

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

A Pattern Language for
Distributed Computing

Volume 4

Frank Buschmann,
Siemens, Munich, Germany

Kevlin Henney,
Curbralan, Bristol, UK

Douglas C. Schmidt,
Vanderbilt University, Tennessee, USA

Copyright  2007 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording,
scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or
under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court
Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the
Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The
Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to
permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Front cover Image Copyright  2007 Yann Arthus-Bertrand/Altitude

Designations used by companies to distinguish their products are often claimed as trademarks.
All brand names and product names used in this book are trade names, service marks,
trademarks or registered trademarks of their respective owners. The Publisher is not associated
with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the
subject matter covered. It is sold on the understanding that the Publisher is not engaged in
rendering professional services. If professional advice or other expert assistance is required, the
services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, Ontario, L5R 4J3, Canada

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN-13: 978-0-470-05902-9 (hbk)

Typeset in 10/13 Bookman-Light by Laserwords Private Limited, Chennai, India
Printed and bound in Great Britain by Bell & Bain, Glasgow
This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

www.wiley.com

For Anna, Bebé†, and Martina

Frank Buschmann

For Carolyn, Stefan, and Yannick

Kevlin Henney

For Lori, Bronson, Mom, and Dad

Douglas C. Schmidt

† Bebé, July 3, 1999

Table of Contents

Foreword . xv

About This Book xvii

About The Authors xxiii

Guide To The Reader xxvii

Part I Some Concepts 1

1 On Patterns and Pattern Languages 3
1.1 Patterns Introduced 4
1.2 Inside Patterns . 6
1.3 Between Patterns 10
1.4 Into Pattern Languages 13
1.5 Patterns Connected 15

2 On Distributed Systems 17
2.1 Benefits of Distribution 18
2.2 Challenges of Distribution 20
2.3 Technologies for Supporting Distribution . . . 22
2.4 Limitations of Middleware 32

3 On the Pattern Language 33
3.1 Intent, Scope, and Audience 34
3.2 Origins and Genesis 35

viii Table of Contents

3.3 Structure and Content 36
3.4 Presentation . 44
3.5 Practical Use . 49

Part II A Story . 53

4 Warehouse Management Process Control . . 57
4.1 System Scope . 58
4.2 Warehouse Management Process Control . . . 60

5 Baseline Architecture 65
5.1 Architecture Context 66
5.2 Partitioning the Big Ball of Mud 67
5.3 Decomposing the Layers 68
5.4 Accessing Domain Object Functionality 71
5.5 Bridging the Network 72
5.6 Separating User Interfaces 76
5.7 Distributing Functionality 79
5.8 Supporting Concurrent Domain Object Access 82
5.9 Achieving Scalable Concurrency 85
5.10 Crossing the Object-Oriented/Relational Divide 87
5.11 Configuring Domain Objects at Runtime 89
5.12 Baseline Architecture Summary 90

6 Communication Middleware 95
6.1 A Middleware Architecture for Distributed

Systems . 96
6.2 Structuring the Internal Design of the

Middleware . 100
6.3 Encapsulating Low-level System Mechanisms . 103
6.4 Demultiplexing ORB Core Events 105
6.5 Managing ORB Connections 108
6.6 Enhancing ORB Scalability 111
6.7 Implementing a Synchronized Request Queue 114
6.8 Interchangeable Internal ORB Mechanisms . . 116

Table of Contents ix

6.9 Consolidating ORB Strategies 118
6.10 Dynamic Configuration of ORBs 121
6.11 Communication Middleware Summary 124

7 Warehouse Topology 129
7.1 Warehouse Topology Baseline 130
7.2 Representing Hierarchical Storage 131
7.3 Navigating the Storage Hierarchy 133
7.4 Modeling Storage Properties 135
7.5 Varying Storage Behavior 137
7.6 Realizing Global Functionality 140
7.7 Traversing the Warehouse Topology 142
7.8 Supporting Control Flow Extensions 144
7.9 Connecting to the Database 146
7.10 Maintaining In-Memory Storage Data 147
7.11 Configuring the Warehouse Topology 149
7.12 Detailing the Explicit Interface 151
7.13 Warehouse Topology Summary 153

8 The Story Behind The Pattern Story 157

Part III The Language 163

9 From Mud To Structure 167
Domain Model ** 182
Layers ** . 185
Model-View-Controller ** 188
Presentation-Abstraction-Control 191
Microkernel ** . 194
Reflection * . 197
Pipes and Filters ** 200
Shared Repository ** 202
Blackboard . 205
Domain Object ** 208

x Table of Contents

10 Distribution Infrastructure 211
Messaging ** . 221
Message Channel ** 224
Message Endpoint ** 227
Message Translator ** 229
Message Router ** 231
Publisher-Subscriber ** 234
Broker ** . 237
Client Proxy ** . 240
Requestor ** . 242
Invoker ** . 244
Client Request Handler ** 246
Server Request Handler ** 249

11 Event Demultiplexing and Dispatching . . . 253
Reactor ** . 259
Proactor * . 262
Acceptor-Connector ** 265
Asynchronous Completion Token ** 268

12 Interface Partitioning 271
Explicit Interface ** 281
Extension Interface ** 284
Introspective Interface ** 286
Dynamic Invocation Interface * 288
Proxy ** . 290
Business Delegate ** 292
Facade ** . 294
Combined Method ** 296
Iterator ** . 298
Enumeration Method ** 300
Batch Method ** 302

Table of Contents xi

13 Component Partitioning 305
Encapsulated Implementation ** 313
Whole-Part ** . 317
Composite ** . 319
Master-Slave * . 321
Half-Object plus Protocol ** 324
Replicated Component Group * 326

14 Application Control 329
Page Controller ** 337
Front Controller ** 339
Application Controller ** 341
Command Processor ** 343
Template View ** 345
Transform View ** 347
Firewall Proxy ** 349
Authorization ** 351

15 Concurrency 353
Half-Sync/Half-Async ** 359
Leader/Followers ** 362
Active Object ** 365
Monitor Object ** 368

16 Synchronization 371
Guarded Suspension ** 380
Future ** . 382
Thread-Safe Interface * 384
Double-Checked Locking 386
Strategized Locking ** 388
Scoped Locking ** 390
Thread-Specific Storage 392

xii Table of Contents

Copied Value ** 394
Immutable Value ** 396

17 Object Interaction 399
Observer ** . 405
Double Dispatch ** 408
Mediator * . 410
Command ** . 412
Memento ** . 414
Context Object ** 416
Data Transfer Object ** 418
Message ** . 420

18 Adaptation and Extension 423
Bridge ** . 436
Object Adapter ** 438
Chain of Responsibility * 440
Interpreter . 442
Interceptor ** . 444
Visitor ** . 447
Decorator . 449
Execute-Around Object ** 451
Template Method * 453
Strategy ** . 455
Null Object ** . 457
Wrapper Facade ** 459
Declarative Component Configuration * 461

19 Modal Behavior 463
Objects for States * 467
Methods for States * 469
Collections for States ** 471

Table of Contents xiii

20 Resource Management 473
Container * . 488
Component Configurator * 490
Object Manager ** 492
Lookup ** . 495
Virtual Proxy ** 497
Lifecycle Callback ** 499
Task Coordinator * 501
Resource Pool ** 503
Resource Cache ** 505
Lazy Acquisition ** 507
Eager Acquisition ** 509
Partial Acquisition * 511
Activator ** . 513
Evictor ** . 515
Leasing ** . 517
Automated Garbage Collection ** 519
Counting Handle ** 522
Abstract Factory ** 525
Builder * . 527
Factory Method ** 529
Disposal Method ** 531

21 Database Access 533
Database Access Layer ** 538
Data Mapper ** 540
Row Data Gateway ** 542
Table Data Gateway ** 544
Active Record . 546

22 A Departing Thought 549

xiv Table of Contents

Glossary . 553

References . 573

Index of Patterns 587

Index of Names 593

Subject Index 595

Foreword

The patterns movement has been around for over a decade now, and
has gone through the usual cycle of inflated expectations, backlash,
and quiet acceptance. Frank, Doug, and Kevlin have been there the
whole time, lauded and scoffed at, but above all quietly collecting
good ideas from the field and describing them. The POSA series of
books is rightly regarded as one of the most solid elements in the
patterns literature, and every volume has a space in my library.

Earlier POSA volumes were traditional patterns books, describing
patterns in a range of specific areas, mostly with patterns that hadn’t
been written up before. This book is different. Distributed Computing
is a very wide topic and even the patterns we’ve captured so far is far
more than would fit in a single volume. Indeed they are spread over
multiple books, both within and outside the POSA series. This book’s
mission is to pull these patterns together. As a result you’ve got many
more patterns here than you’d usually find, and consequentially a
much terser description. Some of the patterns described here aren’t
primarily about distribution, but have some relevance for distributed
system work. As a result the descriptions in this book highlight that
usage, summarizing a pattern in a distributed systems context.

This book is also about more than the individual patterns—it’s also
about how they relate. Any system contains multiple patterns used
together, but I for one find it harder to talk about inter-relationships
than the individual patterns. A book like this cannot dodge this
question, so here you’ll find a lot of advice on how to combine
patterns with distribution.

xvi Foreword

Distribution is a hard problem and often causes trouble. Indeed I’m
often quoted for my tongue-in-cheek First Law of Distributed Object
Design: ‘Don’t distribute your objects.’ I wrote my first law for a good
reason—distribution makes software harder, and as a result I always
recommend avoiding it when you can. But however great my desire to
question every distribution boundary, the reality is that distribution
is an essential part of many software systems. And since distribution
is hard, it’s particularly important to take care over its design—which
is why this book is also an important addition to a developer’s library.

Martin Fowler

About This Book

Distributed computing is connecting the world and leveling playing
fields [Fri06]. The ubiquity of the Web and e-commerce today exem-
plify a common motivation for distributed computing: the ability to
connect to and access vast quantities of geographically dispersed
information and services. The popularity of instant messaging and
chat rooms on the Internet underscores another common motiva-
tion: staying connected to family, friends, colleagues, and customers.
Other motivators for distributed computing include enhancing per-
formance, scalability, and fault tolerance, as well as reducing costs
by sharing expensive hardware and peripherals.

Given the importance of distributed computing in our professional
and personal lives, many patterns in the software literature focus
on this topic [POSA1] [POSA2] [POSA3] [Lea99] [VSW02] [VKZ04]
[HoWo03] [PLoPD1] [PLoPD2] [PLoPD3] [PLoPD4] [PLoPD5]. Unfor-
tunately, many of these patterns are described in relative isolation,
referencing few other patterns, most of which are in the same publica-
tion. Despite the utility of each individual pattern, there is no holistic
view of distributed computing that emphasizes how relevant patterns
complete and complement each other. Building complex distributed
systems therefore remains largely a dark art mastered only by a few
wizards and gurus.

To provide a more holistic view, this book—the fourth volume of
the Pattern-Oriented Software Architecture (POSA) series—describes
a single pattern language that links many patterns relevant to
distributed computing. Each pattern in this language either deals
directly with distributed computing, or plays an important support-
ing role in that context. Our pattern language thus provides a guide
to—and a communication vehicle for—the best practices in key areas
of distributed computing.

xviii About This Book

Intended Audience

Our focus is on the design and implementation of software for dis-
tributed computing systems. The main audience for this book is
therefore professional software architects or advanced students who
are involved in developing software for distributed computing sys-
tems, both designing new applications and improving and refactoring
existing ones. Our pattern language presents a rich set of patterns
aimed at helping architects to create sustainable designs for dis-
tributed systems, and which address their requirements thoughtfully
and professionally.

A secondary audience for this book is application developers who
use component and communication middleware in their professional
work. Our pattern language provides developers with an overview of
the current state-of-the-practice in designing distributed systems, so
that they can better understand how to use middleware effectively. A
third group who can benefit from our pattern language is project and
product managers. The language can give managers a deeper under-
standing of the essential capabilities of systems whose development
they are leading, and provide a useful vocabulary for communicating
with software architects and developers.

We do not however intend end-users or customers to use our pattern
language directly. While judicious use of real-world metaphors might
make the material accessible to this audience, it would require an
alternative presentation of the language. Moreover, the book is not
intended as a general tutorial on distributed computing. Although
we discuss many aspects of this subject, and include an extensive
glossary, readers need prior familiarity with core distributed com-
puting concepts and mechanisms such as deadlock, transactions,
synchronization, scheduling, and consensus. Additional information
on topics related to distributed computing, such as the design of
networking protocols and operating systems, can be found in the
references.

About This Book xix

Structure and Content

This book is arranged in three parts: some concepts, a story, and the
pattern language itself.

Part I, Some Concepts, introduces the context of the book: the core
pattern concepts necessary for an understanding of the book, an
overview of the benefits and challenges of distributed computing, a
summary of technologies for supporting distribution, and an intro-
duction to our pattern language.

Part II, A Story, describes how a real-world process control system
for warehouse management was designed using our pattern lan-
guage for distributed computing. The story focuses on three areas
of this software system: its baseline architecture, its communication
middleware, and its warehouse topology representation.

Part III, The Language, forms the main part of the book. It contains
a pattern language for distributed computing that addresses the
following technical topics relevant to the construction of distributed
systems:

• Specifying an initial software baseline architecture

• Understanding communication middleware

• Event demultiplexing and dispatching

• Interface partitioning

• Component partitioning

• Application control

• Concurrency

• Synchronization

• Object interaction

• Adaptation and extension

• Modal behavior

• Resource management

• Database access.

xx About This Book

Each chapter introduces the topic area it addresses, summarizes key
challenges, and then presents a set of patterns that help master these
challenges. In total, our pattern language for distributed computing
contains 114 patterns and connects to more than 150 patterns pre-
sented in other publications. It is thus one of the largest—if not the
largest—software pattern language documented to date.

Although distributed computing is the language’s focus, many parts
of it have broader applicability. For example, most applications must
be adaptable and extensible in some way, and each software system
needs well-designed interfaces and components. For selected tech-
nical areas, our pattern language can therefore serve as a general
guide to the best practices in modern software development, and is
therefore not limited to distributed computing.

The book ends with a short reflection on our pattern language for dis-
tributed computing, a glossary of frequently used terms, an extensive
list of references to work in the field, a pattern index, a general subject
index, and an index that lists everyone who helped us shape the book.

There are undoubtedly properties and patterns of distributed sys-
tems that we have omitted, or which will emerge over time through
the application and extension of the pattern language in practice.
If you have comments, constructive criticism, or suggestions for
improving the style and content of this book, please send them to
us via electronic mail to siemens-patterns@cs.uiuc.edu. Guide-
lines for subscription can be found on the patterns home page
at http://hillside.net/patterns/. This link also provides an
important source of information on many aspects of patterns, such
as available and forthcoming books, conferences on patterns, papers
on patterns, and so on.

About This Book xxi

Acknowledgments

It is a pleasure for us to thank the many people who supported us in
creating this book, either by sharing their knowledge with us or by
reviewing earlier drafts of its various parts.

Champion review honors go to Michael Kircher, our shepherd, who
reviewed all our material in depth, focusing on its correctness, com-
pleteness, consistency, and quality. Michael’s feedback significantly
increased the quality of the material in this book.

In addition, we presented parts of the language at three EuroPLoP
pattern conferences, and also to several distribution and pattern
experts. Ademar Aguimar, Steve Berczuk, Alan O’Callaghan, Ekata-
rina Chtcherbina, Jens Coldewey, Richard Gabriel, Ian Graham,
Prashant Jain, Nora Koch, Doug Lea, Klaus Marquardt, Andrey
Nechypurenko, Kristian Sørensen, James Siddle, Michael Stal, Steve
Vinoski, Markus Völter, Oliver Vogel, and Uwe Zdun provided us
with extensive feedback, which led to many minor—and also some
major—revisions of the language and its presentation.

Many thanks go to Mai Skou Nielsen, who took the photos of Kevlin
and Frank when they met at the JAOO 2006 conference in Aarhus,
Denmark. Anton Brøgger helped locate details about the photo we
present in the chapter on interface partitioning patterns. Publicis
Kommunikationsagentur GmbH and Lutz Buschmann permitted us
to use photos from their collections in this book.

Special thanks go to Lothar Borrmann and Reinhold Achatz for their
managerial support and backing at the software engineering labs of
Corporate Technology of Siemens AG, Munich, Germany.

Very special thanks go to our editor, Sally Tickner, our former editor
Gaynor Redvers-Mutton, and everyone else at John Wiley & Sons
who made it possible to publish this book. It was Gaynor who con-
vinced us to write this POSA volume despite heavy loads in our
daily work as software professionals. Sally, in turn, had an enormous
amount of patience with us during the years we spent completing
the manuscript. Very special thanks also go to Steve Rickaby, of

xxii About This Book

WordMongers Ltd, our copy editor, for enhancing our written mate-
rial. This is the fourth POSA book fostered by Steve, and we look
forward to working with him on forthcoming volumes.

Last but not least, we thank our families for their patience and
support during the writing of this book!

About The Authors

Frank Buschmann

Frank Buschmann is Senior Principal Engineer at Siemens Corpo-
rate Technology in Munich, Germany. His research interests include
object technology, software architecture, product lines, model-driven
software development, and patterns. He has published widely in all
these areas, most visibly in his co-authorship of the first two POSA
volumes [POSA1] [POSA2], and the last two POSA volumes, this book
and [POSA5]. Frank was a member of the ANSI C++ standardization
committee X3J16 from 1992 to 1996, initiated the first EuroPLoP
conference in 1996, co-edited several books on patterns [PLoPD3]
[SFHBS06], and serves as an editor of the Wiley Series in Software
Design Patterns. In his development work at Siemens, Frank has led
architecture and implementation efforts for several large-scale indus-
trial software projects, including business information, industrial
automation, and telecommunication systems.

When not at work Frank spends most of his time enjoying life with his
wife Martina and daughter Anna, having fun riding his horse Eddi,
watching the time go by in Munich beer gardens, getting excited when
watching his favorite soccer team Borussia Dortmund, dreaming
when listening to a performance at the Munich opera, and relaxing
with rare Scotch single malts before bedtime.

Kevlin Henney

Kevlin Henney is an independent consultant based in Bristol, UK. His
work involves teaching, mentoring, and practicing across his areas
of interest, which include programming languages and techniques,
software architecture, patterns, and agile development. His clients

xxiv About The Authors

range from global firms to smaller start-ups that are involved in the
worlds of systems software, telecommunications, embedded systems,
middleware development, business information, and finance.

Kevlin is a regular speaker at software conferences, and has also
been involved with the organization of many conferences, including
EuroPLoP. He has been involved with the C++ standard through the
BSI and ISO, as well other language standardization efforts. Kevlin is
also known for his writing, which has included conference papers and
regular (and irregular) columns for many publications, including C++
Report, C/C++ Users Journal, Java Report, JavaSpektrum, Application
Development Advisor, The Register, EXE, and Overload.

In what passes for spare time, Kevlin enjoys spending time with
Carolyn, his wife, and Stefan and Yannick, their two sons. This takes
in Lego, toy fixing, reading, and the odd beer or glass of wine.

Douglas C. Schmidt

Doug Schmidt is a Professor of Computer Science and Associate Chair
of the Computer Science and Engineering program at Vanderbilt Uni-
versity, Nashville, Tennessee, USA. His research focuses on patterns
and pattern languages, optimization principles, and empirical analy-
sis of techniques that facilitate the development of quality of service
(QoS)-enabled component middleware and model-driven engineering
tools that support distributed real-time and embedded systems.

Doug is an internationally recognized expert on patterns, object-
oriented frameworks, real-time middleware, modeling tools, and open-
source development. He has published over 300 papers in top
technical journals and conferences, has co-authored books on pat-
terns [POSA2] and C++ network programming [SH02] [SH03], and has
also co-edited several popular books on patterns [PLoPD1] and frame-
works [FJS99a] [FJS99b]. In addition to his academic research, Doug
has led the development of ACE, TAO, CIAO, and CoSMIC, which are
widely used open-source middleware frameworks and model-driven

About The Authors xxv

engineering tools that contain a rich set of reusable components,
implemented using the patterns presented in this book.

In his rare spare time, Doug enjoys spending time with his wife
Lori and their son Bronson, as well as weight-lifting, guitar playing,
debating world history and politics, and driving Chevy Corvettes.

Guide To The Reader

You can have it all. You just can’t have it all at once.

Oprah Winfrey

This book is structured so that you can read it in various ways.
The most straightforward way is to read it from cover-to-cover. If
you know where you want to go, however, you can choose your own
route through the book. In this case, the following hints can help you
decide which topics to focus on and the order in which to read them.

xxviii Guide To The Reader

Introduction to Patterns and Pattern Languages

This book presents a distributed computing pattern language, which
is a family of interrelated patterns that define a process for sys-
tematically resolving problems that arise when developing software
for distributed systems. We designed the book to help you use these
patterns in your daily software development activities, to create work-
ing, sustainable software architectures for distributed systems. It is
not a comprehensive tutorial about patterns and pattern languages
in general, however, since we assume that you are familiar with
both concepts.

If this book is your initial exposure to patterns, we suggest you first
read the introduction to patterns in A System of Patterns [POSA1]
and Design Patterns [GoF95]. Both books explore the fundamental
concepts and terminology related to patterns for software architec-
tures and designs. If you are familiar with patterns, but not with
pattern languages, we recommend you read Chapter 1, On Patterns
and Pattern Languages, and the white paper on Software Patterns by
James O. Coplien [Cope96], which outline the concept of pattern lan-
guages in enough detail to allow you to benefit from the distributed
computing pattern language this book. Both the above briefly also
explore advanced aspects of the pattern concept that go beyond the
fundamental ideas presented in [POSA1] and [GoF95].

Introduction to Distributed Computing

This book assumes that you are familiar with the key concepts
and mechanisms of distributed computing. Chapter 2, On Distributed
Systems, describes briefly the benefits and challenges of distributed
computing and summarizes technologies for supporting distribution,
but does not discuss distributed computing and distributed systems
in detail. The chapter is intended to provide the overall theme of
the book: to achieve the benefits of distributed computing, you must
explicitly and thoughtfully address the challenges associated with it,
guided by patterns in our language.

Guide To The Reader xxix

If you need more background information on distributed computing,
we recommend Distributed Systems: Principles and Paradigms by
Andrew S. Tanenbaum and Maarten van Steen [TaSte02] and Reliable
Distributed Systems by Ken Birman [Bir05].

Introduction to the Pattern Language for Distributed
Computing

Before you start reading all or selected patterns in our pattern lan-
guage, we suggest you read Chapter 3, On the Pattern Language. This
chapter introduces you to our language as a whole, focusing on:

• Its intent, scope, and audience.

• The general structure of the language, the key topics and challenges
in distributed computing it addresses, and the concrete patterns it
contains.

• The pattern form and notation we use to describe and illustrate the
patterns in the language.

The chapter also serves as a general map to the pattern language, so
that you will know where you are when reading a particular pattern
or set of patterns. This map helps to keep you from losing the forest
for the trees when reading specific details on each pattern.

The Pattern Language in Action

Part II of this book, A Story, presents a concrete example of how our
pattern language for distributed computing can be applied in practice
on a warehouse management process control system. Through the
story of the construction of a real-world system we illustrate how our
pattern language for distributed computing can inform the architec-
tures and developers of high-quality software systems. If you learn
best by example, we recommend you to read the story before you
read the pattern language in depth, although the story also works

xxx Guide To The Reader

well when read after the language. The story demonstrates how our
pattern language can support the creation and understanding of:

• Baseline architectures for distributed systems that effectively parti-
tion their functional and infrastructure responsibilities, and enable
the systems to meet their quality of service requirements.

• Communication middleware that allows the components of a dis-
tributed system to interact with one another efficiently, robustly,
and portably.

• The detailed design of concrete components in a distributed sys-
tem that support their assigned responsibilities and meet their
requirements.

Although the story is self-contained, the best way to digest it is to
read a specific section until the fundamental solution statement for
the problem addressed in that section is described. At this point, we
recommend you read the pattern synopsis in Part III if you are not
familiar with it. Once you are comfortable with your understanding of
the pattern, continue reading the story to see how the chosen pattern
is applied in the warehouse management system, and consider which
alternative patterns were not selected, and why.

The Pattern Language in Detail

Part III of the book, The Language, contains the pattern language for
distributed computing that addresses key technical topics relevant to
the construction of distributed systems. Here are some ways to read
this material:

• Start-to-finish. The technical topics covered by the language and
the patterns that address them are (roughly) presented in their
order of relevance and application when building distributed sys-
tems.

• Topic-wise. If you are interested in a specific technical topic, such
as the partitioning of components, you can read the corresponding
chapter of the language. An introduction lists and discusses the
challenges associated with the technical concerns, introduces the
patterns that help master these challenges, and contrasts and

Guide To The Reader xxxi

compares them regarding their commonalities and differences. The
condensed summaries of the patterns themselves, the main part of
the chapter, follows this introduction.

• Pattern-wise. Finally, if you are interested in a specific pattern,
you can use the inner front cover or the index to locate it in the
language and read it directly.

The pattern summaries do not address detailed implementation
issues, such as how a pattern is realized in a specific programming
language or on a specific middleware platform. Each pattern sum-
mary presents and discusses the essential problem and the forces
the pattern addresses, the key solution it embodies, and the con-
sequences it introduces. In addition, each pattern is linked with all
other patterns of the language that help implement it, as well as with
other patterns whose implementation it can support. Throughout this
book, where a pattern from the language is mentioned, it is followed
by its page reference in parentheses. If you are interested in specific
realization details, we recommend that you consult the pattern’s orig-
inal source(s), which we reference for each pattern. Throughout this
book, where a pattern from the language is mentioned, it is followed
by its page reference in parentheses.

Patterns described in this book

From Mud To Structure: DOMAIN MODEL (182), LAYERS (185), MODEL-VIEW-CONTROLLER (188),
PRESENTATION-ABSTRACTION-CONTROL (191), MICROKERNEL (194), REFLECTION (197), PIPES AND FILTERS

(200), SHARED REPOSITORY (202), BLACKBOARD (205), and DOMAIN OBJECT (208).

Distribution Infrastructure: MESSAGING (221), MESSAGE CHANNEL (224), MESSAGE ENDPOINT (227),
MESSAGE TRANSLATOR (229), MESSAGE ROUTER (231), BROKER (237), CLIENT PROXY (240), REQUESTOR

(242), INVOKER (244), CLIENT REQUEST HANDLER (246), SERVER REQUEST HANDLER (249), and
PUBLISHER-SUBSCRIBER (234).

Event Demultiplexing and Dispatching: REACTOR (259), PROACTOR (262), ACCEPTOR-CONNECTOR

(265), and ASYNCHRONOUS COMPLETION TOKEN (268).

Interface Partitioning: EXPLICIT INTERFACE (281), EXTENSION INTERFACE (284), INTROSPECTIVE

INTERFACE (286), DYNAMIC INVOCATION INTERFACE (288), PROXY (290), BUSINESS DELEGATE (292),
FACADE (294), COMBINED METHOD (296), ITERATOR (298), ENUMERATION METHOD (300), and BATCH

METHOD (302).

Component Partitioning: ENCAPSULATED IMPLEMENTATION (313), WHOLE-PART (317), COMPOSITE (319),
MASTER-SLAVE (321), HALF-OBJECT PLUS PROTOCOL (324), and REPLICATED COMPONENT GROUP (326).

Application Control: PAGE CONTROLLER (337), FRONT CONTROLLER (339), APPLICATION CONTROLLER

(341), COMMAND PROCESSOR (343), TEMPLATE VIEW (345), TRANSFORM VIEW (347), FIREWALL PROXY

(349), and AUTHORIZATION (351).

Concurrency: HALF-SYNC/HALF-ASYNC (359), LEADER/FOLLOWERS (362), ACTIVE OBJECT (365),
MONITOR OBJECT (368).

Synchronization: GUARDED SUSPENSION (380), FUTURE (382), THREAD-SAFE INTERFACE (384), DOUBLE-
CHECKED LOCKING (386), STRATEGIZED LOCKING (388), SCOPED LOCKING (390), THREAD-SPECIFIC

STORAGE (392), COPIED VALUE (394), and IMMUTABLE VALUE (396).

Object Interaction: OBSERVER (405), DOUBLE DISPATCH (408), MEDIATOR (410), MEMENTO (414),
CONTEXT OBJECT (416), DATA TRANSFER OBJECT (418), COMMAND (412), and MESSAGE (420).

Adaptation and Extension: BRIDGE (436), OBJECT ADAPTER (438), INTERCEPTOR (444), CHAIN OF

RESPONSIBILITY (440), INTERPRETER (442), VISITOR (447), DECORATOR (449), TEMPLATE METHOD (453),
STRATEGY (455), NULL OBJECT (457), WRAPPER FACADE (459), EXECUTE-AROUND OBJECT (451), and
DECLARATIVE COMPONENT CONFIGURATION (461).

Object Behavior: OBJECTS FOR STATES (467), METHODS FOR STATES (469), and COLLECTIONS FOR

STATES (471).

Resource Management: OBJECT MANAGER (492), CONTAINER (488), COMPONENT CONFIGURATOR (490),
LOOKUP (495), VIRTUAL PROXY (497), LIFECYCLE CALLBACK (499), TASK COORDINATOR (501), RESOURCE

POOL (503), RESOURCE CACHE (505), LAZY ACQUISITION (507), EAGER ACQUISITION (509), PARTIAL

ACQUISITION (511), ACTIVATOR (513), EVICTOR (515), LEASING (517), AUTOMATED GARBAGE COLLECTION

(519), COUNTING HANDLE (522), ABSTRACT FACTORY (525), BUILDER (527), FACTORY METHOD (529),
and DISPOSAL METHOD (531).

Database Access: DATABASE ACCESS LAYER (538), DATA MAPPER (540), ROW DATA GATEWAY (542),
TABLE DATA GATEWAY (544), and ACTIVE RECORD (546).

I Some Concepts

Language is a city to the building of which
every human being brought a stone.

Ralph Waldo Emerson

The first part of this book provides the context for our pattern lan-
guage for distributed computing. We outline the concepts of patterns
and pattern languages briefly, introduce the benefits and challenges
of distributed computing, and provide an overview of, and introduc-
tion to, the pattern language itself.

2 Some Concepts

This book focuses on patterns and a pattern language for distributed
computing. To understand these patterns and the language, and
to apply it successfully when building production distributed sys-
tems, knowledge of the relevant concepts in patterns and distributed
computing, as well as of available distribution technologies, is both
helpful and necessary. In addition, using the pattern language effec-
tively in development projects requires you to understand its general
scope, structure, content, and presentation.

The first part of the book therefore provides an overview of these
concepts, and also provides an overview of our pattern language for
distributed computing.

• Chapter 1, On Patterns and Pattern Languages, outlines all aspects
of the pattern and pattern language concepts that are relevant for
understanding our pattern language for distributed computing. We
introduce the fundamental concept of patterns, discuss core prop-
erties of this concept, and show how patterns can be connected
to form pattern languages, networks of patterns that work together
systematically to address a set of related and interdependent soft-
ware development concerns.

• Chapter 2, On Distributed Systems, provides an overview of the
key benefits and challenges of building distributed systems, and
outlines which of those challenges are addressed by various genera-
tions of distribution technologies, how the technologies address the
challenges, and which remain unresolved and must be addressed
by the architectures of applications in distributed systems.

• Chapter 3, On the Pattern Language, introduces our pattern lan-
guage for distributed computing. We address the language’s intent
and scope to define its general applicability. An overview of the
thirteen problem areas and 114 patterns illustrates the concrete
structure and scope of the language. Information is given about the
language’s presentation, such as the pattern form and notations
used, along with hints about its use to support applications in
production development projects.

The three chapters in this part set the context for the entire book:
the pattern story about a process control system for warehouse
management that we tell in Part II, A Story, and the pattern language
itself, in Part III, The Language.

1 On Patterns and Pattern
Languages

Neither can embellishment of language be found
without arrangement and expression of thoughts,

nor can thoughts be made to shine
without the light of language.

Marcus Tullius Cicero, Roman stateman, orator,
and philosopher, 106–43 BC

In this chapter we introduce patterns briefly, including their history,
along with a number of pattern concepts. We examine the anatomy
of a pattern, what it offers, and what drives it. We explore the
relationships we often find between patterns. We conclude with a
discussion of pattern languages, what they are, and how they can be
presented and used.

4 On Patterns and Pattern Languages

1.1 Patterns Introduced

From a design perspective, software is often thought of in terms of
its parts: functions, source files, modules, objects, methods, classes,
packages, libraries, components, services, subsystems, and so on.
These all represent valid views of the different kinds and scales
of units of composition with which developers work directly. These
views focus on the parts, however, and de-emphasize the broader
relationships and the reasoning that make a design what it is. In
contrast, patterns have become a popular and complementary way
of describing and evolving software designs, capturing and naming
proven and common techniques. They emphasize the why, where,
and how of designs, not just the what.

A pattern documents a recurring problem–solution pairing within
a given context. A pattern, however, is more than either just the
problem or just the solution structure: it includes both the problem
and the solution, along with the rationale that binds them together.
A problem is considered with respect to conflicting forces, detailing
why the problem is a problem. A proposed solution is described in
terms of its structure, and includes a clear presentation of the con-
sequences—both benefits and liabilities—of applying the solution.

The recurrence of patterns is important—hence the term pattern—as
is the empirical support for their designation as patterns. Capturing
the commonality that exists in designs found in different applica-
tions allows developers to take advantage of knowledge they already
possess, applying familiar techniques in unfamiliar applications. Of
course, by any other name this is simply ‘experience.’ What takes
patterns beyond personal experience is that patterns are named and
documented, intended for distilling, communicating, and sharing
architectural knowledge.

From Building Architecture to Software Architecture

Although patterns are now popular and relatively widespread in
the world of software development, they originated in the phys-
ical world of building rather than the virtual world of software.
Throughout the 1960s and 1970s the architect Christopher Alexan-
der and his colleagues identified the concept of patterns for capturing

Patterns Introduced 5

architectural decisions and arrangements [Ale79] [AIS77]. In partic-
ular, they wanted to focus on patterns that were ‘whole’—proven
solutions drawn from experience that helped to improve the qual-
ity of life for people whose environment could be shaped by such
patterns. Identifying architectural patterns was a response to the
perceived dysfunctionality of many popular but unsuccessful trends
and practices in contemporary building architecture.

The patterns they documented were combined as a coherent set, a
pattern language that embraced different levels of scale—the city, the
neighborhood, the home—with a connected view of how to apply one
pattern in the presence of another. This approach first made its way
into software in the form of a handful of user-interface design patterns
by Kent Beck and Ward Cunningham [BeCu87], which included sug-
gestions of a larger pattern language for object-oriented programming.
Related ideas emerged over the following years, from Jim Coplien’s
book on C++ idioms and styles [Cope92] to Erich Gamma’s thesis on
framework design [Gam92], and Bruce Andersen’s vision of a Hand-
book of Software Architecture. Following this groundswell of interest
and convergence of thinking, the Gang-of-Four’s1 seminal Design
Patterns book [GoF95] was published.

In addition to the widespread interest in software patterns, a whole
community has sprung up focusing on collecting and documenting
patterns, improving them through shepherding and writer’s work-
shops. Many patterns have been published online, in journals, and in
books following the early work. One series of books has been the Pat-
tern Language of Program Design series [PLoPD1] [PLoPD2] [PLoPD3]
[PLoPD4] [PLoPD5], which are distillations from the PLoP conferences
held around the world. Another is the Pattern-Oriented Software Archi-
tecture volumes. The first volume, A System of Patterns [POSA1], was
complementary to Design Patterns in that some of its patterns built on
or extended the Gang-of-Four patterns. It was also complementary in
the sense that it focused more explicitly on different levels of scale in
software architecture, with an emphasis on large-scale systems. The
second volume in the series, Patterns for Concurrent and Networked
Objects [POSA2], and the third, Patterns for Resource Management

1 The ‘Gang of Four,’ as they and their book have become known, are Erich Gamma,
Richard Helm, Ralph Johnson, and the late John Vlissides.

6 On Patterns and Pattern Languages

[POSA3], explored specific topics of architecture—particularly con-
currency and networked applications—in greater detail. The fourth
volume, A Pattern Language for Distributed Computing, is in your
hands.

1.2 Inside Patterns

Consider the following situation. You check the cupboard: it’s bare.
You check the refrigerator: the only thing going on is the light.
It is therefore time to go shopping—you need milk, juice, coffee,
pizza, fruit, and many of the other major food types. You go to the
supermarket, enter, find the milk, pick some up, pay for the it,
return home, and put the milk in the fridge. You then go back to the
supermarket, enter, find the juice, pick some up, pay for it, return
home, and put the juice in the fridge. Repeat as necessary, until you
have everything you need.

Although shopping in this way is possible, it is not a particularly effec-
tive approach—even if the supermarket is next door to you. There are
wiser ways to spend your time. Significant performance improvements
will not come about from tweaks and micro-optimizations, such as
leaving the front door unlocked, leaving the fridge door open, using
cash rather than card. Instead, a fundamentally different approach
to shopping is needed.

Take 2: you make out a shopping list, go to the supermarket, enter,
collect a shopping cart, find each of the items on the shopping list
and place them in your cart (less the ones that are out of stock,
plus some impulse buys), pay for the items in the cart, return home,
unpack, and put the items away.

A Problem in a Context

The domain of groceries may at first seem far removed from the
domain of software development, but what we have just described
is essentially a distributed programming problem and its resolution.
The programming task is that of iteration: traversing a collection to
fulfill a particular objective. When the code performing the iteration is

Inside Patterns 7

collocated in the same process as the collection object being accessed,
the cost of access is minimal to the point of irrelevant. A change of
situation can invalidate this assumption, however, along with any
solution that relies on it. A distributed system introduces a significant
overhead for any access—any design that does not take this context
into account is likely to be inefficient, inflexible, and inadequate. This
observation is generally true of patterns and design: context helps to
frame and motivate a particular problem, and any solution must be
sensitive to this.

Forces: The Heart of Every Pattern

Where the context sets the scene for a problem, the forces are what
characterize it in detail. Forces determine what an effective solution
must take into account. For any significant design decision, forces
inevitably find themselves in conflict.

Returning to the context of distributed computing and the problem
of traversing a collection, we are presented with a number of issues
that must be considered. There is a significant time overhead in
communicating over a network (or going out of the house to visit the
supermarket), so a time-efficient solution cannot assume that the
overhead is negligible. A further space and time overhead is involved
in communication, because values (or groceries) must be marshaled
and unmarshaled (packed and unpacked). We must also, however,
consider convenience: picking up a carton of milk, paying for it, and
putting it in the fridge involves much less ceremony than taking a
shopping cart around the supermarket and packing and unpacking
bags. Fine-grained iteration is more familiar to programmers, better
supported by libraries and languages, and leads to less apparent
blocking. We must also consider partial failure (or partial success):
networks can become ‘notworks.’

Solutions and Consequences

An effective solution needs to balance the forces that make the
problem a problem. It should also be described clearly. In this par-
ticular case, our solution involves preparing and sending a bulk
request (the shopping list) from one address space to another, imple-
mented with respect to the appropriate protocol (driving, walking,

8 On Patterns and Pattern Languages

cycling, and so on), performing all the traversal locally in a single
batch (walking around the supermarket with the shopping cart),
marshaling the results back to the caller and unmarshaling them
into the local address space (paying, packing, and returning home),
and then traversing the batch result locally (unpacking and putting
everything away).

Another feature of any design decision is that it may not be perfect,
in the sense that every design decision has consequences, some of
which are benefits and some liabilities. An effective application of a
pattern is therefore one in which the benefits clearly outweigh the
liabilities, or one in which the liabilities do not even appear to come
into play.

In this case, perhaps the overriding consideration is the communi-
cation-to-computation ratio, which has led to a design that minimizes
the amount of communication involved (once out, once back) for
the amount of work done (accessing multiple items) and ensures
that partial failure does not result in partial state—all results are
returned, or none at all. There is no ‘free lunch,’ however. Instead
of a single iteration, there are many: a local iteration to prepare
the call (compile the shopping list), a remote iteration to perform
the computation and collect the results for each item in the request
(walking round the supermarket), a local iteration to process each
result (unpacking and putting away the groceries). The design style is
rather idiomatic for distributed systems, but not necessarily for the
more common programming experience of iteration over collections
collocated in the same address space.

The Naming of Names

A pattern contributes to the software design vocabulary, which means
that it must have a name. The name is the shorthand we use in
conversation and the way we index and refer to the pattern else-
where. Without a name, we find ourselves having to redescribe the
essential elements of the pattern in order to communicate it to
others.

The most effective names for patterns are those that identify some
key aspect of the solution, which means that names are often noun

Inside Patterns 9

phrases. In the example examined here the name of the pattern
is BATCH METHOD (302). This name helps to differentiate the pattern
from other iteration patterns that are appropriate for different con-
texts or slightly different problems, such as ITERATOR (298)—the pat-
tern applied in the first shopping attempt—and ENUMERATION METHOD

(300)—a pattern that inverts the sense of iteration, encapsulating
the loop within the collection and calling out to a piece of code for
each element.

Brief Notes on the Synthesis of Pattern Form

Patterns are often recognized and used informally, acquiring a name
based on a particular implementation, with the implication that any
use of the key characteristics of a particular design follows that
pattern. For software architects and developers to apply patterns
more generally and broadly, however, a more concrete description is
often needed. We have detailed the anatomy of a pattern in terms of
concepts such as context and forces, but how are we to present the
pattern in writing?

It turns out that there is more than one answer to this question.
There are many pattern forms in common use, each with different
emphases, and each with a different audience or reading style in
mind. For example, full documentation of a single pattern that is
focused on a pattern common to a particular programming language
is often high on technical detail, including sample code. It may best
be motivated through one or more examples. For long patterns, divid-
ing the pattern into clearly titled subsections may make it more
accessible to readers and potential users. Conversely, a pattern pre-
sented alongside many other patterns that are intended as general
development-process guidelines is not as well served by length, detail,
and code. A more summarized and less elaborate form may thus be
appropriate in this case.

Whichever form is adopted for a pattern or catalog of patterns,
the form should state the essential problem and solution clearly,
emphasize forces and consequences, and include as much structure,
diagramming, and technical detail as is considered appropriate for
the target audience.

10 On Patterns and Pattern Languages

1.3 Between Patterns

Patterns can be used in isolation with some degree of success. They
represent foci for discussion, point solutions, or localized design
ideas. Patterns are generally gregarious, however, in that they are
rather fond of the company of other patterns. Any given application
or library will thus make use of many patterns.

Patterns can be collected into catalogs, which may be organized
according to different criteria—patterns for object-oriented frame-
works, patterns for enterprise computing, patterns for security,
patterns for working with a particular programming language, and
so on. In these cases what is perhaps most interesting is how the
patterns relate. An alphabetical listing is good for finding patterns by
name, but it does not describe their relationships.

Software architecture involves an interlocking network of many dif-
ferent decisions, each of which springs from, contradicts, suggests,
or otherwise relates to other decisions. To make practical sense as
an architectural concept, therefore, where they compete and cooper-
ate, patterns inevitably enlist other patterns for their expression and
variation.

Pattern Complements

It is all too easy to get stuck in a design rut, always applying a par-
ticular pattern for a general class of problem. Although this strategy
can often be successful, there are situations in which not only is
a habitual pattern-of-choice not the most effective approach, it can
actually be the least effective. To paraphrase Émile-Auguste Chartier,
‘nothing is more dangerous than a design idea when you have but
one design idea.’

In a design vocabulary, as with any vocabulary, part of effective
expression is based on breadth of vocabulary, particularly synonyms,
each of which has slightly different qualities and implications. Two
or more patterns may appear to solve the same or similar prob-
lems—ITERATOR and BATCH METHOD, for example. Deciding between
them involves a proper appreciation of the context, goal of the

Between Patterns 11

problem, forces, and solution trade-offs. In this sense the patterns
are perceived as complementary because together they present the
choices involved in a design decision.

Patterns can also cooperate, so that one pattern can provide the miss-
ing ingredient needed by another. The goal of this cooperation is to
make the resulting design better balanced and more complete. In this
sense patterns are complementary because they coexist and reinforce
one another in the same design. Moreover, many patterns that might
be characterized as alternatives that are in competition with each
other, such as ITERATOR and BATCH METHOD, can also complement one
another through cooperation.

Consider again the distributed iteration problem. By accessing a
single element each time around the loop, ITERATOR on its own offers
an overly fine-grained approach that is inefficient for remote collection
access. BATCH METHOD, in contrast, replaces loop repetition across the
network with repetition of data—passing and/or receiving collections.
This works well in many cases, but for large collections, or for clients
that need responsive replies, the time spent marshaling, sending,
receiving, and unmarshaling can lead to unacceptably long periods
of time when the client is just blocked. An alternative approach is
to combine both patterns: use the basic concept of an ITERATOR as a
traversal position, but instead of stepping a single element at a time,
use a BATCH METHOD to take larger strides.

Pattern Compounds

Pattern compounds capture recurring subcommunities of patterns.
They are common and identifiable enough to allow them to be treated
as a single decision in response to a recurring problem. In distributed
computing, the technique of combining ITERATOR and BATCH METHOD,
for example, is one such example, to which the names BATCH ITERATOR

and CHUNKY ITERATOR are often applied.

Pattern compounds are also known as compound patterns, and were
originally known as composite patterns. In conversation, however,
there is obvious scope for confusion between ‘a composite pattern’
and ‘the COMPOSITE (319) pattern,’ which is one of the widely known
Gang-of-Four patterns.

12 On Patterns and Pattern Languages

In truth, most patterns are compound at one level or other, or from
one viewpoint or other, so the concept is essentially relative to the
design granularity of interest.

Pattern Stories

The development of a system can be considered a single narrative
example, in which design questions are asked and answered, struc-
tures assembled for specific reasons, and so on. We can view the
emergence and refinement of many designs as the progressive appli-
cation of particular patterns. The design emerges from a narrative—a
pattern story—that builds one pattern on another, responding to the
design issues introduced or left outstanding by the previous pattern.

As with many stories, they capture the spirit, although not necessarily
the truth, of the detail of what happens. Sequential ordering matters
more in presenting a design and its evolution than it does in the
actual evolution of a design. It is rare that our design thinking fits
into a tidy, linear arrangement, so there is a certain amount of
retrospection, revisionism, and rearrangement involved in retelling
how a design played out over time.

These stories, then, may be of systems already built, forecasts of
systems to be built, or simply hypothetical illustrations of how sys-
tems could be built. They may be recovered whole or idealized from
the development of real systems, a guide to the architecture and its
design rationale. They may be used as storyboarding technique for
envisioning and exploring future design decisions and paths for a
system. They may be speculative and idealized, intended to teach or
explore design thinking, but not an actual system.

Pattern Sequences

Pattern sequences are related to pattern stories in the same way that
individual patterns are related to examples that illustrate or motivate
those patterns: they generalize the progression of patterns and the
way a design can be established, without necessarily being a specific
design. In this sense, a given pattern sequence can be considered a
highly specific development process. Predecessor patterns form part
of the context of each successive pattern.

Into Pattern Languages 13

For example, BATCH ITERATOR as the application of ITERATOR and BATCH

METHOD can also be seen as a (very) short sequence, in which first
ITERATOR is applied to provide the notion of a traversal position, then
BATCH METHOD is applied to define the style of access.

1.4 Into Pattern Languages

While patterns represent a design vocabulary, pattern languages are
somewhat like grammar and style. Through the use of patterns,
a pattern language offers guidance on how to create a particular
kind of system, or how to implement a certain kind of class, or
how to fulfill a particular kind of cross-cutting requirement, or how
to approach the design of a particular family of products. Whether
we are interested in building a distributed system for managing
a warehouse, writing exception-safe code in C++, or developing a
Java-based Web application, if there is experience in the domain of
interest, it is likely that this experience can be distilled into patterns
and organized as a pattern language.

From Sequences to Languages

While pattern stories are concrete and linear, pattern sequences are
more abstract but still essentially linear. Feedback should inform the
designer how to apply the next pattern in a sequence, or whether
to revisit an earlier application. Pattern languages are more abstract
still, and typically more richly interconnected.

A pattern language defines a network of patterns that build on one
another, typically a tree or directed graph, so that one pattern can
optionally or necessarily draw on another, elaborating a design in a
particular way, responding to specific forces, taking different paths
as appropriate. The relationships explored in the previous section,
Between Patterns, are those that can be found in various forms within
a pattern language. For example, a pattern sequence defines a path
through a language, taking in some or all of its patterns, and a
pattern story recalls a route along one path.

14 On Patterns and Pattern Languages

Presenting and Using Pattern Languages

A pattern language includes its sequences, and the knowledge of
how to handle feedback should be considered part of the scope and
responsibility of a language. A given pattern sequence can be used as
a guide to the reader about one way that a language has been, can be,
or is to be used. When taken together, a number of sequences can be
seen to provide guidance on the use of a given pattern language—or,
alternatively, when taken together, a number of sequences can be
used as the basis of a pattern language.

Pattern sequences therefore have the potential to play a number of
roles. Other than in the form of pattern stories, however, they are
normally not made explicit as part of the presentation of a language.
As a result there is generally more discussion in the patterns com-
munity about pattern sequences than actual cataloging or specific
description of them. Given that different pattern sequences give rise to
different common design fragments with different properties that are
useful in different situations, it seems worthwhile to document some
of these, even if briefly. Of course, enumerating all the reasonable
sequences for anything but a small or simply structured language is
likely to be a Sisyphean task that will overwhelm both its author and
any readers who try to use it for guidance.

The common vehicle for illustrating pattern languages in action is
stories. Of course, there is the risk that stories may be taken too liter-
ally. In the way that a motivating example in a pattern is sometimes
mistaken for the pattern itself, a pattern story may end up stealing
the limelight from the language it represents. Although readers are
free to generalize, they may be drawn to the specifics of an example
to the exclusion of its general themes and structure.

It is therefore crucial to strike the right balance between the specific
and the general to ensure that the patterns within a language are
also documented in a sufficiently complete form individually, but
with obvious emphasis on their interconnections. A single pattern
can often be used in a variety of situations and a variety of differ-
ent pattern languages. To keep its role within a language focused, it
makes sense to concentrate on documenting the aspects that are rel-
evant to the language, and reducing or omitting aspects that are only
relevant in other situations. The context for a given pattern can also

Patterns Connected 15

be narrowed to predecessor patterns in the language. This overall mix
of specific examples, in-context patterns, and relationships between
patterns offers a practical approach to presentation and usage of
pattern languages.

1.5 Patterns Connected

The value that individual patterns have should not be underrated,
but the tremendous value that they have when brought together as
a community should not be underestimated. Patterns are outgoing,
fond of company, and community spirited.

It is this networking on the part of patterns that reflects the nature
both of design and of designs. The notions of synthesis, overlap, rein-
forcement, and balance across different design elements according to
the roles that they play reinforces what to some appears an initially
counterintuitive view of design: that the code-based units of compo-
sition found in a given design are not themselves necessarily the best
representation of the design’s history, rationale, or future.

2 On Distributed Systems

A distributed system is one in which the failure
of a computer you didn’t even know existed

can render your own computer unusable.

Leslie Lamport

A distributed system is a computing system in which a number
of components cooperate by communicating over a network. The
explosive growth of the Internet and the World Wide Web in the mid-
1990s moved distributed systems beyond their traditional application
areas, such as industrial automation, defense, and telecommunica-
tion, and into nearly all domains, including e-commerce, financial
services, health care, government, and entertainment. This chapter
describes the key characteristics and challenges of developing dis-
tributed systems and presents several key software technologies that
have emerged to resolve these challenges.

18 On Distributed Systems

2.1 Benefits of Distribution

Most computer software traditionally ran in stand-alone systems,
in which the user interface, application ‘business’ processing, and
persistent data resided in one computer, with peripherals attached
to it by buses or cables. Few interesting systems, however, are still
designed in this way. Instead, most computer software today runs in
distributed systems, in which the interactive presentation, application
business processing, and data resources reside on loosely coupled
computing nodes and service tiers connected together by networks.

The following diagram illustrates a three-tier distribution architecture
for a warehouse management process control system, whose pattern-
based design we discuss in depth in Part II, A Story. The three tiers
in this example are connected by a BROKER architecture (237).

Infrastructure
Layer

Presentation
Layer

Business
Layer

Warehouse
Management

Implementation

Material
Flow Control

Implementation

Network

M
F

C
In

te
rf

ac
e

Server-Side
Broker

Client-Side
Broker

Warehouse Management
Client Proxy

Application ApplicationNorthbound
Gateway

Northbound
Gateway

Material Flow Control
Client Proxy

Application

Server-Side
Broker

Client-Side
Broker

Persistence
Client Proxy

Network

Persistence

Benefits of Distribution 19

The following properties of distributed systems make them increas-
ingly essential as the foundation of information and control systems
[Tan92]:

• Collaboration and connectivity. An important motivation for dis-
tributed systems is their ability to connect us to vast quantities
of geographically distributed information and services, such as
maps, e-commerce sites, multimedia content, and encyclopedias.
The popularity of instant messaging and chat rooms on the Inter-
net highlights another motivation for distributed systems: keeping
in touch with family, friends, co-workers, and customers.

• Economics. Computer networks that incorporate PDAs, laptops,
PCs, and servers often offer a better price/performance ratio
than centralized mainframe computers. For example, they support
decentralized and modular applications that can share expen-
sive peripherals, such as high-capacity file servers and high-
resolution printers. Similarly, selected application components
and services can be delegated to run on nodes with specialized
processing attributes, such as high-performance disk controllers,
large amounts of memory, or enhanced floating-point performance.
Conversely, small simple applications can run on inexpensive com-
modity hardware.

• Performance and scalability. Successful software typically col-
lects more users and requirements over time, so it is essential
that the performance of distributed systems can scale up to
handle the increased load and capabilities. Significant perfor-
mance increases can be gained by using the combined computing
power of networked computing nodes. In addition—at least in the-
ory—multiprocessors and networks can scale easily. For example,
multiple computation and communication service processing tasks
can be run in parallel on different nodes in a server farm or in
different virtual machines on the same server.

• Failure tolerance. A key goal of distributed computing is to tolerate
partial system failures. For example, although all the nodes in a
network may be live, the network itself may fail. Similarly, an
end-system in a network, or a CPU in a multiprocessor system,
may crash. Such failures should be handled gracefully without
affecting all—or unrelated—parts of the system. A common way to
implement fault tolerance is to replicate services across multiple

20 On Distributed Systems

nodes and/or networks. Replication helps minimize single points
of failure, which can improve system reliability in the face of partial
failures.

• Inherent distribution. Some applications are inherently distribu-
ted, including telecommunication management network (TMN)
systems, enterprise business systems that span multiple com-
pany divisions in different regions of the world, peer-to-peer (P2P)
content sharing systems, and business-to-business (B2B) supply
chain management systems. Distribution is not optional in these
types of systems—it is essential to meet customer needs.

2.2 Challenges of Distribution

Despite the increasing ubiquity and importance of distributed sys-
tems, developers of software for distributed systems face a number of
tough challenges [POSA2], including:

• Inherent complexities, which arise from fundamental domain chal-
lenges. For example, components of a distributed system often
reside in separate address spaces on separate nodes, so inter-
node communication needs different mechanisms, policies, and
protocols than those used for intra-node communication in stand-
alone systems. Similarly, synchronization and coordination is more
complicated in a distributed system, as components may run in
parallel and network communication can be asynchronous and
non-deterministic. The networks that connect components in dis-
tributed systems introduce additional forces, such as latency, jitter,
transient failures, and overload, with corresponding impact on sys-
tem efficiency, predictability, and availability [VKZ04].

• Accidental complexities, which arise from limitations of software
tools and development techniques, such as non-portable pro-
gramming APIs and poor distributed debuggers. Ironically, many
accidental complexities stem from deliberate choices made by

Challenges of Distribution 21

developers favoring low-level languages and platforms such as C
and C-based operating system APIs and libraries, which scale up
poorly when applied to distributed systems. As the complexity
of application requirements increases, new layers of distributed
infrastructure are conceived and released, not all of which are
equally mature or capable, which complicates the development,
integration, and evolution of working systems.

• Inadequate methods and techniques. Popular software analysis
methods and design techniques [Fow03b] [DWT04] [SDL05] have
focused on constructing single-process, single-threaded applica-
tions with ‘best-effort’ QoS requirements. The development of high-
quality distributed systems—particularly those with stringent per-
formance requirements, such as video-conferencing or air traffic
control systems—has been left to the expertise of skilled software
architects and engineers. Moreover, it has been hard to gain expe-
rience with software techniques for distributed systems without
spending a lot of time wrestling with platform-specific details and
fixing mistakes by costly trial and error.

• Continuous re-invention and re-discovery of core concepts and
techniques. The software industry has a long history of recreat-
ing incompatible solutions to problems that have already been
solved. There are dozens of general-purpose and real-time operat-
ing systems that manage the same hardware resources. Similarly,
there are dozens of incompatible operating system encapsulation
libraries, virtual machines, and middleware that provide slightly
different APIs that implement essentially the same features and
services. If effort had instead been focused on enhancing a smaller
number of solutions, developers of distributed system software
would be able to innovate more rapidly by reusing common tools
and standard platforms and components.

22 On Distributed Systems

2.3 Technologies for Supporting Distribution

To address the challenges described above, therefore, three levels of
support for distributed computing were developed: ad hoc network
programming, structured communication, and middleware [Lea02].
At the ad hoc network programming level reside interprocess com-
munication (IPC) mechanisms, such as shared memory, pipes, and
sockets [StRa05], that allow distributed components to connect and
exchange information. These IPC mechanisms help address a key
challenge of distributed computing: enabling components in different
address spaces to cooperate with one another.

Certain drawbacks arise, however, when developing distributed sys-
tems using only ad hoc network programming support. For example,
using sockets directly within application code tightly couples the
code to the socket API. Porting this code to another IPC mechanism,
or redeploying components to different nodes in a network, thus
becomes a costly manual programming effort. Even porting the code
to another version of the same operating system can require code
changes if each platform has slightly different APIs for the IPC mech-
anisms [POSA2] [SH02]. Programming directly to an IPC mechanism
can also cause a paradigm mismatch: for example, local communi-
cation uses object-oriented classes and method invocations, whereas
remote communication uses the function-oriented socket API and
message passing.

Some applications and their developers can tolerate the deficiencies
of ad hoc network programming. For example, traditional embed-
ded systems, such as controllers for automobile engines or power
grids, run in a homogeneous distributed environment whose initial
functional requirements, component configuration, and choice of IPC
mechanism rarely changes. Most other types of applications cannot
tolerate these deficiencies, however, because they run in a heteroge-
neous computing environment and/or face continuous requirement
changes.

The next level of support for distributed computing is structured
communication, which overcomes limitations with ad hoc net-
work programming by not coupling application code to low-level
IPC mechanisms, but instead offering higher-level communication

Technologies for Supporting Distribution 23

mechanisms to distributed systems. Structured communication
encapsulates machine-level details, such as bits and bytes and binary
reads and writes. Application developers are therefore presented with
a programming model that embodies data types and a communication
style closer to their application domain.

Historically significant examples of structured communication are
Remote Procedure Call (RPC) platforms, such as Sun RPC [Sun88]
and the Distributed Computing Environment (DCE) [RKF92]. RPC
platforms allow distributed applications to cooperate with one another
much as they would in a local environment: they invoke functions on
each other, pass parameters along with each invocation, and receive
results from the functions they call. The RPC platform shields them
from the details of specific IPC mechanisms and low-level operating
system APIs. Other examples of structured communication include
PROFInet [WK01], which provides a runtime model for industrial
automation that defines several message-oriented communication
protocols, and ACE [SH02] [SH03], which provides reusable C++
wrapper facades and frameworks that perform common structured
communication tasks across a range of OS platforms.

Despite its improvements over ad hoc network programming, struc-
tured communication does not fully resolve the challenges described
above. In particular, components in a distributed system that com-
municate via structured communication are still aware of their peers’
remoteness—and sometimes even their location in the network.
While location awareness may suffice for certain types of distributed
systems, such as statically configured embedded systems whose com-
ponent deployment rarely changes, structured communication does
not fulfill the following properties needed for more complex distributed
systems:

• Location-independence of components. Ideally, clients in a dis-
tributed system should communicate with collocated or remote
services using the same programming model. Providing this degree
of location-independence requires the separation of code that deals
with remoting or location-specific details from client and service
application code. Even then, of course, distributed systems have
failure modes that local systems do not have [WWWK96].

24 On Distributed Systems

• Flexible component (re)deployment. The original deployment of an
application’s services to network nodes could become suboptimal
as hardware is upgraded, new nodes are incorporated, and/or
new requirements are added. A redeployment of distributed system
services may therefore be needed, ideally without breaking code
and/or shutting down the entire system.

• Integration of legacy code. Few complex distributed systems are
developed from scratch. Instead, they are constructed from existing
elements or applications that may not originally have been designed
to integrate into a distributed environment—in fact, the source
code may not even be available. Reasons for integrating legacy
code include leveraging existing software components, minimizing
software certification costs, or reducing time-to-market.

• Heterogeneous components. Distributed system integrators are
faced increasingly with the task of combining heterogeneous enter-
prise distributed systems built using different off-the-shelf tech-
nologies, rather than just integrating proprietary software devel-
oped in-house. Moreover, with the advent of enterprise application
integration (EAI) [HoWo03], it has become necessary to integrate
components and applications written in different programming lan-
guages into a single, coherent distributed system. Once integrated,
these heterogeneous components should perform a common set of
tasks properly.

Mastering these challenges requires more than structured commu-
nication support for distributed systems. Instead it requires ded-
icated middleware [ScSc01], which is distribution infrastructure
software that resides between an application and the operating sys-
tem, network, or database underneath it. Middleware provides the
properties described above so that application developers can focus
on their primary responsibility: implementing their domain-specific
functionality.

Technologies for Supporting Distribution 25

Realizing the need for middleware has motivated companies such as
Microsoft, IBM, and Sun, and consortia such as the Object Manage-
ment Group (OMG) and the World Wide Web Consortium (W3C), to
develop technologies for distributed computing. Below, we describe
a number of popular middleware technologies, including distributed
object computing, component middleware, publish/subscribe mid-
dleware, service-oriented architectures, and Web Services [Vin04a].

Distributed Object Computing Middleware

The emergence of distributed object computing (DOC) middleware in
the late 1980s and early 1990s was a key contribution to distributed
system development. DOC middleware represented the confluence
of two major information technologies: RPC-based distributed com-
puting systems and object-oriented design and programming. Tech-
niques for developing RPC-based distributed systems, such as DCE
[OG94], focused on integrating multiple computers to act as a unified
scalable computational resource. Likewise, techniques for developing
object-oriented systems focused on reducing complexity by creating
reusable frameworks and components that reify successful patterns
and software architectures. DOC middleware therefore used object-
oriented techniques to distribute reusable services and applications
efficiently, flexibly, and robustly over multiple, often heterogeneous,
computing and networking elements.

CORBA 2.x [OMG03a] [OMG04a] and Java RMI [Sun04c] are examples
of DOC middleware technologies for building applications for dis-
tributed systems. These technologies focus on interfaces, which
are contracts between clients and servers that define a location-
independent means for clients to view and access object services pro-
vided by a server. Standard DOC middleware technologies like CORBA
also define communication protocols and object information models,
to enable interoperability between heterogeneous applications written
in various languages and running on various platforms [HV99].

26 On Distributed Systems

Despite its maturity, performance, and advanced capabilities, how-
ever, DOC middleware has various limitations, including:

• Lack of functional boundaries. The CORBA 2.x and Java RMI object
models treat all interfaces as client/server contracts. These object
models do not, however, provide standard assembly mechanisms
to decouple dependencies among collaborating object implementa-
tions. For example, objects whose implementations depend on other
objects need to discover and connect to those objects explicitly.
To build complex distributed applications, therefore, application
developers must program the connections among interdependent
services and object interfaces explicitly, which is extra work that
can yield brittle and non-reusable implementations.

• Lack of software deployment and configuration standards. There
is no standard way to distribute and start up object implemen-
tations remotely in DOC middleware. Application administrators
must therefore resort to in-house scripts and procedures to deliver
software implementations to target machines, configure the target
machine and software implementations for execution, and then
instantiate software implementations to make them ready for
clients. Moreover, software implementations are often modified to
accommodate such ad hoc deployment mechanisms. The need for
most reusable software implementations to interact with other soft-
ware implementations and services further aggravates the problem.
The lack of higher-level software management standards results
in systems that are harder to maintain and software component
implementations that are much harder to reuse.

Component Middleware

Starting in the mid to late 1990s, component middleware evolved
to address the limitations of DOC middleware described above. In
particular, to address the lack of functional boundaries, component
middleware allows a group of cohesive component objects to interact
with each other through multiple provided and required interfaces,
and defines the standard runtime mechanisms needed to execute
these component objects in generic applications servers. To address
the lack of standard deployment and configuration mechanisms,

Technologies for Supporting Distribution 27

component middleware often also specifies the infrastructure to pack-
age, customize, assemble, and disseminate components throughout
a distributed system.

Enterprise JavaBeans [Sun03] [Sun04a] and the CORBA Compo-
nent Model (CCM) [OMG02] [OMG04b] are examples of component
middleware that define the following general roles and relationships:

• A component is an implementation entity that exposes a set of
named interfaces and connection points that components can use
to collaborate with each other. Named interfaces are service method
invocations that other components call synchronously. Connection
points are joined with named interfaces provided by other com-
ponents to associate clients with their servers. Some component
models also offer event sources and event sinks, which can be
connected to support asynchronous message passing.

• A container provides the server runtime environment for compo-
nent implementations. It contains various predefined hooks and
operations that give components access to strategies and services,
such as persistence, event notification, transaction, replication,
load balancing, and security. Each container defines a collection
of runtime policies, such as transaction, persistence, security, and
event delivery strategies, and is responsible for initializing and pro-
viding runtime contexts for the managed components. Component
implementations often have associated metadata written in XML
that specifies the required container policies [OMG03b].

In addition to the building blocks outlined above, component mid-
dleware also typically automates aspects of various stages in the
application development lifecycle, notably component implementa-
tion, packaging, assembly, and deployment, in which each stage of the
lifecycle adds information pertaining to these aspects via declarative
metadata [DBOSG05]. These capabilities enable component middle-
ware to create applications more rapidly and robustly than their DOC
middleware predecessors.

Well-defined relationships exist between components and objects in a
component architecture [Szy02]. In general, components are created
at build time, may be loaded at runtime, and define the implemen-
tation details for runtime behavior. Likewise, objects are created at

28 On Distributed Systems

runtime, their type is packaged within a component, and their run-
time actions are what drives program behavior. Thus, components get
written, built and loaded, whereas objects get created and interact.

Publish/Subscribe and Message-Oriented Middleware

RPC platforms, DOC middleware, and component middleware are
all based on a request/response communication model, in which
requests flow from client to server and responses flow back from
server to client. However, certain types of distributed applications,
particularly those that react to external stimuli and events, such as
control systems and online stock trading systems, are not well-suited
to specific aspects of the request/response communication model.
These aspects include synchronous communication between the client
and server, which can underutilize the parallelism available in the
network and endsystems, designated communication, in which the
client must know the identity of the server, which tightly couples it
to a particular recipient, and point-to-point communication, in which
a client communicates with just one server at a time, which can limit
its ability to convey its information to all interested recipients.

An alternative approach to structuring communication in some types
of distributed systems is therefore to use message-oriented mid-
dleware, which is supported by IBM’s MQ Series [IBM99], BEA’s
MessageQ [BEA06] and TIBCO’s Rendezvous, or publish/subscribe
middleware, which is supported by the Java Messaging Service
(JMS) [Sun04b], the Data Distribution Service (DDS) [OMG05b],
and WS-NOTIFICATION [OASIS06c] [OASIS06c]. The main benefits of
message-oriented middleware include its support for asynchronous
communication, in which senders transmit data to receivers without
blocking to wait for a response. Many message-oriented middleware
platforms provide transactional properties, in which messages are
reliably queued and/or persisted until consumers can pick them up.
Publish/subscribe middleware augments this capability with anony-
mous communication, in which publishers and subscribers are loosely
coupled and thus do not know about each other’s existence, as the
address of the receiver is not conveyed with the event data, and
group communication, in which there can be multiple subscribers
that receive events sent by a publisher.

Technologies for Supporting Distribution 29

Publish/subscribe middleware typically allows applications to run on
separate nodes and write/read events to/from a global data space in
a distributed system. Applications can share information with others
by using this global data space to declare their intent to produce
events, which is often categorized into one or more topics of interest
to participants. Applications that want to access topics of interest—or
simply handle all messages on a particular queue—can declare their
intent to consume the events.

The elements of publish/subscribe middleware are separated into the
following roles:

• Publishers are sources of events, that is, they produce events
on specific topics that are then propagated through the system.
Depending on the architecture implementation, publishers may
need to describe the type of events they generate a priori.

• Subscribers are the event sinks of the system, that is, they consume
data on topics of interest to them. Some architecture implemen-
tations require subscribers to declare filtering information for the
events they require.

• Event channels are components in the system that propagate events
from publishers to subscribers. These channels can propagate
events across distribution domains to remote subscribers. Event
channels can perform various services, such as filtering and rout-
ing, QoS enforcement, and fault management.

The events passed from publishers to consumers can be represented
in various ways, ranging from simple text messages to richly typed
data structures. Likewise, the interfaces used to publish and sub-
scribe the events can be generic, such as send and recv methods
that exchange arbitrary dynamically typed XML messages in WS-
NOTIFICATION, or specialized, such as a data writer and data readers
that exchange statically typed event data in DDS.

30 On Distributed Systems

Service-Oriented Architectures and Web Services

Service-Oriented Architecture (SOA) is a style of organizing and using
distributed capabilities that may be controlled by different organi-
zations or owners. It therefore provides a uniform means to offer,
discover, interact with and use the capabilities of loosely coupled
[Kaye03] and interoperable software services to support the require-
ments of business processes and application users [OASIS06a]. The
term ‘SOA’ was originally coined in the mid-1990s [SN96] as a
generalization of the interoperability middleware standards avail-
able at the time, including RPC-, ORB-, and messaging-based plat-
forms.

The ubiquity of the World Wide Web (WWW) and the lessons learned
from earlier forms of middleware were leveraged to form the initial
version of SOAP [W3C03]. SOAP is a protocol for exchanging XML-
based [W3C06b] messages over a computer network, normally using
HTTP [FGMFB97]. Initially SOAP was intended as a platform-agnostic
protocol that could be used over the Web to allow interoperability
with various types of middleware, including CORBA, EJB, JMS, and
proprietary message-oriented middleware systems, such as IBM’s MQ
Series and TIBCO Rendezvous.

The introduction of SOAP spawned a popular new variant of SOA
called Web Services that is being standardized by the World Wide
Web Consortium (W3C). Web Services allow developers to package
application logic into services whose interfaces are described with
the Web Service Description Language (WSDL) [W3C06a]. WSDL-
based services are often accessed using standard higher-level Internet
protocols, such as SOAP over HTTP. Web Services can be used to build
an Enterprise Service Bus (ESB), which is a distributed computing
architecture that simplifies interworking between disparate systems.
Mule [Mule06] and Celtix [Celtix06] are open-source examples of the
ESB approach to melding groups of heterogeneous systems into a
unified distributed application.

Despite some highly publicized drawbacks [Bell06] [Vin04b], Web Ser-
vices have established themselves as the technology of choice for most
enterprise business applications. This does not mean, however, that
Web Services will completely displace earlier middleware technologies
such as EJB and CORBA. Rather, Web Services complement these

Technologies for Supporting Distribution 31

earlier successful middleware technologies and provides standard
mechanisms for interoperability. For example, the Microsoft Windows
Communication Foundation (WCF) platform [MMW06] and the Ser-
vice Component Architecture (SCA) [SCA05] currently being defined
by IBM, BEA, IONA, and others combine aspects of component-based
development and Web technologies. Like components, WCF and SCA
platforms provide black-box functionality that can be described and
reused without concern over how a service is implemented. Unlike
traditional component technologies, however, WCF and SCA are not
accessed using the object model-specific protocols defined by DCOM
[Box97] [Thai99], Java RMI, or CORBA. Instead, Web services are
accessed using Web protocols and data formats, such as HTTP and
XML respectively.

Since initial Web Services developments provided an RPC model that
exchanged XML messages over HTTP, they were touted as replace-
ments for more complicated EJB components or CORBA objects.
When used for fine-grained distributed resource access, however, the
performance of Web Services is often several orders of magnitude
slower than DOC middleware, due to its their use of plain-text pro-
tocols such as XML over HTTP [EPL02]. As a result, the use of Web
Services for performance-critical applications, such as distributed
real-time and embedded systems in aerospace, military, financial
services, and process control domains, is now considered much less
significant than using them for loosely coupled document-oriented
applications such as supply-chain management.

Rather than trying to replace older approaches, today’s Web Services
technologies are instead focusing on middleware integration, thereby
adding value to existing middleware platforms. WSDL allows develop-
ers to describe Web Service interfaces abstractly, while also defining
concrete bindings such as the protocols and transports required
at runtime to access the services. By providing these common
communication mechanisms between diverse middleware platforms,
Web Services allow component reuse across an organization’s entire
application set, regardless of their implementation technologies. For
example, projects such as the Apache Web Services Invocation
Framework (WSIF) [Apache06], Mule, and CeltiXfire, aim to allow
applications to access Web Services transparently via EJB, JMS,

32 On Distributed Systems

or the SCA. This move towards integration allows services imple-
mented in these different technologies to be integrated into an ESB
and made available to a variety of client applications. Middleware
integration is thus a key focus of Web Services applications for the
foreseeable future [Vin03]. By focusing on integration, Web Services
increases reuse and reduces middleware lock-in, allowing developers
to use the right middleware to meet their needs without precluding
interoperability with existing systems.

2.4 Limitations of Middleware

Despite the many benefits of middleware described in this chapter,
it is not a panacea for distributed systems. All the middleware tech-
nologies described above are primarily just ‘messengers’ between
elements in distributed applications, and sometimes the messages
just cannot be delivered despite heroic efforts from the middleware.
As a result, distributed applications must be prepared to handle
network failures and server crashes. Likewise, middleware cannot
magically solve problems resulting from poor deployment decisions,
which can significantly degrade system stability, predictability, and
scalability.

In other words, middleware is an important part of a distributed sys-
tem, but it cannot handle responsibilities that are application-specific
and thus beyond its scope. Distributed systems must therefore be
designed and validated carefully, even when middleware allows them
to be independent of the concrete location of other components.

3 On the Pattern Language

The limits of my language are the limits of my world.

Ludwig Wittgenstein

This chapter introduces our pattern language for distributed comput-
ing, outlining its intent, scope, audience, origin, genesis, structure,
content, presentation, and use. The chapter thus presents the general
context for the language, defining how it relates to common software
engineering practice, as well as the existing body of pattern literature.

34 On the Pattern Language

3.1 Intent, Scope, and Audience

The main intent of our pattern language for distributed computing is
to serve as an overview about, introduction to, guide through, and
communication vehicle for, the best practices and state-of-the-art in
key areas of the construction of distributed software systems. Top-
ics covered by the language range from fundamental and strategic
concerns regarding application decomposition, component deploy-
ment, and communication middleware, to supplementary and tactical
aspects that address the detailed design of components in a dis-
tributed system and the management of system resources.

To achieve our intent, the pattern language connects patterns from
a variety of different sources into a single, coherent pattern network
that provides a holistic and consistent view of the construction of
distributed software. The language captures our production experi-
ence to date with building distributed software systems—hence our
confidence in presenting it—but it is not the final word on distributed
architecture. We have chosen not to speculate how the discipline will
evolve in future, because it is the empirically supported patterns we
wish to present.

Software architects, developers, and advanced students can use our
pattern language for distributed computing to create, communicate,
and refactor the architectures of distributed systems, as well as to
understand the paradigms and baseline architectures of common
middleware platforms and products. In addition, product and project
managers can get deeper understanding of the essential capabil-
ities of distributed systems whose development they are leading,
which simplifies communication with their software architects and
developers. We do not, however, intend end-users or customers to
use our pattern language directly. While real-world metaphors might
make the material accessible to this audience, it would require an
alternative presentation of the language.

Our pattern language is not a comprehensive tutorial on distributed
computing in general. Its clear focus is on the design of distributed
software systems. We therefore assume readers have some famil-

Origins and Genesis 35

iarity with core distributed computing concepts and mechanisms,
such as deadlock, transactions, synchronization, remoting, and
scheduling.

3.2 Origins and Genesis

The patterns in our pattern language originate from many software
experts, including Deepak Alur, Bruce Anderson, Kent Beck, Roy
Campbell, Jens Coldewey, John Crupi, Eduardo Fernandez-Buglioni,
Martin Fowler, Erich Gamma, Richard Helm, Michi Henning, Gregor
Hohpe, Duane Hybertson, Prashant Jain, Ralph Johnson, Wolfgang
Keller, Michael Kircher, Doug Lea, Silvano Maffeis, Dan Malks, Ger-
ard Meszaros, Regine Meunier, Hans Rohnert, Alexander Schmid,
Markus Schumacher, Peter Sommerlad, Michael Stal, Steve Vinoski,
John Vlissides, Markus Völter, Eberhard Wolff, Bobby Woolf, Uwe
Zdun, and ourselves. You can therefore consider this language as
a compressed expression of collective expertise about building dis-
tributed software systems.

Although most patterns in our language—and some of their relation-
ships—were readily available, it was hard to connect the patterns to
form a coherent, consistent, and larger pattern language. We there-
fore had to recast and rewrite all the patterns, to both highlight their
essence more explicitly and situate them in their proper context. For
example, we had to identify which problems in distributed computing
the patterns address, how they resolve these challenges, why they
resolve the challenges the way they do, and how the patterns relate
to each other. This information was present in many of the original
pattern descriptions, so we had only to extract it. For other patterns,
however, we had to dig deeper and mine the context from our own
and others’ experience. Only a few patterns are ‘new’ in the language:
they mainly close holes not covered by existing patterns, or serve
as an ‘umbrella’ that integrates a set of existing patterns under a
common theme.

36 On the Pattern Language

We enhanced many patterns with additional rationales for signif-
icant solution decisions that specifically apply within the context
of distributed computing. We also supplemented the discussions of
forces and consequences to embrace this context more closely. We
added many new relationships between the patterns, so that they
connect more strongly than they did in their original descriptions. To
avoid distracting readers from the big picture of how all the patterns
fit together, however, we intentionally omitted some details found
in the original pattern descriptions, choosing a more lightweight
and narrative form. For example, we omitted CRC cards for core
roles, fine-grained structure and interaction diagrams, implementa-
tion hints and activities, variants, examples and known uses, and
consequences of minor importance. If you are interested in these
details, you can refer to them in the original pattern sources, which
we list for all patterns included in our language.

3.3 Structure and Content

Our pattern language for distributed computing includes 114 pat-
terns, which are grouped into thirteen problem areas. Each problem
area addresses a specific technical topic related to building dis-
tributed systems, and contains all the patterns in our language
that address the challenges associated with that technical topic. The
main intent of the problem areas is to make the language and its
patterns more tangible and comprehensible: patterns that address
related problems are presented and discussed within a common and
clearly scoped context. The problem areas are presented (roughly) in
their order of relevance and applicability when building distributed
systems, and include the following:

1. From Mud to Structure (167). This problem area includes the root pat-
terns of our pattern language for distributed computing. They help
transform the mud of requirements and constraints with which we
usually start into a coarse-grained software structure with clearly
separated, tangible parts that comprise the system being developed.
In addition, the patterns in this chapter address several key con-
cerns of sustainable software architectures, ranging from operational

Structure and Content 37

aspects such as performance and availability to developmental qual-
ities like extensibility and maintainability.

2. Distribution Infrastructure (211). This problem area describes pat-
terns pertaining to middleware, which is distribution infrastructure
software that helps to simplify applications in distributed systems.
The patterns in this problem area help developers to understand
the fundamental communication paradigms supported by common
middleware products and platforms, as well as key aspects of their
software architectures.

3. Event Demultiplexing and Dispatching (253). At its core, distributed
computing involves the handling of and response to events received
from the network, even if applications use a more sophisticated com-
munication model, such as synchronous request–response, asyn-
chronous messaging, or publish/subscribe dissemination. Due to its
pivotal role, this event-driven core must not become a performance
bottleneck.

4. Interface Partitioning (271). Interfaces are the ‘business card’ of a
component that inform clients about the component’s responsibili-
ties and usage protocols. They should also make it easy for clients
to collaborate with the component effectively and correctly. Design-
ing and specifying usable and meaningful component interfaces is
therefore essential for successful software development. Yet spec-
ifying useful component interfaces is hard, as they should reflect
component responsibilities clearly, be meaningful for clients, and
hide clients from the cost of change and evolution of component
implementations.

5. Component Partitioning (305). Components are the implementation
building blocks that provide well-defined services to their clients.
Though clients are generally not interested in the internal design of
a component, this partitioning has a significant impact on the com-
ponent’s visible quality properties, such as performance, scalability,
flexibility, availability, and fault-tolerance.

6. Application Control (329). Transforming user input for an applica-
tion into concrete service requests on its functionality, executing
these requests, and transforming any results back into output that is
meaningful for users can be hard. All these aspects are even harder
if the application’s user interface is decoupled from the realization

38 On the Pattern Language

of its functionality. This decoupling is typically done to simplify
the evolution of user interfaces and application functionality, grace-
fully handle changes in their underlying technologies, or enable the
deployment of different component configurations on a variety of
platforms.

7. Concurrency (353). Software for distributed systems often benefits
from concurrency, particularly servers and server-side applications
that handle requests from multiple clients simultaneously. In addi-
tion, an increasing number of multi-core CPUs and multi-CPU com-
puters are designed to run multiple threads of control in parallel
to compensate for the stall in Moore’s Law [Sut05a]. Developers of
distributed system software therefore must become proficient with
process and thread management mechanisms. No single software
concurrency architecture, however, is suitable for all workload con-
ditions and platforms.

8. Synchronization (371). Synchronizing access to shared components,
objects, and resources in a manner that avoids deadlocks, race con-
ditions, and other concurrency hazards is one of the hard tasks in
building distributed systems. Moreover, synchronization can incur
significant overhead, so applications should be designed to minimize
or avoid unnecessary synchronization.

9. Object Interaction (399). Most collaboration between objects in stan-
dalone programs involves calling methods and services on each other,
passing parameters with the calls, and waiting synchronously for the
invoked objects to return their results. Interactions between objects
in a distributed systems, however, are often much more complex, due
to the need to balance competing forces such as latency, scalability,
and reliability.

10. Adaptation and Extension (423). Some applications are specifically
developed for a single customer, whereas others are developed as
products for a mass market. Even applications targeted at a single
customer may benefit from a common architectural base, to simplify
repeat business for the customer, or to simplify customization for sim-
ilar applications sought by new customers. Even if multiple customers
can benefit from a particular software infrastructure, however, each
often has unique and specific requirements that are not supported by
default. Consequently, components in long-lived distributed systems
should be configurable, adaptable, and evolvable.

Structure and Content 39

11. Modal Behavior (463). Some objects in a system are inherently state-
driven: entire methods—or significant portions of them—behave
differently depending on their current state. There are many ways
to implement state-driven lifecycles for an object. Sometimes simple
flags and conditional statements within the object’s method control
flow are enough. Other times, however, many or all methods of an
object can behave entirely differently in different object states. Such
a lifecycle is often modeled as a state machine, but many design
choices face developers of state machines, and some choices yield
unnecessarily complex implementations.

12. Resource Management (473). Management of resources is crucial for
the success of distributed systems. For example, the performance of
a server can degrade if it keeps too many unused objects in memory.
It is hard, however, to manage resources correctly and efficiently.
Many application qualities of service properties, such as perfor-
mance, scalability, flexibility, stability, reliability, portability, and
security, depend on how efficiently resources are created or acquired,
accessed and used, disposed of or released, and managed in gen-
eral. What makes resource management particularly hard is trying
to balance trade-offs among these requirements, since satisfying one
of them often conflicts with others.

13. Database Access (533). Many distributed systems use databases to
store their persistent data, and increasingly these systems use the
relational database model in conjunction with object-oriented tech-
niques. The object model and the relational model, however, do not
map perfectly to one another. Mapping from an object-oriented appli-
cation design to a relational database schema efficiently and flexibly
is often more challenging than it should be.

40 On the Pattern Language

All thirteen problem areas outlined above complement and complete
each other in terms of various technical aspects related to build-
ing distributed systems. The major relationships that connect the
problem areas are illustrated in the following diagram.

Distribution
Infrastructure

Concurrency

efficient
network I/O

Event Handling

Synchronization

Component
Partitioning

Resource
Management

Adaptation and
Extension

Interface
Partitioning

concurrent
network I/O

Object
Interaction

Modal Behavior

Application
Control

component
behavior

concurrency
design

synchronization

concurrency
design

component
lifecycle
management

resource
management

flexibility
flexibility

Database Access
user interface
separation

object
collaboration

database
access

From Mud
To Structure

interprocess
communication

component
refinement

component
refinement

There are other relationships between problem areas that are not
outlined in the diagram. For example, some patterns that address
adaptation and extension concerns reference patterns related to
interface partitioning, as they define explicit and stable interfaces
that hide the details of a varying implementation. Nevertheless, the
omitted relationships between problem areas are not as significant
as the relationships that are shown.

Structure and Content 41

The patterns in our pattern language for distributed computing are
interconnected in more ways than just problem areas. We therefore
present them in a top-down fashion, starting with the language’s
root patterns, followed by patterns that complete the root patterns,
and likewise for the patterns that complete those patterns, and so
on. We finally arrive at the ‘leaves’ of the network: patterns that
complete many other patterns, but which themselves are not refined
by finer-grained patterns within the language.

Our pattern language thus defines a yo-yo-like process for design-
ing distributed systems: starting with the definition of their baseline
architectures, moving on to specifying their components, and ending
with addressing topics of component-internal design, but also sup-
porting refactoring from the bottom of a specific design. Since the
flow of text in this book is constrained to be sequential, however,
the presentation of the language is not properly hierarchical. Some
patterns are presented later in the sequence than their position in
the language’s network hierarchy would suggest.

The 114 patterns of our pattern language that we explicitly describe
in this book are:

• From Mud To Structure: DOMAIN MODEL (182), LAYERS (185),
MODEL-VIEW-CONTROLLER (188), PRESENTATION-ABSTRACTION-CONTROL (191),
MICROKERNEL (194), REFLECTION (197), PIPES AND FILTERS (200), SHARED

REPOSITORY (202), BLACKBOARD (205), and DOMAIN OBJECT (208).

• Distribution Infrastructure: MESSAGING (221), MESSAGE CHANNEL (224),
MESSAGE ENDPOINT (227), MESSAGE TRANSLATOR (229), MESSAGE ROUTER

(231), BROKER (237), CLIENT PROXY (240), REQUESTOR (242), INVOKER

(244), CLIENT REQUEST HANDLER (246), SERVER REQUEST HANDLER (249), and
PUBLISHER-SUBSCRIBER (234).

• Event Demultiplexing and Dispatching: REACTOR (259), PROACTOR

(262), ACCEPTOR-CONNECTOR (265), and ASYNCHRONOUS COMPLETION TOKEN

(268).

• Interface Partitioning: EXPLICIT INTERFACE (281), EXTENSION INTERFACE

(284), INTROSPECTIVE INTERFACE (286), DYNAMIC INVOCATION INTERFACE (288),
PROXY (290), BUSINESS DELEGATE (292), FACADE (294), COMBINED METHOD

(296), ITERATOR (298), ENUMERATION METHOD (300), and BATCH METHOD

(302).

42 On the Pattern Language

• Component Partitioning: ENCAPSULATED IMPLEMENTATION (313), WHOLE-

PART (317), COMPOSITE (319), MASTER-SLAVE (321), HALF-OBJECT PLUS

PROTOCOL (324), and REPLICATED COMPONENT GROUP (326).

• Application Control: PAGE CONTROLLER (337), FRONT CONTROLLER (339),
APPLICATION CONTROLLER (341), COMMAND PROCESSOR (343), TEMPLATE VIEW

(345), TRANSFORM VIEW (347), FIREWALL PROXY (349), and AUTHORIZATION

(351).

• Concurrency: HALF-SYNC/HALF-ASYNC (359), LEADER/FOLLOWERS (362),
ACTIVE OBJECT (365), MONITOR OBJECT (368).

• Synchronization: GUARDED SUSPENSION (380), FUTURE (382), THREAD-

SAFE INTERFACE (384), DOUBLE-CHECKED LOCKING (386), STRATEGIZED

LOCKING (388), SCOPED LOCKING (390), THREAD-SPECIFIC STORAGE (392),
COPIED VALUE (394), and IMMUTABLE VALUE (396).

• Object Interaction: OBSERVER (405), DOUBLE DISPATCH (408), MEDIATOR

(410), MEMENTO (414), CONTEXT OBJECT (416), DATA TRANSFER OBJECT

(418), COMMAND (412), and MESSAGE (420).

• Adaptation and Extension: BRIDGE (436), OBJECT ADAPTER (438),
INTERCEPTOR (444), CHAIN OF RESPONSIBILITY (440), INTERPRETER (442),
VISITOR (447), DECORATOR (449), TEMPLATE METHOD (453), STRATEGY (455),
NULL OBJECT (457), WRAPPER FACADE (459), EXECUTE-AROUND OBJECT

(451), and DECLARATIVE COMPONENT IMPLEMENTATION (461).

• Object Behavior: OBJECTS FOR STATES (467), METHODS FOR STATES (469),
and COLLECTIONS FOR STATES (471).

• Resource Management: OBJECT MANAGER (492), CONTAINER (488),
COMPONENT CONFIGURATOR (490), LOOKUP (495), VIRTUAL PROXY (497),
LIFECYCLE CALLBACK (499), TASK COORDINATOR (501), RESOURCE POOL (503),
RESOURCE CACHE (505), LAZY ACQUISITION (507), EAGER ACQUISITION (509),
PARTIAL ACQUISITION (511), ACTIVATOR (513), EVICTOR (515), LEASING (517),
AUTOMATED GARBAGE COLLECTION (519), COUNTING HANDLE (522), ABSTRACT

FACTORY (525), BUILDER (527), FACTORY METHOD (529), and DISPOSAL

METHOD (531).

• Database Access: DATABASE ACCESS LAYER (538), DATA MAPPER (540),
ROW DATA GATEWAY (542), TABLE DATA GATEWAY (544), and ACTIVE

RECORD (546).

Structure and Content 43

For several problem areas more patterns are documented than we
describe explicitly. For example, whole pattern languages exist in the
area of remoting [VKZ04] and messaging [HoWo03], which comple-
ment the patterns in the distribution infrastructure problem area.
Our pattern language for distributed computing therefore integrates
other pattern sources that refine and complement the patterns we
present. In particular, it connects to:

• A pattern language for designing server components [VSW02]

• A pattern language for remoting [VKZ04]

• A pattern language for messaging [HoWo03]

• A pattern collection for designing enterprise application architec-
tures [Fow03a]

• A pattern collection for security [SFHBS06]

• Four pattern collections and languages for accessing relational and
object-relational databases [BW95] [KC97] [Kel99] [Fow03a]

• A pattern language for reference counting in C++ [Hen01b]

• Two collections of patterns for designing applications using specific
middleware platforms [ACM01] [MS03].

In other words, our pattern language for distributed computing is not
standalone and isolated, but tightly integrated with major parts of the
known pattern universe. These relationships integrate approximately
a further 150 patterns into our pattern language, which makes it
one of the largest pattern languages in software documented to date.
Although we do not describe all these patterns explicitly in this book,
they are an integral part of our pattern language for distributed
computing. Please refer to the sources referenced above to learn
about those patterns for which we do not have room to present
explicitly.

It is important to note that we do not consider our pattern language
as complete—it is work in progress. We have not covered all relevant
topics, such as security, in full depth, and with growing experience
in building distributed systems, new patterns need integration with
the language, and existing patterns need refactoring.

44 On the Pattern Language

3.4 Presentation

To support your reading, comprehension, and digestion of our pattern
language for distributed computing, as well as to help you extract
useful advice and suggestions to build your own systems from it,
all problem area descriptions and pattern descriptions follow a com-
mon, structured format. Each problem area description provides an
overview of the problem and solution spaces of a specific technical
topic in the construction of distributed systems. This description also
summarizes issues to consider when resolving specific problems with
the help of the associated patterns. A problem area description is
structured into four parts:

• An introduction to the general scope and major challenges of the
problem area, which is the general context for its constituent pat-
terns.

• The abstracts of the patterns that address the challenges arising
in the problem area, as well as diagrams that show how selected
patterns in that area are integrated into our pattern language.

• A discussion that compares and contrasts the patterns, and also
outlines application scenarios outside the scope of our pattern
language, if there are any.

• The pattern description that explains each pattern in more depth,
focusing on its application context, the problem and forces it
addresses, the solution, its consequences, key implementation
hints, and relationships to other patterns in our pattern language.

Presentation 45

The following diagram illustrates the structure of an introduction to
a problem area:

Event Demultiplexing and Dispatching

Distributed computing is ultimately event-driven, even when middleware platforms offer
applications with a more sophisticated communication model, such as request/response
operations or asynchronous messaging. There are a number of challenges that differentiate
event-driven software from software with a ‘self-directed’ flow of control [PLoPD1]:

• Asynchronous arrival of events. Behavior in event-driven software is triggered largely by
external or internal events that can arrive asynchronously. Most events must be handled
promptly, even if the application is under heavy workload, or while it is executing long-
duration services. If not, response time will suffer, and hardware devices with real-time
constraints will fail or corrupt data.

• Simultaneous arrival of multiple events. Event-driven software typically receives events from
multiple independent event sources, such as I/O ports, sensors [...].

• [More event handling challenges]

The four event-handling patterns in our pattern language for distributed computing help
to fill this gap. They provide efficient, extensible, and reusable solutions to key event
demultiplexing and dispatching problems in event-driven software:

The REACTOR pattern (259) [POSA2] allows event-driven software to demultiplex and dispatch
service requests that are delivered to an application from one or more clients.

The PROACTOR pattern (262) [POSA2] allows event-driven software to demultiplex and dispatch
service requests triggered by the completion of asynchronous operations efficiently, [...].

The ACCEPTOR-CONNECTOR pattern (265) [POSA2] [...].

[More pattern abstracts]

The following diagram illustrates how Reactor and Proactor integrate into our pattern language

The Reactor and Proactor patterns define event demultiplexing and dispatching infrastructures
that can be used by event-driven applications to detect, demultiplex, dispatch, and process
events they receive from the network. Although both patterns resolve essentially the same
problem in a similar context, and also use similar patterns to implement their solutions, the
concrete event-handling infrastructures they suggest are distinct, due to the to orthongonal
which each pattern is exposed. [More discussion].

implementation
variation

implementation
variation

concurrent
event
handling

completion
handler types

event handler
types

synchronous
event handling

Client Request
Handler

Explicit
Interface

Wrapper
Facade

Asynchronous
Completion Token

Server Request
Handler

Reactor

asynchronous
event handling

asynchronous
event handling

Proactor

Acceptor-
Connector

Object Lifecycle
Manager

event source
encapsulation

event source
encapsulation

concurrent
event

handling
Half-Sync/
Half-Async

Leader/
Followers

Copied Value

event handler
dispatchngi

completion handler
dispatching

synchronous
event handling

Scope
of the
problem area

Name
of the
problem area

List of
challenges

Pattern
abstracts

A pattern that ‘belongs’
to this problem area

A pattern that uses
a pattern ‘from’ this
problem area

A pattern that is used
by a pattern ‘from’ this
problem area.Those
patterns that are
external to the book
are set in italics.

A concrete uses-
relationship between
two patterns labeled
with its purpose

A diagram that
outlines the integration
of the patterns ‘from’
this problem area into
the pattern language

to be resolved
by the patterns
that ‘belong’ to
the problem area

A discussion
on the patterns
from this
problem area

46 On the Pattern Language

Our pattern form is designed to present the essence of each pattern
quickly and easily so that you know what it is about, how it addresses
the problem and forces, what consequences to consider when apply-
ing it, and how to implement it using other patterns in our language.
Our goal is to provide enough detail to make each pattern compre-
hensible, without losing sight of how it fits into the overall pattern
language. The pattern form we find most suitable for meeting this
objective is based closely on the form used by Christopher Alexander
[AIS77].

The form begins with the name of the pattern, which is labeled with
either no stars, one star, or two stars. The number of stars denote
our level of confidence in the pattern’s maturity. Two stars mean
that we are confident the pattern addresses a genuine problem in
its respective problem area and that it is essential to implement
the proposed solution in one of its possible variants to resolve this
problem effectively. One star means that we think that the pattern
addresses a genuine problem and that its solution is a good one,
but know that pattern needs to mature. No stars means that we
observed the problem addressed by the pattern every now and then,
and also found its proposed solution to be useful, but the pattern
needs significant revision to reach the quality of a one-star or two-
star pattern. A no star pattern description may also indicate there
are alternative, better patterns to take its place.

After the pattern’s name comes the context of the pattern. It specifies
one or more development activities in which we can potentially apply
the pattern, together with the names and page references of all
patterns in our language in whose implementations we are performing
the respective activities. These references thus connect the pattern to
those ‘higher-level’ patterns in our language that can benefit from it.

The main part of the pattern follows after the context. We separate this
main part from its preceding ‘introduction’ by three diamonds, ‘���.’
The first paragraph of the pattern’s main part contains the essential
problem statement, so we set this paragraph in bold face. Next come
the forces associated with the problem: what are the requirements for,
and desired properties of, its solution, or the constraints to consider
when resolving it? Each force typically corresponds to a (part of
a) particular challenge outlined in the introduction of the pattern’s
enclosing problem area.

Presentation 47

The word ‘therefore’ introduces the next section: the core of the
solution that the pattern proposes to resolve the problem and its
associated forces. Within one or more boldface paragraphs, this solu-
tion core is stated as an instruction, so that we can consider it as a
‘mini-process’ for implementing the pattern. The first one or two sen-
tences of this instruction emphasize the general solution principle.
After this comes a stepwise description of the concrete structure to
create and an outline of the behavior that executes in this structure.
A diagram illustrates the structure and its behavior. The notation
that we use intentionally does not follow any of the popular modeling
formats for software systems.

One reason we do not use popular modeling notations is to avoid the
fallacy of ‘false concreteness,’ which often leads readers to think that
what is in the diagram is the only way to implement a pattern. Instead,
we provide a solution sketch, not a concrete specification with classes,
objects, and relationships between them. Our notation therefore
mixes many aspects: role specification, role organization, role col-
laboration, pseudo-interfaces, and pseudo-code, whatever appears
appropriate to show a particular pattern.

Another ‘���’ indicates the end of the pattern’s main part. All sub-
sequent paragraphs explain its solution part in more depth. For
example, they describe the pattern’s proposed structure and behav-
ior, justify why this structure and behavior resolves the problem
and its forces, and list important consequences of this structure and
behavior. This part of the description connects the pattern to other
patterns in our language. If another pattern can help with the current
pattern’s implementation, we reference the other pattern by its name
and the page where you can find it, and also present a short summary
of its contribution to the implementation.

Naturally, the use of other patterns is a suggestion, because it is the
concrete context of the application under development that deter-
mines whether or not it is helpful to apply them. The use of another
pattern may or may not be essential to the solution and character
of the enclosing pattern. In our pattern descriptions, we make this
difference explicit: where the application of a pattern is mandatory,
its use is phrased imperatively, otherwise we offer a recommendation
rather than a rule.

48 On the Pattern Language

The following diagram illustrates the pattern form and notation we
use:

Reactor **
When developing event-driven software, or designing a CLIENT REQUEST HANDLER (246) or a SERVER

REQUEST HANDLER (249) or a SERVER REQUEST HANDLER (249) ...

... we must decouple infrastructure behavior associated with detecting, demultiplexing, and
dispatching events from short-duration components that service the events.

Event-driven software often receives service request events from multiple event sources,
which it demultiplexes and dispatches to event handlers that perform further service
processing. Events can also arrive simultaneously at the event-driven application. However,
to simplify development, events should be processed sequentially and synchronously.

Efficiently and flexibly processing events that arrive concurrently from multiple sources is hard.
For example, using multi-threading to wait for events to occur in a set of event sources can
introduce overheads due to synchronization, context switching, and data movement. In contrast,
blocking indefinitely on a single event source can prevent the servicing of other event sources,
degrading the quality of service to clients. [...].

Therefore:

Provide an event handling infrastructure that waits on multiple event sources
simultaneously for service request events to occur, but only demultiplexes and dispatches
one event at a time to a corresponding event handler that performs the service.

A reactor component coordinates the processing of events within the event-driven application. It
defines an event loop that uses an operating system event demultiplexer to wait synchronously
for service request events to occur on a set of event sources. By delegating the demultiplexing of
events to the operating system, the reactor can wait for multiple event sources simultaneously
without multi-threading the application code. [...].

There are several benefits of a REACTOR design. First, operating system event demultiplexing
mechanisms can wait on a set of event sources while avoiding the performance overhead and
programming complexity associated with multi-threading. Second, encapsulating the software
event loop within the reactor shields service event handlers from complexities in the synchronous
event demultiplexing and dispatching infrastructure. [...].

Different reactor implementations are often required when platforms offer different event
demultiplexers. In such a situation, an EXPLICIT INTERFACE (281) may be needed to separate the
reactor interface from its implementations. Event handlers are often arranged in an ACCEPTOR-
CONNECTOR (265) configuration, where service handlers provide domain-specific functionality and
acceptors and connectors establish connections on behalf of service event handlers. [...].

A client

Send

Start event

demux events

Operating System

event loop

Reactor

handle event

Event Handlers

handle event

handle event

event_loop ()

for (ever)
Block waiting for events to occur.
event = demux_events ();

end
rof

Run an infinite event loop.
begin

Dispatch the event.
handler = identify_handler (event);
handler.handle_event (event);

processing

service
request
event

Pattern name
and maturity level

Context

Border line

Inbound patterns

Problem
statement

Forces

Solution
instruction

Solution
sketch

A role

An interface

An interaction
between roles
Numbers indicate
ordering of steps.

Pseudo-code
to illustrate
role-internals
and role behavior

Solution
details and
outbound
patterns

Solution
structure and
behavior

Solution
consequences

3
2

1

4

Practical Use 49

Each pattern description can be read in one of three ways:

• If you are only interested in a brief overview, just read the bold
faced paragraphs that capture the essence of the pattern.

• If you are also interested in knowing about the forces associated
with the main problem statement, as well as in structural and
behavioral details of the fundamental solution idea, read all parts
of the pattern up to the second ‘���.’

• Finally, if you are interested in how a pattern integrates into the
pattern language, read its entire description.

Since we are focusing on the forest more than the trees, describing
the details of each pattern implementation is not within the focus of
our pattern language. If you are interested in these aspects, please
refer to the original source of the respective pattern.

3.5 Practical Use

Our pattern language aims to cover the best practices in distributed
computing and to present these practices in a way that can ben-
efit the development of new systems, as well as the refactoring of
existing systems. Using the language in actual software projects is
therefore straightforward. When developing a new distributed appli-
cation you can enter the language through its root pattern: DOMAIN

MODEL (182). This pattern supports the fundamental partitioning of
your application domain by separating the various problem domains
and technical infrastructure concerns in development. Following the
implementation hints in DOMAIN MODEL that are applicable to the sys-
tem you are developing will lead you—one by one—to other patterns
in our language, such as LAYERS (185), DOMAIN OBJECT (208), BROKER

(237), and MODEL-VIEW-CONTROLLER (188). These other patterns help
resolve subproblems, such as distribution infrastructure, application
and component partitioning, and internal component design, that
arise within the context of realizing a DOMAIN MODEL as a distributed
system.

The referenced patterns are applied typically in the sequence they are
presented, unless they represent alternatives to one another. Simi-
larly, when realizing the referenced patterns, you are guided to yet

50 On the Pattern Language

other patterns that provide even more detail to the existing design.
This linear but recursive process of unfolding continues until you
arrive at a pattern whose implementation process does not refer-
ence other patterns, or one where you decide to not follow such
references. The presentation order of the language therefore follows
closely what might be considered the principal pattern sequences
within the language.

You can take a particular path through the pattern language either
with a breadth-first or a depth-first approach to traverse the outgoing
references from DOMAIN MODEL, or even a mixture of both approaches.
The result will be a sequence of patterns that guides the design of the
distributed application being developed. The software architecture
that results from applying this sequence thus exposes a high density
of tightly integrated patterns that complete and complement one
another consistently and coherently. Similarly, when refactoring the
design of an existing distributed application, you enter the language
via the particular pattern that addresses the problem whose current
design is subject to refactoring, and continue from there.

Using our pattern language allows you to create a near infinite variety
of distinct software architectures for distributed systems. Different
requirements, design objectives, or constraints for the application
being developed or refactored probably require you to select other pat-
tern alternatives that are suggested by the patterns of our language,
or to follow or not follow a particular pattern reference. Each individ-
ual decision will create a different path through the language—and
thus a different pattern sequence—which can yield a different soft-
ware architecture. Our pattern language acknowledges and supports
the fact that there is no one-size-fits-all software architecture for
distributed systems. Nevertheless, the concrete software architec-
tures you can create with our pattern language will share a similar
philosophy and style with successful distributed systems.

To show how our pattern language for distributed computing can be
used in production software, Part II, A Pattern Story, discusses in
depth how pattern sequences from the language informed the archi-
tecture of a warehouse management process control system. The
story introduces the domain of warehouse management and outlines
a corresponding DOMAIN MODEL, which in its subsequent chapters
is transformed iteratively into a concrete software architecture. We

Practical Use 51

start with the system’s baseline architecture, then look inside its com-
munication middleware, and end by describing the subsystem that
represents the warehouse storage topology. Each section discusses
the problem addressed in the design of the warehouse management
process control system, as well as its associated forces, presents a
pattern from our language that helps to address the problem and
forces, and discusses how that pattern is realized in the system’s
software architecture. For cases in which we considered alternative
patterns, we briefly discuss what patterns they were and why we did
not chose them.

For example, the pattern sequence presented in Part II, A Story,
resulted in the design of a product-line architecture for warehouse
management process controls systems, as shown below.

Northbound Application Application Application

Operation-Level-Systems

Entity-Level-Systems

Presentation
Layer

Business
Process Layer

Business
Object Layer

Infrastructure
Layer

Access
Layer

Warehouse
Management

Material
Flow Control

Warehouse
Topology

Persistence Logging

Gateway
Northbound

Gateway

Southbound
Gateway

Southbound
Gateway

Reporting

Layering and core Domain Objects of the
Warehouse Management Process Control

product-line architecture

Pattern sequence that informed
the product-line architecture

DOMAIN MODEL Separation of
functional concerns

LAYERS Separation of
abstraction levels

DOMAIN OBJECT Encapsulation of
functionality

EXPLICIT INTERFACE Domain Object
realization

ENCAPSULATED Domain Object
realizationIMPLEMENTATION

BROKER Distribution
Infrastructure

ACTIVE OBJECT Concurrency
Infrastructure

HALF OBJECT PLUS Component
DistributionPROTOCOL

LEADER/ Concurrency
InfrastructureFOLLOWERS

MODEL-VIEW- User Interface
SeparationCONTROLLER

DATABASE Database
SeparationACCESS LAYER

COMPONENT System
ConfigurationCONFIGURATOR

ChallengePattern

52 On the Pattern Language

Another pattern sequence presented in Part II helped in creating
a product-line architecture for highly efficient and flexible commu-
nication middleware, which also forms the basis of several BROKER

(237) implementations, including the Component-Integrated ACE ORB
(CIAO) [WSG+03], The ACE ORB (TAO) [SNG+02], and ZEN [KSK04].

Although the software architecture for the warehouse management
process control system shares a range of properties with the archi-
tectures of many other distributed systems, it is not a reference
architecture for distributed systems in general. Since the specific
requirements and constraints of the system being developed informed
the software architecture of the system, different requirements and
constraints could have yielded a different architecture. Nevertheless,
the story exemplifies the dialog to have when developing distributed
systems using our pattern language, and the aspects to consider
when applying its patterns in production settings. When using the
language in your own context, you will need to ask your architects,
developers, and system engineers similar questions and address sim-
ilar design considerations, whose answers can be guided by our
pattern language.

II A Story

Don’t be too timid and squeamish about your actions. All life
is an experiment. The more experiments you make the better.

Ralph Waldo Emerson

The second part of this book tells a pattern story: we describe how
a real-world process control system for warehouse management was
designed with our pattern language for distributed computing. The
story focuses on three areas of this software system: its baseline
architecture, its communication middleware, and the representation
of warehouse topology.

54 A Story

Using an example from the real world, we illustrate how a software
architecture can be designed systematically with help of patterns.
Step by step we unfold the vision of this architecture. We start with
the fundamental baseline architecture, then look inside the system’s
communication middleware, and end by detailing the subsystem that
represents the warehouse storage topology.

Our goal with this part is, however, not only to present an illustrative
example of the use of the pattern language for distributed systems
that we present in Part III. We also want to demonstrate that patterns
and pattern languages in general are a powerful tool for developing
software architectures on the basis of thoughtful and explicit design
decisions and considerations, so that the resulting software systems
can fulfill their required functional, operational, and developmental
qualities.

The chapters in this part are structured as follows:

• Chapter 4, Warehouse Management Process Control, briefly intro-
duces the domain and context of warehouse management process
control systems.

• Chapter 5, Baseline Architecture, describes the architecture vision
of the warehouse management process control system: its parti-
tioning into subsystems, their relationships and interactions, and
key design principles that guide the refinement of this baseline.

• Chapter 6, Communication Middleware, presents the core design
of the communication infrastructure for the warehouse manage-
ment process control system. This infrastructure is a realization
of the CORBA Component Model reference architecture [OMG02]
[OMG04a].

• Chapter 7, Warehouse Topology, outlines how the physical storage
structure of a warehouse is represented.

• Chapter 8, The Story Behind The Pattern Story, finishes our pat-
tern story by reflecting retrospectively on its plot and conceptual
highlights in relation to the pattern language concept.

A Story 55

Using a real-world story to illustrate our pattern language for dis-
tributed systems has several pros and cons. A key strength of the
story is that it really happened—it therefore reflects and compresses
the concrete discussions led, and design decisions made, during the
development of a real-world warehouse management process software
system.

As a consequence of documenting reality, however, the story is also
colored with aspects and considerations that are individual to the
specific system that was developed, and not necessarily general for
the domain. One such aspect is the choice of programming language.
Some portions of our warehouse management process control system
were written in C++, others in Java. Although the pattern sequences
discussed in the ensuing chapters are largely language-independent,
there are some aspects that differ depending on the choice of language
and the features available in standard libraries and frameworks. We
discuss these differences at the appropriate points in the chapters.

The key message we want to convey with this pattern story is not
affected by such system-specific aspects, however: patterns are an
important tool to support the creation of sustainable, high-quality
software architectures and implementations.

4 Warehouse Management
Process Control

Warehouse Management Systems (WMS) are a key part
of the supply chain and provide directed stock rotation,

intelligent picking directives, automatic consolidation
and cross-docking to maximize the use of valuable

warehouse space. The systems also direct and
optimize stock put-away based on real-time

information about the status of bin utilization. Having a
WMS in place means you don’t depend any more on
people’s experience, the system has the intelligence.

Wikipedia

This chapter introduces the key concepts and requirements of ware-
house management process control systems. We outline core func-
tional responsibilities, operational requirements, and developmental
considerations, and illustrate how warehouse management process
control systems can be integrated with other software systems and
environments.

58 Warehouse Management Process Control

4.1 System Scope

Warehouse management process control systems provide logistics
support to manage the flow of items and assets in, and across,
warehouse storage facilities. Users of such control systems include
couriers, such as UPS, FedEx, and DHL, and large trading and
manufacturing companies, such as Wal-Mart and BMW. To under-
stand the responsibilities of warehouse management process control
systems—and also the key factors that influence their software archi-
tecture—it helps first to define their concrete scope and relationships
to other, surrounding systems.

Warehouse management process control systems belong to the broad
category of industrial automation systems, which can be further
classified into three layers that together form the so-called automation
pyramid:

• At the top level, the operation level, we find systems that man-
age end-to-end industrial business processes, such as enterprise
resource planning (ERP), manufacturing execution (ME), and sup-
ply chain process management (SCPM) systems. SAP is a widely
known example of such a system, which can be used for all the
three activities above. In the context of warehouse management,
operation-level systems are responsible for planning, scheduling,
and supervising the progress of all business-level operations within
a warehouse.

• At the intermediate level, the process control level, reside the sys-
tems that are responsible for the correct and timely execution of all
activities planned and scheduled at the operation level. In the ware-
house management domain this includes administrative tasks such
as stock management, order management, receiving and shipping,
and the management of storage and transportation facilities in the
warehouse, as well as operational tasks such as the execution of
concrete transportation orders. The system that is the subject of
our pattern story lives at this level in the pyramid.

• At the bottom level, the entity level, there are the field devices
and network elements that are used by the systems at the process
control level to execute concrete operations in the physical world. In

System Scope 59

the context of warehouse management these are the systems that
represent and control the underlying automation hardware, such as
conveyor belts, stacker cranes, or the devices for human-computer
interaction on manually operated transportation facilities, such as
fork-lift trucks.

The diagram below outlines the three levels of the automation pyra-
mid:

Operation Level
– ERP, ME, SCPM –

Process Level
– Process Control, Network Management —

Entity Level
– Field Devices, Network Elements —

Inter-system
communication and
cooperation

The automation pyramid also raises two fundamental and system-
wide requirements for process control systems:

• A process control system resides in the middle of the pyramid: it
receives orders from the operation level and reports back to it any
and all progress in executing these orders, as well as controlling and
supervising the underlying entity level to execute a specific order.
Ultimately, all automation processes are end-to-end, beginning and
ending at the operation level and involving the systems at the
process control and entity level in their control flow. The different
software systems in an industrial automation environment are
often provided by different vendors, however, which in turn requires
appropriate application integration measures to support end-to-end
operations seamlessly across multiple systems.

• The entire IT infrastructure outlined by the automation pyramid
is inherently distributed. The architectures of all software systems
must therefore take into account that their partner systems are
remote and only accessible via some form of IPC.

60 Warehouse Management Process Control

4.2 Warehouse Management Process Control

As we identified in the previous section, a warehouse manage-
ment process control system resides at the intermediate level of
the automation pyramid. It is generally responsible for executing
and supervising administrative and operational tasks in a ware-
house, including communication with the systems at the operation
and entity level. The following list of responsibilities provides a brief
overview of core functionality of a warehouse management process
control system—thus forming its fundamental DOMAIN MODEL (182).
Note that we neither list all responsibilities of a warehouse manage-
ment process control system, nor specify the listed responsibilities
in full detail. Our objective is to give readers a rough idea of the
scope of warehouse management process control systems, enough
to understand the rationale for specific design decisions and pat-
tern selections in the subsequent chapters of this pattern story. The
relevant responsibilities include:

• Stock management. For each type of item, the warehouse manage-
ment process control system maintains relevant master data, such
as the item’s name, its description, and the available stock. For each
individual item, the system maintains data necessary for correct
and efficient order management, such as its sell-by date, its current
storage time, and, most importantly, where in the warehouse the
actual item is stored.

• Order management. From the systems at the operation level the
warehouse management process control system receives different
types of orders that must be executed: shipping orders for a specific
customer, replenishment orders from a manufacturing or produc-
tion line, receipt of orders from the receiving department, and
announcements of future receipts and shippings.

For orders, the system must first check if the ordered types of
item are available in the ordered quantity. If they are, the sec-
ond step is to decide from where in the warehouse to fetch the
item. This decision typically is based on the information the system
maintains about each item, such as its sell-by date. Finally, the
order management functionality generates specific transportation
orders to fetch each item from the warehouse and transport it to a

Warehouse Management Process Control 61

designated shipping destination for further handling. The progress
and status of each order is reported back to the appropriate sys-
tem at the operation level of the automation pyramid. For shipping
and receiving announcements, the order management functionality
prepares the corresponding transportation orders, for example by
reserving appropriate amount of physical storage and transporta-
tion facilities, and schedules them for execution at the designated
time.

• Shipping. Items fetched from the warehouse must be collected
and prepared for shipping, which includes tasks such as quality
and quantity checking, updating all master and individual data
for the items to be shipped, packing, and printing packing slips.
A special task in the context of shipping is picking: a certain
quantity of an item is picked manually or automatically from a
box or container that contains more items than needed. This task
includes the selection of the box or container from the warehouse,
its transportation to the picking station, all updates of the master
and individual data of the relevant items, and the transportation of
the box or container with all remaining items back into its correct
location in the warehouse.

• Receiving. Items that arrive at the warehouse must be prepared
before being stored, which involves unpacking, quality and quantity
checking, and entering or updating all master and individual data
for the items received. Once prepared, transportation orders are
created to store the items in the warehouse.

• Material Flow Control. A transportation order for a specific quantity
of items created by the order management functionality only speci-
fies the target storage, destination storage, the transportation unit
containing the items, and information about the items themselves.
However, moving the transportation unit from the target storage
to the destination storage can involve multiple legs, each of which
can be executed by different transportation facilities. For example,
a pallet of boxes could be fetched from the warehouse gates by
a forklift truck and transported to a transfer bin, from where a
stacker crane picks it up to store on a high rack. Decomposing
transportation orders into legs, assigning appropriate transporta-
tion facilities to each leg, and monitoring the execution of all legs

62 Warehouse Management Process Control

is one responsibility of the material flow control functionality. Opti-
mizing the entire material flow within the warehouse to achieve an
optimal throughput is the other. The material flow control function-
ality sends concrete transportation instructions to the respective
automation hardware, and receives acknowledgements and status
messages in response. Any progress in executing transportation
orders is reported back to the order management functionality.

• Topology management. A warehouse process control system is also
responsible for managing the warehouse topology, as well as provid-
ing a representation of that topology to the order management and
material flow control. All physical storage in a warehouse, such as
different types of bin and high rack, as well as the available trans-
portation facilities such as forklifts, conveyor belts, and stacker
cranes, is arranged in a warehouse topology to ensure proper and
effective warehouse operation. For example, high racks are orga-
nized with respect to aisles and sides in an aisle, and each aisle
is associated with one or more stacker cranes and transfer bins
from which the stacker cranes can pick up transportation units.
The storage in a warehouse is also partitioned according to various
storage organization criteria, such as storage for hazardous items,
or items that require a certain storage temperature.

In addition to functional requirements, a warehouse management
process control system must also support several operational and
developmental properties. Again, brevity demands that we focus
on only a few of the many relevant operational and developmen-
tal requirements, so that readers can better understand the pattern
story told in the following chapters:

• Distribution. A warehouse management process control system is
inherently distributed. Its functionality must therefore be accessible
from many different, distributed clients, such as PCs at the picking
stations and mobile clients on forklifts.

• Performance. Although a warehouse management process control
system is not a ‘hard’ real-time system—that is, a system in which
operations must meet defined deadlines—performance is business-
critical. There is a required throughput for the system as a whole, so
the system must ensure that all transportation orders are executed
in a timely and efficient manner without any visible interruption or
stop-and-go behavior.

Warehouse Management Process Control 63

• Scalability. Warehouses can differ significantly in their size. A
warehouse management process control system must therefore be
able to support small warehouses with just a few thousand bins, as
well as large warehouses with well over a million bins. Warehouses
can also vary in the functionality they need. For example, depend-
ing on the capabilities of the partner systems at the operation and
entity level of the automation pyramid, a warehouse management
process control system must provide more or less powerful adminis-
trative and operational functionality. Finally, the number of devices
participating in a warehouse management process control can vary:
small installations involve only a few dozen computational devices,
whereas large installations can include thousands.

• Availability. Many warehouses operate in 24/7 mode with three
shifts per day. Availability is therefore crucial for supporting the
business case for a warehouse management process control system.
Any downtime disrupts supply chains, the state and operation of
other systems, people, and so on, which ultimately means loss of
business and money. Industrial automation systems in general, and
process control systems specifically, therefore, typically demand a
minimum availability of 99.999%—a maximum downtime of just
over five minutes per year!

• Persistence. Most state maintained by the warehouse manage-
ment process control system, for example the warehouse topol-
ogy, the available stock, and all orders under processing, must
be maintained persistently. It is important that the system can
always rely on consistent, up-to-date data, be it for book-keeping
purposes or for system restart in the event of intentional or unex-
pected shutdowns.

• Portability. The system must run on multiple hardware and oper-
ating system platforms. Windows is typically the prime choice for
user devices, while UNIX or Linux is the most likely for machines
hosting core functionality. Similarly, the system must be able to
use different databases, for instance, Oracle and SQL Server.

• Dynamic configuration. There is a strong need for runtime (re)con-
figuration and (re)deployment of a warehouse management process
control system. For example the warehouse capacity may be tem-
porarily extended to handle seasonal peaks. Similarly, depending

64 Warehouse Management Process Control

on the contents of a warehouse, strategies for fetching and stor-
ing items can change. However, stringent business constraints
on availability require that the system cannot be shut down for
(re)configuration and (re)deployment activities.

• Human-computer interaction. Users communicate with a ware-
house management process control system through a wide variety
of user interfaces. Examples include form-based interfaces served
by keyboards and scanners, hand-held terminals with just a few
buttons to press, and fully fledged graphical user interfaces served
by mice, keyboards, touch screens, and so on.

• Component integration. Wherever useful or necessary, a ware-
house management process control system integrates third-party
products such as databases, or existing legacy software such as
that for accessing the entity level in the automation pyramid.

• Generality. The business intent of our warehouse management
process control system is to provide a general solution for this
domain, one whose architecture and implementation is configurable
and adaptable to meet the needs of a specific real-world warehouse.
For example, the scalability requirement distinguishes different
warehouse sizes, the portability requirement lists several operat-
ing systems and database management systems to be supported,
and the human-computer interaction requirement outlines a wide
range of different user interface types to be offered. Depending on
customer needs, concrete instances of the warehouse management
process control system can also vary in the domain functionality
they offer. For example, some customers do not need the functional-
ity for stock and order management, because it is already provided
by systems at the operation level of the automation pyramid. Or, as
another example, they use warehouse management process control
systems from other vendors that cover all functions except material
flow control.

In summary, warehouse management process control systems must
meet many challenging requirements, operational and developmental
as well as functional. It is the job of the system’s software architec-
ture to balance the requirements such that the demands of specific
warehouses can be met appropriately.

5 Baseline Architecture

There is at the back of every artist’s mind,
a pattern or type of architecture.

G.K. Chesterton, lone quote at the beginning of the
Father Brown Mysteries Series of books.

This chapter tells the beginning of the pattern story: the specifi-
cation of the baseline architecture for our warehouse management
process control system. We outline how patterns helped to partition
the system’s core domain and infrastructure functionality, address
distribution and concurrency concerns, and support users and other
applications to access, or integrate with, its functionality. The result is
the foundation for a product-line architecture: a structural backbone
that captures the high-level aspects common to all configurations of
the warehouse management process control system, and which also
provides infrastructure and architectural measures for defining and
handling the variations in specific instances of the system.

66 Baseline Architecture

5.1 Architecture Context

Chapter 4, Warehouse Management Process Control, showed that
warehouse management process control systems must provide a
large set of integrated and effective administrative and operational
domain functionality. The characteristics of this functionality, as well
as the functionality set provided, can also differ between different
instances of the system, depending on the capabilities of the IT envi-
ronment into which these instances must be integrated. Realizing
the domain functionality further requires an appropriate infrastruc-
ture, for example for interprocess communication, persistence, and
logging. Finally, the system’s functionality must be easily accessible
by both users and systems that reside at the operation level of the
automation pyramid: the warehouse management process control
system itself needs well-defined access to all entity-level systems it
supervises.

With such a diverse and potentially conflicting set of requirements
to fulfill, an approach that can respond to any conflicts and bal-
ance such diversity is needed to define the baseline architecture
for the system. One such approach is a product line [Bosch00]
[ClNo01]—which, at the level of software design, is typically achieved
via a product-line architecture. A product-line architecture is a soft-
ware architecture that serves as a common basis for all envisioned
members of a product line. It defines which structural and behav-
ioral aspects are common and invariant for all system instances
and which structural and behavioral aspects can vary, explicitly
separates the invariant from the variant aspects, and supports han-
dling the variant aspects in a well-defined and controlled manner
[Bus03].

Designing a quality product-line architecture is non-trivial. Thought-
ful design decisions and explicit use of known architectural princi-
ples—ranging from separation of concerns, through loose coupling,
to strict encapsulation—are needed at all levels of abstraction granu-
larity and from all points of view. At the baseline level of a product-line
architecture this means providing a proper and loosely coupled parti-
tioning and modularization of the system’s main responsibilities, an
infrastructure to handle its required variabilities, and support for its
integration into envisioned IT environments.

Partitioning the Big Ball of Mud 67

5.2 Partitioning the Big Ball of Mud

The basis for a sustainable product-line architecture is a clear
separation and encapsulation of different system concerns, be they
functional in nature or infrastructure-related. Otherwise, the imple-
mentation of these concerns will likely be tangled rather than loosely
coupled, which complicates their independent development, configu-
ration for a specific instance of the product line, and deployment in a
computer network. Another motivation for a clear separation of con-
cerns in a product-line architecture is that different system aspects
can change at different rates. For example, user interfaces typically
evolve faster than the system’s core functionality, which itself evolves
faster than database schemas. Yet modifications should affect only
the parts that need to change, but no more—any ripple effect should
be avoided.

How can we organize the system’s functionality into coherent groups
such that each group can be developed and modified independently?

Partition the system into multiple interacting LAYERS (185), with each
layer representing a specific responsibility or concern of relevance and
comprising all functionality that addresses that concern.

For the warehouse management process control system, we can
identify five different layers:

• Presentation. This layer contains the interfaces to systems at the
operation level of the automation pyramid, the so-called ‘north-
bound gateways,’ as well as user-level applications that access the
system’s functionality directly, such as for picking and warehouse
topology management.

• Business process. This layer provides the administrative and oper-
ational functionality the system must support, such as stock
management, order management, shipping, receiving, and material
flow control.

• Business objects. This layer comprises representations of domain-
specific physical and logical entities on which the functionality
in the business process layer operates. The main responsibility
of this layer is to maintain and provide access to the warehouse
topology.

68 Baseline Architecture

• Infrastructure. This layer provides all domain-independent infras-
tructure functionality, such as persistence and logging, that is
necessary to implement the business object and business process
layers.

• Access. This layer provides the interfaces to systems residing at the
entity level of the automation pyramid, the so-called ‘southbound
gateways.’

The LAYERS pattern supports a strict separation of concerns in our
warehouse management process control system. In particular, it
helps to partition a ‘big ball of mud’ of functionality into tangible
levels of abstraction, each of which groups elements that share a
common stability and can be developed and modified independently
without unanticipated effects on other parts.

5.3 Decomposing the Layers

Layers are an important step toward providing a product-line archi-
tecture for the warehouse management process control system. Yet
layers alone are still too coarse-grained to support truly modular
software development, because they only separate concerns between
functionality at different levels of abstraction, and not between differ-
ent functionality at the same level of abstraction. For example, it is
still possible in our system to develop overly interwoven warehouse
management and material flow control functionality in the business
process layer, although both functionalities address distinct concerns
that are only loosely coupled.

How can we refine a LAYERS (185) architecture into smaller, strictly
separated modular parts with each part having a clearly defined and
scoped responsibility?

Provide a DOMAIN OBJECT (208) for each self-contained, coherent func-
tionally related responsibility within a LAYERS design to strictly sepa-
rate, encapsulate, and modularize different functional responsibilities
at the same level of abstraction.

In the presentation layer of our system we can distinguish the
different northbound gateways and client applications we must

Decomposing the Layers 69

support. In the business process layer we can separate the warehouse
management functionality, comprising all administrative tasks, from
the material flow control functionality that controls the systems at the
entity level. In the infrastructure layer, each different functionality,
such as logging, reporting, and persistence, can also be separated,
and the access layer can comprise a separate southbound gate-
way for each supported entity-level-system.2 The following diagram
illustrates this layering.

Northbound Application Application Application

Operation-Level-Systems

Entity-Level-Systems

Presentation
Layer

Business
Process Layer

Business
Object Layer

Infrastructure
Layer

Access
Layer

Warehouse
Management

Material
Flow Control

Warehouse
Topology

Persistence Logging

Gateway
Northbound

Gateway

Southbound
Gateway

Southbound
Gateway

Reporting

2 Note that this diagram only shows functionality that plays a role in our pattern story.
In the real world the business process, business object, and infrastructure layers of
a warehouse management process control system include much more functionality,
for example for alarm management, monitoring and control, and security. In addition,
we bend UML notation to our needs and use the package symbol to denote a domain
object. The package symbol allows us to denote that a domain object can—like a
service—consist of more than one component or class.

70 Baseline Architecture

Using DOMAIN OBJECT to partition application functionality is ideal
for modular software development and the design of product-line
architectures. Domain objects provide the right level of granularity,
separation of concerns, and inner cohesion so that each domain
object can be developed and evolved independently. Domain objects
are also appropriate units of functional configuration for different
system instances. Several well-established technologies are available
for realizing domain objects, whether fine-grained object-oriented
frameworks, component-oriented environments, or service-oriented
infrastructures.

Large domain objects that capture coarse-grained business or infras-
tructure functionality can also be composed of smaller domain
objects, to modularize their constituent parts properly. Two such
domain objects within our warehouse management process control
system are warehouse management and material flow. The warehouse
management domain object basically consists of several smaller inde-
pendent domain objects, one for each responsibility of the warehouse
management, as described in Chapter 4. The material flow-control
domain object is decomposed hierarchically. A global routing domain
object is responsible for partitioning transportation orders into legs
and assigning transportation facilities to each leg. To execute the legs
of a transportation order, the global routing uses and controls a set
of domain objects that handle the local routing of specific transporta-
tion facilities within the given legs. The following diagram illustrates
this decomposition:

Material Flow Control

Global
Routing

Conveyor
Local Routing

Stacker Crane
Local Routing

...

Warehouse Management

Order
Management

Receiving

Shipping
Stock

Management

The decomposition of the warehouse topology domain object is illus-
trated in Chapter 7, Warehouse Topology.

Accessing Domain Object Functionality 71

5.4 Accessing Domain Object Functionality

The partitioning of the warehouse management process control sys-
tem into layers containing domain objects provides a sustainable
foundation for modular software development, from loose coupling
during development to simple deployment of the system’s function-
ality in a computer network. If we analyze the first diagram from the
previous section, however, we see that in spite of the clear separa-
tion of different responsibilities, the domain objects are still tightly
connected: each domain object accesses the implementations of the
domain object it uses directly. Direct access increases the coupling of
both layers and domain objects, because changes in the implemen-
tation of any domain object can affect all layers and domain objects
using it.

How can we ensure that DOMAIN OBJECT (208) do not depend on imple-
mentations of other DOMAIN OBJECT?

Split each DOMAIN OBJECT into an EXPLICIT INTERFACE (281) with a cor-
responding ENCAPSULATED IMPLEMENTATION (313) to separate the object’s
public contract from its realization.

Let clients of a domain object access its functionality only through
explicit interfaces, regardless of whether the object resides inside
another or within the same layer as its clients. The explicit interface of
the domain object publishes the possible set of client requests, notion-
ally forwarding these requests, via polymorphism, to the associated
encapsulated implementation for execution. Results are returned
correspondingly to the client.

EXPLICIT INTERFACE and ENCAPSULATED IMPLEMENTATION separate the access
to a domain object from its concrete implementation. Changes to
the encapsulated Implementation of a domain object do not affect its
clients as long as its explicit interface remains stable. This decoupling
further supports modular software development and product-line
architectures: other domain objects—and thus their development
teams—can rely on stable and well-defined contracts for used domain
objects, and need not bother about their realization.

72 Baseline Architecture

The diagram below outlines the use of EXPLICIT INTERFACE and ENCAPSU-

LATED IMPLEMENTATION for the business process layer in our warehouse
management process control system:

Presentation
Layer

Business
Process Layer Warehouse

Management

Warehouse Management
Interface

Implementation

Application Application

Material
Flow Control

Implementation

Northbound
Gateway

Northbound
Gateway

Material Flow Control
Interface

Application

Domain objects from other layers define and use their explicit inter-
faces and encapsulated implementations correspondingly.

5.5 Bridging the Network

Most installations of the warehouse management process control
system are deployed across a computer network to meet their per-
formance, scalability, and availability requirements. As a result there
could be a process or machine boundary between any two layers in
the system, and also between any two domain objects of a layer.

The introduction of a network, however, forces us to address several
challenges in the baseline architecture of the system. First and fore-
most, access to local domain objects differs from access to remote
domain objects. In a local deployment clients can invoke operations
on domain objects directly, while in a remote deployment they must
interact with them through a network. However, clients should not
have to distinguish whether the domain objects with which they
interact are local or remote, otherwise they are either dependent on
a specific system configuration, or their code is bloated with zillions

Bridging the Network 73

of special cases for local and remote system deployments. Ideally, a
client simply invokes an operation on an explicit interface regardless
of whether the called domain object is local or remote. In addi-
tion, before two remote domain objects in a distributed system can
interact, they must first find one another and establish a network con-
nection between them using an appropriate on-the-wire protocol—a
procedure domain objects should not have to be bothered with.

How can we shield DOMAIN OBJECTS (208) in the warehouse man-
agement process control system from dealing with networking issues
directly and support a location-independent interaction between them?

Introduce a BROKER (237) to allow distributed DOMAIN OBJECT to find,
access, and communicate with one another in the same way as if both
parties were collocated.

Local brokers on each network node negotiate and perform all inter-
process communication on behalf of the system’s domain objects.
Explicit interfaces of remote domain objects are implemented as
CLIENT PROXY (240) in the address spaces of their clients and handle
all interaction with the brokers. In addition, the brokers offer func-
tionality for domain objects to register their location in the network
together with their published explicit interfaces, as well as func-
tionality that allows them to retrieve explicit interfaces of any other
registered domain object, be it local or remote.

The two key advantages of a BROKER architecture are encapsulation and
location independence. Encapsulation enables application developers
to focus on providing useful domain functionality: they do not need to
bother with low-level networking issues. Location independence allows
clients to access remote domain objects in the same manner as domain
objects collocated in the same address space, which supports their flex-
ible deployment in a computer network. Location independence also
has a positive impact on the system’s scalability and availably, because
it can take advantage of the collective computing power that is available
in the network, for example by means of replication and federation of
domain objects. All three properties of location independence are espe-
cially important in the context of product-line architectures, because
different product-line instances have different concrete functional and
operational requirements.

74 Baseline Architecture

The following diagram illustrates the use of the BROKER-based com-
munication infrastructure for the presentation and business process
layers of the warehouse management process control system. In
this diagram we also assume that domain objects within a layer
are collocated. Remote interaction between other layers of the sys-
tem, or between domain objects of the same layer, is organized
correspondingly.

Presentation
Layer

Business
Process Layer

Warehouse
Management

Implementation

Material
Flow Control

Implementation

Network
M

F
C

In
te

rf
ac

e

Server-Side
Broker

Client-Side
Broker

Warehouse Management
Client Proxy

Northbound
Gateway

Material Flow Control
Client Proxy

Application Application Application
Northbound

Gateway

In the specific use of BROKER for our warehouse management process
control system, all inter-process communication is asynchronous
and message-oriented. Invoking a method on a client proxy initiates
asynchronous sending of a typed message—which in the automa-
tion domain is called a ‘request telegram.’ Similarly, the result of a
remote invocation is returned asynchronously via a ‘response tele-
gram.’ Asynchronous messaging is used because otherwise it would
be hard to achieve the performance and throughput that is typically
required to operate large warehouses.

Bridging the Network 75

However, a purely asynchronous communication mechanism is often
hard to understand, and even more so to use correctly and effectively
in the implementation of application services. It is the job of the client
proxies to encapsulate all asynchronous communication, and to offer
client domain objects the specific communication and invocation
model they need. This encapsulation supports the ability for applica-
tion developers to use the asynchronous communication facilities in
a straightforward, easy to understand, and convenient manner.

Using a BROKER approach for the communication middleware also
yields an advantage especially applicable to product-line develop-
ment of the warehouse management process control system: several
(de facto) standards for distributed computing middleware are based
on a BROKER architecture, for example the CORBA Component Model
(CCM), Enterprise JavaBeans (EJB), and Microsoft’s COM and. NET,
This makes it possible to consider the use of an off-the-shelf prod-
uct for the system’s communication infrastructure, rather than a
home-made custom implementation. Using a widely accepted com-
munication middleware standard also supports the interoperation
of the warehouse management process control system with its sur-
rounding systems, most notably with applications residing in the
operation and entity levels of the automation pyramid.

At the time this system was developed, however, no suitable off-the
shelf middleware was available that could meet the stringent require-
ments of the warehouse management process control system. We
therefore had to design and implement our own communication mid-
dleware. We realized this in line with the CORBA standard [OMG04a],
to support its later replacement with a suitable off-the-shelf product.

Chapter 6, Communication Middleware, describes how we ‘zoom in’ on
the BROKER pattern to implement key elements of the communication
middleware for the system.

76 Baseline Architecture

5.6 Separating User Interfaces

According to our current architecture, the presentation layer of the
warehouse management process control system contains the gate-
ways and interfaces to other systems, as well as user-level applica-
tions that access the system’s functionality. In other words, the main
responsibility of this layer is to publish functionality to external par-
ties, be they human users or software systems, and to provide them
with information about the system’s current computational state.
Domain objects in the presentation layer neither implement any busi-
ness logic nor maintain any business state—both responsibilities are
assigned to other layers that are accessed by the presentation layer.

The information that is presented should of course be up-to-date. We
cannot afford users or clients of the warehouse management process
control system to be misinformed or to make incorrect decisions on
the basis of outdated information. Changes in the state of the system
therefore must be immediately reflected by the domain objects of
the presentation layer. However, the strict top-down access model
in a LAYERS architecture makes it hard for domain objects in the
presentation layer to ensure that the information they present is up-
to-date at any time. They must poll the explicit interfaces of lower-level
domain objects regularly to access this information. Consequently,
state changes are not propagated directly when they occur, but
only when a domain object in the presentation layer explicitly polls
for updated information. As a result of the polling approach, the
information held in the presentation layer can be stale. In addition,
if there are no state changes, each poll also consumes resources and
bandwidth just to discover that there is no need for an update of
already-displayed information.

How can we ensure that the DOMAIN OBJECT (208) in the presentation
layer always provide fresh and timely state information to their clients
without breaking the coupling rules of a LAYERS (185) architecture, but
avoid unnecessary updating overhead?

Use a MODEL-VIEW-CONTROLLER (188) design to minimize the coupling
between DOMAIN OBJECTS in the presentation layer and DOMAIN OBJECTS

in the business layers, and ensure their efficient cooperation and
mutual consistency.

Separating User Interfaces 77

Domain objects in the business layers embody the role of models that
provide information to applications and gateways in the presentation
layer. Application and gateway domain objects, in turn, play the role
of views if they present information to their clients, or they play the
role of controllers if they trigger or use the functionality provided
by the business layers. A change propagation mechanism between
the three roles notifies views and controllers about all changes or
updates of the state maintained by the model. The notified views and
controllers can then call back the model to retrieve and display the
updated information.

The main benefit of MODEL-VIEW-CONTROLLER is that it supports an
immediate propagation of modified state and data to users and clients
of the system with minimal use of computing resources. It also
strengthens the loose coupling of the system’s layers—as long as the
interfaces of the business layers remain stable, the presentation layer
can evolve independently towards customer needs or the use of new
UI technologies. This property is especially important in the context
of product-line architectures.

An alternative to a MODEL-VIEW-CONTROLLER arrangement is a
PRESENTATION-ABSTRACTION-CONTROL (191) structure, which, at its bottom
line, introduces specialized and independent user interfaces for each
distinct subsystem of an application. For example, the warehouse
management domain object could provide a form-based user interface
and the material flow control domain object a command-line interface,
with both interfaces being completely decoupled from one another. In
the context of the warehouse management process control system,
however, PRESENTATION-ABSTRACTION-CONTROL does not provide additional
value over MODEL-VIEW-CONTROLLER, but it is much more complicated to
implement. The simplest feasible design for separating user interface
from application functionality is MODEL-VIEW-CONTROLLER, thus this
pattern is used in the design.

78 Baseline Architecture

The following diagram illustrates the MODEL-VIEW-CONTROLLER config-
uration in our warehouse management process control system. The
views and controllers are provided by the domain objects in the pre-
sentation layer, while the model is represented by the domain objects
in the business process layer.

Presentation Layer

Warehouse Management
Client Proxy

change
change
event

WM
functionality

propagation
subscription

Material Flow Control
Client Proxy

change
change
event

MFC
functionality

propagation
subscription

registers
with

is notified
on

uses registers
with

is notified
on

uses

Gateway
View

Gateway
Controller

Gateway
View

Gateway
Controller

Northbound Gateway

Application
View

Application
Controller

Application
Controller

Application

Business Process Layer

Change
Propagation

WM
Functionality

Warehouse Management
Implementation

notify

on state
change

MFC

functionality

change event

change
propagation
subscription

Change
Propagation

MFC
Functionality

Material Flow Control
Implementation

notify

on state
change

Client-Side
Broker

Server-Side
Broker

Network

Application
View

Distributing Functionality 79

5.7 Distributing Functionality

The diagram shown in Section 5.5 gives the impression that the
encapsulated implementation of a remote domain object in our sys-
tem is always monolithic, hosted at a single network node, and
accessible only through explicit interfaces realized as REMOTE PROXY

(310) in the address spaces of its clients. While this is the simplest
possible distribution model—it is both easy to implement and com-
prehend—it may, however, be insufficient for domain objects to meet
their performance and scalability requirements.

For example, if a domain object is accessed frequently by clients
from many different address spaces, this simple distribution model
yields additional network traffic, latency, and jitter. Even worse, if
requests arrive at domain objects faster than they can be handled,
the domain objects can become overloaded and ultimately drive a
system into saturation. If the domain objects do not maintain state,
providing replication to all client address spaces would resolve this
problem, because all replicas can execute independently. But what
if the domain objects maintain modifiable, system-global state, such
as the warehouse topology in our process control system, which
maintains a warehouse’s configuration of physical storage and asso-
ciated transportation facilities? Replication would not be an effective
solution to our problem, because all the overhead saved by hav-
ing local copies could be reintroduced through the need to keep all
distributed replicas consistent with one another whenever state is
modified.

The overhead of keeping replicas consistent is particularly expensive if
the use of the state maintained by a domain object can be partitioned
with respect to location, time, and subset of the total state. In the case
of a multi-site configuration of the warehouse management process
control system, for example, there is no need to (fully) replicate
the detailed topology of each site at other locations, because most
warehouse operations are local to a specific site. Only a few warehouse
operations affect multiple sites and thus need to access the entire
warehouse topology, for example shipping and receiving orders of
large quantities of items, and callbacks of whole item batches due to
quality problems.

80 Baseline Architecture

How can we provide efficient access to a DOMAIN OBJECT (208) that
maintains global state and whose clients reside in multiple address
spaces?

Realize the DOMAIN OBJECT as a HALF-OBJECT PLUS PROTOCOL (324) that
splits its functionality into a set of self-coordinating half-objects, with
one half-object collocated in each client address space.

Each half-object implements only the specific functionality of a
domain object that is required by its local clients. Equally, it main-
tains only the specific data accessed by these clients. A commu-
nication protocol between the half-objects coordinates all activities
that involve more than one address-space and keeps the state of the
half-objects consistent.

In the case of the warehouse topology domain object, we can let each
half-object be responsible for representing only a specific part of the
entire warehouse. For example, if the system manages a multi-site
warehouse, half-objects could be hosted on site-local servers and
represent only the specific topology of their respective site. In such
a configuration, most shipping and receiving orders initiated by any
site could execute locally, and thus efficiently. There is no need to
use the network or to coordinate with other half-objects, even in case
of state changes of the local topology. Multiple half-objects would
participate in the computation only if multiple sites must be involved
to serve a request. For example, if a site initiates an order whose
quantity of items is not available at that site, multiple half-objects
would coordinate themselves transparently through their protocols
on behalf of their clients.

The following diagram briefly illustrates the use of HALF-OBJECT PLUS

PROTOCOL in the design of the topology management domain object. In
this particular configuration two half-objects are involved, but more
half-objects can be added by connecting them to the BROKER (237)
communication infrastructure. The protocol implemented between
the half-objects ensures their correct cooperation both automatically
and transparently to clients, using the communication infrastructure
provided by the client proxies and the BROKER.

Distributing Functionality 81

Address Space
One Client A

Warehouse
Topology

Half-Object

Local
Broker

Network

Local
Broker

W
ar

eh
ou

se
 T

op
ol

og
y

H
oP

P
 C

lie
nt

 P
ro

xy

Address Space
Two Client C

Warehouse
Topology

Half-Object

W
ar

eh
ou

se
 T

op
ol

og
y

H
oP

P
 C

lie
nt

 P
ro

xy

Client D

W
ar

eh
ou

se
 T

op
ol

og
y

In
te

rf
ac

e

Client B

W
ar

eh
ou

se
 T

op
ol

og
y

In
te

rf
ac

e

Two other types of domain object are also designed as HALF-OBJECT

PLUS PROTOCOL arrangements in our warehouse management process
control system. The northbound and southbound gateways that con-
nect the warehouse management process control system with its
environment are partitioned into half-objects that provide external
applications with a ‘standard’ API for the system’s functionality, and
several half-objects that map from the required interface of a specific
external application to this ‘standard’ API. The half-objects that inter-
face with the external applications are located in these applications’
address spaces, while the half-object that provides the standard gate-
way API resides in the address space of the warehouse management
process control system.

82 Baseline Architecture

Similarly, if a user-level application is designed as a rich or smart
client, its core functionality, which plays the role of a model in the
client’s MODEL-VIEW-CONTROLLER (188) design, is implemented as a half-
object that is connected with the corresponding server-side domain
object of the business process or business object layer. This design
guarantees that all user-level applications, whether designed as rich,
smart, or thin clients, can operate in a coordinated fashion and
always on top of a common and consistent system state.

HALF-OBJECT PLUS PROTOCOL designs contribute significantly to the scal-
ability, performance, throughput, fault tolerance, and availability of
our system. Scalability is supported because domain objects can
take advantage of the available distributed hardware in a network.
Performance and throughput are supported because the use of the
network is minimized: most operations can run locally within a sin-
gle address space and do not involve expensive network operations.
Availability and fault tolerance are supported because the failure of
any half-object does not affect the availability of other half-objects. In
addition, the HALF-OBJECT PLUS PROTOCOL design of the warehouse topol-
ogy domain object, the rich and smart client applications, and the
gateways help to address varying requirements for warehouse sizes,
richness of client applications, and integration with the existing IT
environment. All variations are supported with a common design,
which is key for a successful product-line architecture.

5.8 Supporting Concurrent Domain Object Access

Realizing domain objects of the warehouse management process con-
trol system as half-objects plus protocols yields notable performance,
scalability, and throughput gains. However, half-objects plus proto-
cols only address the situation in which clients are distributed across
the network. If a domain object has many concurrent local clients, it
can still become a throughput bottleneck, because at any one time it
is accessible by only one client. Other clients are either blocked until

Supporting Concurrent Domain Object Access 83

it is their turn, or asked to wait and try again later. While this behav-
ior can sometimes be tolerated for small system installations, it is
generally unacceptable for large installations with high performance,
throughput, and scalability requirements.

Within such installations, core domain objects in the system such as
the warehouse topology must always be accessible. Also, concurrent
clients should never block if a core domain object cannot serve them
immediately. Neither should these clients be denied issuing their
requests: this is especially important for high-priority requests, such
as an emergency stop for (parts of) the transportation facilities. In
addition, if the system is installed on, or upgraded to, hardware with
better computational power—for example multiple processors—it
should require no modifications in the system implementation to use
these additional resources.

How can we provide concurrent access to a shared DOMAIN OBJECT (208)
such that clients can always issue their requests without blocking, but
allow the DOMAIN OBJECT to process these requests in any order that
assures a high throughput?

Realize the DOMAIN OBJECT as an ACTIVE OBJECT (365) that separates
request invocation from request execution in both space and time.

The encapsulated implementation of the domain object runs in a
separate pool of threads, while its explicit interfaces are offered in the
threads of its clients. Clients can issue requests to the explicit inter-
faces without blocking, proceed with other tasks while the requests
are processed, and access results when they need them. The explicit
interfaces objectify all requests they receive so that the encapsulated
implementation of the domain object can schedule their execution in
any order that is appropriate under a given set of constraints.

In the HALF-OBJECT PLUS PROTOCOL (324) design of the warehouse
topology domain object, for example, each involved half-object is
implemented as an active object. Any specific active object in this
arrangement that is executed on a multi-processor machine can thus
handle multiple requests in parallel. To use the available processing
power most effectively, the assignment of warehouse topology to half-
objects and their active object implementations mirrors the physical

84 Baseline Architecture

world: parts of the warehouse that can operate independently and in
parallel of one another, such as different warehouse buildings, are
assigned to different active objects, or threads within an active object,
so that they can also operate independently and in parallel of one
another within the software. Parts that cannot operate independently
or in parallel, such as all high racks served by the same stacker
crane, are assigned to the same active object, or even the same
thread within an active object. Capturing the real-world parallelism
of the warehouse topology within a set of half-objects implemented
as active objects can therefore significantly improve the throughout
of the domain object.

The diagram below illustrates the ACTIVE OBJECT arrangement for one
specific half-object in the HALF-OBJECT PLUS PROTOCOL design of the
warehouse topology domain object.3

Activation
List

Scheduler

Warehouse Topology Half-ObjectClient A

Client B

W
ar

eh
ou

se
 T

op
ol

og
y

In
te

rf
ac

e

Client C

Client D

W
ar

eh
ou

se
 T

op
ol

og
y

In
te

rf
ac

e

Warehouse Topology
HoPP Proxy

Objectified
Request

is passed to

Objectified
Request

is passed to

Client Thread to/from the
local brokerTwo

Client Thread
One topology functionality

executes

HoPP coordination

pending
requests

retrieves

Active Object Threads

Topology
Representation

Topology
Representation

3 Again we bend UML notation to our needs. UML does not support a convenient way
of expressing an active component that runs in its own thread of control. To be as
close to UML standard notation as possible, we denote active components similarly to
active objects, and active classes using parallel lines in the component symbol.

Achieving Scalable Concurrency 85

5.9 Achieving Scalable Concurrency

To support the execution of domain functionality, the warehouse
management process control system implements a set of different
infrastructure services. One such service is logging: various types of
information records that the system’s domain objects can generate,
such as errors and traces, are stored persistently for later evaluation.
Using the logging functionality should only have a minimal impact on
the system’s operational qualities, in particular performance: domain
objects should not block because the logging domain object cannot
process the received logging records in a timely manner. Yet many
events may need to be logged, depending on the current computa-
tional state, resulting in a correspondingly high volume of logging
records to store. Distributed logging can alleviate this problem by
providing separate logging domain objects for each network node
that store logging records in distributed persistent storage, but this
does not help if a specific node in the network produces many logging
records.

How can we avoid logging becoming a performance penalty even in the
case in which a high volume of logging records must be processed?

Implement the logging DOMAIN OBJECT (208) using the LEADER/FOLLOWERS

(384) concurrency model, which uses a pre-allocated pool of threads to
avoid dynamic threading overhead.

Logging records that arrive at the logging domain object on a spe-
cific network node are read, processed, and stored into a node-local
instance of a distributed persistent storage by a self-coordinating pool
of threads. While the leader thread is listening for a logging record
to arrive, the other threads are waiting as followers until it is their
turn to listen for logging records. When the leader thread receives the
logging record it converts to the role of a processing thread, promotes
one of the waiting follower threads to become the new leader thread,
and then processes and stores the received logging record. Multiple
processing threads can therefore operate simultaneously to deal with
high-volume logging traffic. Once a logging record is stored in persis-
tent storage, a processing thread converts itself to a follower thread
to wait until it becomes the leader thread again.

86 Baseline Architecture

The key benefit of a LEADER/FOLLOWERS arrangement is performance:
for executing small, repetitive, and atomic actions, such as process-
ing logging records, it provides an efficient and resource-conserving
concurrency model. As shown in the figure below, an ever-rotating
‘wheel’ of threads is handling all incoming logging records. Ideally,
the size of the thread pool should be able to handle the heaviest
expected load, so that logging records arriving at the logging DOMAIN

OBJECT are received and processed immediately.

An alternative to a LEADER/FOLLOWERS design is a HALF-SYNC/HALF-
ASYNC (359) structure that uses an appropriately sized queue to buffer
logging records that arrive faster than they can be processed. This
solution, however, is less straightforward and also less elegant than
a LEADER/FOLLOWERS design, so LEADER/FOLLOWERS was preferred over
HALF-SYNC/HALF-ASYNC in the design of the system.

The following diagram outlines the LEADER/FOLLOWERS design for the
logging domain object using a pool of five threads. The thread that
receives a logging record from the logging interface plays the role of
the leader thread, the two threads that write logging records to the
persistence interface embody the role of processing threads, and the
two remaining threads represent follower threads waiting to become
the new leader thread.

Logging
Implementation

P
er

si
st

en
ce

In
te

rf
ac

e

is written to

Client A

Client B

Logging
Record

Lo
gg

in
g

In
te

rf
ac

e is
passed to

Logging
Record

is written
to

Logging Record
Processing

Logging Record
Processing

Logging Record
Processing

Logging Record
Processing

Logging Record
Processing

A backend-reporting domain object generates various reports from
the logging records stored in distributed persistent storage. The cor-
rect ordering of logging records stored at different network nodes is

Crossing the Object-Oriented/Relational Divide 87

possible because they contain a time-stamp created by a distributed
time-domain object that ensures accurate clock synchronization for
computers collaborating in the network.

5.10 Crossing the Object-Oriented/Relational Divide

All data created and maintained by the warehouse management
process control system must be stored persistently, and changed
transactionally, to ensure that the system can always operate with
consistent, up-to-date information about a warehouse’s current state.
The infrastructure layer, therefore, provides a persistence domain
object that allows other domain objects to store their business objects
in, and retrieve them from, a database.

For typically non-technical reasons this database is often from one
of the major database vendors, which means that it usually follows
the relational paradigm. However, exposing the relational nature of
the database directly to the warehouse management process control
system—which is designed and implemented in terms of behavioral
objects—introduces a paradigm mismatch. Business objects, such
as shipping orders, elements of the warehouse topology, and logging
records, must first be converted into an appropriate table structure
before they can be passed to the persistence domain object. Con-
versely, data organized in tables must first be converted into properly
formed business objects before they can be used and processed by
domain objects. In other words, the application-level code of the ware-
house management process control system becomes polluted with,
and dependent on, table-oriented data structures and SQL queries.
If we need to port the system to another database, the situation gets
even worse: it is very likely that the new database offers different
interfaces, which require corresponding modifications in all code that
deals with persistence.

How can we bridge the chasm between the object-oriented view of
business objects used within the warehouse management process
control system and the relational view of business objects required by
the database without exposing each view to the other side?

88 Baseline Architecture

Introduce a DATABASE ACCESS LAYER (538) between the warehouse man-
agement process control system and the relational database that
separates the logical, domain-specific representation of application
data from the physical representation of this data in tables.

The explicit interface of the persistence domain object provides the
system’s expected view of persistent storage, allowing it to pass and
receive business objects as they are modeled in the object-oriented
world. The encapsulated implementation of the persistence domain
object realizes a bidirectional mapping between the object-oriented
structure of the business objects and the table structure required by
the interfaces the relational database provides. All effort necessary to
port the persistence domain object to another database is localized
in this DATABASE ACCESS LAYER design. The encapsulation of database
variation behind a stable interface thus contributes significantly to
the product-line character of the baseline architecture for our system.

The following diagram illustrates this design:

Persistence

Database
Access Layer

Implementation
Business
Object

P
er

si
st

en
ce

In
te

rf
ac

e is passed
to/from

R
el

at
io

na
l D

at
ab

as
e

In
te

rf
ac

eis passed
to/from

Database Table Relational
Database

Client A

Client B

Configuring Domain Objects at Runtime 89

5.11 Configuring Domain Objects at Runtime

The requirements for our warehouse management process control
system specify an availability of 99.999%, which means a total down-
time of no more than five minutes fifteen seconds per year! However,
there are many things that can change in the system while it is in
operation. Changes in the physical warehouse structure, for example,
could trigger a system reconfiguration with different algorithms for
specific domain objects, or even with different domain object imple-
mentations. Changes in the computer network running the system,
such as the addition of a new server, may suggest a redeployment
of domain objects to best utilize the new hardware. The warehouse
management process control system must be able to respond to
such reconfiguration and redeployment needs both flexibly and on
demand, but without degrading its availability.

How can we support flexible (re)configuration and (re)deployment of
the warehouse management process control system without the need
to shut it down?

Provide a COMPONENT CONFIGURATOR (490) infrastructure that supports
dynamic, runtime (re)configurations and (re)deployments of DOMAIN

OBJECT (208) without effects on the availability of system parts that are
not involved in these activities.

The COMPONENT CONFIGURATOR infrastructure enables dynamic loading
of new domain object implementations or configurations into the
running system, and acts as a system-central control instance that
orchestrates the runtime exchange, (re)configuration, and (re) deploy-
ment of these implementations and configurations. To be reconfig-
urable and redeployable, the explicit interfaces of domain objects
must implement lifecycle functionality that is accessible by the com-
ponent configurator, to control and manage their (re)configuration
or (re)deployment correctly, efficiently, and without causing incon-
sistencies in the system’s overall state. A COMPONENT CONFIGURATOR

infrastructure thus balances the conflict raised by the need for high
availability and the need to support system evolution.

90 Baseline Architecture

5.12 Baseline Architecture Summary

In the previous sections we described how the patterns from the
pattern language in Part II of this book helped to create the baseline
architecture for a warehouse management process control system. In
this section we reflect on the applied pattern sequence as a whole,
outlining some of the general properties that made it suitable for
designing the baseline architecture of the warehouse management
process control system.

The first two patterns in the sequence are LAYERS (185) and DOMAIN

OBJECT (208). Both patterns help us to comprehend the warehouse
management process control system, allowing us to partition a big
ball of mud into bite-sized chunks of tangible parts residing at differ-
ent layers of abstraction. The partitioning is two-dimensional. LAYERS

provide a fundamental, horizontal decomposition into separate con-
cerns with a different focus from each another, for example separating
presentational aspects from business and infrastructure logic. DOMAIN

OBJECT supports an additional, vertical decomposition to partition
different responsibilities within each layer, for example warehouse
management functionality from material flow control functionality.
The result of applying LAYERS and DOMAIN OBJECT is a clear identifi-
cation and modular separation of all baseline architecture elements
in both their responsibilities and core usage relationships. As such,
a horizontal and vertical decomposition of an application’s function-
ality is the basis for almost every software architecture: LAYERS and
DOMAIN OBJECT are often the very first patterns applied in an inten-
tionally pattern-based software development process, regardless of
the application under development.

The next two patterns, EXPLICIT INTERFACE (281) and ENCAPSULATED

IMPLEMENTATION (313) decouple the technical realization of a domain
object from its provided functionality. Changes in the encapsulated
implementation of a domain object do not affect its clients: they can
program against a stable contract. Both patterns allow the parti-
tioning defined by LAYERS and DOMAIN OBJECT to be implemented by
suitable modular software technologies, such as components or ser-
vices. Consequently, both patterns are not only applicable within the
context of the warehouse management process control system, but

Baseline Architecture Summary 91

can help to define the architecture of many other applications that
must enforce modular software development.

The fifth pattern, BROKER (237), orchestrates the distributed nature
of the warehouse management process control system, by defin-
ing clear networking boundaries between domain objects that can
potentially be remote from each other. But BROKER introduces more
than just the recognition that two domain objects can reside in
different address spaces, and even on different network nodes: it
actually defines a whole interprocess communication philosophy,
beginning with how domain objects can announce their availability
in the system, through how two or more domain objects can estab-
lish communication channels between one another, to how these
domain objects communicate and interact using the communication
channels.

The distribution philosophy advocated by BROKER addresses the
remoting requirements of many distributed systems, not only those
of our warehouse management process control system. Most mid-
dleware, such as CORBA,. NET, and J2EE, has adopted BROKER as
the core architecture for interprocess communication functionality.
Chapter 6, Communication Middleware, therefore unfolds the BROKER

design in more detail.

The sixth pattern in the pattern sequence, MODEL-VIEW-CONTROLLER

(188), organizes the cooperation between domain objects in the user
interface layer of the warehouse management process control system
and domain objects in its business process and business object
layers. According to the LAYERS pattern, higher-level domain objects
can call the explicit interfaces of lower-level domain objects, but not
vice versa. This rule raises a problem for layered systems in which
control flows cannot always begin at the user interface and ‘fall down’
to the runtime infrastructure. For example, in event-driven systems
control flow is often instigated at the bottom of the layering and
‘climbs up’ to its top. In systems accessed by multiple user interface
clients, state changes require coordinated update of all these clients
to display the correct information.

MODEL-VIEW-CONTROLLER addresses such situations by inverting the
control flow in an application according to the Hollywood Princi-
ple: ‘Don’t call us, we’ll call you’ [Vlis98a]. Views and controllers do
not maintain application data and state, but changes in the model,

92 Baseline Architecture

which is responsible for maintaining this information, are propagated
to views and controllers via notifications, which in turn can call the
explicit interfaces of the model back ‘at will’ to update their own state.
Control flow can ping-pong between layers, but without introducing
undesirable dependencies from lower-level layers to higher-level lay-
ers. Like the other patterns applied so far, MODEL-VIEW-CONTROLLER is
therefore not specific to warehouse management process control sys-
tems, but rather is a common structure for applications that provide
interactive user interfaces.

The next three patterns in the pattern sequence aim at provid-
ing an appropriate operational quality for various domain objects.
HALF-OBJECT PLUS PROTOCOL (324) introduces federation, to support per-
formance, scalability, and availability of stateful domain objects that
are accessed from multiple address spaces. ACTIVE OBJECT (365) and
LEADER/FOLLOWERS (362) use defined concurrency models to enable a
high throughput for domain object implementations that reside in
a single address space. All three patterns provide generally applica-
ble distribution and concurrency models, and are applied in many
systems outside the warehouse management domain.

A DATABASE ACCESS LAYER (538) is a common approach to shielding
the architecture of a software system from paradigm impedance
mismatches and implementation details introduced by third-party
database products. Replacing one database product by another
requires only local modifications in the database access layer—
though perhaps significant ones. Clients of the database, however,
remain unaffected: changes do not ripple through to them. Last
but not least, the introduction of a COMPONENT CONFIGURATOR (523)
completes the loose coupling of domain objects in this baseline archi-
tecture by adding an infrastructure that supports their dynamic and
flexible (re)configuration and (re)deployment in the event of software
updates and environmental changes.

Baseline Architecture Summary 93

The table below summarizes the pattern sequence that helped create
the baseline architecture for the warehouse management process
control system, as well as the design challenges addressed by each
pattern in the sequence.

Pattern Challenges

LAYERS Partitioning application functionality according to different
levels of abstraction.

DOMAIN OBJECT Partitioning and modularizing application functionality
within the same level of abstraction.

EXPLICIT INTERFACE Providing a well-defined access to DOMAIN OBJECT function-
ality.

ENCAPSULATED IMPLEMENTATION Providing and encapsulating the realization of a DOMAIN

OBJECT.

BROKER Defining the baseline architecture for the communication
middleware.

MODEL-VIEW-CONTROLLER Separating application functionality from its presentation
and control.

HALF-OBJECT PLUS PROTOCOL Supporting federated DOMAIN OBJECTS across distribution
boundaries.

ACTIVE OBJECT Providing concurrency for DOMAIN OBJECTS that must support
request scheduling.

LEADER/FOLLOWERS Providing concurrency for DOMAIN OBJECTS that must support
high-volume throughput.

DATABASE ACCESS LAYER Shielding application functionality from database specifics.

COMPONENT CONFIGURATOR Enabling dynamic configuration of applications from
reusable components.

Analyzing the pattern sequence reveals nothing that couples it tightly
to the domain of warehouse management. Rather, it is a fairly general
sequence, applicable to the development of many distributed systems.
This ‘generality’ indicates that, regardless of their application domain,
distributed systems share many properties and requirements at their
baseline level. It is thus quite natural that this sequence is supported
by our pattern language for distributed computing, described in Part
III of this book.

94 Baseline Architecture

Most patterns in the sequence also contribute to the design of a
product-line architecture for the warehouse management process
control system. LAYERS, DOMAIN OBJECT, EXPLICIT INTERFACE, ENCAPSULATED

IMPLEMENTATION, and COMPONENT CONFIGURATOR support an appropriate
granularity of decomposition as well as loose coupling: BROKER enables
the distribution of DOMAIN OBJECT in a computer network, ACTIVE

OBJECT and LEADER/FOLLOWERS support flexible concurrency models,
and MODEL-VIEW-CONTROLLER and DATABASE ACCESS LAYER encapsulate
structural variation behind a common design and stable interface.
The latter is of key importance for product-line architectures: if each
potential variation in a domain were to be handled differently, it
would be hard—if not impossible—to define a stable architecture
for the common core shared by all product-line instances. Capturing
variability with a common design avoids this problem, thereby sup-
porting all product variants, as it is more concise to use the same
baseline architecture.

This ‘built-in’ support for product-line architectures in the pattern
sequence above is also independent of the warehouse management
domain. Patterns in general capture many best practices of frame-
work, platform, and product-line design [John97], therefore these
practices are also supported by our pattern language for distributed
computing.

6 Communication
Middleware

Good communication is as stimulating as black coffee
and just as hard to sleep after.

Anne Morrow Lindbergh

This chapter illustrates the application of a key pattern sequence
from the pattern language for distributed computing in Part II of this
book. It describes the development of the communication middleware
that is used for our warehouse management process control system,
as well as a wide range of other distributed applications in the
warehouse management domain and beyond. This middleware allows
clients to invoke operations on distributed objects without concern for
object location, programming language, operating system platform,
communication protocols or interconnects, and hardware.

A novel aspect of our communication middleware is its highly config-
urable, scalable, and portable design and implementation, which can
be tailored to meet specific application requirements and network/
end-system characteristics more easily than crafting the code by
hand, or using conventional middleware implementations that are
hard-coded to a single set of strategies.

96 Communication Middleware

6.1 A Middleware Architecture for Distributed Systems

Concrete deployments of our warehouse management process con-
trol system typically involve different hardware and software plat-
forms. For example, client applications and user interfaces are often
deployed on Windows PCs, sensor and actuators are usually deployed
on embedded devices running VxWorks, and DOMAIN OBJECTS (208)
that represent business logic and infrastructure functionality are
commonly deployed on servers running Solaris or Linux. Devices
are connected via different types of network, such as wireless and
wired LANs and WANs, using a variety of communication protocols
such as TCP/IP, PROFIbus, or VME. Each system installation must
also integrate with existing legacy and third-party software, particu-
larly software that resides at the operational and entity level of the
automation pyramid, which is often written in a variety of different
programming languages such as C, C++, Java, and C#. The result-
ing heterogeneity presents development and integration challenges
throughout the system’s lifetime, particularly as software components
are removed or replaced by components from other vendors.

Communication middleware, such as the Common Object Request
Broker Architecture (CORBA) [OMG04a] and Enterprise Java Beans
(EJB) [Sun03] [Sun04a], resides between clients and servers in a dis-
tributed system. The goal of communication middleware is to simplify
application development and integration by providing a uniform view
of lower-level—often heterogeneous—network and operating system
services. Moreover, this middleware helps to transfer complex dis-
tributed system infrastructure tasks from application developers to
middleware developers [ScSc01], who implement common network
programming mechanisms such as connection management, data
transfer, event and request demultiplexing, (de)marshaling, and con-
currency control.

To simplify inter-process communication between the distributed
domain objects of our system, and to shield their implementations
from the heterogeneity of its computational environment, the sys-
tem’s baseline architecture uses BROKER-based (237) communication

A Middleware Architecture for Distributed Systems 97

middleware. A broker allows distributed domain objects to find,
access, and communicate with each other as if they were collo-
cated, and decouples them within a distributed system so that they
can be developed and integrated using diverse technologies in a
heterogeneous environment.

The following diagram illustrates the use of the BROKER-based commu-
nication middleware for the presentation and business process layers
of the system. This diagram assumes that domain objects within a
layer are collocated. The remote interaction between other layers of
the system or between domain objects of the same layer is organized
correspondingly.

Presentation
Layer

Business
Process Layer

Warehouse
Management

Implementation

Material
Flow Control

Implementation

Network

M
F

C
In

te
rf

ac
e

Server-Side
Broker

Client-Side
Broker

Warehouse Management
Client Proxy

Northbound
Gateway

Material Flow Control
Client Proxy

Application Application Application
Northbound

Gateway

We implement the BROKER-based communication middleware for the
system using the CORBA Component Model (CCM) [OMG02]. The
CCM is communication middleware that allows applications to invoke
operations on component instances without concern for their loca-
tion, programming language, hosting platform, or networking protocol.

98 Communication Middleware

CCM is essentially a language and platform-independent variant of
EJB that also includes specific capabilities found in Microsoft COM
and .NET. At the heart of the CCM reference model is the broker,
whose elements are shown in the following figure.

ORB CoreGIOP/IIOP

IDL
Stubs

ORB
Interface Container and Adapter

IDL
Skeleton

Client
operation()

in args

out args + return value
Application

CCM
middleware

ORB-specific interface

Standard protocol

Standard interface

Standard Language Mapping

Object

Component

The CCM reference model defines the following key entities:

• Clients and Components implement the applications running above
the communication middleware.

• An Object Request Broker (ORB) Core4 is responsible for delivering
an operation request from a client to a component instance and
returning a response, if any.

• The ORB Interface decouples applications from implementation
details of the ORB Core.

• IDL Stubs and Skeletons serve as a ‘glue’ between the client and
server components respectively, and the ORB itself.

• A Container and Object Adapter associate a component instance
with an ORB by providing a runtime environment for managing
component lifecycle properties, demultiplexing incoming requests
to the component instance, and dispatching the appropriate upcall
method on that instance.

4 The OMG CCM specification uses the term Object Request Broker for backwards
compatibility with earlier versions of the CORBA specification, even though application
developers who use CCM typically program and interact with Component instances.

A Middleware Architecture for Distributed Systems 99

The CCM reference model, however, intentionally just specifies the
fundamental roles that must be present in an ORB, but does not
define a concrete software architecture to use as the basis for a
specific CCM implementation. We therefore used the BROKER pat-
tern to define the actual components, their relationships, and the
collaborations needed to implement CCM-compliant communication
middleware, as shown in the following figure.

Stubs Skeletons

Clients

Container and
Object Adapter

ORB
Interface

Client-side
ORB Core

Operating System and
Network Protocols

Clients
Components
run in server
processes

Components

Server-side
ORB Core

Request Demuxer

The client and remote component roles in the BROKER pattern repre-
sent the application-level clients and components in the OMG CCM
reference model. The CLIENT PROXY (240) role is implemented by the
ORB’s stubs, which provide access to the services offered by remote
components. Stubs also shield clients and servers from the location
and implementation details of their remote communication partners,
as well as from the specifics of the ORB implementation.

The Client-side ORB Core plays the REQUESTOR (242) role in the BROKER

pattern, and the Server-side ORB Core plays the play the role of the
INVOKER (244). The Container and Object Adapter plays the role of
a CONTAINER (488) or an OBJECT ADAPTER (438). All these roles are
responsible for the location-transparent transmission of requests
from clients to servers, as well as the transmission of responses and
exceptions from servers back to clients. The Server- and Client-side
ORB Cores offer APIs to servers and clients for registering component
instances and invoking methods on instances respectively. These
APIs represent the ORB Interface of the CCM reference model and are
often implemented as a FACADE (294).

100 Communication Middleware

Applying the BROKER pattern to implement a CCM-based ORB requires
the resolution of a number of design challenges. Chief among these
include structuring the ORB’s internal design to separate concerns,
encapsulating low-level system functions to enhance portability,
demultiplexing ORB Core events and managing ORB connections
efficiently and flexibly, enhancing ORB scalability by processing
requests concurrently and using an efficient synchronized request
queue, enabling interchangeable internal ORB mechanisms and con-
solidating these mechanisms into groups of semantically compatible
strategies, and configuring these consolidated ORB strategies dynam-
ically. The remainder of this chapter describes the pattern sequence
we use to resolve these challenges. The resulting communication
middleware provides the broker platform for our system, as well
as other parts of the warehouse management domain. This mid-
dleware can also be applied to many other distributed systems
in different domains, including telecommunications, e-commerce,
aerospace, online financial services, and electronic medical imaging
systems.

6.2 Structuring the Internal Design of the Middleware

CCM-based communication middleware has a number of important
responsibilities, such as providing APIs to clients and components,
routing requests from clients to local or remote component instances
and their responses back to the clients, and initiating the trans-
mission of such requests and responses over the network. The
architecture defined by the BROKER (237) pattern separates application
logic from communication middleware functionality. A CCM-based
ORB itself, however, is far too complex to implement as a single
monolithic component. Moreover, its responsibilities cover different
types of capabilities that can be organized hierarchically. For example,
APIs are at the application level, component policy management is at
the container level, request routing and concurrency control at the

Structuring the Internal Design of the Middleware 101

object adapter and ORB core levels, and request (re)transmission at
operating system and network protocol levels.

We therefore need to decompose our CCM-based ORB architecture
further so that it meets the following requirements:

• Changeability. Enhancements and changes to one part of the ORB
should be confined to a small number of components and not ripple
through to affect unrelated components.

• Stability. External interfaces should be stable, and may even be
prescribed by standards, such as the ORB Interface and the various
mapping rules for the Interface Definition Language (IDL) defined
by the OMG CCM specification.

• Portability. Porting the ORB to new operating system and com-
piler platforms should affect as little of the ORB as possible. For
example, the ORB’s transport mechanisms must run on conven-
tional platforms such as Windows and Linux, as well as small
embedded devices such as sensors and actuators running VxWorks
or LynxOS.

How can we decompose the ORB to satisfy the changeability, stability,
and portability requirements above, and partition its functionality into
coherent groups with related responsibilities?

Use LAYERS (185) to separate different responsibilities in the ORB by
decomposing it into groups of classes that each handle particular types
of capabilities.

We divide our CCM-based ORB into four layers. The top layer pro-
vides the standard CCM ORB interface defined by the OMG, and
represents the ‘application view’ of the entire ORB. The second layer
provides the container and object adapter, which manage component
policies, as well as demultiplexing and dispatching client requests to
component instances. The third layer includes the ORB core, which
implements the middleware’s connection management, data trans-
fer, event demultiplexing, and concurrency control logic. The bottom
layer shields the rest of the ORB from the implementation details of
the underlying operating system and network protocols.

102 Communication Middleware

The diagram below illustrates the layered design for our CCM-based
ORB:

ORB Interface
Layer

ORB Core
Layer

OS Adaptation
Layer

Container and
Object Adapter Layer

ORB
Interface

Client-side
ORB Core

Container and
Portable

Object Adapter

OS
Access

Operating System and Network Protocols

Server-side
ORB Core

Client and Component Server Applications

Using the LAYERS pattern to implement our CCM broker enables trans-
parent changes to implementations in one layer without affecting
other layers. For example, changing search structures in the object
adapters from dynamic hashing to active demultiplexing [PRS+00]
does not affect any other layers. LAYERS also enhances stability,
because multiple higher-layer client and server applications have
a well-defined interface to the lower-layer network programming
services that the ORB provides. Moreover, LAYERS simplifies port-
ing the ORB to new operating systems, if requested by customers,
without affecting application code or even the bulk of the ORB imple-
mentation.

Encapsulating Low-level System Mechanisms 103

6.3 Encapsulating Low-level System Mechanisms

One role of communication middleware is to shield applications from
operating system and networking characteristics, which are both
varied and dense in their detail. CCM-based ORB middleware develop-
ers—as opposed to application developers—are therefore responsible
for handing lower-level details such as demultiplexing events, send-
ing and receiving requests across one or more network interfaces,
and spawning threads to execute requests concurrently. It can be
hard, however, to develop this layer of middleware, especially when
using low-level system APIs written in C. Common problems faced by
ORB developers working at this level include:

• A requirement for an intimate knowledge of many operating system
platforms. Implementing an ORB using system-level C APIs forces
middleware developers to deal with the non-portable, tedious, and
error-prone operating system idiosyncrasies, such as using weakly
typed socket handles to identify communication endpoints. In addi-
tion, such APIs are not portable across operating system platforms.
For example, Windows, Linux, and VxWorks all have different
threading APIs, as well as subtly different semantics for sockets
and event demultiplexing.

• Increased maintenance effort. One way to build an ORB is to
handle portability variations via explicit conditional compilation
directives in the ORB source code. Using conditional compilation
to address platform-specific variations at all points of use, how-
ever, increases the complexity of the source code. In particular,
it is hard to maintain and extend conditionally compiled code,
because platform-specific details are scattered throughout the ORB
implementation files.

• Inconsistent programming paradigms. System mechanisms are ac-
cessed through C-style function calls, which cause an ‘impedance
mismatch’ with the programming style supported by object-oriented
languages such as Java, C++, and C#.

How can we avoid accessing low-level system mechanisms directly
when implementing ORB middleware?

104 Communication Middleware

Structure the OS Adaptation layer of the ORB using WRAPPER FACADES

(482), to encapsulate system programming APIs and mechanisms
within concise and cohesive object-oriented class interfaces.

WRAPPER FACADE provides type-safe, modular, and portable class inter-
faces that encapsulate lower-level system and network programming
mechanisms such as sockets, event demultiplexing, synchronization,
and threading. In general, WRAPPER FACADE should be applied when
existing system-level APIs are non-portable and non-type-safe.

To improve the robustness and portability of our ORB implementa-
tion, it accesses all system mechanisms via WRAPPER FACADES provided
either by the Java Virtual Machine (JVM) [LY99], or by the ACE C++
network programming toolkit [SH02]. ACE encapsulate native OS
concurrency, communication, memory management, event demul-
tiplexing, and dynamic linking mechanisms with type-safe object-
oriented interfaces, as illustrated in the following diagram.

ORB Core
Layer

OS Adaptation
Layer with
Wrapper Facades

Client-Side
ORB Core

Server-Side
ORB Core

OS Access

Operating System and Network Protocols

Threading and
Synchronization

Sockets
SSL and SCTP

select
/dev/epoll

Wait For Multiple Objects

Dynamic
Linking

spawn
acquire

open
close
recv
send

handle_events dlopen
dlsym

The encapsulation of the JVM and ACE wrapper facades provides
a consistent object-oriented programming style, and alleviates the
need for the ORB to access the weakly typed C system programming
APIs directly. Standard compilers and language processing tools can
therefore detect type system violations at compile-time rather than at
runtime. As a result, we need much less effort to maintain the ORB,
as well as to port it to new operating system and compiler platforms.

Demultiplexing ORB Core Events 105

6.4 Demultiplexing ORB Core Events

One responsibility of an ORB core is to demultiplex I/O events from
multiple clients and dispatch them to their associated event handlers.
For example, a server-side ORB core listens for new client connec-
tions, reads General Inter-ORB Protocol (GIOP) request messages
from connected clients, and writes GIOP reply messages back to the
clients. To ensure responsiveness to multiple clients, an ORB core
waits for connection, read, and write events to occur on multiple
socket handles, via operating system event demultiplexing mech-
anisms such as select,/dev/epoll, WaitForMultipleObjects,
and threads. The following problems make it hard to develop this
layer of middleware:

• Hard-coded event demultiplexers. One way to develop an ORB is
to hard-code it to use a single event demultiplexing mechanism
such as select. Relying on one event demultiplexing mecha-
nism is undesirable, however, because no single mechanism is the
most efficient for all platforms and application requirements. For
example, WaitForMultipleObjects is more efficient than select
on Windows, whereas /dev/epoll is a more efficient demultiplexing
mechanism than select on Linux.

• Tightly coupled event demultiplexing and event handling code. An-
other way to develop an ORB core is to tightly couple its event
demultiplexing code with the code that handles the events, such
as the GIOP protocol processing code. However, this prevents the
demultiplexing code from being reused as a black box component by
other applications that use communication middleware, including
Web servers [HPS97] or video-on-demand applications [MSS00]. In
addition, if new ORB strategies for threading or request scheduling
algorithms are introduced, substantial portions of the ORB core
must be rewritten.

How can an ORB implementation decouple itself from a single event
demultiplexing mechanism, and decouple its demultiplexing code from
its event handling code?

Use a REACTOR (259) to reduce coupling and increase the extensibility of
an ORB core by supporting demultiplexing and dispatching of multiple

106 Communication Middleware

event handlers that are triggered by events that can arrive concurrently
from multiple clients.

The REACTOR pattern simplifies event-driven applications in general,
and communication middleware in particular, by integrating the
event demultiplexing and dispatch of the corresponding event han-
dlers. In general, REACTOR should be introduced when applications
or middleware components must handle events from multiple clients
concurrently, without becoming tightly coupled to a single low-level
mechanism such as select.

One way to implement an ORB is to use a reactor to drive the main
event loop within its ORB Core, as part of the SERVER REQUEST HANDLER

(249) within the INVOKER (244) of a BROKER (237) architecture, as shown
in the following diagram of the server-side ORB.

ORB Core
Layer

OS Adaptation
Layer

Component Server Application

Container and
Object Adapter Layer

Container and Portable
Object Adapter

Operating System and Network Protocols

:Reactor

Server-Side ORB Core (Server Request Handler)

:Connection
Handler

run_event_loop

handle_event

dispatch

upcall

:Connection
Handler

:Connection
Handler

OS Access

Threading and
Synchronization

Sockets
SSL and SCTP

select
/dev/epoll Wait

For Multiple Objects()

Dynamic
Linking

In this design a component server process initiates an event loop
in the ORB core’s Reactor instance, where it remains blocked on
whichever event demultiplexing mechanism is configured until I/O

Demultiplexing ORB Core Events 107

events occur on one or more of the available endpoints. When a GIOP
request event occurs, the Reactor demultiplexes the request to the
appropriate event handler, which is an instance of the GIOP Connec-
tionHandler class that is associated with each connected socket.
The Reactor then calls the handle event method on the Connec-
tionHandler, which reads the request and passes it to the ORB’s
Container and Object Adapter layer. This layer then demultiplexes the
request to the appropriate upcall method on the component instance,
and dispatches the upcall method.

Using the REACTOR pattern enhances the extensibility of the ORB by
decoupling the event handling portions of its ORB core from the
underlying operating system event demultiplexing mechanisms. For
example, the WaitForMultipleObjects event demultiplexing system
function can be used on Windows, while the select or/dev/epoll
mechanism can be used on UNIX and Linux platforms. Likewise, the
REACTOR pattern can be implemented in Java using a Selector on
SelectableChannels. REACTOR also simplifies the integration of new
event handlers. For example, adding a new connection handler that
uses the PROFIbus protocol to communicate with non-CCM portions
of our warehouse management system does not affect the interface of
the Reactor class.

Reactive event demultiplexing may not be the most scalable way
to implement an ORB on operating systems that support efficient
asynchronous I/O. In particular, highly efficient ORBs can be imple-
mented on some platforms via the PROACTOR pattern (262), which
structures event-driven concurrent applications that receive and pro-
cess requests from multiple clients asynchronously. For example,
the PROACTOR pattern can be implemented on Windows by using the
AcceptEx, ReadFile, and WriteFile system functions to process
TCP connections and GIOP requests asynchronously. When these
asynchronous operations complete, Windows delivers their results to
the ORB, which performs the appropriate actions before returning to
its event loop.

The main benefit of PROACTOR is its scalability on platforms that
implement efficient asynchronous I/O. The drawback is that relatively
few platforms today provide this support correctly and efficiently. Our
goal was to design a portable ORB, so we chose to use the REACTOR

pattern as the basis for event demultiplexing.

108 Communication Middleware

6.5 Managing ORB Connections

Connection management is another key responsibility of an ORB core.
For example, an ORB core that implements GIOP must establish
TCP connections and initialize the protocol handlers for each TCP
server endpoint. By localizing connection management logic in the
ORB core, application components can focus solely on processing
application-specific requests and replies, rather than dealing with
low-level operating system and network programming tasks.

An ORB core is not limited, however, to running only over GIOP
and TCP transports [OKS+00]. For example, although TCP trans-
fers GIOP requests reliably, its flow control and congestion control
algorithms preclude its use for warehouse management sensors and
actuators with stringent timing requirements, whereas Streaming
Control Transmission Protocol (SCTP) or Real-Time Protocol (RTP)
may be more appropriate. Equally, it may be more efficient to use a
shared memory transport mechanism when clients and component
instances are collocated on the same endsystem whose operating sys-
tem supports shared memory. Moreover, to protect the integrity and
confidentiality of the data, it may be necessary to exchange requests
and responses over an encrypted Secure Socket Layer (SSL) connec-
tion. An ORB core should therefore be flexible enough to support
multiple transport mechanisms.

The CCM reference architecture decouples the connection manage-
ment tasks performed by an ORB core from the request processing
performed by application components explicitly. A common way to
implement an ORB’s internal connection management, however, is
to use low-level network APIs such as sockets. Similarly, the ORB’s
connection establishment protocol is often tightly coupled to its com-
munication protocol.

Managing ORB Connections 109

Unfortunately, this design hard-codes the ORB’s connection man-
agement implementation with the socket network programming API,
and the TCP/IP connection establishment protocol with the GIOP
message format, leading to the following two problems:

• Inflexibility. If an ORB’s connection management data structures
and algorithms are too closely intertwined, substantial effort is
required to modify the ORB core. It can therefore be time consuming
to port a tightly coupled ORB core to new networking protocols and
programming APIs, such as SSL, SCTP, RTP, shared memory, or
Windows Named Pipes. For example, tightly coupling the ORB core
to use the socket API makes it hard to modify the underlying
transport mechanism to use shared memory or SSL rather than
sockets.

• Inefficiency. Many internal ORB strategies can be optimized by
allowing ORB and application developers to choose appropriate
implementations late in a product’s development, such as after
extensive runtime performance profiling. For example, a multi-
threaded real-time client may need to store transport endpoints
using THREAD-SPECIFIC STORAGE (392). Similarly, the concurrency
strategy for a CCM component server might require that each
connection run in its own thread to eliminate per-request locking
overhead. If the connection management mechanism is hard-coded
and tightly bound with other internal ORB strategies, however, it is
hard to accommodate efficient new mechanisms without significant
effort and rework.

How can an ORB core’s connection management mechanisms sup-
port multiple transports and allow connection-related behaviors to be
(re)configured flexibly at any point in the development cycle?

Use an ACCEPTOR-CONNECTOR (265) arrangement to increase the flexibility
of ORB core connection management and initialization, by decoupling
connection establishment and service initialization from the tasks per-
formed once these activities have completed.

The acceptor component in the ACCEPTOR-CONNECTOR pattern is respon-
sible for passive connection establishment and service initialization,
which is performed by the server side of the ORB core. Conversely,
the connector component in the pattern is responsible for active con-
nection establishment and service initialization, which is performed

110 Communication Middleware

by the client side of the ORB core. We use the ACCEPTOR-CONNECTOR

pattern in conjunction with the REACTOR pattern (259) to create a
pluggable protocols framework [OKS+00] for our ORB. This frame-
work performs connection establishment and connection handler
initialization for the various networking protocols supported in the
ORB, as follows:

• Client-side ORB core. In response to an operation invocation or
an explicit binding to a remote component instance, the client-side
ORB core uses a Connector to initiate a connection to the desig-
nated server ORB for the desired type of protocol, then initializes the
appropriate type of ConnectionHandler to service this connection
when it completes.

• Server-side ORB Core. When a connection arrives from a client, the
server-side ORB Core uses an Acceptor to create the appropriate
type of ConnectionHandler to service each new client connection.

Acceptors and Connectors are both event handlers that can be
dispatched automatically by the ORB’s reactor when events become
ready for processing, as shown by the following figure.

Handler
:Connection

Handler
:Connection

ORB Core
Layer

«create»

handle_event

Server-side
ORB Core

«activate»

:Connector

connect

Client-side
ORB Core

request and
response

connection
establishment

dispatchoperation

Handler
:Connection Handler

:Connection

Handler
:Connection

Handler
:Connection

:Acceptor

:Reactor

handle_event

This figure shows that when a client invokes a remote operation,
it makes a connect call via its Connector to obtain a connection
and initialize a ConnectionHandler that corresponds to the desired

Enhancing ORB Scalability 111

networking protocol. In the server-side ORB core, the Reactor noti-
fies an Acceptor, via its handle event method, to accept the newly
connected client and create the corresponding ConnectionHandler.
After the ConnectionHandler is activated within the ORB core, it
performs the requisite protocol processing on a connection, and ulti-
mately dispatches the request to the appropriate component instance
via the ORB’s container and object adapter.

The combined use of ACCEPTOR-CONNECTOR and REACTOR in our CCM-
based ORB increases its flexibility by decoupling event demulti-
plexing from connection management and protocol processing. This
design also simplifies the integration of the networking protocols and
network programming APIs that are most suitable for particular con-
figurations of our warehouse management process control system.

6.6 Enhancing ORB Scalability

Achieving scalable end-to-end performance is important for handling
the heavy traffic loads that arise as the number of clients increases.
By default, GIOP runs over TCP, which uses flow control to ensure
that senders do not produce data more rapidly than slow receivers or
congested networks can buffer and process [Ste93]. If a CCM sender
transmits a large amount of data over TCP faster than a receiver can
process it, therefore, the connection will flow control and block the
sender until the receiver can catch up.

Our initial REACTOR-based design, outlined in Section 6.4, Demultiplex-
ing ORB Core Events, processed all requests within a single thread
of control. Although this design is straightforward to implement, it
suffers from the following problems:

• Non-scalable. Processing long-duration client requests reactively
within a single-threaded reactive ORB server process scales poorly,
because only one client request can be handled at a time.

112 Communication Middleware

• Starvation. The entire ORB server process can block indefinitely
while waiting for flow control on a connection to clear when sending
a reply to a client, thereby starving other clients from having their
requests processed.

Conversely, however, multithreading all ORB processing may also be
inefficient for short-duration processing, because threads can incur
significant concurrency control overhead in terms of synchronization,
context switching, and data movement [PSC+01].

How can an ORB manage concurrent processing efficiently, so that
long-running requests can execute simultaneously on one or more CPUs
without impeding the progress of other requests, while short-duration
processing is handled efficiently without incurring unnecessary con-
currency control overhead?

Use a HALF-SYNC/HALF-ASYNC (359) concurrency model to separate the
short- and long-duration processing in the ORB, thereby enhancing
scalability without incurring excessive concurrency control overhead.

The HALF-SYNC/HALF-ASYNC concurrency model for our CCM-based
ORB uses a pool of RequestHandlers to process long-duration client
requests and replies concurrently in separate threads of control.
Conversely, short-duration Acceptor connection establishment and
REQUEST event handling is processed reactively in ConnectionHan-
dlers by borrowing the Reactor’s thread of control.

The following figure illustrates the HALF-SYNC/HALF-ASYNC-based design
of our ORB. It shows how Acceptor connection establishment is
driven entirely by the Reactor when it dispatches the Accep-
tor’s handle event method. REQUEST event handling is driven par-
tially by the Reactor, which dispatches the ConnectionHandler’s
handle event method to read the request message into a buffer.
This buffer is then placed on a synchronized RequestQueue, which
is used to pass requests to a pool of RequestHandlers that process
the requests concurrently in separate threads of control.

Enhancing ORB Scalability 113

:Reactor

:Connection
Handler

handle_event

:Connection
Handler

:Request
Queue

:Connection
Handler

ORB Core
Layer

Component Server Application

Container and
Object Adapter
Layer

Server-side ORB Core

run_event_loop

upcall

Container and
POA

:Request
Handler

:Request
Handler

:Request
Handler

get_request get_requestget_request

upcallupcall

«create» «activate»
:Acceptor

handle_event

put_request

put_request

put_request

The use of HALF-SYNC/HALF-ASYNC in our ORB improves its scalability
compared with the use of a purely REACTOR-based design, by allow-
ing multiple client requests/replies to run concurrently in separate
threads. Similarly, because each thread can block independently, the
entire server ORB process need not wait for flow control to clear on
a connection when sending a reply to a client. Some subsystems
in our warehouse management process control system are better
suited by a REACTOR-based design, however, so our ORB supports
both approaches.

The HALF-SYNC/HALF-ASYNC model is not always the most efficient
design for an ORB, however, because passing a request between a
Reactor thread and a RequestHandler thread incurs dynamic mem-
ory allocation, multiple synchronization operations, a context switch,
and cache updates. This overhead can make the ORB’s latency unnec-
essarily high, particularly for short-duration requests. An alternative
is to apply the LEADER/FOLLOWERS pattern (362), which provides a
more efficient and predictable concurrency model in which multiple

114 Communication Middleware

threads take turns to share event sources, such as a passive-mode
socket handle to detect, demultiplex, dispatch, and process service
requests that occur on the event sources.

The benefit of LEADER/FOLLOWERS is that it eliminates the need for,
and the overhead of, a separate Reactor thread and synchronized
RequestQueue [PSC+01]. The drawback is that it is less scalable than
HALF-SYNC/HALF-ASYNC, which queues requests in the ORB’s virtual
memory rather than in the operating system kernel. As our goal was
to design a highly scalable ORB, we chose to use the HALF-SYNC/HALF-
ASYNC pattern as the basis for concurrency.

6.7 Implementing a Synchronized Request Queue

At the heart of HALF-SYNC/HALF-ASYNC (359) is a RequestQueue queue-
ing layer. In our CCM-based ORB, the ConnectionHandlers in
the asynchronous (reactive) layer are ‘producers’ that insert client
requests into the RequestQueue. The pool of RequestHandlers in
the synchronous (multi-threaded) layer are ‘consumers’ that remove
and process client requests from the queue.

A naive implementation of a RequestQueue can cause several prob-
lems:

• Multiple producer and consumer ORB threads in the differ-
ent layers of the HALF-SYNC/HALF-ASYNC pattern can corrupt the
RequestQueue’s internal state if concurrent access is not serialized
to protect against race conditions.

• If a simple mutual exclusion (mutex) lock is used, the producer and
consumer threads can ‘busy wait’ when the queue is empty or full,
which wastes CPU cycles unnecessarily.

How can the RequestQueue avoid race conditions or busy waiting
when threads in different layers put and get client requests simultane-
ously?

Implementing a Synchronized Request Queue 115

Implement the RequestQueue as a MONITOR OBJECT (368) to serialize
concurrent method calls, so that only one method runs at a time, and
allow its put request and get request methods to schedule their
execution sequences cooperatively, to prevent producer and consumer
threads from busy waiting when the RequestQueue is full or empty
respectively.

The synchronized RequestQueue uses a monitor lock to serial-
ize access to the monitor object, and condition variables from
POSIX Pthreads or java.util.concurrent.locks to implement the
queue’s not-empty and not-full monitor conditions. This synchro-
nized RequestQueue can be integrated into the HALF-SYNC/HALF-ASYNC

implementation in the ORB as shown in the following figure.

:Connection
Handler

handle_event

put_request

:Connection
Handler

put_request put_request

:Connection
Handler

Server-side ORB Core

«create» «activate»
:Acceptor

handle_event

ORB Core
Layer

Component Server Application

Container and
Object Adapter
Layer

run_event_loop

upcall

Container and
POA

get_request get_requestget_request

upcallupcall

:Monitor

:not
empty

:Request
Queue

Lock

:not
full

:Request
Handler

:Request
Handler

:Request
Handler

:Reactor

116 Communication Middleware

When a consumer thread running in the pool of RequestHandlers
attempts to get a client request from an empty RequestQueue, the
queue’s get request method atomically releases the monitor lock
and the thread suspends itself on the not-empty monitor condition.
It remains suspended until the RequestQueue is no longer empty,
which happens when a ConnectionHandler running in the producer
thread puts a client request into the queue.

MONITOR OBJECT simplifies our ORB’s HALF-SYNC/HALF-ASYNC concur-
rency design by providing a concise programming model for sharing
the RequestQueue among cooperating threads in which object syn-
chronization corresponds to method invocation. The synchronized
put request and get request methods use the RequestQueue’s
monitor conditions to determine the circumstances under which they
should suspend or resume their execution.

6.8 Interchangeable Internal ORB Mechanisms

Communication middleware is often required to support a wide range
of application requirements in an equally wide range of operational
environments. To satisfy these different requirements and environ-
ments, an ORB may therefore need to support multiple implemen-
tations of its internal mechanisms. Examples of such mechanisms
include alternative concurrency models, event and request demulti-
plexers, connection managers and data transports, and (de)marshaling
schemes.

One way to support multiple implementations of an ORB’s inter-
nal mechanisms is to configure the ORB statically at compile time
using preprocessor macros and conditional compilation. For example,
as/dev/epoll and the WaitForMultipleObjects function are only
available on specific operating systems, ORB source code written
in C or C++ can be interspersed with #if . . . #elif . . . #else . . .

#endif conditional compilation blocks. The value of macros exam-
ined by the preprocessor can then be used to choose the appropriate
event demultiplexer mechanisms during compilation.

Interchangeable Internal ORB Mechanisms 117

Although many C/C++ ORBs use this approach, it suffers from the
following problems:

• Inflexibility. Preprocessor macros can only configure mechanisms
known statically at compile time, which makes it hard to config-
ure an ORB to support mechanisms selected based on knowledge
available dynamically during start-up or at runtime. For example,
an ORB might want to configure itself to use different concurrency
models or transport mechanisms depending on dynamically discov-
erable factors such as the number of CPUs, current workload, or
the availability of specific networking protocols.

• Error-proneness. Using preprocessor macros and condition com-
pilation makes it hard to understand and validate the ORB. In
particular, changes to the behavior and state of the ORB tend to
permeate through its source code, making it hard to compile and
test all paths through the code [MPY+04].

How can an ORB permit replacement of its internal mechanisms in a
more flexible manner, and encapsulate the state and behavior of each
mechanism so that changes to one do not permeate throughout an ORB
haphazardly?

Use STRATEGY (455) configurations to support multiple transparently
‘pluggable’ ORB mechanisms by factoring out commonality among
alternatives and associating the name of a strategy explicitly with its
behavior and state.

Our CCM-based ORB uses a variety of STRATEGIES to factor out
internal mechanisms that are often hard-coded in conventional
ORBs. The figure below illustrates where our ORB provides strat-
egy hooks that use runtime polymorphism to simplify the dynamic
(re)configuration of different mechanisms for (de)marshaling, request
and event demuxing, connection management and client/server data
transport, and concurrency.

118 Communication Middleware

Compile-time polymorphism can also be implemented using special-
ization techniques such as partial evaluation and aspect weaving,
which are less extensible than runtime polymorphism, but often
much more efficient [KGS+05].

Stubs Skeletons

Clients

Container and
Object Adapter

ORB
API

Client-side
ORB Core

Operating System and
Network Protocols

Hook for the
marshaling strategy

Hook for the
demarshaling
strategy

Hook for the
request demuxing
strategy

Hook for the
server transport
strategy

Components

Server-side
ORB Core

Hook for the
connection
management
strategy

Hook for the
event demuxing
strategy

Hook for the
client transport
strategy

Hook for the
concurency
strategy

Request Demuxer

Using STRATEGY in our CCM-based ORB removes lexical dependencies
on the ORB’s internal mechanism implementations, because the
configured mechanisms are only accessed via common base class
interfaces. Moreover, STRATEGY simplifies the customization of ORB
behavior using mechanisms that can be configured dynamically,
either during start-up time or later during runtime, rather than only
statically at compile time.

An alternative to STRATEGY would be the TEMPLATE METHOD pattern
(453), which can also be used to support multiple transparently
‘pluggable’ ORB mechanisms. We chose STRATEGY because its use
of delegation enables the selection and/or replacement of alternative
ORB mechanisms dynamically, for example, during ORB initialization
at runtime. In contrast, TEMPLATE METHOD uses inheritance, so the
selection of alternative ORB mechanisms would be bound at compile
time, which is too restrictive for our use cases.

6.9 Consolidating ORB Strategies

Our CCM-based ORB supports a wide range of strategies in its various
layers:

Consolidating ORB Strategies 119

• The stubs and skeletons support various (de)marshaling strategies,
such as Common Data Representation (CDR), eXternal Data Repre-
sentation (XDR), and other proprietary strategies suitable for ORBs
that communicate specifically across homogeneous hardware, OS,
and compilers.

• The Container and Object Adapter layer supports multiple request
demultiplexing strategies, such as dynamic hashing, perfect hash-
ing, or active demultiplexing [GS97a], and lifecycle strategies, such
as session containers or entity containers.

• The ORB Core layer supports a variety of event demultiplexing strate-
gies, such as reactors implemented with select, /dev/epoll,
WaitForMultipleObjects, or VME-specific demuxers, connection
management strategies, such as process-wide cached connections
versus thread-specific cached connections, ConnectionHandler
concurrency strategies, such as single-threaded reactive or multi-
threaded half-sync/half-async, and different transport strategies,
such as TCP/IP, SSL, SCTP, VME, and shared memory.

The table below illustrates the strategies used to create two con-
figurations of the ORB for different subsystems in the warehouse
management process control system:

• One for sensor and actuators deployed on embedded devices run-
ning VxWorks

• The other for warehouse business logic and infrastructure func-
tionality deployed on servers running Solaris or Linux.

Application
Concurrency

Strategy

Marshaling &
Demarshaling

Strategy

Request
Demuxing
Strategy Protocol

Event
Demuxing
Strategy

Sensors and
Actuators

Reactive Proprietary Perfect
hashing

VME backplane VME-
specific
demuxer

Warehouse
business
logic

HALF-
SYNC/HALF-
ASYNC

CDR Active
demuxing

TCP/IP select-
based
demuxer

120 Communication Middleware

Using STRATEGY so extensively in our ORB, however, can cause the
following problems:

• Complicated maintenance and configuration. ORB source code can
become littered with hard-coded references to strategy classes,
which make it hard to maintain and configure. For example, within
a particular subsystem, such as sensors and actuators, or business
logic, many independent strategies must act in harmony. Identifying
these strategies individually by name, however, requires tedious
replacement of selected strategies in one domain with a potentially
different set of strategies in another domain.

• Semantic incompatibilities. It is not always possible for specific
strategies to interact in semantically compatible ways. For example,
the VME-specific event demultiplexing strategy will not work prop-
erly with the TCP/IP protocol. Moreover, some strategies are only
useful when specific preconditions are met. For example, perfect
hashing demultiplexing is only applicable to systems that statically
register all their component instances off-line [GS97b].

How can a highly configurable ORB reduce the complexities required
to manage its myriad of strategies, as well as ensure semantic com-
patibility when combining groups of strategies?

Introduce ABSTRACT FACTORIES (525) to consolidate multiple ORB strate-
gies into a manageable number of semantically compatible configura-
tions.

All our ORB strategies are consolidated into abstract factories that
encapsulate all the client- and server-specific strategies described
above. By using the ABSTRACT FACTORY pattern, application developers
and end users can configure the internal mechanisms that comprise
different types of ORBs with semantic consistency, by providing a
single access point that integrates all strategies used to configure
an ORB. Concrete subclasses then aggregate semantically compat-
ible application-specific or domain-specific strategies, which can be
replaced en masse in meaningful ways.

The following figure illustrates two abstract factory instances used
to configure ORBs for applications running in the business logic or
sensor and actuator subsystems of the system.

Dynamic Configuration of ORBs 121

Concurrency
Strategy

(De)marshaling
Strategy

Request
Demuxing
Strategy

HALF-SYNC/
HALF-ASYNC

CDR
(de)marshal

Active
Demuxing

instantiates and
configures

Proprietary
(de)marshal

Perfect
Hashing

instantiates &
configures

Sensor and
Actuator
Factory

... ...Other
Strategies

Reactive

Warehouse
Management

Factory

Our use of ABSTRACT FACTORY simplifies ORB maintenance and configu-
ration by consolidating groups of ORB strategies with multiple alter-
native implementations that must vary together to ensure semantic
compatibility for different warehouse management process control
system subsystems.

6.10 Dynamic Configuration of ORBs

The cost of many computing resources such as memory and CPUs
continues to decrease. However, ORBs still must often avoid excessive
consumption of such finite system resources, particularly for real-
time and embedded systems that require small memory footprints
and predictable CPU processing overhead [GS98]. Similarly, many
applications can benefit from an ability to extend ORBs dynamically
by allowing the configuration of their strategies at runtime.

Although STRATEGY (455) and ABSTRACT FACTORY (525) make it easier
to customize ORBs for specific application requirements and sys-
tem characteristics in semantically compatible configurations, these
patterns can still cause the following problems:

• Excessive resource consumption. Widespread use of STRATEGY can
substantially increase the number of internal mechanisms

122 Communication Middleware

configured into an ORB, which can in turn increase the system
resources required to run the ORB and its applications.

• Unavoidable system downtime. If strategies are configured stat-
ically at build time using ABSTRACT FACTORY, it is hard to enhance
existing strategies or add new strategies without changing the exist-
ing source code for the consumer of the strategy or the abstract
factory, recompiling and relinking an ORB, and restarting running
ORBs and their application component instances to update them
with the new capabilities.

In general, static configuration is only feasible for a small and fixed
number of strategies. Using this technique to configure more sophis-
ticated, extensible ORBs complicates maintenance, increases system
resource consumption, and requires system downtime to add or
change existing component instances.

How can an ORB implementation reduce the ‘overly large, overly static’
side-effect of pervasive use of STRATEGY and ABSTRACT FACTORY?

Introduce a COMPONENT CONFIGURATOR (490) to dynamically link/unlink
custom strategy and abstract factory objects into an ORB at start-up
or runtime.

We use a component configurator in our CCM-based ORB to configure
abstract factories at runtime that contain the desired group of seman-
tically compatible strategies. The ORB’s initialization code uses the
dynamic configuration mechanisms provided by the operating system
platform and/or encapsulated by the wrapper facades in the ORB’s
OS adaptation layer to link in the appropriate factory for a partic-
ular use case. Commonly used dynamic configuration mechanisms
include the dlopen/dlsym/dlclose system functions in UNIX, the
LoadLibrary/GetProcAddress system functions in Windows, and
the Applet facilities in Java. By using COMPONENT CONFIGURATOR in con-
junction with these system functions, the behavior of the ORB can
be decoupled from when implementations of its internal mechanisms
are configured into the ORB as semantically compatible strategies.

ORB strategies can be linked into an ORB from dynamic link libraries
(DLLs) at compile time, start-up time, or even later during runtime.

Dynamic Configuration of ORBs 123

Moreover, COMPONENT CONFIGURATOR can reduce the memory footprint
of an ORB by allowing application developers to link dynamically
only those strategies that they need to configure the ORB for their
particular use cases. The figure below shows two factories tuned for
either the business logic or the sensor and actuator subsystems of
our warehouse management process control system.

HALF-SYNC/
HALF-ASYNC

CDR
(de)marshal

Active
Demuxing

instantiates and
configures

Proprietary
(de)marshal

Perfect
Hashing

instantiates and
configures

Sensor And
Actuator
Factory

Component
Repository

*

Component
Configurator

ORB Process DLL

... ...

Reactive

Warehouse
Management

Factory

In this particular configuration the WarehouseBusinessLogicFac-
tory is currently installed in the ORB’s process. Applications using
this ORB configuration will therefore be processed with the designated
set of ORB concurrency, (de)marshaling, and request demultiplexing
strategies, among others. In contrast, the SensorAndActuatorFac-
tory resides in a DLL outside the current ORB process. By using
COMPONENT CONFIGURATOR, this factory could be installed dynamically
when the ORB process starts to run.

Within the ORB process, the SensorAndActuatorFactory is main-
tained by a ComponentRepository that manages all currently loaded
configurable component instances in the ORB. The Component-
Configurator uses the ComponentRepository to coordinate the
(re)configuration of component instances, for example, by linking an
optimized version of the SensorAndActuatorFactory and unlinking
the current version.

124 Communication Middleware

COMPONENT CONFIGURATOR allows application developers to configure the
behavior of our ORB dynamically, to tailor the ORB to meet their
specific operational environments and application requirements. In
addition to enhancing flexibility, this also ensures that the ORB does
not incur the time and space overhead for strategies it does not use.
Moreover, COMPONENT CONFIGURATOR allows application developers to
configure the ORB without requiring access to, or modifications of,
the ORB source code, and often without having to shut down the
entire ORB to upgrade aspects of its behavior.

6.11 Communication Middleware Summary

The CCM-based ORB design described in this chapter is the product
of a pattern sequence that addresses fundamental ORB mechanisms
such as concurrency, transports, request and event demultiplexing,
and (de)marshaling, in a well-defined and time-proven manner. Our
key design goals were to keep the ORB configurable, extensible,
adaptable, and portable. The patterns in the sequence used to create
this design were selected, integrated, and implemented to achieve
these goals based on extensive experience of the application of these
patterns in other standard middleware, such as Web servers [POSA2]5

[HMS97], object-oriented network programming frameworks, such as
ACE [SH03], and networked applications, such as application-level
gateways [Sch00], electronic medical imaging systems [PHS96], and
avionics mission computing systems [SGS01]. The first two pat-
terns in the sequence, BROKER (237) and LAYERS (197), define the core
structure for our CCM-based ORB. BROKER separates application func-
tionality from communication middleware functionality, while LAYERS

separates different communication middleware services according to
their level of abstraction.

The third pattern in the sequence, WRAPPER FACADE (459) helps to
structure the lowest layer in the ORB’s design, the OS Abstraction

5 Chapter 1 in [POSA2] describes a pattern sequence for Web servers that includes
many of the patterns described in this chapter.

Communication Middleware Summary 125

Layer, into modular and independently usable building blocks. Each
wrapper facade provides a meaningful abstraction for a specific
responsibility and/or group of functionalities supported by an oper-
ating system, and encapsulates the corresponding API functions into
a type-safe, modular, and portable class. Higher layers of the ORB
can therefore be implemented without having explicit dependencies
on a specific platform.

The next set of patterns in the sequence focus on the server-side ORB
Core layer. In terms of the BROKER architecture, the server-side ORB
core plays the role of the INVOKER (244), which uses a SERVER REQUEST

HANDLER (249) to receive messages and requests from the network and
dispatch these messages and requests to their intended component
instance for further processing. REACTOR (259) provides a demultiplex-
ing and dispatching infrastructure for the SERVER REQUEST HANDLER

that can be extended to handle different event handling strategies,
and which is independent from low-level demultiplexing mechanisms
such as select and WaitForMultipleObjects. ACCEPTOR-CONNECTOR

(265) leverages REACTOR by introducing specialized event handlers for
initiating and accepting network connection events, thus separating
connection establishment from communication in an ORB core. HALF-
SYNC/HALF-ASYNC (359) and MONITOR OBJECT (368) augment REACTOR, so
that client requests can be processed concurrently, thereby improving
server-side ORB scalability.

The final three patterns in the sequence address configurability.
STRATEGY (549) is used wherever variability is possible for the ORB’s
mechanisms, such as its connection management, concurrency, and
event/request demultiplexing mechanisms. To configure the ORB
with a specific set of semantically compatible strategies, the client-
and server-side ORB implementations use an ABSTRACT FACTORY (549).
These two patterns work together to make it easier to create variants
of the ORB that are customized to meet the needs of particular
users and application scenarios. COMPONENT CONFIGURATOR (523) is used
to orchestrate updating of the strategies and abstract factories in
the ORB without modifying existing code, recompiling or statically
relinking existing code, or terminating and restarting an existing
ORB and its application component instances.

126 Communication Middleware

The following table summarizes the mapping between specific ORB
design challenges and the pattern sequence we used to resolve these
challenges.

Pattern Challenges

BROKER Defining the ORB’s baseline architecture

LAYERS Structuring ORB internal design to enable reuse and clean sepa-
ration of concerns

WRAPPER FACADE Encapsulating low-level system functions to enhance portability

REACTOR Demultiplexing ORB Core events effectively

ACCEPTOR-CONNECTOR Managing ORB connections effectively

HALF-SYNC/HALF-
ASYNC

Enhancing ORB scalability by processing requests concurrently

MONITOR OBJECT Efficiently synchronizing the HALF-SYNC/HALF-ASYNC request
queue

STRATEGY Interchanging internal ORB mechanisms transparently

ABSTRACT FACTORY Consolidating ORB mechanisms into groups of semantically com-
patible strategies

COMPONENT

CONFIGURATOR

Configuring consolidated ORB strategies dynamically

Analyzing this pattern sequence reveals that it helps to design ORBs
that not only meet the requirements of our warehouse management
process control system, but are also configurable to meet the require-
ments of distributed systems in many other domains. In particular,
we have used our pattern sequence to create a product-line archi-
tecture for a specific set of technological concerns—communication
middleware—within a larger product-line architecture for an applica-
tion domain—warehouse management process control. The architec-
ture and implementation of ORBs based on our pattern sequence are
thus extensible and reusable assets that not only meet our immediate
needs, but can also be applied productively well beyond the domain
of warehouse management.

Communication Middleware Summary 127

Consequently it is no surprise that the pattern sequence described
in this chapter forms the basis of several ORBs, including the
Component-Integrated ACE ORB (CIAO) [WSG+03], The ACE ORB (TAO)
[SNG+02], and ZEN [KSK04]. CIAO and TAO create a standards-based
C++ communication middleware platform by combining Lightweight
CCM [OMG04b] features, such as standard mechanisms for specify-
ing, implementing, packaging, assembling, and deploying component
instances, with Real-Time CORBA [OMG03a] [OMG05a] features, such
as thread pools, portable priorities, synchronizers, priority preserva-
tion policies, and explicit binding mechanisms. ZEN is an imple-
mentation of Real-Time CORBA that uses Real-Time Java [BGB+00]
features such as scoped memory and real-time threads.

CIAO, TAO, and ZEN are open source [DOC] and have been used
in many commercial distributed systems, ranging from avionics and
vehtronics, factory automation and process control, telecommunica-
tion call processing, switching, network management, and medical
engineering and imaging. Many of these systems need real-time sup-
port to meet their stringent computation time, execution period, and
bandwidth/delay requirements. Due to its flexible, patterns-based
design, however, CIAO, TAO, and ZEN are also well suited for dis-
tributed applications that require conventional ‘best-effort’ support.
Using patterns that focus on both performance and configurability,
including the pattern sequence outlined in this chapter, helped to cre-
ate a product-line architecture for CIAO, TAO, and ZEN that meets all
these requirements, while still being compact and comprehensible.

Further coverage on the patterns in TAO and ZEN appear in [SC99]
[CSKO+02] and [KSS05].

7 Warehouse Topology

Topology provides the synergetic means of ascertaining
the values of any system of experiences.

Topology is the science of fundamental pattern and
structural relationships of event constellations.

Buckminster Fuller

The second chapter in our pattern story is about a specific domain
object in the warehouse management process control system: the
warehouse topology. We describe its internal design for the represen-
tation and access of physical warehouse storage, the extension and
adaptation of this storage structure to warehouse-specific needs, and
the integration of the warehouse topology design with the system’s
baseline architecture.

130 Warehouse Topology

7.1 Warehouse Topology Baseline

Within a warehouse management process control system, the main
responsibility of the warehouse topology DOMAIN OBJECT (208) is to
provide a representation of the physical warehouse structures to
other domain objects, mainly to the warehouse management and
material flow control. The system’s baseline architecture defines the
fundamental structure for the warehouse topology domain object:
its partitioning into an EXPLICIT INTERFACE (281) and an ENCAPSULATED

IMPLEMENTATION (313), a HALF-OBJECT PLUS PROTOCOL (324) distribution
architecture, and an ACTIVE OBJECT (365) concurrency model.

Warehouse Topology
HoPP Proxy

Warehouse
Topology

Half-Object

W
ar

eh
ou

se
T

op
ol

og
y

In
te

rf
ac

e

Client F

Activation
List

Scheduler

Warehouse Topology Half-ObjectClient A

Client B

W
ar

eh
ou

se
 T

op
ol

og
y

In
te

rf
ac

e

Client C

Client D

W
ar

eh
ou

se
 T

op
ol

og
y

In
te

rf
ac

e

Warehouse Topology
HoPP Proxy

is passed to

Objectified
Request

Objectified
Request

is passed to

Client Thread
Two

to/ from the
local broker

Client Thread
One topology functionality

executes

HoPP coordination

pending
requests

retrieves

Active Object Threads

Topology
Representation

Topology
Representation

Representing Hierarchical Storage 131

7.2 Representing Hierarchical Storage

When specifying the encapsulated implementation for the warehouse
topology domain object, the first challenge that arises is to provide
a model of physical storage hierarchies, transportation facilities, and
the associations between the two that is suitable for representing any
real-world warehouse structure. For example, warehouses can differ
in size, organization of storage, and the types of storage that are avail-
able. Over time it can also happen that the structure of a warehouse
is reorganized, for example because it is extended or modernized, or
because new types of storage are installed that were not previously
available. The corresponding software model of the warehouse struc-
ture must support such reorganizations without effects on any part
that is not reorganized.

How can we represent arbitrary real-world storage structures within
the warehouse topology DOMAIN OBJECT (208) and support their flexible
rearrangement and evolution?

Capture the warehouse structures in a COMPOSITE (319) arrangement
to model their hierarchical organization transparently for clients using
that structures.

A Storage class defines the root of the representation and offers an
EXPLICIT INTERFACE (281) that is shared by all elements of a concrete
storage hierarchy, such as for storing and fetching items, checking
the available storage capacity, and accessing information about the
stored items. Two classes descend directly from Storage: Aggre-
gateStorage provide the data structures and methods common to
all compound storage types, such as aisles, and AtomicStorage
the data structures and methods common to all elementary storage
types, such as bins. All concrete storage types are derived from these
two classes: Aisle, Side, and Rack, for instance, represent aggre-
gate storage, while Bin, TransferBin, Door, and Dump represent
atomic storage.

Transportation facilities integrate seamlessly with this structure.
From a general perspective, a transportation facility is just a special
class of storage: you can store items on it, fetch items from it, check
its available capacity, access information about the stored items, and
so on. The only difference from ‘real’ storage is that transport facilities

132 Warehouse Topology

are mobile and proactive, as opposed to being immobile and reactive:
a fork lift fetches and stores items, while a bin has items stored in it
and fetched from it. There can also be aggregate transport facilities,
such as trains with several carts.

A transportation facility can be associated with physical storage
by a transportationFacility relationship between two Storage
instances: if a specific transportation facility serves a specific (set
of) physical storage, such as a stacker crane serving all bins and
transfer bins in an aisle, this can be expressed by associating the
corresponding stacker crane and aisle objects in the hierarchy.

Aggregate
Storage

Atomic
Storage

* aggregated storage

Bin Door Cart Aisle Side Train

transportation
facility*

further

storage

types

store
fetch
capacity
...

Storage

A COMPOSITE arrangement directly supports the creation of arbitrary
storage hierarchies, such as the one illustrated in the following dia-
gram, as well as their rearrangement:

Warehouse

Door Aisle1

LeftSide RightSide

ForkLift1 Stacker
Crane1

Transfer
Bin

Rack1 Rack12
further
storage
elements

Bin1 ... further bins ...

... further racks ...

... further aisles ...

Bin10

Navigating the Storage Hierarchy 133

COMPOSITE also supports our extensibility and restructuring require-
ments: new storage and transportation facility types are realized
by integrating corresponding new storage and transportation facility
classes into the hierarchy. The modification or removal of exist-
ing storage and transformation facility classes does not affect other
classes in this structure.

Last but not least, COMPOSITE arrangements map easily onto the
HALF-OBJECT PLUS PROTOCOL (324) distribution strategy for realizing
a federated warehouse topology domain object. The root composite
elements of all half-objects are connected via an appropriate protocol.
From a logical perspective, this allows clients of the warehouse topol-
ogy to access the entire warehouse structure, regardless of how it is
distributed across a network. Similarly, a concrete COMPOSITE hierar-
chy maps onto the ACTIVE OBJECT (365) concurrency model: different
sub-trees are assigned to different active objects. For example, there
could be an active object per warehouse site, per building, per aisle,
or per side of an aisle, dependent on the corresponding parallelism
in the real world.

Within an active object there is potential for further parallelism. For
example, if an active object represents a warehouse site, it could
contain a pool of threads in which each thread contains the COMPOSITE

hierarchy of a different warehouse building at that site.

7.3 Navigating the Storage Hierarchy

One of the key operational requirements for the warehouse man-
agement process control system is performance. In the context of
realizing the warehouse topology domain object, the essential mea-
sures to address performance are the HALF-OBJECT PLUS PROTOCOL (324)
distribution strategy and the ACTIVE OBJECT (365) concurrency model.
But performance also matters within the COMPOSITE (319) arrange-
ment of the warehouse representation: the faster we can access
specific storage elements in the hierarchy, the faster the correspond-
ing requests can be served and processed, and the greater becomes
the overall request throughput.

134 Warehouse Topology

A COMPOSITE arrangement, however, most simply supports a strict top-
down navigation: requests for access to a specific implementation of a
storage element always enter the hierarchy at its top and ‘fall down’ a
specific path until they arrive at their designated receivers. The deeper
the hierarchy and the more legs in a path cross process or thread
boundaries, the less feasible this strategy becomes. Specifically, it
becomes problematic if a number of subsequent requests ‘land’ in
the same area of the hierarchy, such as the same side or rack in an
aisle, which is a common situation when processing large shipping or
receiving orders for a specific item. In this case it would be better to
navigate up the COMPOSITE hierarchy from the current storage element,
which is typically a bin, to the next or second-next higher-level storage
element, for example the aisle that contains the bin, and then down
again to another lower-level storage element, such as another bin in
the aisle. Compared to a strict top-down propagation of requests, this
strategy would save a number of ‘hops,’ and in most cases there is
also no need to cross thread or process boundaries.

How can we support bidirectional navigation through a COMPOSITE

storage hierarchy so that each storage element in this hierarchy can
be reached from any other storage element most efficiently?

Connect all storage elements in the hierarchy to their next higher-level
storage element to form CHAINS OF RESPONSIBILITY (440) from all leaves to
the root. Navigate down the hierarchy via the COMPOSITE infrastructure
and up via the CHAINS OF RESPONSIBILITY.

Integrating CHAIN OF RESPONSIBILITY into our design for representing
physical warehouse structures is straightforward: the class Storage
is extended with a parent relationship to itself.

Aggregate
Storage

Atomic
Storage

* aggregated storage

Bin Door Cart Aisle Side Train

transportation
facilityparent *

further

storage

types

store
fetch
capacity
...

Storage

Modeling Storage Properties 135

In a concrete warehouse configuration, storage elements in the hier-
archy that represent ‘real’ storage are connected to their associated
aggregate storage to support bidirectional navigation.

Warehouse

Door Aisle1

LeftSide RightSide

ForkLift1 Stacker
Crane1

Transfer
Bin

Rack1 Rack12
further
storage
elements

Bin1 ... further bins ...

... further racks ...

... further aisles ...

Bin10

Bidirectional linkage of the storage elements in the COMPOSITE hier-
archy ensures that each storage element can be reached by any
other storage element with the minimal number of hops and thread
boundary crossings.

7.4 Modeling Storage Properties

Each storage unit, transportation facility, and item in a warehouse is
associated with specific properties. These properties are called storage
organization criteria (SOC) and determine the type of items that can be
stored in a particular storage unit, or which can be transported with
a specific transportation facility. Examples for storage organization
criteria are throughput class, hazard class, and temperature class.
For each criteria there are specific, enumerable sets of allowed values,
such as fast, medium, and slow runner for the throughput class.
Domain functionality in a warehouse management process control
system uses this information to determine the destination of an item

136 Warehouse Topology

that should be stored in the warehouse, the intermediate legs from
the item’s current location to its destination, and the transportation
facilities to transport the item on each leg. For example, an item that
is supposed to be stored for only a short time and fetched again
quickly is a fast runner in terms of the throughput class, and should
be stored only in storage intended for fast runners. Similarly, an item
that has a certain hazard class value, such as flammable, should only
be transported by transportation facilities suitable for transporting
flammable items.

The storage organization criteria of a specific storage unit, transporta-
tion facility, and item change only rarely over time—if at all—such
as when a warehouse gets modernized. During normal warehouse
operation they are fixed and are not modifiable: once assigned to a
specific storage unit, transportation facility, or item, a storage orga-
nization criterion can only be exchanged explicitly by corresponding
administration functionality.

A problem arises, however, from the sheer mass of storage organi-
zation criteria that must be maintained in a concrete installation
of the warehouse management process control system. Associating
each storage unit, transportation facility, and item with its own, pri-
vate collection of relevant storage organization criteria values could
require an immense amount of memory: just consider a warehouse
with over a million bins. In addition, much memory would be ‘wasted’
because many warehouse topology elements share the same storage
organization criteria, but to ensure proper warehouse operation it is
necessary that each of them actually is associated with a well-formed
storage organization criteria collection.

How can we provide each storage, transportation facility, and item in
a warehouse with a vector of relevant storage organization criteria, but
avoid massive consumption of memory?

Realize the values of the storage organization criteria as IMMUTABLE

VALUES (555) that can be shared amongst multiple elements of a ware-
house topology.

Each storage, transportation facility, and item maintains a collec-
tion of immutable storage organization criteria that are assigned
during the configuration of a concrete warehouse. This collection is

Varying Storage Behavior 137

maintained by the Storage class in our current design, the root of
the COMPOSITE (319) hierarchy.

An IMMUTABLE VALUE (396) can be shared easily among different storage,
transportation facilities, and items—even across multiple threads of
control. In addition, immutable values cannot be modified by domain
functionality in the warehouse management process control system,
but must be exchanged explicitly by corresponding administration
functionality via FACTORY METHODS (529).

Aggregate
Storage

Atomic
Storage

* aggregated storage

Door Cart Aisle Side Train

transportation
facilityparent *

further
storage
types

store
fetch
capacity
...

Storage

Bin

SOC

Throughput
Class

Hazardous
Class

Slow
Runner

SOC
Factory

n

further
SOC
types

*
SOC vector

SOC

Medium
Runner

Fast
Runner

7.5 Varying Storage Behavior

The COMPOSITE (319) design for representing a concrete warehouse
topology supports a common, explicit interface that can be realized
differently for different types of storage and transportation facility. For
example, storing an item in an aisle means selecting an appropriate
side and rack in the aisle and then a specific bin in the selected rack,
while storing an item in a bin means associating the item’s identity
with the bin.

138 Warehouse Topology

However, the concrete behavior of a specific method in the common
interface not only differs across different storage types: it can also
vary among different instances of the same storage type. For example,
in an almost empty aisle, items are stored in ‘layers’ from the bottom
to the top across all racks, whereas in an aisle in which occupation
exceeds a specific threshold, items can be stored in ‘piles,’ filling one
rack after the other. The first storing strategy is less optimal in terms
of throughput, because a transportation facility like a stacker crane
must move longer distances to store and fetch a specific quantity
of items, but it keeps the center of gravity towards the aisle’s base
and thus ensures the static stability of the racks. The second strat-
egy stores items geographically densely, which ensures short moving
distances when storing and fetching items, and thus a high through-
put, but only works safely if piling up the racks does not endanger
the stability of the aisle. Ideally the storage strategy of an aisle can
change over time, dependent on its current state, so that at any time
the most appropriate storage strategy is used.

How can we support multiple implementations for the methods of a
class in the COMPOSITE hierarchy as well as the runtime exchange of the
‘active’ method implementation?

Provide STRATEGIES (455) for all methods that can vary, using polymor-
phism to configure and reconfigure storage elements in a COMPOSITE

arrangement with appropriate method implementations.

In terms of STRATEGY, the Storage class in our current design plays
the role of the context. Methods whose behavior can differ across
instances of a class in the COMPOSITE hierarchy are specified as an
EXPLICIT INTERFACE (281) in the StorageStrategy class, for example
fetch and store, and implemented in its subclasses, such as Stor-
eInLayers and StoreInPiles. The class Storage is enriched with
a method to configure a specific instance in a COMPOSITE arrangement
with a concrete storage strategy.

STRATEGY supports the provision of instance-specific method imple-
mentations for the common COMPOSITE interface, as well as their
runtime exchange. The latter is possible by both an explicit trigger
through invoking the configuration method of the Storage class, or
by some logic internal to the classes in the COMPOSITE hierarchy.

Varying Storage Behavior 139

Aggregate
Storage

Atomic
Storage

* aggregated storage

Door Cart Aisle Side Train

transportation
facilityparent *

further
storage
types

store
fetch
capacity
...

Storage

Bin

SOC

Throughput
Class

Hazardous
Class

SOC
Factory

n

further
SOC
types

further
SOC
types

*
SOC vector

SOC

Fast
Runner

store
fetch

Storage
Strategy

uses

StoreIn
Layers

StoreIn
Piles

TEMPLATE METHOD (453) is an alternative to STRATEGY that provides
an equally feasible solution to support the variation of functional
behavior in a class. STRATEGY resolves the problem via delegation,
TEMPLATE METHOD by inheritance. However, in accordance with the
‘Scandinavian school of object-orientation,’ the architecture directives
for designing the warehouse management process control system
favour delegation over inheritance in the case in which a relationship
between classes is not purely structural. STRATEGY was therefore pre-
ferred over TEMPLATE METHOD in the design of the warehouse topology
domain object.

140 Warehouse Topology

7.6 Realizing Global Functionality

Some warehouse topology management functions, such as gather-
ing statistical information or reorganization, operate on the entire
warehouse topology. These functions traverse all or a large number
of storage elements and perform storage-specific actions on them.
Reorganization of a warehouse, for example, can be compared to
de-fragmenting a hard disk: over time many storing and fetching
operations can ‘fragment’ the storage in a warehouse, so that racks
are only sparsely filled and specific items are dispersed across the
entire warehouse. This can decrease the throughput of a warehouse,
because transportation facilities need more time to handle a spe-
cific quantity of items. Regular warehouse reorganizations ‘clean-up’
the warehouse by re-storing items such that subsequent warehouse
operations can be executed efficiently again.

However, the current COMPOSITE-based (319) design supports only
functions that operate locally on one or more (pre-selected) storage
elements in a concrete warehouse topology, such as storing, fetching,
and transporting an item. Functionality like reorganization that oper-
ates globally on many storage elements can hardly be modularized in
this way: it must be split into different parts that are implemented
across multiple classes. In consequence, such functions become hard
to understand and maintain, because their logic and control flow is
scattered across multiple elements of design and code. In addition,
the coupling between the classes of the COMPOSITE hierarchy increases,
because changes to the global functionality in one class may require
subsequent changes in other classes. As this coupling is also implicit
rather than explicit, it also violates fundamental design principles for
well-structured software, and the design looks more decoupled than
it actually is.

How can we support the realization of global topology management
functionality in a strictly modular fashion but without violating the
structural properties of the current COMPOSITE-based design?

Implement global topology management functionality as VISITORS (447)
that traverse all storage elements of a concrete warehouse topology to
perform (local) operations on selected storage elements.

Realizing Global Functionality 141

The integration of visitors into our design is very similar to the inte-
gration of strategies for varying class-specific behavior. A GlobalOp-
eration class declares the visit methods for each concrete storage
class in the COMPOSITE design. It acts as an EXPLICIT INTERFACE (281) for
all global warehouse topology management functions, which are real-
ized by subclasses that implement the visit methods accordingly.
The class Storage is extended with an accept method to accept a
VISITOR, while the concrete storage classes in the COMPOSITE hierarchy
implement this accept method by calling back the corresponding
visit method on the visitor.

Using VISITOR to realize functions that operate on large portions of
the warehouse topology helps to keep the design modularized and
tangible: different concerns, such as storage-local and storage-global
functions, are clearly separated from one another. For performance
optimizations, visitors can run in their own thread of control, so that
other operations can be executed while the visitors are active.

Aggregate
Storage

Atomic
Storage

* aggregated storage

Door Cart Aisle Side Train

transportation
facilityparent *

further
storage
types

store
fetch
...

Storage

Bin

SOC

Throughput
Class

Hazardous
Class

SOC
Factory

n

further
SOC
types

*
SOC vector

SOC

store
fetch

Storage
Strategy

uses

StoreIn
Layers

StoreIn
Piles

Fast
Runner

further

SOC

values

Reorgani-
zation

visitBin
visit...

Global
Operation

Statistics

operates on

calls back

accept

142 Warehouse Topology

7.7 Traversing the Warehouse Topology

Many warehouse management operations, to execute properly, need
to traverse the warehouse topology as a whole. For example, collecting
statistical information requires visiting each storage unit in a ware-
house, while storing or fetching an item requires selecting an appro-
priate specific storage.

However, integrating traversal functionality into the corresponding
warehouse management operations would make them dependent on
the concrete COMPOSITE (319) structure for representing the warehouse
topology. Similarly, integrating the traversal functionality into the
COMPOSITE hierarchy itself requires a complex infrastructure to support
multiple simultaneous traversals.

How can we support sequential access to the storage elements of the
warehouse topology without exposing its underlying structure?

Use ITERATORS (298) to realize traversal strategies separately from both
the warehouse topology representation and the operations that need
access to it, and let concrete ITERATOR instances maintain the state of a
specific traversal.

An Iterator class defines an EXPLICIT INTERFACE (281), for example a
COMBINED METHOD (296) called next, to access and traverse the storage
elements of the warehouse topology. Concrete subclasses implement
specific traversal strategies, such as traversing only atomic storage,
or only transportation facilities. Clients can obtain an iterator for the
storage hierarchy by calling a FACTORY METHOD (529) provided by the
Storage class.

Factoring out traversal strategies into separate iterators not only
keeps domain functionality and core data structures in our design
free from ‘utility aspects’ such as accessing data in a specific man-
ner. It also supports addition, removal, and modification of traversal
strategies without affecting other classes in the design, and enables
the (dynamic) configuration and reconfiguration of domain function-
ality with different traversal strategies.

Traversing the Warehouse Topology 143

The following diagram illustrates the use of ITERATOR in the design of
the warehouse topology domain object.

Aggregate
Storage

Atomic
Storage

* aggregated storage

Door Cart Aisle Side Train

transportation
facilityparent *

further
storage
types

store
fetch
...

Storage

Bin

SOC

Throughput
Class

Hazardous
Class

SOC
Factory

n

further
SOC
types

*
SOC vector

SOC

uses

uses uses

Fast
Runner

further
SOC
values

Reorgani-
zation

visitBin
visit...

Global
Operation

Statistics

operates on

calls back

createlter

store
fetch

Storage
Strategy

StoreIn
Layers

StoreIn
Piles

next

Iterator

AllStorage
Iterator

AtomicStorage
Iterator

...

At first glance VISITOR (447) would seem to be an alternative to ITERATOR.
Like an iterator, a visitor would allow us both to separate the ware-
house topology representation from traversal functionality and to
support multiple concurrent traversals. However, a visitor realizes
its functionality using double-dispatch. This mechanism is appropri-
ate in cases in which traversal is paired with (domain) functionality
specific to the visited storage element, such as reorganization, but
overly complex for realizing simple one-by-one access to elements of
the warehouse topology.

144 Warehouse Topology

7.8 Supporting Control Flow Extensions

The current design of the warehouse topology domain object supports
all operations that its two main clients, the warehouse management
and material flow control domain objects, need for their own execu-
tion.

Some instances of the warehouse management process control sys-
tem, however, need more support from the warehouse topology than
is provided by its published functionality. For example, it may be
necessary to monitor the execution of transportation orders at very
fine granularity, or to inform operation-level systems about the
current state and progress of long-duration actions such as stor-
age reorganization. Integrating such special-purpose functionality
directly into the warehouse topology domain object is not practical,
though: over time this would pollute its lean design with structures
and code that only one or a few system installations actually need.
After a while the original, thoughtfully chosen design of the ware-
house topology domain object would be almost invisible, or even
eradicated.

How can we support out-of-band control flow extensions for the ware-
house topology DOMAIN OBJECT (208) but avoid their direct integration
into its core design?

Realize out-of-band control flow extensions as pluggable INTERCEPTORS

(467) that are called when specific events internal to the warehouse
topology DOMAIN OBJECT occur.

An Interceptor class specifies an EXPLICIT INTERFACE (281) to which
all interceptors must conform. Concrete interceptors implement this
interface to perform a specific out-of-band functionality. For example,
a MonitoringInterceptor could collect information about the cur-
rent computational state of the warehouse topology domain object
and provide it to a monitoring tool for further processing and display,
while a GatewayInterceptor could report the progress of long-
duration actions to the gateway for a system at the operation level,
such as SAP. Concrete interceptors register with the Storage class
as OBSERVERS (428) for events of interest, such as the start, end, and

Supporting Control Flow Extensions 145

specific intermediate states of long-duration actions, so that specific
storage classes in the COMPOSITE (319) hierarchy can call them back
when these events occur. If necessary, information about the current
computational state of the warehouse topology is passed along with
the callback.

Aggregate
Storage

Atomic
Storage

* aggregated storage

Door Cart Aisle Side Train

transportation
facilityparent *

further
storage
types

store
fetch
...

Storage

Bin

SOC

Throughput
Class

Hazardous
Class

SOC
Factory

n

further
SOC
types

*

*

SOC vector

SOC

uses

uses uses

Fast
Runner

further
SOC
values

visitBin
visit...

Global
Operation

operates on

calls back

calls back

register

store
fetch

Storage
Strategy

interceptorBin
interceptor...

Interceptor

Gateway
Interceptor

Monitoring
Interceptor

next

Iterator

...

interceptors
registers with

Reorgani-
zation StatisticsStoreIn

Layers
StoreIn
Piles

AllStorage
Iterator

AtomicStorage
Iterator

As a result of providing a framework for pluggable INTERCEPTORS, the
core design of the warehouse topology domain object is opened to
customer- and system-specific extensions to its existing function-
ality, while still remaining lean and stable, and therefore closed to
uncontrolled changes.

Out-of-band control flow extensions can also be supported via a
DECORATOR (449) design that wraps existing classes to provide addi-
tional functionality or behavior. However, decorators only allow new
methods to be added to a class, or preprocessing and post-processing
actions to existing methods, but not additional control flow within a
given method. We therefore preferred interceptors over decorators in
the design of the warehouse topology domain object.

146 Warehouse Topology

7.9 Connecting to the Database

As outlined in Chapter 4, Warehouse Management Process Control,
the topology of a warehouse is maintained persistently in a database.
A DATABASE ACCESS LAYER (538) ensures that the architecture of the
warehouse management process control system is independent of a
concrete database interface and also of a specific database paradigm.
However, performance and throughput requirements mean that it is
not practical to manipulate the entire warehouse topology within the
database: we also need an in-memory representation to be able to
execute operations on the topology efficiently. On the other hand,
keeping a complete model of the warehouse topology in memory is
not practical: for larger warehouses, the amount of memory that is
necessary to maintain the topology would exceed the available mem-
ory significantly, even if the topology is distributed across multiple
hosts.

How can we ensure that whenever a specific storage element is
accessed by an operation on the warehouse topology, the storage
element is available in main memory?

Provide VIRTUAL PROXIES (497) for all atomic storage in the warehouse
topology. Whenever atomic storage is accessed via its VIRTUAL PROXY,
its data is loaded from the database into main memory before the
invoked operation is executed. Once a storage element is available in
main memory, keep it there so that subsequent accesses can execute
efficiently.

Providing a PROXY-based solution for accessing atomic storage
increases the structural complexity of the warehouse topology domain
object, but the performance gained once storage data is loaded into
main memory outweighs by far the penalties of this design. For per-
formance optimizations, it is also possible to bypass the proxy once
the data of the atomic storage is available in main memory. Pro-
viding virtual proxies for aggregate storage is technically possible,
but because aggregate storage is accessed so frequently, it is more
efficient to maintain its data constantly in memory rather than load
it on demand. In addition, compared to the number of atomic storage
elements, there are only very few aggregate storage elements in a
concrete warehouse configuration, so that memory is not wasted.

Maintaining In-Memory Storage Data 147

Supporting virtual proxies for atomic storage is straightforward: a
StorageProxy class derives from the Storage class and maintains a
relationship to a specific AtomicStorage, for example via its primary
key. When the proxy is accessed, it uses the primary key to load the
storage’s data and execute the operation invoked on it.

Aggregate
Storage

Atomic
Storage

* aggregated storage

Door Cart Aisle Side Train

transportation
facilityparent *

further
storage
types

store
fetch
...

Storage

Bin

SOC

Throughput
Class

Hazardous
Class

SOC
Factory

n

further
SOC
types

*

*

SOC vector

SOC

uses

uses uses

Fast
Runner

further
SOC
values

visitBin
visit...

Global
Operation

operates on

calls back

calls back

register

store
fetch

Storage
Strategy

interceptorBin
interceptor...

Interceptor

Gateway
Interceptor

Monitoring
Interceptor

next

Iterator

...

interceptors
registers with

Reorgani-
zation StatisticsStoreIn

Layers
StoreIn
Piles

AllStorage
Iterator

AtomicStorage
Iterator

Storage
Proxy

7.10 Maintaining In-Memory Storage Data

Although the introduction of proxies into the warehouse topology
design supports performance and throughput goals, it also incurs a
significant drawback. Storage data loaded into main memory via the
proxies is not erased once the invoked operation terminates: instead
it is kept in memory to support the efficient execution of subsequent
operations. After a while all available memory could be in use, making
it impossible to load further storage data from the database.

148 Warehouse Topology

Modifying the behavior of the proxies so that they delete their associ-
ated data once an operation is executed is not an appropriate solution
to this problem: we would face the same performance issues as we
addressed with the original proxy realization!

How can we keep the original VIRTUAL PROXY (497) design for represent-
ing atomic storage, but avoid running out of memory?

Provide a fixed size RESOURCE CACHE (505) for maintaining the repre-
sentation of the warehouse structure in memory. If the RESOURCE CACHE

becomes full, erase storage data that is no longer used so that new
storage data can be loaded safely into main memory via their PROXIES.

Maintaining warehouse storage data in a cache introduces resource
management into our warehouse topology design. This allows us to
alleviate the drawback of the PROXY-based access to atomic storage
over uncontrolled memory consumption to an acceptable minimum,
but still keep its performance advantages.

Aggregate
Storage

Atomic
Storage

* aggregated storage

Door Cart Aisle Side Train

transportation
facilityparent

*

further
storage
types

store
fetch
...

Storage

Bin

SOC

Throughput
Class

Hazardous
Class

SOC
Factory

n

further
SOC
types

*

*

SOC vector

SOC

uses

uses uses

Fast
Runner

further
SOC
values

visitBin
visit...

Global
Operation

operates on

calls back

calls back

register

store
fetch

Storage
Strategy

interceptorBin
interceptor...

Interceptor

Gateway
Interceptor

Monitoring
Interceptor

next

Iterator

...

interceptors
registers with

Reorgani-
zation StatisticsStoreIn

Layers
StoreIn
Piles

AllStorage
Iterator

AtomicStorage
Iterator

Storage
Proxy

Cache
maintains

Configuring the Warehouse Topology 149

7.11 Configuring the Warehouse Topology

The design we created for the warehouse topology domain object
offers a variety of configuration options: interceptors, visitors, strate-
gies, and iterators support flexible adaptation to warehouse-specific
behavior, while the COMPOSITE (319) hierarchy supports the integration
of warehouse-specific storage structures.

However, configuring a specific instance of the warehouse topol-
ogy domain object is non-trivial. Semantic dependencies can occur
between configuration options—for example, specific visitors might
require specific iterators to work correctly—and configuration options
must often be installed in a defined order. A ‘manual’ and explicit
configuration of each option via an appropriate interface is theoreti-
cally possible, but opens the door to subtle configuration errors that
can remain unnoticed until the warehouse topology is misbehaving
during system operation.

How can we configure the warehouse topology DOMAIN OBJECT (208)
both simply and correctly?

Use a BUILDER (527) internal to the warehouse topology DOMAIN OBJECT

to check a specific set of configuration options for consistency, create
each configuration option, and integrate all options at the right place
and in the right order.

The system’s central COMPONENT CONFIGURATOR (490) infrastructure
passes the set of storage classes, interceptors, visitors, strategies,
and iterators that should be configured into the warehouse topology
to its internal BUILDER arrangement via an appropriate configuration
method in the explicit interface of the warehouse topology domain
object. A ConfigurationDirector controls the configuration process:
it checks the received configuration for consistency and, if it is valid,
instructs a ConfigurationBuilder to install each element of the
configuration in the correct order. The ConfigurationBuilder first
creates the respective configuration element, then integrates it at the
appropriate place in the warehouse topology structure. In terms of
BUILDER, the concrete storage classes, interceptors, visitors, strategies,
and iterators that are configured play the role of products.

150 Warehouse Topology

The following diagram outlines a simplified example configuration for
the warehouse topology domain object.

Aggregate
Storage

Atomic
Storage

* aggregated storage

Door Cart Aisle Side Train

transportation
facilityparent *

further
storage
types

store
fetch
...

Storage

Bin

SOC

Throughput
Class

Hazardous
Class

SOC
Factory

n

further
SOC
types

*

*

SOC vector

SOC

uses

uses uses

Fast
Runner

further
SOC
values

visitBin
visit...

Global
Operation

operates on

calls back

calls back

register

store
fetch

Storage
Strategy

interceptorBin
interceptor...

Interceptor

Gateway
Interceptor

Monitoring
Interceptor

next

Iterator

...

interceptors
registers with

Reorgani-
zation StatisticsStoreIn

Layers
StoreIn
Piles

AllStorage
Iterator

AtomicStorage
Iterator

Storage
Proxy

Cache
maintains

ConcConfig
Builder

Configuration
Director

uses

creates and configures

Using a BUILDER arrangement to configure concrete instances of the
warehouse topology domain object supports simplicity, efficiency,
and correctness. Simplicity is supported because neither clients of
the warehouse topology nor its domain functionality are responsible
for the correctness of the configuration. Instead, there is a separate
dedicated entity: the builder. Efficiency is supported because the
builder is internal to the warehouse topology domain object, so that
the implementation of its configuration process can take advantage
from having access to and knowledge of the warehouse topology’s con-
crete design and implementation. Correctness is supported because
the builder realizes an explicitly coded and tested configuration strat-
egy that integrates the different configuration options in the right
order and the right place.

Detailing the Explicit Interface 151

7.12 Detailing the Explicit Interface

The baseline architecture of the warehouse management process con-
trol system specifies that each domain object must provide an explicit
interface through which its functionality is remotely accessible.

However, domain objects like the warehouse topology offer a wide
range of different functions to their clients, but different clients only
use parts of this functionality. Providing a single explicit interface for
the entire warehouse topology runs the risk of introducing undesir-
able implicit dependencies between domain objects of the system. For
example, if a client domain object does not use all offered functions
of the warehouse topology, but the signature of an unused function
evolves, the client must be recompiled and relinked even though its
usage of the warehouse topology is unchanged. Similarly, if the inter-
face of the warehouse topology is extended with new functionality that
is not used by the client, it must also be recompiled and relinked.
Ideally, clients of the warehouse topology must only be changed if
their usage of the warehouse topology changes, for example because
they use new or additional functionality, or because they use existing
functionality differently.

How can we ensure that changes to an EXPLICIT INTERFACE (281)—be
it the modification of the signature of an existing function or the
provision of new functions—affect clients of the interface only if they
are interested in such changes?

Partition the EXPLICIT INTERFACE into role-specific EXTENSION INTERFACES

(284) with one or more extension interfaces per role. Never change a
published extension interface: if a DOMAIN OBJECT (208) must provide
additional roles, introduce corresponding new extension interfaces,
and if an existing role evolves, offer an additional extension interface
for the changed role, but still support the original extension interfaces.

Within the EXTENSION INTERFACE arrangement for the warehouse topol-
ogy, a RootInterface offers functionality to access any individual
extension interface, as well as to navigate between all provided exten-
sion interfaces. Concrete and role-specific extension interfaces derive
from this RootInterface, for example Configuration, Routing, and

152 Warehouse Topology

Statistics interfaces. Clients can obtain an initial extension inter-
face onto the warehouse topology via a TopologyInterfaceFactory.
Once a client has access to a specific extension interface, it can use
the interface’s navigation functionality to access any other extension
interface provided by the warehouse topology, provided that the client
has appropriate access rights.

The diagram below sketches the EXTENSION INTERFACE design for the
warehouse topology:

Con-
figuration

Activation
List

Scheduler

Warehouse Topology Half-Object

Warehouse Topology
HoPP Proxy

executes

HoPP coordination

pending
requests

retrieves

Topology Representation

Client

Root
Interface

Statistics

further
Extension
Interfaces

Topology
Interface
Factory

Warehouse Topology Interface

is passed to

Objectified
Request

Client Thread Warehouse Topology
Active Object Threads

topology functionality

creates or
retrieves

issues
requests to

retrieves
interfaces
from

Routing

Aggregate
Storage

Atomic
Storage

* aggregated storage

Door Cart Aisle Side Train

transportation
facilityparent *

further
storage
types

store
fetch
...

Storage

Bin

SOC

Throughput
Class

Hazardous
Class

SOC
Factory

n

further
SOC
types

*

*

SOC vector

SOC

uses

uses uses

Fast
Runner

further
SOC
values

Reorgani-
zation

visitBin
visit...

Global
Operation

Statistics

operates on

calls back

calls back

register

store
fetch

Storage
Strategy

StoreIn
Layers

StoreIn
Piles

interceptorBin
interceptor...

Interceptor

Gateway
Interceptor

Monitoring
Interceptor

next

Iterator

AllStorage
Iterator

AtomicStorage
Iterator

...

interceptors
registers with

Storage
Proxy

Cachemaintains

ConcConfig
Builder

Configuration
Director

uses

creates and configures

Providing role-specific extension interfaces for the warehouse topol-
ogy contributes significantly to its openness to controlled evolution.
The fundamental partitioning of this domain object into an explicit
interface that is separated from its encapsulated implementation
supports client stability if the implementation changes. Extension
interfaces add to this and support client stability even in the case of
specific changes and extensions to the warehouse topology’s public
contract. In particular, a client that uses a specific extension inter-
face is unaffected by the addition of new extension interfaces to the

Warehouse Topology Summary 153

warehouse topology or if other, unused extension interfaces change.
The client is also unaffected if is not ‘interested’ in the evolution of an
extension interface that it uses, because the old version is still sup-
ported. On the interface side, therefore, extension interfaces complete
and complement the flexible design we created for the encapsulated
implementation of the warehouse topology.

7.13 Warehouse Topology Summary

Taking a bird’s-eye view of the pattern sequence we applied to design
the warehouse topology DOMAIN OBJECT (208) reveals that even though
this design is specific to the warehouse management domain, we
received concrete guidance from our general pattern language for
distributed computing to create this sequence.

Its first three patterns—COMPOSITE (319), CHAIN OF RESPONSIBILITY (440),
and IMMUTABLE VALUE (396)—define the strategic core of the warehouse
topology’s ENCAPSULATED IMPLEMENTATION (313), the central structure that
represents and hosts the spatial arrangement and functional behav-
ior of physical storage and transportation facilities in a concrete
warehouse.

Four patterns unfold this stable design center [Gam97] to support
(tactical) behavioral variation. STRATEGY (455) enables the behavioral
variation of a specific storage element or transportation facility. VISITOR

(447) allows the expression of operations that act on multiple storage
elements and transportation facilities. VISITOR also supports extension
of the warehouse topology with functionality that was unantici-
pated during its original design and implementation. ITERATORS (298)
supports strategies and visitors traversing the warehouse structure
according to different traversal policies. Finally, INTERCEPTOR (444)
supports controlled extension of the warehouse topology’s core con-
trol flow to support customer-specific or system-specific out-of-band
functionality.

The next two patterns address an important operational quality of the
warehouse topology domain object: resource awareness. VIRTUAL PROXY

(497) enables us to keep only the core structure of the warehouse

154 Warehouse Topology

topology in main memory, while the concrete data for specific storage
or transportation facilities is maintained in the database and only
loaded when operations need to access it. A RESOURCE CACHE (529)
alleviates the main performance bottleneck of virtual proxies, that
data loaded into main memory should not be stored and deleted from
memory immediately after use, but kept in memory for a while for
subsequent fast access. Such data should not however hog memory
indefinitely.

A BUILDER (527) arrangement completes the design of the warehouse
topology by offering a centralized mechanism for configuring a con-
crete instance of this DOMAIN OBJECT both correctly and in a controlled
manner.

Finally, EXTENSION INTERFACE (284) partitions the EXPLICIT INTERFACE (281)
of the warehouse topology into multiple, role-specific contracts, each
of which can be accessed and evolved independently.

The table below summarizes the pattern sequence that helped in
creating the warehouse topology domain object, as well as with the
design challenges addressed by each pattern in the sequence.

Pattern Challenges

COMPOSITE Modeling the warehouse storage hierarchy

CHAIN OF RESPONSIBILITY Navigating up a COMPOSITE structure

IMMUTABLE VALUE Sharing state information

STRATEGY Supporting storage-specific behavior

VISITOR Providing warehouse-global functionality

ITERATOR Traversing the warehouse structure

INTERCEPTOR Providing control flow extensions

VIRTUAL PROXY Accessing persistent data

RESOURCE CACHE Maintaining in-memory data

BUILDER Configuring the warehouse topology DOMAIN OBJECT

EXTENSION INTERFACE Providing role-specific views of the warehouse topology functionality

Warehouse Topology Summary 155

It is important to note that although the design of the warehouse
topology domain object appears to be ‘reusable’ for other systems that
must maintain topological information, it is nevertheless a very spe-
cific design that is driven by very specific requirements. For example,
if the entire warehouse topology could be maintained in a database
both efficiently and without performance penalties, there would be
no need for a dedicated warehouse topology domain object. A prop-
erly designed DATABASE ACCESS LAYER (538) for the persistence domain
object, as outlined in Chapter 5, Baseline Architecture, would be suf-
ficient to provide both the warehouse management and material flow
control domain objects with appropriate topology information. Simi-
larly, if the entire warehouse topology could be maintained completely
in memory, there would be no need for virtual proxies and a cache. If
there was only a fixed set of standard functionality to support, flex-
ibility measures such as strategies, visitors, and interceptors could
perhaps also not be necessary.

If requirements and constraints are related to those for our warehouse
management process control system, the warehouse topology design
can potentially serve as a role model for other topology management
domain objects. But it is very important to check carefully if there
are more, fewer, or different requirements to support that suggest
other solutions. In fact several designs for topology management
are possible, all of which are created by different pattern sequences
whose selection is driven by different sets of requirements.

8 The Story Behind
The Pattern Story

. . . and they all lived happily ever after . . .

In this chapter we step back from the details of the warehouse
management process control system to take a bird’s-eye view of the
pattern story that guided the creation of its architecture. We discuss
how this story reinforces the properties of pattern languages, and
how the pattern language for distributed computing from Part III of
this book supported the selection of the specific pattern sequence
that underlies the story.

158 The Story Behind the Pattern Story

Looking back at the pattern story about the architecture of the ware-
house management process control system may give the impression
that the selection and application of its constituent patterns was
fairly obvious: perhaps just common sense, or even predetermined.
The story has a natural, intuitive flow and we can easily follow its
plot. It may therefore appear that creating this architecture was
straightforward.

This impression, however, is simplistic and misleading, missing
many of the subtleties that make the act of design anything but
a handle-turning process, regardless of patterns. Analyzing the pat-
tern sequence reveals that it was thoughtfully chosen rather than
randomly picked. Most obviously, its individual patterns address the
specific requirements of the warehouse management process control
system—definitely a prerequisite for creating a well-defined software
architecture. But just selecting the right patterns is by no means
sufficient to achieve an effective and robust architecture. All patterns
must also be applied in an appropriate order and integrated with one
another so that they complement and reinforce rather than contradict
one another. A set of individual patterns cannot give you such sup-
port, because each pattern focuses largely on resolving the specific
problem that it addresses.

In a process of piecemeal growth, one pattern at a time, this pattern
sequence created, unfolded, and gradually solidified the system’s
architecture until it was complete and consistent in all its different
parts—not only from a functional perspective, but also from success-
critical operational and developmental aspects such as throughout,
scalability, flexibility, and portability.

At the baseline architectural level, and also for the fundamental struc-
tures of the communication middleware and warehouse topology, all
patterns in the sequence address system-wide and strategic issues to
define the architecture’s backbone. Local and tactical issues, such as
variations in algorithms and control flow, were addressed later in the
sequence, after the respective stable, strategic design centers were
created. The patterns in the sequence were applied one at a time, and
each pattern was first integrated into the existing design before it was
implemented in detail. In other words, each pattern in the sequence
transformed an existing design into a new design that strengthened
and extended the original design’s properties.

The Story Behind the Pattern Story 159

All patterns were also tightly integrated with one another based
on their roles, so that they could effectively balance the forces of
their respective problems and mutually support and reinforce their
individual properties. For example, many components in our CCM-
based ORB participate in several pattern implementations. As we
showed in Chapter 6, Communication Middleware, the Acceptor com-
ponents introduced by ACCEPTOR-CONNECTOR (265) are event handlers
from the perspective of REACTOR (259). In addition, they are context
components from the perspective of STRATEGY (455), because Accep-
tors can implement different concurrency strategies for the service
handlers on whose behalf they listen for new connection requests.
Equally, the Storage class of the warehouse topology design pre-
sented in Chapter 7, Warehouse Topology, implements the roles of
nine patterns: COMPOSITE (319), CHAIN OF RESPONSIBILITY (440), IMMUTABLE

VALUE (396), PROXY (290), ITERATOR (298), STRATEGY (455), VISITOR (447),
INTERCEPTOR (444), and RESOURCE CACHE (505). This merging of responsi-
bilities results in high pattern density, which helps ensure powerful
but compact and comprehensible designs.

Other patterns, such as LAYERS (185), COMPONENT CONFIGURATOR (490),
and STRATEGY (455), were also used to guide the design of different por-
tions of the warehouse management process control system. LAYERS,
for example, was used to separate different levels of application func-
tionality from one another in the system’s baseline architecture, as
well as different levels of granularity associated with communication
in the design of our CCM-based ORB. We used COMPONENT CONFIGURATOR

to orchestrate configuration and deployment of functionality, both at
the baseline level of the system as well as inside the communication
middleware. STRATEGY was applied throughout the system to support
the variation of algorithmic behavior and internal middleware mech-
anisms for different scenarios and for many layers in the warehouse
management process control system.

The ability of patterns to apply at multiple levels of abstraction and
granularity in a large-scale software architecture provides a powerful
tool that helps to ensure the conceptual integrity of complex systems.
In particular, common and related problems are resolved similarly
using the same patterns across the entire system. Consequently, it
is no surprise that the pattern sequence we applied created not only
a well-balanced, sustainable software architecture for our warehouse

160 The Story Behind the Pattern Story

management process control system, but one that was also easy to
understand and use.

In addition, the pattern sequence we selected allowed us to create
a multi-layered product-line architecture for the warehouse sys-
tem—a software architecture that is suitable for supporting multiple
system variants and versions. On the domain side, for example, we
can support variants with different functionality sets: some system
configurations include the full set of warehouse management and
material flow control functionality, others only the material flow con-
trol functionality, and still others the material control flow functional-
ity and selected warehouse management functionality. Similarly, on
the infrastructure side, our communication middleware can be strate-
gized and (re)configured to satisfy a myriad of different application
requirements and operational environments.

Such flexibility can only be supported because the pattern sequence
that helped to generate the software architecture for the warehouse
management process control system follows the principles of loose
coupling. Other domain-specific variation points include warehouse
types, warehouse sizes, and warehouse operation modes. On the
technical side, the architecture, and particularly the design of its com-
munication middleware, supports integration with different operating
systems and network protocols, and configuration with different com-
munication and quality of service strategies. The design and imple-
mentation of the communication middleware is also independent of
the warehouse management process control domain, thus forming a
reusable asset by itself that can be used as the basis of architectures
and implementations for distributed systems in many other domains.

We can therefore conclude that key quality aspects of the warehouse
management process control system architecture have come from a
successful and sound pattern sequence. This pattern sequence was
well suited to the problem and the creation of a system in a system-
atic manner. Yet it is just one possible sequence of many through
our pattern language for distributed computing, and also just one of
many for the design of warehouse management process control sys-
tems. We can see that for a pattern language capable of addressing
a specific domain more broadly, many, many such sequences must
be supported. In other words, the quality of a pattern language is
characterized by the quality of its possible sequences. Only then can

The Story Behind the Pattern Story 161

a pattern language inform us of the important challenges in devel-
oping software for a specific domain, and tell us in what order these
challenges should be addressed, what design alternatives exist for
addressing specific challenges, and when to use specific alternatives
to resolve a challenge.

As a result of integrating coherent and complementary sets of qual-
ity pattern sequences, pattern languages become important tools
for designing, implementing, customizing, and applying reusable
product-line architectures, platform architectures, and frameworks.
Pattern stories, in turn, help developers understand the design and
implementation of existing software systems, so that they can use
these systems effectively in their own projects, such as applying
off-the-shelf communication middleware, or to maintain and evolve
software towards new requirements, such as our warehouse manage-
ment process control system.

III The Language

‘‘I wish life was not so short,’’ he thought,
‘‘Languages take such a time,

and so do all the things one wants to know about.’’

J.R.R. Tolkien, The Lost Road

In the third part of the book we present one possible pattern language
for distributed computing. We distilled it from our own experiences
in realizing distributed systems, as well as from the distribution
patterns that skillful software architects, designers, and developers
contributed to the software community. The language has been used
to develop many real-world distributed object computing middleware
and distributed applications. You can use it with your colleagues and
project team-mates to guide the design of new distributed systems,
and also to improve and refactor existing ones.

164 The Language

Over the past fifteen years we have participated in the development
of many industrial networked, concurrent, and distributed systems,
ranging from industrial process automation systems, medical imag-
ing, and large-scale telecommunication systems, to high-performance
communication middleware. The pattern language for distributed
computing that we present in this part of the book distils this expe-
rience in a tangible, ready-to-use form. You can use it to build
new distributed systems, to evolve, re-engineer, or refactor existing
systems, or simply to understand the architectures of distributed
software systems or middleware that you are using in your work.

Our pattern language for distributed computing includes 114 pat-
terns, which are grouped into thirteen problem areas. A problem area
addresses a specific technical topic related to building distributed sys-
tems, and comprises all those patterns in our language that address
the challenges associated with that technical topic. The main intent
of the problem areas is to make the language and its patterns more
tangible and comprehensible: patterns that address related problems
are presented and discussed within a common and clearly scoped
context. The problem areas are presented in their approximate order
of relevance and application when building distributed systems.

Each problem area and its constituent patterns forms a separate
chapter in this part of the book:

• Chapter 9, From Mud To Structure, includes the ten root patterns of
our pattern language for distributed computing. They help trans-
form the ‘mud’ of requirements and constraints we usually start
with into a coarse-grained software structure with clearly separated,
tangible parts that make up the system being developed.

• Chapter 10, Distribution Infrastructure, describes twelve patterns
pertaining to middleware, distribution infrastructure software that
helps to simplify distributed computing applications.

• Chapter 11, Event Demultiplexing and Dispatching, comprises four
patterns that provide efficient and flexible infrastructures for demul-
tiplexing, dispatching, and responding to events received from the
network.

• Chapter 12, Interface Partitioning, offers eleven patterns that help
in the design and specification of meaningful component interfaces

The Language 165

that are easy to use for common component usage scenarios, but
also allow for special-purpose and out-of-band scenarios.

• Chapter 13, Component Partitioning, includes six patterns for par-
titioning components. The focus of the patterns is on supporting
visible component quality properties such as performance, scala-
bility, and flexibility.

• Chapter 14, Application Control, addresses eight patterns that help
in transforming user input for an application into concrete service
requests to its functionality, executing those requests, and trans-
forming any results back into an output meaningful for users—
which can be a challenging task.

• Chapter 15, Concurrency, comprises four patterns for concurrency
that help servers and server-side software to handle requests from
multiple clients simultaneously.

• Chapter 16, Synchronization, describes nine patterns that help
with synchronizing the access to shared components, objects, and
resources, either by outlining efficient synchronization strategies,
or by minimizing the need for synchronization.

• Chapter 17, Object Interaction, comprises eight patterns that sup-
port efficient collaboration and data exchange between interacting
components and objects of an application.

• Chapter 18, Adaptation and Extension. describes thirteen patterns
that help in preparing components and objects in long-lived sys-
tems, in particular distributed systems, for their own configuration,
adaptation, and evolution.

• Chapter 19, Modal Behavior, offers three patterns for structuring
components and objects that are inherently state-driven.

• Chapter 20, Resource Management. includes twenty-one patterns
that help with explicit management of components and resources
in a distributed system.

• Chapter 21, Database Access, ‘closes’ our pattern language by pre-
senting five patterns for mapping an object-oriented application
design to a relational database schema efficiently, and without
introducing tight dependencies between the two worlds.

166 The Language

The main intent of our pattern language for distributed computing is
to serve as an overview about, introduction to, guide through, and
communication vehicle for the best practices and state-of-the-art in
major areas of the construction of distributed software systems. It
is not a tutorial for distributed computing in general, however, but
has a clear focus on the design of distributed software systems. We
therefore assume readers have some familiarity with core distributed
computing concepts and mechanisms, as described in the body of
the relevant literature [TaSte02] [Bir05].

9 From Mud To Structure

Kasbah Ait Benhaddou, Atlas Mountains, UNESCO world cultural heritage
 Lutz Buschmann

This chapter presents the root and entry point to our pattern
language for distributed computing. Its featured patterns help to
transform the mud of requirements and constraints we usually
start with into a coarse-grained software structure with clearly sepa-
rated, tangible parts that make up the system being developed, and
address several key concerns of sustainable software architectures:
operational aspects such as performance and availability, as well as
developmental qualities like extensibility and maintainability.

168 From Mud To Structure

Large distributed systems tend to be complex. In the beginning,
all we have is a set of requirements and constraints that must be
transformed into a working software system. A naive approach to
development is likely to result in a ‘big ball of mud’ [FoYo99], a soft-
ware clump whose design and code is so messy that it is hard to see
any coherent architecture in it. Such software is hard to understand,
maintain, and evolve, and over time it also tends to suffer from poor
stability, performance, scalability, and other essential operational
architecture qualities [Bus03].

One of the keys to successful software development is structure. We
need structure that can be understood by developers, structure that
is resilient to the forces to which the system and its development are
subjected, structure that favors the development process surrounding
and creating it, structure that respects the business and individuals
who will make it and shape it. In short, structure that provides a
habitable environment for developers and other stakeholders of a
software system. Without vision and a guiding hand, however, the
structure of a software system is likely to be complicated rather than
just complex, leading not only to the loss of the big picture, but the
small picture as well—the code can become mired in accidental detail
and assumptions.

In undertaking such software development, therefore, a coarse-
grained conception of the system is needed that—with the help
of abstraction and separation—omits unnecessary details and orga-
nizes the system’s key concepts at a broader level.

First and foremost, a software architecture must be a meaning-
ful expression of the system’s application domain. Specifically, the
functionality and features provided by the system must support a
concrete business, otherwise it has no practical value for its users.
If the system’s software architecture does not scope and portray the
application domain appropriately, however, it will be hard, if not
impossible, to provide user-level services and features that correctly
address the functional requirements of the system.

A further concern when modeling the functional architecture of a
system is variability. Variations can arise in regard to different feature
sets, alternatives in business processes, choices for concrete business
algorithms, and options for the system’s appearance to the user.
Without a clear knowledge of what can vary in an application domain,

From Mud To Structure 169

and also of what variations must be supported, it is hard to provide
the right level and degree of flexibility in a software system or product.

The root pattern of our pattern language addresses the challenge
of creating a model of the application domain that both reflects the
functional responsibilities of a software system and can serve as a
solid basis for the further elaboration of its technical architecture.

The DOMAIN MODEL pattern (182) [Fow03a] defines a precise
model for the structure and workflow of an application domain—
including their variations. Model elements are abstractions
meaningful in the application domain; their roles and interac-
tions reflect domain workflow and map to system requirements.

The following diagram illustrates how DOMAIN MODEL connects to the
body of our pattern language for distributed computing and orches-
trates the patterns that help with its refinement.

Broker

Presentation
Abstraction-ControlBlackboard

Model-View
Controller

Pipes and Filters

Reflection

Microkernel

Database
Access Layer

Messaging

Publisher-
Subscriber

Shared Repository Layers

data-driven
processing

system
evolution

user interface
variation

remote
communication

Domain Object internal
partitioning

Domain Model

functional
variation

data stream
proccessing

DOMAIN OBJECT is also described in the collection of Patterns Of Enter-
prise Application Architecture [Fow03a], but its focus there is solely
on technical aspects of the realization of a domain model, and it does
not address the explicit modeling of the domain.

Dividing the core structure of a distributed software system purely
along lines visible in the application domain, however, will not always
help to define a feasible baseline architecture. On one hand, a
software system needs to include many components and exhibit

170 From Mud To Structure

many properties that are unrelated to its domain. For example,
quality-of-service requirements, such as performance and predictable
resource utilization, are cross-cutting issues and therefore cannot be
addressed through component decomposition alone. Similarly, the
need for responsive user interaction can conflict with the latency and
partial-failure modes associated with networks. On other hand, we
as developers want more than a system that simply meets the visi-
ble user requirements. User’s indifference to developmental qualities
such as portability, maintainability, comprehensibility, extensibility,
testability, and so on should not be shared by developers.

Finding a suitable application partitioning depends on framing
answers to several key questions and challenges:

• How does the application interact with its environment? Some sys-
tems interact with different types of human user, others with other
systems as peers, and yet others are embedded within even more
complex systems. Inevitably, there are also systems that have all of
these interactions.

• How is application processing organized? Some applications receive
requests from clients to which they react and respond. Other
applications process streams of data. Some applications perform
self-contained tasks without receiving stimuli from their environ-
ment. Indeed, for some applications, it may not even be possible to
identify any concrete workflow and explicit cooperation among its
components.

• What variations must the application support? Flexibility is a major
concern in software development, especially when developing soft-
ware products, or software product families, that are intended to
serve a whole range of different customer needs. Some systems must
support different feature sets, such as for small, medium, and large
enterprises, to address different markets and customer groups.
Other systems must support variations in business processes, so
that each customer can model the workflow of its specific busi-
ness appropriately. Yet other systems must support variations in
algorithmic behavior and visual appearance to be attractive to a
broad range of customers.

From Mud To Structure 171

• What is the life expectancy of the application? Some systems are
short-lived and thrown away when they are no longer used, such
as an online trading program designed to exploit a transient market
trend. Other systems will be in operation for thirty years or more
and must respond to changing requirements, environments, and
configurations, such as Telecommunication Management Network
(TMN) system.

Our pattern language for distributed computing, therefore, includes
nine strategic patterns that help in the transformation of a DOMAIN

MODEL into a technical software architecture that can serve as the
basis for further development. Each pattern provides its own answers
to the questions raised above:

The LAYERS pattern (185) [POSA1] helps to structure applica-
tions that can be decomposed into groups of subtasks in which
each group of subtasks is at a particular level of abstraction,
granularity, hardware-distance, or other partitioning criteria.

The MODEL-VIEW-CONTROLLER pattern (MVC) (188) [POSA1]
[Fow03a] divides an interactive application into three parts. The
model contains the core functionality and data. Views display
information to the user. Controllers handle user input. Views
and controllers together comprise the user interface. A change-
propagation mechanism ensures consistency between the user
interface and the model.

The PRESENTATION-ABSTRACTION-CONTROL pattern (PAC) (191)
[POSA1] defines a structure for interactive software systems
in the form of a hierarchy of cooperating agents. Each agent is
responsible for a specific aspect of the application’s functional-
ity and consists of three components: presentation, abstraction,
and control. This subdivision separates the human-computer
interaction aspects of an agent from its functional core and its
communication with other agents.

The MICROKERNEL pattern (194) [POSA1] applies to software sys-
tems that must adapt to changing system requirements. It
separates a minimal functional core from extended function-
ality and customer-specific parts. The microkernel also serves as
a socket for plugging in these extensions and coordinating their
collaboration.

172 From Mud To Structure

The REFLECTION pattern (197) [POSA1] provides a mechanism for
changing the structure and behavior of software systems dynam-
ically. It supports the modification of fundamental aspects, such
as type structures and function call mechanisms. In this pat-
tern an application is split into two parts. A base level includes
the core application logic. Its runtime behavior is observed by
a meta level that maintains information about selected system
properties to make the software self-aware. Changes to infor-
mation kept in the meta level thus affect subsequent base-level
behavior.

The PPIPES AND FILTERS pattern (200) [POSA1] [HoWo03] provides a
structure for systems that process data streams. Each processing
step is encapsulated in a filter component. Pipes are used to pass
data between adjacent filters.

The SHARED REPOSITORY pattern (202) [HoWo03] helps to struc-
ture applications whose functionality and collaboration is purely
data-driven. A shared repository maintains the common data
on which the application’s components operate, the components
themselves access and modify the data in the shared repository,
and the state of that data in the shared repository instigates the
control flow of specific components.

The BLACKBOARD pattern (205) [POSA1] is useful for problems for
which no deterministic solution strategies are known. In Black-
board several specialized subsystems assemble their knowledge
to build a possibly partial or approximate solution.

The DOMAIN OBJECT (208) pattern encapsulates a self-contained,
coherent functional or infrastructural responsibility into a well-
defined entity that offers its functionality via one or more explicit
interfaces while hiding its inner structure and implementation.

The nine patterns above address a whole range of different concerns
in refining DOMAIN MODEL towards a sustainable software baseline
architecture.

LAYERS defines a general approach for partitioning the responsibilities
of an application according to a (sub) system-wide property, such
that each group of functionalities can be developed and evolved
independently. The specific partitioning criteria can be defined along
one or more dimensions, such as abstraction, granularity, hardware
distance, and rate of change. LAYERS is probably the most fundamental

From Mud To Structure 173

pattern for separating different, and grouping related, concerns in a
software architecture.

LAYERS integrates with our pattern language for distributed computing
as follows.

Explicit
Interface

Encapsulated
Implementation

Message

Bridge

Object Adapter

layer
decomposition

Command

Layers

Domain Object Observer

separation of
interface and
implementation

connecting
interface and
implementation

bottom-up
inter-layer
communication

The next two patterns, MODEL-VIEW-CONTROLLER and PRESENTATION-

ABSTRACTION-CONTROL, address the problem of support for variabil-
ity in user interfaces. Though both patterns are related in several
ways, they are not necessarily alternatives. In a nutshell, MODEL-VIEW-

CONTROLLER supports variability within one specific user interface,
while PRESENTATION-ABSTRACTION-CONTROL supports the use of multiple,
distinct user interfaces and their independent variation. As most
software systems need only one user interface paradigm, MODEL-VIEW-

CONTROLLER should always be your first choice.

PRESENTATION-ABSTRACTION-CONTROL, in contrast, is (only) useful if a soft-
ware system is partitioned into multiple, largely independent but
sometimes cooperating subsystems, each of which suggests its own
user interface paradigm. Examples for such systems include software
that is used off-shore by users both on board a ship and underwa-
ter, robot control systems, or applications that are partly operated
via virtual reality devices. Only few types of system fall into this

174 From Mud To Structure

category, thus the applicability of PRESENTATION-ABSTRACTION-CONTROL is
significantly narrower than that of MODEL-VIEW-VIEW-CONTROLLER.

The following diagram illustrates how these two patterns integrate
with our pattern language for distributed computing.

agent
partitioning

view
types

Domain Object

Command
Processor

Transfer View

Front Controller

Page Controller

Command

Wrapper Facade

Application
Controller

Chain of
Responsibility

Observer

Data Transfer
Object

Mediator

Domain Model

Template View
Model-View
Controller

controller
types

user interface
separation

OS/library
independence

data
exchange

model
partitioning

Presentation
Abstraction

Control

change
propagation

subsystem
design

data
exchange

control
design

Command

request
routing

change
propagation

request
handling

user interface
separation

The MODEL-VIEW-CONTROLLER pattern is also described in Patterns of
Enterprise Application Architecture [Fow03a], where it has the same
intent, structure, and behavior as the POSA version. The MODEL-VIEW-

PRESENTER pattern [Fow06] is also related to MODEL-VIEW-CONTROLLER,
but works better for rich client development than MVC because it
does not delegate all view behavior to the model. An intermediate
presenter component receives all user actions, such as when clicking
a checkbox, or if the involvement of the model is necessary, such as
when clicking an ‘Apply’ button, and decides whether it can handle
them without consulting the model. This improves composability of
complex views and the testability of the different roles.

From Mud To Structure 175

The next two patterns, MICROKERNEL and REFLECTION, both foster the
construction of flexible software systems. Both patterns address
different aspects of flexibility, however. MICROKERNEL, in general, pro-
vides a plug-in architecture that supports flexibility in terms of what
functionality a system provides to its users. MICROKERNEL has thus
evolved as a popular architecture for operating systems, middleware,
and product-line architectures.

REFLECTION, in contrast, defines an architecture that objectifies specific
aspects of a system’s structure and behavior, which supports flexi-
bility in terms of how its functionality executes and/or can be used
by its clients. It is thus often used in the context of application and
service integration scenarios, in which client applications must be
able to use or control the functionality of other applications without
having an explicit, built-in knowledge of their interfaces and internal
behavior.

The following diagrams outline how MICROKERNEL and REFLECTION con-
nect to the patterns of our language.

Domain Object

Data Transfer
Object

Mediator

Layers

data
exchange

Component
Configurator

Object
Manager

Microkernel

request
routing

Object Adapter

microkernel and
internal server
partitioning

separation of standard
and optional functionality

microkernel and
internal server
partitioning

external server
design

microkernel
configuration

176 From Mud To Structure

Domain Object Introspective
Interface Abstract Factory

meta-level
access

Component
Configurator

Object
Manager

base level and
meta level
partitioning

Domain Model

separation of supervision and control
from application functionality

Reflection

Builder

meta-object
lifecycle management

Dynamic Invocation
Interface

The PIPES AND FILTERS pattern is suited for applications that process
data streams, or whose components communicate via the exchange of
data streams. Image processing is a prime example of a domain that
can best be modeled in software via a PIPES AND FILTERS architecture.

The integration of PIPES AND FILTERS into our pattern language is shown
in the diagram below.

Messaging

Message

Domain Object

Domain Model

data
exchange

pipes and
filters
partitioning

remote
communication

Pipes and
Filters

layer interaction
via data streaming

From Mud To Structure 177

Some sources also see PIPES AND FILTERS as a fundamental style for
interprocess communication [HoWo03] [VKZ04], but in the context of
our pattern language for distributed computing we consider it more
as an approach for orchestrating the collaboration of an application’s
services, rather than a style they can use to exchange information. In
a PIPES AND FILTERS arrangement the latter is done with help of messag-
ing, which, as we outline in Chapter 10, Distribution Infrastructure,
we consider of equal importance to remote method invocation and
publish/subscribe as one of three communication styles.

Another version of PIPES AND FILTERS is published in Enterprise Inte-
gration Patterns [HoWo03], where it is used to enable stepwise
transformation of message formats and content in message-oriented
middleware. The scope of PIPES AND FILTERS in POSA is broader, because
there the pattern is used to structure entire data stream processing
applications. The use of PIPES AND FILTERS in this pattern language
follows the POSA scope.

The SHARED REPOSITORY and BLACKBOARD patterns help in designing
applications whose components work largely on a common set of
(structured) data. By separating the data from the functionality of
a system, data exchange between components of the application is
simplified, and coordination of the components via Change of Value
(CoV) notifications in that data becomes possible.

178 From Mud To Structure

Their integration with our pattern language for distributed computing
is as follows:

thread-safe
data access

Domain Object

Data Transfer
Object

Domain Model

separation of
functionality from data

data
access

data
access

Blackboard

Database
Access Layer

Observer

Monitor Object

Thread-Safe
Interface

Strategized
Locking

data
exchange

Shared
Repository

data
exchange

functional
partitioning

functional
partitioning

change
propagation

separation of
functionality from data

The difference between the two patterns is in their computational
approach. In a SHARED REPOSITORY architecture, application compo-
nents realize a deterministic control flow and cooperate in an explicitly
coded or configured manner. It is thus a suitable approach for appli-
cations in the network management and control system domains,
which typically operate on a large amount of data from field devices,
such as Telecommunication Management Network (TMN) systems or
industrial process control systems.

A BLACKBOARD architecture, in contrast, implements a computational
model based on heuristics, which is able to produce useful results
even when no deterministic algorithms are known or feasible in an
application domain, or if input data is fuzzy, inaccurate, or otherwise
questionable in its quality. For example, BLACKBOARD is a fairly popular
architectural approach for bio-information systems, which typically
operate on large bases of fuzzy, incomplete, or partly erroneous

From Mud To Structure 179

data. It was also popular in speech recognition applications until
appropriate deterministic solutions were discovered.

From a general perspective, BLACKBOARD is a specialized variant
of SHARED REPOSITORY, but one that addresses a different set of
forces whose resolution requires a different computational approach.
Although the applicability of BLACKBOARD is definitely narrower than
that of SHARED REPOSITORY, these differences justify its description as a
pattern in its own right.

The SHARED REPOSITORY pattern is also described in Enterprise Integra-
tion Patterns [HoWo03], under the name SHARED DATABASE. Its focus
there is on (enterprise) application integration—in contrast to coor-
dinating the control flow of a data-driven applications, which is the
scope of the pattern in the context of our pattern language. As with
PIPES AND FILTERS, some sources also see SHARED REPOSITORY as a fun-
damental style for interprocess communication [Fow03a] [HoWo03]
[VKZ04]. We do not share this perspective in the context of our pat-
tern language for distributed computing. and consider the pattern as
an approach to partitioning the functionality of an application.

The final pattern we present in this chapter, DOMAIN OBJECT, supports
the encapsulation of self-contained responsibilities in an application
within a defined software realization. Such encapsulation allows us
to address the specific functional, operational, and developmental
requirements of this responsibility explicitly, directly, and indepen-
dently of other DOMAIN OBJECT realizations.

180 From Mud To Structure

The next diagram illustrates the integration of DOMAIN OBJECT into our
pattern language for distributed computing.

Domain
Object

Component

Declarative
Component

Configuration

Explicit
Interface

Encapsulated
Implementation

Bridge

Object Adapter

Application
Service

Value Object

Presentation
Abstraction-Control

Blackboard

Model-View
Controller

Pipes and FiltersReflectionMicrokernel

Shared Repository

Copied Value

Layers

Abstract Factory

Builder

Immutable Value

Component
Configurator

Domain Model

connecting
interface and
implementation

lifecycle
control

internal
partitioning

internal
partitioning

domain object
configuration

separation of
interface from
implementation

domain object
flavors

Some of the patterns referenced are not described in this book,
but are nevertheless included in our pattern language because they
represent different DOMAIN OBJECT flavors. APPLICATION SERVICE is the
key pattern in Core J2EE Patterns for partitioning the business logic

From Mud To Structure 181

of an enterprise application [ACM01], and COMPONENT is one of the
two root patterns of Server Component Patterns [VSW02]. The two
patterns, therefore, connect our pattern language to all patterns in
Server Component Patterns and Core J2EE Patterns of which they are
composed. A VALUE OBJECT, finally, is a small object whose identity is
based on its state rather than its type [PPR] [Fow03a]

Most real-world software systems cannot be formed reasonably from
a single pattern from the above application partitioning patterns. Dif-
ferent patterns offer different architectural properties, and a system
may find that it must grow from multiple strategic patterns to meet its
system requirements. For example, you may have to build a system
that has two distinct and sometimes conflicting design goals, such
as adaptability of its user interface and portability to multiple plat-
forms. For such systems you must combine several patterns to form
an appropriate structure. When scaling to a distributed environment,
these application infrastructure patterns must also be integrated with
suitable distribution patterns.

However, the selection of an application partitioning pattern, or a
combination of several, is just one step of many when designing
a software system. A selection of partitioning patterns is not yet
a complete software architecture in the sense of being whole and
addressing all the significant decisions that characterize the design.
Instead it remains a structural framework for a software system
that must be further specified and refined. This process includes the
task of expressing the application’s concrete functionality within the
framework, detailing its components and relationships. We support
this with the patterns presented in the subsequent chapters of our
pattern language.

182 From Mud To Structure

Domain Model **

When starting to build a (distributed) application . . .

. . . we need an initial structure for the software being developed.

���
Requirements and constraints inform the functionality, quality
of service, and deployment aspects of a software system, but
do not themselves suggest a concrete structure to guide devel-
opment. Without precise and reasoned insight into a system’s
scope and application domain, however, its realization is likely
to be a ‘big ball of mud’ that is hard to understand and convey
to customers, and a poor architectural basis on which to build.

A list of requirements shows the problem domain of an application,
but not its solution domain. Yet requirements in a working system
must be addressed by concrete software entities. If these entities and
their interactions are unrelated to the application’s core business,
however, it will be hard to understand and communicate what the
system actually does. Similarly, it will be hard to meet system quality
of service requirements, since they cannot be mapped clearly to the
software elements where they are relevant. Without a clear vision
of a system’s application domain, therefore, software architects can-
not determine if their designs are correct, complete, coherent, and
sufficiently bounded to serve as the basis for development.

Therefore:

Create a model that defines and scopes a system’s business
responsibilities and their variations: model elements are abstrac-
tions meaningful in the application domain, while their roles and
interactions reflect the domain workflow.

Stock
Management

Warehouse
Topology

Order
Management

Material
Flow Control

Shipping Receiving

receive shipping and
receiving orders

check stock

check and
update stock

locate and assign items

process shipping
orders

process receiving
orders

check and
update stockaccess storage

topology

execute transportation
orders

A simplified Domain
Model For Warehouse
Management.

Domain Model ** 183

The domain model serves as the foundation for a system’s software
architecture, which becomes an expression of the model as it evolves.

���
A DOMAIN MODEL provides the initial step in transforming requirements
into a sustainable software architecture and implementation. Defin-
ing a precise model for the structure and workflow of an application
domain, including their variations, helps to map requirements to con-
crete software entities and check whether requirements are complete
and self-consistent. Missing requirements can be identified, fuzzy
requirements clarified, and unnecessary requirements removed. As
a result, the responsibilities and boundaries of a system’s architec-
ture are scoped properly. A well-formed domain model also makes
it easier meet a system’s quality of service requirements, because
they can be assigned to the specific elements and workflows to which
they apply in the model. A domain model also fosters communica-
tion between software professionals, domain experts, and customers,
because its elements are based on the terminology used in the appli-
cation domain.

In general, a domain model is created using an appropriate method,
such as Domain-Driven Design [Evans03] or Domain Analysis [CLF93].
Several specialized methods support the expression of variabilities
in a domain, such as Commonality/Variability Analysis [Cope98]
and Feature Modeling [CzEi02]. Domain-specific patterns can further
support the creation of a domain model: they offer representations
for recurring arrangements of common abstractions and workflows
within a domain, including their potential variations. Domain-specific
patterns are documented in a variety of domains, such as telecommu-
nication, health care, and corporate finance [Fow97] [Ris01] [PLoPD1]
[PLoPD2] [PLoPD3] [PLoPD4] [PLoPD5].

Once the domain model has matured to the point where it adequately
portrays the functional responsibilities of an application, as well as
their variations, the next step is to transform the model into a con-
crete architecture that expresses and supports this functionality, and
which addresses a range of quality of service requirements such as
performance, scalability, availability, adaptability, and extensibility.

Several patterns help to arrange and connect the elements of a
domain model to support specific styles of computation. For example,

184 From Mud To Structure

PIPES AND FILTERS (200) is suitable for applications that process
data streams, SHARED REPOSITORY (202) helps to organize data-driven
applications, and BLACKBOARD (205) is appropriate for applications that
operate on incomplete or fuzzy data, or for which no deterministic
solution algorithm is known or feasible.

Other patterns help group and separate elements of a domain
model to support specific aspects of system adaptation, extension,
and evolution. For example, LAYERS (185) groups elements of the
domain model that share similar responsibilities, properties, or gran-
ularity into separate layers, so that each layer can evolve inde-
pendently. MODEL-VIEW-CONTROLLER (188) and PRESENTATION-ABSTRACTION-

CONTROL (191) separate user interfaces from domain functionality,
to support customer-specific interface adaptations without the need
to change or modify the realization of business logic. MICROKERNEL

(194) partitions applications into core functionality, version-specific
functionality, and version-specific APIs, to support different prod-
uct variants. REFLECTION (197) objectifies specific aspects of a system’s
structure and behavior to supports runtime flexibility in terms of how
its functionality executes and/or can be used by its clients. Finally,
DATABASE ACCESS LAYER (538) decouples application functionality from
a relational database, to make it easy to replace the database.

In production systems, several of the patterns outlined above can be
applied in combination to form a structural baseline architecture for
an application. For example, a MODEL-VIEW-CONTROLLER arrangement
may be combined with REFLECTION and a SHARED REPOSITORY-based
computational model.

Typically, each self-contained and coherent entity or responsibility
within the application’s baseline is represented as a separate DOMAIN

OBJECT, to provide a defined software realization that addresses its
specific functional, operational, and developmental requirements.

In a distributed system, the domain objects in an application’s base-
line can communicate via middleware. For example, BROKER (237)
supports applications whose components communicate via remote
method invocation, MESSAGING (221) supports systems in which com-
ponents exchange asynchronous messages, and PUBLISHER-SUBSCRIBER

(234) mediates communication between components that coordinate
their processing via notifications of changes to their state.

Layers ** 185

Layers **

When transforming a DOMAIN MODEL (182) into a technical software
architecture, or when realizing BROKER (237), DATABASE ACCESS LAYER

(438), MICROKERNEL (194), or HALF-SYNC/HALF-ASYNC (359) . . .

. . . we must support the independent development and evolution of
different system parts.

���
Regardless of the interactions and coupling between different
parts of a software system, there is a need to develop and evolve
them independently, for example due to system size and time-
to-market requirements. However, without a clear and reasoned
separation of concerns in the system’s software architecture,
the interactions between the parts cannot be supported appro-
priately, nor can their independent development.

The challenge is to find a balance between a design that partitions
the application into meaningful, tangible parts that can be developed
and deployed independently, but does not lose itself in a myriad of
detail so that the architecture vision is lost and operational issues
such as performance and scalability are not addressed appropri-
ately. An ad hoc, monolithic design is not a feasible way to resolve
the challenge. Although it allows quality of service aspects to be
addressed more directly, it is likely to result in a spaghetti structure
that degrades developmental qualities such as comprehensibility and
maintainability.

Therefore:

Define one or more layers for the software under development,
with each layer having a distinct and specific responsibility.

Layer 3

Layer 2

Layer 1

Layer Interface

Layer
Implementation

Function 1

Function A

Function 1 Function 1

Function B Function C

Function X Function Y Function Z

186 From Mud To Structure

Assign the functionality of the system to the respective layers, and let
the functionality of a particular layer only build on the functionality
offered by the same or lower layers. Provide all layers with an interface
that is separate from their implementation, and within each layer
program using these interfaces only when accessing other layers.

���
A LAYERS architecture defines a horizontal partitioning of a software’s
functionality according to a (sub)system-wide property, such that
each group of functionalities is clearly encapsulated and can evolve
independently. The specific partitioning criteria can be defined along
various dimensions, such as abstraction, granularity, hardware dis-
tance, and rate of change. For example, a layering that partitions
an architecture into presentation, application logic, and persistent
data follows the abstraction dimension. A layering that introduces a
business object layer whose entities are used by a business process
layer follows the granularity dimension, while one that suggests an
operating system abstraction layer, a communication protocol layer,
and a layer with application functionality follows the hardware dis-
tance dimension. Using rate of change as a layering criteria separates
functionalities that evolve independently of one another.

In most applications we find multiple dimensions combined. For
example, decomposing an application into presentation, application
logic, and persistent data layers is a layering according to both levels
of abstraction and rate of change. User interfaces tend to change
at a higher rate than application logic, which evolves faster than
data schemes such as tables in a relational database. Regardless of
which layering dimensions an application follows, each layer uses the
functionality offered by lower layers to realize its own functionality.

A key challenge is to find the ‘right’ number of layers. Too few layers
may not separate sufficiently the different issues in the system that
can evolve independently. Conversely, too many layers can fragment
a software architecture into bits and pieces without a clear vision
and scope, which makes it hard to evolve them at all. In addition,
the more layers are defined, the more levels of indirection must cross
in an end-to-end control flow, which can introduce performance
penalties—especially when layers are remote.

Layers ** 187

Typically, each self-contained and coherent responsibility within a
layer is realized as a separate DOMAIN OBJECT, to further partition
the layer into tangible parts that can be developed and evolved
independently.

Split each layer into an EXPLICIT INTERFACE (281) that publishes the
interfaces of those domain objects whose functionality should be
accessible by other layers, and connect it with an ENCAPSULATED

IMPLEMENTATION (313) that realizes this functionality. This separation
of concerns minimizes inter-layer coupling: each layer only depends
on layer interfaces, which makes it possible to evolve a layer imple-
mentation with minimal impact on other layers, and also to provide
remote access to a layer. A BRIDGE (436) or an OBJECT ADAPTER (438)
supports the separation of the explicit interface of a layer from its
encapsulated implementation.

Control and data can flow in both directions in layered systems.
For example, data is exchanged between adjacent layers in layered
protocol stacks such as TCP/IP or UDP/IP. However, LAYERS defines
an acyclic downward dependency: lower layers must not depend on
functions provided by higher layers. Such a design avoids accidental
structural complexity, and supports the use of lower layers in other
applications independently of the higher layers. Therefore, control
flow that originates from the ‘bottom’ of the stack is often instigated
via an OBSERVER-based (399) callback infrastructure. Lower layers
can pass data and service requests to higher layers via notifica-
tions realized as COMMANDS (412) or MESSAGES (420), without becoming
dependent on specific functions in their interfaces.

188 From Mud To Structure

Model-View-Controller **

When transforming a DOMAIN MODEL (182) into a technical software
architecture, or specifying an agent in a PRESENTATION-ABSTRACTION-

CONTROL (191) configuration . . .

. . . we must consider that the user interface of an application changes
more frequently than its domain functionality.

���
User interfaces are prone to change requests: some must support
multiple look-and-feel skins, others must address specific cus-
tomer preferences. However, changes to a user interface must
not affect an application’s core functionality, which is gen-
erally independent of its presentation, and also changes less
frequently.

Changes to a user interface should be both easy and local to the
modified interface part. A changeable user interface must however not
degrade the application’s quality of service: at any time it must display
the current state of computation, and respond to state changes
immediately. To further complicate matters, in a system that supports
multiple look-and-feel skins, each skin can change at a different rate,
which requires additional decoupling of different user interface parts.

Therefore:

Divide the interactive application into three decoupled parts:
processing, input, and output. Ensure the consistency of the
three parts with the help of a change propagation mechanism.

User
function_1

get data

notify

do something

update

display

update

function_2

data_3

data_2

data_1

Model

Controller

View

User Interface

Application
Functionality

3

1
2

4

5

invoke
modify

update
state

start
change
notification

notify

Model-View-Controller ** 189

Encapsulate the application’s functional core inside a model whose
implementation is independent of specific user interface look-and-
feel and mechanics. For each aspect of the model to be presented in
the application’s user interface, introduce one or more self-contained
views. Associate each view with a set of separate controllers that
receive user input and translate this input into requests for either the
model or the associated view. Let users interact with the application
solely through the controllers.

Connect the model, view, and controller components via a change
propagation mechanism: when the model changes its state, notify all
views and controllers about this change so that they can update their
state accordingly and immediately via the model’s APIs.

���
A MODEL-VIEW-CONTROLLER arrangement separates responsibilities of an
application that tend to change at a different rate, to support their
independent evolution.

The model defines the functional heart of the interactive application,
thus its internal structure depends strongly on the application’s
specific domain responsibilities. Often the model is partitioned into
one or more application DOMAIN OBJECTS (208), one for each self-
contained responsibility. The implementation of the model should
not rely on specific I/O data formats or view and controller APIs, to
avoid having to change the model when the user interface changes.

Each coherent piece of information that is presented in the appli-
cation’s user interface is encapsulated within a self-contained view,
together with functionality to retrieve the respective data from the
model, transform this data into its output format, and display the
output in the user interface. This self-containment allows views to
evolve without affecting one another or the model. Two typical types
of view are TEMPLATE VIEW (345) and TRANSFORM VIEW (347). A TEMPLATE

VIEW renders model information into a predefined output format. A
TRANSFORM VIEW creates its output by rendering each data element
individually that it retrieves from the model.

Each view of the system is associated with one more controllers to
manipulate the model’s state. A controller receives input through
an associated input device such as a keyboard or a mouse, and
translates it into requests to its associated view or the model. There

190 From Mud To Structure

are three common types of controller: a controller associated with a
specific function in the application’s user interface, a PAGE CONTROLLER

(337) that handles all requests issued by a specific form or page in the
user interface, and a FRONT CONTROLLER (339) that handles all requests
on the model. A controller per function is most suitable if the model
supports a wide range of functions. A PAGE CONTROLLER is appropriate
for form-based or page-based user interfaces in which each form or
page offers a set of related functions. A FRONT CONTROLLER is most
usable if the application publishes functions to the user interface
whose execution can differ for each specific request, such as the
HTTP protocol of a Web application.

The requests issued by controllers may be encapsulated into COMMAND

(412) objects that are passed to a dedicated COMMAND PROCESSOR (343)
for execution. Such a design allows controllers to change transpar-
ently to both the views and the model. In addition, it supports the
treatment of requests as first class objects, which in turn enables
an application to offer ‘house-keeping’ services like undo/redo and
request scheduling.

If a controller is in doubt over which concrete command to create, for
example in a workflow-driven application, an APPLICATION CONTROLLER

(341) helps to avoid dependencies on the model’s internal state.
In most applications, multiple controllers are active at the same
time, but each user input can only be processed by one particular
controller. A CHAIN OF RESPONSIBILITY (440) that connects all controllers
simplifies the dispatching of the ‘right’ controller in response to a
specific input.

Using WRAPPER FACADES (459) for accessing low-level device driver APIs
and graphical libraries enables the views and controllers to be kept
independent of the system’s platform, as well as of its input and
output devices. DATA TRANSFER OBJECTS (418) help to encapsulate the
data that views and controllers retrieve from the model.

To support efficient collaboration between model, views, and con-
trollers without breaking the model’s independence of user interface
aspects, connect them via an OBSERVER (405) arrangement. The model
is a subject, while the views and controllers are its observers. When
the model changes its state, it notifies all registered views and con-
trollers, which in turn update their own state by retrieving the
corresponding data from the model.

Presentation-Abstraction-Control 191

Presentation-Abstraction-Control

When transforming a DOMAIN MODEL (182) into a technical software
architecture . . .

. . . we must at times consider that different functional responsibilities
of an application can require different user interface paradigms.

���
A human-computer interface allows users to interact with an
application via a specific ‘paradigm,’ such as forms or menus
and dialogs. However, some applications are best operated via a
distinct interface paradigm for each functionality type on offer.

For example, in a robot control system, the functionality for defining
a mission requires a different user interface than the functionality
for controlling a mobile robot during a mission. Yet we must ensure
that all functions and their user interfaces form a coherent system.
In addition, changes to any user interface should neither affect the
implementation of its corresponding functionality, nor that of other
functions and their associated user interfaces. Similarly, changes
to the implementations of a distinct function should not affect user
interfaces and implementations of other functions.

Therefore:

Structure the interactive application as a hierarchy of decoupled
agents: one top-level agent, several intermediate-level agents,
and many bottom-level agents. Each agent is responsible for a
specific functionality of the application and provides a special-
ized user interface for it.

display

do something

User

mediate
function_1

function_2

display

do something
mediate

function_1

function_2
display

do something
mediate

function_1

function_2

display

do something
mediate

function_1

function_2

display

do something
mediate

function_1

function_2

Presentation
Control

Abstraction

Top-level
PAC agent

Intermediate-level
PAC agent

Bottom-level PAC agent

coordinates

coordinates
coordinates

coordinates

192 From Mud To Structure

Bottom-level agents implement self-contained functionality with
which users can interact, for example administration, error handling,
and data manipulation. Mid-level agents coordinate multiple related
bottom-level agents, for example all views that visualize a particular
type of data. The top-level agent provides core functionality that is
shared by all agents, such as access to a data base.

Split each agent into three parts. A presentation part defines the
agent’s user interface. An abstraction part provides agent-specific
domain functionality. A control part connects the presentation with
the abstraction and allows the agent to communicate with other
agents. Connect the agents in the hierarchy via their controls.

Users interact with an agent via its presentation. All user requests
to the respective functionality in its abstraction are mediated by the
agent’s control. If a user action requires accessing or coordinating
other agents, mediate this request to the controls of these agents,
either up or down the hierarchy, and from there to their abstractions.

���
A PRESENTATION-ABSTRACTION-CONTROL architecture helps to connect mul-
tiple self-contained subsystems, or even whole applications, with
specialized human-computer interaction models to a coherent (dis-
tributed) system. The downside of such an arrangement is its com-
plexity: multiple user interfaces must be provided, and actions
instigated by a specific user interface must be coordinated carefully
and explicitly if control flow spans multiple subsystems and causes
reactions or view changes in their associated user interfaces. Conse-
quently, a PRESENTATION-ABSTRACTION-CONTROL architecture only pays off
if a software system cannot be implemented by a single user interface
paradigm.

To specify a PRESENTATION-ABSTRACTION-CONTROL (PAC) architecture, iden-
tify all the self-contained responsibilities the application should offer
to its users. Each responsibility is then encapsulated within a sep-
arate bottom-level agent. If several agents share functionality or
need coordination, factor out this (coordination) functionality into an
intermediate-level agent. There can be multiple levels of intermediate-
level agents within a PAC architecture. Functionality shared by all
agents is provided by the top-level agent. Such decoupling supports
independent modification of agents without affecting other agents,

Presentation-Abstraction-Control 193

and allows each agent to provide its own user interface. Provide all
agents with a MODEL-VIEW-CONTROLLER (188) architecture: the abstrac-
tion corresponds with the model and its partitioning into DOMAIN

OBJECTS (208), and the presentation to the views and controllers.
Changes to an agent’s interface will therefore affect its realization.

Decouple an agent’s abstraction from its presentation via a control
component that is a MEDIATOR (410) with a twofold responsibility.
First, it must route all user requests from the agent’s presentation to
the appropriate functionality in its abstraction. It must also route all
change propagation notifications from the abstraction to the views in
the presentation. Second, the control must coordinate the cooperation
between agents. If a user request received by a particular agent cannot
be handled by the agent alone, the control routes the request to the
controls of appropriate higher- or lower-level agents, together with its
associated input data. Results are returned in the same way, but in
reverse. Similarly, the control of an agent can receive requests and
data from the controls of other agents. The requests to be routed can
be encapsulated inside COMMAND (412) objects, and the data inside
DATA TRANSFER OBJECTS (418). Controls are the key to a loose coupling
between agents: if an agent’s abstraction changes, effects on other
agents are limited to their controls.

To keep agents consistent with one another, connect them via an
OBSERVER (405) arrangement. An agent that is dependent on the state
of its associated higher- or lower-level agents registers its control
as a subscriber of the other agents’ controls, which play the role of
subjects. Whenever one of these ‘subject’ agents changes its state, its
control notifies the control of the ‘observing’ agents, which can then
react appropriately to update their own state.

194 From Mud To Structure

Microkernel **

When transforming a DOMAIN MODEL (182) into a technical software
architecture . . .

. . . we must design support for functional scalability and adaptability
in different deployment scenarios.

���
Some applications exist in multiple versions. Each version offers
a different set of functionality to its users, or differs from other
versions in specific aspects, such as its user interface. Despite
their differences, however, all versions of the application should
be based on a common architecture and functional core.

The goal is to avoid architectural drift between the versions of the
application and to minimize development and maintenance effort for
shared functionality. In addition, upgrading one version of the appli-
cation to another by adding and removing features, or by changing
their implementation, should require no or only minimal modifica-
tions to the system. Similarly, it should be easy to provide a particular
application version with different user interfaces, and also to run
the version on different platforms, allowing clients to use it most
appropriately within their specific environments.

Therefore:

Compose different versions of the application by extending a
common but minimal core via a ‘plug-and-play’ infrastructure.

External Server (GUI)

display

do something

User

function_1

function_2

function_3

External Server (API)

System

function_1

function_2

register_svr

route_request

unregister_svr

function_3

Internal Server

Microkernel

Microkernel ** 195

A microkernel implements the functionality shared by all application
versions and provides the infrastructure for integrating version-
specific functionality. Internal servers implement self-contained
version-specific functionality, and external servers version-specific
user interfaces or APIs. Configure a specific application version by
connecting the corresponding internal servers with the microkernel,
and providing appropriate external servers to access its functional-
ity. Consequently, all versions of the application share a common
functional and infrastructural core, but provide a tailored function
set and look-and-feel.

Clients, whether human or other software systems, access the micro-
kernel’s functionality solely via the interfaces or APIs provided by
the external servers, which forward all requests they receive to the
microkernel. If the microkernel implements the requested function
itself, it executes the function, otherwise it routes the request to the
corresponding internal server. Results are returned accordingly so
that the external servers can display or deliver them to the client.

���
A MICROKERNEL architecture ensures that every application version can
be tailored exactly for its purpose. Users or client systems only get
the functionality and look-and-feel that they require, but do not have
to incur the cost of anything they do not need. In general, evolving
a particular version towards new or different functions and aspects
‘only’ requires reconfiguring it with appropriate internal and exter-
nal servers: the microkernel itself is unaffected by such upgrades.
Existing internal and external servers and other application versions
are similarly unaffected. In addition, a MICROKERNEL architecture min-
imizes development and maintenance efforts for all members of the
application family: each service, user interface, or API is implemented
only once.

The internal structure of the microkernel is typically based on LAYERS

(185). The bottommost layer abstracts from the underlying system
platform, thereby supporting the portability of all higher levels.
The second layer implements infrastructure functionality, such as
resource management, on which the microkernel depends. The layer
above hosts the domain functionality that is shared by all application
versions. The topmost layer includes the mechanisms for configuring

196 From Mud To Structure

internal servers with the microkernel, as well as for routing requests
from external servers to their intended recipient.

Each specific and self-contained function and responsibility within
the microkernel can be realized as a DOMAIN OBJECT (208), which
supports its independent implementation and evolution. The routing
functionality of the microkernel is often implemented as a MEDIATOR

(410) that receives requests through a uniform interface and dis-
patches these requests onto corresponding domain functions in the
microkernel or the internal servers. To minimize resource consump-
tion, particularly memory, the routing layer can use a COMPONENT

CONFIGURATOR (490) or an OBJECT MANAGER (492) to load internal servers
on demand, unload them after use, and control their lifecycle. This
design also supports the upgrade of a particular application version
with new, different, or modified functionality dynamically at runtime.

Internal servers follow a similar LAYERS design as the microkernel, but
do not usually provide a routing layer. In addition, if the functionality
of an internal server builds on system services and platform abstrac-
tions that are offered by the layers in the microkernel, they can
avoid implementing these services and abstractions themselves, and
instead call back the corresponding layers in the microkernel. This
keeps the server’s footprint small, but at the expense of additional
runtime overhead to perform the callbacks. To minimize network
traffic in a distributed system, and to increase the performance of
internal servers, therefore, it may be beneficial to provide them with
all the system services and platform abstractions that they need.

The design of an external server strongly depends on its complexity
and purpose. It can range from a simple OBJECT ADAPTER (438) that
maps the application’s published APIs onto its internal APIs, to a
complex user interface.

The application-specific data exchanged between external servers, the
microkernel, and its configured internal servers can be encapsulated
inside DATA TRANSFER OBJECTS (418).

Reflection * 197

Reflection *

When transforming a DOMAIN MODEL (182) into a technical software
architecture . . .

. . . we must sometimes provide a design that is prepared for evolution
and integration of unanticipated changes.

���
Support for variation is the key to sustainable architectures for
long-lived applications: over time they must respond to evolv-
ing and changing technologies, requirements, and platforms.
However, it is hard to forecast what can vary in an application
and when it must respond to a specific variation request.

To complicate matters, the need for variation can occur at any time,
specifically while the application is in productive use. Variations can
also be of any scale, ranging from local adjustments of an algorithm to
fundamental modifications of distribution infrastructure. Yet, while
the variation of the application should be possible at appropriate
times, the complexity associated with particular variations should be
hidden from maintainers, and there should be a uniform mechanism
for supporting different types of variation.

Therefore:

Objectify information about properties and variant aspects of
the application’s structure, behavior, and state into a set of
metaobjects. Separate the metaobjects from the core application
logic via a two-layer architecture: a meta level contains the
metaobjects, a base level the application logic.

function_1

User Interface

Core
Application
Logicfunction_1

aspect_2
Metaobjects

property_1

Metaobject Protocol

uses uses

Meta
Level

Base
Level

User

Maintainer
configure
aspect

configure
property

do_something

198 From Mud To Structure

Provide the meta level with a metaobject protocol, which is a spe-
cialized interface that administrators, maintainers, or even other
systems can use to dynamically configure and modify all metaobjects
under the supervising control of the application. Connect the base
level with the meta level such that base-level objects first consult an
appropriate metaobject before they execute behavior or access state
that potentially can vary.

���
REFLECTION supports a high degree of runtime flexibility in a soft-
ware architecture. Almost any information about a software system
can be made accessible; and any aspect that can change can be
made (ex)changeable. Some programming languages, therefore, sup-
port specific flavors of REFLECTION directly, such as Java with the
java.lang.reflect package and C# with the System.Reflection
namespace. Note, however, that the heavyweight measures of a
REFLECTION architecture only pay off if there are similarly heavyweight
flexibility requirements that justify these measures.

To realize a REFLECTION architecture, first specify a stable design for
the application that does not consider flexibility at all: stability is the
key to flexibility [Bus03]. Typically, each self-contained responsibility
of the application is encapsulated within a DOMAIN OBJECT (208), which
together form the base level of the REFLECTION architecture.

Using a suitable method, such as Open Implementation Analysis
and Design [KLLM95], Commonality/Variability Analysis [Cope98],
or Feature Modeling [CzEi02], identify all the structural and behav-
ioral aspects of the application that can vary. Variant behavior often
includes algorithms for application functionality, lifecycle control of
domain objects, transaction protocols, IPC mechanisms, and policies
for security and failure handling. There may even be the need to add
completely new behavior to the system or to remove existing behavior.

Structural aspects that can vary include the application’s thread or
process model, the deployment of domain objects to processes and
threads, or even the system’s type structure. In addition, determine
all system-wide information, properties, and global state that can
influence the behavior of the application, such as runtime type infor-
mation about what interfaces domain objects offer, what their inner
structure is, or whether they are persistent.

Reflection * 199

Realize each variant behavioral and structural aspect, system prop-
erty, and state identified in the analysis as a separate metaobject, and
assign all metaobjects to the meta level of the REFLECTION architecture.
Such a strict encapsulation makes the aspects explicitly accessi-
ble, and thus (ex)changeable at any time. Changes to metaobjects
also cannot ripple through to the implementation of the application’s
base level.

Open the implementation of each DOMAIN OBJECT at the base level
such that it consults an appropriate metaobject for each aspect
encapsulated in the meta level. Changes to the metaobjects thus
immediately impact the base level’s subsequent behavior.

To support the creation, configuration, exchange, and disposal of
metaobjects at runtime, introduce a metaobject protocol that serves
as the sole interface to manage the meta level. The metaobject lifecy-
cle infrastructure that is necessary for these activities can be realized
with help of ABSTRACT FACTORIES (525) and BUILDERS (527) to create and
dispose of metaobjects, and a COMPONENT CONFIGURATOR (490) or an
OBJECT MANAGER (492) to control the execution of specific metaobject
lifecycle steps. Such a design also enables the integration of metaob-
jects that were developed after the reflective application went live
with the meta level. An INTROSPECTIVE INTERFACE (286) and a DYNAMIC

INVOCATION INTERFACE (288) support application-external clients such as
test frameworks or object browsers, to obtain information about base-
level domain objects without becoming dependent on their internal
structure, as well as invoking methods on them without the need to
use their functional interfaces.

The metaobject protocol in conjunction with the two-layer structure
of a REFLECTION architecture is a prime example of how the open/close
principle [Mey97] can be realized. The metaobject protocol hides the
complexity of software evolution behind a ‘simpler’ interface, making
it easy, uniform, and dynamic, but allows the reflective application
to supervise its own evolution so that uncontrolled changes are
minimized. The separation of a REFLECTION architecture into a base
level and a meta level strictly separates variant from invariant aspects
in an application: metaobjects can be managed without implications
for the internal design and implementation of the domain objects at
the base level.

200 From Mud To Structure

Pipes and Filters **

When transforming a DOMAIN MODEL (182) into a technical software
architecture . . .

. . . we must sometimes provide a design that is suitable for processing
data streams.

���
Some applications process streams of data: input data streams
are transformed stepwise into output data streams. However,
using common and familiar request/response semantics for
structuring such types of application is typically impractical.
Instead we must specify an appropriate data flow model for
them.

Modeling a data-flow-driven application raises some non-trivial devel-
opmental and operational challenges. First, the parts of the applica-
tion should correspond to discrete and distinguishable actions on
the data flow. Second, some usage scenarios require explicit access
to intermediate yet meaningful results. Third, the chosen data flow
model should allow applications to read, process, and write data
streams incrementally rather than wholesale and sequentially so
that throughput is maximized. Last but not least, long-duration
processing activities must not become a performance bottleneck.

Therefore:

Divide the application’s task into several self-contained data
processing steps and connect these steps to a data processing
pipeline via intermediate data buffers.

input

Input Device

buffer input

bufferinput

Output Device

Filter 1 Filter 2

Filter N

Pipe 1

Pipe N-1

Implement each processing step as a separate filter component that
consumes and delivers data incrementally, and chain the filters such

Pipes and Filters ** 201

that they model the application’s main data flow. In the data pro-
cessing pipeline, data that is produced by one filter is consumed by
its subsequent filters. Adjacent filters are decoupled using pipes that
buffer data exchanged between the filters.

���
A PIPES AND FILTERS architecture decouples different data processing
steps so that they can evolve independently of one another and
support an incremental data processing approach.

Within a PIPES AND FILTERS architecture, filters are the units of domain-
specific computation. Each filter can be implemented as a DOMAIN

OBJECT (208) that represents a specific, self-contained data process-
ing step. Filters with a concurrent DOMAIN OBJECT implementation
enable incremental and concurrent data processing, which increases
the performance and throughput of a PIPES AND FILTERS arrangement.
If a filter performs a long-duration activity, consider integrating mul-
tiple parallel instances of the filter into the processing chain. Such a
configuration can further increase system performance and through-
put, as some filter instances can start processing new data streams
while others are processing previous data streams.

Pipes are the medium of data exchange and coordination within a
PIPES AND FILTERS architecture. Each pipe is a DOMAIN OBJECT that imple-
ments a policy for buffering and passing data along the filter chain:
data producing filters write data into a pipe, while data consuming fil-
ters receive their input from a pipe. The integration of pipes decouples
adjacent filters so that the filters can operate independently of one
another, which maximizes their individual operational performance.

In a single-process PIPES AND FILTERS arrangement, pipes are typically
implemented as queues. Pipes with a concurrent DOMAIN OBJECT imple-
mentation enable incremental and concurrent data processing, as do
concurrent filters. In a distributed arrangement, pipes are realized as
some form of MESSAGING (221) infrastructure that passes data streams
between remote filters. Pipes that are implemented as a DOMAIN OBJECT

shield filters from a knowledge of their specific implementation, which
also allows transparent swapping of implementation forms. Such a
design supports a flexible (re-)deployment of filters in a distributed
PIPES AND FILTERS arrangement. MESSAGES (420) help to encapsulate the
data streams that are passed along the pipes.

202 From Mud To Structure

Shared Repository **

When transforming a DOMAIN MODEL (182) into a technical software
architecture . . .

. . . we must sometimes provide a design for applications whose parts
operate on, and coordinate their cooperation via, a set of shared data.

���
Some applications are inherently data-driven: interactions
between components do not follow a specific business process,
but depend on the data on which they operate. However, despite
the lack of a functional means to connect the components
of such applications, they must still interact in a controlled
manner.

One example of a data-driven system is a network management
and control application, such as a Telecommunication Management
Network (TMN) system. Such systems operate on massive amounts
of data provided by field devices. Core responsibilities like monitoring
and control, alarming, and reporting are largely independent of one
another, and it is the state of the data that determines the control
flow and collaboration of these tasks. Connecting the tasks directly
would hard-code a specific business process into the application,
which may be inappropriate if specific data is unavailable, not of the
required quality, or in a specific state. However, we need a coherent
computational state across the entire application.

Therefore:

Maintain all data in a central repository shared by all functional
components of the data-driven application and let the availabil-
ity, quality, and state of that data trigger and coordinate the
control flow of the application logic.

function_1

function_2

function_3

function_4

Application Components
Shared Repository

Data

User
operates on

Shared Repository ** 203

Components work directly on the data maintained by the shared
repository, so that other components can react if this data changes.
If a component creates new data, or if the application receives new
data from its environment, is also stored in the shared repository, to
make it accessible to other components.

���
A SHARED REPOSITORY architecture allows integration of application
functionality with a data-driven control flow to form coherent soft-
ware systems. It also supports coherent integration of applications
that operate on the same data, but neither share nor participate in
common business processes. Coordinating components via the state
of shared data can introduce performance and scalability bottlenecks,
however, if many concurrent components need access to the same
data exclusively and are thus serialized.

The shared repository is the central control coordination entity and
data access point of a data-driven application. It can be as sim-
ple as an in-memory data collection, or as complex as an external
data repository that is accessed via a DATABASE ACCESS LAYER (438).
If the shared repository is implemented as a DOMAIN OBJECT (208),
its concrete implementation is hidden from the application’s compo-
nents and can be swapped or modified transparently. DATA TRANSFER

OBJECTS (418) help to encapsulate the data passed between the shared
repository and the components of the application.

The data maintained by the shared repository is often encapsu-
lated inside managed objects: DOMAIN OBJECTS that hide the details
of concrete data structures and offer meaningful operations for their
access and modification. Managed objects allow the application’s
components to use specific data without becoming dependent on its
concrete representation, and support the modification of data rep-
resentations without effects on the components that use the data.
Managed objects can also indicate the quality of the represented data
via a corresponding quality attribute, for example that the data is up-
to-date, out-of-date, uncertain, or corrupted. Components can use
this information to control the specific treatment of that data.

In general, access to the shared repository and its managed
objects must be synchronized, because multiple components of the
application can access it concurrently. In most configurations, this
synchronization happens at the level of managed objects, which

204 From Mud To Structure

maximizes the potential concurrency within the data-driven applica-
tion. Providing a managed object with a THREAD-SAFE INTERFACE (406)
enforces synchronization at the interface of the managed object. If
only small portions of its methods are critical sections, synchroniza-
tion via STRATEGIZED LOCKING (388) is a possible alternative. Realizing a
managed object as a MONITOR OBJECT (390) supports cooperative con-
currency control of multiple components that access the managed
object simultaneously.

Many shared repositories offer a mechanism for notifying application
components about data changes within the repository. For example,
new data may have been inserted, existing data modified, or data may
have been dropped. Components can therefore react immediately to
changes to the data in the repository. In most cases, the change
notification mechanism is realized by an OBSERVER (405) arrangement:
the shared repository is the subject, the application’s components are
its observers. Similarly, managed objects can also offer an OBSERVER-
based change propagation mechanism, which allows them to notify
components about specific value changes.

Which of the two options best suits a data-driven application depends
on its concrete responsibilities. The trade-off to consider is simplic-
ity versus granularity: change notification at the level of the shared
repository is simple to implement, but could cause overhead due to
notification of components that are not interested in the changes
reported. Vice versa, a mechanism implemented at the level of man-
aged objects avoids unnecessary notifications and data transfer, but
is of higher complexity. The more components of an application that
operate on the entire data maintained by the shared repository,
the more feasible a notification mechanism at the repository level
becomes, while the more selectively components access managed
objects, the more notification at the level of managed objects is the
best fit.

The data-driven service components of the application are typically
implemented as DOMAIN OBJECTS that realize a specific responsibility
by accessing and manipulating data in the shared repository. Coop-
eration between the components happens purely at the data level, by
notifying other components when a specific managed object changes
its state, or when data is inserted into, or deleted from, the shared
repository.

Blackboard 205

Blackboard

When transforming a DOMAIN MODEL (182) into a technical software
architecture . . .

. . . we must sometimes provide a design suitable for applications that
resolve tasks for which no deterministic solution strategy is known.

���
For some tasks no deterministic solution algorithms are known,
only approximate or uncertain knowledge is accessible. However,
despite this lack of proper algorithmic support, trial-and-error
techniques can be sufficiently successful and it is necessary to
develop productive applications for these types of task.

Examples of such systems include speech recognition, submarine
detection based on sonar signals, and the inference of protein
molecule structures from X-ray data. Such tasks must resolve sev-
eral hard challenges: input data is often fuzzy or inaccurate, the
path towards a solution must be explored, every processing step
can generate alternative results, and often no optimal solution is
known. Nevertheless, it is important to compute valuable solutions
in a reasonable amount of time.

Therefore:

Use heuristic computation to resolve the task via multiple
smaller components with deterministic solution algorithms that
gradually improve an intermediate solution hypothesis.

Intermediate Solution
Hypothesis 1

Intermediate Solution
Hypothesis 2

Intermediate Solution
Hypothesis 3

check

activate

check

activate

activate

check

1

1

1

2

1 Determine the best
knowledge source to
modify data on the
blackboard.

2 Activate the selected
knowledge source to
let it modify data on
the blackboard.

run

Control

Knowledge Sources

Blackboard

206 From Mud To Structure

Divide the overall task of the system into a set of smaller, self-
contained subtasks for which deterministic solution algorithms are
known, and assign the responsibility for each subtask to an indepen-
dent knowledge source. To allow the knowledge sources to execute
independently of one another and in arbitrary order, let them coop-
erate via a non-deterministic data-driven approach. Using a shared
data repository, the blackboard, knowledge sources can evaluate
whether input data is available for them, process this input, and
deliver their results, which may then form the input for any other
knowledge source in the system.

Coordinate the computation with a control component that uses an
opportunistic heuristic to select and activate adequate knowledge
sources if the data on the blackboard does not yet represent a useful
final result, and finishes the computation if it does. Such a strategy
works towards a solution via incremental improvement of partial
results and evaluation of alternative hypothesis, instead of using a
deterministic algorithm.

���
A BLACKBOARD architecture helps in the construction of software
systems that must resolve tasks on the basis of uncertain, hypo-
thetical, or incomplete knowledge and data. It also helps to discover
and optimize strongly deterministic solutions for tasks that lack
such solutions. On the other hand, there is no guarantee that a
BLACKBOARD-based system actually produces a useful result. In addi-
tion, a computational approach based on heuristics is often not
feasible for systems that demand a predictability in terms of result
quality and the time in which a result is produced.

To implement a BLACKBOARD system, first decompose the task that
it must resolve. What input does the system receive? What form of
output should it produce? What potential solution paths and interme-
diate results towards a solution are known? What are the well-known
algorithms that can contribute to the solution (path)? What input or
intermediate results can each algorithm process? What intermediate
or final results can each algorithm deliver? On the basis of this anal-
ysis, define self-contained and independently executable knowledge
sources for every algorithm that is involved in the tasks’s solution.
Such independence allows the execution order of knowledge sources
to be arbitrary—a necessary precondition for a heuristic solution
strategy. To allow a heuristic to determine a particular execution

Blackboard 207

order, split each knowledge source into two separate parts. A con-
dition part examines whether the knowledge source can make a
contribution to the computation’s progress by inspecting the data
written on the blackboard. An action part implements the knowledge
source’s functionality: it reads one or more inputs from the black-
board, processes it, and writes one or more outputs back to the
blackboard. Alternatively, the action part could erase data from the
blackboard because it identifies the data as not contributing to the
overall task’s solution. Typically, a knowledge source is implemented
as a DOMAIN OBJECT (208), which supports its independent evolu-
tion and optimization when more knowledge about the application’s
overall task becomes available.

The blackboard is a data repository that maintains all partial and
final results that the knowledge sources produce. It can be designed
as an in-memory data collection, or as an external data repository
that is accessed via a DATABASE ACCESS LAYER (538). If the blackboard
is implemented as a DOMAIN OBJECT, its concrete implementation is
hidden from the knowledge sources and can be swapped or modified
transparently. DATA TRANSFER OBJECTS (418) help to encapsulate the
data passed between the blackboard and the knowledge sources.

A control component realizes the heuristic solution strategy of a
BLACKBOARD system. First it reads the system’s input and stores it
on the blackboard, then it enters a loop that executes three steps.
The initial step calls the condition parts of all knowledge sources
to determine whether they can contribute in the current state of
computation. The second step uses a heuristic that analyzes the
results returned by the condition parts to determine the particular
knowledge source that can best contribute to the progress of the
computation. The final step invokes the action part of the selected
knowledge source, which then modifies the blackboard’s content.
Once this knowledge source finishes its execution, the loop starts
over again.

The loop ends if the blackboard contains a valid final result, or if none
of the knowledge sources can improve the quality of any intermediate
solution hypothesis on the blackboard. Implementing the control
component as a DOMAIN OBJECT allows the chosen heuristics to be
modified and evolved transparently for the knowledge sources and
the blackboard of a concrete BLACKBOARD arrangement.

208 From Mud To Structure

Domain Object **

When realizing a DOMAIN MODEL (182), or its technical architecture
in terms of LAYERS (185), MODEL-VIEW-CONTROLLER (188), PRESENTATION-

ABSTRACTION-CONTROL (191), MICROKERNEL (194), REFLECTION (197), PIPES

AND FILTERS (200), SHARED REPOSITORY (202), or BLACKBOARD (205) . . .

. . . a key concern of all design work is to decouple self-contained and
coherent application responsibilities from one another.

���
The parts that make up a software system often expose mani-
fold collaboration and containment relationships to one another.
However, implementing such interrelated functionality without
care can result in a design with a high structural complexity.

Separation of concerns is a key property of well-designed software.
The more decoupled are the different parts of a software system, the
better they can be developed and evolved independently. The fewer
relationships the parts have to one another, the smaller the struc-
tural complexity of the software architecture. The looser the parts
are coupled, the better they can be deployed in a computer net-
work or composed into larger applications. In other words, a proper
partitioning of a software system avoids architectural fragmentation,
and developers can better maintain, evolve and reason about it. Yet
despite the need for clear separation of concerns, the implementation
of and collaboration between different parts in a software system
must be effective and efficient for key operational qualities, such as
performance, error handling, and security.

Therefore:

Encapsulate each distinct functionality of an application in a
self-contained building-block—a domain object.

Domain Object
Interface

Domain Object
Implementation

Function X Function Y Function Z

Function A

Function C

Domain Object 1

Domain Object 3

Domain
Object 2

Domain
Object 4

Function B

Domain Object ** 209

Provide all domain objects with an interface that is separate from
their implementation, and within each domain object program only
using these interfaces when accessing other domain objects.

���
DOMAIN OBJECT separates different functional responsibilities within
an application such that each functionality is well encapsulated and
can evolve independently. The specific partitioning of an application’s
responsibilities into domain objects is based on one or more gran-
ularity criteria. An APPLICATION SERVICE [ACM01] is a domain object
that encapsulates a self-contained and complete business feature
or infrastructure aspect of an application, such as a banking, flight
booking, or logging service [Kaye03]. A COMPONENT [VSW02] is a domain
object that either encapsulates a functional building block such as an
income tax calculation or a currency conversion, or a domain entity
such as a bank account or a user. A VALUE OBJECT [PPR] [Fow03a],
a COPIED VALUE (394), and an IMMUTABLE VALUE (396) are small domain
objects whose identity is based on their state rather than their type,
such as a date, a currency exchange rate, or an amount of money. A
domain object can also aggregate other domain objects of the same
or smaller granularity. For example, services are often created from
components that use value objects.

Split each domain object into an EXPLICIT INTERFACE (281) that exports
its functionality and an ENCAPSULATED IMPLEMENTATION (313) that realizes
the functionality. This separation of interface and implementation
minimizes inter-domain-object coupling: each domain object only
depends on domain object interfaces, but not on domain object
implementations. It is thus possible to realize and evolve a domain
object implementation with minimal effect on other domain objects.
The explicit interface of a domain object defines a contract for key
operational properties, such as error behavior and security aspects,
on which other domain objects can rely.

There are several options for connecting the explicit interface of a
domain object with its encapsulated implementation. For example,
Java and C# support the concept of explicit interface in the core lan-
guage, and classes (encapsulated implementations) can implement
them directly. In other statically typed languages such as C++, an
explicit interface can be expressed as an abstract base class from
which the explicit implementation derives.

210 From Mud To Structure

A BRIDGE (436) or an OBJECT ADAPTER (438) explicitly decouples the
explicit interface of a domain object from its encapsulated imple-
mentation so that the two can vary independently. The degree of
decoupling between the explicit interface of a domain object and its
encapsulated implementation depends on its granularity and likeli-
hood of change. The smaller the domain objects, for example when
realizing a VALUE OBJECT or an IMMUTABLE VALUE, the less beneficial
strict decoupling becomes. Similarly, the more often an encapsu-
lated implementation evolves, the more strongly the explicit interface
should be decoupled.

Explicit interfaces also enable remote access to domain objects. Note,
however, that remoting is generally feasible only for ‘larger’ domain
objects such as services and coarse-grained components, but not
for ‘small’ domain objects like a value object. The smaller are the
domain objects, the more adverse is the ratio of networking overhead
versus computation time inside the domain object, with correspond-
ing penalties on operational quality factors such as performance,
availability, and scalability.

Domain objects are often associated with an ABSTRACT FACTORY (525)
or BUILDER (527) that allows clients to obtain access to their explicit
interface and to manage their lifetime transparently. On platforms like
CCM [OMG02], EJB [MaHa99], and. NET [Ram02], domain objects
are controlled by a DECLARATIVE COMPONENT CONFIGURATION (461) that
specifies how their lifecycle, resource management, and other tech-
nical concerns like transactions and logging should be handled by
their hosting environment. A COMPONENT CONFIGURATOR (490) helps with
loading, replacing, (re)configuring, and unloading domain objects at
runtime.

10 Distribution
Infrastructure

Zhaoqing power converter station for high-voltage direct-current transmission line, Guangdong province,
China Siemens press picture,  Siemens AG

It is hard to meet complex distributed system requirements such as
scalability and dependability if only the application, host operating
system, and network perspectives are considered. The application
should focus on ‘business logic’ rather than ‘plumbing,’ and the
operating system and network should focus on endsystem resource
management and communication protocol processing respectively.
To address other key perspectives, this chapter describes twelve pat-
terns pertaining to middleware, which is distribution infrastructure
software that shields applications from many inherent and accidental
complexities of operating systems and networks.

212 Distribution Infrastructure

Several trends influence the way we conceive and construct dis-
tributed systems [ScSc01]:

• Information technology is becoming commoditized: hardware and
software are generally getting more powerful, cheaper, and better
at a relatively predictable rate. The commoditization of hardware,
such as CPUs and storage devices, and networking elements such
as IP routers and WiFi devices, has been underway for decades.
More recently, software is being commoditized due to the matura-
tion of object-oriented languages such as Java, C#, and C++, and
commercial-of-the-shelf operating environments, such as Linux,
Windows, and Java virtual machines.

• There is a growing acceptance of the service-oriented software
paradigm, in which distributed systems with a range of require-
ments are constructed by integrating separate services that are
connected by various forms of network protocols. The nature
of these interconnections can range from very small and tightly
coupled applications, such as anti-lock braking systems, to very
large and loosely coupled systems, such as the Internet and World
Wide Web.

The interplay of these two trends has yielded new architectural
concepts and services embodying layers of middleware, such as
MQ Series, CORBA, Enterprise Java Beans, DDS, and Web Ser-
vices. Middleware is distribution infrastructure software that resides
between the applications and the underlying operating systems, net-
work protocol stacks, and hardware. Its primary role is to bridge
the gap between application programs and the lower-level hardware
and software infrastructure, to coordinate how parts of applications
are connected and how they inter-operate. Middleware also enables
and simplifies the integration of components developed by different
technology suppliers.

When implemented and applied properly, middleware addresses many
of the challenges described in Chapter 2. For example, it shields
developers from many low-level platform details, such as socket-
level network programming, thereby enabling them to focus on their

Distribution Infrastructure 213

application’s business logic requirements. Middleware can also amor-
tize software lifecycle costs by leveraging previous development exper-
tise via reusable frameworks and services that are needed to operate
effectively in a networked environment, rather than handcrafting
them for each use.

Developing communication middleware that masters the challenges
outlined above and in Chapter 2 is complex and time-consuming.
Fortunately, there is rarely a need to design and implement your
own approaches. A wide range of communication middleware stan-
dards and commercial off-the-shelf platforms are now available, such
as CORBA [OMG04a], .NET Remoting [Ram02], the Microsoft Com-
munication Framework [Pal05], and JMS [HBS+02], which are used
successfully in many distributed systems.

The drawback of having so many different standards and products,
of course, is that you now have to consider more options for your
projects and systems. Selecting the ‘best’ communication paradigm,
middleware standard, and product depends on many factors, includ-
ing price, support, quality, and the requirements of the systems being
developed. Rarely does one middleware solution work optimally for
all applications in a distributed system.

To enhance productivity in a given distributed application, the selected
middleware must also be used correctly. Several projects have failed
[Bus03] due to insufficient understanding of the communication para-
digm and a lack of knowledge about the key structure and behavior
of chosen middleware. Selecting and using specific communication
middleware therefore requires thoughtful consideration and explicit
decisions.

The main intent for including this chapter in our pattern lan-
guage for distributed computing is to help you understand different
communication middleware approaches and their internal designs.
Armed with a knowledge of the fundamental properties of each
approach and their benefits and liabilities, you can choose the right
communication paradigm and middleware for applications in your
distributed system.

214 Distribution Infrastructure

Despite their detailed differences, middleware technologies typically
follow one or more of three different communication styles: messaging,
publish/subscribe, and remote method invocation, which are reflected
by the following three entry-point patterns in this chapter:

The MESSAGING pattern (221) [HoWo03] structures distributed
software systems whose services interact by exchanging mes-
sages. A set of interconnected message channels and message
routers manages the exchange of messages between services
across the network, including passing request and reply mes-
sages that contain information, metadata, and error information.

The PUBLISHER-SUBSCRIBER pattern (234) structures distributed
software systems whose services or components interact by
exchanging events asynchronously in a one-to-many configura-
tion. Publishers and subscribers of events are generally unaware
of one another. Subscribers are interested in consuming events,
not in knowing their publishers. Similarly, publishers just supply
events, and are not interested in who subscribes to them.

The BROKER pattern (237) [POSA1] [VKZ04] structures distributed
software systems whose components interact by remote method
invocations. A federation of brokers manages key aspects of
interprocess communication between components, ranging from
forwarding requests to transmitting results and exceptions.

Several criteria distinguish these patterns from one another, includ-
ing their communication models—such as many-to-one versus one-
to-many—and the degree of coupling between an application’s
components. In particular:

• In BROKER, many clients can make remote method invocations on
specific remote component objects hosted by a server. Clients thus
communicate with the server objects in a many-to-one fashion, and
their functional interfaces are often statically typed. The remote
method invocation style of communication provided by BROKER is
best suited for systems that try to hide the presence of the network.

• MESSAGING relaxes this coupling and typing: clients send dynamically
typed messages to specific remote services that reside at commu-
nication endpoints, not (necessarily) to specific methods. MESSAGING

thus enables many-to-one communication without statically pre-
defining the interface dependencies of clients to services.

Distribution Infrastructure 215

• PUBLISHER-SUBSCRIBER decouples an application’s components even
more: they can exchange events in a one-to-many manner with-
out knowing one another’s identity explicitly, and without having
to make a request each time new events are available. PUBLISHER-
SUBSCRIBER middleware is therefore responsible for tracking which
subscribers receive specific events sent asynchronously by pub-
lishers. Subscribers react when receiving an event by performing
some action, but publishers do not directly initiate the execution of
a specific method on the subscribers.

The following table summarizes these differences:

Pattern
Communication

Style
Communication
Relationships

Component
Dependencies

Broker Remote Method
Invocation

One-to-one Component interfaces

Messaging Message Many-to-one Communication endpoints
Message formats

Publisher-Subscriber Events One-to-many Event formats

Though achieving completely location-transparent communication in
a distributed system is infeasible [WWWK96], BROKER makes invoca-
tions on remote component objects look and act as much as possible
like invocations on component objects in the same address space
as their clients. MESSAGING and PUBLISHER-SUBSCRIBER are most appro-
priate for integration scenarios in which multiple, independently
developed and self-contained services or applications must collab-
orate and form a coherent software system. MESSAGING still allows
services to exchange requests and responses, whereas the entire
collaboration between components in PUBLISHER-SUBSCRIBER is coordi-
nated by notifying subscribers about state changes and other events
of interest.

In practice, middleware platforms and products often implement
one or more of these patterns. For example, Web Services imple-
ments PUBLISHER-SUBSCRIBER via WS-NOTIFICATION and MESSAGING

via SOAP, whereas CORBA implements PUBLISHER-SUBSCRIBER via the

216 Distribution Infrastructure

Notification Service and BROKER via the ORB itself. Some CORBA
BROKER implementations, such as BEA’s Web Logic Enterprise, are
even implemented on top of the Tuxedo MESSAGING middleware. In
general, the CORBA ORB Core can be viewed as the MESSAGING layer
of the CORBA BROKER architecture.

Other distributed computing literature lists additional communica-
tion styles, such as shared databases, data streaming, file transfer,
and peer-to-peer [Fow03a] [HoWo03] [VKZ04]. We consider these
more as approaches for orchestrating the collaboration of an appli-
cation’s services, however, rather than a style they use to exchange
information. This distinction explains why we present patterns like
PIPES AND FILTERS (200) and SHARED REPOSITORY (202) in Chapter 9 rather
than in this chapter. The data streaming style, for example, can be
realized via a PIPES AND FILTERS design with the pipes being middleware
based on MESSAGING or BROKER. Similarly, the shared repository style
can be realized with a SHARED REPOSITORY design using middleware
based on BROKER or PUBLISHER-SUBSCRIBER.

MESSAGING, BROKER, and PUBLISHER-SUBSCRIBER are just the entry points
into the patterns in this chapter. To be usable for a distributed
application, each type of middleware must address many different
issues, each representing its own problems and offering a coherent
solution space. It is therefore natural to document these problems
and their solutions as separate patterns—in fact, the architec-
ture of many middleware platforms today are guided and docu-
mented by many such patterns [SC99] [ACM01] [VSW02] [VKZ04]
[MS03].

Middleware based on MESSAGING can be refined by the following four
distribution infrastructure patterns:

The MESSAGE CHANNEL pattern (224) [HoWo03] connects applica-
tion services that interact by exchanging messages. One service
writes information to the channel and the other reads that infor-
mation from the channel.

The MESSAGE ROUTER pattern (231) [HoWo03] allows a client to
send messages to other services of an application depending on
a set of conditions.

Distribution Infrastructure 217

The MESSAGE TRANSLATOR pattern (229) [HoWo03] supports the
translation of a message into another form if the sender of a
message and its reader expect different message formats.

The MESSAGE ENDPOINT pattern (227) [HoWo03] helps application
services connect with the messaging infrastructure by encapsu-
lating and implementing the necessary adaptation code.

MESSAGING middleware is defined by other distribution infrastruc-
ture patterns beyond MESSAGE, MESSAGE CHANNEL, MESSAGE ROUTER,
MESSAGE TRANSLATOR, and MESSAGE ENDPOINT. Each of these four pat-
terns references other finer-grained patterns that assist their further
decomposition and implementation. We do not cover these patterns
in detail, but instead refer to their original source, Enterprise Inte-
gration Patterns [HoWo03]. Nonetheless, all these patterns form an
integral part of our pattern language for distributed computing.

The following diagram outlines how the MESSAGING and PUBLISHER-
SUBSCRIBER patterns integrate with our pattern language.

error
notification

data
routing

event
transfer

Domain Model

Remoting Error

Message

Message
Channel

error
notification

data
encapsulation

Message
Endpoint

Message
Translator

Message
Router

Message

Publish-Subscribe
Channel

Event-Driven
Consumer

Messaging
Publisher

Subscriber

event
encapsulation

data format
transformation

data format
transformation

data
transfer

data
routing

component
connection

component
connection

Selective
Consumer

event
filtering

inter-process
communication

inter-process
communication

218 Distribution Infrastructure

The responsibilities of BROKER middleware can be decomposed into
the following five distribution infrastructure patterns, which are
described in the order they are applied from client to server:

The CLIENT PROXY pattern (240) [VKZ04] offers clients a local
interface as a remote component with which they interact. Clients
can access the remote component in a location-independent
manner, as if it were collocated with the client.

The REQUESTOR pattern (242) [VKZ04] encapsulates the details
of client-side remote communication, such as marshaling and
sending a request across the network, and allows clients to
access remote components in a location-independent manner.

The CLIENT REQUEST HANDLER pattern (246) [VKZ04] encapsulates
the details of client-side interprocess communication behind a
uniform interface.

The SERVER REQUEST HANDLER pattern (249) [VKZ04] encapsulates
the details of server-side interprocess communication behind a
uniform interface.

The INVOKER pattern (244) [VKZ04] shields a server component
application from dealing with networking issues, such as receiv-
ing, demarshaling, and dispatching requests, when a request
arrives from a remote client.

CLIENT PROXY, REQUESTOR, CLIENT REQUEST HANDLER, SERVER REQUEST

HANDLER, and INVOKER are themselves refined by several other distri-
bution infrastructure patterns. Again, we do not describe these other
patterns in detail, but refer you to their original source, Remoting
Patterns [VKZ04].

Readers familiar with the first volume of the POSA series, A Sys-
tem of Patterns, might notice that the CLIENT-DISPATCHER-SERVER and
FORWARDER-RECEIVER patterns [POSA1] are missing in the list of pat-
terns above. We omit these two patterns because their responsibilities
are better covered by other patterns in our language. Our experience
also revealed that these patterns were too broad in scope, which sug-
gested refactoring them into multiple smaller, more focused patterns.
The responsibilities of CLIENT-DISPATCHER-SERVER are thus addressed by
a BROKER configuration that uses a LOOKUP (495) service, and a CLIENT

REQUEST HANDLER (246) and SERVER REQUEST HANDLER (249) association
forms a FORWARDER-RECEIVER arrangement.

Distribution Infrastructure 219

The diagram below illustrates how the BROKER pattern connects with
other patterns in our pattern language for distributed computing

Domain Object

Wrapper Facade

Layers

Component
Configurator

internal
partitioning

Broker

Remoting Error

Lookup

Requestor

Object Adapter

Container

Facade

inter-process
communication

Business
Delegate

Invoker

Client Proxy

OS abstraction

request
issuing

request
reception

error
notification

Broker
configuration

component
discovery

request
dispatching

request
dispatching

broker
access

component
access

component
access

component
creation

Message

Publisher-
Subscriber

Factory Method

request
encapsulation

publish-
subscribe
communication

The diagram above and the earlier one on page 217 show the rela-
tionship of PUBLISHER-SUBSCRIBER with MESSAGING and BROKER. PUBLISHER-
SUBSCRIBER can be viewed as a specialized form of these two patterns,
since its anonymous and asynchronous group communication model
can be implemented using either MESSAGING or BROKER. We present it
as a separate pattern in our pattern language because it addresses
a different set of forces than MESSAGING or BROKER. These forces result
in more loosely coupled—and often more scalable—communication
between distributed application components. Describing PUBLISHER-
SUBSCRIBER as a separate pattern enables us to discuss these forces

220 Distribution Infrastructure

and consequences more prominently and explicitly than if it were
presented as a special case of other patterns.

We recognize that our distribution infrastructure patterns do not
enable fully location-transparent communication in a distributed
system [WWWK96]. While middleware platforms based on BROKER,
MESSAGING, and/or PUBLISHER-SUBSCRIBER can off-load many tedious
and error-prone network programming tasks from applications, they
are ultimately just connectors between components of a distributed
application. These components must therefore be prepared to handle
certain challenges themselves.

For example, a distributed application must be resilient against cases
of non-maskable network failures or server crashes. Likewise, a client
that invokes services on a remote component must consider the
latency and jitter that the network adds to remote communication.
In addition, distribution infrastructure alone cannot solve problems
resulting from a suboptimal deployment of application components
across a network, or from inappropriate orchestration of their cooper-
ation. The particular deployment of the components of a distributed
system, as well as the way these components handle network failure,
latency, and jitter, thus has a significant impact on this system’s
stability, performance, and scalability [DBOSG05].

In other words, middleware platforms based on MESSAGING, BROKER,
or PUBLISHER-SUBSCRIBER are an important part of a distributed sys-
tem, but cannot handle responsibilities that are application-specific
and thus out of scope. Components of a distributed system must be
specified thoughtfully—always keeping in mind the properties of the
network—even if MESSAGING, BROKER, or PUBLISHER-SUBSCRIBER middle-
ware allows them to be independent of the specific location of other
components.

Messaging ** 221

Messaging **

When deploying a DOMAIN MODEL (182), or a PIPES AND FILTERS (200)
arrangement, to multiple processors or network nodes . . .

. . . we often need a communication infrastructure that integrates
independently developed services into a coherent system.

���
Some distributed systems are composed of services that were
developed independently. To form a coherent system, however,
these services must interact reliably, but without incurring
overly tight dependencies on one another.

Application integration is a key technique for composing solutions—
often at the enterprise level—from existing, self-contained, special-
purpose services. Each service provides its own business logic and
value, but together they can provide the business processes and value
chain of an entire enterprise. Integrating independent services into a
coherent application naturally requires reliable collaboration with one
another. Since services are developed independently, however, they
are generally unaware of each other’s specific functional interfaces.
Each service may also participate in multiple integration contexts,
so using it in a specific context should not preclude its use in other
contexts.

Therefore:

Connect the services via a message bus that allows them to
transfer data messages asynchronously. Encode the messages
so that senders and receivers can communicate reliably without
having to know all the data type information statically.

Message Bus

data msg 1

Service 1 Service 4Service 2 Service 3

data msg 2 data msg 3 data msg 4

222 Distribution Infrastructure

The services that form the distributed system connect with the mes-
sage bus to exchange data messages with other services. Clients can
initiate collaborations with remote services by sending them data mes-
sages asynchronously. The remote services process the received mes-
sages and return their responses—if there are any—asynchronously
to the clients via messages containing the processing results. The
messages are often self-describing: they contain both metadata that
describes the message schema, and the values corresponding to the
schema.

���
Middleware based on MESSAGING enables services in a distributed
application to interact without having to deal with remoting con-
cerns by themselves, and without depending on statically defined
service interfaces and data structures. In addition, the asynchronous
nature of MESSAGING communication allows distributed application
services to handle multiple requests simultaneously without block-
ing, as well as participate in multiple application integration and
usage contexts. MESSAGING thus enables loose coupling, which is a
key to Enterprise Application Integration (EAI) [Lin03] and Service-
Oriented Architectures (SOA) [Kaye03]. The primary drawbacks of
MESSAGING are its lack of statically typed interfaces, which makes it
hard to validate system behavior prior to runtime, and the potential
for high time and space overhead necessary to process self-describing
messages [Bell06].

Data exchanged between application services are often encapsulated
inside MESSAGES (420). A message hides the concrete data format
of its contents from both the sender and the receiver, as well as
from the MESSAGING middleware itself, which enables the transparent
modification of its format. XML is a popular format for representing
both the metadata and data values of self-describing messages. It
enables clients to generate and send messages whose form and
content need not be fixed statically.

MESSAGING clients only know the endpoints of the services they use,
not their specific interfaces. Consequently the form and content of a
message cannot be checked statically on the client before sending it
to a specific service. Instead, the service that receives a message is
responsible for understanding the message’s form and content. This
process typically involves parsing the message dynamically to validate

Messaging ** 223

and extract its contents. If the service does not understand some of
the message fields, it can simply ignore them, thereby simplifying
the integration of services whose message formats were not originally
designed to work together.

A concrete MESSAGING arrangement typically consists of several spe-
cialized parts. MESSAGE CHANNELS (224) support point-to-point com-
munication between interacting remote services and enable reliable
message exchange. MESSAGE ENDPOINTS (227) connect application ser-
vices with the MESSAGING middleware: these can send and receive
messages without depending on concrete messaging APIs, which
enables the transparent exchange and evolution of the underlying
MESSAGING infrastructure.

If the sender and the receiver of a message do not share a common
message format, a MESSAGE TRANSLATOR (229) can convert messages
issued by the sender into a format understood by the receiver. If the
sender does not know where to address a message, a MESSAGE ROUTER

(231) can help to direct it to its intended receiver. A communication
failure that cannot be handled internally by the MESSAGING middleware
can be returned as a REMOTING ERROR [VKZ04] to the client that sent
the message.

224 Distribution Infrastructure

Message Channel **

When developing a MESSAGING (221) infrastructure or a CLIENT REQUEST

HANDLER (246) and SERVER REQUEST HANDLER (249) in a BROKER (237)
arrangement . . .

. . . we must provide a means to connect a set of clients and services
that communicate by sending and receiving messages.

���
Message-based communication supports loose coupling between
services in a distributed system. Messages only contain the data
to be exchanged between a set of clients and services, however,
so they do not know who is interested in them.

Loose coupling makes it easier to integrate diverse information sys-
tems, but somehow the loose ends must tie back together. It is not
sufficient for a client to send messages randomly while other services
randomly receive whatever messages they come across. A client that
sends out messages knows what sort of information these messages
contain and often also knows who it wants to receive the messages.
Similarly, services that receive messages look for particular mes-
sages they can process, and often for messages from specific senders.
In other words, clients and services need to exchange messages in
predictable and reliable ways.

Therefore:

Connect the collaborating clients and services using a message
channel that allows them to exchange messages.

Message ChannelClient Servicedata

write

data

read

When a client has a message to communicate, it writes that message
to the message channel. Services interested in the message can pick
it up from there and process it.

���

Message Channel ** 225

A message channel connects a set of interacting clients and services,
thereby allowing them to exchange messages in a well-defined and
reliable manner. Clients that write messages to the channel can be
sure that the services reading the messages from the channel are
interested in the information they contain, while services that read
messages are sure they have received information that they can use
and process.

A message channel is thus a logical address to which clients and
services can write messages and/or from which they can receive
messages. Several types of message channels are common. A POINT-
TO-POINT CHANNEL [HoWo03] connects exactly one client and one service
and ensures that only they can read the messages written to it. In
contrast, a PUBLISH-SUBSCRIBE CHANNEL [HoWo03] enables publishers
to broadcast messages to multiple subscribers using the PUBLISHER-
SUBSCRIBER pattern (234).

An INVALID MESSAGE CHANNEL [HoWo03] decouples the handling of erro-
neous messages separately from the rest of the application logic,
whereas a DEAD LETTER CHANNEL [HoWo03] handles messages that were
sent successfully but which could not be delivered. Finally, a DATATYPE

CHANNEL [HoWo03], ensures that all messages on a channel are of the
same type, which helps to reduce message validation overhead in the
intended receiver.

A message channel is shared by at least two concurrent entitles: a
client that sends messages to the channel, and a service that obtains
messages from the channel. Depending on a channel’s implementa-
tion and use, therefore, it may require synchronization. A THREAD-SAFE

INTERFACE (384) enforces synchronization at the channel’s interface,
and a realization as a MONITOR OBJECT (368) supports cooperative
concurrency control for simultaneous access to the channel.

In general, the operational requirements of a distributed applica-
tion determine which specific message channel configuration is most
appropriate. For example, information assurance requirements may
dictate separate SECURE CHANNELS [SFHBS06] for selected security-
sensitive collaborations. Performance and scalability requirements
may equally dictate separate message channels for each type of
message, or even for each use case.

226 Distribution Infrastructure

A message channel does not come without cost, however, since it
needs memory, networking resources, and persistent storage to sup-
port GUARANTEED DELIVERY [HoWo03]. Developers must therefore plan
and configure the number and types of message channels explicitly
and thoughtfully to ensure the desired quality of service in a given
system deployment. A well-designed set of message channels forms a
MESSAGE BUS [HoWo03] that acts like a messaging API for the clients
and services in the distributed system.

Clients and services that are not designed to use a message channel
or message bus can connect to it via a CHANNEL ADAPTER [HoWo03]. A
MESSAGING BRIDGE [HoWo03] helps to connect clients and services that
are designed to use different channel or bus implementations.

Message Endpoint ** 227

Message Endpoint **

When developing a MESSAGING (221) infrastructure . . .

. . . we must enable clients and services in an application to send and
receive messages.

���
Clients and services in a stand-alone application usually collabo-
rate by passing data to one another. When clients and services are
connected by a messaging infrastructure, however, such direct
collaboration is impossible: data must be transformed into mes-
sages and vice versa.

Performing the data-to-message transformation directly within the
applications would tightly couple them with the specific message
format required by the messaging middleware. It would therefore
be hard to use the services in other applications, and the mix of
domain-specific code with infrastructure code would complicate their
evolution and maintenance. Even if messaging is incorporated as a
fundamental part of the application, replacing the underlying mes-
saging infrastructure is time-consuming, tedious, and error-prone.

Therefore:

Connect the clients and services of an application to the mes-
saging infrastructure using specialized message endpoints that
allow clients and services to exchange messages.

Messaging
dataClient Service

pass

data

read

message Middleware message

write pass

When a client has data to communicate, it passes this data to its
associated message endpoint, which first converts the data into a
message understood by the messaging middleware, then sends that
message to an endpoint representing the message’s receiver. This
endpoint converts the message into data that is understood by the
receiver service and passes the data to that service in an appropriate
format.

���

228 Distribution Infrastructure

MESSAGE ENDPOINTS encapsulate the messaging middleware from the
application clients and services and customize the middleware’s gen-
eral messaging API for them. Modifications to the messaging API,
and even an exchange of the entire messaging infrastructure, can
therefore be transparent to applications. In addition, all necessary
changes are localized within the endpoints.

In general, a messaging endpoint should be designed as a MESSAGING

GATEWAY [HoWo03], to encapsulate the messaging-specific code and
expose a domain-specific interface to the service it represents. Inter-
nally, the endpoint can deploy a MESSAGING MAPPER [HoWo03] to
transfer data between the service and the messages. To provide
asynchronous access to a synchronous method, a message endpoint
can be structured as a SERVICE ACTIVATOR [HoWo03]. A TRANSACTIONAL

CLIENT [HoWo03] allows a message endpoint to control transactions
explicitly in the messaging middleware.

Message endpoints can select among several different approaches for
receiving messages. A POLLING CONSUMER [HoWo03] provides a proac-
tive message reception strategy that reads messages only when the
represented service is ready to consume them. In contrast, an EVENT-
DRIVEN CONSUMER [HoWo03] supports a reactive message reception
strategy that processes a message immediately upon arrival. If a ser-
vice implements stateless functionality, the message endpoint can be
a COMPETING CONSUMER [HoWo03], to allow multiple service instances
to process messages concurrently. A MESSAGE DISPATCHER [HoWo03]
helps to dispatch incoming messages to the ‘right’ recipient if several
services share the same message endpoint.

Designing a message endpoint as a SELECTIVE CONSUMER [HoWo03]
enables the filtering of incoming messages: a service only processes
messages that comply to the filter’s criteria. A message endpoint can
also be a DURABLE SUBSCRIBER [HoWo03], so that messages received
while the represented service is unavailable are not lost. Finally, an
endpoint realized as an IDEMPOTENT RECEIVER [HoWo03] can handle
messages that were accidentally received multiple times.

The type and functionality of the represented service generally dic-
tates which of the message reception strategies outlined above are
most appropriate for a specific endpoint. The development of the
message endpoint can be customized for ‘its’ service.

Message Translator ** 229

Message Translator **

When developing a MESSAGING (221) infrastructure . . .

. . . we often must transform messages from the format delivered by
the client to the format understood by the service that receives them.

���
Messages enable a loosely coupled style of communication
between an application’s clients and services. As a consequence
of this decoupling, however, the client that sends a message
cannot assume that the services that receive it understand the
same message format.

In complex integration scenarios in which existing and independently
developed components are composed into new applications, it is
likely that many services will require a specific message format.
Resolving such a ‘Tower of Babel’ confusion of ‘languages’ inside the
services would introduce explicit and mutual dependencies between
them, which contradicts the idea of loose coupling and degrades
the benefits of message-based communication. Unifying the message
formats across all services is often infeasible, however, because it
can degrade their usability in other applications and integration
scenarios.

Therefore:

Introduce message translators between clients and services of an
application that convert messages from one format into another.

Message Translator
dataClient Service

sender receiver

data

format format

A message translator provides a bidirectional translation of message
formats. In a specific collaboration, clients can send messages in any
format they use. The message translator ensures that services get
these messages in the formats they understand.

���

230 Distribution Infrastructure

A MESSAGE TRANSLATOR maintains the loosely coupled style of commu-
nication introduced by MESSAGING even if the clients and services of an
application do not share a common message format. In addition, all
message transformation code is localized within a dedicated entity.
This design supports evolution that is independent of, and trans-
parent to, the clients and services that exchange messages via the
translator.

In many integration scenarios, message exchange can be supported
by placing specific requirements on the format and contents of a
message header. An ENVELOPE WRAPPER [HoWo03] helps encapsulate
the message payload so that it complies with the format required by
the messaging infrastructure. When the message arrives at its desti-
nation the payload can be unwrapped. A CONTENT ENRICHER [HoWo03]
is needed if the target service requires data fields in a message that
the originating client cannot supply: it has the ability to locate or
compute the missing information from the available data. The oppo-
site action—removing unneeded data from a message—is supported
by a CONTENT FILTER [HoWo03]. A CLAIM CHECK [HoWo03] is similar to
a CONTENT FILTER, but stores the removed data for later retrieval. A
NORMALIZER [HoWo03] helps convert multiple different message format
into one common format, and a CANONICAL DATA FORMAT [HoWo03] that
is independent of any specific service can be used inside the messag-
ing middleware to minimize the message transformations within an
application.

Message Router ** 231

Message Router **

When developing a MESSAGING (221) infrastructure . . .

. . . we must select a route to propagate messages through a system
from their source to their destination.

���
Messages exchanged between collaborating clients and services
must be routed through the messaging infrastructure. None of
these entities, however, should have knowledge about the rout-
ing path to choose.

Making application clients and services responsible for determining
the paths that messages should take through the system is not an
effective solution to the routing problem, nor should they have to
redirect messages they receive that were not intended for them. Such
designs would tightly couple application code with infrastructure
code, with clients and services depending on the internal structure
and configuration of the messaging infrastructure, thereby causing
maintenance problems when changes occurred. Similarly, making
messages responsible for their own routing introduces the same
problems for the data exchanged between collaborating components.

Therefore:

Provide message routers that consume messages from one mes-
sage channel and reinsert them into different message channels,
depending on a set of conditions.

In Message Channel

data

Message Router

write

data

read

Out Message Channel 1

Out Message Channel 2

A message router connects a set of message channels to a message
channel network. Messages it reads from one channel are routed to
a different channel that directs them to their intended receiver.

���

232 Distribution Infrastructure

The key benefit of a MESSAGE ROUTER is that it maintains the decision
criteria for the destination of messages in a designated location, sep-
arate from application clients, services, and the data they exchange.
If new message types are defined, the routing criteria within the
message router can be modified easily and locally. If necessary, new
message routers can be inserted into the messaging middleware. A
message router thus increases the options developers have to send
messages between application clients and services, as well as to
change routing strategies independently of, and transparently to,
applications.

The downside of MESSAGE ROUTER is that it adds extra processing steps
to an application, which may degrade its performance. A message
router also must know all the message channels it connects, which
may become a maintenance problem if configurations change fre-
quently. Moreover, the more message routers a system contains, the
harder it is to analyze and understand the overall flow of messages
through the system without additional tools.

Developers must therefore plan and configure the number and types
of message routers carefully to meet quality of service requirements
in a given system deployment. The more message routers a system
configuration contains, the more flexibly messages can be routed
between the components of the application, but the less efficient the
message exchange becomes. In general, therefore, select the minimal
set of message routers that meet application requirements to balance
the needs for simplicity, flexibility, and quality of service.

There are many types of message routers. A CONTEXT-BASED ROUTER

[HoWo03] bases its routing decisions on environmental conditions,
such as system load, failover scenarios, or the need for a system
monitoring DETOUR [HoWo03]. A CONTENT-BASED ROUTER [HoWo03], in
contrast, determines a message’s destination using specific message
properties such as their type or content. A MESSAGE FILTER [HoWo03]
assists a CONTENT-BASED ROUTER by discarding messages that do not
match the routing criteria, and a RECIPIENT LIST [HoWo03] determines
a list of recipients from the messages it receives. A PROCESS MANAGER

[HoWo03] routes messages based on intermediate results it receives in
response to previously routed messages. A MESSAGE BROKER [HoWo03]
provides a central hub-and-spoke architecture for routing messages
throughout an application.

Message Router ** 233

Additional message routers help in managing messages exchanged
between components. A SPLITTER [HoWo03] converts a single large
message into several smaller messages that can be routed individu-
ally. An AGGREGATOR [HoWo03] provides the opposite functionality, by
integrating multiple messages into a single message. A RESEQUENCER

[HoWo03] helps to collect and reorder out-of-sequence messages so
that they can be republished in the correct order. A ROUTING SLIP

[HoWo03] adds explicit routing information to a message before it is
sent to its receiver. A COMPOSED MESSAGE PROCESSOR [HoWo03] splits a
message into multiple parts using SPLITTER, performs some processing
on each message part, and reassembles the parts into a single mes-
sage via AGGREGATOR before directing it to an output channel. Finally, a
SCATTER-GATHER [HoWo03] broadcasts a message to multiple recipients
and creates a single aggregated response message from the individual
responses of each recipient.

There are two general options for implementing the control logic
of a message router: it may be either statically or dynamically
configurable. Statically configured message routers have less run-
time overhead but are less flexible; dynamically configured message
routers have the inverse properties. Dynamic configuration can be
realized with help of a central CONTROL BUS [HoWo03], or by imple-
menting the router as a DYNAMIC ROUTER [HoWo03] that configures
itself based on control messages from potential message recipients.

A message router that receives messages from multiple input chan-
nels must be synchronized. A THREAD-SAFE INTERFACE (384) enforces
synchronization at the router’s interface, while realization as a
MONITOR OBJECT (368) supports cooperative concurrency control of
all message channels, enabling the router to receive messages simul-
taneously.

234 Distribution Infrastructure

Publisher-Subscriber **

When deploying a DOMAIN MODEL (182) to multiple processors or net-
work nodes . . .

. . . we often need an infrastructure that allows application compo-
nents to notify each other about events of interest.

���
Components in some distributed applications are loosely cou-
pled and operate largely independently. If such applications
need to propagate information to some or all of their compo-
nents, however, a notification mechanism is needed to inform
the components about state changes or other interesting events
that affect or coordinate their own computation.

Nevertheless, this notification mechanism should not couple applica-
tion components too tightly, or they will lose their independence. Such
application components only want to know that another component
in the system is in a specific state, not which specific component
is involved. Similarly, components that disseminate events often
do not care which other components want to receive the infor-
mation. In addition, components should not depend on how other
components can be reached, or on their specific location in the
system.

Therefore:

Define a change propagation infrastructure that allows publishers
in a distributed application to disseminate events that convey
information that may be of interest to others. Notify subscribers
interested in those events whenever such information is pub-
lished.

Publisher 1 Publisher 2Subscriber 2 Subscriber 3

state
change

state
change

state
change

state
change

Change Propagation Infrastructure

Publisher-Subscriber ** 235

Publishers register with the change propagation infrastructure to
inform it about what types of events they can publish. Similarly,
subscribers register with the infrastructure to inform it about what
types of events they want to receive. The infrastructure uses this
registration information to route events from their publishers through
the network to interested subscribers. Subscribers receiving events
from the infrastructure can use information in the events to guide or
coordinate their own computation.

���
Like MESSAGING, PUBLISHER-SUBSCRIBER supports asynchronous commu-
nication, in which publishers transmit events to subscribers without
blocking to wait for a response. Asynchrony decouples publishers
and subscribers so that they can be active and available at differ-
ent points in time, and also leverages the parallelism inherent in a
distributed system. In addition, PUBLISHER-SUBSCRIBER allows compo-
nents in an application to coordinate their computation anonymously
without introducing explicit dependencies to one another: they are
unaware and independent of each other’s location and identity, since
they only send and receive events about changes of their state and/or
the changed state itself.

Only the infrastructure has the knowledge of how the components
connect, where they are located, and how events is routed through the
system. PUBLISHER-SUBSCRIBER also supports group communication, in
which publishers of events need not inform each subscriber explic-
itly, and the infrastructure forwards the events to all interested
subscribers.

A drawback of anonymous communication is that it can cause unnec-
essary overhead if subscribers are interested in a specific type of
event, and will only react if the event’s content meets specific criteria.
One way to address this problem is by filtering based on the type
or content of events. Filtering can incur other costs, however. For
example, filtering inside PUBLISHER-SUBSCRIBER middleware decreases
its throughput, filtering within the subscribers can result in unnec-
essary notifications, and filtering inside publishers can break the
anonymous communication model.

The information exchanged between the components connected by
PUBLISHER-SUBSCRIBER middleware is encapsulated inside events, which

236 Distribution Infrastructure

are realized as MESSAGES (420). An event hides its concrete message
format from both the publisher and subscriber(s), as well as from
the PUBLISHER-SUBSCRIBER middleware itself, which enables transparent
modification of the message’s format.

PUBLISHER-SUBSCRIBER middleware can be implemented in various ways.
One approach involves the reuse of MESSAGING and BROKER middleware.
For example, PUBLISHER-SUBSCRIBER middleware has been implemented
on top of MESSAGING and BROKER middleware, as is the case with many
WS-NOTIFICATION [OASIS06c] [OASIS06c] and CORBA Notification
Service [OMG04c] products, respectively. Another approach is to
implement PUBLISHER-SUBSCRIBER using fundamental concurrency and
network programming patterns [POSA2], as is the case with many
DDS [OMG05b] products. In general, the former approach simplifies
the efforts of the middleware developers, whereas the latter approach
yields better performance.

To support anonymous and asynchronous group communication, a
set of PUBLISH-SUBSCRIBE CHANNELS [HoWo03] or Event Channels [HV99]
can broadcast or multicast event messages from publishers to sub-
scribers. Components can inform a specific channel about which
events they publish and which events they would like to receive.
EVENT-DRIVEN CONSUMERS [HoWo03] support the transparent adaptation
of a consumer to a specific notification publish/subscribe APIs. Such
a design enables transparent exchange and evolution of the under-
lying PUBLISHER-SUBSCRIBER infrastructure. Designing subscribers as
SELECTIVE CONSUMERS [HoWo03] enables the filtering of incoming event
messages: a subscriber only processes events whose content complies
with the filter’s criteria.

If the publisher and subscriber of an event do not share a com-
mon message format, a MESSAGE TRANSLATOR (229) can convert events
issued by a publisher into the format understood by its subscribers.
MESSAGE ROUTERS (231) help maintain information about how to route
events through the middleware to their registered subscribers. A
communication failure that cannot be handled internally by the
PUBLISHER-SUBSCRIBER middleware can be returned as a REMOTING ERROR

[VKZ04] to the publisher that sent the event.

Broker ** 237

Broker **

When deploying a DOMAIN MODEL (182) to multiple processors or net-
work nodes . . .

. . . we often need a communication infrastructure that shields appli-
cations from the complexities of component location and IPC.

���
Distributed systems face many challenges that do not arise in
single-process systems. Application code, however, should not
need to address these challenges directly. Moreover, applications
should be simplified by using a modular programming model that
shields them from the details of networking and location.

Sending requests to services in distributed systems is hard. One
source of complexity arises when porting services written in different
languages onto different operating system platforms. If services are
tightly coupled to a particular context, it is time-consuming and
costly to port them to another distribution environment or reuse
them in other distributed applications. Another source of complexity
arises from the effort required to determine where and how to deploy
service implementations in a distributed system. Ideally, services
should interact by calling methods on one another in a common,
location-independent manner, regardless of whether the services are
local or remote.

Therefore:

Use a federation of brokers to separate and encapsulate the
details of the communication infrastructure in a distributed
system from its application functionality. Define a component-
based programming model so that clients can invoke methods
on remote services as if they were local.

Client

Client-side Broker

method_1

method_2

method_1

method_2

invoke

register

receive

send

request

discover

send

receive

discover client proxy register component

Client
Proxy

Server-side Broker
Application
Component

Network

238 Distribution Infrastructure

At least one broker instance is defined per participating network
node. Component interfaces and locations are registered with their
local broker to gain visibility within the distributed system. To invoke
functionality on a component, clients ask their local broker for a
proxy, which acts as the remote component’s surrogate. A client calls
a method on the proxy to initiate a request to a component. The
proxy collaborates with the client and server-side brokers to deliver
the request to the component and receive any results.

���
A BROKER enables components of a distributed application to inter-
act without handling remoting concerns by themselves. It can also
optimize communication mechanisms, such as using remote method
invocation versus collocated method calls, depending on the location
of client and server components. For example, if the client and com-
ponent are in the same address space, the broker can optimize the
communication path to alleviate unnecessary overhead.

Most BROKER realizations are based on a LAYERS (185) architecture
to manage complexity, such as CORBA [OMG04a] and Microsoft’s
.NET Remoting [Ram02]. These layers are further decomposed into
‘special-purpose’ components for specific networking and communi-
cation tasks. We illustrate this partitioning using the CORBA layering
[SC99]—other layering schemes and middleware may involve differ-
ent assignments [VKZ04].

An OS adaptation layer shields a broker from its underlying execution
platform. In languages that use virtual machines, such as Java, this
layer is the virtual machine. In other languages, such as C++, it
usually contains a set of WRAPPER FACADES (459) that provide a uniform
interface to specific OS APIs.

An ORB core layer forms the heart of a BROKER arrangement. In gen-
eral it is a messaging infrastructure consisting of two components.
A REQUESTOR (242) forwards request MESSAGES (420) from a client to
the local broker of the invoked remote component, while an INVOKER

(244) encapsulates the functionality for receiving request messages
sent by a client-side broker and dispatching these requests to the
addressed remote components. If a communication failure cannot
be resolved internally by a BROKER infrastructure, a REMOTING ERROR

[VKZ04] is signaled to the client that issued the failed request. A

Broker ** 239

COMPONENT CONFIGURATOR (490) can configure REQUESTOR and INVOKER

implementations with specific communication strategies and pro-
tocols. This supports the transparent exchange and evolution of
functionality within a BROKER, as well as a protocol-level integration
of heterogeneous or legacy components into a distributed system.

Additional LOOKUP (495) functionality allows components to register
their interfaces and location with a BROKER infrastructure. Clients
can similarly use LOOKUP to find these components and the access
to them. Using LOOKUP, clients need not know the concrete location
of components, but can connect to them at runtime. LOOKUP also
enables a flexible deployment of components, which supports both
an optimal utilization of network resources and different applica-
tion deployment scenarios. To complement remote procedure call
invocation, a BROKER may interact with an event channel to support
event-based notifications, which is in essence a PUBLISHER-SUBSCRIBER

(234) service.

An ORB adapter typically provides a CONTAINER (488) that manages
the technical environment of remote components. It interacts with a
set of skeletons, which are OBJECT ADAPTERS (438) that map between
the generic messaging infrastructure of the broker and the specific
interfaces of remote components. A FACADE (294) presents a simple
interface that components can use to access their local broker.

A CLIENT PROXY (240) represents a component in the client’s address
space. The proxy offers an identical interface that maps specific
method invocations on the component onto the broker’s message-
oriented communication functionality. Proxies allow clients to access
remote component functionality as if they were collocated, and can be
used to implement collocation optimizations transparently [ScVi99].

Client proxies increase location-independent communication in a dis-
tributed system, but do not achieve full transparency. Before clients
can use a client proxy they must obtain it from their local broker,
for example via a LOOKUP. This activity is not necessary for local
components unless they use a FACTORY METHOD (529) to access the
components they use. In addition, client proxies may be unable to
handle all REMOTING ERRORS transparently to their clients. A BUSINESS

DELEGATE (292) can encapsulate such ‘infrastructural concerns,’ and
thus help to provide more complete location-independent communi-
cation among the components of a distributed system.

240 Distribution Infrastructure

Client Proxy **

When constructing a client-side BROKER (237) infrastructure, real-
izing PROXY-based (290) interfaces for distributed components, or
implementing a BUSINESS DELEGATE (292) for a remote component . . .

. . . we must provide an abstraction that allows clients to access
remote components using remote method invocation.

���
Accessing the services of a remote component requires the
client side to use a specific data format and networking pro-
tocol. Hard-coding the format and protocol directly into the
client application, however, makes it dependent on the remote-
ness of its collaboration partner, because invocations on remote
components will differ from invocations on local components.

Ideally, access to a component should be location-independent. There
should be no functional difference between a method invocation on a
local component and a method invocation on a remote component.

Therefore:

Provide a client proxy in the client’s address space that is a sur-
rogate for the remote component. The proxy provides the same
interface as the remote component, and maps client invocations
to the specific message format and protocol used to send these
invocations across the network.

Client
method_1

method_2

method_1

method_2

receive

send

send

receive

Client
Proxy

Application
Component

Network
result result

requestrequest

Ensure client applications issue requests to the remote component
only via its client proxy. The proxy then transforms the concrete
method invocation and its parameters into the data format under-
stood by the network, and uses an IPC mechanism to send the data
to the remote component. The client proxy also transforms results

Client Proxy ** 241

returned from the component represented by the proxy back into the
format understood by its clients.

���
Client proxies support a remote method invocation style of IPC. As
a result there is no API difference between a call to a local or a
remote component, which enhances location-independent communi-
cation within a distributed application. In addition, a client proxy can
shield its clients from changes in the represented component’s ‘real’
interfaces, which avoids rippling effects in the case of component
evolution. If the proxy interface is designed in a network-unaware
style, however, it may incur excessive overhead. For example, it could
offer many fine-grained methods, such as accessors for each visi-
ble attribute of the represented component. Accessing all attributes
would require a client to invoke many proxy calls, each of which
incurs network overhead.

In addition, client proxies can only support, but not fully achieve,
location-independent communication. Before clients can use a client
proxy they must obtain it from their local broker—thus clients are
aware of the potential remoteness of the represented component.
Moreover, a client proxy may not be able to handle all errors returned
by the network transparently for its clients.

A client proxy can use a RESOURCE CACHE (505) to maintain immutable
data and state of the represented remote component, once this data
and state is first accessed and transferred. Caching avoids unnec-
essary performance penalties and network traffic for subsequent
accesses to the data and state. If the immutable state and data
is encapsulated within IMMUTABLE VALUES (396), the client proxy can
pass it directly to clients. A client proxy can also use AUTHORIZATION

(351) to enforce access rights to the remote component on the client
side, which helps minimize unnecessary performance penalties and
network traffic if access is denied.

Designing the client proxy as a REMOTE FACADE [Fow03a] helps to
address performance problems by coalescing related fine-grained
methods into a single coarser-grained method, such as a method
that returns all visible attributes of the represented component in
response to a single call.

242 Distribution Infrastructure

Requestor **

When constructing a client-side BROKER (237) infrastructure . . .

. . . we must provide a means for sending method invocations over the
network to remote components.

���
The client-side invocation of a method on a remote component
involves many administrative and infrastructure tasks. Imple-
menting these tasks repeatedly within each client is tedious,
error-prone, and pollutes application code with infrastructure
code that may be non-portable.

Invoking a method on a remote component requires the client side
to marshal invocation information, manage network connections,
transmit the invocation over the network, and handle invocation
results and errors. These activities are unnecessary for local method
invocations. If client applications handle these issues directly, they
can become dependent on specific networking protocols and IPC
mechanisms, thereby decreasing their portability and reusability in
other deployment scenarios and applications. Moreover, client devel-
opers would be distracted from their primary tasks: implementing
application functionality correctly and efficiently.

Therefore:

Create a requestor that encapsulates the creation, handling, and
sending of request messages to remote components.

Client

request function_1

function_2
request (location, componentID,

Application
Component

NetworkRequestor

operation name, arguments);

Clients that want to access a remote component supply the requestor
with information about the component’s location, a reference to the
component, the operation to be invoked, and its arguments. The
requestor uses the information to construct a corresponding request
message and send it over the network to the remote component.

���

Requestor ** 243

A requestor shields application logic in a distributed system from the
details of client-side networking and IPC activities and tasks.

A requestor can delegate some of its sub-activities to other com-
ponents. A MARSHALER [VKZ04] serializes concrete service requests
into request MESSAGES (420) and de-serializes corresponding result
messages into concrete responses. A CLIENT REQUEST HANDLER (246)
manages connections and encapsulates specific IPC mechanisms,
thereby simplifying sending request messages across a network and
receiving result messages.

Some applications require additional requestor activities, such as
adding a security token, which an INTERCEPTOR (467) can encapsu-
late via a uniform interface. In general, a MARSHALER, CLIENT REQUEST

HANDLER, and INTERCEPTOR manipulate client-side request processing
aspects without affecting the requestor’s core algorithm for creat-
ing, handling, and sending requests. An ABSOLUTE OBJECT REFERENCE

[VKZ04] can encapsulate information about the location and identity
of the remote component that is the target of the request. Similarly,
a REMOTING ERROR [VKZ04] is returned to the client when a failure
cannot be handled transparently by the requestor.

In general there are three deployment options for a requestor
[SMFG00]. The simplest option is to deploy one requestor for all
client threads or processes on a node. The more clients access the
requestor, however, the more it becomes a throughput and scalabil-
ity bottleneck. To alleviate this drawback, there could be a separate
requestor per client, or several clients could share a requestor. A
requestor that is shared by multiple concurrent clients must be
synchronized. Providing the requestor with a THREAD-SAFE INTERFACE

(384) is a simple, coarse-grained synchronization option, because it
enforces synchronization at the interface of the requestor, even if only
small portions of its methods are critical sections. In this case, syn-
chronization via STRATEGIZED LOCKING (388) is an alternative. Realizing a
requestor as a MONITOR OBJECT (368) supports cooperative concurrency
control of multiple clients that access the requestor simultaneously.
If there are multiple requestors per client application, they must syn-
chronize their internal use of shared resources, such as connections
or cached request objects.

244 Distribution Infrastructure

Invoker **

When constructing a server-side BROKER (237) infrastructure . . .

. . . we must provide a means for receiving method invocations from
the network and dispatching them to remote components.

���
The server side must perform many administrative and infras-
tructure tasks to transform data received from clients into
an invocation on a specific method of a remote component.
Implementing these tasks repeatedly within each component
implementation is tedious, error-prone, and pollutes application
code with infrastructure code that is often non-portable.

Invoking a specific method of a component implementation in
response to a client request requires a server to manage network
connections, receive data on the connections, demarshal that data to
receive the associated invocation information, identify the intended
component implementation, invoke the appropriate method on that
component, and return its results or errors. If remote components
handled these concerns directly, they would be tightly coupled to spe-
cific networking protocols and IPC mechanisms, thereby decreasing
their portability and reusability in other deployment scenarios and
applications. Moreover, server developers would be distracted from
their primary tasks: implementing application functionality correctly
and efficiently.

Therefore:

Create an invoker that encapsulates the reception and dispatch
of request messages from remote clients in a specific method of
a component implementation.

Client

invoke function_1

function_2
invoke (location, componentID,

Application
Component

Network Invoker

operation name, arguments);

Invoker ** 245

An invoker listens to network connections for request messages
to arrive from remote clients, receives the request messages when
they arrive, demarshals the received information to determine which
method and parameters to invoke on which component implementa-
tion, and dispatches that method on the identified component.

���
An invoker shields the application logic of a distributed system from
the details of server-side networking and IPC tasks and activities.

An invoker can delegate several sub-activities of its responsibility
to other components. A MARSHALER [VKZ04] can de-serialize request
MESSAGES (420) into a concrete service and serialize corresponding
services results into result messages. A SERVER REQUEST HANDLER (249)
manages connections and encapsulates a specific IPC mechanism,
thereby simplifying the process of receiving requests and sending
results across a network.

Some applications also require additional invocation activities, such
as interpreting an embedded security token, which an INTERCEPTOR

(444) can encapsulate via a uniform interface. In general, a MARSHALER,
SERVER REQUEST HANDLER, and INTERCEPTOR manipulate server-side re-
quest processing aspects without affecting the invoker’s core algo-
rithm for the reception and dispatch of client requests on component
implementations.

An ABSOLUTE OBJECT REFERENCE [VKZ04] encapsulates the identity of
a specific component implementation. A REMOTING ERROR [VKZ04] is
returned to the client that issued a request if failures occur that
cannot be handled by the invoker. The invoker can also delegate its
invocation to a LOCATION FORWARDER [VKZ04] if it cannot find the compo-
nent implementation, for example if the component was redeployed,
or is temporarily unavailable due to high machine load.

An invoker has several deployment options, the simplest of which is
to deploy one invoker for all components implementations in a server
application. The more components are accessed via one invoker, how-
ever, the more it becomes a throughput and scalability bottleneck. To
alleviate this drawback, several remote components could share an
invoker, or each component could have its own invoker.

246 Distribution Infrastructure

Client Request Handler **

When developing a REQUESTOR (242) . . .

. . . we must send requests to, and receive replies from, the network.

���
Sending client requests to and receiving replies from the net-
work involves various low-level IPC tasks, such as connection
management, time-out handling, and error detection. Writing
and performing these tasks separately for each client uses net-
working and endsystem resources ineffectively.

The more clients access the network, and the more requests and
replies must be handled simultaneously, the more efficiently network
resources must be managed to achieve appropriate quality of service
in a distributed application. Network connections and bandwidth,
for example, are limited resources and must be shared and used
judiciously by all clients to ensure acceptable latency and jitter. In
addition, writing error detection and time-out handling tasks sep-
arately for each client duplicates code and pollutes the application
with non-portable networking code.

Therefore:

Provide a specialized client request handler that encapsulates
and performs all IPC tasks on behalf of client components that
send requests to and receive replies from the network.

Client

send

send (request);

IPC

NetworkClient Request Handler

receive

result

The functional responsibilities of a client request handler include
connection establishment, request sending and result dispatching,
and time-out and error handling, which it performs with help of
specific IPC mechanisms. In addition, the client request handler is

Client Request Handler ** 247

responsible for efficient management and utilization of networking
and computing resources, such as network connections, memory,
and threads.

���
The centralized execution and management of all client-side network-
ing activities within a CLIENT REQUEST HANDLER can improve distributed
application quality of service, such as latency, throughput, scala-
bility, and resource utilization. The encapsulation of specific IPC
mechanisms makes communication transparent for clients that issue
requests to remote components.

To establish concrete connections to remote components, the client
request handler implements the connector role of ACCEPTOR-CONNECTOR

(265), which supports the evolution of network connection estab-
lishment strategies independently of other client request handler
responsibilities. If the client request handler is shared by multiple
concurrent clients, the connector must be synchronized. Providing
the connector with a THREAD-SAFE INTERFACE (384) is a simple but
coarse-grained synchronization option, because it enforces synchro-
nization at the interface of the connector, even if only small portions
of its methods are critical sections. In this case, consider using
STRATEGIZED LOCKING (388) to parameterize the synchronization mech-
anisms. Realizing a connector as a MONITOR OBJECT (368) supports
cooperative concurrency control when multiple clients access the
connector simultaneously.

A connection created by a connector can be encapsulated within a
connection handler that plays the service handler role in ACCEPTOR-
CONNECTOR. This design treats a connection as a first-class entity,
which supports efficient maintenance of connection-specific state,
as well as the handling of REMOTING ERRORS [VKZ04] that occur on
the connection. Scalability is also supported, since each connection
handler can run in its own thread, thereby processing requests from
and replies to multiple clients simultaneously.

A connection handler can implement a synchronous or asynchronous
communication strategy. Synchronous communication can simplify
the client programming model, but reduces performance and through-
put, whereas asynchronous communication has the inverse proper-
ties. Four patterns—FIRE AND FORGET, SYNC WITH SERVER, POLL OBJECT,

248 Distribution Infrastructure

and RESULT CALLBACK [VKZ04]—help realize an asynchronous commu-
nication model. These four patterns provide different strategies for
addressing the following three aspects: whether or not a result is
sent to the client, whether or not the client receives an acknowledge-
ment, and, if a result is sent to the client, whether it is the client’s
responsibility to obtain the result or whether it is informed using
a callback.

If a client expects a result or an acknowledgement, a connection han-
dler can use time-outs to detect potential failures of asynchronous
communication. Depending on whether a connection handler pro-
cesses data serially or is interrupt-driven, it can register with a
REACTOR (259) or PROACTOR (262), respectively, which will notify it when
a specific result arrives.

The specific IPC mechanism used by the connector and the con-
nection handlers of a client request handler can be encapsulated
by a PROTOCOL PLUG-IN [VKZ04] or a set of WRAPPER FACADES (459).
Both patterns hide IPC mechanism details behind uniform, platform-
independent interfaces. A PROTOCOL PLUG-IN allows runtime (re)con-
figuration of IPC mechanisms, but incurs some runtime overhead.
WRAPPER FACADE, in contrast, avoids runtime overhead, but only sup-
ports compile-time configuration. The requests are encapsulated
within MESSAGES (420) and sent over the network via a MESSAGE CHANNEL

(224). If security is required, the IPC mechanism should use a SECURE

CHANNEL [SFHBS06] to transmit requests.

An OBJECT MANAGER (492) can enhance client request handler perfor-
mance via caching. For example, if a specific connection is no longer
needed, it need not be destroyed, but can instead be kept ‘alive’ for
a predetermined time and reused for another collaboration between
the client and server it connects.

Results of specific invocations, as well as any REMOTING ERRORS [VKZ04]
that cannot be resolved by the client request handler, are returned to
the client that issued the corresponding request.

Server Request Handler ** 249

Server Request Handler **

When developing an INVOKER (244) . . .

. . . we must receive requests send replies across the network.

���
Receiving client requests from and sending replies to the net-
work involves several low-level IPC tasks, including connection
management, time-out handling, and error detection. Writing
and performing these tasks separately for each client uses net-
working and endsystem resources ineffectively.

The more remote requests and replies must be handled simultane-
ously by a server part of a distributed application, the more efficiently
network resources must be managed and utilized to achieve an
appropriate quality of service. Network connections and bandwidth,
for example, are limited resources, and must be shared and used
effectively by all remote components to provide an appropriate perfor-
mance, throughput, and scalability on the server-side of a distributed
system. In addition, writing error detection and time-out handling
tasks separately for each component duplicates code and pollutes
the application with non-portable networking code.

Therefore:

Provide a specialized server request handler that encapsulates
and performs all IPC tasks on behalf of remote components that
receive requests from and send replies to the network.

Remote Component

send

send (reply);

IPC

Network Server Request Handler

receive

request

The functional responsibilities of a server request handler include
connection establishment, request reception and dispatching, result

250 Distribution Infrastructure

sending, and error handling, which it performs with the help of
specific IPC mechanisms. In addition, the server request handler is
responsible for efficient management and utilization of networking
and computing resources such as network connections, memory,
and threads.

���
The centralized execution and management of all server-side net-
working activities within a SERVER REQUEST HANDLER can improve the
distributed application’s quality of service, in particular, latency,
throughput, scalability, and resource utilization. The encapsula-
tion of specific IPC mechanisms makes communication transparent
for application components that receive requests from and send
responses back to remote clients.

The client request handler needs an event-handling infrastructure
that listens on the network for connection requests to arrive, estab-
lishes the requested connections, and dispatches service requests
to methods on the appropriate application components. This infras-
tructure must allow multiple connection and service requests to
be received and processed simultaneously to achieve appropriate
latency, throughput, and scalability. Its core can be realized by a
REACTOR (259) or PROACTOR (262), depending on whether the process-
ing of received events is handled serially, or driven by interrupts,
respectively.

The event handlers of a REACTOR or PROACTOR can be realized as an
ACCEPTOR-CONNECTOR (265) to separate connection establishment from
request and reply handling. A dedicated acceptor listens on the net-
work for connection requests to occur, accepts these requests, and
creates a connection handler that encapsulates the newly estab-
lished connection. The connection handler then performs the IPC
on behalf of the application component accessed via that connec-
tion. This design enables connection establishment and data transfer
strategies to evolve independently of each other. Connections are also
treated as first class entities, which supports efficient maintenance
of connection-specific state and handling of any REMOTING ERRORS

[VKZ04] that occur on the connection. In addition, scalability is sup-
ported: each connection handler can run in its own thread, which
allows a server request handler to handle requests from, and replies
for, multiple clients concurrently.

Server Request Handler ** 251

A connection handler can implement a synchronous or asynchronous
communication strategy. Synchronous communication can simplify
the client programming model but reduces performance, whereas
asynchronous communication has the inverse properties. The SYNC

WITH SERVER pattern [VKZ04] can help to return acknowledgements
for an asynchronous communication model.

The specific IPC mechanism used by the acceptor and the con-
nection handlers of a server request handler can be encapsulated
by a PROTOCOL PLUG-IN [VKZ04] or a set of WRAPPER FACADES (459).
Both patterns hide IPC mechanism details behind uniform and
platform-independent interfaces. A PROTOCOL PLUG-IN allows runtime
(re)configuration of IPC mechanisms, but incurs some runtime over-
head. WRAPPER FACADE, in contrast, enhances performance, but only
supports compile-time configuration. The requests are encapsulated
within MESSAGES (420) and sent over the network via a MESSAGE CHANNEL

(224). If security is required, the IPC mechanism should use a SECURE

CHANNEL [SFHBS06] to transmit requests.

An OBJECT MANAGER (492) can enhance client request handler perfor-
mance via caching. For example, if a specific connection is no longer
needed, it need not be destroyed, but can instead be kept ‘alive’ for
a predetermined time and reused for another collaboration between
the client and server it connects.

11 Event Demultiplexing
and Dispatching

Taxi stand in Munich
 Frank Buschmann

At its heart distributed computing is all about handling of, and
responding to, events received from the network. This chapter,
therefore, presents four patterns that describe different approaches
for initiating, receiving, demultiplexing, dispatching, and processing
events in distributed and networked systems.

254 Event Demultiplexing and Dispatching

Distributed computing is ultimately event-driven, even when middle-
ware platforms offer applications with a more sophisticated communi-
cation model, such as request/response operations or asynchronous
messaging. There are a number of challenges that differentiate event-
driven software from software with a ‘self-directed’ flow of control
[PLoPD1]:

• Asynchronous arrival of events. Behavior in event-driven software
is triggered largely by external or internal events that can arrive
asynchronously. Most events must be handled promptly, even if the
application is under heavy workload, or while it is executing long-
duration services. If not, response time will suffer, and hardware
devices with real-time constraints will fail or corrupt data.

• Simultaneous arrival of multiple events. Event-driven software typi-
cally receives events from multiple independent event sources, such
as I/O ports, sensors, keyboards or mice, signals, timers, or asyn-
chronous software components. Consequently, multiple events can
arrive at the application simultaneously. To react promptly to any
event from any event source, event-driven software must therefore
be able to listen for events on all its event sources.

• Non-deterministic arrival of events. Although event-driven software
generally has little control over the order in which events arrive,
it must handle events properly regardless of their order of arrival.
Software that processes events in a specific order must be able
to detect illegal event sequences in order to prevent improper state
transitions. These requirements motivate flexible and effective event
demultiplexing and dispatching infrastructure within event-driven
software.

• Multiple event types. Most event-driven software handles multiple
types of events, where each type requires a particular behavior.
For example, a Connect event indicates a request to establish a
connection between two peers, whereas a Data event indicates an
operation request and its parameters. Dispatching the correct han-
dler in response to events is the responsibility of the event-handling
infrastructure, which requires an efficient mechanism to demulti-
plex events onto their intended handler, and to dispatch the correct
service or operation to process the event.

Event Demultiplexing and Dispatching 255

• Hiding the complexity of event demultiplexing and dispatching. Low-
level operating system mechanisms for detecting, receiving, and
demultiplexing events are often tedious and error-prone to pro-
gram [SH03]. To simplify the development of event-driven software,
higher-level abstractions are needed that hide the complexity of
demultiplexing and dispatching events to application services.

To master the challenges described above both elegantly and effi-
ciently, event-driven software is often structured as a LAYERS archi-
tecture (185) with an inverted flow of control [John97]. Each layer
in this architecture is responsible for handling a particular aspect
of event-driven computation, and hides the complexity that is asso-
ciated with this aspect from higher layers. Event-driven software
typically exhibits three layers:

• Event sources such as sockets [Ste98] occur at the lowest level,
which detect and retrieve events from various hardware devices or
low-level services that reside within an operating system.

• In the next layer up is an event demultiplexer, which uses functions
such as WaitForMultipleObjects, GetQueuedCompletionSta-
tus [Sol98], select [Ste98], or poll [Rago93] to wait for events to
arrive on the various event sources, and then dispatch events to
their corresponding event handler callbacks.

• The event handlers, together with the application code, form a
further layer, which performs application-specific processing in
response to callbacks.

Though a LAYERS approach decouples different concerns in event-
driven software in a way that handles each concern separately, it
does not explain how to resolve a particular concern optimally under
a given set of forces. For example, an event-demultiplexing layer alone
does not ensure efficient yet simple demultiplexing and dispatching
of events to event handlers.

256 Event Demultiplexing and Dispatching

The four event-handling patterns in our pattern language for dis-
tributed computing help to fill this gap. They provide efficient,
extensible, and reusable solutions to key event demultiplexing and
dispatching problems in event-driven software:

The REACTOR pattern (259) [POSA2] allows event-driven software
to demultiplex and dispatch service requests that are delivered
to an application from one or more clients.

The PROACTOR pattern (262) [POSA2] allows event-driven soft-
ware to demultiplex and dispatch service requests triggered by
the completion of asynchronous operations efficiently, thereby
achieving the performance benefits of concurrency without incur-
ring some of its liabilities.

The ACCEPTOR-CONNECTOR pattern (265) [POSA2] decouples the
connection and initialization of cooperating peer services in a
networked system from the processing performed by the peer
services after they are connected and initialized.

The ASYNCHRONOUS COMPLETION TOKEN pattern (268) [POSA2] allows
event-driven software to demultiplex and process the responses
of asynchronous operations it invokes on services efficiently.

This chapter focuses solely on patterns for event demultiplexing
and dispatching that are relevant to distributed computing. Patterns
related to other areas of event-driven software, such as handling user
interface events, are not included.

The REACTOR and PROACTOR patterns define event demultiplexing and
dispatching infrastructures that can be used by event-driven appli-
cations to detect, demultiplex, dispatch, and process events they
receive from the network. Although both patterns resolve essentially
the same problem in a similar context, and also use similar patterns
to implement their solutions, the concrete event-handling infrastruc-
tures they suggest are distinct, due to the orthogonal forces to which
each pattern is exposed.

REACTOR focuses on simplifying the programming of event-driven soft-
ware. It implements a passive event demultiplexing and dispatching
model in which services wait until request events arrive and then
react by processing the events synchronously without interruption.
While this model scales well for services in which the duration of
the response to a request is short, it can introduce performance
penalties for long-duration services, since executing these services

Event Demultiplexing and Dispatching 257

synchronously can unduly delay the servicing of other requests.
PROACTOR, in contrast, is designed to maximize event-driven software
performance. It implements a more active event demultiplexing and
dispatching model in which services divide their processing into mul-
tiple self-contained parts and proactively initiate asynchronous exe-
cution of these parts. This design allows multiple services to execute
concurrently, which can increase quality of service and throughput.

Consequently, REACTOR and PROACTOR are not really equally weighted
alternatives, but rather are complementary patterns that trade-off
programming simplicity and performance. Relatively simple event-
driven software can benefit from a REACTOR-based design, whereas
PROACTOR offers a more efficient and scalable event demultiplexing
and dispatching model.

The following diagram illustrates how REACTOR and PROACTOR integrate
into our pattern language.

implementation
variation

implementation
variation

concurrent
event
handling

completion
handler types

event handler
types

synchronous
event handling

Client Request
Handler

Explicit
Interface

Wrapper
Facade

Asynchronous
Completion Token

Server Request
Handler

Reactor

asynchronous
event handling

asynchronous
event handling

Proactor

Acceptor-
Connector

Object
Manager

event source
encapsulation

event source
encapsulation

concurrent
event

handling
Half-Sync/
Half-Async

Leader/
Followers

Copied Value

event handler
dispatching

completion handler
dispatching

synchronous
event handling

258 Event Demultiplexing and Dispatching

ACCEPTOR-CONNECTOR and ASYNCHRONOUS COMPLETION TOKEN help in refin-
ing the event-handling infrastructures introduced by REACTOR and
PROACTOR. In its essence, ACCEPTOR-CONNECTOR partitions event handlers
according to specialized responsibilities: initiating a connection to a
remote peer handler, accepting a connection request from a remote
peer, and event processing. This separation supports the variation of
connection establishment and initialization behavior independently of
service handler functionality. In addition, it shields application devel-
opers from dealing with low-level issues of connection management.
ASYNCHRONOUS COMPLETION TOKEN supports the correlation of responses
to asynchronous service invocations with the corresponding requests
so that the sender of the request can determine the actions to perform
on the response in constant time.

The second diagram illustrates how ACCEPTOR-CONNECTOR and
ASYNCHRONOUS COMPLETION TOKEN connect with other patterns in our
language.

event
handler

types

completion
handler
types

connection
managementservice

handler creation

IPC-mechanism
encapsulation

Client Request
Handler

Wrapper
Facade

Monitor
Object

Server Request
Handler

Object
Manager

Active
Object

Acceptor-
Connector

Asynchronous
Completion Token

ReactorProactor

event handler
types

event handler
types

Factory Method

Template Method

Strategy
variation

concurrent
service
handlers

ACT

event
handler
management

Future

completion
handler
notification

future
notification

management

All four patterns, however, have broader applicability than merely
handling network events. For example, REACTOR and PROACTOR can
also be applied in demultiplexing and dispatching user input events
to user interface elements.

Reactor ** 259

Reactor **

When developing event-driven software, or designing a CLIENT REQUEST

HANDLER (246) or a SERVER REQUEST HANDLER (249) . . .

. . . we must decouple infrastructure behavior associated with detect-
ing, demultiplexing, and dispatching events from short-duration
components that service the events.

���
Event-driven software often receives service request events from
multiple event sources, which it demultiplexes and dispatches to
event handlers that perform further service processing. Events
can also arrive simultaneously at the event-driven application.
However, to simplify software development, events should be
processed sequentially and synchronously.

Efficiently and flexibly processing events that arrive concurrently from
multiple sources is hard. For example, using multi-threading to wait
for events to occur in a set of event sources can introduce overheads
due to synchronization, context switching, and data movement. In
contrast, blocking indefinitely on a single event source can prevent
the servicing of other event sources, degrading the quality of service
to clients. In addition, it should be easy to integrate new or improved
event handlers into the event-handling infrastructure.

Therefore:

Provide an event handling infrastructure that waits on multiple
event sources simultaneously for service request events to occur,
but only demultiplexes and dispatches one event at a time to a
corresponding event handler that performs the service.

A client

Send

Start event
1

demux events

Operating System

event loop

Reactor

handle event

Event Handlers

handle event

handle event

event_loop ()

for (ever)
Block waiting for events to occur.
event = demux_events ();

end
rof

Run an infinite event loop.
begin

Dispatch the event.
handler = identify_handler (event);
handler.handle_event (event);

processing

service
request
event

2

4

3

260 Event Demultiplexing and Dispatching

A reactor component coordinates the processing of events within the
event-driven application. It defines an event loop that uses an oper-
ating system event demultiplexer to wait synchronously for service
request events to occur on a set of event sources. By delegating the
demultiplexing of events to the operating system, the reactor can
wait for multiple event sources simultaneously without a need to
multi-thread the application code. When events arrive, the event loop
dispatches them one at a time to event handlers that implement the
requested application functionality. Each event handler then reacts
and services ‘its’ event synchronously.

���
There are several benefits to a REACTOR design. First, operating sys-
tem event demultiplexing mechanisms can wait on a set of event
sources while avoiding the performance overhead and programming
complexity associated with multi-threading. Second, encapsulating
the software event loop within the reactor shields service event han-
dlers from complexities in the synchronous event demultiplexing
and dispatching infrastructure. Third, event serialization becomes
transparent for an application’s components, which can execute
sequentially and synchronously without the need for explicit locking.

A reactor component forms the heart of event-driven software: it
encapsulates a reusable event demultiplexing and dispatching infras-
tructure. In particular, the reactor defines an event loop that uses
an event demultiplexer provided by the underlying operating sys-
tem, such as select or WaitForMultipleObjects, to wait for service
request events to occur on a set of event sources that are identified
by handles. Calling the event demultiplexer blocks the reactor until
one or more events arrive on the event sources and it is possible
to process these events without blocking. The event demultiplexer
returns the handles of all event sources on which service request
events occurred to the reactor, which then dispatches these events,
one at a time, as COPIED VALUES (394) to the handlers that react and
process the events synchronously.

Different reactor implementations are often required when platforms
offer different event demultiplexers. In such a situation, an EXPLICIT

INTERFACE (281) may be needed to separate the reactor interface
from its implementations. Event handlers are often arranged in an
ACCEPTOR-CONNECTOR (265) configuration, in which service handlers

Reactor ** 261

provide domain-specific functionality and acceptors and connectors
establish connections on behalf of service event handlers. An exten-
sible event handling infrastructure can be supported by defining a
common EXPLICIT INTERFACE for all event handlers that specifies the
set of operations available for processing service request events. This
design minimizes the coupling between the reactor and the signatures
and logic of specific services, which all use a generic event handler
interface.

Processing a service request event often requires an event handler to
perform additional I/O on the event source on which the event arrived,
for example to read parameter values associated with a client request,
or to return results to the client that issued the event. WRAPPER FACADES

(459) can be used to simplify communication between event handlers
and event sources and to remove dependencies on platform-specific
I/O functions. The I/O handles and event handlers within a reactor
are typically stored and retrieved using an OBJECT MANAGER (492).

An event handler does not return control to the reactor until it is done
processing a service request event. If an event handler blocks for an
extended period, therefore, no other event handlers can be dispatched
to service events. As a result, a single-threaded REACTOR configuration
is best suited for event handlers that perform short-duration services
that do not block on I/O handles or locks, but is infeasible for event
handlers that perform long-duration actions.

To alleviate this drawback, event-driven software can implement con-
current event handlers, which allow the event-driven application to
process multiple events simultaneously. The HALF-SYNC/HALF-ASYNC

(359) pattern can work in conjunction with REACTOR to process long-
duration client requests and replies concurrently in separate threads
of control. Similarly, the LEADER/FOLLOWERS (362) pattern is suitable
for event-driven software that uses a thread pool to process a high
volume of short-duration, repetitive, and atomic actions.

262 Event Demultiplexing and Dispatching

Proactor *

When developing event-driven software, or designing a CLIENT REQUEST

HANDLER (246) or a SERVER REQUEST HANDLER (249) . . .

. . . we must decouple infrastructure behavior associated with the
detection, demultiplexing, and dispatch of events from long-duration
components that service the events.

���
To achieve the required performance and throughput, event-
driven applications must often be able to process multiple events
simultaneously. Resolving this problem via multi-threading,
however, may be undesirable, due to the overhead of synchro-
nization, context switching, and data movement.

Nevertheless, service processing should not be delayed unduly by
long-duration activities on event sources, such as awaiting service
request events from remote clients or performing I/O with clients or
other components such as a database. Performance and throughput
should also be maximized. In addition, it should be easy to inte-
grate new or improved components into the existing event-handling
infrastructure.

Therefore:

Split an application’s functionality into asynchronous operations
that perform activities on event sources and completion handlers
that use the results of asynchronous operations to implement
application service logic. Let the operating system execute the
asynchronous operations, but execute the completion handlers
in the application’s thread of control.

A client

Send

Start event

demux events

Operating

event loop
handle event

Completion Handlers

handle event

handle_event (Event event)

Read request asynchronously
and return control.
async_read ();

process_data ();

if (event.type == REQUEST)
begin ## Process the received event

elsif (event.type == READ_COMPLETE)
Process event, deliver results
asynchronously, and return control.

processing

service
request
event

async read

async write
System

async_write ();
fi

end

1

3
Proactor2

4

Proactor * 263

A proactor component coordinates the collaboration between comple-
tion handlers and the operating system. It defines an event loop that
uses an operating system event demultiplexer to wait synchronously
for events that indicate the completion of asynchronous operations
to occur. Initially all completion handlers ‘proactively’ call an asyn-
chronous operation to wait for service request events to arrive, and
then run the event loop on the proactor. When such an event arrives,
the proactor dispatches the result of the completed asynchronous
operation to the corresponding completion handler. This handler then
continues its execution, which may invoke another asynchronous
operation.

���
A PROACTOR event-handling infrastructure allows multiple long-
duration services to be executed simultaneously within a single
application thread, which enhances the performance and through-
put of event-driven software by avoiding multi-threading overhead,
such as synchronization, context switching, and data movement—as
long as completion handlers do not operate on the same resources
at the same time. Encapsulating the software event loop within the
proactor also shields completion handlers from complexities in the
asynchronous event demultiplexing and dispatching infrastructure.

To implement a PROACTOR arrangement, most modern operating sys-
tems offer asynchronous operations, such as the aio * API in
Real-time POSIX [POSIX95], and Overlapped I/O in Windows [Sol98].
Without blocking their callers, the operating system executes these
asynchronous operations on event sources identified via handles.
Completion handlers can use the operations to delegate the execu-
tion of long-duration I/O activities to the operating system, which
enables the handlers to process other requests until the operations
complete. A downside of the Proactor is its reliance on operating
system support for asynchronous I/O to run efficiently.

For efficiency reasons, the collaboration between completion han-
dlers and asynchronous operations is often based on ASYNCHRONOUS

COMPLETION TOKENS (ACTs) (268). When a completion handler invokes
an asynchronous operation, it also passes an ACT that contains
unambiguous identification of the calling handler, as well as the
handle of the event source on which the operation should execute.
When the asynchronous operation completes, it fills the ACT with its

264 Event Demultiplexing and Dispatching

results, and the operating system generates a completion event on the
respective event source to indicate that the operation has finished.
This completion event also contains the corresponding ACT.

Completion events are returned to completion handlers via the proac-
tor, whose event loop uses an event demultiplexer provided by the
operating system, such as GetQueuedCompletionStatus in the Win-
dows API [Sol98]. This event demultiplexer waits for completion events
to occur on event sources that can be identified via handles. When
such events occur, the event demultiplexer returns them to the proac-
tor, which uses their ACTs to dispatch each event to the associated
completion handler as a COPIED VALUE (394), to process the results of
the asynchronous operation. Once a completion handler calls another
asynchronous operation, control returns to the proactor, so that it
can wait for and dispatch the next completion event.

Different platforms often require different proactor implementations,
so the proactor interface should be separated from its realization via
an EXPLICIT INTERFACE (281). Completion handlers are often designed as
an ACCEPTOR-CONNECTOR (265) configuration, in which service handlers
provide domain-specific functionality and acceptors and connectors
establish connections asynchronously on behalf of service handlers.
To support an extensible event-handling infrastructure, define a com-
mon EXPLICIT INTERFACE for all completion handlers that specifies the
set of operations available for processing service request events. This
design minimizes the coupling between the proactor and the signa-
tures and logic of specific services, which all use a generic completion
handler interface.

Processing a service request event often requires a completion handler
to perform additional I/O on the event source on which the event
arrived, for example to read parameter values asynchronously that
are associated with a client request, or to return results to the client
that issued the event. WRAPPER FACADES (459) can be used to simplify
the communication between completion handlers and event sources
and to remove dependencies on platform-specific I/O functions.

The HALF-SYNC/HALF-ASYNC (359) pattern can work in conjunction
with PROACTOR to process long-duration clients requests and replies
synchronously and sequentially, which simplifies application pro-
gramming without degrading the performance of the PROACTOR event-
handling infrastructure.

Acceptor-Connector ** 265

Acceptor-Connector **

When implementing event handlers in a connection-oriented net-
worked system, such as event handlers in a REACTOR (259) architecture
or completion handlers in a PROACTOR (262) architecture, or when
designing a CLIENT REQUEST HANDLER (246) or a SERVER REQUEST HANDLER

(249) . . .

. . . we want to decouple infrastructure behavior associated with
establishing connections and initializing event handlers from the
application-specific processing within these handlers.

���
Before peer event handlers in a networked system can execute
their functionality with other peer event handlers they must first
be connected and initialized. The connection establishment and
initialization code of a peer event handler, however, is largely
independent of the functionality that it performs.

To complicate matters, the application functionality of an event
handler usually changes more frequently than its connection and
initialization strategies. In addition, an event handler may change its
connection role dynamically: in one scenario it initiates a connec-
tion to a remote peer actively, while in another scenario it accepts a
connection request passively from a remote peer.

Therefore:

Decouple the connection and initialization of peer event handlers
in a networked system from the processing that these peers
subsequently perform.

AnotherA peer component
Accept

accept

Acceptor

connect

Connector

init

Service Handler

connection

service

init

Service Handler

service

Connect
‘me’

Pass
connection

Pass
connection

Perform
work

peer component

3

1

4

3

2

266 Event Demultiplexing and Dispatching

A client service handler can initiate a connection to a remote service
handler by calling its local connector, a factory that actively initiates
new connections to remote peers. The connector sends the request
to a corresponding acceptor, a factory on the server side that accepts
connection requests passively from remote peers. After the factories
establish a connection between two peers, they initialize the associ-
ated service handlers and pass the connection to the handlers. The
service handlers then use the connection to execute their application
functionality cooperatively.

���
An ACCEPTOR-CONNECTOR arrangement encapsulates connection estab-
lishment within separate acceptor and connector components, which
shields service handlers from complexities in the underlying network
programming infrastructure. In addition, connection establishment
and initialization behavior can vary independently of service handler
functionality. Note, however, that an ACCEPTOR-CONNECTOR arrange-
ment may add unnecessary complexity for simple client applications
that connect with only one server and perform one service using a
single network programming interface.

Design acceptors to use an event demultiplexer to listen for the
arrival of connection requests passively. If an ACCEPTOR-CONNECTOR

arrangement is built on top of a REACTOR or PROACTOR, the acceptors
can use the event demultiplexer that is provided by these event-
handling infrastructures. When a connection request arrives, the
event demultiplexer dispatches the request to the acceptor, which
performs three steps to establish a connection with the remote peer
that issued the request. First, a FACTORY METHOD (529) creates the
service handler instance that should be connected to the remote peer.
Second, the acceptor establishes the connection with the remote peer,
and third, it passes the connection to the associated service handler
and finishes initializing it.

In general, a connector factory can support a synchronous or an
asynchronous connection establishment strategy to service handlers.
Synchronous connection establishment is most useful if the con-
nection establishment latency is low, if service handlers must be
initialized in a fixed order, and if service handlers can deploy a thread-
per-connection model to connect to remote peers. Otherwise, an
asynchronous connection establishment strategy is more beneficial.

Acceptor-Connector ** 267

Both synchronous and asynchronous connection establishment can
be supported transparently to service handlers by dividing connec-
tors into a connect method that is called by a service handler to
establish a new connection actively, and a complete method that
passes this connection to the service handler that requested it after
the connection is established [POSA2].

Each activity in the connector and acceptor factories can be real-
ized with help of TEMPLATE METHODS (453) or STRATEGIES (455). Such
a design supports flexible evolution and exchange of connection
establishment and initialization policies transparently to service han-
dlers. TEMPLATE METHODS are most appropriate if the flexibility is
needed at compile time, whereas typical STRATEGIES support a run-
time configuration and reconfiguration of acceptors and connectors.
In C++, a STRATEGY can also be expressed as a compile-time policy,
in which case the choice is simply between using an inheritance-
versus a delegation-based approach—binding time need not be a
consideration.

The I/O handles and event handlers used by a connector compo-
nent to support asynchronous connection establishment are typically
stored and retrieved using an OBJECT MANAGER (492).

The acceptor and connector factories perform their connection estab-
lishment functionality, and the service handlers their application
functionality, by exchanging messages with their peers via an IPC
mechanism. Encapsulating the IPC mechanism inside a set of WRAPPER

FACADES (459) ensures its correct and portable use within the acceptor
and connector factories and service handlers.

Concurrent service handlers can improve the throughput of an
event-driven application because multiple events can be processed
simultaneously. A concurrent service handler can be implemented as
an ACTIVE OBJECT (365) if it represents a coarse-grained component or
service, or as a MONITOR OBJECT (368) if it is a fine-grained (distributed)
object.

268 Event Demultiplexing and Dispatching

Asynchronous Completion Token **

When developing a PROACTOR (262) infrastructure, a FUTURE (404) ar-
rangement, or in general using asynchronous communication within
an application . . .

. . . we must demultiplex and process the responses of asynchronous
operations invoked on services efficiently.

���
A two-way operation that a client invokes asynchronously returns
its response via a completion event. This response can then be
processed within the client. The client does not block, however,
after calling the operation. The state of the client when the com-
pletion event arrives can therefore differ from the state it had
when the operation was invoked.

To behave correctly, however, the client must process the result of
the operation in its appropriate context. To enhance performance,
the client should also spend as little time as possible in identifying
how responses of asynchronous operations must be processed. In
addition, if the client calls multiple asynchronous operations, the
order in which responses arrive may not be identical to the order in
which the operations were called.

Therefore:

Along with each call that a client issues on an asynchronous
operation, transmit an asynchronous completion token (ACT)
that contains the minimum amount of information needed to
identify how the client should process the operation’s response.

Send Request
async_operation

Service

dispatch ACT

service

dispatch

process_result

Client

1

Return Response

Dispatch Result

Process Result

3

4

2

Asynchronous Completion Token ** 269

An ACT associates an individual invocation of an asynchronous oper-
ation with the specific behavior that should be executed in the client
when the operation completes. When a client invokes an operation on
a service asynchronously, it also passes an ACT to that service. The
service holds the ACT within the operation while it executes, but does
not modify it. When the operation finishes, the ACT is returned to
the client along with any results. The client uses the ACT to indicate
efficiently and unambiguously which behavior to execute in response
to the completed operation. In particular, the client uses the ACT to
demultiplex and dispatch control flow to a method or handler that is
responsible for processing the operation’s result.

���
Using ASYNCHRONOUS COMPLETION TOKENS to dispatch and process the
results of asynchronous operations allows clients to demultiplex and
dispatch the methods or handlers that process the results in con-
stant time. In addition, ACTs use the minimum amount of space
needed to match responses with the corresponding requests. On the
other hand, using ACTs can make an application more vulnerable
to accidental mistakes or malicious attacks, because it is assumed
that asynchronous operations treat them opaquely and do not modify
their data structures.

There are several ways to implement an ASYNCHRONOUS COMPLETION

TOKEN. One option, which is specific to system-level languages like
C++, is to encode the memory address of the method or handler that is
responsible for processing the result of the associated asynchronous
operation as the value of the ACT. When the ACT is returned, the
pointer is downcast and the appropriate method or handler invoked.
However, if the method handler was re-mapped in virtual memory—a
situation that can occur for objects allocated from a memory-mapped
address space—using a memory address as an ACT can lead to subtle
failures. If passing the memory address as an ACT is risky, use a
proxy identifier, such as an object reference or an index into a table.
Keep the ‘real’ ACT within the client, for example within an OBJECT

MANAGER (492). When the ACT’s proxy identifier is returned, use it to
retrieve the ‘real’ ACT and process it.

To reclaim ACTs robustly, even when asynchronous operations fail,
let the OBJECT MANAGER control the lifetime of all ACTs within the
client, for example by disposing of them if errors are returned on an
invocation, or if a given time-out expires.

12 Interface Partitioning

Maskebærere (Mask Bearers) by Hilde Mæhlum, on display at Bærum Verk near Oslo
 Kevlin Henney

Specifying component interfaces is a significant activity in a soft-
ware project. Interfaces should reflect component responsibilities
and usage protocols clearly, provide meaningful services for clients,
and hide clients from the cost of change and evolution of component
implementations. Otherwise, components become hard to use and
their collaborations tend to be complex. This chapter presents eleven
patterns for specifying well-defined component interfaces that expose
the qualities listed above.

272 Interface Partitioning

Interfaces are the ‘business card’ of a component. They should inform
clients about the component’s responsibilities, offered services, and
usage protocols, and should make it easy for clients to collaborate
with the component effectively and correctly. Consequently, design-
ing and specifying usable and meaningful component interfaces is
a key to successful software development. In addition, the produc-
tive use of software development and deployment approaches such as
Component-Based Development [Szy02] and Service-Oriented Architec-
tures (SOA) [Kaye03] depends strongly on the quality of the available
service and component interfaces. Ultimately, inappropriately speci-
fied interfaces decrease the usability of a component, while increasing
the structural complexity of applications using it, which makes the
component hard and costly to understand, maintain, and evolve
[Bus03].

Designing quality interfaces for components in an application requires
that developers address the following challenging—and sometimes
conflicting—aspects:

• Component responsibilities and contract specification. Developers
of components—particularly multi-use components—often have
no control over which applications will use their components. They
also often have limited control over how their components will be
used by such applications. This lack of control requires component
developers to specify the concrete responsibilities, functionality,
and usage protocols of components with care. Different component
responsibilities must be clearly separated from one another to avoid
confusion about the component’s purpose and usage. A component
should be easily (re)usable in all situations where it applies, while
also preventing undesirable usage.

• Quality attributes. A component that behaves correctly for its
intended uses and also fails robustly when errors occur is easier
to use and reuse than components that do not possess these qual-
ity attributes. Other quality attributes must also be considered in
concurrent and distributed application deployments, including the
performance of remote invocations, the synchronization of shared,
concurrent components, a component’s proper creation and dis-
posal, and the secure access to component functionality. These
concerns are not limited to implementation details: they must often
be reflected in the design and specification of component interfaces.

Interface Partitioning 273

Ideally, an interface defines a contract that specifies the qualities
that are relevant to the effective and correct use of the component.

• Expressiveness and simplicity. The more expressive and simpler
is a component’s interface, the easier the component is to use.
Concrete methods should therefore reflect the intended usage sce-
narios of clients, without breaking the component’s encapsulation.
Ideally, simple and common functionality should be easy to use,
yet complex usage scenarios should also be possible, albeit with
additional effort.

• Loose coupling and stability. Clients are often uninterested in
the internal design and implementation of the components they
use. Nor should they depend on component interfaces and usage
protocols they do not use. In addition, interface versioning and
stability is a key issue for successful component use: clients should
not be affected if signatures evolve in methods they do not use, or if
the component is extended with new functionality and roles they do
not care about. In general, the published interfaces of a component
should remain stable, protecting clients from changes within the
component implementation as much as possible.

This property is particularly important for components in dis-
tributed systems, and even more so for components in systems
designed using a Service-Oriented Architecture. In such systems it
is hard to determine a component’s clients in advance, and client
implementations cannot always be changed whenever component
interfaces change. Moreover, many clients may access a component
at runtime, which complicates online upgrades. A loose coupling
between components, in conjunction with interface stability, is
therefore a key factor for building software systems that are both
sustainable and open to controlled evolution.

Resolving these challenges is hard and requires deep domain knowl-
edge, design expertise, and implementation skills.

Scaling up components to distributed systems makes interface design
even more challenging, due to the following problems:

• Component distribution. Component implementations may not
share the same address space as their clients. This distribution
requires powerful mechanisms for locating components within a

274 Interface Partitioning

distributed system and accessing their services. However, the dis-
tribution of components should be transparent to clients.

• Heterogeneity of components and their clients. Components in a
distributed system can be implemented using different program-
ming paradigms and languages, which may differ from those used
by their clients. Despite this heterogeneousness, however, clients
and components within a distributed system should be config-
urable seamlessly with one another, without exposing (mutual)
hard-coded dependencies to the implementation details of their
respective partners.

Many patterns support the resolution of the above challenges. Some
of these patterns are domain-specific, for example, patterns that
help to define a component’s concrete responsibilities and contracts.
Describing these patterns would go beyond the scope of our dis-
tributed computing pattern language, which would explode if we were
to cover all ‘patternized’ application domains. We instead refer to the
appropriate body of literature [Fow97] [PLoPD1] [PLoPD2] [PLoPD3]
[PLoPD4] [PLoPD5] [Ris01]. This chapter focuses solely on patterns
that help to partition component interfaces and resolve key challenges
related to component distribution. There are eleven such patterns in
our pattern language:

The EXPLICIT INTERFACE pattern (281) separates component usage
from realization details. Clients only depend on the contract that
a component interface defines, but not on the component’s inter-
nal design, implementation specifics, location, synchronization
mechanisms, and other realization details.

The EXTENSION INTERFACE pattern (284) [POSA2] allows multiple
interfaces to be exported by a component, to prevent bloating of
interfaces and breaking of client code when developers extend or
modify the functionality of the component.

The INTROSPECTIVE INTERFACE (286) pattern offers a supplemen-
tary interface that supports clients in accessing information
about a component’s type, functionality, public interface, inter-
nal structure, behavior, and computational state. Clients or
application-external tools can use this information to monitor
a component or control their use of the component.

Interface Partitioning 275

The DYNAMIC INVOCATION INTERFACE (288) pattern offers a sup-
plementary interface that allows clients to invoke methods on
components dynamically, composing the calls at runtime rather
than selecting them from declarations.

The BUSINESS DELEGATE (292) [ACM01] pattern encapsulates
infrastructure concerns associated with access to a remote
component, such as lookup, load balancing, and network error
handling, from clients that use the component. A business del-
egate enables location transparency when invoking components
in a distributed application.

The PROXY pattern (290) [POSA1] [GoF95] enables clients of a
component to communicate transparently via a surrogate rather
than with the component itself. This surrogate can serve many
purposes, including simplified client programming, enhanced
efficiency, and protection from unauthorized access.

The FACADE pattern (294) [GoF95] provides a unified, higher-level
interface to a set of interfaces in a subsystem that makes the
subsystem easier to use.

The COMBINED METHOD pattern (296) [Hen00c] arranges meth-
ods that are commonly used together into a single method to
ensure correctness and improve efficiency in multi-threaded and
distributed environments.

The ITERATOR pattern (298) [GoF95] provides a way to access
the elements of an aggregate component sequentially without
exposing its underlying representation.

The ENUMERATION METHOD pattern (300) [Beck97] [Hen01c] encap-
sulates iteration over an aggregate component to execute an
action on each element of the component into a method on the
aggregate. The goal is to reduce the costs of multiple individual
accesses to the elements that result from external iteration over
the aggregate.

The BATCH METHOD pattern (302) [Hen01c] folds together repeated
accesses to the elements of an aggregate object to reduce the
costs of multiple individual accesses.

The EXPLICIT INTERFACE pattern describes the basic idea of all interface
design strategies: when defining an expressive and intuitive interface

276 Interface Partitioning

to a component, separate the interface from the implementation
strictly and explicitly. EXPLICIT INTERFACE addresses the most funda-
mental of interface partitioning challenges outlined above: contract
specification, simplicity, expressiveness, quality, loose coupling and
component distribution. Hence, it is used by many other patterns
in our pattern language for distributed computing, as shown in the
following diagram.

Business
Delegate

Domain Object

Extension
Interface

Layers IteratorReactor Proactor

Composite Active Object Command Interceptor

Visitor Decorator Strategy

Authorization

Proxy

Facade

Thread-Safe
Interface

Combined Method

Batch Method

Iterator

Enumeration
Method

Data Transfer
Object

Memento

Context Object

Explicit
Interface

interface
design

Chain of
Responsibility

Bridge Object Adapter

Observer Command

Disposal Method

Factory Method

Container

method
sequence
execution

lifetime
management

secure
access

access
synchronization

aggregate
traversal

interface
types

parameter
encapsulation

Interface Partitioning 277

EXPLICIT INTERFACE is refined by the EXTENSION INTERFACE pattern, which
introduces role specific interfaces—and thus role-specific client per-
spectives—to a component.

Explicit
Interface

Extension
Interface

Introspective
Interface

Lifecycle
Callback

Dynamic Invocation
Interface

reflection
functionality

lifetime
management

interface
type

The notion of role-specific interfaces helps to address a variety of
different challenges and issues in interface design:

• Stability. Clients do not break if a role-specific interface that they
do not use changes.

• Versioning. If a particular role-specific interface evolves, for
example by modifying, adding, or removing method signatures,
it can be realized as a separate role-specific interface, and its old
version can still be supported.

• Extensibility. If a component is extended with a new role, it can be
offered to clients via a separate interface, thus clients not interested
in the new role do not break.

• Special purpose usage. Advanced component usage scenarios often
require reflection capabilities, which are not necessarily part of a
component’s core contract. Specialized reflection interfaces help
to separate the ‘standard’ use of a component from its ‘special-
purpose’ use, so that ‘standard’ clients can use it in an explicit

278 Interface Partitioning

and type-safe manner. Similarly, a separate lifecycle management
interface allows component middleware such as containers to man-
age the lifecycle of a component transparently to its clients.

The next two patterns, INTROSPECTIVE INTERFACE and DYNAMIC INVOCATION

INTERFACE, define ‘advanced’ interfaces for components that allow
clients to obtain information about component-internal details and to
invoke component functionality by composing requests to it dynami-
cally. These reflective interfaces are particularly useful for application-
external tools, such as testing frameworks, system monitors, and
debuggers, that need to monitor, control, and access components
without becoming dependent on specific component details, including
their functional interfaces.

The integration of INTROSPECTIVE INTERFACE and DYNAMIC INVOCATION

INTERFACE into our pattern language for distributed computing is
shown by the diagram below:

Reflection

AuthorizationThread-Safe
Interface

Data Transfer
Object

Memento

Context Object

Introspective
Interface

Extension
Interface

Container

Dynamic Invocation
Interface

Method for States

access to
component details

access
synchronization

secure
access

parameter
encapsulation

dynamic method
invocation

dynamic method
invocation

Three patterns, BUSINESS DELEGATE, PROXY, and FACADE, then capture
different but related design flavors for component interfaces:

• BUSINESS DELEGATE helps to hide infrastructure aspects from those
related to distribution, such as load balancing and replication.

Interface Partitioning 279

• PROXY provides a surrogate for a component that cannot be accessed
directly, for example because it is remote, stored in a database, or
requires secure access.

• FACADE provides a defined access point to a group of components
that together provide a broad service to their clients.

The following diagram outlines the integration of BUSINESS DELEGATE,
PROXY, and FACADE into our pattern language:

Facade
Business
Delegate

Transfer Object
Assembler

Lookup

interface
type

Broker Explicit
Interface

Proxy

Client Proxy Remoting Error

Gateway

Session FacadeService Gateway

component
location

Replicated
Component Group Whole-Part

Lazy Acquisition

Component
Configurator

group
interface

proxy
type

error
handling

component
access

interface
type

whole
implementation

interface
type

facade
types

Explicit
Interface

Proxy

Object Adapter

Thread-Safe
Interface

Client Proxy
Business
Delegate

Counting Handle

Virtual Proxy

Firewall Proxy

interface
type

proxy
types

interface
adaptation

280 Interface Partitioning

The four remaining patterns, COMBINED METHOD, ITERATOR, BATCH

METHOD, and ENUMERATION METHOD, deal with designing specific meth-
ods within a component interface, specifically in the context of
building concurrent and/or distributed systems. Their integration
into our pattern language for distributed computing is as follows:

Object
Manager

Iterator Batch Method
Combined

Method

Factory Method

Disposal Method

Observer Command Visitor

Iterator

aggregate
traversal

Enumeration
Method

Composite

method
sequence
execution

aggregate
traversal

Data Transfer
Object

Explicit
Interface

result
encapsulation

Iterator

bulk
access

bulk
access

Enumeration
Method

action
encapsulation

Explicit
Interface

lifetime
managament robustness

aggregate
traversal

aggregate
traversal

aggregate
traversal

action
encapsulation

Several flavors are known and documented for some of the patterns
presented in this chapter. The EXPLICIT INTERFACE pattern, for example,
is called COMPONENT INTERFACE in Server Component Patterns [VSW02],
which also include COMPONENT PROXY, a special form of PROXY. An
EXPLICIT INTERFACE with COMBINED METHODS for a remote component
is described as REMOTE FACADE in Patterns of Enterprise Applica-
tion Architecture [Fow03a]. Many specializations are known for the
FACADE pattern. Enterprise Solution Patterns using Microsoft. NET fea-
tures the SERVICE GATEWAY pattern, which is a client-side FACADE to
a set of remote components [MS03]. Similarly, Core J2EE Patterns
describe SESSION FACADE, which is a server-side FACADE to a set of EJB
components [ACM01]. Core J2EE Patterns also describes TRANSFER

OBJECT ASSEMBLER, which is a FACADE to aggregate results from several
business components. Finally, the GATEWAY pattern from Patterns for
Enterprise Application Architecture represents a FACADE to an external
system.

Explicit Interface ** 281

Explicit Interface **

When designing a LAYERS (185), DOMAIN OBJECT (208), REACTOR (259),
PROACTOR (262), ITERATOR (298), COMPOSITE (319), ACTIVE OBJECT (365),
COMMAND (412), INTERCEPTOR (444), CHAIN OF RESPONSIBILITY (440), BRIDGE

(436), OBJECT ADAPTER (438), VISITOR (447), DECORATOR (453), STRATEGY

(455), WRAPPER FACADE (459), OBSERVER (405), or CONTAINER (488)
arrangement . . .

. . . a major concern of all software architecture work is the effective
and appropriate expression of component interfaces.

���
A component represents a self-contained unit of functionality
and deployment with a published usage protocol. Clients can
use it as a building block in providing their own functionality.
Direct access to the full component implementation, however,
would make clients dependent on component internals, which
ultimately increases application internal software coupling.

Ideally a client should only depend on a component’s published
interface. If this interface remains stable, modifications to the com-
ponent’s implementation should not affect its clients. Encapsulating
components within ordinary concrete classes is impractical: these
class interfaces are always bound to their implementations. Even
with abstract classes, the typical inclusion of a partial implemen-
tation is more binding than is appropriate for loose coupling and
stability. Location independence is a further concern: clients of a
component may reside in remote address spaces, and a component’s
location may change at runtime, so client dependencies on a com-
ponent’s location should therefore be avoided. Finally, the methods
offered by a component should be meaningful for clients and support
its effective and correct usage, especially in distributed or concurrent
deployments.

Therefore:

Separate the declared interface of a component from its imple-
mentation. Export the interface to the clients of the component,
but keep its implementation private and location-transparent to
the client.

282 Interface Partitioning

Client Interface Implementation

method_A_imp

method_B_imp

Componentpolymorphic
dispatch

method_A

method_B

A call from the client through this explicit interface will be forwarded
to the component, but the client code will depend only on the interface
and not on the implementation. An EXPLICIT INTERFACE is associated with
a contract [Mey97] that clients must follow to use such a component
correctly. This contract includes operations offered by the component,
the protocol for calling the operations, and any other constraints and
information that clients must know to use the component correctly
and effectively.

���
An EXPLICIT INTERFACE enforces a strict separation of the component’s
interface from its concrete implementation, which separates compo-
nent usage issues from concrete realization and location details. This
separation also enables the transparent modification of component
implementations independently of the clients using it, as long as the
contract defined by the interfaces remains stable.

Several patterns help in structuring a component’s explicit interface.
An EXTENSION INTERFACE (284) supports the partitioning of an explicit
interface into multiple smaller interfaces, one for each role of the
component. EXTENSION INTERFACE also enables the extension of the
component with new role-specific interfaces. In general, an EXTENSION

INTERFACE supports interface evolution while minimizing the effect of
this evolution on the component’s clients.

A PROXY (290) helps to encapsulate specific house-keeping tasks asso-
ciated with invoking a component. For example, it can transform a
method call into a message that can be sent across the network to
the component implementation, load it from the database on the first
access, or cache immutable state for efficient client access. A BUSINESS

DELEGATE (292), in contrast, is most useful in dynamic distributed
environments, which typically require a range of infrastructure tasks
to be performed when accessing the component. For example, before
a component can be invoked, its implementation must first be located
and a connection to its implementation must be established. A

Explicit Interface ** 283

BUSINESS DELEGATE can execute these tasks transparently for clients
when they invoke a method on the component. A FACADE (294) shields
clients from the internal structure of the component, which can con-
sist of even smaller parts. It provides a single, defined entry point into
the component, which allows the component’s structure to be varied
without effects onto its clients.

A key issue when specifying an explicit interface is operational
quality: clients must be able to use the component effectively and
correctly. Designing an explicit interface as a THREAD-SAFE INTERFACE

(384) serializes the access to a component in concurrent usage sce-
narios, keeping locking overhead to a minimum and, in the case
of non-recursive locks, avoiding self-deadlock should a component
invoke methods on itself. AUTHORIZATION (351) ensures secure access
to the component’s functionality. A COMBINED METHOD (296) represents
a series of method invocations on the component that are always
called together and in a specific order, which makes an explicit inter-
face more expressive, because it reflects common component usage.
FACTORY METHODS (529) and DISPOSAL METHODS (531) allow clients to cre-
ate and dispose of a component without being dependent on either its
internal structure or the processes for constructing and destroying it.

If an interface represents an aggregate structure such as a collection,
clients may need access to the elements or want to execute actions
on them. An ITERATOR (298) allows clients to traverse these elements
one at a time without breaking the component’s encapsulation. A
BATCH METHOD (302) is similar in intent to an ITERATOR, but sends or
returns multiple elements on each invocation, which is beneficial for
distributed and concurrent systems, because networking and syn-
chronization overhead is minimized. An ENUMERATION METHOD (300)
helps to execute a specific action on each element without requir-
ing the caller to manage the traversal explicitly, which minimizes
synchronization overhead in concurrent usage scenarios.

The parameters and results of an invocation on an explicit interface
can be encapsulated into DATA TRANSFER OBJECTS (418), which avoids
clients or the component having to depend on concrete data repre-
sentations. If clients need access to the component’s internal state, it
can be returned as a MEMENTO (414) to maintain encapsulation. If the
component needs client-specific information to execute its services,
it can be passed as a CONTEXT OBJECT (416) to the component.

284 Interface Partitioning

Extension Interface **

When specifying an EXPLICIT INTERFACE (281) . . .

. . . we may want to ensure client stability and type-safety in the face
of interface evolution.

���
Clients can use a component effectively only if it provides a
stable and coherent interface. The interface of a component is
often affected, however, when its functionality is modified or
extended, which can break the client code—in some cases even
if the new functionality is not used.

Ideally, clients of a component should not break when parts of the
component’s interface that they do not use change, or if they are
not interested in new services added to the component. Even when
interface parts that they actually do use change, clients should not
break if they do not use the changes. Similarly, the existing interface
of a component should remain stable when its implementation is
extended with new services, or when existing service signatures are
updated.

Therefore:

Let clients access a component only via specialized extension
interfaces, and introduce one such interface for each role that
the component provides. Introduce new extension interfaces
whenever the component evolves to include new functionality or
updated signatures within existing extension interfaces.

Client 1
Extension Interface 1 Component

implementation
method_A

method_B
method_A_imp

method_B_imp
Extension Interface 2

method_C_imp
method_C

Client 2

Clients interested in a specific role of the component issue requests
through the corresponding extension interface, which forwards the

Extension Interface ** 285

request to the associated component implementation. When imple-
menting a component’s extension interfaces, first identify the different
roles that it can play within its envisioned usage scenarios. Encapsu-
late each role into a separate extension interface and allow clients to
access only those extension interfaces that they actually need to do
their job. Avoid modifying existing extension interfaces, and instead
create new extension interfaces when extending the component with
new functionality or when updating existing service signatures.

���
An EXTENSION INTERFACE design offers several benefits. First, it min-
imizes client coupling to the component: clients only depend on
the interfaces of those roles they actually use, which ensures that
they do not break when signatures change or new services are
added to the component. Second, clients can still access compo-
nent functionality via concise and strongly typed interfaces, without
resorting to accessing bloated ‘one-size-fits-all’ interfaces or inefficient
dynamically typed message-oriented interfaces. In particular, each
role-specific extension interface of an EXTENSION INTERFACE arrange-
ment can be an EXPLICIT INTERFACE that specifies the methods—and
only those methods—necessary to fulfill its respective role.

To manage a component’s extension interfaces, introduce a special
root interface that offers functionality to retrieve and access each
extension interface of the component. Optionally, the root interface
can offer an INTROSPECTIVE INTERFACE (286) that allows clients to obtain
information about the component, and a DYNAMIC INVOCATION INTERFACE

(288) through which client can issue requests to the component with-
out the need to use one of its role-specific extension interface. Both
types of interface are especially useful if the component is monitored
or accessed by external tools, such as testing tools or system mon-
itors, or if it must be integrated dynamically into applications that
originally were not designed to use the component.

LIFECYCLE CALLBACKS (499) and configuration functionality are optional
functionality for the root interface, which an application can use
to initialize the component and control its lifecycle actively. Make
sure that the root interface functionality is accessible through all
extension interfaces of the component, for example by deriving all
extension interfaces from the root interface, or by implementing its
functionary within all extension interfaces.

286 Interface Partitioning

Introspective Interface **

When specifying a REFLECTION (197) architecture or the root function-
ality of an EXTENSION INTERFACE (284) . . .

. . . we must sometimes allow clients to access information, also known
as metadata, about the components they are using.

���
Using a component correctly may require clients to access infor-
mation about it, such as its type, identity, supported interfaces,
or current state. However, allowing clients to access such mecha-
nistic details directly could break component encapsulation and
reduce dependency stability.

In addition, clients would become dependent on the component’s
structure, which increases an application’s complexity and compli-
cates its maintenance and evolution. Subsequent changes to the
component’s implementation and interface could potentially ripple
through to all its clients. Avoiding such ripple effects is particu-
larly important for application-external tools such as debuggers and
system monitors, which are unaware of the specific properties of
the components they control, but need to access their mechanisms
without introducing dependencies on their implementation details. A
component should therefore be a self-contained, well-encapsulated,
building block—regardless of how clients want or need to use it.

Therefore:

Introduce a special introspective interface for the component
that allows clients to access information about its mechanisms
and structure. Keep the introspective interface separate from
the component’s ‘operational’ interfaces.

Client type

name

method_A

Implementation

method_B

method_C Internal
structureinterfaces

method_A

method_B

method_C

Component
InterfacesIntrospective

Interface

Introspective Interface ** 287

By calling the introspective interface, clients can access informa-
tion that helps them to control how they use the component and/or
monitor and reason about it. General metadata provided by an intro-
spective interface could include the component’s type, name, location,
version, interfaces, configuration and deployment parameters, as well
as its dependencies to other components. An introspective interface
could also provide metadata useful for managing the component,
such as the number of clients, load, and resource usage. An intro-
spective interface supports the calling a component through a DYNAMIC

INVOCATION INTERFACE.

���
An INTROSPECTIVE INTERFACE provides controlled access to a component’s
details without breaking its encapsulation. In addition, it separates
component usage from the process of obtaining information about it,
which makes it ideal for tools to obtain information without becoming
dependent on their specific interfaces, internal design, and implemen-
tation details. However, most component usage scenarios actually do
not need introspective access to component metadata, so provid-
ing an INTROSPECTIVE INTERFACE should be considered an option, not a
mandatory requirement, for a component.

Some languages offer standard introspective interfaces for obtaining
metadata about objects and classes, such as the java.lang.reflect
package in Java and the System.Reflection namespace in C#. Other
languages, such as C and C++, require framework support for intro-
spective interface, as is the case in CORBA and COM. AUTHORIZATION

(351) ensures secure access to the component’s details: in general,
not every client is allowed to obtain this information.

The parameters and results of an invocation on an introspective
interface can be encapsulated into DATA TRANSFER OBJECTS (418),
which avoids dependencies of clients or the component on con-
crete input/output data representations. If clients need to access the
component’s internal state, it can be returned as a MEMENTO (414) to
maintain component encapsulation. Similarly, if client-specific infor-
mation is needed to obtain the ‘right’ information, for example if it
maintains sessions with its clients, this information can be passed to
the component as a CONTEXT OBJECT (416).

288 Interface Partitioning

Dynamic Invocation Interface *

When specifying a REFLECTION (197) architecture, the root functionality
of an EXTENSION INTERFACE (284), a METHODS FOR STATES (469) arrange-
ment, or a CONTAINER (488) . . .

. . . we may need to allow access to the functionality of a component
without knowing or using any of its statically typed interfaces.

���
A component may need to support calls of its methods outside
the declared and enumerated protocol of an explicit interface.
Such openness is needed when clients have to invoke additional
capabilities on the component that cannot necessarily be known
by the component’s client in advance.

A component may be loaded dynamically into a framework environ-
ment, such as a user-interface component in a client, a business-logic
component on a server, or a set of test cases in an automated test-
ing tool. The loaded component can support a variety of methods
suitable for its task, but not specifically relevant to its calling frame-
work—except that the framework must be aware of the methods and
be able to forward events or translate calls to them.

In principle, the features exported by the component may be un-
bounded, such as the many possible names of test cases a compo-
nent may offer. Alternatively, features may form a coherent model,
but not one for which a generic framework would be specialized.
For example, user-interface controls can choose to support only a
handful of the events and properties picked up by a GUI frame-
work. An EXPLICIT INTERFACE (281) can capture the specific detail of
what is offered, but not necessarily in a way that such dynamic
clients can use. An INTROSPECTIVE INTERFACE supports querying of meth-
ods, but not necessarily in a way that allows calling by dynamic
clients.

Therefore:

Introduce an invocation interface for the component that allows
clients to compose calls on the component dynamically. Methods
are identified at runtime by strings, and arguments are passed

Dynamic Invocation Interface * 289

as generally typed collections. Keep the dynamic invocation
interface separate from the component’s ‘operational’ interfaces.

Client

invoke_method

Dynamic Invocation
Interface

method_A

Implementation

method_B

method_C Internal
structure

method_A

method_B

method_C

Component
Interfaces

Calls on the component through a dynamic invocation interface are
dispatched to specific methods on the component’s declared interface.

���
A DYNAMIC INVOCATION INTERFACE opens up the options available to a
client when calling a component. Interface usage based on a dynamic
protocol, rather than on static explicit interfaces, is open and non-
intrusive, which enhances client application flexibility.

In addition to such benefits, however, with any form of late binding
there is also the liability of late error detection for incorrect imple-
mentation or incorrect use of a protocol. It is important to establish
a protocol for naming or annotating methods that components can
follow, but this still offers no guarantee of correctness. It is possible
for some checking tools to detect incorrect usage of dynamic interface
invocation, but the options are more constrained than for stati-
cally checked invocations. Similarly, automated refactoring through
dynamic invocations does not have the same guarantee of correctness
as automated refactoring through statically checked interfaces.

The evolvability and flexibility of a dynamic invocation interface
may also be associated with a performance overhead. Heavy use
of reflection-based inspection and invocation in languages with stat-
ically checked type systems contrasts with the cheap execution of
methods through declared interfaces. This overhead is less problem-
atic in interpreted languages such as Smalltalk, Ruby, and Python,
whose type systems and normal execution model are already based
on a dynamic model.

290 Interface Partitioning

Proxy **

When specifying an EXPLICIT INTERFACE (281) . . .

. . . we often want to avoid accessing services of a component imple-
mentation directly.

���
Software systems consist of cooperating components: client
components access and use the services provided by other com-
ponents. It is often impractical, or even impossible, to access
the services of a component directly, for example because we
must first check the access rights of its clients, or because its
implementation resides on a remote server.

Including ‘housekeeping’ functionality such as authorization within a
component is undesirable, for two reasons. First, we might not need
such functionality for every use of the component. Second, it mixes
multiple orthogonal concerns within a single implementation, thereby
making it hard to modify each concern separately and independently.
A component’s functionality should always be independent of any
housekeeping activities. For similar reasons it is undesirable for
component clients to perform this housekeeping functionality, since
it would couple them tightly with the component’s implementation.
For example, if clients are to access a remote component directly,
they become dependent on the component’s location, as well as on
the networking protocols that are used to access its functionality,
which should be transparent to a component’s clients.

Therefore:

Encapsulate all component housekeeping functionality within a
separate surrogate of the component—the proxy—and let clients
communicate only through the proxy rather than with the com-
ponent itself.

Client

Proxy

Component
implementation

method_A

method_B
method_A_imp

method_B_imp

method_A ()
begin

Do pre-processing.
comp := load_comp_from_DB (compID);

end

Call the method on the component.
comp.method_A_imp ();
Do Post-processing
unload_comp_from_user_space (compID);

Proxy ** 291

Design the proxy so it offers the same public interface as the com-
ponent. When a client calls a method on the proxy, first perform
all housekeeping preprocessing that must be done before forward-
ing the client’s request to the ‘real’ component, then let the proxy
call the corresponding method on the component. When control
flow returns, first perform all necessary housekeeping postprocessing
before returning any results of the method to the client.

���
A PROXY frees both the client and the component from implementing
component-specific housekeeping functionality. It is also transparent
to clients whether they are connected with the component or its proxy,
because both publish an identical interface. The primary liabilities of
a proxy are the hidden costs it can introduce for clients, although for
many uses these costs are negligible compared to the execution time
of the component’s services.

There are many types of proxy [POSA1]. A CLIENT PROXY (240) shields
the clients of a remote component from network addresses and IPC
protocols to enable location independence within a distributed sys-
tem: clients can use the client proxy as if it were a local component.
A BUSINESS DELEGATE (292) goes one step further: it shields clients
from all IPC, as well as locating remote components, load balancing
when multiple component instances are available in a distributed
application, and handling of specific networking errors. A THREAD-
SAFE INTERFACE (384) is a proxy that serializes access to concurrent
components transparently for both the client and the components. A
COUNTING HANDLE (522) is normally expressed as a proxy that helps to
access the functionality of shared heap objects whose lifetime must
be managed explicitly by an application, to avoid memory leaks when
the object is no longer used. A VIRTUAL PROXY (497) loads or creates
an expensive component on demand and may delete it from memory
after use. Finally, a FIREWALL PROXY (349) protects a software system
from specific types of external attack.

If it is impossible or impractical to provide the proxy with an interface
identical to that of the represented component, implement an OBJECT

ADAPTER (438) that maps between the two interfaces.

292 Interface Partitioning

Business Delegate **

When specifying a BROKER-based (237) distribution infrastructure, an
EXPLICIT INTERFACE (281) or PROXY (290), or a REPLICATED COMPONENT GROUP

(326) . . .

. . . we must often consider that a component is, or can be, accessed
from another address space.

���
Due to performance and reliability properties of networks,
accessing remote components differs significantly from access-
ing local components. Ideally, however, clients should not need
to care whether the components they use are collocated or
remote.

An invocation across a network involves specific infrastructure tasks,
such as retrieving the location of the remote component, error han-
dling, and load balancing. Many of these tasks are unnecessary for
collocated components. If clients depended on specific locations of
components, or even on their remoteness, they would have to per-
form these tasks themselves, which would mix networking code with
domain-specific code and increase application complexity. Moreover,
clients would need to be modified if the location of components they
used changed, for example due to fault recovery or load balancing.
Consequently, client code should be as independent of the location
and plumbing support of invoked components as possible.

Therefore:

Introduce a business delegate for each remote component that
can be created, used, and disposed of like a collocated compo-
nent, and whose interface is identical to that of the component
it represents. Let the business delegate perform all networking
tasks transparently for clients using the component.

Client

Business
Delegate

method_A

method_B

Component
implementation

method_A_imp

method_B_imp

Network

handle_error

locate_comp

Business Delegate ** 293

On creation or access by a client, the business delegate locates
the remote component it represents. Subsequent method calls on
the business delegate are forwarded to the remote component using
that location information. In addition, the business delegate handles
errors that can occur when communicating with the remote com-
ponent. If multiple instances of the component are deployed, the
business delegate can also perform load balancing before issuing a
request to a specific component instance. A business delegate is also
an ideal access point for system management functionality, to mon-
itor and control all client-side communication and interaction with
the remote component.

���
A BUSINESS DELEGATES supports location-independent component invo-
cation in a distributed system: networking tasks and issues are
hidden from the delegate’s clients. In addition, each business del-
egate follows the same lifetime and usage protocol as components
collocated with its clients: it can be created and disposed of via con-
structors and destructors or garbage collection, and it can be called
via ‘ordinary’ method invocation. The primary liability of a business
delegate is the hidden cost it can introduce for clients, though for
most usage scenarios this cost is negligible compared to the execution
time of the business delegate’s primary responsibilities.

Typically, a business delegate uses a LOOKUP (495) service to retrieve
the location of one or more instances of the remote component it
represents. The access to a specific remote component instance is
often encapsulated inside a CLIENT PROXY (240), which shields the
business delegate from the details of the networking protocol used to
access the instance. LAZY ACQUISITION (507) helps to defer connection
to the represented component to the time when it is first accessed by
a client calling the business delegate.

If calling the remote component returns a REMOTING ERROR [VKZ04],
the business delegate can take appropriate action to resolve the error
before it signals a failure to clients. For example, if the connection to
the component breaks, the business delegate can try to re-establish
the connection and try to issue the call again. Similarly, if a specific
component instance is overloaded, the business delegate can try
calling a more lightly loaded instance of the same component.

294 Interface Partitioning

Facade **

When developing a BROKER (237), an EXPLICIT INTERFACE (281), a WHOLE-
PART (317) structure, or a COMPONENT CONFIGURATOR (490) . . .

. . . we must sometimes access a group of components that together
provide a broad service to their clients.

���
Complex services are often provided by a group of components,
each of which can offer its own self-contained services to clients.
If clients that want to invoke a complex service must maintain
explicit relationships to each component in the group, however,
they become dependent on the group’s internal structure.

If this structure changes, all clients are affected. In addition, the
more such dependencies exist, the greater the physical and logical
complexity of the software system [Lak95]. Ideally, clients should
have a single entry point to a group of related components that
simplifies the invocation and execution of common tasks from the
client’s perspective. On the other hand, there could be clients that
use only one specific component in the group. Forcing these clients
to invoke methods on that component through a separate component
entry point would introduce an unnecessary level of indirection, with
corresponding performance penalties. In addition, there could be
clients that want to execute specific, more sophisticated tasks on the
component group, which require the means to integrate and invoke
its components differently than in the common usage scenarios.

Therefore:

Specify a single point of access for the component group—the
facade—that mediates client requests to the appropriate com-
ponents in the group for common usage scenarios, but can be
bypassed for specific, more sophisticated scenarios.

Client 1

Components

method_A

method_B

Facade

Client 2 method_C method_C_imp

method_A_imp

Facade ** 295

In addition to routing requests, the facade performs all necessary
adaptation between the signatures of its published services and the
interfaces of the ‘protected’ components. A facade can also aggregate
features of different components to new, ‘higher-level’ services. Nev-
ertheless, clients are not forced to call the components through the
facade: direct access to each specific component is still possible.

���
Clients that call the component group through its FACADE are inde-
pendent of the group’s internal structure and relationships, so they
are not affected when this structure changes. In addition, clients that
want to access a specific component in the group can bypass the
facade to call that part directly, which avoids performance penalties
for such clients.

In a remote application setting, a facade can be deployed as a SERVICE

GATEWAY [MS03] to the address spaces of its clients, or as a SESSION

FACADE [ACM01] to the (server-side) address space of its component
group. A SERVICE GATEWAY supports throughput and scalability. All
overhead of deciding which component of the group to invoke, as
well as all adaptation of requests on the facade to the interfaces
of the corresponding components, is located on the client side. The
downside of a SERVICE GATEWAY is that each component in the group is
accessed remotely, which can increase the networking overhead, as
well as the structural complexity of a distributed application.

A SESSION FACADE avoids these penalties: remote clients can access
the component group only via its facade. The more frequently clients
access the component, however, and the more routing and adapta-
tion overhead is necessary to mediate requests appropriately to the
corresponding components in the group, the more a SESSION FACADE

can become a performance and scalability bottleneck.

A GATEWAY [Fow03a] is another form of FACADE, which represents
an access point to an external system used by an application. The
application thus becomes independent of the specific interfaces of the
external system and also of its internal structure. A TRANSFER OBJECT

ASSEMBLER [ACM01] is a FACADE that combines results received from
several components into an aggregated result that can be returned
wholesale to the clients of the components.

296 Interface Partitioning

Combined Method **

When specifying an EXPLICIT INTERFACE (281) or an ITERATOR (298) . . .

. . . we often need to invoke multiple methods on a component together
and in the same order.

���
Clients often must invoke multiple methods on a component
in the same order to perform a specific task. From a client’s
perspective, however, it is tedious and error-prone to call the
method sequence explicitly each time it wants to execute the
task on the component.

Repeating the same method call sequence across an entire application
makes it harder to develop, understand, and maintain. It is easy to
call the methods in the wrong order, forget to call a specific method,
or pass incorrect parameters to them. Changes to the calling order,
or changes to the signatures of the called methods, affects all the
code executing the method sequence.

Additional problems arise in distributed and concurrent systems in
which each remote call incurs networking overhead, and a sequence
of calls on a mutable component may not have the desired outcome
if the component is shared across threads, even if each individual
method is safe against race conditions. Moreover, if any of the meth-
ods in the sequence fails, it is the responsibility of the calling client
to handle this failure and to undo or roll-back the changes on the
component caused by method calls prior to the one that failed.

Therefore:

Combine methods that must be, or commonly are, executed
together on a component into a single method.

Client

Component
interface

combined_method

method_A

combined_method ()
begin

try
Execute method sequence.

method_B

method_C

method_A ();
method_B ();
method_C ();

catch (relevant exceptions)
Perform error handling.

end

Combined Method ** 297

Clients that want to execute the method sequence issue a request
to the combined method, which then executes that sequence on
behalf of the clients. In addition, the implementation of the combined
method handles all necessary distribution, concurrency, and failure
management aspects associated with invoking the method sequence.

���
Using a COMBINED METHOD makes the interface of a component or an
object more expressive and cohesive, because it reflects common use.
Similarly, the robustness of the application improves, because there
is only one place, rather than many, where the method sequence is
programmed and failures are handled. Consequently, from a client’s
perspective, the component or object becomes easier to use.

Distribution overhead also occurs only once for calls to a combined
method, as it replaces many remote calls by a single one. Simi-
larly, concurrency hazards that can result from non-determinism
are eliminated, because the entire calling sequence is synchronized,
rather than each individual method call. Finally, failure handling and
recovery strategies are encapsulated within the combined method,
leading to a more transaction-like style of method design: either the
entire sequence is executed successfully, with corresponding effects
on the component or object, or, if any method in the sequence fails,
it appears to clients as if the entire sequence was not executed at all,
leaving the component or object unchanged.

A combined method that is based on querying or setting a group of
values at once can be expressed with a DATA TRANSFER OBJECT (418).
If the access is to traverse all the elements of an aggregate, such as
a collection, a BATCH METHOD (302) can be seen as a generalization
of COMBINED METHOD, in which, instead of combining calls to different
methods on an object, it is the whole loop and access of successive
elements of the target object that is folded into a single call.

298 Interface Partitioning

Iterator **

When specifying EXPLICIT INTERFACE (281), ENUMERATION METHOD (300),
COMPOSITE (319), or OBJECT MANAGER (492) . . .

. . . we often need to access elements of an aggregate object sequen-
tially without exposing its underlying structure.

���
Clients often want to traverse elements that are encapsulated
within an aggregate, such as the elements maintained by a
collection. Clients may not wish, however, to depend on the
aggregate’s internal structure to access components of interest,
nor do aggregates want to expose their internal structure to
clients.

To complicate matters, clients often need to traverse the components
in a specific order that best fits their needs. Multiple clients may
also want to access the aggregate simultaneously, and it is even
possible that a single (multi-threaded) client needs to run multiple
simultaneous traversals. Supporting multiple traversal strategies as
well as simultaneous traversal directly within the aggregate, however,
would complicate its internal structure. For example, the aggregate
must maintain the concrete state of each active traversal within a
separate session. Developers would also be distracted from realizing
the aggregate’s domain responsibility.

Therefore:

Objectify the strategy to access and traverse the components
maintained by the aggregate into a separate iterator component.
Let this iterator be the only means for clients to access the
component, and allow the iterator access to the representation
of the aggregate necessary for it to carry out the traversal.

Aggregate
interface

create_iterator

find

insert

remove

Client current

next

empty

Iterator

traversal
state

ElementElement

obtain iterator

request element access element

return
element

return
element

5
2

1

3 4

Iterator ** 299

Clients that want to traverse the aggregate’s contained elements must
first obtain an iterator from the aggregate. Clients can then use this
iterator to access the elements in sequence.

���
An ITERATOR preserves the encapsulation of the aggregate and keeps
clients independent of its internal structure. In addition, the reifi-
cation of access and traversal strategies allows multiple clients to
maintain their own traversal over the aggregate’s content, and sin-
gle clients to run several independent traversals simultaneously.
An ITERATOR arrangement is however most suitable in single-process,
single-threaded component deployments.

A common ITERATOR arrangement is based on an abstract iterator that
is declared as an EXPLICIT INTERFACE (281) for accessing and traversing
components maintained by the aggregate. Concrete iterators derive
from or implement this interface to realize particular access and
traversal strategies, such as breadth-first or depth-first for tree-like
hierarchies. Such a design helps to encapsulate different traversal
strategies behind a uniform interface, as well as integrating new or
evolving existing iterator types without modification to the existing
iterator management infrastructure within the aggregate.

A COMBINED METHOD (296) on the iterator’s interface avoids subtle
race conditions when accessing the aggregate via iterators running
in separate threads. Similarly, a BATCH METHOD (302) on the iterator’s
interface that supports ‘chunky’ access to the aggregate’s elements
avoids performance penalties and unnecessary network load when
the iterator is remote to the aggregate.

Provide the aggregate’s interface with a FACTORY METHOD (529) and
a DISPOSAL METHOD (531) to create and dispose of concrete iterators
on client request. Both methods separate and encapsulate the life-
time control of iterators behind a common interface, and separate it
from the aggregate’s domain logic. If the aggregate’s internal struc-
ture can be modified during a traversal, there may be a need for
robust iterators. Robustness can be achieved with an OBSERVER (405)
arrangement: the aggregate plays the role of a subject that notifies all
active iterators whenever its internal structure changes, such as on
the deletion of an aggregated component [Kof04].

300 Interface Partitioning

Enumeration Method **

Within an EXPLICIT INTERFACE (281), BATCH METHOD (302), or OBJECT

MANAGER (492) . . .

. . . we may want to iterate over the elements of an aggregate compo-
nent, invoking an action on each element.

���
Some types of aggregate components, such as graphs or trees,
have representations that do not conveniently support ITERATOR-
based traversal. Similarly, using an ITERATOR approach to access
the elements of an aggregate that is shared between threads
can incur unnecessary overhead from repeated locking. Remote
aggregate access incurs an even greater overhead. It must be pos-
sible, however, to access the elements of the aggregate efficiently
to execute actions on them.

To further complicate matters, there are times when an aggregate
requires pre- and post-iteration code to be executed before and after
the traversal. The most obvious and common case is synchronization
against threaded interruption. Expecting the clients of the aggregate
to write this code themselves is tedious and error-prone. In the
specific case of Java thread synchronization in distributed systems,
an external synchronized block is problematic, because it can give
you the illusion of safety without any of the actual safety [Hen01c].

Therefore:

Bring the iteration inside the aggregate and encapsulate it in
a single enumeration method that is responsible for complete
traversal. Pass the task of the loop—the action to be executed
on each element of the aggregate—as an argument to the enu-
meration method, and apply it to each element in turn.

Client

Component
interface

enumeration_method (Action action)
begin

for each element do
Iterate over the aggregate.

Execute action.
action.execute (element);

rof
end

execute Action

enumeration_method

Enumeration Method ** 301

In contrast to an ITERATOR approach, ENUMERATION METHOD performs
a complete traversal, including the invocation of an action on each
element of the traversed aggregate, wholesale, rather than in many
separate bits and pieces.

���
In distributed and networked environment, reducing many remote
calls to a single ENUMERATION METHOD improves performance, incurs
less network errors, and saves precious bandwidth. The key to these
benefits is that an ENUMERATION METHOD realizes the principle of inver-
sion of control—it is not the client that controls the iteration, but the
aggregate itself. In addition, an ENUMERATION METHOD applies any of the
relevant pre- and post-iteration activities on the aggregate itself, such
as synchronization, performing the loop in between. This approach
allows the aggregate to keep control of how it behaves: its design
becomes more complete, explicit, encapsulated, and self-contained.

The action passed to an enumeration method is a COMMAND object
(358), or some kind of method reference such as a function pointer
in C++ or a delegate in C#. Such a design allows the provision of
a ‘generic’ enumeration method for the aggregate, to which clients
can pass arbitrary actions. However, one liability can work against
it for remote access. For the inversion of control to be efficient, calls
to the COMMAND must be local rather than remote. This means that
the COMMAND object must be copied from the client to the server, and
should not be accessed indirectly as a remote object. This constraint
also has implications for the COMMAND’s code, which must also be
local at the point of call, either already present or transferred on
the first call. Such code transfer implies that this pattern does not
apply in heterogeneous systems. Enumeration methods are, however,
particularly effective in multi-threaded situations. A BATCH METHOD

may be more suitable in remote cases.

A VISITOR (447) can help an enumeration method to simplify the
traversal of non-linear aggregate structures such as graphs without
becoming dependent on the structure. Alternatively, if the aggregate’s
structure is linear, such as in a double-linked list, an ITERATOR (298)
can help to achieve this independence.

302 Interface Partitioning

Batch Method **

Within an EXPLICIT INTERFACE (281), ITERATOR (298), or OBJECT MANAGER

(492) . . .

. . . we may need to perform bulk accesses on an aggregate component.

���
Clients sometimes perform bulk accesses on an aggregate com-
ponent, for example to retrieve all elements in a collection that
meet certain properties. If access to the aggregate is expensive,
for example because it is remote or concurrent, accessing it
separately for each element can incur significant performance
penalties and concurrency overhead.

If the aggregate is remote, each access incurs latency and jitter,
decreases the available network bandwidth, and introduces addi-
tional points of failure. If the aggregate is a concurrent component,
synchronization and thread management overhead must be added
to the cost of each access. Similarly, any other per-call housekeep-
ing code, such as for authorization, further decreases performance.
Nevertheless, it must be possible to perform bulk accesses to an
aggregate efficiently and without interruption.

Therefore:

Define a single batch method that performs the action on the
aggregate repeatedly. The method is declared to take all the
arguments for each execution of the action, for example via an
array or a collection, and to return results by similar means.

Client

Component
interface

Object
Collection of
output arguments

put

get

Object Object

Object Object Object
Collection of
input arguments

A batch method folds repetition into a data structure, rather than a
loop within the client, so that looping is performed before or after the
method call, in preparation or follow-up respectively.

���

Batch Method ** 303

A BATCH METHOD reduces the cost of accessing the aggregate to a
single access or a few ‘chunked’ accesses. In distributed systems this
can significantly improve performance, incur less network errors,
and save precious bandwidth. Although by using a BATCH METHOD

each access to the aggregate becomes more expensive, the overall
cost for bulk accesses has been reduced. Bulk accesses can also be
synchronized as appropriate within the method call.

The trade-off in complexity is that a batch method performs signifi-
cantly more housekeeping to set up and work with the results of the
call, and requires more intermediate data structures to pass argu-
ments and receive results. The higher are the costs for networking,
concurrency, and other per-call housekeeping, however, the more
affordable this overhead becomes. BATCH METHOD can be seen as a
generalization of COMBINED METHOD, in which a whole loop traversal
is folded into the target, not simply a short sequence of different
methods.

Simplistically, the parameters of a batch method are either in or
out, and these may be expressed as simple collections, such as
arrays of values or name–value pairs, or even variable argument
lists, assuming appropriate type-safe language support exists. In
parameters list elements that are to be sent from the caller to the
aggregate, such as elements to add or keys to query. Out parameters,
possibly expressed as return values, list results returned from the
aggregate, such as found values.

Typically, batch methods are specific rather than general. That is,
they are named after a particular action and their arguments reflect
the inputs and results directly. For example, finding values that
match keys can be expressed as a single method. However, if more
generalization is required, further parameters that control the encap-
sulated loop are needed. Examples finding all entries that are older
than a particular date, or greater than a particular value. The most
generalization that is possible is to pass in a predicate or some
control code in the form of a COMMAND object (412), which makes a
BATCH METHOD more like an ENUMERATION METHOD (300), and with similar
liabilities in a distributed environment.

13 Component Partitioning

Anna Buschmann, partitioning a Lego building
 Frank Buschmann

Components are the implementation building blocks that provide
well-defined services to their clients. How these services are realized
is generally of no interest to the clients. While this black-box view is
beneficial for component users, component developers cannot ignore
the need for a internal component design. This chapter, therefore,
presents six patterns that help to structure the implementation of
a component. The focus of these patterns is on general component
decomposition and the support for various component deployment
scenarios in a distributed system.

306 Component Partitioning

Component-based software development is a key technology in mod-
ern software construction. The core idea is that software can be
composed of well-defined modular building blocks, each providing
a specific, coherent, and self-contained service through an inter-
face. A defining characteristic of components and their composability
is that they are based on a strong form of encapsulation and a
range of choices concerning application binding time and location.
This strong encapsulation of implementation details yields the two
primary benefits of component-based software development:

• Productivity. If the components that are used in the development
of an application already exist or can be purchased as third party
products, this can markedly improve the productivity of software
development.

• Quality. (Re-)using existing components with a well-established
pedigree can improve software quality. Such components are tested,
debugged, and tuned, and developers know and can rely on their
properties.

Providing an appropriate component realization, one that keeps its
implementation details well-encapsulated, can however be hard in
practice, due to the following challenges:

• Component partitioning. From an outside view, a component is a
monolithic building block that provides well-defined services to its
clients. Such a view is impractical, however, from a component-
internal and development perspective. Large components in par-
ticular would be hard to understand, evolve, and maintain, and
their implementation would be likely to involve a big chunk of
‘spaghetti’ code. To support the internal qualities of a component,
such as understandability and maintainability, it is thus neces-
sary to partition it into more fine-grained structures. Achieving
the right partitioning can however be a challenge: the compo-
nent’s constituent parts, and their relationships and interactions,
should portray the component’s main responsibility well, but each
specific part by itself should also be semantically meaningful to,
and maintainable, by the programmer.

Component Partitioning 307

• Component quality. Although clients are largely uninterested in
the specific implementation of the components they use, they
care about the functional behavior and operational quality of the
services they invoke on these components—basic functionality,
performance, scalability, throughput, and so on. Achieving the
required quality of service is not just a matter of sophisticated
algorithms and optimized code, it is also strongly influenced by the
internal component design.

• Component flexibility. To serve a wide range of applications, a
component must model its respective application domain properly.
Its internal structure must also support specific tactical design
aspects, such as adaptability to selected customer-specific require-
ments, extensibility with new features, and portability to new
platforms. These requirements necessitate a thoughtful analysis
of component responsibilities, such as what remains invariant in
its supported usage scenarios, and what can vary.

• Distribution of component functionality. By definition, a component
forms a particular logical or functional unit or self-contained entity
[Szy02]. Extending this definition to distributed systems, each com-
ponent also needs a defined home: it resides at one particular
network node. Such a monolithic view, however, is not always fea-
sible, and particularly not if (remote) clients expect a high quality of
service from the components they use, for example in performance,
availability, or scalability.

In such situations it is often beneficial to partition a component
into a group of smaller, more specialized components, and let these
smaller components reside at different network nodes. Alterna-
tively, we could deploy multiple instances of the component within
the system. To their clients, however, such distributed compo-
nent groups should still appear to be cohesive units, offering a
single entry point and a set of meaningful services. Preserving
this view requires the cooperation within distributed component
groups to be conducted explicitly via appropriate mechanisms and
protocols.

308 Component Partitioning

• Concurrency and parallelism within a component implementation.
Distributed systems and multi-core processors offer the possibility
of executing independent parts of a component’s implementation
in parallel, which yields better performance of a single invocation
and supports the component’s general scalability and through-
put. Taking advantage of the available parallelism in a network
or on a computer, however, requires an appropriate partitioning
of the component’s implementation into smaller parts that are
coordinated appropriately to allow its functions to execute in par-
allel, or such that the execution of long-duration functions can be
parallelized.

Many patterns support the resolution of the challenges described
above. Some of these patterns are domain-specific, in particular
patterns that help to define a component’s concrete responsibili-
ties. Describing all these patterns explicitly would exceed the scope
of our pattern language for distributed computing, so instead we
refer to the appropriate body of literature, such as [Fow97] [PLoPD1]
[PLoPD2] [PLoPD3] [PLoPD4] [PLoPD5] [Ris01]. Patterns that sup-
port the construction of adaptable and extensible components are
presented separately in Chapter 18, Adaptation and Extension: the
topic of adaptation and extension is relevant for many parts of
a distributed system, not only component implementations. Simi-
larly, patterns that support concurrent execution are described in
Chapter 15, Concurrency.

This chapter focuses solely on patterns that help to partition com-
ponents and help to resolve the challenges related to component
distribution. There are six such patterns in our pattern language:

The ENCAPSULATED IMPLEMENTATION pattern (313) addresses the fun-
damental and typical design of a component so that it can fulfill
its interface’s contractual obligations without leaking its imple-
mentation assumptions through its interface, and by minimizing
the assumptions that are exposed as configuration and creation
options.

Component Partitioning 309

The WHOLE-PART pattern (317) [POSA1] helps in composing com-
ponent objects from multiple distinct and self-contained inter-
nal objects. An aggregate encapsulates the component object’s
constituent parts, organizes their collaboration, and provides a
common interface to its functionality. Clients cannot directly
access the parts: they only see the functionality offered by the
aggregate.

The COMPOSITE pattern (319) [GoF95] defines a partitioning for
component objects representing whole-part hierarchies com-
posed of similar types of object. Clients can treat individual
objects and compositions of objects uniformly.

The MASTER-SLAVE pattern (321) [POSA1] supports fault tolerance,
parallel computation, and computational accuracy. A master
component distributes work to a group of slave components and
computes a final result from the results returned by the slaves.

The HALF-OBJECT PLUS PROTOCOL pattern (324) [Mes95] structures
logical objects that are used in multiple address spaces into two
or more cooperating ‘half-objects.’ Each half-object implements
a specific part of the component’s functionality. Half-objects
coordinate their execution via synchronization protocols.

The REPLICATED COMPONENT GROUP pattern (326) [Maf96] provides
fault-tolerance through client-transparent component replica-
tion. Replicated component implementations reside at different
network nodes and together form a component group. Clients
interact with the component group via a single point of access
as if it were one logical component

The ENCAPSULATED IMPLEMENTATION pattern serves as the general integra-
tion point for all component partitioning patterns in our language, be
they described in this chapter, in other chapters, or in other sources.
In particular, ENCAPSULATED IMPLEMENTATION addresses the problem of
how to realize the concrete responsibilities of a component appro-
priately, but without compromising operational qualities such as
performance, scalability, availability, and extensibility. It is thus
the key pattern to start with when specifying a concrete compo-
nent realization.

310 Component Partitioning

The diagram below outlines how ENCAPSULATED IMPLEMENTATION is con-
nected with our pattern language for distributed computing and how
it integrates the many patterns that support high-quality component
partitioning and realization.

Whole-Part

Composite

Layers Domain Object

Encapsulated
Implementation

Objects for
States

Methods for
States

Domain-specific
Patterns

Master-Slave

Half-Object
plus Protocol

Active Object

Monitor Object

Half-Sync/
Half-Async

Leader/
Followers

Strategy

Template Method

Execute-Around
Object

Visitor

Decorator

Object Adapter

Wrapper Facade

Context Object

Memento

component
representation

distributed
deployment

concurrent
implementation

adaptation and
extension

synchronized
access

component
implementation

Bridge

Interpreter

Replicated
Component Group

Interceptor

Component Partitioning 311

The next two patterns in this chapter, WHOLE-PART and COMPOSITE,
define ways of organizing whole-part hierarchies of objects within
a component. Their integration into our pattern language for dis-
tributed computing is shown in the following diagram.

Data Transfer
Object

Encapsulated
Implementation Interpreter

Strategy

Template Method

Composite

Iterator

Visitor

Whole-Part

component representation internal structure

element access

Visitor

whole design

part lifecycle
management

Decorator

internal
structure

Automated
Garbage Collection

Counting Handle

Mediator

Facade

policy
variation

part
access

internal data
exchange

In general, COMPOSITE is a specific, yet common and widely-used,
form of WHOLE-PART. The key difference between the two patterns is
that WHOLE-PART organizes hierarchies of completely distinct objects,
whereas COMPOSITE constitutes hierarchies of objects with similar or
even identical responsibilities, interfaces, and properties.

312 Component Partitioning

The three remaining patterns, MASTER-SLAVE, HALF-OBJECT PLUS

PROTOCOL, and REPLICATED COMPONENT GROUP, describe component
partitionings that are suitable for distributed deployment so that
a component can maximize its operational qualities, such as perfor-
mance and availability They are integrated into our pattern language
for distributed computing as shown below.

Data Transfer
Object

Strategy

Template Method

Encapsulated
Implementation

Master-Slave

divide and conquer
strategy variation

internal data
exchange

component
representation

Observer

Command

Message

Lookup
Business
Delegate

Half-Object
plus Protocol

component
representation

componet
representation

coordination
protocol
design

Future

coordination
protocol
design group

management

client
transparency

Lookup

Distributed
Component Group

distributed
lookup

Encapsulated Implementation ** 313

Encapsulated Implementation **

When developing a LAYERS (185) architecture, an application’s DOMAIN

OBJECTS (208), a BRIDGE (436) arrangement, or generally when design-
ing components for a component-based system . . .

. . . a significant decision involves the realization of component imple-
mentations against component interfaces.

���
A component offers its services through interfaces that define its
usage protocols, published functionality, and quality of service
properties. However, an interface is only a promise: a component
must provide fulfillment. Thus a component implementation is
often subjected to assumptions, considerations, and constraints
that cannot be exposed through its interface.

Regardless of the contract defined by a component’s interface, its
realization is exposed to constraints and requirements that are of
little interest for component users, but are crucial in fulfilling the
contract. For example, the component may need to be prepared
for distributed deployment without decreasing its performance and
throughput properties. Or, depending on its concrete usage and
deployment scenarios, different algorithms, additional functionality,
or additional quality properties may be required, such as different tax
calculation algorithms, a user-specific business activity, or stronger
security measures. Finally, almost all components are subject to
evolution; their implementation can change over time. Nevertheless,
clients should be shielded from all these aspects—they are only
interested in the contract, not in how it is fulfilled.

Therefore:

Ensure that all component implementation details remain hid-
den behind its interfaces to shield clients from representation
choices that may change during the lifetime of an application,
or are dependent on the component’s specific deployment.

Client Interface Implementation

method_A_imp

method_B_imp

method_A

method_B

Componentpolymorphic
dispatch

314 Component Partitioning

A component’s client cannot programmatically assume more than is
exposed through its official interface, which supports the component
implementor’s ability to change the implementation without breaking
clients.

���
A component implementation that respects the boundary defined
by its interfaces ensures that the dependency of its clients is on
its interface, its whole interface, and nothing but its interface. The
ENCAPSULATED IMPLEMENTATION is free to evolve, while preserving the
stability of its clients. Developers of client code are still presented
with a simple and stable interface to use.

The interface boundary seals the component implementation from
its environment, and vice versa, but it is possible that the com-
ponent has a dependency on some features of its calling environ-
ment. To avoid introducing a reverse dependency, pass CONTEXT

OBJECTS (416) from the caller to the component when such infor-
mation or behavior is needed. A component may also need to
pass out implementation-dependent state to the client for later
use with respect to the component, for example a position in a
traversal or a callback handler for a registered event of interest. In
this case, preserve the component’s encapsulation by returning a
MEMENTO (414).

In general, an ENCAPSULATED IMPLEMENTATION should provide a well-
encapsulated software representation of the component’s specific
functional responsibilities. Domain-specific patterns can support
the creation of this representation, such as those for health care,
corporate finance, telecommunication, and public transportation
applications [Fow97] [Ris01] [PLoPD1] [PLoPD2] [PLoPD3] [PLoPD4]
[PLoPD5].

Sometimes the representation of the component’s functionality can
also be defined on the basis of more general patterns that are not
bound to a specific (application) domain. For example, components
that represent a hierarchy of elements can be realized using a WHOLE-
PART (317) or COMPOSITE (319) design, dependent on how distinct
or uniform the elements of the hierarchy are. If the functionality
of the component is centered on a state machine, its realization
can be based on an OBJECTS FOR STATES (467) or METHODS FOR STATES

Encapsulated Implementation ** 315

(469) design, dependent on the size of the state machine and the
amount of data and context information shared between states. If the
component’s responsibility is to interpret structured files or sentences
of a given language, such as in a parser, an INTERPRETER (442) design
could be considered as its fundamental structure.

A key concern of all ENCAPSULATED IMPLEMENTATIONS is fulfilling the oper-
ational qualities specified in the component’s contract: performance,
scalability, and so forth. Providing the ‘right’ structure and behavior
is simply not enough to ensure a component’s usability and accep-
tance. Two techniques that help in achieving key operational qualities
are distribution and concurrency.

Deploying an ENCAPSULATED IMPLEMENTATION to multiple hosts in a
distributed system allows a component to take advantage of the
resources available in the entire network, rather than only of those
available on a single network node. The more resources are available,
the better the component’s operational quality. Which particular
qualities can be supported by distributed deployment depends on
the chosen component partitioning. MASTER-SLAVE (321), HALF-OBJECT

PLUS PROTOCOL (324), and REPLICATED COMPONENT GROUP (326) offer differ-
ent trade-offs for the support of performance, availability, scalability,
fault tolerance, and computational accuracy.

A concurrent ENCAPSULATED IMPLEMENTATION impacts the operational
qualities of a component—specifically its performance and through-
put—because multiple client requests can be handled and processed
simultaneously. An ACTIVE OBJECT (365) arrangement supports the
implementation of components in their own set of threads, whereas
a MONITOR OBJECT (368) helps in realizing components that are col-
located within their client threads. HALF-SYNC/HALF-ASYNC (359) and
LEADER/FOLLOWERS (362) configurations are most suitable for compo-
nents that process network I/O.

However, all the above deployment and concurrency models come
with certain costs, which are mainly due to duplicated functional-
ity, increased resource usage, more intricate implementation, and
the coordination between the concurrent parts of the ENCAPSULATED

IMPLEMENTATION or other distributed components. Before introducing
any of these models, it is important to assess whether their costs
outweigh their benefits.

316 Component Partitioning

Another key concern for almost all ENCAPSULATED IMPLEMENTATIONS is
support for evolution, extension, and adaptation. These developmen-
tal qualities enable the effective use of components within different
application deployments and variants, and also their reuse within
completely different applications.

STRATEGIES (455) and TEMPLATE METHODS (453), for example, support the
separation of variant from invariant behavior, STRATEGY by using dele-
gation, and TEMPLATE METHOD by inheritance. In contrast, a VISITOR (447)
allows functionality to be added to an ENCAPSULATED IMPLEMENTATION that
was not envisioned during its original development. The control flow
inside a component can be extended by INTERCEPTORS (444), DECORATORS

(472) and, if C++ is used to realize the ENCAPSULATED IMPLEMENTATION,
EXECUTE-AROUND OBJECTS (451). INTERCEPTORS can inject out-of-band
behavior into a function’s control flow, whereas DECORATORS help in
wrapping a function with specialized behavior that is to be executed
before or after a function. An EXECUTE-AROUND OBJECT is similar in
this respect to a DECORATOR: it allows additional functionality to be
executed before or after a sequence of statements in an exception-
safe manner, which makes it a preferred C++ idiom for resource
acquisition and release. Finally, OBJECT ADAPTERS (438) and WRAPPER

FACADES (459) support the integration of an ENCAPSULATED IMPLEMENTATION

with its environment by adapting the provided interfaces of compo-
nents, libraries, and operating systems to those expected or required
by the ENCAPSULATED IMPLEMENTATION. The difference between the two
design options is that OBJECT ADAPTER does not hide the adapted inter-
faces, which are still accessible by the ENCAPSULATED IMPLEMENTATION,
whereas in a WRAPPER FACADE arrangement these interfaces are fully
sealed.

While a certain degree of flexibility is necessary to use an ENCAPSULATED

IMPLEMENTATION effectively in concrete applications, too much flexibility
could result in exactly the opposite: a component that is so flexible
that it is of no use at all [Bus03]. It is thus important that only
mandatory variability is supported by an ENCAPSULATED IMPLEMENTATION,
not all ‘nice-to-have’ variability. The mandatory variability for a com-
ponent can be identified with the help of appropriate methods, such
as Open Implementation Analysis and Design [KLLM95], Commonal-
ity/Variability Analysis [Cope98], or Feature Modeling [CzEi02].

Whole-Part ** 317

Whole-Part **

When partitioning an ENCAPSULATED IMPLEMENTATION (313) . . .

. . . at times we need to, or are able to, decompose complex component
objects into several smaller parts.

���
Some component objects aggregate so much functionality that it
is impractical to realize them as monolithic units. Instead, they
should be partitioned into smaller parts with defined responsibil-
ities. However, despite the need for partitioning, clients typically
do not want to deal with such a community of smaller parts.

In particular, the component should not allow direct access to its
constituent parts, because in general they do not provide services
that are meaningful for its clients. In addition, clients should not be
affected if the partitioning of these parts is changed. On the other
hand, it is often necessary to design the parts so that they are also
usable elsewhere, which requires avoiding tight dependencies of the
parts on specific components, because each component will probably
combine the parts differently, or with other parts.

Therefore:

Partition the component object into a whole that encapsulates
and orchestrates multiple independent parts, and define an
interface for the whole that is the only means to access the
component’s functionality.

Whole

method_A

method_B

method_C

method_X

method_Y

method_Z Part 2

Part 1

Client

The parts implement self-contained entities or mechanisms from
which higher-level functionality can be composed. The whole, in

318 Component Partitioning

contrast, represents an aggregate that implements a policy that uses
the functionality offered by the parts to provide the required com-
ponent behavior. When a client calls a method on the whole, the
method executes its policy, using one or more parts encapsulated by
the whole to realize its behavior.

���
A WHOLE-PART design prevents clients from accessing any of the aggre-
gate’s constituent parts directly, thus allowing it to appear as a
self-contained semantic unit. The strict separation of policies from
mechanisms within a WHOLE-PART arrangement enables the aggregate
to combine and use its constituent parts transparently for both its
clients and parts, as well as to reuse the parts within other aggregate
components.

There are many ways to implement a particular WHOLE-PART structure.
The whole is often a MEDIATOR (410) or a FACADE (294), and the parts are
independent components by themselves. Functionality that traverses
multiple parts in a specific order can be implemented as a VISITOR

(447), which avoids this functionality being scattered across the
parts. Finally, a part can also be a WHOLE-PART arrangement by itself,
which leads to recursive WHOLE-PART structures. The data exchanged
between the whole and its parts is often encapsulated within DATA

TRANSFER OBJECTS (418), which avoids dependencies of the whole on
specific data representations, and increases the reusability of parts
in other WHOLE-PART arrangements.

Two important issues to consider when realizing a WHOLE-PART struc-
ture are the sharing and lifecycle management of parts. In many
arrangements, such as a representation of a drive in a factory pro-
cess control system, parts are neither shared with other wholes, nor
are they visible from outside the arrangement. The lifecycle of the
parts is thus bound to the lifecycle of their aggregating whole—they
come into existence when the whole is created, and cease to exist
when it is destroyed. In other arrangements, parts can also live out-
side the whole or can be shared among several wholes, such as
attachments to an e-mail. Such parts must be able to manage their
lifecycle themselves, including all constraints that apply when being
bound to a whole or set of wholes. In environments that do not sup-
port AUTOMATED GARBAGE COLLECTION (517), COUNTING HANDLES (522) can
help in managing the lifetime of independent and shared parts.

Composite ** 319

Composite **

When implementing an ENCAPSULATED IMPLEMENTATION (313), or when
realizing an INTERPRETER (442) configuration . . .

. . . we sometimes need to treat atomic elements and aggregate ele-
ments of a whole-part hierarchy uniformly.

���
Sometimes whole-part hierarchies are recursively composed of
objects that all support the same interface. However, clients are
often uninterested in either the concrete arrangement or the
recursive nature of the structure—instead they want to use, and
act on, the whole-part hierarchy as if it were a single entity.

Nevertheless, within the whole-part arrangement the hierarchical
structure must often be preserved. For example, it may represent a
corresponding hierarchy in an application domain, such as a network
or warehouse topology, or a hierarchical file system. To complicate
matters, the transparency of the hierarchy to clients should not break
if its constituent objects are rearranged, for example when moving
a directory or file in a file system structure to another directory or
volume. In addition, an extension of the hierarchy with new object
types that implement the common interface should have minimal
effect on other types in the hierarchy. For example, the hierarchy
should remain stable when extending a file system structure with a
recycle bin or a new file type.

Therefore:

Declare a component interface that specifies the functionality
common to all objects in the whole-part hierarchy, and subclass
from this interface to realize the hierarchy’s specific objects and
their recursive composition.

Client

method

Composite
object

implements
interface

methodComponent
interface

method

maintains parts that
implement the interface

Leaf
object

320 Component Partitioning

There are two types of object in a COMPOSITE hierarchy: leaves and
composites. Leaf objects realize behavior for atomic entities that
cannot be decomposed, such as concrete file types. Composite objects
define behavior for aggregates in the hierarchy and the functionality
to maintain multiple objects that support the shared interface, such
as volumes and directories in a file system.

Clients refer to and manipulate the aggregate through the component
interface. If the interface represents a leaf, the request is executed
by the leaf’s implementation. In contrast, if the interface represents
a composite, the request is forwarded to one or more of its children,
which execute the request if they are leaves, or forward the request
recursively to their own children if they are composites. In addi-
tion, the composite can perform its own activities before and after
forwarding the request to any aggregated component. Results of an
invocation on the component interface are returned back along the
recursive call chain of composites and leafs.

���
A COMPOSITE design supports the representation of arbitrary whole-
part hierarchies of objects that implement the component interface.
This hierarchy is transparent to clients: they only see objects that
support a uniform contract. In addition, the hierarchy is easy to
evolve: an extension or rearrangement of an existing COMPOSITE con-
figuration does not require modification of existing leaves and com-
posites. On the other hand, a COMPOSITE design is only useful if all
objects in the whole-part hierarchy implement the same functionality.
To hide the hierarchical nature of the COMPOSITE arrangement from
clients, its component interface must accumulate all methods offered
by its leaf and composite objects. The more diverse these functions
are, the more the component interface becomes bloated with func-
tions implemented only by few leaf and composite objects, making
the interface useless for clients.

A composite typically accesses its children via an ITERATOR (298) or
an ENUMERATION METHOD, which avoids dependencies on their concrete
arrangement in the COMPOSITE structure. A VISITOR (447) can help to
implement behavior that operates on the entire COMPOSITE hierarchy,
which avoids tight coupling of the functionality to be implemented
with the strategy for traversing the object hierarchy.

Master-Slave * 321

Master-Slave *

When implementing an ENCAPSULATED IMPLEMENTATION (313) . . .

. . . we must sometimes provide increased performance, fault-
tolerance, or result accuracy for a component implementation.

���
Some components must meet high performance, fault-tolerance,
or accuracy requirements, in particular if they are responsible for
critical or complex activities, such as a monitoring service in a
nuclear power plant control system, or a service for DNA analysis
in a medical system. Addressing these requirements using more
powerful computing resources can help, but such solutions may
be too expensive, or simply insufficient.

For example, performance can be improved by optimized algorithms
and faster hardware, but do not really help for NP-hard or NPcom-
plete problems that operate on large amount of data, such as DNA
analysis. Accuracy can be improved by algorithm and code verifica-
tions, but in the case of complex algorithms, such verifications are
often barely possible, or offer the possibility of errors. Fault-tolerance
can be improved by increasing the stability and robustness of code,
but does not help in the case of failures in the component’s host-
ing environment. Yet components are only useful if they meet their
requirements and resolve these with reasonable cost.

Therefore:

Meet the performance, fault-tolerance, or accuracy requirements
of the component via a ‘divide and conquer’ strategy. Split its
services into independent subtasks that can be executed in par-
allel, and combine the partial results returned by these subtasks
to provide the service’s final result.

Client

service

Master

sub_service

sub_service

Result service (Data data)

DataSet ds = split_data (data, 2);
Split data into n (= 2) parts.

begin

Call sub-services on the n parallel slaves.
s1_result = slave1.sub_service (ds[1]);
s2_result = slave2.sub_service (ds[2]);

Wait for slaves to finish and compute result.

end
return final_result (s1_result.get(), s2_result.get())

Slaves

322 Component Partitioning

The component is partitioned into a master that implements a specific
‘divide and conquer’ strategy and serves as its access point for clients,
and at least two slaves that realize the subtasks to be executed in
parallel. When the master receives a client request, it splits the work
to be done into as many parts as slaves are available, delegates the
processing of each part to a separate slave, waits until all slaves
finish their execution, and computes a final result from the partial
results that the slaves return.

���
A MASTER-SLAVE design can significantly improve the performance of
long-duration services due to the parallel execution of independent
subtasks. For this reason, MASTER-SLAVE arrangements are specifically
popular and beneficial for components deployed on multi-core proces-
sors [IBM06]. Other operational qualities supported by a MASTER-SLAVE

configuration are fault tolerance, availability, and computational
accuracy. Fault tolerance and availability is supported by enabling
slaves to run as replicas, so that if one slave fails, others can continue
to process requests and return results. Computational accuracy is
supported by voting on the results of multiple slaves that all realize
the same service, often using different algorithms.

As its downside, a MASTER-SLAVE configuration is only feasible for ser-
vices that can be processed using a ‘divide and conquer’ strategy with
parallel execution of subtasks. For example, if there is a high degree of
independence between the data to be processed, it can be partitioned
into multiple chunks of equal volume, and a set of slaves replicating
the service’s functionality then process these chunks. Operations on
large or clustered databases fall into this category [DeGe04]. If the
data cannot be divided, it may be possible to partition the service
itself into multiple independent steps that can be executed in parallel
by a set of slaves. Many algorithms on graphs belong to this cate-
gory, in particular those for routing or collecting status information.
If any form of meaningful service partitioning requires coordination
and synchronization activities between the subtasks, a MASTER-SLAVE

arrangement is probably inappropriate for addressing the compo-
nent’s performance, fault-tolerance, or accuracy requirements.

In a MASTER-SLAVE arrangement, the master acts as the central access
point for clients and encapsulates the component’s specific ‘divide
and conquer’ strategy. This strategy is primarily determined by the

Master-Slave * 323

intent of the MASTER-SLAVE arrangement. If, for example, the intent is
performance, the master partitions the workload or data to process
it into as many parts of identical volume as slaves are available,
executes all slaves in parallel, and assembles the final result from
the partial results that the slaves return. If the component’s intent
is to provide computational accuracy or fault tolerance, all slaves
process the entire data. A voting strategy like ‘n of m slaves must
return the same result ’ helps the master to determine the final result.
A TEMPLATE METHOD (453) or STRATEGY (455) provide design support for
configuring and varying the ‘divide and conquer’ strategy without
affecting component clients, slaves, and the master’s invariant core
algorithm for slave coordination.

In most MASTER-SLAVE arrangements there is only one master. How-
ever, such a design introduces a single point of failure, which cannot
always be tolerated. An alternative implementation is, therefore, to
merge the roles of master and slave into a single object and to
define a particular MASTER-SLAVE arrangement by specifying which
role a particular instance in this arrangement embodies. Using a
suitable mechanism such as heartbeats, the master regularly noti-
fies all slaves that it is alive. If this notification is not received by
a slave, it assumes that the master failed, claims the master role,
and notifies the remaining slaves about this take-over. In coopera-
tion with the underlying communication infrastructure, subsequent
client requests are then redirected to the new master. Alternatively,
a watchdog can relaunch the master in the case of failure.

The number of slaves in a MASTER-SLAVE configuration is largely
dependent on the amount of available computing resources such
as memory, threads, and CPUs. The more CPUs are available, the
greater the potential parallelism, and the more slaves can be assigned
to a MASTER-SLAVE arrangement.

The data exchanged between master and slaves is often encapsulated
within DATA TRANSFER OBJECTS (418) to avoid dependencies to specific
data representations. Access to slave results can be coordinated
conveniently via FUTURES (382). When a slave is invoked, it returns a
future that represents the result the slave will compute. When the
slave finishes execution, it fills the future with the corresponding
data. If the master accesses a future before the corresponding slave
has filled it, it will block until the slave’s result is available.

324 Component Partitioning

Half-Object plus Protocol **

When realizing an ENCAPSULATED IMPLEMENTATION (313) or a LOOKUP (495)
service . . .

. . . at times we need to ensure reduced response time when accessing
a single object from multiple address spaces.

���
Distributed systems often use designs in which clients access
objects of components that reside in other address spaces. How-
ever, due to the latency and jitter incurred when exchanging
requests and responses across the network, this design can be
impractical when requirements demand rapid response.

Resolving the problem via replication is not always feasible. For
example, a component may need access to information from multiple
address spaces to carry out its behavior. Obtaining this information
from each replicated component would result in significant network
load and traffic, which can decrease or even eliminate the perfor-
mance advantages of the component’s replication. The same effect
occurs for replicated components that represent a single stateful
entity within the distributed system. If the state of any of the repli-
cas is modified, the state of the other replicas must be updated
accordingly across the network.

Therefore:

Divide the objects into multiple ‘half objects,’ one for each
address space in which they is used. Each half object implements
the functionality and data required by the clients that reside in
‘its’ address space. A protocol between the half objects helps to
coordinate their activities and keep their state consistent.

Client 1

service_1

Half Object

service_2

service_1

service_3

Half Object Client 2

Protocol

The Network

Half-Object plus Protocol ** 325

When a client invokes a service on the component that does not
involve information maintained in other address spaces, the cor-
responding half object executes this service locally in the client’s
address space without involving the network at all. Otherwise the
client-local half object obtains the necessary information from the
other address spaces of the system via the protocol that connects
the distributed half objects.

���

A HALF-OBJECT PLUS PROTOCOL arrangement optimizes performance by
minimizing the use of the network, but at the expense of duplicating
functionality and perhaps data. All the services of the logical object
that can be executed locally within the address spaces of its clients
are executed locally by the corresponding half object. Only if multiple
address spaces need to be involved in a service execution is the
protocol that connects the half objects necessary to coordinate the
distributed computation. In general, the more functionality that can
be executed locally in the address space of clients, and the less
data need to be exchanged between the half objects to keep them
consistent, the better the performance of an HALF-OBJECT PLUS PROTOCOL

arrangement. The greater the need for distributed computation, and
the more data that needs to be exchanged via the protocol, the less
beneficial a HALF-OBJECT PLUS PROTOCOL design becomes. As a general
rule of thumb, duplication of internal state should be reduced to
minimize the need for data exchange and synchronization via the
protocol.

A side-benefit of a HALF-OBJECT PLUS PROTOCOL design is scalability. A
new half object is added to the arrangement with every new client
address space, which avoids the use of computing resources in other
address spaces.

The concrete design of the protocol between the half objects depends
on what particular coordination they need. Simple data exchange pro-
tocols can be based on an OBSERVER (405) design to avoid unnecessary
updates and coordination activities. Actions that the half objects in
the arrangement can invoke on one another can be encapsulated into
COMMANDS (412) or MESSAGES (420), to keep the protocol independent
of a specific action set.

326 Component Partitioning

Replicated Component Group *

When realizing an ENCAPSULATED IMPLEMENTATION (313) . . .

. . . we must sometimes support fault tolerance and high availability
for component implementations.

���
Some components in a system must meet high availability and
fault tolerance requirements, in particular if they execute or
coordinate central activities, such as a directory service in a
telecommunication system. Brute force solutions to this prob-
lem, however, such as complete hot or cold stand-by system
replication, are often too expensive for many applications due to
their high total cost of ownership.

In most systems only a few components are exposed to extreme
availability and fault tolerance requirements, which hardly justi-
fies expensive hardware-based system-level solutions. Providing high
availability and fault tolerance within a low cost environment, how-
ever, is a challenge. Commodity hardware and standard networks are
sources of failure—and thus unavailability—in themselves, which
components with high availability and fault-tolerance requirements
must take into account explicitly: network connections and inter-
process communication can fail, hosts can be down. Figuratively
speaking, the components must be strong in a weak environment.

Therefore:

Provide a group of component implementations instead of a sin-
gle implementation, and replicate these implementations across
different network nodes. Forward client requests on the compo-
nent interface to all implementation instances, and wait until
one of the instances returns a result.

service

Client

The Network

Component Group
instances

Component
interface

service_impl

service_impl

service_impl

Replicated Component Group * 327

The first result returned by any of the component instances in the
group is returned to the client.

���
The key benefit of a REPLICATED COMPONENT GROUP is that it enhances
the fault-tolerance of a component: as long as at least one of the
component instances within the group is accessible, client requests
can be serviced. A REPLICATED COMPONENT GROUP also supports avail-
ability, because if a component instance in the group cannot execute
a request immediately due to high workload, other, less overloaded
object implementations can service the request instead.

One downside of a REPLICATED COMPONENT GROUP configuration is that it
requires all component instances to maintain consistent state, which
can lead to ‘chatty’ communication, resulting in heavy network traffic.
The more state there is to maintain, and the higher its rate of change,
the more networking overhead is necessary to keep the group state
consistent. In addition, a request to a REPLICATED COMPONENT GROUP is
executed by all its constituent component implementations, which
can consume a significant amount of computing resources. As a
result a REPLICATED COMPONENT GROUP design should only be considered
for components that play a central role in a distributed system and
whose availability and fault tolerance is crucial for the system’s
operability.

A BUSINESS DELEGATE (292) that serves as the component’s interface
helps to keep a concrete REPLICATED COMPONENT GROUP transparent to its
clients. Additional LOOKUP (495) functionality allows component imple-
mentations to join and leave the group dynamically, which enables
runtime redeployment of group members without compromising the
component’s availability.

The protocol for keeping the state of instances in the group consistent
is often based on an OBSERVER (405) design, which avoids unnecessary
updates and coordination activities. Requests that the arrangement
should execute can be encapsulated into COMMANDS (412) or MESSAGES

(420), to keep the communication within the group independent of a
specific request set.

14 Application Control

Remote-controlled fast car
 Kevlin Henney

Separating the user interface from an application’s core functionality
enables its deployment across a network. This decoupling also allows
independent modification of, and access to, the user interface and the
application’s core functionality. But how do you separate these two
concerns effectively in practice? The eight patterns in this chapter
address this topic, covering the areas of transforming user input
into concrete service requests, converting the results of invocations
into user output, and ensuring secure access to an application’s
functionality.

330 Application Control

It is hard to transform user input into service requests to application
functionality, execute these requests, and convert any results back
into meaningful output for presentation to users. These aspects of
application control are even harder if the application’s user inter-
face is separated from its functionality. This separation of concerns
is often done to support decoupled evolution of user interface or
application functionality, simplify changes in underlying software
or hardware technologies, and enable distributed deployment on
heterogeneous platforms.

The specific issues to consider when separating an application’s user
interface from its other functionality include:

• Data structure decoupling. Separating user interface and applica-
tion functionality implies that data structures used by application
components should be independent of control and presentation-
specific concerns. For example, a mouse-click on a user interface
element must be transformed into a service request to one or more of
the application’s components. Similarly, data returned in response
to a user request must be converted into a specific output format
that can be rendered on a designated output device. Without this
decoupling, it is hard to change the look-and-feel of a user interface
without modifying the implementation of the underlying application
functionality.

• Location decoupling. The simplest GUI frameworks assume that the
user interface, application logic, and data are collocated on the same
machine and accessed by a single user. This assumption is rarely
valid in distributed applications, particularly multi-tier systems, in
which user interfaces may execute remotely, application logic and
state is often shared by many users, and data is physically located
in different hosts than the application logic and user interface.

• Workflow decoupling. Many applications are workflow-driven, lead-
ing their users through a specific sequence of forms, or showing
specific forms only under certain conditions. Implementing this
workflow logic directly in either the user interface or the applica-
tion logic can tightly couple these two issues. This coupling makes

Application Control 331

it hard to change the workflow without changing user interface
elements, or to change user interface elements without affecting
core application functionality.

• Technology decoupling. User interfaces are built using specific
user-interface technologies, which can change independently of the
desired look-and-feel of the user interface itself. If user-interface
technologies are expected to change during an application’s lifetime,
its architecture should separate technology-independent aspects of
the user interfaces from technology-specific aspects.

• Explicit coordination and control of requests. The handling and exe-
cution of requests to an application or component often involves
coordination and housekeeping tasks. For example, there may
be a need to schedule the execution sequence of invocations
received from multiple clients, a requirement to support logging and
undo/redo functionality, or a policy-based approach for handling
failures. The specific policies and configurations for these activi-
ties should depend on the needs of specific application instances,
rather than being inherent properties of the application’s user
interface and core functionality. The independence of the user
interface and the invocation of components should therefore be
preserved.

• Security. Although securely accessing application services is
increasingly important for user acceptance, networked applica-
tions—particularly those accessible via the Internet—are vulner-
able to cyber attacks. For example, malicious users may try to
access and execute functionality for which they are not autho-
rized. Other users who are authorized to access specific applica-
tions, or parts of application functionality, may intentionally or
unwittingly embed attacks in their service requests. Since user
interfaces typically run on the client side of an application, usu-
ally on user-owned or administered machines that are vulnerable
to exploitation, the trust boundary for most networked applica-
tions occurs between their user interface and their core (domain)
functionality.

332 Application Control

The issues described above must be addressed appropriately and
consistently. If they are handled poorly, changes in an application’s
user interface can ripple through to the implementation of its func-
tionality, and vice versa. Moreover, these issues are often dependent
on each another, so choosing a solution that addresses one may
constrain the solutions for others.

Eight patterns in our pattern language, drawn largely from Pat-
terns of Enterprise Application Architecture [Fow03a], address the
issues described above, providing common approaches to handle the
implied or explicit introduction of control entailed by these various
separations:

The PAGE CONTROLLER pattern (337) [Fow03a] introduces a defined
entry point—the page controller—for each form in a form-based
user interface, to consolidate the handling and execution of
service requests issued through each form.

The FRONT CONTROLLER pattern (339) [Fow03a] establishes a single
entry point into an application—the front controller—that con-
solidates the handling and execution of service requests issued
through its user interface.

The APPLICATION CONTROLLER pattern (341) [Fow03a] separates
user interface navigation from controlling and orchestrating an
application’s workflow. An application controller receives service
requests from the application’s user interface, decides which
service to invoke on its functionality, depending on the current
state of its workflow, and determines which view to present at
the user interface in response to the executed service.

The COMMAND PROCESSOR pattern (343) [POSA1] separates the
request for a service from its execution. A command processor
component manages requests as separate objects, schedules
their execution, and provides additional services such as logging
and storing request objects for later undo/redo.

The TEMPLATE VIEW pattern (345) [Fow03a] introduces a template
view component for each view that renders application data or
other information into a predefined view format using a specific
user interface technology.

The TRANSFORM VIEW pattern (347) [Fow03a] introduces a ded-
icated transform view component that converts data received

Application Control 333

from the application in response to specific user requests into
concrete views onto the data.

The FIREWALL PROXY pattern (349) [SFHBS06] helps protect an
application from external attacks by introducing a proxy that
inspects the payload of service requests to identify and remove
suspicious content.

The AUTHORIZATION pattern (351) [SFHBS06] evaluates client
access rights to ensure only authorized clients that comply with
designated access rules can access specific application function-
ality.

These patterns help to realize the goal of separating the user inter-
face from core functionality presented earlier by the application
partitioning patterns, in particular MODEL-VIEW-CONTROLLER (188) and
PRESENTATION-ABSTRACTION-CONTROL (191). As described below, the pat-
terns outlined above are not fully independent of one another, but
can be paired to complement one another, with each pair addressing
different aspects and forces of a common problem.

PAGE CONTROLLER and FRONT CONTROLLER aim to minimize the number
of controllers accessing the functionality of an application. The two
patterns differ primarily in their scope. A PAGE CONTROLLER is appro-
priate for form- or page-based user interfaces that have a simple
control flow to access application’s functionality, such as those in
static HTML pages. Instead of having a separate controller for each
action that can be invoked via a specific form or page, a dedicated
PAGE CONTROLLER handles these actions consistently and uniformly.
A FRONT CONTROLLER, in contrast, is most effective if service requests
issued by a user interface must be transformed into invocations on
an application’s functional interfaces before they can execute. An
example of this approach is requests issued to a Web server via the
HTTP protocol.

334 Application Control

The following diagram shows how PAGE CONTROLLER and FRONT

CONTROLLER are connected with other patterns in our pattern language
for distributed computing.

Strategized
Locking

Thread-Safe
Interface

Model-View-
Controller

Decorator

Front Controller

Template Method

Strategy Intercepting
Filter

Page Controller

Command

encapsulating
variant request
handling behavior

synchronized
access

encapsulating
variant request

handling behavior

synchronized
access

request
execution

encapsulating
optional request
handling behavior

request
execution

input
control

input
control

APPLICATION CONTROLLER and COMMAND PROCESSOR help orchestrate
access to application functionality. APPLICATION CONTROLLER addresses
workflow-based systems whose current computational state deter-
mines which function to execute in response to a particular service
request. COMMAND PROCESSOR, in turn, supports scheduling of the exe-
cution order of requests issued by multiple clients according to a
specific scheduling criteria such as priorities and deadlines. The goal
of COMMAND PROCESSOR is to enforce specific quality of service aspects
or maximize application throughput.

Application Control 335

The following diagram shows the integration of APPLICATION CONTROLLER

and FRONT CONTROLLER into our pattern language for distributed com-
puting:

Template Method

Strategy

Command

Active Object

Strategized
Locking

Thread-Safe
Interface Collections

for States

Interpreter

Application
Controller

Command
Processor

request
execution

access
synchronization

access
synchronization

encapsulating
variant request
handling behavior

undo/redo
support

transforming messages
into commands

Model-View-
Controller CommandMessage

request
execution

request
execution request

execution

Monitor Object

Interceptor

TEMPLATE VIEW and TRANSFORM VIEW both help to transform application
data into a specific view onto the application. These patterns differ
largely in their perspective. TEMPLATE VIEW takes a user-interface-
centric perspective: it is the concrete user-interface technology,
such as JSP or ASP.NET, that determines how to obtain data from
the application. TRANSFORM VIEW, in contrast, takes an application-
centric-perspective: data is retrieved from the application and then
transformed into a specific view using a particular user-interface
technology.

336 Application Control

The following diagram shows how TEMPLATE VIEW and TRANSFORM VIEW

are embedded in our pattern language for distributed computing:

Model-View-
Controller

Data Transfer
Object

Template View Transform View

output
control

output
control

data
encapsulation

The final two patterns in this chapter, FIREWALL PROXY and
AUTHORIZATION, address two complementary aspects of securing access
to an application. AUTHORIZATION ensures that only trustworthy clients
can access the application, and FIREWALL PROXY ensures that these
clients only use the application in permissible ways. The diagram
below shows their integration into our pattern language:

Firewall Proxy Authorization

Proxy
Client
Proxy

Explicit
Interface

Role-Based
Access Control

authorized
access

attack
protection

Reference
Monitor

Packet Filter
Firewall

Stateful
Firewall

Reverse
Protection Proxy

Integration
Reverse Proxy

access
policy

security
enforcementperformance

optimization
narrowing

accessible
functionality

hiding
application

deployment

Page Controller ** 337

Page Controller **

When developing a MODEL-VIEW-CONTROLLER (188) architecture where
the view is remote from the model . . .

. . . we may need a mechanism to consolidate the handling and exe-
cution of service requests issued by a specific form in a form-based
user interface.

���
Some applications offer form-based user interfaces, with each
form invoking a coherent, interrelated set of application func-
tions. Encapsulating the handling of each type of client request
in a separate controller, however, could complicate controller
implementations and duplicate functionality that is common to
handling the requests issued from a specific form.

For example, in Web applications with static HTML pages, some pages
handle the input and processing of specific data records by taking
the input, loading data from the database if the record already exists,
and checking the integrity of the record’s data before processing
it in the application. Similarly, results of data processing may be
displayed to users. There could also be common constraints on the
execution of specific functions, such as security, logging, and other
housekeeping functionality. A strict encapsulation of each type of
function offered by a page into a separate controller, however, would
ignore their interdependencies and common execution constraints,
yielding complicated and redundant code that is hard to maintain
and evolve.

Therefore:

For each form offered by an application’s user interface, intro-
duce a page controller to control the execution of all requests
issued from that form.

UI Form 1

Application

Page Controller

function_1

function_2

function_3

function_1

function_2

function_4
function_3

function_4UI Form 2

User

338 Application Control

All client requests from a specific form are channelled through
their associated page controller. The page controller transforms each
request into a more specific request on the application’s compo-
nents, for example by extracting information from the client request
parameters. The page controller also performs any housekeeping
functionality associated with requests issued from the form. In addi-
tion, if the form includes a small and form-local workflow, the page
controller can maintain the necessary session state information.

���
A PAGE CONTROLLER centralizes access to an application’s domain ser-
vices from a specific user interface form, which avoids duplication
of functionality associated with handling an individual client request
issued through that form. As a result, common request-handling
code becomes easier to maintain and evolve. In addition, the request
handling of different forms is separated, which supports form-based
request handling strategies and rearranging the forms within another
user-level workflow.

Request handling functionality that follows a common core algo-
rithm with variant policies can be realized with TEMPLATE METHOD (453)
or STRATEGY (455). The functionality performed by a page controller
results in a service request on the application’s components. These
requests are often realized as COMMANDS (412) that support the man-
aged execution of the requests on the application logic, as well as
other features such as scheduling, logging, and undo/redo.

There are two general deployment options for a page controller: per-
client and per-application. Per-client deployment is more scalable,
but requires additional resources on the client side. Per-application
deployment, in contrast, helps to minimize client footprint. A page
controller shared by multiple clients must usually be synchronized.
Providing it with a THREAD-SAFE INTERFACE (384) is a simple yet coarse-
grained synchronization option, because it enforces synchronization
at the page controller’s interface, even if only small portions of
its methods are critical sections. Synchronization via STRATEGIZED

LOCKING (388) may be an alternative if finer levels of serialization are
required.

Front Controller ** 339

Front Controller **

When developing a MODEL-VIEW-CONTROLLER (188) architecture where
the view is remote from the model . . .

. . . we often need a mechanism to consolidate the handling and
execution of service requests issued to an application.

���
When handling a request, networked applications often perform
similar actions, including pre- and post-processing actions such
as authorization and logging, and context-specific behavior such
as providing particular views for specific users. Implementing
this transformation functionality within each controller of an
application, however, can duplicate code and thus complicate
maintenance and evolution.

As the number of controllers grow, it also becomes hard to identify
all the sites where code is duplicated. As a result, the complexity of
modifying each duplicate code fragment correctly opens a floodgate
to incorrect and inconsistent application behavior. In addition, the
memory footprint of the application, especially its controllers, can
increase significantly as the transformation from general to specific
requests becomes more complicated. This problem becomes even
worse if common infrastructure functionality such as authorization
and logging must be performed with each request.

Therefore:

Introduce a front controller that publishes the application’s func-
tionality and transforms client service requests into specific
requests that can be invoked on the application’s components.

User Interface

Application

Front Controller function_1

function_2

function_3

function_A

function_B

dispatch

User

All client requests are channelled through the front controller. This
controller transforms each request into a more specific request to

340 Application Control

the application’s components, for example by extracting information
from the client request parameters.

���
A FRONT CONTROLLER centralizes access to an application’s domain ser-
vices, which avoids duplicated implementations of functionality asso-
ciated with handling individual client requests. As a result, not only
does the common request handling code become easier to maintain
and evolve, but the application memory footprint is also minimized. In
addition, a FRONT CONTROLLER can provide common housekeeping func-
tionality, such as authorization and logging. One downside of a FRONT

CONTROLLER is that its centralized design can create a performance and
scalability bottleneck if many clients requests arrive simultaneously.
Similarly, it can be a single point of failure in an application.

Common request transformation and housekeeping functionality can
be implemented via TEMPLATE METHOD (453) or STRATEGY (455). Alter-
natively, if a specific housekeeping or transformation feature is com-
pletely optional, it can be added to the core request transformation
functionality via a DECORATOR (449), also known as INTERCEPTING FILTER

[ACM01]. The transformation performed by a front controller results
in a concrete service request to the application’s components. These
requests are often encapsulated in COMMAND (412) objects that sup-
port the managed execution of the requests on the application logic,
as well as other features such as scheduling, logging, and undo/redo.

There are two general deployment options for a front controller: per-
client and per-application. Per-client deployment alleviates the per-
formance, scalability, and failure penalties of a front controller, but
requires additional client resources, such as memory and CPU time.
Per-application deployment, in contrast, helps minimize the footprint
of clients, but at the expense of the drawbacks outlined above.

A front controller shared by multiple clients must often be synchro-
nized. Providing it with a THREAD-SAFE INTERFACE (384) is a coarse-
grained synchronization option that enforces synchronization at the
front controller’s interface. If only small portions of the front con-
troller’s methods are critical sections, synchronization via STRATEGIZED

LOCKING (388) provides a finer level of serialization. The COMMAND (412)
objects, however, are created per request and are not shared, so they
need not offer thread-safe interfaces.

Application Controller ** 341

Application Controller **

When developing a MODEL-VIEW-CONTROLLER (188) architecture where
the view is remote from the model . . .

. . . we must often provide an access point for handling user interface
navigation and the workflow of an application.

���
Some applications lead their users through a series of screens or
forms following a specific workflow, or present specific screens
or forms only under certain conditions. Placing such logic in
the application’s controllers, however, mixes user-interface code
with application-specific workflow logic.

Moreover, different controllers could instigate the same workflow,
which would lead to duplicated logic that is hard to maintain and
evolve. Another approach is to implement the logic of the screen
or form to display next in response to a specific action directly
within the application logic. This approach is not practical, however,
since application components, which are generally independent of
presentation aspects, would become dependent on the partitioning
and screen ordering of a specific user interface.

Therefore:

Encapsulate the application’s workflow within a separate appli-
cation controller. User-interface controllers use the application
controller to determine the appropriate actions to invoke on
application logic, as well as the correct view to display after the
action has been executed.

User
Interface

Service Request

getCommand

User
getView

execute

display

service_1

getStatus

getData

View Application
Application Controller

1

2

3

4

The application controller acts as a central access point for user-
interface elements, unifying access to the functionality of an

342 Application Control

application with its workflow. When invoked by an user-interface
controller, the application controller identifies the correct function to
execute on the application. The function selected depends both on the
input received from the controller and on the application controller’s
current workflow state. Similarly, after the invoked function has been
executed, the workflow transitions into a new state, which allows the
application controller to determine the specific view to display in the
user interface in response to the executed function.

���
An APPLICATION CONTROLLER helps to encapsulate parts of an application
where user-interface aspects and domain-logic aspects are interwo-
ven. As a result, the core domain logic of the application remains
independent of any user-interface considerations, such as its struc-
ture, and user-interface controllers and views are independent of
the workflow and state of the application logic. If the application’s
workflow or the user-interface structure changes, the correspond-
ing modifications to the application’s code are limited largely to the
application controller. In a distributed application, the liabilities of
an APPLICATION CONTROLLER design include potential performance and
scalability bottlenecks, due to its central role within an application.
It can also be a single point of failure.

An application controller typically transforms requests received from
a user-interface controller into a concrete COMMAND (412) object.
COMMAND supports the managed execution of the requests to the appli-
cation logic, as well as other features, such as scheduling, logging,
and undo/redo.

There are two deployment options for an application controller. Per-
client deployment reduces the performance, scalability, and failure
penalties discussed above, but requires additional client resources.
Per-application deployment, in contrast, helps minimize the footprint
of clients, but at the expense of the drawbacks described above.
An application controller shared by multiple clients must often be
synchronized. Providing it with a THREAD-SAFE INTERFACE (384) is a
coarse-grained synchronization option that enforces synchronization
at the application controller’s interface. If only small portions of its
methods are critical sections, synchronization via STRATEGIZED LOCKING

(388) provides a finer level of serialization.

Command Processor ** 343

Command Processor **

When developing a MODEL-VIEW-CONTROLLER (188) architecture or an
ACTIVE OBJECT (365), or when encapsulating service requests for an
application into COMMANDS (412) or MESSAGES (420) . . .

. . . we need a mechanism for executing service requests.

���
If an application can receive requests from multiple clients,
they may need to manage the execution of these requests, for
example to handle request scheduling, logging, and undo/redo.
An individual client, however, generally has no knowledge about
when and under what conditions its requests execute.

Allowing a client to obtain this information from an application would
increase its logical and physical complexity [Lak95], with correspond-
ing degradation in modularity, extensibility, and understandability.
A client should therefore be able to issue requests without need-
ing to know the conditions under which the requests execute. To
complicate matters, many distributed applications must also support
additional housekeeping and system management functionality, such
as logging, authorization, and multiple undo/redo. Neither applica-
tion clients nor application components should be responsible for
these tasks. Making the clients responsible would increase their
coupling to the component and reduce client cohesion., while making
the components responsible would clutter their intent with additional
complexity, thereby complicating future development.

Therefore:

Introduce a command processor to execute requests to the appli-
cation. The command processor acts on behalf of the clients and
within the constraints of the application.

Client
Command
Processor

Issue request

Service Request

function_1

function_2execute_request1

execute

2

execute

Component

Execute request

The command processor is the only means for clients to issue requests
to the application. In addition, the command processor can access

344 Application Control

information about the computational state of its components, so it
can schedule the execution sequence of pending service requests
in terms of specific criteria such as priorities and throughput. The
command processor can also offer useful housekeeping and system
management functionality, such as history-based functionality and
persistence.

���
Since a COMMAND PROCESSOR manages the functionality of a component,
the component’s clients and the component itself are freed from
organizing the execution of concrete service requests. As a result the
degree of coupling between the two parties is minimized.

Removing the responsibility of invoking services on the component
from its clients implies that the clients cannot call the component’s
functionality directly. Instead, they send ‘objectified’ requests, such
as COMMANDS (412) or MESSAGES (420), to the command processor,
which then executes the requests on the component. This request
reification is the key to handling requests explicitly and centrally
within the command processor.

Internally, the command processor can manage the requests it
receives via multiple COLLECTIONS FOR STATES (471). For example, a
do collection can hold all requests that have yet to execute, as well
as all requests that have been undone and can now be redone. An
undo collection can maintain all requests that have been executed
on the component that can be rolled back. If the command proces-
sor receives requests as COMMAND objects, it can simply invoke these
objects to execute the encapsulated requests on the component. If
requests are received as MESSAGES, an INTERPRETER (442) can help to
transform their content into COMMANDS.

Scheduling and other housekeeping functionality, such as logging
and authorization, can be realized and configured via TEMPLATE METHOD

(453), STRATEGY (455), or INTERCEPTOR (442). These patterns allow the
configuration of a command processor with different request exe-
cution policies, considering different trade-off options in terms of
binding time and looseness of coupling. If the command processor is
shared by multiple clients it should be implemented using MONITOR

OBJECT (368). STRATEGIZED LOCKING (388) offers another dimension of
configuration for synchronization.

Template View ** 345

Template View **

When specifying a MODEL-VIEW-CONTROLLER (188) architecture . . .

. . . we often need to render application data or other information into
a predefined view format.

���
Many views onto an application present dynamic content, such
as the results of database queries, so their appearance can change
with each display and update. Providing separate view imple-
mentations for each possible appearance of the view, however,
inflates the number of views and duplicates code.

Ideally a view whose content can vary should be designed and
implemented similarly to static views—that is, views whose content,
structure, and appearance is fixed and therefore simple to develop.
Variations in a view’s appearance, however, suggest multiple imple-
mentations. In contrast, the potential variations are not arbitrary, so
there should be a way to handle such bounded variation within a
single implementation.

Therefore:

Introduce a template view that predefines the view’s structure
and which contains placeholders for dynamic application data.

User
Interface

User

display
getStatus

getDataTemplate View

Application<html><p>Status:
<jsp:getProperty name=“Application”
property=“status”/>
<p>Data:
<jsp:getProperty name=“Application”
property=“data”/></p></html>

When the view is invoked to display or update itself, the placeholders
for application data are filled in, for example as a result of some
computation or of database queries. The view is displayed to the user
after the application data to display has been determined.

���

346 Application Control

A TEMPLATE VIEW simplifies the development of views that follow a
common structure and format but whose content is dynamic. A
single class encapsulates the structure of the view, the code to access
and compute the content, and the code to display that content at the
appropriate places in the view.

Popular forms of TEMPLATE VIEW are server pages, such as ASP.NET,
JSP, and PHP-based page generation. These technologies actually go
further than a pure TEMPLATE VIEW, because they allow embedding of
arbitrary active content, i.e. programming logic. Using that capability
carelessly, however, can yield template views that contain excessive
application logic, which contradicts the goal of having views that
only display information. This problem can be resolved by inserting
a helper class between the view and the application’s components
that contains the necessary programming logic [Fow03a]. The same
problem can occur if the template view contains conditional display
and iterations. Although such constructs cannot always be avoided,
their use should be minimized, and if possible factored out to the
helper class associated with the view [Fow03a].

Transform View ** 347

Transform View **

When specifying a MODEL-VIEW-CONTROLLER (188) architecture . . .

. . . we often need to transform the data received from the application
in response to user requests into specific views onto the data.

���
Many views onto an application present content collected from
different and often complex data structure returned by applica-
tion services. The data structures, however, generally contain no
knowledge about what specific data fields should be presented
and how that data should be formatted.

Implementing the inspection of the data and its transformation into
a specific output format within the views themselves is a clumsy
solution to the problem, because it mixes application logic with user-
interface code. The clear separation of application logic and user
interface would be blurred. In addition, the larger and more com-
plex the data inspection and transformation code, the less suitable
the views become for low-footprint thin clients, which is often a
requirement for Web applications.

Therefore:

Introduce a transform view that walks the structure of the data
received from the application, recognizes the data to display,
and transforms it into a specific output format.

User
Interface

User
createView

service_1

service_2

Transform
View

Application

<html><p>Status:
All nodes are up and running.
<p>Data:
System load: 57%

Throughput: 3000 events/s</p></html>

Application
Data

1

2

Issue
request

Create
view

348 Application Control

A transform view is an adapter that converts a specific type of input
into a specific type of output. A controller can pass the data it receives
in response to a service request for the application to the transform
view and receive the concrete view to display as a result.

���
A TRANSFORM VIEW helps to simplify the development of views that
must be assembled from complex data sets. Application logic for data
inspection is clearly separated from specific user-interface technolo-
gies and view-specific data-rendering code, which also allows these
two aspects to vary independently. A TRANSFORM VIEW is also a good
candidate for being a pluggable component, thereby affording a high
degree of flexibility in application configuration.

The application data converted by a TRANSFORM VIEW is typically encap-
sulated inside DATA TRANSFER OBJECTS (418) to keep the transform view
independent of concrete data structures. To simplify the program-
ming of a specific transformation, the data transfer objects could
serialize their content into a standard representation, such as XML.
This design also supports the use of popular data transformation
technologies such as XSLT.

The downside, however, is that transformation logic is code in its
own right, and metacode at that, and does not necessarily have the
tool support of more direct approaches such as TEMPLATE VIEW. It
can therefore be more general than is strictly necessary, and the
subtlety of testing or debugging a transformation may dissuade some
developers from using it.

Firewall Proxy ** 349

Firewall Proxy **

When designing the PROXY-based (290) interfaces of an application
that is accessible via the Internet or other public networks . . .

. . . we must protect components from external attacks.

���
An application that is accessible via a public network such as the
Internet has little reliable knowledge about who is using it, since
virtually anybody can invoke its functionality. There is a need,
however, to protect the application from potential cyber attacks
embedded in service requests from clients.

Protecting publicly accessible applications against cyber attacks is
hard. On one hand such applications should be available for public
access, so we cannot require that all users be known by the appli-
cation before they can access it. At least some services—a home
page, a registration page, or basic query functionality—should be
available without already being a registered user. On the other hand,
if application services are publicly accessible, cyber attacks can be
embedded within the payload of service requests. Depending on the
security policies for the application, potential cyber attacks should
be identified and access to the application denied.

Therefore:

Introduce a firewall proxy for the publicly accessible functional-
ity of the application. This proxy enforces security policies on
each client request to protect the components that implement
this functionality from cyber attacks.

Client Firewall
Proxy

Component
implementation

receive_request

method_A_imp

method_B_imp

receive_request (Message request_message)
begin

if (rulebase.permits (request_message))
then

Perform security check.

Dispatch a method on the component.
dispatch (request_message);

else
Deny request.

fi
end

check

Access rule base

350 Application Control

An external client can access application functionality only via the
firewall proxy. When a client issues a request to that proxy, the
proxy checks the request against applicable access rules, for example
by inspecting the payload of the request message. If the request is
accepted, the firewall proxy forwards the request to the protected
component, otherwise it denies access to the client’s request.

���
A FIREWALL PROXY supports the detailed filtering of service requests for
components on a packet and payload level, which helps to identify
cyber attacks at a higher level than that of networking protocols.
In addition, security checks are separated from the components,
which allows clients internal to the application or behind the firewall
to access components directly, without incurring the performance
overhead of security checks.

The security policy applied by a firewall proxy is often captured
in a rule base that is separate from the proxy itself. This design
supports variation in security policies without modifying the proxy
implementation. As with any security mechanism based on denial of
service for access identified as malicious, however, there is the risk of
misidentification. The perceived effectiveness of a firewall proxy thus
depends heavily on the quality of the rule base.

Implementing the firewall proxy as a PACKET FILTER FIREWALL [SFHBS06]
supports request forwarding from trusted clients directly to the com-
ponents, without inspecting request payloads. An implementation as
a STATEFUL FIREWALL [SFHBS06] avoids payload inspections for requests
received from already established and checked connections. Both
designs can improve external client quality of service. Configuring
the firewall proxy as a REVERSE PROTECTION PROXY [SFHBS06] adds
another security barrier for external clients that limits the accessi-
ble functionality of protected components regardless of who sends
requests, over which connection they are received, or the cleanliness
of a request payload.

Finally, the firewall proxy can also act as an INTEGRATION REVERSE

PROXY [SFHBS06] if its published functionality is realized by multiple
components deployed to multiple servers. This design helps hide the
application deployment model and the network topology from external
clients and potential attackers.

Authorization ** 351

Authorization **

When realizing a CLIENT PROXY (240) or an EXPLICIT INTERFACE (281) . . .

. . . we must ensure that only specific clients can access the function-
ality of a subsystem.

���
A subsystem must provide well-defined and meaningful function-
ality to its clients, otherwise it is of little value to them. Clients
can invoke this functionality by sending service requests. Not
all clients that potentially can send requests to the subsystem,
however, may be entitled to invoke its functionality.

Subsystems that maintain sensitive information, such as medical or
financial data, must be protected from unauthorized access. Not all
users of an application or internal clients of a subsystem should be
allowed to access or manipulate this information, otherwise the con-
fidentiality, integrity, or availability of the data could be endangered.
The same situation holds for components that offer ‘manipulation’
functionality, such as administration and configuration tasks. Hard-
coding information about the ‘trusted’ clients directly within the
components is a clumsy and high-maintenance solution, however,
because significant effort and cost would be required to redeploy the
components in multiple applications with different clients, change
the set of authorized clients, or evolve the authorization rights of
clients.

Therefore:

Assign access rights to each client that can send service requests
to the security-sensitive subsystem and check these rights before
executing any requests on the subsystem.

Client

Component

method_A

method_B

Access Rights

power user

method_A (Rights rights)

if (has_rights (“method_A”, rights))
Perform security check.

begin

then
Execute method.
...

end

352 Application Control

Access rights specify the operations or categories of operations clients
are allowed to invoke on the subsystem. If a client issues a service
request to the subsystem, its access rights are checked. If they have
sufficient rights, the requested service is executed, otherwise their
access to the subsystem is denied.

���
The key benefit of AUTHORIZATION is that subsystems can only be
accessed by authorized clients, which is important for security-
sensitive applications. A secondary benefit is that specific access
rights, as well the policies for checking them, can evolve transparently
for both clients and components of an application.

A common form of implementation for an AUTHORIZATION infrastruc-
ture is ROLE-BASED ACCESS CONTROL [SFHBS06]. Instead of assigning
individual access rights to each client, there is a defined set of user
roles in an application, such as administrator, power user, user, and
guest, with specific access rights associated with each role. Users and
client components must be assigned to, or act under the perspective
of, one or more roles. Depending on the access rights of these roles
they can—or cannot—access the application’s components and their
functionality. ROLE-BASED ACCESS CONTROL simplifies the realization and
evolution of an AUTHORIZATION infrastructure by limiting the number of
specified access rights specified to a small set of roles. In addition, a
ROLE-BASED ACCESS CONTROL design can enforce structures and policies
of the organization that owns or hosts the application.

A REFERENCE MONITOR [SFHBS06] complements an AUTHORIZATION struc-
ture with a defined access right decision and enforcement point.
All client requests are intercepted by a central reference monitor to
check their access rights for compliance with the application’s autho-
rization rules. This design strictly enforces an application’s security
policies by checking all client service requests. A reference monitor
avoids code duplication and simplifies maintenance by centralizing
the checking of access rights for each component that requires autho-
rized access. Multiple reference monitor instances can be deployed in
a system to minimize performance or scalability bottlenecks or single
points of failure.

15 Concurrency

Autobahn A3, exit Duisburg-Wedau at night
Siemens press picture,  Siemens AG

The choice of concurrency architecture has a significant impact on the
design and performance of multi-threaded software in general, and
distributed software in particular. No single concurrency architecture
is suitable for all workload conditions and platforms, however. The
four concurrency patterns in this chapter therefore address a vari-
ety of concurrency problems, ranging from combining asynchronous
with synchronous concurrent processing to synchronizing access to
shared components, while maximizing performance and throughput.

354 Concurrency

Software for distributed systems can often benefit from concurrency,
in particular servers and server-side software that handles requests
from multiple clients simultaneously. In addition, an increasing num-
ber of multi-core CPUs and multi-CPU computers are designed to run
multiple threads of control in parallel to compensate for the stall in
Moore’s Law [Sut05a]. Developers of software for distributed sys-
tems therefore need to become proficient with process and thread
management mechanisms.

A process is a collection of resources, such as virtual memory, I/O
handles, and threads of control, that provide the context for execut-
ing program instructions. Each process serves as a unit of protection
and resource allocation within a hardware-protected address space
[StRa05]. In contrast, a thread is a single sequence of instruction
steps executed in the context of a process [Lew95]. In addition
to an instruction pointer, a thread consists of resources, such as
a runtime stack of function activation records, a set of registers,
and thread-specific data. Each thread serves as a unit of execution
that runs inside a process and shares its address space with other
threads.

Distributed system software uses multiple processes and threads for
a number of purposes, including:

• Improving performance transparently by using the concurrent pro-
cessing capabilities of today’s hardware and software platforms.

• Improving performance explicitly by allowing programmers to overlap
computation and communication in their service processing.

• Shortening perceived response time for interactive software such
as graphical user interfaces by associating separate threads with
different service processing tasks, so that users are able to perform
useful work while some tasks are blocked.

• Simplifying application design by allowing multiple service process-
ing tasks to run independently using synchronous programming
abstractions, such as two-way method invocations and operations
that block on I/O and locks.

It is remarkably hard to develop efficient, predictable, scalable, and
robust concurrent software, however [Lea99]. Effective concurrent
programming requires much more than just starting individual com-

Concurrency 355

ponents, objects, or services in their own threads of control and
letting these threads run at their own discretion. This is due to the
following challenges:

• Software diversity. There is no ‘one-size-fits-all’ concurrency
model, since different types of distributed system software exhibit
different structural and behavioral characteristics. For example,
some software uses a mixture of asynchronous and synchronous
service processing, other software is event-driven, and still other
software must handle service requests at different priorities. Each
type of software may therefore require a particular concurrency
model so that it can provide the required quality of service to users
and the appropriate programmer model to developers.

• Multi-threading costs. Designers of concurrent software must
account for the fact that multi-threading incurs costs such as
context switching, synchronization, and data movement between
CPU caches. Naive uses of threading mechanisms can therefore
result in overhead that reduces or even outweighs the benefits of
concurrency. It is therefore essential to design concurrent software
that minimizes the costs of using multiple threads.

• Portability. Additional accidental complexity in concurrent pro-
gramming arises from limitations with existing development meth-
ods, tools, and operating system platforms. For example, the hetero-
geneity of today’s hardware and software platforms complicates the
development of concurrent software and tools that run on multiple
operating systems.

Effectively resolving these challenges and complexities requires devel-
opers to know and apply the appropriate concurrency patterns. These
patterns must be understood and applied consciously and thought-
fully throughout the design of the software’s baseline architecture,
subsystems, and components.

Our distributed computing pattern language, therefore, includes four
patterns that offer proven solutions to various concurrency architec-
ture and design problems:

The HALF-SYNC/HALF-ASYNC pattern (359) [POSA2] decouples
asynchronous and synchronous service processing in concur-
rent systems, to simplify programming without unduly reducing
performance. The pattern introduces two intercommunicating

356 Concurrency

layers, one for asynchronous and one for synchronous service
processing.

The LEADER/FOLLOWERS pattern (362) [POSA2] provides an effi-
cient concurrency model in which multiple threads take turns
sharing a set of event sources in order to detect, demultiplex,
dispatch, and process service requests that occur on the event
sources.

The ACTIVE OBJECT pattern (365) [POSA2] decouples service
requests from service execution to enhance concurrency and
simplify synchronized access to objects that reside in their own
threads of control.

The MONITOR OBJECT pattern (368) [POSA2] synchronizes con-
current method execution to ensure that only one method at a
time runs within an object. It also allows an object’s methods to
schedule their execution sequences cooperatively.

This chapter restricts its coverage to patterns for developing con-
current communication middleware and application components for
distributed systems. Our intention is not to cover every aspect of
concurrency. In particular, we focus on patterns that define how to
structure and partition concurrent software into multiple cooperating
threads, or how to organize the access to components that are shared
by multiple threads. We deliberately do not aim to present a general
guide to the many documented concurrency models available in both
theory and practice.

Patterns that deal with thread synchronization techniques are not
included in this chapter, but instead are covered in Chapter 16,
Synchronization. Although THREAD-SPECIFIC STORAGE (392) was originally
classified as a concurrency pattern [POSA2], our experience using
THREAD-SPECIFIC STORAGE over the years has revealed that it is less
about concurrency and more about avoiding locking overhead, so we
have assigned it to the Synchronization chapter.

MONITOR OBJECT is another pattern that could arguably be classified
either as a concurrency or a synchronization pattern. We placed it
in this chapter, since its primary purpose is to enable concurrency
in object-oriented programs: its use of synchronization mechanisms,
such as mutexes and condition variables, can be considered subor-
dinate to this role. It is also worth noting that MONITOR OBJECT acts as
a complement to ACTIVE OBJECT.

Concurrency 357

The patterns presented in this chapter fall into to two groups: concur-
rency infrastructures and access synchronization.

HALF-SYNC/HALF-ASYNC and LEADER/FOLLOWERS define higher-level
concurrency architectures. HALF-SYNC/HALF-ASYNC decouples asyn-
chronous and synchronous processing in concurrent systems, to sim-
plify application programming without unduly reducing performance
at the operating system and network level. Due to the simplicity of
its programming model, HALF-SYNC/HALF-ASYNC is used in many con-
current applications, ranging across operating systems, middleware,
and industrial process control and telecommunication applications
[POSA2]. LEADER/FOLLOWERS provides a concurrency model for event-
driven systems. It is especially suitable for systems that process a
high volume of events within short-duration, atomic, and repetitive
actions, such as receiving and dispatching network events or storing
high-volume data records in a database.

The following diagram illustrates how the HALF-SYNC/HALF-ASYNC and
LEADER/FOLLOWERS patterns integrate with our pattern language for
distributed computing.

Leader/FollowersHalf-Sync/
Half-Async

Encapsulated
Implementation

concurrent event handlersconcurrent implementation

Reactor Proactor

Resource Pool

Template Method

Strategy

Layers

Active Object

Message

internal
design

concurrent
processing

request/response
encapsulation

queuing layer
serialization

queuing
policy variation

dispatcher
serialization

follower promotion
policy variationWrapper Facade

OS API
encapsulation

Monitor Object

thread pool
management

358 Concurrency

ACTIVE OBJECT and MONITOR OBJECT help to synchronize and schedule
methods invoked concurrently on objects and components. The main
difference is that an ACTIVE OBJECT executes its methods in a different
thread than its clients, whereas a MONITOR OBJECT executes its meth-
ods by borrowing the thread of its clients. As a result an ACTIVE OBJECT

can perform more sophisticated—albeit expensive—scheduling to
determine the order in which its methods execute. Consequently
ACTIVE OBJECT is mainly used to support concurrency in large compo-
nents and subsystems, while MONITOR OBJECT in mainly used to realize
(small) concurrent objects.

The diagram below illustrates the integration of ACTIVE OBJECT and
MONITOR OBJECT into our pattern language for distributed computing.

result
access

Command
Processor

Template Method

Strategy

Shared Repository

Command

Encapsulated
Implementation

Half-Sync/
Half-Async

Acceptor-
Connector

Requestor

Client Request
Handler

Message Channel

Message Router
Leader/

Followers

Active Object Monitor Object

access
synchronization

concurrent
service processing

concurrent
service processing

activation list
synchronization

Explicit
Interface

Future

Counting
Handle

Automated
Garbage Collection

Thread-Safe
Interface

interface
design

concurrency
control

Guarded
Suspension

interface
design

request
encapsulation

request
scheduling

scheduling policy
variation

future
lifecycle
management

Command
Processor

Half-Sync/Half-Async ** 359

Half-Sync/Half-Async **

When developing concurrent software, specifically a concurrent
ENCAPSULATED IMPLEMENTATION (313) or a network server that employs
a REACTOR (259) or PROACTOR (262) event handling infrastructure . . .

. . . we need to make performance efficient and scalable while ensuring
that any use of concurrency simplifies programming.

���
Concurrent software often performs both asynchronous and syn-
chronous service processing. Asynchrony is used to process
low-level system services efficiently, synchrony to simplify appli-
cation service processing. To benefit from both programming
models, however, it is essential to coordinate asynchronous and
synchronous service processing efficiently.

Asynchronous and synchronous service processing is usually inter-
related. For example, the I/O layer of Web servers often uses asyn-
chronous read operations to obtain HTTP GET requests [HPS97].
Conversely, the processing of the GET requests at the CGI layer often
runs synchronously in separate threads of control. The asynchronous
arrival of requests at the I/O layer must therefore be integrated
with synchronous processing of the requests at the CGI layer. From
a different point of view, similar observations can be made about
AJAX—the use of asynchronous JavaScript and XML to increase the
perceived responsiveness of Web clients [Gar05]. In general, asyn-
chronous and synchronous services should cooperate effectively and
be encapsulated against either other’s deficiencies.

Therefore:

Decompose the services of concurrent software into two sepa-
rated layers—synchronous and asynchronous—and add a queue-
ing layer to mediate communication between them.

Synchronous
Service Layer

Asynchronous
Service Layer

Queueing
Layer Message remove insert Message

method method method

Network I/O Network I/O
method method

360 Concurrency

Process higher-level services, such as domain functionality, database
queries, or file transfers, synchronously in separate threads or pro-
cesses. Conversely, process lower-level system services, such as
short-lived protocol handlers driven by interrupts from network hard-
ware, asynchronously. If services in the synchronous layer must
communicate with services in the asynchronous layer, have them
exchange messages via a queueing layer.

���
A HALF-SYNC/HALF-ASYNC design enforces a strict separation of con-
cerns between the three layers, which makes concurrent software
easier to understand, debug, and evolve. In addition, asynchronous
and synchronous services do not suffer from each other’s liabil-
ities: asynchronous service performance does not degrade due to
blocking synchronous services, and the simplicity of programming
synchronous services is unaffected by asynchronous complexities
such as explicit state management. Finally, using a queueing layer
avoids hard-coded dependencies between the asynchronous and syn-
chronous service layers, as well as making it easy to reprioritize the
order in which messages are processed. The strict decoupling of the
asynchronous layer from the synchronous layer, however, requires
that data exchanged between the two layers must be either commu-
nicated as COPIED VALUES, which can introduce performance penalties
and resource management overhead the more data there is to pass,
or represented as IMMUTABLE VALUES, which are lighter in weight but
perhaps more intricate to construct.

In general, a HALF-SYNC/HALF-ASYNC arrangement employs LAYERS (185)
to keep its three distinct execution and communication models inde-
pendent and encapsulated.

Services in the synchronous layer, such as database queries, file
transfers, or domain functionality, generally run in their own threads,
which allows concurrent execution of multiple services. If realized as
an ACTIVE OBJECT (365) a service can also handle multiple service
requests simultaneously, which in turn can improve the performance
and throughput of an application.

Services in the asynchronous layer can be realized with the help
of asynchronous interrupts or operating system APIs that sup-
port asynchronous I/O, for example Windows overlapped I/O and

Half-Sync/Half-Async ** 361

I/O completion ports [Sol98], or the POSIX aio * family of asyn-
chronous I/O system calls [POSIX95]. WRAPPER FACADES (459) help to
encapsulate platform-specific asynchronous I/O functions behind
a uniform interface, which simplifies their correct use and the
portability of the asynchronous layer to another operating system.
Alternatively, if a HALF-SYNC/HALF-ASYNC arrangement is designed in
conjunction with a PROACTOR or REACTOR event-handling infrastruc-
ture, this event-handling infrastructure is the asynchronous layer.
Although a REACTOR is not truly asynchronous, it shares key properties
with asynchrony if its services implement short-duration operations
that do not block for long periods of time.

The queueing layer often consists of a message queue shared by
all services in the synchronous and asynchronous layers. Sophis-
ticated queueing layers can provide multiple message queues, for
example one message queue for every message priority or commu-
nication endpoint. Message queues can be implemented as MONITOR

OBJECTS (368) to serialize access to the message queues transparently
for asynchronous and synchronous services. TEMPLATE METHODS (453)
and STRATEGIES (455) support the setting of various aspects of the
message queues, for example configuring their behavior for ordering,
serialization, notification, and flow control. STRATEGIES are the more
flexible option, offering loose coupling and runtime configuration and
re-configuration of the message queues. TEMPLATE METHODS can be
appropriate if only compile-time flexibility is needed. The information
routed by the queueing layer is encapsulated within MESSAGES (420).

362 Concurrency

Leader/Followers **

When developing concurrent software, specifically a concurrent
ENCAPSULATED IMPLEMENTATION (313) or a network server that employs
a REACTOR (259) event-handling infrastructure . . .

. . . we must often react on and process multiple events from multiple
event sources both concurrently and efficiently.

���
Most event-driven software uses multi-threading to process mul-
tiple events concurrently. It is surprisingly hard, however, to
allocate work to threads in an efficient, predictable, and simple
manner.

In event-driven software, particularly server software, it is often nec-
essary to define efficient demultiplexing associations between threads
and event sources. It is also necessary to prevent race conditions if
multiple threads demultiplex events on a shared set of event sources.
For example, a Web server may use multiple threads to service mul-
tiple GET requests scalably on multiple I/O handles. Some methods
of associating threads and event sources are inefficient because they
incur high levels of overhead. For example, creating a thread for each
request, or dedicating a separate thread for each event source, can
be inefficient due to scalability limitations of operating systems and
hardware. What is needed is an architecture for concurrent reactive
software that is both easy to use and efficient.

Therefore:

Use a pre-allocated pool of threads to coordinate the detection,
demultiplexing, dispatching, and processing of events. In this
pool only one thread at a time—the leader—may wait for an
event on a set of shared event sources. When an event arrives,
the leader promotes another thread in the pool to become the
new leader and then processes the event concurrently.

handle_event

handle_eventwait_for_events

Event
Sources

Network
events Leader

Thread

handle_event
Follower
Threads

Processing Thread

handle_event

Leader/Followers ** 363

While the leader is listening on the event sources for an event to
occur, other threads—the followers—can queue up and sleep until
they are promoted to be the leader. When the current leader thread
detects an event from the event sources it does two things. It first
promotes a follower thread to become the new leader, then it morphs
itself into a processor thread that demultiplexes and dispatches the
event to a designated event handler that runs in the same thread that
received the event. Multiple processing threads can handle events
concurrently while the current leader thread waits for new events
to occur on the shared event sources. After handling its event, a
processing thread reverts to the follower role and sleeps until it
becomes the leader again.

���
By pre-allocating a pool of threads, a LEADER/FOLLOWERS design avoids
the overhead of dynamic thread creation and deletion. Having threads
in the pool self-organize and not exchange data between themselves
also minimizes the overhead of context switching, synchronization,
data movement, and dynamic memory management. Moreover, letting
the leader thread perform the promotion of the next follower prevents
performance bottlenecks arising from having a centralized manager
make the promotion decisions.

The price to pay for such performance optimizations is limited
applicability. A LEADER/FOLLOWERS configuration only pays off for
short-duration, atomic, repetitive, and event-based actions, such
as receiving and dispatching network events or storing high-volume
data records in a database. The more services the event handlers
offer, the larger they are in size, while the longer they need to
execute a request, the more resources a thread in the pool occu-
pies and the more threads are needed in the pool. Correspondingly
fewer resources are available for other functionality in the applica-
tion, which can have a negative impact on the application’s overall
performance, throughput, scalability, and availability.

In most LEADER/FOLLOWERS designs the shared event sources are
encapsulated within a dispatcher component. If a LEADER/FOLLOWERS

arrangement is designed in conjunction with a REACTOR event-handling
infrastructure, its reactor component is the dispatcher. Encapsu-
lating the event sources separates the event demultiplexing and

364 Concurrency

dispatching mechanism from the event handlers. Providing the dis-
patcher with methods for deactivating and reactivating a specific
event source avoids race conditions if a new leader thread is selected
simultaneously with completion of processing of the most recent
event.

Specify the threads as a RESOURCE POOL (503), and use a MONITOR

OBJECT (368) to maintain the dispatcher and synchronize access to the
shared event sources. This design enhances performance by using
a self-organizing concurrency model that avoids the overhead of a
separate queueing layer between event sources and event handlers.

Inside the thread pool the monitor object offer two methods to its
threads. A join method allows newly initialized threads to join the
pool. The joining thread first waits to become the new leader by
suspending its own execution on the thread pool’s monitor condition.
After it becomes the leader, it accesses the shared event sources
to wait for and process an incoming event. A promote new leader
method allows the current leader thread to promote a new leader by
notifying a sleeping follower via the thread pool’s monitor condition.
The notified follower resumes execution of the thread pool’s join
method and accesses the shared event sources to wait for the next
event to occur.

Multiple promotion protocols, such as last-in/first-out, first-in/first-
out, and highest priority, can be supported via TEMPLATE METHODS (453)
and STRATEGIES (455).

Active Object ** 365

Active Object **

When developing an ENCAPSULATED IMPLEMENTATION (313), the syn-
chronous service layer in a HALF-SYNC/HALF-ASYNC (359) architecture,
or service handlers in an ACCEPTOR-CONNECTOR (265) configuration . . .

. . . we must often ensure that the operations of components can run
concurrently within their own threads of control.

���
Concurrency can improve software quality of service, for example
by allowing components to process multiple client requests
simultaneously without blocking. Developers, however, must
decide how to express the units of concurrency in their software
and how to interact with them as they run.

In particular, clients should be able to issue requests on compo-
nents without blocking until the requests execute. It should also be
possible to schedule the execution of client requests according to spe-
cific criteria, such as request priorities or deadlines. To keep service
requests independent, they should be serialized and scheduled trans-
parently to the component and its clients, thereby enabling the reuse
of software implementations that require different synchronization
strategies.

Therefore:

Define the units of concurrency to be service requests on com-
ponents, and run service requests on a component in a different
thread from the requesting client thread. Enable the client and
component to interact asynchronously to produce and consume
service results.

Component
interface

Client

Client thread

Component
implementation

Active object
thread

Objectified
service
request

Schedulermethod_1

method_2

method_1

method_2

insert

execute

execute

execute

Objectified request

366 Concurrency

Clients can initiate a service request on the component by calling a
method on its interface, which is exposed to the clients’ thread(s).
Design the component’s interface without subjecting it to synchro-
nization constraints and return control immediately to clients after
they issue their requests. In addition, objectify the requests, pass
them to the component implementation running in one or more sep-
arate threads, and let the implementation schedule the execution of
the requests independently of the point in time at which they were
initiated. Provide a way for the component to return results to the
client when the service is complete.

���
An ACTIVE OBJECT design enhances concurrency in an application by
allowing clients threads and the execution of service requests to run
simultaneously: clients are not blocked while their service requests
are executed. In addition, synchronization complexity is reduced by
using a scheduler that evaluates synchronization constraints to seri-
alize access to the component’s implementation. The separation of
request scheduling from the actual component implementation also
supports the reuse of the component in scenarios that do not require
synchronization, as well as enhancing legacy components that are
not designed for concurrent access to be adapted for use in a concur-
rent application. Finally, the order of service request execution can
differ from service request invocation, which can better account for
priorities, deadlines, and other synchronization constraints—but at
the cost of complicated debugging. An ACTIVE OBJECT arrangement also
introduces a heavyweight request handling and execution infrastruc-
ture, which can cause performance penalties for components that
only implement short-duration methods.

Use an EXPLICIT INTERFACE (281) to expose the component’s interface to
client threads. This design allows clients to access the component is
if it were collocated in their own thread. Design the interface so that
its method signatures do not include synchronization parameters.
Clients therefore appear to have an exclusive access to the concurrent
component even if it shared by multiple client threads.

At runtime, let the component interface objectify all method invoca-
tions into service requests, which are typically realized as COMMANDS

(435) that convey the necessary synchronization constraints of
their corresponding method invocations. This request objectification

Active Object ** 367

decouples service requests from service execution in time and space,
so that each client can invoke services on the component without
blocking itself or other clients. Store the created service requests into
a shared activation list that maintains all pending service requests
on the concurrent component. Implementing the activation list as a
MONITOR OBJECT (368) helps to ensure thread-safe concurrent access.

One or more threads host the component’s implementation. Within
each thread, a servant implements the component’s functionality. A
scheduler dequeues pending service request objects from the shared
activation list and executes them on the servants. Such a design
allows service requests and executions to run concurrently, that is,
service requests are invoked in client threads, while service execu-
tions run in different threads. In addition, the scheduler separates
component functionality from scheduling and synchronization mech-
anisms, which supports independent realization and evolution of
both concerns.

Design the scheduler as a COMMAND PROCESSOR (343) that implements
the component’s event loop. This monitors the activation list to iden-
tify service requests that become executable, removes these requests
from the activation list, and executes them on their servant. TEMPLATE

METHODS (453) and STRATEGIES (455) can support multiple scheduling
policies within the scheduler. TEMPLATE METHODS are most appropri-
ate if the configuration of the scheduler is possible at compile time.
STRATEGIES, in contrast, support runtime configuration and reconfigu-
ration of scheduling policies.

Clients can obtain the result of a service request on the concurrent
component via a FUTURE (382). The interface of the concurrent com-
ponent returns the future to the client after the service’s invocation,
while the associated service request fills the future after the servant
has finished with the service’s execution. If the client accesses the
future before it contains the service’s result, the client can block or
poll until the result is available. When futures are no longer needed
they can be reclaimed safely via AUTOMATED GARBAGE COLLECTION (517)
if this strategy is supported by the programming language, or via a
COUNTING HANDLE (522) if the reclaim must be coded manually.

368 Concurrency

Monitor Object **

When developing a SHARED REPOSITORY (202) architecture, a REQUESTOR

(242), CLIENT REQUEST HANDLER (246), MESSAGE CHANNEL (224), MESSAGE

ROUTER (231) distribution infrastructure, ENCAPSULATED IMPLEMENTATION

(313), ACCEPTOR-CONNECTOR (265) arrangement, HALF-SYNC/HALF-ASYNC

(359), LEADER/FOLLOWERS (362), or ACTIVE OBJECT (368) concurrency
model . . .

. . . we must consider that objects can be shared between threads.

���
Concurrent software often contains objects whose methods are
invoked by multiple client threads. To protect the internal state
of shared objects, it is necessary to synchronize and sched-
ule client access to them. To simplify programming, however,
clients should not need to distinguish programmatically between
accessing shared and non-shared components.

Instead, each object accessed by multiple client threads should
ensure that its methods are serialized transparently without requir-
ing explicit client intervention. To ensure the quality of service of its
clients, a shared object should also relinquish its thread of control
voluntarily if any of its methods must block during execution, leav-
ing the component in a stable state so that other client threads can
access it safely.

Therefore:

Execute a shared object in each of its client threads, and let it
self-coordinate a serialized, yet interleaved, execution sequence.
Access the shared object only through synchronized methods
that allow execution of only one method at a time.

A client

Client-thread-specific
monitor object instances

A client
thread

method_1

method_2

method_1

method_2

A client

A client
thread

Monitor object

Synchronization
mechanism

1
invoke

2

synchronize

3
block until object
becomes available

2

Monitor Object ** 369

Each monitor object contains a monitor lock that it uses to serialize
access to the object’s state. Within a synchronized method, first
acquire the monitor lock to ensure no other synchronized methods
can execute. Once the lock is held, evaluate whether the shared
object’s current state allows the synchronized method to run. If it
does, execute it, otherwise suspend the execution of the synchronized
method on a condition. If called, a monitor condition should suspend
the thread of its caller until it is notified to wake it. When suspending
a thread, the monitor condition should also release the monitor lock,
and when resuming this thread, re-acquire the monitor lock.

Suspending a synchronized method allows other client threads to
access the shared object via its synchronized methods. Any synchro-
nized method that executes, completing execution, may affect the
validity of monitor conditions, in which case it should notify the cor-
responding monitor condition so that suspended method invocations
can resume execution. Before terminating a synchronized method,
release the monitor lock so that other synchronized methods called
by other threads can execute.

���
Designing a shared object type as a MONITOR OBJECT simplifies concur-
rency control by sharing the object among cooperating threads and
combining state synchronization with method invocation. A MONITOR

OBJECT also helps in implementing a cooperative method execution
sequence that ensures the availability of the shared object to its
clients, and maximizes its availability within the constraints of seri-
alization, to ensure that state changes are complete and free of race
conditions. A liability of this pattern, however, is that it couples
domain functionality tightly with synchronization aspects. It can be
hard to compose or nest monitor objects without risking deadlock,
for example, if one monitor object makes callbacks into objects that
in turn use other monitor objects.

A monitor object can use a THREAD-SAFE INTERFACE (384) to decouple
synchronization from its functionality. Such a design also allows both
concerns to vary independently. GUARDED SUSPENSION (380) can be used
to coordinate threads running in the object. The execution of methods
is scheduled via monitor conditions and monitor locks that determine
the circumstances under which they should suspend or resume their
execution and that of collaborating components.

16 Synchronization

Kevlin and Frank at JAOO 2006, synchronizing their watches
 Mai Skou Nielsen

Concurrency mechanisms for dividing up and executing tasks across
different threads present only one part of the concurrency story.
Where objects are shared between threads, there is the question of
thread-safe use of their methods. This chapter presents nine patterns
that address synchronization or reduction of state change to minimize
the need for synchronization.

372 Synchronization

In Chapter 15, Concurrency we discussed how the structure, effi-
ciency, and responsiveness of software for distributed systems can
benefit from concurrency. We also showed that well-structured, effi-
cient, and responsive concurrent software is surprisingly hard to
design: ‘Multithreading is one thing after, before, or simultaneously
with another’ [MeAl04a]. To address these challenges, we therefore
included patterns for effective concurrent design in our language.
But not only is designing concurrent systems challenging, program-
ming them is too—when present, concurrency is a concern that runs
through all levels and across all aspects of an architecture.

One reason why concurrent programming is harder than sequential
programming is the need to synchronize access to shared resources.
Threads that run concurrently may share access to the same objects.
Without appropriate safeguards, therefore, methods that change the
internal state of a shared object have the potential to corrupt this
state when called from different threads. To avoid this problem, code
that should not run concurrently on the same object state can be
synchronized within a critical section. A critical section is a sequence
of instructions that obeys the following invariant: while one thread or
process is executing in the critical section, no other thread or process
can execute in the same critical section [Tan95].6

A common way to safeguard a critical section in object-oriented
programs is to associate some type of lock object with a class or
component. For example, a mutual exclusion object (mutex) is a type
of lock that must be acquired and released serially within the same
thread, embracing the critical section, so that if multiple threads
attempt to acquire the mutex simultaneously, only one thread will
succeed. The others must wait until the mutex is released, after which
the waiting threads can compete for the lock again [Tan92]. Other
types of locks, such as file locks, semaphores, and reader–writer
locks, use a similar acquire–release protocol [McK96].

Although the use of locks with threads appears to be straightforward
at a conceptual level, programming locks in practice are not always so

6 Note that this formal definition of critical section should not be confused with the
Microsoft Windows synchronization primitive CRITICAL SECTION. The former defines
a region of code that must satisfy an invariant, while the latter is an API mechanism
that can be used to satisfy such an invariant. A CRITICAL SECTION is a lightweight,
in-process mutual exclusion type.

Synchronization 373

[Lee06]. For example, if a lock is held longer than actually needed, it
can degrade the availability of a shared component unduly by making
the lock scope—the statements between the acquisition of the lock
and its release—larger than the critical section, the statements that
must be guarded from concurrent access. Similarly, acquiring and
releasing locks at too fine a level of granularity can degrade the
performance of a component: the acquisition and release of locks
does not come free.

As an example, consider how a lock scope can easily be made broader
than necessary in Java. In Java a lock scope is an explicit concept,
introduced using synchronized to mark a whole method or block
of code. Syntactically, it is more convenient to mark a whole method
as synchronized, which also has the benefit of being more visible
because the act of mutual exclusion is captured in the method’s sig-
nature. However, it is common for the statements that form a critical
section to be preceded and followed by statements that are concerned
with operations on local variables or arguments, rather than the
modification of private object state, and which therefore do not need
locking. Where locking is necessary, it must be used to ensure pro-
gram correctness: where locking is unnecessary, it should be avoided
to help program performance. In our example, the method scope is
larger than the critical section, so only the critical section should be
surrounded by a synchronized block, not the whole method.

Using locks in an ad hoc manner also runs the risk of introducing
deadlock, a deadly embrace in which two concurrent tasks wait on
each other for completion. Consider two threads and two shared
resources: thread 1 acquires a lock on shared resource 1, and thread
2 acquires a lock on shared resource 2. To progress, however, thread
1 then needs to lock and use shared resource 2 and thread 2 needs
to lock and use shared resource 1. Thus there is no progress, and
the deadlock results in the two threads hanging indefinitely. Design
strategies and algorithms that ensure that locks are always acquired
and released in the same order address many of these issues, but
ultimately the surest course is to reduce the need for synchronous
actions and locking, and to encapsulate locking behavior where pos-
sible [CMH83].

Programming with locking primitives requires some knowledge of
their basic constraints and limitations to avoid both pessimization

374 Synchronization

and deadlock. The simplest kind of lock is a semaphore, an exclusive
lock that can be locked and unlocked from any thread. A more
disciplined construct is a mutex, which must be unlocked in the same
thread in which it was locked. In either case, it is easy to introduce
a defect by forgetting to match the lock with a corresponding unlock.
Sometimes this is obvious: the unlock is actually absent from the
source code. But sometimes it can be more subtle: the unlock is
present, but it is bypassed when an exception is thrown from within
the critical region. Such subtle problem cases emphasize the need to
wrap the use of such primitives, either within library code or through
language mechanisms.

To add to the subtlety, mutexes come in two basic flavors: recursive
and non-recursive. A recursive mutex allows re-entrant locking, in
which a thread that has already locked a mutex can lock it again and
progress. Non-recursive mutexes, in contrast, cannot: a second lock
in the same thread results in self-deadlock. Non-recursive mutexes
can be potentially much faster to lock and unlock than recursive
mutexes, but the risk of self-deadlock means that care must be taken
when an object calls any methods on itself, either directly or via
a callback, because double-locking will cause the thread to hang.
Recursive mutexes were designed explicitly for such scenarios, sim-
plifying the composability of components by ensuring that something
as simple and common as a callback does not lead to deadlock.

Another common synchronization mechanism is a condition variable,
which collaborating threads can use to suspend themselves tem-
porarily until condition expressions involving data shared between
the threads attain desired states. A condition variable is always used
in conjunction with a mutex, which the thread must acquire before
evaluating the condition expression. If the condition expression is
false, the thread atomically suspends itself on the condition vari-
able and releases the mutex, so that other threads can change the
shared data. When a cooperating thread changes the data, it can
notify the condition variable, which atomically resumes a thread that
had previously suspended on the condition variable and acquires its
mutex again.

Our interest in synchronization is often focused on lock-based pro-
gramming, and in particular how to use locks effectively, rather

Synchronization 375

than merely adequately. Correctness, safety, and efficiency drive our
vocabulary of techniques. Locks are not, however, the only path to
thread-safe code. Designing software to reduce the opportunities for
state change reduces the need to perform synchronization. Threads
that work on disjoint data need not synchronize changes. Threads
that work on shared, immutable data similarly need not synchronize
changes, because there are none. Threads that work on data that
can be updated atomically are able to share state changes. This last
approach motivates lock-free programming, which is underpinned
by guaranteeing that certain primitive operations, such as integer
increment or compare-and-swap (CAS), are atomic and non-locking
on a given platform. Lock-free programming, however, is a subtle
and complex topic—‘lock-based programming is hard for experts to
get right, and lock-free programming is hard for geniuses to get
right’ [Sut05b]—and does not form a key theme in the patterns we
present.

Nine patterns in our pattern language for distributed computing help
to ensure that the interactions between threads and state are free of
race conditions and deadlocks, but are still as efficient as possible:

The GUARDED SUSPENSION pattern (380) [Lea99] coordinates trans-
parent client access to shared objects whose methods can only
execute when certain conditions hold.

The FUTURE pattern (382) [Lea99] provides a ‘virtual’ data object
that blocks clients automatically when they try to invoke its
fields before its concurrent computation is complete.

The THREAD-SAFE INTERFACE pattern (384) [POSA2] minimizes lock-
ing overhead and ensures that intra-component method calls do
not incur self-deadlock by trying to reacquire a non-recursive
lock that is held by the component already.

The DOUBLE-CHECKED LOCKING pattern (386) [POSA2] reduces con-
tention and synchronization overhead whenever a critical section
of code must be executed the first time the section is encoun-
tered, but not subsequently, and yet still remain thread-safe.

The STRATEGIZED LOCKING pattern (388) [POSA2] parameterizes
a component to enable user selection of the most appropriate
synchronization mechanism to serialize the component’s criti-
cal sections.

376 Synchronization

The SCOPED LOCKING pattern (390) [POSA2] ensures that a lock is
acquired when control enters a scope and is released automati-
cally when control leaves the scope, regardless of the return path
from the scope.

The THREAD-SPECIFIC STORAGE pattern (392) [POSA2] allows mul-
tiple threads to use one ‘logically global’ access point to retrieve
an object that is local to a thread, without incurring locking
overhead on each object access.

The COPIED VALUE pattern (394) [Hen00b] ensures that value
objects are passed by copy between threads. Value objects are
therefore not shared between threads, so there are no opportu-
nities for data races and no need for synchronization.

The IMMUTABLE VALUE pattern (396) [Hen00b] sets the internal
state of value objects at construction and disallows subsequent
changes of their state. Immutable values can be shared in a
concurrent program without synchronization.

The first two patterns in this list, GUARDED SUSPENSION and FUTURE,
help coordination of threads that try to execute methods or access
data, but cannot succeed because certain conditions are not met or
data they need is not yet available. GUARDED SUSPENSION orchestrates
the effective use of one or more condition variables to implement
cooperative concurrency control, while FUTURE suspends threads that
try to access data that is yet to be computed until the data is available.

The next diagram illustrates how GUARDED SUSPENSION and FUTURE

integrate with our pattern language for distributed computing.

Wrapper Facade

Guarded
Suspension

Future

Master-SlaveActive Object

Virtual Proxy
Asynchronous

Completion Token

cooperative
concurrency control

platform-independent
realization

cooperative
concurrency control

synchronization of
result access

result
representation

cooperative
concurrency control

Partial AcquisitionMonitor Object

Synchronization 377

The next three patterns we present in this chapter, THREAD-SAFE

INTERFACE, STRATEGIZED LOCKING, and SCOPED LOCKING, address concrete
serialization techniques. THREAD-SAFE INTERFACE realizes a ‘coarse-
grained’ locking policy: it serializes directly at the interface of a
component, regardless of how much of the entire processing time of
the invoked methods is spent in critical regions. The more time is
spent in ‘uncritical regions’ of code, the less applicable THREAD-SAFE

INTERFACE becomes, because it can block threads unnecessarily. In
such a situation, STRATEGIZED LOCKING and SCOPED LOCKING are a bet-
ter choice, because they serialize directly at the scope of the critical
region. The two patterns are also complementary: STRATEGIZED LOCKING

defines pluggable lock types, which can be configured according to an
application’s needs, such as semaphores, (recursive) mutexes, and
reader/writers locks. SCOPED LOCKING helps in automating lock acqui-
sition and—even more importantly—lock release, which is especially
beneficial if a critical region is left unexpectedly, for example due to
an exception.

The next diagram illustrates how the three patterns are connected
with other patterns of our pattern language.

synchronized
method access

Thread-Safe
Interface

Shared Repository

Message Channel

Proxy

Client Request
Handler

RequestorMessage Router Explicit Interface

Page
Controller

Front
Controller

Application
Controller

Monitor Object Object
 Manager

Template Method

separation of interface
methods from
implementation methods

Strategized
Locking

Double-Checked
Locking

Command
Processor

synchronized access
to critical regions

lock type
variation

synchronized
method access

Scoped
Locking

lock acquisition
and release

Wrapper Facade Execute-Around
Object

platform-independent
realization

C++
realization

Wrapper Facade

Strategy

Null Object

lock type
realization

Builder

378 Synchronization

In contrast to its original classification as a concurrency pat-
tern [POSA2], we assign the THREAD-SPECIFIC STORAGE pattern to the
synchronization patterns in our language. The reason for this re-
classification is that THREAD-SPECIFIC STORAGE, like DOUBLE-CHECKED

LOCKING, is less about concurrency and more about avoiding locking
overhead. THREAD-SPECIFIC STORAGE avoids locking overhead if thread-
local variables are accessed via a global variable or access point,
such as Unix errno. In contrast, DOUBLE-CHECKED LOCKING avoids this
overhead if a critical region is guarded by a conditional expression
whose evaluation depends on state that is modified within the critical
section, such as the initialization of SINGLETONS [GoF95].

Similarly, COPIED VALUE and IMMUTABLE VALUE eliminate locking overhead
by avoiding the need for locking altogether. In the case of COPIED

VALUE, communicating a value by replicating an object rather than
sharing it ensures that threads see disjoint objects that need no
synchronization. Alternatively, once an object has been constructed,
it may offer no methods that would cause internal state change. This
restriction makes IMMUTABLE VALUES intrinsically thread-safe and ideal
for exchanging data between threads.

Readers familiar with the second volume of the POSA series, Pat-
terns for Concurrent and Networked Objects [POSA2], might also have
noticed that we renamed the DOUBLE-CHECKED LOCKING OPTIMIZATION pat-
tern as DOUBLE-CHECKED LOCKING (386) to simplify the pattern’s name.
The main reason for removing the word ‘optimization,’ however, is that
if we keep it, many other patterns in our language should probably
also be extended with this attribute.

Synchronization 379

The final diagram in this chapter illustrates how DOUBLE-CHECKED

LOCKING, THREAD-SPECIFIC STORAGE, IMMUTABLE VALUE, and COPIED VALUE

are integrated into our pattern language.

Domain Object

Double-Checked
Locking

Copied Value

Reactor

Wrapper Facade

Proxy
Strategized

Locking

Lazy Acquisition

Thread-Specific
Storage

Lazy Acquisition

Object
 Manager

ProactorNull Object

Domain Object

Client Proxy

Immutable Value

Factory Method

Object
 Manager

Resource Pool Counting Handle

Automated
Garbage Collection

access
synchronization

lock type
variation

error handling
encapsulation

global access
point

Factory Method

access key
creation

thread-specific
component management

component-specific
value instances

immutable
value instances

value
creation

value
disposal

value
pools

Mutable
Companion

380 Synchronization

Guarded Suspension **

When implementing a MONITOR OBJECT (368), a FUTURE (382), or another
component that is shared between multiple threads . . .

. . . we must schedule the execution sequence of two or more threads
cooperatively.

���
In concurrent programs we can often only execute a method
invoked on component if specific conditions—called guards—
apply. As the state of a method’s guard conditions may eventu-
ally become true as a result of another concurrent action on the
same component, it is not always feasible to abort the method if
it cannot be executed immediately.

For example, we can remove a message from a synchronized message
queue only when the queue is not empty, which is the guard condi-
tion. If another client thread inserts a message into the queue, it is
not longer empty. A previously invoked removal method that could
not execute because its guard condition is ‘queue empty’ can now
proceed and finish successfully.

Blocking indefinitely is not really an option, because it prevents
other client threads from performing potentially useful work on the
shared component. Unconditional blocking can also create a potential
deadlock situation by locking out all client threads, including ones
that could change the state of the guard condition to true.

Aborting the attempt to access the critical section has the benefit
of failing fast, signaling failure to the calling thread with a status
result value or exception. It is intrusive for code in the client thread,
however, which must implement some kind of retry strategy that
will clutter the client code with mechanistic detail that is better
encapsulated elsewhere.

Therefore:

Instead of aborting the method, suspend its client thread so that
other client threads can access the shared component safely and
change the state of the method’s guard condition. If this state
changes, resume the suspended thread so that the thread can
try to continue the execution of the interrupted method.

Guarded Suspension ** 381

Client 1 thread

get_message

put_message

Client 1

Message get_message () {
Acquire lock and try to get a message, if available.
lock.acquire ();
while (empty ()) ## Suspend thread while queue is empty.

Message m = get_message_impl (); ## Get the message.
. . .
lock.release (); ## Release lock

}

not_empty.condition.wait ();

Client 2 thread

Client 2

Message put_message (Message m) {
Acquire lock and put a message into the queue.
lock.acquire ();
. . .

Wake up threads waiting to get a message.
not_empty_condition.notify ();
lock.release (); ## Release lock

put_message_impl (m);

}

Calling the get method
on an empty queue
suspends the client
thread.

2

1

Message queue

Executing the put method
wakes the waiting thread
to continue the execution
of the get method where
suspended.

wakes
up the
waiting
thread

Guarded suspension allows a shared component to control and
schedule the execution sequence of its client threads transparently
to these threads.

���
The key benefit of a GUARDED SUSPENSION design is that it is non-
intrusive for the client. The called method encapsulates the policy
and mechanism for access, leaving the calling code free of clutter and
potentially duplicated mechanisms. An unexceptional and common
situation is no longer flagged as a failure. The blocking behavior is
such that the shared component continues to be available. If the
suspension is at OS level, there is also no CPU wastage. As a result,
GUARDED SUSPENSION minimizes concurrency overhead in the client
threads and increases the shared component’s availability.

Guarded suspension implementation primitives are offered in many
OS APIs, but should be used via a WRAPPER FACADE (459) rather than
directly. There are multiple ways to realize a guarded suspension
[Lea99]: waits and notifications via condition variables and associated
mutexes, busy-waits via spin-loops, and suspending and resuming
client threads directly.

Although non-intrusive and non-failing blocking can simplify client
code, a client may want the choice between blocking or doing some-
thing else, particularly if the suspension is long. This can be resolved
by also providing non-blocking and time-out variants of the method.
For example, a queue could provide a blocking get method and a
non-blocking try get method.

382 Synchronization

Future **

When implementing a MASTER-SLAVE (321) arrangement, an ACTIVE

OBJECT (365), PARTIAL ACQUISITION (511), or software in which client and
server run concurrently and communicate via method calls . . .

. . . at times we must access data that is computed concurrently with
the control flow of a client.

���
Services that are invoked concurrently on a component may
need to return a result to the calling client. However, if the client
does not block after calling the service, continuing instead with
its own computation, the service’s result may not be available
when the client needs to use it.

A common use of concurrency is to optimize performance by over-
lapping computation and communication. This optimization can be
simple for one-way calls that return no results: invocation can be as
simple as ‘fire and forget.’ A client, however, may want to invoke one
or more two-way methods on one or more servers without having to
wait synchronously for the server response(s). A call–return procedu-
ral model is simple to use but cannot, in this case, be used to return
a result. Nevertheless, when the client needs a result to continue its
processing, there must be a straightforward way to obtain it.

Therefore:

Immediately return a ‘virtual’ data object—called a future—to
the client when it invokes a service. This future keeps track
of the state of the service’s concurrent computation and only
provides a value to clients when the computation is complete.

Client thread Future

get_result

write_resultClient
Service thread

Service

Result get_result ()

if (result == NULL) then
Suspend calling thread until result is available.

begin

thread.wait ();
return result;

end

Future ** 383

If the client accesses the service’s result before it is available, the
future suspends the client thread. After the result is available and
stored in the future, the client’s thread will be resumed automatically
so that the client can continue executing and use the result of the
service. A client can also poll a future through a non-blocking or
timed accessor, as well as a completion query, which enables it to
check whether the result is available without indefinitely suspending
the client thread.

���
Using a FUTURE can enhance parallelism by allowing clients to syn-
chronize with services that they invoked concurrently at the latest
possible point in time. A FUTURE also enables method results to be
processed in a different order than that in which the methods were
invoked, which can enhance flexibility and performance.

To enhance parallelism, do not access the future immediately after
receiving it, since this is an expensive way of achieving a synchronous
two-way service call. Instead, let the client execute as many different
operations or instructions as possible after the service invocation,
and access the future only when the client cannot make any further
progress without the service’s result. The more time that passes
between the service invocation and the access to the future, the less
likely it is that the client will block, which increases concurrency and
parallelism.

A FUTURE acts as a VIRTUAL PROXY (497) for data that is not yet computed.
It may be implemented directly in terms of locking primitives that
support GUARDED SUSPENSION (380), or it may be layered on top of an
event-handling scheme expressed in terms of ASYNCHRONOUS COMPLETION

TOKENS (268).

384 Synchronization

Thread-Safe Interface *

In a REQUESTOR (242), CLIENT REQUEST HANDLER (246), MESSAGE CHANNEL

(224), MESSAGE ROUTER (231), SHARED REPOSITORY (202), EXPLICIT INTERFACE

(281), PROXY (290), PAGE CONTROLLER (337), FRONT CONTROLLER (339),
APPLICATION CONTROLLER (341), MONITOR OBJECT (368), OBJECT MANAGER

(492), or BUILDER (527) arrangement . . .

. . . we must often ensure thread-safe access to components in a
concurrent program.

���
Components in a concurrent program must be thread-safe. Often
their methods acquire locks to protect critical sections from con-
current access. Self-deadlock can occur, however, if an acquired
lock is non-recursive and the method calls another method in
the component that tries to acquire the same lock.

Although a re-entrant lock prevents self-deadlock, for some plat-
forms it incurs unnecessary overhead when acquiring and releasing
the lock multiple times across intra-component method calls. Ideally,
a design that avoids self-deadlock, or does not take advantage of
a lock’s support for re-entrancy, should also incur minimal locking
overhead. Assigning the responsibility for synchronizing the shared
component with its clients is undesirable, however, because this
design couples these clients tightly with the component. Such cou-
pling increases both the complexity of usage and the probability of
incorrect usage.

Therefore:

Split a component’s methods into publicly accessible interface
methods and corresponding private implementation methods. An
interface method acquires a lock, calls its corresponding imple-
mentation method, and releases the lock. An implementation
method assumes the necessary lock is held, does its work, and
only invokes other implementation methods.

Thread-Safe
Interface

service

service_imp

void service ()

service_imp (); ## Execute service.
lock.acquire (); ## Protect access to implementation method.

end
lock.release ();

Client

begin

Thread-Safe Interface * 385

To ensure proper synchronization, clients of a component designed
using THREAD-SAFE INTERFACE can only invoke its interface methods.
Once an interface method obtains the necessary lock, it forwards
control to the corresponding implementation method, which then
processes the client’s request. Self-deadlock and locking overhead are
thus avoided, because the code in the implementation method does
not acquire the component’s lock, nor do any other implementation
methods it may call on this component. When control returns from
the implementation method to its interface method, the lock held by
the interface method is released and any results are returned to the
client that invoked the method.

���
A THREAD-SAFE INTERFACE ensures that self-deadlock does not occur as
a result of intra-component method calls. In addition, locks are not
acquired or released unnecessarily. Finally, a THREAD-SAFE INTERFACE

separates locking and functionality issues, which helps to simplify
both aspects.

Note, however, that the self-deadlock problem is not resolved if control
leaves the component’s scope temporarily and the underlying locking
mechanism is strict. This situation can occur if an implementation
method delegates control to a different component which then tries to
re-enter the first component by calling one of its interface methods.
In this case, the interface method will try to reacquire the locks the
component already holds. A common way to resolve this problem is
to realize a THREAD-SAFE INTERFACE using a re-entrant lock.

Often a component with a THREAD-SAFE INTERFACE is designed as a
class with public synchronized interface methods and private non-
synchronized implementation methods. Alternatively, a THREAD-SAFE

INTERFACE arrangement can be designed as a TEMPLATE METHOD (453),
with template methods corresponding to interface methods and hook
methods corresponding to implementation methods. Components can
use STRATEGIZED LOCKING (388) to vary their configuration with the
optimal lock type.

386 Synchronization

Double-Checked Locking

When performing a LAZY ACQUISITION (507) in a concurrent environ-
ment . . .

. . . at times it may be necessary to perform thread-safe, one-time
initialization in a method without paying the cost of synchronization
for all subsequent calls of the method.

���
A common way of avoiding race conditions within a compo-
nent shared between threads is to serialize access to its critical
sections. A thread that wants to enter a critical section must first
acquire a lock. This design, however, can incur excessive locking
overhead if the object’s critical section is entered frequently but
is executed conditionally only once.

For example, consider an object whose representation is initialized
by LAZY ACQUISITION. In a multi-threaded environment the just-in-time
initialization code—the part that checks whether the representation
already exists, creating it if it does not—is a critical section that runs
just once during the object’s lifetime. Guarding this code with a lock,
however, incurs an overhead for all calls to the accessor method, not
just the one call when initialization occurs. The lock is then acquired
and released unnecessarily, because the object’s existence check
prevents control flow from executing the critical initialization code.

Therefore:

Provide the shared object with a ‘hint’ as to whether execution of
a particular critical section is necessary. Check this hint before
and after acquiring the lock that guards this critical section.

Perform first-check to evaluate 'hint'.
if (first_time_in_flag is FALSE)

acquire the lock
Perform double-check to avoid race condition.
if (first_time_in_flag is FALSE)

execute the critical section
set first_time_in_flag to TRUE

fi
release the lock

fi

Double-Checked Locking 387

If the critical code has already been executed, the hint’s first check
lets threads skip this code and its associated lock acquisition: no
locking overhead is incurred. The hint’s second check prevents race
conditions if two or more threads passed the first check in parallel.
Only one of these threads will successfully acquire the lock, pass the
hint’s second check, execute the critical section, and change the hint.
Once the lock is released, any waiting threads will bypass the critical
section, because the hint’s second check indicates that it has already
been executed.

���
Within an object, DOUBLE-CHECKED LOCKING ensures that locks are only
acquired and released if a critical section guarded by a conditional
statement must really be executed, which is often an ‘exceptional’
situation. The common case of not executing the critical situation
requires no locking, and thus executes quickly and efficiently.

The hint used for DOUBLE-CHECKED LOCKING should initially indicate
that the critical section has yet to be executed. If this hint also has
an application-specific purpose, such as a pointer to an internal
representation object, ensure that it has an atomic type. Guard
the critical section by checking the hint, only letting threads enter
if the critical section has yet to be executed. Inside the critical
section acquire the lock, check the hint again, and—depending on its
value—execute the critical section. Before releasing the lock, change
the hint so that subsequent threads do not enter the critical section.
STRATEGIZED LOCKING (388) supports configuration of the lock with a
type appropriate for the application.

In the absence of a platform supporting a memory model that guar-
antees a coherent view of memory updates, CPU-specific instructions
such as memory barriers are needed to access the hint safely. There
is currently no portable memory model for C++, so platform-specific
approaches must be adopted. Current versions of Java support an
appropriate memory model, but older versions do not. As with any
lock-free technique, the double-checked aspect of DOUBLE-CHECKED

LOCKING can be remarkably subtle and error prone. Developers need
to be keenly aware of its subtleties [MeAl04a] [MeAl04b]. If access to
this level of mechanism is not possible, or is otherwise impractical,
an alternative design should be considered, in particular one that
avoids the need for any locking.

388 Synchronization

Strategized Locking **

When realizing a REQUESTOR (242), CLIENT REQUEST HANDLER (246),
SHARED REPOSITORY (202), PAGE CONTROLLER (337), FRONT CONTROLLER (339),
APPLICATION CONTROLLER (341), COMMAND PROCESSOR (343), THREAD-SAFE

INTERFACE (384), or DOUBLE-CHECKED LOCKING (386) . . .

. . . a key issue in multi-threaded programming is the selection of the
appropriate locking strategy for a particular environment.

���
Components that are shared across threads in multi-threaded
environments must protect their critical sections from con-
current access. However, different software configurations may
require different locking strategies, such as mutexes, readers–
writer locks, or semaphores.

Hard-coding the locking strategy into the components and adapting it
to specific environments is a straightforward solution to this problem,
but infeasible for most applications. Components would depend on
their environment, and whenever that environment changes and sug-
gests a different locking strategy, all components must be updated,
with corresponding maintenance overhead. Providing different com-
ponent versions for each environment is also infeasible—it causes
similar maintenance overhead. Ideally, it should be possible to
customize a component’s locking strategy without making its imple-
mentation dependent on a specific environment.

Therefore:

Define locks in terms of ‘pluggable’ types, with each type objecti-
fying a particular synchronization strategy. Provide all types with
a common interface, so that a component can use all lock types
uniformly without being dependent on their implementation.

begin ## Enter the critical section.
Acquire the lock.
lock.acquire ();
Execute the critical section.
do_something ();

end ## Leave the critical section.

Release the lock.
lock.release ();

acquire

release

Lock

configure

service

Component

Configure component with lock

Call method

1

2
3

4

Strategized Locking ** 389

Configure the component with an instance of the appropriate lock
type to use at its creation or declaration time, for example by passing
a lock object to its constructor or parameterizing the component’s
class with a particular lock type. Use this lock instance to protect all
critical sections within the component.

���
A STRATEGIZED LOCKING design offers several benefits. Rather than a sep-
arate implementation for each concurrency model, there is only one
core implementation. Enhancements and bug fixes for a component
therefore do not have to be duplicated. Configuring and customizing
a component for specific concurrency models is simple and non-
intrusive for the component, because the synchronization aspects of
components are strategized. Conversely, STRATEGIZED LOCKING exposes
a parameterization decision to the component user, which may be
considered intrusive for common cases. Nevertheless, such an open
and orthogonal approach allows the component to be used beyond
its original context.

To make locks ‘pluggable,’ define a lock acquisition and release
STRATEGY (455) interface that is implemented by all concrete lock
types. Use the same lock type to configure related components within
the same application. Where a variation in lock implementation is
with respect to the platform rather than the locking policy, make con-
crete lock types WRAPPER FACADES (459) that encapsulate the details of
a particular platform-specific locking mechanism. To optimize compo-
nents for single-threaded environments where no locking is needed,
provide a null lock type, which is a NULL OBJECT (457) whose lock
acquisition and release methods are empty ‘no-ops.’

SCOPED LOCKING (390) helps to simplify and automate safe acquisition
and release of the lock within the component’s implementation.

390 Synchronization

Scoped Locking **

When providing locks for a shared component in a concurrent pro-
gram, either by hard-coding a particular lock type into the component
or by implementing STRATEGIZED LOCKING (388) . . .

. . . a key issue in multi-threaded programming is to ensure that locks
are acquired and released automatically when entering and leaving
critical sections.

���
A critical section of code that should run sequentially is often
protected by a lock, which is acquired and released whenever
control enters and leaves the critical section. If programmers
must acquire and release this lock explicitly, however, it can be
hard to ensure that all paths through the code release the lock.

Control can leave a scope early due to an uncaught exception, or an
explicit ‘exit statement’ such as return, break, or goto. The lock’s
release code may therefore be missed as a result of programmer
oversight. The more complex and verbose code becomes, the more
likely such oversights will occur. Code that tries to achieve exception-
safety through the explicit use of statements like try, catch, and
re-throw is error prone, losing both clarity and the intended safety.

Therefore:

Scope the critical section—if this has not already been done—
and acquire the lock automatically when control enters the
scope. Similarly, automate the release of the lock when control
leaves the scope via any exit path.

Execute the critical section.

end ## Leave the critical section.
Release the lock automatically.

do_something ();

Acquire the lock automatically.
begin ## Enter the critical section.

acquire

release

Lock

Entering a critical section becomes thread-safe, and leaving the criti-
cal section safely releases all acquired locks.

���

Scoped Locking ** 391

SCOPED LOCKING increases the robustness of concurrent software by
eliminating common programming errors related to synchronization
and multi-threading. In addition, locks are acquired and released
automatically when control enters and leaves critical sections, which
are defined by programming language method and block scopes.

The implementation of SCOPED LOCKING depends on the language used
to program concurrent software. For example, Java provides a lan-
guage feature, the synchronized block, that instructs Java compilers
to generate a corresponding block of bytecode instructions in which a
monitorenter and a monitorexit bracket the block. To ensure that
the lock is always released, the compiler also generates an exception
handler to catch all exceptions thrown in the synchronized block
[Eng99]. If the locking scope covers the whole method, the method
itself can be marked as synchronized. However, because marking
the method is slightly simpler to write than a synchronized block,
it is tempting to fall back on this briefer approach. Unfortunately, in
many cases this means that the lock scope becomes larger than the
critical section, leading to a loss of concurrency.

C++, by contrast, does not provide direct language support for SCOPED

LOCKING, but it can be implemented as a C++ idiom via an EXECUTE-
AROUND OBJECT (451). Use this idiom to create a guard class whose
constructor acquires a lock and whose destructor releases it. A guard
object is thus declared as a local variable within the critical section’s
scope and before its first statement. When control enters the critical
section, the guard’s constructor is called and acquires the lock.
When control leaves the critical section via any exit path, the guard’s
destructor is called automatically, due to C++ semantics, to release
the lock. Designing the guard object as a WRAPPER FACADE (459) helps
to encapsulate the details of a particular platform-specific locking
mechanism behind a uniform interface.

392 Synchronization

Thread-Specific Storage

When working with code developed without threads or unanticipated
integration in mind, or when designing a WRAPPER FACADE (459) that
encapsulates an error-handling mechanism for concurrent C/C++
legacy systems running in a UNIX environment . . .

. . . the use of state is often considered global within an application
but, within a concurrent realization, its representation needs to be
expressed as physically local to each thread.

���
Access to an object that is tied to its environment makes it
appear logically global. However, if the environment needs to
appear specific to each thread, the object cannot simply be
physically global with a single copy of state.

Locking each access to the object, and looking up the appropri-
ate value based on the thread, can degrade system performance if
the object is used frequently. Ideally, access to the object should
be atomic without incurring any locking overhead. In addition,
retrofitting its implementation to run in multiple threads it is often
infeasible, as is the case for many legacy components written without
concern for multi-threading that rely on specific objects being global
in some way.

Therefore:

Introduce a common access point for the environmentally bound
object, but maintain its physical object instances in storage that
is local to each thread.

A client
in thread1

Global access point for
thread-specific object2

Local
storage for
thread1

Local
storage for
thread2

Local
storage for
thread3

Objectn storage slot

Object2 storage slot

Object1 storage slot

Thread-local
instances of object2

A client
in thread2

When accessing
the object from a thread,
retrieve the thread’s local
storage and use the unique
key to retrieve the object’s
thread-local copy

Thread-Specific Storage 393

Ensure that every thread-local copy of an object can be retrieved
from its corresponding thread-local storage via a globally unique
key. Using this key, forward all method calls on the object’s global
access point to the particular copy of the thread-specific object that is
maintained in the thread from which the access point is called. Thus
no locking is required to access a thread-local object copy. Let client
threads manipulate the thread-specific object only through its global
access point, to preserve the object’s logically global appearance.

���
A THREAD-SPECIFIC STORAGE design needs no locking to access thread-
specific data. In addition, THREAD-SPECIFIC STORAGE is easy for soft-
ware developers to use when dealing with legacy code that makes
global assumptions about its objects, or that does not provide suit-
able parameters for distributing context information. However, this
pattern is not without its liabilities, foremost of which is the encour-
agement such a facility may provide to developers to make ‘global’
objects that should be considered local and passed more explicitly as
parameters.

Implement the global access point for the thread-specific object as
a PROXY (290). At runtime, instantiate the global access point to the
thread-specific object in every thread, but none of its thread-local
instances. When a client thread calls a method on the access point,
let a FACTORY METHOD (529) use LAZY ACQUISITION (507) to check first if
a globally unique key exists that identifies the thread-specific object,
and to create one if not. Finally, forward the original call on the
access point to this thread-specific object and execute the request.
Note that no locks are needed to protect the object’s existence check,
its creation, and also its use from concurrent access. Although clients
invoke calls via a logically global access point, they actually operate
on object state that is not shared between threads.

Multiple thread-specific components can be maintained in an indexed
container whose index type is the key type, such as a map or an OBJECT

MANAGER (492), of which a separate instance is provided per thread.

394 Synchronization

Copied Value **

When expressing a value in an application via a DOMAIN OBJECT (208),
dispatching events to event handlers in a REACTOR (259) or PROACTOR

(262), or when specifying a NULL OBJECT (457) . . .

. . . we must ensure that representations of values do not intro-
duce thread-safety problems or efficiency bottlenecks if they must
be known in different threads in a concurrent program.

���
Value objects are commonly distributed and stored in fields.
If value objects are shared between threads, however, state
changes caused by one object to a value can have unexpected and
unwanted side effects for any other object sharing the same value
instance. In a multi-threaded environment shared state must be
synchronized between threads, but this introduces costly over-
head for frequent access.

Value objects form the principal type of representation and commu-
nication between many object types, such as entities and services.
Identity is not significant for a value object, but its state is. Alias-
ing of these objects can often cause surprises, particularly where
an object is used to represent the value of an attribute within an
object. Between threads, the aliasing becomes more deeply problem-
atic, with the possibility of race conditions for any state modification.
Synchronizing methods addresses the question of valid individual
modifications, but does nothing for the general problem of sharing,
nor for the performance cost of synchronization of changes.

Therefore:

Define a value object type whose instances are copyable. When
a value is used in communication with another thread, ensure
that the value is copied.

Client Service
Pass around a copied value

Use and copy
a value

get_data

copy

Copied
Value

get_data

1

3

copy

get_data

Original
Value

2

Copied Value ** 395

Each thread receives its own copy of a passed value, so value objects
are not shared between threads.

���
The absence of any sharing means that there is no reason to synchro-
nize. COPIED VALUES are disjoint across threads and incur no locking
overhead. Value objects can support state-changing operations, but
the effect of the state changes is localized.

C++’s language’s object model is essentially based on value objects,
and support for copying is provided easily and transparently to appli-
cations via copy constructors. Beyond ensuring appropriate copy
construction behavior and declaring the appropriate call signatures
for functions, therefore, developers do not need to make any extra
arrangements to communicate values as COPIED VALUES. However, if
the COPIED VALUES share representation, they are unsuitable if clients
modify their state.

In C#, fine-grained objects that require no special construction can
be expressed as struct objects, for which copying is an implicit oper-
ation. If a value requires complex construction, however, expressing
them as COPIED VALUES might become infeasible due to copying over-
head, and an alternative representation should be considered.

Java lacks an automatic mechanism for ensuring that objects are
copied when communicated through methods between threads. The
use of COPIED VALUES therefore requires more manual support, creating
copies explicitly on call, and is therefore error-prone.

396 Synchronization

Immutable Value **

When expressing a fine-grained value via a DOMAIN OBJECT (208) or
designing a CLIENT PROXY (240) . . .

. . . we want to communicate values between different threads of an
application efficiently and safely.

���
References to value objects are commonly distributed and stored
in fields. However, state changes to a value caused by one object
can have unexpected and unwanted side-effects for any other
object sharing the same value instance. Copying the value can
reduce the synchronization overhead, but can also incur object
creation overhead.

Copying can be used for modifiable value objects to minimize aliasing
problems. Without proper language support, however, this practice
is tedious and error-prone. It may also cause excessive creation
of small objects, especially where values are frequently queried or
passed between components. In principle, values are unchanging, so
the creation of multiple instances of a value just to communicate
it may be wasteful and incur excessive space and time overhead,
depending on the underlying object creation model.

In a multi-threaded environment the problems of sharing and state
change are multiplied. Synchronizing methods addresses the ques-
tion of valid individual modifications, but does nothing for the general
problem of sharing. Synchronization of change also incurs a perfor-
mance cost.

Therefore:

Define a value object type whose instances are immutable. The
internal state of a value object is set at construction and no
subsequent modifications are allowed.

Client Service
Distribute a reference
to the immutable value

Create and use
an immutable value

create

get_data

Immutable
Value

get_data

1

2

3

Immutable Value ** 397

In an immutable value only query methods and constructors are
provided: no modifier methods are defined. A change of value thus
becomes a change in the value object referenced.

���
The absence of any possible state changes means there is no reason
to synchronize. Not only does this make IMMUTABLE VALUES implicitly
thread safe—the absence of locking means that their use in threaded
environment is also efficient. Sharing of IMMUTABLE VALUES is also safe
and transparent in other circumstances, so there is no need to copy
an IMMUTABLE VALUE.

In Java, declaring the fields of an IMMUTABLE VALUE final ensures that
no change promise is honoured. This guarantee also implies that
either the class itself must be final, or that its subclasses must also
be IMMUTABLE VALUES. In C++ a fully const-qualified object can play a
similar role, distributed and shared by pointer. Restriction of further
inheritance, however, must be communicated through convention
rather than language mechanism.

If a value with different attributes is required, a new object is cre-
ated or found with the desired value: references are changed, rather
than attributes. There are complementary techniques for creating
IMMUTABLE VALUES. A direct construction from a set of input values
is supported by a complete and intuitive set of constructors, or by
a number of class-level FACTORY METHODS (529). A MUTABLE COMPANION

[Hen00b] helps in constructing IMMUTABLE VALUES as a result of an oper-
ation on another value object, such as calculating a value that is twice
as large as another given value. A RESOURCE POOL (503) helps providing
access to a set of pre-defined IMMUTABLE VALUES, and an OBJECT MANAGER

(492) supports the construction of singleton IMMUTABLE VALUES.

Value objects do not represent resources, so managing finalization
is not the issue that it might be with resource objects. AUTOMATED

GARBAGE COLLECTION (519) can thus be used to reclaim the resources
of IMMUTABLE VALUES that are no longer used. In contrast, sharing
IMMUTABLE VALUES in a non-garbage collected environment needs to
involve careful management: thread lifetimes must either be shorter
than the lifetimes of the IMMUTABLE VALUES they share, or they should
be referred to via COUNTING HANDLES (522).

17 Object Interaction

Kevlin and Frank at JAOO 2006, interacting about objects
 Mai Skou Nielsen

An application architecture’s task is not always just a simple mat-
ter of calling methods on objects in other components. In many
cases, an application defines a framework of some kind for use by
others, whether for simple extension or for plugging in. A frame-
work that encapsulates a model of interaction tends to have more
sophisticated inter-object choreography than a component that offers
simpler, more passive object types. This chapter presents a number
of patterns that support interaction between objects that reside in
different components of an application, framework, or product line.

400 Object Interaction

Applications that are built on top of a component framework can take
advantage of the framework’s execution, resource, and relationship
management features, in exchange for agreeing to abide by the terms
of the framework’s collaboration protocols. Collaboration between
objects in such applications often involves much more than just
calling synchronous methods and services on one another, passing
parameters along with the calls, and collecting the results by way of
immediate return. Although collaboration between component objects
often follows this simple model, even in sequential programming it
may not hold for an entire application.

The following issues arise when designing such interactions, some
general, others specific to the context of distribution:

• Decoupling. In frameworks, product lines, and generally in large,
long-lived systems, components are often loosely coupled to avoid
unnecessary dependencies on one other, to support their inde-
pendent evolution and reuse, as well as their composition within
higher-level services. The aspect of loose coupling also extends
to interactions between the components: explicit dependencies on
specific collaboration protocols and policies, as well as on the data
structures that are exchanged between the components, should
be minimized. Another need for decoupling arises if the behavior
offered by a component depends on the type of its caller. Solutions
to this problem based on conditional statements within the code of
components are possible, but to avoid structural complexity and to
support maintenance and evolution, however, such dependencies
should not be hard-coded.

• Coherent coordination. Components in a software system can act
independently of one another, which is true especially for dis-
tributed and concurrent software systems. However, there may be
a need to coordinate components in a coherent manner, for example
to avoid inconsistencies in their internal states, or to orchestrate
their execution according to specific higher-level collaboration or
integration scenarios.

• Communication overhead. Communication between component
objects across a distributed system can incur much higher latency
and jitter overheads than in stand-alone systems. For example,
the higher the current network load, the more time is needed

Object Interaction 401

to exchange messages between a client and a remote component
object. A key goal in designing efficient and scalable distributed
systems is therefore both to minimize and optimize network com-
munication.

As a consequence of the above challenges, application designers
must determine carefully how component objects collaborate with
one another, not only if they develop distributed or concurrent soft-
ware, but also when building frameworks or specifying product-line
architectures. Eight patterns in our pattern language for distributed
computing help to address these challenges, by enabling efficient yet
flexible and cohesive object interactions:

The OBSERVER pattern (405) [GoF95] helps to synchronize the
state of cooperating component objects by enabling one-way
propagation of changes. Observers of a component object are
notified by the object when its state changes.

The DOUBLE DISPATCH pattern (408) [Beck97] helps organize the
communication between component objects where the behavior
of the called object depends on the class of the calling object.

The MEDIATOR pattern (410) [GoF95] encapsulates the way in
which a set of component objects interact. Mediator promotes
loose coupling by keeping objects from referring to each other
explicitly, and helps to vary their interaction independently.

The COMMAND pattern (412) [GoF95] encapsulates a request as
a component object, thereby enabling the parameterization of
clients with different requests, and support for undo-able objects.

The MEMENTO (414) [GoF95] pattern captures and externalizes
the internal state of a component object without violating its
encapsulation.

The CONTEXT OBJECT pattern (416) [ACM01] [Kel04] [KSS05]
[Hen05] captures environmental services and information in
component object form that can be passed to services or plug-
in component objects that need to access their surrounding
execution context.

The DATA TRANSFER OBJECT pattern (418) [ACM01] [Fow03a]
reduces the number of update or query calls made to a remote
component object by packaging groups of attributes into a simple
object for passing or returning in single calls.

402 Object Interaction

The MESSAGE pattern (420) [HoWo03] encapsulates the informa-
tion that two application component objects can exchange into a
data structure that can be transmitted across a network.

The eight object interaction patterns in this chapter fall into two
groups: collaboration and data exchange.

The collaboration patterns, OBSERVER, DOUBLE DISPATCH, MEDIATOR,
and COMMAND, help in coordinating or orchestrating the interaction
between components and objects in an application. Each pattern
addresses a specific aspect of this context, as outlined in their
abstracts above. Consequently all four patterns are complementary
to one another rather than alternatives.

The integration of the collaboration patterns into our pattern language
is shown in the following diagram:

Visitor

Model-View
Controller

Interceptor

Shared Repository
Presentation

Abstraction-Control

Iterator
Half-Object

plus Protocol

Replicated
Component Group Mediator Component

Configurator

Observer

change
notification

Explicit
Interface

Data
Transfer Object

notification
interface

Double Dispatch

Database
Access LayerLayers

invoking behavior
that is dependent
on the caller type

state
transfer

Object Interaction 403

Microkernel

Model-View
Controller

Front Controller

Presentation
Abstraction-Control

Active Object Half-Object
plus Protocol

Replicated
Component Group Page Controller

Enumeration
Method

Mediator

command
execution
interface

Layers

Application
Controller

Presentation
Abstraction-Control

Whole-Part

orchestrating
component
collaboration

Observer

change
notification

Explicit
Interface

Command
Processor Composite

command
execution

macro
commands

Memento

undo/redo
support

Interpreter

script-configured
command

decoupling sender
and receiver
of a request

Command

The four data exchange patterns, MEMENTO, CONTEXT OBJECT, DATA

TRANSFER OBJECT, and MESSAGE, also address different aspects of object
interaction. They are therefore often applied in conjunction when
designing the interfaces of components. For example, clients can pass
a CONTEXT OBJECT to a component when invoking a method and receive
a DATA TRANSFER OBJECT in return, which encapsulates the results of
the invocation, or a MEMENTO when the result is a snapshot of the
component’s internal state. A MESSAGE can represent instances of the
three other patterns, as well as service requests and COMMANDS in a
serialized form, which enables their transmission across a network
in a specific on-the-wire protocol.

MEMENTO also covers flavors of CLIENT SESSION STATE, SERVER SESSION

STATE, and DATABASE SESSION state [Fow03a], which specify differ-
ent locations for storage of the state of a client session, which is
encapsulated in a separate object. CONTEXT OBJECT, which has been
described in a variety of sources, also address additional variations
of the pattern that we do not cover in this book [ACM01] [Kel04]
[KSS05] [Hen05].

404 Object Interaction

The four data exchange patterns connect to our pattern language as
illustrated in the diagram below.

Observer

Whole-Part

Observer

Combined
Method

Memento

Master-Slave

Explicit
Interface

Transform View

Introspective
Interface

Encapsulated
Implementation

Table Data
Gateway

Command Component
Configurator

Interceptor

Explicit
Interface

Introspective
Interface

Encapsulated
Implementation

Interpreter

Context Object

Model-View
Controller

Shared Repository

Presentation
Abstraction-Control Microkernel

Reflection Blackboard

Explicit
Interface

Introspective
Interface

Encapsulated
Implementation

Data Transfer
Object

Layers

Half-Object
plus Protocol

Replicated
Component Group

Requestor

Messaging

Broker Invoker

Client Request
Handler

Server Request
Handler

Publisher
Subscriber

Pipes and Filters

Canonical
Data Form

Return AddressCommand
Message

Document
Message

Event
Message

Request Reply

Correlation
Identifier

Message
Sequence

Message
Expiration

standard
message form

message
types

reply
handling

message
splitting

Lifecycle
Callback

Coordinator

Command
Processor

component
invocation

time-out
handling

state
encapsulation

invocation context
encapsulation

encapsulation of
invocation/result
parameters

encapsulation of
requests and data

Message

Observer ** 405

Observer **

In a LAYERS (185), MODEL-VIEW-CONTROLLER (188), PRESENTATION-
ABSTRACTION-CONTROL (191), SHARED REPOSITORY (202), ITERATOR (298),
HALF-OBJECT PLUS PROTOCOL (324), REPLICATED COMPONENT GROUP (326),
INTERCEPTOR (444), MEDIATOR (410), COMPONENT CONFIGURATOR (490), or
DATABASE ACCESS LAYER (538) arrangement . . .

. . . we must provide a means to keep the state of a set of cooperating
component objects consistent with each other.

���
Consumer objects sometimes depend on the state of, or data
maintained by, another provider object. If the state of the
provider object changes without notice, however, the state of
the dependent consumer objects can become inconsistent.

Common solutions to this problem are to hard-code connections
from the provider object to all its dependent consumer objects, or to
have the consumers poll the provider. These approaches are often
impractical, however, since a consumer may not be dependent on the
provider indefinitely, and new instances and types of consumers may
emerge over an application’s lifetime. Moreover, polling may either
consume excessive resources, or may not detect changes quickly
enough.

Therefore:

Define a change-propagation mechanism in which the provider—
known as the ‘subject’—notifies registered consumers—known
as the ‘observers’—whenever its state changes, so that the
notified observers can perform whatever actions they deem nec-
essary.

Observer

void notify ()
begin

// Notify all registered observes.
for all registered observers do

observer.update ();
rof

end

register with subject

change
state

start change
propagation

notify
observers

pull changed data
update

service
register

unregister

get_data

notify

set_data

update

service

1

2

3 4

5

Subject

406 Object Interaction

Observers must define a specific update interface that is notified by
the subject when its state changes. This interface is the primary cou-
pling between the subject and its observers. Observers can register
and unregister from the subject dynamically. When the subject noti-
fies its observes, it can either push the state to the observers along
with the state change notification, or the observers can selectively
pull the changed state from the subject at their discretional after
being notified.

���
In an OBSERVER arrangement, the dynamic registration of observers
with the change notification mechanism avoids hard-coding depen-
dencies between the subject and its observers: they can join and leave
at any time, and new types of observer that implement the update
interface can be integrated without changing the subject. The active
propagation of changes by the subject avoids polling and ensures
that observers can update their own state immediately in response to
state changes in the subject.

In a typical OBSERVER implementation, an EXPLICIT INTERFACE (281)
defines the update interface to be supported by observers. Concrete
observers implement this interface to define their specific update pol-
icy in response to notifications by the subject. The subject, in turn,
offers an interface for observers to register with and unregister from,
the change notification mechanism. Internally, the subject manages
its registered observers within a collection, such as a hashed set or a
linked list.

The OBSERVER change notification protocol can be implemented in
several ways. The simplest option is based on a generic pull model:
when the subject changes its state, it notifies all registered observers
that a state change has occurred. The notified observers can then
call back to the subject to retrieve more detailed information. This
protocol works well if all observers depend on all state that the
subject maintains. If different observers depend on different state
in the subject, however, the generic pull model causes unnecessary
updates, because the subject notifies all observers, not just those
who depend on the state that has changed.

Observer ** 407

If subject and observer execute in different address spaces, the ‘chat-
tiness’ of the generic pull model can consume network and processing
resources unnecessarily. In this case, a categorized pull model can
be used to allow observers to register with one or more different types
of state changes in the subject. These observers are only notified if
particular types of state change. The pull model therefore may still
be inappropriate for remote communication, due to the overhead of
having all the observers call back to the subject to obtain the state.

To minimize interactions between subject and observer, there are
two other options for implementing the change notification protocol,
both based on a push model rather than a pull model. In the generic
push model, the subject pushes a snapshot of its attribute state
to the observers along with each notification, using a DATA TRANSFER

OBJECT (418) to communicate the attributes. This model is useful if all
observers depend on the entire state being pushed, or when the cost
of communicating all the state is less than the cost of having each
observer call back for specific state.

A variant of the generic push model is the categorized push model,
which is based on some type of filtering [GoF95]. If a change in the
subject affects only a small portion of its entire state, this portion
is pushed only to those observers who are interested in it. If these
observers can also decide to not update themselves each time they
are notified, however, even the categorized push model produces
overhead, because many ‘expensive’ data pushes are unnecessary.

Choosing the best option for the change notification mechanisms
in a specific OBSERVER configuration is also influenced by coupling
issues. Pull models generally result in a looser coupling between the
subject and the observers than push models, and the generic pull
model decouples subject and observers better than the categorized
pull model.

408 Object Interaction

Double Dispatch **

When implementing a VISITOR (447) or when communicating between
class hierarchies . . .

. . . we must realize behavior that depends on the types of two objects.

���
A method’s behavior clearly depends on its argument’s values.
Sometimes, however, its behavior also depends on the type of an
argument. In most object models, this ‘multi-method dispatch’
is not supported, and only single-dispatch is available.

Polymorphism is normally expressed in terms of single dispatch: the
target of the method is the receiver of the call, and the selected method
implementation depends on its class. Sometimes, however, behavior
depends on both the type of the caller and the type of the called object,
so the caller passes itself as argument. One solution to express such a
configuration uses explicit selection, such as an if. . .else or switch
statement, based on the argument’s runtime type in each concrete
class of the receiver’s class hierarchy. This approach, however, is
brittle and verbose. Another approach uses a map whose key is made
up of a pairing of the receiver and the argument’s runtime type, and
whose mapped value is a method reference of some kind, such as a
member function pointer in C++, or a delegate in C#. This approach
can suffer from undue brittleness and runtime overhead.

Therefore:

Pass the caller object to the receiver object as an extra argument.
Within the receiver, call back the caller object to run caller-class
dependent logic, passing the receiver as an additional argument,
so that the caller can behave appropriately.

service

callback

accept

Caller object Receiver objectservice
callback

void accept (Caller caller)

// Callback caller object.
caller.callback ();

end

begin

void callback (Receiver receiver)

// Use the receiver object.
receiver.do_something ();

end

begin

do_something

method

do_something

1 2

3
4

Caller
object

Receiver
object

invoke
service

start
double
dispatch

callback
caller
object

invoke
receiver
object

Double Dispatch ** 409

Behavior is now split across the caller and receiver objects. The
caller object supports an interface that is based on the possible
types of the receiver object: a set of methods—either overloaded or
specifically named—each corresponding to a concrete receiver type.
Each implementation of the caller object’s interface defines the type-
specific behavior in each receiver-matched method. The receiver is
responsible for calling back on to the caller with itself as argument,
selecting the method that corresponds to its type.

���
DOUBLE DISPATCH avoids executing caller-class dependent behavior via
large if. . .else or switch statements in the receiver object. Such
solutions are hard to maintain and extend, even though they appear
to centralize all programming logic in one place [Beck97]. Instead,
both the caller and receiver objects are involved in the computa-
tion—hence the name DOUBLE DISPATCH. This callback arrangement
results in simpler and more cohesive code.

One liability with DOUBLE DISPATCH, however, is that it incurs addi-
tional communication overhead between remote objects. Moreover,
the maintainability of DOUBLE DISPATCH relies on the stability of the
receiver type’s hierarchy. If new concrete classes are added to the
receiver hierarchy, the argument’s interface must be updated, as
must all implementations of the argument interface. Depending on
how widely this interface is distributed, such changes range from
being tedious to impossible—organizational boundaries, widespread
release in a published API, binary stability, and so on, all restrict the
evolvability of an interface.

410 Object Interaction

Mediator *

When implementing PRESENTATION-ABSTRACTION-CONTROL (191), a
MICROKERNEL (194), or a WHOLE-PART (317) . . .

. . . we must reduce the coupling between multiple cooperating objects.

���
Sometimes the relationships between a set of objects is complex:
each object in the set cooperates with several other objects.
Allowing each object to maintain all these cooperation relation-
ships by itself, however, would overly couple the objects.

The resulting interdependencies would be hard to understand,
test, and maintain in subsequent modifications of the collaborat-
ing classes, since introducing participants to the collaborating set
of objects is subtle and error-prone. If the essence of the collabora-
tion—but not the specific types involved—is needed elsewhere, such
tight coupling can preclude effective reuse.

Therefore:

Decouple the objects via a separate mediator object that encap-
sulates the collective cooperative behavior of all objects in the
set. Collaboration is achieved indirectly via mediation, rather
than directly through point-to-point communication.

service

Mediator

Objectsvoid service ()
begin

// Mediate object collaboration.

result_1 = object_1.method_1 ();

end

method_1

method_3

result_2 = object_2.method_2 (result_1);

return object_3.method_3 (result_3);
method_2

If an object wants to cooperate with another object, it does so by send-
ing its request, message, or data to the mediator, which then routes
the information anonymously to the appropriate receiver. Results can
be returned accordingly.

���

Mediator * 411

A mediator preserves the self-containment and independence of
multiple cooperating objects, which need not maintain explicit rela-
tionships with their peers. Instead, they delegate the routing of
requests, messages, and data that they exchange with other objects
to the mediator. The mediator is the orchestrator that connects the
cooperating objects, maintains oversight of them, and controls their
collaborations.

Although a mediator preserves the cohesiveness, encapsulation, and
simplicity of individual collaborating objects, the centralization of con-
trol may make the mediator itself a potential maintenance problem.
Similarly, a mediator can also be a potential performance bottleneck
and a single point of failure in a distributed system.

There are two general approaches for implementing a mediator: either
it can hard-code the relationships between the objects whose coop-
eration it coordinates, or it can act as a subject in an OBSERVER (405)
design that provides requests, messages, and data to consuming
objects. The latter option follows an implicit invocation style of execu-
tion that is very loosely coupled. This approach, however, makes the
actual control model harder to see, and can require more development
effort than a hard-coded design.

412 Object Interaction

Command **

When implementing LAYERS (185), MODEL-VIEW-CONTROLLER (188),
PRESENTATION-ABSTRACTION-CONTROL (191), ACTIVE OBJECT (365), ENUME-

RATION METHOD (300), HALF-OBJECT pLUS PROTOCOL (324), REPLICATED

COMPONENT GROUP (326), PAGE CONTROLLER (337), FRONT CONTROLLER (339),
or APPLICATION CONTROLLER (341) . . .

. . . we must invoke actions on a component independently of selecting
the actions to invoke.

���
Accessing an object typically involves calling one of its methods.
Sometimes, however, it is useful to decouple the sender of a
request from its receiver. It may also be useful to decouple the
selection of a request and receiver from the point of execution.

While explicit coupling is beneficial for many client/service relation-
ships and deployments, it can introduce too much coupling if the
request chosen by the client is more important than the identity of
the receiver. Similarly, it is hard to invoke a method asynchronously
in programming languages that use the conventional synchronous
call/return model of method invocation. Moreover, housekeeping
functionality, such as logging and undo, cannot be supported trans-
parently. Ideally, clients ought be able to issue a request and the
‘right’ things should just happen.

Therefore:

Encapsulate requests to the receiving object in command objects,
and provide these objects with a common interface to execute
the requests they represent.

Client

Componentcreate

serviceexecute

void execute ()
begin

// Call a service on a component.
component.service ();

endCommand

1

2

Command ** 413

Clients that want to issue a particular request create the correspond-
ing command object. When invoked, the command object initiates
and controls the execution of the represented request with respect to
any arguments it receives when executed.

���
COMMAND decouples the requestor of behavior from the recipient, as
well as the selection of behavior from the point of execution. This
loose coupling ensures that requestors do not depend on a specific
receiver interface. Modifications to the receiver’s interface therefore
do not ripple through to its clients. In addition, the reification of
requests into command objects allows the handling of requests as
first-class entities within an application, which in turn enables the
implementation of extra request-handling features such as undo and
logging.

To realize a COMMAND structure, first specify an EXPLICIT INTERFACE (281)
for uniform command execution. The interface will define one or more
methods for execution, receiving arguments as necessary. Concrete
commands implement this interface to reify particular requests. Each
concrete command is initialized with whatever state is needed to
support its execution, such as a receiver object or method arguments
for later use. An INTERPRETER (442) is a special form of COMMAND in which
a script from a simple language is transformed into an executable
runtime structure.

Command objects can offer an undo mechanism by retaining the
state necessary to roll back the behavior they execute. If the state
is heavyweight or hard to restore, however, a MEMENTO (414) that
snapshots the receiver’s state before executing the command may
provide a simpler, more lightweight option.

A COMPOSITE (319) structure supports the construction and execu-
tion of macro commands, aggregating multiple command objects
uniformly behind a single interface, and executing or rolling them
back in a particular order. A separate COMMAND PROCESSOR (343) that
executes command objects on behalf of their sender can provide
additional request-handling support, such as for multiple undo/redo,
scheduling, and logging.

414 Object Interaction

Memento **

When implementing an EXPLICIT INTERFACE (281), INTROSPECTIVE INTERFACE

(286), or ENCAPSULATED IMPLEMENTATION (313), or when realizing an
OBSERVER (405), COMMAND (412), or COMPONENT CONFIGURATOR (490)
arrangement . . .

. . . we need to exchange state between participants without breaking
encapsulation.

���
It is often necessary to record the internal state of an object.
Allowing other objects to access an object’s state directly breaks
encapsulation and introduces unnecessary complexity in depen-
dent objects.

Storing and retrieving object state is common in distributed systems.
For example, a persistence service may need to extract an object’s
state when it is passivated and hold this state so it is available the
next time the object is run. If the internal state of an object is exposed
for this purpose, however, it may lose control over which other objects
access—and perhaps modify—its state. This lack of encapsulation
can bind dependent objects to a particular state representation,
which makes it hard to modify the software.

Therefore:

Snapshot and encapsulate the relevant state of the originating
object within a separate memento object, and pass this memento
to the object’s clients instead of letting them access the object’s
internal state directly.

Client Originator

snapshot_state

set_originator_state

Memento

get_originator_state

1

request memento

create memento

return
memento

access
memento

4

3

2

Memento ** 415

The originating object can recover and reactivate its previous state
from the memento if and when it is passed back by a client or a
state-recovery service.

���
A MEMENTO preserves the encapsulation of the originating object:
dependent objects cannot access its state directly, but the originating
object can. MEMENTO allows these dependent objects to receive the
latest state, in wrapped form, from the publishing object on request,
without being dependent on the representation of the state.

The internal representation stored in the MEMENTO is free to evolve over
different versions of the software without any need for source-level
changes in the dependent objects. In fact, binary compatibility may
also be preserved across versions, depending on the programming
language and class design techniques used.

Most MEMENTOS offer two interfaces. For the originating object they
provide a wide interface, with setter and getter methods to initialize
the MEMENTO and to access the state it maintains. Clients of the
originating object, however, often see only a narrow interface that
allows them to access the MEMENTO’S state, but not to modify its
state. Some languages, such as Java and C#, support packaging
structures that allow different visibility for class methods inside a
package than outside it, which makes it easy to segregate the two
interfaces. C++ supports these differences in visibility via friend or
forward-declared classes, and source files as packages. Alternatively,
separation of interfaces via inheritance can help to differentiate the
wide and narrow interfaces.

416 Object Interaction

Context Object **

When implementing an EXPLICIT INTERFACE (281), INTROSPECTIVE INTERFACE

(286), ENCAPSULATED IMPLEMENTATION (313), INTERCEPTOR (444), INTERPRETER

(442), LIFECYCLE CALLBACK (499), or TASK COORDINATOR (501) . . .

. . . we need to share information about the system or invocation
context of a component without introducing global coupling.

���
Loose coupling is a key design goal in distributed systems. In a
loosely coupled system, however, there may be a need to share
common information that relates to the program’s execution
context, such as its externally configured values, client session
state, and logging, across its disparate parts or layers.

Although the scope of a program’s execution context is generally more
global than the scope of its parts, global variables and SINGLETONS

[GoF95] provide uncontrolled access from all parts of a program
and introduce unnecessary coupling. Globals and SINGLETONS also do
not provide late binding easily: the implementation and instance on
which they are based is often hard-coded at design-time rather than
configurable at runtime. Conversely, propagating many items of fine-
grained information as individual variables, and services as individual
operations, can yield unmanageable and unstable argument lists.

Therefore:

Represent the information and services in an object that encap-
sulates the required context. Provide this object to the opera-
tions, components, and layers that need the context.

Client Component
Pass the context object
to the invoked component

Create a
context object get_context

Context
Object

service2

1

Access and use
the information
and services
encapsulated
in the context object3

create

Context Object ** 417

Clients that issue a request on a component create the context object,
which can be passed explicitly or implicitly along with other parame-
ters of the invocation. The receiving component uses the information
and services in the context object to guide its own execution.

���
With a CONTEXT OBJECT, basic runtime substitutability can be sup-
ported explicitly via the standard argument passing mechanisms, or
implicitly via THREAD-SPECIFIC STORAGE. It is possible to modify the exe-
cution context of a component without necessarily having to modify
the configuration or code of other parts of a system. It is also possible
to run with multiple, different contexts within the same program,
perhaps in different threads. Over time, small changes to the infor-
mation and services in the context are absorbed, since the unit of
stability is the CONTEXT OBJECT, not its individual items of information
and service operations.

If the dependency of a piece of code is simply on a passable value
rather than a broader notion of execution context, the value itself
should be passed rather than any kind of CONTEXT OBJECT, partitioned
or not. In such cases a CONTEXT OBJECT would draw in more context,
significance, and dependencies than were justified by the use of an
isolated value. Although execution context represents a cross-cutting
feature, this does not necessitate it being global, either as a global
variable or as a universal type.

A CONTEXT OBJECT introduces an inversion of dependencies [Mar04]
and responsibilities. It may also introduce an inversion of control
flow, but this is not necessarily always the case: an informational
context may be more passive, but a behavioral service context will
generally result in a more obvious inversion of control flow.

418 Object Interaction

Data Transfer Object **

When realizing a MODEL-VIEW-CONTROLLER (188), PRESENTATION-
ABSTRACTION-CONTROL (191), MICROKERNEL (194), REFLECTION (197),
SHARED REPOSITORY (202), BLACKBOARD (205), EXPLICIT INTERFACE (281),
INTROSPECTIVE INTERFACE (286), COMBINED METHOD (296), WHOLE-PART (317),
MASTER-SLAVE (321), TRANSFORM VIEW (347), OBSERVER (405), or TABLE DATA

GATEWAY (544) configuration . . .

. . . we must make calls to query and update data in remote component
objects.

���
Many stateful component objects need an interface that supports
querying and optionally updating of their attributes. Remote
communication can incur significant overhead on each call, how-
ever, so individual methods for getting and setting each attribute
are inefficient.

Accessing individual attributes of remote objects via correspondingly
fine-grained calls is expensive. In addition, such an interface intro-
duces coherence problems, because if a client needs to query more
than a single attribute at a time, another client may change the
state between the individual calls, even though each individual query
was synchronized. Similarly, locking the remote object for the dura-
tion of a client’s attribute queries is inefficient. A COMBINED METHOD

(296) would make sense if only a single method were involved, but
if the same data items appear in the argument lists of multiple
methods, duplication and interface instability may occur if argument
lists change. Moreover, not all languages support the concept of out
parameters to support queries simply and directly.

Therefore:

Bundle all data items that might be needed into a single data
transfer object used for querying or updating attributes together.

Client Component
object

method

Data Transfer Object

get_results

invoke method

create data
transfer object

return results

4

1
3

2
access data
transfer object

Data Transfer Object ** 419

A DATA TRANSFER OBJECT has little behavior of its own, containing only
the data corresponding to the attributes, queries to access them, and
a way of initializing and optionally setting the data values.

���
The resulting DATA TRANSFER OBJECT is more network-friendly, since
only a single remote call is needed to query or update a set of
attributes. If the set of attributes changes, moreover, the call inter-
face of the remote object remains stable, even though the data
transfer object changes. DATA TRANSFER OBJECTS are also useful in non-
distributed systems, where they help to avoid many fine-grained data
access calls to component objects, and also dependencies of clients
on concrete data representations used within component objects.

Even if not all the attributes are needed from a query, the cost
of a single call to copy the transfer object across the network is
still often lower than the repeated cost of querying each attribute
individually. If only a few attributes need to be updated, the caller
must either resupply the existing values—which could require an
additional call to query them and the additional risk of overwriting
another update—or indicate that some attributes are not updated.
This can either be expressed in the data transfer object or in the
method signature.

A data transfer object needs some way of indicating that a value has
not been set, which for certain data types can be indicated using
nulls. For primitive types, however, additional flags may be needed.
Alternatively, a simple set of flags indicating which values have been
set can be passed along with the data transfer object, though this
solution can be brittle and awkward to use. A more loosely typed
approach can use a data transfer object made up of name–value
pairs.

420 Object Interaction

Message **

When implementing a LAYERS (185) or PIPES AND FILTERS (200) archi-
tecture, or when realizing a MESSAGING (221), BROKER (237), REQUESTOR

(242), INVOKER (244), CLIENT REQUEST HANDLER (246), SERVER REQUEST

HANDLER (249), PUBLISHER-SUBSCRIBER (234), HALF-OBJECT pLUS PROTOCOL

(324), or REPLICATED COMPONENT GROUP (326) configuration . . .

. . . we must provide a means of exchanging pieces of information
across the network without introducing dependencies on concrete
component types and their interfaces.

���
Distributed components collaborate like collocated components,
invoking services on one another and exchanging data. However,
on-the-wire protocols such as HTTP only support byte streams,
the most basic form of data transmission, but not the notions of
service invocations and data types.

We however need a means to transmit service requests, invocation
parameters, service results, and other information such as errors
across the network in a typed and structured manner. Otherwise,
sending and receiving components have no clue about the semantics
of the byte streams they receive.

Therefore:

Encapsulate method requests and data structures to be sent
across the network into messages: byte streams that include a
header specifying the type of information being transmitted, its
origin, destination, size, and other structural information, and a
payload that contains the actual information.

Client

header

request (location, componentID,

Message

operation name, arguments);

payload
create message

2

1

Componenttransmit message

request (location, componentID,
operation name, arguments);

extract information
header

payload

Network

3

Message ** 421

On the sender’s side, method requests on remote components, or
data exchanged with them, are marshaled into a message that is sent
across the network. When arriving at the receiver’s side, the message
is unmarshaled into its original form.

���
The key benefit of a MESSAGE is that it allows the structure of the
information it carries to be preserved in a ‘flat’ format, so that the
structure can be recreated by the message receiver. In addition,
MESSAGES support loose coupling: senders and can be independent
of concrete receiver interfaces as long as both parties agree on a
common message format.

Although all messages should follow a common CANONICAL DATA MODEL

[HoWo03], a whole range of different message types can be dis-
tinguished. A COMMAND MESSAGE [HoWo03] represents a request for
invoking a specific method or procedure on the message receiver, a
DOCUMENT MESSAGE [HoWo03] allows a set of data to be passed to it,
and an EVENT MESSAGE [HoWo03] supports notification of the message
receiver about a change in the state of the message sender.

If the receiver component is expected to respond to a message
it receives, the message header should contain a RETURN ADDRESS

[HoWo03]. The specific response is also encapsulated in an appro-
priate message, which leads to a REQUEST-REPLY [HoWo03] scenario.
A CORRELATION IDENTIFIER [HoWo03] in the message header—which is
basically an ASYNCHRONOUS COMPLETION TOKEN (268)—indicates to the
receiver of the reply message to which concrete request message the
reply corresponds.

If the size of the information to transmit exceeds the maximum
message length, break it into multiple smaller messages that are
transmitted to the receiver as a MESSAGE SEQUENCE [HoWo03]. If the
data encapsulated in a message is only useful or valid for a limited
time, specify a corresponding MESSAGE EXPIRATION [HoWo03] in the
message header.

A separate COMMAND PROCESSOR (343) helps to transform a specific
message (sequence) into a concrete method invocation on the message
receiver, and can provide additional request-handling support, such
as for multiple undo/redo, scheduling, and logging.

18 Adaptation and
Extension

A set of pluggable adapters
 Frank Buschmann

The only constant in life is change! This wisdom from the 17th cen-
tury French author François de la Rochefoucauld seems particularly
true of software. Software is a ‘living thing.’ The ability of applica-
tions and components to adapt to specific environments, extend to
meet customer-specific requirements, and evolve over their lifetime,
can be a deciding factor for their long-term use and success. This
chapter presents thirteen patterns that support developers in building
software that is open to adaptation, extension, and evolution.

424 Adaptation and Extension

No single profile covers either the types of modern applications devel-
oped or the range of customers for which they are developed. Some
applications are specifically developed for a single customer, whereas
others are developed as products with a mass market in mind.
Although some applications are targeted at a single customer, repeat
business for the customer—or for similar applications sought by
other customers—can motivate and justify the definition of a common
base for the applications to built upon. Even if multiple customers
can benefit from a particular software system or infrastructure, each
often has unique and specific requirements not yet supported by
default. For example:

• Out-of-band extensions. Customers sometimes request additional
algorithms or services that should be interwoven into the con-
trol flow of the system and its components. Examples include
the system’s integration with existing applications, or with spe-
cific monitoring or security services. These out-of-band extensions,
however, are often highly customer-specific.

• Specialized algorithms. Customers often demand specialized or
tailored algorithms for key system services, even if all customers
require the same set of services. For example, business information
systems must consider relevant tax and accounting regulations,
which often change over time. These regulations also vary depend-
ing on country or region, as well as on the legal status of companies
using the system.

• Service extensions and restrictions. Customers often ask for par-
ticular extensions or restrictions to specific services of a system.
For example, some customers could require specific pre-processing
before executing the services of a particular component, or specific
post-processing after their execution. Other customers may require
restriction of the full services of a component to the strict subset
that they need. By contrast, other customers may wish to extend
some components with additional services.

Adaptation and Extension 425

• Multi-platform support. Different customers may want to run a
system in different environments. The system’s components should
therefore be portable to different operating systems, libraries, net-
works, and hardware platforms. Components of distributed systems
must also be prepared to run in a heterogeneous computing envi-
ronment: the component may be deployed on multiple platforms
across multiple network nodes.

It is hard to design a software system that supports customer-specific
configuration, adaptation, and extension without also destroying its
baseline architecture and fundamental design. To complicate mat-
ters, most requests for such changes are made when the system is
in production, rather than during development or installation. An
iterative, feedback-based development lifecycle can help to clarify
requirements sooner rather than later, but this will not shift all such
changes into the main development lifecycle: the greatest source of
feedback comes once a system is used in production.

Instead of considering changing a normal part of the continued
development process following initial installation, it is unfortunately
still common practice to handle individual customer requirements
and change requests via ad hoc system modifications. Such tactics
are rarely sustainable in the long term. Instead, with every such
adaptation and extension, developers often dilute and pollute the
original architectural vision with localized fixes and workarounds
that make the code base increasingly brittle, subtle, and costly.
Since developers often do not have the opportunity to see adaptive
changes in the context of the whole system, it becomes increasingly
hard to focus on the quality of implementation and stability of the
architecture. Instead, code that is general becomes mixed with case-
or customer-specific code, and vice-versa. Over time, these ad hoc
modifications wreck the system’s architectural integrity, and can
ultimately lead to product that cannot cope with new requirements
or environments [BeLe76] [Par94].

To avoid a creeping death by a thousand cuts, a software system
must be designed thoughtfully and consciously for its own config-
uration, adaptation, and evolution. Without appropriate constraints

426 Adaptation and Extension

and sensibility, however, we can end up overdosing on ‘speculative
generality’ and introducing unnecessary accidental complexity and
bloat into our systems [FBBOR99]:

Brian Foote suggested this name for a smell to which we are very
sensitive. You get it when people say, ‘Oh, I think we need the
ability to do this kind of thing someday’ and thus want all sorts
of hooks and special cases to handle things that aren’t required.
The result is often harder to understand and maintain. If all this
machinery were being used, it would be worth it. But if it isn’t, it
isn’t. The machinery just gets in the way, so get rid of it.

In striving for the right balance between stability and adaptability, it is
important to take into account the nature of the system that is being
deployed and changed. In a closed architecture with limited deploy-
ment, for example, the criticality of decisions concerning change is far
lower than the consequences of change in more widely deployed, open
architectures. A wide range of techniques can be applied to converge
on designs that are both sufficiently stable and suitably adaptable
for their intended context. For example, analytical techniques such
as Open Implementation Analysis and Design [KLLM95], Commonal-
ity/Variability Analysis [Cope98], or Feature Modeling [CzEi02] can
help to identify and separate stable from changeable aspects. General
design techniques, such as aggressive dependency management, can
also help to isolate change within a code base. Development process
approaches, such as iterative and incremental lifecycles, can help to
replace purely speculative design with empirical feedback based on
concrete user experience.

In all cases, the desired result is a set of stable design centers for
the system under development, each being open to extension and
adaptation where needed, but closed with respect to fundamental
structural and behavioral aspects that should remain unchanged,
thus following the open–closed principle [Mey97].

Our pattern language for distributed computing includes thirteen
patterns that support the configuration, adaptation, extension, and
evolution of software system components. Each pattern addresses

Adaptation and Extension 427

a specific challenge from those outlined at the beginning of this
section. In addition, their scope is not limited to distributed systems:
all patterns apply to any software that has adaptation and extension
requirements to fulfill, or that must be maintained and evolved over
a long period of time:

The BRIDGE pattern (436) [GoF95] decouples an abstraction from
its implementations so that the two can vary independently. It
partitions an object into a handle, which represents the abstrac-
tion, and a body, which contains the implementation.

The OBJECT ADAPTER pattern (438) [GoF95] converts the interface
of a class into another interface that clients expect. Adapta-
tion lets classes work together that could not otherwise because
of incompatible interfaces. The use of an object relationship
to express wrapping ensures that the adaptation is encapsu-
lated.

The CHAIN OF RESPONSIBILITY pattern (440) [GoF95] avoids coupling
the sender of a request to its receiver by giving more than one
object a chance to handle the request. The receiving objects are
chained together and the request is passed along the chain until
an object handles it.

The INTERPRETER pattern (442) [GoF95] defines an interpreter for
a simple language by modeling the grammar in terms of objects,
and making this grammar representation directly executable,
parameterized by a context object that carries invocation state.

The INTERCEPTOR pattern (444) [POSA2] allows event-related pro-
cessing to be plugged into a framework transparently and trig-
gered automatically when specific events occur.

The VISITOR pattern (447) [GoF95] allows an operation to be
performed on the elements of an object structure in which the
objects can be of different types. The operation can be specialized
for each type visited without actually needing to modify the types
visited.

The DECORATOR pattern (449) [GoF95] supports dynamic attach-
ment of additional behaviors to an object. Decorators provide a
flexible alternative to subclassing for extending functionality.

428 Adaptation and Extension

The EXECUTE-AROUND OBJECT idiom for C++ (451) [Hen01a] defines
a helper object that executes actions before and after a sequence
of statements in its constructor(s) and destructor to ensure
correctness and exception-safety, as well as reduce code dupli-
cation.

The TEMPLATE METHOD pattern (453) [GoF95] defines a skeleton
of an algorithm for an operation, deferring some steps to sub-
classes. This pattern allows subclasses to redefine specific steps
of an algorithm without changing the algorithm’s structure.

The STRATEGY pattern (455) [GoF95] captures a family of opera-
tions that vary together. Each variant is encapsulated within an
object that shares a common interface with other variations. The
use of these pluggable behavior objects is independent of the
implementation variant.

The NULL OBJECT pattern (457) [And96] [Woolf97] [Hen02a] encap-
sulates the absence of an object by providing a substitutable
alternative that offers suitable default ‘do-nothing’ behavior.

The WRAPPER FACADE pattern (459) [POSA2] encapsulates the
functions and data provided by existing non-object-oriented
APIs within more concise, robust, portable, and cohesive object-
oriented class interfaces.

The DECLARATIVE COMPONENT CONFIGURATION pattern (461) [VSW02]
allows components to indicate how they want to be integrated
into the container’s component execution environment and into
the container itself, so that the container can perform this inte-
gration automatically.

These patterns alone do not cover all aspects of system configura-
tion, adaptation, and evolution. Their scope is largely limited to the
internals of services. Protecting clients of a service from changes
within its implementation is the subject of several patterns that we
present in Chapter 12, Interface Partitioning. The act of creating a
concrete service configuration and the runtime management of a par-
ticular system configuration is handled by several patterns that are
described in Chapter 20, Resource Management.

While a common theme of all patterns in this chapter is decoupling
a specific aspect of a component from its core implementation, they
differ in the specific aspects that they decouple. Naturally, some
patterns address related aspects and form alternatives to one another.

Adaptation and Extension 429

BRIDGE and OBJECT ADAPTER generally help with decoupling interfaces
from implementation, and with mapping from interfaces that clients
expect or require from a component to the interfaces the component
actually provides. Such a decoupling ensures that the implemen-
tation of a component can vary independently of its interface and
transparently for clients. The difference between the two patterns
is in their scope. BRIDGE connects interface and implementation of
the same component, while OBJECT ADAPTER helps plugging different
components together.

The integration of BRIDGE and OBJECT ADAPTER into our pattern language
for distributed computing is shown in the diagram below.

Bridge
Object

Adapter

Layers Domain Object

Explicit
Interface

Encapsulated
Implementation

Automated
Garbage Collection

Counting Handle

Explicit
Interface

lifecycle
management

separation of
interface from
implementation

MicrokernelBroker

Proxy
Encapsulated

Implementation

interface
adaptation

interface
adaptation

Containerseparation of
interface from
implementation

bridge
interface

bridge
implementation

adapter
interface

The ADAPTER pattern described in Design Patterns [GoF95] is too broad
to be considered a single pattern at this level: it captures the general
essence of a family of patterns concerned with adaptation, which
also includes WRAPPER FACADE, but it does not categorically define a
single group of forces and a corresponding solution. Two principal
versions are documented, each with specific trade-offs and solution
structures: CLASS ADAPTER and OBJECT ADAPTER. Other variations are

430 Adaptation and Extension

defined that relate to plugability, but the principal forms are sufficient
for most discussions. The former implements adaptation with respect
to inheritance, a class relationship, whereas the latter implements
adaptation with respect to aggregation, an object relationship. The
latter is less problematic and more widely applied of the two patterns,
and is the one we have found most effective within our language.

The next pattern, CHAIN OF RESPONSIBILITY, helps with decoupling the
sender of a request from its receiver. The pattern chains all potential
receiver objects of a request so that a sender can just issue a request
to the first sender in the chain. The request is passed along the chain
until it arrives at its intended receiver, where it is handled. CHAIN OF

RESPONSIBILITY thus provides a very flexible approach for dispatching
requests from clients to the object that executes the request.

INTERPRETER helps with realizing components whose behavior in res-
ponse to a request is orchestrated by interpreting data or scripts.
Such a design is helpful if a typical invocation scenario for the com-
ponent involves many of its offered services, but common orderings
of these services that could be coalesced to a COMBINED METHOD (296)
on its interface cannot be identified, or are otherwise unfeasible.

The following diagram outlines how CHAIN OF RESPONSIBILITY and
INTERPRETER connect to the patterns in our language.

Model-View
Controller

Chain of
Responsibility

Explicit
Interface

request handling
interface

controller
invocation
order

Object Adapter

interface
adaptation

Interpreter

Component
Configurator

Command
Processor

interpreting
configuration
directives

transforming
messages into
requests

Composite Context Object

syntax tree
representation

Encapsulated
Implementation

Visitor

Command

syntax tree
traversal

state
encapsulation

component
representation

Adaptation and Extension 431

A further group of four patterns deal with extending component
implementations with additional functionality. INTERCEPTOR supports
the integration of out-of-band or extended control flow to the methods
of a component, while VISITOR supports the addition of new functions
to an entire group of interconnected components. DECORATOR supports
the addition of new methods to a specific component, or to deco-
rate any existing method with additional pre- and post-processing
behavior, and EXECUTE-AROUND OBJECT the addition of pre- and post-
processing behavior to the methods and code blocks of a C++ object.

DECORATOR and EXECUTE-AROUND OBJECT are similar in the sense that
they wrap an object with pre- and post-processing behavior to be
executed when specific methods are invoked, but they differ signif-
icantly in their granularity and scope. Most obviously, DECORATOR is
a general-purpose pattern, whereas EXECUTE-AROUND OBJECT is a C++
idiom. The other difference is that DECORATOR can wrap only entire
methods of a component with additional pre- and post-processing,
whereas EXECUTE-AROUND OBJECT can also wrap specific code blocks
within a method.

The diagrams below outline how the four patterns that provide func-
tional extensions to components integrate with our pattern language
for distributed computing.

Encapsulated
implementationRequestor

Explicit
Interface

Interceptor

Invoker

Intercepting
Filter

Invocation
Interceptor

Context Object

control flow
extensions

interceptor
types

Observer

interceptor
notification

interceptor
interface accessing

client context

432 Adaptation and Extension

Enumeration
Method

Encapsulated
Implementation

Double Dispatch

CompositeWhole-Part

Interpreter

aggregate
traversal

Explicit
Interface

visitor
interface

Visitor

client / visitor
collaboration

Execute-Around
Object

Encapsulated
Implementation

Scoped
Locking

Wrapper
Facade

resource acquisition
and release

Encapsulated
ImplementationFront Controller

Explicit
Interface

Decorator

decorator
interface

functional
extensions

The EXECUTE-AROUND OBJECT pattern (451) is popularly known as
RESOURCE ACQUISITION IS INITIALIZATION [Str97]—RAII for short—but the
name used here is taken from the small interconnected set of patterns
in Executing Around Sequences [Hen01a]. The name more accurately
reflects the intent: the essence of the pattern is in deterministic
finalization, not initialization.

The TEMPLATE METHOD and STRATEGY patterns offer alternatives for real-
izing variant algorithmic behavior in a component. The difference

Adaptation and Extension 433

between the two patterns is in their underlying solution princi-
ples: TEMPLATE METHOD uses inheritance to address the problem, while
STRATEGY uses delegation. In general, delegation is the more flexible
option for realizing variant algorithmic behavior, so STRATEGY has a
broader applicability than TEMPLATE METHOD. NULL OBJECT encapsulates
a specific STRATEGY: doing nothing. NULL OBJECT thus addresses a spe-
cific flavor of variability in which an algorithm not only can vary,
but actually is optional: in some configurations the algorithm must
or should not be executed. Such a form of variability is commonly
known as negative variability [Cope98].

TEMPLATE METHOD, STRATEGY, and NULL OBJECT connect with our pattern
language as shown in the diagram below.

separation of
interface from
implementation
methods

Acceptor-
Connector

Encapsulated
Implementation Master-SlaveWhole-Part

Page Controller Front Controller
Command
Processor

Half-Sync/
Half-Async

Leader/
Followers

Active Object

Strategy

Null Object
Explicit

Interface

behavior
variation

behavior
variation

strategy
interface

Thread-Safe
Interface

Copied Value

Strategized
Locking

pluggable
lock types

“null”
variation

Object
Manager

behavior
variation

Evictor

Abstract
Factory

remote access
strategy

Template Method

434 Adaptation and Extension

The WRAPPER FACADE pattern provides object-oriented and semantically
meaningful access to a low-level API that offers a whole set of non-
object oriented functions, such as an operating system or graphical
user interface library. The goal of WRAPPER FACADE is to simplify access
to a low-level API, thereby ensuring robust access and platform
independence. In some ways WRAPPER FACADE is thus similar to OBJECT

ADAPTER, but in addition to their different levels of scope, WRAPPER

FACADE encapsulates the low-level API, whereas OBJECT ADAPTER still
allows access to the adaptee’s interface directly.

Acceptor-
Connector

Client Request
Handler

Broker

Encapsulated
Implementation

Model-View
Controller

Half-Sync/
Half-Async

Wrapper Facade

Server Request
Handler

Reactor Proactor

Thread-Specific
Storage

low-level API
encapsulation

resource acquisition
and release

Execute-Around
Object

Strategized
Locking Scoped Locking

Guarded
Suspension

error handling in
concurrent legacy
applications

Adaptation and Extension 435

The last pattern in this chapter, DECLARATIVE COMPONENT CONFIGURATION,
addresses how the resource and infrastructure needs of a com-
ponent can be passed to its hosting infrastructure so that it can
generate a specific binding for the component. DECLARATIVE COMPONENT

CONFIGURATION thus avoids the need for such bindings to be hard-
coded.

In its original source, Server Component Patterns [VSW02], the
DECLARATIVE COMPONENT CONFIGURATION pattern is called ANNOTATIONS. The
name used in our language is intentionally more specific, because
‘annotations’ can be more broadly interpreted as related to any form
of code-specified metadata, as is implied by the standard Java feature
of the same name.

The diagram below shows how DECLARATIVE COMPONENT CONFIGURATION

connects to our patterns language.

Declarative
Component

Configuration

specifying component
hosting requirements

Domain Object Container

436 Adaptation and Extension

Bridge **

When specifying a LAYERS (185) design or a DOMAIN OBJECT (208) . . .

. . . we must consider that the implementation of objects can vary
independently of their interfaces.

���
An object may have one of several different implementations.
The difference between these implementations could be platform-
specific, or a runtime decision. Using inheritance to separate
interface and implementation, however, can expose the client of
the object to decisions about its implementation.

Inheritance is a typical approach to separating interface and imple-
mentation: an interface declares the object’s visible functionality, and
an implementation realizes the methods declared in the interface. If
accessed via the concrete class, however, there is a coupling that
becomes a liability when striving for a stable design: client code
now depends on the underlying implementation type. If accessed
consistently through the interface, object users will be unaffected by
changes in the underlying implementation class, but they are not free
of all dependencies on the implementation: at the point of creation, a
client must make a decision concerning the underlying type, which
can clutter and overcomplicate client code.

Therefore:

Split the object into two parts: a handle abstraction that provides
its interface, and a separate implementor hierarchy that provides
the various implementations for the body.

method_1

method_2

method_C

method_A

method_B

method_C

method_A

method_B

method_C

void method_1 ()

impl.method_B ();
end

begin

void method_1 ()

impl.method_A ();
begin

impl.method_B ();
end

method_1

method_2

method_1

method_2

Handle
Abstraction

Abstraction
Refinements

method_B

method_A

Client

Implementor
Hierarchy

Bridge ** 437

Clients only communicate with the handle object, which in turn is
configured with a body that is an instance of the required implementor
class. Method calls on the handle are forwarded to the associated body
to perform the implementation. The handle may also be responsible
for managing the lifecycle of the body.

���
Using a BRIDGE makes clients of an object depend directly only on
an interface: the implementation decision and detail is encapsulated.
Consequently, clients are unaffected by implementation changes.
Similarly, changes in an object’s interface do not ripple through
to its implementation if the new handle interface can be mapped
onto the existing body, for example with an OBJECT ADAPTER (438).
This strict separation of concerns can incur a performance overhead,
however, due to the additional level of indirection introduced by using
BRIDGE. The shorter the execution time of the body, the higher this
performance penalty becomes.

Either side of a BRIDGE structure can be concrete, or based on a
class hierarchy. In the latter case, it is often based on two EXPLICIT

INTERFACES (281): one for the abstraction hierarchy, one for the imple-
mentor hierarchy. Concrete implementations of the body hierarchy
are often realized as ENCAPSULATED IMPLEMENTATIONS (313). The handle
must choose a suitable, specific concrete implementation for the
body, which may be linked dynamically at runtime.

Normally the body instance is exclusive to a given handle, but if
it is immutable it can be shared. Sharing is sometimes also used
as a space optimization when the cost of modifying the body can
be deferred. AUTOMATED GARBAGE COLLECTION (519) helps to prevent the
accidental destruction of a body by multiple handle instances. If
garbage collection is not supported, the handle can be implemented
as a COUNTING HANDLE (522) to keep track of the number of handles
using the body.

438 Adaptation and Extension

Object Adapter **

When realizing LAYERS (185), DOMAIN OBJECT (208), BROKER (237),
MICROKERNEL (194), PROXY (290) ENCAPSULATED IMPLEMENTATION (313),
BRIDGE (436), CHAIN OF RESPONSIBILITY (440), or CONTAINER (488) . . .

. . . we may need to address the mismatch between the provided inter-
face of an existing component and the interface required by clients.

���
Applications can benefit from reusing existing code. An existing
class, however, does not always provide the interface that its
clients expect, but instead might provide too much, too little, or
in the wrong style.

Using the original class interface directly may be simple, but is
often problematic because clients are coupled tightly to a particular
implementation and interface. Interface changes can affect all clients,
which is an unnecessary side-effect arising from reuse. In addition,
the original interface may not reflect the intended usage scenarios of
the application, which requires either extra glue code or bending the
usage code towards the existing interface. The former option would
pollute the clients with (duplicated) infrastructure code, which is
tedious and error-prone to maintain, and also does not contribute to
realizing their main responsibilities. The latter option could result in
client domain models that are suboptimal from the perspective of the
application using the component. Since reusing existing code should
ideally be a means to an end and not an end in itself, reused code
should offer an interface that allows clients to use it in new contexts
on their own terms.

Therefore:

Introduce a separate adapter between the component and its
clients that converts the provided interface of the component
into the interface that the clients expect, and vice versa.

Adaptee

Client

do_it

Adapter

service_A

service_B

service_1

service_2

void service_A ()

adaptee.service_1 ();
begin

end

void do_it ()

adapter.service_A ();
begin

adapter.service_B ();
end

Object Adapter ** 439

Calling a method on the adapter maps the request onto the adaptee—
the instance of the class being reused. Result data structures returned
by the component are transformed into the result data structures
expected by the calling client.

���
An OBJECT ADAPTER shields clients from a specific decision to use an
existing implementation in a new context, while still integrating with a
uniform client interface. If the adaptee interface changes, correspond-
ing modifications in the application are localized in the adapter. These
interface changes are transparent to the adapter’s clients.

The adapter class itself may be based on an EXPLICIT INTERFACE

(281) that its clients expect or require. The implementation of the
adapter normally relies on composition. During construction, either
the adapter initializes an instance of the adaptee directly or, in the
case of a looser relationship, it receives an instance of the adaptee.
Pluggable adapters can be defined either with respect to an adaptee
instance passed in on construction, or with respect to a parameter-
ized type. Regardless of which construction variant is used, calls on
the adapter are forwarded to the adaptee.

An OBJECT ADAPTER may introduce an additional level of indirection and
an additional object creation. This cost is not necessarily incurred if
the adaptee’s representation is embedded within that of the adapter.
For C++, a data member of the adaptee type is contained in this way,
and the adapter method calls can be inlined to minimize overhead.
For C#, the adaptee would have to be a struct type. In other cases,
such as accessing via a pointer, or in other languages such as Java,
the indirection and extra creation cost will always be incurred.

The more complex the mapping between the interface required by
clients and the interface provided by the adaptee becomes, the more
expensive the mapping can become, in terms of runtime resources,
performance, and development effort. If the application cannot afford
this overhead, consider not using the adaptee at all, or refactor the
code to allow simpler adaptation.

440 Adaptation and Extension

Chain of Responsibility *

When passing user input from the view to the controller in a MODEL-
VIEW-CONTROLLER (188) architecture . . .

. . . we want to reduce the coupling between the sender of requests
and the objects that can handle these requests.

���
Sometimes more than one object in an application could handle
a particular client request, such as user input received from
an input device. However, clients are often not interested in
knowing which specific objects are handling their requests—they
only want the application to execute requests appropriately.

Clients may also not be interested in the dispatching logic that decides
which application object should process a specific request, so that
any changes in the object structure or the request dispatching-logic
do not change the clients. Factoring out the request dispatching logic
to a separate infrastructure object is not always practical, however.
If only a few application objects can handle a specific client request,
or if the request dispatching logic is fairly simple, the complexity of
developing a general request dispatching infrastructure can outweigh
its benefits. Nevertheless, we need a mechanism for dispatching a
client request to its receiver object, and this mechanism should be
simple and efficient.

Therefore:

Chain the objects that can handle the requests and let each
object decide whether or not it can execute a particular request.
If it can, the object executes the request, if it cannot, the object
forwards the request to the next object in the chain.

handle_request

void handle_request (Request req)

if (self.can_handle (req))
begin

then execute (req)
else successor.handle_request (req);

end

Client
handle_request handle_request

Chain of Responsibility

handle_request

Chain of Responsibility * 441

Clients initially issue their requests to the first object in the ‘chain
of responsibility.’ As the request passes through the chain, each
object checks whether or not it can execute the request. If it can, the
object performs its processing and returns any results. If it cannot,
the object forwards the request to the request handling interface of
its successor in the chain, if there is one, otherwise it returns an
error.

���
A CHAIN OF RESPONSIBILITY frees clients from knowing the ‘right’ object
that will process each request they issue. This flexibility allows
dynamic composition of arbitrary request-dispatching chains without
modifications in either the clients or existing objects in the chain. The
longer a CHAIN OF RESPONSIBILITY becomes, however, the more overhead
is incurred due to the increased number of hops that requests make
before an object processes them. In addition—and perhaps more
significantly—clients have no assurance that the chain contains an
object that handles the requests they issue.

To specify a CHAIN OF RESPONSIBILITY, provide all objects with a refer-
ence to a potential successor object and a common EXPLICIT INTERFACE

(281) to receive client requests. This interface is invoked on each
object until one of the them decides it is qualified to process the
request and return the results. If the objects do not have a common
EXPLICIT INTERFACE, use an OBJECT ADAPTER (438) to bring them into
conformance.

442 Adaptation and Extension

Interpreter

When designing a COMMAND PROCESSOR (343) that receives request
messages, or a COMMAND (412) or COMPONENT CONFIGURATOR (490) that
receives script-based configuration parameters, or—more generally—
a parameterizable ENCAPSULATED IMPLEMENTATION (313) . . .

. . . a mechanism is needed to interpret the data or scripts and execute
the right services on the component.

���
Some problems are often resolved via interpretation rather than
by precompiled algorithms. For example, searching for strings
that match a particular pattern can be resolved by interpreting
regular expressions. Interpreting an input stream or a data model
in a little domain-specific language, however, requires grammar
representation and an implementation of execution semantics.

Automated code-generation language processing tools, such as lex,
yacc, Boost.Spirit, and ANTLR support parsing the source of a lan-
guage, but they do not necessarily address representation of the
abstract syntax tree or the execution of the code. For little languages
[Ben86], such as a shell based on single-line commands, intermedi-
ate representation is not necessary, and direct execution is possible,
even bypassing the need for a more formal parsing stage. Languages
with control structures or context-free grammars cannot be run so
easily or directly off the back of a stream of lexing or parsing events.

Therefore:

Introduce an interpreter that represents the grammar of the lan-
guage and its execution. The interpreter is a whole-part hierarchy
of classes, typically with one class per grammar rule.

Client

interpret

Non-terminal
Expression

implements
interface

interpretInterpreter
interface

interpret

maintains objects that
implement sub-expressions

Terminal
Expression

Interpreter 443

The concrete dependencies between the expressions of the language
form the basis of its abstract syntax tree. Clients need to address
lexical analysis and parsing, and the tree structure forms the basis of
the INTERPRETER model. Leaves define the terminal expressions in the
grammar, non-leaves the non-terminal expressions, which consist
of multiple sub-expressions. Sub-expressions can be either non-
terminal or terminal.

The root of the tree represents the most general non-terminal expres-
sion of the language and thus defines its entry point for execution.
After all sub-expressions are interpreted, the root assembles the final
interpretation of the received sentence and returns it to the caller of
the interpreter.

���
An INTERPRETER design defines a direct and convenient way to repre-
sent and interpret grammars for little languages, such as structured
messages and scripts, and thus avoids the complexities of more
sophisticated representation models. The more complex is the gram-
mar to be represented, however, the less practical an INTERPRETER

arrangement becomes, because for each rule in the grammar there
is a separate class to implement and maintain. Other approaches
that separate the concerns of interpretation from those of grammar,
such as automated code-generation language processing tools, may
therefore become simpler in practice.

Typically, the syntax tree of the represented language is realized
as a COMPOSITE (319), to provide an infrastructure for managing the
structure of—and the interactions within—recursive whole-part hier-
archies of objects of similar type. Functionality that operates on the
entire object hierarchy of the interpreter, such as syntax checking,
type checking, and generation of output, can be localized within
a VISITOR (447), to avoid it being scattered across the interpreter’s
construct classes.

The INTERPRETER structure is stateless with respect to any given exe-
cution: execution state is expressed in a CONTEXT OBJECT (416) that is
passed into the methods of an INTERPRETER arrangement.

444 Adaptation and Extension

Interceptor **

When implementing the REQUESTOR (242) or INVOKER (244) parts of
communication middleware, a COMMAND PROCESSOR (343), or—more
generally—an ENCAPSULATED IMPLEMENTATION (313) . . .

. . . it may be necessary to add out-of-band service extensions to a
component or framework.

���
It can be hard to anticipate how the behavior of a framework may
need to be tailored for different environments or applications.
Features and attributes of an otherwise stable core set of services
may need adaptation or extension. However, some behavioral
modifications might be cross-cutting and associated with certain
uses for all objects rather than just a few specific objects.

For example, communication middleware must provide remote IPC
services, but not every user requires load-balanced communication
or the same security policy. A gradual integration of such service
extensions into a middleware framework may not be practical, as it
will bloat both functionality and code over time, and all users (and
developers) will incur the overhead of many rarely used extensions.
Moreover, the original developers or maintainers of a middleware
framework may not have made the most appropriate choice when
implementing certain extensions. Yet some applications will need to
integrate out-of-band service extensions into a middleware framework
to meet their particular requirements.

Therefore:

Allow users to tailor a software framework by registering out-
of-band service extensions via predefined callback interfaces,
known as ‘interceptors,’ then let the framework trigger these
extensions automatically when specific events occur.

A framework and its internal control flow

Interceptor

Interceptors are called
when specific product-internal
events occur.

method_1

method_2

event

callback1

Interceptor ** 445

The interceptors realize predefined callback interfaces to implement
service extensions that process occurrences of the events in a (user-)
specific manner. Interceptors must register with the framework so
that it will notify them when events of interest occur. When an
interceptor is notified by the framework, it executes its out-of-band
functionality. Control flow returns to the framework after the inter-
ceptor finishes its execution.

���
An INTERCEPTOR infrastructure supports the configuration of a frame-
work, or components within a framework, with new and unanticipated
features that only a few applications need, without incurring signif-
icant overhead for applications who do not use these features. The
framework thus stays lean, offering only the core functionality needed
by all users, thereby improving its usability and commonality. The
strict separation of framework and interceptors also allows inde-
pendent variation and evolution of core functionality and service
extensions.

The high degree of flexibility supported by an INTERCEPTOR design can
also incur some costs, however. For example, the infrastructure for
notifying interceptors is always executed when relevant events occur,
even if no concrete interceptor is registered with the framework.
This may incur excessive time and space overhead if there are many
interception points and many events. In addition, the framework has
no direct control over registered interceptors and is unaware of their
operational qualities. It is therefore hard to specify a precise contract
for the framework with regard to its performance and behavior in the
event of errors or security holes caused by interceptors.

To realize an INTERCEPTOR arrangement, first select all events internal to
the product on whose occurrence users are likely want to perform out-
of-band service extensions. For example, in an Object Request Broker
(ORB) clients often require transaction or security support before and
after marshaling and demarshaling service requests. Partition the
selected events into two sets: a reader set and a writer set. When
events from the reader set occur, users are only allowed to obtain
information about the event. Intervention of the product’s control
flow is prohibited, which supports product stability. When events
from the writer set occur, users are also allowed to modify the state
of the product: this supports sophisticated service extensions, but

446 Adaptation and Extension

can corrupt state in the product or cause misbehavior. Group related
events into disjoint interception groups, for example events that deal
with request sending in an ORB, because it is likely that users want
to execute the same out-of-band behavior in response these events.

For each interception group, define an interceptor callback inter-
face, an EXPLICIT INTERFACE (281) that specifies one method for each
of the group’s events. Concrete interceptors derive from these inter-
faces to implement specific out-of-band service extensions. Ideally
interceptors should catch and handle all internal failures before
they return, but a robust INTERCEPTOR implementation should not
assume this and should assume the worse, or risk failure rather than
resilience in the face of faulty interception.

When an interceptable event occurs in the framework, notify the
corresponding interceptors via a dispatcher. The necessary notifica-
tion chain can be implemented via two OBSERVER (405) arrangements.
The framework is a publisher to which dispatchers subscribe, to be
notified about the occurrence of particular events. Each dispatcher
is also a publisher to which interceptors subscribe, to be called back
when events of interest occur so that they can execute their function-
ality. Within the dispatchers, implement an appropriate interceptor
callback policy, such as the order in which interceptors register, or
interceptor priorities. The main benefit of introducing a dispatcher
rather than letting the framework notify interceptors directly is that it
keeps the product’s design and implementation independent of inter-
ceptor callback interfaces, as well as of the interceptor registration
and notification infrastructure.

When a framework calls back to a interceptor it can pass along a
CONTEXT OBJECT (416) containing information about the event that
occurred. This design allows the interceptor to adapt its behavior
depending on the current execution context of the framework.

Two specific types of INTERCEPTOR are INTERCEPTING FILTERS [ACM01] and
INVOCATION INTERCEPTORS [VKZ04]. An INTERCEPTING FILTER allows service
requests on a component to be intercepted and manipulated before
they are executed. An INVOCATION INTERCEPTOR supports the injection
of optional infrastructure functionality into interprocess communica-
tion, such as for load balancing and security.

Visitor ** 447

Visitor **

When implementing an ENUMERATION METHOD (300), an ENCAPSULATED

IMPLEMENTATION (313), a WHOLE-PART (317) or COMPOSITE (319) assembly,
or an INTERPRETER (442) . . .

. . . at times we want to implement services that operate on an aggre-
gate object structure.

���
Some services operate on complex, often heterogeneous object
structures, for example state summarization and queries in a
topological tree. Scattering the service implementation across
the classes that define the object structure, however, creates a
design that is hard to understand, maintain, and evolve.

These problems arise from a lack of modularity. A single functionality
is split across multiple parts, one for every object type on which
it operates, and its implementation cross-cuts the classes of all
objects in the structure. The more scattered the service, the harder
it becomes to see the big picture, since there is no single place
that contains the service implementation. Lack of modularity also
bloats the classes of the object structure with functionality that is
not their prime responsibility and whose boundary is not limited to
the implementing class. The alternative of collocating all behavior
in a single method that implements type-specific behavior through
runtime-type identification and a cascaded if else structure is not
much better.

Therefore:

Implement the service in terms of a separate visitor class that
expresses the type-specific behavior associated with each class
in the object structure. Extend the classes that define the object
structure with a method that accepts a visitor, and selects and
calls back the correct corresponding method to execute.

visitor

Object
Structure

1 3visit visit callback
visit

callback

42

5 6
callback

448 Adaptation and Extension

The visitor class defines a method for each class on whose instances
it operates. Each method implements that portion of the service that
operates on the instances of the corresponding class. Pass the visitor
to the object structure to be visited, and let each object in this
structure call back that method of the visitor that corresponds to the
object’s class. The called method then executes the respective part of
the service.

���
The visitor modularizes services whose code would otherwise be
scattered across many application classes, thereby improving the
understandability and maintainability of service algorithms and code
by centralizing everything in one location: the visitor. The visitor
infrastructure also protects a stable design center [Gam97] from
uncontrolled changes: it is possible to attach new services to an
object structure without touching its design and implementation.
Stability is a two-way contract, however, so the object structure must
be stable for VISITOR to be effective. Adding to the set of classes
that define the object structure will ripple through the whole visitor
hierarchy, requiring the addition of a new method to every visitor
class.

VISITOR is commonly implemented using DOUBLE DISPATCH (408). An
EXPLICIT INTERFACE (281) declares the required set of visit methods,
each taking an instance of their corresponding object structure class
as a parameter. Concrete visitors realize this interface to implement
a particular service. Each visit method of a concrete visitor imple-
ments the portion of behavior that operates on the object structure
class with which it is associated.

All classes whose instances participate in the object structure should
have an accept method that takes an abstract visitor as an argument
and calls back the corresponding visit method on the received
visitor, passing the object to be visited along as a parameter—that
is, the object on which the accept method was invoked. Each visit
method then executes its service on the particular object that it
receives when being called back.

Decorator 449

Decorator

When realizing an adaptable and flexible ENCAPSULATED IMPLEMENTATION

(313) or FRONT CONTROLLER (339) . . .

. . . at times we want to add responsibilities to an individual object,
but not to the methods of its corresponding class.

���
It is sometimes necessary to extend the methods of an object
dynamically with additional pre- and post-processing behavior,
such as data compression, logging, or security checks. Such
extensions, however, should not affect other instances of the
same class if they do not need these extensions.

Integrating the additional behavior into the class directly, and allow-
ing it to be switched on or off depending on the needs of an object’s
clients, is at best a short-term solution to this problem. Over time
the class becomes polluted with a ‘shopping list’ of optional behavior
that only few clients need and use, but for which all clients (and
developers) must pay in terms of resource consumption, performance
overhead, and complexity. Separating the add-on behavior avoids
such bloat, but introduces a challenge: clients generally do not wish
to distinguish between accessing and using the ‘core’ object versus a
new object augmented with additional behavior.

Therefore:

Wrap the original object in a decorator object whose interface
conforms to the original object. Implement the optional, extra
functionality within the decorator object, and forward requests
on its interface to the original object after or before its add-on
functionality is executed.

method

method

Original object

Decorator

method

Object Interface

implements
interface

void method ()

optional_pre_behavior ();
begin

original_object.method ();
optional_post_behavior ();

end

Client

450 Adaptation and Extension

If a client invokes a method on a decorator, the optional behavior is
executed in addition to the original object’s core behavior: if a client
invokes a method on the original object, only its core behavior is
executed.

���
Decorating an object keeps its core implementation clean and lean,
but extensible. In addition, extensions are transparent to the object’s
clients. Hiding extensions from clients, however, can introduce hid-
den costs, because clients are unaware of whether they access the
original object or its decorator.

To apply DECORATOR, organize both the original object and its decora-
tors within a single class hierarchy. The root of this hierarchy is an
EXPLICIT INTERFACE (281) that defines the visible behavior of the object
that can be decorated. Two types of class realize this interface: the first
class represents the original object whose behavior can be extended
by decorators, and the second class forms the base for all concrete
decorators. This class maintains a reference to an object conforming
to the explicit interface of the hierarchy, which enables a concrete
decorator to ‘decorate’ either the original object or another decorator.
This design allows addition of nested decorators to the original object,
forming a chain in which each decorator extends the original object’s
methods with additional behavior. Concrete decorators inherit from
the decorator base and implement a particular additional pre- and
post-processing for some the original object’s methods.

Clients program only to the explicit interface of the class hierarchy.
Via polymorphism it is then possible to (dynamically) configure the
clients transparently with either the original object or a (nested) deco-
rator. When a client invokes a method on the outermost decorator, it
and all of the associated decorators in the chain are run, terminating
at the original object.

Execute-Around Object ** 451

Execute-Around Object **

When implementing an adaptable and extensible ENCAPSULATED

IMPLEMENTATION (313), a SCOPED LOCKING (390) arrangement, or a WRAPPER

FACADE (459) that encapsulates a resource . . .

. . . we need to execute a pair of related actions around a sequence of
C++ statements.

���
In C++, paired actions—in which a function is called before
some statement sequence and a corresponding function after-
wards—are commonly associated with resource acquisition and
release. Pre- and post-sequence actions are a common feature
of block-scoped resource management, for example to allocate
memory, use it, and deallocate it. Programming such action pairs
explicitly for each such sequence in an application, however, is
error-prone, not exception-safe, and leads to repetitive code.

Practice shows that it is easy to forget the action following the
sequence. First, developers must make sure that the action is exe-
cuted in every return path out of the sequence, whether unlocking a
lock, releasing a resource, deleting an object. Second, when excep-
tions are thrown, they can bypass the post-sequence action, further
complicating matters.

Therefore:

Provide a helper class whose constructor implements the pre-
sequence action and whose destructor the post-sequence action.
Define an object of this class on the stack before the sequence
of statements, and provide its constructor with the necessary
arguments to perform the pre- and post-sequence actions.

// Define helper object.

} // Leaving the scope calls destructor.

void method () {

Helper helper; // Calls constructor.
do_something (); // Execute sequence.

Client

Execute-Around
Object

Helper::Helper () {
pre_sequence_action ();

}

Helper::~Helper () {
post_sequence_action ();

}

method
Helper::Helper

Helper::~Helper

452 Adaptation and Extension

In C++, a constructor is called on creation of an object for the sole
purpose of initializing it; that is, the constructor describes the ‘boot
sequence’ for an object. Conversely, a destructor is called automati-
cally at the end of an object’s life to ‘shut it down’ in an orderly fashion.
The calling of the destructor is deterministic: for stack variables
lifetime is tied to the enclosing scope, even if exceptions are thrown.

It is this determinism that allows constructor and destructor to strad-
dle a sequence. A helper object can take advantage of this: executing
the pre-sequence action in the constructor and the post-sequence
action in the destructor. Where the helper object must make calls on
another object, the object and any additional state must be passed
to the constructor.

���
An EXECUTE-AROUND OBJECT addresses both exception safety and
control-flow abstraction, which results in less repetitive and less
error-prone code. Destructors are called for stack objects as the
stack is unwound upon leaving a scope. Stack unwinding occurs
as a result of either normal control flow out of the scope, or excep-
tional flow from a thrown exception. Clean-up actions therefore occur
independently of how control flow leaves a sequence of statements.

If the post-sequence action depends on whether or not an exception
has been thrown, the std::uncaught exception function can be
used to determine the reason the destructor is being called. The
result of std::uncaught exception is worthless, however, if the
stack was already unwinding when the helper object was created.

EXECUTE-AROUND OBJECT relies on two key language features, the combi-
nation of which is specific to C++: the deterministic and scope-bound
destruction of objects created locally, and the ability to execute code
automatically within an object just before its destruction. Other forms
of execution wrapping behavior are possible in other languages. For
example, in C# the combination of a using block and an object
that implements the IDisposable interface comes close to realizing
EXECUTE-AROUND OBJECT.

Template Method * 453

Template Method *

When implementing an ACCEPTOR-CONNECTOR (265), ENCAPSULATED

IMPLEMENTATION (313), WHOLE-PART (317), MASTER-SLAVE (321), PAGE

CONTROLLER (337), FRONT CONTROLLER (339), COMMAND PROCESSOR (343),
HALF-SYNC/HALF-ASYNC (359), LEADER/FOLLOWERS (362), ACTIVE OBJECT

(365), or THREAD-SAFE INTERFACE (384) arrangement . . .

. . . we often need to express objects that share a common structural
and behavioral core, but vary in particular behavioral aspects.

���
Some objects have a common structural and behavioral core,
but differ in specific behavioral aspects. Providing full, separate
classes for each behavioral variant, however, can duplicate code
and complicate maintenance of the object’s invariant core.

Although stable, the common behavioral core may evolve. Whenever
it does so, each separate class must be updated—which is not only
tedious, but also error-prone, since version skew can result if updates
are done inconsistently. Separating the object’s invariant core from
its variant aspects by delegating to another object would avoid version
skew, but is not necessarily self-contained, since it involves creating
and managing two separate objects.

Therefore:

Create a superclass for the behavioral variants that provides a
template method that expresses the common behavioral core.
Within the template method, delegate execution of variant
actions to separate hook methods that are overridden by each
subclass that implements the variant behavior.

template_method

hook_method

void template_method ()

do_something_invariant ();
begin

hook_method (); // Variant part.
do_someting_else_invariant ();

end

void hook_method ()

do_something_special ();
begin

end

hook_method

Service
Class Service

Subclass

Client

454 Adaptation and Extension

Clients using this pattern thus depend on only a single class and a
single object. Calling the template method executes the common core
inherited from its superclass, which in turn calls and executes the
hook method versions implemented in the subclass.

���
A TEMPLATE METHOD design allows all object variants to share a single
implementation of its structural and behavioral core, which avoids
code duplication and maintenance overhead for the object’s invariant
parts. In addition, the clear separation of a service’s variant parts from
its invariant parts supports independent modification and evolution
of the two aspects. The use of inheritance to separate the two allows
variant and invariant parts of the object to share the same data
structures directly.

TEMPLATE METHOD can also increase code duplication and maintenance
costs, however, if multiple service subclasses share implementations
of specific hook methods, and the problems this design is intended
to avoid for the object’s invariant core are reintroduced at the level
of its variant parts. TEMPLATE METHOD is a class-level rather than an
object-level decision, so there is a strong coupling of variants to
the superclass. The fragile base class problem [Szy02] is therefore
a potential liability unless the superclass is a strong design center.
TEMPLATE METHOD is also not appropriate if a component needs to
export only interfaces for its plug-in behaviors, because it relies on a
partially implemented class.

One way to ensure the invariance of the common behavioral core
when implementing TEMPLATE METHOD is to make the public template
method non-polymorphic. It is also common to implement default
behaviors for private hook methods [Pree94]. If the default is more
complicated than a do-nothing implementation, however, this can
make the design less stable and overriding more subtle, since sub-
class developers must be more aware of what they are overriding.

Strategy ** 455

Strategy **

In an ACCEPTOR-CONNECTOR (265), ENCAPSULATED IMPLEMENTATION (313),
WHOLE-PART (317), MASTER-SLAVE (321), PAGE CONTROLLER (337), FRONT

CONTROLLER (339), COMMAND PROCESSOR (343), HALF-SYNC/HALF-ASYNC

(359), LEADER/FOLLOWERS (362), ACTIVE OBJECT (365), STRATEGIZED LOCKING

(388), OBJECT MANAGER (492), EVICTOR (515), or ABSTRACT FACTORY (525)
arrangement . . .

. . . we often need to realize objects that share a common structural
and behavioral core, but vary in multiple behavioral aspects.

���
Some objects need to implement behavior across one or more
methods that differ on a case-by-case basis. To identify the case
with a flag, so that distinct behavior can be implemented by
explicit selection, is however a brittle and closed solution that
scales poorly.

The problems with flag-based approaches are that methods are cou-
pled to the flag, and each flag-dependent method duplicates the same
switch selection structure. This approach suffers all the usual prob-
lems arising from duplication: adding new cases leads to repetition
of case structure, or, worse, the change is made incorrectly. Such
methods are typically long and get longer with time. Not only does
this approach scale poorly, it is also a closed solution that requires
modification of source code every time a new option is added.

Therefore:

Capture the varying behavioral aspects of the object separately
from its defining service class in a set of strategy classes. Plug
in an appropriate strategy instance, and delegate the execution
of the variant behavior to the appropriate strategy within the
implementation of the service class.

method
void method ()

do_something_invariant ();
begin

strategy.do_it (); // Variant part.
do_someting_else_invariant ();

end

void do_it ()

do_something_special ();
begin

end

Service
Class

Strategy
Class

Client

do_it

456 Adaptation and Extension

STRATEGY allows parameterization of the variant part of code that needs
to have a stable behavioral core.

���
In a given STRATEGY design, a service class defines the usage code, such
as a common behavioral core, and a separate strategy interface with
one or more hook methods expresses the variant aspects. The strategy
interface is an EXPLICIT INTERFACE (281) that the implementation of the
service class uses to delegate the execution of the variant service
behavior to a separate object. Concrete strategy classes implement
the strategy interface, to implement the variant behavior for a specific
service variant. The clear separation of variant parts from invariant
parts supports independent modification and evolution. If a strategy
class needs to perform an action that depends on some or all of the
state of the service object itself, the service object needs to pass a
reference to itself or to a CONTEXT OBJECT (416).

STRATEGY is useful for implementing behavioral extensions to an
object’s services. The STRATEGY service class interface defines these
extension points, and pluggable extensions implement extended
behavior as appropriate. For this reason, the STRATEGY pattern is
also known as PLUGGABLE BEHAVIOR [Beck97]. If no behavior is needed,
a NULL OBJECT (457) offers a simpler and more consistent approach
than introducing null checks throughout the code.

There are two basic options for implementing STRATEGY: runtime
polymorphism, based on instance methods, and parametric poly-
morphism, based on generic mechanisms such as templates in C++
or generics in Java. In the runtime approach, strategy classes often
implement the strategy interface to implement the behavioral vari-
ants. Instances are used to parameterize behavior at runtime. The
templated approach, also known as POLICY [Ale01], fixes the param-
eterization decision at compile time, which reduces object creation
and indirection costs, and offers opportunities for compiler inlining.
The flexibility trade-off, where available, is in terms of type intrusion,
binding time—compile or runtime—and performance. The templated
approach should be used if runtime reconfiguration of the context
object is unlikely or impossible, for example if strategies take advan-
tage of operating system or hardware properties and APIs, or other
system environment aspects.

Null Object ** 457

Null Object **

When realizing STRATEGIZED LOCKING (388), STRATEGY (455), or—more
generally—variant behavior that is expressed through polymor-
phism . . .

. . . we should consider that one option for implementing varying
behavior is to do nothing.

���
Some object behavior is executed only in the presence of some
other object. If this other object is absent, the behavior is either
to do nothing or to use some default value. Using explicit condi-
tionals to check an object reference for null and then branching,
however, introduces a great deal of repetition and complexity
into the code.

Repeated checks against null break up the flow of code and are
often forgotten. In many cases, the conditional is simply a guard that
prevents null references from dereferencing: the alternative path of
action results in a null operation or an assignment of a simple default
value. In these situations the recurring null guard is overly visible
and begins to have all the drawbacks of programming with flags.
There is a strong case for factoring out repetition and making best
use of the language mechanisms available.

Therefore:

Provide something for nothing: a class that conforms to the
interface required of the object reference, implementing all of
its methods to do nothing, or to return suitable default values.
Use an instance of this class, a so-called ‘null object,’ when the
object reference would otherwise have been null.

void foo ()

Find an object in a collection.

object.some_method ();
end

begin

A Null Object is returned if the

object = collection.find´(object_id);

Execute a method on the object.

object cannot be found.
void some_method ()

Do nothing.
end

begin

Client
method

do_something
Null Object

458 Adaptation and Extension

Calling a method of a null object has no effects or side effects, since
nothing happens. In some situations, the overhead of the call can be
optimized away completely by the compiler.

���
A NULL OBJECT is encapsulated and cohesive: it does one thing—
nothing—and it does it well. This reification of the void and encapsu-
lation of the emptiness eliminates superfluous and repeated con-
ditionals that are not part of a piece of code’s core logic, thus
making the absence of behavior easier to use. Selection and varia-
tion are expressed through polymorphism and (interface) inheritance
rather than procedural condition testing. A NULL OBJECT can be seen
to remove specific recurring conditional statements. The decision
structure has been objectified and concealed, taking advantage of
encapsulation and polymorphism: the object relationship moves from
being optional to mandatory, making its use uniform and consistent.

NULL OBJECT should not, however, be used indiscriminately as a
replacement for null references. If the absence of an object is sig-
nificant to the code’s logic and results in fundamentally different
behavior, using a NULL OBJECT is inappropriate. It is important to
ensure that access to, and the use of, the potentially nullable refer-
ence are encapsulated. In particular, expecting clients to pass around
NULL OBJECTs consistently and correctly instead of null references may
make interfaces more complicated to use.

A NULL OBJECT is stateless and immutable by definition—it is thus
sharable and intrinsically thread-safe. NULL OBJECTs scale poorly
to remote objects, however, because method calls will always be
executed across the network and their arguments will always be
evaluated, which can incur significant overhead and introduces
an additional point of failure, thereby undermining their basic ‘do
nothing’ behavior. In a distributed context, the NULL OBJECT should
therefore be passed as a COPIED VALUE (394): transparent replication
rather than transparent sharing becomes the appropriate choice.

Wrapper Facade ** 459

Wrapper Facade **

When realizing a BROKER (237), CLIENT REQUEST HANDLER (246),
SERVER REQUEST HANDLER (249), REACTOR (259), PROACTOR (262),
ACCEPTOR-CONNECTOR (265), MODEL-VIEW-CONTROLLER (188), ENCAPSULATED

IMPLEMENTATION (313), HALF-SYNC/HALF-ASYNC (359), FUTURE (382),
STRATEGIZED LOCKING (388), or SCOPED LOCKING (390) arrangement . . .

. . . we want to access low-level, function-based APIs in a convenient,
robust, and portable manner.

���
Applications often have some code that needs to use services
provided by low-level, non-object-oriented APIs. Programming
applications with these APIs directly, however, makes the code
hard to understand during development. It is also a poor choice
for testability, portability, and the long-term stability of the
code, since today’s choice of platforms may not be tomorrow’s.

When using low-level, function-based APIs—typically C—the code is
often repetitive, focused on API minutiae, and error-prone. It can also
be non-portable, even across different versions of the same platform.
It is often unclear how different functions in the same API are related.
Programming against such APIs scatters common code across an
application, making it hard to ‘plug in’ alternative solutions.

Therefore:

Avoid accessing low-level function-based APIs directly. Instead,
wrap each related group of functions and data within such an
API in a separate, cohesive wrapper facade class.

A low-level API

Client

do_something

Wrapper Facades

service_A

service_B

service_C

function_1

function_2

function_3

get_data_1

get_data_1

void service_A ()

Call low-level functions in an

get_data_1 ();
end

begin

appropriate order.

function_2 ();

Get data from low-level API.

function_1 ();

460 Adaptation and Extension

Calling a method on a wrapper facade maps the client request to a
corresponding API function, or executes a sequence of API functions
in a specific, predefined order.

���
WRAPPER FACADE provides a concise and robust set of classes for access-
ing functions of system APIs, such as those of operating systems and
GUI libraries. The code for accessing low-level APIs is encapsulated,
so the access code need not be repeated. WRAPPER FACADE also improves
application portability, since the wrapper interfaces can remain sta-
ble even if underlying APIs change. A WRAPPER FACADE is a class, thus
it can be used as the basis for pluggable components in a generative
programming model [CzEi02].

Within the API to be encapsulated, identify existing abstractions and
their relationships, which may be different than the ones documented
in the original API. Cluster each group of cohesive functions and data
structures into a separate wrapper facade. Errors signaled by the
API should be handled in the style appropriate for the target lan-
guage—which may not be the style of the API. For example, C APIs
typically signal failure via return values, whereas object-oriented lan-
guages use exceptions. In C/C++ legacy systems running on UNIX,
THREAD-SPECIFIC STORAGE (415) allows for the safe retention and han-
dling of errors on a per-thread basis. To support the robustness of a
wrapper facade, automate resource acquisition and return where pos-
sible. In C++, for example, provide an EXECUTE-AROUND OBJECT (451).

A WRAPPER FACADE arrangement should make the common use of
low-level APIs simple and easy, but also allow more complex usage
scenarios. The interface of a wrapper facade may therefore need an
‘escape hatch’ that allows more direct access to the wrapped low-level
APIs. Although this design is a compromise, it avoids the need to
modify the wrapper facade for every special case, which would yield a
bloated, hard-to-use interface. C APIs are perhaps the most common
for low-level access. C++ allows simple, in-language wrapping, but the
WRAPPER FACADE pattern is more general than this specific scenario.
The same advice applies where a more sharply defined language
barrier exists, such as in Java or Ruby using C. In these situations,
a WRAPPER FACADE offers a more appropriate and cohesive design than
simply rewrapping the underlying API directly by exporting handles
as integers and functions as class static methods.

Declarative Component Configuration * 461

Declarative Component Configuration *

When realizing a DOMAIN OBJECT (208) or a CONTAINER (488) . . .

. . . we must tell the hosting environment of an application how to
handle the technical requirements of a specific component, such as
its transaction and security needs.

���
A runtime environment provides system resources and services
such as threads, network connections, security, and transactions
to components of an application. These resources and services
allow components to execute as specified. A runtime environ-
ment, however, cannot always anticipate the specific resources
and technical services each component requires, and how each
component wants to use these resources and services.

The runtime environment still needs this information to manage its
resources and components appropriately. Hard-coding the resource
and technical service requirements in the component’s implementa-
tion is an impractical solution, however: functional aspects would
be mixed with technical aspects, although the two areas are gen-
erally independent of one another. Changing either independently
is awkward, and adapting the component implementation to handle
different aspects is manual and costly. Each adaptation would also
create a new component version, which must be maintained and
managed explicitly.

Therefore:

Specify a separate declarative component configuration for each
component that indicates to the runtime environment the sys-
tem resources and services it needs to execute correctly, as well
as how it will use these resources and services.

method_C

method_B

method_A

Component

<configuration>
<system.runtime.remoting>
 <application name="GridApp">
 <service>
 <wellknown mode = "Singleton"
 type = "RemoteObjectNS.Grid, RemoteObject"
 objectUri="GridObj"/>
 </service>
 </application>
 </system.runtime.remoting>
</configuration>

Declarative Component Configuration

462 Adaptation and Extension

Pass the declarative component configuration to the runtime environ-
ment during component deployment. The runtime environment can
use the specifications in the declarative component configuration to
configure itself so that each component can be managed accordingly.

���
A DECLARATIVE COMPONENT CONFIGURATION tells an application’s runtime
environment how to manage the components it hosts, so the run-
time environment can thus respond to the individual environmental
requirements of each component. This pattern supports flexibility
because components can shape the environment in which they are
located, rather than being forced to use a single ‘one-size-fits-all’ envi-
ronment, or have application developers handcraft the environment
for each component. Keeping the DECLARATIVE COMPONENT CONFIGURATION

separate from the component interface and implementation simpli-
fies changing the specification of component system resources and
service requirements without modifying the components themselves.

A DECLARATIVE COMPONENT CONFIGURATION often includes the component’s
name, its resource requirements, dependencies to other component
interfaces, the security and transaction support it needs, its threading
model, and various quality of service parameters [VSW02]. Typically
it is provided in form of configuration scripts, for example as XML
files [OMG02] [MaHa99] [Ram02].

19 Modal Behavior

Display for a pedestrian crossing in Bristol
 Kevlin Henney

Some objects in a system are inherently state-driven: entire meth-
ods, or significant portions of them, behave differently depending on
their current state. Such object lifecycles are often best implemented
in terms of state machines, which allow explicit modeling of—and
control over—their modal behavior. This chapter presents three pat-
terns that support the implementation of state machines, considering
trade-offs such as solution complexity, performance, memory usage,
and internal versus external control of state change.

464 Modal Behavior

There are many ways to implement state-driven lifecycles for an
object. Sometimes simple flags and conditional statements within
the object’s method control flow are enough. Sometimes, however,
many or all of an object’s methods can behave entirely differently in
different object states. Such a lifecycle is often modeled as a state
machine, but in implementation a developer faces many choices, and
some design paths lead to unnecessarily complex implementations.
The following issues influence the choice and shape of the solution:

• Minimizing conditionals. Gigantic switch statements and long if
else if cascades are often inappropriate for capturing stateful life-
cycle behavior because of the accidental complexity they introduce.
Anything more than a few conditional cases becomes hard to man-
age and results in duplication of the conditional structure across
multiple methods. Such repeated control coupling of methods on a
particular piece of state scales poorly.

• Inter-mode dependencies. In some objects states are completely
independent of one another: methods do not operate on com-
mon data structures, and transition from one state to another
requires little or no transfer of context information between the
states. In other objects the situation is the opposite: states share
and operate on a whole set of common data and context informa-
tion. The design of the object’s state machine should reflect the
interdependencies between its modes. Coupling independent states
too tightly reduces their independence, while coupling dependent
states too loosely can decrease performance and increase resource-
management overhead.

• Mode visibility. In many situations clients do not care about the
current state of an object, they just want it to behave appropriately
in any state on any method call. Management of states and state
changes should ideally be transparent to such clients, and there-
fore be the responsibility of the object. In other scenarios, it is the
object’s clients that view its behavior as being state-dependent, and
the object itself is the one that should be independent of these state
models.

Modal Behavior 465

Each of the three patterns in this chapter addresses a specific con-
figuration of the forces outlined above, spawning a solution space for
developing objects with strong modal behavior:

The OBJECTS FOR STATES pattern (467) [GoF95] [DyAn98] divides
an object in two, separating the mode-dependent behavior of an
object from the representation of the normal instance data. The
main data-holding object forwards method calls to a mode object,
which is an instance from a class hierarchy in which each class
represents the behavior in a particular state.

The METHODS FOR STATES pattern (469)[Hen02c] realizes all the
behavior of an object as internal methods within a single class,
rather than across multiple classes. Groups of method references
are used to define the object’s behavior in a particular mode.

The COLLECTIONS FOR STATES pattern (471) [Hen99] externalizes
the state of an object by associating each state of interest with
a separate collection that refers to all objects in that state. State
transitions become transfers between collections.

The OBJECTS FOR STATES pattern is commonly known as STATE [GoF95],
but is listed here using its synonym for reasons of clarity and similar-
ity. The name OBJECTS FOR STATES emphasizes the solution structure
rather than the problem, which is the common reading of STATE. The
common naming style emphasizes similarity of intent but difference
in structure with both METHODS FOR STATES and COLLECTIONS FOR STATES.

The following considerations influence which of the three patterns is
most appropriate when realizing modal behavior:

• Mode visibility. OBJECTS FOR STATES and METHODS FOR STATES imple-
ment the state machine within the modal object—the machine is
transparent to clients. Clients ‘just’ invoke a method, and the object
does the ‘right thing’ [Hearsay02], dependent on its state. OBJECTS

FOR STATES and METHODS FOR STATES are thus most suitable for real-
izing objects that encapsulate a specific workflow. COLLECTIONS FOR

STATES, in contrast, implements the state machine externally to
the modal objects within their clients: the objects themselves are
unaware of their state. Such a view is not as uncommon as it may
appear at a first glance. For example, a garbage collector distin-
guishes between objects that are referenced by other objects, and

466 Modal Behavior

thus cannot be deleted, and unreferenced objects, which it can
delete. The objects themselves are not aware of these states, as
obviously they should not be. Similarly, a mechanism that sup-
ports multiple undo/redo distinguishes request objects that are
executed and can be undone, and request objects whose actions
were undone, but can be redone. Again, the request objects them-
selves are generally uninterested in the state-dependent view that
their clients have of them, so COLLECTIONS FOR STATE is the right
implementation choice.

• Mode independence. Sometimes the state machine of an object
consists of states that are completely independent of one another,
not sharing behavior or data structures. The individual states
in such a state machine should therefore be strictly decoupled
to avoid accidental structural and logical complexity in the state
machine implementation. OBJECTS FOR STATES addresses requirement
by encapsulating each state inside a separate state object. Simi-
larly, COLLECTIONS FOR STATES introduces a separate collection for each
state of a state machine. If, on the other hand, many states share
behavior and data, encapsulating each state would introduce space
and performance overhead due to duplicated code and transfer
of shared data between states. METHODS FOR STATES addresses this
problem by providing a set of shared methods and data structures
from which the behavior of a specific state can be composed.

The following diagram outlines how the three patterns for modal
behavior tie into our pattern language for distributed computing.

Encapsulated
Implementation

Methods
for States

Collections
for State

Objects
for States

Command
Processor

object generation
management

object-internal
state management

Dynamic Invocation
Interface

method name resolution

Automated
Garbage Collection

command lifecycle
management

Objects for States * 467

Objects for States *

When realizing an ENCAPSULATED IMPLEMENTATION (313) . . .

. . . we sometimes need to support object behavior that alters signifi-
cantly whenever an object changes its internal state.

���
The behavior of an object may be modal, where the mode depends
on its current state. Hard-wiring the corresponding multi-part
conditional code within the object’s implementation, however,
can frustrate its comprehensibility and future development.

For example, an object that represents a controller for a user interface
needs to respond to common events in a way that is appropriate to the
current state of the view. The view may have many different modes,
depending on options and validation. Hard-coding a state machine
directly via switch and if statements does not scale effectively, and
is effective only for a small number of states that affect only a small
number of methods. Different state machine aspects cannot evolve
independently, such as code that represents the behavior of a specific
state, the transition logic that connects the states, or the integration
of new states.

Therefore:

Encapsulate the state-dependent behavior of the object into a
hierarchy of state classes, with one class per different modal
state. Use an instance of the appropriate class to handle the
state-dependent behavior of the object, forwarding method calls.

State A

method

modal_method

modal_method

modal_method

State B

State C

modal_method

State Interface

State
Hierarchy

Modal Object
void method ()
begin

Execute state dependent behavior
state_object.modal_method ();
Determine new state ...
state_object =

next_state (current_state);
end

behavior executed
in the current state

behavior executed
in the next state

468 Modal Behavior

Whenever a client calls a method on the modal object whose behavior
is state-dependent, the object delegates the execution of the method
to an instance of the corresponding state class. Upon creation, the
modal object is associated with an instance of the state class that
implements the behavior to apply in its initial state. When the modal
object changes its state, the state object it uses is exchanged so that
it behaves correctly in the new state.

���
The encapsulation and organization of state-dependent behavior in a
class hierarchy allows the modal object to be configured dynamically
with instances of arbitrary state classes. An extension of the hierarchy
with new state classes is also simplified, as well as the modification
of an existing state class.

An OBJECTS FOR STATES design, however, distributes responsibility
across multiple classes, which can make it appear unnecessarily
complex when there are few states and few state-dependent methods.
This design can also be hard to manage if there are many states,
where the corresponding class explosion becomes the key cause of
complexity. Class nesting, or localizing state classes within packages
or files, can help to contain such complexity.

Implementations of the state classes are—somewhat ironically—
normally stateless. Each state object receives the main object, or a
reference to its instance data, as an argument in each of its methods.
This statelessness allows modal objects to share the same instances
of the state objects, which can be accessed as static data. This style
of programming, however, may seem more indirect than necessary
for such a closely coupled system of classes. Conversely, it may be
simpler to make the state classes stateful if mode-specific state is
necessary, such as might exist during a transaction-based state.

In general, there are two implementation options for exchanging the
state instance that is used by the object. One option is to implement
this logic within the main object itself. The other is for the currently
associated state object to determine its own ‘successor.’ Either option
ensures that the currently used state object is exchanged correctly
whenever the object transitions into a new state. The trade-off to con-
sider is central control over the state-transition logic versus flexibility
in its composition.

Methods for States * 469

Methods for States *

When realizing an ENCAPSULATED IMPLEMENTATION (313) . . .

. . . we sometimes need to support object behavior that changes sig-
nificantly whenever an object alters its internal state.

���
The behavior of an object may be modal, where the mode depends
on its current state. Hard-wiring the modal behavior within
the object’s methods, however, can make future development
unnecessarily awkward. Yet delegating the behavior to one of a
community of objects can also complicate the coordination of,
and data sharing between, different modes.

For example, an object that represents a network connection must
react differently if its methods are called before a connection is
established, when it is connected to a remote peer, or after the
connection is closed.

Conditional statements within an object’s methods are one way to
express such behavior, but the more complex the state machine
becomes, the more complicated the object’s evolution. Encapsulat-
ing each mode’s behavior in a separate object untangles the modal
functionality, but can yield overly complex state machines if different
modes depend on the same data or require data-driven coordination.

Therefore:

Implement state-dependent behavior as internal methods of the
object, and use data structures to reference the methods that
represent the behavior of a specific state.

method_1

Modal Object

method_2

state_A_method_1

state_A_method_2

state_B_method_1

state_B_method_2

State A

State B

next state

next state

470 Modal Behavior

Whenever a client calls a method on the modal object whose behavior
is state-dependent, the object delegates the request to the internal
method referenced by the data structure that represents the current
state. Upon creation, the modal object should be associated with the
data structure that represents its initial state. When the modal object
changes its state, the data structure it uses is exchanged so that it
behaves correctly in the new state.

���
The encapsulation of state-dependent behavior in internal methods
allows the modal object to share data and context information among
different modes with maximal performance and minimal resource use.
The use of data structures to reference the state-specific methods sim-
plifies the configuration and evolution of the object’s state machine.

The data structure holding the method references can be a record-like
data structure with named fields, such as a C++ struct. Alterna-
tively, a dictionary object can be used to locate the private method
reference that corresponds to each history-sensitive public method.
In effect, this configuration emulates the normal polymorphic method
lookup mechanism, such as a C++ vtable, with a little added cus-
tomization, evolution, and intelligence. Where only a single public
method is state-dependent, no intermediate data structure is needed
to represent the mode: a single method reference will suffice. Global,
module, or class-wide variables can hold the single instance of the
data structure or method reference required for each mode.

The method references may be actual method references, such as
member function pointers in C++ or delegates in C#, or they may be
symbolic method names that are resolved using reflection, executed
by calling a DYNAMIC INVOCATION INTERFACE (288). This latter option is only
cost-effective for dynamic languages or for highly configurable objects
where the state machine can be specified externally to the class.

Collections for States ** 471

Collections for States **

When managing service request objects in a COMMAND PROCESSOR (343),
AUTOMATED GARBAGE COLLECTION (519), or a similar collection-managing
arrangement . . .

. . . we often need to handle the lifecycle of objects or operate on them
collectively with respect to their current state.

���
Objects whose behavior depends on their current state may
be modeled as individual state machines. Sometimes, however,
their clients view the behavior of these objects as modal, whereas
the objects themselves are independent of any client-specific
state model.

For example, a garbage collector distinguishes between referenced
and unreferenced objects, but the objects themselves are, and should
be, unaware of this view. Making objects aware of their state and
allowing them to manage this state themselves would couple their
implementation too closely with the way their clients are using them.
Whenever a client changes its state model, all objects are affected,
which complicates their maintenance and evolution. This situation
is even worse if different clients have different state-dependent views
onto the objects. Additional resource and performance penalties can
occur if clients treat objects in the same state collectively, for example
all objects waiting for deletion by a garbage collector.

Therefore:

Within the client, represent each state of interest by a separate
collection that refers to all objects in that state.

add

remove

method
method

method
Client

void do_it ()

Collection for State A

begin

do_it

Execute a function on each object in state A
for each object in collection_A do

Collection for State B

Execute the function on the object
object.method ();
Change the state of the object
collection_A.remove (object);
collection_B.add (object);

rof
end

add

remove

method
method

method

method

1

2

472 Modal Behavior

Whenever an object changes its state, it is moved from the collection
that represents the source state to the collection that represents the
target state. The client can invoke only those methods on objects
referenced by a specific collection that are allowed to execute in the
state represented by that collection.

���
The current collection that references the object implicitly determines
its state, so there is no need to represent the state internally within the
object. Extrinsic representation of state may also be used, in addition
to intrinsic representation, as a speed optimization for selection of
objects in a particular state.

All objects of a particular state can be managed collectively, which
can yield a smaller object footprint and allow clients to execute
actions efficiently on them as a group. Client-specific state models
can be implemented without affecting the class of the objects, which
reduces the structural complexity of the application and supports the
independence and evolution of the objects and their class.

Within each client, there are at least as many collections as there
are states of interest: the simplest approach is to represent each
state exclusively from other states. It is also possible to add inclusive
collections, such as a collection that holds all the objects, in addition
to the inclusive ones that model a particular state.

With a growing number of states, therefore, COLLECTIONS FOR STATES

becomes less applicable, as the collections—as well as the object
management functionality across all collections—introduce resource
management and performance overhead. Similarly, if the rate of state
changes is high, COLLECTIONS FOR STATES can become impractical, due
to the overhead of transferring objects between collections.

20 Resource Management

Tram depot in Amsterdam
 Kevlin Henney

The term resource covers a broad range of programmatic assets
and entities, including database sessions, synchronization primi-
tives, security tokens, file handles, network connections, and even
distributed services and components. A resource can range from a
heavyweight entity, such as an application server component pro-
cess, to a fine-grained lightweight entity such as a memory buffer.
This chapter describes twenty-one patterns that manage the lifecycle
and availability of resources to clients. These activities include assur-
ing that resources are created or acquired when needed and that they
are deleted or released in a timely manner.

474 Resource Management

Managing resources is hard, and managing them efficiently in dis-
tributed systems is even harder. The quality properties of an appli-
cation, such as its performance, scalability, flexibility, stability,
predictability, reliability, and security, often depend heavily on appro-
priate resource management policies and mechanisms. What makes
resource management particularly hard is balancing the trade-offs
among requirements, because addressing one of them often affects
the others. For example, flexibility often reduces performance, while
robustness can reduce predictability due to the use of checkpoint-
ing and restore mechanisms. Similarly, optimizing for specific use
cases, such as minimizing service initialization time, can increase
complexity and latency for general use cases.

To implement efficient resource management for applications in
distributed systems, therefore, the following challenges should be
addressed to strike the right balance among these requirements:

• Performance. An application with performance-critical timelines
must fulfill many properties, including low latency, minimum delay
between an action and its reaction, and high throughput in terms
of the number of actions performed per unit time. Since each action
may involve many resources, it is important to minimize resource
creation, initialization, acquisition, release, disposal, and access
activities that incur processing overhead and delay.

• Scalability. Large and complex server applications usually require
multiple resources to perform their functionality. They often also
have many clients that access their resources multiple times. In
many cases, servers are designed for specific usage profiles, such
as the peak and average number of users expected. These usage
profiles can expand over time as new requirements are added. For
example, a new requirement could require a server to handle twice
as many users and ten times more transfers without affecting sys-
tem performance. A server application whose resource management
strategies can fulfill these requirements is scalable.

• Reliability. A reliable service can satisfy its clients without inter-
ruption or inconsistency. To achieve reliability, applications must
manage their resources carefully. For example, if multiple resources
are involved in a transaction, their final states must be consistent
and durable. When performance or scalability optimizations are

Resource Management 475

applied, moreover, these optimizations must not diminish service
reliability.

• Flexibility. A common requirement among applications is ease of
configurability, which implies that application properties can be
selected at compile time, initialization time, or runtime. Highly
flexible applications leave this degree of freedom to their users.
The mechanics of resource management must also therefore be
flexible, while still meeting performance, reliability, and scalability
requirements.

• Updates. Long-lived applications are likely to evolve throughout
their lifetimes. Ideally this evolution will proceed smoothly and
reliably, even when incorporating new resources. Shutting an entire
application down to perform updates often cannot be tolerated,
however, particularly for applications with stringent availability
requirements.

• Transparent lifecycle control. Clients of a resource generally want
to use the services the resource offers when they want to use them,
and are uninterested in the details of its lifecycle management,
such as when and how the resource is created or disposed of, or
whether or not it is temporarily deactivated or evicted. Conversely,
effective management of resources may require the deactivation of
expensive resources that are sparsely used to allow the acquisition
of new resources. It is hard to support resource lifecycle control that
is both transparent to clients and supports the needs of resource
provisioning environment effectively.

Since the challenges above are often interwoven, it is hard to tackle
one without influencing others. This complicates resource manage-
ment, and motivates the use of time-proven patterns to address these
challenges. The following twenty-one patterns in our pattern lan-
guage for distributed computing provide guidance for implementing
efficient resource management, balancing conflicting challenges to
help meet the needs and requirements of distributed and concurrent
applications:

The CONTAINER pattern (488) [VSW02] provides a runtime envi-
ronment for components, together with infrastructure services
that components need to execute properly.

476 Resource Management

The COMPONENT CONFIGURATOR pattern (490) [POSA2] allows an
application to load and unload its component implementations
at runtime without having to modify, recompile, or statically
relink the application. It also supports the reconfiguration of
components into different application processes without shutting
down and restarting running processes.

The OBJECT MANAGER pattern (492) [POSA3] separates object
usage from object management, to support explicit, centralized,
and efficient handling of components, objects, and resources.

The LOOKUP pattern (495) [POSA3] helps to find and retrieve initial
references to distributed objects and services.

The VIRTUAL PROXY pattern (497) [GoF95] loads or creates an
expensive component on demand, and may delete it from memory
after use.

The LIFECYCLE CALLBACK pattern (499) [VSW02] enables explicit
control of a component’s lifecycle.

The TASK COORDINATOR pattern (501) [POSA3] maintains system
consistency by coordinating the completion of tasks that involve
multiple participants. It presents a solution for tasks involving
multiple participants in which either all work done by the par-
ticipants is completed, or none is, which ensures consistency of
system state.

The RESOURCE POOL pattern (503) [POSA3] avoids expensive acqui-
sition and release of resources by recycling resources that are no
longer being used.

The RESOURCE CACHE pattern (505) [POSA3] avoids expensive
reacquisition of resources by not releasing resources immediately
after their use. Instead, resources are kept in memory and reused
to avoid having to recreate them.

The LAZY ACQUISITION pattern (507) [POSA3] defers resource acqui-
sition to the latest possible point during system execution, to
optimize resource usage.

The EAGER ACQUISITION pattern (509) [POSA3] makes runtime
acquisition of resources predictable and fast by acquiring and
initializing resources before their actual use.

The PARTIAL ACQUISITION pattern (511) [POSA3] optimizes resource
management by decomposing the acquisition of a resource into

Resource Management 477

multiple stages. Each stage acquires part of the resource based
on system constraints such as available memory, as well as the
availability of other resources.

The ACTIVATOR pattern (513) [StSc05] automates scalable on-
demand activation and deactivation of services accessed by many
clients, so that resources are not consumed unnecessarily.

The EVICTOR pattern (515) [HV99] [POSA3] specifies how and
when to release resources such as memory and file handles, to
optimize resource usage.

The LEASING pattern (517) [POSA3] simplifies resource manage-
ment by specifying how resource users can obtain access to a
resource from a resource provider for a pre-defined time.

The AUTOMATED GARBAGE COLLECTION pattern (519) provides a safe
and simple mechanism for reclaiming memory used by objects
that are no longer needed.

The COUNTING HANDLE pattern (522) [Hen01b] simplifies the life-
time management of a shared object by introducing handle
objects that act as references to the shared object, and which
track the number of references to the shared object.

The ABSTRACT FACTORY pattern (525) [GoF95] provides an inter-
face for creating and deleting families of related or dependent
components without coupling clients with concrete classes.

The BUILDER pattern (527) [GoF95] separates the construction
and destruction of a complex component from its representation,
so that the same construction and destruction processes can
create and delete different representations.

The FACTORY METHOD pattern (529) [GoF95] encapsulates the
concrete details of component creation by providing a method for
component creation, rather than letting clients instantiate the
concrete class themselves.

The DISPOSAL METHOD pattern (531) [Hen02b] encapsulates the
details of component disposal by providing a method for
destroying components, instead of having clients destroy the
components themselves, or leaving them to a garbage collector.

The patterns outlined above can be partitioned into several groups,
each addressing a specific resource management theme.

478 Resource Management

The first group of patterns, OBJECT MANAGER, CONTAINER, and COMPONENT

CONFIGURATOR, specify entire resource management infrastructures.
Since each pattern addresses a different set of forces, they are often
used in conjunction:

• OBJECT MANAGER separates objects and resource usage from lifecycle
management and access control.

• CONTAINER provides a whole life-support system for component
objects, which offers lifecycle management, infrastructure services,
and resources to components, including security, transactions,
and persistence. A CONTAINER often builds on one or more OBJECT

MANAGERS.

• COMPONENT CONFIGURATOR complements the other two patterns by
allowing replacement and redeployment of component implementa-
tions throughout an application’s lifecycle, even when it is execut-
ing.

The following diagrams outline the integration of these three patterns
into our pattern language for distributed computing:

component
creation and disposal

component
management

container
interface

Broker

Explicit
Interface

Dynamic
Invocation Interface

Lifecycle
Callback

Declarative
Component

Configuration

Object Manager

Virtual ProxyObject Adapter

Task Coordinator

Observer

Memento

Facade

Interpreter

Factory Method

Disposal Method

component
management

Component
Configurator

Domain Object

Microkernel Reflection

Broker

component
(re)configuration

component
management

component
access

component
coordination

component
integration

component
dispatch

client
notification

state
transfer

configurator
interface

configuration parameter
interpretation

Container

Resource Management 479

resource
access

Strategy

Resource Cache

Resource Pool

thread-safe
client access

Server Request
Handler

Acceptor
Connector

Microkernel Reflection

Reactor Thread-Specific
Storage

Immutable Value Container
Row Data
Gateway

Client Request
Handler

Asynchronous
Completion Token

Component
Configurator

Lookup

Thread-Safe
Interface

Iterator

Batch Method Enumeration
Method

Evictor

Activator

Virtual Proxy

Counting Handle

Leasing

Factory Method

Disposal Method

Lifecycle Callback

object and resource
management

resource
retrieval

resource
handling
policies

resource
provision

resource
lifecycle
management

resource
eviction

resource
re-activation

resource
creation and
disposal

resource
lifetime
management

Object Manager

Through OBJECT MANAGER we offer a different perspective on three
overlapping patterns in the documented pattern space: MANAGER

[Som97], OBJECT LIFETIME MANAGER [LGS00], and RESOURCE LIFECYCLE

MANAGER [POSA3]. All three patterns address important aspects of
component and resource management, such as obtaining access to
resources and controlling their lifetime. None of the patterns cover

480 Resource Management

their respective subject in full depth, however, nor do they address
all aspects covered by efficient component and resource manage-
ment. OBJECT MANAGER not only subsumes and broadens the focus
of MANAGER, OBJECT LIFETIME MANAGER, and RESOURCE LIFECYCLE MANAGER,
it also addresses other aspects of component and resource man-
agement. For example, it covers resource sharing and the temporal
removal of resources from memory. In addition, OBJECT MANAGER out-
lines many implementation options for its functionality.

The next group of patterns address different realization aspects of
effective resource management:

• LOOKUP helps to find and retrieve concrete resources.

• VIRTUAL PROXY helps to hide all resource management activities from
clients. It gives them the illusion that a resource is always present
and readily available, even when it is temporarily deactivated or
deleted.

• LIFECYCLE CALLBACK defines an interface that objects and resources
that are subject to resource management should support to enable
explicit control of an object’s lifecycle.

• TASK COORDINATOR supports the coordinated execution of state-
modifying tasks across multiple, distributed component objects
and resources. We added the prefix ‘Task’ to the original COORDINATOR

pattern in Patterns for Resource Management [POSA3] to indicate
its concrete scope: coordinating tasks, as opposed to coordinating
only transactions.

• RESOURCE POOL and RESOURCE CACHE help to minimize the need for
expensive resource acquisition and release by keeping a set of
resources ‘in stock.’ The key difference between the two patterns is
that a RESOURCE POOL does not preserve the identity of the managed
resources—they are all considered equal, that is, a client receives a
resource, not a specific resource. RESOURCE CACHE, in contrast, main-
tains the identity of the managed resources: a request to a cache
fails if it does not contain the specific resource requested, even if
other resources of identical properties are available. RESOURCE POOL

thus helps to optimize access to stateless resources such as mem-
ory, threads, or stateless application services, whereas RESOURCE

CACHE optimizes access to stateful resources.

Resource Management 481

• RESOURCE POOL and RESOURCE CACHE correspond to the POOLING and
CACHING patterns in Patterns for Resource Management [POSA3].
Since all pattern names in POSA4 are noun-phrased names, how-
ever, we decided to rename the two patterns. The new names also
reflect the specific role of the two patterns in our pattern language
for distributed computing.

Since the issues addressed by the six patterns above are funda-
mental to effective resource management, they are used in most
practical realizations of the OBJECT MANAGER, CONTAINER, and COMPONENT

CONFIGURATOR resource management infrastructures outlined earlier.

The following diagrams show how the patterns described above con-
nect with our pattern language:

Equivocator

Object Manager
Distributed

Component Group

Lookup

component or
object lookup

Half-Object
plus Protocol Context Object

support for
initial
client access

fault
tolerance

component
or object
reactivation

Business DelegateBroker Proxy

Container

Future

component
or object
representation

Lazy Acquisition

Partial Acquisition

Evictor

Leasing

component
initialization

policy

Activator

component
release

Virtual Proxy

(a)

482 Resource Management

Container

Task Coordinator

Context Object

component
coordination

encapsulation
of execution
context

Extension Interface

Object Manager

Container

Component
Configurator

Lifecycle Callback

component
lifecycle
management

Factory Method

Disposal Method

Lazy Acquisition

Context Object

component
creation and

disposal

component
initialization
policy

encapsulation
of execution
context

Lazy Acquisition

Partial Acquisition

Evictor

LeasingEager Acquisition

Resource Pool Resource Cache

Client ProxyObject Manager Object Manager

Leader/Followers Immutable value

resource
initialization

policy

resource
release

resource
provision

resource
provision

resource
release

(b)

Resource Management 483

The third group of patterns address three different resource acqui-
sition strategies: EAGER ACQUISITION provides an up-front acquisition
strategy, LAZY ACQUISITION provides an on-demand acquisition strategy,
and PARTIAL ACQUISITION is a mixture of the two other strategies in which
core parts of a resource are acquired eagerly, whereas supplementary
parts are acquired on demand. The trade-off to consider when choos-
ing a particular acquisition strategy is performance and availability
versus resource consumption, such as memory footprint. Although
EAGER ACQUISITION ensures that resources are available when needed,
this strategy can increase memory footprint, which may be unac-
ceptable if resources are only used sparsely or not used at all. LAZY

ACQUISITION ensures that memory is consumed only when a specific
resource is actually needed, but incurs performance and availability
penalties on first access. PARTIAL ACQUISITION strives to balance trade-
offs between performance and availability on one hand and memory
footprint on the other.

The following diagram outlines how LAZY ACQUISITION, EAGER ACQUISITION,
and PARTIAL ACQUISITION relate to one another and to other patterns in
our pattern language for distributed computing:

Business Delegate

Virtual ProxyLifecycle Callback

Thread-Specific
Storage

Resource Pool Data Mapper Resource Pool

Virtual Proxy

Resource Pool

Lazy Acquisition
Partial Acquisition

Eager Acquisition

Future

Evictor

Leasing

Double-Checked
Locking

resource
acquisition policy

resource
acquisition policy

resource or component
acquisition policy

resource
release
strategy

thread
safety

coordinating
asynchronous
partial acquisition

484 Resource Management

EVICTOR and ACTIVATOR are a pair of complementary patterns that
support centralized (re)activation and release of resources. EVICTOR

addresses the wholesale release of resources at defined points in
time, such as releasing cached resources that have not been used
recently. If resources, such as component objects in a container,
could still be referenced and used by clients, however, the ACTIVATOR

can reactivate them on the next client access.

ACTIVATOR can thus be seen as a concrete example of LAZY ACQUISITION:
it defers the acquisition of resources until late in the system lifecycle,
for example at installation or runtime. Although the two patterns are
similar, they address different problem contexts at different levels of
abstraction. LAZY ACQUISITION defines a broad strategy for allocating
resources, from shared, passive entities like memory or connections,
to active entities such as services. ACTIVATOR, in contrast, is a more
focused pattern that addresses the activation and deactivation of ser-
vices in resource-constrained distributed computing environments.
ACTIVATOR, however, also shares many of LAZY ACQUISITION’s pros and
cons, such as less predictable performance.

The following diagram shows how ACTIVATOR and EVICTOR integrate into
our pattern language:

Virtual Proxy

Activator

resource
wrapping

LookupObject Manager

component
or object
reactivation

Virtual Proxy

Resource Pool

Strategy

Resource Cache

Object Manager

Evictor

Fresh Work
Before Stale

component
or object
release

release
policy

encapsulating
release
policies

Resource Management 485

The next group of three patterns address release strategies for objects
and resources shared by multiple clients:

• LEASING specifies a predefined period during which a resource is
available. After all granted leases have expired, the resource can be
reclaimed safely by the resource management environment.

• AUTOMATED GARBAGE COLLECTION defines an ‘acquire and forget’ strategy
for resource release. A garbage collector periodically monitors all
active resources in an application and releases resources that are
no longer referenced by clients.

• COUNTING HANDLE implements reference counting. As long as multiple
clients reference a shared object or resource, it cannot be released
on client initiation. The resource is released only when the last
client using the resource initiates its disposal.

The trade-offs to consider when choosing one of these three patterns
include aspects such as:

• What initiates the release of the resource? Choices include the
resource itself, as in LEASING, the resource users, as in COUNTING

HANDLE, or something else, as in AUTOMATED GARBAGE COLLECTION.

• When is the resource released? Choices include when no client is
using it, such as in COUNTING HANDLE, or at a later point in time, as
in LEASING and AUTOMATED GARBAGE COLLECTION.

All three patterns share the property that resource release is trans-
parent to clients—they need not care.

Note that we have substituted the COUNTING HANDLE pattern (546) from
the Reference Accounting pattern language [Hen01b] for the COUNTED

POINTER idiom from A System of Patterns [POSA1]. There were two
reasons for this replacement:

• COUNTING HANDLE is more accurate than COUNTED POINTER and is the
entry point into a rich pattern language.

• This replacement allows us to describe reference accounting in
more depth and generality than we could do with COUNTED POINTER.

486 Resource Management

The following diagram shows how the three patterns described above
connect into our pattern language for distributed computing:

Virtual Proxy

Resource PoolResource Cache

Object ManagerActive Object

Immutable ValueBridge

Whole-Part

Bridge

ProxyImmutable Value

Active Object

Object ManagerWhole-Part

Disposal Method
resource
release policy

resource
release policy

resource
release policy

Collections for
States

Disposal Method

Explicitly
Counted Object

Linked Handles

Embedded Count

Detached CountLooked-up Count

resource
disposalresource

disposal
counting
handle
types

count
realization

resource
disposal

resource
management

LeasingCounting Handle

Automated
Garbage

Collection

The final four patterns in this chapter address different aspects of
object creation and destruction:

• ABSTRACT FACTORY supports the consistent creation and disposal of
sets of related objects.

• BUILDER addresses the flexible creation and disposal of complex
objects that consist of multiple parts.

• FACTORY METHOD and DISPOSAL METHOD are two complementary pat-
terns that hide the details of object creation and disposal behind a
simple and easy-to-use interface.

Resource Management 487

The following diagram shows how the four pattern described above
are used in our pattern language for distributed computing:

component
creation and
disposal

component
creation and
disposal

pluggable
creational
behavior

Domain Object

Strategy

Pluggable Factory

Reflection

Abstract Factory Builder

creation and disposal of
multi-part components

Factory Method Disposal Method

Mutable Companion

Thread-Safe
Interface

creation of
immutable
objects

Iterator

Acceptor-
Connector

Thread-Specific
Storage

Immutable Value

Broker

Explicit
Interface

Object
Manager

Component
Configurator

Lifecycle
Callback

Iterator
Explicit

Interface

Object
Manager

Component
Configurator

Lifecycle
Callback

Automated
Garbage Collection

object
creation and
disposal

object
creation and
disposal

component or
object creation

Counting Handle

Execute-Around
Object

disposal
automation

component or
object disposal

Readers familiar with the Gang-of-Four book may notice the omission
of two object-creational patterns from this chapter: SINGLETON and
PROTOTYPE [GoF95]. SINGLETON is not included because it introduces
more problems—such as deletion, thread-safety, and configurabil-
ity—than it resolves. We simply did not find a use for PROTOTYPE in
the context of our pattern language, although this pattern is used in
other domains, such as user interface frameworks.

488 Resource Management

Container *

When implementing a BROKER (237) for a component-based system,
or using a component within a distributed system . . .

. . . we generally try to decouple a component from the technical details
of its environment.

���
Components implement self-contained business or infrastructure
logic that can be used to compose applications. Since compo-
nents may be deployed across a diverse range of applications
and platforms, however, they cannot assume specific execution
scenarios and technical environments.

Some applications use components as part of a transaction, whereas
other do not. Similarly, some applications use components that
require adherence to strict security policies, whereas others do not.
Components may also be used on different system platforms that
have different ways of accessing system resources, such as persis-
tence and concurrency mechanisms. Having components deal with
these issues directly couples them to the platform and complicates
their implementation. It should be possible to integrate components
into diverse application deployment scenarios and execute them on
various system platforms without explicit programmer intervention.

Therefore:

Define a container to provide the execution environment for a
component that supports the necessary technical infrastructure
to integrate components into application-specific usage scenar-
ios, and on specific system platforms, without tightly coupling
the components with the applications or platforms.

register

unregister Components

method

methodmethod

method
Component
Proxies

Client

method

register component
1

2

use component

Container * 489

Use the container to initialize and provide the runtime context for the
components it manages. Define operations that enable component
objects to access their connections to ports of other components,
as well as to access common middleware services such as persis-
tence, event notification, transactions, replication, load balancing,
and security. Provide a means to integrate a component with its
container automatically from a declarative specification, rather than
programmatically with imperative code.

���
CONTAINER separates component usage from the integration of a com-
ponent into a particular application or platform environment. The
container allows developers to focus on providing the core logic of their
components and applications, rather than handling the environmen-
tal aspects manually. In essence, a container provides a ‘life-support
system’ for components.

A component can integrate with a container by registering itself along
with a DECLARATIVE COMPONENT CONFIGURATION (461) that specifies which
infrastructural services and resources it requires and how it wants to
use them. The container interprets this configuration to generate the
concrete integration of the component automatically. To benefit from
the container’s life-support system, components can either access
their container directly via an EXPLICIT INTERFACE (281), or be notified
of service details via LIFECYCLE CALLBACKS (499).

The container plays the role of an OBJECT MANAGER (492) to manage
its registered components. Similarly, the container uses one or more
object managers to manage the middleware services and resources it
offers to them. VIRTUAL PROXY (497) instances give clients the illusion
that their component objects are always alive. To access component
objects that do not provide such a proxy, the container can offer a
DYNAMIC INVOCATION INTERFACE (288).

A TASK COORDINATOR (501) helps to control state-modifying tasks per-
formed across multiple component objects by ensuring that either all
participating component objects complete successfully, or the entire
task is not executed at all. A container uses OBJECT ADAPTERS (438) to
transform component invocations received via its dynamic invocation
interface, or an underlying middleware, from their general format to
the specific interface method of the invoked component.

490 Resource Management

Component Configurator *

When realizing DOMAIN OBJECTS (208), a BROKER (237) middleware, or a
REFLECTION (197) or MICROKERNEL (194) architecture . . .

. . . we need to support flexible component configuration at runtime.

���
Prematurely committing an application to a particular set of
component implementations can be inflexible and near-sighted.
Some decisions cannot be made until late in the lifecycle, even
after deployment, and it is undesirable to force applications
either to carry the overhead of components they do not use, or
be unable to take advantage of better or newer components.

Components have their own lifecycle: they evolve and mature.
For example, new versions provide better algorithms or fix bugs.
Applications using these components should therefore benefit from
such improvements. Similarly, components whose implementations
depend on specific software or hardware environments must be
replaced when these environments change. Applications with high
availability requirements, however, cannot tolerate downtime, so
updates must have minimal affect on a running system.

Therefore:

Decouple component interfaces from their implementations and
provide a mechanism to (re)configure components in an applica-
tion dynamically without having to shut down and restart it.

void configure (Script script) {
// Load DLL and create component.
dll = load_dll (script.dll_name);

Component Repository

Component
Configurator

2

4

//Insert component into repository
repository.insert (comp);

//Start component.
comp.service ();

comp = dll.make_component

}

DLL

(script.comp_name);
insert

remove

Components

service

service
service

configure

reconfigure

1

3

Component Configurator * 491

Organize components into suitable units of deployment so that they
are loadable dynamically, and provide a framework that supports
component (re)configuration under the explicit control of running
applications. Manage configured components centrally via a compo-
nent repository, and offer an API or use some form of scripting to
(re)configure designated sets of components at runtime.

���
A COMPONENT CONFIGURATOR enhances flexibility by allowing replace-
ment and redeployment of component implementations throughout
an application’s lifecycle, even when it is executing. Similarly, appli-
cations only pay for the time and space overhead of components they
actually use, in contrast to unnecessary components linked into an
application statically.

To support effective component (re)configuration, all components
should define a common administrative LIFECYCLE CALLBACK (499) inter-
face that includes operations to initialize a component and start its
execution, shut down a component and clean up its resources, sus-
pend and resume a component’s execution, and access information
about a component’s current execution status. The component config-
urator framework uses this interface to (re)configure each component.
This administrative interface may also provide a protocol, such as
OBSERVER (405), to notify clients when a component terminates, as
well as to transfer state to a new version. State and relationships to
other components can be passed to a new version via a MEMENTO (414)
that is cached by the component repository during the replacement.
Organize components into dynamically linked libraries (DLLs) that
can be (un)loaded dynamically, and provide each DLL with FACTORY

METHODS (529) to create component objects and DISPOSAL METHODS (531)
to destroy these objects when they are no longer needed.

Internally, a component configurator consists of a component repos-
itory, which is an OBJECT MANAGER (492) that manages the configured
components. The interface of the component configurator is often a
FACADE (294) that shields clients from its internal structure and dele-
gates requests to its appropriate participants. It may also contain an
INTERPRETER (442) to process configuration directives if these are in a
simple scripting language.

492 Resource Management

Object Manager **

When implementing a CLIENT REQUEST HANDLER (246), SERVER REQUEST

HANDLER (249), REACTOR (259), ACCEPTOR-CONNECTOR (265), ASYNCHRONOUS

COMPLETION TOKEN (268), MICROKERNEL (194), REFLECTION (197), THREAD-

SPECIFIC STORAGE (392), IMMUTABLE VALUES (396), CONTAINER (488),
COMPONENT CONFIGURATOR (490), or ROW DATA GATEWAY (542) arrangement
. . .

. . . we must often manage the access to and lifetime of specific types
of objects, and their resources and relationships.

���
Some objects within an application, such as resource or server-
side component objects, require careful access control and life-
cycle management to maintain and use them efficiently and
correctly. Implementing this functionality within the objects
themselves, however, burdens them with complex responsibili-
ties and makes them hard to use and evolve.

Similarly, clients are not responsible for the actual management of
such objects, since that would couple them to the concrete type
of the objects, their access constraints, and the lifecycle policy. This
situation would also make discovery of objects harder, such as finding
an object via a key. Ultimately, these dependencies increase coupling
and complexity within an application. Ideally, therefore, a client
should depend only on an object’s usage interfaces, not its house-
keeping obligations.

Therefore:

Separate object usage from object lifecycle and access control.
Introduce a separate object manager whose responsibility is to
manage and maintain a set of objects.

Client find a
particular
resource

create

delete

insert

Managed
Objects

remove

find

method

method

method

Object
Manager

1

method
2

use the
resource

Managed
Object

Object Manager ** 493

Clients can use the object manager to access objects with specific
capabilities. If a requested object does not yet exist, the object man-
ager can create it on demand. Clients may also request creation
of objects explicitly via the object manager. In some situations the
client may already have created the objects, and may hand custody
of them to a manager. The manager can also control the disposal of
its objects, either transparently or in response to client requests.

���
An OBJECT MANAGER frees managed objects and their clients from
detailed lifecycle-management and retrieval activities. It concentrates
and localizes object management for a particular kind of object into
a well-defined, easy to find, and encapsulated object type.

Some applications provide only one object manager for each type
of managed object. For example, one object manager could handle
threads, another could handle connections. Alternatively, an applica-
tion can provide multiple object managers for different purposes and
different contexts. An example might be one object manager per group
of objects that are managed according to a specific set of policies.
If an object manager is shared between multiple threads, it should
offer a THREAD-SAFE INTERFACE (384). On the other hand, if objects are
only ever used within the thread that initiated their creation, an
object manager per thread would offer a simpler and more efficient
design.

Clients use the object manager retrieval services to request access to
objects. LOOKUP (495) services allow a client to search for a specific
object, for example based on object names, object properties, or other
types of key. An ITERATOR (298), ENUMERATION METHOD (300), or BATCH

METHOD (302) supports traversal of multiple objects without revealing
the internal structure of an object manager.

An object manager has several options for maintaining managed
objects. For widespread and diverse deployments, it may be appro-
priate to parameterize these options and policies with STRATEGY (455)
objects or types. In the typical case, however, a simple method inter-
face for setting options is sufficient.

A RESOURCE POOL (503) can be used to keep a fixed number of objects
of equal type and identity constantly available, which is useful for
managing critical computing resources that are used continuously,

494 Resource Management

such as processes, threads, and connections. A RESOURCE CACHE (505),
in contrast, keeps specific objects available only for a certain amount
of time. To avoid degrading an application’s quality of service, the
cache can dispose of unused objects and release their resources for
other objects to use. An EVICTOR (515) supports controlled removal
of infrequently used objects from a cache. Evicted objects may still
be referenced and accessed by clients, however, in which case they
can be reactivated by an ACTIVATOR (513). Alternatively, clients access
the objects via a VIRTUAL PROXY (497), and the proxy is responsible for
reactivation.

To prevent premature release of actively referenced objects, an object
manager can use various object removal policies. LEASING (517) enables
an object manager to specify the time for which references to objects
are valid, and offers clients the opportunity to renew their leases.
After a lease has expired, the object manager can destroy the objects
safely. COUNTING HANDLES (522), in contrast, initiate the removal of an
object as soon as it is known to be no longer referenced.

Objects maintained by an object manager must be created internally
or provided by clients. Registration functionality allows clients to
transfer custody of externally created objects to an object manager,
whereas FACTORY METHODS (529) support encapsulated and explicit
object creation. Objects can also be created for clients transpar-
ently, without their explicit intervention. Although client creation of
objects offers a certain flexibility, it also weakens design cohesion,
reduces the opportunities for resource-management optimization by
the manager, and increases the likelihood of custody-related errors.

Objects maintained by an object manager must be destroyed at
some point. Deregistration functionality allows clients to assume
responsibility for objects from the object manager. DISPOSAL METHODS

(531) request the deletion of objects explicitly. When shutting down
an application, the object manager often disposes of all remaining
managed objects before terminating, thereby ensuring proper release
of the resources used by the objects.

A set of LIFECYCLE CALLBACKS (499) common to all objects allows an
object manager uniform control over their lifecycle, including their
initial creation, eviction, reactivation, and final disposal.

Lookup ** 495

Lookup **

When implementing a BROKER (237), a BUSINESS DELEGATE (292), a
REPLICATED COMPONENT GROUP (326), or an OBJECT MANAGER (492) . . .

. . . we typically need to discover and retrieve references to resources,
objects, and services that are held either locally or remotely.

���
In a distributed system, a server may offer many services to
clients. A client does not necessarily know which services are ini-
tially on offer when it is started. Similarly, services can be added
or removed over time. If clients do not know which services are
available, however, they cannot use them.

One way for clients to discover services in a distributed system is to
hard-code the addresses of the services into the client software. This
approach is clearly inflexible, however. Ideally, a server should be able
to publish services—and clients to find these services—efficiently and
scalably. However, a broadcast approach can be costly in its use of
bandwidth and processing time.

Therefore:

Provide a lookup service that allows services in a distributed
system to register their references when they become available,
and deregister their references when they become unavailable.

find Service References

method

method

Service
Reference

Client

retrieve service
1

use service

Lookup
Servicemethod2

register

unregister

Clients in the system can use the lookup service to retrieve the
references of registered services.

���

496 Resource Management

LOOKUP is a ‘clearing house’ between clients and servers, allowing
clients to access server services without having clients hard-code the
location or references to the servers or the services they offer. Equally,
servers do not need to know the location of the clients that want to
access their services.

There are essentially two styles for organizing a LOOKUP service:

• Centralized, in which information about services resides in a single
location. The lookup service stores this information persistently to
ensure proper recover in case of system failures. This approach is
relatively straightforward to implement, but scales poorly and can
be a single point of failure.

• Distributed, in which a group of lookup services periodically pub-
lish the availability of their registered services. Some form of group
communication protocol may be used to multicast this informa-
tion between the federated lookup services. Typically, a distributed
lookup service is realized as a HALF-OBJECT PLUS PROTOCOL (324).
Although a distributed lookup service is harder to implement, it
scales better and avoids a single point of failure.

The reference of a service can be associated with properties that
describe the service and the interfaces it offers. The lookup service
maintains this information internally to allow clients to select one
or more services based on queries. An ACTIVATOR (513) can (re)start a
lookup service when clients need to locate services, to minimize the
number of services that actively consume resources in a distributed
system.

To communicate with the lookup service, the clients and servers
need an access point. If the access point is not known, clients and
servers use a protocol to find it, which may involve contacting a
preconfigured set of bootstrap servers or broadcasting a message.
An available lookup service responds with a message containing
information about its access point.

The lookup service is the one resource that clients need to be able
to access simply, typically as part of its initial context, and by a
well-known name or via a CONTEXT OBJECT (416).

Virtual Proxy ** 497

Virtual Proxy **

When implementing a PROXY-based (290) interface, or a FUTURE (382),
OBJECT MANAGER (492), CONTAINER (488), or ACTIVATOR (513) arrangement
using potentially expensive objects . . .

. . . we may need to reduce the cost of acquisition for optionally or
infrequently accessed resources.

���
Creating an object can be expensive in terms of memory or time.
This expense is particularly wasteful if the object is never used,
or is not used soon after creation. When it is needed, however,
the object must be present.

The cost of loading all objects that correspond to the rows in a large
database is costly and unnecessary, especially if only a few of the
objects are actually used. Similarly, a large collection of server objects
managed by a container could consume excessive memory and space
in the table of active objects. If these objects are used infrequently,
resources are needlessly overcommitted. Ideally, a resource user
should not have to incur overhead for resources they do not use, or
do not use for long periods. Managing a resource’s lifecycle should
also not encumber resource users.

Therefore:

Introduce a proxy for an object that does not currently exist in
memory. The proxy may be able to handle simple requests, such
as a query of the intended target object’s identifying key, but
when more complete object behavior is needed, the actual target
object is created and initialized as needed.

Client

Proxy

Object
implementation

method_A

method_B
method_A_imp

method_B_imp

method_A ()

comp := load_comp_from_DB (compID);

end

Do pre-processing.
begin

comp.method_A_imp ();
Call the method on the component.

Do post-processing
unload_comp_from_user_space (compID);

498 Resource Management

The proxy offers the same interface as the intended target object.
Each method is executed, either in terms of state that is stored in
advance of creating the actual target object, or in terms of on-demand
creation followed by forwarding. In the latter case, the existence of
the target is checked, the target is created if it does not already exist,
and the method invoked on the proxy is called in turn on the target
object.

���
VIRTUAL PROXY introduces a level of indirection to resource access,
using the offset in structure to support an offset in time: the time at
which the target object is created and committed is delayed until the
first point of use. There is always some cost associated with adding
an additional object to introduce a level of indirection, and this cost
must be balanced against the benefit and likelihood of optimization
under the expected application load.

The common implementation of VIRTUAL PROXY is simply in terms of
LAZY ACQUISITION (507) or a collocated ACTIVATOR (513). For objects that
can be decomposed into separately acquirable parts each of which
is associated with a different load cost, however, PARTIAL ACQUISITION

(535) offers an alternative that can spread the acquisition load more
evenly in some applications.

The cost of object creation is not eliminated in VIRTUAL PROXY, it is
simply deferred. Similarly, the likelihood that the late initialization
fails is also deferred. So instead of dealing with just the application
errors that might arise from using the resource, a client may also
have to deal with more fundamental resource errors, which affects
the transparency of the optimization.

The cost of first access is deferred when the option of consuming a
resource is exercised. A proxy to an infrequently accessed object will
hold onto the resource once initialized, however, even if it is never
or rarely used again. This retention can lead to resource hogging
and even resource exhaustion. The target object can be disposed
of immediately after the first access, as a follow-on action from
the forwarding. In some cases, however, this will simply lead to an
expensive (re)acquisition and release cycle. Alternatively an EVICTOR

(515) or LEASING (517) can be used to release the resource at a later
time so that is readily available for immediate subsequent use.

Lifecycle Callback ** 499

Lifecycle Callback **

When implementing an EXTENSION INTERFACE (284), OBJECT MANAGER

(492), CONTAINER (488), or COMPONENT CONFIGURATOR (490) that is respon-
sible for managing the lifecycle of framework objects . . .

. . . we need to ensure that framework objects are able to respond to
lifecycle-related events initiated by the framework.

���
The lifecycle of some objects is simple: their clients create them
before they are used, they stay alive as long as they are used,
and they are disposed of by their clients when no longer used.
However, some objects have a much more complex lifecycle,
driven by the needs and events of their component environment
and constrained by additional resource-managing techniques,
such as pooling and passivation.

Rather than ad hoc creation and disposal by their clients, the lifecycle
of the latter type of object is often controlled by frameworks according
to application-specific policies and architectural needs. An object may
also be passivated during its lifetime, for example to save memory
and other resources, and reactivated when it is accessed again. In
addition, the knowledge of how to perform these operations is specific
to the object, not the application. Yet it should be possible for the
application to control the lifecycle of these objects explicitly.

Therefore:

Define key lifecycle events as callbacks in an interface that is
supported by framework objects. The framework uses the call-
backs to control the objects’ lifecycle explicitly.

Framework

create

init

passivate

activate

finish

Framework
Object

dispose

Lifecycle Callback Interface

500 Resource Management

Typically the set of callbacks includes operations for initializing and
finalizing the object, for passivating and activating it, and for passing
its state to and from persistent storage.

���
LIFECYCLE CALLBACKS enable a framework to control the lifecycle of
components explicitly, but without any knowledge of their internal
structure: the framework calls through an interface with appropriate
methods, and the object types implement this interface according
to their own structure and needs. All object types for a framework
often share the same LIFECYCLE CALLBACK interface, which allows the
framework to treat them uniformly.

It is one thing to create an object, but quite another to start using
it. A LIFECYCLE CALLBACK interface, therefore, often separates these two
phases explicitly: a FACTORY METHOD (529) is responsible for object
creation, and a separate initialization callback for the LAZY ACQUISITION

(507) of the resources used by the object. This two-phase construc-
tion is often mirrored by two-phase destruction, in which a lifecycle
callback for finalization is responsible for resource release, and a
DISPOSAL METHOD (531) for the actual object destruction.

Where the object is likely to need access to component environment
details or framework services, a CONTEXT OBJECT (416) can be passed
through to each callback.

OBJECT MANAGERS and CONTAINERS typically use lifecycle callbacks to
activate, passivate, and remove component objects that they manage.

Task Coordinator * 501

Task Coordinator *

When implementing a CONTAINER (488) . . .

. . . we need to ensure that partial failure of a task divided across
multiple, cooperating participants does not make the state of the
system inconsistent.

���
Partial failure of computers, networks, and software components
is a common problem in large-scale systems. If a portion of
system fails, however, it may leave applications in an inconsis-
tent state, which may be worse that total failure. This problem
is exacerbated when a task has been distributed across multiple
components.

Many applications execute tasks that involve more than one partici-
pant, where participants may include resource provides and resource
users. Each participant executes part of the task in a sequence: for
the task to succeed as a whole, the work performed by each par-
ticipant must succeed. If a task is successful, the changes made
should keep the system in a consistent state. If the work performed
by one participant fails, however, the work of other participants may
have modified the application state, but the participant that failed
would not have made the necessary changes. As a consequence, the
application could produce incorrect results.

Therefore:

Introduce a coordinator that supervises the execution and com-
pletion of a task by all participants. The coordinator ensures that
either all contributing participants complete successfully or, in
the event of even a single participating task failing, it appears
that the entire task did not execute at all.

Componentstask

void task () {
// Execute component functionality.
failure = prepare_components ();

}

prepare

commit

abort

prepare

commit

abort
// Commit or abort.
if (not failure)

commit_components ()
else

abort_components ();

502 Resource Management

A two-phase model is the simplest model of coordination that keeps
communication to a minimum, maximizes opportunities for distribu-
tion and parallelism, and keeps tasks separate from one another. On
completion of the task, successful or otherwise, all resources involved
in the task are released automatically.

���
A COORDINATOR ensures that a task involving multiple participants
appears to be atomic to clients that initiate the task. This coordina-
tion in turn maintains the consistency of the entire application by
ensuring that multi-step state transitions are controlled and fail-safe.

To implement a coordinator with a two-phase approach, split the
work performed by each of the participants as follows:

• Prepare. In this phase, the coordinator asks each participant to
check whether the execution of its part of the task could fail. If a
participant indicates a potential failure, the coordinator stops the
execution sequence of the entire task and asks all participants that
successfully completed their prepare phase to roll back by aborting
and restoring their original state. Since none of the participants
made any persistent changes, the system state remains consistent.

• Commit. If all participants pass the prepare phase, the coordinator
initiates the commit phase in which all participants do their actual
work. As each participant has indicated in the prepare phase that
its work would succeed, the commit phase should also succeed,
leading to the overall success of the task.

The resulting task execution is transactional: it appears atomic, and
the resulting state of the system is consistent. During the transaction,
state changes are isolated from one another: successful state change
is durable beyond the transaction. These are the so-called ‘ACID’
properties of a transaction. Failure is still a possibility during the
commit phase, and three-phase commit is sometimes considered a
more robust protocol.

However, in spite of the scalability and integrity offered by such
coordination, use of a coordinator introduces overhead in the form
of division and management of the task, as well as the need to
pass transactional context to the participants, typically via a CONTEXT

OBJECT (416).

Resource Pool ** 503

Resource Pool **

When implementing a LEADER/FOLLOWERS (362) concurrency model,
IMMUTABLE VALUES (396), or an OBJECT MANAGER (492) configuration in
which there is a high turnover of resources . . .

. . . we may need to support rapid acquisition and release for a limited
set of stateless resources.

���
Acquiring and releasing system resources, such as network con-
nections, threads, or memory, can incur performance overhead
that may vary for each acquisition and release. Applications with
a need for performance and scalability, however, require efficient
and predictable access to these resources.

Any given access strategy to resources must scale: it must be fast
and predictable even as the number of resources used, and the
number of resource users, increases. Moreover, to ensure predictable
performance, acquisition and release time for resources of the same
type should not vary significantly. For example, consider a server
on which each request is handled by a separate thread. For frequent
short requests the repeated cost of creating, preparing, and destroying
each thread can dominate the actual time taken to handle the request.

Therefore:

Keep a certain number of resources available in an in-memory
resource pool. Rather than repeatedly creating resources from
scratch, retrieve the resources from the pool quickly and pre-
dictably. When the application no longer needs a resource, it
must be returned to the pool so it becomes available for subse-
quent acquisition.

remove

insert

Resources

method

method

Resource
Client

retrieve resource
1

use resource

Resource
Poolmethod2

3
return resource

504 Resource Management

A resource pool encapsulates the knowledge of resource acquisi-
tion, access, and management. To acquire a resource, a resource
user must know the appropriate pool. Depending on the nature of
the resource and how it is managed by the pool, the resource user
may or may not need to return the resource to the pool explicitly.
Resources are released either when the pool is disposed of or by
explicit request—assuming that the pool supports such an inter-
face.

���
RESOURCE POOL avoids performance penalties due to the repeated over-
head of creating and destroying resources on demand from scratch.
By storing the resources in a pool, the time to access them is shorter
and more predictable. All resources in a pool that have the same
properties are considered equivalent, that is, a client gets a resource
on request, not a particular resource.

The number of resources in a pool may be fixed at creation, or it may
be grown dynamically according to some policy, such as exponential
or fixed increment, with growth either bounded or unbounded. For
resource pools that are to be used in different application environ-
ments, the policy may be configurable, either through a simple set of
methods that can be used to set policy parameters, or via a STRATEGY.
For pools that grow, it may make sense to allow shrinkage, either
explicitly or transparently. A pool that tracks its resources can easily
resize itself. Alternatively, a more complex approach based on EVICTOR

(515) or LEASING (517) can be employed to manage resource retirement
from the pool.

Pooled resources are often created during the initialization of the
OBJECT MANAGER, using either EAGER ACQUISITION (509), PARTIAL ACQUISITION

(511), or LAZY ACQUISITION (507). LAZY ACQUISITION defers the creation
of an object until the first time it is accessed. Conversely, EAGER

ACQUISITION creates an object completely before it is accessed, so the
object is usable immediately after creation. If creation takes a long
time, PARTIAL ACQUISITION can be used to reduce the initial creation time
via stepwise object assembly.

Resources returned to the pool are reinitialized before they are reused
by other clients. Reinitialization ensures that resources are in a
defined and ready-to-use state, or that security requirements are met.

Resource Cache ** 505

Resource Cache **

When realizing a CLIENT PROXY (240) or an OBJECT MANAGER (492) . . .

. . . we need to optimize the cost of repeated access to the same set of
resources.

���
Repeated creation and disposal of resources for a few resources
users can incur unnecessary performance overhead. For applica-
tions in which this overhead makes it hard to meet performance
requirements, there is a need to minimize the cost of initializa-
tion and disposal of frequently used resources.

An application that frequently uses and disposes of a particular kind
of resource, such as memory buffers or threads, may benefit from a
pooling arrangement. However, although a pool may offer a policy that
is good for an application as a whole, it may not necessarily benefit
a more local context such as a specific component or subsystem. An
appropriate optimization needs to be localized, simple to implement,
and low in execution cost.

Therefore:

Rather than destroying a resource after use, store it in an in-
memory cache. When the resource is needed again, fetch it from
the cache and return it, instead of creating it anew.

remove

insert

Resources

method

method

Resource
Client

obtain resource
1

use resource

Resource
Cache

method2

3
insert resource
into cache

get_resource
Resource
Provider

4
obtain resource
from cache for
subsequent use

method

506 Resource Management

A resource cache stores a resource or small set of resources temporar-
ily for fast retrieval. To acquire a specific resource, a resource user
looks in the cache first. If the cache does not contain the requested
resource, it then looks to the resource provider for the resource. The
presence of a cache allows rapid, localized recycling of a resource.
Resources are released either when the cache is disposed of or is full,
or by explicit request—assuming that the cache supports such an
interface.

���
By storing frequently accessed resources instead of destroying them,
a RESOURCE CACHE minimizes the cost of (re)acquiring and releasing
resources. Ideally, resources are created only once, either before or
when they are accessed for the first time. Similarly, they are destroyed
only once, when they are no longer needed, or when the application
terminates.

All resources in a cache are considered different, even if they have
the same properties. If a specific resource requested by a client is
not in the cache, the request fails, even if resources with identical
properties are available.

Clearing a cache to release its resources can be an explicit activ-
ity executed by an EVICTOR (515), or an implicit operation through
LEASING (517). Some overhead can occur, however, when a resource
must be evicted from the cache even though an application has not
explicitly released it. For example, if a new resource is inserted into
the cache but not enough space is available for it, other cached
resources—typically those that are least-recently or least-frequently
used—must be destroyed to allocate space for the new resource.
These resources must be created from scratch, or otherwise be reac-
tivated when they are again accessed by the application.

All caches make a trade-off between space and time, using extra space
to improve performance. The more complex a cache is, however, the
harder it is to maintain from a development point of view, and the
less likely it is that it will offer a performance advantage.

Lazy Acquisition ** 507

Lazy Acquisition **

When realizing BUSINESS DELEGATE (292), THREAD-SPECIFIC STORAGE (392),
LIFECYCLE CALLBACK (499), VIRTUAL PROXY (497), RESOURCE POOL (503),
PARTIAL ACQUISITION (511), DATA MAPPER (540), or any potentially costly
or optional initialization . . .

. . . we may need to ensure that object creation and resource acquisi-
tion satisfy high throughput and availability demands.

���
Applications that access many resources, but which must also
satisfy high availability requirements, need a way to reduce the
initial cost of acquiring the resources they need or the resource
usage footprint that they have at any point in time.

In particular, acquiring all resources during system or subsystem
initialization can make start-up unnecessarily or even unacceptably
slow. Moreover, many resources may be acquired over-optimistically,
making the initial acquisition wasteful if they are not consumed
during the lifetime of the application. Over-acquisition can lead to
resource exhaustion and prevent resource recycling. Applications
that use many resources, however, need to access them when needed,
ideally without paying for the space overhead or early start-up cost
associated with early acquisition.

Therefore:

Acquire resources at the latest possible point in time. The
resource is not acquired until it is actually about to be used.
At the point at which a resource user is about to use a resource,
it is acquired and returned to the resource user.

Client Object

Resource
method_A

method_B

method_X

void method_A ()

and acquire it, if not.

end

Check if resource is acquired,
begin

if (resource == NULL)
resource = acquire_resource ();

Execute method using the resource.
...

create

508 Resource Management

Lazy acquisition is an optimistic optimization that defers, but does
not eliminate, the cost of resource acquisition. Its use should be fully
encapsulated by the resource provider, shielding the resource user
from the policy and mechanism details.

���
LAZY ACQUISITION follows a ‘mañana, mañana’ philosophy for resource
acquisition: never do today what you can put off until tomorrow.
Perhaps more positively, it can be seen to exercise the lean principle
‘decide as late as possible,’ deferring actual acquisition to ‘the last
responsible moment’ [PP03].

LAZY ACQUISITION ensures that each resource is acquired ‘just in time,’
that is, when the need for it is concrete and it is about to be used.
LAZY ACQUISITION therefore does not incur any resource acquisition
costs early in an application, component, or subsystem’s lifecycle.
Further more, it does not waste time or space acquiring resources
that are never used.

However, there is normally some space overhead associated with LAZY

ACQUISITION, resulting from either introducing intermediate objects,
such as a VIRTUAL PROXY, or holding some additional state, such as a
status flag to indicate the state of the acquisition or attributes to be
used in acquiring the resource.

The cost of acquisition is moved rather than eliminated, so any code
that relies on an object that uses LAZY ACQUISITION will be slower to
execute the first time than subsequently. This deferral reduces the
predictability of execution. Another predictability-related risk is intro-
duced by the lateness of acquisition: failure. There is no guarantee
that when the resource is needed, it will be available.

Because the actual acquisition is transparent, it may not be obvi-
ous when, if, or how a resource should be released. EVICTOR (515)
and LEASING (517) are both options for releasing resources in the
background.

In concurrent applications LAZY ACQUISITION often uses DOUBLE CHECKED

LOCKING (386) to prevent the same resource being accidentally acquired
multiple times by multiple threads running in parallel. A simple
locking approach may be thread-safe, but it can be costly, incurring
locking overhead unnecessarily for every access but the first.

Eager Acquisition ** 509

Eager Acquisition **

When implementing PARTIAL ACQUISITION (511), RESOURCE POOL (503), or
any potentially costly initialization . . .

. . . we may need to ensure that object creation and resource acquisi-
tion satisfy high predictability and performance requirements.

���
Every application needs to access certain resources, such as
memory, threads, network connections, and file handles. Appli-
cations with stringent predictability and performance require-
ments, however, often cannot afford the overhead of acquiring
such resources on demand at runtime.

Resource acquisition can be a costly business, and an application
may not be able to afford the time taken to acquire a resource dynam-
ically to fulfill a task. The time needed to acquire a specific resource
is often unpredictable, especially in general-purpose operating envi-
ronments. As a result, applications may not be able to meet their
predictability requirements. In a layered system, in which primitive
resources from one layer are wrapped up by the next, lazy acquisi-
tion of primitive resources in one layer can reduce predictability of
acquisition in the next higher layer. Furthermore, handling resource
exhaustion may complicate the implementation of the task. Exhaus-
tion may even be unacceptable from an operational perspective, so
the possibility should be minimized.

Therefore:

Eagerly acquire the resources before they are used. The resource
is then available to a resource user when immediately it requests
it.

Client Object

Resource

method_A

method_B

void create ()

resource = acquire_resource ();
end

Acquire resource
begincreate

void method_A ()

...
end

Execute method using the resource.
begin

method_X

create

510 Resource Management

The point in time at which resources should be acquired can depend
on several factors, including the time it takes to create them, when
they are needed, the number of resources to create, and their
dependencies to other resources. These factors should be considered
in the context of any application using EAGER ACQUISITION.

���
EAGER ACQUISITION is an optimization that applies Isabella Beeton’s
kitchen-management maxim that ‘there is no work like early work’ to
resources.

In considering when to acquire resources, one option is to acquire
resources at system initialization. Such an immediate acquisition
allows an application to ensure that there is no dynamic resource
acquisition during the runtime of the application. Another option is
to acquire them at some later designated point in time after system
initialization but before their first use by applications. For example,
at component load-time for dynamically loaded components, or on
creation of a RESOURCE POOL or other responsible object. Regardless
of which strategy is applied, however, EAGER ACQUISITION ensures that
resources are properly acquired and are readily available before they
are actually used. The resource user is guaranteed that the resources
are available and at no (or minimal fixed) cost of access.

However, in applying EAGER ACQUISITION, a developer must be aware
that the optimization involves a trade-off rather than unconditional
benefits. The cost of resource acquisition is not eliminated, it is
simply moved to an earlier point in an application’s lifecycle. If many
resources are managed in this fashion, an application’s, component’s,
or subsystem’s start-up will be noticeably slowed, which is not accept-
able for applications that need rapid start-up. EAGER ACQUISITION also
carries with it the risk of over-acquisition, tying up resources unnec-
essarily and, in conflict with one of the design objectives, incurring
the risk of resource exhaustion. There is no performance or space
benefit to acquiring resources eagerly that are never used.

Partial Acquisition * 511

Partial Acquisition *

When implementing RESOURCE POOL (503), VIRTUAL PROXY (497), or any
potentially costly or complex initialization . . .

. . . we may need to ensure that object creation and resource acquisi-
tion satisfy throughput and predictability demands.

���
Some applications with stringent performance, scalability, and
robustness requirements must access resources whose size is
large or unknown. Acquiring these resources eagerly during sys-
tem initialization may therefore introduce excessive start-up
overhead. However, acquiring them on demand can incur an
untimely cost.

If memory or processing time is not available for acquiring all required
resources during system initialization, an application’s overall quality
of service can suffer. Indeed, some of the resources may not be read-
ily available at start-up. Similarly, acquiring these resources ‘just in
time’ when they are actually used may incur unpredictable perfor-
mance overheads that also cannot be tolerated within an application’s
operational constraints. For example, acquiring remote resources is
expensive, whenever it is done.

Therefore:

Split the acquisition of each resource into multiple stages. In
each stage, acquire only a part of the resource, so that its acqui-
sition gradually completes over time, in accordance with overall
application quality of service needs.

Client Object

Resource
method_A

method_B

void create ()

resource.core = acquire_core ();
end

Acquire resource core.
begincreate

create_part

create_core

method_X

void method_A ()

and acquire the missing parts, if not.

end

Check if resource is fully acquired,
begin

if (resource == NULL)
resource.part = acquire_part ();

Execute method using the resource.
...

512 Resource Management

Divide up the resource acquisition with respect to the cost, the
availability, the space overhead of holding or managing deferral of
acquisition, the perceived value or debt of holding a resource that is
not used, and any natural division of a resource’s acquisition into
stages. For example, a remote resource may have separate instance
creation and initialization steps, which would map cleanly onto two
stages of partial acquisition.

���
PARTIAL ACQUISITION ensures that resource acquisition does not create
too much overhead and that each resource acquisition stage does not
incur excessive performance penalties. The original forces of large
resource size and long resource acquisition time are not completely
resolved, but instead are balanced against other demands.

The number of stages for a resource acquisition, the amount of
resource to acquire at each stage, and the timing of each stage depend
on various factors, such as available memory, required response time,
the availability of dependent resources, and the lifecycle of resources.
It is possible that some resources can be acquired asynchronously,
so that at an initial stage they are requested and at a later stage they
are committed. Managing such asynchronicity can be simplified, for
example by using a FUTURE (382).

After it has partially acquired a resource, an application can use the
resource as if it were fully acquired and initialized. PARTIAL ACQUISITION

strategies often build on LAZY ACQUISITION (507) and EAGER ACQUISITION

(509). However, PARTIAL ACQUISITION tends to be more complex in
implementation than both LAZY ACQUISITION and EAGER ACQUISITION, and
is subject to a combination of the liabilities of each of these two
approaches.

Activator ** 513

Activator **

When implementing an OBJECT MANAGER (492) or a LOOKUP (495) service
that releases resources that could still be used by clients . . .

. . . we need to offer simple access to temporarily released resources.

���
Some types of services in a distributed system should only
consume resources when they are accessed actively by clients.
Clients should be shielded as much as possible from where ser-
vices are located, how they are deployed on hosts in a network,
and how their lifecycle is managed.

Unconstrained use of resources such as communication channels,
threads, or memory can degrade the overall quality of service of an
application. Applications may periodically evict less frequently used
resources from memory to make space for other resources needed
by an application. If an evicted resource is re-accessed by its clients,
however, it must be re-activated, which can involve recreating the
resource, reloading its state, restarting it on its server, and reacquir-
ing any resources that it in turn uses. Such resource reactivation
should be transparent to clients, however, so that it appears as if the
accessed resources are always available. It should not be part of the
client’s responsibility to manage such reactivation.

Therefore:

Minimize resource consumption by activating services on
demand and deactivating services when they are no longer
accessed by clients. Use proxies to decouple client access trans-
parently from service behavior and lifecycle management.

activate

method

Resource
ProxyClient

use resource
Activatormethod1

activate resource
2

4use
resource

reassemble
resource

3

514 Resource Management

Introduce an activator that initiates and supervises the reactivation of
previously deactivated resources. Whenever a resource is evicted, the
activator receives information about the resource, such as its identity,
its location in the network, the location of its persistent state, and its
required computing resources. Whenever the client re-accesses the
de-activated resource, the activator reactivates it according to a given
policy using the information it maintains about the resource.

���
An ACTIVATOR frees clients from the responsibility of reactivating the
resources they use: it appears to them as if all resources were always
available. An ACTIVATOR also ensures that reactivating a resource
incurs minimal overhead, because it maintains information about
how to optimize this process. For example, the ACTIVATOR could reload
the resource’s persistent state and reacquire the necessary computing
resources in parallel, thereby speeding resource initialization.

To make the use of an activator transparent, the resource must be
wrapped, such as with a VIRTUAL PROXY (497). There is normally some
space overhead associated with activation, however, resulting from
either introducing intermediate objects, such as a VIRTUAL PROXY, or
holding some or all attributes used when acquiring the resource. In
addition, the cost of acquisition is moved rather than eliminated, so
any code that relies on an object that needs reactivation will be slower
to execute the first time than subsequently. This deferral reduces the
predictability of execution.

Evictor ** 515

Evictor **

When implementing an OBJECT MANAGER (492), Virtual Proxy (497),
RESOURCE POOL (503), or RESOURCE CACHE (505) for resource-constrained
applications . . .

. . . we need to ensure that infrequently used resources are released
in a timely manner.

���
The simplest model of resources is that a resource client acquires
a resource, uses it once, and then releases it. However, for clients
that need a resource more than once, albeit infrequently, a
repeating (re)acquire—use—release cycle incurs overhead. But a
resource provider may not be able to afford unlimited use of its
resources.

The frequency of use, time of use, or some other quality of usage,
should influence the lifecycle of a resource. The lifecycle should be
constrained by system environment, not just by explicit actions by
resource clients, such as resource release. Ideally, the solution should
be as transparent as possible to the resource client, otherwise this
pushes the complexity of resource management detail back out to the
client.

Therefore:

Introduce an evictor to monitor the use of resources and control
their lifetime. Resources that are not accessed after a specific
period of time are removed to free up space for other resources.

evict

method

Resources

Evictor

monitor and
evict periodically

methodmethod

516 Resource Management

Add a marker such as a flag, counter, or timestamp to each resource,
which indicates when the resource is used. Initialize the marker to
indicate that the resource is unused, then update it when the resource
is used. Periodically or on demand, evict unmarked or uncommonly
accessed resources, but keep resources that are marked because they
are currently, recently, or frequently in use. Other criteria for eviction
are possible, including ones based on resource footprint rather than
frequency of use.

���
EVICTOR prevents frequently or recently used resources from being
destroyed, thereby avoiding reacquisition costs when these resources
are re-accessed. Similarly, applications can control when less fre-
quently used resources are released. This increases their predictabil-
ity and performance, because resource housekeeping activities do
not interfere with critical application operations. If the applica-
tion re-accesses an evicted resource, however, it must be created
from scratch or otherwise be reactivated, thereby incurring perfor-
mance overhead.

Common eviction policies are Least Recently Used (LRU) and Least
Frequently Used (LFU). Application-specific policies are also possible.
For example, the size of resources in memory-constrained applica-
tions could be used to determine which resources to evict, so a large
resource could be evicted even if it was used recently. Similarly, it is
possible to use domain-specific knowledge. For example, if an appli-
cation knows that a resource is scheduled for use soon, it may not
be evicted even if it has not been accessed recently. For overloaded
reactive systems, a policy of FRESH WORK BEFORE STALE [Mes96] results
in new tasks or requests—as opposed to resources—being given pri-
ority over old ones, which may be evicted. In all policies the state
of stateful resources is stored persistently before releasing them.
The policies can be either be hardwired or expressed in a pluggable
STRATEGY (455) form.

Although simple in principle, the subtlety of EVICTOR lies in finding
an appropriate eviction strategy and dealing with the question of
reactivation or access of evicted resources. The need for reactiva-
tion can introduce a slightly more complex lifecycle for resources,
involving two additional lifecycle events: (re)activate and passivate
(or deactivate).

Leasing ** 517

Leasing **

When realizing an OBJECT MANAGER (492), RESOURCE POOL (503), RESOURCE

CACHE (505), LAZY ACQUISITION (507), LEASING (517), AUTOMATED GARBAGE

COLLECTION (519), or COUNTING HANDLE (522) structure in which resource
allocation crosses distribution boundaries . . .

. . . we need to ensure that resource-constrained applications always
release resources in a timely manner.

���
Applications working with a constrained set of resources need to
ensure that resources are returned after use. Unless resource
clients explicitly terminate their relationship with resource
providers and releases the resources, they may retain unused
resources needlessly. However, a crashed client is unable to
release resources, and a rogue client may be unwilling to do so.

In a typical scenario, a client asks a provider for one or more
resources. Assuming the provider grants the resources, the client
can then start using them. Either the client or the provider may
crash, or the provider may no longer offer some of its resources,
or a client may have a defect that prevents correct return of a
resource. However, unless resource providers are explicitly informed
that resources are no longer used, the resource will leak, which could
lead to resource exhaustion. And unless clients are explicitly informed
that the resources are no longer available, they may continue to hold
invalid resources.

Therefore:

Have the provider create a lease for each resource held by clients.
Include a time duration in the lease that specifies how long a
client can use the resource. After the time duration expires,
release the reference to the resource in the client and the
resource in the provider.

acquire_resource
Resource
Provider

method

Resource

lease_expired

Resource
User

timer

acquire_resource
acquire resource

1

release_resource

release reference
release
resource

2

lease
expired

3
lease expired

44 4

518 Resource Management

While a lease is active, the client can cancel the lease, in which case
the corresponding resource is freed in the provider. Before a lease
expires, the client can try to renew the lease from the lease provider.
As long as the lease is renewed, the corresponding resource will
continue to be available.

���
LEASING simplifies resource usage and management for both clients
and providers. Clients are freed from the responsibility of releasing
resources explicitly. They also know that the resource is available and
valid for the granted time. Providers can control resource usage more
efficiently: by bounding resource usage to a time-based lease, unused
resources are not wasted and are released as soon as possible so that
they can be granted to new clients.

The concept behind LEASING is simple, and the result is efficient, sta-
ble, and scalable. Alternative schemes, such as requiring resource
clients and providers to emit a heartbeat or to ping one another, tend
to be more complex and less efficient than LEASING. Overall, resource
management is simple for both resource provider and resource con-
sumer, but both parties need to be timer-aware. It is possible for
a lease to be lost if a client or network is overloaded, so that the
resource provider does not receive the lease renewal in time. In such
cases, the client will find itself working with a stale resource and will
have to handle this runtime error, for example by acquiring a new
resource.

The duration of a lease depends very much on the kind of application,
and is often also a configurable parameter. In support of distributed
objects, as used in Java RMI and. NET Remoting, the default lease
period is of the order of minutes [VKZ04]. For IP addresses issued by
DHCP the default is of the order of days. For software licenses the
period is normally of the order of months.

Automated Garbage Collection ** 519

Automated Garbage Collection **

When realizing a WHOLE-PART (317), ACTIVE OBJECT (365), IMMUTABLE

VALUE (396), or BRIDGE (436) configuration, or when providing runtime
support for objects allocated dynamically on the heap . . .

. . . we often need a safe and simple mechanism to reclaim memory
from objects that are no longer needed.

���
Heap memory is a finite resource managed by the runtime envi-
ronment and consumed by any dynamically created object in an
application. Failure to return memory to the heap when it is no
longer needed can exhaust memory, or lower performance due
to thrashing virtual memory pages. Similarly, errors in manual
management can yield memory leaks and memory corruption.

It is relatively easy to manage objects that are created and used
only within other objects or within a single method. For example,
stack-based value objects in C++ or C# are scope-bound, and EXECUTE-

AROUND OBJECTS can automatically reclaim heap objects in C++.
Objects that are shared or involved in complex object relation-
ships, however, are more likely to invite programmer error or complex
designs aimed at taming manual memory management. Object rela-
tionship graphs may also include cycles, in which one object refers
to another which directly or indirectly points back to the first.

Therefore:

Define a garbage collector that identifies which objects are no
longer referenced by live objects in the application, and reclaims
their memory. The garbage collector performs the identification
and reclamation automatically and transparently.

A network of objects

reclaim_memory Garbage
Collector

start garbage
collection 1 delete

unreferenced
objects

2 2

520 Resource Management

The set of unreferenced objects is determined by finding the set of
objects the running system uses and subtracting it from the set of
all allocated objects. The root set of references defines objects that
are known directly to be used by the system: objects referenced by
global (or static) variables and objects referenced by the stack in
each thread of control. From the root set it is possible to follow the
references from each object to determine which other objects are in
use, and so on.

���
AUTOMATED GARBAGE COLLECTION lives up to its name in the sense that
it classifies unreferenced objects as garbage and collects their mem-
ory without direct application intervention. The greatest benefit of
garbage collection is that it is simple to work with for many pro-
grams, programmers, and types of object, notably those that—with
the exception of memory—are not resource consumers. Garbage col-
lection is hard to implement deterministically, however, so quality
of service may vary, and it is hard to ensure that resource-based
objects will be released in a timely manner, if at all. Where such
control is needed, programmers are often required to resort to a more
manual scheme, such as calling DISPOSAL METHODS (531) explicitly, or
employing COUNTING HANDLES (522).

Garbage collectors can run synchronously and completely, or asyn-
chronously and incrementally. The simplest model is the synchronous
mark-and-sweep approach: all objects reachable from the root set are
marked in one pass, then a second pass through all the objects in
memory collects the unmarked ones. Although simple to implement,
mark-and-sweep algorithms can have a ‘stop-the-world’ effect on an
application, which is inconvenient for user interfaces and intolera-
ble for high-performance servers or real-time systems. Generational
garbage collectors take advantage of the longevity profile of objects:
most objects that are created only live for a short period of time,
but a minority of older objects live for a very long time. COLLECTIONS

FOR STATES (495) can divide objects in memory into young and old
generations, and manage each generation separately for collection.
Objects that survive a collection of the young generation are moved
to the old generation.

Automated Garbage Collection ** 521

Garbage collectors can be configured in terms of the various parame-
ters that govern their operation, such as maximum generation size for
generational collectors. Garbage collection APIs also normally allow
explicit execution of the garbage collector and, for some collectors,
explicit disabling and enabling of the collector. Explicit control of the
collector is particularly important for applications that must meet
real-time constraints, in which an inappropriate garbage collection
cycle could mean the difference between meeting a hard deadline or
missing it, causing a catastrophic application failure.

In a distributed environment, collection strategies based on travers-
ing the set of all objects would perform and scale poorly. The
process of garbage collection would flood the network with many
fine-grained book-keeping messages and would introduce blocking
behavior across the network. Local garbage collection within the
same address space can be efficient, but to scale to a distributed
system a complementary strategy such as LEASING (529) is required.

A form of memory leakage often occurs in garbage-collected systems
in which an object that should be collected is not because some
type of lookup table retains a reference to it. These tables are often
intended to show available objects, rather than to use them directly
and keep them alive. By referring to them, however, that is just
what they end up doing. To resolve this problem, ordinary object
references can be complemented with ‘weak references’ that are not
counted when looking for reachable objects. If an object is collected,
any corresponding weak references will yield null when they are
checked.

It is still possible to employ garbage collection in runtime environ-
ments in which manual memory management is the native model,
such as in C and C++. A more conservative approach is needed,
however, to collect object pointers expressed in terms of raw memory
addresses rather than as special handles. Raw memory is untyped,
so any pointer-sized piece of memory that matches the address of
an allocated object, or points into such an object, is considered a
pointer. These faulty matches can not only leak memory, but can
also be fooled by addresses that have been encoded in some way,
such as in terms of offset values rather than actual pointers.

522 Resource Management

Counting Handle **

In a PROXY (290), WHOLE-PART (317), ACTIVE OBJECT (365), IMMUTABLE

VALUE (396), BRIDGE (436), OBJECT MANAGER (492), AUTOMATED GARBAGE

COLLECTION (519), or DISPOSAL METHOD (531) arrangement . . .

. . . we often need to arrange for guaranteed and deterministic disposal
of shared objects and their resources.

���
An object created dynamically on the heap must be destroyed
following its use to avoid leaking memory and other resources.
However, some languages, such as C++, manage heap object life-
time manually. Errors in management lead to memory leaks and
memory corruption. Even in garbage-collected environments,
issues can arise with resource reclamation, because garbage col-
lection is not deterministic.

Instead, we must ensure that the shared object created on the heap
is disposed of reliably, safely, and in a timely fashion. The sooner
it is disposed of, the less perception there will be of any resource
leakage or starvation. If this is done too soon, however, there will
be dangling references to the object. As long as at least one client
is referencing the object, it must not be reclaimed: as soon as no
client is using the object, it is a candidate for disposal. Implementing
this logic within the object’s clients is not practical, since it pollutes
clients with additional housekeeping code and couples them tightly
to the object.

Therefore:

Introduce or nominate a handle object as the only means of
accessing the shared object. Let this handle object encapsulate
the responsibility for tracking references to the shared object
and, consequently, for its disposal if it is no longer referenced.

A client

Another client

forward service
request

if (count == 0)

A shared
objectdelete

method

count A reference
counter

delete

method

delete

method

Handle
objects

1
call a service

2

3

delete handle

object.delete ();
...

Counting Handle ** 523

The handle object ensures, transparently, that the shared object is
disposed of on behalf of its clients without producing either dangling
references or memory leaks.

���
The handle object’s lifecycle methods are responsible for tracking the
number of references to, and managing the lifetime of, the shared
object. When there are no more references, when a handle itself is
about to be destroyed or re-bound to another object, is when the (no
longer) shared object can be disposed of. In C++ the operations in
question are the constructors, destructor, and assignment operator
for the handle.

There are two basic options for implementing handle objects. An
EXPLICITLY COUNTED OBJECT [Hen01b] tracks the references to the shared
object via reference counting, so that there is an explicit, physical
count. By contrast, LINKED HANDLES [Hen01b] introduces bidirectional
links between the handle objects, so that they are aware of both the
shared object and other handle objects referring to the shared object.
However, LINKED HANDLES cannot be made thread-safe with any kind
of reasonable efficiency, so they are not applicable for objects shared
between threads.

An explicit count avoids the penalties of linking COUNTING HANDLES

and makes the task of checking sharing against a specific limit such
as zero simple and explicitly visible. It is easy to determine when a
COUNTING HANDLE is the last one to point to the shared object and it
must delete it upon its own deletion.

There are three placement options for the reference count for an
EXPLICITLY COUNTED OBJECT. An EMBEDDED COUNT places the counter
within the shared object itself [Hen01b]. This option is efficient
time-wise and space-wise, requiring only a single heap allocation
not much larger than the allocation of an uncounted version of
the shared object. If it is impossible, hard, or inappropriate to add
an EMBEDDED COUNT to the shared object, for example if there is
no access to its source code, we can introduce a DETACHED COUNT,
which is a separate object that holds the reference count for the
shared object [Hen01b]. A DETACHED COUNT does not affect the type
of the shared object, and is managed exclusively by the COUNTING

HANDLES. The DETACHED COUNT is created when the shared object is

524 Resource Management

first introduced to a COUNTING HANDLE—only then does it become an
EXPLICITLY COUNTED OBJECT. When the last COUNTING HANDLE disposes
of the shared object, it also disposes of the corresponding DETACHED

COUNT.

A third placement option is a LOOKED-UP COUNT. This centralizes the
management of shared objects and their counts collectively in a
separate object, using some identity of the shared objects as the key
for its direct access from their COUNTING HANDLE [Hen01b]. A LOOKED-UP

COUNT can introduce an additional time overhead for the lookup, but
it can also provide the opportunity for collective operations on all the
shared objects if that is needed.

In multi-threaded applications any reference count implementation
must be thread-safe, to avoid corrupting its state due to race condi-
tions caused by concurrent access from multiple COUNTING HANDLES.
Unless incrementing and decrementing the count are infrequent oper-
ations, lock-based solutions are not time- or resource-efficient enough
to be practical. The lock-free increment and decrement operations
offered by modern operating systems are the preferred approach, but
note that although these may be lock free, they are not cost free:
they still incur an overhead, especially on multiprocessor systems
and multi-core processors.

In a distributed environment, synchronous reference counting is
insufficient as a practical or scalable scheme when the lifetime of
a shared object in one address space is managed by handles in
remote address spaces. Increments and decrements can make for
a great deal of idle chatter on the network, and all it takes is for
a client to crash, or a rogue client to not adhere to the reference-
counting protocol, for the scheme to unravel. If COUNTING HANDLES

are introduced in such an environment, they need to be supple-
mented with other lifetime management schemes such as LEASING

(517). Similarly, COUNTING HANDLES fail for object relationships that
have cycles. In cyclic relationships the reference counts are never
zero, so they leak.

Abstract Factory ** 525

Abstract Factory **

When implementing a DOMAIN OBJECT (208), a REFLECTION (197) archi-
tecture, or a BUILDER (527) . . .

. . . we often need to separate details of related implementation classes
from their client interfaces to keep a system loosely coupled.

���
Clients—particularly clients in a framework—are generally not
interested in how families of related objects they use are cre-
ated, configured, represented, and disposed of. Instead they are
only interested in the services that these objects offer, as well
as knowing that the objects in the families are semantically
compatible.

Frameworks, for example, such as graphical user interface toolkits
and object request brokers, as well as applications designed for
flexibility, often create families of objects that encapsulate variants
in the software such as control-flow extensions, algorithms, and data
representations. Creating each object individually and separately
can create a configuration nightmare if the created objects are not
semantically compatible with one another.

Therefore:

Define a factory interface for the creation and, optionally, the
disposal of families of related objects. Fulfill this interface with
specialized factories that actually carry out the creation work on
behalf of their clients.

dispose

create

Factory
Interface

dispose

create

dispose

create

Concrete Factory
Implementationsis realized by

Concrete Object
Types

create

dispose

create

dispose

526 Resource Management

An abstract factory specifies a uniform object creation and disposal
interface for all related object types. Concrete factory classes derive
from this abstract factory to control the creation and disposal of
particular object types, and to ensure that the objects created are
semantically compatible.

���
In general, factories separate object lifetime concerns from object
usage, so that clients do not depend on how the objects they use are
created and destroyed. Neither do they depend on structural details
of the objects that are relevant for proper creation and destruction.

An abstract factory interface contains two kinds of methods: one
or more FACTORY METHODS (529) create objects and, optionally, the
corresponding DISPOSAL METHODS (531) dispose of the objects. Abstract
factories are typically expressed in terms of their own class rather
than by adding new responsibilities to an existing class, because
most objects created are not related to each other via inheritance.

The variability sometimes needed for object creation can often be
accommodated by configuring the factory with objects that specify
the actual creation logic for the factory’s creation methods. Such a
PLUGGABLE FACTORY [Vlis98b] [Vlis99] is essentially a framework into
which other parts are plugged and offers a simpler, more flexible,
and less repetitive alternative to creating many different concrete
factories. Pluggable creational behavior can be expressed through
STRATEGY (455) objects or types. Alternatively, prototypical instances
can be provided for each type created by the factory. A homomorphic
FACTORY METHOD—a specialized form of FACTORY METHOD in which the
resulting product type is the same as the creating type—can express
polymorphic copying.

Builder * 527

Builder *

When implementing a DOMAIN OBJECT (208) or a REFLECTION (197) archi-
tecture . . .

. . . we often need to create objects that are complex or the cumulative
result of many steps.

���
Some objects are complex enough to prevent them being created
in a single ‘atomic’ step. Instead they must be created step-wise,
in which each step of the builder creates a portion of the complex
object. Alternatively, even if the object being created is simple
in representation, its state may be the outcome of complex or
ongoing calculations. The execution order of the steps may differ
for each object created.

Clients are generally not interested in the complexity and variability
of an object’s creation. The details of the process should not result
in the creation of many temporary objects or the complication of
application logic. Clients just want a ‘product’ that is created correctly
and reliably so that they can access its functionality. Similarly, what
holds for an object’s creation often also holds for its disposal.

Therefore:

Introduce a builder that provides separate methods for construct-
ing and disposing of each different part of a complex object, or
for combining cumulative changes in the construction of whole
objects. Let a separate director implement the algorithms for
creating and disposing of the object by using the builder inter-
face.

dispose

create

Director

dispose_part _1

create_part _1

Builder

Concrete Object Types

create

dispose

create

dispose
dispose_part _2

create_part _2

1

create complex object

return
complex
object

3 2

create and assemble
object parts

528 Resource Management

A builder encapsulates the knowledge of how to construct an appro-
priate product, whether it is encapsulation of process that can be used
to work on the product, or the encapsulation of assembly structure.
The builder offers a method for retrieving the resulting product object.
A director uses the builder to construct an appropriate product object.
Object disposal can optionally also be supported.

���

The separation into builder and director roles supports flexible vari-
ation of an object’s creation and, optionally, disposal process. The
builder provides and encapsulates the basic mechanisms for the cre-
ation and deletion of the object’s different parts via corresponding
FACTORY METHODS (529) and DISPOSAL METHODS (531). The director is
either an ad hoc client, or a factory such as an ABSTRACT FACTORY

(525), that implements the policy for assembling and disassembling
the object in a particular way, which may depend on client input or
global application. Both parts can vary independently: changes to the
builder implementation need not affect the director, and vice versa,
as long as the builder interface remains stable.

Hierarchically related objects can be created and deleted by introduc-
ing a builder hierarchy. An abstract builder declares the build and
disposal interface for elements of the object hierarchy, and concrete
builders that derive from this abstract base implement the build and
disposal steps for a particular object. Clients can retrieve the created
object from the builder directly, via the director, or pass the object to
the director for correct disposal.

A simple form of BUILDER, MUTABLE COMPANION [Hen00b], supports the
creation of IMMUTABLE VALUES (396) with less overhead and in more ways
than ordinary constructors, for example, the use of a StringBuffer
or StringBuilder in Java to construct a String by concatena-
tion. In particular, a value builder eliminates the need for complex
expressions for constructing immutable values, and minimizes the
creation of temporary objects during this process. The modifier meth-
ods enable cumulative or complex state changes. These methods
should have a THREAD-SAFE INTERFACE (384) if used in a multi-threaded
environment. A single FACTORY METHOD (529) allows clients to access
the resulting immutable object.

Factory Method ** 529

Factory Method **

When implementing a BROKER (237), ACCEPTOR-CONNECTOR (265), EXPLICIT

INTERFACE (281), ITERATOR (298), THREAD-SPECIFIC STORAGE (392), IMMUTABLE

VALUE (396), OBJECT MANAGER (492), COMPONENT CONFIGURATOR (490),
LIFECYCLE CALLBACK (499), ABSTRACT FACTORY (525), or BUILDER (527) con-
figuration . . .

. . . we often need to encapsulate the details of object creation to
preserve looseness of coupling and stability of use.

���
Object creation is often a simple matter of using a new expres-
sion, with respect to a class, that allocates memory and initiates
a constructor. However, not all objects can be constructed so
easily. For example, the type of the objects may depend on the
type of another object, or some initialization steps may need to
be handled outside the constructor.

Direct object creation may inadvertently obfuscate and reduce the
independence of the calling code if any of the necessary ingredients
for correct object creation are not readily available. The concrete
class, the full set of constructor arguments, or the enforcement of
other constraints may not be known at the point of call. To require
them would increase the complexity of the calling code and reduce
its stability, making changes in creation detail harder to introduce.

Therefore:

Encapsulate the concrete details of object creation inside a
factory method, rather than letting clients create the object
themselves.

dispose

create

Factory

Factory
Method

1

return
created
object

Concrete
Object Type

3

create objectcreate object

2

Clients call through the factory method to obtain a new object.

���

530 Resource Management

FACTORY METHOD frees clients from creating any complex objects that
they use, thereby making the clients easier to understand and main-
tain. This pattern also simplifies the instantiation of objects whose
constructor cannot easily contain their creation logic, for example if
external validation or object relationships must be established that
is beyond the scope of the object’s immediate responsibility.

There are three main variants of FACTORY METHOD that address different
creational needs:

• Simple. A method on an object of concrete class type that sim-
ply encapsulates the logic of creation and the policies that may
surround it.

• Polymorphic. Where the possible types of the product object are
drawn from a class hierarchy, and the type to be created depends
on an existing object, a polymorphic factory method on the existing
object encapsulates the knowledge of the concrete class used.

• Class. Considered as a meta-object, a class creates its instances.
It is possible to provide class-level factory methods—expressed as
static methods in many languages—to play the role of construc-
tors.

These variants can be combined and refined to produce an appropri-
ate design solution, depending on specific goals and context.

Note that unless created specifically for the purpose, including the
role of factory in an interface can sometimes be considered an addition
that weakens its cohesiveness a little. The solution is certainly more
encapsulated than the alternatives, but the cohesion can be consid-
ered less than in a design in which such creation was never needed.

Disposal Method ** 531

Disposal Method **

When realizing an EXPLICIT INTERFACE (281), ITERATOR (298), OBJECT

MANAGER (492), COMPONENT CONFIGURATOR (490), LIFECYCLE CALLBACK (499),
AUTOMATED GARBAGE COLLECTION (519), ABSTRACT FACTORY (525), or BUILDER

(527) structure . . .

. . . we need to preserve the encapsulation of object creation and
resource acquisition when discarding an object.

���
Disposing of an object is not always as simple as destroying
it explicitly or leaving it to the mercy of a garbage collector.
Objects whose creation was encapsulated may have more to
them than can be addressed by simple collection of memory.
Reliance on manual deletion can introduce too much coupling,
whereas garbage collection lacks deterministic execution.

For manual memory management, as found in C++, and even with
COUNTING HANDLES, it is too much to assume that an object whose
creation was encapsulated is a suitable candidate for deletion. Its
allocation may have been optimized in a way that is incompatible
with deletion, or it may need to be recycled instead of deleted because
its creation is expensive. Making applications responsible for this
housekeeping functionality would make their code more complex
than necessary due to coupling to encapsulated lifecycle concerns.

Therefore:

Encapsulate the concrete details of object disposal within a dedi-
cated method, instead of letting clients delete or discard objects
themselves.

dispose

create

Factory

Disposal
Method

delete object

2

dispose object

1

532 Resource Management

When a client has finished using an object, it—or a helper mecha-
nism—calls the disposal method to ensure that the object is cleaned
up in an appropriate manner. This may be outright deletion, careful
dismantling, or recycling.

���
DISPOSAL METHOD frees clients from deleting or dismantling any com-
plex objects that they use, thereby making the clients easier to
understand and maintain. In addition, DISPOSAL METHOD simplifies the
destruction of objects whose deletion logic cannot be implemented
easily in their destructor or by the garbage collector, for example
because the object or its parts should be recycled or made available
to other clients. DISPOSAL METHOD makes these variations in the way
an object is deleted transparent to its clients.

There are two basic options for placing a DISPOSAL METHOD. One option,
a factory DISPOSAL METHOD, places the disposal method on the factory
or object responsible for originally creating the object. This explicit
arrangement makes the intended lifecycle of the created objects
clearer in the interface of the factory. However, it means that the
object user must be aware of the object’s origins in order to return
the object when it is done. The other option, self-DISPOSAL METHOD,
provides a method on the object to be disposed of. The lifecycle rela-
tionship is not as obvious in this design and, if the disposal action
involves return to a pool, the object may also require a back reference
to the factory so that it can, so to speak, ‘return home.’

Because manual use of a disposal method can be error-prone, its
use can be wrapped by an EXECUTE-AROUND METHOD [Hen01a] or a
COUNTING HANDLE. (522). In C#, the IDisposable interface provides
a general purpose self-disposal interface that can be used with the
using control-flow construct.

21 Database Access

Frank and some of his books
 Frank Buschmann

Many business systems need to persist some or all of the data they
use. Distributed systems are no exception. There is a mismatch,
however, between the relational model, the dominant persistence
paradigm, and the object-oriented model, the favored paradigm for
distributed application development. This chapter presents five pat-
terns that help to bridge these two models, to support mapping
between object-oriented applications and relational databases.

534 Database Access

Many software systems use databases to store their persistent data.
In most of these systems the databases follow the relational model
for the following reasons, mainly due to economic factors:

• Existing legacy data and IT infrastructures. Databases are a com-
mon and long-standing feature of many IT organizations. As a
result, the cost of transferring data to a different database model,
or even to a different relational database, often outweigh the ben-
efits of such a change, even if another database is technically
superior.

• Customer support. Due to the maturity of relational databases
and the ecosystem that supports them, users typically receive
competent and timely customer support world-wide. This level
of service is not necessarily available for other database mod-
els.

• Experience. Developers, administrators, and users of databases
are often most familiar with the relational database model, hav-
ing gained significant experience in designing and provisioning
applications that use relational databases, designing relational
database schemas, and tuning such databases. Achieving this
proficiency with other database models is expensive and time con-
suming.

Nevertheless, there are also two technical reasons that advocate the
use of relational databases:

• Performance. Over time, a great deal of effort has been invested
in optimizing relational databases. As a result, they provide good
performance for most applications that need to persist data.

• Data usage scenarios. The profile of application data and its use
fits best with the kind of collective and query-based relational model
supported by relational databases. From a bird’s-eye perspective,
most applications deal with data records that they use and mod-
ify, and collections of data records on which they perform typical
operations for collections, regardless of how data is represented in
the applications. This conceptual view of data is well-supported by
relational databases.

Although the relational model remains the dominant database
paradigm, the technologies used to design and implement appli-
cations have changed considerably over time. Two decades ago,

Database Access 535

procedural programming was common, whereas most new appli-
cations are now object-oriented. This trend, however, often causes
an impedance mismatch, since applications that use object fea-
tures such as inheritance, polymorphism, and navigational inter-
object relationships cannot map easily and efficiently to a relational
database schema.

There are dozens of patterns and pattern languages [BW95] [KC97]
[Kel99] [Fow03a] that describe how to combine relational and object-
oriented models effectively. Exploring them in detail, however, is
beyond the scope of our pattern language, which centers on building
distributed systems. However, because of the important role that
relational databases play in many distributed systems, we describe
the following key patterns that help to bridge the chasm [BW95]
between the object and the relational models:

The DATABASE ACCESS LAYER pattern (538) [KC97] separates an
object-oriented application design from a relational database by
introducing a mapping layer between the two.

The DATA MAPPER pattern (540) [Fow03a] acts as a mediator
that transfers data between an application and a database, to
decouple an object model from a relational database schema so
that the two can evolve independently.

The ROW DATA GATEWAY pattern (542) [Fow03a] introduces objects
that act as gateways to individual records in a database table,
but can be accessed using object-oriented programming mecha-
nisms.

The TABLE DATA GATEWAY pattern (544) [Fow03a] introduces an
object that acts as a gateway to an entire database table, but can
be accessed using object-oriented programming mechanisms.

The ACTIVE RECORD architectural pattern (546) [Fow03a] speci-
fies an object that wraps a record data structure in an external
resource, such as a row in a database table, and provides addi-
tional domain logic for that object.

The DATABASE ACCESS LAYER pattern was published originally by Wolf-
gang Keller and Jens Coldewey [KC97]. The four other patterns are
found in Martin Fowler’s Patterns of Enterprise Application Architec-
ture [Fow03a]. Some patterns outlined above also appear in the J2EE
patterns literature [ACM01]: DATABASE ACCESS LAYER corresponds to
DOMAIN STORE, and TABLE DATA GATEWAY to DATA ACCESS OBJECT.

536 Database Access

All of these patterns connect to other, finer-grained and detailed pat-
terns for database access, which are also included in our pattern
language. For reasons of brevity, however, we refer only to their orig-
inal sources and do not describe them in detail. These other patterns
are documented in Patterns of Enterprise Application Architecture, but
most were also published earlier [BW95] [KC97] [Kel99].

DATABASE ACCESS LAYER can be considered the root pattern for deal-
ing with database access, whereas the other four patterns describe
approaches for the refinement of a database access layer.

• DATA MAPPER provides complete decoupling of an application’s data
model from the table format in which it is persisted. The pat-
tern is the most complex refinement option for a DATABASE ACCESS

LAYER access layer. It should therefore only be considered when
the mapping between the data model and the table formats is
not straightforward, for instance because the data model includes
cycles, or the information stored in data objects is spread across
multiple tables.

• ROW DATA GATEWAY and TABLE DATA GATEWAY also decouple the data
model of an application from database table formats. The two pat-
terns are most applicable if the application data model consists of
collections of homogeneous application data objects that can be
mapped directly onto corresponding database tables. If the appli-
cation’s programming platform offers support for record sets, such
as ADO.NET and JDBC 2.0, TABLE DATA GATEWAY is the best choice,
because record sets already provide an object-oriented encapsu-
lation for tabular data. Otherwise ROW DATA GATEWAY is the better
option: it provides explicit mapping between individual data objects
and data stored in a specific table row.

• ACTIVE RECORD relaxes the decoupling between the object-oriented
data model of the application and the table formats of the database.
The pattern simply wraps a specific table row within a database
table or view, and adds domain logic to that data. Due to this
tight coupling, ACTIVE RECORD should only be preferred if the data
object’s domain logic is simple, its data representation maps directly
to a single database table, and the database design—or even the
underlying database itself—does not change often during the appli-
cation’s lifetime.

Database Access 537

The following diagram illustrates how the five patterns for accessing
relational databases connect to our pattern language and to other
database access patterns and idioms.

data
finding

cycle
handling

on-demand
data retrieval

update
coordination

mapping code
generation

Domain Model

Registry

Data Transfer
Object

Metadata
Modeling

Data Mapper

Database
Access Layer

Identity Map

Lazy Load

Unit of Work

Record Set

Shared RepositoryBlackboard

data access

Active Record Table Data
Gateway

Row Data
Gateway

internal
design

internal
design

internal
design

internal
design

result
encapsulation

mapping code
generation

Observer

Object
Manager

connection
management

538 Database Access

Database Access Layer **

When realizing a DOMAIN MODEL (182), or when specifying a SHARED

REPOSITORY (202) or BLACKBOARD (205) architecture . . .

. . . we must often connect an object-oriented application to a rela-
tional database.

���
Object-oriented software systems often use relational databases
for persistence: object technology can simplify application
design, while relational databases support efficient persistence,
or are chosen for economic or historical reasons. There is a
disconnect, however, between the two approaches that makes it
hard to map objects and their various relationships—inter-object
navigation and inheritance—to relational tables.

While each model offers a good economic and technological fit for
its respective domain, the connection between the two models is
not straightforward. Neither applications nor database access should
suffer from the mismatch, however. In particular, an object-oriented
design should be usable for the application, and application code
should not be littered with database access statements and API
housekeeping. Database access code should similarly make best use
of mechanisms provided by the relational model.

Therefore:

Introduce a separate database access layer between the applica-
tion and the relational database that provides a stable object-
oriented data-access interface for application use, backed by an
implementation that is database-centric.

Database
Access Layer

Application
Object

is passed
to/from

is passed
to/from

Database Table

Object-Oriented
Application

Relational
Database

Applications can store and retrieve their persistent data by calling an
appropriate method on the database access layer, or by asking the

Database Access Layer ** 539

data to persist itself, depending on the design. The database access
layer is responsible for mapping between the data structures used by
the applications and the format required by the database tables.

���
DATABASE ACCESS LAYER decouples an object-oriented application from
the details of the database. All concrete mappings of objects to tables
are encapsulated within this layer, so that it appears to the applica-
tion as if it were storing and retrieving ‘its own’ objects rather than
table entries. DATABASE ACCESS LAYER thus offers a suitable bridge to the
underlying persistence technology. In addition, modifications to the
DATABASE ACCESS LAYER do not affect application components directly.

Many options exist for designing a DATABASE ACCESS LAYER. A DATA

MAPPER (540) shields objects from knowing even that there is a
database present, which is useful when the application design and the
database schema should evolve independently. A ROW DATA GATEWAY

(542) specifies objects that look exactly like a record in a record
structure, but which can be accessed with ordinary object-oriented
methods. This is useful if application data structures map directly
onto database records and instances of the records are accessed indi-
vidually, rather than in record sets. A TABLE DATA GATEWAY (544), in
contrast, provides an interface with several find methods to retrieve
sets of data records from the database, with corresponding update,
insert, and delete methods. This is useful if application data struc-
tures map directly to database records, and the records are usually
accessed in entire record sets rather than individually. ACTIVE RECORDS

(546) uses the most obvious approach, and puts all data access
logic into application objects. This is useful when the object model
of an application maps directly onto the database schema and its
domain logic is not too complex—for example, if it is centered around
operations such as create, read, update, and delete.

The database access layer is also responsible for notifying the appli-
cation if values in the database change because another application
accesses them. Typically the notification mechanism is realized via
some form of OBSERVER (405) arrangement, with the database notifying
the database access layer, and the database access layer notifying
the application. Without such a mechanism, the view the application
has of the database is stale, which could lead to incorrect application
behavior.

540 Database Access

Data Mapper **

When designing a DATABASE ACCESS LAYER (538) . . .

. . . we must shield applications from the way in which data is repre-
sented in persistent storage.

���
Object-oriented applications and relational databases use differ-
ent mechanisms for structuring data. While it is still necessary
to transfer data between the two, if the object-oriented domain
model knows about the relational database schema, and vice
versa, changes in one tend to ripple to the other.

Mapping between an object-oriented and a relational database
schema introduces accidental complexity into an application. For
example, collections and inheritance are not present in relational
databases, while relational constructs such as SQL queries are not
behavioral primitives in conventional object-oriented languages. It is
easy to add database access code to an application object, but this
makes the object’s implementation unnecessarily complex and brittle
if the schema or database changes. A direct transliteration of classes
to tables, however, may not yield the most appropriate database
schema design either. A solution is needed that is loosely coupled
and stable.

Therefore:

Introduce a data mapper for each type of persistent application
object whose responsibility is to transfer data from the object to
the relational database, and vice versa.

Data Mapper
Relational
Database

Application Object

Object
Data

method 1

method 2

insert

update

delete

find

A data mapper is a mediator between an object-oriented domain
model and a relational database. A client can use the data mapper
to retrieve an application object from the database, or ask it to

Data Mapper ** 541

store an application object in it. The data mapper performs all
necessary data transformations and ensures consistency between the
two representations.

���
Using a DATA MAPPER, in-memory objects need not know that a
database is present. Moreover, they require no SQL interface code and
have no knowledge of the database schema. DATA MAPPER allows the
relational database schema and the object-oriented domain model to
evolve independently. This design also simplifies unit testing, allow-
ing mappers to real databases to be replaced by mock objects that
support in-memory test fixtures.

If an application’s domain model is simple and corresponds largely
to its physical representation in the database, the data mapper can
just map a database table to an equivalent application object on a
field-to-field basis. If the domain model is more complex, however,
several patterns can be used to support the implementation of a data
mapper. A REGISTRY [Fow03a] helps to find data belonging to a specific
application object. An IdENTITY MAP [Fow03a] ensures that data is
loaded only once if complex and cyclic dependencies exist between
application objects. If an application object contains a large data set,
a LAZY LOAD [Fow03a] enables the data mapper to load a subset of
key data during object creation, and defer loading less important
or infrequently used data when it is first accessed. In general, LAZY

LOAD combines PARTIAL ACQUISITION (511) and LAZY ACQUISITION (507) to
control and optimize the process of loading data from the database.
When inserting and updating data into the database, a UNIT of WORK

[Fow03a] helps the data mapper understand which objects have been
changed, created, or destroyed.

A data mapper that supports the handling of data from multiple
types of application objects can employ a METADATA MAPPING [Fow03a]
to avoid hard-coding different mapping schemes.

DATA MAPPER simplifies application objects both programmatically and
in terms of their dependencies. It offers a degree of isolation and sta-
bility, protecting both application objects and schemas from changes
in the other. DATA MAPPER is not without its own complexity, however,
and changes in either the application object model or the database
schema may require changes to a data mapper.

542 Database Access

Row Data Gateway **

When designing a DATABASE ACCESS LAYER (538) . . .

. . . we need a means to access and manipulate a single data record.

���
In-process data structures in some applications map directly to
relational database schemas, so there is a one-to-one correspon-
dence between rows and objects. Having each object access its
corresponding row directly, however, tightly couples and dilutes
application code with infrastructural code.

When application data structure types correspond to tables, instances
of each structure to rows, and data fields of the structures to columns
in the tables, it is tempting to access and use the relational data directly
within the application code, since memory footprint is small and code
is direct. The drawbacks to this design, however, are that application
code and database-access code can become tightly coupled, and the
cohesion of the application code suffers. If the schema changes, map-
ping code must be added to the application wherever the data is used.
As more such changes occur, the complexity of both application and
mapping code increases. Similarly, if the application supports multi-
ple databases with different SQL dialects, the application code must
handle these variations explicitly, so the original advantage of a small
footprint and direct access becomes a disadvantage.

Therefore:

Wrap the data structures and their database access code within
row data gateways whose internal structure looks exactly like a
database record, but which offer a representation-independent
data access interface to clients.

Database Table

Row Data Gateway

data field 1

data field 2

data field 3

data field 1 data field 2 data field 3
object 1

Object-Oriented
Application

insert

update

delete

set

get

Row Data Gateway ** 543

There is one row data gateway instance per row in the table.
Clients can use the gateways as if they were ‘ordinary’ applica-
tion objects. When the client creates a new gateway instance, its
data is inserted into a new row of the corresponding database table.
When a client commits changes to the row data gateway, the corre-
sponding fields in the database table are updated. Disposal of the
gateway object triggers the deletion of the content of the correspond-
ing table row.

���
A ROW DATA GATEWAY is most useful if database records are accessed,
manipulated, and stored explicitly and separately from other database
records. Each row data gateway instance acts as an object that mim-
ics a single record, such as one row of a particular database table,
but hides all details of access to the database behind its interface.
Changes to the table representation of the data structures are thus
transparent to clients, as well as changes of the database access code
if the row data gateway is ported to another database that uses a
different SQL dialect.

The row data gateway is responsible for any type conversion from the
data source types to the in-memory types. This type conversion is
often straightforward, since each column in the database table typi-
cally corresponds to a field in the row data gateway—which suggests
that the mapping code be generated via METADATA MAPPING [Fow03a].

A row data gateway has a simple interface: set and get methods to
access and modify the in-memory data structure, and update, insert,
and delete methods to execute the appropriate SQL for the action and
data against the database. A row data gateway does not implement
application logic that operates on the encapsulated data structure,
which keeps the two concerns independent.

Each row data gateway object must be associated with a network
connection of some kind. To keep this management code simple and
self-contained, use an OBJECT MANAGER (492) to create new records.
This also addresses the potential problem of creating more than a
single row data gateway instance for a particular row. Also consider
supporting row deletion via the manager rather than via the gateway
object. OBJECT MANAGER can also offer finder capabilities that search
the appropriate table in the database.

544 Database Access

Table Data Gateway **

When designing a DATABASE ACCESS LAYER (538) . . .

. . . we must provide measures to manipulate whole collections of data.

���
In-process data structures in some applications map directly to
a relational database schema. Directly manipulating collections
of data within the application’s business logic via SQL, however,
tightly couples the application model and the database schema.

When application data structure types correspond to tables, it is
tempting to access and use relational data directly within applica-
tion code, since memory footprint is small and the code is direct.
The resulting coupling creates development friction, however, if
the schema evolves or the database technology changes. Moreover,
applications are burdened with non-cohesive infrastructure code.
Although ROW DATA GATEWAYs offer a simple solution to these prob-
lems, they introduce other problems, such as row management, and
can yield a proliferation of objects. While these problems may not
arise for small tables or when only a few tables are accessed dur-
ing a session, they may significantly complicate large applications.
ROW DATA GATEWAYs also do not handle collections of objects, as they
manipulate individual objects directly, rather than sets.

Therefore:

Wrap the database access code for a specific database table within
a specialized table data gateway, and provide it with an inter-
face that allows applications to work on domain-specific data
collections.

Table Data Gateway

insert

update

delete

find Database Table
data field 1 data field 2 data field 3

object 1

object 2

object 3

object 4

Object-Oriented
Application

Table Data Gateway ** 545

There is one table data gateway instance per table in the database.
Clients can use the gateway to manipulate collections of data of the
same type. When a client adds a new object to the collection, its
data is stored as a new row in the table accessed by the gateway.
Modification and deletion of rows in the table are negotiated via the
gateway.

���
TABLE DATA GATEWAY is most useful if database records are accessed,
modified, and stored in sets, rather than individually. Each table
data gateway encapsulates the details of access to the database, as
well as the transformation of that data into collections of domain-
specific objects and vice versa. Changes to the table representation
of domain-specific objects become largely transparent to clients, as
well as changes to database access code when porting the table
data gateway to another database that uses a different SQL dialect.
Significant changes to the schema that change the normalization
of rows and partitioning of tables, however, are not as well sup-
ported.

A table data gateway has a simple interface consisting of several find
methods to get data from the database, together with corresponding
update, insert, and delete methods. Each method maps the input
parameters and action into SQL and executes it against a database
connection. The table data gateway is usually stateless with respect
to domain data, because its role is to push data back and forth.
One constraint on the interface, however, is that update and deletion
actions may not be available when a table data gateway corresponds
to a view.

Many alternatives exist for returning the results of queries to clients,
which may contain multiple database records. One is to return a
simple data structure such as a map or a DATA TRANSFER OBJECT (418).
Some environments, such as ADO.NET and JDBC 2.0, can return
a RECORD SET [Fow03a], which is an in-memory representation of
tabular data. Since RECORD SET mirrors a table structure directly in
application code, however, it can tightly couple that code to database-
specific aspects. TABLE DATA GATEWAY can also act as a factory and
manager and return the appropriate domain-specific objects.

546 Database Access

Active Record

When designing a DATABASE ACCESS LAYER (538) . . .

. . . we may want to avoid complex data mapping for self-contained
data records that offer only simple data manipulation methods.

���
In most object-oriented applications, some parts of the domain
logic are bound to the data on which they operate. If the data is
actually in the database, however, direct manipulation is not pos-
sible. For data structures with only simple associated behaviors,
a multi-layered solution may be too complex.

Raw use of a database API in the main parts of an application can yield
code that is non-cohesive and brittle in the face of changes such as
schema evolution or database technology migration. Database access
code and application code should therefore not be mixed too freely
in such cases. Introducing too much separation between application
objects and database access, however, may be too cumbersome when
the associated object behavior for each record is simple, such as
attribute queries, or queries based on simple calculations over the
attributes.

Therefore:

Encapsulate the data, the corresponding database access code,
and the data-centered domain behavior in active record objects
that offer a domain-specific interface to clients.

Database Table

Row Data Gateway

data field 1

data field 2

data field 3

data field 1 data field 2 data field 3

object 1

Object-Oriented
Application

insert

update

delete

method_1

method_2

Clients can use active record objects via their domain-specific inter-
faces as if they were ordinary application objects. Any change in the

Active Record 547

encapsulated data values’ results can lead to a change in the row
data via an additional update method. If a client creates a new active
record, a new row in the corresponding database table is created. If
a client disposes of an active record, the corresponding table row is
deleted.

���
ACTIVE RECORD can be an appropriate choice when the domain logic of
an application is relatively simple, for example if it is centered around
create, read, update, and delete operations, attribute manipulation,
and simple calculated values based on attributes. In such cases,
changes to the table representation of the data structures have only
a local and limited affect on application-specific code, as well as
changes to the database access code due to porting the active object
to another database that uses a different SQL dialect. If a domain
object type is more complex, for example if it uses inheritance, inter-
object relationships, and collections, an ACTIVE RECORD may be less
suitable.

An ACTIVE RECORD class typically offers methods for constructing
instances from database domain objects. These can include SQL
result sets, static finder methods that wrap commonly used SQL
queries, methods to update the database and to insert the data
encapsulated within the active record into the database, get and
set methods for the active record data fields, and domain-related
methods that implement some data-centric pieces of the applica-
tion’s business logic. The implementation can suffer, however, if it
mixes problem domain concepts with infrastructural concepts, which
results in tight coupling between application and database parts.

22 A Departing Thought

Nach dem Spiel ist vor dem Spiel
German football wisdom

The German football adage above can be taken literally for this book:
‘after the match is before the match.’ In our departing thoughts we
reflect briefly on our pattern language for distributed computing, and
outline the upcoming steps and activities involved in continuing and
completing the vision of Pattern-Oriented Software Architecture.

550 A Departing Thought

The pattern language we present in this book distills our own expe-
rience, and the experience of many experts around the world, in
building distributed systems. We have seen the language behind
the documented patterns applied to guide the development of many
production distributed systems, ranging from industrial automa-
tion, telecommunication, and medical imaging, over Web-based
e-commerce systems, to component and communication middleware.
The intent of our language was twofold:

• To provide an overview about, introduction to, guide through, and
communication vehicle for the best practices and state-of-the-art
in key areas of the construction of distributed software systems.

• To connect many stand-alone patterns, pattern collections, and
pattern languages from the existing body of literature that relate to,
or are useful for, distributed computing, to form a single language
that provides a consistent and coherent holistic view of the craft of
building distributed systems.

Our language is still a work in progress, despite its length and
broad coverage of relevant topics, and will probably never be finished
completely. As our collective experience of building distributed sys-
tems grows, and with the hindsight of applying the language, further
patterns from the body of the literature should be integrated, new
patterns must be written, and existing patterns will need refactoring
for their content and relationships to other patterns in the language.
Such a Herculean task cannot be mastered by ourselves alone, how-
ever, otherwise we would probably never finish with the language
or keep our day jobs! We therefore hope that you, a reader of this
book, will work together with other members of the software pattern
community to help us evolve the language towards its next state.
The goal is to keep improving its practical value for architects and
developers of distributed systems.

The second area that suggests future work is the conceptual frame-
work on which this and other pattern languages build. Chapter 1, On
Patterns and Pattern Languages, briefly introduced the relevant con-
cepts, such as patterns, pattern sequences, and pattern languages,
but there is much more to explore than we can present and discuss
in the context of this book. Examples of remaining topics to explore

A Departing Thought 551

include what the concepts are about, which other detailed properties
should be explored, and—most interestingly—how all the concepts
relate to one another to form a consistent and coherent view onto
patterns.

We leave the answers to these questions to the next POSA volume,
On Patterns and Pattern Languages, which will form the closure of
the Pattern-Oriented Software Architecture series. Watch out for it!

Glossary

This glossary defines key terms that we use frequently throughout
the book. All the terms are related to various aspects of distributed
computing software and systems. When a definition refers to other
terms in the glossary, we italicize these terms.

We have omitted many terms that we only use in one context, such
as enterprise resource planning (ERP). When we felt that such terms
needed an explanation, we gave it in context rather than including
them in the Glossary.

For completeness, we have also included common terms such as
pattern, software architecture, and idiom that were explained in depth
in various sections of [POSA1].

Abstract Class A class that does not implement all the methods defined in its
interface. An abstract class defines a common abstraction for its
subclasses.

Abstract
Component

A component that specifies one or more interfaces for other com-
ponents. An abstract component can either be explicit, such as an
abstract class, or implicit, such as a class parameter of a C++ tem-
plate function. Abstract components form the basis for exploiting
polymorphism and implementing flexible systems. This term is used
in the same way as abstract class, to avoid restricting patterns to
object-oriented languages.

Abstract Method The declaration of an operation of an abstract class that must be
defined by a subclass.

Active
Connection

Establishment

The connection role played by a peer application that initiates a
connection to a remote peer. (Compare with Passive Connection
Establishment.)

Active Object An object that executes its methods in a different thread than the
clients that invoke its methods. (Compare with passive object.)

554 Glossary

API Application programming interface. The external interfaces of a re-
usable software platform, such as an operating system, that is used
by systems or applications built on top of it.

Application A program or collection of programs that fulfills a customer or user’s
requirements.

Application
Framework

An integrated set of components that collaborate to provide a reusable
software architecture for a family of related applications. In an
object-oriented environment, an application framework consists of
abstract and concrete classes, and inversion of control. Instantiation
of such a framework consists of composing and subclassing from
existing classes.

Architectural
Pattern

An architectural pattern expresses a fundamental structural organi-
zation schema for software systems. It provides a set of predefined
subsystems, specifies their responsibilities, and includes rules and
guidelines for organizing the relationships between them.

Associative
Array

An array indexed via arbitrary key values such as strings, rather than
by integers. Hash tables and binary search trees are a common way
to implement associative arrays.

Asynchronous
I/O

A mechanism for sending or receiving data in which an I/O operation
is initiated, but the caller does not block waiting for the operation to
complete.

Backus Naur
Form (BNF)

A standard technique for describing the syntax of a language.

Bandwidth The capacity of a communication medium, such as a network or bus.

Broadcast A special form of multicast in which messages are transmitted to all
servers in a particular domain.

Bus A high-speed communication channel that links computing devices,
such as CPUs, disks, and network interfaces.

Busy Wait A technique used by a thread to wait for a lock by executing a tight
loop and polling to see if the lock is available on each iteration, in
contrast to waiting for the lock to be released by sleeping and allowing
other threads to run.

Cache Affinity A thread scheduling optimization that gives preference to dispatching
a thread on the CPU on which it most recently ran, to maximize
the probability of its state being present in the CPU’s instruction and
data caches.

Glossary 555

Callback A function or object that specifies the action that should occur when-
ever a particular event happens.

Class A fundamental building block in object-oriented languages. A class
specifies an interface and encapsulates its internal data structure as
well as the functionality of its instances or objects. A class can extend
one or more other superclasses via inheritance, in which case it is
also known as a subclass.

Client In our descriptions client denotes a role, component, or subsystem
that invokes or uses the functionality offered by other components.

Closure See Method Closure.

Collaborator A component that cooperates with another component. An element of
a CRC card.

Collocation
Optimization

A technique used in middleware to remove unnecessary overhead
of (de)marshaling data or transmitting requests/replies when the
sender and receiver are collocated, that is, when communication
occurs in the same process or on the same computer. (Compare with
Distribution.)

Completion
Event

A event containing response information related to a request event
initiated by a client.

Component A self-contained, deployable, and executable part of a software sys-
tem that implements a specific service or set of services to other
components or clients. A component has one or more interfaces that
provide access to its services. Components serve as building blocks
for structuring a system. Although a component is self-contained, it
can be composed of, or have dependencies on, other components. At
the programming language level, components may be represented as
modules, classes, or a set of related functions.

Component
Object

An object whose class definition is encapsulated within a deployed
component. The interface a component object implements is made up
of methods and exposes no implementation. A component object’s
class is encapsulated within a component.

Concrete Class A class from which objects can be instantiated. In contrast to abstract
classes, all methods are implemented in a concrete class. The term is
used to distinguish concrete subclasses from their abstract superclass.

Concrete
Component

A component that implements all elements defined in its interfaces.
Used to distinguish components from the abstract component that

556 Glossary

defines their interface, in the same way that a concrete class is
distinguished from an abstract class.

Concurrency The ability of an object, component, or system to execute operations
that are ‘logically simultaneous.’ (Compare with parallelism.)

Condition
Variable

A condition variable is a synchronization mechanism used by collab-
orating threads to suspend themselves temporarily until condition
predicates involving data shared between the threads attain desired
states [IEEE96]. A condition variable is always used in conjunction
with a mutex, which the thread must acquire before evaluating the
condition predicate. If the condition predicate is false the thread
atomically suspends itself on the condition variable and releases the
mutex, so that other threads can change the shared data. When
a cooperating thread changes this data, it can notify the condition
variable, which atomically resumes a thread that had previously
suspended on the condition variable, and acquires its mutex again.

Connection A full association that is used by peers to exchange data between
endpoints of a networked application.

Container A common name for data structures that hold a collection of elements.
Examples of containers are lists, sets, and associative arrays. In
addition, component models, such as Enterprise JavaBeans, ActiveX
Controls, and the CORBA Component Model, define containers that
provide a runtime environment that shields components from the
details of their underlying infrastructure, such as an operating sys-
tem.

CORBA The Common Object Request Broker Architecture, a distributed object
computing middleware standard defined by the Object Management
Group (OMG).

CPU Central processing unit. A hardware component that executes binary
program instructions.

CRC Card Class-Responsibility-Collaborator card. A design tool and notation
for describing the responsibilities and collaborators of classes in a
software architecture.

Critical Section Code that should not execute concurrently in an object or subsystem
can be synchronized by a critical section. A critical section is a
sequence of instructions that obeys the following invariant: while
one thread or process is executing in the critical section, no other

Glossary 557

thread or process can execute in the critical section. (Compare with
Read-side and Write-side Critical Section.)

Data Caches Special high-speed memory collocated with a CPU that can improve
overall system performance. A cache holds a copy of a specific portion
of the main memory which then gives an application the illusion of
access to the main memory.

Data-Mode
Socket

See Socket.

Deadlock A deadlock is a concurrency hazard that occurs when multiple threads
attempt to acquire multiple locks and become blocked indefinitely in
a circular wait state.

Demarshaling The conversion of a marshaled message from a system- and appli-
cation-independent format into a system- and application-specific
format.

Demultiplexing A mechanism that routes incoming events from an input port to its
intended receivers. There is a 1:N relationship between input port and
receivers. Demultiplexing is commonly applied to incoming events
and data streams. The reverse operation is known as ‘multiplexing.’

Design The activities performed by software developers that result in the
software architecture of a system. The term is also used as a name
for the result of these activities.

Design Pattern A design pattern provides a scheme for refining elements of a software
system or the relationships between them. It describes a commonly
recurring structure of interacting roles that solves a general design
problem within a particular context.

Developmental
Property

A non-functional property that addresses requirements related to
developing and evolving a software system, such as maintainability,
extensibility, adaptability, and reusability. Developmental qualities
are typically not visible for a system user, and customers tend not to
be interested in them. It is mainly the software development organiza-
tion that is interested in, and affected by, the developmental qualities
of a software system. (Compare with Operational Quality.)

Device A hardware component that provides a service in a computing and/or
communication system.

Device Driver A software component in an operating system kernel that is responsi-
ble for controlling a hardware device attached to the computer, or a
software device, such as a RAM disk.

558 Glossary

Distribution The activities associated with placing an object into a different process
or host than the clients that access it. Distribution is often applied to
improve fault tolerance or to access remote resources. (Compare with
Collocation.)

Distributed
System

A distributed system is a computing system in which a number of
components cooperate by communicating over a network. The explo-
sive growth of the Internet and the World Wide Web in the mid-1990s
moved distributed systems beyond their traditional application areas
such as industrial automation, defense, and telecommunications,
into nearly all domains, including e-commerce, financial services,
health care, government, and entertainment.

Domain Denotes concepts, knowledge and other items that are related to a
particular problem area. Often used in ‘application domain’ to denote
the problem area addressed by an application. On the Internet, a
domain is a logical addressing entity, such as uci.edu or siemens.de.

Domain
Analysis

An inductive, feedback-driven process that examines an applica-
tion domain systematically to identify its core challenges and design
dimensions in order to map them to effective solution techniques.

Dynamic
Binding

A mechanism that defers the association of an operation name (a
message) to the corresponding code (a method) until runtime. Used
to implement polymorphism in object-oriented languages.

Dynamically
Linked Library

(DLL)

A library that can be shared by multiple processes and linked into and
out of a process’ address space dynamically, to improve application
flexibility and extensibility at runtime.

Endpoint The termination point of a connection.

Event A message that conveys the occurrence of a significant activity,
together with any data associated with the activity.

Event Handler An object whose interface consists of one or more methods that can
process application-specific events.

Exception-Safe A unit of code is exception-safe if an exception raised in the code, or
propagated from other code called by the unit of code, does not cause
resource leaks or an unstable state.

Factory A method or function that creates and assembles the resources needed
to instantiate and initialize an object or component instance.

Flow Control A communication protocol mechanism that prevents a fast sender
from overrunning the buffering and computing resources of a slow
receiver.

Glossary 559

Framework See Application Framework.

Full Association The five-tuple in the Internet protocol domain that identifies a TCP
connection. It consists of the protocol type, the local address and port
number, and the remote address and port number.

Function A closed subroutine that is passed zero or more parameters and which
may return a value to its caller. Functions are typically ‘stand-alone,’
as opposed to methods, which are associated with a class.

Functional
Property

A particular aspect of a system ’s functionality, usually related to
a specified functional requirement. A functional property may be
either made directly visible to users of an application by means of a
particular function, or it may represent aspects of its implementation,
such as the algorithm used to compute the function.

Future A future allows a client to obtain the result of a method at any point
in time after its invocation. The future reserves space for the invoked
method to store its result. When a client wants to obtain the result,
it can rendezvous with the future, either blocking or polling until the
result is computed and stored in the future.

Gateway A gateway decouples cooperating components in a network and
allows them to interact without having direct dependencies between
each other.

GUI Graphical user interface.

Handle A handle identifies resources that are managed by an operating sys-
tem kernel. These resources commonly include network connections,
open files, timers, and synchronization objects.

Hardwiring Writing inflexible programs, for example by using a literal number
or string instead of a variable. Such literals are also known as
‘magic numbers,’ because the number itself provides no clue to
understanding its origin or purpose. Another form of hardwiring is to
make code dependent on concrete types.

Host An addressable computer attached to a network.

HTTP The HyperText Transfer Protocol, which is a simple protocol layered
on top of TCP and used by clients to download content from a Web
server via GET requests.

Idempotent
Initialization

Object initialization is idempotent if an object can be reinitialized
multiple times without harmful side-effects.

560 Glossary

Idiom An idiom is a pattern specific to a programming language or program-
ming environment. An idiom describes how to implement particular
behavior or structures in code using the features of the given lan-
guage or environment. The term is also used more generally to refer
to common practices associated with a programming language or
environment, without necessarily being patterns.

Indication Event A event containing request information sent from a client to a ser-
vice provider.

Inheritance A feature of object-oriented languages that allows new classes to be
derived from existing ones. Inheritance defines implementation reuse,
a subtype relationship, or both. Depending on the programming
language, single or multiple inheritance is possible.

Inlining Code expansion that inserts the code of a function or method body
instead of the code used to call the function or method. Inlining long
function/method bodies can lead to code ‘bloat,’ with negative effects
on storage consumption and paging effects.

Instance An object originated from a concrete class. Often used as a synonym
for ‘object’ in an object-oriented environment. This term may also be
used in other contexts (see Instantiation).

Instantiation A mechanism that creates a new instance from a template. The term
is used in several contexts. Objects are instantiated from classes.
C++ templates are instantiated to create new classes or functions.
An application framework is instantiated to create an application.
The phrase ‘instantiating a pattern’ is sometimes used to refer to
taking the pattern as described and filling in the necessary details to
implement it in the context of a specific application.

Intercession The addition to, or modification of, the structure, behavior or state of
a system by the system itself.

Interface A publicly accessible portion of a class, component, subsystem, or
application. The term interface is also commonly used to refer to
a programming construct that is conceptually equivalent to a fully
abstract class.

Internet A world-wide ‘network of networks’ that is based on the Internet
Protocol (IP). Widely considered to be the most important human
invention since fire and MTV.

Internet Protocol
(IP)

A network layer protocol that performs segmentation, reassembly,
and routing of packets.

Glossary 561

Intranet A network of computers within a company or other organization.
Such a network may be secured from outside access and provide a
platform for company-wide information exchange, co-operative work,
and work flow, using Internet technologies for communication.

Interprocess
Communication

(IPC)

Communication between processes located in separate address spaces.
Examples of IPC mechanisms include shared memory, UNIX pipes,
message queues, and socket communication.

Introspection The examination of selected aspects of the structure, behavior, or
state of a system by the system itself.

Invariant A property of the state of an object, component, or module that always
holds at a specific point in time or space. For example: ‘the invariant
a < b holds whenever control passes line 50 of method foo.’

Jitter The standard deviation of the latency for a series of operations. Jitter
decreases the predictability of an application and is thus undesir-
able for some application types, such as AV streaming or real-time
applications.

Late Binding Synonym for Dynamic Binding.

Latency The delay experienced by operations.

Layer A level of abstraction that defines a particular set of services in a
hierarchy. Layern is a consumer of services at layern−1 and a supplier
of services to layern+1.

Load Balancing A technique used to distribute client workloads among various pro-
cesses and hosts in a network.

Lock A mechanism used to implement some type of a critical section. A
lock that can be acquired and released serially, such as a static
mutex, may be added to a class. If multiple threads attempt to
acquire the lock simultaneously, only one thread will succeed and
the others will block until the lock is available. Other locking mecha-
nisms, such as semaphores or readers/writer locks, define different
synchronization semantics.

Marshaling The conversion of an unmarshaled message from a host-specific
format into a host-independent format.

Message Messages are used to communicate between objects, threads, or
processes. In an object-oriented system the term message is used to
describe the selection and activation of an operation or the method
of an object. This type of message is synchronous, which means that
the sender waits until the receiver finishes the activated operation.

562 Glossary

Threads and processes often communicate asynchronously, in which
the sender continues its execution without waiting for the receiver
to reply. Remote procedure calls (RPC) are a means of synchronous
IPC over a network. While messages in IPC communication protocols
consist of a protocol-defined structure and are generally not visible
to higher layers, message queueing systems, such as IBM MQSeries
or Microsoft MSMQ messages, define a user-defined body with which
higher layers can implicitly transmit user data.

Message
Passing

An IPC mechanism that exchanges messages between threads or
processes. (Compare with shared memory.)

Method An operation implemented by an object. A method is specified within
a class. The term is also used in ‘software development method,’
which consists of a set of rules, guidelines, and notations to be used
by engineers during the process of developing software.

Method Closure An object that contains the context of a method, which can include
the method’s parameters, a binding to the servant or completion
handler that will process the method, and potentially a future for the
method’s result.

Middleware A set of layers and components that provides reusable common
services and network programming mechanisms. Middleware sits
on top of an operating system and its protocol stacks, but below the
structure and functionality of any particular application.

Module A syntactical or conceptual entity of a software system that is often
used synonymously for component or subsystem. Sometimes modules
also denotes compilation units or files. We use the term in its former
sense. Other writers use the term as an equivalent to ‘package’ when
referring to a code body with its own name space.

Monitor A monitor encapsulates functions and their internal variables into
thread-safe modules. To prevent race conditions, a monitor contains
a lock that allows only one thread at a time to be active within the
monitor. Threads that want to leave the monitor temporarily can
block on a condition variable.

Moore’s Law A surprisingly accurate heuristic that states that the pace of change
in microchip technology is such that the component density of
microchips doubles regularly. When preparing a lecture in 1965, Gor-
don Moore noticed that up to that time microchip capacity seemed
to double each year. As the pace of change has slowed a little over
the past few years, the definition has changed—with Gordon Moore’s

Glossary 563

approval—to reflect the fact that the doubling occurs only every
eighteen months to two years.

Multicast A communication protocol that allows a client to transmit messages
to multiple servers.

Multiple
Inheritance

Inheritance in which a class can have more than one superclass.

Mutex A mutex is a ‘mutual exclusion’ locking mechanism that ensures only
one thread at a time is active concurrently within a critical section in
order to prevent race conditions.

Network A communication medium that enables hosts and other devices to
exchange messages.

Network
Interface

A hardware device that connects a network with a host.

Non-functional
Property

A feature of a system not covered by its functional description. A
non-functional property addresses either a developmental property of
a system, such as adaptability, extensibility, or maintainability, or
an operational property, such as ease of use, performance, reliability,
and scalability. (See also Developmental Property and Operational
Property.)

Object An identifiable entity in an object-oriented system. Objects respond to
messages by performing a method (operation). An object may contain
data values and references to other objects, which together define the
state of the object. An object is therefore characterized in terms of
state, behavior, and identity.

Object-Oriented
Language

A programming language typically characterized by its support for
inheritance, static and dynamic polymorphism, and exception han-
dling.

Object Request
Broker (ORB)

A middleware layer that allows clients to invoke methods on dis-
tributed objects without concern for object location, programming
language, operating system platform, communication protocols, or
hardware.

On-the-wire
Protocol

An ‘on-the-wire protocol’ defines how higher-level communication
middleware, such as DCE, CORBA, or Java RMI, or other communi-
cation protocols, such as HTTP, transform messages or objects into
buffers that can be passed ‘across the wire’ (network). The term ‘wire’
encompasses a range of transmission media, such as microwave,
fiber-optics, and radio.

564 Glossary

One-way Method
Invocation

A call to a method that passes parameters to a server object but does
not receive any result, error values, or other information from the
server. (Compare with Two-way Method Invocation.)

Operating
System

A collection of services and APIs that manage hardware and software
resources on behalf of applications and end users.

Operating
System Kernel

A collection of core operating system services, such as process and
thread management, virtual memory, and interprocess communica-
tion (IPC).

Operational
Property

A non-functional property that addresses requirements related to
the productive use of a software system, such as stability, per-
formance, scalability, availability, and security. Operational prop-
erties directly impact the usability and acceptance of a software
system. Consequently it is mainly the customers and users of a
software system that are interested in, and affected by, the opera-
tional properties of a software system. Compare with Developmental
Quality.

Out-of-Band A protocol or mechanism that occurs outside the normal ‘in-band’
processing sequence, or data that is needed only for one specific
system installation or client.

Packet A message used to convey header and data information in the TCP/IP
protocols.

Parallelism The ability of an object, component, or system to execute operations
that are ‘physically simultaneous.’ (Compare with Concurrency.)

Parameter An instance of a data type or object passed to a function, method, or
parameterized type.

Parameterized
Type

A programming language feature that allows classes to be parame-
terized by various other types. Support for different type of parame-
terization mechanisms exists in many languages, including Java and
C++. (Compare with Template.)

Passive-Mode
Socket

See Socket.

Passive
Connection

Establishment

The connection role played by a peer application that accepts a
connection from a remote peer. (Compare with Active Connection
Establishment.)

Passive Object An object that borrows the thread of its caller to execute its methods.
(Compare with Active Object.)

Glossary 565

Pattern A pattern describes a particular recurring design problem that arises
in specific design contexts and presents a well-proven solution for
the problem. The solution is specified by describing the roles of its
constituent participants, their responsibilities and relationships, and
the ways in which they collaborate.

Pattern
Compound

A pattern that is made up of a community of patterns. A commonly
recurring subcommunity of patterns that can be identified as a dis-
tinct pattern in its own right. Pattern compounds are also known as
‘compound patterns’ and ‘composite patterns.’

Pattern
Language

A network of interrelated patterns that define a process for resolving
software development problems systematically.

Pattern
Sequence

A sequence of patterns applied to create a particular architecture or
design in response to a specific situation. From the point of view of
a pattern language, a pattern sequence represents a particular path
through the language.

Pattern Story A narrative that captures a pattern sequence and specific design
issues involved in constructing a concrete system or creating a par-
ticular design example.

Peer-to-Peer In a distributed system peers are processes that communicate with
each other. In contrast to components in client-server architectures,
peers may act as clients, as servers, or as both, and may change
these roles dynamically.

Platform The combination of hardware and/or software that a system uses for
its implementation. Software platforms include operating systems,
libraries, and frameworks. A platform implements a virtual machine
with applications running on top of it.

Polymorphism A concept in which a single name may denote different things. For
example, a function name may be bound over time to several differ-
ent operations, or a variable may be bound to objects of different
types. This concept makes it possible to implement flexible systems
based on abstractions. In object-oriented languages polymorphism is
implemented by the dynamic binding mechanism of operations. This
implies that a fixed portion of code may behave differently depending
on its collaborating objects.

Port An endpoint of communication.

Port Number A 16-bit number used to identify an endpoint of communication in
the TCP protocol.

566 Glossary

Priority
Inversion

A scheduling hazard that occurs when a lower-priority thread or
request blocks the execution of a higher-priority thread or request.

Process A process provides specific resources, such as virtual memory,
and protection capabilities, such as user/group identifiers and a
hardware-protected address space, that can be used by one or more
threads in the process. Compared with a thread, however, a pro-
cess maintains more state information, requires more overhead to
spawn, synchronize, and schedule, and often communicates with
other processes via message passing or shared memory.

Product Family See Product Line.

Product Line A group of products that share a common, managed set of services
that satisfy specific needs of a selected market or mission area, and
that are developed from a common set of core assets in a prescribed
way. Products in a product line share much of their software archi-
tecture and implementation, often because every system is derived
from the same framework. When a single product evolves over time,
its delivered releases also build a product line.

Product-Line
Architecture

An architecture that describes the structural properties for building
a group of related systems (a product line), typically the components
and their interrelationships. The inherent guidelines about the use of
components must capture the means for handling required variability
among the systems.

Protocol A set of rules that describe how messages are exchanged between
communicating peers, as well as the syntax and semantics of the
messages.

Protocol Stack A group of hierarchically layered protocols.

Proxy A software component, service, or object that stands in for another
component, service, or object offering the same usage interface, while
adding some intelligence of access. For example, a remote proxy
stands in for a remote object, offering the same method interface but
implementing a remote method invocation instead of implementing
the requested behavior itself. An HTTP proxy can add security and
caching to improve performance.

Quality of
Service

The probability that a system will deliver particular levels of mea-
surable computational and communication properties, such as avail-
ability, bandwidth, latency, and jitter. Policies and mechanisms are

Glossary 567

typically designed to control and improve the quality of service of
a system.

Race Condition A race condition is a concurrency hazard that can occur when multiple
threads execute simultaneously within a critical section that is not
properly serialized.

Read-side
Critical Section

A set of sequences of instructions that obeys the following invariant:
while one or more threads or processes are executing in the read-side
critical section, no thread or process can execute in a corresponding
write-side critical section. (Compare with Write-side Critical Section.)

Readers/Writer
Lock

A lock that allows multiple threads to access a resource concurrently,
but allows only one thread at a time to modify the resource, and
further prevents concurrent access and modifications.

Reification The act of creating a concrete instance of an abstraction. For example,
a concrete reactor implementation is a reification of the REACTOR

pattern (275). Similarly, an object reifies a class.

Request Event An event sent by a client to a service provider asking it to perform
some processing on the client’s behalf.

Response Event An event sent by a service provider containing the reply to a client ’s
request event.

Recursive Mutex A lock that can be re-acquired by the thread that owns the mutex
without incurring self-deadlock on the thread.

Refactoring An incremental activity that improves the internal structure of com-
ponents and frameworks.

Relationship An association between components. A relationship may be static or
dynamic. Static relationships show directly in source code, and deal
with the placement of components within an architecture. Dynamic
relationships deal with the interaction between components, and may
not be easily visible from source code or diagrams.

Remote Method
Invocation (RMI)

The object equivalent of remote procedure calls, in which a client on
one computer invokes a method on a proxy, to cause a method on a
remote object running a server computer to be executed. The term is
also used to refer specifically to Java’s RMI mechanism.

Remote
Procedure Call

(RPC)

A protocol that allows a computer program running on a client
computer to cause a procedure on a server computer to be exe-
cuted without the programmer explicitly coding the details for the
interaction.

568 Glossary

Responsibility The functionality of an object or a component in a specific context.
A responsibility typically is specified by a set of semantically related
operations. The responsibility section is an element of a CRC card.

Role The responsibility of a design element within a context of related
elements. For example, an object-oriented class defines a single role
that all its instances support. Another example is an interface that
defines a role that all implementations support. If an element sup-
ports a given role, it must provide an implementation of the interface
that defines the role. Elements expose different roles by implement-
ing different interfaces. Different elements may expose the same
role by implementing the same interface, which allows clients to
treat them polymorphicaly with respect to that particular role. An
implemented element may take different roles, even within a single
pattern.

Scheduler A mechanism that determines the order in which threads or request
events are executed.

Self-Describing
Message

A message that contains both metadata that describes the message
schema, and the values corresponding to the schema.

Semaphore A locking mechanism that maintains a count. As long as the count
is greater than zero, a thread can acquire the semaphore without
blocking. After the count becomes zero, however, threads block on
the semaphore until its count become greater than zero as a result
of another thread releasing the semaphore, which increments the
count.

SEP Somebody Else’s Problem, Software Engineering Process, or Software
Engineering with Patterns, whichever you prefer.

Serialization A mechanism for ensuring that only one thread at a time executes
within a critical section in order to prevent race conditions. The term
is also used to refer to the persistent storage of an object in a linear
format, such as a byte sequence or XML.

Servant A component triggered by client requests. When a client request
arrives the servant attempts to fulfill it, either by itself or by delegating
subtasks to other components.

Server Servers denote applications that provide services such as middleware
functionality, database access, or Web page access, to clients. In
distributed object computing middleware such services are typically
implemented by servants that represent distributed objects.

Glossary 569

Service A set of functionality offered by a service provider or server to its
clients. A service typically is implemented in terms of one or more
components.

Service-
Oriented

Architecture

A style of information systems architecture that enables the cre-
ation of applications that are built by combining loosely coupled
and interoperable services. These services inter-operate based on an
interface definition that is independent of the underlying platform
and programming language.

Shared Memory An operating system mechanism that allows multiple processes on
a computer to share a common memory segment. (Compare with
message passing).

Single
Inheritance

Inheritance in which a class can have at most one direct superclass.

Socket A family of terms related to network programming. A socket is an end-
point of communication that identifies a particular network address
and port number. The Socket API is a set of function calls supported
by most operating systems and used by network applications to estab-
lish connections and communicate via socket endpoints. A data-mode
socket can be used to exchange data between connected peers. A
passive-mode socket is a factory that returns a handle to a connected
data-mode socket.

Software
Architecture

A software architecture is a description of the subsystems and com-
ponents of a software system and the relationships between them.
Subsystems and components are often specified via different views
to show the relevant functional and non-functional properties of a
software system. The software architecture of a system is an artifact
that results from software design activities.

Starvation A scheduling hazard that occurs when one or more threads are
continually pre-empted by higher-priority threads and never execute.

Subclass A class that inherits from a superclass.

Subsystem A set of collaborating components that perform a given service or ser-
vices. A subsystem is considered a separate entity within a software
architecture. It performs its designated service(s) by interacting with
other subsystems and components.

Superclass A class from which another class inherits.

Synchronization A locking mechanism that coordinates the order in which threads
execute.

570 Glossary

Synchronous I/O A mechanism for sending or receiving data in which an I/O operation
is initiated and the caller blocks waiting for the operation to complete.

System A collection of software and/or hardware performing one or several
services. A system can be a platform, an application, or both.

System Family See Product Line.

Template A C++ programming language feature that enables classes and func-
tions to be parameterized by various types, constants, or pointers to
functions. A template is often called a generic or parameterized type.

Thread An independent sequence of instructions that executes within the
address space of a program that can be shared with other threads.
Each thread has its own runtime stack and registers, which enables
it to perform synchronous I/O without blocking other threads that
are executing concurrently. Compared to processes, threads main-
tain minimal state information, require relatively little overhead to
spawn, synchronize and schedule, and usually communicate with
other threads via objects in global memory rather than shared mem-
ory.

Thread-per-
Connection

A concurrency model that associates a separate thread for each net-
work connection. This model handles each client that connects with
a server in a separate thread for the duration of the connection. It
is useful for servers that must support long-duration sessions with
multiple clients. It is not useful for clients, such as HTTP 1.0 Web
browsers, that associate a single request with each connection, which
is effectively a thread-per-request model.

Thread-per-
Request

A concurrency model that spawns a new thread for each request.
This model is useful for servers that must handle long-duration
request events from multiple clients, such as database queries. It
is less useful for short-duration requests, due to the overhead of
creating a new thread for each request. It can also consume a large
number of operating system resources if many clients send requests
simultaneously.

Thread Pool A concurrency model that allocates a pool of threads that can execute
request events simultaneously. This model is a variant of thread-per-
request that amortizes thread creation costs by pre-spawning a pool
of threads. It is useful for servers that want to bound the number
of operating system resources they consume. Client requests can be
executed concurrently until the number of simultaneous requests
exceeds the number of threads in the pool. At this point, additional

Glossary 571

requests must be queued until a thread becomes available. However,
if the actual number of threads used by an application is significantly
smaller than the number of pre-allocated threads at all points in time
during its execution, a thread pool wastes threads and the operating
system resources that they use.

Transmission
Control

Protocol (TCP)

A connection-oriented transport protocol that reliably exchanges byte-
streams of data in order and unduplicated between a local and remote
process.

Transport
Endpoint

An endpoint that connects peer applications at the transport layer.

Transport Layer The layer in a protocol stack that is responsible for end-to-end data
transfer and connection management.

Transport Layer
Interface (TLI)

TLI is a set of function calls provided in System V UNIX and used by
network applications to establish connections and communicate via
connected transport endpoints.

Two-way
Method

Invocation

A call to a method that passes parameters to a server object and
receives results back from the server. (Compare with One-way Method
Invocation.)

Type-Safety A property enforced by a programming language’s type system to
ensure that only valid operations can be invoked on instances of
types.

Unicode A standard for character representation using wide-character coding.
Unicode includes characters for most written languages, as well as
representations for punctuation, mathematical notations, and other
symbols.

Unmarshaling See Demarshaling.

Upcall A callback that is invoked from a lower layer of a software architecture
to a higher layer.

User Datagram
Protocol (UDP)

An unreliable, connectionless transport protocol that exchanges data-
gram messages between local and remote processes.

View A view presents a partial aspect of a software architecture that empha-
sizes specific properties of a software system.

Virtual Machine An abstraction layer that offers a set of services to higher-level
applications or other virtual machines.

Virtual Memory An operating system mechanism that permits developers to pro-
gram applications whose address space is larger than the amount of
physical memory on the computer.

572 Glossary

Write-side
Critical Section

A set of sequences of instructions that obeys the following invariant:
at most one thread or process may be executing in the write-side
critical section, and while a thread or process is executing in this
write-site critical section, no thread or process can execute in a
corresponding read-side critical section. (Compare with Read-side
Critical Section.)

References

[ACM01] D. Alur, J. Crupi, D. Malks: Core J2EE Patterns, Best Practices and Design
Strategies, Second edition, Prentice Hall, 2005

[AIS77] C. Alexander, S. Ishikawa, M. Silverstein with M. Jacobson, I. Fiksdahl-
King, S. Angel: A Pattern Language—Towns · Buildings · Construction, Oxford
University Press, 1977

[Ale79] C. Alexander: The Timeless Way of Building, Oxford University Press, 1979

[Ale01] A. Alexandrescu: Modern C++ Design: Generic Programming and Design Pat-
terns Applied, Addison-Wesley 2001

[And96] B. Anderson: Null Object, presented at the First European Conference on
Pattern Languages of Programming, EuroPLoP 1996, 1996

[Apache06] Apache Software Foundation: Web Service Invocation Framework, http://
ws.apache.org/wsif/

[BEA06] BEA Systems: BEA MessageQ Product Overview, http://www.bea.com/
framework.jsp?CNT=overview.htm&FP=/content/products/more/
messageq/, BEA Systems, 2006

[Beck97] K. Beck: Smalltalk Best Practices, Prentice Hall, 1996

[BeCu87] K. Beck, W. Cunningham: Using Pattern Languages for Object-Oriented Pro-
grams, submission to the OOPSLA ’87 workshop on Specification and Design
for Object-Oriented Programming, October 1987

[BeLe76] L. A. Belady, M. M. Lehman: A Model of Large Program Development, IBM
Systems Journal, Volume 15(3), pp. 225–252, 1976

[Bell06] A. E. Bell: Software Development Amidst the Whiz of Silver Bullets. . ., ACM
Queue Volume 4, No. 5, June 2006

[Ben86] J. Bentley: Little Languages, Communications of the ACM, 29(8), pp. 711–721,
August 1986

574 References

[BGB00] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, D. Hardin, M. Turnbull:
The Real-Time Specification for Java, Addison-Wesley, 2000

[Bir05] K. Birman: Reliable Distributed Systems: Technologies, Web Services, and
Applications, Springer, 2005

[Bosch00] J. Bosch: Design and Use of Software Architectures—Adapting and Evolving
a Product-Line Approach, Addison-Wesley, 2000

[Box97] D. Box: Essential COM, Addison-Wesley, 1997

[Bus03] F. Buschmann: Notes on The Forgotten Art of Building Good Software Archi-
tectures, Tutorial at the Eighth Conference on Java and Object-Oriented
Technology, JAOO 2003, Aarhus, Denmark, 2003

[BW95] K. Brown, B. Whitenack: Crossing Chasms: A Pattern Language for Object-
RDBMS Integration, in [PLoPD2], 1995

[Celtix06] Celtix Enterprise Service Bus: User Guides, http://celtix.objectweb.
org/, 2006

[CLF93] D. de Champeaux, D. Lea, P. Faure: Object-Oriented System Development,
Addison-Wesley, 1993

[ClNo01] P. Clements, L. Northrop: Software Product Lines: Practices and Patterns,
Addison-Wesley, 2001

[CMH83] K. M. Chandy, J. Misra, and L. M. Haas: Distributed Deadlock Detection, ACM
Transactions on Computer Systems, 1(2), 143–156, May 1983.

[Cope92] J. O. Coplien: Advanced C++ Programming Styles and Idioms, Addison- Wes-
ley, 1991

[Cope96] J. O. Coplien: Software Patterns, SIGS Books, New York, New York, 1996.
See also http://users.rcn.com/jcoplien/Patterns/WhitePaper/.

[Cope98] J. O. Coplien: Multi-Paradigm Design for C++, Addison-Wesley, 1998

[CSKO+02] A. Corsaro, D. C. Schmidt, R. Klefstad, Carlos O’Ryan: Virtual Component: A
Design Pattern for Memory-Constrained Embedded Applications, Proceedings
of the Ninth Annual Conference on the Pattern Languages of Programs,
Monticello, Illinois, September 2002

[CzEi02] C. Czarnecki, U. Eisenecker: Generative Programming, Methods, Tools and
Applications, Addison-Wesley, 2000

References 575

[DBOSG05] G. Deng, J. Balasubramanian, W. Otte, D. C. Schmidt, A. Gokhale: DAnCE: A
QoS-Enabled Component Deployment and Configuration Engine, Proceedings
of the Third Working Conference on Component Deployment, Grenoble,
France, November, 2005

[DeGe04] J. Dean, S. Ghemawat: MapReduce: Simplified Data Processing on Large
Clusters, OSDI ’04—Sixth Symposium on Operating System Design and
Implementation, San Francisco, CA, December, 2004.

[DOC] The DOC group open-source software, Institute for Software Integrated Sys-
tems, Vanderbilt University, www.dre.vanderbilt.edu

[DWT04] A. Dennis, B. Haley Wixom, D. Tegarden: Systems Analysis and Design with
UML Version 2.0: An Object-Oriented Approach, John Wiley & Sons, 2004

[DyAn98] P. Dyson, B. Anderson: State Patterns, in [PLoPD3], 1997

[Eng99] J. Engel: Programming for the Java Virtual Machine, Addison-Wesley, 1999

[EPL02] R. Elfwing, U. Paulsson, L. Lundberg: Performance of SOAP in Web Service
Environment Compared to CORBA, Proceedings of the Ninth Asia–Pacific
Software Engineering Conference, December 2002, Gold Coast, Australia

[Evans03] E. Evans: Domain-Driven Design, Addison-Wesley, 2003

[FBBOR99] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts: Refactoring: Improving
the Design of Existing Code, Addison-Wesley, 1999

[FeMac02] A. Ferrara, M. MacDonald: Programming .NET Web Services, O’Reilly, 2002

[FGMFB97] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, T. Berners-Lee: Hypertext Transfer
Protocol—HTTP/1.1, Network Working Group, RFC 2068, January 1997

[FJS99a] M. Fayad, R. Johnson, D. C. Schmidt (eds.): Implementing Application Frame-
works: Object-Oriented Frameworks at Work, John Wiley & Sons, New York,
NY, 1999

[FJS99b] M. Fayad, R. Johnson, D. C. Schmidt (eds.): Building Application Frameworks:
Object-Oriented Foundations of Framework Design, John Wiley & Sons, New
York, NY, 1999

[Fow97] M. Fowler: Analysis Patterns, Addison-Wesley, 1997

[Fow03a] M. Fowler: Patterns of Enterprise Application Architecture, Addison-Wesley,
2002

576 References

[Fow03b] M. Fowler: UML Distilled: A Brief Guide to the Standard Object Modeling
Language, Third edition, Addison-Wesley, 2003

[Fow06] M. Fowler: The Model-View-Presenter Pattern, http://www.martinfowler
.com/eaaDev/ModelViewPresenter.html, 2006

[FoYo99] B. Foote, J. Yoder: Big Ball of Mud, in [PLoPD4], 1999

[Fri06] T. L. Friedman: The World is Flat: A Brief History of the Twenty-First Century,
expanded and updated version, Farrar, Straus and Giroux, 2006

[Gar05] J. J. Garrett: Ajax: A New Approach to Web Applications, February 2005,
http://adaptivepath.com/publications/essays/archives/000385.
php

[Gam92] E. Gamma: Objektorientierte Software-Entwicklung am Beispiel von ET++:
Design-Muster, Klassenbibliotheken, Werkzeuge, Springer, 1992

[Gam97] E. Gamma: personal communication, 1997

[GoF95] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995

[GS97a] A. Gokhale, D. C. Schmidt: Design Principles and Optimizations for High-
Performance ORBs, OOPSLA ‘97 Poster Session, Atlanta, GA, ACM, 1997

[GS97b] A. Gokhale, D. C. Schmidt: Evaluating the Performance of Demultiplexing
Strategies for Real-Time CORBA, Proceedings of GLOBECOM ‘97, Phoenix,
AZ, 1EEE, 1997

[GS98] A. Gokhale, D. C. Schmidt: Optimizing A CORBA IIOP Protocol Engine for
Minimal Footprint Multimedia Systems, submitted to IEEE Journal on Selected
Areas in Communications, special issue on Service Enabling Platforms for
Networked Multimedia Systems, 1998

[HBS+02] M. Hapner, R. Burridge, R. Sharma, J. Fialli, K. Haase: Java Message Service
API Tutorial and Reference: Messaging for the J2EE Platform, Addison-Wesley,
2002

[Hearsay02] Kloster Hearsay (the daily EuroPLoP newspaper), Issue 02/2002, Joe Bergin:
Do the Right Thing, Irsee, Germany, 2002

[Hen99] K. Henney: Collections for States, Proceedings of the Fourth European
Conference on Pattern Languages of Programming, EuroPLoP 1999, Irsee,
Universitätsverlag Konstanz, July 2001

References 577

[Hen00a] K. Henney: Patterns of Value, Java Report 5(2), February 2000

[Hen00b] K. Henney: Value Added, Java Report 5(4), April 2000

[Hen00c] K. Henney: A Tale of Two Patterns, Java Report, SIGS Publications, December
2000

[Hen01a] K. Henney: C++ Patterns—Executing Around Sequences, Proceedings of the
Fifth European Conference on Pattern Languages of Programming, EuroPLoP
2000, Irsee, Universitätsverlag Konstanz, July 2001

[Hen01b] K. Henney: C++ Patterns—Reference Accounting, Proceedings of the Sixth
European Conference on Pattern Languages of Programming, EuroPLoP
2001, Irsee, Universitätsverlag Konstanz, July 2002

[Hen01c] K. Henney: A Tale of Three Patterns, Java Report, SIGS Publications, October
2001

[Hen02a] K. Henney: Null Object, Proceedings of the Seventh European Conference on
Pattern Languages of Programming, EuroPLoP 2002, Irsee, Universitätsverlag
Konstanz, July 2003

[Hen02b] K. Henney: Patterns in Java: The Importance of Symmetry, JavaSpektrum,
Issue 6, 2002, SIGS–DATACOM GmbH, Germany

[Hen02c] K. Henney: Methods for States, Proceedings of the First Nordic Conference on
Pattern Languages of Programming, VikingPLoP 2002, Helsingør, Denmark
Universitätsverlag Konstanz, July 2003

[Hen05] K. Henney: Context Encapsulation—Three Stories, A Language, and Some
Sequences, Proceedings of the Tenth European Conference on Pattern Lan-
guages of Programming, EuroPLoP 2005, Irsee, Universitätsverlag Konstanz,
July 2006

[HMS97] J. Hu, S. Mungee, D. C. Schmidt: Principles for Developing and Measur-
ing High-Performance Web Servers over ATM, Proceedings of INFOCOM ’98,
March/April 1998

[HoWo03] G. Hohpe, B. Woolf: Enterprise Integration Patterns—Designing, Building, and
Deploying Messaging Solutions, Addison-Wesley, 2003

[HPS97] J. Hu, I. Pyarali, D. C. Schmidt: Measuring the Impact of Event Dispatch-
ing and Concurrency Models on Web Server Performance Over High-Speed
Networks, Proceedings of the 2nd Global Internet Conference, IEEE, 1997

[HV99] M. Henning, S. Vinoski: Advanced CORBA Programming with C++, Addison-
Wesley, 1999

578 References

[IBM99] IBM Corporation: MQSeries Version 5.1 Administration and Programming
Examples, IBM Redbooks, 1999

[IBM06] IBM Corporation: Cell Broadband Engine Programming Handbook, pp. 603,
April 2006

[IEEE96] IEEE: Threads Extension for Portable Operating Systems, (Draft 10), February
1996

[John97] R. Johnson: Frameworks = Patterns + Components, Communications of the
ACM, M. Fayad, D.C. Schmidt (eds.), Volume 40, No. 10, October 1997

[Kaye03] D. Kaye: Loosely Coupled, The Missing Pieces of Web Services, Rds Associates,
2003

[KC97] W. Keller, J. Coldewey: Accessing Relational Databases, in [PLoPD3], 1997

[Kel04] A. Kelly: Encapsulated Context, Proceedings of the Eighth European Confer-
ence on Pattern Languages of Programming, EuroPLoP 2003, Irsee, Univer-
sitätsverlag Konstanz, July 2004

[Kel99] W. Keller: Object/Relational Access Layer, in Proceedings of the Third Euro-
pean Conference on Pattern Languages of Programming, EuroPLoP 1998,
Irsee, Universitätsverlag Konstanz, July 1999

[KGS+05] A. S. Krishna, A. Gokhale, D. C. Schmidt, V. P. Ranganath, J. Hatcliff:
Model-Driven Middleware Specialization Techniques for Software Product-Line
Architectures in Distributed Real-Time and Embedded Systems, Proceedings
of the MODELS 2005 workshop on MDD for Software Product-Lines, Half
Moon Bay, Jamaica, October 2005

[KLLM95] G. Kiczales, R. DeLine, A. Lee, C. Maeda: Open Implementation—Analysis and
Design of Substrate Software, Tutorial #21 of OOPSLA ’95, October 1995

[Kof04] T. Kofler: Robust Iterators for ET++, Structured Programming, Volume 14,
Number 2, pp. 62–85, 1993

[KSK04] A. S. Krishna, D. C. Schmidt, R. Klefstad: Enhancing Real-Time CORBA via
Real-Time Java Features, Proceedings of the Twenty-Fourth IEEE Interna-
tional Conference on Distributed Computing Systems (ICDCS), Tokyo, Japan,
May 2004

[KSS05] A. Krishna, D. C. Schmidt, M. Stal: Context Object: A Design Pattern for Effi-
cient Middleware Request Processing, Proceedings of the Twelfth Pattern Lan-
guage of Programming Conference, Allerton Park, Illinois, September 2005

References 579

[Lak95] J. Lakos: Large-Scale C++ Software Design, Addison-Wesley, 1995

[Lea02] D. Lea: personal communication, May 2002

[Lea99] D. Lea: Concurrent Programming in Java: Design Principles and Patterns,
Second edition, Addison-Wesley, 2000

[Lee06] E. A. Lee: The Problem with Threads, IEEE Computer, May 2006

[Lew95] B. Lewis, D. J Berg: Threads Primer: A Guide to Multithreaded Programming,
Prentice Hall, 1995

[LGS00] D. L. Levine, C. D. Gill, D. C. Schmidt: Object Lifetime Manager—A Comple-
mentary Pattern for Controlling Object Creation and Destruction, in Design
Patterns in Communications, L. Rising (ed.), Cambridge University Press,
2001

[Lin03] D. Linthicum: Next Generation Application Integration: From Simple Informa-
tion to Web Services, Addison-Wesley, 2003

[LY99] T. Lindholm, F. Yellin: The Java Virtual Machine Specification, Second edition,
Addison-Wesley, 1999

[Maf96] S. Maffeis: The Object Group Design Pattern, Proceedings of the 1996 USENIX
Conference on Object-Oriented Technologies, USENIX, Toronto, Canada,
June 1996

[MaHa99] V. Matena, M Hapner: Enterprise JavaBeans, Version 1.1, Sun Microsystems
Inc., 1999

[Mar04] R. Martin: The Dependency Inversion Principle, C++ Report, Volume 8, No 6,
May 1996

[McK96] P. E. McKenney: Selecting Locking Designs for Parallel Programs, in [PLoPD2],
1996

[MeAl04a] S. Meyers, A. Alexandrescu: C++ and the Perils of Double-Checked Locking:
Part I, Dr. Dobb’s Journal, June 2004

[MeAl04b] S. Meyers, A. Alexandrescu: C++ and the Perils of Double-Checked Locking:
Part II, Dr. Dobb’s Journal, June 2004

[Mes95] G. Meszaros: Half-Object plus Protocol, in [PLoPD1], 1995

[Mes96] G. Meszaros: A Pattern Language for Improving the Capacity of Reactive
Systems, in [PLoPD2], 1996

580 References

[Mey97] B. Meyer: Object-Oriented Software Construction, Second edition, Prentice
Hall, 1997

[MMW06] C. McMurtry, M. Mercuri, N. Watling: Microsoft Windows Communication
Foundation: Hands-On!, Sams, 2006

[MPY+04] A. Memon, A. Porter, C. Yilmaz, A. Nagarajan, D. C. Schmidt, B. Natara-
jan: Skoll: Distributed Continuous Quality Assurance, Proceedings of the 26th
IEEE/ACM International Conference on Software Engineering, Edinburgh,
Scotland, May 2004

[MS03] Microsoft Corporation: Enterprise Solution Patterns Using Microsoft .NET Ver-
sion 2.0, Microsoft Press, 2003

[MSS00] S. Mungee, N. Surendran, D. C. Schmidt: The Design and Performance of a
CORBA Audio/Video Streaming Service, in Design and Management of Multi-
media Information Systems: Opportunities and Challenges, M. Syed (ed.), Idea
Group Publishing, Hershey, PA, 2000

[Mule06] Mule Enterprise Service Bus: user documentation, http://mule.codehaus
.org/, 2006

[OASIS06a] Organization for the Advancement of Structured Information Standards: Ref-
erence Model for Service-Oriented Architecture, Version 1.0, Committee Spec-
ification, July 2006, http://docs.oasis-open.org/soa-rm/v1.0/soa-rm
.pdf

Organization for the Advancement of Structured Information Standards: Web
Services Base Notification, Version 1.3, Committee Specification, July 2006

[OG94] The Open Group: DCE: Remote Procedure Call, available at http://
www.opengroup.org/bookstore/catalog/c309.htm, 1994

[OKS+00] C. O’Ryan, F. Kuhns, D. C. Schmidt, O. Othman, J. Parsons: The Design
and Performance of a Pluggable Protocols Framework for Real-Time Distributed
Object Computing Middleware, Proceedings of the ACM/IFIP Middleware 2000
Conference, Pallisades, New York, April 2000

[OMG02] Object Management Group: CORBA Component Model, Version 3.0, June 2002

References 581

[OMG03a] Object Management Group: Real-Time CORBA Specification (static schedul-
ing), Version 1.2, January 2005 http://www.omg.org/cgi-bin/doc?
formal/05-01-04

[OMG03b] Object Management Group: Specification for Deployment and Configuration of
Component-based Distributed Applications, adopted submission, OMG docu-
ment ptc/03-07-08, 2003

[OMG04a] Object Management Group: Common Object Request Broker Architecture,
Version 3.0.3, March 2004

[OMG04b] Object Management Group: Lightweight CORBA Component Model, draft
adopted specification, May 2004 http://www.omg.org/cgi-bin/doc?
realtime/2003-05-05

[OMG04c] Object Management Group: Notification Service Specification, Version 1.1,
October 2004

[OMG05a] Object Management Group: Real-Time CORBA Specification (dynamic schedul-
ing), Version 1.2, January 2005

[OMG05b] Object Management Group: Real-Time Data Distribution Service, Version 1.1,
December 2005

[Pal05] D. Pallmann: Programming INDIGO, Microsoft Press, 2005

[Par94] D. L. Parnas: Software Aging, Proceedings of the Sixteenth International
Conference on Software Engineering (ICSE–16), Sorrento, Italy, May
1994

[PHS96] I. Pyarali, T. H. Harrison, D. C. Schmidt: Design and Performance of an
Object-Oriented Framework for High-Performance Electronic Medical Imaging,
USENIX Computing Systems, Volume 9, November/December 1996

[PLoPD1] J. O. Coplien, D. C. Schmidt (eds.): Pattern Languages of Program Design,
Addison-Wesley, 1995 (a book publishing the reviewed Proceedings of the
First International Conference on Pattern Languages of Programming, Mon-
ticello, Illinois, 1994)

[PLoPD2] J. O. Coplien, N. Kerth, J. Vlissides (eds.): Pattern Languages of Program
Design 2, Addison-Wesley, 1996 (a book publishing the reviewed Proceedings
of the Second International Conference on Pattern Languages of Program-
ming, Monticello, Illinois, 1995)

582 References

[PLoPD3] F. Buschmann, R. C. Martin, D. Riehle (eds.): Pattern Languages of Program
Design 3, Addison-Wesley, 1997 (a book publishing selected papers from the
Third International Conference on Pattern Languages of Programming, Mon-
ticello, Illinois, USA, 1996, the First European Conference on Pattern Lan-
guages of Programming, Irsee, Bavaria, Germany, 1996, and the Telecommu-
nication Pattern Workshop at OOPSLA ’96, San Jose, California, USA, 1996)

[PLoPD4] B. Foote, N. B. Harrison, H. Rohnert (eds.): Pattern Languages of Program
Design 4, Addison-Wesley, 1999 (a book publishing selected papers from
the Fourth and Fifth International Conference on Pattern Languages of
Programming, Monticello, Illinois, USA, 1997 and 1998, and the Second and
Third European Conference on Pattern Languages of Programming, Irsee,
Bavaria, Germany, 1997 and 1998)

[PLoPD5] D. Manolescu, J. Noble, M. Völter (eds.): Pattern Languages of Program Design
5, Addison-Wesley, 2006 (a book publishing selected papers from the Pattern
Languages of Programming conference series from 1999–2004)

[POSA1] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal: Pattern-
Oriented Software Architecture, Volume 1: A System of Patterns, John Wiley &
Sons, 1996

[POSA2] D. C. Schmidt, M. Stal, H. Rohnert, F. Buschmann: Pattern-Oriented Software
Architecture, Volume 2: Patterns for Concurrent and Networked Objects, John
Wiley & Sons, 2000

[POSA3] P. Jain, M. Kircher: Pattern-Oriented Software Architecture, Volume 3: Patterns
for Resource Management, John Wiley & Sons, 2004

[POSA5] F. Buschmann, K. Henney, D. C. Schmidt: Pattern-Oriented Software Archi-
tecture, Volume 5: On Patterns and Pattern Languages, John Wiley & Sons,
2007

[POSIX95] Information Technology—Portable Operating System Interface (POSIX)—Part 1:
System Application: Program Interface (API) [C Language], 1995

[PP03] M. Poppendieck, T. Poppendieck: Lean Software Development: An Agile Toolkit
for Software Development Managers, Addison-Wesley, 2003

[PPR] The Portland Pattern Repository, http://www.c2.com

[Pree94] W. Pree: Design Patterns for Object-Oriented Software Development, Addison-
Wesley, 1994

[PRS+00] I. Pyarali, C. O’Ryan, D. C. Schmidt, N. Wang, V. Kachroo, A. Gokhale: Using
Principle Patterns to Optimize Real-Time ORBs, IEEE Concurrency Magazine,
Volume 8, Number 1, January/March 2000

References 583

[PSC+01] I. Pyarali, M. Spivak, R. K. Cytron, D. C. Schmidt: Optimizing Threadpool
Strategies for Real-Time CORBA, Proceedings of the ACM Workshop on Opti-
mization of Middleware and Distributed Systems, pp. 214–222, June, 2001,
Snowbird, Utah

[Rago93] S. Rago: UNIX System V Network Programming, Addison-Wesley, 1993

[Ram02] I. Rammer: Advanced .NET Remoting, APress, 2002

[Ris01] L. Rising: Design Patterns in Communications Software, Cambridge University
Press, 2001

[RKF92] W. Rosenberry, D. Kenney, G. Fischer: Understanding DCE, O’Reilly and
Associates, Inc. 1992

[SC99] D. C. Schmidt, C. Cleeland: Applying Patterns to Develop Extensible ORB Mid-
dleware, IEEE Communications Magazine, special issue on Design Patterns,
April 1999

[SCA05] Service Component Architecture: Assembly Model Specification, Version 0.9,
November 2005

[Sch00] D. C. Schmidt: Applying a Pattern Language to Develop Application-Level Gate-
ways, in Design Patterns in Communications, ed. Linda Rising, Cambridge
University Press, 2000

[ScSc01] R. E. Schantz, D. C. Schmidt: Middleware for Distributed Systems: Evolving
the Common Structure for Network-Centric Applications, in Encyclopedia of
Software Engineering, J. Marciniak, G. Telecki (eds.), John Wiley & Sons,
New York, 2001

[ScVi99] D. C. Schmidt, S. Vinoski: Collocation Optimizations for CORBA, C++ Report,
SIGS, Volume 11, Number 10, pp. 47–52, November/December 1999

[SDL05] A. Prinz, J. Reed, R. Reed (eds.): SDL 2005: Model Driven, Proceedings of
the 12th International SDL Forum, Grimstad, Norway, June 20–23, 2005,
Springer, 2005

[SFHBS06] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann, P.
Sommerlad: Security Patterns: Integrating Security and Systems Engineering,
John Wiley & Sons, 2006

[SGS01] V. Subramonian, C. Gill, D. Sharp: Towards a Pattern Language for Net-
worked Embedded Software Technology Middleware, ACM OOPSLA Work-
shop on Towards Patterns and Pattern Languages for OO Distributed Real-
Time and Embedded Systems, Tampa Bay, Florida, October 2001

584 References

[SH02] D. C. Schmidt, S. D. Huston: C++ Network Programming, Volume 1: Mastering
Complexity with ACE and Patterns, Addison-Wesley, 2002

[SH03] D. C. Schmidt, S. D. Huston: C++ Network Programming, Volume 2: System-
atic Reuse with ACE and Frameworks, Addison-Wesley, 2003

[SMFG00] D. C. Schmidt, S. Mungee, S. Flores-Gaitan, A. Gokhale: Software Architec-
tures for Reducing Priority Inversion and Non-Determinism in Real-Time Object
Request Brokers, Journal of Real-Time Systems, special issue on Real-Time
Computing in the Age of the Web and the Internet, ed. A. Stoyen, Kluwer,
2000

[SN96] R. W. Schulte, Y. V. Natis: Service Oriented Architectures, Part 1, SSA Re-
search Note SPA–401–068, Gartner, 12 April 1996

[SNG+02] D. C. Schmidt, B. Natarajan, A. Gokhale, N. Wang, C. Gill, TAO: A Pattern-
Oriented Object Request Broker for Distributed Real-Time and Embedded
Systems, IEEE Distributed Systems Online, Volume 3, Number 2, February,
2002

[Sol98] D. A. Solomon: Inside Windows NT, Second edition, Microsoft Press, 1998

[Som97] P. Sommerlad: Manager, in [PLoPD3], 1997

[Ste93] W. R. Stevens: TCP/IP Illustrated, Volume 1, Addison-Wesley, 1993

[Ste98] W. R. Stevens: Unix Network Programming, Volume 1: Networking APIs: Sock-
ets and XTI, Second edition, Prentice Hall, 1998

[Str97] B. Stroustrup: The C++ Programming Language, Third edition, Addison-
Wesley 1997

[StRa05] W. R. Stevens, S. A. Rago: Advanced Programming in the UNIX environment,
Second edition, Addison-Wesley, 2005

[StSc05] M. Stal, D. C. Schmidt: Activator, Proceedings of the Twelth Pattern Language
of Programming Conference, Allerton Park, Illinois, September 2005

[Sun88] Sun Microsystems: Remote Procedure Call Protocol Specification, Sun Micro-
systems Inc., RFC–1057, June 1988

[Sun03] Sun Microsystems: Enterprise JavaBeans Specification, Version 2.1, Sun
Microsystems Inc., November 2003

[Sun04a] Sun Microsystems: Enterprise JavaBeans Specification, Version 3.0, early
draft, Sun Microsystems Inc., June 2004

References 585

[Sun04b] Sun Microsystems: Java Message Service (JMS), Version 3.0, early draft, Sun
Microsystems Inc., June 2004

[Sun04c] Sun Microsystems: Java Remote Method Invocations (RMI), Sun Microsystems
Inc., 2004

[Sut05a] H. Sutter: The Free Lunch Is Over: A Fundamental Turn Toward Concurrency
in Software, Dr. Dobb’s Journal, 30(3), March 2005

[Sut05b] H. Sutter: Software and the Concurrency Revolution, InStat Fall Processor
Forum, October 2005

[Szy02] C. Szyperski: Component Software: Beyond Object-Oriented Programming,
Second edition, Addison-Wesley, 2002

[Tan92] A. S. Tanenbaum: Modern Operating Systems, Prentice Hall, 1992

[Tan95] A. S. Tanenbaum: Distributed Operating Systems, Prentice Hall, 1995

[TaSte02] A. S. Tanenbaum, M. van Steen: Distributed Systems: Principles and Para-
digms, First edition, Prentice Hall, 2002

[Thai99] T. L. Thai: Learning DCOM, O’Reilly, 1999

[Vin03] S. Vinoski: Toward Integration: Integration with Web Services, IEEE Internet
Computing, November/December 2003, pp. 75–77, 2003

[Vin04a] S. Vinoski: An Overview of Middleware, Ninth International Conference on
Reliable Software Technologies Ada-Europe 2004, Palma de Mallorca, 14–18
June 2004

[Vin04b] S. Vinoski: WS-Nonexistent Standards, IEEE Internet Computing, Novem-
ber/December 2004, IEEE, 2004

[Vlis98a] J. Vlissides: Pattern Hatching: Design Patterns Applied, Addison-Wesley, 1998

[Vlis98b] J. Vlissides: Pluggable Factory, Part I, C++ Report, November/December 1998

[Vlis99] J. Vlissides: Pluggable Factory, Part II, C++ Report, February 1999

[VKZ04] M. Völter, M. Kircher, U. Zdun: Remoting Patterns: Foundations of Enterprise,
Internet and Realtime Distributed Object Middleware, John Wiley & Sons,
2004

[VSW02] M. Völter, A. Schmid, E. Wolff: Server Component Patterns—Component
Infrastructures Illustrated with EJB, John Wiley & Sons, 2002

586 References

[W3C03] World Wide Web Consortium: SOAP Version 1.2, June 2003

[W3C06a] World Wide Web Consortium: Web Services Description Language (WSDL)
Version 2.0, June 2006

[W3C06b] World Wide Web Consortium: Extensible Markup Language (XML) 1.1, Septem-
ber 2006

[WK01] J. Weigmann, G. Kilian: Decentralization with PROFIBUS-DP: Architecture and
Fundamentals, Configuration and Use with Step 7, John Wiley & Sons, 2001

[Woolf97] B. Woolf: Null Object, in [PLoPD3], 1997

[WRW96] A. Wollrath, R. Riggs, J. Waldo: A Distributed Object Model for the Java
System, USENIX Computing Systems, ed. Douglas C. Schmidt, Volume 9,
Number 4, MIT Press, November/December 1996

[WSG+03] N. Wang, D. C. Schmidt, A. Gokhale, C. Rodrigues, B. Natarajan, J. P. Loy-
all, R. E. Schantz, C. D. Gill: QoS-Enabled Middleware, in Middleware for
Communications, pp. 131–162, John Wiley and Sons, New York, 2003

[WWWK96] S. C. Kendall, J. Waldo, A. Wollrath, G. Wyant (eds.): A Note On Distributed
Computing, Technical Reports and Essay Series, Sun Microsystems Inc.,
1996, http://research.sun.com/techrep/1994/abstract-29.html

Index of Patterns

Page numbers in bold are for main pattern descriptions

A
Absolute Object Reference 243, 245
Abstract Factory 120–6, 199, 210, 455,

477, 486–7, 525–6, 528, 529, 531
Acceptor-Connector 109–11, 125–6, 159,

247, 250, 256, 258, 260, 264, 265–7,
365, 368, 453, 455, 459, 492, 529

Activator 477, 484, 494, 496, 497–8,
513–14

Active Object 51, 83, 84, 92, 93, 130, 133,
267, 281, 343, 356, 358, 360, 365–7,
368, 382, 412, 453, 455, 519, 522

Active Record 535–7, 539, 546–7
Aggregator 233
Annotations 435
Application Controller 190, 332, 334–5,

341–2, 384, 388, 412
Application Service 180, 209
Asynchronous Completion Token (ACT) 256,

258, 263, 268–9, 383, 421, 492
Authorization 241, 283, 333, 336, 351–2
Automated Garbage Collection 318, 367,

397, 437, 471, 477, 485–6, 517,
519–21, 522, 531

B
Batch Iterator 11
Batch Method 9, 11, 275, 280, 283, 297,

299, 300–1, 302–3, 493

Blackboard 172, 177–9, 184, 205–7, 208,
418, 538

Bridge 187, 210, 281, 313, 427, 429,
436–7, 438, 519, 522

Broker 18, 49, 51, 73–5, 80, 91, 93, 96–7,
100, 106, 124, 125–6, 184, 214–16,
219–20, 224, 237–9, 240, 242, 244,
292, 294, 420, 438, 459, 488, 490,
495, 529

Builder 150, 154, 199, 210, 384, 477,
486–7, 525, 527–8, 529, 531

Business Delegate 239, 240, 275, 278–9,
282–3, 291, 292–3, 327, 495, 507

C
Caching 481
Canonical Data Format 230
Canonical Data Model 421
Chain of Responsibility 134, 153–4, 159,

190, 281, 427, 430, 438, 440–1
Channel Adapter 226
Chunky Iterator 11
Claim Check 230
Class Adapter 429
Client Proxy 99, 218, 239, 240–1, 291, 293,

351, 396, 505
Client Request Handler 218, 224, 243,

246–8, 259, 262, 265, 368, 384,
388, 420, 459, 492

Client-Dispatcher-Server 218

587

588 Index of Patterns

Collections for States 344, 465–6, 471–2,
520

Combined Method 142, 275, 280, 283,
296–7, 299, 418, 430

Command 187, 190, 193, 281, 301, 303,
325, 327, 338, 340, 342, 343–4, 366,
401–3, 412–13, 414, 442

Command Message 421
Command Object 303
Command Processor 180, 332, 334–5,

343–4, 367, 388, 413, 421, 442,
444, 453, 455, 471

Competing Consumer 228
Component 181, 209
Component Configurator 51, 89, 92, 93,

122, 124–6, 149, 159, 196, 199,
210, 239, 294, 405, 414, 442, 476,
478, 481, 490–1, 492, 499,
529, 531

Composed Message Processor 233
Composite 131–42, 145, 149, 153–4, 159,

281, 298, 309, 311, 314, 319–20,
413, 443, 447

Container 98–9, 239, 281, 288, 438, 461,
475, 478, 481, 488–9, 492, 497,
499–500, 501

Content Enricher 230
Content Filter 230
Content-based Router 232
Context Object 283, 287, 314, 401, 403–4,

416–17, 443, 446, 456, 496, 500,
502

Context-based Router 232
Control Bus 233
Copied Value 209, 260, 264, 376, 378–9,

394–5, 458
Correlation Identifier 421
Counted Pointer 485
Counting Handle 291, 318, 367, 397, 437,

477, 485–6, 494, 517, 520, 522–4,
532

D
Data Mapper 507, 535–7, 539, 540–1
Data Transfer Object 155, 190, 193, 196,

203, 207, 283, 287, 297, 318, 323,
348, 401, 403–4, 407, 418–19, 545

Database Access Layer 51, 88, 92–3, 146,
185, 203, 207, 405, 535–7, 538–9,
540, 542, 544, 546

Datatype Channel 225
Dead Letter Channel 225
Declarative Component Configuration 210,

428, 435, 461–2, 489
Decorator 145, 281, 316, 340, 427, 431–2,

449–50
Detached Count 523–4
Detour 232
Disposal Method 283, 299, 477, 486–7,

491, 494, 500, 520, 522, 526, 528,
531–2

Document Message 421
Domain Model 49–51, 60, 169, 171, 182–4,

185, 188, 191, 194, 197, 200–1, 202,
205, 208, 221, 234, 237, 538

Domain Object 49, 51, 68–73, 76, 79–80,
83, 85, 89, 90, 93, 96, 130–1, 144,
149, 151, 154, 169, 172, 179–80,
184, 187, 189, 193, 196, 198–9,
203–4, 207, 208–10, 281, 313, 394,
396, 436, 438, 461, 490, 525, 527

Double Dispatch 401–2, 408–9, 448
Double-Checked Locking 375, 378–9,

386–7, 388, 508
Durable Subscriber 228
Dynamic Invocation Interface 199, 275,

278, 285, 288–9, 289, 470, 489
Dynamic Router 233

E
Eager Acquisition 476, 483, 504, 509–10,

512

Index of Patterns 589

Embedded Count 523
Encapsulated Implementation 51, 71–2, 90,

93, 130, 153, 187, 209, 308–10,
313–16, 317, 319, 321, 324, 326,
359, 362, 365, 368, 414, 416, 437,
438, 442, 444, 447, 449, 451, 453,
455, 459, 467, 469

Enumeration Method 9, 275, 280, 283, 298,
300–1, 303, 320, 412, 447, 493

Envelope Wrapper 230
Event Message 421
Event-Driven Consumers 236
Evictor 455, 477, 484, 494, 498, 504, 506,

508, 515–16
Execute-Around Method 532
Execute-Around Object 316, 391, 428,

431–2, 451–2, 460
Explicit Interface 51, 71–2, 90, 93, 130,

131, 141–2, 144, 151–4, 187, 209,
260–1, 264, 274–6, 280, 281–3, 284,
288, 290, 292, 294, 296, 298–9, 300,
302, 351, 366, 384, 406, 413, 414,
416, 418, 437, 439, 441, 446, 448,
450, 456, 489, 529, 531

Explicitly Counted Object 523–4
Extension Interface 151–4, 274, 277, 282,

284–5, 286, 288, 499

F
Facade 99, 239, 275, 279–80, 283, 294–5,

318, 491
Factory Method 137, 142, 239, 266, 283,

299, 393, 397, 477, 486–7, 494, 500,
526, 528, 529–30

Fire and Forget 247
Firewall Proxy 291, 333, 336, 349–50
Forwarder-Receiver 218
Fresh Work Before Stale 516
Front Controller 190, 332, 333–4, 339–40,

384, 388, 412, 449, 453, 455
Future 323, 367, 375–6, 380, 382–3, 459,

497, 512

G
Guaranteed Delivery 226
Guarded Suspension 369, 375–6, 380–1,

383

H
Half-Object plus Protocol 51, 80–4, 92–3,

130, 133, 309, 312, 324–5, 405,
412, 420, 496

Half-Sync/Half-Async 112–16, 125–6, 185,
261, 264, 315, 355, 357, 359–61,
365, 368, 453, 455, 459

I
Idempotent Receiver 228
Identity Map 541
Immutable Value 136–7, 153–4, 159,

209–10, 241, 376, 378–9, 396–7,
492, 503, 519, 522, 528, 529

Integration Reverse Proxy 350
Intercepting Filter 340, 446
Interceptor 153–4, 159, 243, 245, 316, 344,

405, 416, 427, 431, 444–6
Interpreter 315, 319, 344, 413, 416, 427,

430, 442–3, 447, 491
Introspective Interface 199, 274, 278, 285,

286–7, 288, 414, 416, 418
Invalid Message Channel 225
Invocation Interceptor 446
Invoker 99, 106, 125, 218, 238, 239,

244–5, 249, 420, 444
Iterator 9, 11, 142–3, 153–4, 159, 275, 280,

283, 296, 298–9, 301, 302, 320,
405, 493, 529, 531

L
Layers 49, 51, 68, 76, 90, 93, 101–2, 124,

159, 171–3, 184, 185, 194, 208, 238,
255, 281, 313, 350, 405, 412, 420,
436, 438

590 Index of Patterns

Lazy Acquisition 293, 386, 393, 476, 483,
484, 498, 500, 504, 507–8, 512,
517, 541

Lazy Load 541
Leader/Followers 51, 85–6, 92–3, 113–14,

261, 315, 356, 357, 362–4, 368,
453, 455, 503

Leasing 477, 485–6, 494, 498, 504, 506,
508, 517, 517–18, 521, 526

Lifecycle Callback 285, 416, 476, 480, 482,
489, 491, 494, 499–500, 507, 529,
531

Linked Handles 523
Location Forwarder 245
Looked-Up Count 524
Lookup 218, 239, 293, 324, 327, 476,

480–1, 493, 495–6, 496, 513

M
Manager 479–80
Master-Slave 309, 312, 315, 321–3, 382,

418, 453, 455
Mediator 193, 196, 318, 401–3, 405,

410–11
Memento 283, 287, 314, 401, 403–4, 413,

414–15, 491
Message 187, 201, 217, 222, 236, 238, 243,

245, 248, 251, 325, 327, 343–4, 361,
402–4, 420–1

Message Broker 232
Message Bus 226
Message Channel 216–17, 223, 224–6,

248, 251, 368, 384
Message Dispatcher 228
Message Endpoint 217, 223, 227–8
Message Expiration 421
Message Filter 232
Message Router 216–17, 223, 231–3, 236,

368, 384
Message Sequence 421
Message Translator 217, 223, 229–30, 236

Messaging 184, 201, 214–20, 221–3, 224,
227, 229, 231, 420

Messaging Bridge 226
Messaging Gateway 228
Messaging Mapper 228
Metadata Mapping 541, 543
Methods for States 288, 314–15, 465–6,

469–70
Microkernal 171, 175, 184, 185, 194–6,

208, 410, 418, 438, 490, 492
Model View Presenter 174
Model-View Controller 49, 51, 76–8, 82,

91–3, 171, 173–4, 184, 188–90, 193,
208, 333, 337, 339, 341, 343, 345,
347, 405, 412, 418, 440, 459

Monitor Object 115, 125–6, 204, 225, 233,
243, 247, 258, 267, 344, 356, 358,
361, 364, 367, 368–9, 380, 384

Mutable Companion 397, 528

N
Normalizer 230
Null Object 389, 394, 428, 433, 456, 457–8

O
Object Adapter 98–9, 187, 196, 210, 239,

281, 291, 316, 427, 429, 434, 437,
438–9, 441, 489, 497

Object Lifetime Manager 479–80
Object Manager 196, 199, 248, 251, 261,

267, 269, 298, 300, 302, 384, 393,
397, 455, 476, 478–9, 480, 481, 489,
491, 492–4, 495, 499, 500, 503, 505,
513, 515, 517, 522, 529, 531, 543

Objects for States 314, 465–6, 467–8
Observer 144, 187, 190, 193, 204, 281,

299, 325, 327, 401–2, 405–7, 411,
414, 418, 446, 491, 539

P
Packet Filter Firewall 350

Index of Patterns 591

Page Controller 190, 332–4, 337–8, 384,
388, 412, 453, 455

Partial Acquisition 382, 476, 483, 504, 507,
509, 511–12, 541

Pipes and Filters 171, 176–7, 184, 200–1,
208, 216, 221, 420

Pluggable Behavior 456
Pluggable Factory 526
Point-to-Point Channel 225
Policy 456
Poll Object 247
Polling Consumer 228
Pooling 481
Presentation-Abstraction-Control 77, 171,

173–4, 184, 188, 191–3, 208, 333,
405, 410, 412, 418

Proactor 107, 248, 250, 256–8, 262–4,
265–6, 268, 281, 359, 361, 394, 459

Process Manager 232
Protocol Plug-in 248, 251
Prototype 487
Proxy 159, 240, 275, 279, 282, 290–1, 292,

349, 384, 393, 438, 497, 522
Publish-Subscribe Channels 236
Publisher-Subscriber 184, 214–20, 225,

234–6, 239, 420

R
Reactor 48, 105–7, 110–11, 125–6, 159,

248, 250, 256–8, 259–61, 265–6,
281, 359, 361, 362, 363, 394, 459,
492

Recipient List 232
Record Set 545
Reference monitor 352
Reflection 172, 175–6, 184, 197–9, 208,

286, 288, 418, 490, 492, 525, 527
Registry 541
Remote Facade 241
Remote Proxy 79

Remoting Error 223, 236, 238–9, 243, 245,
247–8, 250, 293

Replicated Component Group 292, 309,
312, 326–7, 405, 412, 420, 495

Request-Reply 421
Requestor 99, 218, 238, 239, 242–3, 246,

368, 384, 388, 420, 444
Resequencer 233
Resource Acquisition is Initialization (RAII)

432
Resource Cache 148, 154, 159, 241, 476,

480–2, 494, 505–6, 515, 517
Resource Lifecycle Manager 479–80
Resource Pool 364, 397, 476, 480–2, 493–4,

503–4, 507, 509–10, 511, 515, 517
Result Callback 247
Return Address 421
Reverse Protection Proxy 350
Role-based Access Control 352
Routing Slip 233
Row Data Gateway 492, 535–7, 539, 542–3

S
Scatter-Gather 233
Scoped Locking 376, 377, 389, 390–1, 451,

459
Secure Channel 248
Selective Consumer 228, 236
Server Request Handler 106, 125, 218, 224,

245, 249–51, 259, 262, 265, 420,
459, 492

Service Activator 228
Service Gateway 280, 295
Session Facade 295
Shared Repository 172, 177–9, 184, 202–4,

208, 216, 368, 384, 388, 405, 418,
538

Singleton 487
Splitter 233
Stateful Firewall 350

592 Index of Patterns

Strategized Locking 204, 243, 247, 338,
340, 342, 344, 375, 377, 385, 387,
388–9, 390, 455, 457, 459

Strategy 117–18, 120–2, 125–6, 138–9,
153–4, 159, 267, 281, 316, 323, 338,
340, 344, 361, 364, 389, 428, 432–3,
455–6, 457, 493, 516, 526

Sync with Server 247

T
Table Data Gateway 418, 535, 539, 544–5
Task Coordinator 416, 476, 480, 482, 489,

501–2
Template Method 118, 139, 267, 316, 323,

338, 340, 344, 361, 364, 367, 385,
428, 432–3, 453–4

Template View 189, 332, 335–6, 345–6,
348

Thread-Safe Interface 204, 225, 233, 243,
247, 283, 291, 338, 340, 342, 369,
377, 384–5, 388, 453, 493, 528

Thread-Specific Storage 109, 356, 376,
378–9, 392–3, 417, 460, 492, 507,
529

Transactional Client 228
Transfer Object Assembler 295
Transform View 189, 332–6, 347–8, 418

U
Unit of Work 541

V
Value Object 209–10
Virtual Proxy 146, 148, 153–4, 291, 383,

476, 480–1, 489, 494, 497–8, 507–8,
511, 514, 515

Visitor 140–1, 143, 153–5, 159, 281, 301,
316, 318, 320, 408, 427, 432, 443,
447–8

W
Whole-Part 309, 311, 314, 317–18, 410,

418, 447, 453, 455, 519 522
Wrapper Facade 103–4, 124, 126, 190, 238,

248, 251, 261, 264, 267, 281, 316,
361, 381, 389, 391, 392, 428–9, 434,
451, 459–60

Index of Names

A
Achatz, Reinhold xxi
Aguimar, Ademar xxi
Alexander, Christopher 46
Alur, Deepak 35
Anderson, Bruce 5, 35

B
Beck, Kent 5, 35
Berczuk, Steve xxi
Borrmann, Lothar xxi
Brøgger, Anton xxi
Buschmann, Frank xxiii

C
Campbell, Roy 35
Chtcherbina, Ekatarina xxi
Coldewey, Jens xxi, 35
Coplien, Jim 5
Crupi, John 35
Cunningham, Ward 5

F
Fernandez-Buglioni, Eduardo 35
Foote, Brian 426
Fowler, Martin 35

G
Gabriel, Richard xxi
Gamma, Erich 5, 35
Graham, Ian xxi

H
Helm, Richard 35
Henney, Kevlin xxiii–xxiv

Henning, Michi 35
Hohpe, Gregor 35
Hybertson, Duane 35

J
Jain, Prashant xxi, 35
Johnson, Ralph 35

K
Keller, Wolfgang 35
Kircher, Michael xxi, 35
Koch, Nora xxi

L
Lea, Doug xxi, 35

M
Maffeis, Silvano 35
Malks, Dan 35
Marquardt, Klaus xxi
Meszaros, Gerard 35
Meunier, Regine 35

N
Nechypurenko, Andrey xxi
Nielsen, Mai Skou xxi

O
O’Callaghan, Alan xxi

R
Redvers-Mutton, Gayner xxi

593

594 Index of Names

Rickaby, Steve xxi, xxii
Rohnert, Hans 35

S
Schmid, Alexander 35
Schmidt, Douglas C. xxiv–xxv
Schumacher, Markus 35
Siddle, James xxi
Sommerlad, Peter 35
Sørensen, Kristian xxi
Stal, Michael xxi, 35

T
Tickner, Sally xxi

V
Vinoski, Steve xxi, 35
Vlissides, John 35
Vogel, Oliver xxi
Völter, Markus xxi, 35

W
Wolff, Eberhard 35
Woolf, Bobby 35

Z
Zdun, Uwe xxi, 35

Subject Index

A
Abstract class 281, 553
Active object 254
Adaptability see Adaptation and extension
Adaptation and extension 38, 40, 42,

423–427
discussion 421–423

multi-platform support 424–425
out-of-band extensions 424
specialized algorithms 424
service extensions and
restrictions 424

pattern abstracts 427–428
pattern descriptions 436–462
pattern discussion 426–433

Anonymous communication 235
Application 554

application integration 221
application partitioning 170–171

Application control 37–38, 40, 42, 330–332
discussion 327–330

data structure decoupling 330
explicit coordination and control of
requests 329
location decoupling 330
security 329
technology decoupling 329
workflow decoupling 330

pattern abstracts 332–333
pattern descriptions 337–352
pattern discussion 331–334

Architectural drift 194
Architecture see Software architecture
Asynchronous communication 28, 221–223,

235, 262, 268–269
Asynchronous I/O 107, 263, 360–361, 554
Asynchronous data transfer 221–222

B
Bandwidth 76, 127, 246, 249, 301–303, 495,

554
Broadcast 225, 233, 236, 495–496, 554
Broker architecture 73–75

see also CORBA; Object Request Broker
(ORB)

C
Callback 555
CCM see CORBA Component Model (CCM)
Change propagation infrastructure 234
Change requests 188–190
Client 555
Communication middleware 95–127

architecture 96–100
distributed object computing

middleware 25, 163, 556, 558
message-orientated middleware 28, 30,

177
publish/subscribe middleware 25, 28, 29
structured communication 22–24
see also CORBA; Object Request Broker

(ORB)
Completion event 264, 268, 555
Component middleware xxiv,25–28, 278

architecture 95–127
container 98–102, 106–107, 111, 113,

115, 118–119, 276, 278, 281, 288,
428–429, 435, 438, 461, 475,
478–479, 481–482, 484, 488–489,
492, 497, 499–501, 556

CORBA Component Model (CCM) 27, 75,
97

Enterprise JavaBeans (EJB) 27, 75, 556
Enterprise Service Bus (ESB) 30

595

596 Subject Index

Component middleware (continued)
Service-Orientated Architecture

(SOA) 30, 222, 272
web services 25, 30–32, 212, 215

Component partitioning 37, 40, 42, 305–327
discussion 303–306

component partitioning 304
component quality 305
component flexibility 305
distribution of functionality 305
concurrency and parallelism 306

pattern abstracts 308–309
pattern descriptions 313–327
pattern discussion 308–310

Component 555
Aggregate components 300–303
business delegates 292
component groups 326–327
component object 26, 214–215, 309,

317, 400–401, 405, 418–419, 555
component/implementation

separation 281–283
concrete component 309, 555
concurrency and parallelism 308
distribution of functionality 307
expressiveness and simplicity 273
flexibility 307
limiting client access 284–285, 286–287,

290
loose coupling and stability 273
partitioning 306
quality attributes 272, 307
software productivity and quality 306

Component middleware 26–27
Composite pattern 11–12
Compound pattern 11–12
Concrete class 281, 409, 436, 477, 530, 555
Concurrency 38, 40, 42, 85–87, 353–370,

556
discussion 351–353

software diversity 353
multi-threading costs 353
portability 353

pattern abstracts 355–356
pattern descriptions 359–369
pattern discussion 354–356

Condition variable 115, 356, 374, 376, 381,
556

Connection 556
Connection establishment 109–110, 564
Container 568
CORBA (Common Object Request Broker

Architecture) 25, 26, 30, 96, 215–216,
236, 238, 556

CORBA Component Model (CCM) 75
reference architecture and ORB

108
see also Object Request Broker

(ORB)
CPU 556
CRC card 36, 556
Critical section 204, 243, 247, 338, 340,

372–373, 375, 380, 384, 386–388,
390–392, 556

D
Data driven applications 202
Database Access 39, 40, 42, 533–547

discussion 531–533
existing legacy and IT
infrastructures 532
customer support 532
experience 532
performance 532
data usage scenarios 532

pattern abstracts 535–536
pattern descriptions 538–547
pattern discussion 534–535

Deadlock 35, 38, 283, 369, 373–375, 380,
384–385, 557

Decoupling
data structures 330
location 330
technology 331
workflow 330–3

Demarshaling 218, 445, 557
Demultiplexing see Event demultiplexing and

dispatching
Design 557
Design Pattern 6, 429, 557
Device 557

Subject Index 597

Distributed computing xxviii-xxix, 17–32
ad hoc network programming 22
asynchronous arrival of events 254
benefits 18–20

collaboration and connectivity 19
economics 19
fault tolerance 19–20
performance and scalability 19

challenges 20–1
accidental complexity 355, 464
continuous re-invention and
re-discovery 21
inadequate methods and
techniques 21
inherent complexity 20

complexity issues 20–21
continuous re-invention and

discovery 21
inherent distribution 20
location independence 237–239
method and technique limitations 21
service-oriented architectures

(SOA) 29–30
SOAP 29–30
structured communication 22–14
supporting technologies 21–31

ad hoc network programming 22–23
component middleware xxiv, 25–28,
278
distributed object computing
middleware 25
message-orientated middleware 28,
30, 177
publish/subscribe middleware 25,
28–29
service-orientated architecture 25,
30, 222, 272–273, 569
structured communication 22–24
web services 29–31

see also Communication middleware;
CORBA; Component Middleware

Distributed object computing (DOC)
middleware 24–26, 27

Distributed system 558
see also Distributed computing

Distribution 558

Distribution infrastructure 211–251
discussion 209–211
pattern abstracts 214–218
pattern descriptions 221–251
pattern discussion 214–218
see also Distributed computing

Domain 558
Domain object 206–208

access 71–2, 82–4
collaboration and containment

relationships 208
concurrency 85–87
configuring at runtime 88–89
functionality 79–82

Dynamically linked library (DLL) 122–123,
491, 558

E
Encapsulation 73
Endpoint 103, 107–109, 214–215, 217, 558
Enterprise Java Beans (EJB) 96
Enterprise Service Bus (ESB) 30
Event 558
Event demultiplexing see Event

demultiplexing and dispatching
Event demultiplexing and dispatching 37, 41,

45, 48, 96, 98, 100–107, 111,
119–120, 123–125, 253–269, 560

discussion 251–253
asynchronous arrival of events 252
hiding the complexity of event
demultiplexing and dispatching 253
simultaneous arrival of events 252
multiple event types 252
non-deterministic arrival of
events 254

pattern abstracts 256
pattern descriptions 259–269
pattern discussion 254–256

Event dispatching see Event demultiplexing
and dispatching

Event handler 48, 104–107, 110, 125, 159,
250, 255, 258–3, 265, 268, 363–364,
394, 558

Exception safe 13, 428, 451, 558
Extensibility see Adaptation and extension

598 Subject Index

F
Factory 558
Flow control 61–65, 70, 77, 90, 108, 111,

113, 130, 144, 160, 361, 558
Function 559
Functional responsibilities, separating

209
Functionality, distributing 79–82
Future 559

G
Gateway 68–9, 76, 79, 82, 124, 144, 535,

542–545, 559
General Inter-ORB Protocol (GIOP)

105–106
Group communication 235
GUI (Graphical User Interface) 288, 330, 460,

559

H
Handle 559
Heuristic computation 205–207
Hosts 146, 154, 195, 210, 214, 315, 321,

326, 330, 353, 435, 461–462,
559

HTTP (HyperText Transfer Protocol) 29–30,
190, 333, 359, 420, 559

I
Idiom 5, 8, 316, 391, 428, 431, 485, 537, 560
Inheritance 118, 139, 267, 316, 397, 415,

430, 433, 436, 454, 458, 526, 535,
538, 540, 547, 555

Inlining 456, 560
Instance 560
Instantiation 530, 560
Inter-mode dependencies 464
Interface 560

Interface partitioning 37, 40, 41, 271–303
discussion 269–4

component and clients
heterogeneity 274
component distribution 271
component responsibilities and
contract specification 272
expressiveness and simplicity 271
heterogeneity of components and
their clients 272
loose coupling and stability 273
quality attributes 272–273

pattern abstracts 274–275
pattern descriptions 281–303
pattern discussion 275–278

Internet 17, 19, 30, 212, 331, 349, 560
Interprocess communication (IPC) 22–23, 59,

198, 237, 240–251, 246, 249–251,
267, 291, 444, 561

Invariant 66, 199, 307, 316, 323, 372,
453–454, 456, 561

Iteration 6–7

J
Java RMI 25
Java Virtual Machine (JVM) 104
JavaBeans 26
Jitter 20, 79, 220, 282, 302, 324, 400, 561

L
Latency 20, 38, 79, 113, 170, 220, 246–247,

250, 266, 302, 324, 400, 474, 561
Layers concept 561

access layer 68, 69
business objects layer 67, 69
business process layer 67, 69, 78
container and object adapter layer 102,

106–107, 113, 115, 119

Subject Index 599

database access layer 42, 88, 92–94,
146, 155, 535–540, 542, 544, 546

decomposing layers 68–70
infrastructure layer 68, 69
Operating system abstraction layer 186
ORB core layer 102, 104, 106, 110, 113,

115, 119, 125, 238
ORB interface layer 102
presentation layer 67, 69, 78

Load balancing 27, 275, 278, 291–293, 446,
489, 561

Location independence 73
Lock 561
Locking see Synchronization
Logging records 85
Loose coupling 224, 229–230, 234–236,

416

M
Marshaling 8, 11, 96, 116–117, 123–124,

218, 445, 561
Message

definition 561–562
message passing 22, 26, 561
self-describing message 222, 568

Message-oriented middleware 27–29
Method 562
Middleware

see also Communication middleware;
Component middleware; Distributed
computing/systems; Distribution
infrastructure problem; Layers
concept

Modal behavior 39, 40, 42, 463–472
discussion 461–462

inter-mode dependencies 462
minimizing conditionals 462
mode visibility 462

mode independence 466
mode visibility 464–466
pattern abstracts 465
pattern descriptions 467–472
pattern discussion 463–464

Module 4, 470, 562
Monitor 562
Moore’s Law 38, 354, 562

Mud to structure behavior 36–7, 167–210
discussion 165–167

application processing 170
interaction with environment 170
life expectancy 171
variability management 125

pattern abstracts 171–172
pattern descriptions 182–210
pattern discussion 170–179

Multi-platform support 424–425
Multicast 236, 496, 563
Mutex 114, 356, 372, 374, 377, 381, 388,

563

N
Naming patterns 8–9
Network 563

network bridging 72–75
network interface 103, 563

Network management and control 202
Notification mechanisms 234–236

O
Object 563
Object interaction 38, 40, 42, 399–421

discussion 397–399
decoupling 400
coherent coordination 400
communication overhead 400

pattern abstracts 401–402
pattern descriptions 405–421
pattern discussion 400–402

Object Request Broker (ORB) 98–100
abstract factories 120–122
client-side ORB core 110
changeability 101–102
concurrent event processing 112
connection management 108–111
dynamic configuration 121–124
dynamic link libraries (DLLs) 122
event demultiplexing 104–107
event queue 114–116
General Inter-ORB Protocol

(GIOP) 105–106
interchangeable mechanisms 116–117

600 Subject Index

Object Request Broker (ORB) (continued)
internal design 100–102
layer concept 101–102
portability 101–102
scalability 111–114
server-side ORB core 110
stability 101–102
see also CORBA Component Model

(CCM)
Object-oriented/relational divide 87–9
On-the-wire protocol 73, 403, 420, 572
Operating system 564

operating system kernel 114, 564
Out-of-band 144–145, 155, 316, 424, 431,

444–446, 564

P
Packet 350, 564
Parallelism 27, 84, 133, 235, 308, 323, 383,

502, 564
Parameter 564
Partitioning see Component partitioning;

Layer
Passive object 399, 564
Pattern

Composite pattern 11–12
Compound pattern 11–12
definition 565

Pattern compound 11, 565
Pattern form 9
Pattern language xviii-xxxi, 33–52, 549–551
Pattern sequence 565
Pattern story 157–161
Patterns, basics 3–15

about patterns 4–6
pattern complements 10–11
pattern compounds 11–12
pattern connections 15
pattern form 9
pattern languages 13–15
pattern stories 12
pattern sequences 12–13, 14

Peer event handlers 265, 265–267
Peer-to-peer 20, 216, 565

Platform 565
Polymorphism 71, 117–118, 138, 408, 450,

456, 458, 535, 565
Port 565
Process 566
Product line 66, 399–400, 566
Protocol 566

protocol stack 187, 212, 566
Proxy 566
Publish/subscribe middleware 27–29

Q
Quality of service 39, 160, 183, 185, 188,

226, 232, 246, 249–250, 257, 259,
307, 313–314, 335, 350, 355, 365,
367, 462, 494, 511, 513, 566

R
Race condition 38, 114, 296, 299, 362, 364,

375, 386, 394, 524, 567
Recursive mutex 374, 567
Refactoring 41, 43, 49–50, 218, 289, 550, 567
Reification 299, 344, 413, 458, 567
Relationship, definition 567
Remote method invocation (RMI) 25, 30, 177,

214, 240, 518, 567
Remote procedure call (RPC) 23, 25, 27, 29,

30, 239, 567
Request event 48, 107, 112, 256, 259–6, 567
Resource management 39, 40, 42, 473–532

discussion 471–473
performance 472
scalability 472
reliability 472–473
flexibility 473
updates 473
transparent lifecycle control 473

pattern abstracts 475–477
pattern descriptions 488–532
pattern discussion 476–485

Responsibility 568
Role 568
Routing issues 231–233

Subject Index 601

S
Scheduler 366–367, 568
Semaphore 372, 374, 377, 388, 568
Serialization 260, 338, 340, 342, 357, 361,

369, 377, 568
Servant 367, 568
Server 568
Service 569
Shared memory 22, 108, 109, 119, 569
SOAP 29–30, 215
Socket 22, 103–109, 114, 171, 255, 569
Software architecture 569
Starvation 112, 522, 569
States, objects/methods/collections see

Modal behavior
Structured communication 21–24
Subclass 120, 138, 140, 142, 319, 397, 427,

453, 454, 569
Subsystem 570
Superclass 453–454, 569
Synchronization 38, 40, 42, 371–397, 569

discussion 369–373
pattern abstracts 375–376
pattern descriptions 380–397
pattern discussion 374–377

Synchronous I/O 107, 263, 360–361,
570

System 570

T
Telecommunication Management Network

(TMN) system 202
Template 570
Thread 570
Thread pool 86, 127, 261, 364, 570
Thread safety see Synchronization problem
Transmission control protocol (TCP) 96,

107–109, 111, 119–120, 187, 571
Transport endpoint 109, 571

Trial-and-error techniques 205
Two-way method invocation 354, 571
Type-safety 284, 571

U
Upcall 98, 106–107, 113, 571
User datagram protocol (UDP) 187, 571
User interfaces 75–78

V
Variation support 197
View 571
Virtual data objects see Future
Virtual machine 19, 21, 104, 213, 238, 571
Virtual memory 269, 354, 519, 571

W
Warehouse management process control

system 18, 58–59
automation pyramid 59

entity level 58–59
operational level 58
process control level 59

base-line architecture 65–94
communication middleware

architecture 95–127
distribution 62
domain model 41, 49–51, 60 438,

537–538, 540–541
material flow control 61–62
order management 60–61
receiving 61
shipping 61
stock management 60
storage organization criteria
(SOC) 135
topology management 62

602 Subject Index

Warehouse management process control
system (continued)

non-functional properties 557, 563–564,
569
availability 63
component distribution 273–274,
276, 308–309
component integration 64
dynamic configuration 63–64
human-computer interaction 64
performance 62
persistence 63
portability 63
scalability 63

warehouse topology
architecture 129–155

Web service 25, 30–32, 212, 215
World Wide Web (WWW) 29–31

