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2 D. Keppler 

1 Introduction 

The leukotrienes comprise a group of biologically highly potent mediators 
synthesized from 20-carbon polyunsaturated fatty acids, predominantly 
from arachidonate (Samuelsson et al. 1979; Murphy et al. 1979; Samuels- 
son 1983; HammarstrOm 1983). They include the cysteinyl teukotrienes 
LTC 4, LTD 4, LTE 4, and N-acetyl-LTE 4, as well as dihydroxyeicosatetra- 
enoate leukotriene B 4 (LTB4). Leukotrienes act at nanomolar concentra- 
tions in host defense, intercellular communication, and in signal transduc- 
tion. The cysteinyl leukotrienes induce smooth muscle conctraction and in- 
crease vascular permeability (Dahl6n et al. 1981; Lewis and Austen 1984; 
Piper 1984); LTB 4 elicits leukocyte sticking to vascular endothelia and in- 
flammatory infiltration, and contributes in vivo to vascular permeability 
changes, immunoregulation, and pain responses (Ford-Hutchinson 1990, 
1991b). Leukotrienes have been implicated as mediators in the pathogene- 
sis of inflammatory, allergic, and other diseases, including bronchial 
asthma, arthritis, inflammatory bowel disease, anaphylaxis, shock, hepa- 
torenal syndrome, pancreatitis, psorisasis, and tissue trauma (Piper 1984; 
Lewis and Austen 1984; Denzlinger et al. 1985; A. Keppler et al. 1987; 
Samuelsson et al. t987; Keppler 1988, Huber et al. 1989; Huber and Kepp- 
ler 1990; Ford-Hutchinson 1990). Only a limited number of cell types are 
capable of synthesizing LTC 4, LTB4, or both. Predominant producer cells 
are macrophages, monocytes, neutrophils, eosinophils, mast cells, and 
basophlls (Lewis and Austen 1984; Verhagen et al. t984; Lewis et al. 
1990). In addition, transcellular synthesis from the 5,6-epoxide LTA 4 re- 
leased from some cells represents a pathway for synthesis of LTB  4 and 
LTC 4 in endothelial cells, platelets, mast cells, lymphocytes, and even ery- 
throcytes (Odlander et al. 1988; Dahinden and Wirthmueller 1990; Fein- 
mark 1990; Jones and Fitzpatrick 1990). 

Recent progress in leukotriene research has led to a more detailed un- 
derstanding of the enzymes and proteins mediating the biosynthesis of leu- 
kotrienes and to the development of potent inhibitors of biosynthesis as 
well as receptor antagonists interfering with signal transduction (for re- 
views see Rokach 1989; Piper and Krell 1991). Moreover, the mechamsms 
of leukotriene transport during release from biosynthetic cells (Lam et al. 
1989, 1990; Schaub et al. 1991) and during hepatobiliary elimination (Ishi- 
kawa et al. 1990; Keppler et al. 1992) have been recognized, and pathways 
and compartmentation of leukotriene inactivation were further elucidated 
(Soberman et al. 1988; Stene and Murphy 1988; Keppler et al. 1989; Shir- 
ley and Murphy 1990; Sala et al. 1990; Jedlitschky et al. 1991). In addition 
to receotor-mediated leukotriene actions on the cell surface (Saussy et al. 
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1989; Herron et al. 1992), intracellular leukotriene actions in growth factor 
signal transduction have been recognized (Peppelenbosch et al. 1992). 

2 Leukotriene Biosynthesis 

Leuko~ene biosynthesis is triggered under pathophysiological and exper- 
imental conditions by a variety of immunological and nonimmunological 
stimuli, including Ca 2+ ionophores. The key enzyme, arachidonate 5-1ip- 
oxygenase (EC 1.13.11.34) depends on the availability of arachidonate, 
which is released from membrane phospholipids by phospholipase A 2 (EC 
3.1.1.4) or by the sequential action of phospholipase C (EC 3.1.4.3) and 
diaclyglycerol lipase (EC 3.1.1.34). Ca2+-dependent activation of phos- 
pholipase A 2 with subsequent release of arachidonate is associated with 
phosphorylation and translocation of the cytosolic phospholipase A 2 to 
membrane vesicles (Lin et al. 1992). The concentration of free arachido- 
nate is controlled, in addition, by its reincorporation into lysophospholipids 
(Ferber and Resch 1973; Irvine 1982). Arachidonate 5-1ipoxygenase is a 

FLAP /I 
synthase // 

Fig. 1. Proposed scheme of the association and concerted action of  enzymes and proteins 
involved in the synthesis of the parent cysteinyl leukotriene LTC 4. This association may 
allow for chanelling of the intermediates into the export carrier and may be localized in 
vesicles at the plasma membrane. FLAP designates the five-lipoxygenase-activating protein 
(Ford-ttutchinson 1991a), Release of LTC 4 from a leukotriene-synthesizing cell is 
mediated by an ATP-dependent export carrier (Schaub et al. 1991) which is distinct from 
the LTB 4 transporter 
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bifunctional enzyme and also catalyzes the synthesis of  the 5,6-epoxide 
LTA 4. Depending on the differentiation of a leukotriene-generating celt, 
LTA 4 may be converted to LTB 4 by LTA 4 hydrolase (EC 3.3.2.6) or to 
LTC 4 by the membrane-bound enzyme LTC 4 synthase (EC 2.5.1.37). A 
protein termed five-lipoxygenase-activatmg protein (FLAP) is required, in 
addition, for the synthesis of LTC4 and LTB 4 in intact cells (Dixon et al. 
1990; Miller et al. 1990; Rouzer et al, 1990; Ford-Hutchinson 1991a), One 
may assume that the enzymes and proteins required for cellular synthesis 
of leukotrienes are closely associated and translocated to the cell 
membrane allowing for concerted catalysis and export from the cell 
(Fi . 1). 

2.1 Biosynthetic Enzymes 

Arachidonate 5-1ipoxygenase catalyzes the first step in leukotriene syn- 
thesis by addition of oxygen to carbon 5 of arachidonate yielding (5S)-hy- 
droperoxy-6,8,11,14-eicosatetraenoate. The latter is converted by the se- 
cond catalytic activity of the 5-1ipoxygenase protein, LTA 4 synthase, to 
5,6-oxido-7,9,11,14-eicosatetraenoate (for review see Samuelsson and 
Funk 1989). 5-Lipoxygenase/LTA 4 synthase has been cloned and express- 
ed in mammalian cells (Dixon et al. 1988; Matsumoto et al. 1988; Rouzer 
et al. 1988). This 78-kDa protein requires Ca 2÷ and ATP for maximal ac- 
tivity. Moreover, translocation of 5-1ipoxygenase from the cytosol to the 
cell membrane, which is triggered by Ca 2+, is associated with activation of 
cellular leukotriene synthesis (Rouzer and Kargman 1988). Inhibition of 
this translocation by the indole derivative MK-886 inhibits leukotriene 
synthesis in intact cells (Rouzer et al. 1990). The target protein of MK-886 
has been identified as the 18-kDa membrane protein FLAP, which is es- 
sential for leukotriene synthesis and must be coexpressed together with 
5-1ipoxygenase (Dixon et al. 1990; Miller et al. 1990; Reid et al. 1990; 
Ford-Hutchinson 1991a). FLAP may act to couple phospholipase A 2, 
membrane phospholipids, and 5-Iipoxygenase. The presence of 5-1ipoxy- 
genase and FLAP is limited mostly to cells of  the myeloid lineage and is 
related to cell differentiation (Habenicht et al. 1989). 

The product of  5-1ipoxygenase, LTA 4, is converted enzymatically either 
by LTA 4 hydrolase to LTB 4, by LTC 4 synthase to the glutathione conjugate 
LTC 4, by 15-1ipoxygenation to 15-hydroxy-LTA 4, or by cytosolic epoxide 
hydrolase to 5(S),6(R)-dilaydroxyeicosatetraenoate. LTA 4 hydrolase is a 
cytosolic monomeric protein of about 69 kDa which has been cloned and 
expressed in Escherichia coli (Samuelsson and Funk 1989). LTA 4 hydro- 
lase has been detected in virtually all tissues as well as in blood plasma 
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Fig. 2. Synthesis, export, and peptidolytic degradation of LTC 4. Synthesis of LTC 4 from 
LTA 4 and glutathione by micmsomal LTC 4 synthase is followed by unidirectional ATP- 
dependent export from leukotriene-synthesizing cells, such as murine mastocytoma ceils 
(Schaub et al. 1991). The ectoenzymes 7-glutamyltransferase and LTD 4 dipeptidase cata- 
lyze the biological activation and deactivation to LTD 4 and LTE 4, respectively (Hammar- 
str6m et al. 1985) 

from several species and in erythrocytes (McGee and Fitzpatrick 1985). 
Surprisingly, LTA 4 hydrolase has been identified as a Zn2+-containing 
aminopeptidase with a sequence homologous to the active site of certain 
peptidases (Haeggstrt~m et al. 1990; Minami et al. 1990). Accordingly, the 
aminopeptidase inhibitor bestatin (0rning et al. 1991a) as well as the an- 
giotensin-converting enzyme inhibitor captopril (Orrting et al. 1991b) were 
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found to act as inhibitors of LTB 4 synthesis from LTA 4 in the micromolar 
concentration range. 

The synthesis of  LTC 4 is catalyzed by membrane-bound LTC 4 synthase 
(Fig. 2), which is distinct from cytosolic and microsomal glutathione S- 
transferases (S6derstr6m et al. 1988; Yoshimoto et al. 1988). The enzyme 
is highly specific for its substrate LTA 4 and has an isoelectric point of  
about 6, whereas other members of the glutathione S-transferase family are 
basic, with isoelectric points at or above 8.5, and catalyze the synthesis of  
a wide range of xenobiotic and endogenous glutathione S-conjugates 
(S6derstr6m et al. 1988). LTC 4 synthase also reacts with LTA 3 and LTA 5. 
LTA 3 is a potent competitive inhibitor of  LTC 4 synthesis from glutathione 
and LTA 4 (Yoshimoto et al. 1988), Further properties of LTC 4 synthase 
will be elucidated when this protein has been purified to homogeneity, 
cloned, and expressed. LTC 4 synthase is present not only in cells of  the 
myeloid lineage, including mast cells and eosinophils, but also in several 
tissues and in endothelial cells (Feinmark 1990). 

A "[-glutamyltransferase catalyzes the conversion of LTC 4 to LTD 4. 
Since LTD 4 is biologically much more potent than LTC 4 (Lewis and 
Austen 1984; Piper 1984), the partial degradation of the glutathione moiety 
to the cysteinylglycine derivative LTD 4 (Fig. 2) may be considered a bio- 
synthetic reaction generating the ligand for the LTD4/LTE 4 receptor. 
~/-Glutamyltransferase is a glycoprotein enzyme widely distributed on cell 
surfaces. It has not been established whether a specific ~/-glutamyltransfer- 
ase isoenzyme is responsible for LTD 4 generation. This reaction depends 
on catalysis in the low nanomolar concentration range by a high-affinity 
ectoenzyme (Weckbecker and Keppler 1986; Huber and Keppler 1987). 

2.2 Transcellular Leukotriene Synthesis 

Interaction between different cell types allows for enzymatic cooperation 
in leukotriene synthesis, also termed transcellular synthesis (Dahinden 
et al. 1985; McGee and Fitzpatrick 1986; Odlander et al. 1988; Dahinden 
and Wirthmueller 1990; Feinmark 1990; Jones and Fitzpatrick 1990). In 
neutrophils, LTA4 formed in excess of the capacity for intracelhilar LTB 4 
synthesis is released into the extracellular fluid where it can be stabilized 
by albumin. Neutrophil-derived LTA 4 is a precursor for leukotriene syn- 
thesis particularly in cell types deficient in 5-1ipoxygenase, such as ery- 
throcytes, platelets, and vascular endothelial cells. As an example, LTA 4 
hydrolase in erythrocytes generates LTB 4 from neutrophil-derived LTA 4 
(McGee and Fitzpatrick 1986). Moreover, LTA 4, released from neutrophJls 
and bound to albumin, serves in the synthesis of LTC 4 by mast cells 
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(Dahinden et al. 1985; Dahinden and Wirthmueller 1990). Thereby, the 
capacity of mast cells for LTC 4 generation is augmented. Leukotriene pro- 
duction under conditions where cell-cell cooperation occurs differs quan- 
titatively and qualitatively from the sum of the separate cellular biosynthe- 
tic capacities. In disease processes different cell combinations may exist as 
compared to the normal condition. Transcellular leukotriene synthesis not 
only contributes to systemic leukotriene production but also influences the 
efficacy of inhibitors of leukotriene biosynthesis, which differ in their ac- 
tion on different cell types. 

2.3 Inhibition of Leukotriene Biosynthesis and Action 

Selective inhibition of leukotriene biosynthesis or selective blockade of the 
receptors for LTD 4 and LTE 4 or for LTB 4 is not only of therapeutic 
interest. These approaches furthermore serve to define the role of the leu- 
kotrienes under pathophysiological conditions. The recent development of 
biosynthesis inhibitors and of receptor antagonists has resulted in a consid- 
erable increase in selectivity and in compounds which are effective in the 
low nanomolar concentration range (Fitzsimmons and Rokach 1989; Ford- 
Hutchinson 1991a, b; Aharony and Krell 1991). 

Direct inhibitors of 5-1ipoxygenase have been described and many of 
them are "redox" inhibitors, presumably reducing the iron at the active site 
of the enzyme (for review see Fitzsimmons and Rokach 1989). Natural li- 
poxygenase inhibitors include the flavonoid compounds and hydroxylated 
cinnamic acids with cirsiliol and caffeic acid, respectively, as potent repre- 
sentatives in both groups. Nordihydroguaiaretic acid (NDGA) is a com- 
mercial antioxidant which inhibits lipoxygenase enzymes. NDGA is a 
widely used antioxidant irdaibitor which lacks sufficient selectivity for 
5-1ipoxygenase and efficacy in the living mammalian organism. Among 
the quinone inhibitors Takeda's AA-861 represents a prototype compound 
with limitations comparable to NDGA. These compounds may be valuable 
in studies with cells in culture, but, in addition to a number of side effects, 
they do not sufficiently suppress systemic leukotriene production in the 
intact organism. Direct 5-1ipoxygenase inhibitors that are effective in vivo 
and exhibit sufficient selectivity include compounds with hydroxamate or 
N-hydroxyurea functionalities. One of these drugs- A-64077 or zileuton 
[N-(1-benzo-thien-2-ylethyl)-N-hydroxyurea] is an effective inhibitor of 
leukotriene biosynthesis in man (Bell et al. 1992). As indicated in Fig. 3, 
this leads to an inhibition of both LTB 4 and systemic LTC 4 synthesis. 

As an alternative approach to direct enzyme inhibition, interference of 
5-1ipoxygenase translocation to the plasma membrane by compounds 
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Fig. 3. The arachidonate cascade with several of its stimuli in the intact mammalian 
organism and with the sites of action of biosynthetic inhibitors and examples for 
LTD4/LTE 4 receptor antagonists. Synthesis of leukotrienes may be elicited in vivo by a 
number of pathophysiological stimuli (for review see Keppler 1988) as well as physiolog- 
ical primers and elicitors such as the granulocyte-macrophage conoly-stimulating factor 
(GMCSF; Denzlinger et al. t990). Inhibitors of leukotriene biosynthesis from the first gen- 
eration of drug development include MK-886 (Gillard et al. 1989; Ford-Hutchinson 1991a) 
and A-64077 (Bell et al. 1992), as well as captopril and bestatin with their additional poten- 
tial to inhibit LTA 4 hydrolase (Orning 1991a, b). More potent, second generation inhibitors 
of LTA 4 synthesis include MK-591, A-78773, and ICI's D-2138. Some selective and potent 
antagonists of LTD4/LTE 4 receptors, MK-571, ICI 204219, and SK&F 104353, are indicat- 
ed (Snyder and Fleisch 1989; Piper and Krell 1991; Lewis et aL 1991) 

which bind to FLAP induces potent and selective suppression o f  the syn- 
thesis of  leukotrienes (Gillard et al: 1989; Ford-Hutchinson 1991a; Evans 
et al. 1991). The indole derivative MK-886 (Gillard et al. 1989), which 
binds with high affinity to FLAP (Rouzer et al. 1990), does not signifi- 

cantly affect 5-1ipoxygenase itself but blocks leukotriene synthesis in intact 
cells and in vivo. Systemic leukotriene production, measured by an index 
metabolite in bile during guinea pig anaphylaxis, is completely suppressed 
by MK-886 (Guhlmann et al. 1989). MK-886 also suppresses cysteinyl 
leukotriene excret ion into human urine to a large extent (Ford-Hutchinson 
1991a). FLAP,  as a novel drug target for inhibiting the biosynthesis o f  leu- 
kotrienes, also binds a group of  quinoline derivatives which inhibit leuko- 
triene synthesis in intact cells with a similar mechanism of  action and at 
lower concentrations than MK-886 (Evans et al. 1991). 
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Selective inhibition of  LTB 4 biosynthesis, without inhibition of LTC 4 
synthesis, has become feasible as a consequence of the discovery that be- 
statin and captopril inhibit LTA 4 hydrolase with IC50 concentrations of 4 
and 11 ~4 ,  respectively (0rning etal. 1991a, b). The functional resem- 
blance of LTA 4 hydrolase to metallohydrolase enzymes (HaeggstrOm et al. 
1990) will necessitate chemical modification of the drugs for successful 
and selective inhibition of LTB 4 synthesis in vivo, without or with little 
inhibition of peptidases and angiotensin-converting enzyme. 

Inhibition of  LTB 4 action has been achieved by the development of 
L T B  4 receptor antagonists. Among these, the hydroxyacetophenone deri- 
vative LY 255283 has 50% inhibitory potency in the binding assay at a 
concentration of 87 nM (Herron et al. 1992). 

LTD4/LTE 4 receptor antagonists are, at present, most promising in drug 
development for antiasthma therapy (Piper and Krell 1991). Reasons to 
develop LTD4/LTE 4 receptor antagonists have included the lack of evi- 
dence for signal transduction via LTC 4 receptors in man, the higher biolog- 
ical potency of LTD 4 relative to LTC 4, and the rapid formation of LTD 4 
and LTE 4 from LTC 4 on cell surfaces and in the blood circulation in vivo. 
At least three new structural classes of high-affinity LTD4/'LTE 4 receptor 
antagonists have been developed and tested in man. These are SK&F 
104353, ICI 204,219, and MK-571 (for reviews see Snyder and Fleisch 
1989; Piper and Krell 1991; Lewis e ta  l. 1991). These third-generation 
LTD4/LTE 4 receptor antagonists are several orders of magnitude more 
potent and display a several hundred-fold improvement in their selectivity 
for LTD4/LTE 4 receptors than the first antagonist, FPL 55712, developed 
in 1973 against slow-reacting substance of anaphylaxis (Augstein et al. 
1973). Affinities of these antagonists were determined in the low nano- 
molar concentration range for the LTD4/LTE 4 receptor in human airways 
and guinea pig trachea (Aharony and Krell 1991). Doses that are 50% ef- 
fective in vivo after intravenous administration in the guinea pig are 
46 nmol/kg for the indole-based ICI 204,219, 2 nmol/kg for the quinoline- 
based analog MK-571, and 550 nmol/kg for the LTD4/LTE 4 analog SK&F 
104353 (Aharony and Krell 1991). These compounds act as competitive 
antagonists, are highly effective in man, and contribute to a definition of 
LTD4-mediated pathophysiological processes. 
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3 Transport of Leukotrienes During Biosynthesis and Excretion 

Transport controls not only the release of LTC 4 (Lam et al. 1989; Schaub 
et al. 1991) and LTB 4 (Lam et al. 1990) from leukotriene-generating cells 
but also the removal of these mediators from the blood circulation in vivo. 
The liver is the most active organ for uptake, metabolic inactivation, and 
biliary excretion of leukotrienes (Appelgren and Hammarstr(3m 1982; 
Keppler et al. 1985; Hagmann et al. 1989; Wettstein et al. 1989). In addi- 
tion, transport during renal excretion and during the limited intestinal reab- 
sorption of cysteinyl leukotrienes contributes to the control of leukotriene 
concentrations in body fluids. 

3.1 The Export Carder Releasing LTC 4 After Its Biosynthesis 

The release of LTC 4 has been studied in cultured human eosinophils in- 
cubated with exogenous LTA 4 (I,am et al. 1989). This transport is satu- 
rable, temperature-dependent, and inhibited by intracellular LTC 5, suggest- 
ing a carrier mediated process. The mechanism underlying the export of  
LTC 4 has been elucidated in plasma membrane vesicles prepared from 
murine mastocytoma cells and characterized as a primary-active, ATP-de- 
pendent process with apparent K M values of 48 gM for ATP and 110 nM 
for LTC 4 (Schaub et al. 1991). Among the cysteinyl leukotrienes, LTC 4 is 
the best substrate for this ATP-dependent export carrier (Fig. 2). The rela- 
tive transport rates at a concentration of 10 nM are 1.00, 0.31, 0.12, and 
0.08 for LTC 4, L T D  4, LTE  4, and N-acetyl-LTE 4, respectively (Schaub 
et al. 1991). LTC4 transport is competitively inhibited by the glutathione S- 
conjugate S-(2,4-dinitrophenyl)glutathione, and by several other amphi- 
phitic anions including LTD4/LTE 4 receptor antagonists (Schaub et al. 
1991). Primary-active ATP-dependent transport is insignificant with LTB 4 
as a substrate. Therefore, inhibition of the LTC 4 export carrier in leuko- 
triene-synthesizing cells by structural analogs and LTD4/LTE 4 receptor 
antagonists may serve as a novel pharmacological approach to interfere 
selectively with L T C  4 production without influencing LTB 4 generation. 
Isolation and molecular characterization of the LTC 4 export carrier from 
leukotriene-generating cells, such as mast cells, eosinophils, and monocy- 
tes, will answer the question whether this carrier belongs to the family of 
the ATP-dependent glutathione conjugate export carrier originally describ- 
ed in the erytttrocyte plasma membrane (Kondo et al. 1980). 
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3.2 Leukotriene Uptake into Hepatocytes 

Leukotrienes released into the blood circulation, with or without prior or 
subsequent interaction with leukotriene receptors, undergo rapid elimi- 
nation from blood predominantly due to uptake by the liver (Appelgren 
and Hammarstr6m 1982; Hagmann et al. 1984; Denzlinger et al. 1985; 
Huber and Keppler 1990; Hagmann and Korte 1990). Albumin serves as 
transport protein in the blood circulation (Falk et al. 1989). Uptake by he- 
patocytes has been demonstrated both for cysteinyl leukotrienes (Ormstad 
et al. t982; Uehara et al. 1983; Weckbecker and Keppler 1986; Leier et al. 
1992) and for LTB 4 (Hagmann and Korte 1990; Leier et al. 1992). Uptake 
of LTC 4, LTD 4, LTE 4, and N-acetyl-LTE 4 across the sinusoidal (basolate- 
ral) membrane into hepatocytes is independent of a Na+-gradient and a K +- 
diffusion potential (Leier et al. 1992). The uptake may be driven by high- 
affinity binding to intracellular proteins and by the unidirectional, ATP-de- 
pendent transport across the canalicular (apical) membrane into bile 
(Fig. 4; Ishikawa et al. 1990). At a concentration of 10 ruff, the relative up- 
take rates into rat hepatocytes for LTC 4, LTD 4, LTE 4, and LTB 4 are 1.0, 
1.3, 1.6 and 1.6, respectively. The K M values for the leukotfienes range 
between 100 and 200 nM (Leier et al. 1992). Leukotriene-binding proteins 
possibly involved in hepatocellular transport were identified by the method 
of direct photoaffinity labeling in the deep-frozen state using the 3H- 
labeled leukotriene itself as the photolabile ligand (Falk et al. 1989; Mtiller 
et at. 1991b, Leier et al. 1992). Liver membrane subfractions enriched with 
sinusoidal plasma membranes contain a 48-kDa polypeptide labeled both 
with [3H]LTE4 and [3H]LTB4. This polypeptide is not labeled by cysteinyl 
leukotrienes in hepatoma cells which are deficient in cysteinyl leukotriene 
uptake (MOiler et al. 1991b; Leier et al. 1992). There is no convincing 

fATP I LTc4 LTD4 ~-..~ 
Canalicular- ~-",~/ t LTE4"--~_~ / 

"excretion ¢ ~ ' ~  LTE ~ NAc~ ~ 
into bile r ~  ~ADP I ~-/fl-oxid. 

~,,,~. F;i- L LTE4(NAc) 

m~ 

S 
r LTC4 

inusoidat | TD ,, Albumin-bound 
| L 4 transport in blood uptake L LTE4 

Fig. 4. Transport of cysteinyl leukotrienes-through hepatocytes. Uptake across the 
sinusoidal membrane may be followed by intracellular degradation (Keppler et al. 1989; 
Jedlitschky et al. 1991) and ATP-dependent export across the canalicular membrane into 
bile (Ishikawa et al. 1990). The latter process may be rate-limiting in overall hepatobiliary 
cvsteinvl leukotriene elimination 
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evidence, however, that his 48-kDa polypeptJde represents the transporter 
resporksible for leukotriene uptake. It may rather be an intracellular, 
membrane-associated polypeptide binding the leukotrienes (Leier et al. 
1992) as well as related amphiphilic substances (Kurz et al. 1989). The 
dihydroxy fatty acid LTB 4 differs from the cysteinyl leukotrienes by its 
entry into hepatoma cells, possibly as a result of its facilitated diffusion 
(Leier et al. 1992). Kinetic studies in hepatocytes employing inhibitors in- 
dicate the existence of distinct uptake systems for the cysteinyl leukotrie- 
nes and LTB 4 in the sinusoidal membrane. The substrate specificity of  the 
transporters involved in leukotriene uptake across the sinusoidal hepa- 
tocyte membrane will be defined more precisely after reconstitution of the 
purified transporter in liposomes. The interaction of both cysteinyl leuko- 
trienes and LTB 4 with hepatocytes does not lead to detectable receptor- 
mediated signal transduction if the mediators are added in the physiologi- 
cal nanomolar concentration range. This indicates that the hepatocyte up- 
take systems are transporters and not receptors for the leukotrienes. 

3.3 The Cysteinyl Leukotriene Export Carrier 
in the Hepatocyte Canalicular Membrane 

During the vectorial transport across the hepatocyte some of the leuko- 
triene metabolites retain their structure and some undergo oxidative degra- 
dation from the m-end (Figs. 4, 5). Products of co- and 13-oxidation of  
LTE4, N-acetyl-LTE 4, and LTB 4, as well as unmodified LTC 4, LTD 4, 
LTE4, and N-acetyl-LTE 4, are substrates for the leukotriene export carrier 
in the canalicular (apical) membrane of hepatocytes (Ishikawa et al. 1990). 
The mechanisms of this transport has been analyzed by use of plasma 
membrane vesicles enriched in canalicular membranes. The inside-out ve- 
sicles incubated in the presence of labeled cysteinyl leukotrienes and ATP 
showed primary-active, ATP-dependent uptake, corresponding to ATP-de- 
pendent export across the canalicular membrane into bile (Ishikawa et al. 
1990). Primary-active, ATP-dependent transport seems to be domain-spe- 
cific with a location in the canalicular but not in the sinusoidal hepatocyte 
membrane (Fig. 4). This is indicated by transport studies in vesicle prepa- 
rations from different membrane domains (Ishikawa et ai. 1990) and by 
photoaffinity labeling with the 35S-labeled ATP analog ATP-7-S of canali- 
cular and sinusoidal membranes (Mtiller et al. 1991a). Among the cystei- 
nyl leukotrienes, LTC 4 is the best substrate for the canalicular export car- 
rier. Apparent K M values are 0.25, 1.5, and 5.2 gM for LTC4, LTD 4, and 
N-acetyl-LTE 4, respectively, whereas the K N value for the cysteine S-con- 
jugate, L T E  4, is more than 10 gM (Ishikawa et al. 1990). In addition, m- 
carboxy-LTB 4, but not  LTB 4 itself, is a substrate for ATP-dependent trans 
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port across the canalicular membrane. Mutual competition among the cy- 
steinyl leukotrienes and between leukotrienes and several glutathione S- 
conjugates and glucuronate conjugates suggests a common export carrier 
(Ishikawa et al. 1990; Akerboom et al. 1991). The term leukotriene export 
carrier is preferred since LTC 4 is the endogenous substrate with the highest 
known affinity for this carrier. As indicated by the transport of LTD 4 and 
N-acetyl-LTE 4 via this ATP-dependent carrier, the glutathione moiety is 
not a structural determinant of the substrate properties, although it may be 
a property providing higher affinity for the active site of the carrier. ATP- 
dependent glutathione S-conjugate transport has been originally described 
in erythrocyte inside-out membrane vesicles (Kondo et al. 1980) and 
subsequently observed in other tissues (Kobayashi et al. 1988, 1990; 
Ishikawa et al. 1989; Akerboom et al. 1991). The carriers expressed in dif- 
ferent tissues may be similar in substrate specificity but are distinct as evi- 
denced by the hereditary deficiency of the leukotriene export carrier in li- 
ver (Huber et al. 1987) and its simultaneous presence in erythrocytes 
(Board et al. 1992). 

The ATP-dependent leukotriene export carrier in the canalicular mem- 
brane is apparently absent or inactive in a mutant strain of rats in which 
cysteinyl leukotriene excretion into bile is reduced to less than 2% of nor- 
mal (Huber et al. 1987; Ishikawa et al. 1990). These mutant rats are par- 
tially deficient in the hepatobiliary excretion of several other non-bile salt 
amphiphilic organic anions, such as bilirubin glucuronide and dibromo- 
sulfophthalein (Jansen et al. 1985). The defect in this TR- mutant rat strain 
is considered analogous to the one in Dubin-Johnson syndrome in man and 
in Corriedale sheep (Jansen et al. 1985; Kitamura et al. 1992). Deficiency 
of the leukotriene export carrier in the canalicular membrane is compensat- 
ed by metabolic inactivation and degradation of the leukotrienes in the 
hepatocyte resulting in an increased renal excretion of leukotriene 
catabolites (Huber et al. 1987; Keppler et al. 1991). 

Inhibition of ATP-dependent transport of LTC 4 in liver is observed in 
the presence of various glutathione S-conjugates in the micromolar con- 
centration range (Ishikawa et al. 1989). Moreover, structural analogs of 
LTD 4 and LTE 4, developed as LTD4/LTE 4 receptor antagonists and devoid 
of a glutathione moiety and a fatty acid side chain, are not only potent in- 
hibitors of LTC 4 transport in mastocytoma cells (Schaub et al. 1991) but 
also of the export carrier in the canalicular membrane. Cyclosporin A in- 
terferes with the hepatobiliary excretion of cysteinyl leukotrienes (Hag- 
mann et al. 1989). Recent studies demonstrate 50% inhibition of ATP-de- 
pendent LTC4 transport across the rat liver canalicular membrane at a cy- 
closporin A concentration of 4.5 JiM. This inhibition by cyclosporin A is 
analogous to the inhibition of the ATP-dependent multidrug export carrier 
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(p-glycoprotein) by this immunosuppressant (Foxwell et al. 1989; Speeg 
et al. 1992). 

3.4 Elimination and Transport In Vivo 

The pathways of elimination of leukotrienes in the intact organism were 
originally studied by autoradiographic (Appelgren and Hammarstr0m 
1982) and invasive techniques, mostly by use of 3H-labeled leukotrienes 
(Hagmann et al. 1984; Denzlinger et al. t985, 1986; Hammarstr0m et al. 
1985; Huber et al. 1990; Maltby et al. 1990). Few studies addressed the 
elimination and in vivo degradation of LTB 4 (Serafin et al. 1984; Hag- 
mann and Korte 1990). More extensive investigations dealt with the elimi- 
nation of different cysteinyl leukotrienes (Hagmann et al. 1984, 1986; 0r-  
ning et al. 1985, 1986; Sala et al. 1990; Keppler et al. 1991, 1992). Once 
released into the blood circulation, the leukotrienes are selectively bound 
to albumin (Falk et al. 1989) and eliminated predominantly by hepatobili- 
ary excretion. Using N-acetyl-LTE 4 as a representative tracer, half-lives in 
blood during the initial elimination period were 38 s in the rat and 4 min in 
man (Keppler et al. 1992), The advantage of using N-acetyl-LTE 4, radio- 
actively labeled in the N-acetylcysteine moiety, is the metabolic stability of 
the label as opposed to the extensive loss of tritium from leukotrienes la- 
beled in the arachidonate-derived fatty acid moiety during [3-oxidation 
from the co end (Keppler et al. 1989; Jedlitschky et al. 1991). N-Acetyl- 
LTE 4 is also an endogenous metabolite of LTC 4 in human urine (Huber 
et al. 1989; Maltby et al. 1990) and in rodent bile (Hagmann et al. 1986). 
Moreover, N-acetyl-LTE 4 is eliminated and transported on the same routes 
and at comparable rates as the other cysteinyl leukotrienes, LTC 4, LTD 4, 
and LTE 4. For administration of the labeled compound in vivo it is ad- 
vantageous that the biological activity of N-acetyl-LTE 4 is low when com- 
pared to LTD 4 and LTC 4 (Lewis et al. 1981; Samhoun et al. 1989). Within 
1 h, 80% of intravenously administered N-acetyl-LTE 4 is excreted in the 
rat with bile, either intact or after partial oxidative degradation from the 
co end of the fatty acid chain (Jedlitschky et al. 1991). At the same time, 
renal excretion in the rat amounts to about 2%. In man and in the monkey 
cysteinyl leukotriene excretion into urine represents a much higher pro- 
portion than in rodents and amounts to about 50% of the hepatobiliary 
excretion (Denzlinger et al. 1986; Maltby et al. 1990; Keppler et at. 1992). 

Positron emission tomography using carbon-11 labeled, positron-emit- 
ting N-[llC]acetyl-LTE4 enables noninvasive analyses of elimination kine- 
tics, organ distribution, and transport of this cysteinyl leukotriene (Keppler 
et al. 1991). In the rat, the initial distribution phase was characterized by a 
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rapid disappearence of 11C radioactivity from the blood circulation. This 
was accompanied by an increase in the leukotriene concentration in liver 
reaching its maximum 4 min after intravenous injection. In the cynomolgus 
monkey this maximum was reached after 12 min. As a consequence of 
hepatobiliary excretion, increasing amounts of N-[11C]acetyl-LTE4 and its 
o)-/13-oxidized metabolites were detected in the intestines. Only negligible 
amounts of the leukotrienes were monitored in the urinary bladder of the 
rat within 50 min, Renal excretion was significant, however, in the mon- 
key, which is in accordance with previous invasive tracer studies in this 
species (Denzlinger et al. 1986). Kinetic analyses indicated a mean transit 
time of the cysteinyl leukotriene through the liver of 17 min in the rat and 
of 34 min in the monkey (Keppler et al. 1991). In a mutant rat strain with a 
hereditary defect of the hepatobiliary transport of cysteinyl leukotrienes 
across the hepatocyte canalicular membrane (Huber et al. 1987; Ishikawa 
et al. 1990) elimination of leukotriene radioactivity from the blood circu- 
lation was retarded, the mean transit time or storage period in the liver was 
extended to 54 rain, and leukotriene excretion into the intestines was be- 
low detectability. This impaired hepatobiliary elimination was compensat- 
ed by transport of co-/[3-oxidized metabolites from the liver back into 
blood with subsequent renal excretion. This was monitored by the sharp 
rise in 11C radioactivity in the urinary bladder of mutant rats. A similar 
shift from hepatobiliary to renal cysteinyl leukotriene elimination was ob- 
served in rats with extrahepatic cholestasis due to surgical ligation of the 
bile duct. Leukotrienes labeled with a short-lived, positron-emitting radio- 
isotope thus provide quantitative insight into the pathways of their elimi- 
nation and transport in vivo and into the relative contribution of liver and 
kidney to these processes under normal and under pathopysiological con- 
ditions. 

4 Metabolic Deactivation and Inactivation of Leukotrienes 

Enzyme-catalyzed chemical modification of the leukotrienes determines 
their biological activity. Removal of the y-glutamyl moiety from LTC 4 
yields the biologically most potent cysteinyl leukotriene, LTD 4 (Fig. 2). 
On the other hand, modification of the cysteinylglycine moiety of L T D  4 

and o)-oxidation followed by l-oxidation of L T E  4, N-acetyl-LTE 4, and 
L T B  4 result in deactivation and inactivation of these leukotrienes (Fig. 5). 
Inactivation of potent mediators is equally important as their biosynthesis 
since the relative rates of synthesis and inactivation determine the concen- 
tration of the biologically active leukotrienes at the receptor. 
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4.1 Deactivation of LTD 4 in the Mercapturate Pathway 

The rank order of molar potencies of the cysteinyl leukotrienes in most 
assay systems is LTD4>LTC4>LTE4>N-acetyI-LTE 4 (Lewis et al. 1981; 
Samhoun et al. 1989). LTD 4 is irreversibly hydrolyzed to LTE 4 and gly- 
cine (Fig. 2). The reaction is catalyzed by a dipeptidase (Bernstr0m and 
Hammarstr0m 1981), which has been purified from microvillus membra- 
nes (Kozak and Tate 1982) and characterized as an ectoenzyme (Huber 
and Keppler 1987). The dipeptJdase is associated in the membrane with 
other enzymes of the mercapturate pathway (Hughey et al. 1978). Removal 
of the glycine moiety from LT-D 4 leads to a considerable loss of biological 
activity by about two orders of magnitude (Samhoun et al. 1989). Degra- 
dation of the glutathione conjugate LTC 4 to L T D  4, L T E  4, and N-acetyl- 
LTE 4 follows the mercaplurate pathway, originally known as a route ot  
detoxification of xenobiotics (Hagmann et al. 1986; Huber and Keppler 
1988). In this pathway, the cysteinyl leukotrienes are endogenous sub- 
strates in the nanomolar concentration range (Denzlinger et al. 1985). In- 
hibition of the deactivation of LTD 4 to LTE  4, both on cultured cells and in 
the rat, is induced by L-penicillamine (Huber and Keppler 1987). This in- 
terference also prevents the generation of the mercapturate, N-acetyl-LTE 4, 
and of o~oxidized polar metabolites of LTE 4 and N-acetyl-LTE 4. 

N-Acetyl-LTE 4 is formed by intracellular N-acetylation of L T E  4 with 
acetyl-coenzyme A (CoA). The enzyme catalyzing this reaction is present 
in liver, kidney, spleen, skin, and lung of the rat (Bernstr6m and Ham- 
marstr6m 1986). Endogenous N-acetyl-LTE 4 was originally identified in 
rat bile (Hagmann et al. 1985, 1986) and feces (0rning et al. 1986) as the 
predominant LTC 4 catabolite. In human urine, but not in the bile, this mer- 
capturate is present as a minor metabolite amounting to about 10% of 
L T E  4 (Huber et al. 1989, 1990; Sala et al. 1990; Maltby et ai. 1990). 
N-acetyl-LTE 4 retains at least 30% of activity relative to I,TE 4 (Lewis 
et al. 1981) and may be equipotent as LTE 4 in some assays (Samhoun et al. 
1989). Therefore, catabolism of LTC 4 in the mercapturate pathway is asso- 
ciated with biological activation to L T D  4, followed by partial deactivation 
to L T E  4 and N-acetyl-Lq~; 4. Complete inactivation of the cysteinyl leuko- 
trienes is only achieved by oxidation at the m end of the fatty acid moiety 
(Samhoun et al. 1989). 

4.2 Oxidative Inactivation of Leukotrienes 

e-Oxidation of LTB 4 to m-hydroxy-LTB 4, m-aldehyde-LTB4, and e-car- 
boxy-LTB 4, which is associated with a reduction of biological activity, has 
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Fig. 5. Compartmentation of inactivation and degradation of LTE 4 and LTB 4 in the hepato- 
cyte. Products of peroxisomol I]-oxidation may be dinor, tetranor, and hexanor metabolites 
of the LTE4, N-acetyl-LTE4, or LTB 4 [o)-COOH-(C2)n-nbr-leukotriene]. (Reproduced with 
permission from Jedlitschky et al. 1991) 

been observed in leukocytes (Hansson et al. 1981; Powell 1984; Soberman 
et al. 1988; Lewis et al. 1990) as well as in hepatocytes (Harper et al. 
1986; Baumert et al. 1989; Shirley and Murphy 1990; Sumimoto et al. 
1990; Jedlitschky et al. 1990; Shirley et al. 1992). By identification of 
co-carboxy-dinor-LTB 4 and c0-carboxy-tetranor-LTB 3 in hepatocyte sus- 
pensions, these cells were shown to 13-oxidize c0-carboxy-LTB 4 from the 
mend (Harper et al. 1986; Jedlitschky et al. 1991). Ethanol at moderate 
concentrations interferes with the further catabolism of c0-hydroxy-LTB 4 
(Baumert et al. 1989). As a result, not only LTB 4 and co-hydroxy-LTB 4 
(Baumert et al. 1989) but also 3-hydroxy-LTB 4 increases in hepatocytes 
(Shirley et al. 1992). The latter are potent calcium-mobilizing and chemo- 
tactic metabolites (Shirley et al. 1992). 

The liver converts LTE 4 and N-acetyl-LTE 4 to the respective c0-hy- 
droxy and c0-carboxy metabolites (0rning 1987; Ball and Keppler 1987; 
Stene and Murphy 1988). Further degradation by l-oxidation from the 
co end yields co-carboxy-dinor, -tetranor, and -hexanor derivates of LTE 4 
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and N-acetyl-LTE 4 (Stene and Murphy 1988; Sala et al. 1990; Huber et al. 
1990). All these co-carboxy derivates of LTE 4 and N-acetyl-LTE 4 are bio- 
logically inactive (Samhoun et al. 1989). 

Additional pathways for the catabolism of cysteinyl leukotrienes have 
been described on the basis of in vitro experiments. These include the de- 
gradation of LTC 4, LTD 4, and LTE 4 to 6-trans-LTB 4 diastereoisomers and 
the subclass-specific S-diastereoisomeric sulfoxides by myeloperoxidase 
from activated human polymorphonuclear leukocytes and monocytes (Lee 
et al. 1983). Additionally, cysteinyl leukotrienes may be inactivated by 
hydroxyl radicals yielding 6-trans-isomers of LTB 4 (Henderson et al. 
1982). These pathways for inactivation of cysteinyl leukotrienes have been 
outlined repeatedly (Lewis et al. 1990), however, there is no evidence for 
their significance in the intact organism where the metabolites recovered 
from injected LTC 4, LTD 4, LTE 4, or N-acetyl-LTE 4 in bile and urine ac- 
count for most of the administered leukotrienes and exclude a detectable 
contribution from myetoperoxidase-catalyzed degradation in vivo (Huber 
et al. 1987; Jedlitschky et al. 1991). 

4.3 Peroxisomal Degradation by 13-Oxidation from the co End 

The peroxisomal [3-oxidation pathway for very long-chain fatty acids in- 
volves acyl-CoA oxidase (EC 1.3.99.3), the bifunctional or rather trifunc- 
tional protein displaying enoyl-CoA hydratase (EC 4.2.1.17), 3-hydroxy- 
acyl-CoA dehydrogenase (EC 1.1.1.35), and A 3, A2-enoyl-CoA isomerase 
(EC 5.3.3.8) activity, and the peroxisomal 3-ketoacyl-CoA thiolase (EC 
2.3.1.16), as well as auxiliary enzymes such as 2,4-dienoyl-CoA reductase 
(EC 1.3.1.34; Osmundsen et al. 1991). The increased degradation of leu- 
kotrienes in the [3-oxidation pathway after treatment of rats with clofibrate, 
an inducer of peroxisome proliferation, led to the suggestion that 
[3-oxidation of leukotrienes may be localized in peroxisomes (Keppler 
et al. 1989). Both the long-chain structure of the teukotrienes and the struc- 
tures of their degradation products by [3-oxidation in rat hepatocytes (Shir- 
ley and Murphy 1990) and in human urine (Sala et al. 1990; Huber et al. 
1990) are in line with peroxisomal leukotriene breakdown. It is of interest 
that the leukotrienes, in contrast to the prostaglandins, are not degraded 
from the carbon-l-carboxyl group but from the co end by 13-oxidation of 
the co-carboxy metabolites derived from LTB 4, LTE4, and N-acetyl-LTE 4. 
Direct evidence for an exclusive degradation of cysteinyl leukotrienes in 
peroxisomes has been obtained by use of isolated liver peroxisomes and 
direct photoaffinity labeling of the peroxisomal enzymes of [3-oxidation 
with co-carboxy-N-[3H]acetyl-LTE4 (Jedlitschky et al. 1991). In addition, 
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isolated peroxisomes catalzye the [3-oxidation from the co end of 
¢o-carboxy-LTB 4 yielding the dinor and the tetranor catabolites (Jedlitsch- 
ky et al. 1991). In vitro experiments indicate that the degradation of LTB 4 
can also proceed in liver mitochondria, as indicated in Fig. 5. It is unlikely, 
however, that the mitochondrial [3-oxidation of ¢o-carboxy-LTB 4 plays a 
major role in the intact organism since LT B 4 degradation is severly 
impaired in patients with Zellweger syndrome, a disorder of peroxisomal 
biogenesis (Mayatepek et al. 1992). In this inherited disease the defect of 
peroxisomal leukotriene degradation results in increased levels of the 
biologically active, proinflammatory mediators LTE 4 and LTB 4. In 
addition, the concentrations in urine of c0-carboxy-LTE 4 and ¢0-carboxy- 
LTB4, which are the immediate substrates for peroxisomal [3-oxidation, are 
manifold increased (Mayatepek et al. 1992). These findings in humans 
with peroxisome deficiency underline the essential role of peroxisomes in 
the catabolism of leukotrienes. 

5 Analysis of Cysteinyl Leukotrienes and LTB 4 

Quantitative determinations of the leukotrienes can be accomplished by 
radioimmunoassays, high-performance liquid chromatography (HPLC), 
mass spectrometry after gas chromatography, bioassays, or combinations 
of these techniques. Separation of leukotriene metabolites by HPLC 
(Borgeat et al. 1990) often serves as initial step prior to detection with high 
sensitivity. For unequivocal identification gas chromatography/mass spec- 
trometry is the method of choice (Murphy 1984; Mathews 1990; Murphy 
and Sala 1990). 

5.1 Methods for Determination in Biological Fluids 

Difficulties in leukotriene analysis include (a) the short half-life of these 
mediators in vivo and in most biological fluids, (b) their presence in low 
nanomolar or picomolar concentration, (c) their susceptibility to oxidative 
degradation during sample preparation, and (d) the artificial generation of 
leukotrienes from cells during sampling particularly the leukotriene release 
from blood leukocytes during attempts to measure blood plasma leukotrie- 
nes (Denzlinger et al. 1986). 

Most measurements of LTB 4 in biological fluids have employed sensi- 
tive radioimmunoassays after verification of the identity of substance by 
HPLC or mass spectrometry" (Tateson et al. 1988; Lehr et al. 1991; Ma- 
yatepek et al. 1992). 
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The endogenous cysteinyl leukotrienes have been analyzed in fluids 
into which these substances are excreted and present at sufficient concen- 
trations, particularly in bile (Hagmann et al. 1984, 1985; Denzlinger et al. 
1985, 1986; Keppler 1988) and urine (Denzlinger et al. 1986; Keppler 
et al. 1988; Huber et al. 1989; Tagari et al. 1989; Taylor et al, 1989; Ni- 
coU-Griffith et al. 1990; Denzlinger et al, 1990; Fauler et al. 1991). These 
determinations have been based on tracer studies which have defined spe- 
cies-charactericstic index metabolites for systemic cysteinyl leukotriene 
production (Keppler et al. 1988). In humans, the measurement of urinary 
L T E  4 reflects about 5% of the systemic LTC 4 production (Maltby et al. 
1990); in the rat, N-acetyl-LTE 4 represents the index metabolite of choice 
to be analyzed in bile and corresponding to about 13% of systemic LTC 4 
generation (Huber and Keppler 1987) and in the guinea pig biliary L T D  4 

amounts to 20%-50% of LTC 4 administered into the systemic blood cir- 
culation (A. Keppler et al. 1987; Guhlmann et al. 1989). In each case, 
HPLC separation of the respective index metabolite in urine or bile should 
precede the quantitative analysis by immunoassay or mass spectrometry, 
and the results should be corrected for the recovery of internal standards. 
The percentages of cysteinyl leukotrienes eliminated into bile and urine are 
influenced by the relative transport capacities of these organs as well as by 
the enzyme activities degrading the cysteinyl leukotrienes in the vascular 
bed, hepatocytes, and kidney. Nevertheless, these determinations provide 
useful information on the role of leukotrienes under pathophysiological 
conditions and on the action of inhibitors of their synthesis, whereas 
analyses in blood are less meaningful because of the short half-life of these 
mediators in the systemic circulation and the risk of their artificial ex vivo 
synthesis and release from blood cells (Denzlinger et al. 1986; Heavy et al. 
1987; Keppler 1988). 

5.2 Generation of Cysteinyl Leukotrienes In Vivo 
Under Pathophysiological Conditions 

Pathophysiological conditions associated with enhanced systemic gener- 
ation of cysteinyl leukotrienes have been described in experimental ani- 
mals and in humans. In most instances, local release of the mediators leads 
to elimination with the blood circulation followed by biliary and renal ex- 
cretion of detectable quantities. Under a few experimental conditions, such 
as in the anaphylactic shock in the guinea pig (A. Keppler et al. 1987; 
Guhlmann et al. 1989), a causal relationship has been established between 
the quantitiy of leukotriene release and the clinical symptoms. 
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In humans, biliary LTE 4 is increased in acute pancreatitis (Keppler 
1988). Enhanced urinary LTE 4 excretion is associated with fulminant he- 
patitis, liver cirrhosis, and hepatorenal syndrome (Huber et al. 1989; 
Moore et al. 1990), antigen challenge in asthma patiens (Taylor et al. 1989; 
Tagari et al. 1989, 1990; Christie et al. 1991), adult respiratory distress 
syndrome and burns (Fauler et al. 1991; Westcott et al. 1991), systemic lu- 
pus erythematosus (Hackshaw et al. 1992), and treatment with certain cy- 
tokines, such as granulocyte-macrophage colony-stimulating factor (Denz- 
linger et al. 1990), and tumor necrosis factor-or. In addition to urinary 
LTE4, both L T E  4 and LTB 4 have been determined in significant quantities 
in sputum from patients with cystic fibrosis and asthma (Piper et al. 1991). 
In the monkey, intoxication with staphylococcal enterotoxin B (Denzlinger 
et al. 1986) and endotoxin from Salmonella abortus equi elicited increased 
biliary and urinary LTE 4 excretion. 

Systemic anaphylaxis leads to an immediate release of relatively large 
amounts of cysteinyl leukotrienes detected as LTD 4 in guinea pig bile (A. 
Keppler et al. 1987; Guhlmann et al. 1989), or as N-acetyl-LTE 4 in rat bile 
(Foster et al. 1988), or as LTE 4 in sheep lymph during cyclooxygenase 
blockade (Robinson et al. 1986). Biliary cysteinyl leukotrienes also in- 
crease after immunological challenge of the isolated rat or guinea pig liver 
(Hagmann et al. 1991). 

In the rat, where 85%-90% of the systemic LTC 4 production is reflect- 
ed by the biliary excretion of metabolites, various pathophysiological 
conditions have been studied by analysis of N-acetyl-LTE 4 in bile. These 
disease states include endotoxin shock (Hagmann et al. 1984, 1985, 1986; 
D. Keppler et al. 1987), different types of tissue trauma such as surgical 
trauma, bone fracture, burn injury (Denzlinger et al. 1985), shock induced 
by platelet-activating factor (Huber and Keppler 1987) and by tumor 
necrosis factor-or (Huber et al. 1988), and fulminant experimental hepatitis 
(Hagmann et al. 1987). 

6 Leukotriene-Mediated Disease Processes and Their Prevention 

The biological actions of L T C  4, L T D  4 LTE 4, and LTB 4, as well as actions 
of some of the metabolites, such as N-acetyl-LTE 4 and o~-hydroxy-LTB4, 
have been well defined (Dahl6n et al. 1981; Lewis and Austen 1984; Piper 
1984; Feuerstein 1985; Drazen and Austen 1987; Samuelsson et al. 1987; 
Guhlmann et al. 1989; Rola-Pleszczynski 1989; Ford-Hutchinson 1990; 
Lehr et al. 1991; Shaw and Krell 1991; Shirley et al. 1992). Moreover, 
analysis of leukotriene concentrations in biological fluids and tissues have 
established that the concentrations and amounts of these mediators under 
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some conditions are sufficient to elicit pathophysiologicat responses in 
humans and experimental animals (A. Keppler et al. 1987; Keppler et al. 
1988; Guhlmann et al. 1989; Taylor et al, 1989). Of particular importance 
are the recent results from clinical studies with receptor antagonists and 
inhibitors of leukotriene biosynthesis. The development of both types of 
compounds has reached a high degree of selectivity in their actions and 
sufficient bioavailability (Gillard et al. 1989; Aharony and Krell 1991; 
Ford-Hutchinson 1991b; Jones etal. 1991; Lewis etal. 1991; Piper and 
Krell 1991; Herron et al. 1992). Thus, the criteria to define and the means 
to treat leukotriene-mediated disease processes are available. Anaphylactic 
shock in the sensitized guinea pig may serve as an example where selec- 
tive inhibition of leukotriene biosynthesis in vivo (by MK-886) prevents 
the generation of otherwise lethal amounts of endogenous LTC 4, and 
where the above mentioned criteria have been fulfilled (Guhlmann et al. 
1989). 

Asthma is the human disease in which the most convincing evidence 
has been presented to implicate the cysteinyl leukotrienes as key mediators 
(Piper and Krell 1991; Lewis et al. 1991). This conclusion is based on the 
bronchoconstrictor activity of inhaled LTC 4, LTD 4, and LTE 4 (Drazen 
and Austen 1987), on the generation of cysteinyl leukotrienes during the 
asthmatic attack (Taylor et al. 1989), and on the results from clinical stu- 
dies with third-generation LTD4/LTE 4 receptor antagonists (Lewis et al. 
1991). In other inflammatory diseases, local or systemic leukotriene pro- 
duction has been measured and suggests a role in pathogenesis; however, 
the importance remains to be proven by successful clinical intervention or 
prevention by use of leukotriene biosynthesis inhibitors, LTD4/LTE 4 re- 
ceptor antagonists, and/or LTB 4 receptor antagonists. The leukotrienes 
may act within a network of mediators involving cytokines and other ara- 
chidonate metabolites. Diseases in which inhibition of leukotriene synthe- 
sis or action may prove to be beneficial include, in addition to asthma and 
anaphylaxis, psoriasis, adult respiratory distress syndrome, neonatal pul- 
monary hypertension, allergic rhinitis, gout, rheumatoid arthritis, inflam- 
matory bowel disease, acute and fulminant hepatitis, hepatorenal syn- 
drome, glomerulonephritis, and possibly sepsis. The use of selective leu- 
kotriene synthesis inhibitors and receptor antagonists may result not only 
in therapeutic progress but also in a deeper and more detailed understan- 
ding of the role of leukotrienes under normal and pathophysiological con- 
ditions. 
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1 Introduction 

Since the discovery of neuropeptides the biology and biochemistry of these 
substances have been extensively investigated in many laboratories. It is 
now firmly established that peptide hormones play a key role both in the 
central nervous system and in peripheral endocrine systems in the regula- 
tion of physiology and behavior, consistent with their wide distribution 
throughout the animal kingdom. Although our knowledge about the func- 
tion of the peptidergic neuron is accumulating, basic questions concerning 
gene evolution, the regulation of gene expression, protein modification, 
protein targeting, and signal transduction remain to be fully answered. 

Institut fOr Zellbiochemie und klinische Neurobiotogie, UKE, Universit~t Hamburg, 
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In this review, these questions will be addressed to the biology of 
oxytocin, which is one of the best characterized peptides. As early as the 
beginning of this century it was noted that pituitary extracts stimulated ute- 
rus contraction and milk ejection in the experimental animal (Dale 1906; 
Ott and Scott 1910), now known to be the classical endocrine functions of 
oxytocin. A few years later the first evidence was presented that neurons of 
the hypothalamus possess all the characteristics of a secretory cell, which 
enabled and stimulated research in the biosynthesis of oxytocin and many 
other hormones in the peptidergic neuron of the central nervous system 
(Scharrer and Scharrer 1940; Bargmann 1966). 

2 Biosynthesis 

The classical site of  oxytocin biosynthesis is represented by the hypotha- 
lamopituitary tract of  the central nervous system, namely in magnocellular 
neurons of the supraoptic and paraventricular nuclei. Most of the axons of 
these cells project via the median eminence and the neural stalk to the po- 
sterior pituitary, where the peptide is released into the blood stream des- 
tined for endocrine functions in the periphery. Some cells of the paraven- 
tricular nucleus, however, project their axons into other brain regions 
(Swanson and Sawchenko 1983) where oxytocin is thought to act as either 
a neurotransmitter or a modulator. Oxytocin-containing cells have also 
been identified in a number of peripheral tissues, indicative of hormone 
synthesis outside the brain; these include the adrenal gland, corpus luteum, 
and placenta (for review see Ivell 1986 and references cited therein). 

For historical reasons the biosynthesis of oxytocin has always been 
associated with that of  the closely related antidiuretic hormone vasopres- 
sin. Immunocytochemical experiments, however, showed that the two 
peptides are present within different subsets of magnocellular neurons in 
the paraventricular and supraoptic nuclei (Dierickx and Vandesande 1979). 

Like many other hormones, oxytocin is synthesized as a composite 
polyprotein precursor, the preprohormone (Gainer et al. 1977a). A signal 
peptide which directs protein synthesis to the lumen of the endoplasmic 
reticulum (Walter and Blobel 1981) is followed by the hormone moiety 
and a third protein component called neurophysin. To release the biologi- 
cally active peptide, the precursor has to undergo a series of posttranstatio- 
hal processing events involving the sequential action of several proteolytic 
enzymes. After cotranslational removal of the signal peptide, the prohor- 
mone is endoproteolytically cleaved at a dibasic signal, thereby liberating 
oxytocin which is extended by GIyXX (X = basic amino acid). Characteri- 
zation of dibasic processing endopeptidases is still in its infancy but it 
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seems clear that these enzymes belong to the subtilisin family of serine 
proteases which were initially believed to be restricted to prokaryotes (for 
review see Barr 1991). Subtilisin-like proteases have been detected in lo- 
wer eukaryotes such as yeast (Fuller et al. 1989). Subsequently, cDNAs 
encoding several dibasic processing enzymes have been isolated from a 
variety of mammalian species by virtue of their extensive sequence similar- 
ities to their bacterial and yeast counterparts (Wise et al. 1990; Barr et al. 
1991). Although definitive proof is still lacking, there is growing evidence 
that these proteases are also responsible for cleavage at dibasic residues in 
vivo (Barr 1991). 

Following endoproteolytic cleavage, the carboxy-terminal amino acids 
are removed by carboxypeptidase E (Clamigirand et al. 1987). This en- 
zyme has been purified from a number of tissues and its activity is widely 
distributed throughout the central nervous system and in peripheral organs 
(Fricker and Snyder 1983; Fricker et al. 1986). 

Frequently, neuropeptides, including oxytocin, contain a carboxyter- 
minal o~-amide group that is important for biological activity and which 
contributes to its stability in plasma (for review see Bradbury and Smyth 
1991). Amides are formed by an enzyme-catalyzed reaction, with glycine 
serving as the nitrogen donor (Bradbury et al. 1982). This, in fact, requires 
the activity of two different enzymes and, thus, is performed in two steps. 
In the first reaction a hydroxyglycine intermediate is generated by peptidyl 
glycine hydroxylase, which requires ascorbate and copper. In the second 
step the peptide amide and glyoxylic acid are formed by the activity of a 
peptidylhydroxyglycine N-C lyase. Both enzymes together are commonly 
referred to as peptide-amidating enzyme (PAM). 

Comparisons of the amino acid sequences of oxytocin-associated neuro- 
physins obtained from several species by Edmann degradation (Chauvet 
et al. 1983) and molecular cloning techniques (Rehbein et al. 1986) reveal 
that the polypeptide deduced from the respective cDNA sequence contains 
a supernumerary basic amino acid at its C terminus, probably representing 
a rudimentary processing signal, which is cleaved off by a carboxypeptid- 
ase B-like enzyme (N6renberg and Richter 1988). 

The processing and modification of the oxytocin precursor takes place 
during its transport in neurosecretory vesicles from the perikarya to the 
nerve terminals in the posterior pituitary (Gainer et al. 1977b). Following 
depolarization, the peptide content is released in a Ca2+-dependent manner. 
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3 Gene Structure and Evolution 
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With the advent of  modern molecular biological techniques, the gene 
structures and genomic organizations of the oxytocin and the closely rela- 
ted vasopressin genes have been determined in a variety of species 
(Schmale et al. 1983; Ivell and Richter 1984; Ruppert et al. 1984; Sausville 
et al. 1985; Hara et al. 1990). Both genes are composed of three exons, en- 
coding the signal peptide, the hormone moiety and the N-terminal part of 
neurophysin (exon A), the central part of neurophysin (exon B), and the C- 
terminal part of neurophysin as well as, in the vasopressin precursor, a 
glycopeptide (exon C). In all mammalian species examined so far the two 
genes are closely linked on the same chromosome (Fig. 1) and are oriented 
in opposite transcriptional directions (Hara et al. 1990; Mohr et al. 1988; 
Sausville et al. 1985). 

Recent data obtained by cDNA cloning in nonmammalian vertebrates 
have shed some light on the evolution of the oxytocin/vasopressin gene 
family, The organization in the teleost fish Catostomus commersoni of the 
genes encoding the homologous hormones named isotocin and vasotocin, 
respectively, is very similar to that found in the mammal. However, in the 
fish, the neurophysin moieties of both hormone precursors are extended by 
about 30 amino acid residues. Although these segments show sequence 
similarities to the mammalian glycopeptide referred to as the copeptin of 
the vasopressin precursor, they do not contain any glycosylation or appro- 
priate processing signals (Heierhorst et al, 1989; Morley et al. 1990). It is 
likely that, during the course of evolution, this extended part of neuro- 
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Fig. 1. Slructural organization of the rat vasopressin and oxytocin genes. The exons are in- 
dicated by boxes and show: VP, vasopressin; NP, neurophysin; OT, oxytocin; GP, glyco 
peptide. The arrows indicate the relative positions of the intervening sequences. The genes 
are separated by about 11 kilobases (kb) of intergenic sequences and are oriented in oppo- 
site transcrimional directions 
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physin developed into a separate protein component of distinct function 
(the copeptin in the case of the vasopressin precursor) or in the case of the 
oxytocin precursor was deleted because of lack of function. 

4 Gene Expression and Regulation 

In a variety of physiological conditions such as late gestation, parturition, 
and lactation the peripheral demand for oxytocin is high. Accordingly, pre- 
cursor synthesis in and hormone release from magnocellular neurons is ac- 
celerated. A similar response is also seen during dehydration, although a 
role for oxytocin in the maintenance of salt and water balance remains ob- 
scure (Forsling and Brimble 1985; van Tol et al. 1987). 

When these studies were extended to the level of gene expression, it be- 
came evident that a high precursor synthesis is tightly coupled to elevated 
levels of oxytocin mRNA (Forsling 1986; van Tol et al. 1987, 1988; Zingg 
and Lefebvre 1988). However, definite proof is still lacking as to whether 
or not mRNA content rises because of a higher rate of gene transcription or 
is the consequence of a longer transcript half-life. Because of the close re- 
lationship of the vasopressinergic and oxytocinergic systems in the hypo- 
thalamus, the expression of both genes is commonly looked at. Whenever 
the levels of oxytocin gene transcripts are elevated, higher levels of vaso- 
pressin-encoding mRNA are observed and vice versa. Since these peptides 
serve quite different functions in the organism, these findings remain an 
enigma. Yet, quantitative northern blot analyses have shown that oxytocin 
and vasopressin mRNAs rise two- to three-fold during late gestation, and 
sustained elevated levels of both transcripts are also observed during lac- 
tation (Zingg and Lefebvre 1988; van Tol et al. 1988). 

The influence of ovarian steroid hormones on the hypothalamic 
oxytocinergic system is well documented (Akaishi and Sakuma 1985; 
Negoro et al. 1973; Yamaguchi et-al. 1979). The observed parallel rise in 
estrogen and oxytocin mRNA levels during lactation and birth (Yoshinaga 
et al. 1969) suggests a direct influence of the steroid hormone on oxytocin 
gene expression. Several lines of evidence supported this view. For 
example, a concomitant variation in the oxytocin mRNA and estrogen le- 
vels has been observed during the rat estrous cycle (van Tol et al. 1988) 
and ovariectomy is accompanied by a fall in oxytocin transcript levels 
(Miller et al. 1989). The most compelling line of evidence was provided by 
the detection of two estrogen response elements (ERE) in the promoter re- 
gion of the rat oxytocin gene, which turned out to be functional enhancers 
in a heterologous system (Fig. 2; Molar and Schmitz 1991). However, ear- 
lier in situ autoradiography studies failed to detect estrogen-concentrating 
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Fig. 2. Determination of CAT activities in cell lysates of MCF 7 cells transiently trans- 
fected with either various OT ERE tk CAT constructs or the parent vector pBL CAT2 with 
(+) or without ( ) the addition of 17l}-estradiol to the culture medium. The lower part 
shows a schematic diagram of the relative positions and nucleotide sequences of OT ERE1 
and OT ERE2 in the rat oxytocin gene promoter region, TATA, modified TATA box; ar- 
rowhead, transcription initiation site (+1); ERE, estrogen response element; OT, oxytocin; 
tk, Herpes simplex thymidine kinase gene promotor; CAT, chloramphenicol acetyltransfera- 
se. For experimental details see Mohr and Schmitz (1991) 

cells in magnocellular neurons projecting to the neurohypophysis, indica- 
ting the absence there of estrogen receptors (Rhodes et al. 1981). It is li- 
kely that estrogen receptor-mediated transcriptional activation does not oc- 
cur in cells of  the hypothalamo-neurohypophyseal tract which are respon- 
sible for oxytocin release into the circulation. However, estrogen target 
cells projecting into brain regions other than the neural lobe have been de- 
tected in the posterior part of the paraventricular nucleus (Rhodes et al. 
t 98 I). Oxytocin synthesized in these cells is thought to function either as a 
neurotransmitter or a modulator (Swanson and Sawchenko 1983). Accord- 
ingly, in these neurons oxytocin gene expression might be triggered by 
estrogens at the transcriptional level. 

Further attemps to define regulatory elements in the oxytocin gene pro- 
motor that direct cell- and tissue-specific gene expression have been un- 
successful up to now because of the lack of suitable cell culture systems. 
Recent investigations of  rat oxytocin gene expression in transgenic mice 
demonstrated that celt-specific transcription of the transgene only occurs in 
magnocellular neurons if the oxytocin gene is linked to the vasopressin 
gene in a minilocus (Young III et al. 1990), thus mimicking the in vivo sit- 
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uation. These data suggest the localization of oxytocin-specific enhancers 
either within or in the vicinity of the vasopressin gene. Additional con- 
structs will be needed to define the putative cis-acting elements more pre- 
cisely. In contrast, the specific expression of the vasopressin gene has not 
been observed in these animals. 

5 Axonal Transport of Oxytocin mRNA 

The complexity and plasticity of the peptidergic neuron is reflected by the 
recent finding that oxytocin mRNA, as well as vasopressin mRNA, is axon- 
ally transported from the perikarya of magnocellular neurons to the nerve 
terminals in the neural lobe (Molar et al. 1991). Although it is generally 
believed that axons contain neither mRNA nor organelles involved in pro- 
tein biosynthesis (Lasek and Brady 1981; Gordon-Weeks 1988), experi- 
mental evidence is now growing to suggest that axons of both vertebrates 
and invertebrates contain mRNA (Giuditta et al. 1977; Koenig 1979; Dirks 
et al. 1989; Giuditta et al. 1990; van Minnen and Schallig 1990; Giuditta 
et al. 1991). However, clues to the function and physiological significance 
of these transcripts are currently lacking. One attractive hypothesis is to 
assume that these mRNAs are locally translated in the axon. Due to the 
apparent absence of rough endoplasmic reticulum and Golgi apparatus in 
the nerve endings, translation would have to take place on free ribosomes 
or polysomes. Moreover, the precursor polyproteins are probably not sub- 
jected to posttranslational processing and modification and are likely se- 
creted by a mechanism that differs completely from the classical mode of 
neuropeptide release, i.e., via neurosecretory vesicles. It seems unlikely 
that axonal mRNA simply reflects an overflow from the cell bodies, since 
the process of selective mRNA transport into the dendrites of neurons is 
well known (Davis et al. 1987; Tucker et al. 1989). 

6 Physiological Effects and Binding Sites for Oxytocin 

A detailed understanding of the role of oxytocin as an important hormone 
in the periphery and an authentic neuromodulator in the central nervous 
system requires a correlation of its physiological effects with cellular ac- 
tions and with the existence of specific high-affinity binding sites in the 
appropriate tissues, the characterization or purification of a receptor, and 
the identification of a coupled signal transduction system. We will now 
summarize the current evidence for this association. 
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Circulating oxytocin that is released from the neurohypophysis or from 
peripheral tissues elicits a variety of physiological effects in the periphery. 
The best characterized examples of this are its function in female repro- 
duction in a number of mammalian species including humans, i.e., in ute- 
rine contractions during the onset and maintenance of parturition, and the 
process of milk let-down during lactation which is mediated by the myo- 
epithelial cells of mammillary alveolar glands (Johnson and Everitt 1984). 
In male reproduction oxytocin, apparently synthesized within the testis 
(Nicholson et al. 1984), is involved in contraction of the smooth muscle of 
the vas deferens, the epididymis, and the seminiferous tubules during eja- 
culation (reviewed in Wathes 1984). Other roles of oxytocin in biological 
reproduction include metabolic effects on reproductive tissues (Lederis 
et al. 1985; Okabe et al. 1985), an immediate release of arachidonic acid 
and prostaglandin F2a from decidua cells (Wilson et al. 1988), and gona- 
dotropin release from dispersed anterior pituitary cells (Evans and Catt 
1989). Moreover, it has been associated with the regulation of renal func- 
tion (Verbalis et al. 1991). The various physiological responses to oxytocin 
are thought to be mediated by specific oxytocin receptors, although there is 
some indication that the neurohypophyseal hormones do not absolutely 
discriminate their cognate receptors (Jard et al. 1987 and references cited 
therein; Teitelbaum 1991). The assumption that oxytocin effects are cau- 
sed by its cognate receptor is underscored by the presence of high-affinity 
binding sites for oxytocin that are clearly pharmacologically distinct from 
those for vasopressin in most, if not all, tissues known to respond to the 
peptide, such as the reproductive tissues from a number of species (Jard 
et al. 1987), the kidney (Stoeckel et al. 1987; Schmidt et al. 1991), kidney- 
derived LLC-PK1 cells (Stassen et al. 1988), adenohypophysis (Antoni 
1986; Chadio and Antoni 1989), and the thymus (Elands et al. 1990). 

A growing body of evidence indicates that oxytocin may function as an 
authentic neuromodulator in the central nervous system, being involved in 
drug addiction, ethanol tolerance, learning and memory, sexual and mater- 
nal behavior (reviewed in Kovacs 1986), and inhibition of food intake 
(Olson et al. 1991). Support for the neuromodulatory role of oxytocin 
comes also from studies of its cellular actions. For instance, extracellular 
recordings indicated that it was able to excite most, but not all, neurons of 
the dorsal motor nucleus of the vagus nerve and of the bed nucleus of the 
stria terminalis in slices from rat brainstem (Charpak et al. 1984; Ingrain 
et al. 1990) and to increase the firing rate of nonpyramidal neurons in sli- 
ces from the CA1 field of the rat and guinea pig hippocampus (Raggenbass 
et al. 1989). The role for oxytocin in the central nervous system is also 
highlighted by the observation of high-affinity binding sites in synaptic 
membrane preparations from various brain regions (Audigier and Barberis 
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1985). Furthermore, quantitative light microscopic autoradiography and li- 
gand-binding assays have demonstrated specific binding sites for oxytocin 
in the hypothalamus, in some forebrain regions including the hippocam- 
pus, in the olfactory system, the limbic system, the brainstem, certain parts 
of the striatum and cortex, the neurohypophysis and the ependyma of the 
lateral ventricle, and/or the choroid plexus near the lateral septum 
(Tribollet et al. 1988; Di Scala-Guenot et al. 1990). In regions where the 
binding of oxytocin and arginine vasopressin overlap, the use of a highly 
specific oxytocin receptor ligand, which show only negligible affinity for 
the V 1 and V 2 vasopressin receptors clearly established the presence of 
specific oxytocin binding sites (Elands et al. 1988). 

7 Signal Transduction Mediated by Oxytocin 

Uterotonic agents such as oxytocin, platelet-activating factor, and norepi- 
nephrine are believed to stimulate uterine smooth muscle contraction by 
increasing the intracellular calcium concentration (Kursheed and Sanborn 
1989). Furthermore, it has been shown that inositol 1,4,5 trisphosphate 
(IP3) in this tissue mediates the release of calcium from microsomes 
(Carsten and Miller 1985), suggesting that IP 3 is the intracellular second 
messenger. This assumption is supported by the detection of myometrial 
IP 3 binding sites with characteristics of true IP 3 receptors that display a 
high apparent dissociation constant, fast association and dissociation rates, 
a correct binding profile of inositol phosphate isomers, and an inability to 
metabolize IP 3 (Rivera et al. 1990). 

A number of studies have indicated that oxytocin binding to myometriat 
tissues from a number of species (Schrey et al. 1986; Marc et al. 1986), 
cultured rat inner medullary collecting tubule cells (Teitelbaum 1991), and 
dispersed bovine mammary cells (Zhao and Gorewit 1987) results in 
phospholipase C (PLC)-mediated phosphatidylinositol bisphosphate hy- 
drolysis and activate the IP 3 - calcium signalling pathway. The presumed 
activation of phospholipa~s in the oxytocin signaling pathway is support- 
ed by the observation of prostaglandin synthesis and release from the en- 
dometrium and from decidua cells (Roberts etal. 1976; Wilson etal. 
1988), pointing to the generation of arachidonic acid either by phospholi- 
pase A 2 or by the sequential action of PI.C and diacylglycerol lipase 
(Schrey et al. 1986), an enzyme present at high levels in human decidua 
cells (Okazaki et al. 1981). The involvement of a guanine nucleotide-bin- 
ding protein (G protein) distinct from G s and G i in oxytocin recep- 
tor-effector coupling is suggested from studies showing that fluoroalumi- 
nates mimic the oxytocin-mediated production of inositol phosphates and 
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myometrial contraction in a pertussis- and cholera-toxin insensitive 
fashion (Marc et al. 1988). Finally, the oxytocin-dependent stimulation of 
protein kinase C, which is typical of the inositol phosphate - calcium sig- 
naling pathway has been shown to occur in rat adipocytes (Egan et al. 
1990). The rise in the oxytocin-induced intracellular calcium concentration 
may also be due, at least in part, to an inhibition of a rat myometrial 
plasma membrane (Ca 2+ + Mg 2+) ATPase (Soloff and Sweet 1982) and of 
a human myometrial sarcolemmal calcium ATPase (Popescu et al. 1985) 
and/or by an influx of extracellular Ca 2+ into LLC-PK1 cells (Stassen et al. 
1988). Figure3 schematically outlines the oxytocin-induced signal 
transduction pathway. In contrast to the situation in the myometrium in the 
mouse anococcygeus muscle the oxytocin-dependent elevation of cytosolic 
free Ca 2+ and contractions were lost in a calcium-free solution, indicating a 
dominant role for a calcium influx mechanism (Gibson and Shaw 1989). 

The coupling of oxytocin receptors to the IP3--calcium signaling path- 
way is further supported by functional expression studies in frog oocytes. 
In the past, this system has frequently been used to express a variety of 
G protein-coupled receptors either from cellular mRNA or from RNA 
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Fig. 3. Oxytocin(OT)-mediated signal transduction pathways. Binding of OT (black triang- 
le) to its receptor results in G protein (ec and ~y subunits are indicated) and phosphoinositol- 
specific phospholipase C activation, causing IP3-mediated Ca 2+ release from internal sto- 
res via an IP 3 receptor (black). Additionally, calcium influx via plasma membrane calcium 
channels (shown in light gray) is enhanced, and sequestration of cytosolic calcium is inhi- 
bited through a blockade of the sarcolermnal (Mg2*-Ca2+)ATPase (gray). Diacylglycerol is 
thought to activate protein kinase C and is itself hydrolyzed by phospholipase A 2 or diacyl- 
glycerol lipase to generate arachidonic acid, the substrate for prostaglandin synthesis: PIP 2, 
phosphatidylinositol bisphosphate; DAGL, diacylglycerol lipase; PLA 2, phospholipase A 2. 
For details see text 
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mRNA from LLC-PK1 
studies in oocytes by 
(Cantau et al. 1990). 

transcribed in vitro from cloned cDNA (for a review see Richter et al. 
1991). It has been noted that only those receptors can be detected in vol- 
tage-clamp recordings which are linked to the IP3-calcium response 
(Meyerhof et al. 1988). Expression of the oxytocin receptor from bovine 
endometrial mRNA has been achieved in this system (Morley et al. 1988). 

cells has also been used in functional expression 
demonstrating oxytocin-mediated 45Ca 2+ efflux 

To date, changes in cyclic AMP levels in the uterotonic, galactobolic, 
lipolytic, and renal actions of oxytocin have been excluded (Teitelbaum 
1991; Cantau et al. 1990; Jard et al. 1987) and there is, as far as we are 
aware, no indication of a coupling of oxytocin responses to adenylyl cy- 
clase. 

80xytocin Receptors 

Although the oxytocin receptor has yet not been purified, nor its cDNA 
cloned, the above-cited evidence strongly suggests that it belongs to the 
well-known class of type II receptors that have seven putative membrane 
spanning domains and which are coupled to G proteins. It is also currently 
unclear as to whether distinct oxytocin receptor subtypes mediate the va- 
rious peripheral and central effects. This question is particularly intriguing 
because oxytocin receptors can be distinguished from at least three vaso- 
pressin receptor subtypes (Via, Vtb, V2; Jard et al. 1986) and because even 
highly specific oxytocin analogs for one species show a less pronounced 
selectivity in another (Tence et al. 1990). 

To date, the existence of oxytocin receptor subtypes has not yet been 
established because the lack of precise pharmacological and functional 
criteria does not permit such a distinction to be made (Jard et al. 1987). 
However, there is some circumstantial evidence for oxytocin receptor hete- 
rogeneity in the rat myometrium (el Alj et al. 1990) and suggestions that 
the uterine receptors may differ from those mediating milk ejection 
(Sawyer et al. 1981). Particularly interesting is the question of whether the 
central and peripheral effects are mediated by one or two classes of recep- 
tors. Pharmacological evidence indicating that a hippocampal oxytocin re- 
ceptor is of the uterine type (Mtthlethaler et al. 1983) must await biochem- 
ical data that assigns to the central receptors the second messenger path- 
way that is activated by the peripheral receptors. 

Biochemical studies have revealed that 3H-oxytocin binding sites can 
be solubilized from rat mammary plasma membrane preparations, and gel 
filtration has indicated that the detergent-solubilized binding site has mul- 
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tiple molecular mass torms ranging from 40 kDa to more than 2(X)kDa 
(Soloff and Fernstrom 1987). Radiation inactivation analysis pointed to an 
apparent relative molecular mass of 57.5 +/- 3.8 kDa (Soloff et al. 1988). 
In photoaffinity labeling experiments and subsequent sodium dodecyl sul- 
fate gel electrophoresis using membrane preparations from rat mammary 
gland, the size of the oxytocin receptor was determined to be 65 +/- 3 kDa 
(Miiller et al. 1989), which agrees reasonably well with the radiation inac- 
tivation study. However, using a photoaffinity labeling approach, a 78 +/-  
5-kDa protein was specifically labeled in membrane preprations from gui- 
nea pig myometrium (Fahrenholz et al. 1988). The size of an oxytocin re- 
ceptor mRNA was determined by sucrose density gradient fractionation of 
bovine endometrial poly(A)+RNA and expression in frog oocytes to 
roughly 2000 base pairs (Morley et al. 1988). This has the capacity to en- 
code the 57.5- to 65-kDa protein but presumably not the 78-kDa protein, 
arguing again for receptor heterogeneity. 

9 Receptor Regulation 

Growing evidence indicates that a finely tuned balance of oxytocin levels 
and receptor numbers accomodates the physiological requirement of tissue 
or organ sensitivity. For example, in tile ewe and the cow, the amounts of 
tritiated oxytocin bound by plasma membranes from the endometrium and 
myometrium vary considerably during the estrous cycle, being low during 
the luteal phase, increasing several days before estrus to a maximum at 
estrus, and declining thereafter (Sheldrick and Flint 1985; Roberts et al. 
1976; Soloff and Fields 1989). Oxytocin-mediated prostaglandin release 
also peaks at estrus, coinciding with the uterotonic response (Roberts et al. 
1976). These data imply that the uterine receptor is an important determi- 
nant in mediating uterine sensitivity to oxytocin and that this is correlated 
with changes in receptor numbers. This is particularly intriguing because 
uterine sensitivity is inversely correlated during the cycle with circulating 
oxytocin levels, These are highest during the midluteal phase and corre- 
spond to those of the corpus luteum. The increase during ovulation to a 
peak in the midluteal phase (Schams et al. 1985; Wathes et al. 1984) prob- 
ably meets the requirements of the ovary with respect to the life span of 
the corpus luteum (reviewed in Wathes 1984). Recent evidence indicates 
that the rise in the uterine oxytocin receptor number which is caused by 
17~-estradiol (Hixon and Flint 1987; Jacobson et al. 1987) and which can 
be downregulated by progesterone via nuclear estrogen receptors (Takeda 
and Leavitt 1986; Leavitt et al. 1985) is correlated to uterine activity 
(Windmoller et al. 1983). The regulation of oxytocin receptors by sex ste- 
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roids is of particular significance since the latter may form control loops 
by acting on the central nervous system to accommodate sexual and ma- 
ternal behavior and physiological requirements. In fact, estradiol increases 
oxytocin receptor density in the ventromedial nucleus of the hypothalamus 
(de Kloet et al. 1986), a brain region controlling aspects of feeding, ag- 
gression, and sexual behavior (Nance 1976; Colpaert and Wiepkema 1976; 
Pfaff 1983). 
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1 Introduction 

Tissue blood flow is regulated by local autoregulatory mechanisms, factors 
released from endothelial cells, hormones and neural factors. The role of 
autonomic neurons, notably of sympathetic vasoconstrictor neurons, is 
well studied. However, even after blockade of cholinergic and noradrener- 
gic transmission, blood vessels can actively be dilated in response to nerve 
stimulation. The nonadrenergic noncholinergic (NANC) vasodilator neu- 
rons have long eluded identification, but there is now good evidence that 
NANC vasodilatation in many vascular beds is mediated by nerve fibres 
that utilize peptides such as substance P (SP) and calcitonin gene-related 
peptJde (CGRP) as their transmitters. The perivascular NANC neurons, 
however, are not identical with classical autonomic neurons whose role is 
to control vascular effector functions - they are in fact sensory neurons ca- 
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Fig. 1. Dual role of  peptidergic afferent neurons. These neurons are sensory neurons with 
unmyelinated or thinly myelinated axons. The information they perceive is transmitted to 
the central nervous system (spinal cord or brainstem) to produce sensation and initiate au- 
tonomic homeostatic reflexes. In addition, peptide transmitters can be released from their 
peripheral endings to control the function of adjacent effector systems, e.g, blood vessels. 
Peptidergic afferent neurons are well equipped for this peripheral function because the bulk 
of peptides synthesized in the neuronal somata is transported towards the peripheral en- 
dings (Brimijoin et al. 1980; Keen et al. 1982) 

pable of monitoring their chemical and physical environment and primary 
afferent neurons that convey this information to the central nervous 
system. Recognition of this dual role of perivascutar peptidergic afferent 
neurons (Fig. 1) has lit up completely new aspects in the neural control of 
circulation. It has also stirred reconsideration of the principal organization 
of the autonomic nervous system (see Prechtl and Powley 1990). 

Although the significance and mode of action of afferent neurons in the 
control of vascular functions is only now being appreciated, the discovery 
of primary afferent vasodilator fibres dates back to the last century. 
Stricker (1876) was the first to observe that stimulation of the peripheral 
ends of cut dorsal roots induced vasodilatation in the skin area supplied by 
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the transected afferent nerve fibres. As efferent fibres are absent from tile 
dorsal roots (see Coggeshall 1980) and removal of the dorsal root ganglia 
abolished the vasodilator response (Baytiss 1901), it was inferred that cuta- 
neous vasodilatation resulted from antidromic conduction of nerve impul- 
ses in afferent nerve fibres (Bayliss 1901). In the rat, this "antidromic va- 
sodilatation" is associated with an increase in vascular permeability lea- 
cling to extravasation of plasma proteins and formation of oedema (N. 
Jancs6 et al. 1967). Hyperaemia and increased vascular permeability are 
key traits of  inflammation, and "neurogenic inflammation" is a term which 
was first used to denote the inflammatory response of the skin to applica- 
tion of the irritant mustard oil, a response that depends on the afferent in- 
nervation of the tissue (Bruce 1910; N. Jancs6 et al. 1967). 

Peptidergic afferent neurons regulate vascular functions in many soma- 
tic and visceral tissues (see Lundberg and Saria 1987; Barnes et al. 1988; 
Chahl 1988; Holzer 1988; Lembeck and Holzbauer 1988; Maggi and Meli 
1988). Two mechanisms of action can be differentiated. On the one hand, 
vasoactive peptides released from the peripheral nerve terminals exert a lo- 
cal control over vascular effector functions. On the other hand, afferent 
neurons also participate in the reflex control of  circulation via the autono- 
mic nervous system. The present article highlights these implications of at: 
ferent neurons in two model systems, the cutaneous and splanchnic circu- 
lation, These two systems have been chosen not only because they have 
been studied extensively, but also because they enable us to point out the 
diversity of vascular control mechanisms governed by peptidergic afferent 
neurons. 

2 Nature of Afferent Neurons Regulating Vascular Functions 

2.1 Capsaicin-Sensitive Neurons 

The afferent neurons that are involved in local blood flow regulation are 
sensitive to capsaicin (Fig. 2, Table 1), a property which has greatly facili- 
tated their anatomical, neurochemical and functional investigation (N. 
Jancs6 et al. 1967). Low doses ofcapsaicin (in the microgram per kilogram 
range) induce transient excitation of thin primary afferent neurons whilst 
systemic administration of high doses of the drug (in the milligram per 
kilogram range) to small rodents causes long-lasting damage of these neu- 
rons (see Buck and Burks 1986; G. Jancs6 et al. 1987; Szolcs~inyi 1990a; 
Holzer 1991). The extent of injury (ultrastructural changes or degeneration 
of C fibre and AS fibre afferent neurons) depends on the dosage, route of 
administration, animal species and age of the animals (see G. Jancs6 et al. 
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Table 1. Brief summary of capsaicin's main sensory 
neuron-selective actions (Holzer 1991) which can be 
utilized in the functional investigation of peptidergic 
afferent neurons 

Acutely stimulant effect: 

Long-term neurotoxic effect: 

Excitation 
Nociception 
Peptide release 

Ultrastructural changes 
Degeneration 
Defunctionalization 
Peptide depletion 

1987; Szolcs~inyi 1990a; Holzer 1991). Half-maximal excitation of isolated 
or cultured rat afferent neurons is produced by 0.1-0.5 ~mol 1 q capsaicin, 
whereas concentrations above 1 ~mol 1-1 exert a definitely neurotoxic ac- 
tion within 5-20 min (see Holzer 1991). These actions ofcapsaicin (Table 1) 
are mediated by specific receptors coupled to non-selective cation 
channels in the cell membrane, and intracellular accumulation of Ca 2÷ and 
NaC1 are the major factors that determine capsaicin's neurotoxicity (see 
Bevan and Szolcs~inyi 1990; Holzer 1991). 

The "sensory neuron-selective" effects of  capsaicin (Table 1) are confin- 
ed to mammals and show marked species differences even within this 
class of vertebrates (Holzer 1991). However, its specificity for afferent 
neurons is not absolute, and some of the acute effects of  the drug on blood 
vessels appear to result from a direct action on vascular muscle (Donnerer 
and Lembeck 1982; Duckles 1986; B6ny et al. 1989; Edvinsson et al. 
1990; Moritoki et al. 1990) and endothelium (Kenins et al. 1984). The la- 
bel "capsaicin sensitive" is applied to those afferent neurons which acutely 
are excited and in the long term are damaged by the drug. This population 
of neurons is heterogeneous and comprises most but not all primary affe- 
rent neurons with small cell bodies and unmyelinated (C fibre) axons and 
some afferent neurons with thinly myelinated (AS fibre) axons. With re- 
gard to sensory modality, capsaicin-sensitive afferent neurons encompass 
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chemoceptors, chemonociceptors, polymodal nociceptors and some 
warmth receptors (see Szolcs~inyi 1990a; Holzer 1991). 

2.2 Perivascular Peptidergic Neurons 

Capsaicin-sensitive and fine afferent neurons in general contain a number 
of bioactive peptides (Table 2) including CGRP, the tachykinins SP and 
neurokinin A (NKA), vasoactive intestinal polypeptide (VIP), somatostatin 
and dynorphin, which are localized within synaptic vesicles. Apart from 
regional and species differences (Bucsics et al. 1983; J. Donnerer, personal 
communication), there are pathway-specific patterns of the co-existence of 
these peptides in afferent neurons (Gibbins et al. 1987a, b; O'Brien et al. 
1989), and it is likely that heterogeneity in "chemical coding" reflects 
functional heterogeneity (Costa et al. 1986; Mayer and Baldi 1991). Crite- 
ria to firmly establish peptides as transmitters of afferent neurons have thus 
far only been met for SP and CGRP. After synthesis of afferent neurons in 
the somata (Keen et al. 1982; Rosenfeld et al. 1983; Nakanishi 1987), the 
bulk of peptide is transported to the peripheral endings of afferent neurons 
(Brimijoin et al. 1980; Keen et al. 1982). Stimulation causes release of SP, 
NKA and CGRP from the peripheral endings of afferent neurons, and there 
is ample evidence that the co-released peptides interact in the control of 
vascular functions. 

Table 2. Some bioactive peptides in capsaicin-sensitive primary afferent neurons 

Peptide Selected references 

Bombesirdgastrin-releasin g peptide 

Calcitonin gene-related peptide 

Cholecystokinin 

Cor ticotropin-releasin g factor 

Dynorphin 

Galanin 

Leucine enkephalin 

Neurokinin A 

Peptide histidine methionine 

Somatostatin 

Substance P 

Vasoactive intestinal polypeptide 

Decker et al. 1985 

Rosenfeld et al. 1983; Gibbins et al. t985, 
1987a; Skofitsch and Jacobowitz 1985b; 
Wharton et al. 1986; Franco-Cereceda et al. 1987b 

G. Jancs6 et al. 1981; Gibbins et al. 1987a 

Skofitsch et al. 1985b 

Gibbins et al. 1987a; Weihe 1990 

Skofitsch and Jacobowitz 1985a 

Weihe 1990 

Maggio and Hunter 1984; Hua et al. 1985 

Ch6ry-Croze et al. 1989 

G. Jancs6 et al. 1981; Gamse et al. 1981; 
Nagy et al. 1981 

Jessell et al. 1978; Gamse et al. 1980; Nagy et al. 
1980; G. Jancs6 et al. 1981 

G. Jancsd et al. 1981; Skofitsch et al. 1985b 
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SP-containing varicose and smooth nerve fibres of dorsal root ganglion 
origin innervate blood vessels throughout the body, but the density of fi- 
bres around arteries is in general higher than around veins (Furness et al. 
1982; Barja et al. 1983; Gibbins et al. 1988). In the guinea pig, the para- 
and perivascular network of afferent SP-containing fibres varies from 
tissue to tissue, being especially dense in large arteries close to the heart 
(Furness et al. 1982; Papka et al. 1984). The density of innervation de- 
creases as more peripheral arterial beds are approached, except that the 
mesenteric arteries receive a particularly rich supply (Furness et al. 1982; 
Barja et al. 1983). The veins of peripheral vascular beds contain only few 
SP-immunoreactive nerve fibres. SP-containing axons are primarily found 
in the connective tissue (tunica adventitia) surrounding the vessels and at 
the border between adventitia and media (muscle layer) (Furness et al. 
1982; Barja et al. 1983). Their predominant orientation in many vessels is 
circumferential although, e.g. in the mesenteric and cerebral arteries, an 
interlacing network of fibres prevails (Furness et al. 1982; Barja et al. 
1983). 

The perivascular distribution of afferent nerve fibres containing CGRP 
is very similar to that of SP-containing fibres (Gibbins et al. 1985, 1987a, 
b; Lundberg et al. 1985; Mulderry et al. 1985; Uddman et al. 1986; 
Franco-Cereceda etal. 1987b; Ishida-Yamamoto etal. 1989; Kawasaki 
et al. 1990a). Small arteries in the limbs and in the respiratory, gastrointe- 
stinal and urogenital tracts of rat (Gibbins et al. 1985; Muldery et al. 1985; 
Wharton etal. 1986; Sternini etal. 1987; S u e t  al. 1987; Green and 
Dockray 1988; Wimalawansa and Maclntyre 1988; Del Bianco et al. 1991) 
and guinea pig (Uddman et al. 1986; Wharton et al. 1986) receive a parti- 
cularly rich innervation by CGRP-immunoreactive nerve fibres which oc- 
cur both in the adventitia and media. SP and CGRP co-exist in the peri- 
vascular afferent axons, but the overlap is not complete inasmuch as more 
fibres contain CGRP than SP (Gibbins et al. 1985, 1987a; Y. Lee et al. 
1985; Matsuyama et al. 1986; Uddman et al. 1986; Wanaka et al. 1986; Ju 
et al. 1987; Sue t  al. 1987; Galligan et al. 1988; Green and Dockray 1988; 
S.M. Louis et al. 1989a; O'Brien et al. 1989; Helke and Niederer 1990; 
Maynard et al~ 1990). 

It should not go unnoticed here that SP is also present in endothelial 
cells (Loesch and Burnstock 1988; Linnick and Moskowitz 1989; Ralevic 
et al. 1990). This endothelial SP system is not affected by capsaicin pre- 
treatment and seems to be activated by increased flow through the vascular 
bed (Ralevic et al. 1990). The precise functional significance of this sys- 
tem and any possible relationship to afferent nerve endings is not yet 
known. 
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2.3 Pharmacology of Tachykinin and CGRP Receptors 

2.3.1 Receptor Classification and Agonists 

The transmitters released from afferent nerve endings exert their actions on 
the vascular and other systems by interaction with specific receptors on the 
effector cells. As regards tachykinins, three distinct types of receptors have 
been identified by functional and binding studies: NK 1, NK 2 and NK 3 
receptors (Regoli et al. 1989; Guard and Watson 1991). Their existence 
has been confirmed by the identification and cloning of three distinct 
cDNA sequences (Ohkubo and Nakanishi 1991). All three tachykinin re- 
ceptors belong to the family of G protein-coupled receptors and are linked 
to the phosphoinositide transmembrane signalling pathway (Guard and 
Watson 1991). The proposed presence of an additional type of tachykinin 
receptor, the NK 4 receptor, remains to be proved (Guard and Watson 
1991). 

Pharmacologically, NK 1, NK 2 and NK 3 receptors are defined on the 
basis of different agonist and antagonist affinities. The three principal ta- 
chykinins occurring in mammals, SP, NKA (also called substance K) and 
neurokinin B (NKB; also called neuromedin K) show little selectivity to- 
wards the different tachykinin receptors and are capable of interacting with 
all receptor types. However, there are synthetic tachykinin analogues that 
display considerable receptor selectivity. For instance, SP methyl ester and 
[Sar9,Met(O2)ll]-SP are selective NK 1 receptor agonists, with negligible 
activity at NK 2 and NK 3 receptors (Regoli et al. 1989; Guard and Watson 
1991). [13-AIaS]-NKA4_m (Rovero et al. 1989) is a selective NK 2 receptor 
agonist, while succinyl-[Asp6,MePheS]-SP6ql (SENKTIDE; Wormser 
et al. 1986) and [MePheT]-NKB (Regoli et al. 1989) are selective NK 3 re- 
ceptor agonists. 

Functional and binding studies have established that the biological ac- 
tions of CGRP are also mediated by specific receptors for this peptide, but 
the molecular identification of these receptors has not yet been accom- 
plished. Analysis of the structure-activity relationship of different CGRP 
analogues and fragments suggests the existence of at least two subtypes of 
CGRP receptors (Tippins et al. 1986; Maton et al. 1988, 1990; Dennis 
et al. 1989, 1990). It is not yet clear, however, whether the two molecular 
forms of CGRP occurring in humans and rat, CGRP-ot (or CGRP-I) and 
CGRP-13 (or CGRP-II) interact with the same or different CGRP receptor 
subtypes. The major transduction mechanism operated by CGRP receptors 
appears to be the adenylate cyclase/cyclic AMP system (Kubota et al. 
1985; Hirata et al. 1988; Crossman et al. 1990). 
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2.3.2 Receptor Antagonists 

The occurrence of three tachykinin receptor types has been confirmed by 
the development of competitive and selective receptor antagonists, some of 
which point to the existence of further tachykinin receptor subtypes. Re- 
placement of certain L-amino acids in the sequence of SP by D-amino acids 
led to the discovery of a class of competitive antagonists exemplified by 
[D-Pro2,D-Trp7,9]-SP and [D-Arg 1,D-TrpT.9,Leull]-SP (SPANTIDE I). This 
ftrst generation of tachykinin antagonists is characterized by low activity 
(pA 2 < 7), restricted selectivity for different tachykinin receptor types and 
non-specific effects including antagonism of bombesin, release of hista- 
mine and neurotoxic effects (H~kanson and Sundler 1985). 

Further modification of the tachykinin amino acid sequence gave way 
to competitive tachykinin antagonists characterized by improved potency 
(pA 2 > 7), selectivity towards NK 1 and NK 2 receptors, and lack of non- 
specific effects. For instance, [D-Pro9(spiro-~'-lactam)Leul0,Trpll]-phy - 
salaemin (GR-82 334) is a metabolically stable antagonist at NK 1 receptors 
(Hagan et al. 1991). Other compounds including the linear peptide H-Asp- 
Tyr-D-Trp-Val-D-Trp-D-Trp-Arg-NH 2 (~ N -10207 ;  Maggi etal. 1990), 
the cyclic hexapeptide cyclo[Gln-Trp-Phe-Gly-Leu-Met] (L-659877; 
McKnight etal. 1991) and the pseudopeptide analogue [Leugxlt - 
(CH2NH)LeulO]-NKA4_lo (MDL-28564; Buck etal. 1990) have been 
found to selectively antagonize NK 2 receptors. Because these NK 2 recep- 
tor-selective antagonists are differently active in different NK 2 receptor as- 
says, a heterogeneity of NK z receptors has been proposed (Buck et al. 
1990; Maggi et al. 1990; Patacchini et al. 1991). NK 3 receptor antagonists 
of similar selectivity are not yet available (Drapeau et al. 1990). 

A new era in tachykinin receptor pharmacology began with the disco- 
very of highly active (pA 2 > 8) non-peptide tachykinin antagonists. Two of 
these compounds, (2S,3S)-cis-2-(diphenylmethyl)-N-[(2-methoxyphenyl)- 
methyl]-l-azabicyclo[2.2.2]octan-3-amine (CP-96 345; Snider et al. 1991) 
and (3aR,7aR)-7,7-diphenyl-2-[ 1-imino-2-(2-methoxyphenyl)-ethyl]perhy- 
droisoindol-4-one (RP-67580; Garrett et al. 1991), are selective NK~ re- 
ceptor antagonists. The activity of CP-96 345 is species dependent inas- 
much as this antagonist is 30-120-fold less active in the rat and mouse than 
in other mammalian species including humans (Beresford etal. 1991). 
Possible limitations of the usefulness of CP-96 345 in terms of non-speci- 
fic effects (Constantine et al. 1991; Lembeck et al. 1992) remain to be sort- 
ed out. Another non-peptide compound, (-)-N-methyl-N[4-acetylamino-4- 
phenylpiperidino-2-(3,4-dichlorophenyl)butyl]benzamide (SR-48968) has 
been reported to be a potent and selective antagonist at NK 2 receptors 
(Emonds-Alt et al. 1992). 
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Modification of the amino-acid sequence of CGRP-oc has led to the dis- 
covery of competitive and specific CGRP receptor antagonists (Chiba et al. 
1989; Dennis et al. 1989, 1990; Maton et al. 1990; Mimeault et al. 1991). 
Human CGRPs_37 is the most potent (pA 2 - 7) CGRP antagonist available 
to date and appears to differentiate between two CGRP receptor subtypes 
called CGRP 1 and CGRP z receptors. CGRP l receptors are characterized 
by their sensitivity to the antagonistic actions of CGRPs_37, whereas 
CGRP 2 receptors are resistant to CGRPs_37 (Dennis et al. 1990; Mimeault 
et al. 1991). 

2.3.3 Termination of Agonist-Receptor Interaction by Peptidases 

Diffusion and degradation by peptidase enzymes seem to be the main 
mechanisms by which peptides released from nerve terminals are inacti- 
vated and their action is terminated. Several peptidases capable of degra- 
ding tachykinins have been described, including prolyl endopeptidase 
(post-proline cleaving enzyme, EC 3.4.21.26; S. Blumberg et al. 1980), a 
membrane-bound SP-degrading enzyme (C.M. Lee et al. 1981), angioten- 
sin converting enzyme (peptidyl dipeptidase A or kininase II, EC 3.4.15.1; 
Yokosawa et al. 1983) and endopeptidase 24.11 (neutral endopeptidase or 
enkephalinase, EC 3.4.24.11; Matsas et al. 1983). Endopeptidase 24.11 is a 
membrane-bound enzyme present in a variety of tissues including the 
vascular system, skin and gastrointestinal tract (Bunnett et al. 1985; M.E. 
Hall et al. 1989; Rouissi et al. 1990; Nadel 1992). Several findings under- 
line the importance of this enzyme for the termination of the action of ta- 
chykinins, lnhibitors of endopeptidase 24.11, such as phosphoramidon or 
thiorphan, enhance the amount of tachykinins present at the site of release 
(Geppetti et al. 1989; Martins et al. 1991), increase the potency of tachy- 
kinins and prolong the duration of their action (Sekizawa et al. 1987; Fros- 
sard et al. 1989; J.M. Hall et al. 1990; Rouissi et al. 1990; Nadel 1992). 
Conversely, administration of recombinant neutral endopeptidase attenu- 
ates SP-induced plasma protein extravasation in the guinea pig skin (Ru- 
binstein et al. 1990). 

Although the precise inactivation mechanisms for CGRP are less well 
studied than for the tachykinins, it appears as if the biological actions of 
this peptide are terminated by enzymic catabolism as well (Brain and 
Williams 1988, 1989). Peptidases are not peptide selective, and endo- 
peptidase 24.11 is able to catabolize both tachykinins and CGRP (Le 
Grev~s et al. 1989). 
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3.1 Innervation of the Cutaneous Vascular Bed 
by Peptidergic Afferent Neurons 

Blood vessels in the skin of cat, rat, guinea pig, and pig are innervated by 
nerve fibres containing CGRP, SP and other peptides (H6kfelt et al. 1975; 
Cuello et al. 1978; Gibbins et al. 1985, 1987a, 1988; Franco-Cereceda 
et al. 1987b; Dalsgaard 1988; Ishida-Yamamoto et al. 1989; S.M. Louis 
et al. 1989a; Weihe 1990; Alving et al. 1991b). Axons containing CGRP 
supply adventitia and media, and come close to endothelial cells (Ishida- 
Yamamoto et al. 1989). Capsaicin pretreatment ablates about 50% of  the 
unmyelinated axons in the rat skin (Chung et al. 1990), diminishes the 
retrograde labelling of dorsal root ganglion cells by > 90% (S.M. Louis 
et al. 1989a) and deplets SP and CGRP from the skin (Gamse et al. 1980; 
Holzer et al. 1982; Franco-Cereceda et al. 1987b; Geppetti et al. t988; 
Kashiba et al. 1990; Alving et al. 1991b), which indicates that primary 
afferent neurons contribute significantly to the peptidergic innervation of 
the skin. This contention is supported by retrograde tracing of cutaneous 
nerve fibres to peptide-containing cell bodies in the dorsal root ganglia of 
the rat (Molander etal. 1987; S.M. Louis et al. 1989a; Kashiba et al. 
1991). Whereas CGRP is contained in both small and large somata, SP 
occurs in small and medium-sized cell bodies and somatostatin is confined 
to small somata of rat afferent neurons (Molander et al. 1987; McCarthy 
and Lawson 1989, 1990; Kashiba et al. 1991). Peptide-containing fibres 
also innervate the human skin (Dalsgaard et al. 1983; Hartschuh et al. 
1983; Bj/3rklund etal. 1986; Franco-Cereceda etal. 1987b; Dalsgaard 
1988), where CGRP co-exists with SP and somatostatin in axons 
innervating small arteries, arterioles and capillaries (Gibbins et al. 1987b; 
Wallengren et al. 1987). 

3.2 Local Regulation of Cutaneous Circulation 

3.2.1 Neuropeptide Release in the Skin 

Peptides such as SP, NKA and CGRP are released from the peripheral 
endings of afferent neurons when they are stimulated (see Holzer 1988; 
Maggi 1991). Antidromic stimulation of the sciatic nerve (White and 
Helme 1985) or noxious heat applied to the rat skin (Helme et al. 1986; 
Yonehara et al. 1987, 1991) leads to release of SP and CGRP, but not 
NKA, into the subcutaneous space, an effect that is inhibited by chemical 
or surgical ablation of afferent nerve fibres (Yonehara et al. 1987, 1991). 
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Capsaicin is also able to release CGRP from the rat paw skin in vitro 
(Donnerer and Stein 1992) and the hamster cheek pouch in vivo (Raud 
et al. 1991), and a major proportion of circulating CGRP in the rat seems 
to originate from capsaicin-sensitive perivascular nerve fibres (Zaidi et al. 
1985; Diez Guerra et al. 1988). In the isolated peffused rabbit ear, both 
capsaicin and thermal stimulation lead to release of  SP (Amann et al. 
1990), and scalding injury in the dog enhances the release of SP into the 
lymph draining the damaged tissue (Johnsson et al. 1986). Similarly, oc- 
clusion of the human arm increases the SP concentration in the venous 
blood (Henriksen et al. 1986). The concentrations of SP and VIP in the 
fluid of human skin blisters are elevated under conditions of inflammatory 
skin diseases (Wallengren et al. 1986) as are the VIP levels in venous 
plasma after transcutaneous nerve stimulation (Kaada et al. 1984). The 
origin of  VIP, though, is not known, and it has not yet been examined 
whether the other peptides present in cutaneous afferent nerve fibres 
(Table 1) are released upon stimulation. 

3.2.2 Neuropeptide Receptors on Cutaneous Blood Vessels 

Autoradiography has shown that NK 1 tachykinin receptors are present on 
the endothelium of capillaries in the human skin (Deguchi et al. 1989), and 
on arterioles and postcapillary venules in the rat footpad skin, whereas 
NK 2 receptor sites are absent (O'l~lynn et al. 1989). The highest concen- 
trations of CGRP binding sites are found in peripheral arteries of  the rat 
limb and mesentery (Wimatawansa and MacIntyre 1988). Further analysis 
has revealed that CGRP receptors occur both on vascular muscle and en- 
dothelium (Hirata et al. 1988; Gates et al. 1989). 

3.2.3 Vasodilatation 

3.2.3.1 Nature of Afferent Vasodilator Fibres 

In contrast to sympathetic vasoconstriction which is short lasting, it is 
typical of antidromic vasodilatation that hyperaemia outlasts the period of 
nerve stimulation. Antidromic vasodilatation is most obvious when electri- 
cal stimulation is strong enough to recruit unmyelinated (C) fibres (Hinsey 
and Gasser 1930; Low and Westerman 1989; Koltzenburg et al. 1990) 
which are connected to nociceptors (Celander and Folkow 1953a; Blum- 
berg and Wallin 1987; Magerl et al. 1987), but it has recently been shown 
that also some thin myelinated (AS) fibres can give rise to cutaneous hy- 
peraemia (Lynn 1988; J~rtig und Lisney 1989). In frogs only A8 fibres are 
able to induce antidromic vasodilatation (Khayutin et al. 1991). The mag- 
nitude of hyperaemia depends on the number and frequency of the stimuli 
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delivered to the nerve (Celander and Folkow 1953b; Magerl et al. 1987; 
Szolcs~inyi 1988; J~inig and Lisney 1989), yet only one or two impulses or 
a frequency of 0.025 Hz are sufficient to elicit some vasodilatation as 
detected by laser Doppler velocimetry (Magerl et al. 1987; Lynn 1988; 
Lynn and Shakhanbeh 1988a; Szolcs~inyi 1988; Scolcs~inyi et al. 1992). 
Most, if not all, of the vasodilator nerve fibres are sensitive to the excita- 
tory and neurotoxic actions of capsaicin. Topical or intradermal admini- 
stration of capsaicin to the skin of humans (N. Jancs6 et al. 1968; Helme 
and McKernan 1985), pig (Franco-Cereceda and Lundberg 1989; Alving 
et al. 1991a, b) and rabbit (Buckley et al. 1990) causes hyperaemia arround 
the application site. Conversely, antidromic vasodilatation in the rat is 
blocked by capsaicin-induced ablation of afferent neurons (Lembeck and 
Holzer 1979; Lembeck and Donnerer 1981b; Gamse and Saria 1987; 
Scolcs~tnyi 1988; Low and Westerman 1989; Scolcs~inyi et al. 1992). To- 
pical defunctionalization of capsaicin-sensitive nerve terminals inhibits 
cutaneous hyperaemia evoked by intraneural stimulation of the peroneal 
nerve (Blumberg and Wallin 1987) or percutaneous stimulation of noci- 
ceptors (Magerl et al. 1987). 

3.2.3.2 Vasodilator Activity of Sensory Neuropeptides 

Substance P causes vasodilatation in many vascular beds (see B. Pernow 
1983). Infused close arterially to the hind leg of the rat, SP increases 
venous outflow indicative of vasodilatation (Lembeck and Holzer 1979; 
Lembeck and Donnerer 1981a; Lembeck et al. 1982; Holzer-Petsche et al. 
1985), and SP infused into the brachial artery of humans induces hyper- 
aemia in the skin and muscle of the forearm (Eklund et al. 1977; Benjamin 
et al. 1987). This effect arises from dilatation of both arteries and veins 
(Benjamin et al. 1987). Blood flow in the femoral artery (Hallberg and 
Pernow 1975) and skin of the dog (Burcher et al. 1977) and rat (Jansen 
et al. 1989) is also augmented by intravenous administration of SP. Intra- 
dermal injection of SP enhances cutaneous blood flow in the guinea pig 
(Woodward et al. 1985) but fails to change it in the rat dorsal skin (Brain 
and Williams 1988, 1989). However, when perfused over a blister base in 
the rat footpad skin, SP causes hyperaemia (Andrews and Helme 1989), as 
does topical administration of SP to the hamster cheek pouch (Raud et at. 
1991). 

The hypotensive effect and direct dilator action of tachykinins on arte- 
ries and arterioles are mediated by NK 1 tachykinin receptors (Holzer-Pet- 
sche et al. 1985; Maggi et al. 1985; D'Orl6ans-Juste et al. 1986; Andrews 
and Helme 1989; Couture et al. 1989; Constantine et al. 1991; Lembeck 
et al. 1992) and depend on the formation of endothelium-derived relaxing 
factor (EDRF) (Zawadzki et al. 1981; Furchgott 1984; Altura et al. 1985; 
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D'Orl6ans-Juste et al. 1985, 1986; Bolton and Clapp 1986; J. Pernow 1989; 
Stewart-Lee and Burnstock 1989; Whittle et al. 1989) and EDRF-induced 
formation of cyclic GMP in vascular smooth muscle (Schini et al. 1990). 
The major EDRF has now been identified as nitric oxide (NO) which is 
formed from L-arginine by the enzyme NO synthase (see Moncada et al. 
1991). Mast cell-derived secondary mediators of the vascular effects of SP 
such as histamine are discussed in section 3.2.6.4. 

CGRP is one of the most active vasodilator substances in many vascular 
beds including the skin, and, depending on the tissue under study, the two 
molecular forms of CGRP, CGRP-a and CGRP-]3, are either equally 
(Franco-Cereceda et al. 1987a; G. Williams et al. 1988) or differently 
(Bauerfeind et al. 1989; Beglinger et al. 1991) potent in this respect. Ad- 
ministration of CGRP into the brachial artery of humans elicits arterial di- 
latation in the forearm (Benjamin et al. 1987; Thorn et al. 1987; Ando et al. 
1992), and intravenous infusion of CGRP-c~ increases blood flow in the 
human skin (Beglinger etal. 1991). Intradermal injection of  CGRP 
(> 1 pmol) leads to a slowly developing but intense hyperaemia (Brain 
et al. 1985, 1986, 1990; Brain and Williams 1988, 1989; Pedersen-Bjer- 
gaard et al. 1991) which persists for hours (Piotrowski and Foreman 1986; 
Fuller et al. 1987; Wallengren and H~kanson 1987; G. Williams et al. 
1988). The erythema is surrounded by an area of pallor (Piotrowski and 
Foreman 1986; Wallengren and Hfikanson 1987). Blood flow in the rat 
skin is augmented by both intradermally (Brain and Williams 1988, 1989) 
and intravenously (Kjartansson et al. 1988; Jansen et al. 1989) injected 
CGRP. Vasodilatation is also seen after topical administration of CGRP to 
the hamster cheek pouch (Raud et al. 1991). The arteriolar dilatation evo- 
ked by this peptide seems to arise from a direct action on the vessels since 
it is not affected by histamine H I antagonists (Piotrowski and Foreman 
1986; Fuller et al. 1987; Wallengren and HSkanson 1987), local anaesthe- 
tics (Wallengren and H~kanson 1987) and acetylsalicylic acid (Fuller et al. 
1987). 

The receptors mediating CGRP-induced hypotension (Donoso et al. 
1990) and vasodilatation in certain vascular beds (Gardiner et al. 1990) 
have been classified as CGRP 1 receptors which, unlike CGRP 2 receptors, 
are antagonized by CGRPs_37 (Dennis et al. 1990). The dilator effect of 
CGRP on arterioles in the rabbit skin is also inhibited by CGRP8_37 
(Hughes and Brain 1991). Endothelial NO does not seem to play a role in 
the CGRP-induced hyperaemia in the rat skin (Ralevic et al. 1992). CGRP- 
evoked dilatation of non-cutaneous arteries and arterioles is either endothe- 
lium dependent (Brain et al. 1985; Grace et al. 1987; Thorn et al. 1987; 
Fiscus et al. 1991) or endothelium independent and mediated via stimu- 
lation of adenylate cyclase in vascular smooth muscle (Kubota et al. 1985; 
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Crossman et al. 1987, 1990; Greenberg et al, 1987; Shoji et al. 1987; Hira- 
taet  al. 1988; J. Pernow 1989; Maynard et al. 1990). Both relaxant mecha- 
nisms may be operated by CGRP in parallel (Brfltveit et al. 1991; Samuel- 
son and Jernbeck 1991). In addition, CGRP leads to an EDRF-dependent 
increase in cyclic AMP levels in the rat thoracic aorta 0~iscus et at. 1991). 

Vasoactive intestinal polypeptide is another sensory neuropeptide 
which, on injection into human skin, causes a local erythema (Anand et al. 
1983) that is shorter lasting than that evoked by CGRP (Brain et al. 1986). 
VIP-induced hyperaemia is also seen in the rabbit skin (T.J. Williams 
1982), and arterial infusion of VIP to the rat hindleg enhances venous out- 
flow from this organ (Lembeck and Donnerer 1981 a). In contrast, cholecy- 
stokinin-like peptides, enkephalins and somatostatin do not affect blood 
flow in the rat hindleg (Lembeck and Holzer 1979; Lembeck and Donnerer 
1981a; Lembeck et al. 1982). 

3.2.3.3 Role of CGRP, SP and Other Sensory Neuropeptides 
in Afferent Nerve-Mediated Vasodilatation 

The co-existence of CGRP and SP in perivascular afferent nerve fibres, 
their release upon nerve stimulation, the presence of SP and CGRP recep- 
tors on cutaneous blood vessels, and their highactivity in dilating cuta- 
neous blood vessels form the anatomical and functional substrate for these 
peptides being the prime candidate mediators of artefiolar dilatation evo- 
ked by afferent nerve stimulation. Firm support for an implication of SP 
and CGRP in cutaneous vasodilatation has come from the use of receptor 
desensitization, peptide immunoneutralization and peptide antagonists. 
Antidromic vasodilatation in the rat hindleg is blunted after rendering the 
preparation insensitive to SP by exposure to a desensitizing dose of the 
peptide (Lembeck and Holzer 1979). Likewise, tachykinin antagonists 
have been found to inhibit the vasodilatation induced by SP or antidromic 
nerve stimulation in the cat's tooth pulp (Rosell et al. 1981), rat hindleg 
(Lembeck et al. 1981, 1982) and rat cheek (Couture and Cuello 1984). 

The finding that tachykinin antagonists fail to completely block the va- 
sodilator response to nerve stimulation indicates that SP and related 
peptides are not the only mediators. SP is co-released with CGRP from 
sensory nerve terminals (Yonehara et al. 1987; 1991), and each peptide is 
likely to contribute to cutaneous vasodilatation. Evidence for a co-media- 
torship of SP and CGRP has been provided by immunoblockade of these 
two peptides. Vasodilatation evoked by topical mustard oil in the rat paw 
skin is reduced after intravenous injection of CGRP antibodies, but the 
combined pretreatment wich CGRP and SP antibodies is more effective 
than CGRP immunoneutralization alone (SM. Louis et al. 1989a). Simi- 
larly, a CGRP antibody Fab fragment (Buckley et al. 1992) and the CGRP 
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antagonist, CGRPs_37 (Hughes and Brain 1991), are able to partially 
antagonize the hyperaemic effect of intradermal capsaicin in the rabbit 
skin. The vasodilatation induced by topical mustard oil in the rat hindpaw 
skin is reduced after inhibition of NO synthesis, which suggests that the 
neural mediators of the vasodilator response act at least in part via release 
of EDRF (Lippe et al. 1992). There is circumstantial evidence that EDRF 
also participates in antidromic vasodilatation (Low and Westerman 1989). 

Certain sensory neuropeptides such as somastostatin and leucine-enke- 
phalin/dynorphin, which per se have no effect on blood flow, appear to 
modulate the vascular effects of sensory nerve stimulation. Thus, somato- 
statin can inhibit the release .of SP from sensory neurons (Brodin et al. 
1981; Gazelius et al. 1981) and reduce antidromic vasodilatation in the 
cat's tooth pulp (Gazelius et al. 1981) and rat hindleg (Lembeck et al. 
1982). Opiate agonists are also capable of inhibiting antidromic vasodila- 
tation in the rat hindleg (Lembeck et al. 1982; Lembeck and Donnerer 
1985), rat hindpaw skin (Gamse and Saria 1987) and pig skin (Barth6 et al. 
1990a), an effect that is possibly due to inhibition of transmitter release 
from the peripheral endings of afferent nerve fibres (Konishi et al. 1980; 
Brodin et al. 1983a; Yaksh 1988; Yonehara et al. 1988). It is not known, 
however, whether afferent nerve fibres containing somatostatin or leucine- 
enkephalin play any role in the local control of vessel diameter. 

3.2.4 Increase in Vascular Permeabilio, 

3. 2.4.1 Afferent Nerve-Mediated Vasodilatation Versus Protein 
EXtravasation in the Rat Skin 

Cutaneous vasodilatation caused by afferent nerve stimulation in the rat is 
accompanied by an increase in vascular permeability leading to leakage of 
plasma protein into the interstitial space. Although the basic mechanism of 
both the exudation and vasoditator response involves the release of me- 
diator peptides from afferent nerve terminals, there are important differen- 
ces between the two vascular reactions. Unlike hyperaemia, which occurs 
by dilatation of arterioles, protein leakage results from an increase in the 
permeability of postcapillary venules (G. Jancs6 1984; Kenins et al. 1984; 
Kowalski et al. 1990; Gao et al. 1991) whose endothelial cells contract and 
allow for formation of gaps in the endothelium (Majno et al. 1969). The 
spatial separation of the processes underlying vasodilatation and protein 
extravasation implies that different nerve fibres control the two vascular 
responses. This contention is supported by differences in the nature of the 
fibres that give rise to vasodilatation and those responsible for exudation. 
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3.2.4.2 Nature of Afferent Fibres Mediating Plasma Protein Extravasation 

Whereas both C fibres and some A5 fibres govern arteriolar dilatation, 
only C fibres give rise to increased venular permeability (J~inig and Lisney 
1989). The C fibres which regulate extravasation in the rat paw skin are 
connected to polymodel nociceptors (Kenins 1981; Bharali and Lisney 
1988), yet only part of the polymodal nociceptor fibres cause protein 
leakage upon stimulation (Bharali and Lisney 1988; Lisney and Bharali 
1989). Excitability in relation to stimulus frequency is another property 
that discriminates between the fibres controlling arteriolar diameter and 
venular permeability. Unlike vasodilatation, which can be produced by a 
few shocks (Magert et al. 1987; Lynn 1988; Lynn and Skakhanbeh 1988a; 
Szolcs~inyi 1988), vascular permeability does not rise unless nerve fibres 
are stimulated at a frequency of 2 Hz or more (Kenlns 1981; Szolcs~inyi 
1984; Brenan et al. 1988; Lisney and Bharali 1989; Szolcs~fnyi et al. 1992). 
Although these differences could in part be accounted for by regional dif- 
ferences in postjunctional mechanisms (e.g. peptidase activity) along the 
vascular tree, they do point to the possibility that different populations of 
fine afferent nerve fibres give rise to cutaneous hyperaemia and protein 
exudation (Lisney and Bharali 1989). Both populations, however, are sen- 
sitive to the stimulant and neurotoxic actions of capsaicin. Application of 
capsalcin to the rat skin leads to a local increase of vascular permeability 
(Kenins et al. 1984; Carter and Francis 1991), whereas exudative respon- 
ses to capsaicin in the skin of humans (Helme and McKernan 1984, 1985; 
Barnes et al. 1986; Lundblad et al. 1987) and pigs (Alving et al. 1991a, b; 
Pierau et al. 1991) are weak or absent. Functional ablation of capsaicin- 
sensitive afferent neurons inhibits protein leakage and/or oedema caused 
by antidromic nerve stimulation (N. Jansc6 et al. 1967; G. Jancs6 et al. 
1977, 1980; Lembeck and Holzer 1979; Gamse et al. 1980; Morton and 
Chahl 1980; Lembeck and Donnerer 1981b; Szolcs~inyi 1988; Andrews 
et al. 1989; Carter and Francis 1991; Szolcs~inyi et al. 1992) or local appli- 
cation of mustard oil, KC1, HC1, formalin, antigen, staphylococcal entero- 
toxin B, prostaglandin E l, bradykinin, SP, compound 48/80, 5-hydroxy- 
tryptamine, histamine and heat (N. Jancs6 et al. 1967; G. Jancs6 et al. 
1977, 1980, 1985; Arvier et al. 1977; Lembeck and Holzer 1979; Gamse 
et al. 1980; Lembeck and Donnerer 1981b; Saria et al. 1983, 1984; Saria 
1984; Yonehara et al. 1987; Lynn and Shakhanbeh 1988b; Alber etal. 
1989) in the skin of rats, rabbits, monkeys and humans. 
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3. 2.4.3 Effects of Sensory Neuropeptides on Vascular Permeability 

Among the sensory neuropeptides, tachykinins excel with their unique 
ability to increase vascular permeability, an activity that was recognized 
(Starke 1964) before the structure of SP was identified. When injected into 
the skin of guinea pigs (Woodward et al. 1985; Iwamoto and Nadel 1989), 
mice (Yano et al. 1989), rats (Chahl 1979; Gamse and Saria 1985b; Devil- 
lier et al. 1986a; Maggi et al. 1987a; Yonehara et al. 1987; Brain and 
Williams 1988, 1989; Devore t  al. 1989) or humans (H~igermark et al. 
1978; Carpenter and Lynn 1981; Anand et al. 1983; Foreman et al. 1983; 
Jorizzo et al. 1983; Piotrowski and Foreman 1985; Devillier et al. t986a; 
Fuller et al. 1987; Wallengren and H~kanson 1987; Brain and Williams 
1988, 1989; Pedersen-Bjergaard et al. 1989, 1991; Iwamoto et al. 1990; 
Heyer et al. 1991), tachykinins induce plasma protein leakage and local 
oedema (weal). Extravasation is also seen when tachykinins are superfused 
over the hamster cheek pouch (Raud et al. 1991) or the base of vacuum-in- 
duced blisters in the rat paw skin (Khalil et al. 1988; Andrews et al. 1989; 
Khalil and Helme 1989b), administered close arterially into the rat hind leg 
(Lembeck et al. 1977; Lembeck and Holzer 1979; Gamse et al. 1980; Lem- 
beck and Donnerer 1981a; Lembeck et al. 1982; Kenins et al. 1984) or in- 
jected subcutaneously (Gao et al. 1991) or intravenously (Saria et al. 1983; 
Hua et al. 1984; Lundberg et al. 1984a, b; Jacques et al. 1989; Kowalski 
et al. 1990) to rats or guinea pigs. The SP-induced increase in vascular per- 
meability is confined to postcapillary venules (Kenins et al. 1984; Kowal- 
ski et al. 1990; Gao et al. 1991). 

At least three different mechanisms are responsible for the exudative 
action of tachykinins. 

1. SP and related peptides can act directly on the blood vessels to augment 
protein extravasation. This target of action is reflected by the reported 
inability of atropine, methysergide, bradykinin antagonists (Jacques 
et al. 1989), histamine antagonists (Saria et al. 1983; Lundberg et al. 
1984a; Wallengren and Hhkanson 1987; Brain and Williams 1989; Iwa- 
moto and Nadel 1989; Jacques et al. 1989; Khalil and Helme 1989b), 
indomethacin (Jorizzo et al. 1983) and defunctionalization of capsaicin- 
sensitive afferent neurons (Gamse et al. 1980; Carpenter and Lynn 
1981; Anand etal. 1983; Maggi et al. 1987a) to modify tachykinin- 
evoked protein leakage. 

2. SP can activate mast cells to release histamine and other mediators that 
further enhance venular permeability. The histamine-dependent com- 
ponent of the exudative response to SP (H~germark et al. 1978; Chahl 
1979; Lembeck and Holzer 1979; Foreman et al. 1983; Jorizzo et al. 
1983; Woodward et al. 1985; Fuller et at. 1987; Wallengren and H~kan- 
son 1987; Brain and Williams 1989; Khalil and Helme 1989b) and 
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NKA (Fuller et al. 1987) is best observed after intradermal injection of 
the peptide whilst protein leakage evoked by intravascular administra- 
tion o fSP  (Saria et al. 1983; Lundberg et al. 1984a; Jacques et al. 1989) 
does not necessarily involve histamine and other non-neural secondary 
mediators. Temporal analysis of the exudative effect of SP has shown 
that histamine, 5-hydroxytryptamine and prostanoids released from 
mast cells come into play only after some delay, whereas the early 
phase of exudation is due to a direct vascular action of SP (Chahl 1979; 
Khalil and Helme 1989b). Consideration of this shift in the extravasa- 
tion mechanisms provides a possibility to reconcile discrepant observa- 
tions as to whether or not tachykinin-induced extravasation involves 
histamine, 5-hydroxytryptamine, prostanoids and capsaicin-sensitive af- 
ferent neurons activated by these algesic chemicals. The implication of 
these secondary mediators in the exudative responses to tachykinins is 
detailed in section 3.2.6.4. 

3. Protein leakage induced by SP involves endothelium-derived NO 
which, by faciliating local blood flow, may add to the leakage of plasma 
proteins and fluid (Hughes et al. 1990). 

The receptors which mediate the histamine-independent extravasation 
response to tachykinins seem to be predominantly of the NK 1 type al- 
though the implication of NK 2 and NK 3 receptors has not yet been entirely 
ruled out. Inconclusive evidence for a participation of NK 1 receptors came 
from the rank order of potency with which different tachykinins and their 
receptor-selective analogues increase vascular permeability in the skin, SP 
being either as potent as NKA or more potent than NKA and NKB. Tl~s 
applies both to the weal evoked by tachykinins in human skin (Foreman 
et al. 1983; Piotrowski et al. 1984; Devillier et al. 1986a; Fuller et al. 1987; 
Wallengren and Hfikanson 1987) and to the tachykinin-induced exudation 
in rodent skin (Hua et al. 1984; Devillier et al. 1986a; Fuller et al. 1987; 
Andrews et al. 1989; Devor et al. 1989; Iwamoto and Nadel 1989; Jacques 
et ai. 1989; Khalil and Helme 1989b). However, two studies have found 
NKB to be more potent than SP in inducing extravasation in the rat skin 
(Gamse and Saria 1985b; Couture and K6rouac 1987), and cross-tachy- 
phylaxis experiments in the guinea pig skin have been used to implicate 
NK 1, NK 2 and NK 3 receptors in tachykinin-induced extravasation (Iwamo- 
to and Nadel 1989). The application of receptor-selective tachykinin anta- 
gonists has indicated, though, that the exudative effect of SP in the rat skin 
is mediated by NK 1 receptors (Xu et al. 1992). 

Although dynorphinH3 has been reported to induce protein exudation 
in the rat skin (Chahl and Chahl 1986), other sensory neuropeptides lack 
consistent activity on cutaneous vascular permeability. Intradermally or 
intraarteriallv administered CGRP (Brain and Williams 1985, 1988, 1989; 
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Gamse and Saria 1985b; Hughes and Brain 1991), and VIP (Chahl 1979; 
Gamse et al. 1980; Lembeck and Donnerer 198 la; T.J. Williams 1982) do 
not enhance vascular permeability in the rat or rabbit skin, or are very 
weakly active in this respect. Topical administration of CGRP to the ham- 
ster cheek pouch also fails to induce leakage of plasma proteins (Raud 
et al. 1991). Cholecystokinin-like peptides, enkephalins, and somatostatin 
are likewise devoid of actions on vascular permeability in the rat skin 
(Chahl 1979; Gamse etal. 1980; Barth6 and Szolcs~inyi 1981; Lembeck 
and Donnerer 1981a; Lembeck etal. 1982). However, a weak weal re- 
sponse to intradermally injected CGRP (Piotrowski and Foreman 1986; 
Pedersen-Bjergaard et al. 1991), VIP and somatostatin (Anand et al. 1983) 
has sometimes been noted in human skin. 

3.2.4.4 Role of  SP in Afferent Nerve-Mediated Protein Extravasation 

Although neurochemical studies indicate that SP is not the only mediator 
(Chahl and Manley 1980; Gamse and Saria 1985a), there is indirect and 
direct evidence that tl~s tachykinm is a prime mediator of afferent nerve- 
mediated protein leakage. SP is very potent in increasing vascular permea- 
bility in the skin. Postcapillary venules (G. Jancs6 1984; Kenms et al. 
1984; Kowalski et al. 1990; Gao et al. 1991) wl~ch bear NK 1 receptors 
(Deguchi et al. 1989; O'Flynn et al. 1989) are the common target of action 
of antidromic nerve stimulation and SP in increasing vascular permeabi- 
lity. The exudative responses to antidromic nerve stimulation and SP are 
similar with regard to pharmacology (Chahl 1979; Lembeck and Holzer 
1979; Morton and Chahl 1980; Khalil and Helme 1989b) and time course 
inasmuch as the early phase of extravasation is due to a direct action on 
venular endothelial cells whilst later phases involve secondary mediators 
such as histamine, 5-hydroxytryptamine and prostanoids (Chahl 1979; 
Morton and Chahl 1980; Kowalski and Kaliner 1988; Khalil and Helme 
1989b; Kowalski et al. 1990). 

Direct evidence for a mediator role of SP comes from studies using 
pharmacological antagonism of the peptide's action. Tachykinin antago- 
nists inhibit cutaneous plasma protein exudation evoked by SP (Lembeck 
et al. 1982, 1992; Chahl et al. 1984; Lundberg et al. 1984b; Khalil and 
Helme 1989b; Xu etal. 1991), antidromic nerve stimulation (Lembeck 
et al. 1982; Chahl et al. 1984; Couture and Cuello 1984; Lundberg et al. 
1984b; Xu et al. 1991), noxious heat (Lundberg et al. 1984b; Saria 1984) 
and cutaneous application of capsaicin (Mantione and Rodriguez 1990), 
bradykirtin (Shibata et al. 1986; Mantione and Rodriguez 1990) or staphy- 
lococcal enterotoxin B (Alber et al. 1989). The use of receptor-selective 
antagonists has shown hat the afferent nerve-mediated increase in vascular 
permeability is mediated by the NK 1 tachykinin receptor type (Eglezos 
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etal. 1991; Garret etal. 1991; Lembeck et al. 1992; Xu etal. 1992). The 
inhibitory effect of tachykinin antagonists is matched by the ability of SP 
antibodies to reduce the exudative responses to antidromic nerve stimula- 
tion, topical mustard oil (S.M. Louis et al. 1989a) and intradermal staphy- 
lococcal enterotoxin B (Alber et al. 1989). Sensory nerve-mediated in- 
creases in vascular permeability in the eye (Holmdahl et al. 1981), joints 
(Ferrell and Russell 1986) and respiratory tract (see Lundberg and Saria 
1987; Barnes et al. 1988; Lembeck et al. 1992) are also attenuated by SP 
antagonists. In the rat cheek skin it appears as if SP antagonists are more 
active in reducing the extravasation than the vasodilatation caused by anti- 
dromic nerve stimulation (Couture and Cuello 1984). 

3.2.4.5 Role of CGRP and Other Sensory Neuropeptides 
in Afferent Nerve-Mediated Protein Extravasation 

The precise role of afferent nerve-derived CGRP in the control of vascular 
permeability is still elusive because this peptide is able to exert both 
proinflammatory and antiinflammatory effects. The proinflammatory 
action of CGRP is reflected by the peptide's ability to enhance protein 
leakage in response to tachykinins (Brain and Williams 1985, 1988, 1989; 
Gamse and Saria 1985b), bradykinin, platelet-activating factor, N-formyl- 
methionyl-leucyl-phenylalanine and a factor of the complement system 
(Buckley et al. 1991) in the rat and rabbit skin. This CGRP-induced facili- 
tation of protein extravasation is thought to result from its vasodilator acti- 
vity (Buckley et al. 1991; Hughes and Brain 1991), although inhibition of 
SP degradation by CGRP (Le Grev~s et al. 1985, 1989) may also play a 
role. These interactions between CGRP and SP may also explain why 
CGRP seems to be a "mediator" of afferent nerve-mediated protein extra- 
vasation in the rat skin, although this peptide per se is without effect on 
vascular permeability. Intravenous injection of CGRP antibodies, like that 
of SP antibodies, reduces extravasation in the rat skin caused by antidro- 
mic stimulation of the saphenous nerve or cutaneous application of 
mustard oil (S.M. Louis et al. 1989a). The response to topical mustard oil 
is also diminished by active immunization of rats against CGRP (S.M. 
Louis et al. 1989b). An implication of both SP and CGRP in neurogenic 
plasma protein leakage is furthermore consistent with the finding that, 
following nerve injury and regeneration, the ability of capsaicin or mustard 
oil to enhance vascular permeability is highly correlated with the levels of 
both SP and CGRP in the skin area under study (McMahon et al. 1989; see 
also Lundberg et al. 1984a). 

Calcitonin gene-related peptide-induced potentiation of the exudative 
response to SP is not seen in the human skin (Wallengren and H~kanson 
1984; Pedersen-Bjergaard et al. 1991), and exudative responses to hista- 
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mine, 5-hydroxytryptamine and leukotriene B 4 in the hamster cheek 
pouch, rat hindpaw and human forearm skin are in fact reduced by CGRP 
(Raud et al, 1991), This antiinflammatory effect of CGRP is mimicked by 
acute administration of capsaicin (Raud et al. 1991). It is worth nothing in 
this respect that antidromic stimulation of dorsal roots releases an 
unidentified factor that has systemic antiexudative activity in the rat 
(Szolcs~inyi and Pint6r 1991). 

Apart from CGRP, there are other sensory neuropeptides which per se 
do not evoke protein leakage but modulate the exudative responses to anti- 
dromic nerve stimulation or SP administration. VIP augments protein 
leakage in response to SP, bradykinin and a factor of the complement sys- 
tem in the rat and rabbit skin (T.J. Williams 1982; Khalil et al. 1988), an 
effect that is probably related to the vasodilator activity of VIP. Enke- 
phalins (Morton and Chahl 1980; Barth6 and Szolcs~inyi 1981; Lembeck 
et al. 1982; Smith and Buchan 1984; Yonehara et al. 1988) are able to di- 
minish afferent nerve-mediated protein exudation, possibly through inhi- 
bition of neuropeptide release from afferent nerve terminals (Konishi et al. 
1980; Brodin et al. 1983a; Yaksh 1988; Yonehara et al. 1988). A similar 
mechanism of action (Brodin et al. 1981; Gazelius et al. 1981) may ac- 
count for the inhibitory effect of somatostatin on afferent nerve-mediated 
extravasation in the skin (Lembeck et al. 1982). Corticotropin-releasing 
factor (Kiang and Wei 1985; Gao et al, 1991) and galanin (Xu et al. 1991) 
are able to reduce protein leakage evoked by both antidromic nerve stimu- 
lation and SP, which indicates a postjunctional target of  action. Taken to- 
gether, these data suggest that the SP-mediated exudative response to affe- 
rent nerve stimulation is modulated by other sensory neuropeptides which 
are co-released with SP. 

3.2.5 Interaction of Afferent Nerve Fibres with Autonomic Neurons 
in the Control of Blood Flow and Vascular Permeability 

3.2.5.1 Cholinergic Neurons 

Acytylcholine is unlikely to be a primary mediator of afferent nerve- 
mediated vasodilatation and protein exudation because atropine fails to 
block, and eserine fails to potentiate, antidromic vasodilatation in the rab- 
bit ear (Holton and Perry 1951). The hyperaemic response of rat skin to 
antidromic or intradermal nerve stimulation either remains unchanged 
(Gamse and Saria 1987) or is reduced (Lembeck and Holzer 1979; Couture 
and Cuello 1984; Couture et al. 1985; Low and Westerman 1989) by atro- 
pine. Similarly, afferent nerve-mediated protein leakage is left unaltered 
(N. Jancs6 et al. 1967) or is attenuated (Couture and Cuello 1984; Couture 
et al. 1985) by atropine. The inhibitory effect of  atropine has been explain- 
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ed in two different ways: (a) stimulation of mixed nerves is likely to acti- 
vate efferent chotinergic nerve fibres (i.e. postganglionic parasympathetic 
fibres, sympathetic sudomotor fibres), acetylcholine contributing to the 
vascular effects of nerve stimulation (Couture and Cuello 1984; Couture 
et al. 1985; Low and Westerman 1989); (b) acetylcholine may play some 
role as a secondary mediator of SP (Tanaka and Grunstein 1985), as atro- 
pine reduces the exudative response to intradermal SP in the rat dorsal skin 
(Couture and K6rouac 1987), whereas the exudative response to intra- 
venous SP is not altered (Jacques et al. 1989). 

3.2.5.2 Noradrenergic Sympathetic Neurons 

The available information indicates that noradrenergic sympathetic neu- 
rons do not contribute to neurogenic vasodilatation and protein leakage in 
the skin. Antidromic stimulation of ventral roots (L4-S1) fails to evoke 
hyperaemia and protein exudation in the rat hindpaw skin, whilst antidro- 
mic stimulation of the saphenous nerve induces vasoconstriction if afferent 
neurons have been defunctionalized by capsaicin (Szolcs~inyi et al. 1992). 
This vasoconstrictor response is due to stimulation of noradrenergic fibres 
since it is blocked by phentolamine and guanethidine (Szolcs~inyi et al. 
1992). In addition, protein extravasation in the paw skin evoked by anti- 
dromic stimulation of the saphenous nerve or topical application of 
mustard oil remains unaltered after a 60%-86% depletion of noradrenaline 
from the skin as induced by pretreatment of rats with guanethidine or 6- 
hydroxydopamine (Donnerer et al. 1991). In contrast, in the joint a cascade 
of events in which the sensory neuropeptide substance P liberates mast cell 
histamine which in turn releases prostaglandins from sympathetic nerve 
endings and thereby amplifies protein extravasation has been proposed 
(Basbaum and Levine 1991). This concept is based, among others, on the 
finding that articular protein leakage induced by local administration of 
capsaicin (5 mg m1-1) is reduced in rats pretreated with 6-hydroxydopa- 
mine (Coderre et ai. 1989). However, the exudative response to intraarti- 
cular capsaicin as seen in the study of Coderre et al. (1989) was only in part 
due to stimulation of afferent neurons because a considerable proportion of 
the response persisted after ablation of capsaicin-sensitive afferent neu- 
rons. In thus remains unclear whether 6-hydroxydopamine blocked the af- 
ferent nerve-dependent or -independent component of capsaicin-evoked 
protein extravasation. In addition, sympathetic denervation could lead to 
changes in the microcirculation and thereby interfere with vascular in- 
flammatory reactions (Lembeck et al. 1977; Osswald 1990; Donnerer et al. 
1991). 

There is consistent evidence, though, that sympathetic noradrenergic 
neurons counteract afferent nerve-mediated vasodilatation (Hornyak et al. 
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1990) and protein extravasation (Fearn et al. 1965; Helme and Andrews 
1985; Lindgren et al. 1987) in the skin. Hyperaemia in the rat hindleg due 
to antidromic stimulation of the saphenous nerve is in fact only seen when 
noradrenergic nerve fibres have been blocked by guanethidine (Lembeck 
and Holzer 1979), and antidromic vasodilatation in the rat hindpaw skin is 
amplified by guanethidine pretreatment (Gamse and Saria 1987). The fin- 
cling that activation of  o~ adrenoceptors (Lindgren et al. 1987) also inhibits 
afferent nerve-mediated hyperaemia and protein leakage in the skin may 
point to a prejunctional inhibition of transmitter release from 'afferent 
nerve terminals as has been seen in other tissues (see Maggi 1991). In the 
central artery of the rabbit ear, the interaction between afferent and norad- 
renergic sympathetic neurons seems to be reciprocal because CGRP can 
inhibit noradrenergic transmission and thereby lessen the sympathetic 
vasoconstrictor tone (Maynard et al. 1990). 

3. 2.6 Non-Neural and Non-Vascular Secondary Mediators 
of Afferent Nerve-Mediated Vasodilatation and Protein Extravasation 

3.2.6.1 Association of Afferent Nerve Fibres with Mast Cells 

There are histochemically demonstrable contact sites between sensory 
nerve endings and mast cells in the human skin (Naukkarinen et al. 1991), 
Some nerve fibres immunoreactive for CGRP and SP in the pig's skin are 
in close association with histamine-containing mast cells around arteries, 
arterioles and venules (Alving et al. 1991b). Such a close apposition of 
peptidergic afferent nerve endings and mast cells has also been observed in 
non-cutaneous tissues (Skofitsch et al. 1985a; Stead et al. 1987b, 1989). 

3.2.6.2 Involvement of Mast Cell Mediators in the Postacute Phase 
of the Vascular Effects of afferent Nerve Stimulation 

The participation of histamine and other mediators released from mast 
cells in afferent nerve-mediated vasodilatation and protein extravasation 
has long been disputed. Part of the controversy has arisen from failure to 
consider that mast cell-derived histamine is involved in the protacted sta- 
ges of neurogenic inflammation, whilst the initial stages result from a di- 
rect action of sensory neuropeptides on cutaneous blood vessels (Morton 
and Chahl 1980; Kowalski and Kaliner 1988; Kowalski et al. 1990). When 
examined 3 min after antidromic stimulation of the rat saphenous nerve, 
protein leakage takes place primarily in the superficial dermis (Kowalski 
et al. 1990) where peptidergic afferent nerve fibres abound (H0kfelt et al. 
1975; Cuello et al. 1978; Dalsgaard et al. 1983; Hartschuh et al. 1983; 
Gibbins et al. 1985, 1987b; Wallengren et al. 1987). In contrast, most skin 
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mast cells are located in deeper layers of the dermis (Kowalski et al. 1990), 
and no sign of mast cell degranulation or histamine depletion from the skin 
becomes discernible during tile early phase of plasma leakage due to anti- 
dromic nerve stimulation (Kowalski and Kaliner 1988). The finding is 
consistent with the failure of the mast cell stabilizer disodium cromogly- 
care (Kowalski et al. 1990) and of histamine H i antagonists to block the 
onset of the hyperaemic (Kiernan 1976; Gamse and Saria 1987) and 
exudative (N. Jancs6 etal. 1967; Garcia Leme and Hamamura 1974; 
Morton and Chahl 1980; Lundberg et al. 1984a, b) response to antidromic 
nerve stimulation. Prostanoids and 5-hydroxytryptamine, two further mast 
cell mediators, are also unlikely to play a role in the initial stages of neuro- 
genic inllammation because indomethacin (Lembeck and Holzer 1979; 
Morton and Chahl 1980; Couture and Cuello 1984) and methysergide 
(Lembeck and Holzer 1979) do not change vasodilatation and extravasa- 
tion induced by antidromic nerve stimulation. As might be expected from 
these observations, the first phase of protein extravasation caused by anti- 
dromic nerve stimulation is unchanged in mice that are genetically mast 
cell deficient (Kowalski et al. 1990). 

When antidromic stimulation of the saphenous nerve is continued for 
30 rain, mast cells in the rat paw degranulate and the cutaneous histamine 
content is significantly lowered (Kowalski and Kaliner 1988). Mast cell 
degranulation also occurs in the rat ear following antidromic stimulation of 
the great auricular nerve (Kiernan 1971) and in the region of the arteriolar 
flare surrounding a cutaneous scratch (Kiernan 1972, 1984). Conversely, 
compound 48/80-induced degranulation of mast cells reduces afferent 
nerve-mediated vasodilatation (Kiernan 1975; Lembeck and Holzer 1979) 
and exudation (Arvier et al. 1977; Lembeck and Holzer 1979; Coderre 
et al. 1989). These observations fit with pharmacological evidence that 
histamine can contribute to the vasodilator (Lembeck and Holzer 1979; 
Couture and Cuello 1984; I,ow and Westerman 1989) and exudative 
(Lembeck and Holzer 1979; Morton and Chahl 1980; Couture and Cuello 
1984) responses to afferent nerve stimulation. Mast cell-derived 5-hydro- 
xytryptamine (Morton and Chahl 1980; Couture and Cuello 1984) and 
prostaglandins (Coderre et al. 1989) are also implicated in the protraction 
of neurogenically initiated inflammation. 

3.2.6.3 Effects of Sensory Neuropeptides on the Release of Histamine 
and Other Factors from Mast Cells: Tissue and Species Differences 

Congruous with the involvement of mast cell-derived factors in neurogenic 
inflammation is the ability of sensory neuropeptides to release histamine 
from mast cells, an activity that shows marked tissue and species 
differences. SP is able to release histamine from peritoneal mast cells of rat 
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(Johnson and Erd/3s 1973; Erjavec et al. 1981; Fewtrell et al. 1982; Hfikan- 
son et al. 1983; Piotrowski et al. 1984; Shanahan et al. 1985; All et al. 
1986; Devillier et al. 1986a; Pearce et al. 1989), mouse and hamster (All 
et al. 1986; Pearce et al. 1989), whereas human peritoneal mast cells do 
not respond (All et al. 1986). However, human skin mast cells release 
histamine in response to SP, VIP and somatostatin (Ebertz et al. 1987; 
Lowman et al. 1988; Benyon et al. 1989; Church et al. 1989), whilst mast 
cells from other human tissues so far studied fail to react (All et al. 1986; 
Church et al. 1989; Pearce et al. 1989). Also VIP and somatostatin are ac- 
tive on rat peritoneal mast cells (Theoharides and Douglas 1978; Shanahan 
et al. 1985; Pearce et al. 1989) which therefore have a similar spectrum of 
neuropeptide sensitivity as human skin mast cells (Lowman et al. 1988; 
Church et al. 1989). This similarity is further underlined by the inactivity 
of  NKA and NKB to induce histamine release from rat peritoneal 
(Piotrowski et al. 1984; Devillier et al. 1986a) and human skin (Lowman 
et al. 1988) mast cells. In contrast, CGRP can activate rat peritoneal mast 
cells (Piotrowski and Foreman 1986) but is rather inactive on human skin 
mast cells (Lowman et al. 1988; Church et al. 1989). Mast cells from a va- 
riety of guinea pig tissues do not respond to SP (All et al. 1986; Pearce 
et al. 1989), and mucosal mast cells from the rat intestine respond to SP 
but not somatostatin or VIP (Shanahan et al. t985; Pearce et al. 1989). In 
line with its activity on isolated human skin mast cells, SP also releases 
histamine in the human skin in vivo (Barnes et al. 1986) and in vitro 
(Ebertz et al. 1987; R.E. Louis and Radermecker 1990). Similarly, the 
release of  histamine from the isolated rat hindleg is augmented by SP 
(Skofitsch et al. 1983; Holzer-Petsche et al. 1985), whereas NKA (Holzer- 
Petsche et al. 1985) is inactive. Somatostatin and VIP, but not SP, also 
release 5-hydroxytryptamine in this preparation (Skofitsch et al. 1983). 

Unlike IgE, SP is only weakly active in releasing prostaglandin D2 and 
leukotriene C a from human skin mast cells (Benyon et al. 1989). 

3.2.6.4 Involvement of Mast Cell Mediators in the Vascular Effects" 
of Sensory Neuropeptides 

The ability of  SP to release histamine from skin mast cells has a bearing on 
the peptide's vascular effects which may in part be mediated by mast cell- 
derived factors. However, there are tissue and species differences in the 
relative importance of mast cells in tachykinin-evoked inflammation. As 
with the vascular effects of afferent nerve stimulation, mast cell mediators 
such as histamine play an important role in the later phases of SP-induced 
hyperaemia and protein leakage only. Several lines of evidence support 
this contention. 
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1. The first phase of protein extravasation caused by intravenous admi- 
nistration of SP remains unaltered in mice which are genetically mast 
cell deficient (Kowalski et al. 1990). Two hours after SP injection, how- 
ever, the increase in vascular permeability is greatly reduced in these 
animals (Yano et al. 1989). 

2. These findings are consistent with pharmacological studies in which 
antagonists of  mast cell mediators were found to inhibit the delayed 
phase of SP's vascular effects whereas the early phase was left unaltered 
(Chahl 1979; Khalil and Helme 1989b). Lack of consideration of this 
temporal shift in the mast cell-independent and -dependent mechanisms 
of SP's actions on blood vessels may be an important reason for the 
controversy over the role of histamine as a secondary mediator of  SP. 

3. Degranulation of mast cells by pretreatment of rats with compound 
48/80 has been found to inhibit SP-induced hyperaemia and protein 
extravasation in the rat hindleg (Lembeck and Holzer 1979). 

4. Both the vasodilator (Lembeck and Holzer 1979; Andrews and Helme 
1989) and exudative (H~igermark et al+ 1978; Chahl 1979; Lembeck and 
Holzer 1979; Foreman et al. 1983; Jorizzo et al. 1983; Woodward et al. 
1985; Fuller et al. 1987; Wallengren and H~kanson 1987; Brain and 
Williams 1989; Khalil and Helme 1989b) effects of SP can in part be 
inhibited by histamine antagonists, sometimes in combination with 
methysergide (Chahl 1979). In the guinea pig skin, histamine appears to 
play a more important role in the exudative effects of  SP than in the va- 
sodilator effects of  the peptide (Woodword et al. 1985). 

5. In addition to histamine and 5-hydroxytryptamine, mast cell-derived 
prostanoids also seem to mediate a component of the vascular actions of 
SP, but not NKA and NKB (Couture et al. 1989; Jacques et al. 1989; 
Khalil and Helme 1989b). 

6. Similarly, SP leads to release of proteases from mast cells in rat and 
human skin whilst NKA and NKB are inactive. The SP-released pro- 
teases are able to cut short the prolonged vasoditator activity of CGRP 
(Brain and Williams 1988, 1989), which indicates that mast cell consti- 
tuents play an important role in the interactive regulation of the vascular 
effects of  co-released sensory net~opeptides. 

7. The findings that the vascular effects of SP in the skin are reduced by 
local anaesthetics (Foreman etal. 1983; Wallengren and H~tkanson 
1987) and defunctionalization of capsaicin-sensitive afferent neurons 
(Chahl and Chahl 1986; G. Jancs6 et al. 1985; Andrews and Helme 
1989; Devor et al. 1989) may be explained by SP-induced release of 
mast cell-derived histamine and 5-hydroxytryptamine which in turn can 
activate afferent neurons (see Lang et al. 1990) and thus give rise to af- 
ferent nerve-mediated vasodilatation (Khalil and Helme 1989a) and 
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protein exudation (see G. Jancs6 et al. 1980, 1985; Saria et al. 1983, 
1984; G. Jancs6 1984). The observation that afferent neurons are not 
required for protein leakage caused by Arg-NKB (Maggi et al. 1987a), 
which is unlikely to release histamine from mast cells (Piotrowski et al. 
1984; Devillier et al. 1986a; Lowman et al. 1988), supports this argu- 
ment. 

3.2.6.5 Nature of the Mast Cell Receptors for SP 

There is an important difference between the SP receptors which mediate 
the peptide's mast cell-independent and -dependent effects on blood flow 
and vascular permeability. The histamine-independent effects of  SP and 
NKA to induce vasodilatation (Holzer-Petsche et al. 1985; Maggi et al. 
1985; Andrews and Helme 1989; Couture et al. 1989) and plasma exuda- 
tion (Devillier et al. 1986a; Fuller et al. 1987; Andrews et al. 1989; Devor 
et al. 1989; Iwamoto and Nadel 1989; Jacques et al. 1989; Khalil and 
Helme 1989b) are predominantly mediated by NK 1 receptors which recog- 
nize certain features of the C terminal amino acid sequence of tachykinins. 
In contrast, the mast cell-dependent effects of SP are determined by certain 
structural features of  the N-terminal part of the molecule in which the 
presence of basic amino acids plays a critical role (Mazurek et al. 1981; 
Fewtrell et al. 1982; Foreman et al. 1983; Skofitsch et al. 1983; Piotrowski 
et al. 1984; Lowman et al. 1988; Church et al. 1989; Khalil and Helme 
1989b; Pearce et al. 1989). The structural requirements of a tachykinin to 
be recognized by the "mast cell receptor" for SP are thus fundamentally 
disparate from those needed for binding to the typical tachykinin (NK 1, 
NK 2 and NK 3) receptors. This divergence explains why NKA and NKB 
are inactive on mast cells (Holzer-Petsche et al. 1985; Devillier et al. 
1986a; Lowman et al. 1988; Church et al. 1989; Pearce et al. 1989) and do 
not mimic the mast cell-dependent actions of  SP on blood vessels (Devil- 
lier et al. 1986a; Brain and Williams 1988, 1989). The finding that the 
vascular effects of  SP, but not NKA and NKB, can be reduced by indo- 
methacin indicates that SP-induced release of  prostanoids is also determin- 
ed by the N terminus of the peptide (Jacques et al. 1989). 

The different nature of the mast cell receptor for SP is underlined by the 
absence of  autoradiographically demonstrable NK I receptor sites from 
mast ceils in the rat footpad skin (O'Flynn et al. 1989). Biochemical evi- 
dence suggests that SP's action on mast cells is not mediated by a proper 
membrane receptor for the peptide but results from a direct interaction of 
SP with G proteins in the mast cell membrane (Bueb et al. 1990). This 
structural disparity manifests itself in a greatly different affinity for the li- 
gand. Whereas the NK 1 receptor has a dissociation constant in the nano- 
moles per litre range it is micromoles per litre concentrations of SP which 
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are needed to activate mast cells. It is therefore conceivable that mast cell 
histamine is not a major determinant in the vascular effects of endoge- 
nously released tachykinins but comes into play when relatively high doses 
of exogenous SP are administered. This argument finds support in the ob- 
servation that the exudative response to intravenous SP takes place primar- 
ily deep in the dermis where mast cells abound while plasma leakage to 
anlJdromic nerve stimulation prevails in the superficial dermis (Kowalski 
et al. 1990). 

3.2. 7 Afferent Nerve Fibres and the Flare Response 

3.2. Z 1 The Axon Reflex Hypothesis 

Focal irritation of human skin causes (a) a local reddening; (b) an area of  
oedema (the weal) at the site of the stimulus; and (c) a spread of arteriolar 
dilatation (the flare) far beyond the point of irritation. The flare component 
of this "triple response" (Lewis 1927) requires an intact sensory in- 
nervation and is abolished by defunctionalization of capsaicin-sensitive 
afferent neurons in human (N. Jancs6 et al. 1968; Bernstein et al. 1981; 
Carpenter and Lynn 1981; Anand et al. 1983; Foreman et al. 1983; T6th- 
K~isa et al. 1986; Lundblad et al. 1987; Szolcs~inyi 1988; Bjerring and 
Arendt-Nielsen 1990; Simone and Ochoa 1991) and porcine (Pierau and 
Szolcs~inyi 1989; Barth6 et al. 1990a) skin. Since the spread of flare invol- 
ves nerve conduction, it is commonly thought to be the result of  an "axon 
reflex" (Chahl 1988; Holzer 1988; Lynn 1988; Lisney and Bharali 1989). 
This term denotes a reflex that takes place entirely within the arborizations 
of a single nerve axon (Lewis 1927). When one axon branch is activated 
by an irritant stimulus, nerve impulses will travel not only centrally, but at 
the branching point will also pass antidromically in the other branches 
which may happen to come close to some arterioles (Fig. 3). If so, the pe- 
riarteriolar branches may release vasodilator transmitters and thereby 
cause arteriolar dilatation. 

The axon reflex hypothesis offers an elegant way of explaining the 
spreading flare - yet its neurophysiological mechanism is not understood. 
Although afferent nerve fibres arborize in the skin, with nerve endings 
both in the epidermis and along blood vessels, it is not clear whether the 
epidermal and perivascular branches are collaterals of the same afferent 
nerve axons. The axon reflex concept implies that the area of flare is de- 
termined by the size of "neurovascular units" made up by the collateral 
networks (receptive fields) of individual afferent nerve fibres and the area 
of arterioles innervated by these collateral networks (Lewis 1927; Helme 
and McKernan 1984, 1985). However, the area of flare differs greatly in 
different body regions, ranging from 0.6 to 15 cm 2 (Helme and McKernan 
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Fig. 3 A-C. Three different axon reflex concepts. A Classical axon reflex concept in which 
an irritative or noxious stimulus activates a collateral of an afferent nerve fibre and nerve 
activity spreads to all other collaterals. Release of vasodilator mediators at their endings 
evokes arteriolar dilatation (flare). B Chemical coupling between collaterals of two diffe- 
rent afferent nerve fibres. Chemical coupling is achieved by release of mast cell-derived 
histamine and other factors that are able to activate adjacent sensory nerve endings and thus 
allow nerve activity and flare to spreed beyond the collateral network of a single afferent 
nerve fibre. C Electrical coupling between two different afferent nerve fibres which repre- 
sents another way by which the flare response may spread beyond the collateral network of 
a single afferent nerve fibre 

1984, 1985), whereas the size of  C fibre-receptive fields in human skin is 

hardly larger than 1 cm 2 (e.g. Torebj0rk 1974; van Hees and Gybels 1981; 

Nordin 1990). This mismatch between flare sizes and C fibre-receptive 

fields (Lynn 1988) is paralleled by an unexplained delay in the spread o f  

flare which is slower than would be expected if the rate of  spread were de- 
terrnined only by conduction delays in unmyelinated nerve fibres (Lynn 

and Cotsell 1991). To resolve these discrepancies, chemical (see Lembeck  

and Gamse 1982; Lynn 1988; Lynn and Cotsell 1991) or electrical coupl- 
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ing between different afferent nerve fibres (see B. Matthews 1976; Meyer 
etal. 1985) or between afferent and efferent sympathetic axons (see 
Zimmermann 1979) has been considered to participate in the spread of ar- 
teriolar flare (Fig. 3). However, coupling must also be limited because the 
flare has a relatively sharp margin and does not cross the midline of the 
forehead (Helme and McKernan 1984, 1985). 

3.2. 7. 2 Flare Induced by Sensory Neuropeptides 

Like histamine, intradermally injected SP leads to arteriolar flare which is 
inhibited by histamine H 1 antagonists (H/igermark et al. 1978; Coutts et al. 
1981; Jorizzo e ta  l. 1983; Piotrowski and Foreman 1985; Barnes etal. 
1986; Fuller etal. 1987; Wallengren and H~kanson 1987; Brain and 
Williams 1988, 1989; Pedersen-Bjergaard et al. 1989, 1991; Iwamoto et al. 
1990; Heyer et al. 1991). It might be concluded from this finding that 
histamine is a vasodilator mediator of the axon reflex, but there are several 
lines of evidence indicating that histamine is primarily involved in the ini- 
tiation of the axon reflex. 

1. Unlike SP, NKA and NKB are only weakly active in causing flare 
(Foreman et al. 1983; Devillier et al. 1986a; Fuller et al. 1987; Wallen- 
gren and HLkanson 1987; Pedersen-Bjergaard et al. 1989; Iwamoto 
et al. 1990), and the relative potencies of tachykinins in evoking flare 
are similar to those in releasing histamine from human skin (Lowman 
et al. 1988) and rat peritoneal (Fewtrell et al. 1982; Piotrowski et al. 
1984; Devillier et al. 1986a) mast cells. This indicates that the SP-indu- 
ced flare response is mediated by a "mast cell type" of SP receptor, 
binding to which depends on the N-terminal amino acid sequence of the 
ligand. 

2. Also VIP and somatostatin liberate histamine from human skin mast 
cells (Lowman et al. 1988) and elicit flare (Anand et al. 1983). In 
contrast, the potency of CGRP in inducing flare (Piotrowski and Fore- 
man 1986; Fuller et al. 1987; Wallengren and Hhkanson 1987; Peder- 
sen-Bjergaard et al. 1991) and releasing histamine from mast cells 
(Lowman et al. 1988) is low. The flare responses to VIP, somatostatin 
(Anand et al. 1983) and CGRP (Piotrowski and Foreman 1986; Fuller 
et al. 1987; Pedersen-Bjergaard et al. 1991) are inhibited by histamine 
H 1 antagonists; that to CGRP is also reduced by acetylsalicylic acid 
(Fuller et al. 1987). 

3. Axon reflex flare initiated by electrical stimulation (Parrot 1942) or top- 
ical capsaicin administration (Barnes et al. 1986) is not inhibited by 
histamine antagonists. Since capsaicin does not release histamine 
(Foreman et al. 1983; Skofitsch etal. 1983), it can be inferred that 
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histamine does not participate in the production of arteriolar dilatation 
in response to an axon reflex (Parrot 1942; Barnes et al. 1986). SP, 
though, may be a vasodilator mediator because intradermal injection of 
a SP antagomst is able to antagonize SP-induced flare (Foreman and 
Jordan 1984). Taken together, the flare response to intradermally inject- 
ed SP and other sensory neuropeptides is initiated by histamine release 
from mast cells, histamine in turn activating sensory nerve terminals 
which give rise to the spread of flare. 

3.2.8 Involvement of Afferent Neurons in Reactive Hyperaemia 

The question whether capsaicin-sensitive afferent neurons contribute to the 
vasodilatation following a period of arterial occlusion has not yet been 
settled. Defunctionalization of capsaicin-sensitive afferent neurons has 
been found to reduce postocclusive hyperaemia in the rat hindleg (Lem- 
beck and Donner 1981a) and gut (Hottenstein et al. 1992), whereas in the 
pig postocclusive vasodilatation in skin, skeletal muscle and heart is inde- 
pendent of capsaicin-sensitive afferent neurons (Franco-Cereceda and 
Lundberg 1989). In contrast, the cutaneous hyperaemia in the human fore- 
arm skin evoked by exercise is blunted 24 h after intradermai injection of 
capsaicin (Kurozawa et al. 1991). 

3.2.9 Control of Leucocyte Activity by Afferent Nerve Fibres." 
Significance for Blood Flow and Vascular Permeabilio' 

Vasodilatation and increase in vascular permeability are readily visible 
consequences of afferent nerve stimulation. Neuropeptides released from 
afferent nerve terminals also govern the activity of granulocytes, monocy- 
tes and lymphocytes, but these effects are considered here only with regard 
to their possible relevance Ibr the vascular aspect of neurogenic inflamma- 
tion (Fig. 4). Intravascularly, SP induces aggregation of leucocytes and 
platelets in skeletal muscle arterioles of the rabbit (0hlOn et al. 1988, 
1989), an effect that is antagonized by CGRP (0hlOn et al. 1988). Further 
on, SP exerts a chemolactic action on monocytes (Ruff et al. 1985) and 
granuiocytes (Helme et al. 1987), and stimulates the adhesion of leucocy- 
tes to the vessel wall and their emigration into the inflamed tissue of the 
skin (Helme and Andrews 1985; Yano et al. 1989; Umeno et al. 1990). 
CGRP also causes granulocytes to infiltrate human skin (Piotrowski and 
Foreman 1986), whilst in rabbit skin CGRP is without effect on its own 
but potentiates granulocyte accumulation initiated by other stimuli 
(Buckley et al. 1991). Most important in the present context is SP's ability 
to release cytokines (Lo~ et al. 1988), prostaglandins, leukotrienes and 
thromboxanes (Hartung et al. 1986) from monocytes and histamine (Ali 
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Fig. 4. Reinforcement of the neurogenic inflammatory response to afferent nerve stimula- 
tion by mediators released from mast cells and leucocytes, particularly monocy- 
tes/macrophages. Many of these mediators are not only vasoactive per se but are capable of 
sensitizing or stimulating sensory nerve endings. Mast cell-derived proteases can modify 
the vascular actions of the peptides released from afferent nerve endings (Brain and 
Williams 1988, 1989). HIST, histamine; 5-HT, 5-hydroxytryptamine; LT, leukotrienes; PG, 
prostaglandins; TX, thromboxanes 

et al. 1986; R.E. Louis and Radermecker 1990) from basophil granu- 
locytes. These leucocyte-derived factors are not only able to influence ves- 
sel diameter and permeability but can also stimulate afferent nerve fibres 
or augment their excitability (see Martin et al. 1987; Maggi 1991) and thus 
reinforce afferent nerve-mediated hyperaemia and protein leakage (Fig. 4). 

Other leucocyte-derived mediators suppress afferent nerve activity and 
neurogenic inflammation, as do opioid peptides released from immunocy- 
tes infiltrating the inflamed tissue (Stein et al. 1990). 

3.3 Autonomic Reflex Regulation of Cutaneous Blood How 

In addition to their role in the local regulation of cutaneous microcircu- 
lation, afferent neurons also participate in the reflex regulation of the car- 
diovascular system. Cutaneous vasodilatation is an important mechanism 
of  thermoregulation designed to facilitate the dissipation of  heat. Capsaicin- 
sensitive afferent neurons comprise warmth receptors (see Szolcs~inyi 
1982, 1983, 1990a), and stimulation of these receptors by capsaicin indu- 
ces cutaneous hyperaemia whilst body core.temperature is lowered (Dib 
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1983; Donnerer and Lembeck 1983; Haj6s et al. 1983; Szolcs~inyi 1983). 
These thermoregulatory reflex reactions depend on the sympathetic ner- 
vous system inasmuch as cutaneous vasodilatation appears to arise from 
reflex withdrawal of sympathetic vasoconstrictor tone (Donnerer and 
Lembeck 1983). 

The organism's reactions to nociception are also associated with distinct 
changes in cardiac performance and regional blood flow. Local intra- 
vascular injection of the irritant capsaicin to rats causes a fall in blood 
pressure (Donnerer and Lembeck 1982). A similar hypotensive response is 
seen in the rabbit when algesic chemicals such as bradykinin are injected 
into the ear artery (Juan and Lembeck 1974) which is innervated by cap- 
saicin-sensitive peptidergic afferent neurons (Maynard et al. 1990). In con- 
trast, hypertension and tachycardia ensue after administration of capsaicin 
to the epicardium (Staszewska-Woolley et al. 1986) or into the skeletal 
muscle (Crayton et al. 1981) of the dog. The extent to which cutaneous cir- 
culation is involved in these cardiovascular reactions to pain is not known, 
but it is textbook knowledge that nociception is accompanied by sympa- 
thetically mediated vasoconstriction in the skin. The same uncertainty 
applies to the reported participation of capsaicin-sensitive afferent neurons 
in baroreceptor and chemoreceptor reflex regulation of the circulatory sys- 
tem (Bond et al. 1982; Donnerer et al. 1989). 

3.4 Pathophysiological Implications 

Dysfunction of peptidergic afferent neurons in the regulation of cutaneous 
blood flow and vascular permeability is likely to have a bearing on the 
pathophysiology of the skin. Two pathological changes of these neurons 
are briefly considered here: malfunction and hyperactivity. Afferent nerve- 
mediated vasodilatation and axon reflex flare in the skin can be impaired 
in patients suffering from congenital sensory neuropathy (T6th-Kfisa et al. 
1984) or sensory neuropathies caused by diabetes (Aronin etal. 1987; 
Benarroch and Low 1991; Walmsley and Wiles 1991), herpes zoster 
(Lewis and Marvin 1927; G. Jancs6 et al. 1983; T6th-K~isa et al. 1984), 
postherpetic neuralgia (LeVasseur et al. 1990) or atopic dermatitis (Heyer 
et al. 1991). Healing of injured tissue requires adequate organizational and 
functional reactiorLs of the microcirculatory system, and insufficient or im- 
proper coordination of these processes may be expected to predispose to 
"trophic" disorders of the skin. Support for this conjecture comes from cli- 
nical observations that sensory neuropathies may be associated with persi- 
stent skin ulcers (B6ckers etal. 1989) and connective tissue diseases 
(Hagen et al. 1990). Experimentally, ablation of capsaicin-sensitive affe- 
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rent neurons reduces the survival of a musculocutaneous flap (Kjartansson 
et al. 1987) and can lead to appearance of persistent skin wounds (Maggi 
et al. 1987a), aggravation of acid-induced skin lesions (Maggi et al. 1987a) 
and formation of keratitis-like lesions in the cornea (Fujita et al. 1984; 
Shimizu et al. 1984, 1987; Knyazev et al. 1990, 1991) of small rodents. A 
role of  peptidergic afferent neurons in wound healing can also be en- 
visaged from the ability of SP, NKA and CGRP to stimulate the prolifera- 
tion of endothelial cells (Haegerstrand et al. 1990; Ziche et al. 1990), arte- 
rial smooth muscle cells (J. Nilsson et al. 1985, 1986; Payan 1985) and 
skin fibroblasts (J. Nilsson et al. 1985). These actions are likely to play a 
role in the angiogenesis of  healing tissue, and SP is in fact able to induce 
neovascularization of the avascular rabbit cornea (Ziche et al, 1990). 

Hyperactivity of afferent neurons may exacerbate and protract inflam- 
mation. The presence of inflammation is known to sensitize afferent nerve 
endings, a process in which mast cell- and leucocyte-derived inflammatory 
mediators such as histamine, prostaglandins and leukotrienes are likely to 
play a role (Kocher et al. 1987; Martin et al. 1987; Lynn 1988; McMahon 
and Koltzenburg 1990). Sensitization is expected to facilitate the neural 
release of  SP and CGRP which, in turn, will enhance the liberation of 
histamine and other mediators from mast cells and leucocytes. Thus, there 
is a positive feedback loop which operates to cause hyperactivity of affe- 
rent nerve fibres and perpetuation of the inflammatory reaction (Lynn 
1988). An additional aspect is lit up by the ability of SP and other sensory 
neuropeptides to control the immune system (see Payan et al. 1984; Stead 
et al. 1987a; G. Nilsson 1989; Donnerer et al. 1990; McGillis et al. 1990). 
It is, therefore, conceivable that sensitized afferent neurons enhance host 
defence reactions to injurious stimuli by a direct stimulant action on immu- 
nocompetent cells and by way of hyperaemia and increased vascular per- 
meability which facilitate the delivery and accumulation of  these cells in 
the inflamed tissue. In line with this proposal, antigen exposure has been 
lbund to increase nerve activity in afferent neurons (Undem et al. 1991), 
whilst the vascular reactions of the skin to allergen challenge in sensitized 
guinea pigs (Saria et al. 1983) and allergic humans (Lundblad et al. 1987; 
Wallengren and M/311er 1988; McCusker et al. 1989; Wallengren 1991), 
and the vascular manifestations of acquired cold and heat urticaria (T6th- 
K~isa et al. 1983, 1984; G. Jancs6 et al. 1985) are reduced after blockade of 
capsaicin-sensitive afferent nerve fibres or administration of an SP antago- 
nist. Hyperreactive disorders of the skin such as psoriasis (Bernstein et al. 
1986; Farber et al. 1986), bullous pemphigoid, eczema and photodermato- 
ses (Wallengren et al. 1986) may also involve peptidergic afferent neurons. 
Further examples of chronic inflammation which may be driven by hyper- 
active afferent nerve fibres include vasomotor rhinitis (Marabini et al. 
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1988; Saria and Wolf 1988; Lacroix et al. 1991), asthma (Barnes et al. 
1988) and chronic arthritis (Colpaert et al. 1983; Levine et al. 1984, 1986; 
Devillier et al. 1986b). 

4 Afferent Neurons in Splanchnic Circulation 

4.1 Innervation of the Splanchnic Vascular Bed 
by Peptidergic Afferent Neurons 

The mesenteric arteries are innervated by SP- and CGRP-containing vari- 
cose and smooth nerve fibres which originate from dorsal root ganglia, and 
the superior mesenteric artery of the rat and guinea pig receives a particu- 
larly rich supply of peptidergic afferent nerve fibres that are sensitive to 
the neurotoxic action of capsaicin (Furness et al. 1982; Barja et al. 1983; 
Mulderry et al. 1985; Uddman et al. 1986; Wharton et al. 1986; Kawasaki 
et at. 1988, 1990a, b, c, 1991a; Wimalawansa and MacIntyre 1988; Fuji- 
mori et al. 1989, 1990; Del Bianco et al. 1991). The interlacing network of 
fibres is very dense in the main arteries and becomes loose towards the 
precapillary arterioles whilst the veins are sparsely innervated (Furness 
et al. 1982; Barja et al. 1983; Uddman et al. 1986). 

In the wall of the gastrointestinal tract it is predominantly submucosal 
and mucosal blood vessels, especially arterioles, that are innervated by 
capsaicin-sensitive peptidergic afferent nerve fibres although other layers 
such as the myenteric plexus and circular muscle may also be supplied by 
these neurons (Furness et al. 1982; Minagawa et al. 1984; Papka et al. 
1984; Sharkey et al. 1984; Gibbins et al. 1985, t988; Rodrigo et al. 1985; 
Feh6r et al. 1986; Uddman et al. 1986; Y. Lee et al. 1987b; Sternini et al. 
1987, 1991b; S u e t  al, 1987; Galligan et al. 1988; Green and Dockray 
1988; Varro et al. 1988; Ch6ry-Croze et al. 1989; Parkman et al. 1989; 
Kashiba et al. 1990). There are species differences in the neuropeptide 
expression of nerve fibres in the gastrointestinal tract (Brodin et al. 1983b; 
Keast e t a  l. 1985; Sundler etat. 1991), and this is particularly well 
exemplified by an abundance of CGRP-containing afferent axons in the rat 
stomach (Green and Dockray 1988; Varro et al. 1988; Sundler et al. t991) 
compared with a scarcity or absence of CGRP-containing fibres in the 
mucosa of the porcine and human stomach (Tsutsumi and Hara 1989; 
Sundler et al. 1991). Most, if not all, CGRP-containing nerve fibres in the 
rat stomach represent extrinsic afferent neurons that originate from dorsal 
root ganglia (Y. Lee et al. 1987b; Sternini et al. 1987; S u e t  al. 1987; 
Green and Dockray 1988; Varro etal. 1988; Kashiba etai.  1990; 
McGregor and Conlon 1991; Renzi et al. 1991). In contrast, vagal afferent 
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nerve fibres contribute little to the SP and CGRP content of the rat stom- 
ach (Y. Lee et al. 1987b; Green and Dockray 1988; Varro et al. 1988). 
Vagal CGRP-containing afferent neurons, however, innervate the 
oesophagus (Rodrigo et al. 1985; Parkman et al. 1989). 

The cell bodies of the spinal afferent neurons that contain CGRP and 
project to the gastrointestinal tract are of small to medium size, with dia- 
meters up to 45 l.tm (Su et al. 1987; Green and Dockray 1988; Kashiba 
et al. 1991), whereas the diameter of the SP-containing cell bodies hardly 
exceeds 35 I.tm (Green and Dockray 1988). SP- and CGRP-containing spi- 
nal afferent neurons also differ with regard to their axons. CGRP is present 
in 46% of unmyelinated, 33% of thinly myelinated and 17% of thickly 
myelinated axons (McCarthy and Lawson 1990), which is also true for 
CGRP-containing axons in the vagus nerve (Kakudo et al. 1988). In con- 
trast, SP is found only in unmyelinated (50%) and thinly myelinated (20%) 
fibres (McCarthy and Lawson 1989). On their way to the gastrointestinal 
tract, the fibres of spinal afferent neurons pass through the prevertebral 
ganglia (Dalsgaard et al. 1983; Matthews and Cuello 1984; Y. Lee et al. 
1987a; Sue t  al. 1987; Green and Dockray 1988; Lindh et al. 1988; Kashi- 
ba et al. 1990) where they give of collaterals that form axodendritic and 
axosomatic synapses with the principal sympathetic ganglion cells (Kondo 
and Yui 1981; M.R. Matthews and Cuello 1984; Y. Lee etal. 1987a; 
Green and Dockray 1988; Kondo and Yamamoto 1988; Lindh et al. 1988). 

The peptidergic innervation of the gastrointestinal tract is complicated 
by the fact that there are two separate populations of peptide-containing 
neurons, extrinsic primary afferent and intrinsic enteric neurons, that have 
many neuropeptide transmitters in common (see Ekblad et al. 1985; Costa 
et al. 1986; Kirchgessner et al. 1988). This applies to the tachykinins SP 
and NKA, CGRP, VIP, somatostatin, opioid peptides and other neuronal 
markers. In addition, some markers of enteric and primary afferent neurons 
are also contained in parasympathetic (e.g. VIP, see Lundberg 1981) and 
sympathetic (e.g. somatostatin, see Lundberg et al. 1982; Costa and Fur- 
ness 1984; Lindh et al. 1986, 1988; Vickers et al. 1990) efferent neurons. 
However, there are a number of discrete differences between these pepti- 
dergic neuron populations in terms of origin, projection, neurochemistry 
and function. 

1. The chemical coding, i.e. the combination of peptides co-expressed in 
individual neurons, differs markedly among primary afferent, enteric 
and autonomic neurons (Costa et al. 1986). As in somatic afferent neu- 
rons, a population of the splanchnic CGRP-containing afferent neurons 
also contains SP (Gibbins etal. 1985, 1987a; Y. Lee etal. 1985; 
Rodrigo et al. 1985; Uddman et al. 1986; Sue t  al. 1987; Galligan et al. 
1988; Green and Dockray 1988; Lindh et al. 1988; Ch6ry-Croze et al. 
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1989; Helke and Niederer 1990; Sundler et al. 1991). Conversely, SP 
and CGRP do not co-exist in enteric neurons of the rat and guinea pig 
(Gibbins et al. 1985; Costa et al. 1986; Belai and Burnstock 1987; Gal- 
ligan et al. 1988; Goehler et al. 1988; Sundler et al. 1991). 

2. The chemical identity of CGRP expressed by primary afferent and ente- 
ric neurons is different, at least in the rat. It seems as if most of  the 
CGRP present in afferent neurons is CGRP-o~ (Mulderry et al. 1988; 
Varro et al. 1988; Noguchi et al. 1990; Sternini 1991), although some 
CGRP-13 may also be expressed (Noguchi et al. 1990; Sternini 1991). In 
contrast, CGRP-I3 is the only form of CGRP present in enteric neurons 
(Mulderry et al. 1988; Sternini 1991). 

3. Only the primary afferent neurons are sensitive to the excitatory and 
neurotoxic action of capsaicin whilst the autonomic (see Holzer 1991) 
and enteric (Barth6 and Szolcs~inyi 1978; Szolcs'anyi and Barth6 1978; 
Holzer et al. 1980; Barth6 et al. 1982; Furness et al. 1982; Donnerer 
et al. 1984; Holzer 1984; Papka et al. 1984; Sharkey et al. 1984; Kirch- 
gessner et al. 1988; Geppetti et al. 1988; Green and Dockray 1988; Ta- 
kaki and Nakayama 1989; Renzi et al. 1991) neurons are not sensitive 
to capsaicin. 

4. Related to these different neurochemical and neuropharmacological 
characteristics is a diversity of physiological functions which are not 
detailed here except for the primary afferent neurons. 

4.2 Blood Iqow in Mesenteric Arteries 

4. 2.1 Local Regulation of  Mesenteric Arterial Tone 

4.2.1.1 Nature of  the NANC Vasodilator Fibres 

Functional evidence indicates that the mesenteric arteries are innervated 
not only by sympathetic vasoconstrictor fibres but also by NANC vasodi- 
lator fibres. The nature of the neuroeffector transmission in the inferior 
mesenteric artery of the guinea pig is governed by the frequency at which 
the periarterial nerve plexus is stimulated (Kreulen 1986; Hottenstein and 
Kreulen 1987). Whilst high-frequency (10-20 Hz) stimulation leads to 
noradrenergic depolarization and constriction, low-frequency (2-5 Hz) sti- 
mulation elicits slow inhibitory junction potentials and relaxation of the 
noradrenaline-precontracted arterial smooth muscle (Meehan et al. 1991). 
This hyperpolarization remains unaltered after removal of the endothelium 
or treatment of the preparation with ot and [3 adrenoceptor antagonists, 
sympathetic neuron-blocking drugs, atropine, indomethacin or o~,13-me- 
thylene ATP (Meehan et al. 1991). Electrical stimulation of isolated 
mesenteric arteries of the rat causes a similar dilatation of the vessels ore- 
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contracted by oc adrenoceptor agonists (Kawasaki et al. 1988, 1990a, b, c, 
1991a; Axelsson et al. 1989; Fujimori et al. 1989, 1990; Han et al. 1990a, 
b; Li and Duckies 1992) or endothelin (Kawasaki et at. 1990b), especially 
when sympathetic nerve activity and noradrenergic transmission are block- 
ed by 6-hydroxydopamine or guanethidine and prazosin. The vasodilator 
response depends on neural conduction but is independent of noradrener- 
gic and cholinergic transmission and hence mediated by transmitters of 
NANC nerves (Kawasaki et at. 1988; Axelsson et al. 1989; Han et al. 
1990b). Endothelium-derived factors (Axelsson etal. 1989; Hart et al. 
1990b; Li and Duckies 1992), histamine and prostaglandins (Kawasaki 
et al. 1988; Axeisson et at. 1989) have been ruled out as mediators. How- 
ever, stimulation of the NANC vasodilator nerves appears to promote the 
production of vasoconstrictor prostaglandins (Li and Duckies 1991 a). 

The fibres responsible for NANC dilatation of mesenteric arteries in the 
dog (R6zsa et al. 1984, 1985), rat (Manzini and Perretti 1988; Fujimori 
et al. 1990; Han et al. 1990b; Kawasaki et al. 1990a, b, c, 1991a; Hotten- 
stein et at. 1991) and guinea pig (Meehan et al. 1991) are sensitive to the 
stimulant and neurotoxic actions of capsaicin, whereas those in isolated 
bovine mesenteric arteries are insensitive to capsaicin (Axelsson et al. 
1989). Stimulation of afferent nerve fibres by capsaicin mimics not only 
the hyperpolarizing response to NANC nerve stimulation (Meehan et al. 
1991) but also the dilatation due to electrical stimulation of isolated me- 
senteric (Manzini and Perretti 1988; Fujimori et al. 1990; Meehan et al. 
1991), hepatic and splenic (Br~tveit and Helle 1991) arteries of the rat and 
guinea pig. The capsaicin-evoked dilatation is independent of nerve im- 
pulse conduction and of cholinergic and noradrenergic transmission (Man- 
zini and Perretti 1988). Periarterial administration of capsaicin to the su- 
perior mesenteric artery of the rat (Hottenstein et al. 1991) and dog (R6sza 
et al. 1984, 1985) in vivo augments blood flow in the that vessel, and the 
hyperaemia induced by injection of capsaicin into the superior mesenteric 
artery of the dog remains unaltered by blockade of adrenoceptor, dopamine 
and nicotinic acetylcholine receptors but is reduced by atropine (R6zsa 
et at. 1984, 1985). Capsaicin pretreatment of the rat and guinea pig isolated 
mesenteric arterial bed, to defunctionalize afferent nerve fibres, inhibits the 
vasodilator response to both capsaicin application (Manzini and Perretti 
1988) and electrical nerve stimulation (Fujimori et at. 1990; Han et at. 
1990b; Kawasaki et al. 1990a, b, c, 1991a; Li and Duckies 1991a; Meehan 
et al. 1991). A similar effect of capsaicin pretreatment is seen in the rat 
hepatic artery (Bnltveit and Helle 1991). These findings demonstrate that 
the NANC vasodilator fibres in the mesenteric/hepatic arteries of rat and 
dog arise from primary afferent neurons. The presence of peptides in, and 
their release from, these neurons as well as the inhibition of NANC vasodi- 
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latation by peptide antagonism indicates the peptidergic nature of the 
NANC vasodilator nerve fibres in the rat mesenteric arteries. 

4.2.1.2 Release of Sensory Neuropeptides 

Stimulation of periarterial nerves by electrical impulses or capsaicin ap- 
plication leads to a calcium-dependent release of CGRP (Fujimori et al. 
1989, 1990; Del Bianco et al. 1991; Kawasaki et al. 1991a; Manzini et al. 
1991). This stimulus-induced peptide release is inhibited after capsaicin- 
induced defunctionalization of sensory nerve fibres (Fujimori et al. 1990; 
Del Bianco et al. 1991; Manzini et al. 1991). 

4.2.13 Neuropeptide Receptors on Mesenteric Blood Vessels 

The abundance of CGRP in the superior mesenteric artery of the rat is 
matched by an abundance of CGRP binding sites (Wimalawansa and Mac- 
Intyre 1988). Rabbit mesenteric arteries bear a high number of VIP re- 
ceptors that are coupled to adenylate cyclase (Huang and Rorstad 1987; 
Sidaway et al. 1989). 

4.2.1.4 Vasodilator Activity of Sensory Neuropeptides 

Among the sensory neuropeptides, CGRP is the most potent to dilate rat 
mesenteric arteries, but this effect is seen only upon local administration of 
the peptide whereas intravenous administration of CGRP to the conscious 
rat causes mesenteric vasoconstriction (Gardiner et al. 1989). In vitro, 
CGRP relaxes precontracted mesenteric arteries isolated from rat (Mars- 
hall et al. 1986; Kawasaki et al. 1988, 1990a, c; Manzini and Perretti 1988; 
Fujimori et al. 1989, 1990; Han et al. 1990a, b; Brfitveit et al. 1991; Li and 
Duckles 1991a, b, 1992), guinea pig (Uddman et al. 1986), rabbit (Nelson 
et al. 1990) and humans (T0rnebrandt et al. 1987). Like the NANC nerve- 
induced response, the vasodilatation in response to CGRP is independent 
of the endothelium (Li and Duckles 1992), and the time course of CGRP's 
effect is very similar to that of NANC nerve stimulation (Kawasaki et al. 
1988, 1990a). Both in the rat and rabbit mesenteric vascular bed, rat c~- 
CGRP is more potent as dilator than human ~-CGRP (Marshall et al. 
1986). Isolated bovine mesenteric arteries, though, appear to be insensitive 
to CGRP (Axelsson et al. 1989). Other vessels that are relaxed by CGRP 
in vitro include the left gastric artery from rat (Br~tveit et al. 1991) and 
guinea pig (Uddman et al. 1986), the rat splenic artery (Brfitveit and Helle 
1991; Br~tveit et al. 1991), and the hepatic artery from rat (Br~ttveit and 
Helle 1991; Brfitveit et al. 1991) and rabbit (Brizzolara and Burnstock 
1991). The CGRP-induced relaxation of the hepatic and left gastric artery 
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is independent of the endothelium (Br~itveit and Helle 1991; Br~tveit et al. 
1991; Brizzolara and Burnstock 1991). 

The effect of SP on mesenteric arteries varies with species and experi- 
mental conditions. SP is very weak in relaxing isolated bovine mesenteric 
arteries (Axelsson et al. 1989), and in the rat isolated mesenteric vascular 
bed SP, NKA and NKB fail to cause any effect (Barja et al. 1983; Ka- 
wasaki etal. 1988, 1990a; D'Orl6ans-Juste etal. 1991; Li and Duckies 
1992). However, intravenous administration of SP to the rat (R6zsa and 
Jacobson 1989) and dog (Hallberg and Pernow 1975) increases mesenteric 
blood flow. A similar hyperaemia in the superior mesenteric artery of the 
dog (Melchiorri et al. 1977; R6sza et al. 1984, 1985) and pig (Schrauwen 
and Houvenaghel 1980) is seen after close arterial administration of SP. 
Provided that the endothelium is intact, isolated mesenteric arteries from 
the guinea pig are relaxed by SP (Bolton and Clapp 1986) as are human 
mesenteric artery preparations (T6rnebrandt et al. 1987). The SP-induced 
relaxation of isolated mesenteric arteries from the rabbit is mediated by 
NK 1 receptors located on the endothelium (Zawadzki et al. 1981; Stewart- 
Lee and Burnstock 1989). Unlike arteries, rabbit isolated mesenteric veins 
are contracted by SP (Regoli et al. 1984), and blood flow in rat mesenteric 
venules is reduced by the peptide (B.J. Zimmermann et al. 1991). The ta- 
chykinin-induced contraction of isolated mesenteric veins from the rat is 
mediated by NK 3 receptors (D'Orl6ans-Juste et al. 1991). 

Vasoactive intestinal polypeptide is able to dilate isolated mesenteric 
arteries from rat (KawasakJ et al. 1988) and humans (T0rnebrandt et al. 
1987), but VIP is less potent than CGRP (Kawasaki et al. 1988). Isolated 
bovine mesenteric arteries are only weakly relaxed by VIP (Axelsson et al. 
1989). lntravascular administration of VIP to the rat stimulates mesenteric 
blood flow (Holliger et al. 1983; R6zsa and Jacobson 1989), an effect that 
also takes place after close arterial administration of VIP to the dog (R6zsa 
et al. 1985). Cholecystokinin-octapeptide is another dilator of mesenteric 
arteries of dog (R6zsa et al. 1985) and rat (R6zsa and Jacobson 1989). So- 
matostatin and methionine-enkephalin relax human mesenteric artery pre- 
parations precontracted with prostaglandin Fza (TtJrnebrandt et al. 1987), 
whilst in the dog somatostatin reduces mesenteric blood flow (R6zsa et al. 
1984, 1985). 

4.2,1.5 Mediator Role of Sensory Neuropeptides in NANC Vasodilatation 

A mediator role of peptides was first envisaged by the finding that 
a-chymotrypsin, a proteolytic enzyme, inhibits the capsaicin-induced rela- 
xation of isolated mesenteric arteries from the rat (Manzini and Perretti 
1988). Because desensitization to CGRP (Han et al. 1990a), the CGRP 
antagonist CGRPs_37 (Han et al. 1990a; Kawasaki et al. 1991a) and a po- 
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lyclonal CGRP antibody (Han et al. 1990b) are able to reduce mesenteric 
vasodilatation evoked by periarterial nerve stimulation, it would seem that 
CGRP is a major NANC vasodilator transmitter in the mesenteric vascular 
bed of  the rat. Tachykinins do not seem to regulate the tone of  isolated 
mesenteric arteries of  the rat (Kawasaki et at. 1988) but appear to play a 
vasodilator role in the mesenteric arterial bed of  the dog in vivo. Combined 
administration of  antibodies to SP, VIP and cholecystokinin-octapeptide to 
the dog reduces the mesenteric vasodilator effect of capsaicin by 80%, the 
remaining vasodilatation being abolished by atropine (R6zsa et al, 1985). 

4.2.1.6 Interaction Between the Peptidergic Vasodilator 
and Sympathetic Vasoconstrictor System 

There is a mutual interaction between the NANC dilator and sympathetic 
constrictor neurons in the rat mesenteric arteries (Fig. 5). Low concen- 
trations of  noradrenatine, which are practically devoid of  a direct action on 
the vascular tone, i1~aibit the dilatation of  methoxamine-precontracted arte- 
ries in response to CGRP and electrical stimulation (Kawasaki et al. 1988), 
When endothelin, a peptide causing vasoconstriction independently of  the 
sympathetic nervous system, is used to precontract the preparations, peri- 
arterial nerve stimulation fails to produce significant dilatation after 
blockade of  the vasoconstrictor effects of endogenously released norad- 

enteric 

~ O P I O I D S  

afferent sympathetic 

C (-) NA 
t 

Dilatation Constriction 

Mesenteric artery 

Fig. 5. Inhibitory action of sympathetic and possibly enteric neurons on the activity of affe- 
rent NANC vasodilator nerve fibres in mesenteric arteries. Sympathetic neurons can inhibit 
the release of the vasodilator peptide CGRP by way of prejunctional c~ 2 adrenoceptors and 
receptors for NPY. Prejunctional la opioid receptors mediate the inhibitory effect of opioid 
peptides relased from enteric neurons. In addition, CGRP seems to inhibit the vasocon- 
strictor effect of noradrenaline (NA) by a postjunctional site of action. A possible participa- 
tion of somatostatin is not shown 



Peptidergic Sensory Neurons in the Control of Vascular Functions 91 

renaline with the ~ adrenoceptor antagonist prazosin (Kawasaki et al. 
1990b). Vasodilatation is observed only when, in addition, sympathetic 
nerve activity and transmission are blocked by a combination of  guanethi- 
dine and prazosin (Kawasaki et al. 1990b). Because concentrations of nor- 
adrenaline that do not alter vascular tone do not affect the vasodilator re- 
sponse to CGRP and acetytcholine (Kawasaki et al. 1991a), it seems as if 
endogenous noradrenaline, the release of which is prevented by guanethi- 
dine but not prazosin, inhibits NANC vasodilatation by a presynaptic site 
of  action (Fig. 5), possibly by suppressing the release of the NANC vaso- 
dilator transmitters (Kawasaki et al. 1990b). This presynaptic action of 
noradrenaline, which is mediated by o~ 2 adrenoceptors (Kawasaki et al. 
1990b), is shared by the sympathetic co-transmitter neuropeptide Y (NPY) 
(Fig. 5). Whereas the vasodilator effect of CGRP and acetylcholine is left 
unaltered, the NANC dilatation of methoxamine-precontracted mesenteric 
arteries is depressed by NPY (Kawasaki et al. 1991a; Li and Duckies 
1991a). This and the inhibitory effect of NPY on the stimulus-induced re- 
lease of CGRP from perimesenteric nerves indicate that NPY exerts a pre- 
synaptic inhibition of CGRP-containing vasodilator nerve endings in the 
rat mesenteric arteries (Kawasaki et al. 1991 a). 

Conversely, the NANC vasodilator nerves control the activity of sym- 
pathetic vasoconstrictor nerves. Defunctionalization of the vasodilator ner- 
ves by capsaicin pretreatment augments the vasoconstrictor effect of  exo- 
genous noradrenaline (Kawasaki et al. 1990a) and electrical stimulation of 
periarterial sympathetic neurons (Kawasaki etal. 1990a; Remak et al. 
1990; Li and Duckles t992) on isolated mesenteric arteries from the rat. 
Capsaicin pretreatment also augments sympathetically mediated contracti- 
ons of the rat hepatic artery (Brhtveit and Helle 1991). In contrast, the re- 
lease of  endogenous noradrenaline is not altered by defunctionalization of 
afferent neurons (Han et al. 1990b; Kawasaki et al. 1990a). Since CGRP 
fails to alter the release of noradrenaline but inhibits the vasoconstrictor re- 
sponse to sympathetic nerve stimulation or exogenous noradrenaline, it 
would seem that the NANC vasodilator nerves inhibit noradrenaline-evok- 
ed vasoconstriction by a postjunctional site of action (Han et al. 1990b; 
Kawasaki et al. 1990a). This is consistent with the observation that nor- 
adrenergic excitatory junction potentials are reduced during inhibitory 
junction potentials caused by NANC nerve stimulation (Meehan et al. 
1991). 

These interactions between capsaicin-sensitive vasodilator nerves and 
sympathetic neurons are also seen in the rat in vivo. Periarterial nerve sti- 
mulation reduces blood flow in the superior mesenteric artery but, despite 
continued nerve stimulation, peak vasoconstriction is soon followed by a 
recovery of blood flow (Remak et al. 1990) and byperaemia after cessation 
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of  nerve stimulation (Hottenstein et al. 1990). Both the initial autoregula- 
tory espace from sympathetic vasoconstriction (Remak et al. 1990) and 
post-stimulation hyperaemia (Hottenstein et al. 1990) are inhibited by ab- 
lation of  capsaicin-sensitive afferent neurons. Following defunctionaliza- 
tion of  sympathetic neurons with reserpine, periarterial nerve stimulation 
causes vasodilatation, which is also blocked by ablation of  sensory neu- 
rons (Remak et al. 1990). The sensory nerve-mediated autoregulatory es- 
cape response is the result of a peripheral interaction between vasodilator 
and vasoconstrictor nerve fibres (Remak et al. 1990). These observations 
re-affirm that the NANC vasodilator neurons control noradrenergic vast- 
constrictor tone by a postjunctional site of  action (Kawasaki et al. 1990a). 

Another type of interaction between afferent and sympathetic efferent 
neurons is portrayed by the findings that permanent ablation of capsaicin- 
sensitive aI/brent neurons can lead to an increase in the transmitter content 
and/or innervation density of  sympathetic nerve endings (Terenghi et al. 
1986; Luthman et al. 1989), whereas long-term ablation of  sympathetic 
neurons is followed by an increase in the peptidergic afferent innervation 
(Terenghi et al. 1986; Nielsch and Keen 1987; Aberdeen et al. 1990; Don- 
nerer et al. 1991). These reciprocal alterations may arise from the compe- 
tition of  the two populations of  neurons for nerve growth factor inasmuch 
as elimination of  one population will enhance the availability of  nerve 
growth factor for the surviving population of  neurons and thus promote 
their development (Terenghi et al. 1986; Nielsch and Keen 1987; Luthman 
et al. 1989; Aberdeen et al. 1990). Although it has not yet been examined 
whether this interaction also takes place in the mesenteric arteries, there is 
one report to show that enteric NPY-containing neurons may also compen- 
sate in part for a long-term loss of sympathetic NPY-containing axons 
(Aberdeen et al. 1991). Reciprocal interactions between afferent and sym- 
pathetic neurons may be responsible for the decreased mesenteric blood 
flow which is seen in adult rats treated with capsaicin as neonates 
(Hottenstein et al. 1991), which could reflect hyperactivity of sympathetic 
vasoconstrictor neurons. Basal mesenteric arterial tone may thus be deter- 
mined by a balance between NANC vasodilator and sympathetic vasocon- 
strictor activity. The observation that afferent neuron ablation in adult rats 
is followed by an increase in basal blood flow in the superior mesenteric 
artery (Hottenstein et al. 1991) is not yet explained, but it should be con- 
sidered that capsaicin-sensitive afferent neurons could drive sympathetic 
efferent neurons and that after ablation of the afferent input sympathetic 
vasoconstrictor tone is diminished and hence blood flow increased. 
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4.2.1.7 Interaction with Opioid Peptide- 
and Somatostatin-Containing Neurons 

Endogenous opioid peptides released by transmural electrical stimulation 
of rat mesenteric arteries inhibit NANC vasodilatation by activation of 
prejunctional ~t opioid receptors (Li and Duckles 1991b) although pharma- 
cological evidence indicates that prejunctional ~i opioid receptors are also 
present (Li and Duckles 1991a). Because the mesenteric nerves of the gui- 
nea pig carry enkephalin- and dynorphin-containing fibres originating 
from the enteric nervous system (Lindh et al. 1988), it may be hypothesi- 
zed that enteric neurons exert an inhibitory control over afferent nerve- 
mediated dilatation of mesenteric arteries (Fig. 5). The origin of somato- 
statin-containing nerve fibres in mesenteric nerves is complex, comprising 
afferent, sympathetic and enteric neurons (Lundberg et al. 1982; Costa and 
Furness 1984; Lindh et al. 1986, 1988; Vickers et al. 1990). The finding 
that somatostatin reduces mesenteric blood flow in the dog and diminishes 
the vasodilator effect of intraarterial capsaicin (R6zsa et al. 1984, 1985) 
may indicate that somatostatin modulates the vasodilator activity of pepti- 
dergic afferent nerve fibres. The ability of a somatostatin antibody to in- 
crease mesenteric blood flow by itself and to enhance the vasodilatation 
induced by capsaicin (R6zsa et al. 1985) supports this contention. 

4.2.1.8 Physiological and Pathophysiological Implications 

Vascular tone in the splanchnic bed is of significance for the whole car- 
diovascular system because the mesenteric resistance vessels are a primary 
target for the activity of sympathetic vasoconstrictor neurons (Greenway 
1983; Jodal and Lundgren 1989). There is evidence that an imbalance bet- 
ween afferent vasodilator and sympathetic vasoconstrictor neurons may be 
of pathophysiological relevance for the etiology of hypertension. In spon- 
taneously hypertensive rats the density of CGRP-containing nerve fibres 
around mesenteric arteries and the stimulus-induced release of CGRP from 
these fibres decrease with age when compared with that in normotensive 
Wistar-Kyoto rats (Kawasaki et al. 1990c, 1991b). These changes are as- 
sociated with progressive hypertension, impairment of NANC dilatation, 
and accentuation of sympathetic constrictor responses in isolated mesente- 
tic arteries from the rat (Kawasaki et al. 1990c, d, 1991b). The sensitivity 
of mesenteric arteries to the dilator action of CGRP, though, does not de- 
crease but rather increases with age (Kawasaki et al. 1990c). It could be 
argued, therefore, that malfunction of peptidergic vasodilator neurons in 
mesenteric arteries is a factor in hypertension, vascular tone being aug- 
mented both by a deficit in neurogenic vasodilatation and by diminished 
inhibition of sympathetic vasoconstrictor tone. 
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4. 2.2 Autonomic Reflex Regulation of Mesenteric Arterial Tone 

In addition to local regulation of the vessel tone, capsaicin-sensitive af- 
ferent neurons also participate in the reflex regulation of mesenteric blood 
flow in response to stimuli administered to the mucosal or serosal surface 
of the intestine. Thus, mesenteric hyperaemia takes place when the sensory 
neuron stimulant capsaicin is administered into the small intestinal lumen 
of the dog (R6zsa et al. 1986) and rat (R6zsa and Jacobson 1989; Hotten- 
stein et al. 1991) or when bile-oleate is given into the rat jejunum (R6zsa 
and Jacobson 1989). The responses to both capsaicin and bile-oleate are 
blocked by defunctionalization of capsaicin-sensitive afferent neurons and 
by local anaesthetics (R6zsa et al. 1986; R6sza and Jacobson 1989; Hot- 
tenstein et al. 1991), which indicates that they are the result of  a neural 
reflex, the precise pathways of which are not known. Mesenteric hyper- 
aemia due to intraluminal bile-oleate remains unaltered by blockade of 
muscarinic and nicotinic acetylcholine receptors, defunctionalization of  
noradrenergic neurons with reserpine, or antibodies to cholecystokinin- 
octapeptide and SP (R6sza and Jacobson 1989). While a participation of 
CGRP has not yet been tested, an antibody to VIP has been found to re- 
duce the mesenteric vasodilatation evoked by intraluminal bile-oleate 
(R6zsa and Jacobson 1989). In delineating the neural pathways of this 
hyperaemic response, "axon reflexes" have been proposed Io occur bet- 
ween intestinal and mesenteric collaterals of  afferent neurons in response 
to chemical stimulation of afferent nerve endings in the gut (R6zsa et al. 
1986; R6zsa and Jacobson 1989). This interpretation presupposes that VIP 
is a dilator transmitter of afferent nerve endings in the rat mesenteric ar- 
teries. However, although VIP may be expressed in some primary afferent 
neurons (G. Jancs6 et al. 1981; Kuo et al. 1985; Skofitsch et al. 1985b), 
there is no evidence that the upper gastrointestinal tract of  the rat is inner- 
vated by primary afferent neurons containing VIP (Green and Dockray 
1988). In the guinea pig, mesenteric arteries are densely supplied by peri- 
vascular nerve fibres containing V1P (Della et al. 1983) which originate 
from enteric neurons sending intestinofugal axons along mesenteric ar- 
teries (Lindh et al. 1988; Vickers et al. 1990) because they remain un- 
changed after chemical ablation of capsaicin-sensitive afferent and nor- 
adrenergic efferent neurons (Della et al. 1983). Given that the situation is 
similar in the rat, it may be inferred that bile-oleate-induced mesenteric 
hyperaemia is due to a reflex in which both primary afferent (R6zsa and 
Jacobson 1989) and VIP-containing enteric neurons are involved. The pos- 
sibility of this neural wiring is strengthened by the finding that primary 
afferent nerve fibres in the digestive tract can have synaptic contacts with 
enteric neurons (Neuhuber 1987). 



Peptidergic Sensory Neurons in the Control of Vascular Functions 95 

Intestinal warming by mucosal or serosal application of fluid at 45°C 
gives rise to both constrictor and dilator responses in the superior mesente- 
tic artery of the rat (R6zsa et al. 1988). These blood flow changes are ab- 
olished by intestinal application of a local anaesthetic and by defunctiona- 
lization of capsaicin-sensitive afferent neurons and seem to involve three 
different neural reflexes whose pathways run in the splanchnic but not va- 
gal nerves (R6zsa et al. 1988). The decrease in mesenteric blood flow, 
which is the prevailing response, arises from two reflexes in which capsai- 
cin-sensitive neurons form the afferent arc and sympathetic neurons the ef- 
ferent vasoconstrictor arc, the difference being that one reflex has a spinal 
or supraspinal reflex centre, whilst the other reflex appears to be relayed in 
the coeliac/superior mesenteric ganglion complex (R6zsa et al. 1988). The 
hyperaemic response to intestinal warming, which is seen after defunctio- 
nalization of sympathetic neurons with reserpine, is relayed by pathways 
distal to the coeliac and superior mesenteric ganglion complex and, as 
cholinergic neurons are not involved, has been proposed to result from an 
axon reflex within collaterals of  afferent neurons (R6zsa et al. 1988). The 
finding that systemic administration of an SP antibody inhibits both the va- 
soconstrictor and vasodilator reflex (R6zsa et al. 1988) suggests that SP 
serves as a transmitter between the afferent and efferent vasoconstric- 
tor/vasodilator neurons. However, the inactivity of SP on isolated mesente- 
ric arteries from the rat (Barja et al. 1983; Kawasaki et al. 1988, 1990a; 
D'Orl6ans-Juste et al. 1991) makes this peptide unlikely to be the vasodi- 
lator transmitter of  the mesenteric hyperaemic response to intestinal war- 
ming. The possible participation of the mesenteric vasodilator peptides 
CGRP and VIP, and of enteric vasodilator neurons remains to be examin- 
ed. 

4.3 Blood Flow in the Gastrointestinal Mucosa 

4. 3.1 NANC Vasodilatation in the Gastrointestinal Mucosa 

Electrical stimulation of the peripheral vagus nerve increases gastric 
mucosal blood flow, a response which in the cat (Martinson 1965) and rat 
(Morishita and Guth 1986) is in part mediated by cholinergic neurons and 
in part by NANC neurons. A NANC vasodilator response is also seen in 
the feline colon following electrical stimulation of the pelvic nerves (Hell- 
str6m et al. 1991). The NANC vasodilator fibres in the rat vagus nerves are 
sensitive to the neurotoxic action of capsaicin and hence of primary affer- 
ent origin (Thiefin et al. 1990). The effect of  vagus nerve stimulation is 
mimicked by application of the sensory neuron stimulant capsaicin to the 
rat stomach. Submucosal administration of  capsaicin causes dilatation of 
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submucosal arterioles (Chen et al. 1992), and intragastric administration of  
capsaicin enhances blood flow through the mucosa (I,imlomwongse et al. 
1979; Lippe et al. 1989b; Holzer et al. 1990a, 1991b; D.-S. Li et al. 1991; 
Matsumoto et al. 1991a, b; Takeuchi et al. 1991c; Leung 1992a). The hy- 
peraemic effect of  capsaicin in the rat gastric mucosa (Fig. 6) is mediated 
by afferent nerve fibres because it is absent in rats pretreated with a neu- 
rotoxic dose of capsaicin (Lippe et al. 1989b; Holzer et al. 1991b; Matsu- 
moto etal.  1991a; Takeuchi etal. 1991c; Leung 1992a). These fibres, 
however, do not run in the vagus nerves but pass through the coeliac/su- 
perior mesenteric ganglion complex and most likely originate from spinal 
dorsal root ganglia (D.-S. Li et al. 1991). The involvement of neurons is 
also indicated by the ability of tetrodotoxin, a blocker of  nerve conduction, 
to inhibit the gastric vasodilator response to intraluminal capsaicin (Holzer 
et al. 1991b), and the insensitivity of this effect to blockade of muscarinic 
acetylcholine receptors and of o~ and [3 adrenoceptors indicates the NANC 
nature of the participating neurons (Lippe et al. 1989b). Indomethacin has 
been reported to inhibit the vasodilator effect of capsaicin in the rat gastric 
mucosa (TakeucN et al. 1991c), but it is not clear whether this result points 
to an involvement of vasodilator prostanoids (prostacyclin) because hyper- 
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aemia-inducing doses of capsaicin fail to alter the formation of prostanoids 
in the rat gastric mucosa (Holzer et al. 1990a). 

Other regions in which capsaicin augments blood flow include the mu- 
cosa of the rat colon (Leung 1992b) and the mucosa and muscle of the 
rabbit oesophagus (Bass et al. t991). As in the stomach, the capsaicin-in- 
duced hyperaemia in the rat colon (Leung 1992b) and rabbit oesophagus 
(Petersen et al. 1991b) depends on an intact sensory innervation of the tis- 
sue. In the rabbit oesophagus, however, both vagal and spinal afferent neu- 
rons participate in the hyperaemic response to capsaicin (Petersen et al. 
1991b) which remains unaltered by indomethacin (Petersen et al. 1991a). 

Afferent neurons are not only involved in the hyperaemic response to 
capsaicin but also play a role in the pathophysiological regulation of blood 
flow in the rat gastrointestinal mucosa. Thus, the hyperaemic response of 
the rat gastric mucosa to acid back-diffusion (Holzer et al. 1991a) or irrita- 
tion with hypertonic saline (Matsumoto et al. 1991b) and the vasodilator 
response of the rat colonic mucosa to irritation with acetic acid (Leung 
1992b) are mediated by capsaicin-sensitive afferent neurons. The increase 
in gastric mucosal blood flow evoked by intracisternal injection of a thyro- 
trophin-releasing hormone (TRH) analogue depends in part on capsaicin- 
sensitive afferent nerve fibres in the vagus nerves (Raybould et al. 1990). 

4.3.2 Release of Sensory Neuropeptides in the .Gastrointestinal Tract 

Stimulation of peptidergic neurons in the digestive system leads to the 
release of bioactive peptides, but it is sometimes difficult to ascertain 
whether the peptides originate from intrinsic enteric, extrinsic afferent or 
extrinsic autonomic neurons. Thus, stimulation of the cat's vagus nerves 
results in the appearance of SP in the lumen of the stomach (Uvn~is-Wal- 
lensten 1978) and upper small intestine (Gr/3nstad et al. 1985) and in in- 
creased plasma levels of SP in the portal vein blood (Gr0nstad et al. 1983). 
A test meal is similarly able to increase the concentrations of SP in the je- 
junal lumen and peripheral blood of the dog (Ferrara et al. 1987). Electri- 
cal stimulation of the pelvic nerves, mechanical stimulation of the anus, 
and distension of the rectum leads to a release of SP and NKA into the 
bloodstream of the cat (Hellstr0m et al. 1991). The source of SP and NKA 
has not been determined in these experiments. 

Capsaicin can be used to explore peptide release from sensory nerve fi- 
bres since this drug fails to release SP from enteric neurons of the guinea 
pig small intestine (Holzer 1984), and ablation of capsaicin-sensitive affe- 
rent neurons does not inhibit peristalsis-associated release of SP from ente- 
ric neurons (Donnerer et al. 1984). Intraarterial infusion of capsaicin cau- 
ses release of SP into the vascular bed of the isolated guinea pig small in- 
testine (Donnerer et al. 1984) and rat stomach (Kwok and McIntosh 1990). 
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Intravenous administration of capsaicin to the guinea pig in vivo is like- 
wise tollowed by the appearance of SP in the gastric lumen, which is in 
keeping with the ability of capsalcin to release SP from the isolated guinea 
pig stomach (Renzi et al. 1988) and gallbladder (Maggi et al. 1989b). In 
contrast, capsaicin fails to release SP from the isolated rat stomach but in- 
creases the release of NKA (Renzi et al. 1991). The effect of capsaicin to 
induce tachykinin release is abolished after defunctionalization of capsai- 
cin-sensitive neurons (Renzi et al. 1988, 1991; Maggi et al. 1989a, b; Gep- 
petti et al. 1991). 

Stimulation of primary afferent nerve endings by capsaicin is very ef- 
fective in releasing CGRP from isolated tissues of the rat stomach 
(Geppetti et al. 1991; Ren et al. 1991; Renzi et al. 1991). Lowering the pH 
of the supeffusing medium from 7.4 to 6 causes a similar release of CGRP 
(Geppetti et al. 1991), and the effects of  both capsaicin and acidification 
are abolished by defunctionalization of capsaicin-sensitive primary affe- 
rent neurons. Peptone is also able to release CGRP from the isolated mu- 
cosa/submucosa of the rat gastric antrum (Manela et al. 1991). Intraarterial 
administration of capsaicin (Gray et al. 1989; Holzer et al. 1990b; Chiba 
et al. 1991), dibutyryl cyclic AMP or theophylline (Inui et al. 1989) leads 
to release of  CGRP into the vascular bed of the perfused rat stomach. A 
capsaicin-induced release of CGRP from primary afferent neurons is also 
seen in the isolated gallbladder of the guinea pig (Maggi et al. 1989b) and 
in the muscle coat of the isolated rabbit colon (Mayer et al. 1990). In 
contrast, capsaicin fails to augment the release of CGRP from the isolated 
human small intestine but is able to evoke release of VIP (Maggi et al. 
1989a). Electrical field stimulation and administration of caffeine augment 
the release of CGRP from the isolated rat ileum, whereas veratridine and 
potassium depolarization are without effect (Belai and Burnstock 1988). 

4.3.3 Neuropeptide Receptors on Gastrointestinal Blood Vessels 

Autoradiographically demonstrable binding sites for tachykinins are sparse 
on vessels of the digestive tract. Submucosal arterioles and venules in the 
human and canine gastrointestinal tract express only a low concentration 
of NK 1 receptor sites, wNlst NK 2 and NK 3 binding sites are totally absent 
from gastrointestinal blood vessels (Gates et al. 1988; Mantyh et al. 1988a, 
b, 1989). A small number of NK] binding sites are also seen on large, but 
not small, blood vessels of  the guinea pig ileum (Butcher and Bornstein 
1988). 

Conversely, CGRP receptors are densely distributed over blood vessels 
in the upper gastrointestinal tract of the dog, CGRP-o~ binding sites abound 
on medium-sized and small arteries and on arterioles in the submucosa and 
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mucosa of the oesophagus, stomach, and duodenum, where they are ex- 
pressed on both smooth muscle (tunica media) and endothelium (Gates 
et al. 1989). In contrast, CGRP-o~ binding sites are virtually absent from 
vessels in the jejunum and the more distal intestine of the dog. Unlike 
lymph nodules and lymph nodes, veins and venules do not exhibit binding 
sites for CGRP throughout the canine digestive system (Gates et al. 1989). 
Low levels of CGRP-binding sites are found in the submucosa of the hu- 
man colon (Mantyh et al. 1989). In the rat high-affinity binding sites for 
CGRP occur throughout the gastrointestinal tract (Sternini et al. 1991a). 
They are especially numerous in the smooth muscle and endothelium of  
arteries and arterioles of the proximal small intestine (Sternini et al. 
1991a). 

Vasoactive intestinal polypeptide receptors are present in the small in- 
testinal mucosa of the rat and rabbit (Sayadi et al. 1988) and on the smooth 
muscle of submucosal arterioles throughout the human gastrointestinal 
tract (R.P. Zimmerman et al. 1989). 

4.3.4 Effects of Sensory Neuropeptides on Blood Flow 
in the Gastrointestinal Mucosa 

The effects of SP on blood flow in the gastrointestinal tract are subject to 
species and regional differences. Intravenous administration of  SP to the 
dog increases blood flow in the stomach (Yeo et al. 1982b) and small in- 
testine (Burcher et al. 1977; Yeo et al. 1982b). Similarly, intraluminal ap- 
plication of SP stimulates mucosal but not muscular blood flow in the fe- 
line jejunum (Yeo et al. 1982a; Gr6nstad et al. 1983, 1986), an effect that 
does not involve neural conduction, histamine, prostaglandins, acetylcho- 
line, noradrenaline or adrenaline (Gr6nstad et al. 1986). Close arterial infu- 
sion of NKA and SP to the feline colon leads to a hyperaemic response 
that is likewise independent of nerve conduction and cholinergic trans- 
mission (Hellstr6m et al. 1991). The finding that NKA is more potent than 
SP in increasing blood flow in the cat's colon may suggest that NK 2 recep- 
tors mediate the vasodilator effect of  tachykinins (Hellstr6m et al. 1991), 
SP-induced arteriolar dilatation is also seen in the guinea pig isolated small 
intestine (Galligan et al. 1990). In contrast, SP and NKA fail to alter mu- 
cosal blood flow in the rat stomach (Yokotani and Fujiwara 1985; Holzer 
and Guth 1991), whilst SP can reduce gastric mucosal blood flow stimu- 
lated either by bethanechol or vagal nerve stimulation (Yokotani and Fuji- 
wara 1985). 

Intravenous administration of human CGRP-o~ and CGRP-13 to anaes- 
thetized rabbits potently stimulates mucosal blood flow in the stomach, 
CGRP-o~ being slightly more active than CGRP-[3 (Bauerfeind et al. 1989). 
The vasodilator acticity of CGRP in the stomach is considerably more pro- 
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nounced than in the duodenum in which only CGRP-oc, but not CGRP-13, 
causes mucosal hyperaemia (Bauerfeind et al. 1989). A similar regional 
heterogeneity is seen in the guinea pig in which rat CGRP-oc is a potent 
dilator of the isolated gastroepiploic artery (Uddman et al. 1986) but fails 
to dilate submucosal arterioles in the small intestine (Galligan et al. 1990). 
Likewise, intravenous (DiPette etal. 1987; Lippe et al. 1989a; Br~tveit 
et al. 1991) or close arterial (Holzer and Guth 1991, D.-S. Li et al. 1991; 
Lippe and Holzer 1991) administration of rat CGRP-oc potently augments 
mucosal blood flow in the rat stomach whilst blood flow in the small and 
large intestine is not altered (Bffttveit et al. 1991). The hyperaemic activity 
in the rat stomach is in keeping with the ability of topically applied CGRP 
(0.1-10 nmol 1-1) to dilate submucosal arterioles in this organ (Chert et al. 
1992). The rise of mucosal blood flow induced by intraarterial CGRP-oc is 
blocked by CGRP8_37 (D.-S. Li et al. 1991) and by an inhibitor of NO 
synthesis (Lippe and Holzer 1991), which fits with an endothelium-de- 
pendent relaxant action of CGRP on precontracted arteries from the human 
stomach (Thom et al. 1987). Whether the vasodilator effect of CGRP in 
the digestive tract involves the release of secondary mediators such as pro- 
stacyclin (Crossman et al. 1987) and somatostatin (Dunning and Taborsky 
1987; Helton et al. 1989) remains to be explored. 

Vasoactive intestinal polypeptide is another neuropeptide that causes 
vasodilatation in the digestive system (Said and Mutt 1970). VIP-evoked 
relaxation of precontracted arteries from the human stomach requires an 
intact endothelium (Thom et al. 1987), and the dilator effect of VIP in 
submucosal arterioles of the guinea pig small intestine is attributed to the 
activation of enteric cholinergic vasodilator neurons (Galligan et al. 1990). 
Close arterial administration of VIP enhances mucosal blood flow in the 
canine stomach (Ito et al. 1988) and small intestine (Kachelhoffer et al. 
1974) and in the stomach of the rat (Holzer and Guth 1991). Somatostatin, 
a further peptide present in afferent nerve fibres, is known to reduce gas- 
trointestinal blood flow (see Jodal and Lundgren 1989) although the per- 
tinent reports are not consistent with each other (see Leung and Guth 
1985). 

4.3.5 Mediator Role of Sensory Neuropeptides 
in Gastrointestinal Blood Flow 

If sensory neuropeptides were to play a local role in mucosal vasodila- 
tation in the rat stomach, CGRP would be the prime candidate owing to its 
high vasodilator activity in this organ (Lippe et al. 1989a; Holzer and Guth 
1991; D.-S. Li etal. 1991; Lippe and Holzer 1991; Chen etal. 1992). In- 
deed, the dilator response of submucosal arterioles to topical capsaicin is 
inhibited by topical administration of a CGRP antagonist, CGRPs.37, 
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which indicates that the response is, at least in part, mediated by local re- 
lease of CGRP (Chen et al. 1992). This inference is strengthened by the 
observation that close arterial administration of the CGRP antagonist to the 
rat stomach also attenuates the mucosal hyperaemia caused by intragastric 
capsaicin (D.-S. Li et at. 1991). 

In the gastrointestinal tract of  small rodents most, if not all, VIP is 
derived from enteric neurons intrinsic to the gut (Della et at. 1983; Ekblad 
et at. 1985; Costa et al. 1986), and it remains to be shown whether VIP 
released from capsaicin-sensitive neurons as shown in the human small 
intestine (Maggi et al. 1989a) plays a role in the regulation of local blood 
flow. The significance, if any, of the vascular actions of somatostatin for 
sensory nerve-mediated control of gastrointestinal blood flow is not 
known. 

4.3.6 Pathways and Mediators of Gastric Mucosal Hyperaemia 
Due to Acid Back-Diffusion 

Acid back-diffusion through a disrupted gastric mucosal barrier causes a 
prompt increase in gastric mucosal blood flow (Cheung et al. 1975; Ritchie 
1975; Whittle 1977; Bruggeman et al. 1979; Starlinger et al. 1981; Oates 
1990). The organization of the gastric circulation requires submucosal 
arterioles to be dilated in order to increase mucosal blood flow (Guth et al. 
1989), which means that in the rat stomach the message of acid back-diffu- 
sion has to be transmitted over a 500-gm distance that separates the sur- 
face of the mucosa from submucosal arterioles. The finding that tetrodoto- 
xin blocks the hyperaemic response to acid back-diffusion (Holzer et al. 
1991a) indicates that communication between the acid-threatened surface 
mucosa and submucosal arterioles is accomplished by a neural pathway. 
Since defunctionalization of capsaicin-sensitive afferent neurons also 
blocks the response (Holzer et al. 1991a), it appears as if these neurons, 
which are particularly sensitive to H + ions (Bevan and Yeats 1991; Steen 
et al. 1992), monitor acid diffusing into the mucosal tissue. These chemo- 
sensitive nerve fibres originate from dorsal root ganglia (Raybould et al. 
1992). 

There are at least two different ways to explain the organization of  the 
neural pathways and mediators of the hyperaemic response to acid back- 
diffusion, in which cholinergic vasodilator neurons do not pa~cipate 
(Bruggeman et at. 1979; Holzer et al. 1991a). One model holds that the in- 
crease in blood flow results from an axon reflex (Fig. 7) between mucosal 
and submucosal collaterals of afferent neurons (Holzer et al. 1991a; D.-S. 
Li et al. 1992). Diffusion of acid into the tissue excites the mucosal bran- 
ches, after which an axon reflex enables nerve activity to be transmitted to 
branches around submucosal arterioles where release of peptides such as 
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CGRP will cause arteriolar dilatation (Fig. 7). Support for this concept 
comes from the findings that (a) acidification causes release of CGRP from 
rat gastric tissue (Geppetti et al. 1991); (b) CGRP is a potent vasodilator of 
arterioles in the rat gastric submucosa (Holzer and Guth 1991; D.-S. Li 
et al. 1991, 1992; Chen et al. 1992); (c) close arterial administration of the 
CGRP antagonist CGRPs_37 to the rat stomach attenuates the mucosal hy- 
peraemia caused by acid back-diffusion (D.-S. Li et al. 1992); and (d) the 
gastric mucosal vasodilator response to both CGRP (Lippe and Holzer 
1991) and acid back-diffusion (Lippe and Holzer 1992) involves endothe- 
lium-derived NO. 

However, this axon reflex model does not account for the finding that 
the rise of  blood flow due to acid back-diffusion relies on intact conduc- 
tion of nerve activity through afferent/efferent pathways in the splanchnic 
nerves (Fig. 8) and the coeliac/superior mesenteric ganglion complex 
(Holzer and Lippe 1992). As these pathways involve ganglionic transmis- 
sion through nicotinic acetylcholine receptors (Holzer and Lippe 1992), it 
appears as if acid-induced hyperaemia is the result of a proper autonomic 
reflex in which the relay between afferent and efferent neurons takes place 
in the central nervous system and the efferent pathway consists of pre- and 
postganglionic neurons (Fig. 8). CGRP is likely to participate as a trans- 
mitter of  the afferent neurons (Fig. 8) but, given its only localization in af- 
ferent nerve fibres of the rat stomach (Green and Dockray 1988), is unli- 
kely to be the efferent vasodilator transmitter. The identity of this trans- 
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Fig. 7, Gastric mucosal hyperaemia due to acid back-diffusion as the result of an axon 
reflex between mucosal and submucosal collaterals of an afferent nerve fibre. Acid 
diffusing into the superficiN mucosa activates the submucosal branch. Nerve activity is 
then transmitted to the submucosal branch which releases CGRP to activate the NO system 
causing arteriolar dilatation 
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Fig. 8. Gastric mucosal hyperaemia due to acid back-diffusion as the result of an autonomic 
reflex involving afferent as well as pre- and postganglionic efferent neurons. CGRP is the 
transmitter of the afferent neurons, whilst the identity of the efferent vasodilator transmitter 
is not known except that it causes arteriolar dilatation via activation of the NO system 

mitter which either is NO itself (see Moncada et al. 1991) or which causes 
vasodilatation via formation of NO (Lippe and Holzer 1992) remains to be 
determined. The finding that guanethidine pretreatment has no effect 
(Holzer and Lippe 1992) indicates that hyperaemia does not result from 
inhibition of noradrenergic sympathetic vasoconstrictor neurons. 

The autonomic reflex model of  acid-induced hyperaemia contrasts 
sharply with the axon reflex concept. The observation that acid back-diffu- 
sion increases blood flow not only in the gastric mucosa and submucosa 
but also in the coeliac and left gastric artery (P. Holzer, unpublished) indi- 
cates that hyperaemia is a response of the whole arterial tree supplying the 
stomach. This and a number of other points need to be considered in the 
further delineation of the neural pathways underlying the hyperaemic re- 
sponse to acid back-diffusion. First, the identity, projections and specific 
roles of all neurons involved in the hyperaemic reaction have to be deter- 
mined. Special attention ought to be drawn to the possibility Mat enteric 
neurons projecting to the splanchnic blood vessels and the coeliac ganglion 
(Della et al. 1983; Lindh et al. 1988) participate in the acid-induced in- 
crease in gastric blood flow. Second, the nature of the neurotransmitters 
and the sites at which these transmitters communicate need to be identi- 
fied. Thus, the site at which transmission via nicotinic acetylcholine re- 
ceptors (Holzer and Lippe 1992) participates in the acid-induced hyper- 
aemia is not clear, because ganglionic transmission may take place either 
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in the coeliac ganglion or within the enteric nervous system. A similar un- 
certainty applies to the transmitter role of CGRP which may act as an affe- 
rent transmitter in the spinal cord, mediate afferent/sympathetic or affe- 
rent/enteric communication in the coeliac ganglion and/or act as a vasodi- 
lator transmitter in the gastric circulation (D.-S. Li et al. 1991, 1992). In 
addition, NO and/or VIP released from enteric neurons ought to be consid- 
ered as possible vasodilator transmitters of  the hyperaemic response to 
acid back-diffusion. Third, the role of the splanchnic nerves, transection of 
which abolishes the acid-induced hyperaemia (Holzer and Lippe 1992), 
needs to be defined. It is conceivable that the acid-induced increase in gas- 
tric blood flow is relayed by a peripheral neural circuitry which depends 
on an excitatory or inhibitory input from splanchnic nerve fibres. 

Histamine H 1 receptors appear to play some role in the hyperaemic re- 
sponse to acid back-diffusion in the dog (Bruggeman et alo 1979) but not in 
the rat (Holzer et al. 1991a). Prostaglandins have been ruled out as media- 
lors of  gastric mucosal hyperaemia due to acid back-diffusion (Lippe and 
Holzer 1992), whilst the inhibitory effect of morphine may reflect the pre- 
sence of  opioid receptors on the neural pathways engaged in the vasodila- 
tor response (Holzer et al. 1991 a). 

4. 3.7 Interaction with Other Vasodilator 
and with Vasoconstrictor Systems 

There is indirect evidence that afferent nerve-dependent vasodilator me- 
chanisms interact with other vasodilator and vasoconstrictor systems in the 
gastrointestinal mucosa. Endothelium-derived NO represents an important 
vasodilator system in the rat gastric mucosa, as inhibition of  NO bio- 
synthesis is followed by gastric mucosal vasoconstriction (Pique et al. 
1989; Walder et al. 1990; Lippe and Holzer 1992), Afferent neurons and 
the NO system appear to exert a mutual control of  mucosal blood flow be- 
cause the vasoconstriction induced by blockade of NO synthesis is ampli- 
fied after capsaicin-induced defunctionalization of afferent neurons (Tep- 
perman and Whittle 1992). 

Interactions between afferent neurons and sympathetic neurons have not 
yet been explored in the gastrointestinal mucosa except that defunctionali- 
zation of  capsaicin-sensitive afferent neurons attenuates the autoregulatory 
escape reaction from adrenaline-induced vasoconstriction in the rat gastric 
mucosa (Leung 1992a), which suggests that vasoconstriction is counter- 
acted by afferent nerve-mediated vasodilatation. A similar mode of in- 
teraction may be responsible for the finding that the vasoconstrictor effect 
of intravenous platelet-activating factor in the rat gastric mucosa is accen- 
tuated by prior defunctionalization of capsaicin-sensitive afferent neurons 
(Pique et al. 1990). 
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4.3.8 Cardiac and Blood Pressure Responses to Stimulation 
of Visceral Afferent Neurons 

As in the skin and other tissues, capsaicin-sensitive afferent nerve fibres in 
the gastrointestinal tract participate in the autonomic reflex regulation of 
the cardiovascular system. Activation of visceral afferent fibres causes 
sympathetically mediated hypertension and tachycardia in the dog (Long- 
burst et al. 1980; Pitetti et al. 1988) and cat (Ordway and Longhurst 1983; 
Ordway et al. 1988). In the rat, activation of capsaicin-sensitive afferent 
nerve fibres by distension of the small intestine and trauma or chemical 
irritation of the peritoneum leads to an initial fall and a subsequent rise of 
blood pressure (Lembeck and Skofitsch 1982; Holzer et al. 1992). The 
initial fall of blood pressure involves noradrenergic sympathetic neurons 
(Holzer et al. 1992). The extent to which mesenteric and gastrointestinal 
circulation is affected by these cardiovascular reactions is not known. 

4.3.9 Physiological and Pathophysiological Implications 

4. 3.9.1 Protection of Gastrointestinal Mucosa from Injury 

Maintaining or increasing mucosal blood flow is thought to be a central 
element in the protection of  the gastrointestinal mucosa from endogenous 
and exogenous injurious factors (see Guth et al. 1989; Oates 1990). Sen- 
sory nerve-mediated mucosal hyperaemia in the gastrointestinal tract is li- 
kely to play a similar role, and there is twofold experimental evidence for 
this contention. 

First, ablation of capsaicin-sensitive afferent neurons causes aggrava- 
tion of experimentally induced lesion formation in the gastric (Szolcs~inyi 
and Barth6 1981; Evangelista et al. 1986; Holzer and Sametz 1986; Es- 
plugues et al. 1989; Esplugues and Whittle 1990; Szolcs~inyi 1990b; Chiba 
et al. 1991; Holzer et al. 1991a; Takeuchi et al. 1991a; Whittle and Lopez- 
Belmonte 1991; Raybould et al. 1992), duodenal (Maggi et al. 1987b; Ta- 
keuchi et al. 1991b) and colonic (Evangelista and Meli 1989; Eysselein 
et al. 1991b) mucosa. 

Second, intragastric administration of capsaicin, to stimulate sensory 
nerve fibres, is able to protect against experimentally imposed lesions in 
the rabbit oesophageal (Bass et al. 1991), rat gastric (Szolcs~inyi and Barth6 
1981; Holzer and Lippe 1988; Holzer et al. 1989, 1990a, 1991b; Robert 
et al. 1990; Szolcs~inyi 1990b; Williamson et al. 1990; Chiba et al. 1991; 
Peskar et al. 1991; Takeuchi et al. 1991c; Uchida et al. 1991) and rat distal 
colonic (Endoh and Leung 1990) mucosa. The protective effect of capsai- 
cin is absent after ablation of capsaicin-sensitive afferent neurons (Holzer 
and Lippe 1988; Holzer et al. 1991b; Uchida et al. 1991). It needs to be 
considered, though, that the effects of sensory neuron manipulation on the 
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protection of gastrointestinal mucosa depend on the type of injurious sti- 
mulus (Evangelista and Meli 1989; Robert et al. 1990) and gastrointestinal 
region (Holzer and Sametz 1986; Endoh and Leung 1990) unter study. 

Several factors indicate a close relationship between afferent nerve-me- 
diated mucosal hyperaemia and protection in the rat stomach. 

1. There is a good correlation between the doses of capsaicin which in- 
crease blood flow and those which protect from ethanol injury (Fig. 6; 
Holzer et al. 1991b). 

2. Both the protective (Chiba et al. 1991) and vasodilator (D+-S. Li et al. 
1991) effect of intrahiminal capsaicin on the rat gastric mucosa is 
blocked by the CGRP antagonist CGRPs_3?. 

3. Like defunctionalization of capsaicin-sensitive afferent neurons, 
CGRPs_37 significantly enhances the formation of mucosal damage 
caused by ethanol, indomethacin (Chiba et al. 1991) or acid back-diffu- 
sion (D.-S. Li et al. 1992). This finding is paralleled by exacerbation of 
ethanol-induced gastric mucosal damage in rats actively immunized 
against CGRP (Forster and Dockray 1991)+ 

4. CGRP, which is a potent vasodilator in the rat stomach, also potently 
prevents experimental lesion formation in the stomach (Maggi et al. 
1987c; Kolve and Tach6 1989; Lippe et al. 1989a; Robert et al. 1990; 
Whittle and Lopez-Belmonte 1991). 

5. The interaction between afferent neurons and the NO system in the 
control of  gastric blood flow is matched by a similar interaction in gas- 
tric mucosal protection. Like capsaicin, NO is able to protect from gas- 
tric mucosal injury (MacNaughton et al. 1989), and blockade of NO 
biosynthesis inhibits the protective effect of capsaicin in the rat gastric 
mucosa (Peskar et al. 1991). Neither ablation of capsaicin-sensitive a f  
ferent neurons (Holzer and Sametz 1986; Holzer and Lippe 1988; Es- 
plugues et al. 1989; Esplugues and Whittle 1990; Whittle et al. 1990; 
Whittle and Lopez-Belmonte 1991) nor inhibition of NO synthesis 
(Hutcheson et al. 1990; Whittle et al. 1990) alone causes gastrointesti- 
nal mucosal damage. When, however, both vasodilator systems are eli- 
minated, extensive damage develops in response to challenge of the ga- 
stric mucosa with acid (Whittle et al+ 1990). A smiliar interaction exists 
between afferent neurons in the rat gastric mucosa and the vasocon- 
strictor endothelin- 1 (Whittle and Lopez-Belmonte 1991). 

In contrast to CGRP, the tachykinins SP and NKA fail to alter mucosal 
blood flow in the rat stomach, and subcutaneously administered SP is un- 
able to prevent gastric damage (Evangelista et al. 1989; Robert et al. 
1990), whilst intraperitoneal SP even enhances experimental gastric injury 
(Karmeli et al. 1991). The mechanism of the gastroprotective action of 
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subcutaneously administered NKA (Evangelista et al. 1989) is not clear, 
but there is additional eivdence that tachykinins may be engaged in certain 
processes of gastric mucosal protection (Williamson et al. 1990). 

The protective effect of afferent nerve stimulation by intraluminal 
capsaicin in the rat duodenum is associated with an increase in alkaline se- 
cretion (Takeuchi et al. 1991b), whilst a possible relationship to mucosal 
blood flow has not yet been determined. 

To put these findings into proper pathophysiological perspective, it 
needs to be considered that capsaicin-sensitive afferent neurons represent 
probes that monitor a variety of potentially harmful chemicals including 
hydrochloric acid (Clarke and Davison 1978; Cervero and McRitchie 
1982; Martling and Lundberg 1988; Forster et al. 1990; Bevan and Yeats 
1991; Geppetti et al. 1991; Holzer et al. 1991a; Takeuchi et al. 1991b; 
Holzer and Lippe 1992; D.-S. Li et al. 1992; Raybould et at. 1992; Steen 
et al. 1992), acetic acid (Leung 1992b), hypertonicity (Forster et al. 1990; 
Matsumoto et al. 1991b; Tramontana et al. 1991), the bacterial peptide N- 
formyl-methionyl-leucyl-phenylalanine (Giuliani et at, 1991), platelet-ac- 
tivating factor (Rodrigue et al. 1988; McCusker et al. 1989; Pique et al. 
1990; Sestini et at. 1990; Spina et al. 1991), endothelin-1 (Whittle and Lo- 
pez-Belmonte 1991) and other factors such as prostanoids, leukotrienes 
and bradykinin (see Maggi 1991; Rang et al. 1991). Recognition of these 
factors activates the neurons which, in turn, will call for mucosal hyper- 
aemia and other reactions designed to prevent pending injury. Dysfunction 
of this neural emergency system is expected to weaken the resistance of 
the tissue to injurious stimuli and may thus be an aetiological factor in 
gastroduodenal ulcer disease. 

4.3.9, 2 Inflammatory Bowel Disease 

Experimental colitis in the rat induced by trinitrobenzene sulphonic acid is 
worsened after ablation of capsaicin-sensitive afferent neurons, whereas 
colitis induced by ethanol or acetic acid remains unaffected (Evangelista 
and Meli 1989). Conversely, intrahiminal capsaicin is able to reduce acetic 
acid-induced lesions in the distal, but not proximal, colon of the rat (Endoh 
and Leung 1990). A role of peptidergic neurons in colonic pathophysio- 
logy is further indicated by the findings that tissue levels of CGRP and SP 
in the rabbit colon decrease during the development of formaldehyde-im- 
mune complex colitis (Eysselein et al. 1991a) and that diminished CGRP 
concentrations are found in colonic muscle extracts of patients suffering 
from inflammatory bowel disease (Eysselein et al. 1991b). Inflammatory 
bowel disease is also associated with a dramatic up-regulation of SP recep- 
tors on submucosal arterioles and venules which normally express only a 
low concentration of SP receptor sites (Mantyh et ai. 1988a, 1989). These 
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findings suggest that SP, possibly released from sensory nerve endings, 
may be of relevance in the pathophysiology of the disease, although the 
precise functional implications of SP receptor up-regulation have not yet 
been determined. A widely accepted hypothesis for the pathogenesis of  in- 
flammatory bowel disease holds that bacterial or dietary antigens enter the 
tissue through an abnormally leaky epithelium (see Wallace 1990). Capsai- 
cin-sensitive afferent neurons may play a role in spotting these threats and 
calling for appropriate protective measures as they are sensitive to the bac- 
terial peptide N-formyl-methionyl-leucyl-phenylalanine (Giuliani etal.  
1991) and the staphylococcal enterotoxin B (Alber et al. 1989), and partici- 
pate in tissue reactions to allergens (Saria et al. 1983; Lundblad et al. 1987; 
Wallengren and M611er 1988; McCusker et al. 1989; Sestini et al. 1990). 

4.4 Permeability in Splanchnic Blood Vessels 

Intragastric capsaicin fails to alter vascular permeability in the rat stomach 
as examined by the Evans blue leakage technique (Holzer and Lippe 1988; 
Takeuchi et al. 1990). This observation is consistent with the finding that 
electrical stimulation of the peripheral vagus, splanchnic and pelvic nerves, 
respectively, fails to increase vascular permeability in the rat stomach, and 
small and large intestine down to the rectum (Lundberg et al. 1984a), 
although antidromic stimulation of lumbar dorsal roots produces plasma 
protein leakage in the distal large intestine (Szolcs~inyi 1988). 

In contrast, protein extravasation is clearly seen in the oesophagus, bile 
system and mesentery, and there are sharp demarcation lines between the 
tissues in which electrical nerve stimulation elicits protein leakage and 
those in which is does not (Lundberg et al. 1984a). Defunctionalization of 
capsaicin-sensitive afferent neurons abolishes the exudative responses to 
electrical nerve stimulation in all tissues (Lundberg et al. 1984a). Activa- 
tion of  afferent nerve endings by intravenous administration of capsaicin 
increases vascular permeability only in those tissues in which electrical 
nerve stimulation is active (Saria et al. 1983; Lundberg et ai. 1984a), ex- 
cept the duodenum in which some extravasatJon in response to intralumi- 
hal capsaicin is discernible (Maggi et al. 1987b). 

A putative mediator role of SP in afferent nerve-mediated protein 
leakage can be deduced from the finding that intravenous administration of 
SP increases vascular permeability roughly in only those gastrointestinal 
tissues in which nerve stimulation by electrical impulses or intravenous 
capsaicin is also active (Saria et al. 1983; Lundberg et al. 1984a). Thus, the 
stomach, and small and large intestine down to the rectum do not respond 
to SP (Saria et al. 1983; Lundberg et al. 1984a; Maggi et al. 1987b), whilst 
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SP-induced plasma protein leakage is clearly seen in oesophagus, bile sys- 
tem, mesentery and anal mucosa (Saria et al. 1983; Lundberg et al. 1984a). 
SP also enhances the adhesion of leukocytes to the endothelium of rat 
mesenteric venules but does not stimulate their emigration (B.J. Zimmer- 
man et al. 1991). 

5 Summary and Open Questions 

5.1 Control of Vessel Diameter and Permeability 

The experimental data surveyed here identify a group of fine primary 
afferent neurons to be involved in the control of cutaneous and splanchnic 
microcirculation and thereby disclose a significant, new aspect for the 
neural regulation of tissue blood flow and vascular permeability. These 
data also signify an important target for the development of drugs and the- 
rapeutic strategies in the treatment of vascular dysfunction. Pharmacologi- 
cally characterized by their sensitivity to capsaicin, these afferent neurons 
take part in the autonomic reflex control of vascular functions but in addi- 
tion are able to directly regulate diameter and permeability of small blood 
vessels by way of release of vasoactive peptide mediators from their peri- 
pheral endings. In this function peptidergic afferent neurons are now con- 
sidered in many tissues to be identical with NANC vasodilator neurons. 
Given their sensitivity to noxious stimuli, peptide release is induced by 
tissue irritation and/or trauma, and afferent nerve-mediated arteriolar dila- 
tation and increase in venular permeability are the the prime elements of 
the inflammatory tissue reaction ("neurogenic inflammation"). It is not yet 
clear, however, whether the spatially separated processes of arteriolar dila- 
tation and venular exudation are regulated by the same or different nerve 
fibres. 

There is multiple evidence to implicate CGRP and SP as the principal 
mediators of  perivascular NANC neurons. 

1. These peptides are localized in afferent nerve endings supplying cu- 
taneous and visceral blood vessels, and the bulk of peptides synthesized 
in the neuronal somata are transported to the peripheral nerve endings 
(Brimijoin et al. 1980; Keen et al. 1982). 

2. Following stimulation, CGRP and SP are released from the peripheral 
nerve endings of afferent neurons. 

3. These peptides are vasoactive substances. Vasodilatation is caused by 
both CGRP and SP, whilst vascular permeability is increased by SP 
only. However, there are positive and negative interactions between the 
vascular actions of CGRP, SP and other inflammatory mediators. 
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4. Immunoneutralization and peptide receptor antagonism attenuate the 
vasodilator and exudative responses to afferent nerve stimulation. 

Afferent nerve-mediated control of vascular effector systems is not con- 
fined to skin and gastrointestinal tract but is operative in a variety of other 
tissues, notably the respiratory system (see Lundberg and Saria 1987; Bar- 
nes et al. 1988) and the cerebral vascular bed (see Sakas et al. 1989; 
Edvinsson et al. 1990). 

5.2 Species and Tissue Diversity in the Local Vascular Functions 
of Peptidergic Afferent Neurons 

Afferent nerve stimulation in the rat increases vascular permeability in the 
skin but fails to do so in the stomach and most regiorks of the small and 
large intestine, whereas vasodilatation is induced in both skin and 
splanchnic vascular bed. Hyperaemia is also seen in the porcine and hu- 
man skin, whereas signs of increased vascular permeability (leakage of 
plasma proteins, oedema) in response to capsaicin-induced stimulation of 
afferent neurons are weak or absent. There are two principal explanations 
for this species and tissue diversity, differences in pre- and/or postjunctio- 
nal mechanisms. Differences in prejunctional mechanisms are reflected by 
pathway-specific patterns of coexisting peptides in afferent neurons (Costa 
et al. 1986; Gibbins et al. 1987a, b; O'Brien et al. 1989) and by different 
chemical coding of afferent neurons in different species. As a conse- 
quence, the vascular responses to afferent nerve stimulation will vary ac- 
cording to the mixture of vasoactive peptides released from the nerve end- 
ings and the vascular actions caused by the peptides. The net vascular re- 
sponse will also be determined by interactions between the released pepti- 
des themselves. These considerations imply that identification of the parti- 
cipating transmitters and elucidation of the dynamics of co-transmission 
will be indispensable for a full appreciation of the vascular control func- 
tion of afferent neurons. 

Species and tissue differences in postjunctional mechanisms relate to 
disparities in the effector systems. Different target tissues possess different 
densities of receptors for vasoactive peptides as is particularly evident in 
the gastrointestinal tract. The high vasodilator activity of CGRP in the 
stomach may be related to the high density of vascular CGRP receptors 
present in this region (Gates et al. 1989). Conversely, the inconsistent acti- 
vity of tachykinins in increasing the diameter and permeability of gas- 
trointestinal blood vessels is likely to be accounted for by the scarcity of 
autoradiographically demonstrable tachykinin binding sites on vessels of  
the digestive system (Burcher and Bornstein 1988; Gates etal. 1988; 
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Mantyh et al. 1988a, b, 1989). Other postjunctional differences, which 
have not yet been defined in sufficient detail, concern the existence of dif- 
ferent peptide receptor types, different stimulus-effect coupling mecha- 
nisms, different secondary mediators and different peptide inactivation 
mechanisms. The available evidence indicates that it is primarily NK 1 and 
CGRP 1 receptors that mediate the direct effects of  SP and CGRP on the 
vascular system, but this contention needs to be confirmed by the use of 
receptor-selective tachykinin and CGRP antagonists. 

5.3 Interaction with Other Vasoactive Systems 

The peptides released from afferent nerve terminals influence vascular 
effector systems both by an action on the vessels themselves and by in- 
teraction with other microvascular control systems. It is important to re- 
alize that the dynamics of this interactions change with time. The initial 
stages of the vascular responses to afferent nerve-derived peptides result 
primarily from a direct action on the vascular endothelium and muscle. 
Since there is no proof for the existence of specialized neuroeffector junc- 
tions, the peptides have to diffuse some distance before they reach their re- 
ceptors on the effector cells. It has only recently been appreciated that the 
vascular endothelium and its autacoid NO play a very important role in 
setting vascular tone according to the physiological needs of the perfused 
tissue (Pohl 1990; Moncada et al. 1991). This endothelial vasodilator sys- 
tem appears to be an important target of  afferent nerve-derived vasoactive 
peptides. Another vascular control system with which afferent vasodilator 
neurons are in mutual interaction are sympathetic vasoconstrictor neurons. 

The more protracted stages of the vascular responses to afferent nerve- 
derived peptides involve additional intra- and extravascular processes. Ex- 
travascularly, SP and other sensory neuropeptides are capable of activating 
mast cells to release histamine and other factors. Intravascularly, leucocy- 
tes (particularly neutrophil granulocytes, but also monocytes and lym- 
phocytes) are stimulated to adhere to the endothelium and to emigrate into 
the surrounding tissue. Furthermore, activated monocytes will release 
prostaglandin, thromboxane and cytokine mediators (Lotz et al. 1988; 
McGillis et al. 1990). Some of the mediators released from mast cells and 
monocytes are vasoactive by themselves and, in addition, can reactivate af- 
ferent nerve endings and thereby provide a positive feedback loop which 
reinforces the vascular actions of afferent nerve stimulation. Other factors 
such as opioid peptides released from immunocytes counteract this rein- 
forcement of inflammatory processes. 
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Physiological functioning of the vascular system in the long term de- 
pends on the balanced interaction between all vascular control systems. 
Imbalances in these interactions, e.g. between the afferent vasodilator and 
sympathetic vasoconstrictor neurons or between afferent neurons and 
components of the immune system, are liable to cause pathological chan- 
ges in the vascular system and in mechanisms depending on the vascular 
system. 

5.4 Pathophysiological Relevance of Afferent Neurons 
in the Control of Vascular Effector Systems 

5.4.1 Dual Role in the Maintenance of Homeostasis 

The involvement of peptidergic afferent neurons in vascular effector 
control needs to be seen in context with the stimuli they respond to. These 
neurons are connected to chemoceptors, chemonociceptors and polymodal 
nociceptors which enable them to detect noxious stimuli that are potenti- 
ally or actually harmful to the tissue. Whilst perception of noxious stimuli 
seems to be the primary task of fine afferent peptidergic neurons inner- 
vating somatic tissues, it is also innocuous, physiological stimuli including 
cholecystokinin, bile and distension (see Raybould and Tach6 1988, 1989; 
R6zsa and Jacobson 1989; Esplugues et al. 1990; Forster et al. 1990; Jin 
and Nakayama 1990) that are among their modalities in visceral tissues. 
The overall function of these sensory neurons is to maintain homeostasis 
(see Prechtl and Powley 1990) which afferent vasoactive neurons accom- 
plish by two different mechanisms (Fig. 1). 

I. The local release of vasoactive peptide mediators leads to appropriate 
changes in the microcirculation at the very site of stimulation. Hyper- 
aemia and increased vascular permeability facilitate the delivery of 
macromolecules and leucocytes to the tissue which, if the stimuli are 
noxious, will promote resistance of the tissue against further damage 
and aid the repair of  injury. 

2. The afferent function of the neurons transmits the perceived information 
to the central nervous system and initiates both voluntary and autono- 
mic reflexes to maintain homeostasis (Fig. 1). 

However, the local vascular and afferent functions of sensory neurons do 
not necessarily operate in parallel. The electrical stimulus frequencies 
required to elicit vasodilatation are considerably lower than those required 
to cause nociception (Kenins 1981; Szolcs~inyi 1984, 1988; Magerl et al. 
1987; Brenan et al. 1988; Lynn 1988; t, isney and Bharali 1989). This de- 
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monstrates that the two functions of fine afferent neurons can be activated 
separately, and it remains to be determined whether they are mediated, at 
least in part, by different populations of neurons (see J~inig and Lisney 
1989; Lisney and Bharali 1989). A systematic investigation of the stimulus 
modalities and intensities, which are required for activation of the local 
vascular and afferent functions of sensory neurons at the somatic and 
visceral level, is likely to shed light on this issue. 

Related to these considerations is the question whether afferent neurons 
participate in the moment-to-moment control of  vascular diameter and 
permeability or operate only when they are activated by adequate stimuli. 
Because the evidence for a continuous control of cutaneous (Sann et al. 
1988) and mesenteric (Hottenstein et al. 1991) blood flow is only circum- 
stantial and does not consider the complex interaction of  afferent neurons 
with other microcirculation control systems, it appears as if afferent nerve- 
mediated vasodilatation reflects primarily a reaction to challenges of 
homeostasis. It is an ingenious design that those neurons which detect po- 
tential threats to the integrity of the tissue are per se able to initiate appro- 
priate measures to cope with the danger on the spot. Vasoactive afferent 
neurons thus represent a system "of first line defense" (Lembeck 1983; 
Lembeck and Bucsics 1990) against trauma, a mechanism that was first 
embodied by the "nocifensor system" of Lewis (1937a, b). This function is 
portrayed by the ability of afferent nerve stimulation to protect from expe- 
rimentally imposed damage in the skin (Maggi et al. 1987a) and gastro- 
intestinal mucosa (Szolcs~tnyi and Barth6 1981; Holzer and Lippe 1988; 
Holzer et al. t989, 1990a, 1991b; Endoh and Leung 1990; Robert et al. 
1990; Szolcs~inyi 1990b; Williamson et al, 1990; Bass et al. 1991; Chiba 
et al. 1991; Peskar et al. 1991; Takeuchi et al. 1991c; Uchida et al. 1991), 
processes which are very likely related to hyperaemia and increased vascu- 
lar permeability. 

Another phenomenon that is potentially relevant for homeostasis is the 
spread of cutaneous flare beyond the site at which the skin is irritated. This 
propagation of arteriolar dilatation may be considered as a measure to en- 
sure that protective hyperaemia takes place not only in the challenged tis- 
sue but also in a "safety margin" (Holzer 1988). The spread of  flare is most 
commonly explained as the result of an axon reflex between collaterals of 
fine afferent neurons (Fig. 3), but this concept has not yet been proven 
neurophysiologically and, in fact, has turned out very difficult to test expe- 
rimentally. Uncritical extrapolation of the axon reflex concept to tissues 
other than the skin is a matter of  "analogy speculation" which, in the ab- 
sence of relevant neuroanatomical and neurophysiological data, leads to 
misconceptions as to how afferent neurons control the vascular system. 
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5.4.2 Acute Versus Chronic Neurogenic Inflammation 

It is important to differentiate between the role of afferent neurons in acute 
inflammation and that in chronically inflamed tissue. Acute nociception, 
inflammation and activation of the immune system are important for 
protection against damage and for recovery from injury. Dysfunction of 
vasoactive afferent neurons is liable to cause homeostatic disorders and in- 
adequate reactions to challenges of homeostasis. Exaggerated susceptibi- 
lity to injurious factors is observed after defunctionalization of vasoactive 
afferent neurons in the skin and gastrointestinal mucosa, and malfunction 
of the NANC vasodilator system in the mesenteric arteries seems to be a 
factor in the aetiology of hypertension (Kawasaki et al. 1990c, d, 1991 b) 

The role of  vasoactive afferent neurons seems to be quite different in 
chronic inflammation. In this situation, peptidergic afferent neurons can 
become hyperreactive and contribute to hyperalgesia and perpetuation of 
the inflammatory and immune reactions to an initial tissue insult. Such an 
adverse role of vasoactive afferent neurons appears to be involved not only 
in certain hyperreactive disorders of the skin but also in vascular head- 
aches (see Moskowitz et al. 1989; Olesen and Edvinsson 1991), chronic 
obstructive airway disorders (see Barnes et al. 1988) and in chronic arthri- 
tis (see S.M. Louis et al, 1990; Basbaum and Levine 1991). Two factors 
may be instrumental in this respect: (a) some of the inflammatory media- 
tors (e.g. prostaglandins, leukotrienes, platelet-activating factor, histamine, 
bradykinin), that trauma and afferent nerve-derived peptides release from 
mast cells, leucocytes and other cellular systems, are able to reactivate sen- 
sory nerve endings and thus provide a continuous drive to maintain inflam- 
mation; (b) inflammatory mediators such as prostaglandins are able to sen- 
sitize nociceptive neurons which will further up-regulate aflerent nerve- 
mediated inflammatory and immune reactions. 

An important point to consider in this respect is the existence of "silent 
nociceptors" in skin, joints and visceral tissues (see Schaible and Schmidt 
1988; McMahon and Koltzenburg 1990). This term describes unmyelina- 
ted afferent nerve fibres (C fibres) which in the normal tissue fail to re- 
spond to mechanical and thermal noxious stimuli although they are re- 
sponsive to algesic chemicals. In the inflamed tissue, however, silent noci- 
ceptors become sensitized to mechanical stimuli and seem to be responsi- 
ble for the hyperalgesia accompanying chronic inflammation (McMahon 
and Koltzenburg 1990). Although these hyperreactive neurons are sensi- 
tive to the neurotoxic action of capsaicin (Barth6 et al. 1990b), it remains 
to be determined whether they are also active in the control of local 
vascular functions and whether they contribute to the perpetuation of the 
inflammatory reaction. 
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1 Introduction 

The Y chromosome is involved in sex determination and male sexual dif- 
ferentiation in human beings as in other mammalian species. Presence of 
this chromosome normally results in male development, while in its ab- 
sence a female phenotype develops. There are various conditions of sex 
reversal and intersexuality which are due to mutations of all possible kinds 
at the chromosome and gene level. Their analysis has finally resulted in the 
definition of a gene on the Y chromosome fulfilling all the requirements 
for a major testis-determining gene, which codes for the long sought-after 
testis-determining factor (TDF). 

While the term "sex determination" is used in this article for a process 
which triggers off a cascade of  events resulting in sex-specific gonadal dif- 
ferentiation, the term gonad differentiation refers to gonadal morphogene- 
sis as the consequence of sex determination. 

The role of  the Y chromosome in sex determination and male sexual 
differentiation is the obvious reason for the specialization of  the Y chro- 
mosome during evolution. It belongs to the smallest elements of the chro- 
mosome complement, but it is still not specialized as to transport only de- 
terminants for male development. Due to its origin and evolutionary fate, 
the human Y chromosome includes numerous other sequences which are 
not unique to this chromosome. To understand its present organization, it 
is therefore necessary to compare it with the X chromosome and to trace its 
evolution by considering other species possessing Y chromosomes which 
may reflect ancestral situations. 

The molecular biology of the Y chromosome has been the subject of 
several books and reviews over the past years, among which the article by 
Goodfellow et al. (1985a) and the books edited by Sandberg (1985), Good- 
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fellow et al, (1987a), McLaren and Ferguson-Smith (1988), and Wachtel 
(1989) may be mentioned here. In addition, mapping data are regularly 
compiled in the reports of the conferences on Human Gene Mapping 
(HGM), which have taken place from 1973 onwards, and are published in 
Cytogenetics and Cell Genetics as separate issues. In the first two confe- 
rence reports (HGM1 1974; HGM2 1975), there is no assignment of a gene 
to the Y chromosome. In HGM3 (1976) the only gene tentatively assigned 
to the Y chromosome is that for H-Y antigen. The number of markers in- 
creased slowly, including protein markers, DNA sequences, and phenoty- 
pic characters, and up to HGM9 (1987), the Y chromosome was not co- 
vered separately from the X chromosome. Only from HGM10 (1989) on- 
wards was a special committee on the genetic constitution of the Y chro- 
mosome appointed, and the last report of this committee (HGM11 1991) 
refers already to some 230 different DNA segments, 12 genes or pseudoge- 
nes, and three phenotypic characters. Of the approximately 230 DNA seg- 
ments, 12t are Y-specific single-copy loci, 35 of which were assigned to 
the short arm and 83 to the long arm, while three are of unknown location. 

Though we have learned much about the genetic organization and func- 
tion of the Y chromosome, in particular by the very powerful combination 
of molecular and cytogenetic methods, we are still far from a comprehen- 
sive understanding of the mechanism of sex determination and of the ge- 
netic significance of large parts of this chromosome. Since current research 
is rather rapidly elucidating these issues, only an instantaneous picture of 
present knowledge can be drawn, which will already be outdated while this 
article is being written. 

2 Origin of the Y Chromosome 

In evolutionary terms, we consider a Y chromosome "primitive" if it is still 
largely homologous to the X chromosome, pointing to its origin from a 
homologous pair of autosomes. The most advanced Y chromosome would 
be a tiny element specialized largely or exclusively in male sexual 
development. The human Y chromosome does not fit into either scheme. It 
is not "primitive" because ancestral linkage groups reflecting its autosomal 
origin are scarcely conserved, but it is also not specialized for carrying 
only male-determining genes because it has acquired secondarily nume- 
rous sequences of various origins. Therefore, it represents a modern chro- 
mosome, and it reached its present configuration during the divergent 
evolution of the branches leading to the great apes and to man. By study- 
ing primate Y chromosomes, we can try to obtain a picture of the evolu- 
tionary rearrangements which have taken place, resulting in the present- 
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day human Y chromosome. However, in the entire infraclass eutheria (pla- 
cental mammals) the Y chromosome, apart from its specialization for male 
development, appears to have undergone varying secondary changes, and 
to trace its evolution we must therelbre look beyond this taxonomic 
border. While the infraclass metatheria (marsupials) is not very informa- 
tive in this respect, showing a tiny Y chromosome which appears to be far 
more specialized in sex determination than the eutherian Y, study of  the 
subclass prototheria (monotremes) is most rewarding. This group posses- 
ses a rather primitive Y chromosome which appears to be still largely, but 
not entirely, homologous to the X chromosome. This homology, if con- 
firmed, is a key finding for an understanding of mammalian sex chromo- 
some evolution, pointing to the origin of the sex chromosomes from a 
homologous pair of autosomes. While the assumption of X-Y homology in 
prototheria is based on recent observations, chromosome studies in various 
groups of  nonmammalian vertebrates prompted Ohno, as early as 1967, to 
postulate that sex chromosome evolution started with an autosomal chro- 
mosome pair. 

It appears that during vertebrate evolution, sex chromosome differen- 
tation, resulting in a largely conserved X (Z) chromosome and a more or 
less specialized Y (W) chromosome characteristic for the heterogametic 
sex, has taken place several times independently, and this process may 
have started with a different pair of autosomes in each case. (If the hetero- 
gametic sex is male, XY is used, if it is female, ZW, to designate the sex 
chromosomes.) We can assume that the sex chromosome heteromorphism 
of mammals originated during the evolution of  this vertebrate class itself, 
and so we cannot expect to find ancestral stages of this process among 
nonmammalian vertebrates. However, similar processes which have taken 
place in other taxonomic groups of vertebrates may well serve as models 
lbr mammals. Particularly illuminating are some examples from amphi- 
bians and reptiles which will briefly be described below. Because of the 
presumed ancestral homology between the sex chromosomes, Y chromo- 
some evolution cannot be considered on its own; its relation to the X 
chromosome has to be included for comparison. 

2.1 Evolution of  the Sex Chromosomes 

2.1.1 Nonmammalian Vertebrates as Models 

A model of  sex chromosome evolution, which can now be considered 
classical, was provided by Be~ak et al. (1964) and further elaborated by 
Jones, Singh, and associates in a series of beautiful studies on the repitilian 
suborder Ophidia (snakes), exemplifying many states in a series of  gradual 
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changes from an undifferentiated homomorphic pair to a markedly hete- 
romorphic pair of chromosomes (for review see Jones and Singh 1985). 
The mechanisms of sex determination in snakes is of the ZW type, i.e., the 
male is the homogametic (ZZ) and the female the heterogametic (ZW) sex. 
In species of the most ancient and primitive family Boidae, sex chromo- 
somes cannot be identified; they must be a homomorphic and largely auto- 
somal pair of chromosomes. In the family Colubridae, representing more 
advanced snakes, some species still are endowed with homomorphic sex 
chromosomes, others show a pericentric inversion in their W chromosome, 
and still others have a significantly smaller W chromosome as compared 
with the Z (reviewed in Ohno 1967). Interestingly, in all species with ZAV 
heteromorphism, the W is condensed in the interphase nucleus, forming a 
chromocenter, and it shows asynchronous late replication behavior (Ray- 
Chaudhuri et al. 1970, 1971). These characteristics are consistent with 
functional inactivation of the W. The analysis of the W chromosome was 
further advanced by the finding, using in situ hybridization techniques, that 
highly repetitive satellite DNA was concentrated on the W chromosome 
depending on its state of differentiation. Thus, in primitive Boidae, the hy- 
bridization pattern revealed no sex difference. However, among colubrid 
snakes, even in species with homomorphic sex chromosomes, the W show- 
ed significant hybridization with the satellite DNA (or complementary 
RNA) and was identified in this way (Singh et al. 1976, 1980). From these 
findings it was concluded that the occurrence of satellite DNA is the first 
step in the divergent evolution of the W from the Z chromosome, resulting 
eventually in asynchronous DNA replication and meiotic isolation. Indeed, 
it has been shown in oocytes of a species with heteromorphic sex chromo- 
somes that the W is condensed during meiotic prophase, preventing Z and 
W chromosomes from crossing over (Singh et al. 1979). This meiotic isola- 
tion of the W chromosome was no doubt the prerequisite for its subsequent 
reduction in size and specialization for the determination of the heteroga- 
metic sex. 

The hypothesis, derived from the study of snakes, that a change in 
molecular constitution initiated the specialization process of the chromo- 
some determining the heterogametic sex is further illustrated by studies of 
the DNA replication patterns of the frog species Rana esculenta (Schempp 
and Schmid 1981). While no sex chromosomes were identified by inspec- 
tion of Chromosome structure, BrdU replication patterns revealed a late-re- 
plicating segment in one member of chromosome pair number 4 in the 
male only. This asynchrony shows that the male is the heterogametic sex, 
and that the late-replicating chromosome 4 functions as a Y chromosome. 
Similar examples have been reported from other taxonomic groups, e.g., li- 
zards (Olmo et al. 1984). It can be concluded that functional changes (re- 
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plication asynchrony, heteropyknosis, inactivation) resulting in meiotic 
isolation preceded structural changes in the evolution of sex chromosome 
heteromorphism. 

2.1.2 Mammals 

The examples chosen in the preceding section may serve as models for a 
similar process during mammalian sex chromosome evolution. However, 
the mechanisms may vary in detail, as is the case with these examples. In 
snakes, highly repetitive sequences first invaded the chromosome deter- 
mining the heterogametic sex, then became spread and amplified over its 
entire length, and may thus be the reason for its functional change, 
whereas in Rana esculenta (as in other species) a shift in the DNA 
replication period may be the first step towards functional change. (It must 
be mentioned, however, that in these latter cases satellite DNAs have not 
been studied.) Therefore, in mammals one of these or still another mecha- 
nism may have been operating. In analyzing the mammalian system, we 
depend on the rather limited variation occuring between contemporaneous 
species. It is not to be expected that more primitive stages can be found 
among nonmammalian vertebrates because, as discussed above, the evolu- 
tionary process resulting in the sex chromosomes of  recent mammals must 
have taken place during premammalian evolution itself. 

Mammals are divided into two subclasses, prototheria (monotremata) 
and theria, and the latter subclass into the infraclasses metatheria 
(marsupialia) and eutheria (placentalia). A chromosomal mechanism of sex 
determination operates throughout, and it is of  the XX/XY type. While 
there are extensive homologies between the X chromosomes of all three 
subclasses, the Y chromosomes differ with respect to their specialization 
in determining the male sex. It appears that the prototheria still possess a 
rather primitive Y of considerable size. In one species (platypus) it is near- 
ly the same length as the X, and it is homologous to the X except for the 
short arm by cytogenetic criteria (Wrigley and Grages 1988). In eutheria, 
the Y is considerably reduced in size compared with the X, but it is still 
composed of various segments showing sequence homology to the X and 
to autosomes. Thus, it represents an intermediate type of specialization. 
The most advanced Y chromosomes are found in metatheria; these chro- 
mosomes show no homology with other chromosomes at the cytogenetic 
level and are relatively minute elements (Role and Hayman 1985). The 
present view on the evolution of the mammalian sex chromosomes is 
depicted in Fig. 1. 
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Fig. 1. Hypothetical evolution of mammalian sex chromosomes from an ancestral homo- 
morphic chromosome pair. The original chromosomes are homologous (solid black) with 
the exception of a linkage group involved in male sexual determination and differentiation 
(white block). The prospective X chromosome, comprising 3% of the haploid female corn- 
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plement, was conserved throughout evolution. The prospective Y chromosome was largely 
conserved in prototherians, while in the therian infraclasses only the male-specific linkage 
group was conserved (white block). Three independent linkage groups are assumed to have 
been autosomal in the mammalian ancestor (stippled squares and checkerboard square). 
One of these autosomal blocks was transposed to the sex chromosomes in prototherians 
(checkerboard), the two others remaining autosomal. In metatherian evolution, all three 
blocks remained autosomal. On the way to eutherians, two of these autosomal blocks 
(stippled squares) are assumed to have been transposed to the sex chromosomes and ate 
found on the extant eutherian X chromosome, while they have been largely lost from the Y 
chromosome. The complex reorganization of the Y chromosome during eutherian evolution 
is not considered here. (Modified from Graves and Watson 1991 ) 

It would be most straightforward to conclude that these extant Y chro- 
mosomes represent the stages to be expected if their evolution started with 
a homologous chromosome pair, the X chromosome remaining conserved, 
and the Y chromosome becoming increasingly specialized for male deter- 
mination. This view has at least to be qualified in various details. It must 
be recognized that since all three systems have an equally long time span 
in which to evolve, completely different interpretations are possible. To 
discuss this issue, it may be useful to begin with the problem of the con- 
servation of  the X chromosome, as this should help to define the ancestral 
situation. 

It has long been noted that in eutheria, the X/autosome ratio is nearly 
constant, with the X chromosome comprising some 5% of the haploid fe- 
male genome (Otmo et al. 1964). Comparative mapping of X-linked genes 
has revealed extensive genetic conservation of this chromosome in all eu- 
therian mammals studied, and no exception has been found so far (O'Brien 
and Graves t991). Within metatheria, the X chromosome is also conser- 
ved, but it comprises only some 3% of the haploid female genome (Hay- 
man and Martin 1974). Comparative mapping has shown that a large lin- 
kage group of the eutherian X chromosome is also conserved in the meta- 
therian X (Watson et al. 1990). In terms of the human X chromosome, this 
linkage group is located on the long arm (Xq), which again comprises 3% 
of the genome. Thus, it appears that the metatherian X represents the long 
arm of the human X chromosome. Genes mapped on the short arm of the 
human X chromosome, however, are clustered in two autosomal blocks in 
metatheria (Spencer et al. 1991; Watson et al. 1991). Turning to protothe- 
ria, their X chromosome is the largest among all mammals, comprising 6% 
of the genome (Watson 1990). The available mapping data again show the 
linkage group of the human Xq conserved on the prototherian X, and the 
loci homologous to the human Xp genes are concentrated in two clusters 
on autosomes, similar to metatheria (Watson et al. 1991). The larger size 
of  the prototherian X may represent the original state of the ancestral chro- 
mosome, or autosomal segments may have been translocated onto it sub- 
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sequently. A review of these evolutionary relationships was recently pro- 
vided by Graves and Watson (1991) (Fig. 1). 

From these data, it is to be concluded that a linkage group of some 3% 
of the genome was conserved in all mammals, corresponding to the long 
arm of the human X chromosome. It seems quite likely that this segment 
reflects an original part of the ancestral homologous pair of autosomes 
which differentiated into the mammalian sex chromosomes during evolu- 
tion. If so, it is of extreme interest to know whether genes belonging to this 
presumptive ancestral linkage group can be mapped on the Y chromosome. 
The tiny metatherian Y is no candidate for such investigations, and the lar- 
gely reduced eutherian Y has undergone massive secondary changes, as 
will be discussed below. However, the prototherian Y is a large chromo- 
some comprising about 4% of the haploid genome, and the analysis of 
chromosomal banding patterns indicates that its long arm is homologous to 
that of the X chromosome long arm (Graves and Watson 1991). In addi- 
tion, while the short arms of the prototherian sex chromosomes replicate 
their DNA asynchronously and do not pair at meiosis, the long arms show 
synchronous replication and pair at meiosis, which is strong evidence for 
genetic homology. However, information on the genetic content of the 
prototherian Y chromosome is still lacking. 

2.2 The Problem of the Conservation of ~e-eutherian Genes 

Regarding, the situation in protothefia, X-Y homology appears still to be 
preserved to a larger extent, supporting the hypothesis that the sex 
chromosomes originate from a homologous pair of autosomes. The euthe- 
rian Y chromosome, though one of the smallest elements of the karyotype, 
still comprises about 2% of the haploid complement, containing about 60 
megabases (Mb) of DNA (Morton 1991). Thus, there is ample space left 
for genes other than those responsible for male sexual development, and 
the question arises whether these genes or some of them represent an an- 
cestral linkage group which was conserved on the Y chromosome and is 
homologous to a segment of the long arm of the X chromosome. 

Of the 12 Y-linked genes and pseudogenes identified so far in man (see 
Sect. 5 below), seven have a homologue on the X chromosome, six of 
which map to the short arm (Xp). Of these six genes, five (CSF2RA, 
MIC2, STS, ZFX, and KALIG-1X/ADMLX) escape inactivation, and for 
the sixth (AMGX) indications for partial escape from inactivation exist 
(see Table 1, p. 165). It can be assumed that these genes on Xp do not rep- 
resent remainders of the autosomal origin of the sex chromosome pair, but 
rather are later additions to the sex chromosomes, and their escape from in- 
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activation may reflect their more recent autosomal nature. This view is 
supported by the finding, already mentioned, that genes on the short arm of 
the human X chromosome are clustered in two autosomal blocks in meta- 
and prototheria (Graves and Watson 1991). 

Recently, a gene coding for a ribosomal protein and named RPS4 was 
identified on the Y short arm. It has a homologue on the X long arm, loca- 
ted on Xql3  in the same region as the gene for phosphoglycerate kinase 
(PGK1), and close to the gene for the androgen receptor (AR) on Xql2  
(Fisher et al. 1990b). Both genes, PGK1 and AR have been shown to be- 
long to the ancestral Xq linkage group of proto- and metatheria (O'Brien 
and Graves 1991), while for RPS4 this is known only in metatheria 
(J.A.M. Graves, personal communication). However, there is a remarkable 
difference between these genes with respect to their inactivation behavior, 
While AR and PGK1 are subject to X-inactivation, RPS4 escapes inacti- 
vation. Therefore, RPS4 does not appear to be a member of this old link- 
age group and may have been transposed onto the sex chromosomes du- 
ring early mammalian evolution. It cannot be excluded, however, that 
RPS4 is indeed an original gene on the X and Y chromosomes, thus repre- 
senting the only gene known so far on the human Y chromosome, apart 
from male-determining genes, which was conserved throughout the evolu- 
tion of the Y chromosome. 

There are a number of anonymous DNA sequences sharing X-Y ho- 
mology, including those which map to the X chromosome long arm. Some 
of the latter have been shown to have homologies on the X chromosome of 
various primates, but in these species those sequences are absent from the 
Y chromosome. Therefore, they must have been translocated very recently 
onto the Y during human evolution (see Sect. 3 below). 

Thus, regarding the ancestral linkage group of mammalian sex chromo- 
somes, it can be stated that so far no DNA segment of  the eutherian Y 
chromosome has been definitely identified which still reflects the autos()- 
real origin of  this chromosome. It may well be the case that the eutherian 
Y chromosome passed through a stage in evolution where it represented a 
minute chromosome specialized in male development, similar to that in 
extant metatheria, and that its present state is the result of secondary rear- 
rangements, including translocations derived from the X chromosome and 
from autosomes. However, it should have included a pairing segment of 
effective size allowing for meiotic recombination with the X chromosome 
as a prerequisite for a translocation homologous to both X and Y chromo- 
somes (Fig. 1). If so, the process of  specialization would have taken place 
after the theria diverged from prototheria, and the metatherian Y chromo- 
some would represent a fragment of the ancestral therian Y only, while the 
extant eutherian Y is a composite chromosome due to secondary rear- 
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rangements. The only ancestral linkage group of the eutherian Y chromo- 
some would then comprise genes involved in male sexual development, in- 
cluding TDF, and one or several genes necessary for male germ cell differ- 
entiation ("fertility factors"), like the gene for germ cell motility (AZF) 
which was assigned to the human Y chromosome. It would be of interest 
to know if, in the metatherian Y chromosome, in addition to TDF such fer- 
tility genes are present. 

2.3 Rearrangements in Primates 

Following the argumentation of the foregoing section, evolution of the 
eutherian Y chromosome started with a considerably reduced element 
containing genes for male differentiation and, presumably, a segment ho- 
mologous to the X chromosome allowing for recombination. However, we 
know the eutherian Y as an element of considerable size, comprising about 
2% of the haploid genome; thus, the question arises whether the origin of 
these secondarily acquired DNA segments can be traced. We confine our- 
selves to primates because the human descendence beyond primates is 
heavily debated, and it would be arbitrary to refer to extant species of the 
orders Insectivora, Edentata, or Scandentia, which are considered to be 
closest to the evolutionary branch leading to primates. In addition, map- 
ping data on the Y chromosomes of these taxonomic groups are not availa- 
ble. 

As landmarks, the pseudoautosomal region (PAR) and the sex-determi- 
ning region (SDR) may be used first to trace rearrangements of the Y 
chromosome in primates. In man both regions are located in close proxi- 
mity to each other on the terminal short arm of the Y chromosome (Ver- 
gnaud et al. 1986; Sinclair et al. 1990). 

The ZFY gene is in close proximity to the SDR on the human Y; assu- 
ming that it can thus serve as a marker for this region, MUller and 
Schempp (1991) have shown that, as in the human being, the ZFY gene 
maps close to the early-replicating pseudoautosomal segment in telomeric 
position of the Y chromosomes of the great apes. Thus, despite cytogeneti- 
cally visible structural alterations within the euchromatic parts of  the Y 
chromosomes of man and the great apes (Weber et al. 1986, 1987), the 
close proximity of the PAR and, by inference, of the SDR is conserved 
throughout the human and great-ape lineages. This situation contrasts to 
that in the mouse, in which species these segments are located on opposite 
sides of the Y chromosome, the SDR being on the short arm (Gubbay et al. 
1990) and the PAR representing the distal long arm segment (Keitges et al. 
1985; Harbers et al. 1986~. 
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Recent molecular analysis of the steroid sulfatase (STS) locus may ex- 
plain some of the human-mouse differences. In human beings the X-linked 
STS gene is located about 5 Mb from the PAR and escapes X-inactivation, 
while a nonfunctional pseudogene of STS is located on the long arm of the 
Y chromosome (Yen et al. 1988; see Sect. 5.9). Interestingly, in the mouse 
Sts is pseudoautosomal (Keitges et al. 1985). Comparative studies in pri- 
mates strongly suggest that the ancestral STS gene was pseudoautosomal 
and that a pericentric inversion in the early primate lineage disrupted the 
former pseudoautosomal location of STS (Yen et al. 1988; Schempp and 
Toder 1992). An analogous situation was demonstrated for the Kallmaml 
(KALIG-1) locus (see Sect. 5.8). In human beings the X-linked KALIG-1 
gene is located some 1.5 Mb proximal to the STS gene and likewise escap- 
es X-inactivation, while a homologue on the long arm of the Y chromo- 
some presumably is not expressed (Franco etal. 1991; Legouis etal. 
1991). Again, comparative studies in primates indicate that the ancestral 
KALIG-1 gene was pseudoautosomal and became sex specific subsequent 
to a pericentric inversion in the Y chromosome (Franco et al. 1991). 

These data strongly suggest that a pericentric inversion occurred after 
the divergence of the prosimian and the simian lineages which disrupted 
the ancestral PAR, transferring its proximal part, including STS and KA- 
LIG-1, to the long arm of the Y chromosome. Simultaneously, this peri- 
centric inversion brought the SDR from the long arm into close proximity 
to the PAR on the short arm of the Y chromosome (Fig. 2). 

Further cytogenetically visible structural rearrangements of the Y chro- 
mosome of various simian species have been described, locating an early 
replicating segment (the presumed pairing segment with the X chromo- 
some in meiosis) on the telomeric long or short arm of the Y chromosome 
(Weber et al. 1987; Schempp et al. 1989b). These rearrangements seem to 
characterize secondary events which have occurred in addition to the 
above-described "primary" pericentric inversion of the Y chromosome. 

There are other rearrangements which must have occurred during the 
evolution of the human Y chromosome, and it can be stated that, while the 
eutherian X chromosome was conserved in its entirety, the Y chromosome 
was subject to enormous variation not only in structure, but also with 
respect to its DNA composition. The various DNA components of the hu- 
man Y will now be discussed, and in this connection further comparisons 
with other mammalian species will be of some value. 
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Fig. 2 A, B. A pericentric reversion in the Y chromosome disrupts an originally contiguous 
large pseudoautosomal region and an ancestral male-specific linkage group. A Ancestral 
situation: The pseudoantosomal segment (stippled) includes the present-day pseudoautoso- 
real region and an adjacent segment represented by the STS, ADML, and AMG genes which 
also behaved pseudoautosomally. The sex-specific region is on the opposite side of the Y 
centromere. B Present-day situation: By a pericentric inversion in the Y chromosome, the 
proximal part of the pseudoautosomal region including the STS, ADML, and AMG genes 
was transposed to the long arm, while part of the sex-specific region came into close pro- 
ximity to the distal part of the pseudoautosomal region. The location of AMGY on proxi- 
mal Yp is assumed to be due to a secondary pericentric inversion. Genes on the displaced 
pseudoautosomal segment no longer behave pseudoautosomally. The present-day pseudo- 
autosomal boundary on the Y chromosome is marked by an Alu element and a proximal 
segment of 78% sequence identity between X and Y, at the proximal end of which se- 
quence similarity ceases abruptly. Physical distances between some loci are indicated along 
the distal X chromosome short arm 
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3 X-Y Homologies 

During the meiotic prophase, the human X and Y chromosomes are not 
paired along their entire length like the autosomes; pairing and Iormation 
of a synaptonemal complex are usually restricted to the short arms, starting 
at the telomeric ends. The pairing region is variable and may extend even 
into the long arm of the Y chromosome (Chandley et al. 1984), but it 
regularly includes the distal part of the short arm. Indeed, crossing-over is 
normally observed only in that distal part (Hult~n 1974, Solari 1980), even 
if the synaptonemal complex also comprises proximal segment, s. Based on 
these observatiorks, it was concluded that genetic homology exists only for 
the segment undergoing crossing-over, while pairing may also include 
nonhomologous parts of the sex chromosomes. Moreover, indicanons [or a 
functional homology of the distal short arms of X and Y also come from 
DNA replication studies using the bromodeoxyuridine-incorporation tech- 
nique; these segments show synchronous early replication during the mi- 
totic S-phase (Schempp and Meet 1983). Thus, cytogenetically, a homolo- 
gous segment comprising the distal short arm and a differential segment 
comprising all the rest of the Y chromosome can be identified. From DNA 
analysis, we now know that the distal short arms of X and Y, starting from 
the telomeres, indeed represent homologous colinear segments showing 
genetic recombination. Thus, this segment behaves like an autosomal seg- 
ment, and the term "pseudoautosomal region", originally proposed by 
Burgoyne (1982) has therefore found wide acceptance. However, other ge- 
nes distributed along the Y chromosome have a homologous counterpart 
on the X chromosome, and evidently there is at least one larger segment on 
the proximal long arm of the Y recombining occasionally with a homolo- 
gous segment on Xp, which may represent a region of pseudoautosomal 
origin. 

3.1 The Pseudoautosomal Region 

The assumption of a homologous region at the distal short arms of the X 
and Y chromosomes was originally derived from cytogenetic observations 
in the rat, i.e., pairing and crossing-over at meiosis (Koller and Darlington 
1934). This assumption was confirmed in the human species when genetic 
markers were assigned to this region, allowing for testing of recombina- 
tion. With the increasing number of those markers, comprising in the vast 
majority anonymous DNA segments, the pseudoautosomat region was 
more closely defined, including its extension, the nature of its boundary to 
the differential segment, and recombination fractions of various markers 
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with respect to the sexual phenotype. In addition, some insights into the 
origin of the pseudoautosomal region were obtained (for review, see Ellis 
and Goodfellow 1989). 

According to the data presented at the last conference on human gene 
mapping (Weissenbach and Goodfellow 1991) two genes, 13 single copy 
DNA segments, and two multiple copy DNA segments were definitely as- 
signed to the pseudoautosomal region. In addition, a large number of DNA 
probes detecting loci of X-Y homology which were assigned to the short 
arm of the Y chromosome, but not closer localized, may well turn out to 
map in the pseudoautosomal region. 

The first genetic evidence for sequence homology between the sex 
chromosomes was provided by the study of a gene encoding a cell surface 
antigen of unknown function, designated MIC2, which was detected by a 
monoclonal antibody raised against cells of a human T-cell leukemia 
(Goodfellow et al. 1983). MIC2 was subsequently shown by in situ hybri- 
dization to be located in the pairing region at the distal ends of Xp and Yp 
(Buckle et al. 1985), to be polymorphic, and to recombine with sex (locus 
lot TDF) at a frequency between 2.5% (Goodfellow et al. 1986) and 0% 
(Johnson et al. 1991). Thus, MIC2 fulfills the requirements for a pseudo- 
autosomal gene. However, the recombination frequency is far from inde- 
pendent, and the strong sex linkage of the MIC2 gene reflects its location 
near the boundary of the pseudoautosomal region and the differential part 
of the Y chromosome. 

Indeed, the study of other polymorphic DNA sequences from the pseu- 
doautosomal region has revealed a gradient of sex linkage (Simmler et al. 
1985; Rouyer et al. 1986), the most distal marker - the telomeric locus 
DXYS14 - showing random segregation with sex (Cooke et al. 1985), 
while other polymorphic markers are partially sex linked, with decreasing 
recombination frequencies the more proximal their location (Fig. 3 B). 

In addition to MIC2, another gene has recently been localized within 
the pseudoautosomal region, CSF2RA, which stands for "colony-stimula- 
ting factor 2 receptor alpha," or granulocyte-macrophage colony-stimula- 
ting factor receptor (Gough etal. 1990). This gene is polymorphic, 
showing partial sex linkage. However, in contrast to MIC2, with only 
0%-2.5% recombination, it recombines with a higher frequency of about 
20%. Correspondingly, CSF2RA is located more distally within the pseu- 
doautosomal region, between the loci DXYS15 and DXYS17, about 
1.2-1.3 Mb from the telomere (Rappold et al. 1991; see Fig. 3 B). 

The flee recombination of the telomeric marker DXYS14 (Cooke et al. 
1985) confirms the prediction of Koller and Darlington (1934), stressed 
more recently by Burgoyne (1982), of an obligatory chiasma within the 
X/Y pairing region. In this connection, it should be mentioned that in man. 
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Fig. 3 A, B. Schematic interval map of the Y chromosome and physical map of the pseudo- 
autosomal and adjacent Y-specific region. A The Y chromosome with the pseudoautosomal 
region in black and Yq heterochromatin hatched. Intervals 1-7 are according to Vergnaud 
et al. (1986), with interval 4 B harboring the centromere (Anner6n et al. 1987). Sizes of 
intervals are arbitrary and do not imply actual physical size. Reference markers are given 
for each interval, with markers selected for a framework map of the Y chromosome (Weis- 
senbach and Goodfellow 1991) in boldface. B. Physical map of the pseudoautosomal and 
adjacent Y-specific region. The pseudoautosomal map is compiled from data in Petit et al. 
(1988), W.R.A. Brown (1988) Rappold and Lehrach (1988), and Rappold et al. (1991), 
while the male recombination frequencies of the pseudoautosomat loci with sex are from 
Rouyer et al. (t986), Goodfellow et al. (I986), Page et aL (1987a), Petit et al. (1988), 
Gough et al. (1990), and Johnson et al. (1991). The positions of SRY (Sinclair et al. 1990), 
RPS4Y (Fisher et al. 1990b), and ZFY (Page et al. 1987c) are indicated within interval 1, 
which is subdivided according to Page et al. (1987c). Note fivefold expansion of scale in 
the Y-specific relative to the pseudoautosomal region. As in A, reference markers for a 
framework map of the Y chromosome are in boldface 

in contrast to the mouse (Soriano et al. 1987; Keitges et al. 1987), no dou- 
ble crossing over has so far been observed in this region, a finding which 
awaits an explanation, if it is consistent. 

The occurrence of an obligatory chiasma with the consequence of a 
50% recombination frequency is exceptional for such a small chromoso- 
mal segment as the pseudoautosomal region. Estimates of its length based 
on long-range restriction maps are 2.6-3 Mb (Petit et al. 1988; W.R.A. 
Brown 1988; Rappold and Lehrach 1988). In comparison, in female meio- 
sis the recombination frequency between the most telomeric marker 
DXYS14 and MIC2 is only 3% (Weissenbach et al. 1987). To explain this 
phenomenon, Weissenbach et al. (1987) have put forward the hypothesis 
that minisatellite sequences distributed within the pseudoautosomal region 
represent hot spots of recombination. Indeed, the loci DXYS 14, DXYS 15, 
DXYS17, and DXYS20, which were used to map the pseudoautosomal re- 
gion, are associated with hypervariable minisatellites. Another possibility 
is that in the male, a specific factor interacts with sequences which in cis 
promote recombination (Ellis and Goodfellow 1989). 

The pseudoautosomal region must be delimited by an effective boun- 
dary to prevent recombination events in the adjacent sex-determining seg- 
ment of the Y chromosome. The boundary may be expected to be a special 
structure. However, it turned out that sequence divergence starts at the in- 
sertion site of an Alu element. This Alu sequence is found in the Y only, 
but not in the X chromosome at this position (Ellis et al. 1989; Fig. 2). 
Homology between the sex chromosomes is complete from the telomeres 
to the 303 bp Alu element, followed by a stretch of 220 bp with 78% se- 
quence identity. Proximal to that, X and Y sequences diverge definitely. 
Thus, the pseudoautosomal boundary region is marked by an Alu element 
in the Y and includes the partially homologous 220 bp segment on both X 
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and Y chromosomes. It was designated PABX and PABY for pseudoauto- 
somal boundary X and Y, respectively (Weissenbach et al. 1989). It ap- 
pears that recombination peters out within the boundary region, and there- 
fore complete sequence identity was not maintained. In a population study 
it was shown that PABX is highly, PABY only weakly polymorphic, indi- 
cating a more recent origin of the Y boundary compared with the X bound- 
ary (Ellis et al. 1990a). 

It is assumed that, originally, the pseudoautosomal boundary was sim- 
ply the point of  transition from homology to divergence at the proximal 
end of this 220-bp segment, and that the Alu element was inserted later du- 
ring evolution. This view is supported by studies on primates showing that 
in the great apes the Alu element is also present at the boundary, while it is 
absent in some old-world monkeys. Thus, the Alu element must have been 
inserted at the preexisting boundary during hominoid evolution less than 
25 million years ago (Ellis et al. 1990b). 

There is evidence that the present-day pseudoautosomal region of the 
human Y is only part of  a considerably more extended segment of homo- 
logy between the sex chromosomes which was disrupted by a pericentric 
inversion (Yen et al. 1988), as discussed below. 

3.2 X-Y Homologies Outside the Pseudoautosomal Region 

If we now enter the discussion on the differential segment of the Y chro- 
mosome, we may assume that we are dealing with sequences that have no 
homologies to other chromosomes and are therefore Y specific. However, 
as is to be expected from the foregoing considerations about the evolution 
of the human Y chromosome, most of the differential segment may origi- 
nate from other parts of the genome; therefore, homologous sequences 
outside the Y should exist, and this is exactly what has been found. The 
question then follows whether these homologies interfere with the functio- 
nal requirement of an effective isolation of the differential segment. 

3.2.1 Evidence for a Region of Pseudoautosomal Origin 

It should be mentioned first that the precise regional location of genes and 
anonymous DNA sequences on the differential segment of  the Y chromo- 
some is still somewhat ambiguous. A map of reference markers has been 
constructed which can serve to define positions of loci (Weissenbach and 
Goodfellow 1991; Fig. 3). However, this reference map is still very impre- 
cise, in particular for the differential segment. A more detailed deletion 
map of the Y chromosome long arm has been provided by Bardom et al. 
(1991) and Yen et al. (1991) and will be of great help for further analysis. 
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However, not many loci have yet been assigned within the framework of 
these maps, and their positions are only roughly known in terms of either 
the long or short arm or the centromeric region of the Y. The present state 
of the map nevertheless allows for tentative conclusions on conserved link- 
age groups and structural changes showing that the Y chromosome re- 
presents a patchwork of segments and sequences of heterogeneous origin. 

Concerning the genes listed in Table 1, KALIG-1Y/ADMLY has been 
assigned to Yqll .21,  as has STSP. Their homologues on the X chromo- 
some are both located on Xp22.3 about 7-9 Mb proximal to telomere of 
Xp (Petit et al. 1990), and KALIG-1X/ADMLX is 1.5 Mb proximal to STS 
(Franco et al. 1991; Legouis et al. 1991). Therefore, KALIG-1Y/ADMLY 
and STSP may be at a similar distance to each other on the Y. AMGX 
maps within Xp22.1-p22.31 proximal to the STS locus, and AMGY was 
tentatively mapped near the centromere on Yql 1 (Lau et al. 1989a). Ac- 
cording to Nakahori et al. (1991b), however, AMGY is located on proxi- 
mal Yp, as indicated by the study of an XX male case. This location on 
Ypl 1.2 was confirmed by Salido et al. (1992), and the original assignment 
to Yql 1 by Lau et al. (1989) was newly interpreted by redefining the aber- 

Table 1. Genes, pseudogenes, and phenotypic characters mapped on the Y chromosome 
and their X homologues 

Y chromosome X chromosome Comments 

CSF2RA Ypl 1.3 CSF2RA Xp22.33 
MIC2 Ypl 1.3 MIC2 Xp22.33 
SRY Ypl 1.3 
RPS4Y Ypl 1.3 

RPS4X Xql3.1 
ZFY Ypl 1.3 

ZFX Xp21.3-p22.1 
TSPY Yp proximal 
GBY Ypl 1.1 ~tter 
AMGY Ypl 1.2 

A M G X  Xp22A-p22.31 
ADMLY Yqll.21 

ADMLX Xp22.3 
STSP Yql 1.21 

STS Xp22.32 
ASSP6 Ycen~t I 1 
ACTGP2 Yql 1 
GCY Yql 1 
H-Y (H-Yc) Yqll.2 
AZF Yq 11.23 
RVNP2 Y 

Pseudoautosomal 
Pseudoautosomal 
= TDF 
Transcribed gene 
Escapes X-inactivation 
Transcribed gene 
Escapes X-inactivation 
Transcribed gene 
Phenotypic evidence 
Transcribed gene 
Escapes inactivation (?) 
Pseudogene (?) 
Escapes X-inactivation 
Pseudogene 
Escapes X-inactivation 
Pseudogene 
Pseudogene 
Phenotypic evidence 
Phenotypic evidence 
Phenotypic evidence 
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rant Y chromosome studied by these authors; this interpretation is com- 
patible with the location of AMGY on Yp (see Salido et al. 1992). Assu- 
ming STS, KALIG-1/ADML, and AMG to have been part of a former 
considerably larger pseudoautosomal region which was subsequently dis- 
rupted on the Y chromosome by a pericentric inversion, a secondary and 
smaller pericentric inversion has to be postulated in order to explain the 
Yp location of AMGY (Fig. 2). 

There is an indication that the ancestral pseudoautosomal region also 
includes some further loci which are present on proximal Yp in addition to 
AMGY (Petit et al. 1990). A DNA probe recognizing a family of in- 
terspersed repetitive sequences, DXYZ2 (so-called STIR elements, see 
below under Sect. 4.3), located on Xp22.3 and on various sites of  the Y 
chromosome, was subcloned for the purpose of isolating other members of 
this family. Among the loci detected in this way are two which show 
cross-homology on Xp22.3 and Ypl 1.2, locus DXS431 corresponding to 
DYS137 and locus DXS432 corresponding to DYS138. On the X chromo- 
some, these loci are located between PABX and STS, and they may there- 
fore belong to the ancestral pseudoautosomal segment. If so, they should 
have been transposed from proximal Yq to proximal Yp by a secondary 
rearrangement. Finally, ASSP6 was tentatively assigned to Ycen-ql  1 (T.S. 
S u e t  al. 1984), and there is a closely related gene ASSP4 on Xp22-pter, 
but also another one, ASSP5 on Xq22-q26 (T.S. Su et al. 1984). 

The dissection of the Yql l  region by Bardoni etal. (199I) and Yen 
et al. (1991) is an impressive confirmation of the existence of a conserved 
linkage group on both Xp22.3 and Yql 1.2. These authors defined the order 
of several loci, including STSp which map within segments Yq l l . 21 -  
ql 1.22, and these loci have homologous sequences on Xp22.3 in the same 
relative order, comprising about 5 Mb. On the X chromosome, this linkage 
group is immediately adjacent to the pseudoautosomal region, confirming 
the assumption that it was included in a Ibrmefly much larger pseudoauto- 
somal region which was subsequently disrupted on the Y by a pericentric 
inversion. If so, the gene order on the Y should be inverse to that on the X, 
and this indeed seems to be the case (Bardoni et al. 1991; Yen et al. 1991). 
Similarly, the order of the above-mentioned genes or pseudogenes on the Y 
appears to be AMGY - Ycen - KALIG-1Y/ADMLY - STSP - Yqter, and 
on Xp to be Xpter - STS - KALIG-lX/ADMLX - AMGX - Xcen 
(Fig. 2 B). The position of the Y centromere is due to a second pericentric 
inversion, as mentioned above. 

Studies on STS indicate that this gene may still behave pseudoautosom- 
ally in prosimians (Yen et al. 1988; Schempp and Toder 1992) and defi- 
nitely does so in the mouse (Keitges et al. 1985). Therefore, an inversion 
must have occurred in the human ascendence when the higher primates di- 
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verged from the prosimians about 40 million years ago. This assumption 
fits well with estimates based on sequence similarity between STS and 
STSP, which arrived at 40 million years (Yen et al. 1988). For the KALIG- 
1 gene, as for STS, no dosage difference between male and female DNA 
was detected on Southern blots in prosimians (lemurs) thus indicating 
pseudoautosomal behavior, while in higher primates its dosage depends on 
the number of X chromosomes (Franco et al. 1991). This is a further indi- 
cation for the occurrence of an inversion disrupting an originally coherent 
pseudoautosomal segment. 

Since the proximal long arm of the Y shares homology with the distal X 
short arm proximal to PABX, it has been proposed that pairing and cross- 
ing over may occasionally occur in male meiosis, resulting in X-Y translo- 
cations (Ballabio et al. 1989). There are a number of reports giving evi- 
dence for this phenomenon. In four cases analyzed by Geller et al. (1986) 
the breakpoints were in Xp22.3 and Yql 1 and were assumed to be close to 
STS and STSP, respectively (Yen et al. 1988). Further examples are pre- 
sented by Ballabio et al. (1989) and Yen et al. (1991), including one trans- 
location in which sequencing of the breakpoints demonstrates the occur- 
fence of homologous recombination. Bardoni et al. (1991) and Franco 
et al. (1991) localized the breakpoints of  three Xp22.3/Yql 1.2 transloca- 
tions within a homologous segment, including the KALIG-1Y/X loci. 
These findings favor the view that these translocations originate from 
meiotic pairing and crossing over. 

Further evidence for the existence of a region of pseudoautosomal ori- 
gin comes from functional aspects and sequence information. The KALIG- 
1 gene on the X chromosome escapes inactivation (Franco et al. 1991), and 
this is partially so with the STS gene (Migeon et al. 1982). To avoid a gene 
dosage difference between the sexes, the homologous genes on the Y 
should also be active, as is the case with the genes in the pseudoautosomal 
region on distal Yp/Xp, MIC2 and CSF2RA. For the KALIG-1Y gene 
evidence as to its functions is still lacking; however, it is assumed to be in- 
ert because it cannot complement a defect in KALIG-1X, and this is clear- 
ly the case with the STSP gene. However, the sequences of these genes are 
quite similar to those of their X homologues, and they may still have been 
functional in their more recent past (Weissenbach and Goodfellow 1991). 
In the case of the STS gene, we may have an example of  the transitional 
stage from activity to inactivation, since its activitiy is reduced on the 
inactivated X chromosome (Migeon et al. 1982) while its counterpart on 
the Y has already become a pseudogene. For AMGX, the problem of X-in- 
activation is not settled yet. As discussed unter Sect. 5.7, this locus may 
escape X-inactivation, but its expression, if  on the inactivated X, is mar- 
kedly reduced (Salido et al. 1992), as in the case of STS. The homologue 
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on the Y chromosome, AMGY, is transcribed, but the amount of gene pro- 
duct was estimated to be only 1/10 of that of AMGX (Salido et al. 1992). 
Under the functional aspect it can therefore be concluded that all three ge- 
nes, KALIG-1, STS, and AMG, behaved pseudoautosomally up to the re- 
cent past. 

In summary, there is compelling evidence for the disruption of an ori- 
ginally contiguous, large pseudoautosomal region by a pericentric inver- 
sion on the Y chromosome having occurred during early primate evolu- 
tion. The order of loci within this region on Yq is retained, but it is the in- 
verse of the order on the X chromosome (Fig. 2 B). The homology is such 
that meiotic pairing and recombination can still occur, resulting in rare X- 
Y translocations. Finally, the degree of sequence identity to their X ho- 
mologues of  the few genes assigned or tentatively assigned to this region is 
compatible with a pseudoautosomal origin of these genes. By secondary 
rearrangements, part of this ancestral pseudoautosomal segment appears to 
have been transposed to the proximal short arm of the Y chromosome. 

3.2.2 Other Regions of X- Y Homology 

Various proposals have been made to categorize the loci showing X-Y 
homology and to assign these loci to different regions of the Y chromo- 
some (Koenig et at. 1985; Affara et al. 1986b; Bickmore and Cooke 1987; 
Bardoni et al. 1991), Following and modifying the classification of Bick- 
more and Cooke (1987), we suggest dividing the different X-Y homolo- 
gous sequences into five main categories according to their degree of se- 
quence identity and their X or Y status in other primates. In this scheme, 
category I encompasses the sequences from the (still functional) pseudo- 
autosomal region on distal Xp and Yp just discussed which are X-Y iden- 
tical (category III in Bickmore and Cooke 1987). Category II contains se- 
quences from distal Xq and Yq, which are also X-Y identical but are X- 
specific in higher primates (grouped into category I by Bickmore and 
Cooke 1987). Category III is defined by sequences from Xq and Yp with 
over 98% identity, which are again X only in higher primates (category I 
of Bickmore and Cooke 1987). Category IV (category II of Bickmore and 
Cooke 1987) encompasses the sequences from the presumptive ancestral 
pseudoautosomal region on Xp and proximal Yq discussed above, showing 
a sequence identity in the range of 80%-95%, which are X-Y homologous 
in great apes and old-world monkeys but are X only in new-world mon- 

Fig. 4 (page 169). XY homologous regions on human sex chromosomes. Five categories of 
X-Y homologous segments are indicated, classified according to the degree of sequence 
conservation. Their ly3sitions on the G-banded X and Y cltromosomes are given 
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keys. Finally, category V contains sequences from Xp and distal Yq with a 
lower degree of sequence conservation. For orientation, these five X-Y 
homologous regions are displayed schematically in Fig. 4. 

Corresponding to the pseudoautosomal region (category I) on the telo- 
meric ends of the short arms of X and Y, a small segment of complete se- 
quence identity (category II) has been identified in terminal position on the 
long arms. This segment is at present defined by only two loci, DXYS61 
(probe Y2:13) and DXYS64 (probe St35-239), which are less than 130 kb 
apart on Xq28 (Arveiler et al. 1989) and map to distal Yql2 (Bardoni et al. 
1991; Pedicini et al. 1991). DXYS61 shows X-Y homology extending for 
at least 50 kb and no difference in 1200 bp of sequence from correspond- 
ing X and Y clones (Cooke et al. 1984; Bickmore and Cooke 1987). In- 
terestingly, DXYS64 was still present in an individual showing reduced 
size of the Yql2 heterochromatin, a region of considerable interindividual 
size variation (Pedicini et al. 1991). If confirmed in more cases, this varia- 
tion must be due to interstitial changes. This terminal homologous segment 
of man is found only on the X chromosome in higher primates; therefore, 
it must have been transposed onto the Y during recent evolution. Accor- 
cling to Chandley et al. (1984), quoted in Pedicini et al. (1991), the termi- 
nal parts of the long arms of X and Y are frequently associated during 
meiosis in early pachytene. Thus, recombination in this region may occur, 
and this may be the reason for the conservation of complete homology. If 
so, we are dealing with still another pseudoautosomal region. 

The first single-copy sequence found with homologues on both sex 
chromosomes is pDP34 (pDP31), defining locus DXYS1 (Page et al. 1982, 
1984). Its X homologue DXYSIX has been assigned to Xq21.3, and its Y 
homologue DXYS 1Y to proximal Ypl 1. In the nomenclature of Vergnaud 
et al. (1986), who constructed a deletion map of the Y chromosome divid- 
ing it into seven deletion intervals (see Fig. 3 A and p. 190), DXYS1Y is 
located in interval 4A. Subsequently, many other anonymous sequences 
have been identified, all located within Xq13~24 and Ypl 1, mostly in 
intervals 1C and 2 of Vergnaud et al. (1986). Together they define cate- 
gory Ill of the X-Y homologous sequences and include the loci DXYS5 
(Guellaen et al. 1984), DXYS2-4 and DXYS6-9 (Geldwerth et al. 1985), 
DXYS12 (Koenig et al. 1985), DXYS21 and DXYS30-32 (Affara et al. 
1986b), and DXYS49 (Waibel et al. 1987; a complete listing is found in 
Weissenbach and Goodfellow 1991). The region on Yp from which these 
loci derive has been estimated to comprise about one quarter of the Y 
euchromatin (Koenig et al. 1985), or about 10 Mb. The sequence identity 
between the corresponding X and Y loci has been estimated from compa- 
rative restriction mapping to be about 99% for DXYS1 (Page et al. 1984) 
and about 98% for DXYS12 (Koenig et al. 1985), and from analysis oI 
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1350 bp of sequences from corresponding X and Y clones to be 98.5% for 
DXYS49 (J. Zehender and G. Scherer, unpublished data). Since in all 
cases analyzed the homologous sequences are restricted to the X chromo- 
some in the great apes, it is assumed that they were transposed from Xq to 
Yp during recent evolution, after the separation of the great apes from the 
human branch. Because, as mentioned above, these X-Y homologous se- 
quences are found in intervals 1C and 2 (e.g., DXYS5, DXYS49), and in 
interval 4A (e.g., DXYS 1) on Yp, separated by strictly Y-specific sequen- 
ces defining interval 3 (Vergnaud et al. 1986; Fig. 3 A), two such transpo- 
sition events may have occurred at about the same time in human evolu- 
tion. Alternatively, they may have been moved en bloc onto Yp, to become 
separated later on by a paracentric inversion. Interestingly, in a few XX 
males (see Sect. 7.1) Y sequences from intervals 1C, 2, and 4 are present 
in the absence of some interval-3 sequences (Affara et al. 1987; Brcmdum 
Nielsen et al. 1988; Scherer et al. 1989b), pointing to the existence of such 
a paracentric inversion in extant Y chromosomes. Corresponding results 
have been obtained for some Yp-deleted females with XY gonadal dysge- 
nesis (Disteche et al. 1986b; G. Scherer, unpublished data). 

The euchromatic part of Yq contains two categories of X-Y homolo- 
gous sequences: loci like STSP belonging to the presumptive ancestral 
pseudoautosomal region comprising category IV on proximal Yq, band 
Yql 1.21 (region I in Bardoni et al. 1991), and various loci of weak X-Y 
homology defining category V located more distally in bands Yql 1.22 and 
Yql 1.23 (region II in Bardoni et al. 1991). Loci belonging to category V 
were identified first by Kunkel et al. (1983) with probe 71-7A defining 
locus DXS69 on Xp22.2 and various loci on Yql 1.22-q11.23 (Bardoni 
et al. 1991). Similarly, probe Fr25II (Scherer et al. 1989b; Bardoni et al. 
1991) detects a locus on Xp22.2 and various loci again on 
Yqll.22-qll .23. The locus DXS29 may also belong to this category 
(Affara et al. 1986b), but showing no duplications. The X-Y homology is 
detected only under low-stringency hybridization conditions, pointing to a 
lesser degree of sequence conservation. It is to be assumed that 
transposition of these sequences from the X to the Y occurred earlier in 
evolution than the transposition events discussed above, and that these loci 
were duplicated afterwards by rearrangements within the Y chromosome. 

A last category of X-Y homologous loci is represented by the pseudo- 
autosomal locus DXYS77 which has a duplicate, DYS148, of 95% se- 
quence identity on proximal Yq (Fisher et al. 1990a). It has been shown 
that other sequences in the vicinity of DXYS77 and DYS 148, comprising 
several kilobases in length, are of similar sequence identity, and a larger 
block of DNA was therefore included in this interarm duplication. From 
studies of these sequences in primates, it can be derived that the duplica- 
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tion event took place before the divergence of the human species and the 
great apes (Fisher et al. 1990a). 

Finally, it must be mentioned that many anonymous probes with X-Y 
homology also detect autosomal loci, adding still another level of comple- 
xity to the evolutionary history of Y chromosomal sequences (e.g., Affara 
et al. 1986b; U. MOiler et al. 1986a, b; Vergnaud et al. 1986; Bardoni el al. 
1991). 

4 Repetitive Sequences 

Though not restricted exclusively to male sex determinafiort/dilIerentation, 
the human Y chromosome carries very few functional genes for its size. It 
has been estimated to consist up to 70% of highly repetitive DNA (Cooke 
et al. 1983) which is not transcribed; a more realistic figure seems to be 
30%-40%. There are numerous other reiterated sequences, either in small 
clusters or intercalated at various locations as families of homologous 
sequences. While some repeat clusters were found to be present also on the 
Y chromosomes of  various primate species (see, e.g., U. Mtiller 1987), 
others do not have homologues on the Y chromosomes of  primates closely 
related to the human species, but rather on the X chromosome or on 
autosomes; therefore, their Y location must be of recent origin (reviewed 
by Smith et al. 1987). It is assumed that the sequences were transposed to 
the human Y chromosome at various periods during its evolution after di- 
verging from the great apes, and that some of them became selectively am- 
plified, resulting in tandem repeats. Due to the meiotic isolation of the 
nonpairing segment of the Y, variation of repetitive sequences was largely 
unlimited, and this variation is still reflected in present-day human Y chro- 
mosomes. This variation, including frequent inversions, points to a "linear 
instability" of  the nonpairing region of the Y chromosome (Affara el al. 
1986a). 

Principally, repetitive DNA can be classified in tandem clustered re- 
peats, short interspersed repetitive elements (SINEs), and long interspersed 
repetitive elements (LINEs), and their occurrence on the Y chromosome 
was reviewed by Smith et al. (1987). Among SINEs, Alu repeats are pre- 
sent in considerable number on the Y but seem to have significantly di- 
verged from the average Alu repeats found on other chromosomes. Only a 
few homologies are detected unter high-stringency conditions using aver- 
age Alu probes (Wolfe et al. 1984), but under relaxed conditions their 
number increases considerably (Burk et al. 1985). LINEs are also abundant 
on the Y chromosome, and they are indistinguishable from those of  other 
chromosomes, showing no chromosome-specific organization. Their fre- 
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quency corresponds to the size of the Y chromosome as compared with 
other chromosomes (Schmeckpeper et al. 1981). There are various clusters 
of  tandem repeats, the most prominent of which will now be discussed se- 
parately. 

4.1 C-Heterochromatin 

The human Y chromosome exhibits a considerable interindividual size 
variation (Cohen et al. 1966). After the discovery by Zech (1969) of a 
brightly fluorescing segment on distal Yq using quinacrine derivatives for 
chromosome staining, it was shown that the size variation is due exclusi- 
vely to varying amounts of the fluorescing part (Bobrow et al. 1971), 
which may even be entirely lacking without any phenotypic effect 
(Borgaonkar and Hollander 1971). Cytogenetically, this fluorescing seg- 
ment is part of constitutive heterochromatin as defined by the C-banding 
method (Arrighi and Hsu 1971). The C-heterochromatin extends proxi- 
mally beyond the fluorescing segment, and if it is totally lacking, azoo- 
spermia results (Tiepolo and Zuffardi 1976). 

Restriction enzyme analysis revealed this heterochromatic segment to 
consist of  tandem repeats of DNA, showing a male-specific pattern in 
Southern blots. After HaeIII digestion, two fragments of 3.4 kb and 2.1 kb 
are seen in male but not in female DNA (Cooke 1976; Bostock et al. 
1978). The 3.4-kb repeat (designated DYZ1) constitutes about 20% (4000 
copies) and the 2.1-kb repeat (designated DYZ2) about 10% (2000 copies) 
(Cooke 1976) of the Y chromosome, assuming a size of 60 Mb (Morton 
1991), The complete nucleotide sequence of a 3.56-kb EcoRI fragment 
comprising one DYZ1 unit revealed an uninterrupted tandem array of the 
pentanucleotide TFCCA and variants thereof (Nakahori et al. 1986). The 
2.1-kb DYZ2 HaeIII repeat is included in a larger 2.47-kb repeat that con- 
sists of a highly AT-rich and a GC-rich region with a nearly complete Alu 
element (Frommer et al. 1984). Size variation of the heterochromatic part 
correlates with the amount of the 3.4-kb DYZ1 repeat (McKay et al. 1978), 
and of the 2. l-kb DYZ2 repeat as well (Schmid et al. 1990), thus clearly 
locating these repeats into the heterochromatic segment. By in situ hybri- 
dization to metaphase chromosomes it has been shown that both repeats, 
DYZ1 and DYZ2, are spread throughout the heterochromatic region 
(Bostock et al. 1978; Y.F. Lau 1985; Schmid et al. 1990). Furthermore, in 
situ hybridization studies revealed that the DYZ1 repeat has some se- 
quence homology to the heterochromatic segments of chromosomes 9 and 
15 (Bostock et al. 1978; Schwarzacher-Robinson et al. 1988). Under hy- 
bridization conditions requiring 80%-85% sequence identity, hybridization 
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was still significant to chromosome 9 heterochromatin, but scarce to that 
of  chromosome 15 (Schwarzacher-Robinson etal. 1988). Sequences re- 
lated to the 2.1-kb repeat are also present on other chromosomes concen- 
trated at the telomeres (Cooke et al. 1982). 

The 2.1-kb repeat has been studied in higher primates, including the go- 
rilla, chimpanzee, and gibbon (Cooke et al. 1982). While hybridization 
was not detectable in the gibbon, related sequences are present in the other 
two species. However, no sex-specific pattern was found. It is hypothesiz- 
ed that the 2.1-kb fragment was amplified on the Y chromosome during 
human evolution, and that it was maintained en bloc due to its isolation. 

Sequences related to the 3.4-kb repeat are also contained in the geno- 
mes of the gorilla and the chimpanzee, but again no sex difference was 
detected (Cooke et al. 1982). Clusters of sequences related to the 3.4-kb 
repeat are widely distributed in the human genome (Burk et al. 1985); this 
should also be the case in the close human relatives, and its amplification 
on the Y is therefore assumed to be an event which happened to take place 
only during human evolution. 

4.2 Centromeric Alphoid Repeats 

The centromeric alphoid satellite DNA locus of the Y chromosome, de- 
signated DYZ3, consists of tandem repeated monomeric segments of 
171 bp (Wolfe et al. 1985), the fundamental repeat unit size of all alpha 
satellites, organized in 5.7- or 6.0-kb units which are themselves tandem 
repeated in a single large, uninterrupted array of variable length (Tyler- 
Smith and Brown 1987). The length polymorphism varies between 250 kb 
and 1200 kb. Most males studied can be classified into two size-groups of 
the DYZ3 repeat, either in the range of 250450  kb or in the range of 
800-1200 kb (Wevrick and Willard 1989; Oakey and Tyler-Smith 1990). 
This bimodal distribution, which seems to be unique to the Y chromosome, 
was interpreted as having resulted from a mitotic recombination event 
creating two unequally sized arrays early in the evolution of this DNA fa- 
mily, which by necessity cannot undergo meiotic recombination between 
homologues (Wevrick and Willard 1989). The DYZ3 repeat size has been 
used, in combination with other hypervariable loci, for Y chromosome ha- 
plotyping, suggesting descendence of most Eurasian men from one of two 
males (Oakey and Tyler-Smith 1990). 
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4.3 STIR Elements 

Subtelomeric interspersed repeated (STIR) elements are a family of  se- 
quences originally detected in the pseudoautosomal region and designated 
DXYZ2 (Simmler et al. 1985). On the Y chromosome they were found to 
be dispersed over the entire pseudoautosomal region (W.R.A. Brown 
1988; Petit et al. 1988), but they are also present in the proximal regions of 
the long and short arms believed to be a segment of the ancestral pseudo- 
autosomal region (see above) (Petit et al. 1990). 

STIRs are also specifically located in subtelomeric regions of autoso- 
mes. Therefore, the nomenclature was changed and this family of repeats 
is now called DNF28 (Petit et al. 1990). The sequences of a number of  
STIRs have been determined, including four loci from the pseudoautoso- 
real region and nine elements from four autosomal loci (Rouyer et al. 
1990). A monomeric element comprises about 350 bp, and in the pseudo- 
autosomal region they are organized in tandem multimeres of two or four 
elements. Based on sequence differences, two types were distinguished, 
and the multimers include both types. In contrast, on autosomes the STIR 
elements exist as monomers of one type only. Interestingly, on the X 
chromosome short am STIRs are found also proximal to the present pseu- 
doautosomal region (Petit et al. 1990), confirming the assumption that a 
larger pseudoautosomal region existed in the past, as discussed above. This 
finding also corresponds to the observation of STIR elements in the para- 
centric regions of the Y as part of the ancestral pseudoautosomal region. 

Linkage data revealed greatly increased recombination frequencies, es- 
pecially in male meiosis, in the subtelomeric regions of all chromosomes; 
therefore, it is speculated that the STIR elements may serve the function of 
promoting the initiation of  pairing at meiosis (Rouyer et al. 1990). 

5 Genes and Pseudogenes 

Up to the present, 12 genes or pseudogenes of the Y chromosome have 
been identified and cloned, seven of which were shown to be expressed 
genes, while the others are either known or suspected to be pseudogenes. 
These loci are listed in Table 1 (see p. 165) together with homologous loci 
on the X chromosome. In addition, genes postulated to exist on the basis of  
indirect evidence (see Sect. 6) are also included in the Table. These loci 
will now be discussed. 
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5.1 Colony-stimulating Factor 2 Receptor Alpha (CSF2RA) 

A cDNA of the receptor for the granulocyte-macrophage colony-stimulat- 
ing factor has been cloned (Gearing et al. 1989), and by in situ hybridiza- 
tion it was shown to map to the terminal shor~s arms of the X and Y 
chromosomes (Gough et al. 1990). Pseudoautosomal inheritance was de- 
monstrated by segregation analysis of HindlII polymorphic fragments of 
this gene. It shows a male recombination frequency of  about 20% with re- 
spect to the sexual phenotype (Gough et al. 1990) and maps about 
1.2-1.3Mb from Ypter (Rappold etal. 1991), between DXYS15 and 
DXYS17 (Fig. 3 B). Both X- and Y-located homologues of CSF2RA were 
suggested to be expressed because they may be involved as recessive on- 
cogenes in the generation of acute myeloid leukemias of the M2 subtype. 
In this condition, 25% of cases have lost either an X or the Y chromosome, 
and a significant proportion of patients are unresponsive to the granulo- 
cyte-macrophage colony-stimulating factor (quoted in Gough et al. 1990). 

5.2 MIC2 

The MIC2 gene was identified by the monoclonal antibody 12E7, which 
was raised against human leukemic T cells (Levy et al. 1979). The symbol 
MIC2 refers to monoclonal antibody no. 2 of the Imperial Cancer Research 
Fund (Shows and McAlpine 1982). The gene is expressed on the surface of 
all somatic cells tested (Goodfellow 1983) and was shown by somatic cell 
hybrid studies to be located on the tip of lhe X chromosome short arm and 
to have a homologue on the Y chromosome (Goodfellow et al. 1983). 
Upon cloning of a cDNA for MIC, the MIC2X and MIC2Y loci were 
shown to be closely related, if not identical (Darling et al. 1986), and by 
DNA in situ hybridization both loci were shown to be located in the pseu- 
doautosomal region of the X and Y chromosomes (Buckle et al. 1985). 
Consequently, MIC2X escapes X-inactivation (Goodfellow et al. 1983, 
1987b). The recombination fraction of MIC2 with respect to sex was de- 
termined to be between 2.5% (Goodfellow et al. 1986) and 0% (Johnson 
et al. 1991). Correspondingly, MIC2 maps very close to the pseudoautoso- 
real boundary (Petit et al. 1988; Fig. 3 B). The function of the MIC2 an- 
tigen is not known. 
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5.3 SRY 

The symbol SRY stands for sex-determining region Y gene (Sinclair et al. 
1990). The SRY gene was identified in a systematic search for the gene 
encoding the testis-determining factor (TDF). There is strong evidence that 
SRY is indeed identical with TDF, and we will therefore discuss this gene 
in the section below on sex determination. 

5.4 Ribosomal Protein $4 (RPS4) 

Ribosomal protein $4 is one of approximately 80 different protein compo- 
nents of the ribosome, and it is found among the some 33 proteins of the 
smaller ribosomal subunit. The search for expressed DNA sequences with- 
in the testis-determining region of the Y chromosome succeeded in identi- 
fying a transcript encoding a 263-amino acid protein, which by sequence 
comparison turned out to be largely homologous to the already-known 
ribosomal protein $4 of the rat (Fisher et al. 1990b). Though this gene is 
located proximally, outside the pseudoautosomal region (Fig. 3 B), an X- 
linked homologue was found, and it was mapped by in situ hybridization 
and analysis of somatic cell hybrids to the long arm of the X chromosome, 
within the region Xql3.1 near the inactivation center (XIC). Sequence 
identity in the coding region between RPS4Y and RPS4X is 82%, at the 
protein level 93%. Surprisingly, RPS4X escapes X-inactivation, and it is 
so far the only gene on the X long arm showing this property, except for a 
sequence identified in XIC named XIST, which, however, is inactivated on 
the active X chromosome (C.J. Brown etal. 1991a, b). Escape from 
inactivation and the occurrence of a functional homologue on the Y 
chromosome make RPS4 a candidate for a so-called anti-Turner gene, be- 
cause in the XO condition (Turner's syndrome), it is present in single dose 
only and this may cause haploinsufficiency. However, in patients with an 
isochromosome for the X chromosome long arm, at least a triple dose of 
the gene is expressed, and they nevertheless exhibit Turner's syndrome 
(Just et al. 1992). 

5.5 ZFY 

A strategy to identify the gene for TDF was to narrow down its location by 
analyzing XX males carrying the testis-determining region of the Y at the 
tip of one of their X chromosomes and XY females having a deletion in 
this region (see Sect. 7). The region of overlap of the deletion and the 
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translocated segment is expected to harbor the gene responsible tot male 
development. By this approach, Page et al. (1987c) defined a region of 
140 kb, and within this region they detected a sequence with an open rea- 
ding frame corresponding to 404 amino acids. The deduced polypeptide is 
a zinc finger protein with consecutive repeats of 13 Cys-Cys/His-His 
fingers similar to a variety of transctiption factors like TFIIIA from 
Xenopus oocytes. Therefore, the gene was named ZFY, for zinc finger 
protein Y-linked (Page 1988). The DNA probe detecting ZFY also cross- 
hybridizes with a segment on the X chromosome (Page et al. 1987c), na- 
med ZFX, and by in situ hybridization ZFX was mapped to the interval 
Xp21.3-p22.1 (Mtiller and Schempp 1989; Affara et al. 1989; Page et al. 
1990a). The complete ZFY protein encompasses 801 amino acids (Lau and 
Chan 1989; Palmer et al. 1990), while for ZFX, protein isoforms of 804 
and 575 amino acids resulting from alternatively spliced transcripts were 
described (Schneider-Gfidicke et al. 1989a). The ZFY and ZFX proteins 
are closely related, each composed of an acidic domain, a small basic do- 
main, and 13 Cys-Cys/His-His zinc fingers - a combination of features 
reminiscent of transcription activators. This relationship is reflected in a 
high sequence conservation, which is highest in the zinc finger domain, 
showing 98% sequence identity (Schneider-G~idicke et al. 1989b). 

Both ZFY and ZFX are expressed in the adult human testis, but also in 
many other tissues (Schneider-G~idicke et al. 1989b; Lau and Chan 1989). 
Studies on transcriptional activity of ZFX using somatic cell hybrids con- 
taining the inactivated human X chromosome on rodent background re- 
vealed this gene to escape X inactivation (Schneider-Gfidicke et al. 1989b). 
Both ZFX and ZFY were found to be present on the sex chromosomes of 
all eutherian mammals examined (Page et al. 1987c). In the mouse, the si- 
tuation is more complex with a total of four genes: two on the Y, Zfy-l 
and Zfy-2; one on the X, Zfx; and another, Zfa, on chromosome 10 
(Mardon et al. 1989; Nagamine et al. 1989). In addition, in the mouse Zfx 
undergoes inactivation (Ashworth et al. 1991). In contrast to eutherians, in 
marsupials the sequences homologous to ZFX/ZFY are of  autosomal loca- 
tion (Sinclair et al. 1988), as is the case in nonmammalian vertebrates like 
the chicken (Page et al. 1987c). ZFX shows stronger conservation in 
mammals and other vertebrates than ZFY, and it is assumed that it was 
originally an autosomal gene which became transposed to the sex chromo- 
somes during eutherian evolution. 

Studies on the spatiotemporal expression of ZFY/ZFX and their mouse 
homologues, and speculations on their possible function, have recently 
been reviewed by Koopman et at. (1991a). Based on findings in the mouse, 
a role in spermatogenesis was ascribed to Zfy-1 and Zfy-2 (Mardon el al. 
1989; Nagamine et al. 1989; Koopman et al. 1989). However, since both 
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ZFX and ZFY are ubiquitously expressed in human somatic cells, these 
genes may serve a more general function in the organism. If these zinc fin- 
ger proteins are transcription factors, the next question to be answered will 
be which genes they control. 

5.6 TSPY 

This symbol refers to "testis specific protein Y-encoded" (Weissenbach 
et al. 1989). The gene in question was identified in an attempt to detect 
transcribed DNA sequences specific for the Y chromosome (Arnemann 
et al. 1987). Only a single transcript was detected, and the gene was cha- 
racterized further (Arnemann et al. 1991). It appears to be intronless, and 
the amino acid sequence was deduced to have 258 residues. TSPY was 
mapped to the proximal part of  the Y chromosome short arm. No homolo- 
gous sequence was found on other chromosomes, but an apparent pseudo- 
gene to TSPY was identified within the same region of  the Y chromosome, 
showing DNA sequence identity of about 92%. TSPY is expressed in early 
spermatids, but in no other tissues tested. It is speculated, therefore, that it 
may serve a function in morphological sperm differentiation (Arnemann 
et al. 1991). Male specificity of a segment homologous to TSPY was also 
detected in the chimpanzee and the cow, but it has not yet been found in 
some other mammalian species examined, and the sequence possibly di- 
verged during evolution. Nevertheless, its conservation points to some ba- 
sic function. 

5.7 Amelogenin Y Gene (AMGY) 

Amelogenin is the predominant protein of tooth enamel. Using a cDNA 
probe for amelogenin of the mouse, homologous sequences were detected 
in man. From studies of  somatic cell hybrids, these sequences were assign- 
ed to the X chromosome in the region Xp22.t-p22.31, and to the pericen- 
tromeric region of the Y chromosome, possibly in proximal Yql 1 (Lau 
etal. 1989a). Deletion mapping perlbrmed by Nakahori et al. (1991b), 
however, placed the Y-linked sequence to proximal Yp. This location has 
been confirmed by Salido et al. (1992), who mapped the Y-homologue to 
Ypl l .2  by in situ hybridization. The amelogenin genes were designated 
AMG on the X and AMGL (AMG-like) on the Y (Weissenbach et al. 
1989), and more recently AMGX and AMGY (Salido et al. 1992). For 
AMGX the question of whether or not this locus escapes X-inactivation 
can be debated. As discussed in Salido et al. (1992), the mosaic pattern of 
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normal and abnormal enamel formation in female carriers of X-linked 
amelogenesis imperfecta suggests inactivation, whereas the thicker enamel 
found in individuals with X polysomies as compared with controls speaks 
in favor of a dosage effect. Possibly, AMGX undergoes inactivation only 
partially, similar to STS. AMGY has been shown to be transcriptionally 
active, though at the reduced rate of some 10% of its X homologue. This 
difference in activity might be due to differences in the promotor region, 
which shows only 80% sequence identity (Salido et al. 1992). In contrast, 
sequence identity of the protein-coding region of AMGX and AMGY is 
between 93% and 100% (Nakahori et al. 1991a; Salido et al. 1992). Homo- 
logous genes were shown to be on the X and Y chromosomes of old-world 
monkeys, of  one new-world monkey species, and of the cow, while in 
other monkeys and in rodents only a single gene is present, located on the 
X chromosome (Nakahori and Nakagome 1989). Whether or not the Y- 
linked gene is expressed in these species is not known. 

It is hypothesized (Nakahori et al. 1991a) that AMGY might be identi- 
cal with a growth control gene, GCY, postulated to exist on phenotypic 
grounds (Alvesalo and de la Chapelle 1981; see Sect. 6.3). Similarly, Sa- 
lido et al. (1992) suggest that TSY, a gene controlling tooth size and syn- 
onymous with GCY, may be identical to AMGY. 

5.8 Kallmann's Syndrome Homologous Gene (KALIG-1 Y; ADMLY) 

A gene has been identified recently representing the locus for the X-linked 
torm of  Kallmann's syndrome, a condition associated with hypogonado- 
tropic hypogonadism and anosmia caused by a defect in the embryonic mi- 
gration of olfactory neurons. This gene has been designated KALIG-1 for 
"Kallmann's syndrome interval gene 1" by Franco etal. (1991), and 
ADMLX for "adhesion molecule-like from the X chromosome" by 
Legouis et al. (1991). This latter designation refers to the structural sim- 
ilarity of the encoded 679 amino acid protein to cell adhesion molecules. 
ADMLX maps to Xp22.3 (Franco et al. 1991; Legouis et al. 1991), while a 
homologue identified on the Y chromosome, designated ADMLY, maps to 
Yql 1.21 (Franco et al. 1991). The X-linked gene has been shown to escape 
X-inactivation in expression studies on somatic cell hybrids containing the 
inactive X (Franco et al. 1991). In contrast, the Y-linked Kallmann se- 
quence, which from partial sequence analysis shows high similarity (95%) 
to the X-derived sequence, appears not to be expressed and is considered 
to have become a nonfunctional pseudogene during recent evolution. Y- 
linked sequences were detected in the chimpanzee and the macaque. Do- 
sage analysis using DNA from male and female individuals suggests X- 
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linkage in simians but, interestingly, a pseudoautosomal (or autosomal) lo- 
cation in prosimians (lemurs; Franco et al. 1991). As mentioned earlier in 
this article, the pseudoautosomal origin of the X- and Y-linked Kallmann 
genes is still reflected in recombination events between these loci in meio- 
sis resulting in Xp22.3/Yql 1.2 translocations. 

5.9 Steroid Sulfatase Pseudogene (STSP) 

The steroid sulfatase gene (STS) has been mapped to Xp22.32, closely 
proximal to the pseudoautosomal boundary (PABX), by various methods 
including somatic cell hybrids and the study of male patients with dele- 
tions of the distal short arm of the X chromosome exhibiting ichthyosis 
due to steroid sulfatase deficiency (for review, see Shapiro 1985). This 
gene escapes X-inactivation (Shapiro et al. 1979), but shows a somewhat 
reduced activity if on an inactivated X chromosome (Migeon et al. 1982). 
The gene has been cloned (Yen et al. 1987, 1988); its genomic extension is 
146 kb, including 10 exons which encode a glycoprotein of 561 amino 
acids. A cross-hybridizing sequence was found on the Y chromosome 
(Yen et al. 1987; Fraser et al. 1987) and was mapped to Yql 1.2 (Bardoni 
et al. 1991). Analysis of genomic clones showed that this Y homologue 
has large regions of extensive sequence similarity to STS but misses exons 
1 and 7-10. Sequence analysis of the remaining "exons" 2-6 and of some 
intron-like areas revealed base substitutions, deletions, and insertions, giv- 
ing a sequence similarity to STS ranging from 85% to 94% (Yen et al. 
1988). Thus, the Y locus represents a true pseudogene, which was desig- 
nated STSP (Weissenbach et al. 1989). Because there is no appreciable 
difference between the two genes in similarity of exons and introns, the 
entire STSP locus may have become nonfunctional at the point in evolu- 
tion when it began to diverge from the STS gene, approximately 40 million 
years ago (Yen et al. 1988). Comparative studies indicate that the great 
apes and old-world monkeys also have the functional X-linked gene and, 
with the exception of the gorilla, the Y-linked pseudogene, while in new- 
world monkeys, as in the gorilla, a Y-linked pseudogene was not identified 
and may either have been lost or have diverged extremely from the origi- 
nal sequence. In prosimians, where no dosage differences between XX and 
XY DNA samples were observed, STS is assumed to be pseudoautosomal, 
as in the mouse (Yen et al. 1988; Schempp and Toder 1992). 

Similar to the case of the Kallmann genes, the regions including STS 
and STSP sequences appear to participate in occasional meiotic pairing 
and crossing over, resulting in X-Y translocations (Yen et al. 1988, 1991). 
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5.10 Argininosuccinate Synthetase Pseudogene (ASSP6) 

The functional gene for argininosuccinate synthetase (ASS) is located 
within the chromosome region 9q34-qter (Carrit and Povey 1979). Using a 
cDNA probe from this gene, multiple sequences have been detected dis- 
persed over many human chromosomes including the X (Beaudet et al, 
1982) and the Y chromosome (Daiger et al. 1982). These sequences repre- 
sent processed pseudogenes without introns, and based on sequencing data 
of some representatives of this multigene family, they are highly homolo- 
gous to the functional ASS gene (Freytag et al. 1984; Nomiyama et al. 
1986). A total of 14 pseudogenes have been assigned to various chromo- 
somes or chromosome regions, of which two are located on the X chromo- 
some, ASSP4 on Xpter-p22 and ASSP5 on Xq22-q26, and one on the Y 
chromosome, ASSP6 on Ycen-ql 1 (T.S. Suet  al. 1984). Because of the 
high homology of these pseudogenes to the ASS cDNA, they may have 
originated by a retroposon-like mechanism from ASS and become dispers- 
ed more recently. Therefore, their location in the genome should by inde- 
pendent of linkage groups. From the sequence difference to the ASS 
cDNA, a Y-located pseudogene designated ~AS-Y, probably identical 
with ASSP6, has been estimated to have originated from ASS about 70 
million years ago (Nomiyama et al. 1986). Most of the pseudogenes are 
also found in the chimpanzee, including a Y-linked gene (Daiger et al. 
1982), and in the mouse multiple sequences exist as well (quoted in T.S. 
Suet al. 1984). 

5. t 1 Actin-like Pseudogene (ACTGP2) 

The case of the actin-like sequence on the Y chromosome appears to be 
similar to that of the ASS pseudogene 6. Actin sequences form a multigene 
family dispersed over many chromosomes including X and Y, and some 
50 of them have been detected (quoted in Koenig et al. 1985; see also 
HGMI 1), Many of these sequences represent processed pseudogenes, but 
at least six are expressed genes, coding for muscle and cytoskeletal actins 
(Heilig et al. 1984). Using a cDNA probe corresponding to o~ actin of 
human skeletal muscle (Hanauer etal. 1983), loci on the X and Y 
chromosomes were detected and assigned to Xpl 1-ql 1 and Yql 1 by so- 
matic cell hybrid analyses and deletion mapping (Heilig et al. 1984; Koe- 
nig et al. 1985). The Y-linked pseudogene has been designated ACTGP2 
(McAlpine et al. 1988). The occurrence of actin-like sequences on both the 
X and Y chromosomes may be fortuitous and not due to the presence of 
conserved linkage groups, in particular since outside the actin-like sequen- 
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ces the homology ceases. In addition, in cercopithecoids, where no Y-lin- 
ked actin locus has been detected, sequences homologous to the Y actin 
flanking sequences are autosomal (Koenig et al. 1985). However, in the 
chimpanzee, a male-specific DNA fragment has been identified with a 
human probe detecting a Y actin flanking sequence (Koenig et al. 1985). 

5.12 Retroviral Sequences NP2 (RVNP2) 

Screening of a human DNA library with a probe derived from a human 
endogenous retroviral sequence identified various clones, one of which, 
~,NP2 was further studied because NP2-related sequences are highly 
polymorphic in man (Silver et al. 1987). Genomic Southern blots of  male 
and female DNAs showed that NP2 is located on the Y chromosome, 
which also contains one other sequence closely related to NP2 retroviral 
and 3'-flanking sequences. Transcription activity was not detectable. It is 
assumed that this retroviral sequence was integrated randomly during 
evolution of the Y chromosome, and that this sequence was then duplicat- 
ed. No functional significance can be ascribed to NP2. 

6 Y-determined Phenotypic Characters 

There are some genes postulated to exist on the Y chromosome by phe- 
notypic mapping. Their assignment to the Y rests on male-to-male trans- 
mission of a character if compatible with fertility, and on deletion mapping 
in the case of sterility. Though individual gene loci in terms of DNA se- 
quences have not yet been identified for these characters, current efforts 
will result in their isolation in the near future. 

6.1 A Gene Controlling Spermatogenesis (AZF) 

In a survey of subfertile males, Tiepolo and Zuffardi (1976) identified a 
number of azoospermic cases with a deletion of the distal region of Yql 1. 
They postulated a gene controlling spermatogenesis located in this region. 
This gene was subsequently named AZF for azoospermia factor 
(Goodfellow et al. 1985b). Histological examination of cases with a dele- 
tion of distal Yq and azoospermia showed various degrees of germ cell de- 
generation (Chandley etal.  1986, 1989; Hartung etal. 1988). In EM 
microspreads of spermatocytes at pachytene of meiosis a proteinaceous 
body is visible on the Y axis in the more distal part of  the nonpairing seg- 
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ment (Speed and Chandley 1990). As discussed by these authors, this pro- 
teinaceous body might be functionally related to the AZF gene, similar to 
the protein-RNA complexes formed on lampbrush chromosomes at the si- 
tes of fertility genes during meiosis of Drosophila hydei (Vogt and Hen- 
ning 1986). Indeed, using a fertility gene sequence derived from Droso- 
phila hydei, Vogt et al. (1991) identified a sequence family, pY6H, which 
maps to Y chromosome interval 6 of Vergnaud et al. (1986). The repetitive 
sequence composition of this locus is similar to that of Drosophila fertility 
genes, and the authors therefore consider it a candidate sequence for func- 
tional parts of  the AZF locus. Other attempts to regionally map the puta- 
tive AZF gene were performed by molecular analysis of  Y-autosome 
translocations, confirming the location of the gene in deletion interval 6 on 
distal Yql 1 (Andersson et al. 1988), and its location was further refined by 
a detailed study on the order of loci on Yq, resulting in its assignment to 
Yql 1.23 (Bardoni et al. 1991). In addition, two unrelated sterile males 
with de novo microdeletions in Yql 1.23 have been described (Vogt et al. 
1992). The putative ~ F  gene may belong to an ancestral linkage group 
including TDF (Fig. 2) and presumably other genes involved in male sex 
determination and differentiation, because it appears to have a basic func- 
tion in germ cell migratiordproliferation during early embryonic life. In the 
mouse, a candidate spermatogenesis gene has recently been characterized 
which is located on the Y chromosome short arm in the so-called Sxr b re- 
gion (Mitchell et al. 1991; Kay et al. 1991). This gene has a homologue on 
the X chromosome that is largely identical with the gene for the human 
ubiquilin-activating enzyme E1 (UBE1), which is also located on the X 
chromosome and escapes X-inactivation (Weissenbach and Goodfellow 
1991). However, a homologous sequence has not been detected on the 
human Y chromosome. 

6.2 Anti-Turner Genes 

Turner's syndrome is characterized by gonadal dysgenesis and short stature 
and a number of variable featurs including pterygium colli, low hairline, 
lymphedema, and other abnormalities. Embryonic lethality is over 99% 
(Hassold 1986). So far, the genetic reason for Turner's syndrome and its 
high lethality are unexplained. Usually, this condition is associated with a 
45,X karyotype; however, Turner characteristics are also observed in cases 
with deletions of segments of either the X or Y chromosome. It has been 
argued that the syndrome is the consequence of haploinsufficiency for a 
gene or genes present on both the X and Y chromosome and escaping 
inactivation (Ferguson-Smith 1965). These so far unknown genes on the Y 
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chromosome should compensate in the male for the other X chromosome 
in the female, thus preventing Turner's syndrome, and therefore they can 
be named anti-Turner genes. Gonadal dysgenesis is not to be included 
among the disorders prevented by an anti-Turner gene, because it occurs 
also in XY females having a deficiency of TDF due to mutation or deletion 
(see Sect. 7, on sex determination). Thus, ovarian differentiation in the 
human female should depend on some as yet unknown gene(s) which are 
X specific and escape X-inactivation. It is the somatic anomalies in Tur- 
net's syndrome that should be due to the absence or functional impairment 
of  genes shared by X and Y chromosomes. 

An approach to identifying these genes is to analyze cases with Turner 
characteristics having small deletions in one of the sex chromosomes, and 
there is abundant literature about such cases. In XY females with Turner 
characteristics but normal height, terminal deletions were found in the Y 
chromosome short arm including the pseudoautosomal region and adjacent 
segments (e.g. Magenis et at. 1984a; Disteche et al. 1986b; Affara et al. 
1987; Cantrell et at. 1989; Blagowidow et at. 1989; Levilliers et al. 1989). 
More refined deletion mapping assigned the critical segment to a subre- 
gion of interval t A (Fig. 3 B; Fisher et at. 1990b). RPS4Y located in this 
subregion was considered a candidate gene for Turner's syndrome, but this 
has become less likely in view of the gene expression studies discussed 
above under Sect. 5.4. In addition, it remains to be seen if the complex 
deletion situation in the case studied by Fisher et al. (see also Page et al. 
1990b) definitely rules out other segments on Yp. Therefore, the hunt for 
anti-Turner genes is still at its beginning. 

An attempt to map the gene putatively responsible for the short stature 
consistently occuring in Turner's syndrome was made by Henke et al. 
(1991). They studied two cases with partial monosomy of the pseudoauto- 
somal region and localized this putative gene in a segment including two 
CpG islands and the CSF2R gene (see Sect. 5.1). 

The putative haploinsufficiency causing Turner's syndrome obviously 
does not occur in the X0 condition of the mouse which is a fertile female. 
It is assumed that in this species the homologous "anti-Turner" genes 
undergo inactivation; therefore, no dosage difference would exist (Ash- 
worth et al. 1991). 

6.3 Growth Control, Y Chromosome-Influenced (GCY) 

There is evidence tbr a gene or genes on the Y chromosome influencing 
growth in terms of body height and tooth size. Measurements of tooth size 
parameters in a man with most of the long arm of the Y chromosome de- 
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leted gave significantly smaller values than controls, while another man 
with only the distal part of the Y chromosome deleted had normal values 
(de la Chapelle and Alvesalo 1979; Alvesalo and de la Chapelle 1979, 
1981). Based on these findings, a gene influencing growth was postulated 
to be located in region Yql 1, possibly in its proximal part. This location 
coincides also with body height in cases with deletions of the Y chromo- 
some, in particular XX males (see Sect. 7.1) who are significantly shorter 
than normal XY males. This putative gene has been named GCY for 
growth control of the Y chromosome, as introduced in HGM8 (McAlpine 
et al. 1985). These observations await confirmation and further refinement. 
The possibility is also discussed that GCY and AMGY may be one and the 
same gene (Nakahori et al. 199ta; Saido et at. 1992), and if this is the case, 
GCY should be located on proximal Yp. 

6.4 Histocompatibility Y Antigen (H-Y) 

Histocompatibility Y antigen is a minor histocompatibility antigen origi- 
nally detected in female inbred mice which rejected isogenic male skin 
grafts (Eichwald and Silmser 1955). A serological assay was developed by 
Goldberg et al. (1971), and H-Y antigen can also be detected by cytotoxic 
T lymphocytes (Goldberg et al. 1973). In spite of various attempts to cha- 
racterize H-Y antigen biochemically, so far only immunological definiti- 
ons are applicable. There is evidence that more than one gene codes for 
proteins with H-Y activity, because the H-Y phenotype depends on the 
method used for its detection. Thus, three H-Y antigens may be defined, 
and following a proposal by Wiberg (1987), the antigen as detected by 
transplantation assays is termed, H-Yt, that identified by cytotoxic T lym- 
phocytes H-Yc, and the serologically demonstrable one H-Ys. Because the 
term "H-Y" was originally coined to designate the transplantation antigen 
(Billingham and Silvers 1960), it was proposed that the serological antigen 
be referred to as "SDM" for serologically detectable male antigen (Silvers 
et at. 1982). We consider this term misleading because if present in the 
female, this antigen should not be named "SDM". A thorough discussion 
of these antigens was provided by Wiberg (1987). H-Yt and H-Yc may be 
one and the same, and since mapping data with respect to the Y chromo- 
some exist only for H-Yc and H-Ys, we will restrict the present discussion 
to these two putative genes. 

H-Ys was found to be associated not only with the male sex in mam- 
mals, but also with the heterogametic sex in nonmammalian vertebrates 
(for review, see Wachtel 1983). Because of this association and its phylo- 
genetic conservation, it was proposed to be responsible for male sex de- 
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termination (Wachtel et al. 1975). Various pieces of evidence led to the 
proposal that the H-Ys structural gene is on an autosome while it is con- 
trolled by a gene on the Y chromosome; furthermore, it was proposed that 
H-Ys is not the gene for testis determination (TDF), which was assumed to 
be a major controlling gene, but rather a gene involved in primary gonadal 
differentiation and coding for a tissue hormone or morphogene (Wolf 
1978, 1981, 1985). Expression of H-Ys in XX males (Yamada and Isurugi 
1981; Wachtel 1983) carrying only the distal segment of the Y chromo- 
some short arm favours the assumption that the postulated H-Ys control- 
ling gene is in the sex-determining region of the Y. Correspondingly, phe- 
notypic females with deletion of the short arm of the Y chromosome (and 
Turner's syndrome) proved to be negative for H-Ys (Rosenfeld et al. 1979; 
Kelly et al. 1984). So far, the possibility has not been ruled out that this 
controlling gene is TDF, because the H-Ys structural gene may be a gene 
functioning secondarily to TDF (Wolf 1988). Complementary to H-Ys, H- 
Yc has been found to be absent in XX males but present in females with a 
deletion of  most of  the short arm of the Y chromosome (E. Simpson et al. 
1987). Therefore, H-Yc was assigned to Ypl 1.2-qter (Davies et al. 1987). 
Recently, again by deletion mapping, the location of H-Yc was narrowed 
down to a proximal portion of interval 6 of Vergnaud et al. (1986) (Cantrell 
et al. 1992). 

In the mouse, H-Yc is not expressed !n males carrying the Sxr b muta- 
tion (McLaren et al. 1984). This mutation causes a failure in spermato- 
genesis (Burgoyne et al. 1986), and H-Yc may therefore have some func- 
tion in germ cell proliferation/differentiation (Burgoyne et al. t986). How- 
ever, in these mutant mice, H-Ys may be not expressed as well (Goldberg 
1988), and if confirmed, this finding would argue against H-Ys being a 
morphogene responsible for primary testis differentiation. Interestingly, 
Mtiller and Wachtel (1991) found that H-Y antisera cross-react specifically 
with Mtillerian inhibiting substance (MIS), thus opening up the possibility 
that H-Ys and MIS are one and the same. Indeed, H-Ys is secreted by 
testicular Sertoli cells (Zenzes et al. 1978a), as is the case with MIS. 
Furthermore, apart from its function of preventing the development of 
female ducts, MIS has been shown to sex-reverse fetal ovaries in vitro 
(Vigier et al. 1989), similar to H-Ys (Zenzes et al. 1978b; Mtiller and 
Urban 1981). There is an indication, however, that H-Ys antisera also 
cross-react with some other proteins (Lau et al. 1989b; H. Suet  al. 1992). 
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6.5 Gonadoblastoma Locus on Y Chromosome (GBY) 

Female patients carrying a Y chromosome or parts of  it (XY gonadal dys- 
genesis; Turner's syndrome with XO/XY mosaicism or a cell line with a Y 
fragment) have a predisposition for developing gonadoblastoma (Simpson 
1976). Therefore, a gene on the Y chromosome was postulated to act as an 
oncogene, if present in a dysgenetic gonad, and named GBY for gonado- 
blastoma locus on Y chromosome (Page 1987). This gene should have a 
physiological function in normal males, presumably in the gonad. By dele- 
tion mapping in cases with XY gonadal dysgenesis and in Turner mosaics 
with segments of the Y chromosome deleted, the short arm (Yp) was largely 
excluded, and the putative gene should be located within Ypl l . l -Yqter  
(Page 1987; De Arce et al. 1992). So far, it cannot yet be excluded that GBY 
is identical with one of the other genes postulated to be located within this 
region on phenotypic grounds, i.e., H-Yc, GCY or AZF (Page 1987). 

7 Sex Determination 

The male-determining function of the Y chromosome became apparent 
when, in the emerging field of human cytogenetics, a Klinefelter patient was 
shown to have the sex chromosome constellation XXY (Jacobs and Strong 
1959) and a Turner patient the constellation XO (Ford et al. 1959). Sub- 
sequently, subjects with various numbers of X chromosomes were found 
who were male in the presence but female in the absence of a Y chro- 
mosome. Cytogenetic studies on structural aberrations indicated that the 
short arm of  the Y chromosome is crucial for male sex determination (for 
review, see Davis 1981). A closer analysis of the sex-determining region, 
however, became possible only after the introduction of DNA techniques. 
A clue which finally led to the identification of the putative gene for the 
testis-determining factor (TDF) came from the molecular study of XX 
males and XY females with gonadal dysgenesis. This enigmatic discrepan- 
cy between karyotype and phenotype prompted Ferguson-Smith, as early as 
1966, to postulate that these conditions originate by X-Y interchange, 
transferring the testis-determining region from the Y to the X, resulting in 
XX Y males, while the reciprocal product is a Y chromosome lacking this 
region and carrying an X chromosomal segment in its place, thus resulting 
in XY x females (Fig. 5). This hypothesis proved to be correct, at least in a 
number of cases. The molecular analysis of the Y chromosome segments 
present in XX males and deleted in XY females allowed the definition of a 
smallest region of overlap, and within this region a sequence necessary and 
sufficient for male determination was eventually identified. 
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Fig. 5. Accidental terminal X-Y interchange in the etiology of XX males and XY females 
with gonadal dysgenesis. Aberrant X-Y recombination outside the pseudoautosomal pairing 
region (hatched) leads to transfer of TDF to the paternal X chromosome, giving rise to an 
XX male. The reciprocal product, a Y chromosome with TDF deleted, is found in some 
sex-reversed XY females with gonadal dysgenesis. The breakpoint on the X chromosome 
can be in the X-specific segment, as indicated, or within the pseudoautosomal region 

7.1 XX Males 

XX males are sterile, with small testes, azoospermia, and reduced levels o f  
testosterone; otherwise, they are largely asymptomatic. The incidence is 
about 1 in 20 000 newborn boys (de la Chapelle 1972). They  have an 

apparently normal 46,XX female karyotype. However,  careful measu- 
rements  on the X chromosomes of  XX males revealed a significant size 

difference, the short arm of  one X chromosome being slightly increased in 
around 70% of  the cases studied (Evans et al. 1979). The authors interpret- 

ed  these findings as evidence for X-Y interchange. 
The first evidence for the presence o f  Y-specific DNA sequences in XX 

males was provided by Guellaen et al. (1984), using various hybridization 
probes derived from a Y chromosome library. The spectrum of  positive 
signals for these probes varied among the cases studied, implying that the 
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breakpoints on the Y chromosome were different. Thus, the presumed ac- 
cidental X-Y interchange occurred at different locations in each case. 
These initial findings were subsequently confirmed in many other studies 
(Page et al. 1985; Vergnaud et al. 1986; U. MiJller et al. 1986a; U. MUller 
1987; Affara et al. 1986a, 1987; Buckle et al. 1987; Ferguson-Smith et al. 
1987; BrOndum Nielsen et al. 1988; Schempp et al. 1989a). However, a 
fraction of the XX males analyzed proved to type negative Ior Y-specific 
DNA. 

The X-Y interchange hypothesis of Ferguson-Smith (1966) was con- 
firmed by DNA in situ hybridization; Y-specific DNA was indeed shown 
to be located at the distal short arm of one of the X chromosomes in meta- 
phase chromosomes of XX males (Magenis et at. 1984b, 1987; Andersson 
et al. 1986). In a sample of 11 XX males, random X-inactivation was ob- 
served in ten cases, while in one male with a larger Xp segment including 
STS deleted, the Y-DNA-carrying X chromosome was preferentially inac- 
tivated (Schempp et al. 1989a). Furthermore, transfer of a terminal portion 
of Yp onto Xp in exchange for a terminal portion of Xp (Fig. 5), as pre- 
dicted by Ferguson-Smith, was demonstrated by following the inheritance 
of pseudoautosomal alleles in XX male families (Page et al. 1987b; Petit 
et al. 1987). Inheritance of the entire pseudoautosomal region from the 
paternal Y chromosome and loss of all or the distal part of the pseudoauto- 
somal region from the paternal X chromosome was found. In one case, this 
abnormal, terminal X-Y interchange resulted from homologous recombi- 
nation between two Alu elements, one t?om distal Yp and one from within 
the X pseudoautosomal region, within otherwise nonhomologous regions 
(Rouyer et al. 1987). 

The varying size of the Y segment transferred to one of the X chromo- 
somes in XX males and some additional cases of Y deletions were used to 
construct a deletion map of the Y chromosome (Vergnaud et al. 1986; U. 
Miiller et al. 1986a; Affara et al. 1987). The map constructed by Vergnaud 
et al. (1986) is the one most commonly used and comprises seven intervals 
defined by the presence or absence of Y-specific DNA segments in indivi- 
dual cases (see Fig. 3 A). Interval 1, defined by an XX male carrying the 
smallest Y segment in the sample studied, is also present in all other Y-po- 
sitive XX males, and TDF must therefore lie in this interval. Later on, XX 
males with still smaller segments of the Y chromosome were found and 
interval 1 was subdivided (Page et al. 1987c; Palmer et al. 1989). By 
breakpoint analysis of such cases, the critical segment which should con- 
tain TDF was finally narrowed down to a 35-kb region proximal to the 
pseudoautosomal boundary, and subcloning of this region eventually re- 
sulted in the identification of SRY as a candidate sequence for TDF 
(Sinclair et al. 1990; see Sect. 7.4). 
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In addition to XX males, two other, less frequent classes of sterile males 
exist with karyotypes devoid of a Y chromosome. One class, the XXX 
(triplo-X) males, of which only three cases are known, are similar to XX 
males in having Yp material translocated onto one of their X chromoso- 
mes, but they have an additional X chromosome due to maternal or pater- 
nal nondisjunction (Anner6n et al. 1987; U. Mtiller et al, 1987; Scherer 
et al. 1989b). The second class, the XO males, results from translocation 
of, in most cases, all of  Yp including the Y centromere onto an autosome, 
leading to monosomy for the corresponding autosomal segment, which 
may result in congenital malformations. Following the initial molecular 
studies (Schempp et al. 1985; Maserati et al. 1986; Disteche et al. 1986a), 
over ten such cases have now been analyzed (listed in Hemel et al. 1992). 
The presence of interval 1 in all these individuals accounts for their male 
phenotype. 

7.2 XY Females with Gonadal Dysgenesis 

This condition, also named Swyer's syndrome, is found in sterile females 
with an apparently normal 46,XY male karyotype who are characterized 
by streak gonads, primary amenorrhea due to hypergonadotropic hy- 
pogonadism, poorly developed secondary sex characteristics, and predis- 
position to gonadal neoplasia (J.L. Simpson 1976; J.L. Simpson et al. 
1981). While in a few cases deletions of the distal part of  the Y chromo- 
some are just detectable cytogenetically (Rosenfeld et al. 1979; Magenis 
et al. 1984a; Disteche et al. 1986b), in most cases such deletions become 
evident only by molecular analysis (Disteche et al. 1986b; U. Miiller et al. 
1986b; U. MiJller 1987; Affara et al. 1987; Ferguson-Smith et al. 1987; 
Cantrell et al. 1989; Blagowidow et al. 1989; Levilliers et al. 1989). All 
such cases lack interval 1 of Vergnaud et al. (1986), probably due to an 
abnormal terminal X-Y interchange with transfer of Xp sequences to Yp, 
as actually shown by pedigree analysis and in situ hybridization in two 
cases (Levilliers et al. 1989). They thus represent the true mirror image of 
XX males as postulated by Ferguson-Smith (1966) (Fig. 5). It is intriguing 
that such Yp-deleted XY females seem to occur with a frequency signifi- 
cantly lower than that of  Y-positive XX males. Only some 10%-20% of 
XY females studied in larger surveys (Ferguson-Smith et al. 1987; U. 
Miiller 1987, Cantrell et al. 1989; our own unpublished data) have dele- 
tions on Yp, and because most such cases show Turner stigmata, a higher 
fetal mortality, as in Turner's syndrome, may account for the distortion in 
the ratio of X-Y interchange XY females to Y-positive XX males 
(Levilliers et al. 1989). After the discovery of SRY, an additional 
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10%-15% of XY gonadal dysgenesis females have revealed mutations 
within this gene (see below). However, the great majority of XY females 
with gonadal dysgenesis have a completely intact Y chromosome, pointing 
to the existence of a gene or genes acting secondarily to TDF which are 
not Y-linked and which must be affected by mutations in these cases. In 
fact, familial cases exist which indicate X-linked recessive or male-limited 
autosomal recessive, or dominant, inheritance (J.L. Simpson et al. 1981; 
Ostrer et al, 1989). 

7.3 XX True Hermaphrodites 

True hermaphroditism is characterized by the simultaneous presence of 
testicular and ovarian tissues in the gonads. Some 60% of the cases have a 
normal female karyotype (van Niekerk and Retief 1981). The presence of 
testicular tissue has prompted several authors to search for Y-specific 
DNA in the genome of these subjects. Using various DNA probes from Yp 
and from the testis-determining region, no hybridization signal was obtain- 
ed in the large majority of cases (Vergnaud et al. 1986; Waibel et al. 1987; 
Ramsay et al. 1988; Damiani et al. 1990; Abbas et al. 1990). Only a few 
exceptions were found to be positive for probes derived from the Y- 
pseudoautosomal boundary or the immediately adjacent region (Palmer 
et al. 1989; J~iger et al. 1990b; Nakagome et al. 1991). The cases studied 
by Palmer et al. were included in the search for TDF, resulting in the iden- 
tification of the candidate sequence SRY (Sinclair et al. 1990). 

A phenotypic analysis of Y-negative XX males indicates that they differ 
from classical, Y-positive XX males in exhibiting ambiguous genitalia 
(Ferguson-Smith et al. 1990; Abbas et al. 1990). It cannot be excluded that 
some or all of these cases are in fact true hermaphrodites, with some ova- 
rian tissue undetected in their gonads. The observation that XX males can 
coexist with XX true hermaphrodites in the same predigree (Skordis et al. 
1987) points to a common origin. Similar to the majority of females with 
XY gonadal dysgenesis, a gene (or genes) secondary to TDF and not lo- 
cated on the X chromosome may be involved. It has been speculated that 
activating mutations in an X-linked locus subject to inactivation may ac- 
count for both XX males and XX true hermaphrodites, with random X-in- 
activation in the developing gonads of the latter, and nonrandom inactiva- 
tion in the former (Affara 1991). 
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7.4 The Testis-determining Gene 

The idea that sex difference is under the control of  a single master regula- 
tory gene has been elaborated by Ohno (1979). The assumption of  a single 
testis-determining gene, however, is by no means sufficient to explain 
male sexual differentiation (Mittwoch 1992), and indeed, the male differs 
from the female in a multiplicity of gene activities, both qualitatively (Y 
chromosome) and quantitatively (X chromosome). Nevertheless, the idea 
of a master regulatory gene is compatible with the view of a complex inter- 
action of many genes, such as has Ken  shown to be at work in the sex 
determination and differentiation pathways in the nematode Caenorhabdi- 
lis elegans and in Drosophila (Hodgkin 1990). 

An early approach to tracing candidate genes for male development was 
to look for male-specific proteins. In 1955, Eichwald and Silmser identi- 
fied a male-specific histocompatibility antigen by transplantation experi- 
ments in the mouse, subsequently named H-Y antigen (Billingham and 
Silvers 1960). After it became evident that H-Y antigen is male specific 
not only in the mouse, but in all mammals studied, as well as in the hereto- 
gametic sex of nonmammalian vertebrates, this evolutionary conservation 
pointed to a fundamental function, and the hypothesis was put forward that 
it might be the product of the testis-determining gene of the mammalian Y 
chromosome (Wachtel et al. 1975; Ohno 1976). Since the occurrence of H- 
Y antigen was associated with the presence of testicular tissue in the go- 
nac~ rather than with the presence of the Y chromosome (e.g., XX males 
and XX true hermaphrodites), Wolf (1978) postulated that it is not the H-Y 
structural gene, but a gene controlling H-Y expression which is located on 
the Y chromosome; a constitutive mutation could then explain expression 
of  H-Y antigen in the absence of the Y chromosome. After the finding of a 
mutant male mouse with testes but lacking H-Y antigen (H-Yc, as discuss- 
ed above; McLaren et al. 1984), this factor was definitely excluded as the 
testis determiner, and it has also become largely unpopular as a candidate 
in primary testis differentiation. In this context, however, we refer to the 
possible identity of H-Ys and MIS as discussed under Sect 6.4. 

The identification of ZFY as a transcribed gene located in the testis-de- 
termining region of the Y chromosome (Page et al. 1987c) focused the in- 
terest on this gene as the best candidate for TDF. ZFY indeed fulfills seve- 
ral requirements postulated for the TDF including male specificity, evolu- 
tionary conservation, and its deduced function as a transcription factor. 
However, it soon became evident that it did not function as a TDF. It was 
considered irritating that ZFY has an almost identical homologue on the X 
chromosome, ZFX (U. MOiler, quoted in Roberts 1988). In marsupials, se- 
quences homologous to ZFY were found to be autosomal (Sinclair et al. 
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1988). In the mouse, the expression patterns of Zfy-1 and Zfy-2 (the 
mouse homologues of ZFY) were studied in embryonic male gonads. Zfy- 
2 transcripts were not detected, and Zfy-1 expression was shown to be as- 
sociated with germ cells rather than with the supporting somatic cell li- 
neage (Koopman et al. 1989), Finally, XX males and XX true hermaphro- 
dites have been found lacking ZFY but still possessing Y-specific DNA 
derived from around the pseudoautosomal boundary (Palmer et al. 1989; 
J~iger et al. t990b). For these reasons, ZF~( was excluded from being TDF. 

Further analysis of the XX malelintersex cases studied by Palmer et al. 
(1989) resulted in the definition of a 35-kb segment between the pseudo- 
autosomal boundary and the point of X-Y interchange (Sinclair et al. 
1990). By subcloning of DNA from the 35-kb segment, only one among 
some 50 probes was identified as fulfilling the following conditions: non- 
repetitive, Y specific, and present in all eutherian mammals tested. Se- 
quence analysis revealed an open reading frame corresponding to a 204 
amino acid protein with a stretch of 80 amino acids characteristic of a 
DNA-binding motif known as the HMG box, found in high mobility group 
proteins and in several transcription factors (Jantzen et al. 1990). The gene 
that includes lifts motif was designated SRY (Sinclair et al. 1990). It ap- 
pears to have no intron and gives rise to an mRNA of about 1.0 kb in adult 
testis. The DNA-binding motif indicates that SRY codes for a protein con- 
trolling transcription, and this fits well with the expectation that TDF 
should be a master regulatory gene. In the meantime, an SRY homologue 
has been shown to be present on and specific for the marsupial Y chromo- 
some as well (O'Brien and Graves 1991). 

Further evidence for SRY being TDF (Tdy in the mouse) came from 
studies in the mouse. Gubbay et al. (1990) demonstrated that the murine 
equivalent Sty is present in Sxr b, the smallest part of the mouse Y chro- 
mosome known to be sex determining (McLaren et al. 1984), and is delet- 
ed from a mutant Y chromosome that has lost male sex-determining func- 
tion (Lovell-Badge and Robertson 1990). Sry expression was shown to be 
confined to somatic tissues of the developing male gonad, excluding germ 
cells; indeed, differentiation of the somatic architecture of  the testis is 
known to be independent of germ cells (McLaren 1985). Furthermore, Sry 
expression is limited to the period when testis differentiation starts; trans- 
cripts were first detected on clay 10.5 of embryonic development of the 
mouse, and at day 13.5 transcription was no longer detectable (Koopman 
et al. 1990). 

That SRY is at least required for sex determination was demonstrated 
by the fact that 10%-15% of XY females with gonadal dysgenesis carry a 
mutation in SRY within the HMG box domain (Fig. 6). Of the 14 cases re- 
ported (see legend to Fig. 6 lot references), eight have been shown to be de 
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novo; three cases, V60L, I90M, and F109S, are familial mutations where 
the XY females share the same amino acid substitution with their fathers 
(Berta et al. 1990; J~iger et al. 1991; Vilain et al. 1992; Harley et al. 1992), 
while for an additional three cases, M78T, K106I, and R133W, it is not 
known whether or not the mutations are inherited. For the cases demon- 
strated to have de novo mutations in SRY, these mutations must be respon- 
sible for the sex reversal. Amino acid substitutions at highly conserved 
positions like I90M, G95R, K106I, and F109S may affect proper folding 
of the HMG box domain, while substitutions at less conserved positions 
like V60L, M64I, I68T, M78T, and R133W may identify residues involv- 
ed in sequence-specific binding of SRY to its supposed DNA target. 

Finally, the most convincing evidence that TDF (Tdy) has indeed been 
identified was provided by producing transgenic mice (Koopman et al. 
1991b). When transferred into the nucleus of female mouse zygotes, a 14- 
kb DNA fragment including the mouse SRY sequence caused sex reversal 
in a number of cases, and the chromosomally female embryo grew up as a 
male (though sterile). Thus, the transferred fragment was shown to be not 
only necessary, but also suftlcient for male sex determination. The only 
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Fig. 6. Sex reversing mutations in SRY. All mutations identified in females with XY gona- 
dal dysgenesis are located in the HMG box of SRY which spans residues 58-137 of the 204 
amino acid residues of SRY. Single-letter code is used for the amino acid sequence. The 
mutations are from: V60L, M64I (Berta et al. 1990); E122FS(-4)(-4 frameshift) (J~iger et al. 
1990a); FI09S (J~iger et al. 1991); W70X, G95R (Hawkins et al. 1992), I90M, KI06I (Har- 
ley et al. 1992); Q93X (McElreavey et al. 1992); F109FS(-1)(-I frameshift) (J.R. Hawkins, 
G.D. Berkovitz and P.N. Goodfellow, personal communication); I68T, Y127X (K. McE1- 
reavey and M. Fetlous, personal communication); M78T, R133W (N.A. Affara and M.A. 
Ferguson-Smith, personal communication). X denotes mutation to a stop codon. De novo 
mutations are not marked, inherited mutations are marked with an asterisk. M78T, KI06I, 
and R133W may or may not be de novo mutations. The HMG box consensus sequence is 
modified from Harley et al. (1992) 
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transcript expressed from the 14-kb fragment if transfected into COS-1 
cells is Sty mRNA, making it unlikely that another gene resides in this 
fragment (Walter et al. 1991). 

In recent reports, the binding ability of normal and mutant SRY/Sry 
protein to particular DNA sequences has been studied, demonstrating that 
SRY/Sry is indeed a DNA-binding protein. Nasrin et al. (1991) have iden- 
tiffed a rat protein, IRE-ABP, that binds to the insulin response element 
IRE-A of the glyceraldehyde-3-phosphate dehydrogenase gene. IRE-ABP 
contains a single HMG box that is 67% identical to that of mouse Sty and 
98% identical to that of  the mouse Sry-like protein a4 (Gubbay et al. 
1990). Recombinant fusion proteins containing the HMG box region of 
Sty or IRE-ABP both bind with similar specificity to the IRE-A motif that 
contains the sequence 5' TI'CAAAG 3', and introduction of the V60L or 
M64I mutations (Fig. 6) into the Sty fusion protein prevents this binding. 
Similarly, Harley et al. (1992) have expressed the complete human SRY 
protein and have shown that it binds to the sequence 5' AACAAAG 3' pre- 
sent in the CD3E enhancer that is recognized by the T-lymphocyte trans- 
cription factor TCF-1, another HMG box prolein (van de Wetering et al. 
1991). The same sequence 5' AACAAAG 3' is also found upstream of both 
the human SRY and mouse Sry genes (cited in Harley et al. 1992) and is 
bound by SRY. Again, mutant SRY protein containing the amino acid sub- 
stitutions V60L, M64I, G95R, or KI06I (Fig. 6) showed no binding acti- 
vity, while the familial I90M mutant showed greatly reduced DNA bind- 
ing. The absence of any binding of the second familial mutant, V60L, ob- 
served in both studies might be explained by the potentially higher strin- 
gency of the in vitro assay compared to the in vivo situations (Harley et al. 
1992). Finally, Giese et al. (1991) studied the binding properties of the 
TCF-l-related lymphoid-enhancer binding factor 1, LEF-1, also known as 
TCF-Is ,  to the T-cell antigen receptor (TCR) o~ enhancer that contains the 
sequence 5' TTCAAAG 3', identical to the 1RE-A motif. They showed that 
a Y---~S substitution in the single HMG box of LEF- 1/TCF- 1 o~ that exactly 
corresponds in its position to the F109S familial SRY mutation (Fig. 6) 
leads to a ten fold reduction of binding to the TCR-(x ehancer compared 
with the normal protein. The F109S mutant seems to be similar, therefore, 
to the other familial mutant I90M The partial penetrance of the familial 
mutations may therefore be explained by stochastic fluctuation around a 
critical threshold value of a mutant SRY protein with reduced DNA bind- 
ing; alternatively, the ability to functionally interact with different allelic 
forms of another, non-Y-encoded factor may be of decisive influence 
(Vilain et al. 1992). 

It seems not very likely that IRE-A, CD3c~, or TCRct are true targets tot 
SRY. In vivo specificity for SRY might be brought about by interaction 
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with another protein. For example, target gene specificity of muscle-speci- 
fic transcription factors of the MyoD family seems to depend on such in- 
teractions with other transcription factors (Chakraborty and Olson 1991). 
The SRY protein might interact, however, with the sequence motif up- 
stream of  the SRY gene in vivo, autoregulating its own expression. 

The spatiotemporal expression of SRY in the embryolliC gonad requires 
that this gene itself is regulated. If SRY is TDF and as such the primary 
controlling factor for testis determination, the question arises as to what 
controls the controller. Such a controlling element cannot be Y linked, as 
shown by the Sry transgenic mice, and must be shared by both sexes. The 
respective gene should be active constitutively, regulating TDF (SRY) in 
the male sex, but possibly also other non-Y-linked genes. 

The question remains which gene or genes are controlled by SRY if it 
codes for a transcription factor. It is to be expected that SRY is at the top 
of  a cascade which finally results in testicular morphogenesis. In human 
beings, as in other mammals, some sex-reversal conditions are known 
showing an X-linked or autosomal mode of inheritance, e.g., some inheri- 
ted forms of XY gonadal dysgenesis (J.L. Simpson et al. 1981), partial du- 
plications of Xp (Bernstein et al. 1980; Scherer et al. 1989a), and campo- 
melic dysplasia with sex reversal (Dagna Bricarelli et al. 1981). These 
conditions may involve genes acting secondarily to SRY. If these genes 
could be mapped and identified by positional cloning strategies, they might 
well serve as candidate loci for the action of SRY. 

As outlined above, the evidence for equating SRY with TDF is compel- 
ling. One puzzle remaining is the SRY-positive, ZFY-negative cases. Of 
the four cases described by Palmer et al. (1989), only one is a classical XX 
male, two are similar to the Y-negative XX males with sexual ambiguities, 
and one is a true hermaphrodite, as are the two cases described by J~iger 
et al. (1990b) and Nakagome et al. (1991). If SRY is TDF, why are not all 
SRY-positive, ZFY-negative cases fully masculinized, as are (almost) all 
SRY-positive, ZFY-positive XX individuals? One explanation put forward 
by Burgoyne (1989) is that spreading of X-inactivation into the Y segment 
on Xp may affect the SRY locus in the SRY-positive, ZFY-negative cases, 
but not in the SRY-positive, ZFY-positive cases, where the interposition of 
more Y chromosome material buffers against this spreading. This expla- 
nation may hold as long as the translocated Yp material is at Xp22.3. If the 
translocation breakpoint on Xp is significantly more proximal, preferential 
inactivation of  the Y-bearing X chromosome may occur, leading to true 
hermaphroditism even in an SRY-positive, ZFY-positive XX individual 
(Berkovitz et al. 1992); however, if such preferential inactivation occurs 
with the breakpoint proximal to the STS locus but still in band Xp22.3, a 
classical XX male with testes results (Schempp et al. 1989a). It therefore 
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seems as if spreading of  X-inactivation into the translocated Y segment 
and its effect on SRY expression may depend both on the size of the Y 
segment and on the position of the translocation breakpoint on Xp. 

8 Conclusions 

The human Y chromosome presents itself as a composite chromosome of 
recent origin. While convincing evidence confirms the hypothesis put 
forward by Ohno (1967) that the human sex chromosomes are derived 
from an original pair of  autosomes, the sequences conserved from that an- 
cestral past in the present-day Y chromosome appear to be confined to an 
essential minimum. It may be assumed that these sequences are restricted 
to genes involved in male development, including testis determination and 
male germ cell differentiation. These genes are not even directly linked 
any more, but are interrupted by sequences derived from other chromoso- 
mes, mainly from the X chromosome. Nevertheless, the requirement of se- 
veral genes for male development must be the reason for the existence and 
the maintenance of a Y chromosome as such, thus guaranteeing the stabil- 
ity of  sexual dimorphism. 

Surprisingly, not even the homologous pairing segment between the X 
and Y chromosomes, the pseudoautosomal region, is a remainder of  the 
ancestral homologous autosomal pair of chromosomes. Comparative stu- 
dies of  various mammalian species allow us to conclude that this region is 
of  autosomal origin and was translocated to the X chromosome, and it may 
have been transferred to the Y chromosome by a meiotic recombination 
event. There are other segments of the Y chromosome showing homology 
with the X chromosome, and their different degrees of sequence diver- 
gence indicate that they were acquired at different times during evolution. 
Their present arrangement on the human Y chromosome is due in part to 
inversions, one of  which, presumably a pericentric inversion, disrupted an 
originally much larger pseudoautosomal region and placed a part of it on 
the proximal long arm. With this event, the testis-determining region came 
into close proximity to the present pseudoautosomal region, thus giving 
rise to sex inversion by accidental X-Y interchange. X-Y homology 
outside the pseudoautosomal region is the reason for occasional pairing 
and crossing over during meiosis, resulting in X-Y translocations. 

The Y chromosome is comprised up to 30%-40% of repetitive DNA 
which is not transcribed. The respective repeat elements may have invaded 
the Y chromosome by random events, and they generally share homologies 
of varying degree with repeats on other chromosomes. Their abundance on 
the Y chromosome is assumed to be a consequence of the genetic isolation 
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of the differential part of  this chromosome, so that amplification and pos- 
sible subsequent deletion could take place without interfering with the re- 
quirements for pairing homology in meiosis. Due to the nature of this re- 
petitive DNA, the Y chromosome exhibits great interindividual variation 
without phenotypic consequences. Part of this variation is reflected in the 
relatively high frequency of inversions, which again are explained by the 
meiotic isolation of the differential segment. 

A number of  genes and definitive or putative pseudogenes, including 
those postulated to exist on phenotypic grounds, are known to exist on the 
Y chromosome. Apart from genes in the pseudoautosomal region, which 
should be in a state similar to homologous autosomal genes, several genes 
in the differential segment originate from secondary transfer of  larger 
DNA segments, and some of them have degenerated, or appear to be in the 
process of degeneration, to become pseudogenes. Sequence comparisons 
with the respective functional genes indicate that they themselves must 
have been functional until the recent past. Several of these genes and 
pseudogenes are located in the postulated ancestral pseudoautosomal re- 
gion traced back to a pericentric inversion; consequently, their homologues 
are adjacent to the pseudoautosomal region of the X chromosome. Most or 
all of  them escape X-inactivation at least partially, pointing to their 
pseudoautosomal origin, and this state presumably dates back to the time 
when the Y homologue was still a functional equivalent. 

A number of genes have been shown or suggested to be involved in sex 
determination and male sexual differentiation; most of them are Y specific, 
as is to be expected. Among the Y-specific loci, SRY and AZF have been 
shown to play a role in sexual development, and this may also be true for 
TSPY and H-Y. GCY influences the male phenotype. For ZFY, a function 
in sex differentiation is also not excluded, though it has a homologue on 
the X chromosome. Thus, up to six genes on the Y chromosome, five of 
which are Y specific, have already been defined that are or may be involv- 
ed in male development. A large number of Y-specific anonymous se- 
quences remain, some of which may turn out to be transcribed, and their 
function has still to be defined. It is to be expected that on the Y chromo- 
some a number of other genes await detection which may have a function 
in gonadal differentiation, in spermatogenesis, or in the prevention of the 
Turner phenotype. 

The outstanding interest in the Y chromosome no doubt arises from its 
postulated sex-determining nature. Although the major testis-determining 
gene, TDF, has very likely been identified with SRY, sex determination is 
still far from being understood. We do not know how SRY is regulated and 
what its targets are, and its complex interactions will move research inter- 
est to genes on other chromosomes. However, its unique structure, its 
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small size in terms of nonrepetitive DNA, and the relative paucity of genes 
makes it likely that the Y chromosome will be among the first human 
chromosomes whose genetic contributions are comprehensively under- 
stood. 
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