone-deprived cells incubated 
with both aldosterone and deazaadenosine. However, further 
work is necessary to see if a direct methylation of these channels can 
increase Po. 

In addition to Na+/K ÷ ATPase, other proteins are induced by 
aldosterone (Garty 1986; Szerlip and Cox 1989; Szerlip et al. 1989). 
There is also evidence from several studies that the aldosterone- 
induced proteins may act as regulatory proteins which activate 
preexisting apical channels. Interestingly, one of these aldosterone- 
induced proteins is a 70kDa glycoprotein (Szerlip et al. 1989) that 
shows cross-reactivity with the 70kDa subunit of a purified bovine 
Na + channel in immunoblots (Palvesky et al. 1990; Cox 1991). This 
suggests that the 70kDa protein may either be a subunit of the 
channel or a regulatory protein that complexes with the channel. 
Ling et al. (1990), based upon single-channel data from A6 cells, 
suggest that because the single-channel kinetics are dramatically 
different depending upon whether aldosterone is present or not, at 
least one of the aldosterone-induced proteins must act as a regulatory 
protein. However, they suggest that the major action of aldosterone 
is the activation of channels via post-translational modifications of 
the channel or the surrounding membrane components, presum- 
ably mediated through an aldosterone-induced regulatory protein. 
Kleyman et al. (1990) have observed that although a 70 kDa subunit 
of the channel is present in aldosterone-treated A6 cells, a 70 to 
80kDa doublet is present in the Na ÷ channel in cells treated with 
spironolactone, an antagonist of aldosterone. They suggest that 
post-translational modification of the 70kDa subunit may be the 
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mechanism by which aldosterone regulates the Na + channel. G 
proteins have also recently been suggested to be involved in the 
aldosterone-induced activation of Na + channels (see below). 

4.1.2 Vasopressin 

The peptide hormone vasopressin (antidiuretic hormone,  ADH)  
is known to increase Na + transport in electrically high resistance 
epithelia. Vasopressin interacts with V2 receptors on the basolateral 
membrane and promotes the interaction of the receptor with a 
stimulatory G protein (Gs). This interaction leads to stimulation of 
adenylate cyclase activity and an increase in intracellular cAMP 
levels (Orloff and Handler 1967). Cyclic AMP presumably activates 
protein kinase A, which in turn phosphorylates various proteins, 
ultimately leading to increases in apical Na + transport. The addition 
of A D H  to an epithelium leads to a two- to fourfold increase in Isc 
within 10-20 min of application (Garty and Benos 1988). 

Li et al. (1982), using the technique of blocker-induced noise 
analysis, demonstrated in the toad urinary bladder that vasopressin- 
induced Na + transport results from an increased density of open 
channels situated within the apical membrane with no change in 
single-channel conductance. These observations were confirmed by 
Helman et al. (1983) using frog skin. As summarized in Fig. 6, the 
increase in density of open channels may be explained either through 
the recruitment of new channels and/or a regulatory subunit of the 
channel, or through the vasopressin-mediated opening of inactive 
channels preexisting within the apical membrane.  

Because both vasopressin and aldosterone increase channel 
density without affecting single-channel conductance, it is conceiv- 
able that both hormones activate the same pool of channels. The 
available data, however, argues against this possibility: (a) the 
antinatriuretic effect of both hormones is additive and synergistic 
(Handler et al. 1969; Fanestil et al. 1967; Sharp and Leaf 1966); and 
(b) trypsinization of the apical surface of the toad bladder inhibits the 

Fig. 6A,B. Schematic diagram summarizing the two alternative mechanisms which 
have been proposed to explain the vasopressin-induced increase in transepithelial 
Na + transport. One explanation is that vasopressin causes the insertion of new 
functional channels into the apical membrane from an intracellular pool of channel- 
containing vesicles (A). The other explanation is that inactive channels situated 
within the apical membrane are activated by vasopressin through a cAMP-dependent 
kinase (PKA)-induced phosphorylation of the 315-kDa subunit of the channel 
(Sariban-Sohraby et al. 1988) (B) 
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response to aldosterone but not to vasopressin (Garty and Edelman 
1983). This latter observation suggests that vasopressin stimulates 
Na + transport by recruiting channels from a subapical pool. One 
caveat in the interpretation of these trypsin experiments is that 
pretreating the apical membrane of the toad bladder epithelium with 
tyrosine-specific reagents inhibited both the baseline and vasopressin- 
stimulated Na + currents to the same extent (Park and Fanestil 1980; 
Palmer and Edelman 1981). One explanation for this finding is that 
the channels may be continuously present in the apical membrane in 
a conformational state that is resistent to trypsin proteolysis, but still 
susceptible to other protein-modifying reagents (Garty and Edelman 
1983; Garty and Benos 1988). It is still possible, of course, that these 
protein reagents indirectly inhibit channel insertion by altering other 
apical proteins involved in an insertional process. 

A recent study by Marunaka and Eaton (1991) attempted to 
further clarify whether or not the vasopressin-induced increase in Isc 
is due to channel insertion. Using the patch clamp technique, these 
authors showed that vasopressin, when compared to controls, in- 
creased the number of conductive channels in isolated patches from 
A6 cells with little or no change in the open probability of individual 
Na + channels. A similar phenomenon was observed when cells were 
pretreated with N 6, 2'-O-dibutyryladenosine 3',5'-cyclic monophos- 
phate (db-cAMP) or cholera toxin. These authors concluded that 
vasopressin and its second messenger, cAMP, increases Na + trans- 
port by recruiting new channels into the apical membrane. 

Vasopressin activates a cAMP-dependent protein kinase (protein 
kinase A), which suggests that protein kinase A may directly phos- 
phorylate a regulatory subunit(s) of the channel. Alternatively, 
protein kinase A may phosphorylate other proteins that regulate the 
channel or induce insertion of new channels into the apical mem- 
brane. Lester et al. (1988) have shown that toad bladder apical 
membrane vesicles, into which purified cAMP-dependent kinase A, 
cAMP, and ATP were incorporated, failed to exhibit a stimulated 
Na + conductance. Their data favor the explantation that the vaso- 
pressin-stimulated increase in Na + conductance arises through the 
phosphorylation of a regulatory protein. The data of Marunaka and 
Eaton (1991) suggest that protein kinase A either phosphorylates a 
regulatory protein or a subunit of the channel that is not related to 
the kinetics of channel opening or closing. 

In contrast to the observations of Lester et al. (1988), Sariban- 
Sohraby et al. (1988) have demonstrated that protein kinase A 
directly phosphorylates the 315 kDa subunit of the channel both in 
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vitro and in vivo in A6 cells. Furthermore, addition of the catalytic 
subunit of protein kinase A to isolated patches of A6 cell membranes 
activates quiescent channels (Cantiello et al., unpublished). These 
data argue in favor of a direct activation of quiescent channels by 
protein kinase A. Further evidence corroborating a direct phos- 
phorylation of the Na + channel comes from Frings et al. (1988). 
Using the patch clamp technique, they demonstrated that addition 
of protein kinase A, cAMP, and ATP to isolated patches of toad 
urinary bladder apical membrane activated quiescent channels. 
Despite the numerous investigations of vasopressin action, the 
molecular mechanism underlying the increase in Pya remains enig- 
matic, although some insight into this interesting problem is now 
being achieved. 

4.1.3 Atrial Natriuretic Peptide and G Proteins 

Atrial natriuretic peptide (ANP), a hormone released from the 
atrium of the mammalian heart in response to volume expansion, 
inhibits Na + reabsorption by the IMCD of the kidney. ANP-induced 
inhibition of Na + reabsorption was first suggested to be mediated 
through cGMP by Cantiello and Ausiello (1986). Using LLC-PK1 
cells, they demonstrated that ANP stimulates cGMP production and 
that both ANP and cGMP reduce the amiloride-inhibitable 22Na+ 
uptake by 40%-60%.  Subsequently, Light et al. (1989) directly 
demonstrated at the single-channel level that ANP acts through the 
second messenger cGMP to inhibit Na + reabsorption through a low 
amiloride affinity, nonselective cation channel of the IMCD. Cyclic 
GMP inhibits this channel by two mechanisms: (a) a phosphory- 
lation-independent mechanism which presumably acts through cGMP 
interacting with an allosteric modifier site on the channel; and (b) a 
phosphorylation-dependent mechanism involving cGMP kinase and 
the G protein, GGti_ 3 (Light et al. 1989, 1990b). The latter mech- 
anism was hypothesized to be a sequential pathway with cGMP 
kinase modulating the ability of Gcq_ 3 to activate the cation channel. 
This inhibition of the channel by two cGMP-dependent mechanisms, 
cGMP and cGMP kinase, may produce both a short-lived and a 
sustained reduction in Na + reabsorption by the IMCD in response to 
ANP (Light et al. 1990b). 

In addition to mediating the effect of ANP on Na + resorption by 
the mammalian collecting duct, cGMP has been postulated to have 
an effect on Na + transport by the toad urinary bladder. Transepi- 
thelial Na + transport by the toad bladder is inhibited by muscarinic 
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agents and an increase in intracellular cGMP levels has been ob- 
served to occur (Sahib et al. 1978), thereby suggesting that cAMP 
and cGMP have opposite effects on Na + transport. However,  addi- 
tion of cGMP to the bathing medium had either no effect on Na + 
transport or only a small stimulatory effect. One caveat of these 
experiments is that the cGMP may not have penetrated the cells. 
Therefore, Palmer and associates (Das et al. 1991) have recently 
reinvestigated the action of cGMP on Na + transport in the toad 
bladder using 8-BrcGMP, a permeable analog of cGMP. Addition 
of 8-BrcGMP to the serosal bathing medium resulted in almost a 
twofold increase in Isc and the effect of cGMP was not additive to 
those of cAMP or ADH.  Based upon these observations, Das et al. 
(1991) concluded that cGMP modulates the same pathway or one 
closely related to that involving cAMP in channel activation. How- 
ever, the physiological significance of this response is unknown. 

4.1.4 Other Hormones 

The peptide hormones insulin and insulin-like growth factor I(IGF-1) 
stimulate a marked increase in Isc. In A6 renal epithelial cells, for 
example, insulin produces a sixfold increase in steady state Isc 
(Fidelman and Watlington 1984). It has been demonstrated using the 
toad bladder that the natriuretic response of insulin and IGF-1 is 
triggered by the binding of the hormone to basolateral membrane 
receptors, with stimulation of transport occurring at hormone con- 
centrations of 0.1 nM (Blazer-Yost et al. 1989). Neither insulin nor 
IGF-1 saturated the maximal Na ÷ transporting capacity because 
either A D H  or aldosterone plus insulin stimulated a further in- 
crease in Na ÷ transporting capacity (Blazer-Yost et al. 1989). This 
phenomenon  is similar to the additive and synergistic effects of 
aldosterone and A D H  on apical Na ÷ transport in tight epithelia. 
The insulin-induced increase in Na ÷ transport is now known to 
be mediated through the activation of PKC (Civan et al. 1988). 
However,  the nature of the interaction between PKC and the channel 
remains unclear. Additionally, catecholamines (MacKnight et al. 
1980) and prolactin (Snart and Dalton 1973) stimulate an increase in 
Isc in toad bladder. However,  their mechanisms of action are also 
unclear. 
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4.2.1 Sodium 

The regulation of apical Na + permeabifity by intracellular Na + ions is 
referred to as either feedback inhibition or homocellular regulation 
(Schultz 1981). MacRobbie and Ussing (1961), using the frog skin, 
were the first to observe that inhibition of basolateral Na+/K + 
ATPase by ouabain also decreases apical Na + permeability. They 
suggested that the extrusion of Na + ions by the basolateral pump is 
coupled to the passive uptake of Na + ions. Subsequently, Lewis et al. 
(1976) and Turnheim et al. (1978), studying the rabbit bladder and 
colon, respectively, observed that blocking the basolateral Na+/K + 
ATPase by ouabain elevates intracellular C a  2+ levels and also in- 
hibits apically located amiloride-sensitive Na + channels. This led 
both groups to propose that elevated intracellular C a  2+ has a nega- 
tive feedback effect on apical PNa. Additional studies of this effect 
revealed that blocking of the basolateral pump by ouabain decreases 
apical PN~ only if the serosal medium contains a high Ca 2+ concen- 
tration (Chase 1984; Garty and Lindemann 1984; Palmer 1985b). 
Furthermore,  channel-mediated Na + influx into apical membrane  
vesicles showed little or no dependence upon the internal Na + 
ion concentrations (Chase and A1-Awqati 1983; Garty et al. 1987; 
Bridges et al. 1988). This result suggests that although the level of 
intracellular Na + is involved in the regulation of apical PN~, it does 
not directly inhibit channel activity. Rather,  as discussed below, it is 
probable that intracellular Na + influences apical Na + channels 
through modulation of intracellular C a  2+ concentrations. 

4.2.2 Calcium 

Increases in intracellular Ca 2+ levels, which are associated with 
increases in cytoplasmic Na + concentrations, are correlated with the 
downregulation of apical Na + channels. A role for intracellular Ca 2+ 
in the downregulation of Na + channels was first proposed by Grinstein 
and Erlij (1978) and Taylor and Windhager (1979). These authors 
suggested that an increase in intracellular C a  2+ in the toad urinary 
bladder decreases PNa with the C a  2+ levels being regulated by a 
basolateral Na+-Ca 2+ exchanger. Under  physiological conditions 
the exchanger is poised to catalyze Na + influx and Ca 2+ efflux. 
Increasing intracellular Na + concentrations lead to an increase in 
i n t r a c e l l u l a r  C a  2+ levels, resulting from a decrease in C a  2+ exchange 
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across the basolateral membrane. The concomitant decline in baso- 
lateral C a  2+ exchange was due to a reduction in the Na + gradient 
across the basolateral membrane. It is also likely that Na + discharges 
Ca 2+ from mitochondria via an exchange mechanism, as occurs in 
cardiac tissue (Carafoli 1987), thereby providing another way to 
increase intracellular C a  2+. This mechanism for CaZ+-induced 
downregulation of apical Na + channels has received support from 
additional studies. 22Na+ uptake into apical membrane vesicles 
derived from the toad urinary bladder is inhibited by submicromolar 
concentrations of Ca 2+ (Chase and A1-Awqati 1983; Garty et al. 
1987; Garty and Asher 1985, 1986) and channel conductance in 
intact bladders is dependent upon the basolateral Na + gradient in 
the presence of a high serosal Ca 2+, but not in its absence (Chase 
and A1-Awqati 1981; Garty and Lindemann 1984; Palmer 1985b). 
Furthermore, basolateral flux studies using intact epithelia (Grinstein 
and Erlij 1978) and membrane vesicles (Chase and A1-Awqati 1981) 
have documented a Na+-Ca 2+ coupling. 

The measurement of channel-mediated Na + fluxes in membrane 
vesicles derived from the toad bladder has led to the identification of 
two different CaZ+-dependent processes that directly regulate apical 
Na + channels. The first process is a direct, reversible CaZ+-Na + 
channel interaction mediated by cation binding to a site on the 
cytoplasmic face of the channel protein (Garty et al. 1987; Chase and 
A1-Awqati 1983). In the second process, protonation of the binding 
site through changes in intracellular pH prevents the CaZ+-dependent 
blocking of the channel, whereas deprotonation renders the channel 
conductive (Garty et al. 1987). 

The CaZ+-induced downregulation of apical Na + channels has 
also been examined at the single-channel level. Using the patch 
clamp technique, Palmer and Frindt (1987a) have shown that the 
open time probability of Na + channels in excised patches from rat 
CCT shows no Ca z+ dependence. Nevertheless, in the cell-attached 
mode, addition of the Ca 2+ ionophore ionomycin to the bath decreases 
channel activity, and omission of C a  2+ from the bath abolishes the 
effect of ionomycin. Ling and Eaton (1989), using the cell-attached 
patch clamp configuration, have demonstrated that the single-channel 
activity induced in A6 cells by low Na + is eliminated by exposure of 
the cells to the calcium ionophore A23187. The patch clamp data 
suggest that intracellular C a  2+ may also regulate epithelial Na + 
channels via an indirect mechanism. As presented in Fig. 7, one 
possible mechanism is through the CaZ+/phospholipid-activated 
protein kinase, PKC. A role for PKC in channel regulation by the 
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Fig. 7. Diagram illustrating the model for Na + self-inhibition proposed by Ling and 
Eaton (1989). Raising luminal Na + concentration increases the apical Na + entry 
through the amiloride-sensitive Na + channels and thereby raises the intracellular Na 
creating a Na + gradient which favors H and Ca entry by the basolateral Na-H 
antiporter and Na-Ca exchanger, respectively. This results in intracellular 
acidification which decreases apical Na + entry and also raises intracellular Ca levels. 
This would in turn induce translocation of the inactive cytoplasmic form of PKC to 
the membrane where it would undergo activation. The activated form of PKC would 
subsequently induce phosphorylation of the Na + channel, thereby downregulating 
the channel. (Modified from Ling and Eaton 1989) 

action of phorbol  esters, activators of PKC, has been suggested. 
Phorbol  esters inhibit Isc in A6 cells (Yanase and Handle r  1986), 
22Na+ uptake into LLC-PK1 cells (Mohrmann et al. 1987), and net 
Na ÷ reabsorpt ion in isolated rat (Palmer and Frindt 1987b) and 
rabbit  (Hayes  et al. 1987) renal collecting tubules. Using the cell- 
at tached patch configuration, it has been documented  that phorbol  
esters decrease the mean number  of open channels in isolated rat 
CCT (Palmer and Frindt 1987b) and A6 cells (Ling and Eaton  1989). 
The inactivation by PKC is presumably due to a phosphorylat ion of 
the channel or a regulatory protein (Ling and Eaton  1989). This is 
corrobora ted  by the fact that PKC phosphorylates  the 150- and 95- 
kDa  subunits of the channel in vitro (Benos 1991). Alternatively,  
increases in intracellular Ca 2+ may inactivate Na ÷ channels by ac- 
tivating a phospholipase which modifies the phospholipid corn- 
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position of the apical membrane (Garty and Asher 1985) through 
CaZ+-dependent cytoskeletal-channel interactions (Garty and Asher 
1985), or by altering cAMP levels by the stimulation of prostaglandin 
synthesis (Omachi et al. 1974). Thus, it is not yet clear if C a  2+ itself 
can directly modulate individual Na + channel activity, or if its effects 
are secondary. 

4.2.3 Hydrogen 

Palmer and Frindt (1987a) used the patch clamp technique to examine 
the effects of cytoplasmic pH on Na + channels from rat CCT. When 
the pH of the solution bathing the cytoplasmic side of the patch was 
decreased from 7.4 to 6.9 or 6.4 at constant Ca 2+ (0.1 ~tM), the Po 
of single channels was reduced from 0.41 to 0.19 and 0.05, respec- 
tively. A decrease in the mean open time and an increase in the mean 
closed time of the channel at more acidic pH values resulted in the 
decrease in Po- At pH 6.4, the channels were mostly closed, with 
occasional brief openings. The single-channel conductance was not 
affected by changes in pH. 

Two possible, nonmutually exclusive hypotheses have been 
proposed by Palmer and Frindt (1987a) to explain the gating of 
epithelial Na + channels by protons. According to the first hypothesis, 
H + binds to sites either in the mouth of the channel or at a more 
distant site. This binding induces a conformational change converting 
the functional channel into a nonconducting state. In contrast, the 
second hypothesis is that protonation of a site on the channel protein 
shifts the equilibrium between the spontaneously open and closed 
states of the channel, such that the mean lifetime of the channel in 
the proton-blocked state (many seconds) would be longer than the 
spontaneously closed state. This latter hypothesis is supported by 
the observation that acidification increased the mean closed time 
of the channel. However, these closed times were shorter (4s) than 
those predicted by the first hypothesis. Palmer and Frindt (1987a) 
therefore proposed a kinetic model in which the closed state has a 
higher affinity for H + than the open state, and an increased H + 
concentration shifts the equilibrium toward the closed state. In 
summary, the decrease in single Na + channel activity that is observed 
with cytoplasmic acidification is consistent with earlier measurements 
of transepithelial Na + transport in amphibian epithelia (Ussing and 
Zerahn 1951; Palmer 1985b) and suggests that cytoplasmic pH can 
directly influence channel activity. 
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4.3.1 Osmotic Effects 

Tight epithelia exhibit a volume-related regulation of transepithelial 
Na + transport when exposed to an anisosmotic medium. Ussing 
(1965), using isolated frog skin, was the first to demonstrate that a 
decrease in the osmolarity of the bathing medium increased Isc, 
whereas an increase in osmolarity decreased Isc. The effects of a 
hyperosmotic mucosal solution on apical Na + channels in frog skin 
was subsequently examined by Zeiske and Van Driessche (1984) 
using current noise analysis. These authors observed that an increase 
in mucosal osmolarity decreases Isc by decreasing both the density of 
functional apical Na + channels and the single-channel current. The 
effects of solution osmolarity on Na + channel activity was recently 
examined in A6 renal epithelial cells by Wills et al. (1991). In con- 
trast, they reported that changes in mucosal osmolarity did not affect 
Isc; however decreases in serosal osmolarity resulted in a threefold 
stimulation of Isc. Current fluctuation analysis indicated that single- 
channel currents were similar for isosmotic and hyposmotic condi- 
tions, but the number of conducting channels were threefold higher 
for epithelia bathed in hyposmotic solutions. The reasons for the 
differences in the observations of Zeiske and Van Driessche (1984) 
and Wills et al. (1991) are not apparent. 

These cell volume-related changes in apical Na + permeability 
may be related to (a) direct modulation of channels by stretching 
or compressing the apical membrane; (b) changes in intracellular 
concentration of a second messenger involved in regulation, thereby 
activating nonconductive channels; or (c) insertion of new channels 
into the apical membrane from an intracellular pool (Wills et al. 
1991). The lack of detectable changes in membrane capacitance and 
the similarities in single-channel characteristics in anisosmotic and 
isosmotic conditions, together with the slow time course of the 
osmolarity effects on channel activation, led Wills and associates 
(Wills et al. 1991) to suggest that in A6 cells an intracellular mess- 
enger system, such as cAMP, Ca 2+, or  leukotrienes, activates quies- 
cent channels through a phosphorylation or methylation of the 
channels or their regulatory polypeptides. Nevertheless, it is possible 
that the number of vesicle fusion events needed to insert new channels 
into the apical membrane, thereby increasing the apical Na + per- 
meability, are so small that they cannot be detected by transepithelial 



80 D.J. Benos et al. 

capacitance measurements. Indeed, there is evidence from the rabbit 
urinary bladder that a reduction in mucosal osmolarity does lead to 
an increase in the epithelial capacitance concomitant with an increase 
in apical Na + channel density (Lewis and de Moura 1982). Lewis and 
de Moura (1982) propose that these events are due to the fusion of 
channel-containing vesicles with the apical membrane. However, 
Na + channel-containing vesicles have not, as of yet, been demon- 
strated within rabbit urinary bladder cells. 

4.3.2 Extracellular Na  + 

There is a reduction in apical PNa in response to increasing mucosal 
Na + concentrations. This phenomenon is termed Na + self-inhibition 
and is distinct from the homocellular ("feedback") mechanism 
mediated by intracellular Na + activity. Self-inhibition has recently 
been reviewed by Turnheim (1991). Biber and colleagues (Biber 
et al. 1966; Biber and Curran 1970; Biber 1971) first observed this 
phenomenon in frog skin. Using short-circuit current measurements 
and 22Na+ fluxes, they demonstrated that PNa saturated with in- 
creasing external Na + concentrations. Subsequently, Fuchs et al. 
(1977) reported that an increase in mucosal Na + concentration 
resulted in a rapid increase in Isc to a maximum value, followed by a 
slow decline to a lower steady state value over a time course of 
seconds. This delayed decline in Isc was interpreted as being due to a 
decrease in apical PNa induced by the increase in luminal Na +. These 
authors postulated a direct interaction between apical Na + ions and 
an allosteric site on the channel, resulting in the modification of the 
channel protein and inhibition of conductance. Van Driessche and 
Lindemann (1979), using amiloride-induced current fluctuation 
analysis, revealed that although the Is~ across frog skin increases, the 
deduced single-channel current shows no saturation in response to 
increases in mucosal Na +. This observation led them to conclude that 
increasing external Na + exerts its inhibitory effect by decreasing the 
density of open channels within the apical membrane, rather than by 
direct saturation of individual channels. Similar observations have 
been made for the chicken coprodeum (Christensen and Bindslev 
1982) and the rabbit urinary bladder (Lewis et al. 1984). 

Although noise analysis has suggested that self-inhibition is not 
due to the saturation of individual channels, amiloride-sensitive Na + 
channels that have been examined at the single-channel level by 
reconstitution into lipid bilayers (Olans et al. 1984) and by the patch 
clamp technique (Palmer and Frindt 1986; Ling and Eaton 1989; 
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Palmer et al. 1990) exhibit saturation with increasing Na + concen- 
tration. The apparent Km (i.e., the [Na +] where channel conductance 
is 50% of the value at which the single-channel conductance satu- 
rates) varies between 17 and 50raM. Garty and Benos (1988) have 
suggested that the lack of single-channel current saturation observed 
in frog skin by Van Driessche and Lindemann (1979) resulted from 
the fact that the experiments were performed in tissues depolarized 
by a high K + solution on the serosal side. Support for this idea comes 
from experiments performed in nondepolarized frog skin where 
saturation of single-channel Na + current has been detected using 
noise analysis (Helman et al. 1983). However, in nondepolarized 
rabbit urinary bladder (Lewis et al. 1984) and hen coprodeum 
(Christensen and Bindslev 1982), no saturation was observed. In any 
case, the fact that single Na + channels saturate with increasing Na + 
activity, even in oocyte expression studies (Palmer et al. 1990), 
suggests that unknown regulatory factors in the intact epithelium may 
shift the extracellular Na + affinity to higher values. 

Ling and Eaton (1989) applied the cell-attached patch clamp 
methodology to A6 renal epithelial cells. These authors were able to 
demonstrate that a reduction in external Na + increased Po and 
increased the number of channels in a single patch. They found that 
unit channel conductance and amplitude were not different when the 
luminal surface of the patch was bathed with high (129 raM) or low 
(3 mM) Na +, consistent with saturation of individual channels. This 
increase in channel activity was prevented by the Ca 2+ ionophore, 
A23187, and the PKC activators, phorbol myristate (PMA) and 
oleyl-acetyl-glycerol (OAG). The protein kinase inhibitor, sphing- 
osine, increased the Po and the number of channels within a patch. 
Ling and Eaton (1989) concluded that the regulation of apical Na + 
permeability by luminal Na + does not require direct interaction of 
Na + with channel protein; rather it involves intracellular regulatory 
mechanisms. The increase in luminal Na + results in an increase in 
intracellular Na +, thereby activating the homocellular regulatory 
pathway. Downregulation of the channels occurs through an increase 
in cytosolic Ca 2+ which in turn activates PKC (see discussion above 
and Fig. 7). Presumably it is through the activation of PKC that the 
channel is ultimately inactivated. Thus, the downregulation of apical 
Na + channels by Na + self-inhibition is directly linked to the homo- 
cellular regulatory mechanism and intracellular Ca 2+. 
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4.3.3 Luminal Proteases 

The serine proteases, urokinase and kallikrein are known to block 
amiloride-sensitive Na + channels. These two enzymes are secreted 
into the urine of mammals and amphibians by the distal tubules and 
alter the channels through proteolysis (Lewis and Alles 1986; Garty 
and Benos 1988). The presence of amiloride protects the channels 
from inhibition by these enzymes. It has been proposed by Lewis and 
colleagues (Lewis and Alles 1986; Zweifach and Lewis 1988) that 
urinary kallikrein may be involved in the physiological regulation of 
Na + transport by the mammalian urinary bladder. The kallikrein- 
induced degradation involves two steps - conversion of the channels 
first to an amiloride-insensitive, nonselective cationic channel, 
followed sometime thereafter by actual physical loss of the channels 
into the urine. Interestingly, noise analysis and more recently bilayer 
and single-channel recordings have shown that kallikrein-induced 
proteolysis of the channel does not affect the single-channel current 
in spite of drastic changes in selectivity and amiloride sensitivity 
(Lewis et al. 1984; Zweifach and Lewis 1988). The degradation of 
Na + channels is dependent upon the concentration of urinary kal- 
likrein, which is increased by corticoid hormones such as aldosterone. 
It has been hypothesized that channel density in the distal tubule and 
urinary bladder can be regulated by this mechanism (Lewis and Alles 
1986). Aldosterone can directly increase the number of active 
channels in the apical membrane by mechanisms discussed earlier, 
and can indirectly downregulate the natriuretic response of the 
epithelium by increasing the release of kallikrein into the urine. The 
physiological significance of this dual regulation of channel activity is 
obscure. 

Luminal proteolysis and loss of channels into the urine are viewed 
as the final stage of Na + channel turnover in the urinary bladder. 
Lewis and de Moura (1982) have suggested, based upon capacitance 
measurements of rabbit urinary bladder following exposure to re- 
duced mucosal osmolarity, that there are short-lived contacts between 
the apical membrane and subapical cytoplasmic channel-containing 
vesicles that lead to transfer of Na + channels to the apical membrane 
or, alternatively, actual fusion of these vesicles with the apical mem- 
brane. Apical membrane channels are subsequently degraded by 
urinary kallikrein into amiloride-insensitive leak pathways that 
may be internalized into the cell (Lewis and de Moura 1982). The 
amiloride-insensitive channels remaining within the apical membrane 
are further destabilized by kallikrein and are lost into the urine. 
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However, Bridges (unpublished observations) has found that high 
concentrations of kallikrein or urokinase have no effect on amiloride- 
sensitive 22Na+ uptake into membrane vesicles isolated from dexa- 
methasone-treated rat colon. 

4.4 G Proteins 

The guanine nucleotide-binding protein (G protein) family is com- 
posed of three subunits (~, ]3, and 7) that couple membrane receptors 
to a variety of ion channels (Brown and Birnbaumer 1988). Typically, 
their mechanism of action is as follows: agonist binding to a mem- 
brane receptor induces a conformational change in the G protein, 
thereby facilitating GTP replacement of GDP on the ~-subunit. The 
GTP-c~ complex subsequently dissociates from the ]3-and 7-subunits 
and interacts with the effector, such as an ion channel, which pro- 
duces a physiologic response. The intrinsic GTPase activity of the 
subunit then hydrolyses GTP to GDP and the Gt-GDP complex 
reassociates with the 13- and 7-subunits, thereby terminating the 
response (Brown and Birnbaumer 1988). 

A role for G proteins in the regulation of epithelial Na + channels 
was first suggested by Ausiello and collaborators (Mohrmann et al. 
1987). Pertussis toxin (PTX), a compound that prevents receptor- 
dependent activation of the G proteins Gi and Go, reduced elec- 
trogenic Na + transport across LLC-PK1 cells to the same extent as 
did ANP, cGMP, or PKC. PTX treatment also abolished completely 
amiloride-sensitive Na + transport in A6 renal epithelial cells. Sub- 
sequently, Garty et al. (1989), using membrane vesicles derived from 
toad urinary bladder cells, demonstrated that the nonhydrolyzable 
GTP analog, GTPTS, can stimulate amiloride-blockable Na t trans- 
port across the vesicles, and that GDP]3S can reverse this effect, 
thereby providing further evidence for the role of G proteins in 
regulating the activity of amiloride-sensitive Na + channels. 

Recently the patch clamp technique has been used to examine the 
effects of PTX and GTP and its analogs on the single-channel activity 
of an amiloride-sensitive, nonselective cation channel in renal me- 
dullary collecting duct cells (Light et al. 1989), and on an amiloride- 
sensitive Na+-selective channel in A6 cells (Cantiello et al. 1989, 
1990). Using excised inside out patches, it was shown that GTPyS 
increases the open probability of the channels, whereas both GDPI3S 
and PTX inhibit the channels. Furthermore, the addition of the (li_ 3- 
subunit of Gi to the cytoplasmic surface of the patches increases the 
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Po in both preparations, thereby directly demonstrating that the 
~t-subunit of Gi activates amiloride-sensitive Na + channels. 

Ausiello et al. (1991) provided further evidence for the role of 
G proteins in the regulation of epithelial Na + channels. They dem- 
onstrated that the epithelial Na + channel complex purified from A6 
cells contains a 41 kDa polypeptide that is ADP ribosylated by PTX, 
and that cross-reacts with anti-G~i_3 antibodies on immunoblots. 
Confocal imaging of A6 cells with specific antibodies revealed that 
both G~i_  3 and the Na + channel localize to distinct but adjacent 
domains of the apical surface. These data led to the suggestion that 
G-protein coupling to the Na + channel may not be direct; rather, its 
ion transport stimulatory capacity may be enhanced by further signal 
transduction pathways, such as phospholipase and lipoxygenase 
pathways, or by cytoskeletal rearrangements (the proteins ankyrin 
and fodrin are linked to the Na + channel complex, see below). It is 
therefore probable that the purified channel complex consists of 
regulatory proteins, such as G~ti_3, sequestered through noncovalent 
linkages with cytoskeletal proteins. G proteins are known to be 
linked to the cytoskeleton in other systems. Interestingly, an addi- 
tional polypeptide of the channel complex, the 95 kDa subunit, is 
ADP ribosylated by PTX; however, as it does not crossreact with 
anti-G protein antibodies on immunoblots and cannot be ADP 
ribosylated when the experiment is performed on the purified 
channel complex, its functional significance is unknown (Ausiello 
et al. 1991). 

The apical G-protein channel complex is geographically separated 
from the receptor-coupled Gs and Gi proteins which are situated 
within the basolateral membrane where they are responsible for the 
generation of second messengers. Three hypotheses are currently 
extant to explain how G proteins may regulate apical Na + channels. 
First, although an apically situated receptor coupled to the G protein 
has yet to be identified, phospholipase A2 and lipoxygenase path- 
ways, both of which are distinct from the signal transduction pathways 
present in the basolateral membrane, have been implicated in medi- 
ating G protein regulation of apical Na + channels (Light et al. 
1989). The proposed model for G protein-mediated regulation of 
the epithelial Na + channel by phospholipase A 2 and lipoxygenase 
pathways is presented in Fig. 8. Using the patch clamp technique, 
Cantiello et al. (1990) have shown that activation of phospholipase by 
Gi induces both an increase in the number and percent open time of 
Na + channels in apical patches excised from A6 cells. Interestingly, 
this response is similar to that reported for the aldosterone-induced 
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Fig. 8. Diagram summarizing the proposed model for G protein-mediated regulation 
of the epithelial Na + channel via phospholipase A2 and lipoxygenase pathways. The 
apically situated G protein is activated by ligand binding to a receptor which is also 
apically situated. The G protein in turn activates phospholipase A 2 (PLA) leading to 
the production of arachidonic acid and lipoxygenase (LPO). Lipoxygenase products, 
such as leukotrienes, either directly, or through additional pathways, activate the 
epithelial Na + channel. (Modified from Cantiello et al. 1990) 

activation of Na + channels in toad urinary bladder (Yorio and 
Bentley 1978). Both basal and aldosterone-stimulated Na + channel 
activities in the toad bladder epithelium are inhibited by mepacrine, a 
phospholipase inhibitor, indicating that G protein-induced phos- 
p h o l i p a s e  A 2 activity may play a role in the aldosterone-induced 
activation of Na + channels. A second possible mechanism is that 
the apical G protein-phospholipase pathway may be coupled to a 
basolateral receptor -G protein complex through a second messenger 
pathway, thereby offering a potential explanation for the role of G 
proteins in the hormonal regulation of apical Na + channels (Light 
et al. 1989). A third possible mechanism has been suggested by Ling 
et al. (1990) to explain Na + self-inhibition. They propose that there 
may be a nonreceptor-mediated modulation of the G protein/Na + 
channel complex by intracellular messengers, such as PKC. PKC has 
been documented in other systems to phosphorylate G proteins and 
to modulate the function of the G protein effector. Further experi- 
ments are required to unravel the intricacies of these regulatory 
mechanisms. 

4.5 Cytoskeletal Interactions 

Tousson et al. (1989) have demonstrated, with immunoelectron- 
microscopy, that amiloride-sensitive Na + channels are polarized to 
the microvillar domain of the apical membrane in Na+-reabsorbing 
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epithelia. This polarized distribution of the Na + channels to the 
apical membrane is essential for electrogenic Na + transport. It is 
becoming increasingly apparent that ion channels and transporters 
maintain their distribution within specific membrane  domains through 
direct association with the underlying cortical cytoskeleton. For 
example, Na+/K ÷ ATPase (Morrow et al. 1989; Nelson and Veshnock 
1987), band 3 analog of renal cells (Drenckhahn et al. 1985), cGMP 
cation channel of photoreceptors (Molday et al. 1990), and the 
voltage-dependent Na ÷ channel of neurons (Srinivasan et al. 1988) 
are all linked to the cytoskeleton, predominantly through ankyrin 
and fodrin. 

Recently Smith et al. (1991) demonstrated that the epithelial Na + 
channel is also linked to the cortical cytoskeleton by the proteins 
ankyrin and fodrin. Ankyrin,  fodrin, and actin were observed to 
colocalize with the Na ÷ channel to microvilli in A6 cells. Immunoblot  
analysis of partially purified bovine Na ÷ channel complex revealed 
that actin, fodrin, and ankyrin copurified with the channel complex. 
A direct interaction between the cytoskeleton and the channel 
was demonstrated by 125I-labeled ankyrin binding to the 150-kDa 
amiloride binding subunit of the channel. Further  evidence corro- 
borating a linkage of the channel to the cytoskeleton was obtained 
by measurements of lateral diffusion of fluorescently labeled Na + 
channels on the apical membranes of A6 cells using the technique of 
fluorescence recovery after photobleaching [FRAP]. These mea- 
surements revealed that the Na ÷ channels are immobile or have a 
very limited mobility (lateral diffusion coefficient = 4 x 10 - l lcm/s;  
Smith et al. 1991). 

In addition to maintaining the polarized distribution of Na ÷ 
channels to the microvillar domain of the apical membrane,  there is 
increasing evidence that the cytoskeleton may play a role in the 
regulation of Na + channel activity. Ausiello and collaborators 
(Cantiello et al. 1991; Pratt et al. 1991), using patch clamp meth- 
odology, demonstrated that the actin filament disrupter, cytochalasin 
D, induced Na ÷ channel activity in excised patches as well as in 
quiescent cell-attached patches. Addit ion of purified polymeric G 
actin to excised patches induced an increase in the average channel 
number,  and the subsequent addition of ATP further increased the 
number  of G actin-induced channels per patch as well as the percent 
open time. The addition of DNase 1, a G actin binding protein, was 
found to reverse the effect of actin on both channel activity and 
percent open time. Furthermore,  the addition of the actin binding 
protein filamin to the patches had the same effect as DNase 1. Based 
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Fig. 9A,B. Schematic diagrams summarizing the regulation of the epithelial Na + 
channel by the various hormones, ions, and ligands discussed Sect. 4. A The 
hormones aldosterone, vasopressin, insulin, and insulin-like growth factor (IGF-1) 
activate the Na ÷ channel, whereas atrial natrurietic peptide (ANP) downregulates 
the channel. Protein kinase C (PKC), G proteins, and the cytoskeleton have been 
documented to be involved both in the activation and downregulation of the Na + 
channel. The luminal proteases kallikrein and urokinase downregulate the channel 
via proteolysis. B Increases in the concentration of intracellular H +, Na +, or Ca 2+ 
ions or increases in either the osmolarity or Na + ion concentration of the luminal 
fluid downregulate the channel. Solid lines, activation of the channel; dashed lines, 
downregulation of the channel 

u p o n  these  da ta ,  it was  p r o p o s e d  tha t  the  shor t  p o l y m e r i c  f o r m  o f  
act in m a y  be  i nvo lved  in r egu la t ing  N a  + channe l  act ivi ty .  

A l t e r n a t i v e l y ,  the  c y t o s k e l e t o n  m a y  indi rec t ly  m e d i a t e  c h a n n e l  
act ivi ty  t h r o u g h  a cy toske l e t a l l y  l inked  G p ro t e in .  I t  has  b e e n  p ro -  
p o s e d  tha t  the  G~i_  3 which  copur i f ies  wi th  the  channe l  is l i nked  to  
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the cytoskeleton (Ausiello et al. 1991). These data suggest that the 
linkage between the cytoskeleton and the channel may be a site for 
hormonal modulation of epithelial Na + transport. Figure 9 presents a 
composite model summarizing all the positive and negative regulating 
effectors of epithelial Na + channels. 

4.6 Biosynthetic Studies 

The recent development of antibodies that recognize the amiloride- 
sensitive Na + channel facilitates the examination of channel biosyn- 
thesis. Kleyman et al. (1991) have provided a preliminary examination 
of channel biosynthesis in A6 epithelial cells using an antibody 
directed against the amiloride binding site of the epithelial Na + 
channel (anti-idiotypic). Filter-grown cells were metabolically labeled 
for 15 min with [35S]methionine, chased with excess free methionine, 
and labeled channels were subsequently immunoprecipitated from 
solubilized membranes using antibodies generated against the ami- 
loride binding domain of the channel. Following a 2-h chase period, 
channel subunits with apparent molecular masses of 230-260kDa, 
180kDa, 140kDa, and 70kDa were observed. However, when the 
chase period was reduced to 15 min, neither the channel complex nor 
a precursor of the amiloride binding subunit were observed. These 
authors suggest that at least 15-75 min is needed for assembly of the 
epithelial Na + channel complex and/or development of an epitope 
which is recognized by the anti-idiotypic antibody. Furthermore, they 
propose that post-translational modification or assembly of the 
channel complex is a prerequisite for antibody binding. 

One such post-translational modification is glycosylation. At least 
three subunits of the Na + channel are glycosylated, namely the 315, 
150, and 95 kDa subunits (Garty and Benos 1988; Benos 1989). There 
is evidence from TMB cells, a cell line derived from the toad urinary 
bladder, that glycosylation is necessary for channel function. When 
TMB cells are cultured in the presence of tunicamycin, an inhibitor 
of N-linked glycoslyation, there is a marked decrease in apical Na + 
entry (Zamofing et al. 1989). 

Barbry et al. (1990a), using a molecular biological approach, have 
determined the rate of biosynthesis of a 97-kDa amiloride binding 
protein (ABP) isolated from the human kidney. Human 293S cells 
were transfected with the cDNA encoding the ABP, and metabo- 
lically labeled with [35S]methionine. Following varying chase periods 
with excess unlabeled methionine, the labeled ABP was immuno- 
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precipitated from solubilized membranes using a monoclonal anti- 
body directed against the ABP isolated from pig kidney cortex 
(Barbry et al. 1990a). The half-life of synthesis for the human kidney 
ABP was found to be approximately 30min. Incubation of trans- 
fected cells in tunicamycin led to the disappearance of the 97kDa 
polypeptide and replacement with a 70kDa polypeptide. As in- 
dicated earlier, although this protein is presumably a subunit of the 
epithelial Na + channel, its functional role is unknown as it fails to 
conduct Na + when expressed in a transfection system (Barbry et al. 
1990a). 

5 Molecular Biology of  Epithelial Na + Channels 

An insight into the molecular biology of the amiloride-sensitive Na + 
channel was obtained using the Xenopus oocyte expression system. 
This technique relies on the ability of prophase-arrested oocytes to 
faithfully express exogenous mRNA isolated from heterologous 
sources. The main advantage of this technique is that it allows 
advances in gene cloning when protein sequence information or 
antibodies to the protein of interest are unavailable. Because oocytes 
do not express an endogenous amiloride-sensitive Na + channel, this 
system is ideal for attempting the expression cloning of this protein. 

Successful translation of the amiloride-sensitive Na + channel in 
the oocyte has been documented for RNA isolated from the toad 
kidney A6 cell line (Hinton and Eaton 1989; George et al. 1989; 
Palmer et al. 1990), human nasal polyps (Kroll et al. 1989), and the 
chicken intestine (Garty and Asher 1991) using voltage clamping or 
22Na+ influx methodologies to assay for the expressed channel. A6 
cells grown on impermeable supports require aldosterone pretreat- 
merit prior to RNA isolation in order to record channel activity by 
dual electrode voltage clamp (Hinton and Eaton 1989; Palmer et al. 
1990). When the cells are grown on collagen-coated Millipore filters, 
the extracted mRNA is capable of expressing tenfold more Na + 
current than that prepared from cells grown on collagen-coated 
Millipore filters, the extracted mRNA is capable of expressing ten- 
fold more Na + current than that prepared from cells grown on plastic 
dishes. In addition, aldosterone treatment is unable to further en- 
hance the magnitude of the expressed Na + current (Palmer et al. 
1990). The results of George et al. (1989), using a radioisotopic 
22Na+ influx assay to monitor translation of the channel, are in 
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agreement with these voltage clamp studies. These data demonstrate 
that the largely undifferentiated plastic-grown A6 cells require 
aldosterone, itself an inducer of differentiation, to express an active 
amiloride-sensitive Na + channel in the oocytes. These data directly 
correlate with the short-circuit current measurements made across 
the monolayer.  Aldosterone may perturb the transcription of an 
inhibitory protein or induce an activator of the already transcribed 
and/or translated channel protein. Alternatively, aldosterone may 
directly activate the transcription of the amiloride-sensitive Na ÷ 
channel. In order to address these possibilities, Garty and Asher 
(1991) injected chicken intestine poly(A+)  m R N A  into oocytes 
maintained in a medium containing actinomycin D. The m R N A  was 
prepared from chickens fed on either a normal sodium (NS) or 
sodium-free (LS) diet (to enhance aldosterone levels chronically in 
vivo) for 10 days. Injection of m R N A  isolated from NS hens did not 
result in any amiloride-sensitive Na ÷ currents as measured by 2aNa+ 
influx. However,  the LS preparation did enhance Na ÷ uptake and 
this was unaffected by either actinomycin D or coinjection of NS 
mRNA.  Thus, under their experimental conditions in the chicken 
intestine, it appears unlikely that the inability of the NS m R N A  to 
express active amiloride-sensitive Na ÷ channels in the oocyte is due 
to the translation of an inhibitory protein. 

In all studies so far reported,  expression of channel activity was 
always monitored as a tonically active conductance or influx: i.e., 
stimulation of the channel by second messengers was not required. 
Replacement  of extracellular Na + with the impermeant  cation 
N M D G  showed the amiloride-inhibitable current to reverse at 
+ 6 0 m V  (Hinton and Eaton 1989; Palmer et al. 1990). This reversal 
potential provided proof for the expression of a highly Na÷-selective 
current from A6 cell-derived mRNA.  Palmer et al. (1990) reported 
an enhancement  of amiloride-sensitive conductance when the oocytes 
were preincubated at 25°C for 6 h prior to recording. This temperature- 
dependent  conductance was not diminished by a 15-rain preincu- 
bation of the oocyte with trypsin at 19°C prior to temperature 
elevation. 4 The authors thus concluded that in the oocyte maintained 
at 19°C the channel was synthezized. However,  the protein either 
remained at an intracellular location or was inserted into the mem- 

4Trypsinization of the intact toad urinary bladder has previously been shown to 
attenuate the amiloride-sensitive Na + current, presumably by cleaving part of the 
channel at the plasma membrane (Garty and Edelman 1983). 
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brane in a different conformational form which rendered it inactive 
and unsusceptible to trypsin. 

At -90  to - 1 0 0 m V  the Ki for amiloride inhibition of the Na + 
channel expressed from A6 cells lies between 48-110nM (Hinton 
and Eaton 1989; Palmer et al. 1990). Sodium influx measurements 
demonstrated that benzamil at 0.1~tM was just as effective as l~tM 
amiloride while 1 gM EIPA decreased the Na+-selective current by 
only 16% (George et al. 1989). These results are consistent with the 
synthesis of a high amiloride affinity Na + channel. Thus, translation 
of A6 cell mRNA in Xenopus oocytes results in the expression of a 
Na + channel with high affinity for amiloride and high selectivity for 
Na +. These characteristics are identical to those of the channel found 
in tight epithelia. 

Fractionation of the A6 poly(A+) mRNA by nondenaturing 
sucrose gradient centrifugation prior to injection has been accomp- 
lished by two groups. George et al. (1989) found that a fraction 
containing mRNAs ranging from 1.4 to 4.4kb resulted in maximum 
Na + influx. Palmer et al. (1990) were able to record maximum 
amiloride-sensitive conductance from mRNAs of approximately 
2-2 .4kb .  Both results taken together suggest that a protein of 
approximately 70-75 kDa is sufficient for the expression of amiloride- 
sensitive Na + channels in the Xenopus oocyte. 

Epithelial Na + channels have also been expressed from poly(A+) 
mRNA isolated from human nasal tissue (Kroll et al. 1989). Using 
dual electrode voltage clamp, maximum expression was measured 2 
days following injection of 25ngmRNA.  The amiloride-inhibitable 
current correlated with the amount of injected mRNA when 12.5 ng 
or less was used. These dose-response values are similar to those 
found by George et al. (1989) for A6-derived poly(A+) mRNA. The 
Ki values of amiloride inhibition on the membrane potential and 
resistance of the oocyte were 95nM and 130nM, respectively. 
However, because this measurement was not made under a holding 
clamp potential these results cannot be directly compared to the 
those derived from the A6 cell mRNA. 

The more classical approach to molecular cloning has most 
recently been utilized in order to clone a phenamil binding protein 
from the pig kidney cortex (Barbry et al. 1990a). Initial work in- 
volved the purification of a 105-kDa phenamil binding protein from 
this tissue. Reconstitution of this protein into liposomes resulted in a 
phenamil-sensitive Na + influx which was inhibited by phenamil and 
amiloride with a Ki of 10gM. This low amiloride affinity binding 
protein was subject to partial amino acid sequence analysis following 
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trypsin digestion. An oligonucleotide 66 bases in length was designed 
from these data and used to screen a human kidney cDNA library. A 
full length cDNA clone was isolated which contained an open reading 
flame of 713 amino acids. The predicted molecular weight of this 
protein is 78 886 Da. It contains a signal peptide sequence and three 
potential N-linked glycosylation sites. Hydrophobicity plots do not 
show any potential membrane spanning helices which is surprising in 
light of the previous reconstitution studies. Expression of the clone 
in 293S and NIH 3T3 cells resulted in the synthesis of a 97kDa 
protein as demonstrated by immunoprecipitation with monoclonal 
antibodies raised against the purified protein. Overnight incubation 
of the transfected cells with the N-linked glycosylation inhibitor 
tunicamycin caused a reduction in the apparent molecular weight of 
the protein by 27 kDa. Scatchard analysis of [3H]phenamil binding to 
membranes of transfected 293S cells showed that the cloned protein 
bound phenamil with a Kd of 2.SnM. A Kd of either 1 or 60nM 
was previously reported for phenamil binding in intact pig kidney 
membranes. Thus, when expressed in a heterologous system, the 
protein retains pharmacological characteristics similar to those in its 
native environment (see Sect. 3.1). However, although phenamil 
binding was retained the protein did not display conductive prop- 
erties. Neither patch clamp analysis nor cRNA injection into Xenopus 
oocytes revealed Na + channel activity. These results may imply that a 
multi-protein channel complex is responsible for Na + transport in the 
kidney cortex similar to that operative in the papillae (Garty and 
Benos 1988). 

The cloning of a kidney apical membrane protein has recently 
been reported and implicated as a putative subunit of the amiloride- 
sensitive sodium channel (Staub et al. 1990). The protein was 
identified by its cross-reactivity with a polyclonal antibody prepared 
against the Na+/K + ATPase (Rossier et al. 1989). Its cloning was 
achieved by initially screening an A6 cell expression cDNA library 
and subsequently a Xenopus ovary cDNA library. The cDNA con- 
tained an open reading frame of 1420 amino acids and Northern 
analysis revealed a 5.2kb message in both A6 cells and stage VI 
occytes. The length of the open reading frame suggests that the clone 
could potentially encode the 150kDa amiloride binding subunit of 
the Na + channel. However, the amiloride binding potential of this 
protein has not yet been reported. It should be realized that although 
the protein is expressed in stage VI Xenopus oocytes there is no 
evidence for an amiloride-sensitive Na + current in this system. 
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Progress in our laboratory has been made with cloning one of the 
subunits of the bovine papilla sodium channel. Polyclonal antibodies 
directed against the complex were used to screen a bovine kidney 
expression cDNA library. A positive clone containing a 6.5 kb insert 
was purified. On northern blots of bovine papilla mRNA, the clone 
reacted with two messages of 7 kb and >9.5 kb, respectively. Western 
blotting of proteins prepared from bovine kidney membranes using 
an antibody preabsorbed against the expressed clone revealed a 55 
kDa protein. The sequencing of this clone is in progress (Cunningham 
et al. 1990). 

Quite recently two nonselective cation channels have been 
cloned: one from the bovine rod photoreceptor (Kaupp et al. 1989) 
and the other from bovine and rat olfactory epithelium (Ludwig et al. 
1990; Dhallan et al. 1990). These channels, which are regulated 
physiologically by cGMP and cAMP, respectively, share extensive 
homology. Both proteins are similar in molecular mass (79.6 kDa for 
the rod and 76kDa for the olfactory), have six putative transmem- 
brane regions and a highly conserved cyclic nucleotide-binding 
domain. Expression of the rod channel in Xenopus oocytes resulted 
in a cGMP-activated single-channel conductance of 20 pS that did not 
discriminate between Na* and K* (Kaupp et al. 1989). Similarly, 
electrophysiological studies of the olfactory channel in human 
embryonic kidney cells revealed a K*-to-Na + permeability ratio of 
0.82. In addition, this channel could be activated equally well by 
cAMP, cGMP, and cCMP (Dhallan et al. 1990). Southern genomic 
blots carried out by these latter authors demonstrated that the rod 
and olfactory channel are derived from separate genes. 

cGMP-regulated cation channels have been described in A6 cells 
(Ohara et al. 1991) and in the IMCD of the rat kidney (Light et al. 
1989). However, while cGMP activates the 1 pS A6 cell channel, it 
inhibits the 20 to 30pS conductance in the latter cells. In addition, 
amiloride is capable of inhibiting the nonselective cation channel of 
the rat IMCD, while Gc~i-3 activates the conductance (Light et al. 
1989). 

Thus, at the physiological level, there appear to be many simi- 
larities between the different cyclic-nucleotide gated nonselective 
cation channels and the amiloride-sensitive Na + channel. If the rod 
and olfactory channels share some sequence homology with the 
epithelial channels, oligonucleotide probes derived from the cDNA 
sequence of these channels would be very useful for screening epi- 
thelial cDNA libraries. 
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6 Amiloride-Sensitive Na + Channels and Cystic Fibrosis 

Cystic fibrosis (CF), the most common hereditary disease among 
Caucasians (Stern et al. 1976), involves multiple organ systems and is 
characterized by abnormalities in epithelial water and ion transport 
(Wood et al. 1976; Dearborn 1976; Knowles et al. 1986) that reduce 
the water content of epithelial secretions (Chernick and Barbero 
1959; Potter et al. 1967). Although the most common cause of death 
in CF is from viscous airway secretions and recurrent pulmonary 
infections which lead to decreases in gas exchange (Wood et al. 1976; 
Kohler et al. 1986), the pathology of CF is also manifested by in- 
creased C1- content in sweat (>80mEq/1), malabsorption of food- 
stuffs secondary to pancreatic enzyme insufficiency, and intestinal 
obstruction due to thickened meconium (Wood et al. 1976; Orlando 
et al. 1989; Newhouse et al. 1976; Wanner 1976). The chronic airway 
and bowel obstruction observed in CF is due, at least in part, to 
abnormalities in epithelial electrolyte transport, principally ~iscribed 
to a defect in C1- ion transport (Frizzell 1987; Knowles et al. 1983b; 
Quinton 1986). However, a growing body of in vitro and in vivo data 
suggests that epithelial Na + transport is also abnormal (Knowles 
et al. 1981, 1986; Gowen et al. 1986; Boucher et al. 1985, 1986). 
Much of the evidence for abnormalities in the Na + transport in CF 
comes from cellular or tissue responses to the diuretic amiloride. 

It was first hypothesized that an abnormality in Na + transport 
played a role in the pathology of CF in 1981, when in vivo mea- 
surements across intact nasal, tracheal, and bronchial respiratory 
epithelia demonstrated greater transepithelial electrical potential 
differences (PD) in CF patients than in non-CF or diseased controls 
(Knowles et al. 1981). This hypothesis was supported by greater 
reductions in CF nasal and airway epithelial PD as compared to 
controls following treatment with amiloride (Knowles et al. 1981). As 
in adults and children, the transepithelial PD in the respiratory 
epithelia of neonates with CF (32-42 weeks gestation) was twice that 
of controls (Fig. 10), while exposure to amiloride caused significantly 
greater PD decreases in CF epithelia than in epithelia from normals 
or diseased controls (Gowen et al. 1986). These data were recorded 
prior to infection (Knowles et al. 1981; Gowen et al. 1986) and the 
results suggested that Na + transport abnormalities in CF are 
inherent to the epithelia rather than the result of chronic infections or 
lung disease. In addition, neither differences in aldosterone levels 
(Knowles et al. 1981), nasal polyp morphology (Oppenheimer and 
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Fig. 10. Schematic model for Na + transport across the apical membrane of nasal 
epithelia from normal and CF patients. Compared to normal nasal epithelia, apical 
Na + transport in tissue from patients with CF shows relative impermeability to C1- 
flux, while Na + flux is increased. These epithelial transport abnormalities in CF 
tissue result in a twofold increase in the electrical potential difference across the 
epithelium (PD transepithelial); 70% of PD transepithelial was sensitive to amiloride while 
PD tr . . . .  pithelial in normal tissues decreased only 30% in response to amiloride treat- 
ment. (Data from Knowles et al. 1981, 1983a; Gowen et al. 1986) 

Rosenstein 1979), nor age-related changes in cell density (Stutts et al. 
1986) could account for differences in the electrical properties of the 
nasal epithelial tissue. In vitro studies have further characterized 
electrolyte transport abnormalities across CF respiratory epithelia. 
These tissues demonstrated excess Na + absorption and relatively low 
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C1- permeability (Boucher et al. 1986; Widcombe et al. 1985; 
Knowles et al. 1983a,b). 

Net Na + absorption accounts for 90% of the measured short- 
circuit current in epithelium excised from nasal polyps and mounted 
in Ussing chambers (Boucher et al. 1986). In CF tissues, net Na + 
absorption occurred at a greater rate, principally due to increased 
unidirectional Na + flux from the mucosa to serosa (Boucher et al. 
1986). While there was no difference in basal net CI- flux between 
normal and CF respiratory epithelia, unidirectional C1- fluxes in CF 
tissue were significantly less than those measured in normal and 
diseased controls (Boucher et al. 1986). Differences in ion flux in 
these tissues were not linked to defects in ]£adrenergic receptor 
function of cAMP levels as previously proposed (Davis et al. 1980; 
Galant et al. 1981) because CF tissues responded to isoproterenol 
treatment.  In control tissues isoproterenol increased unidirectional 
C1- flux (serosa to mucosa) and net C1- secretion without altering 
Na + movement  across the tissue. In contrast, isoproterenol treatment 
of CF tissues resulted in increased Na + absorption with no change in 
C1- flux (Boucher et al. 1986). The amiloride response of CF tissues 
also differed from that of control tissues. In contrast to epithelia 
excised from normals, the entire short-circuit current in CF nasal 
epithelia was sensitive to amiloride. Furthermore,  pretreatment  of 
CF epithelia with amiloride prevented any increase in short-circuit 
current (Boucher et al. 1986). The increase in cAMP levels in CF 
tissues following exposure to either isoproterenol or forskolin was 
similar to that measured in non-CF tissue (Boucher et al. 1986). 

Further evidence that the CF defect includes increased Na + 
transport was demonstrated by increases in Oz consumption and Na + 
pump sites. Excised nasal epithelia from CF patients consumed 02 at 
two to three times the rate of normal tissue and had 60% more 
ouabain binding sites (Stutts et al. 1986). In addition, the absolute 
inhibition of 02 consumption in CF tissue by amiloride was three to 
four times that of non-CF tissue (Stutts et al. 1986). As in other 
studies, these effects could not be accounted for by increases in 
endogenous aldosterone or chronic inflammation (Stutts et al. 1986; 
Knowles et al. 1981; Gowen et al. 1986). 

Although much has been learned about the transport properties 
of CF epithelia, the basic defect, or defects, remain(s) unknown and, 
thus, t reatment is symptomatic (Wood et al. 1976). Because the 
excessive Na + flux associated with CF epithelia is decreased by 
amiloride treatment,  intrapulmonary amiloride has been used in both 
animal and human studies to investigate its ability to ameliorate the 
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symptoms associated with CF (Mentz et al. 1986; Kohler et al. 1986; 
Knowles et al. 1990; App et al. 1990; Boucher et al. 1987). Direct 
application of amiloride on the trachea of sheep increased the water 
content of airway mucus (Mentz et al. 1986). To date there have 
been only limited clinical trials testing the effectiveness of amiloride 
in treating CF patients (Kohler et al. 1986; Knowles et al. 1990; App 
et al. 1990). Thus far, the results from these limited clinical trials with 
amiloride have been encouraging, with respect to increasing both 
mucociliary and cough clearance of airway secretions (Kohler et al. 
1986; Knowles et al. 1990; App et al. 1990), and maintaining ade- 
quate lung function (Knowles et al. 1990). Clinical improvements 
were observed with no signs of pulmonary or systemic toxicity 
(Kohler et al. 1986; Knowles et al. 1990; App et al. 1990), confirming 
findings in animal models (Mentz et al. 1986; Boucher et al. 1987). 

The mechanism by which amiloride improves lung function is 
unknown. It could work by decreasing the viscous nature of the 
airway secretions, improving ciliary function, or both (Wood et al. 
1976; Newhouse et al. 1976; Chernick and Barbero 1959; App et al. 
1990). Water content in CF sputum is less than in normal sputum 
(Lutz et al. 1973; Reasor et al. 1978; Matthews et al. 1963). Following 
amiloride inhalation, sputum from CF patients was less viscous 
(Knowles et al. 1990; App et al. 1990) and the Na + content was 
higher than in sputum following inhalation of a placebo (App et al. 
1990). Although sputum Na + content was still significantly less in CF 
patients treated with amiloride than in the secretions of non-CF 
disease control patients (122/vs 160mmol/1; App et al. 1990), there 
was a trend toward normalizing Na + content. It is unlikely that 
amiloride improves mucociliary transport by increasing ciliary beat 
frequency because its effect isweak and transient (di Benedetto et al. 
1990). 

Regardless of the mode of action, therapeutic levels of amiloride 
were deposited in the airways by aerosolization and inhalation of the 
drug (Knowles et al. 1990; App et al. 1990). Maximal improvement 
in mucociliary clearance occurred 30min after amiloride inhalation 
and lasted for 60-80min (Kohler et al. 1986; App et al. 1990). 
Chronic administration of amiloride (four times daily for 25 weeks) 
improved cough clearance to a greater extent than mucociliary 
clearance (Knowles et al. 1990; App et al. 1990). Although lung 
function did not improve following chronic inhalation of amiloride, 
the forced vital capacity decreased at a significantly slower rate than 
during a similar period in which vehicle alone was breathed (Knowles 
et al. 1990). Airway obstruction was not lessened, however, as 
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indicated by similar FEV1 values during inhalation of either amiloride 
or vehicle alone (Knowles et al. 1990). Although amiloride inhalation 
appears to have some acute and chronic benefits in CF patients, these 
trials have been conducted in only a few patients over relatively short 
periods of time. The pulmonary disease process in CF takes place 
over many years, and amiloride trials of similar duration in a larger 
group of patients is required to confirm its therapeutic effect and lack 
of toxicity. 

The most recent advances in the study of CF have been in the 
molecular biological aspects of the disease. The defect in CF has 
been associated with a single gene defect, located on the long arm of 
chromosome 7 (Knowlton et al. 1985; Wainwright et al. 1985; White 
et al. 1985; Rommens et al. 1989; Riorden et al. 1989). The recent 
mapping of a human cDNA encoding for a human amiloride binding 
protein (hABP) on chromosome 7 in a region adjacent to the area 
implicated in CF (Barbry et al. 1990c) may indicate that abnor- 
malities in C1- and Na + transport are linked. Although the gene 
for hABP was not directly modified by mutations causing CF, The 
possible link between hABP and CF is an area which demands 
further investigation. Electrophysiological data from patients who did 
not express the CF defect, yet were heterozygotes for the disease, 
make this area of study even more important. When the nasal 
epithelium of patients heterozygous for CF were studied, the trans- 
epithelial PD and amiloride responses were not intermediate between 
those of healthy subjects and those of homozygotes (Knowles et al. 
1981). Thus, the Na + defect appeared to be linked with the clinical 
expression of CF (Knowles et al. 1981). 

In conclusion, changes in luminal secretions in CF are compatible 
with both decreased CI- secretion and increased Na + reabsorption 
and, hence, water absorption (Knowles et al. 1981). However, there 
are many issues in regard to abnormal electrolyte transport that are 
yet to be resolved. Aerosolized amiloride may have therapeutic 
implications if excessive epithelial Na + absorption is important in the 
pathogenesis of pulmonary disease in CF (Knowles et al. 1981). 
However, clinical abnormalities in lung function characteristic of CF 
are often not evident for years, and, thus, evaluation of amiloride's 
effectiveness may take an equally long time (Knowles et al. 1981). In 
addition, the lungs of infants with CF develop normally in utero 
(Wood et al. 1976). Because there appears to be a normal driving 
force for prenatal liquid secretion into the lumen of CF fetal airways 
(Gowen et al. 1986), abnormal transition or regulation of perinatal 
ion transport processes is suggested (Boucher et al. 1981). Finally, 
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increased airway Na + influx can contribute to transepithelial PD, 
but it is not known whether  the number  of channels is increased or 
if the characteristics of the Na + channel are altered (Cuthbert  
et al. 1990). These issues may be addressed as the family of channels 
identified by their amiloride-inhibitable Na + transport  are isolated 
and characterized. 

7 Coda 

Amiloride-sensitive ion channels exist in most of the Na + reabsorbing 
epithelia of vertebrates.  Historically, these channels have been 
studied in frog skin, toad urinary bladder,  and renal distal and 
collecting tubules. Thus, their prime physiological function involves 
the regulation of extracellular Na + homeostasis.  Recent  applications 
of the patch electrode technique and the development  of immuno- 
logical probes of epithelial Na + channels have revealed that these 
channels may subserve other  functions, for example,  lung fluid 
clearance and sensory transduction. These techniques have also 
opened up new possibilities for understanding amiloride-inhibitable 
channels at the molecular  biological level. 

Thus, a new era of research is commencing with the promise of 
elucidating regulatory pathways of transport,  structural correlates of 
conduction, and genetic control of expression. The knowledge 
derived from these studies will undoubtedly  be useful in the design 
and use of specific drugs for therapy.  
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1 Introduction 

Chronic low-frequency stimulation is by now a well-established 
method for inducing specific changes in muscle properties. Over the 
past decade several reviews have been published which summarized 
the major effects of chronic stimulation (Jolesz and Sr6ter 1981; 
Salmons and Henriksson 1981; Pette 1984, 1985, 1991; Pette and 
Vrbovfi 1985; Lieber 1986; Pette and Dfisterh6ft 1992). The increased 
use of this model has led to an expansion of knowledge in this field 
and a large body of information has accumulated on the numerous 
phenomena of the activity-induced transformation of muscle fiber 
phenotype.  These data emphasize that fully differentiated muscle 
fibers retain the potential to respond to altered functional demands 
with specific adaptive changes. 

Chronic low-frequency stimulation represents an approach that 
allows researchers to relate functional changes to specific molecular 
events in the stimulated muscle. Unlike exercise, the activity is 
restricted to the stimulated muscle and, thus, the muscle is less 
influenced by other changes that can occur in the body during train- 
ing. Artificial stimulation bypasses the central nervous system and 
activates all motor  units equally, whereas during exercise individual 
motor  units are activated in a graded and hierarchical manner. 
Therefore, chronic stimulation can provide information as to the 
extent of the muscle plasticity. It has also become clear that chronic 
electrical stimulation of a skeletal muscle may evoke changes which 
exceed those induced by any other form of increased contractile 
activity. It has, thus, provided information as to the limits of muscle 
adaptation. In addition, the effects of chronic stimulation on skeletal 
muscle have inspired clinical investigators to use this method for 
medical purposes. 

The chronic stimulation model enables researchers to correlate 
functional changes with alterations at the molecular level. Moreover, 
it offers the possibility of investigating the influence of activity on the 
expression of specific genes. By following the time course of changes 
it is possible to deduce coordinations in gene expression of different 
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functional elements of the muscle fiber. Finally, this model offers a 
unique opportunity to study the regulatory mechanisms involved in 
the control of gene expression in excitable cells. 

The use of chronic electrical stimulation in different experimental 
models has produced numerous interesting results which pose several 
new questions. These include the problem of whether stimulation- 
induced changes occur as a result of an increased amount of activity 
or a specific impulse pattern. Also, the observation that the same 
muscles in different animal species respond in a variable manner to a 
similar activity pattern raises the question as to the existence of 
species-specific ranges of adaptation. This suggests that additional 
factors may modulate the outcome of chronic low-frequency stimu- 
lation. Such factors may include internal environment, i.e., hormonal 
factors, or mechanical conditions, e.g., locomotor patterns or load. 

The present review will cover only material related to the con- 
tractile apparatus and its energy-supplying machinery. The effect of 
activity on other muscle-specific proteins, such as the acetylcholine 
receptor and cholinesterase, has recently been reviewed (Laufer and 
Changeux 1989; Sketelj et al. 1991). 

2 Fast-to-Slow Transitions by Chronic Low-Frequency Stimulation 

Chronic stimulation of extensor digitorum longus (EDL) and tibialis 
anterior (TA) muscles of the rabbit and flexor digitorum longus 
(FDL) muscle of the cat at 10Hz converts these fast-twitch muscles 
into slower contracting ones (Salmons and Vrbovfi 1969). Con- 
comitant with these changes, various elements of the muscle fiber 
are also modified. Nevertheless, the relationship between alterations 
in structural and molecular properties of the muscle fiber and changes 
of physiological characteristics has not been entirely explained. 

2.1 Methods of Stimulation 

In animal experiments with long-term stimulation it is desirable to 
use either fully or partially implantable devices, for it is difficult to 
habituate the animal to externally applied electrodes. The devel- 
opment of implantable electrodes required materials that can be 
tolerated by the organism. The method was first developed in rabbits 
(Vrbovfi 1966; Salmons and Vrbovfi 1969) using bipolar platinum or 
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stainless steel electrodes insulated except for the tip. The electrodes 
were placed on either side of the nerve to be stimulated and secured 
to the surrounding tissue so as not to mechanically disturb the nerve. 
The positioning of the electrodes in relation to the nerve is extremely 
important for achieving adequate stimulation of all the nerve fibers. 
This may be more difficult to achieve if the electrodes are perpen- 
dicular to the nerve (Chachques et al. 1988). The electrodes can be 
externalized and connected either to a conventional stimulator (Pette 
et al. 1973) or to a miniaturized portable stimulator (Tyler and 
Wright 1980). One improvement  has been the use of a miniaturized 
receiver carried by the animal for transmitting the desired stimulus 
pattern by telestimulation (Schwarz et al. 1983; Eerbeek et al. 1984). 
Implantable stimulators with fixed parameters of stimulation were 
initially used in animal experiments (Salmons and Vrbovfi 1969), but 
these have been improved so as to provide a facility to vary the 
stimulus parameters by a remote transcutaneous optical link (Brown 
and Salmons 1981). More elaborate implantable devices are used in 
muscle pacing for cardiac assist where the muscle stimulation must be 
linked to the cardiac function (Chachques et al. 1988; Grandjean 
et al. 1990). For stimulating human muscles both invasive and non- 
invasive techniques can be used. Occasionally, noninvasive, trans- 
cutaneous stimulation has also been used in experiments on rabbits 
(Mabuchi et al. 1982). This method is fraught with several disadvan- 
tages, e.g., the animals must be restrained to prevent them from 
removing the stimulating electrodes. In addition, currents used to 
produce effective stimulation have to be so great that the sensation 
caused by the stimulation is not easily tolerated by the animal. 
Therefore,  the currents used will probably stimulate only the lowest 
threshold motor  axons which supply selected muscle fiber popula- 
tions. The situation may be different when the stimulated limb is 
denervated and the sensory innervation is also interrupted (Mokrusch 
et al. 1990). However,  for transcutaneous, direct stimulation of 
denervated muscle excessively high currents are necessary in order to 
achieve contraction of the whole muscle. 

2.2 Physiological Characteristics 

The effects first noted in chronically stimulated TA and EDL muscles 
of the rabbit and FDL muscle of the cat were increases in the time to 
peak twitch tension and half-relaxation time (Fig. 1) (Vrbovfi 1966; 
Salmons and Vrbovfi 1969; Pette et al. 1973). Consistent with this, 
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Fig. l .  Isometric twitch contractions of chronically stimulated (10Hz, 24h daily, 
41 days) and contralateral (control) tibialis anterior muscles of the rabbit. The 
marker represents 10-ms intervals. (From Salmons and Vrbovfi 1969) 

decreases in the maximum rate of tetanic tension development were 
also observed (Salmons and Sr6ter 1976; Sweeney et al. 1988; J.M.C. 
Brown et al. 1989). To exclude reflexively elicited movements, which 
could be produced by stimulation of the peripheral nerve, Buller and 
colleagues stimulated ventral roots in the cat. They observed the 
expected slowing of the time course of twitch contraction and, in 
addition, a change in the force-velocity relationship (AI-Amood 
et al. 1973; Bullet and Pope 1977). Experiments on rabbits (Pette 
et al. 1973, 1976; Salmons and Sr6ter 1976; Hudlickfi et al. 1982a; 
Klug et al. 1988; Simoneau et al. 1989) and cats (Eerbeek et al. 1984) 
have also shown increases in the twitch to tetanus ratio in low- 
frequency stimulated muscle, indicating that the duration of the 
active state was prolonged. 

A consistent finding with chronic low-frequency stimulation has 
been an increased resistance to fatigue (Fig. 2). This was first de- 
scribed for the stimulated TA muscle of the cat (Peckham et al. 1973) 
and rabbit (M.D. Brown et al. 1973) and later confirmed for rabbit 
(Pette et al. 1975; Salmons and Sr6ter 1976; Hudlick~ et al. 1977, 
1982a; J.M.C. Brown et al. 1989), the rat (Kwong and Vrbov~t 1981; 
Pette and Simoneau 1990), the cat (Eerbeek et al. 1984; Kernell 
et al. 1987a,b; Kernell and Eerbeek 1989), the dog (Ciesielski et al. 
1983; Mannion et al. 1986; Acker et al. 1987a,b; Clark et al. 1988), 
the goat (Chachques et al. 1988), and the human (Edwards et al. 
1982; Scott et al. 1985). 

The increase in resistance to fatigue may be associated with the 
increased capillarization and marked elevation in aerobic-oxidative 
capacity (see Sect. 2.6) induced by chronic low-frequency stimula- 
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Fig. 2. Time-dependent increase in resistance to fatigue as induced by chronic 
low-frequency stimulation (10Hz, 12h daily). Resistance to fatigue was assessed 
using the protocol of Burke et al. (1971, 1973). Measurements on the same animal 
were performed noninvasively on the foot levers of the stimulated leg at different 
time points after the onset of stimulation 

tion. Gross inspection of chronically stimulated fast-twitch TA and 
E DL muscles of the rabbit reveals a deep red color as compared to 
the pale, unstimulated contralateral muscle. This change in color is a 
consequence of stimulation-induced increases in capillary density 
(Cotter et al. 1972, 1973; M.D. Brown et al. 1976; Myrhage and 
Hudlickgl 1978; Hudlick~i and Tyler 1984; Hudlick~i et al. 1980, 
1982b, 1984; Eisenberg and Salmons 1981; J.M.C. Brown et al. 1989) 
and myoglobin content (Pette et al. 1973; Kaufmann et al. 1989). 
Increases in capillary density (Fig. 3) following chronic stimulation 
have also been noticed in other species and other muscles, e.g., in cat 
gracilis muscle (Hoppeler  et al. 1987; Hudlick~ et al. 1987), EDL and 
TA muscles of the rat (Myrhage and Hudlick~i 1978; Hudlickgt et al. 
1984; Ciske and Faulkner 1985; Dawson and Hudlick~i 1989; Hudlick~i 
and Price 1990), and latissimus dorsi of the goat (Chachques et al. 
1988). However,  other factors may contribute to the improved re- 
sistance to fatigue, e.g., increases in substrate supply (see Sect. 2.6). 

Evidence has been accumulating indicating that increases in 
enzyme activities related to aerobic-oxidative metabolism represent 
only one factor responsible for the increased fatigue resistance 
(Hudlick~i et al. 1986; Kernell et al. 1987b; Pette and Simoneau 1990; 
Simoneau et al. ]992). Thus, a linear correlation seems to exist 
between the increase in citrate synthase activity, a commonly 
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Fig. 3. Increase in capillary density of chronically stimulated (10 Hz, 8 h daily) rabbit 
extensor digitorum longus muscle, n, number of fields counted. (From Hudlick~i 
1984) 

accepted marker of mitochondrial content and aerobic-oxidative 
capacity (Reichmann et al. 1985; J.M.C. Brown et al. 1989; Hoppeler 
1990), and the enhanced resistance to fatigue in low-frequency 
stimulated fast-twitch muscles of both the rat and rabbit. However, 
this correlation exists only within a certain range of citrate synthase 
activity (Fig. 4). Citrate synthase activities of chronically stimulated 
muscle, which exceed the very high values of heart muscle in rat and 
rabbit, are not accompanied by further improvements in resistance to 
fatigue (Pette and Simoneau 1990; Pette and Diisterh6ft 1992; 
Simoneau et al. 1992). 

The reported increase in capillary density, i.e., number of 
capillaries per area, is a combination of a true increase in the number 
of capillaries and a decrease in muscle fiber diameter (Fig. 5) both of 
which occur after chronic stimulation (Pette et al. 1975, 1976; M.D. 
Brown et al. 1976; Salmons and Henriksson 1981; Ciesielski et al. 
1983; Hudlickfi et al. 1982b; Hudlickfi and Tyler 1984; Eisenberg 
et al. 1984; Reichmann et al. 1985; Maier et al. 1986; Mannion et al. 
1986; Acker et al. 1987c; Donselaar et al. 1987; Kernell et al. 1987a; 
Staron et al. 1987). The stimulation-induced decrease in fiber size is 
less in old than in young rats because the initial size of muscle fibers 
in old rats is relatively small (Cotter and Hudlickfi 1977). Neverthe- 
less, there is also an increase in capillary density in old rats. Taken 
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together, the changes in fiber size and number of capillaries improve 
the oxygen supply to the working muscle fibers. In addition, an 
increase in oxygen uptake of chronically stimulated muscle has been 
demonstrated (Hudlickfi et al. 1977, 1980, 1984; Hoppeler et al. 
1987). 

2.3 Stimulation-Induced Changes in Muscle Fibers 

Many of the overall functional changes described so far are a con- 
sequence of stimulation-induced changes in the muscle fiber pheno- 
type. A conspicuous finding in low-frequency stimulated rabbit EDL 
and TA muscles is that the normally broad distribution of fiber cross- 
sectional areas in these muscles changes into a more homogeneous 
population of fibers with a smaller cross-sectional area (Fig. 5; Pette 
et al. 1975). Total fiber counts show that long-term stimulated rabbit 
TA muscles contain approximately the same number of fibers as the 
unstimulated contralateral TA muscles (Pette et al. 1976). Therefore, 
the reduction in muscle weight commonly observed after long-term 
low-frequency stimulation results from the decrease in fiber caliber, 
but not from a loss of fibers (Pette et al. 1976). 

Chronic low-frequency stimulation affects the major functional 
elements of the muscle fiber, i.e., the myofibrillar apparatus, the 
Ca2+-regulatory system, and energy metabolism. Taking into account 
the extreme heterogeneity of the fiber population in most skeletal 
muscles (for review see Pette and Staron 1990), stimulation-induced 
changes can only be properly evaluated at the single fiber level. 
A commonly used approach is the combination of whole muscle 
biochemistry with histochemical or immunocytochemical analyses of 
the fiber population. A more precise analysis utilizes single fiber 
preparations for quantitative biochemical studies. 
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Fig. 5. Distribution of mean fiber area in 
control and in 21-day stimulated (10Hz, 
8h daily) rabbit tibialis anterior muscles. 
Values are means from five animals. Full 
line, control muscles; dotted line, stimu- 
lated muscles. (From Pette et al. 1975) 
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2.3.1 Histochemistry and Immunocytochemistry 
of Transforming Muscle Fibers 

The classification of muscle fiber types is based on two different 
approaches. One classifies fiber types according to differences in the 
histochemically assessed stability of the myofibrillar actomyosin 
adenosine triphosphatase (mATPase) activity (Guth and Samaha 
1969; Brooke and Kaiser 1970; Samaha et al. 1970). The differences 
in the mATPase activity relate to specific myosin heavy chain (MHC) 
complements (Staron and Pette 1986; Pette and Staron 1990; Staron 
1991) and make it possible to distinguish specific muscle fiber types. 
This classification distinguishes muscle fibers solely on the basis of 
differences with regard to the myosin molecule. The use of anti- 
bodies raised against various myosin isoforms, therefore, leads to a 
similar classification. Another scheme is based primarily on histo- 
chemically identified differences in metabolic properties using 
selected key enzymes of anaerobic or aerobic-oxidative metabolism. 
In combination with a simplified mATPase method, which distin- 
guishes only between fast and slow fibers, it leads to the following 
classification: fast-twitch glycolytic (FG), fast-twitch oxidative 
(FOG), and slow-twitch oxidative (SO) fiber types (Barnard et al. 
1971; Peter et al. 1972). 

Increases in the fraction of oxidative fibers in rabbit (Pette et al. 
1972, 1973; Romanul et al. 1974) and cat (Peckham et ai. 1973) 
EDL and TA muscles were the first indication of a profound 
metabolic effect of chronic low-frequency stimulation on fast-twitch 
muscles (Fig. 6). These observations have been substantiated by 
quantitative measurements of the extent of the changes. These 
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Fig. 6A,B. Histochemical staining for succinate dehydrogenase in cross sections of 
A contralateral and B chronically stimulated (10Hz, 8h daily, 28 days) rabbit TA 
muscles (×190). (From Pette et al. 1972) 

studies found several-fold increases in enzyme activities related to 
aerobic substrate oxidation concomitant with marked decreases in 
glycolytic enzyme activities (Pette et al. 1972, 1973; see also Sect. 
2.6.2). Increases in the proportion of oxidative fibers have been 
reported in many successive studies on chronically stimulated 
muscles in different species (Pette et al. 1975; M.D. Brown et al. 
1976; Hudlickfi et al. 1977, 1982b, 1984; Rubinstein et al. 1978; 
Kwong and Vrbovfi 1981; Pette and Tyler 1983; Buchegger et al. 
1984; Ciske and Faulkner 1985; Frey et al. 1986; Maier et al. 1986; 
Mannion et al. 1986, 1990; Donselaar et al. 1987; Kernell et al. 
1987b; J.M.C. Brown et al. 1989; Magovern et al. 1990). The in- 
creases in enzyme activities representative of the aerobic-oxidative 
metabolism correlate well with electron microscopically demon- 
strated augmentations in mitochondrial volume density (Fig. 7; 
Sahnons et al. 1978; Heilig and Pette 1980; Eisenberg and Salmons 
1981; Ciesielski et al. 1983; Reichmann et al. 1985; Hoppeler  et al. 
1987; Chachques et al. 1988). 

Myofibrillar ATPase histochemistry has revealed a stimulation- 
induced increase in the number  of slow-twitch (type I) fibers in 
several animal species. These include the rabbit (Romanul  et al. 
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Fig. 7. Electron micrographs of cross sections from contralateral (left) and 23-day 
continuously (10Hz, 24h daily) stimulated (right) rabbit tibialis anterior muscles. 
(From Heilig and Pette 1980) 

1974; Pette et al. 1976; Rubinstein et al. 1978; Roy et al. 1979; Pette 
1984; Maier et al. 1986, 1988; Cotter and Phillips 1986; P. Williams 
et al. 1986; Staron and Pette 1987a; Staron et al. 1987), the cat 
(Donselaar et al. 1987; Ferguson et al. 1989), the dog (Ciesielski 
et al. 1983; Hoffman et al. 1985; Mannion et al. 1986; Acker et al. 
1987b,c; Clark et al. 1988; Havenith et al. 1990; Ianuzzo et al. 
1990a,b; Marzocchi et al. 1990), the sheep (Frey et al. 1984, 1986), 
the goat (Chachques et al. 1988), and the human (Magovern et al. 
1988). An increase in fibers containing slow-type myosin has also 
been demonstrated immunocytochemically in the rabbit (Franchi et 
al. 1990; Mabuchi et al. 1990) and in the dog (Havenith et al. 1990), 
using monoclonal antibodies against MHC, and in the rabbit using 
polyclonal antibodies against slow type myosin light chains (Rubinstein 
et al. 1978). The higher proportion of type I fibers in long-term 
stimulated rabbit muscle correlates with the finding of a large pro- 
portion of fibers containing a thicker Z disc, a characteristic of slow- 
twitch fibers (Salmons et al. 1978; Eisenberg and Salmons 1981). 

Detailed analyses on chronically stimulated rabbit EDL and TA 
muscles revealed that the fast-to-slow transition of muscle fibers is a 
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Fig. 8. Time-dependent changes in the percentage distribution of fiber types in low- 
frequency stimulated (10Hz, 12h daily) rabbit extensor digitorum longus muscle. 
Fiber types were classified according to their histochemically assessed myofibrillar 
actomyosin ATPase activity. No distinction was made between fiber types IIB and 
IID. (Modified from Pette 1992) 

graded event during which the number of type IIB fibers decreases 
rapidly after the onset of stimulation and the percentage of type I 
fibers increases with transient elevations in type IID, type IIA and 
type C fibers (Staron et al. 1987; Maier et al. 1988; Termin et al. 
1989b; Pette 1990). The improvement of electrophoretic separation 
of MHC isoforms from single fibers has led to the detection in rat 
muscle of an additional MHC, named HCIId, in specific fast-twitch 
fibers, designated type l iD (Bfir and Pette 1988; Termin et al. 
1989a,b). These fibers are probably identical with the type 2x fiber 
described by Schiaffino and collaborators in muscles of mouse, rat, 
and guinea pig (Schiaffino et al. 1988, 1989; Gorza 1990). Recent 
findings (D. Pette et al., unpublished) indicate that type l iD fibers 
and the respective MHC isoform are also present in rabbit muscle. 
Because of the great similarity of the type l iD mATPase histo- 
chemistry with that of type l iB fibers, it could be that in previous 
studies type l iD fibers have been erroneously taken as type IIB. 
The stimulation-induced changes in the muscle fiber population 
may, therefore, proceed in the following order: type l iB --~ type l iD 
--~ type IIA --~ type IIC --~ type IC --~ type I (Fig. 8). Fiber types 
liB, l iD,  and IIA are fast-twitch fibers expressing the MHC isoforms 
HCIIb, HCIId and HCIIa,  respectively. Type I represents the slow- 
twitch fiber type which expresses the slow MHC isoform, HCI. Fiber 
types IIC and IC are hybrid fibers, containing HCIIa and HCI in 
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variable proportions (type IIC, HCIIa > HCI; type IC, HCI > 
HCIIa). 

An unexpected finding was that in the rat chronic low-frequency 
stimulation of fast-twitch muscles (EDL and TA) did not lead to an 
increase in slow-twitch (type I) fibers (Kwong and Vrbov~ 1981; 
Ciske and Faulkner 1985; Terrain et al. 1989a,b), even after prolonged 
stimulation. Further investigations have shown that the stimulation- 
induced changes in the fiber population of rat muscle remain re- 
stricted to a rearrangement of the fast fiber subtypes, leading 
ultimately to a type IIB ~ type IID ~ type IIA transition with only 
slight increases in type I fibers. In the course of this transition the 
appearance of hybrid fibers containing more than one MHC isoform 
is quite common. According to their MHC composition, these fibers 
were termed type IIBD (HCIIb + HCIId) and type I IDA (HCIId 
+ HCIIa) (Termin et al. 1989a,b). The finding that chronic low- 
frequency stimulation does not lead in rat fast-twitch muscle to 
significant increases in type I fibers has also been shown in 
denervated rat EDL stimulated at low frequency (Schiaffino et al. 
1990). 

Interestingly, the same stimulation protocol that leads to an 
increase in type I fibers in the rabbit or to an increase in type IIA 
fibers in the rat, does not cause conspicuous changes in the mATPase- 
based fast fiber types in mouse fast-twitch muscle (TA). The only 
histochemical change is an increase in the aerobic-oxidative capacity 
as revealed by elevations in succinate dehydrogenase and N A D H  
tetrazolium reductase activities (A. Terrain, N. H~im~il~iinen, D. 
Pette 1990, unpublished). Thus, chronic low-frequency stimulation 
of mouse fast-twitch muscle seems to induce a FG to FOG fiber 
transition. These observations further support species-specific dif- 
ferences in response to low-frequency stimulation (Simoneau and 
Pette 1989a,b). 

2.4 Myofibrillar Proteins 

The stimulation-induced changes in contractile properties are asso- 
ciated with alterations in the composition of myofibrillar proteins. 
Studies of myofibrillar proteins in chronically stimulated muscles 
were initially performed on whole muscle extracts and later on single 
fibers. Particular attention has been given to changes in the isoform 
patterns of the major protein of the thick filament, myosin, and the 
regulatory proteins of the thin filament, tropomyosin (TM) and 
troponin (TN). 
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2.4.1 Proteins of the Thick Filament 

As would be expected from the changes in contractile speed, as well 
as by the mATPase-based histochemistry, chronic low-frequency 
stimulation leads to alterations in myosin composition. This was first 
shown by Sr6ter et al. (1973, 1974, 1975) who observed a partial 
exchange of the fast myosin light chains (LC) with their slow coun- 
terparts in rabbit EDL and TA muscles stimulated for 2 - 4  weeks. 
These observations were confirmed in subsequent studies (Pette et al. 
1976; Salmons and Sr6ter 1976; Pette and Schnez 1977; Rubinstein 
et al. 1978; Roy et al. 1979; Hudlick~ et al. 1982a; Mabuchi et al. 
1982; W.E. Brown et al. 1983, 1985; Pluskal and Sr6ter 1983; 
K. Seedorf et al. 1983; Heilig and Pette 1983; Heilig et al. 1984; 
Staron et al. 1987; Staron and Pette 1987a; Sweeney et al. 1988; 
Kirschbaum et al. 1989a). The complete fast-to-slow transition of 
the LC isoforms appears to take a long time, i.e., several months. 
Considerable amounts of the fast alkali LClf  are present in long-term 
stimulated EDL and TA muscles of the rabbit (Pette et al. 1976; 
Pette and Schnez 1977; Roy et al. 1979; W.E. Brown et al. 1983, 
1985; Pluskal and Sr6ter 1983; K. Seedorf et al. 1983; Staron et al. 
1987). The relatively long-term persistence of the fast alkali LCIf  
suggests that it may coexist within the same fiber together with 
slow myosin light and heavy chains. 

Stimulation-induced fast-to-slow transitions of the myosin light 
chains were observed in other muscles and animal species, e.g., the 
cat (Ferguson et al. 1989), the dog (Hoffman et al. 1985; Acker e ta l .  
1987c), the goat (Mannion et al. 1990), and the sheep (Carraro et al. 
1988; Cumming et al. 1991). Interestingly, only a limited fast-to-slow 
exchange has been observed in chronically stimulated fast-twitch 
muscle of the rat. Long-term low-frequency stimulation leads to an 
increase in the fast alkali LClf  and a decrease in the fast alkali LC3f. 
Only slight increases in the alkali LClsb and an even smaller increase 
in the regulatory LC2s are observed in rat muscle (B~ir et al. 1989; 
Kirschbaum et al. 1989b, 1990a; Terrain and Pette 1990, 1991). The 
increase in the slow LClsb does not necessarily indicate the ex- 
pression also of the slow MHC. It has been shown that the fast 
HCIIa may be associated with both the fast and slow alkali light 
chains (Fitzsimons and Hoh 1983; Staron and Pette 1987b,c; Mar6chal 
et al. 1989; Termin and Pette 1990, 1991). 

An interesting observation, related to the changes in the myosin 
LC pattern in stimulated rabbit muscle, concerns the activity of the 
myosin light chain kinase. In rabbit TA muscle stimulated 24 h/day at 
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10Hz, there is a rapid decrease in the activity of this enzyme. After 
5 days, myosin light chain kinase decays to approximately 50% of its 
original activity and stays at this level for up to 35 days of stimulation 
(Klug et al. 1986). 

In view of the fact that both ATPase activity and actin binding 
are associated with the MttC, the investigation of this part of the 
myosin molecule during fast-to-slow transition of skeletal muscle is of 
primary importance. Comparative studies have indicated that there 
is a relationship between contraction speed and actin-activated 
mATPase activity (Bfirfiny 1967; Bfirfiny and Close 1971). The 
first indication that fast myosin was replaced by slow myosin in 
chronically stimulated fast-twitch muscle came from the observation 
of a decrease in N-methylhistidine content, an amino acid abundant 
in fast-type myosin, but deficient in slow-type myosin (Srdter et al. 
1975). Chymotryptic peptide cleavage studies on myosin from low- 
frequency stimulated rabbit EDL and TA muscles (W.E. Brown 
et al. 1983) and dog diaphragm (Hoffman et al. 1985) have shown 
increases in slow myosin with a concomitant decrease in fast myosin. 
The resolution of the peptide cleavage method used precluded more 
detailed analyses, especially with regard to changes in the propor- 
tions of the various fast MHC isoforms. Stimulation-induced ex- 
pression of the slow myosin HCI as demonstrated by electrophoresis 
under denaturing conditions, has been described in various muscles 
of different species, i.e., the rabbit (Staron et al. 1987; Staron and 
Pette 1987a), sheep (Carraro et al. 1991; Cumming et al. 1991; 
I. Christlieb, B. Gohlsch, D. Pette 1991, unpublished), and the calf 
(N. Guldner, B. Gohlsch, D. Pette 1990, unpublished). 

Using electrophoresis under denaturing conditions, Staron et al. 
(1987) were able to show a gradual replacement of MHC isoforms in 
rabbit EDL and TA muscles stimulated for different time periods: 
HCIIb --> HCIIa --~ HCI. This pattern of HC isoform transitions was 
also shown in single fibers (Staron and Pette 1987a). 

Additional information has emerged from single fiber studies 
showing the coexistence of more than one MHC isoform in individual 
fibers. The coexistence of fast and slow myosins had been previously 
suggested by the presence of fast and slow myosin light chain iso- 
forms in fibers microdissected from stimulated rabbit muscles (Pette 
and Schnez 1977), a finding corroborated by immunocytochemistry 
(Rubinstein et al. 1978). Also, mATPase histochemistry detected 
numerous hybrid fibers in transforming muscles (Staron and Pette 
1987a; Staron et al. 1987; Termin et al. 1989). The coexistence of 
HCIIb and HCIIa, as well as of HCIIa and HCI, has been demon- 
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Fig. 9a -d .  Changes in the percentage distribution of myosin heavy chain isoforms in 
tibialis anterior muscles of the rat subjected to low-frequency stimulation (10Hz, 
10h daily) for different time periods (8-56 days): a HCIIb,  b HCIIa,  c HCIId,  and d 
HCIIa + HCIId. Values are given as means + SD (n = 2 - 4  for each time point). 
*, p < 0.05, *% p < 0.01. HCIIb,  HCIId,  HCIIa,  fast myosin heavy chain isoforms. 
(From Terrain et al. 1989b) 

strated electrophoretically in single fibers isolated from low-frequency 
stimulated rabbit fast-twitch muscles (Staron et al. 1987; Staron and 
Pette 1987a). In addition, histochemically assessed mATPase activity, 
as well as electrophoretic analyses on single fiber fragments, in- 
dicated that fast and slow myosins are unevenly distributed along the 
length of transforming fibers in these muscles (Staron and Pette 
1987a). 

A clear picture of the sequence of the transitions has emerged 
from the analysis of chronically stimulated rat fast-twitch muscles. 
In spite of the fact that stimulation does not induce measurable 
increases in type I fibers or the slow HCI isoform, the MHC com- 
position is altered (Termin et al. 1989b). The predominant HC 
isoform of normal rat EDL and TA, HCIIb, decreases to minute 
amounts, HCIIa increasing concomitantly. The HCIId isoform, 
which is thought to be functionally intermediate (Schiaffino et al. 
1988; Termin et al. 1989b) between HCIIb and HCIIa, increases only 
moderately in whole muscle extracts (Fig. 9). Single fiber analyses on 
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chronically stimulated rat muscle show that many fibers express more 
than one MHC isoform. Some fibers may contain up to four different 
HC isoforms, i.e., HCIIb, HCIId, HCIIa,  and HCI. As a result of 
this, the distinction of the normal mATPase-based fiber types is no 
longer possible (Termin et al. 1989b). A large fraction of fibers in 28- 
day stimulated muscle contains HCIIb and HCIId, whereas fibers 
from muscles stimulated for longer time periods frequently display 
the combination of HCIId with HCIIa (Termin et al. 1989b). 

These changes in MHC suggest the following sequence: HCIIb 
HCIId ~ HCIIa. This is different from the rabbit where the fiber 
transformation ultimately includes the HCIIa --~ HCI transition 
(Staron et al. 1987; Pette 1990). This sequential exchange of the 
various MHC isoforms suggests different thresholds of the respective 
genes (see also Sect. 2.7). 

The pronounced alterations of the isomyosin pattern in chron- 
ically stimulated muscles result from the changes in myosin light and 
HC composition. Increases in slow isomyosins have been described in 
long-term stimulated fast-twitch muscles of the rabbit (Pluskal and 
Sr6ter 1983; Klug et al. 1986; Sr6ter et al. 1987), the dog (Hoffman 
et al. 1985; Acker et al. 1987c; Ianuzzo et al. 1990a,b; Marzocchi 
et al. 1990), the goat (Chachques et al. 1988; Mannion et al. 1990), 
and sheep (Carraro et al. 1991). In the rabbit, during stimulation 
under conditions which do not lead to a complete fast-to-slow tran- 
sition, the rearrangement of the isomyosin pattern is restricted to 
the fast isomyosins and consists of a decrease in fast-twitch muscle 
isomyosins FM1 and FM2, with an increase in FM3 (Mabuchi et al. 
1982; Sweeney et al. 1988). This is similar to what occurs in the rat 
even with vigorous prolonged stimulation. Therefore, in this species 
the changes in the fast isomyosins can be investigated in more detail. 
Recent methodical improvements have made it possible to separate 
myosin HCIIb-, HCIId- and HCIIa-based isomyosin triplets (Termin 
and Pette 1990, 1991). In chronically stimulated rat muscle, the 
proportions of these different fast HC-based isomyosins change so 
that HCIIb-based isomyosins decrease and HCIIa-based isomyosins 
increase. In addition, there is a shift from FM1 (LC3f homodimer) to 
FM3 (LClf  homodimer) isomyosins which is concomitant with the 
decrease in LC3f and the increase in LClf  (Termin and Pette 1991, 
1992). 

The altered expression of myosin light and heavy chains that 
have been described so far relate to corresponding alterations at the 
mRNA level. With the use of specific cDNA probes, Sl-nuclease 
mapping assays have revealed changes of particular MHC mRNA 
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Fig. lOa, b. Changes in myosin HCIIa and HCIIb mRNA levels in rat tibialis ante- 
rior muscle with low-frequency (10Hz, 10h daily) stimulation and recovery. Total 
RNA was extracted from muscles stimulated for different time periods (left panels) 
and from 14-day stimulated muscles which were allowed to recover for different 
time periods after stimulation had been interrupted (right panels). The amounts of 
the two mRNAs were assessed by Sl-nuclease mapping with the use of the myosin 
HCIIa probe pMHC40 (a) and the myosin HCIIb probe pMHC62 (b). The pMHC 
probe for HCIIa mRNA yields, in addition to the fully protected fragment, a 
partially protected fragment (170 nt) specific of HCIIb mRNA. Therefore, the use of 
this probe makes it possible to compare the ratio of these two mRNA isoforms. 
(Data from Kirschbaum and Pette 1988; Kirschbaum et al. 1989c, 1990b) 

i soforms ( K i r s c h b a u m  and  Pe t t e  1988; K i r s c h b a u m  et al. 1989c, 
1990b). In the s t imula ted  rat  E D L  and T A  muscles  the re  is a rapid  
dec rease  in H C I I b  m R N A  which is no t i ceab le  a f te r  only  2 days of  
s t imula t ion ,  and  the H C I I b  m R N A  b e c o m e s  a lmost  unde t ec t ab l e  
a f te r  7 days. A rec iproca l  change  of  the  m R N A  encod ing  H C I I a  is 
found  (Fig. 10); it p rogress ive ly  increases  dur ing  the same t ime 
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period (Kirschbaum and Pette 1988; Kirschbaum et al. 1989c, 
1990b). Because specific cDNA probes for HCIId are not yet avail- 
able, no data exist for changes of HCIId at the mRNA level. 

In rabbit fast-twitch muscle, chronic low-frequency stimulation 
leads to progressive decreases in fast MHC mRNAs and induces the 
expression of the slow myosin HCI mRNA (Brownson et al. 1988, 
1992; Kirschbaum et al. 1989a). In animals stimulated 12h/day, HCI 
mRNA becomes detectable after stimulation periods exceeding 20 
days (Kirschbaum et al. 1989a). Continuous stimulation (24h/day) 
leads to an earlier appearance, i.e., HCI mRNA is first detected 
in 9-day stimulated rabbit EDL and TA muscles (Brownson et al. 
1992). The difference between the time course of changes in these 
two studies (Kirschbaum et al. 1989a; Brownson et al. 1992) is most 
likely due to the different stimulation regimes, i.e., 12h/day and 
24h/day stimulation. Nevertheless, these results support the notion 
that changes in the amount of contractile activity, as induced by 
chronic low-frequency stimulation, lead to rapid changes in the 
amounts of specific MHC mRNA isoforms and occur much earlier 
than the corresponding changes at the protein level. Similarly, 
cessation of chronic low-frequency stimulation has pronounced 
effects on the mRNA pattern leading to a rapid reversal of the 
stimulation-induced repression of HCIIb mRNA, as well as of the 
induction of HCIIa mRNA (Fig. 10). 

A progressive increase in the amount of HCI mRNA has also 
been demonstrated by in situ hybridization in rabbit TA and EDL 
muscles subjected to different stimulation periods (Fig. 11; Aigner 
and Pette 1990, 1992). The number of fibers reacting positively with 
the specific cRNA probe correlated with the fraction of HCI protein 
determined electrophoretically in homogenates from the same 
EDL and TA muscles (Fig. 12; Aigner and Pette 1992). The appear- 
ance of mRNA encoding HCI in low-frequency stimulated rabbit 
muscle strongly suggests alterations in gene transcription within 
the fast-twitch fibers since these normally do not contain this 
isoform. 

In vitro translation assays and hybridization assays with specific 
cDNA probes demonstrate that the rearrangement of the myosin 
light chain pattern is also preceded by changes at the mRNA level. 
However, as follows from time course studies, qualitative changes in 
the amounts myosin light chain mRNAs occur later than those of the 
MHC mRNAs (Kirschbaum et al. 1989a,b). In the rat, where the 
stimulation-induced changes are restricted to a rearrangement of the 
fast MHC isoforms (Kirschbaum et al. 1989b,c; Termin et al. 1989b), 
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Fig. 11. Increases in myosin HCI mRNA-positive fibers as induced by chronic low- 
frequency stimulation (10 Hz, 24 h daily) in rabbit extensor digitorum longus muscle. 
HCI mRNA was assessed by in situ hybridization. (Data from Aigner and Pette 
1992) 

the alterations are restricted to the fast alkali light chains and consist 
of increases in the LCIf/LC3f ratio (B~r et al. 1989), with corre- 
sponding changes in the amounts of the LCIf  and LC3f mRNAs 
(Kirschbaum et al. 1989b). Most likely, these alterations relate to 
decreasing affinities of LC3f to the fast MHC isoforms in the order 
HCIIb,  HCIId,  HCIla  (Terrain and Pette 1991). Thus, the exchange 
of HCIIb with HCIIa in chronically stimulated rat muscle is followed 
by a decrease in the relative concentration of LC3f. The finding that 
the synthesis of LC3f continues in long-term stimulated muscles 
seems to disagree with its reduced protein amount.  However,  this 
discrepancy is explained by the observation that LC3f displays an 
enhanced turnover under these conditions. Obviously, LC3f is bound 
to a lesser degree to HCIIa and, therefore, accessible to degradation 
(B~ir et al. 1989). Chronic low-frequency stimulation induces only 
small amounts of the slow alkali light chain isoforms LClsa  and 
LClsb  in rat muscle (B~ir et al. 1989; Kirschbaum et al. 1989b). The 
appearance of these slow alkali light chain isoforms agrees with the 
suggestion that HCIIa combines, in addition to the fast LClf ,  also 
with the slow LCls  (Termin and Pette 1991). The slow isoform of the 
regulatory light chain LC2 does not appear in chronically stimulated 
rat muscle (B~ir et al. 1989), and in addition, there is no exchange of 
the fast LC2f with the slow LC2s at the m R N A  level (Kirschbaum 
et al. 1989b). However,  LC2s may be induced at both the m R N A  
and protein level in chronically stimulated fast-twitch muscle of the 
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hypothyroid rat (Kirschbaum et al. 1990a). Under these conditions, 
its appearance follows the expression of the slow myosin HCI. In the 
rabbit, where long-term low-frequency stimulation always leads to 
the expression of the slow myosin HCI, the changes at the mRNA 
and protein level include the induction of the slow isoforms of both 
the alkali and regulatory light chains, i.e., LClsa, LClsb, and LC2s 
(Heilig and Pette 1983; Pluskal and Sr6ter 1983; Heilig et al. 1984; 
Kirschbaum et al. 1989a). 

2.4.2 Proteins of the Thin Filament 

To date, studies on stimulation-induced changes in proteins of the 
thin filament have been focused on the regulatory proteins troponin 
and tropomyosin. Troponin is composed of three different subunits, 
troponin-T (TnT), troponin-I (TnI), and troponin-C (TnC). TnI and 
TnC exist as fast (TnIf, TnCf) and slow (TnIs, TnCs) isoforms. As a 
result of alternative RNA splicing (Breitbart and Nadal-Ginard 1986, 
1987), TnT is found in several fast and slow isoforms (for review see 
Pette and Staron 1990). Among these, the major fast isoforms are 
TnTlf, TnTzf, TnT3f and TnTaf (M.M. Briggs et al. 1987; Briggs and 
Schachat 1989; H~irtner et al. 1989; Schachat et al. 1990). 

Chronically stimulated rabbit muscle displays fast-to-slow tran- 
sitions of all the three troponin subunits. Studies on whole muscle 
extracts show that TnT changes first and to the greatest extent 
(Schachat et al. 1988, 1990; H~irtner et al. 1989). The four major fast 
TnT isoforms decay sequentially in the order of TnTzf, TnT4f, TnTlf, 
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Fig. 13. Time-dependent  changes in the percentage distribution of fast and slow 
troponin-T (TnT) isoforms in chronically stimulated (10Hz, 12h daily) extensor 
digitorum longus (EDL) muscle of the rabbit. For comparison, values are given for 
normal EDL (Contr.) and soleus muscles. (Data from Hfirtner et al. 1989) 

TnT3f, leading to a transient increase in the percentage of TnT3f 
(Fig. 13). Subsequently, there is a progressive increase in the slow 
TnT isoforms TnT1s and TnT2s with a concomitant decrease in the 
fast TnT isoforms (Hfirtner et al. 1989). Single fiber analyses on 
chronically stimulated rabbit muscles have revealed that the alter- 
ations of the TnT isoform pattern follow a similar time course to that 
of the MHC isoforms (Schmitt and Pette 1990). Thus, the decline in 
the fast MHC isoforms is accompanied by that of the fast TnT 
isoforms, and the increase of the slow TnTls and TnT2s isoforms 
coincides with the appearance of the slow myosin HCI. These results 
suggest that the coexpression patterns of MHC and TnT isoforms 
existing in normal muscle fibers are maintained during the induced 
fast-to-slow transition. 

The exchange of fast with slow isoforms of TnI and TnC, es- 
pecially of TnI, in chronically stimulated rabbit muscle appears to 
be less complete than that of TnT during the time period studied. 
Considerable amounts of fast TnI are still present in long-term 
stimulated rabbit muscles with complete or nearly complete fast-to- 
slow transition of TnT and TnC, respectively (Fig. 14; Hfirtner and 
Pette 1990). The different time courses in troponin subunit isoform 
transitions may be the result of the highly conserved nature of TnI 
(Wilkinson and Grand 1978a,b) which may adequately function with 
both fast and slow TnT and TnC isoforms. The finding that in long- 
term stimulated rabbit muscle fast TnT is completely replaced by 



Adaptation of Mammalian Skeletal Muscle to Electrical Stimulation 137 

loo 
r ~  

80 

E 60 

o 40 
4 J  

o 20 

83 

o 
Soleus EOL EDL 72d EOL 82d 

Stimulated muscles 

Fig. 14. Effects of long-term low-frequency stimulation (10Hz, 12h daily) on the 
immunochemically assessed isoform pattern of troponin subunits TnC (dark), TnI 
(striped), and TnT (cross-hatched) in rabbit extensor digitorum longus (EDL) 
muscle. Values are expressed as relative amounts of the slow isoforms, i.e., as 
percentages of fast and slow TnC, TnI, and TnT isoforms. For comparison, values 
(means _+ SD, n = 4-5)  are given for normal EDL and slow soleus muscles. (Values 
are from Hfirtner and Pette 1990) 

slow TnT, while it still contains considerable amounts of fast TnI and 
some fast TnC, indicates the existence of hybrid troponin molecules 
composed of slow TnT and fast TnI and TnC (Hfirtner and Pette 
1990). 

The increase in slow troponin subunit isoforms in low-frequency 
stimulated rabbit fast-twitch muscles has also been demonstrated 
at the mRNA level. In vitro translation assays show progressive 
increases in the amounts of mRNAs coding for the slow TnI and 
TnC isoforms (Hfirtner and Pette 1990). Interestingly, the expression 
of the slow isoform of the Ca2+-binding subunit TnC seems to coin- 
cide with the fast-to-slow isoform transition of the sarcoplasmic 
reticulum Ca2+-ATPase and the induction of phospholamban, a 
protein normally present only in slow-twitch fibers and cardiac 
muscle (Leberer et al. 1989) (see Sect. 2.5.1). The appearance of 
slow troponin subunits mRNAs in low-frequency stimulated fast- 
twitch muscle, together with that of other proteins characteristic of 
slow-twitch muscles, may be taken as additional evidence that chronic 
low-frequency stimulation qualitatively alters gene transcription. 

Changes have also been reported for tropomyosin in chronically 
stimulated rabbit muscle. According to Roy et al. (1979), 21-day 
low-frequency stimulated (24h/day) rabbit TA muscles exhibit a 
markedly reduced GtTM to ~TM ratio which approaches that of slow- 
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twitch soleus muscle. Similar results were obtained by Schachat et al. 
(1988). 

A protein closely associated with the thin filament, a-actinin 
which is a major constituent of the Z disc, has also been studied. An 
increase in the slow isoform, c~-actininaf/s and a decrease in the fast 
c~-actininzf have been reported in low-frequency stimulated rabbit 
EDL and TA muscles (Schachat et al. 1988). These changes may be 
related to the observed thickening of the Z discs (Salmons et al. 
1978; Eisenberg and Salmons 1981). 

2.5 Ca2+-Regulatory System 

Changes in total and free Ca 2+ have been reported to occur in low- 
frequency stimulated rabbit EDL and TA muscles. Measurements 
with a Ca2+-sensitive microelectrode have indicated an approxi- 
mately five fold increase in free [Ca 2+] in the resting muscle during 
the first 14 days of stimulation and a decline thereafter to values only 
slightly higher than normal. This variation in [Ca 2+] is preceded 
by a transient increase in total calcium (Sr6ter et al. 1980, 1987). 
Measurements of either free [Ca 2+] or total [Ca 2+] are difficult and 
often subject to error. The study of Ca2+-regulatory systems may, 
therefore, be more informative. The Ca2+-sequestering system of 
chronically stimulated fast-twitch muscle is profoundly altered. Early 
changes modify the Ca2+-uptake characteristics of the sarcoplasmic 
reticulum, as well as the amount of the cytosolic Ca2+-binding 
protein parvalbumin. Later changes of the sarcoplasmic reticulum 
concern a fast-to-slow isoform transition of the sarcoplasmic re- 
ticulum Ca2+-ATPase. 

2.5.1 Sarcoplasmic Reticulum 

Structural changes of the sarcoplasmic reticulum in rabbit fast-twitch 
muscle are observed as early as 6 h after the onset of stimulation and 
consist of swelling of the longitudinal sarcoplasmic reticulum in many 
fibers (Eisenberg and Salmons 1981). A change in the distribution of 
the intramembranous 7-9-nm particles of freeze-fractured mem- 
branes of the sarcoplasmic reticulum was observed 2 days after the 
onset of stimulation (Heilmann et al. 1981). An additional change 
related to the Ca2+-regulatory system of rabbit muscle consists of a 
progressive decrease in the T-tubule profile per unit fiber area. This 
reduction becomes apparent within the first few days of stimulation 
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Fig. 15. Time course of changes in extent of T system during chronic low-frequency 
(10Hz, 24h daily) stimulation (open circles) and recovery after cessation of stimu- 
lation (filled circles). Each plot represents mean + SE of measurements from 
approximately ten fibers in the left tibialis anterior muscle of one rabbit. Shaded 
areas, mean ± SE of control data from contralateral fast (stippled) or slow (cross- 
hatched) muscles. (From Eisenberg et al. 1984) 

and peaks by 2-3  weeks (Fig. 15). At this time, the T-tubule profile 
becomes similar to that seen in fibers of the slow-twitch soleus muscle 
(Eisenberg and Salmons 1981; Eisenberg et al. 1984). 

As shown by measurements on isolated microsomal fractions, the 
early structural changes coincide with a progressive reduction in Ca 2+ 
uptake by the sarcoplasmic reticulum and a decrease in the activity of 
Ca2+-ATPase (Ramirez and Pette 1974; Salmons and Sr6ter 1976; 
Pette and Heilmann 1977; Heilmann and Pette 1979, 1980; Heilmann 
et al. 1981; Mabuchi et al. 1982; Wiehrer and Pette 1983; Klug et al. 
1983b). A reduction of both Ca 2+ uptake and CaZ+-ATPase was also 
revealed by measurements on whole muscle homogenates (Fig. 16; 
Leberer et al. 1987a; Simoneau et al. 1989; Dux et al. 1990). 

The initial rate and maximum capacity of Ca 2+ uptake by the 
sarcoplasmic reticulum is reduced by approximately 50% in both 
rabbit and rat fast-twitch muscles after 1-2  days of low-frequency 
stimulation (Leberer et al. 1987a; Simoneau et al. 1989). This change 
is reversed a few days after cessation of stimulation (Leberer et al. 
1987a). Quantitative immunochemical measurements show that at 
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Fig. 16. Time course of changes in initial rate (filled circles) and total capacity of 
Ca 2+ uptake (open circles) of the sarcoplasmic reticulum and of CaZ+-ATPase 
content (triangles) as determined in homogenates of low-frequency stimulated 
(10Hz, 12h daily) extensor digitorum longus muscle of the rabbit. Ca 2+ uptake was 
measured with a Ca2+-sensitive electrode. The Ca2+-ATPase content was deter- 
mined by sandwich enzyme-linked immunosorbent assay. Each time point represents 
means _+ SD from 3 -5  independent experiments (animals). The results in the 
stimulated muscles are given as percentages of the unstimulated contralateral 
muscles. (From Leberer et al. 1987a) 

the time when C a  2+ uptake and Ca2+-ATPase activity are reduced 
the total amount of the CaZ+-ATPase protein is unaltered (Fig. 16; 
Leberer et al. 1986, 1987a). Taken together, these results indicate 
that the rapid reduction in Ca 2+ uptake can be accounted for by 
a decrease in the specific activity of the sarcoplasmic reticulum 
Ca2+-ATPase. 

The reason for the reduced Ca2+-ATPase activity is not clear, 
but the inactivation of the enzyme in the stimulated muscle appears 
to be related to a structural modification in the region close to the 
first tryptic cleavage site T1 at Arg-505 and the neighbouring binding 
site for fluorescein isothiocyanate (FITC) at Lys-515 (Leberer et al. 
1987a; Dux et al. 1990; Matsushita et al. 1991; Matsushita and Pette 
1992). An inactive fraction of CaZ+-ATPase can be separated by 
density gradient centrifugation from microcrosomal preparations of 
stimulated muscle. This fraction is characterized not only by its low 
specific Ca2+-ATPase activity and reduced Ca 2+ uptake, but by a 
diminished formation of the phosphorylated intermediate of the 
enzyme. These data indicate that the inactivation process does not 
equally affect all Ca2+-ATPase molecules, but is confined to a selected 
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population of microsomal vesicles. These may originate from the 
fast-twitch glycolytic fibers that are rapidly fatigued by low-frequency 
stimulation (Maier and Pette 1987) (see Sect. 2.9). 

In long-term (>4 weeks) stimulated rabbit muscles, the total 
amount of Ca2+-ATPase and its activity may ultimately decrease to 
values similar to those found for slow-twitch muscle (Pette and 
Heilmann 1977; Heilmann and Pette 1979, 1980; Heilmann et al. 
1981). Accurate estimates of these changes were performed by 
immunochemical determination of the enzyme protein in whole 
muscle homogenates with a polyclonal antibody reactive with both 
fast and slow Ca2+-ATPase isoforms (Leberer and Pette 1986a; 
Leberer et al. 1986, 1987a). 

Data from immunochemically assessed total protein amounts of 
the sarcoplasmic reticulum Ca2+-ATPase are in apparent contrast 
with previous findings derived from electrophoretic estimates of total 
amounts of Ca2+-ATPase in isolated microsomal fractions (Ramirez 
and Pette 1974; Pette and Heilmann 1977; Heilmann and Pette 1979, 
1980; Heilmann et al. 1981; Sarzala et al. 1982; Wiehrer and Pette 
1983; Klug et al. 1983b). This discrepancy results from incomplete 
yields in measurements on microsomal preparations. In addition, 
microsomal fractions may be contaminated with nonsarcoplasmic 
membranes. Contamination with nonsarcoplasmic reticulum mem- 
branes may also explain to some extent the observed changes in the 
phospholipid composition of microsomal preparations from low- 
frequency stimulated rabbit EDL and TA muscles (Sarzala et al. 
1982). 

In vitro translation assays have indicated that the decrease in 
Ca2+-ATPase protein in long-term stimulated rabbit muscles is 
preceded by a reduction in mRNA coding for Ca2+-ATPase (Leberer 
et al. 1986). In addition, using specific cDNA probes for fast- and 
slow-type Cae+-ATPase isoforms, Leberer et al. (1989) showed that 
chronic stimulation for time periods longer than 4 weeks leads to a 
progressive exchange of the fast with the slow isoform (Fig. 17). 
Recently, a fast-to-slow transition of the sarcoplasmic reticulum 
Ca2+-ATPase has been demonstrated immunochemically in 6-8 
weeks' low-frequency stimulated (2Hz, 24h/day) latissimus dorsi 
muscle of the dog (F.N. Briggs et al. 1990; Ohlendieck et al. 1991). 

Low-frequency stimulation also induces changes in the composi- 
tion, and most probably the function, of the sarcoplasmic reticulum 
related to calsequestrin and phospholamban. Calsequestrin, the 
major Ca2+-binding protein of the sarcoplasmic reticulum, decreases 
after prolonged low-frequency stimulation, reaching values charac- 
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Fig. 17. Time-dependent changes in the levels of mRNA encoding slow/cardiac 
CaZ+-ATPase in low-frequency stimulated (10Hz, 12h daily) and contralateral 
rabbit extensor digitorum longus muscles. Data are expressed as percentage of 
the slow/cardiac CaZ+-ATPase mRNA content in normal slow-twitch soleus 
muscle. Filled symbols, stimulated muscle; open symbols, contralateral muscle. 
(From Leberer et al. 1989) 

teristic of slow-twitch muscle (Leberer  et al. 1986; Leberer  and Pette 
1986a). In addition, long-term stimulation induces the expression of 
phospholamban in fast-twitch rabbit muscle (Hei lmann and Pette 
1980; Leberer  et al. 1989). Phospholamban is a regulatory protein of 
the sarcoplasmic reticulum CaZ+-ATPase in cardiac (Tada and Inui 
1983) and slow-twitch muscle (Hei lmann and Pette 1980; Jorgensen 
and Jones 1986). Its expression in rabbit fast-twitch muscle coincides 
with the appearance of the slow Ca2+-ATPase isoform. Finally, 
studies conducted by Ohlendieck et al. (1991) on canine skeletal 
muscle provided evidence that chronic low-frequency stimulation also 
induces marked  changes in the major  proteins related to Ca 2+- 
release. Thus, the expression of the ryanodine receptor/Ca2+-release 
channel from junctional sarcoplasmic reticulum and the transverse 
tubular dihydropyridine-sensitive Ca2+-channel was greatly sup- 
pressed in long-term stimulated muscle. Taken together,  the sarco- 
plasmic reticulum of long-term stimulated fast-twitch rabbit muscle 
ultimately resembles that of a slow-twitch muscle. 

2.5.2 Parvalbumin 

Parvalbumin is an acidic, cytosolic Ca2+-binding protein thought to 
act as a Ca 2+ buffer and a link in the exchange of Ca 2+ between TnC 
and the sarcoplasmic reticulum Ca2+-ATPase (Gillis 1985). It is 
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Fig. 18a,b. Time-dependent effects of chronic low-frequency stimulation (10Hz, 
12h daily) on tissue contents of parvalbumin mRNA (a) and parvalbumin protein 
(b) in extensor digitorum longus muscles of the rabbit. Parvalbumin mRNA was 
quantified in stimulated and contralateral muscles by in vitro translation and immu- 
noprecipitation of the [35S]methionine-labeled translation product. Parvalbumin 
concentrations were measured in extracts of the same muscles by sandwich enzyme- 
linked immunosorbent assay. Values represent means + SE (n = 3-11) or means 
from two animals and are given as percentages of the contents in the unstimulated 
contralateral muscles. (From Leberer et al. 1986) 

present at high concentrations in fast-twitch fibers of  small mammals 
and hardly detectable  in slow-twitch fibers (Celio and Heizmann 
1982; Heizmann et al. 1982; Lebere r  and Pette  1986a). As shown by 
denervat ion and cross-innervation experiments,  the expression of 
this protein is under  neural control (Leberer  and Pette  1986b; 
Leberer  et al. 1987b; Mfintener et al. 1987; Lebere r  and Pet te  1990). 
Low-frequency stimulation suppresses the expression of parvalbumin 
in fast-twitch muscles of the rabbit  (Klug et al. 1983a,b, 1988; 
Lebere r  and Pette  1986b; Lebere r  et al. 1987a) and rat (Bfir et al. 
1989; Simoneau et al. 1989). In the rabbit,  its concentrat ion starts to 
decrease 4 days after the onset  of stimulation, is reduced to 50% by 
11 days, and reaches the very low level characteristic of soleus muscle 
by 21 days (Fig. 18). The time course of its decay parallels that of the 
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Fig. 19. Time course of changes in half-relaxation time (1/2 relax, time) parvalbumin 
content, and maximal Ca2+-uptake capacity of the sarcoplasmic reticulum in low- 
frequency (10Hz, 12h daily) stimulated extensor digitorum longus and tibialis 
anterior muscles of the rabbit. Values are means + SE (n = 3-8)  and expressed as 
ratios of the values from stimulated versus unstimulated contralateral muscles. (Data 
are from Leberer et al. 1987a and from Klug et al. 1988) 

decrease in type IIB/D fibers (Schmitt and Pette 1991). The decrease 
in parvalbumin protein is preceded by a reduction in the amount of 
the specific mRNA (Leberer et al. 1986). Low-frequency stimulated 
rat fast-twitch muscles also display a rapid decrease in parvalbumin, 
but this decrease is not as pronounced as in the rabbit (Simoneau 
et al. 1989). These data are consistent with the observation that even 
prolonged low-frequency stimulation in the rat induces only a 
moderate fast-to-slow transformation with the appearance of only 
some type I fibers (Termin et al. 1989b; M. Delp and D. Pette 1991, 
unpublished). 

The functional consequences of the changes in parvalbumin 
content correlate with the increases in time to peak, half-relaxation 
time of the isometric twitch, and increases in the twitch to tetanus 
ratio observed soon after the onset of low-frequency stimulation (Fig. 
19; Klug et al. 1988; Simoneau et al. 1989). All these changes are 
probably associated with a prolongation of the active state due to the 
reduced Caa+-buffering capacity of the cytosol. 

2.6 Metabolic Changes 

Increased contractile activity imposed upon fast-twitch glycolytic 
muscle fibers, which during normal locomotion are active only inter- 
mittently, causes an increased demand for enhanced energy supply. 



Adaptation of Mammalian Skeletal Muscle to Electrical Stimulation 145 

Because fast-twitch glycolytic fibers are usually not exposed to sus- 
tained activity, this demand can only be met by a transition from 
anaerobic to aerobic energy metabolism. It is, therefore, not sur- 
prising that an important change which occurs in fast-twitch muscle 
subjected to chronic low-frequency stimulation consists of alterations 
in the activity and isozyme patterns of enzymes of energy supply. 

2.6.1 Fuel Supply 

Contractile activity of fast muscle leads to a well-known functional 
vasodilatation during which the blood flow increases approximately 
fivefold (Hilton et al. 1970). An additional change in the vascular 
bed is an increase in capillary density (see Sect. 2.2), which enables 
the working muscle to further increase perfusion and oxygen supply 
(Hudlick{t et al. 1977). An almost twofold increase in resting oxygen 
consumption has been found in 28-day low-frequency stimulated 
rabbit EDL, TA, and peroneal muscles. During contractile activity, 
higher than normal values for oxygen consumption have been found 
after only 14 days of stimulation and continue to increase thereafter 
(Hudlick~ et al. 1977, 1980). Two- to fourfold increases in blood flow 
and oxygen extraction in resting and contracting cat gracilis muscle 
were seen after 14-28-day low-frequency stimulation (Hoppeler 
et al. 1987). The elevated oxygen extraction may be aided by the 
higher myoglobin content found in chronically stimulated fast-twitch 
muscles of rabbit (Pette et al. 1973) and rat (Kaufmann et al. 1989). 
Consistent with this increase is a 15-fold augmentation of the myo- 
globin mRNA content in rabbit fast-twitch muscle (Underwood and 
Williams 1987). 

In unstimulated rabbit fast-twitch muscle, there is a fourfold 
increase of glucose uptake during contractile activity imposed by 
short-term (10 min) low-frequency (4 Hz) stimulation. In muscles that 
had previously been subjected to chronic low-frequency (10Hz, 28 
days) stimulation, the glucose uptake at rest or during contractile 
activity is similar to that of unstimulated muscles (Hudlick~ et al. 
1980). Conversely, in the same experiments a threefold increase in 
the consumption of free fatty acids was seen in contracting muscles 
that had previously been exposed for 28 days to chronic low-frequency 
stimulation (Hudlick~ et al. 1980). Increased fatty acid consumption 
may be facilitated by an improved transport capacity of fatty acids 
(Fig. 20). Indeed, chronic low-frequency stimulation leads to a 
3.5-fold rise of the cytosolic fatty acid-binding protein in rat TA 
muscle within 21 days (Kaufmann et al. 1989). The expansion of the 
extracellular space, as indicated by a sixfold increase in the chloride 
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Fig. 21. Increase in 
albumin (68-kDa 
protein) content of 
low-frequency 
stimulated (10 Hz, 12 h 
daily) rabbit tibialis 
anterior muscle. Values 
are means from 
measurements on two 
animals per time point 
or means _ SD (zero 
time and soleus) from 
five animals. (From 
Heilig and Pette 1988) 

space  ( H e n r i k s s o n  et  al. 1986) and  a five- to sixfold e l eva t ion  of  the  
a l b u m i n  c o n c e n t r a t i o n  (Hei l ig  and  Pe t t e  1988) in chronica l ly  low- 

f r e q u e n c y  s t i m u l a t e d  r abb i t  E D L  and  T A  musc les ,  m a y  fu r t he r  
faci l i ta te  subs t r a t e  supp ly  and  m e t a b o l i t e  e x c h a n g e  (Fig. 21). 

2.6.2 Enzymes of Energy Metabolism 

Chron i c  l o w - f r e q u e n c y  s t imu la t i on  induces  a t h o r o u g h  r e a r r a n g e -  
m e n t  of  the  e n z y m e  act ivi ty  p a t t e r n  of  e n e r g y  m e t a b o l i s m  (Pe t t e  
et  al. 1972, 1973). T h e  overa l l  change  consis ts  of  an e n h a n c e d  
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Fig. 22a,b. Time course of changes in the activity levels of two representative 
enzymes of aerobic (citrate synthase) and anaerobic (glyceraldehyde phosphate 
dehydrogenase) energy metabolism in rabbit tibialis anterior muscle as induced by 
chronic low-frequency stimulation (10Hz, 12h daily). For comparison, activities 
of the two enzymes were also determined in the diaphragm, soleus, and cardiac 
muscles. Values (means _+ SE, n = 3-5) are from Hood and Pette (1989) and 
unpublished data (D. Pette 1990) 

aerobic-oxidative capacity of the stimulated muscle due to severalfold 
increases in enzyme activities of aerobic-oxidative pathways (the 
citric acid cycle, fatty acid oxidation, ketone body utilization, re- 
spiratory chain) and concomitant  decreases in enzyme activities 
of glycogenolysis and glycolysis, as well as of extramitochondrial  
transfer of energy-rich phosphates (adenylate kinase, MM creatine 
kinase). As shown in the rabbit, the stimulation-induced increases in 
enzymes of aerobic-oxidative pathways may reach values in the range 
or even above those found in cardiac muscle (Fig. 22). 
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Fig. 23. Time course of changes in volume density of total mitochondria (dashed 
line) and in enzyme activities of the superficial portion of rabbit tibialis anterior (TA) 
muscle in response to chronic low-frequency stimulation (10 Hz, 12 h daily). Volume 
density of mitochondria and enzyme activities are given as ratios of stimulated versus 
unstimulated muscles. Abbreviations: CS, citrate synthase, FUM, fumarase HAD,  
3-hydroxyacyl CoA dehydrogenase; HK, hexokinase; IDH, isocitrate dehydro- 
genase; KDH, ketoglutarate dehydrogenase; SDH, succinate-cytochrome c re- 
ductase. (Modified from Reichmann et al. 1985) 

These findings have been confirmed and extended in more de- 
tailed studies (Pette et al. 1975, 1976; Heilig and Pette 1980; Klug 
et al. 1983b; Buchegger et al. 1984; Hudlickfi et al. 1984; Pette 1984; 
Reichmann et al. 1985, 1991; Schmitt and Pette 1985; Chi et al. 1986; 
Henriksson et al. 1986; U. Seedorf et al. 1986; R.S. Williams et al. 
1986; Simoneau and Pette 1988a,b, 1989; Kaufmann et al. 1989; 
Hood and Pette 1989; Hood et al. 1989; Simoneau et al. 1990; Weber 
and Pette 1988, 1990a,b; Annex et al. 1991). A time course study has 
revealed that the activities of the enzymes of the citric acid cycle 
increase in parallel in low-frequency stimulated rabbit fast-twitch 
muscles (Fig. 23; Reichmann et al. 1985). This was also shown for 
enzymes involved in fatty acid transport and oxidation (palmitoyl- 
CoA transferase, 3-hydroxyacyl-CoA dehydrogenase, 3-ketoacyl- 
CoA thiolase) and enzyme activities representative of the respiratory 
chain complexes (NADH cytochrome c reductase, succinate- 
cytochrome c reductase, cytochrome c oxidase; Reichmann et al. 
1991). 

The extent of the stimulation-induced changes in the enzyme 
activity pattern of terminal substrate oxidation may be inversely 
related to the basal levels of these enzymes in different animal 
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Fig. 24. Total activities 
(means _+ SE) of citrate 
synthase, 
3-hydroxyacyl-CoA 
dehydrogenase, and 
3-hydroxybutyrate 
dehydrogenase in low- 
frequency stimulated 
(10Hz, 10h daily, 28 
days) and control TA 
muscles of rabbit, rat 
and mouse. For 
comparison, data are 
given also for 
diaphragm (DIA) and 
soleus muscles of the 
same animals. (Data 
from Simoneau and 
Pette 1988a,b and D. 
Pete, unpublished 
results) 
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species. This is suppor ted  by results obtained from a comparat ive 
study which show that T A  muscles of the mouse,  rat, guinea pig, and 
rabbit  respond differently to the same stimulation protocol  (10Hz,  
10h/day,  for 28 days; Simoneau and Pette  1988a,b, 1989). Mouse  
T A  muscle, which has the highest levels of these enzymes,  changes 
the least ( 1 0 % - 5 0 %  increases), whereas rabbit  T A  muscle, with 
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Fig. 25. Time course of changes in 
the activity levels of mitochondrial 
(m-CK) and cytosolic (c-CK) crea- 
tine kinase, mitochondrial citrate 
synthase (CS) and malate dehydro- 
genase (m-MDH) as induced by 
chronic low-frequency stimulation 
(10Hz, 12h daily) in rabbit tibialis 
anterior (TA) muscle. Enzyme 
activities (means _+ SD, n = 3) are 
given as ratios of stimulated versus 
unstimulated muscles. (From 
Schmitt and Pette 1985) 

the lowest initial levels, displays the greatest increases (more than 
threefold; Fig. 24). In mouse muscle, the stimulation-induced in- 
creases in these enzyme activities do not even reach the values found 
in soleus muscle or in the diaphragm, whereas in the rabbit much 
higher levels are attained in the stimulated TA muscle than in these 
normally "oxidative" muscles (Fig. 24). In larger animals with high 
basal activities of enzymes of aerobic-oxidative metabolism, i.e., the 
dog (Acker et al. 1987c; Ianuzzo et al. 1990a,b), sheep (U. Carraro 
and D. Pette 1990, unpublished), and calf (N. Guldner and D. Pette 
1991, unpublished),  chronic stimulation induces much smaller in- 
creases of these enzymes. Since these studies were performed on the 
latissimus dorsi muscle, a direct comparison with rabbit EDL and 
TA muscles may not be justified. Nevertheless, it appears that the 
initial activity levels of enzymes involved in aerobic-oxidative meta- 
bolism are related to the extent of the change that can be induced. 

The increases in enzyme activities of the main pathways of 
substrate end-oxidation are also highest in the superficial portion of 
rabbit TA muscle, which is composed mainly of fast-twitch glycolytic 
fibers. In these fibers, the increase in enzyme activities of the citric 
acid cycle and fatty acid oxidation was six- to sevenfold (Fig. 23; 
Reichmann et al. 1985). The extent of this increase is so great that 
the oxidative capacity of the fast-twitch muscle transformed by 
chronic low-frequency stimulation by far exceeds that of a normal 
slow-twitch muscle. In the rabbit, chronic low-frequency stimulation 
thus induces a unique metabolic enzyme profile (Hood and Pette 
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Fig. 26. Species-specific changes in the percentage of the H-subunit of lactate de- 
hydrogenase (H-LDH) in low-frequency stimulated tibialis anterior (10 Hz, 10 daily) 
muscles of mouse, rat, guinea pig, and rabbit. Values are means _+ SD (n = 3 - 4  
animals). (From Simoneau and Pette 1989) 

1989; see Fig. 22). These observations are consistent with the pro- 
posal that the extent of the induced changes in enzyme activities of 
aerobic-oxidative metabolism is inversely related to their initial levels 
before the onset of stimulation (Simoneau and Pette 1988a). 

In parallel with these changes, there is an augmentation (six- to 
sevenfold) in mitochondrial volume density which may reach a value 
of 20% in the superficial portion of rabbit TA muscle (Fig. 23; 
Reichmann et al. 1985). The amount of total mitochondrial DNA 
increases five- to sevenfold in 21-day stimulated rabbit EDL and TA 
muscles (R.S. Williams et al. 1986). Not only does chronic low- 
frequency stimulation increase the mitochondrial volume density 
(Eisenberg and Salmons 1981; Reichmann et al. 1985; Hoppeler 
et al. 1987; Hudlick~i et al. 1987), but, as shown in rabbit muscle, it 
alters the enzymatic composition of the mitochondria. In contrast to 
a pronounced decrease in the cytosolic MM-creatine kinase, there 
is a severalfold increase in mitochondrial creatine kinase activity 
(Schmitt and Pette 1985), the key enzyme of the creatine phosphate 
shuttle (Fig. 25). Glycerol phosphate oxidase, a membrane-bound 
mitochondrial component of the glycerol phosphate cycle, decreases 
in parallel with the reduction of the extramitochondrial glycolytic 
enzyme activities (Pette et al. 1973, 1976; Heilig and Pette 1980; 
Reichmann et al. 1985). In addition, disproportionate increases are 
found for enzymes involved in ketone body utilization, e.g., the 
activity of 3-hydroxybutyrate dehydrogenase, a membrane-bound 
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mitochondrial enzyme, which increases up to 30-fold in the superficial 
rabbit TA muscle (Reichmann et al. 1985). The increase in this 
enzyme activity is most pronounced in the rabbit, smaller in rat, 
and does not occur in mouse. In view of the high activity levels 
of 3-hydroxybutyrate dehydrogenase in the diaphragms of these 
animals, the different effects of chronic low-frequency stimulation on 
the activity level of this enzyme in the TA muscles represent species- 
specific responses. It remains to be shown whether these changes 
reflect alterations within the existing population of mitochondria or 
whether low-frequency stimulation induces the formation of a mito- 
chondrial population with a specific enzymatic composition. 

Chronic low-frequency stimulation also induces changes in the 
isozyme pattern of metabolic enzymes. This has been demonstrated 
for two particular enzymes, phosphorylase kinase (Lawrence et al. 
1986) and lactate dehydrogenase (Pette et al. 1973; Heilig and Pette 
1980; Hudlick~i et al. 1984; U. Seedorf et al. 1986; Hood and Pette 
1989; Simoneau and Pette 1989). In the case of phosphorylase.kinase, 
the enzyme activity was reduced by 80% in 10-week stimulated rabbit 
TA muscle and the isozyme pattern shifted in the direction of a 
muscle with a high percentage of fast-twitch oxidative or slow-twitch 
oxidative fibers (Lawrence et al. 1986). The changes in lactate 
dehydrogenase (LDH) consist of increases in H-subunit-based 
isozymes, especially of LDH-1, LDH-2, and LDH-3, and decreases 
of the M-subunit-based isozymes, i.e., LDH-4 and LDH-5 (Pette 
et al. 1973; Hudlickfi et al. 1984; U. Seedorf et al. 1986; Hood and 
Pette 1989; Simoneau and Pette 1989). This shift in the LDH subunit 
composition is explained by increases in the protein amount of the 
H subunit and decreases in the protein amount of the M subunit 
(U. Seedorf et al. 1986). These alterations are preceded by decreases 
in the amount of mRNA encoding the M-LDH subunit and increases 
in the amount of mRNA encoding the H-LDH subunit (U. Seedorf 
et al. 1986). Comparative studies on several small mammals have 
shown that the stimulation-induced changes in the LDH isozyme 
pattern also occur in a species-specific manner (Fig. 26; Simoneau 
and Pette 1989). Rabbit TA muscle responds with a fourfold in- 
crease in the percentage of the H-LDH subunit, mouse TA shows 
only a twofold increase, and rat and guinea pig behave interme- 
diately. Thus, the increase in H-LDH subunit is more pronounced 
in muscles which initially have a low than in muscles which initially 
have a high aerobic-oxidative capacity (Simoneau and Pette 1989). 

Rearrangements of the enzyme pattern have been correlated in 
several cases with alterations of specific mRNAs. In chronically 
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stimulated rabbit EDL and TA muscles, the reductions in glycolytic 
enzyme activities, e.g., aldolase and glyceraldehyde phosphate de- 
hydrogenase, are related to decreases in the amounts of their mRNAs 
(R.S. Williams et al. 1986, 1987; Hood et al. 1989). Conversely, 
increases in mitochondrial citrate synthase (U. Seedorf et al. 1986; 
R.S. Williams 1986; R.S. Williams et al. 1986; Annex et al. 1991) 
and mitochondrial cytochrome b (R.S. Williams et al. 1987) cor- 
respond to increases in these mRNAs. Increases in cytochrome c 
oxidase, an enzyme composed of nuclear-encoded and mitochondrial- 
encoded subunits, relate to elevations in both nuclear (R.S. Williams 
et al. 1987; Hood et al. 1989) and mitochondrial (Hood et al. 1989) 
mRNAs. The parallel increases in mRNAs of the mitochondrial- 
encoded subunit III and the nuclear-encoded subunit VIc suggest a 
coordinated expression of mitochondrial and nuclear genomes under 
these conditions (Fig. 27; Hood et al. 1989, 1992). 

A time course study of the increase in citrate synthase showed a 
slight increase in enzyme activity which preceded the increase in its 
mRNA (U. Seedorf et al. 1986). Since the amount of cytosolic 
monosomes and polysomes was already elevated by this time, the 
early increase in citrate synthase could have resulted from enhanced 
translation of the preexisting messenger. The later and steeper 
increase in citrate synthase, which coincided with a steep rise in 
mRNA, was most likely caused by both enhanced transcription and 
translation (U. Seedorf et al. 1986). 

One of the earliest changes in the enzyme pattern is a steep 
increase in hexokinase (HK) activity (Pette et al. 1972, 1973). This 
increase could indicate that glucose phosphorylation is a limiting step 
under the conditions of sustained contractile activity imposed on a 
fast-twitch muscle. The increase in HK is first noted after 2 days, and 
by 2 weeks HK is seven- to tenfold higher in low-frequency stimu- 
lated rabbit fast-twitch muscle than in control muscle (Reichmann 
et al. 1985; Chi et al. 1986; Henriksson et al. 1986). The elevation in 
total HK activity can be accounted for by an increase in HK isozyme 
II (Pette et al. 1973). An even higher increase (14-fold after 2 weeks) 
in total HK activity is induced by chronic low-frequency stimulation 
in rat TA muscle (Fig. 28). However, much smaller increases in HK 
activity than in rat and rabbit are observed in chronically stimulated 
TA muscles of mouse and guinea pig (Simoneau and Pette 1988a,b). 
The increase in HK activity can be fully accounted for by enhanced 
HK II synthesis which results in an increase in the amount of HK 
II protein (Weber and Pette 1988, 1990a,b; Fig. 28). Significant 
increases in the rate of HK II synthesis are detected as early as 2h 
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Fig. 27. Comparison of 
time courses of changes in 
specific mRNAs (a) with 
corresponding enzyme 
activities (b) as induced 
by chronic low-frequency 
stimulation (10 Hz, 10 h 
daily) in rat tibialis 
anterior muscle. Data 
(means + SE, n = 3 -4  for 
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as ratios of stimulated 
muscles versus 
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CYTOX, cytochrome 
c oxidase; CYTOX II1, 
mitochondrial-encoded 
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nuclear-encoded subunit; 
GAPDH, glyceraldehyde 
phosphate dehydrogenase. 
(From Hood et al. 1989) 

after the onset of stimulation (Pette et al. 1991; S. Hoffmann and 
D. Pette 1991, unpublished). In addition to the rise in HK II protein, 
chronic low-frequency stimulation induces an increase in the fraction 
of the mitochondrial-bound form of this enzyme, thus enhancing the 
coupling of glucose phosphorylation to the mitochondrial ATP- 
generating system (Weber and Pette 1990b). Low-frequency stimula- 
tion also enhances the synthesis of the GLUT-4 glucose transporter. 
In addition, it enhances its translocation into the sarcolemma mem- 
brane (S. Hofmann and D. Pette, 1992, unpublished). 

The stimulation-induced increase in HK II is transient in both 
rabbit (Henriksson et al. 1986) and rat (Weber and Pette 1988, 
1990b), for, after 3 weeks of stimulation, the enzyme activity declines 
(Fig. 28). This can be accounted for by reduced enzyme synthesis 
(Weber and Pette 1990a; S. Hoffmann and D. Pette 1991, unpub- 
lished). The rate of decline in HK II with ongoing low-frequency 
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Fig. 28. Time course of stimulation-induced (10Hz, 10h daily) changes in total 
hexokinase activity (D) and immunochemically determined tissue contents of hexo- 
kinase isozyme II protein ( I )  in rat tibialis anterior muscle. Values represent 
means + SE (n = 5). (From Weber and Pette 1990b) 

stimulation (>3 weeks) is similar to that seen after cessation of 
stimulation (Weber and Pette 1990a,b). This indicates that the decay 
of HK II after longer periods of stimulation occurs as a result of an 
abrupt change in gene expression which returns the HK II synthesis 
to normal steady-state conditions. This may be related to the fact 
that energy metabolism, which is initially based upon glucose cata- 
bolism, eventually changes to fatty acid catabolism as a result of 
the meanwhile increased aerobic-oxidative potential in chronically 
stimulated muscle. 

Finally, the literature contains information on an enzyme, car- 
bonic anhydrase III (CAIII),  the function of which in muscle is 
poorly understood (Gros and Dodgson 1988), but which may be 
implicated in excitation-contraction coupling by an effect on Ca 2+ 
transients (Wetzel et al. 1990). Carbonic anhydrase III is present 
only in type I fibers (for review see Pette and Staron 1990). Pro- 
nounced increases (up to 15-fold) were observed in chronically 
stimulated rabbit EDL and TA muscles (Gros and Dodgson 1988). 
This increase occurred only after 3 weeks of stimulation, i.e., later 
than the increases in mitochondrial enzyme activities. The increase 
in CAIII activity correlated with that of its mRNA and its immuno- 
chemically determined protein in chronically stimulated rabbit EDL 
and TA muscles (Brownson et al. 1988). The observation that 
chronic low-frequency stimulation does not induce CAIII,  neither at 
the mRNA nor at the protein level, in rat TA muscle is consistent 
with the lack of conversion to type I fibers in this species (Jeffery 
et al. 1990). 
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2.6.3 Metabolites 

A time course study on changes in several metabolites of energy 
metabolism was performed in low-frequency stimulated rabbit TA 
muscle (Green et al. 1990, 1992). The changes induced by such 
increased contractile activity occur in three stages. First, within 
15min there is a marked reduction in ATP (50%-60%), phospho- 
creatine (60%), and glycogen (70%-80%), an approximately three- 
fold increase in glucose, and a ten fold increase in lactate. Next, a 
period extending to 4 days of stimulation is characterized by a nearly 
complete recovery of ATP and phosphocreatine, low lactate, and an 
overshoot in glycogen content. The glycogen depletion, followed by 
an overshoot, had previously been noticed in low-frequency stimu- 
lated rabbit TA muscle by single fiber analysis (Maier and Pette 
1987). During the succeeding phase, extending to 50 days, the 
metabolite profile approaches that of a slow-twitch muscle with 
moderate reductions in total adenine nucleotides, total creatine, 
ATP, phosphocreatine, and glycogen. Anaerobic glycolysis as in- 
dicated by the muscle lactate concentration, remains at low levels. 
These late changes are in agreement with data reported by Henriksson 
et al. (1988, 1990). Unfortunately, their study did not include the 
crucial early time points during which many of the most dramatic 
changes take place (Green et al. 1990, 1992). A similar study per- 
formed on low-frequency stimulated rat gastrocnemius-plantar 
muscles investigated in detail the changes in metabolite levels imme- 
diately after the onset (lmin) up to 180min of stimulation (Hood 
and Parent 1991). In that study, similar changes were observed in 
the tissue contents of glycogen, lactate, phosphocreatine, ATP, 
adenosine diphosphate (ADP), and AMP as in the study on low- 
frequency stimulated rabbit TA (Green et al. 1990, 1992; Pette et al. 
1991), i.e., rapid decreases in glycogen, phosphocreatine, and ATP 
concomitant with transient increases in lactate, free ADP (ADP0, 
and AMP. 

The time course of  the changes during the first 2 days reveals 
an impressive capability of the muscle to recover from an initial, 
dramatic disturbance of energy metabolism (Green et al. 1990, 1992). 
Alterations in the metabolite profile occur almost immediately after 
the onset of stimulation, but only some of these changes persist with 
ongoing stimulation. These may be important in triggering long- 
lasting processes of metabolic and fiber-type transformation. In this 
context, the persistently depressed phosphorylation potential of the 
adenylic acid system, i.e., the reduced ATP/(ADPf x Pif) ratio, 
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Fig. 29. Time course of changes in the ratio ATP/(ADPf x Pi 0 in rabbit tibialis 
anterior muscle during continuous (24h daily) 10Hz stimulation B, O, control. 
(Modified from Pette et al. 1991) 

might be of special importance (ADPf and Pif represent the con- 
centrations of free ADP and free inorganic phosphate) (Fig. 29; 
Green et al. 1992; Pette et al. 1991). 

Another interesting change, occurring soon after the onset of 
chronic low-frequency stimulation in rabbit fast-twitch muscle, is an 
increase in two important regulatory metabolites of carbohydrate 
metabolism (Green et al. 1991), glucose-l,6-bisphosphate (Glc-l,6- 
P2) and fructose-2, 6-bisphosphate (Fru-2,6-P2). Both of these 
effectors begin to increase 3h after the onset of stimulation, reach 
maxima at 12-24h (three fold for Glc-I,6-P2, five fold for Fru-2,6- 
P2), and decay after stimulation periods longer than 4 days. The fact 
that their increases coincide with the replenishment of glycogen after 
its intial depletion could indicate that Glc-I,6-P2 and Fru-2,6-P2 have, 
in addition to their regulatory effects in glycolysis and gluconeo- 
genesis (for review see Beitner 1990), a role in glycogen metabolism 
(Green et al. 1991). 

2.7 Time Course of Stimulation-Induced Changes 

The stimulation-induced effects described so far have all been from 
experiments based on chronic low-frequency stimulation. Com- 
parisons between various regimes of low-frequency stimulation, such 
as daily amount of treatment or frequency, are rare. It is likely that 
in the rabbit 8h stimulation per day will produce different results 
than 24 h (Pette et al. 1976). Firstly, 8 h of stimulation cover only one 
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third of the 24 h stimulation period and, secondly, this protocol gives 
the muscle time to recover in between. The final outcome of changes 
using either method may, however, be ultimately similar after long- 
term periods of stimulation. The possibility exists that different time 
periods of stimulation are necessary to induce the same change in 
particular strains of rabbit. This makes comparisons of the results 
from different laboratories difficult. Even in animals from the same 
strain individual variations exist between the changes induced with 
identical stimulation protocols (e.g., Salmons and Vrbovfi 1969; Pette 
et al. 1973, 1976; Heilmann and Pette 1979; W.E. Brown et al. 1983; 
K. Seedorf et al. 1983; Staron et al. 1987; Maier e ta l .  1988; Termin 
et al. 1989b; see also Mabuchi et al. 1990). The reason for this 
variability is difficult to trace. It may be that the muscle character- 
istics of individual rabbits differ before stimulation commences so 
that they start from different basal levels. Other reasons may relate 
to the procedure of electrode implantation and changes associated 
with it. Even when great care is taken to place the electrodes at 
similar positions, small displacements, caused by movements of the 
conscious animal, as well as variable encapsulation of the electrodes 
by connective tissue, may cause individual variations in the efficiency 
of stimulation. Moreover, the activation of antagonists either by 
current spread or by intentional movements of the animal may alter 
the mechanical conditions of the limb during chronic stimulation. 
Some rabbits prefer to press the foot of the stimulated leg against the 
bottom of the cage, whereas others remain in a position that allows 
muscle shortening and movements of the paw. Such mechanical 
differences could have an impact on the degree of stimulation- 
induced changes. Several studies have shown that chronic low- 
frequency stimulation of rabbit fast-twitch muscle is more efficient 
when the stimulated muscles are kept in a stretched position (G. 
Goldspink 1985; Cotter and Phillips 1986; P. Williams et al. 1986). 
Therefore, in view of these variables it is not always easy to evaluate 
the exact time course of events in long-term stimulation experiments. 
Nevertheless, some time-linked patterns of change emerge. 

Immediately after the onset of stimulation, there are dramatic 
changes in energy-rich phosphates and a pronounced depression of 
the energy charge (Fig. 29), as well as reductions of glycogen and 
other metabolites of energy metabolism (Maier and Pette 1987; 
Green et al. 1990, 1992; Hood and Parent 1991). Among the early 
changes are also those related to intracellular calcium. The decrease 
in Ca 2+ uptake by the sarcoplasmic reticulum (Fig. 16), due to the 
partial inactivation of the sarcoplasmic reticulum CaZ+-ATPase, 
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begins a few hours after the onset of stimulation (Dux et al. 1990). 
This may explain the severalfold increase in free [Ca 2+] observed by 
Srdter et al. (1987). These changes are followed by a reduction in 
parvalbumin content during the first week (Fig. 18; Klug et al. 
1983a,b; Leberer et al. 1986; Simoneau et al. 1989). 

The enhanced synthesis of HK II (Weber and Pette 1988, 
1990a,b) occurs within the first hours. The elevated synthesis of this 
key enzyme for glucose phosphorylation in muscle may be causally 
related to the pronounced increase in glucose concentration of 
stimulated muscle (Green et al. 1990, 1992). Cessation of stimulation 
has an almost immediate effect on the rate of HK synthesis which 
decreases to normal values within 15 h (Weber and Pette 1990a). 

Another early event in low-frequency stimulated fast-twitch 
muscle is an enhanced translational capacity and efficiency resulting 
from pronounced increases in monosomes and polysomes (Fig. 30; 
U. Seedorf et al. 1986). An approximately twofold increase in 
monosomes after 2 days of stimulation precedes the rise in both total 
RNA and poly(A+)RNA (Pette 1984; U. Seedorf et al. 1986). 
Increases in total RNA and ribosome yield are detectable after 3 -4  
days and reach maxima (three- to fivefold increases) between 14 and 
21 days (Fig. 30; Pette 1984; U. Seedorf et al. 1986). Interestingly, 
metabolites and enzymes of the polyamine pathway, including 
ornithine decarboxylase, are subject to pronounced transient in- 
creases in rabbit fast-twitch muscles during day 1-4 of low-frequency 
stimulation (Mastri et al. 1982). Ornithine decarboxylase, together 
witli high amounts of polyamines, are thought to enhance ribosomal 
RNA synthesis (Russell 1983; Tabor and Tabor 1984). 

An increase in perfusion capacity due to growth of new capillaries 
commences within the first 4 days (M.D. Brown et al. 1976; Hudlickfi 
et al. 1977, 1982b; Myrhage and Hudlickfi 1978). At the same time, 
activities and expression of enzymes involved in anaerobic metabolic 
pathways begin to decrease and those of aerobic-oxidative meta- 
bolism begin to increase. 

The changes in myosin composition fall into two categories, i.e., 
the initial HCIIb ~ HCIId ~ HCIIa transitions and the ultimate 
fast-to-slow transition, i.e., the exchange of HCIIa with HCI. The 
time course of the rearrangement of the fast myosin HC isoform 
pattern has been elucidated for rat fast-twitch muscle (Termin et al. 
1989b). However, the time course remains to be studied in more 
detail in the rabbit, especially in view of the HCIId ~ HCIIa tran- 
sition (see Sect. 2.4.1). In our opinion, previous studies, including 
our own, have distinguished neither between type IIB and type IID 
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fibers nor between the MHC isoforms HCIIb and HCIId.  The type 
IID fibers, which represent the major fraction in rabbit leg muscles 
may have erroneously been classified as type IIB fibers because it is 
difficult to distinguish fiber types IIB and IID by the conventional 
mATPase histochemistry. The electrophoretic separation of the 
MHC isoform HCIId has only recently been achieved (D. Pette et al. 
1991, unpublished), and, therefore, previous electrophoretic studies 
have been unable to take this isoform into consideration. The ex- 
pression of slow myosin in low-frequency stimulated rabbit EDL and 
TA muscles of rabbit begins only after stimulation periods longer 
than 3 - 4  weeks. Long stimulation periods lead to progressive in- 
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creases in HCI.  This isoform predominates  after stimulation periods 
longer than 30 days of continuous (24 h/day) low-frequency stimula- 
tion (W.E. Brown et al. 1983; Staron et al. 1987; Franchi et al. 1990). 

Detai led studies have elucidated the time course of the rear- 
rangement  of the fast-type M H C  isoforms in rat fast-twitch muscles. 
Al though the protein pat tern of the M H C  isoforms is unal tered 
during the first week of chronic low-frequency stimulation, changes 
in M H C  isoform expression occur as early as 2 days after the onset of 
stimulation (see Fig. 10). Decreases  in the amount  of the m R N A  
encoding myosin HCIIb followed by increases in the amount  of 
HCIIa  m R N A  are detectable at 2 days (Kirschbaum et al. 1989c, 
1990b). These changes at the m R N A  level coincide with a reduced 
HCIIb protein synthesis and an enhanced synthesis of HCI Id /HCIIa  
(Fig. 31; Terrain and Pette 1992). However ,  significant changes in the 
M H C  composition of the muscle are first seen at day 8. This delay 
suggests that the newly synthesized heavy chain isoforms (HCIId  and 
HCIIa)  are rapidly turned over and are not inserted immediately  into 
the thick filament. It is likely that the myosin HCIIb isoform, which 
is no longer synthesized, must be degraded before the newly formed 
isoforms HCIId  and HCIIa  can be inserted into the sarcomere.  This 
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matches the half-life of HCIIb which is approximately 15 days 
(Termin and Pette 1992). Thus, protein degradation could be an 
important posttranslational regulatory step determining the re- 
modeling of the thick filament (Termin and Pette 1992). 

The time course of the rearrangement of the thin filament pro- 
teins in rabbit EDL and TA muscles differs between TnT on the one 
hand and TnI and TnC on the other hand. While the sequential 
exchange of the various fast TnT isoforms (TnTlf, TnT2f, TnT3f, 
TnT4f) appears to follow that of the various fast MHC isoforms 
(Schmitt and Pette 1990), the fast-to-slow transitions of TnT (TnT3f 

TnT1s, TnTzs; Fig. 13), TnI (TnIf--* This), and TnC (TnCf 
TnC~) occur later (Hfirtner and Pette 1990). It appears to coincide 
with the fast-to-slow transition of myosin, i.e., the appearance of 
the slow HCI after stimulation periods longer than 3 -4  weeks. The 
expression of the slow Ca2+-ATPase isoform, as well as the induc- 
tion of phospholamban, also follows this time sequence (Figs. 14, 17; 
Leberer et al. 1989). 

An unanswered question relates to the time course of trans- 
formation of different muscle fiber types. In view of the fact that 
a fast-twitch muscle is composed of various fast fiber subgroups 
(types IIB, IID, IIA), the stimulation-induced conversion could 
either occur as a one-step or as a sequential fast-to-slow transition. 
Thus, the possibility exists that the various fast fiber subgroups 
transform directly into type I fibers, or they pass from one fast 
phenotype to another before they ultimately reach the slow fiber 
state. The time course of changes in fiber type composition (Fig. 8) 
argues strongly against the first possibility. Thus, low-frequency 
stimulation of rabbit fast-twitch muscle initially leads to a steep 
decrease in type IIB/D fibers with subsequent and transitory increases 
in type IIA and C fibers. Pronounced increases in type I fibers occur 
only after long-term stimulation and represent the final fiber type 
conversion in rabbit muscle. An answer to this question can also be 
found in the changes of the MHC isoforms in chronically stimulated 
rat muscles. Rat EDL and TA muscles contain only a small per- 
centage of type IIA fibers and are composed mainly of type IIB 
and type IID fibers. Electrophoretic analyses on low-frequency 
stimulated rat TA and EDL muscles reveal a progressive decrease in 
the amount of myosin HCIIb concomitant with transient increases 
in HCIId and HCIIa,  the latter becoming ultimately the dominant 
isoform (Fig. 9; Terrain et al. 1989b). An intermediate increase in 
HCIId could not be observed if the fiber type transition occurred 
in a single step, i.e., directly from type IIB to type IIA. Therefore, 
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the fast-to-slow conversion includes intermediate steps with the 
sequential expression of HCIIb -* HCIId --~ HCIIa in the rat, and 
HCIIB --~ HCIId  --~ HCIIa --~ HCI in the rabbit. 

An  additional question is whether the different fiber type tran- 
sitions occur simultaneously or proceed in a sequential manner.  
Simultaneous fiber type transitions would lead to a progressive 
increase in type I fibers after the onset of stimulation. However,  
several independent  studies have shown that noticeable increases in 
type I fibers are observed only after very long stimulation periods 
(Fig. 8; Staron et al. 1987; Maier et al. 1988; Aigner and Pette 
1992; Pette 1992). Similar results have been obtained from studies 
on MHC isoform transitions at the m R N A  level. Thus, the slow 
myosin HCI m R N A  is expressed as the last isoform during the 
transformation process of chronically stimulated rabbit fast-twitch 
muscle (Kirschbaum et al. 1989a; Brownson et al. 1992). Similar 
results have been obtained in a study in which the appearance of HCI 
m R N A  was followed at the cellular level by in situ hybridization 
(Aigner and Pette 1990, 1992). Only a few HCI mRNA-posit ive 
fibers can be detected in normal rabbit TA muscle. Their number  
increases markedly after stimulation periods longer than 30 days 
(Fig. 11; Aigner and Pette 1992), supporting the notion that the 
HCIIa --~ HCI transition represents the ultimate step of the fast-to- 
slow fiber type conversion. Because this conversion is essentially 
confined to long-term stimulation, it appears that the type IIA fibers 
do not transform in a synchronous manner.  Taking into account that 
normal EDL and TA muscles of the rabbit contain only a small 
fraction of type I IA fibers, it is conceivable that only these fibers will 
initially perform the type IIA --~ type I transition. As the other fast 
fiber types reach the type I IA state, these newly formed IIA fibers 
become able to switch from myosin HCIIa to myosin HCI expression. 
The proposed model  of sequential fiber type transitions implies that 
the genes coding for the different MHC isoforms respond to chronic 
low-frequency stimulation in a graded manner  and are activated 
sequentially due to different thresholds. 

2.8 Reversal of Stimulation-Induced Changes 

Studies on the temporal pattern of the reversal of low-frequency 
stimulation-induced changes have been performed on the rabbit 
(Eisenberg et al. 1984; Sr6ter et al. 1987; J.M.C. Brown et al. 1989) 
and rat (Kirschbaum et al. 1988, 1990b; Weber and Pette 1990a,b). 
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In the rabbit, the time course of complete reversion was such that 
the muscles had recovered their original fast properties by about 12 
weeks after the cessation of stimulation (J.M.C. Brown et al. 1989). 
The contractile characteristics and post-tetanic potentiation typical of 
fast-twitch muscle return rapidly after 3 - 4  weeks (Figs. 32, 33; 
J.M.C. Brown et al. 1989). This coincides with a decline in histo- 
chemically defined type I fibers (Srdter et al. 1987; J.M.C. Brown 
et al. 1989) and electrophoretically determined slow isomyosin 
(Srdter et al. 1987). Changes in fatigue resistance, capillary density, 
and enzyme activity follow a more prolonged time course (Figs. 33, 
34; J.M.C. Brown et al. 1989). The decline in enzyme activities of 
aerobic-oxidative metabolism corresponds closely to that established 
for the mitochondrial volume density (Eisenberg et al. 1984; J.M.C. 
Brown et al. 1989). Interestingly, the reversal of the morphological 
changes of the T-tubular system is faster. The T-tubules which are 
markedly reduced by chronic low-frequency stimulation (Eisenberg 
and Salmons 1981), increase to values characteristic of fast-twitch 
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muscle 2 -4  weeks after stimulation is discontinued (Eisenberg et al. 
1984). 

The reversal of the changes in proteins, cellular structures, and 
functional properties after cessation of stimulation is relatively slow. 
The corresponding changes at the mRNA level appear to occur much 
faster. To date, studies have only been performed on the reversal 
of changes in MHC mRNA isoforms. Indeed, HCIIb and HCIIa 
mRNAs are rapidly exchanged in rat TA muscle after cessation of 
stimulation (Kirschbaum and Pette 1988; Kirschbaum et al. 1989c, 
1990b). Significant increases in the amount of HCIIb mRNA, which 
has been reduced in 15-day stimulated rat TA to 4% of its normal 
value, become detectable as early as 21h after stimulation has been 
interrupted (Fig. 35). This reversal of the stimulation-induced 
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changes, consisting of not only increases in HCIlb mRNA but also 
decreases in HCIIa mRNA, is progressive (Kirschbaum et al. 1990b). 
The reversal of the fast-to-slow transition has also been shown for 
fast and slow HC mRNAs in the rabbit. However, the reversal of the 
changes in the rabbit follows a slower time course than that of 
the rat. Thus, the reappearance of the fast MHC mRNA has been 
detected only 4 days after cessation of stimulation (Brownson et al. 
1988, 1992). 

2.9 Transformation and Replacement of Muscle Fibers 

The numerous changes in molecular, structural, and functional 
properties of low-frequency stimulated fast-twitch muscles described 
so far raise the question as to the underlying processes associated 
with these alterations in phenotype. Do these changes reflect a fast- 
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to-slow transformation of existing fibers or do they result from 
an exchange of fast-twitch fibers with newly formed slow-twitch 
fibers? Until recently it was believed that the fast-to-slow transitions 
were entirely due to a transformation of existing fast-twitch fibers. 
However, evidence is accumulating that, in addition to fiber trans- 
formation, some replacement of fast-twitch fibers may contribute to 
the overall changes (Maier et al. 1986, 1988; Maier and Pette 1987; 
Acker et al. 1987b; Aigner and Pette 1990, 1992; Pette 1992). 

Histological and immunocytochemical  analyses performed on 
rabbit EDL and TA muscles subjected to chronic low-frequency 
stimulation for different time periods, have found that 10%-20% of 
the total fiber population undergo degeneration a few days after the 
onset of stimulation. The deteriorating fibers, most of which are fast- 
twitch glycolytic, are replaced by newly formed fibers (Maier et al. 
1986). The first signs of fiber degeneration (e.g., fiber swelling, 
acidophilia, increase in mononucleated cells) have been observed 
after 2 days. Most of these mononucleated cells are probably macro- 
phages since their appearance is accompanied by a five- to sixfold 
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increase in the activity of 13-galactosidase, a lysosomal marker (U. 
Seedorf and D. Pette 1986, unpublished). Increase in cell number 
is also indicated by an augmented DNA content of the stimulated 
muscle (Maier and Pette 1987). Phagocytosis of disrupted fibers is 
maximal between 6 and 10 days after the onset of stimulation. It is 
not known to what extent the transient elevations in metabolites 
and enzyme activities of the polyamine pathway observed during the 
first days in low-frequency stimulated rabbit muscle (Mastri et al. 
1982) relate to the invasion of mononucleated cells and proliferative 
processes. 

Incorporation of [3H]thymidine into nuclei of putative satellite 
cells indicates their proliferation. Histological analyses suggest that 
satellite cells from fast-twitch oxidative fibers are also involved in the 
regenerative processes (Maier et al. 1986, 1988). Small myotubes 
expressing embryonic and neonatal myosins have been seen. In 
addition, a large fraction of the newly formed myotubes, which 
eventually develop into small fibers with a high oxidative potential, 
contains slow myosin in variable combinations with embryonic 
myosin (Maier et al. 1988). A significant increase in muscle fibers 
with central nuclei, as well as the appearance of the MB-hybrid of 
creatine kinase (Schmitt and Pette 1985), can be interpreted as 
additional signs of regenerative processes. Finally, in situ hybri- 
dization of the slow myosin HCI mRNA not only shows fibers with 
high concentrations of the message within and around their subsar- 
colemmic nuclei, but, in addition, reveals fibers displaying high 
amounts of HCI mRNA within and around centrally placed nuclei 
(Aigner and Pette 1990, 1992; Pette 1992). 

Although fibers with centrally placed nuclei can be detected after 
prolonged stimulation, the acute phase of fiber degeneration and 
regeneration appears to be complete after 3-4 weeks of stimulation. 
Nuclear counts remained high, but most of the nuclei were closely 
associated with the periphery of the muscle fibers (Maier et al. 1986). 
Some of these might represent newly formed satellite cells as the fast- 
twitch muscle fibers undergo transformation or are substituted for by 
the newly formed fibers. The number of satellite cells in fast-twitch 
and slow-twitch muscles has been reported to be under neural control 
(Kelly 1978; Schultz 1984; Schultz and Darr 1990). Indeed, a three- 
fold increase in satellite cell yield was obtained from 15-day low- 
frequency stimulated rat TA muscle (D~sterh6ft et al. 1991). 

There appears to be a relationship between glycogen depletion 
and fiber degeneration (Maier and Pette 1987). Microphotometric 
evaluation of the histochemical staining for glycogen has shown 
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glycogen depletion of all fibers after the first 2 h of stimulation, which 
is in agreement with biochemical analyses on whole muscle (Green 
et al. 1990, 1992; Hood and Parent 1991). Thereafter, different 
responses are noted for different fiber types. Fast-twitch oxidative 
and slow-twitch oxidative fibers recover their glycogen stores. 
However, a high percentage of the fast-twitch glycolytic fibers do 
not recover and remain glycogen-depleted. Fiber degeneration is 
restricted to these fibers, suggesting that persistent exhaustion of the 
main fuel of this fiber type causes a collapse of energy metabolism 
and energy supply of the ionic pumps which could then initiate fiber 
deterioration (Maier and Pette 1987). It remains to be seen to what 
extent the early increases in total and free calcium detected during 
the first days of stimulation (Sr6ter et al. 1980, 1987) relate to 
such events. However, it is possible that other factors, e.g., mech- 
anical disruption, as in exercise-induced muscular injury (for re- 
view see Armstrong 1990), also play a role in the initiation of fiber 
degeneration. 

It is possible that degenerat ion-regenerat ion processes are 
contributing to different extents to the fast-to-slow conversion of 
chronically stimulated fast-twitch muscles in different animal species. 
The caged rabbit probably represents an extreme, with muscles rich 
in fast-twitch glycolytic fibers that are predisposed to exhaustion 
when exposed to persistently increased contractile activity. Fast- 
twitch fibers of other animal species may be more resistant to fiber 
deterioration because of their higher initial levels of enzymes rep- 
reseflting aerobic-oxidative metabolic pathways. This would explain 
why Hoffman et al. (1985) were unable to observe signs of fiber 
degeneration or regeneration and were unable to detect embryonic 
myosin in dog diaphragm subjected to chronic low-frequency (10 Hz) 
stimulation. However, it must be kept in mind that the normal, 
unstimulated diaphragm is a muscle endowed for sustained con- 
tractile activity. 

3 Slow-to-Fast Transitions 

Although much less work has been carried out on this model, the 
first observations on the regulatory role of activity on the contractile 
properties were made on inactivated slow-twitch soleus muscle of the 
rabbit and cat (Vrbov~ 1963). Reducing the overall activity of this 
muscle by tenotomy leads to an increased speed of contraction 



170 D. Pene and G. Vrbov~ 

(Vrbov~ 1963; Buller and Lewis 1965). In the rabbit soleus, the slow 
time course of contraction, characteristic of this muscle, could be 
maintained by imposed continuous low-frequency, electrical but not 
by intermittent high-frequency stimulation (Vrbovfi 1966). 

An additional model in which a slow-twitch muscle can be suc- 
cessfully transformed into a faster contracting muscle is the dener- 
vated soleus muscle of the rat, stimulated directly with a phasic high- 
frequency pattern (L0mo and Westgaard 1974; L0mo et al. 1980). 
On this model, the molecular changes underlying the altered con- 
tractile speed have been studied in detail (Eken and Gundersen 1988; 
LCmo 1989). 

3.1 Phasic High-Frequency Stimulation of Slow-Twitch Muscle 

Denervated rat soleus muscle, subjected to small amounts of phasic 
high-frequency stimulation (60 pulses at 100Hz every 60s or 25 
pulses at 150Hz every 15s) during long time periods (>30 days) 
turns into a faster contracting muscle as judged from the time to peak 
twitch tension, half-relaxation time, and rate of tension development 
(Eken and Gundersen 1988; Gorza et al. 1988). Gundersen et al. 
(1988) found that the mATPase histochemistry of soleus fibers stimu- 
lated phasically at a high frequency (25 pulses at 150 Hz every 15 min) 
resembled that of type C fibers. This conclusion is consistent with the 
results from immunocytochemical studies showing a high proportion 
of fibers that strongly react with antibodies against fast myosin and 
weakly with antibodies against slow myosin (Gorza et al. 1988). The 
identity of the fibers positive for fast-type myosin was further eluci- 
dated and shown to be type 2x (Schiaffino et al. 1988, 1989; Ausoni 
et al. 1990). 

In addition to the changes in fiber type and MHC composition, 
low-amount high-frequency stimulation (25 pulses at 150Hz every 
15min) also affected several other biochemical properties of the 
stimulated soleus muscle (Leberer et al. 1987b; Gundersen et al. 
1988). The immunochemically assessed total protein of the sarco- 
plasmic reticulum CaZ+-ATPase increased to levels close to those 
found in rat fast-twitch EDL muscle (Fig. 36). Moreover, the ex- 
tremely low parvalbumin content of normal soleus muscle was 
increased approximately 40-fold, although it did not reach the level 
characteristic of the EDL muscle. This may be due to the fact that 
the high-frequency stimulated soleus muscle is composed mainly of 
type 2x (type IID) fibers (Schiaffino et al. 1988, 1989; Ausoni et al. 
1990) which, as compared to type IIB fibers, contain less parval- 



Fig. 36. Immunochemi- 
cally determined tissue 
contents of sarcoplasmic 
reticulum (Ca 2+ + Mg 2+- 
ATPase and cytosolic 
parvalbumin in normal 
(control), denervated 
(denerv.) and denervated 
stimulated soleus (hatched 
columns) and extensor 
digitorum longus (open 
columns) muscles of 
the rat. The indicated 
stimulation protocols were 
as follows: D.20/6. 7, 20 Hz 
(10 s repeated every 30 s; 
mean frequency 6.7 Hz); 
D.150/1.7, 150Hz (25 
pulses at 150Hz every 15 s; 
mean frequency 1.7 Hz); 
D.150/0.03,150 Hz (25 
pulses at 150 Hz every 
15 rain; mean frequency 
0.03 Hz). Values (n) are 
given as means + SD. 
(From Gundersen et al. 
1988) 
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(open columns) muscles of the rat. For explanation of the indicated stimulation 
protocols, see legend of Fig. 36. (From Gundersen et al. 1988) 

bumin (Schmitt and Pette 1991). The same pattern of stimulation 
prevented the development of denervation-induced alterations, e.g., 
decreases in enzyme activities of aerobic-oxidative metabolism, as 
well as of glycogenolytic and glycolytic enzyme activities (Gundersen 
et al. 1988). The low-amount high-frequency stimulation induced 
increases in glycogenolytic and glycolytic enzymes, and also in 
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cytosolic creatine kinase, to levels similar to those found in normal 
fast-twitch EDL muscle (Fig. 37). 

4 Modulation of Effects of Stimulation by Other Factors 

Several observations support the notion that chronic stimulation- 
induced changes can be modulated by other factors. Among others, 
these include the mechanical condition of the stimulated muscle and 
the hormonal state of the organism. 

Since the early studies on the impact of stretch on protein 
metabolism in muscle (Goldberg 1969; D.F. Goldspink 1977; Booth 
and Seider 1979; Vandenburgh and Kaufman 1980), a large body of 
literature has accumulated on changes of amino acid and protein 
metabolism related to alterations in load (for review see Booth 
1988). Changes in muscle load have been shown to affect the com- 
position of muscle fiber types, myofibrillar protein isoform patterns, 
and gene expression (e.g., Hoh and Chow 1983; G. Goldspink 1985; 
Gregory et al. 1986, 1990; Periasamy et al. 1989; Baldwin et al. 1990; 
Essig et al. 1991). In view of these observations, it is not surprising 
that stretch has a positive effect on the changes induced by low- 
frequency stimulation. The fast-to-slow fiber transition that occurs 
after low-frequency stimulation was found to be accelerated in rabbit 
TA when the muscle was immobilized in a neutral position (Cotter 
and Phillips 1986). Similar results were reported by P. Williams 
et al. (1986) who found greater stimulation-induced increases in type 
I and type IIA fibers when the muscle was immobilized in a stretched 
position. Finally, chronic low-frequency stimulation of rat EDL 
muscle combined with overload induces a slowing of the twitch 
contraction not seen with either overload or stimulation alone 
(Frischknecht and Vrbovfi 1991). 

Influences of the hormonal state of the animal on the effects of 
chronic low-frequency stimulation have been elucidated for thyroid 
hormone. The regulatory role of thyroid hormone on muscle fiber 
composition (Ianuzzo et al. 1977; Nwoye and Mommaerts 1981) and 
myosin isoform expression is well established in fast-twitch and slow- 
twitch muscles of the rat (Gustafson et al. 1986; Izumo et al. 1986; 
Kucher et al. 1988; Kirschbaum et al. 1990a). The effects of thyroid 
hormone on rat fast-twitch muscle can be summarized as follows: 
Hypothyroidism slightly enhances the expression of myosin HCIIa 
and HCI, whereas normal and elevated levels of thyroid hormone 
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reduce the expression of HCIIa and suppress that of HCI,  leading to 
a shift towards HCIIb as the predominant  MHC isoform. 

Chronic low-frequency stimulation of rat fast-twitch EDL and 
TA muscles counteracts the slow-to-fast promoting effect of thyroid 
hormone in a graded manner  (Kucher et al. 1988; Kirschbaum et al. 
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1990a). The antagonism between chronic low-frequency stimulation 
and thyroid hormone is conspicuous at both the mRNA and protein 
levels. Thus, after 35-day periods of low-frequency stimulation there 
is almost no detectable expression of HCI, but in the hypothyroid 
state the expression of the slow isoform is induced by low-frequency 
stimulation for 35 days at both the mRNA and protein level (Fig. 
38). In addition, low-frequency stimulation markedly enhances the 
expression of HCIIa in the hypothyroid state. However, these 
stimulation-induced increases in HCI and HCIIa in the hypothyroid 
state, as well as that of HCIIa alone in the euthyroid state, are 
suppressed when the thyroid hormone level is increased (Fig. 38). 
Low-frequency stimulation in the hyperthyroid rat leads to a shift 
from HCIIb to HCIId, but no further progression to HCIIa takes 
place. A similar antagonism between the actions of thyroid hormone 
and neural activity has been observed in recent studies on the effect 
of thyroidectomy after cross-innervation. As judged from changes in 
contractile properties and fiber composition, the fast-to-slow transi- 
tion induced in EDL muscle by cross-innervation with the slow soleus 
nerve was more pronounced in the hypothyroid than in the euthyroid 
rat (Tian and Feng 1990). 

The antagonistic effects of thyroid hormone and chronic low- 
frequency stimulation may be relevant with regard to variations in 
the response between different animal species to similar stimulation 
regimes (Simoneau and Pette 1988a,b; Simoneau et al. 1990). Thus, 
it is possible that some of the differences described in the literature 
as variations in "adaptive ranges" (Gundersen et al. 1988; Westgaard 
and L0mo 1988; Ausoni et al. 1990) are due to differences in thyroid 
hormone levels or differences in the sensitivity to thyroid hormone 
between animal species. This may especially apply to the different 
responses of small mammals, such as mouse, rat, and rabbit (see 
Sects. 2.4.1 and 2.6.2). 

5 Pattern of Activity versus Amount of Activity 

5.1 Innervated Muscles 

The question of whether the pattern, rather than the overall amount 
of activity, is the most important factor for the slow-to-fast transition 
or for the determination of the muscle phenotype has been addressed 
in several studies. The finding that a reduction in neuromuscular 



176 D. Pette and G. Vrbovfi 

activity of slow-twitch rabbit soleus muscle converts this muscle into 
a faster muscle (Vrbovfi 1963) was subsequently followed up by 
experiments in which this conversion was prevented by returning the 
slow type of activity to the muscle by chronic electrical stimulation. 
However, fast phasic activity was ineffective in maintaining the slow 
time course of contraction of the inactive soleus muscle (Vrbovfi 
1966; Salmons and Vrbovfi 1969). The muscles stimulated at high 
frequencies had undergone severe degenerative changes and had lost 
many fibers (McMinn and Vrbovfi 1967). Therefore, these results 
must be interpreted with caution. Subsequent experiments have been 
carried out on several different experimental models on rats, rabbits, 
and cats. 

Using the original model of the rabbit fast-twitch muscles con- 
verted to slow-twitch muscles by low-frequency electrical stimulation, 
the TA and EDL muscles were stimulated with trains of pulses at 
high frequencies (40-60Hz).  The regime of stimulation varied in 
different experiments. Hudlickfi et al. (1980, 1982a, 1984) used trains 
of 5 s duration 3 times a minute, while 40- to 60-Hz trains of 2.5 s 
duration delivered 6 times per minute were applied by Sr6ter et al. 
(1982) and Mabuchi et al. (1990). In both these experiments there 
were distinct signs of a fast-to-slow transition in the stimulated 
muscles. Increases in capillary density, fatigue resistance, and of the 
enzymes of aerobic-oxidative metabolism were observed. These 
changes differed only slightly from those seen after low-frequency 
stimulation (Hudlickfi and Tyler 1984; Hudlickfi et al. 1984). After 
4 weeks of stimulation, the contractile properties and the myosin 
light chain pattern also changed so as to resemble more closely those 
in a slow-twitch muscle (Hudlickfi et al. 1982a; Srdter et al. 1982). 
Immunohistochemistry with monoclonal antibodies against HCIIb, 
HCIIa and HCI showed a fast-to-slow fiber conversion similar to that 
induced by chronic low-frequency stimulation (Mabuchi et al. 1990). 
Taken together, these results indicate that for the fast-to-slow tran- 
sition of rabbit fast-twitch muscle, the total amount of activity may 
be more important than the exact pattern at which it is delivered. In 
all of these experiments, the sensory input from the stimulated limb 
was preserved, and this, in addition to the discomfort to the animal, 
may lead to uncontrolled reflex activity. To exclude these complica- 
tions, Kernell and his colleagues worked on spinalized and deaffer- 
ented cats using the peroneus longus muscle. No matter what pattern 
of activity was used (10 Hz, continuous, 20-40 Hz in trains, or 100 Hz 
in trains), if the muscles were activated for 5% of the total time per 
day, then the cat fast peroneus longus muscle became slower con- 
tracting, more fatigue resistant, contained a larger proportion of 



Adaptation of Mammalian Skeletal Muscle to Electrical Stimulation 177 

oxidative fibers, and, as judged by the mATPase stain, contained 
more slow-twitch fibers (Eerbeek et al. 1984; Donselaar et al. 1987; 
Kernell and Eerbeek 1989). Although this set of results seems to 
support the previous findings (Sr6ter et al. 1982; Hudlickfi and Tyler 
1984; Hudlickfi et al. 1982a, 1984; Mabuchi et al. 1990), the model 
of the spinalized and deafferented cat peroneus longus muscle has 
several drawbacks. The stimulation of this muscle began 14 days after 
the operation, and, at this time, the peroneus longus had probably 
become altered and more fatigable, as seen in patients with spinal 
cord injury (Lenman et al. 1989). This notion is supported by the 
inability of the experimental muscle to maintain force during a brief 
tetanus (Eerbeek et al. 1984). Thus, in this case the stimulation 
would have been applied to a highly abnormal muscle, and it is 
possible that any type of activity will have had a similar effect. One 
of the results of excess activation on such a muscle could be that 
many muscle fibers are selectively destroyed by excess activity. In 
support of this possibility are data presented by Eerbeek et al. (1984) 
and Donselaar et al. (1987). Their results show that the tension of 
the muscle decreases by 67% with low-frequency stimulation, but the 
fiber diameter decreases only by 40%, whereas with high-frequency 
stimulation the tension decrease is 51%, but the decrease in fiber 
diameters is very small (28%). Thus, in the case of high-frequency 
stimulation the decrease in tension can be explained partly by a 
decrease in fiber size. Provided that type l ib  fibers were preferen- 
tially affected, this could account for the similar effect in both types 
of stimulation. 

These carefully conducted studies on cats and rabbits highlight 
the difficulties inherent in the method of chronic stimulation, es- 
pecially at higher frequencies. The major problem is to know what 
the contractile machinery does when stimulated at high frequencies, 
where the train lasts for seconds. Such a situation is most unusual 
during normal locomotor activity. Electromyograph (EMG) re- 
cordings during repeated high-frequency stimulation indicate that the 
muscle is unable to respond to each stimulus and, therefore, may be 
exposed to a different frequency than applied (Kaplove 1987; Pette 
and Vrbovfi 1985; Vrbovfi and Pette 1987). 

5.2 Denervated Muscles 

Stimulation of denervated muscles was undertaken for several 
reasons. One is to exclude any possible regulatory/trophic function 
the nervous system may exert. An additional reason may be an 
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at tempt to reverse denervation-induced changes such as muscle 
wasting, and to maintain the muscle in good condition. 

The majority of experiments pursuing~ the first aim were carried 
out on the soleus muscle of the rat. It was found by L~mo and his 
colleagues (L0mo and Westgaard 1974; L0mo et al. 1980) that the 
time course of contraction of the denervated soleus muscle can 
be altered according to the particular pattern of activity imposed 
upon the muscle. Rat soleus muscles stimulated at high frequencies 
became fast contracting, and those stimulated at low frequencies 
maintained their slow time course of contraction. However,  dener- 
vation on its own causes soleus muscle to contract moderately faster 
and this change can be prevented by any frequency pattern, provided 
the contractions are maintained for a prolonged period of time (A1- 
Amood  and Lewis 1987). This possibility is consistent with results of 
Gundersen et al. (1988), where the slow characteristics of denervated 
rat soleus muscle were preserved if the muscles were activated with a 
20-Hz pattern for 20s each minute; while using the high-amount 
phasic 150-Hz pattern (25 pulses at 150Hz every 15s) the muscles 
were active for only 667 ms in each minute. Thus, irrespective of the 
frequency, the total amount  of time during which the muscle was 
contracting was very different in the two stimulation protocols. The 
long-lasting contraction protocol (20 Hz for 20 s each min) maintained 
the low parvalbumin content and the low Ca2+-ATPase content of 
the sarcoplasmic reticulum characteristic of the slow-twitch soleus. 
The shorter-lasting activity delivered at high frequencies for only a 
fraction of a second in each minute induced the muscle to express the 
amounts of Ca2+-ATPase and, to some extent, parvalbumin to the 
levels characteristic of a fast-twitch muscle (Fig. 36; Gundersen et al. 
1988). The shift in the fiber type population is also consistent with 
this interpretation (Gundersen et al. 1988; Ausoni et al. 1990). 

Several experiments on innervated muscle appear to argue 
against this interpretation. Hennig and LOmo (1987) stimulated 
innervated soleus muscles with intermittent trains of stimuli at high 
frequency, and induced some degree of transformation toward a fast- 
twitch muscle, as judged from the time course of contraction and 
fiber type composition. Trains delivered at a high frequency (100Hz) 
may interfere with the muscle's excitability so that a burst of 100 Hz 
may be followed by a period of inactivity. Such a possibility may also 
explain the results of Westgaard and L0mo (1988) where rat soleus 
muscles were stimulated at 10Hz and trains of 100Hz were inter- 
spersed. If these trains were given infrequently, then the soleus 
remained slow. However,  when the frequency at which these trains 
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were delivered increased, the soleus became fast-contracting, poss- 
ibly because following a train at high frequency may have rendered 
the muscle refractory. 

It is interesting that attempts to deliver complicated patterns of 
activity to the soleus muscle have not been checked at the level of the 
muscle by EMG recording. During normal activity, motor  units are 
usually activated by patterns which the muscle fibers can follow. As 
such, there may be a limit as to what activity pattern a muscle fiber 
can respond to. Therefore, electrical stimulation may cause the 
activation of certain mechanisms to protect the muscle fibers from 
being driven in an inappropriate way. 

Nevertheless, the capacity of the muscle to adapt to intermittent 
activity in a different way than to sustained activity is remarkable,  
regardless of whether it is frequency- or time-coded. Even in ex- 
periments where soleus was induced to become fast contracting, the 
conversion was incomplete (Gundersen et al. 1988). This inability of 
the muscle to become completely converted was considered to be due 
to a limited adaptive range of soleus muscle fibers. Al though this 
may be the case, such a notion is difficult to prove, for it is always 
possible that a more complete conversion could be achieved using a 
more appropriate experimental protocol. 

Regarding stimulation of the denervated rat EDL muscle, there 
are several reports as to the influence of various stimulation pro- 
tocols. Carraro and colleagues (1986) showed marked increases in 
the amount  of the slow myosin HCI in denervated rat EDL muscle 
after several weeks of direct low-frequency (10Hz) stimulation. 
These results are in disagreement with the findings of Gundersen 
et al. (1988). Similar to the innervated EDL muscle of the rat 
(Termin et al. 1989b), chronic low-frequency stimulation of the 
denervated E D L  or TA did not convert the muscle into a slow-twitch 
muscle. The majority of fibers were of the IIB type and there was 
only a moderate  increase in type IIC fibers (Gundersen et al. 1988). 
These results led to the suggestion that, as in the soleus, only a 
partial transformation is possible in the EDL. However,  taking into 
account the modulating effect of thyroid hormones,  the partial 
transformations observed in both rat soleus and E D L  muscles by 
electrical stimulation with heterologous frequency patterns may be 
influenced by the thyroid state of the animal (Kirschbaum et al. 
1990a). In the rabbit, chronic low-frequency stimulation of the 
denervated TA muscle led to changes that were similar but not as 
extensive as those induced in the innervated muscle. The stimulation 
led to an increase in enzyme activities of aerobic-oxidative meta- 
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bolism, to a decrease in glycolytic enzyme activities, and to a shift in 
the LDH isozyme pattern toward that of a slow muscle (Reichmann 
and Nix 1985). 

The effects of different patterns of electrical stimulation on the 
force output of denervated muscle is important, for it is this property 
of the muscle which may be of the ultimate importance in clinical 
practice. In the rat, according to Eken and Gundersen (1988), the 
most favorable regime that allows force to be maintained is the 
naturally occurring activity of a particular muscle. In soleus this 
would be a low-frequency continuous stimulation, and in the EDL 
intermittent, brief, high-frequency bursts. 

In other species electrical stimulation of denervated skeletal 
muscles was used, not so much to study the effects of activity on 
muscle phenotype, but rather to evaluate the possible value of 
electrical stimulation for maintenance of muscle bulk and force. 
Experiments to evaluate whether or not electrical stimulation is 
beneficial have been attempted by many investigators since the 
beginning of this century (for brief review see Nix and Dahm 1987), 
but, as yet, no agreement has been reached as to the usefulness of 
this treatment. In a systematic study Gutmann and Guttmann (1944) 
demonstrated that electrical stimulation can retard atrophy of de- 
nervated rabbit muscle. This has also been shown for denervated 
rat muscles (Grodins et al. 1944). Fiber atrophy of denervated soleus 
muscle of guinea pig was shown to be suppressed by chronic low- 
frequency stimulation. In addition, stimulation of the denervated 
muscle maintained the histochemically assessed pattern of several 
enzymes related to aerobic-oxidative metabolism (Nemeth 1982). A 
recent study on rabbit fast-twitch muscle highlighted the importance 
of appropriate stimulation patterns (Nix and Dahm 1987). Denervated 
rabbit EDL muscles were stimulated under isometric conditions with 
100 ms lasting bursts at 40 Hz every second, while in another group of 
animals the EDL muscles were stimulated at 1Hz by pulses of long 
duration (7 ms). Both stimulation patterns were given for only 20 min 
each day. While the 40-Hz pattern using a short pulse width (0.2 ms) 
was reported to lead to degeneration of the muscle, the muscles 
stimulated at 1 Hz were less atrophic and produced more force than 
the unstimulated controls (Nix and Dahm 1987). In another study by 
Nix (1990), intermittent high-frequency stimulation resembling the 
normal motoneuron firing was applied to denervated rabbit EDL 
muscle and had no effect on contraction time, force output, fatigue 
resistance, fiber area, and muscle weight. These findings are in 
apparent contradiction to recently reported results obtained on long- 
term denervated soleus and EDL muscles of the rat, where stimula- 
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tion at high or low frequencies reduced the denervation-induced 
atrophic changes (A1-Amood et al. 1991; Schmalbruch et al. 1991). 

A stimulation protocol that was able to maintain muscle force 
in chronically denervated rabbit leg muscles was developed by 
Mokrusch et al. (1990). Unusually long (20ms) bidirectional im- 
pulses at a frequency of 25 Hz were used for stimulating the dener- 
vated rabbit hindlimb using large surface electrodes. As shown by 
morphometric analyses, two short-term (10min) daily treatments 
were sufficient for maintaining nearly normal fiber size character- 
istics. Histochemical and biochemical analyses of metabolic enzyme 
activities showed a high percentage of fast-twitch oxidative fibers in 
the denervated stimulated muscles (Mokrusch et al. 1990, 1991). 
These results, together with those of Nix and Dahm (1987) indicate 
that long-duration pulses may be more appropriate for stimulation of 
denervated muscles of larger animals. Such a conclusion is consistent 
with findings on human denervated muscles. 

Transcutaneous stimulation of denervated EDL and TA muscles 
was performed in patients with peripheral nerve lesions (Valencic 
et al. 1985, 1986). Stimuli of different pulse width and amplitude 
were tested. The optimal pulse width, which produced the largest 
response from the muscles, was of 20-ms duration. Monophasic 
stimuli of 20-ms duration and 25-Hz frequency were then used. This 
protocol of stimulation was carried out daily for 20min on nine 
patients with peroneal nerve injury and led to an improvement of 
their dorsiflexion. It appears, thus, that stimuli of long pulse width 
are able to improve the force output of denervated muscle (Valencic 
et al. 1985, 1986). 

6 Clinical Applications of Chronic Stimulation 

Several clinical applications of chronic stimulation have been estab- 
lished. These include the treatment of denervated and immobilized 
skeletal muscle (see above), the use of transformed skeletal muscle 
for cardiac assist and repair, as well as the use of chronically stimu- 
lated skeletal muscle for sphincter assist. 

The potential significance of the ability of a muscle to become 
fatigue resistant, or express a different phenotype as a result of 
activity has been recognized in many branches of clinical practice. 
Initially, it was necessary to establish that human muscle is also 
capable of changing its characteristics when subjected to chronic 
stimulation. This was shown for the TA muscle of normal adults, 
which became fatigue resistant after 6 weeks of low-frequency 
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stimulation (Scott et al. 1984, 1985). The effects of different patterns 
of activity have also been tested on human hand muscles. It has been 
demonstrated that low-frequency stimulation increases the fatigue 
resistance of these muscles, but leads to reduced force output.  On 
the other hand, a mixed pattern of stimulation produces muscles that 
remain strong and become fatigue resistant (Rutherford and Jones 
1988). In view of these encouraging results, chronic muscle stimu- 
lation can now be considered for application in medicine. 

6.1 Prevention of Muscle Wasting, Loss of Strength, and Fatigability 
of Inactive and Diseased Muscles 

It is well known that muscle wasting and weakness occur in many 
conditions associated with loss of function. These include, in addition 
to complete denervation, many neurological disorders and con- 
sequences of injury to the CNS which reduce or prevent the execu- 
tion of voluntary movement .  Not only muscle strength, but also 
fatigue resistance decreases in conditions such as spinal cord injury or 
multiple sclerosis (Lenman et al. 1989; Vrbov~i 1987). It is, therefore, 
reasonable to test whether returning the lost activity to the inactive 
muscles will restore some of their impaired function. Interestingly, 
the first attempts to do so were carried out before the properties of 
these diseased muscles were examined. Munsat et al. (1976) stimu- 
lated the quadriceps muscle of five patients with various neurological 
disorders for a total time of 4h/day for 5-12  weeks by a phasic 
pattern of activity and carried out biopsies before commencement  of 
stimulation and immediately afterwards. In patients whose muscles 
contracted isometrically the proportion of type I fibers increased. In 
one patient with tenotomy this increase did not occur; on the con- 
trary, this patient had a higher proportion of type II fibers after 
stimulation. The size of type I fibers increased in all patients that 
were stimulated under isometric conditions. In addition, there was 
an increase in the proportion of fibers that had high levels of oxi- 
dative enzymes. In this series of experiments, the muscles were 
stimulated through implanted electrodes that were wrapped around 
the nerve so that some axonal damage could have occurred. Various 
other approaches were used to stimulate muscles of patients with 
spinal cord injury. In a group of quadriplegic patients Peckham et al. 
(1975) observed that stimulation could restore force and fatigue re- 
sistance to paretic forearm muscles. These authors also used invasive 
methods for muscle stimulation. More recently, noninvasive methods 
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have been used to stimulate paretic muscles with similarly satisfactory 
results (Vrbovfi et al. 1987; Gordon et al. 1990). Thus, it is possible 
to maintain the strength and fatigue resistance of muscles of patients 
with upper motoneuron lesions. 

Another example where prolonged inactivity leads to muscle 
wasting is impairment of joint movements either caused by disease 
or injury and subsequent surgery. Surgery and subsequent immo- 
bilization of the knee joint leads to severe atrophy of the quadriceps 
muscle. This muscle wasting can be largely prevented by electrical 
stimulation of the quadriceps during the time of immobilization 
(Eriksson et al. 1981; Gould et al. 1982). 

Chronic low-frequency stimulation has also been applied to the 
muscles of patients suffering from primary muscle disease such as 
Duchenne muscular dystrophy (DMD). It appears that low-frequency 
stimulation can slow the progress of the disease (Scott et al. 1986, 
1990; Dubowitz 1988). Similar results have also been noted when the 
muscles of patients suffering from a variety of primary muscle diseases 
are subjected to electrical stimulation (Gregoric et al. 1988; Milner 
Brown and Miller 1988). Many questions regarding the method of 
administration of stimulation and the pattern and amount of activity 
are still waiting to be solved. 

6.2 Assist of Anal Sphincter by Stimulated Skeletal Muscle 

Chronic stimulation is also being used for treatment of anal incon- 
tinence by means of dynamic graciloplasty. In this case, the distal 
part of the gracilis muscle is wrapped around the anal canal and made 
fatigue resistant by chronic stimulation via an implanted stimulator. 
For defaecation, the stimulator can be switched off by a magnet 
(Baeten et al. 1988, 1991; Seccia et al. 1991; N.S. Williams et al. 
1989, 1990). 

6.3 Use of Chronically Stimulated Skeletal Muscle for Cardiac Assist 

The stimulation-induced increase in fatigue resistance is an important 
prerequisite for the use of skeletal muscle to assist cardiac function. 
The use of skeletal muscle for cardiac assist was introduced by 
Carpentier and colleagues (Carpentier and Chachques 1985; 
Carpentier et al. 1985; Chachques et al. 1988) and Magovern and 
colleagues (Magovern et al. 1986, 1987, 1988). The principle of 
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this method, designated cardiomyoplasty, consists of wrapping the 
latissimus dorsi muscle around the heart and stimulating the muscle 
in synchrony with the heart contractions. For this purpose, a latis- 
simus dorsi muscle flap, leaving its nerve and vascular pedicle intact, 
is transferred and sutured around the ventricles. The muscle flap is 
stimulated via its nerve by a burst-pulse generator which is triggered 
by a sensing electrode in the myocardium. After a few weeks of 
conditioning by increasing amounts of chronic stimulation, the 
muscle becomes fatigue resistant and is capable of contracting in 
synchrony with the heart. 

Cardiomyoplasty has since been used by an increasing number 
of cardiosurgeons for the treatment of dilatative cardiomyopathy 
and cardiac aneurisms (for reviews see Chiu and Bourgeois 1990; 
Carpentier and Bourgeois 1991). Additional applications of skeletal 
muscle which has been conditioned by chronic stimulation are being 
developed for cardiac assist, in particular, auxiliary skeletal muscle 
ventricle pumps for counterpulsation during diastole (Acker et al. 
1987a,b; Mannion et al. 1987, 1990). 

7 Conclusions 

The notion of the plasticity of muscle has opened new perspectives in 
muscle biology. It implies that skeletal muscle fibers are versatile 
entities, capable of changing their phenotype in response to altered 
functional demands. A large body of information in support of this 
has been derived from experiments using chronic electrostimulation. 
This experimental model is a suitable approach for studying both the 
ability and the extent of adaptive changes in skeletal muscle fibers 
under defined conditions. The most relevant experimental results 
stem from chronic low-frequency stimulation of fast-twitch muscle. It 
is well documented that this type of stimulation induces a fast-to-slow 
conversion of fast-twitch muscle fibers. The changes induced by 
chronic low-frequency stimulation affect all functional elements of 
the muscle fiber, i.e., the Ca2+-handling system, energy metabolism, 
and the contractile apparatus. The replacement of fast-type myo- 
fibrillar protein isoforms by their specific slow-type counterparts, the 
induction of proteins normally not expressed in fast-twitch muscle, as 
well as quantitative changes in the profile of Ca2+-sequestering 
proteins and metabolic enzymes are the major characteristics of 
the induced fiber type transformation. The time course of the 
changes of the various elements corresponds to a sequential and 
graded transition of fiber types in the order of type IIB -+ type 
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IID ~ type I IA --~ type I with the transient occurrence of inter- 
mediate  fiber types. The degree of the transition induced by chronic 
low-frequency stimulation is different in various mammalian species. 
It has been shown to be modula ted  by additional factors, e.g.,  
stretch and hormonal  state. Chronic stimulation has also been  
used to induce a slow-to-fast transition in slow-twitch muscle, which 
is easiest achieved in the denervated  state. The quest ion as to the 
specificity of the pat tern of  stimulation as opposed  to the overall 
change in the amount  of contractile activity in chronic stimulation- 
induced transitions has as yet not  been answered.  Also,  the mole- 
cular mechanisms underlying the st imulation-induced fiber type 
transitions have not been studied in sufficient detail. Thus, the 
quest ion as to the primary signal which triggers the transformation 
process,  as well as the processes involved in the signal transduction 
to the transcription level, is unanswered.  In this regard, early and 
persistent changes in the ionic environment ,  alterations in the energy 
charge or of specific metaboli tes ,  the modification of transcription 
factors, as well as the possible role of known or as yet unidentified 
determinat ion factors have to be considered. 

The ability of skeletal muscle to alter its phenotype  in response to 
chronic stimulation is now applied in clinical practice. In this context,  
the increase in fatigue resistance displayed by chronically st imulated 
muscles is of particular importance.  Condit ioned muscles can then be 
used to assist the function of impaired muscles, e.g.,  as a neo- 
sphincter or for cardiac assist. 
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tion 173 
- - ,  myosin expression 173-175 

triton X-100, MB-COMT 8 
tropolone, COMT 9 
tropomyosin, CES 137, 138 
troponin changes, CES 135 ff 
--, fast and slow 135ff 
- isoforms ff 
trypsinization, apical membrane 67, 70, 

72 
tunicamycin 88 
twitch to tetanus ratio, CES 119, 144 
tyrosine kinase 49 

vasodilatation, muscle activity 145 
vasopressin 62 
- see ADH 
vesicles, channel-containing 80, 82 

Z discs, thickening 138 


