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1 
Introduction 

Deoxyribonucleic acid (DNA) appears to be a critical cellular target for the 
biological effects (cellular lethality, mutagenesis, carcinogenesis, and age- 
ing) of oxidation processes mediated by various physical and chemical 
agents (Breimer 199o; Ames and Gold 1991; Sies 1991; Marnett and Burcham 
1993; Clayson et al. 1994). These include, among others, ionizing radiation, 
solar light, photosensitizers, and several environmental carcinogens. The 
leakage of reactive oxygen species from endoplasmic reticulum and mito- 
chondria represents another source of oxidative stress for the cells. It 
should be added that diet and psychological stress have been shown to 
induce oxidation processes within cellular DNA. Strand breaks, modified 
bases, abasic sites, and DNA-protein cross-links represent the four main 
classes of oxidative DNA damage (for recent reviews, see Knorre et al. 1993; 
Cadet 1994; Breen and Murphy 1995) which are at least partly characterized 
in model compounds. The exact biological role of the bulk of identified 
oxidative DNA lesions remains to be determined. However, relevant infor- 
mation is available on the mutagenicity of a few oxidized purine and 
pyrimidine bases. In addition, it is well established that oxidative DNA 
damage can be repaired by various enzymatic pathways (Lin and Sancar 
1989; Kow et al. 199o; Boiteux 1993; Demple and Harrison 1994; Hatahet et 
al. 1994; Tchou et al. 1994; Hayakawa et al. 1995). More specifically, evidence 
has been provided that oxidized pyrimidine and purine bases may be 
removed mostly by base excision and to a lesser extent by nucleotide 
excision. Most of the information is inferred from studies on prokaryotic 
systems, but there is evidence that this should apply to animals and hu- 
mans. 

During the last decade, increasing interest has been devoted to the role 
of tumor suppression genes in the biological effects induced by oxidative 
stress. Evidence has been provided that mutations in the P53 tumor sup- 
pressor gene are involved in the majority of human cancers (Hollstein et 
al. 1991; Cho et al. 1994). A large body of information is now available on 
the putative role of p53 in either apoptosis or cell cycle arrest to allow repair 
of DNA damage (Kastan et al. 1992; Lowe et al. 1993). It was suggested that 
P53 may directly and indirectly stimulate nucleotide excision repair (NER) 
machinery through the Gadd45 gene, for example upon exposure of cells 
to ionizing radiation (Smith et al. 1994). However, it was recently reported 
by two independent groups that Gadd45 does not exert any detectable 
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stimulation on NER activity (Kazantsev and Sancar 1995; Kearsey et al. 
1995). It was also shown that p21 protein, which is implicated in the G1 cell 
arrest and cell death, is under the transcriptional control of P53 (E1-Deiry 
et al. 1993). 

Emphasis has been placed in this review article on the description of the 
chemical structure and the mechanisms of formation of the main oxidation 
products of the purine and pyrimidine DNA bases as inferred from studies 
of models. In addition, the available accurate information on the mecha- 
nisms of formation of oxidative base damage to cellular DNA is provided 
together with a critical review of the various methods which have been used 
for such purposes. In the final section of the survey, the strategies which 
are currently used to gain insight into the biological role of oxidized DNA 
bases are reviewed. These mostly involve the synthesis of modified nucleo- 
tides and their insertion within oligonucleotides at specific sites. The 
related oligonucleotides can be further used for DNA replication and 
mutagenesis studies together as substrates for investigating the specificity 
of DNA repair enzymes. 

2 
Formation of Oxidative DNA Base Damage 
Within Isolated DNA and Model Compounds 

Various reactive oxygen species and oxidation processes may be involved 
in the induction of damage to DNA (Table 1). Among these, the hydroxyl 
radicals, the "ferryl" (Fe = O ~+) or the "perferryl" (Fe = 03+) species gen- 
erated by Fenton reactions (Chaudi~re 1994) and peroxynitrite are the most 
efficient, being able to react with both the base and sugar moieties at 
diffusion-controlled rates. On the other hand, singlet oxygen, ozone, and 
hydrogen peroxide react with DNA in a more specific way. It may be added 
that superoxide radical and its related conjugated forms do not exhibit any 
reactivity towards DNA components, at least in aqueous solutions (Cadet 
and T~oule 1978). One-electron oxidation of bases is an important process 
associated with the direct effect of ionizing radiation, type I photosensiti- 
zation mechanism, high-intensity ultraviolet (UV) laser photochemistry 
and vacuum UV radiation (for reviews, see von Sonntag 1987a; Cadet and 
Vigny 199o; Becker and Sevilla 1993; G6rner 1994). 

In the present survey, emphasis is placed on the structure assignment 
and the biological role of oxidative DNA base lesions. However, it should 
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Table 1. Reactive species and radicals involved in oxidative stress 

Reactive species Reactivity with DNA 

Superoxide radical (02.-) 
Hydroperoxide radical (HO.2) 
Hydroxyl radical (OH.) 
Iron-oxo complex 
Peroxinitrite (ONOO-) 
Singlet oxygen (102) 
Ozone (03) 
Hydrogen peroxide (H202) 
Oxyl (RO.) and peroxyl (ROO.) radicals 
Purine and pyrimidine radical cations 

Not detectable (reduction of ROO.) 
Not detectable 
Ixidizes bases and sugar moieties 
Oxidizes bases and sugar moieties 
Oxidizes bases and sugar moieties 
Oxidizes guanine 
Oxidizes pyrimidine and purine bases 
Oxidizes adenine 
Oxidize the sugar moieties 
Hydration and deprotonation 

be recalled that DNA strand breakages represent a major class of oxidative 
damage to DNA. A large body of information is now available on the 
mechanism of hydroxyl radical-mediated formation of strand breaks in 
aerated aqueous solutions. In this respect, hydroxyl radicals are able to 
abstract hydrogen atoms within the sugar moiety with a preference at C4'. 
The resulting radicals are converted in most cases into strand breaks 
through mechanisms which are well documented (for comprehensive re- 
views, see yon Sonntag 1987a; Breen and Murphy 1995). In particular, DNA 
cleavage involving the C4'-centred radical may be explained in terms of two 
mechanisms involving either the formation of a tetroxide from two neigh- 
boring peroxyl radicals (Schulte-Frohlinde and Bothe 1984; yon Sonntag 
1987a) or a 4'-hydroperoxide (lanicek et al. 1985) with subsequent Criegge 
rearrangement. The latter mechanism, which appears to be more likely, has 
been suggested to occur with iron-bleomycin (Giloni et al. 1981), a potent 
antitumoral antibiotic. It was shown that the reactions mediated at C4' by 
either OH. radical or iron-bleomycin lead to the formation of 3'-glycolate 
termini and base-propenal (Giloni et al. 1981; Henner et al. 1983a; ]anicek 
et al. 1985). However, a more definitive elucidation of the putative mecha- 
nism proposed for the bleomycin-mediated cleavage of DNA, which is still 
open to debate (Burger et al. 1986; McGall et al. 1992), would require further 
studies. In this respect, an interesting piece of information dealing with the 
specific preparation of the related 3'-hydroxy-4'-hydroperoxide in a sin- 
gle-stranded oligonucleotide recently became available (Giese et al. 1995). 
This was achieved by photo-induced cleavage of the C-Se bond ofa nucleo- 
tide after its incorporation in a DNA fragment (Giese et al. 1994). Interest- 



6 J. Cadet et al. 

ingly, it was shown that the 4'-hydroperoxide of thymidine is able to 
undergo a fast decomposition into thymine propenal with a concomitant 
release of glycolate according to a Grob fragmentation mechanism (Giese 
et al. 1995). In addition, it was suggested that the peroxyl radicals resulting 
from the initial action of OH. radicals on pyrimidine bases are involved in 
hydrogen abstraction reactions from the sugar moiety of polynucleotides 
and nucleic acids, causing chain breaks (Schulte-Frohlinde and Bothe 1984; 
Deeble and yon Sonntag 1986; ]ones and O'Neill 199o). However, this 
process, which may also involve radical cation and related neutral radicals 
from purine bases (Gut et al. 1993; G6rner 1994), is at best of low efficiency. 

2.1 
Hydroxyl Radical-Mediated Oxidation Reactions 

The mode of action of hydroxyl radicals on DNA constituents in aerated 
aqueous solution (indirect effect of ionizing radiation) has been extensively 
studied during the past two decades (yon Sonntag 1987a). Most of the 
transient pyrimidine radicals formed (Fujita and Steenken 1981) and the 
resulting diamagnetic products have been characterized, especially in the 
case of thymine and thymidine (T~oule and Cadet 1978). On the other hand, 
information on the radical reactions of purine bases and nucleosides 
mediated by hydroxyl radicals in the presence of oxygen (O'Neill 1983; 
Cadet and Berger 1985) has been scarcer, at least until recently (Steenken 
1989). It should be added that relevant structural information on OH. 
radical adducts to pyrimidine and purine nucleic acid components has 
been obtained from electron spin resonance/spin-trapping investigations 
(Hiraoka et al. 199o; Davies et al. 1995). The main hydroxyl radical-medi- 
ated oxidation reactions of the base moiety of the four major purine and 
pyrimidine bases of 2'-deoxyribonudeosides and isolated DNA in aerated 
aqueous solutions are reviewed in the present survey. These include the 
kinetic and mechanistic aspects of the transient radicals formed and the 
structural features of the resulting diamagnetic products. 

2.1.1 
Thymine 

The main available information on the hydroxyl radical-mediated oxida- 
tion reactions of the thymine residue mostly relies on characterization of 
the bulk of the radiation-induced decomposition products ofthymidine (1) 
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in aerated aqueous solutions. In particular, the structural assignment was 
achieved on the basis of extensive nuclear magnetic resonance (NMR) and 
mass spectrometry analyses. About 5o% of the total decomposition prod- 
ucts were identified as hydroperoxides that may be completely separated 
by high-performance liquid chromatography (HPLC) and detected specifi- 
cally with a post-column derivatization method (Wagner et al. 199oa) These 
include the cis and trans diastereoisomers of 6-hydroperoxy-5-hydroxy- 
5,6-dihydrothymidine (8) and 5-hydroperoxy-6-hydroxy-5,6-dihydrothy- 
midine (9) in addition to 5-(hydroperoxymethyl)-2'-deoxyuridine (lo) 
(Wagner et al. 1987,1994). In addition, the bulk of the stable decomposition 
thymidine products which arise from both the decomposition of the above 
hydroperoxides 8-:0 and the fate of the related transient peroxyl radicals 
5-7 have been isolated and characterized. These include (in decreasing 
order of quantitative importance): N-(2-deoxy-~-D-erythro-pentofurano- 
syl) formamide (11) > the four cis and trans diastereoisomers of 5,6-dihy- 
droxy-5,6-dihydrothymidine (12) > the 5R* and 5S* forms ofx-(2-deoxy-[3- 
D-erythro-pentofuranosyl)-5-hydroxy-5-methylhydantoin (13) > 5-(hy- 
droxymethyl)-z'-deoxyuridine (15) > and 5-formyl-2'-deoxyuridine (16) 
(Cadet et al. 1975, 1979, 1981). 

A comprehensive mechanism for the OH. radical-mediated decompo- 
sition of the pyrimidine ring ofthymidine (1) (Fig. :) may be proposed from 
both the pulse radiolysis results on the transient radicals (Fujita and 
Steenken 1981; Jovanovic and Simic 1986) and the quantitative balance of 
the resulting final diamagnetic compounds. The main reaction of the 
OH.radical with the thymine moiety of 1 is the addition at carbon C-5 (60%). 
This leads to the generation of the reducing radical 2 as inferred from its 
easy oxidation by tetranitromethane. It was also recently shown that dehy- 
dration of radical 2, prepared by photolysis from (5R,6S)-5-hydroxy-6- [ m- 
(trifluoromethyl)benzoyl]-5,6-dihydrothymidine, into the radical cation 
5o is at the most a minor process (Barvian et al. 1995). The carbon C-6 
constitutes the second most important site (35%) for the reaction of the 
OH. radical. The resulting adduct, the 6-hydroxy-5,6-dihydrothymid-5-yl 
radical (3), exhibits oxidizing properties, since it is reduced by tetra-N- 
methyl-p-phenylenediamine. The latter reaction, which is a minor process 
(5%), consists in a hydrogen abstraction from the methyl group, giving rise 
to 4. In a subsequent step, the primary radicals 2-4 react with molecular 
oxygen at diffusion-controlled rates (Isildar et al. 1982), producing the 
corresponding peroxyl radicals (5-7). 
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aerated aqueous solution 
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About half of the latter radicals are converted into hydroperoxides 8-1o 
after a key step of reduction by superoxide radicals (Wagner 1988; Wagner 
et al. 199ob). The half-lives of the hydroperoxides have been found to vary 
from a few days for 8 and 9 to 1 week for Io in neutral aqueous solutions at 
37°C. The hydrolytic decomposition of the thymidine hydroperoxides 8 and 
9 is quite specific (Wagner et al. 1994). In this respect, 1-(2-deoxy-[3-D- 
erythro-pentofuranosyl)-5-hydroxy-5-methylbarbituric acid (14) is the 
main decomposition product of 8 whereas the 5R* and 5S* diastereoisom- 
ers of 1-(2-deoxy-~-D-erythro-pentofuranosyl)-5-hydroxy-5-methylhy- 
dantoin (13) are predominantly generated from the thermal degradation of 
9. It should be added that a competitive dismutation reaction of peroxyl 
radicals 5-7 is likely to generate 11-13 and 15 through the transient formation 
of highly reactive oxyl radicals (yon Sonntag 1987a). The latter radicals may 
abstract a hydrogen atom from a suitable donor to produce diols and/or 
undergo a [3-scission reaction with subsequent formation of pyrimidine 
ring opening and rearrangement products, including u and 13. 

In the last decade, relevant information on the OH.-mediated oxidation 
reactions of thymine was gained from radiation-induced decomposition 
studies of dinucleoside monophosphates and short oligonucleotides. Most 
of the work has involved isolation by HPLC of the main degradation 
products and their characterization by comparison of their IH NMR fea- 
tures with those of related radical oxidation products of thymidine. These 
include the cis and trans diastereoisomers of 5,6-dihydroxy-5,6-dihy- 
drothymidine (12), N-(2-deoxy-~-D-erythro-pentofuranosyl) formamide 
(11), the 5R* and 5S * forms of 1-(2-deoxy-~-D-erythro-pentofuranosyl)-5- 
hydroxy-5-methyl-hydantoin (13) and the two oxidation products of the 
methyl group 15,16. The latter compounds have been also shown to be 
generated within isolated DNA upon exposure to OH. radicals in aerated 
aqueous solutions. 

The measurement of the thymine oxidation products has required 
either acidic hydrolysis or enzymatic digestion of modified DNA, leading 
to the release of modified bases and nucleosides, respectively (Cadet and 
Weinfeld 1993). The formation of 5,6-dihydroxy-5,6-dihydrothymine (12a) 
and 5-hydroxy-5-methylhydantoin (13a) was observed in [14CH3]thymine 
DNA after exposure to ionizing radiation in aerated aqueous solution and 
subsequent mild acidic hydrolysis (T~oule et al. 1977; T~oule 1987). Similar 
information was gained from the gas chromatography-mass spectrometry 
(GC-MS) analysis of the formic acid hydrolysate of y-irradiated DNA 
(Dizdaroglu and Bergtold 1986; Fuciarelli et al 1989). However, as will be 
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discussed later, the quantitative measurement of the latter assay suffers 
from severe drawbacks. Enzymatic digestion of oxidized DNA involving 
the use of DNases, phosphodiesterases, and phosphatases represents an 
interesting alternative. (5S,6R) and (5R,6S)-5,6-dihydroxy-5,6-dihydro- 
thymidine (12) were enzymatically released from [C3H3]thymine-DNA 
which was previously exposed to y-radiation in aerated aqueous solution. 
The two thymidine glycols were separated by HPLC on a octadecylsilyl 
silicagel (ODS) column and then subjected to an acetylation reaction. The 
corresponding tri-O- and tetra-O-acylated derivatives were again sepa- 
rated by HPLC and their formation quantitated (Teebor et al. 1987). Inter- 
estingly, it was found that the two cis diastereoisomers are generated with 
the same radiochemical yield (G = o.oo2), thereby showing the absence of 
stereospecificity in the formation of these oxidized nucleosides. 

The same approach was used to detect and measure the radiation-in- 
duced formation of 5-(hydroxymethyl)-2'-deoxyuridine (15) within DNA 
in aerated aqueous solution (Frenkel et al 1985, 1991). It should be added 
that 5-formyl-2'-deoxyuridine (14) was also characterized in DNA follow- 
ing exposure to hydroxyl radicals (Kasai et al. 199o). However, the enzy- 
matic approach may suffer from some limitations, in particular when 
highly modified nucleosides have lost their aromatic nature. This is the case 
for N-(2-deoxy-~-D-erythro-pentofuranosyl) formamide (11) which was 
found to resist hydrolysis of the vicinal phosphodiester bond by spleen 
phosphodiesterase and nuclease P1 (Cadet and Voituriez 1979; Maccubbin 
et al. 1991, 1992a,b; Budzinski et al. 1992). Indirect evidence for the radia- 
tion-induced formation of formylamine (ua) within DNA was provided by 
the measurement ofpyruvamide in the irradiated aerated aqueous solution 
(T~oule et al. 1974). 

2.1.2 
Cytosine 

As observed for the pyrimidine ring of thymidine (1), the main reaction of 
OH- radical with 2'-deoxycytidine (dCyd) (17) is the addition across the 
5,6-ethylenic bond. The reducing 5-hydroxy-5,6-dihydro-2'-deoxycytidyl- 
6-yl (18) was found to be preferentially formed, as inferred from the results 
of pulsed radiolysis experiments using the redox titration method (Hazra 
and Steenken 1983). On the other hand, the addition of the OH. radical in 
position 6 occurred as a minor process (lO%). In a subsequent step, as for 
1, molecular oxygen reacts at diffusion controlled rates with 5-hydroxy-5,6- 
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dihydro-z'-deoxycytidyl-6-yl (19) and 6-hydroxy-5,6-dihydro-2'-deoxy- 
cytidyl-5-yl radicals (18), (Decarroz 1987), yielding the corresponding per- 
oxyl radicals 2o,21. Attempts to isolate and characterize dCyd hydroxyhy- 
droperoxides 22,23 were unsuccessful (Wagner et al. 199oc). This may be 
accounted for by the unstability of the latter hydroperoxides 22,23 and their 
ability to undergo intramolecular cyclization (see below). 

The formation ofN-(z-deoxy-[3-D-erythro-pentofuranosyl) formamide 
(11), the 5R and 5S forms of Nl-(2-deoxy-[3-D-erythro-pentofuranosyl)-5- 
hydroxyhydantoin (27) and the four cis and trans diastereoisomers of 
5,6-dihydroxy-5,6-dihydro-2'-deoxyuridine (25) implies, at least partially, 
a mechanism similar to that proposed for the conversion ofperoxyl radicals 
of thymidine 5,6. It should be noted that 25 results from the hydrolytic 
deamination of the corresponding 5,6-dihydroxy-5,6-dihydro-2'-deoxy- 
cytidine (24) (Polveretli and T6oule 1974). In addition, the latter nucleo- 
sides 24 may undergo a competitive dehydration reaction, giving rise to 
5-hydroxy-2'-deoxycytidine (26) which is a specific oxidation product of 
dCyd (17). 

Other oxidized nucleosides whose formation involves rearrangement 
mechanisms (Fig. 3) specific for 17, include the two trans diastereoisomers 
of N-(z-deoxy-f~-D-erythro -pentofuranosyl)-l-carbamoyl-4,5-dihydro-z- 
oxoimidazolidine (3o), the a and [3 furanosidic and pyranosidic anomers 
of N-(z-deoxy-f3-D-erythro-pentosyl) biuret (31) and N-(z-deoxy-[3-D- 
erythro-pentofuranosyl) N4-ureidocarboxylic acid (33) (Wagner et al 
199oc; Cadet 1994). The formation of the latter three classes of modified 
nucleosides is explained by the transient formation of an endoperoxide 28 
through the cyclization of 6-hydroperoxy-5-hydroxy-5,6-dihydro-2'-de- 
oxycytidine (23). This was inferred from the results of isotopic labeling 
experiments showing that an atom of 1SO was incorporated in the car- 
bamoyl group of the two imidazole type derivatives upon exposure ofdCyd 
(17) to ionizing radiation in aqueous solution saturated with a stream of 
lSo2 (Decarroz 1987; Wagner 1988). The transient nucleoside 29 may give 
rise through cyclization to the two trans diastereoisomers of 3o which have 
been shown to interconvert between each other. The acyclic compound 29 
may also undergo a competitive aldol-ketol isomerization, leading to nu- 
cleoside 32. The latter ketol is the likely precursor of the carboxylic deriva- 
tive of biuret nucleoside 33 through a series of reactions which involve 
cyclization and subsequent hydrolysis of the resulting intermediate 
(Fig. 3). 
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Fig. 2. Oxidation reactions of the base moiety of 2'-deoxycytidine (17) by hydroxyl 
radicals in aerated aqueous solution: pathways involving the thermal decomposition 
of 5(6)-hydroxy-6-(5)-hydroperoxides 22, 23 
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radicals in aerated aqueous solution: pathways involving the intramolecular cyclization 
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The only available accurate information on the formation of OH.-me- 
diated oxidation of cytosine bases within isolated DNA deals with the 
measurement of 5-hydroxy-2'-deoxycytidine 26 and 5-hydroxy-z'-de- 
oxyuridine (Wagner et al. 1992). This was achieved by applying a HPLC- 
electrochemical detection assay to the enzymatic hydrolysate of oxidized 
DNA. 

2.1.3 
Adenine 

The rate constants for the reaction of OH. radicals with purine nucleosides 
are higher than those observed with thymidine (1) and dCyd (17) (Steenken 
1989). However, the latter reactive oxygen species are less effective in 
inducing the decomposition of 2'-deoxyadenosine (dAdo) (34) and f -de-  
oxyguanosine (dGuo) (42) than that of their pyrimidine homologues. This 
may be explained by the occurrence of efficient restitution reactions that 
involve the initially generated purine radicals upon addition of OH. radi- 
cals. It has been shown that molecular oxygen reacts very slowly with most 
of the latter purinyl radicals and those which may derive from them 
(Willson 197o; Isildar et al. 1982), thereby enabling bimolecular radical 
reactions to take place. This contrasts with the chemistry of OH.-mediated 
formation of pyrimidine radicals, for which restitution reactions are only 
observed under anoxic conditions. 8-Oxo-7,8-dihydro-2'-deoxyadenosine 
(4o) has been characterized as the main decomposition product of the 
reaction of hydroxyl radicals with dAdo (34) in aerated aqueous solution 
(Mariaggi and T6oule 1976). A reasonable mechanism for the formation of 
4o (Fig. 4) involves initial addition of a hydroxyl radical to the C-8, giving 
rise to the reducing 8-hydroxy-7,8-dihydro-z'-deoxyadenos-7-yl radical 
(35) (Steenken 1989; Vieira and Steenken 199o). Oxidation of the latter 
intermediate 35 is expected to generate 4o. On the other hand, the formami- 
dopyrimidine nucleoside (41) which mostly exists in aqueous solution as a 
mixture of a and ~ pyranosidic isomers (Raoul et al. 1995), arises from the 
reduction of the same precursor 35. This explains why formamidopyrimid- 
ine nucleoside 41 is not generated, at least in detectable amounts, in aerated 
aqueous solution of 34 exposed to OH. radicals. 

It has been proposed, on the basis of pulse radiolysis experiments (Viera 
and Steenken 1987), that OH. radicals also add significantly to the C-4 
position of the adenine moiety, generating the radical 36. In a subsequent 
step, the latter intermediate is converted into the aminyl radical 37 through 
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an efficient dehydration reaction (Steenken 1987). However, it should be 
noted that 2'-deoxyinosine (39), the main final transformation product of 
transient oxidising radical 37, is not generated by y-irradiation of aerated 
aqueous solution of 34 (S. Raoul and J. Cadet, unpublished results). This 
may be explained by the occurrence of efficient restitution reactions be- 
tween radicals 35 and 37. 

There is still a paucity of information on the formation of modified 
adenine residues within DNA upon exposure to agents of oxidative stress. 
One of the major exceptions deals with the measurements by HPLC of 
radiolabeled 8-oxo-7,8-dihydroadenine (4oa) and 4,6-diamino-5-for- 
mamidopyrimidne (41a) after exposure of [14C]adenine-DNA to ionizing 
radiation in aerated aqueous solution (Bonicet et al. 198o). It shoud be also 
mentioned that the formation of 4o has been recently monitored in DNA 
using a HPLC assay (Berger et al. 199o) following exposure to hydroxyl 
radical and peroxynitrite (Douki and Cadet 1996). 

2.1.4 
Guanine 

The first striking observation concerns the fact that 8-oxo-7,8-dihydro-2'- 
deoxyguanosine (8-oxodGuo) (47) is only produced at trace levels in the 
reaction of hydroxyl radicals with dGuo (42) in aerated aqueous solutions. 
This contrasts with the efficient OH.-mediated formation of 8-oxo-7,8-di- 
hydro-2'-deoxyadenosine (4o), although the radical precursor 43 of 8- 
oxodGuo (47) is generated with a yield close to 25% (Steenken 1989). Again, 
this observation may be rationalized in terms of efficient restitution reac- 
tions involving both the reducing radical 43 and the oxidizing intermediate 
45. The latter radical, which arises from the dehydration of the predomi- 
nant OH. radical adduct at C-4 carbon 44 with a rate constant of k=5 x lO 3 
s -1 (Candeias and Steenken 1991), is the precursor of the two overwhelming 
OH. oxidation products of 42. The two modified nucleosides have been 
characterized as z-amino-5- [(2-deoxy-~-D-erythro-pentofuranosyl)-amino]- 
4H-imidazol-4-one (49) and 2,2-diamino-4-[(2-deoxy-~-D-erythro-pento- 
furanosyl)amino]-5-(2H)-oxazolone (50) on the basis of extensive NMR 
and mass spectrometry measurements (Cadet et al. 1994a; Raoul et al. 
1996). It should be added that the imidazolone 49 slowly converts into the 
oxazolone 50 in aqueous solution with a half-life of about lO h at 2o°C and 
at neutral pH. As already mentioned, the oxidizing purinyl radical 45 and, 
more likely, the related C-5 carbon centred tautomeric form (yon Sonntag 
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1987a; Steenken 1989; Cadet et al 1994a) are the precursors of 49 and 5o. 
Molecular oxygen was found to react with one of these intermediates, as 
inferred from the incorporation of one atom of 180 in both 49 and 5o upon 
exposure of 42 to OH. radicals in aqueous solutions saturated with lSo2 
(Cadet et al. 1994a). It should be remembered that the addition of molecular 
oxygen to oxidizing 2'-deoxyguanosyl radicals is a slow reaction 
(k << lO7 M -1 s -1) that could not be measured by pulsed radiolysis 
(Steenken 1989). This also explains why several antioxidants, including 
ascorbic acid, serotonin, uric acid, and tetramethyl-p-phenylenediamine, 
are able to reduce oxidizing purine radicals via an electron transfer mecha- 
nism (O'Neill 1983; O'Neill and Chapman 1985; Simic 1988; Candeias and 
Steenken 1989). In particular, the formation of both the imidazolone 49 and 
oxazolone 5o was abolished upon exposure ofdGuo (42) to OH. radicals in 
the presence of i mM ascorbic acid (Mouret et al. 1991a). 

The formation ofoxazolone 5o is still predominant within DNA exposed 
to OH- radicals in aerated aqueous solution. Interestingly, it should be 
noted that 8-oxodGuo (47) which was barely detected upon OH.-mediated 
oxidation of dGuo (42) is generated in significant amounts within DNA. 
The critical factors (e.g., presence of bound metals, sructural parameters) 
which are involved in the change of product distribution when moving 
from the nucleoside or short oligonucleotide to double-stranded DNA are 
not clear. 

2.1.5 
Clustered Base Damage 

Increasing interest is currently being devoted to the determination of the 
biological role of bulky lesions induced in cellular DNA by various agents 
of oxidative stress. Locally multiple damage sites (LMDS), which may 
include double-strand DNA breaks and clustered base lesions, are likely to 
contribute significantly to the deleterious effects of ionizing radiation 
(Ward 1991, 1994, 1995; Brenner and Ward 1992). However, there is a still 
of paucity of information on such damage, whose formation may be ex- 
plained by the generation of a high concentration of DNA radicals and 
related excited species along the track of ionizing radiation (Goodhead 
1994). Evidence for the endogenous formation of bulky DNA lesions, 
so-called I (indigenous) compounds, has been inferred from their peculiar 
chromatographic behavior, as revealed by 32p-postlabeling analysis. It was 
recently shown that the formation of the type II class of the latter modifi- 



18 J. Cadet et al. 

cations, which is mostly mediated by cellular oxidative processes, is in- 
creased by Fenton-type reagents in cells (Randerath et al. 1991; Chang et al. 
1993) and by ferric nitriloacetate (Fe-NTA) on kidney DNA of male F344 
rats (Randerath et al. 1995). Related bulky adducts were detected by a 
32p-postlabehng assay in the liver of patients with Wilson disease and 
primary hemochromatosis (Carmichael et al. 1995). However, these lesions 
were found to be different from the putative purine intrastrand adducts 
which were generated in isolated DNA upon incubation with Cu+/Fe 2+ and 
H202 (Carmichael et al. 1992). It has also been suggested that such oxida- 
tive DNA bulky lesions, whose structure still remains to be determined, are 
likely to be refractory to DNA repair processes in cancer-prone syndromes 
such as xeroderma pigmentosum (Lindahl; 1993, Satoh et al. 1993; Satoh 
and Lindah11994). 

The first example of the OH.-mediated formation of a vicinal oxidative 
base lesion within a DNA fragment was recently provided by conducting a 
model study on 2'-deoxyguanosylyl-(3'-5')-thymidine (dGpT). X-irradia- 
tion of dGpT in aerated aqueous solution was found to give rise to a 
dinucleoside monophosphate bearing a clustered base damage as a pri- 
mary radiation-induced decomposition product (Box et al. 1993). The 
guanine moiety has been converted to 8-oxo-7,8-dihydroguanine,(47a) 
whereas the thymine base has been transformed into a formylamine prod- 
uct. An identical decomposition product is formed in a dinucleoside mo- 
nophosphate where the thymine base is replaced by a cytosine residue 
(Budzinski et al. 1993). Similar clustered base damage, but in an opposite 
sequence, has been isolated and characterized following exposure of dGpN 
dinucleoside monophophates, where G is a dGuo residue, whereas N may 
be either thymidine (1) o r  2'-deoxycytidine (17) (Box et at. 1995). The exact 
mechanism of the formation of these two OH.-mediated vicinal base le- 
sions, which were also found to occur within the tetranucleotide 
d(CpGpTpA) (Budzinski et al. 1995), is still open to debate. One possibility 
which is currently being investigated in our laboratory is that initial OH. 
addition to the pyrimidine base may, through the corresponding hydroxy- 
hydroperoxide or the peroxyl radical precursor, lead to the radical oxida- 
tion of the vicinal guanine base. Attempts are also currently being made to 
insert such clustered damage in oligonucleotides in order to further inves- 
tigate the biological properties of such bulky lesions (mutagenesis, repair). 
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Fenton reactions appear to play a major role in the biological effects 
mediated by hydrogen peroxide within cells. However, the exact nature of 
the oxidizing species involved in the latter reactions is still a matter of 
debate (Yamazaki and Pierre 1991; Wink et al. 1991a; Sawyer et a11993). Free 
hydroxyl radicals and high-valency iron-oxo species may be generated in 
the reaction of H202 with ferrous iron, depending on the concentration of 
hydrogen peroxide, the pH, and the chemical nature of the chelating agents. 
Evidence was provided that hydroxyl radical is the reactive oxygen species 
of the reaction of [FeIIEDTA]-2 and H202 in the absence (Gilbert et al. 1988) 
and in the presence of ascorbate (Pogozelski et al. 1995). The generation of 
the main oxidizing species of the Udenfriend reaction requires oxygen 
instead of H202 (Ito et al. 1993a). The main oxidation product of the 
reaction of thymine with the latter reagent was identifed as N-formyl-N'- 
pyruvylurea. This is in agreement with previous results on the OH.-medi- 
ated decomposition of thymine (Ttoule and Cadet 1978). On the other 
hand, iron(II)-bleomycin is expected to cleave DNA (Hecht 1986) by a 
mechanism involving an iron-oxo complex (Stubbe and Kozarich 1987). 
Other metals, including Cu(I), Co(II), Cr(V), and Ni(II), which exhibit 
carcinogenic activity (for a review, see Kasprzak 1991) are able to generate 
various reactive oxygen species in the presence of H202 (Yamamoto and 
Kawanishi 1989; Lefebvre and Ptzerat 1992; P4zerat 1994; Shi et al. 1994a). 
In addition, several other redox systems such as Cu-l,lo-phenanthroline 
complex (Yoon et al. 199o), metalloporphyrins in the presence of suitable 
oxygen donors (Meunier 1992) or peroxynitrite (Groves and Maria 1995), 
Fe(III) nitrilotriacetate (Inoue and Kawanishi 1987), and asbestos (Lean- 
derson et al. 1988; Berger et al. 1993; Faux et al. 1994) have been shown to 
oxidize DNA. It was recently reported that a bithiazole derivative related 
to the reactive moiety present in bleomycin is capable to mediate guanine- 
specific DNA alkali-labile lesions in the presence of oxygen (Kane et al. 
1995). An inner-sphere mechanism rather than a one-electron process has 
been suggested to be involved in the radical oxidation of the guanine 
residues. 

Insights into the mechanism of Fenton reaction-mediated oxidation of 
the base moiety of purine 2'-deoxyribonucleosides were gained from the 
isolation of the main decomposition products of the reactions. Under these 
conditions, the formation of 8-oxodGuo 47 was found to be significantly 
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increased at the expense of the oxazolone 5o and imidazolone 49 nucleo- 
sides (Mouret et al. 1991a). It was shown that the presence of Fe(II), which 
is likely to reduce the oxidizing guanilyl radical 45, responsible for this 
major change in the oxidation product distribution ofdGuo (42). It should 
be noted that an Udenfriend reaction has been used to prepare 47(Kasai 
and Nishimura 1984). Interestingly, an opposite effect of Fe(II) on the 
formation of 8-oxo-7,8-dihydro-2'-deoxyadenosine 4o was observed 
(Mouret et al. 1991a). In this respect, 40 which is the main OH--mediated 
oxidation of dAdo (34) only generated in trace amounts in the Fenton 
reaction. Oxidation of nucleosides 34 and 42 by several types of asbestos 
led to similar observations (Berger et al. 1993). Differences in the ratio of 
47 to 40 may be explained in terms of accessibility of Fe(II) in the minerals 
(Cadet et al. 1994a). The presence of Fe(II) has been shown to promote the 
formation of 8-oxodGuo (47) within DNA upon exposure to OH- radicals 
in the presence of either ascorbate or 5-aminosalicylic acid (Fischer-Niel- 
sen et al. 1992). However, such an enhancing effect was not observed when 
glutathione was added to the solution. A significant increase in the level of 
8-oxodGuo (47) was observed in liver DNA of mice fed with the polychlori- 
nated biphenyl mixture Aroclor 1254 upon a single injection of iron (Faux 
et al. 1992). 

2.3 
One-Electron Oxidation Reactions 

One-electron oxidation of purine and pyrimidine nucleic acid bases leads 
to the formation of the related radical cations. The increasing interest in 
the determination of the chemical reactions of the latter highly reactive 
intermediates is explained by their implication in several major physico- 
chemical processes, including the direct effects of ionizing radiation (Bern- 
hard 1981; Symons 1987), the type I photosensitization mechanism (Cadet 
et al. 1983a; Cadet and Vigny 199o), and the mono- and biphotonic pho- 
toionization mediated byhigh-intensity UV laser pulses (Nikogosyan 199o; 
Bothe et al. 199oa; Angelov et al. 1991; Candeias and Steenken 1993). It is 
also now well-documented that pyrimidine and purine radical cations can 
be generated through the oxidizing reaction of inorganic radicals such as 
Br2- (Willson et al. 1974), SO4- (yon Sonntag 1987b; Schuchmann et al. 
1987; von Sonntag et al. 1989; Bothe et al. 199ob; Deeble et al. 199o), and 
TI(II) (]ovanovic and Simic 1989) with DNA constituents. However, it was 
shown that the use of inorganic radicals to generate one-electron oxidation 
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products of purine and pyrimidine nucleosides gave rise to the formation 
of secondary decomposition products, particularly in the case of SO4- 
(Cadet et al. 1991) and Br2- (Cadet et al. 1983b). It should be added that the 
bulk of the studies aimed at determining the mechanisms of the reactions 
of purine and pyrimidine radical cations in aqueous solutions have in- 
volved type I photosensitizers. In this respect, it should be mentioned that 
the use of frozen aqueous systems to study the direct effects of ionizing 
radiation presents a major limitation, since the role of oxygen cannot be 
studied in this system (Shaw and Cadet 199o). Two main competitive 
reactions, including hydration and deprotonation, are involved in the 
conversion of purine and pyrimidine radical cations in aqueous solution 
(see below). The relative importance of deprotonation over hydration in 
neutral aqueous solutions increases in the following order: thymidine (1) 
= dCyd (17) < dAdo (34) < dGuo (42), in proportion to the increasing value 
of the electron density of the corresponding bases. It should be added that 
the ability for photosensitizers to oxidize nucleosides via one-electron 
oxidation is directly related to the ionization potential of the DNA compo- 
nents with the following order of decreasing reactivity: dGuo (42) > dAdo 
(34) > dCyd (17)=thymidine (1), 

2.3.1 
Thymine 

Upon exposure to UVA radiation, photoexcited 2-methyl-l,4-naphthoqui- 
none (menadione) was found to induce the formation of the radical cation 
of thymidine 51 and z'-deoxycytidine 52 with high efficiency (Fisher and 
Land 1983). It is worth mentioning that the distribution of the main stable 
products of the one-electron reaction of menadione with thymidine (1) in 
aerated aqueous solution (Cadet et al. 1986; Decarroz et al. 1986) is similar 
to that initiated by hydroxyl radicals. One of the main differences deals with 
a significant increase in the relative yield of 5-(hydroxymethy1)-2'-de- 
oxyuridine (15) and of 5-formyl-2'-deoxyuridine (16), together with a 
greater formation of 5-hydroperoxymethyi-2'-deoxyuridine (lO). In addi- 
tion, another major feature which concerns unstable thymidine (dThd) 
photoproducts is the complete absence of the four cis and trans diastereoi- 
somers of 6-hydroperoxy-5-hydrox'y-5,6-dihydrothymidine (8) (Wagner et 
al. 1987). Further support for the specific formation of the four cis and trans 

diastereoisomers of 5-hydroperoxy-6-hydroxy-5,6-dihydrothymidine (9) 
was provided by the results of isotopic labeling experiments. These showed 
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the lack of incorporation of 1SO in position 6 of the cis and trans glycols of 
. . . . .  1 8  thymldme 12 upon exposure ofdThd (1) to photoexoted menadlone in 02 

saturated aqueous solution (Wagner et al. 1987). In addition, spin-trapping 
(Murali Krishna et al. 1987) of the menadione-photosensitized formation 
of pyrimidine radicals shows the presence of 3 and 4 associated with the 
complete lack of 2. The mechanism of the menadione-mediated photooxi- 
dation ofthymidine (1) maybe rationalized in terms of the initial formation 
of the pyrimidine radical cation 51. Predominant hydration of 51 in neutral 
aqueous solution specifically gives rise to 6-hydroxy-5,6-dihydrothymidy1- 
5-y1 radical (3) with an estimated yield of 70%. In addition, competitive 
deprotonation of 51 which exclusively occurs at the methyl group in a 3o% 
yield, leads to the transient formation of 5-methyl-(2'-deoxyuridy1) radical 
(4) (Fig. 5). The mechanisms of formation of the diamagnetic products, 
following the reaction of molecular oxygen with pyrimidine radicals 3 and 
4 are identical to those described for hydroxyl radicals (see above). 

Photoexcited menadione has been recently used to generate thymine 
oxidation products within isolated DNA (Bjelland et al. 1994, 1995). In 
particular, 5-formyluracil (16a) and 5-(hydroxymethyl)-uracil (15a) were 
found to be produced through the likely deprotonation reaction of the 
initially produced thymine radical cation 51a. However, it should be men- 
tioned that double-stranded DNA has to be denatured in order to enable 
the one-electron oxidation mediated by photoexcited menadione to occur. 

H- ~_~i CH2° 

' 1 
- I t 2 0  H" o H3 

3 

Fig. 5. Deprotonation and hydration of the pyrimidine radical cation of thymidine 51 
in water 
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The formation of 5-formyluraci116a was revealed by sequencing analysis, 
after hot piperidine treatment of deoxyoligonucleotides that had been 
photooxidized with a nitro derivative oflysine (Saito et al. 1995a). 

2.3.2 
Cytosine 

The bulk of the menadione-photosensitized oxidation products of dCyd 
(17) are identical to those generated by the action of hydroxyl radicals 
(Wagner et al. 199oc), at least qualitatively, as observed for thymidine (1). 
The formation of the diamagnetic products may be explained in terms of 
initial generation of dCyd radical cation 52 through electron transfer to 
photoexcited menadione with subsequent hydration (83%) and deproto- 
nation (17%) reactions. The former process was found to lead to a signifi- 
cant increase in the relative yield of the four cis and trans diastereoisomers 
of 5,6-dihydroxy-5,6-dihydro-2'-deoxyuridine (25) with respect to that 
observed in the OH.-mediated oxidation reactions of dCyd (17). Isotopic 
labeling experiments based on the incorporation of 1SO from molecular 
oxygen indicated that hydration of the radical cation occurs preferentially 
in position 6, giving rise to the oxidizing radical 6-hydroxy-5,6-dihydro-2'- 
deoxycytidyl-5-yl (18) (Wagner 1988). Two main sites of deprotonation 
(Fig. 6) within the pyrimidine nucleoside were inferred from the identifi- 
cation of specific diamagnetic photoproducts. One involves the exocyclic 
amino group in position 4 of the pyrimidine moiety. The resulting aminyl 
radical 53, or more likely the tautomeric N3-centred radical 54 may undergo 
deamination, leading to the specific formation of z'-deoxyuridine (55) in a 
12.5% yield (Decarroz et al. 1987). The second site ofdeprotonation involves 
the anomeric carbon of the sugar moiety. Addition of molecular oxygen to 
the resulting l'-yl radical 56 leads to the formation of 2-deoxy-D-ribono- 
1,4-1actone (57) with the concomitant release of an equal quantity of cyto- 
sine (17a) (Decarroz et al. 1987). The latter process accounted for about 4.5% 
of the total photooxidation processes of the nucleoside (Decarroz et al. 
1987). 



24 J. Cadet et al. 

HO 17 

- e "  
Ip 

HO H 0 ~  

HO 54 HO 53 

O• H20 1 ~  
83% " O~W'~HOH 

HO 52 HO 18 

tIO 

t 12.5% ~ 2 

HO 57 H 17a 

HO 55 

Fig. 6. Deprotonation and hydration reactions of the pyrimidine radical cation of 
2'-deoxycytidine (52) in aerated aqueous solution 

2.3.3 
Adenine 

Most common photosensitizers, including methylene blue, 3-carbethoxyp- 
soralen, hematoporphyrin derivatives, and proflavine, are not able to 
photooxidize dAdo (34) (Cadet et al. 1986). In contrast, riboflavin and 
benzophenone in their triplet state have been shown to oxidize dAdo (34) 
through initial electron transfer reaction, giving rise to the purine radical 
cation 38 (Fig. 4). The main final decomposition product of the photosen- 
sitized reaction in aerated aqueous solution has been identified as 2'-de- 
oxyinosine (39). A likely mechanism for the formation of the latter nucleo- 
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side 39 is deprotonation of the dAdo radical cation 38 (Vieira and Steenken 
199o; O'Neill et al. 1985; O'Neill and Davies 1987), leading to the oxidizing 
aminyl radical 37. The latter intermediate, or more likely the related N3- 
centred radical tactomer, is able to undergo deamination, giving rise to 39, 
resulting from the hydrolytic deamination of dAdo (34). Evidence was also 
provided for the occurrence to a smaller extent of a competitive hydration 
reaction of the radical cation 38. This leads to the formation of 8-oxo-7,8- 
dihydro-z'-deoxyadenosine (4o) through the intermediary of the 8-hy- 
droxy-7,8-dihydro-e'-deoxyadenos-7-yl radical (35) (Fig. 4). 

2.3.4 
Guanine 

Most of the photodynamic agents which are used to oxidize dGuo (42) via 
one-electron reactions (type I mechanism) are able to generate singlet 
oxygen through an energy transfer mechanism (type II mechanism) (Cadet 
et al. 1983a, 1986). The latter process provides further complications, since 
dGuo (42) is an excellent substrate for 102 (see below). However, several 
photosensitizers, including benzophenone and riboflavin, act primarily 
through charge transfer reaction with the substrate 42, giving rise almost 
quantitatively to the radical cation 46. Interestingly, the two main oxida- 
tion products ofdGuo (42) which arise from the conversion of 46 in aerated 
aqueous solution are 2-amino-5-[(2-deoxy-~-D-erythro-pentofurano- 
syl)amino]-4H-imidazol-4-one (49) and 2,2-diamino-4-[(2-deoxy-~-D- 
erythro-pentofuranosyl)amino]-5-(2H)-oxazolone (5o) (Cadet et al. 1994a; 
Raoul et al. 1996). The mechanism of formation of these modified nucleo- 
sides 49 and 5o (Fig. 7), which are also the predominant OH.-mediated 
oxidation products of 4z, involves in the initial step deprotonation of the 
radical cation 46 as shown by pulsed radiolysis (Candeias and Steenken 
1991). The resulting oxidizing oxyl radical 45 is identical to that generated 
through dehydration of the OH. radical adduct 44 in position 4 of the purine 
moiety ofdGuo (42) (O'Neill 1983; Candeias and Steenken 1989; Fig. 7). The 
mechanism of formation of imidazolone 49, the precursor of oxazolone 5o, 
was found to be rather complex. It involves the addition of both a molecule 
of oxygen and a molecule of water to a tautomeric isomer of 45, followed 
by a rearrangement of the purine ring. It should be noted that a decarboxy- 
lation reaction involving the C-6 carbon takes place during this multistage 
transformation of the guanine moiety. The competitive formation of (2S)- 
2,5'-anhydro-l-(2-deoxy-~-D-erythro-pentofuranosyl)-5-guanidinylidene-2- 
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hydroxy -4-oxoimidazolidine (58) (Fig. 8; Buchko et al. 1993) provides 
further support for the implication ofa nucleophilic reaction in the course 
of events leading to 49. This also constitutes an interesting model system 
to further investigate the photosensitized formation of DNA-protein 
cross-links (see below). 

Another comment deals with the lack of significant formation of 8- 
oxodGuo 47, the expected final product of the hydration of the guanine 
radical cation 46 upon either benzophenone- or riboflavin-mediated pho- 

H 
H _ . . . ~ N  H 

OH 62 

o 

OH 

45, R = O H  

oy 

64 CH-- // 0 o.¢ 
T o 

63, R = Lysine OH 

OH 58 + 49, 50 

Fig. 8. Main adducts arising from nucleophilic addition and subsitution reactions of 
the oxidizing 2'-deoxyguanosyl radical 45- Model systems for DNA-protein cross-links 

NN• eoH 

H O c%d  
H H ~ I " % O  

OH 59 



28 J. Cadet et al. 

tosensitization of dGuo (42). This may be related to the low value of the 
pKa of the radical cation 46,which was estimated to be 3.6. Interesting 
information on the oxidizing properties of the oxyl radical 45 formed by 
the deprotonation of the radical cation of guanine 46a in monocatenary 
DNA of herring sperm was obtained by pulse radiolysis studies (Jovanovic 
and Simic 1989). At neutral pH, the redox potential of radical 45a, whose 
precursor 46a was generated by the reaction with thallic ion TI(II), was 
identical (E7 = 1.o4 V) to that measured for the corresponding radical of 
2'-deoxyguanosine 5'-monophosphate. Interestingly, the oxidizing radical 
45a was quantitatively repaired by a number of electron donors, including 
5-hydroxytryptamine, 5-hydroxytryptophan, tyrosine methyl ester hydro- 
chloride, uric acid, ascorbic acid, and glycyl-tryptophan (Jovanovic and 
Simic 1989). 

The results concerning the chemical reactions of the guanine radical 
cation 46a of dGuo and thymidylyl-(3'-5')-2'-deoxyguanosine (Buchko et 
al. 1995a) cannot be completely transposed to double-stranded DNA. In 
particular, the hydration reaction of 46a, which is completely absent within 
dGuo 42 and short oligonucleotides, was found to be significant within 
double-stranded DNA (Kasai et al. 1992). This was inferred from the 

H ~So incorporation of one atom of 180 from 2 in 8-oxo-7,8-dihydro-f-de- 
oxyguanosine (47), the final product of the reaction involving the transient 
formation of radical 43 (Fig. 7). It should be added that deprotonation of 
46, which is partly prevented within DNA (see above), gives rise (as ob- 
served for dGuo 42 and dinucleoside monophosphates) to the formation 
of both imidazotone 49 and oxazolone 5o compounds. The formation of 
the latter oxidized nucleosides has been indirectly measured within DNA 
by the release ofguanidine, the quantitative alkali-induced decomposition 
product of both 49 and 5o (Raoul et al, 1996). At the current stage of 
available knowledge, it is possible to make a few general comments on the 
radical reactions of the purine and pyrimidine bases of DNA and model 
compounds. There are quite important similarities, at least in the qualita- 
tive distribution of the decomposition products arising from OH. radicals 
on one hand and one-electron oxidation on the other hand. This is particu- 
larly true for the oxidation reactions involving guanine. In contrast, the 
hydration reaction of the radical cation in the case of thymidine and dCyd 
specifically led to the formation of the oxidizing radical (6-hydroxy-5,6-di- 
hydro-6-yl), which was the minor addition product of the OH- radical. It 
may be added that the distribution of oxidation products of pyrimidine 
nucleosides is more complex than that of their purine homologues. How- 
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ever, the mechanisms of formation of the latter compounds, particularly 
for those involving dGuo (42), are much more complicated than that of 
dThyd (1) and dCyd (17). Another comment of importance concerns the 
observation of the major role played by the DNA structure in the orienta- 
tion of radical oxidation of guanine (42a). 

Interesting sequence effects on the photoionized formation of alkali- 
labile sites at guanine residues within deoxyoligonucleotides have been 
revealed by the use of electrophoretic analysis on denaturing polyacry- 
lamide gels (Kovalsky et al. :990; Ito et al. 1993b; Angelov et al. :994; Melvin 
et al. 1995; Saito et al. :995a). Most of the latter alkali-labile guanine lesions 
are likely to be the oxazolone damage 50 and its imidazolone precursor 49 
as inferred from the indirect measurement of these modifications within 
DNA exposed to picosecond and nanosecond UV laser pulses (Angelov et 
al. :994). In addition, the formation of 8-oxodGuo 47 whose conversion 
into piperidine-mediated DNA strand cleavage is of low efficiency (Chung 
et al. :992), has been monitored in the latter photooxidized DNA. This was 
achieved by revealing alkali-labile sites generated by the removal of 47a 
after incubation of the oligonucleotides with the Escherichia coli formami- 
dopyrimidine gtycosylase (Boiteux :993). One of the most striking se- 
quence effects deals with the observation of a highly selective piperidine- 
induced cleavage at the 5'-side of adjacent guanine residues in duplex 
oligonucleotides that were photooxidized either with riboflavin (Ito et al. 
:993a) or a lysine derivative possessing a naphthalimide chromophore 
(Saito et at. :995a). This specific photoreaction was rationalized by the fact 
that guanines located 5' to a guanine residue constitute the most electron 
donating sites in duplex DNA. This was inferred from ab initio calculations 
of lowest ionization potentials of stacked nucleobases and flash photolysis 
studies (Saito et al. :995b). Electron transfer has been suggested to occur 
within dinucleoside monophosphates and short oligonucleotides upon 
formation of pyrimidine and purine radical cations upon one-quantum 
photoionization by :93-nm laser pulses (Candeias and Steenken :993; 
Melvin et al. :995). However, more direct evidence is required to further 
assess whole migration in DNA aqueous solution at room temperature. 
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2.3.5 
Guanine-Amino Acid Adducts 

DNA-protein cross-links constitute an important class of damage pro- 
duced by ionizing radiation and photoexcited sensitizers. However, there 
is a paucity of information on the chemical structure of DNA-protein 
cross-links generated under oxic conditions. One major exception deals 
with the characterization of a tyrosine-thymine adduct (Margolis et al. 
1988), which, however, was found to be significantly produced only in the 
absence of oxygen. The observation of the occurrence of a nucleophilic 
reaction in the radical oxidation ofdGuo (42) (Buchko et al. 1993; Cadet et 
al. 1994a) has allowed a working hypothesis to be proposed for the forma- 
tion of at least one class of radically induced DNA cross-links. This is based 
on the assumption that either the free hydroxyl group or the extra-amine 
function which is not engaged in the peptide bond of certain amino acids 
may react with guanine radicals produced by one-electron oxidation. In 
this respect, methanol, which was used to mimic the hydroxyl group of 
threonine and serine, was found to photoadd to the C-8 position of the 
purine ring of dGuo (42) upon benzophenone photosensitization (Morin 
and Cadet 1994), generating the two diastereoisomers of 59 (Fig. 8). The 
reactivity of the free amino group toward guanine radicals was investigated 
using 5'-amino-z',5'-dideoxyguanosine (6o) as the substrate. An efficient 
benzophenone-photosensitized intermolecular reaction leading to the ad- 
ducts 61 and 62 was found to occur (Morin and Cadet 1995a). An aromatic 
nucleophilic substitution reaction appears to be involved in the formation 
of 61 and 62 whereas a nucleophilic addition reaction was proposed to 
explain the photosensxtized generation of the anhydronucleoside 58 via the 
participation of the 5'-hydroxyl group as a less reactive nucleophile. A third 
model system consisted in tethering a lysine residue through its carboxylic 
group to the 5-hydroxyl group of dGuo (42). Interestingly, both reactions 
are present in the benzophenone-mediated photoaddition reactions of the 
tysine residue to position 8 of the guanine moiety of 63, as inferred from 
the characterization of adducts 64 and 65 (Morin and Cadet 1995b). 
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2.4 
Ozone-Mediated Oxidation of the Purine 
and Pyrimidine Bases 

31 

Ozone, a pollutant of urban air produced by a series of complex photo- 
chemical reactions, is a highly toxic reactive oxygen species. The genotoxic 
effects of 03, including mutagenesis and carcinogenesis are now well 
established (for a review, see Victorin 1992). A significant increase in the 
level of 8-oxo-7,8-dihydro-2'-deoxyguanosine (47) has been observed in 
the chloroplast DNA of plants upon exposure to a steam of ozone (Floyd 
et al. 1989). However, oxidation of the guanine moiety is not the result of 
the direct action of ozone, since reaction of the latter reactive oxygen 
species with isolated DNA did not lead to any significant increase in the 
amount of 8-oxodGuo (47) in comparison to control experiments. It is 
likely that ozone may induce secondary oxidation reactions via the en- 
hanced formation of oxygen free radicals, at least at the cellular level. 
Recent model studies involving various DNA model compounds have 
shown that the oxidation reaction mediated by 03 is highly specific, involv- 
ing, for example, only the 5,6-ethylenic bond of pyrimidine nucleobases 
and nucleosides (Matsui et al. 199oa, b, 1991; Girault et al. 1993, 1994). The 
main 03 oxidation products of thymidine have been identified as N-(2-de- 
oxy-~-D-erythro-pent ofuranosyl) formamide (n), the 5R ~ and 5S * dia- 
stereoisomers of x-(2-deoxy-~-D-erythro-pentofuranosyl)-5-hydroxy-5- 
methylhydantoin (13), Nl-(2-deoxy-~-D-erythro-pentofuranosyl)-Nl-ace- 
tylurea, and Nl-(2-deoxy-~-D-erythro-pentofuranosyl)-Nl-formylurea 
(Girault et al. 1994). Similarly, O3-mediated oxidation of dCyd (17) in 
aerated aqueous solution was found to give rise to N-(2-deoxy-~-D- 
erythro-pentofuranosyl)formamide (11) and the 5R ~ and 5S '~ diastereoi- 
somers of x-(2-deoxy-~-D-erythro-pentofuranosyl)-5-hydroxThydantoin 
(27) (Girault et al. 1993). The mechanism of formation of the latter dThd 
and dCyd oxidation products may be rationalized in terms of initial [2 + 4] 
cycloaddition of ozone with the 5,6-pyrimidine ethylenic bond. In a sub- 
sequent step, the hydrolytic decomposition of the resulting unstable molo- 
zonide (Kucz-kowski 1992) is likely to lead to the opening of the 5,6-bond 
via a Criegge intermediate. The Nx-formyl-N3-pyruvylurea and Nl-formyl- 
N3-glyoxylurea thus produced may undergo either hydrolysis or recycliza- 
tion. It should be noted that no release of the free base was observed in the 
03 oxidation of dThd (1) or dCyd (17), ruling out the participation of any 
OH. radical under these oxidizing conditions. It should be added that ozone 
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Fig. 9. Formation of adenine N-l-oxide (66a) by the reaction of hydrogen peroxide 
with adenine (34a). 

was found to react with guanine, giving rise to the predominant formation 
of 2-amino-4,6-dihydroxy-l,3,5-triazine with a trace amount of parabanic 
acid (Matsui et a1.1991). 

2.5 
Hydrogen Peroxide Oxidation of Adenine 

Hydrogen peroxide, a side product of the dismutation reaction of super- 
oxide radical (or hydroperoxide radical), may react in a specific way with 
the adenine base in the absence of reduced transition metals (Fig. 9). Under 
non-Fenton reaction conditions, the unique product 66 of the reaction of 
H202 with dAdo (34) arises from the N-oxidation of the purine moiety at 
the N1 position, as inferred from exhaustive NMR analysis (Mouret et al. 
199o). Interestingly, adenine N-l-oxide (66a) is formed in both isolated 
(Mouret et al. 1991b) and cellular (Mouret et al. 199o) DNA upon exposure 
to hydrogen peroxide. A sensitive HPLC-32P-posflabeling assay (Mouret et 
al. 199o) was used to monitor the formation of adenine N-l-oxide within 
DNA. 

2.6 
Singlet Oxygen Oxidation of Guanine 

Singlet oxygen ('02), the lowest excited state of molecular oxygen (lAg, 
94.2 kJ/mol), may be generated through energy transfer as the result of a 
type II photosensitization mechanism. It is likely that singlet oxygen pro- 
duced by endogenous photosensitizers is a major contributor to the dele- 
terious effects of UVA radiation and visible light on living systems. Singlet 
oxygen is generated by various chemical processes, including the thermal 
decomposition ofendoperoxides (Di Mascio and Sies 1989) and dioxetanes 
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(Adam and Cilento 1983; Cilento et al. 1994), and the reaction of H202 with 
peroxynitrite (Di Mascio et al. 1994). Evidence was provided that several 
enzymatic reactions and chemiexcitation associated with lipid peroxida- 
tion may consitute biological sources of 102. In addition, it was recently 
suggested that singlet oxygen may be generated through the reaction of 
oxygen with triplet excited purine and pyrimidine DNA components 
(Bishop et al. 1994). It is now well established that singlet oxygen is able to 
oxidize DNA with a much higher specificity than OH. radical, since only 
guanine is the substrate of the XO2 oxidation, at least at neutral pH. The two 
main stable oxidation products of the reaction of 102 with dGuo (42) were 
identified as the 4R* and 4S* diastereoisomers of 4-hydroxy-8-oxo-4,8-di- 
hydro-2'-deoxyguanosine (68) on the basis of extensive NMR and mass 
spectrometry measurements (Ravanat et al. 1992; Ravanat and Cadet 1995). 
Similar oxidation products were generated by the type II photooxidation 
reaction of 2'-deoxyguanosylyl-(3'-5')-thymidine (Buchko et al. 1992). It is 
likely that the oxidation product 68 arises from the thermal decomposition 
of the unstable endoperoxides 67 following initial [2+4] Diels-Alder cy- 
cloaddition of 102 across the 4,8 purine carbons (Fig. 1o). 

Evidence for the transient formation of diastereoisomeric 67 was ob- 
tained from the characterization of related intermediates in the low-tem- 
perature (-78°C) photooxidation of 2',3',5'-O-(tert-butyldimethylsilyl)-8- 
methylguanosine in CH2C12 using tetraphenylporphyrin as the photosen- 
sitizer (Sheu and Foote 1993). Structural assignment of the unstable 
endoperoxides was achieved by 1H and 13C NMR. Additional confirmation 
of the incorporation of a molecular oxygen in the latter oxidized nucleo- 
sides was provided by low-temperature, fast atom bombardment mass 
spectrrometry analysis. In addition, a relatively small amount of 8- 
oxodGuo (47) is produced at a steady level of 0.8% in the Zn disulfonated 
aluminium phthalocyanine-mediated photooxidation of dGuo (42) 
(Ravanat et al. 1992). It has been recently suggested that 47 may arise from 
the rearrangement of the initially generated endoperoxides 67 into 8-hy- 
droperoxy-2'-deoxyguanosine 69 (Sheu and Foote 1995a). Interestingly, 47 
was found to be two orders of magnitude more reactive with 102 than its 
dGuo (42) precursor (Sheu and Foote 1995b). The main stable singlet 
oxygen oxidation products were identified as N-(2-deoxy-~-D-erythro- 
pentofuranosyl)cyanuric acid (71), and 4-hydroxy-8-oxo-4,8-dihydro-2'- 
deoxyguanosine (68) together with the type I photosensitization oxidation 
products 49 and 5o (Buchko et al. 1995b; Raoul and Cadet 1996). A reason- 
able mechanism for the formation of 68 and 71 would involve the initial 
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formation of the dioxetane 70 through 102 addition across the 4,5-purine 
bond. In subsequent steps, 7o may either rearrange into the 4-hydroper- 
oxide or undergo a 1,z-cleavage (Sheu and Foote 1995c). Again, DNA 
structure appears to play a major role in the orientation of the oxidation 
reaction of dGuo (42) mediated by singlet oxygen. Attempts to search for 
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the photosensitized formation of 4-hydroxy-8-oxo-4,8-dihydroguanine 
(67a) within isolated DNA by using a sensitive GC-MS assay were unsuc- 
cessful (Cadet et al. 1994a). On the other hand, 8-oxodGuo (47) was found 
to be the main 102 oxidation product of DNA upon exposure to either a 
chemical source of singlet oxygen or excited photosensitizers (Miiller et al. 
1990; Schneider et al. 199o; Devasagayam et al. 1991). 

2.7 
Reactions of NO. Derivatives with DNA 

The biological role of the free radical nitric oxide (NO.) has been widely 
studied in recent years. NO. is a major bioregulator involved in numerous 
physiological processes, including smooth muscle relaxation, inhibition of 
platelet aggregation, and neurotransmission. NO- is also involved in 
macrophage-mediated cell killing (Liew et al. 199o). In addition to these 
endogenous productions, NO. is also provided by environmental sources, 
including cigarette smoke, automobile exhaust, and gas cooking. The 
mutagenicity of NO- is now well established. Mutations and chromosome 
aberrations have been observed in the lung cells of rats exposed to NO. 
(Isomura et al. 1984). NO. was also found to induce mutations in Salmonella 
typhimurium (Arroyo et al. 1992) and human lymphoblast cells (Nguyen 
et al. 1992). NO. is only weakly reactive with biomolecules (for a review, see 
Stamler et al. 1992). Addition on metals of metalloproteins, such as hemo- 
globin, (Doyle and Hoekstra 1981 ) and to the tyrosine radical of the active 
site of ribonucleotide reductase (Lepoivre et al. 1991) are among the few 
reactions reported. NO.-mediated damage to biomolecules, and in particu- 
lar DNA, is thus likely to involve activated species of NO.. The likely 
candidates for the induction of DNA lesions reviewed below include deami- 
nating derivatives, peroxynitrite, and nitrogen dioxide. 

2.7.1 
NO.-Mediated Deamination of Nucleobases 

Mutations observed in Salmonella typhimurium cells treated with NO. are 
mainly G:C -~ A:T transitions (Wink et at. 1991b). Similar results were 
obtained with plasmids incubated in aerobic solutions of NO. or NO. 
donors prior to their transfection and replication in human and E. coli cells 
(Routledge et al. 1993,1994). Based on observations made with nucleosides 
and isolated DNA (Wink et al. 1991a; Nguyen et al. 1992), deamination of 
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cytosine was proposed to account for these results. The NO.-mediated 
deamination of nucleobases is dependent on the presence of oxygen, 
indicating that N203 is involved (Nguyen et al. 1992). This is in agreement 
with the known ability of acidic solution of nitrite to induce cytosine 
deamination, via the nitrosation of the exocyclic amino groups by N203. 
Moreover, the latter compound has been shown to be the N-nitrosating 
agent ofmorpholine in aerated solution of NO. (Lewis et al. 1995). However, 
the involvement of the deamination of cytosine and 5-methylcytosine in 
NO. mutagenicity has recently been questioned. Similar mutation fre- 
quency was observed in plasmids exposed to NO. subsequently transfected 
in either E. coli mutant cells deficient in uracil-DNA-glycosylase or in the 
wild-type cells (Schmutte et al. 1994). It should be added that deamination 
is not specific for NO., since it also occurs spontaneously in DNA (Wang 
et al. 1982 ). Another possible pathway for the mutagenicity of N203 is the 
endogenous formation of nitrosamines, which are powerful DNA-alkylat- 
ing agents (Bartsch et al. 1990). 

2.7.2 
Peroxynitrite 

Peroxynitrite anion (OONO-) is the product of the reaction between NO 
and superoxide anion (02.-) (Blough and Zafiriou 1985): 

NO- + 02.- -9 -0-0-N = 0 

The endogenous production of both NO. and superoxide anion in cells 
suggests the biological relevance of this reaction. This was confirmed by 
the observation of the release of peroxynitrite by both activated macro- 
phages (Ischiropoulos et al. 1992a) and neutrophils (Carreras et al. 1994) in 
vitro. In addition, 3-nitrotyrosine, the main reaction product of peroxyni- 
trite and tyrosine, was detected in vivo (Kaur and Halliwel11994; Salman- 
Tabcheh et al. 1995). Peroxynitrite exhibits bactericidal activities (Zhu et 
al. 1992) and is more toxic than NO. towards E. coli (Brunelli et al. 1995). 
The pKa of the peroxynitrite anion is around 6.8, which indicates that it 
would predominantly exist under its protonated form in cells. The half-life 
of peroxynitrous acid (HOONO), which is 7 s at o°C and t s at 37°C, should 
be long enough to allow the molecule to diffuse inside the cell and react 
with DNA. The decomposition pathway of HOONO, leading to the forma- 
tion of nitric acid, remains open to debate. Several experiments based on 
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model systems, including oxidation of ribose, formaldehyde, and di- 
methylsulfoxide (DMSO), suggested the formation of hydroxyl radicals 
(Beckman et al. 199o; Yang et al. 1992). However, thermodynamic consid- 
erations (Koppenol et al. 1992) and the absence of electron spin resonance 
signals corresponding to OH. during decomposition of peroxynitrous acid 
(Shi et al. 1994b) seem to rule out this possibility. Evidence is growing that 
an excited form of peroxynitrite exhibiting a trans configuration is the 
actual reactive species (Tsai et al. 1994; Squadrito et al. 1995). 

Peroxynitrite may react with biomolecules according to two main path- 
ways. A first possibility is the induction of oxidation reactions, as observed 
for small molecules, including methionine (Pryor et al. 1994), ot-tocopherol 
(Hogg et al. 1994), and oxyhemoglobin (Schmidt et al. 1994). The oxidative 
properties of peroxynitrite have also been observed with lipids (Radi et al. 
1991; Rubbo et al. 1994) and proteins (King et al. 1992). Studies using 
isolated DNA showed that peroxynitrite, like OH. radicals, induces oli- 
gonucleotide strand breaks (King et al. 1992; Salgo et al. 1995). This reaction 
can be catalyzed by manganese porphyrin (Groves and Maria 1995). As far 
as base modifications are concerned, we observed that purine nucleosides 
are oxidized with a product distribution similar to that observed after 
exposure to ionizing radiation in aerated aqueous solution. The main 
oxidation products of dAdo (34) and dGuo (4z) were 8-oxo-7,8-dihydro- 
~'-deoxyadenosine (40) and 2,2-diamino-4-[(2-deoxy-~-D-erythro-pento- 
furanosyl) amino]-5-(2H)-oxazotone (5o), respectively (Douki and Cadet 
1996). The yield of 8-oxo-7,8-dihydro-2'-deoxyguanosine (47) was very 
low. The formation of singlet oxygen through the reaction of peroxynitrite 
with hydrogen peroxide (Di Mascio et al. 1994) was confirmed in this study. 
The specific addition products of 102 to dGuo (42), the 4R* and 4S* dias- 
tereoisomers of 4-hydroxy-8-oxo-4,8-dihydro-2'-deoxyguanosine (68), 
were observed, albeit in very low yield, in samples treated with a mixture 
of HOONO and H202. The results obtained with nucleosides suggesting 
that peroxynitrite exhibit a reactivity similar to OH-, could not be extended 
to isolated DNA (Douki and Cadet 1996). Peroxynitrite induced the forma- 
tion of similar amount of 4o and 5o with very little 47 whereas the latter 
compound is the major OH.-mediated oxidation product of the guanine 
moeity of DNA. This shows that peroxynitrite does not damage DNA with 
a OH.-like reactivity. However, the actual reactive species remains to be 
identified in order to better assess the role of peroxynitrite in biochemical 
processes such as the oxidation of DNA in activated macrophages (de 
Rojas-Walker et al. 1995). 
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Other possible types of reaction of peroxynitrite with biomolecules 
include addition of nitrogen-containing groups. Nitration of phenylalan- 
ine and tyrosine have been reported (van der Vliet et al. 1994). The forma- 
tion of nitrotyrosine in the active site of superoxide dismutase was also 
observed upon peroxynitrite treatment (Ischiropoutos et al. 1992b). More- 
over, a series of nitrogen derivatives of fatty acids were suggested to be 
involved in the mechanism of action of peroxynitrite on lipids (Rubbo et 
al. 1994). Similar reactions can take place with DNA nucleobases. The main 
product of the reaction between guanine (42a) and peroxynitrite (Fig. 11) 
is 8-nitroguanine (72a) (Shigenaga et al. 1994; Yermilov et al. 1995a). The 
development of a sensitive HPLC-EC assay for 72a allowed its detection in 
isolated DNA exposed to peroxynitrite (Yermilov et al. 1995b). Peroxyni- 
trous acid was found to undergo an homolytic addition reaction on the 
purine ring of dGuo (42). The resulting adduct was characterized as 5-hy- 
droxy-4-nitrosoxy-4,5-dihydro-z'-deoxyguanosine (73) on the basis of its 
chemical properties and its UV, NMR, and mass spectroscopy features 
(Douki et al. 1996b). The development of an assay for the latter guanine 
derivative in DNA would be of interest to assess its biological relevance. 

In spite of these results showing the high reactivity of peroxynitrite 
towards DNA, evidence is still lacking for its presence in vivo and its 
involvement in NO. mutagenicity. Contradictory results can be found in 
the literature. For instance, in spite of the reported cytotoxicity ofperoxyni- 
trite, NO. has been shown to protect against the lethal effects ofsuperoxide 
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Fig. 1 I. Main products of the reaction of peroxynitrite with guanine (42a) and f-de- 
oxyguanosine (42): 8-nitroguanine (72a) and 5-hydroxy-4-nitosoxy-d,5-dihydro-2'-de- 
oxyguanosine (73) 
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anion generated by the xanthine-xanthine oxidase system (Wink et al. 
1993a). 

2.7.3 
Nitrogen Dioxide 

The mutagenicity of NOs. requires the presence of oxygen and is inhibited 
by antioxidants (Arroyo et al. 1992). The main product of the reaction of 
NO. with oxygen is nitrite with nitrogen dioxide (NO2) as intermediate 
(Lewis and Deen 1994). The latter compound might be one of the species 
involved in the mutagenicity of NO.. The mutagenic properties of NO2 have 
been widely studied (for a review, see Victorin 1994), mainly because of its 
implication in environmental pollution. NO2 is mutagenic in drosophilia 
(Inoue et al. 1981) and rats (Isomura et al. 1984). This was confirmed by in 
vitro studies in Salmonella typhimurium (Isomura et al. 1984). The possible 
involvement of NO2 in NO. mutagenicity is suggested by the observation 
that NO2 is more mutagenic in lung cells of rats than its precursor (Isomura 
et al. 1984) and more cytotoxic to Salmonella typhimurium (Arroyo et al. 
1992). As for NO., the biochemical mechanism of the mutagenicity of NO2 
is poorly understood. According to Wink et al. (1993b), it does not involve 
nitrosation. In addition to strand breaks (G6rsdorf et al. 199o), nitration 
might be another pathway, as observed with proteins (Kikugawa et al. 
1994). 

2.8 
Reactions Mediated by Lipid Hydroperoxides 
and Related Decomposition Products 

Lipid peroxidation is a major consequence of oxidative stress for cells. 
Reactive compounds are produced during this process and can diffuse 
through the cell and damage DNA. Lipid peroxidation is initiated by the 
formation of lipid radicals, which are converted into peroxyl radicals in the 
propagation phase. In the termination phase, oxidized lipids give rise to 
chemically stable compounds, including alkanes, alkenes, and carbonyl 
derivatives (Vaca et al. 1988). A first possible source of mutagens includes 
the lipid peroxyl radicals, which might diffuse into the nucleus and reach 
DNA. In addition, emphasis has been placed in recent years on the mu- 
tagenic properties of the final products of lipid peroxidation (Marnett et 
al. 1985; Esterbauer et al. 1991; Eckl et al. 1993), mainly malondialdehyde 
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Fig. 12. Structure of the breakdown products of lipid peroxidation that are able to 
react with DNA bases: malondialdehyde (74), 4-hydroxynonenal (75), 4-hydroxy- 
hexenal (76), and 1,N 2 and 3,4-epoxy-4-hydroxynonanal (77) 

(74) and 4-hydroxynonenal (75) (Fig. 12). The ability of the two latter 
reactive aldehydes to form exocyclic adducts to nucleobases within DNA 
will be extensively discussed, together with the possibility of induction of 
DNA-protein cross-links. 

2.8.1 
Direct Effect of Lipid Radicals 

The diffusion of the radicals produced during the two first phases of lipid 
peroxidation inside the cell may be considered as a possible cause of DNA 
modification. Model experiments have shown that peroxidized lipids are 
able to induce oligonucleotide strand breaks in isolated DNA (Morita et al. 
1983; Inouye 1984; Nakayama et al. 1986). Only few data on the biological 
relevance of this process are available. It has been recently shown that DNA 
extracted from organs of rats treated with lipid hydroperoxides exhibited 
a high level of damage identified as malondialdehyde adducts (see below; 
Wang and Liehr 1995a). However, the formation of such compounds does 
not provide support for direct oxidation of DNA by lipid hydroperoxides. 
It is likely that lipid radicals and peroxyl derivatives are too reactive and 
exhibit too short a half-life to reach DNA. 
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2.8.2 Malondialdehyde Pyrimidopurine Adduct 

Malondialdehyde 74 is an highly reactive molecule, mainly toward nucleo- 
philic groups. In this respect, amino groups of cytosine (17a), adenine, (34a) 
and guanine (42a) are major sites of addition reactions in DNA. The 
adducts of bases or nucleosides with one or two malondialdehyde mole- 
cules have been isolated and characterized (Seto et al. 1983; Basu et al. 1988; 
Stone et al. 199oa,b). 2'-Deoxyguanosine (42), the most reactive nucleoside, 
is converted into an exocyclic pyrimido purine derivative (78) (Fig. 13). The 
formation of this compound in biological samples has been a matter of 
controversy. Hadley and Draper (199o) first reported the isolation of 78a 
in urine by using a technique based on the quantitation of 74 after acidic 
hydrolysis of the HPLC fraction corresponding to the retention time of the 
adduct. The detection method was based on the use of the nonspecific 
thiobarbituric assay, and thus the obtained results may be largely due to 
artifacts. Using an online version of the latter assay, Seto and Ohkubo (1991) 
were able to detect the presence of the guanosine derivative of 78 in urine. 
Measurement of 78 in DNA extracted from tissues has also been a matter 
of debate. Taking advantage of the fluorescence of 78, it was suggested that 
the latter adduct is generated in sevenfold higher yield than 8-oxo-7,8-di- 
hydro-2'-deoxyguanosine (47) in liver DNA of rats (Agarwal and Draper 
1992). More recently, it was reported that 78 accumulates in rat liver DNA 
with age (Draper et al. 1995). However, the amounts of 78 found in rat liver 
DNA in the latter studies are much higher that those determined by Marnett 
and coworkers, who have developed several accurate assays. The detection 
limit of assays for 78a involving the coupling of HPLC to either electro- 
chemical detection (Goda and Marnett 1991) or mass spectrometry through 
a thermospray interface (Jajoo et al. 1992) was too high to allow the 
detection of the product in biological samples. 

Adduct 78a was finally detected in human liver using gas chromatogra- 
phy coupled to mass spectrometry with electron capture detection (Chaud- 
hary et al. 1994). The steady-state level is very low, ranging from five to 11 
adducts per lO 7 bases in human liver DNA. 32p-postlabeling has also been 
used for the detection of 78 in mice (Vaca et al. 1992) and human tissues 
(Vaca et al. 1995). The values obtained in the latter study for human white 
blood cells and breast tissue DNA are in the range of two to three adducts 
per 1o z nucleotides (Vaca et al. 1995), in agreement with the GC-MS data of 
human liver studies (Chaudhary et al. 1994). 32p-postlabeling also allowed 
the observation of 78 in rodents kidney and liver DNA (Wang and Liehr 
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1995a,b) The presence of 78 in cellular DNA is of importance, since experi- 
ments using plasmid treated with malondialdehyde prior to their transfec- 
tion in E. coli are replicated with a high mutation rate, indicating a likely 
high mutagenicity of the malondialdehyde adducts (Benamira et al. 1995). 

2.8.3 
1,/V2-Propano Adducts of a,13-Unsaturated Aldehydes 

Among the unsaturated aldehydes produced during lipid peroxidation, 
4-hydroxynonenal 75 (Fig. 12) has been the most widely studied. It is 
produced by decomposition of 00-6 polyunsaturated acids, such as li- 
nolenic, linoleic, and arachnoid acids (Esterbauer et al. 1991). It has been 
identified as the major unsaturated aldehyde produced during lipid per- 
oxidation in rat hepatocytes, together with 4-hydroxy-2,6-dienal and 4-hy- 
droxyhexenal (76) which are produced in smaller amounts (Poli et al. 1985). 
75 is detected in most organs of rat in the nmol/g range (Orada et al. 1986; 
van Kuijk et al. 1986). Its concentration in human plasma has been reported 
to be between 0.28 and 0.68 nmol/g (Esterbauer et al. 1991). 75 has been 
found to be mutagenic in rodent cells (Cajelli et al. 1987) and is able to 
induce SOS response in Salmonella typhimurium (Benamira and Marnett 
1992). The exact molecular mechanism of the interaction between 75 and 
DNA is not clearly established, even though fragmentation and sister-chro- 
matid exchange have been observed in vitro in rodent cells (Brambilla et 
al. 1986). Incubation ofdGuo (Winter et al. 1986) and isolated DNA (Douki 
and Ames 1994) with 75 leads to the formation of 1,N2-propano exocyclic 
adducts to dGuo 19 (Fig. 13). Similar results are observed with 76. x,N 2- 
Propano adducts are involved in the mutagenicity of other unsaturated 
aldehydes, including the widely studied acrolein and crotonaldehyde 
(Chung et al. 1984, 1989; Foiles et al. 1989). Interestingly, the 1,N2-propano 
adducts of the two latter compounds have been detected in low amounts 
in the DNA extracted from human liver (Nath and Chung 1994). Only one 
attempt to detect 79a in DNA of biological samples has been reported 
(Douki and Ames 1994). DNA was extracted form rat liver and analyzed by 
HPLC coupled with electrochemical detection. No adducts were detected, 
probably because of a lack of sensitivity of the assay, which allowed the 
detection of one lesion per lO 5 guanine molecules. It is likely that the 
amount of unsaturated aldehydes reaching the nucleus is very low because 
of their high reactivity. In particular, these compounds have been shown 
to react efficiently with nucleophilic groups of protein (Uchida et al. 1994; 
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Fig. 13. Exocyclic adducts of reactive breakdown products of lipid peroxides with 
2'-deoxyribonucleosides: 1,N2-pyrimido-z'-deoxyguanosine (78), 1,N2-propano-2'-de - 
oxyguanosine derivative (79), N2,3-etheno-z'-deoxyguanosine (80) and 1,N6-etheno-2 '- 
deoxyadenosine (81) and 3,N4-etheno-2'-deoxycytidine (82) 

Toyokuni et al. 1994) and thiol-containing compounds such as glutathione 
(de Toranzo and Castro 1994). More sensitive techniques are needed to 
clearly establish the involvement of 79 in the mutagenesis mediated bylipid 
peroxidation. 

2.8.4 
Ethenobases 

Sodum and Chung (1988,1991) have reported the formation ofl,N2-etheno - 
2'-deoxyguanosine (8o) and x,N6-etheno-z'-deoxyadenosine (81) (Fig. 13) 
in samples of nucleosides and isolated DNA treated with z,3-epoxy-4-hy- 
droxynonana177 (Fig. 12), the epoxide derivative of 4-hydroxynonenal. 8o 
and 3,N4-etheno-2'-deoxycytidine (82) are also produced by treatment of 
the corresponding nucleosides and nucleotides by oxidized rat liver mi- 
crosomes and oxidized arachidonic acid (El Ghissassi et al. 1995). A sensi- 
tive 3Zp-postlabeling assay has been developed to detect ethenobases in 
living systems. A level of approximately one x,N6-ethenoadenine molecule 
per 1o s Ade and two 3,N4-ethenocytosine per lO 8 Cyt were measured in 
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human liver DNA (Nair et al. 1995). The question of the origin of these 
products remains open, since they are known to be produced by a variety 
of chemicals provided by sources other than lipid peroxidation (Kusmierek 
and Singer 1982; Leithauser et al. :990; Swenberg et al. 1992; Foiles et al. 
1993). For instance, 80 and 82 were detected in a much higher amounts in 
cirrhotic than in other human liver DNA (Nair et al. 1995). This may be 
explained by the presence of ethylcarbamate, a product known to generate 
ethenobases, in alcoholic drinks (Zimmerli and Schaltter 1991). In addition, 
ethenobases have been proposed to be involved in the mutagenicity of 
4-hydroxynonenal on the basis of the metabolic conversion of ethylenic 
compounds into epoxides by cytochrome P45o (Sodum and Chung 1991). 
The biological relevance of this pathway remains to be established since 
several studies have shown that 4-hydroxynonenals is mainly metabolized 
as glutathione adduct, 4-hydroxy-nonenoic acid and 1,4-dihydroxy- 
nonene (Esterbauer et al. 1985; ]~lin et al. 1985; Ullrich et al. 1994; Grune et 
al. 1994). The two latter products and 75 are also excreted in urine as 
mercapturic acid conjugates (Alary et al. 1995). Taken together, these 
observations indicate that the lipid peroxidation-mediated formation of 
ethenobases remains to be strictly established in vivo. 

2.8.5 
DNA-Protein Cross-links 

Both malondialdehyde 74 and 4-hydroxynonenal 75 are highly reactive 
compounds. The low level of the malondialdehyde adduct 78 detected 
within DNA and the lack of a similar lesion for 4-hydroxynonenal (79) 
indicate that these two unsaturated aldehydes react in a very low yield with 
nucleobases in vivo. One possible explanation is the difficulty for these 
molecules to reach the double DNA helix, which is protected by histones 
and other nuclear proteins. In that regard, the formation of DNA-protein 
cross-links is an interesting possibility to account for the mutagenicity of 
74 and 75, both exhibiting two reactive sites. As a matter of fact, malondial- 
dehyde has been reported to induce this type of lesions (Summer field and 
Tappe11984a,b). There is no equivalent data for 4-hydroxynonenal, but it 
has been shown that unsaturated aldehydes are very efficient for inducing 
DNA-protein cross-links (Kuykendall and Bogdanffy 1992). 
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Considerable efforts have been directed during the last decade toward the 
development of analytical methods for the detection of oxidized DNA 
bases. It should be remembered that the assays have to be highly sensitive, 
since they have to be able to detect at least one modification in Io 5 normal 
bases in a few micrograms of DNA. Two different general approaches have 
been developed. One involves the detection of the modified base in intact 
DNA using either immunological methods or specific repair enzymes 
(enzymatic incision at the site of the lesion leads to the formation of a strand 
break, which is subsequently quantitated by using various assays). The 
second approach requires quantitative hydrolysis of the DNA macromole- 
cule to monomeric units, which are then separated and measured quanti- 
tatively. DNA may be hydrolyzed either chemically (acid hydrolysis), lead- 
ing to the release of the free base, or enzymatically (using DNAse, exonu- 
cleases and phosphatase). In the latter case, nucleosides, nucleotides, or 
short oligonucleotides may be obtained. The separation of the monomer 
units is then achieved using HPLC, GC, and capillary electrophoresis. In 
the final step, DNA modifications are detected online using various sensi- 
tive methods including mass spectrometry, fluorescence, radioactivity, and 
amperometry. 

3.1 
Methods Using Whole DNA 

Various approaches have been used for the development of assays aimed 
at measuring oxidized nucleobases in either whole DNA or after hydrolysis 
of the latter polymer. 

3.1.1 
Immunological Assays 

Antibodies (Ab) have been widely used to detect DNA modifications in- 
duced by various chemical and physical agents. Two major immunological 
techniques, the radioimmunological assay (RIA) and the competitive en- 
zyme-linked immunosorbent assay (ELISA), have been established. Both 
methods may use either monoclonal or polyclonal antibodies. The RIA 
assay is based on the ability of the lesion contained into the sample to 
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inhibit the binding of the antigen (i.e., the modified base or nucleoside) to 
the antibodies. The ELISA method, which is more sensitive, was developed 
later. This technique requires the attachment of appropriate antigens (usu- 
ally a protein carrying the modified DNA base or nucleoside) to the wells 
of polyviny1 chloride microtiter plates, followed by incubation with either 
polyclonal or monoclonal antibodies. The recognition of the damage can 
be made either on intact DNA and/or after hydrolysis of the biopolymer, 
depending on the specificity of the antibodies. If the DNA sample contain- 
ing the modification to be detected is recognized by the antibodies, specific 
binding to the well would decline. A second antibody (with a covalently 
bound enzyme) that recognizes the primary antibody is used to determine 
the efficiency of binding of the first antibody, usually by the means of a 
colorimetric or fluorimetric reaction (the extent of the enzyme-mediated 
reaction is proportional to the amount of enzyme bound through the 
interaction of the secondary antibody to the primary antibody). Immu- 
nological assays have been applied to the measurement of several oxidized 
DNA bases. Initially, a RIA method was used to detect thymine glycol (12a) 
within DNA using a rabbit antiserum (West et al. 1982). Shortly thereafter, 
a monoclonal antibody was raised against lea (Leadon and Hanawalt 1983). 
More recently, monoclonal antibodies against 8-oxo-7,8-dihydroguanine 
(47a) became available (Park et al. 1992), and the ELISA method was used 
to monitor the formation of 47a (8-oxo-7,8-dihydroguanine) within DNA 
(Yin et al. 1995). The sensitivity of the assay was reported to be close to one 
modification per lo 6 DNA bases. In addition, a sensitive, noncompetitive 
solid-phase immunoassay was developed for the quantitation of 8-oxo-7,8- 
dihydroguanine (47a) (Musarrat and Wani 1994). The latter method, 
named immunoslot blot (ISB), is based on the ability for the monoclonal 
antibody to bind DNA immobilized on filters, the binding capacity being 
proportional to the amount of DNA modifications recognised by the anti- 
body. It should be noted that antibodies can also be used to prepurify 
oxidized bases or nucleosides from either DNA constituents or biological 
fluid by immunoaffinity chromatography. The first step involves binding 
of the antibody to a Sepharose gel. The affinity of the antibody is then used 
to selectively retain oxidized bases and nucleosides such as 47a and 47 from 
complex mixtures (Degan et al. 1991). 
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The recognition of oxidative DNA damage by purified repair endonu- 
cleases is exploited to quantify various types of modifications (Allan and 
Garner 1994). The repair endonucleases, such as the Fpg protein (Boiteux 
et al. 1992) and the endonuctease III (Dizdaroglu et al. 1993), incise DNA at 
the site of the modification, generating either a strand break or an alkali- 
labile site. The breaks are then detected using sensitive methods including 
the alkaline elution assay for nuclear DNA and the relaxation assay for 
circular DNA. In addition, the number of frank strand breaks which may 
be directly generated by the damaging agent is determined in the absence 
of DNA repair enzymes. The sensitivity of the assay is close to one modifi- 
cation per lO 7 DNA bases. It should be added that single strand breaks and 
several types of base modifications may be determined in parallel (Epe et 
al. 1993; Epe 1995). However, the assay may suffer from a lack of specificity. 
The major limitation is due to the relatively broad, and sometimes not 
completely established, substrate specificity of the repair enzymes. On the 
other hand, the assay allows the determination of DNA damage profiles, 
which are likely to provide important information on the mechanism of 
action of the damaging agent. For example, the effect of UV light in LlzlO 
mouse leukemia cells was found to arise largely from the reaction of DNA 
with singlet oxygen. This was inferred from the observation that the profile 
of single strand breaks induced by different repair endonucleases (e.g., Fpg 
protein, endonuclease III) was similar to that obtained after singlet oxy- 
gen-mediated DNA oxidation (Pflaum et al. 1994; Epe 1995). 

3.2 
Assays Requiring DNA Hydrolysis 

This approach requires the quantitative hydrolysis of DNA prior to the 
detection of the modified DNA bases. Hydrolysis can be performed enzy- 
matically (using nucleases and phosphatases) that release the nucleosides. 
A second approach involving acidic hydrolysis (chlorhydric and formic 
acids, fluorhydric acid stabilized in pyridine) leads to the release of the 
corresponding free bases (T6oule et al. 1977; Polverelli et al. 199o; Cadet and 
Weinfeld 1993; l~renkel and Klein 1993). The compound of interest then has 
to be separated from the largely unmodified nucleosides or nucleobases. 
Separation may be achieved using different analytical methods, including 
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HPLC, GC, and capillary electrophoresis. The separated lesions are then 
detected online by more or less specific methods such as radioactivity, 
fluorescence, amperometry, and mass spectrometry. Some of the measure- 
ments requires prederivatization, biochemical postlabeling, or postco- 
lumn reaction of the sample (Cadet and Weinfeld 1993). 

3.2.1 
DNA Isolation and Hydrolysis 

In the first step of the assay, DNA has to be extracted, isolated, and then 
hydrolyzed. The methods used for this purpose have to minimize artifac- 
tual DNA oxidation during the workup (for reviews, see Frenkel and Klein 
1993; Cadet and Weinfeld :993). For example, DNA isolation using phe- 
nol/chloroform extraction has been shown to induce significant oxidation 
of guanine (42a) to 8-oxo-7,8-dihydroguanine (47a) (Claycamp 1992; Floyd 
et al. 199o). However, other authors (Harris et al. 1994) have reported that 
DNA extracted from biological samples with freshly distiUated phenol did 
not give rise to higher levels of 47a by comparison with other methods. 
Further efforts need to be made to determine the biological content of 
oxidized bases in pro- and eukaryotic cells. It should be noted that the 
different available methods to isolate and hydrolyze DNA have not been 
validated using DNA known to contain a small amount of oxidized bases, 
since such a modified DNA is not available. One possibility to obtain 
further information on the accuracy of DNA extraction methods involves 
a direct comparison of the techniques using identical biological samples. 

3.2.2 
Fluorescent and Radioactive Detection Assays 

The formation ofs-hydroxymethyl-2'-deoxyuridine (15) in DNA following 
exposure to y-irradiation has been monitored by an assay involving HPLC 
separation and a detector of radioactivity (Frenkel et al. 1985). The method 
required radioactive prelabeling of the thymine bases in DNA. However, 
this approach is not suitable for the determination of oxidized DNA bases 
due to the occurrence of setf-radiolysis associated with the use of 3H- and 
:4C-radiolabeled bases (for a review, see Cadet and Berger 1985). Thus 
postlabeling of the sample to be analyzed is an appropriate alternative when 
radioactivity is used for the detection of the DNA damage (for a review, see 
Cadet et al. 1992). A highly sensitive postlabeling assay based on the 
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incorporation of 32p into nucleotide was initially devised by Randerath et 
al. (1981) to measure carcinogen-DNA adducts. More recently, the method 
has been extended to the measurement of several types of oxidized base 
damage to DNA (for reviews, see Cadet et al. 1992; Cadet and Weinfeld 
1993). Typically, oxidized DNA is first digested to nucleoside 3'-monophos- 
phates or dinucleoside monophosphates, which are subsequently radiola- 
beled enzymatically using a polynucleotide kinase and [32p]adenosine 
triphosphate ([32p]ATP) as a source of radiolabeled phosphate. A variety 
of techniques such as HPLC or two-dimensional thin-layer chromatogra- 
phy (TLC) are then used to separate the radiolabeled product. This assay 
is very sensitive, since [32p]ATP is commercially available with a highly 
specific activity (about 3ooo Ci/mmol). 

The strategy that has been developed for the measurement of oxidized 
DNA bases by either a2p-postlabeling requires prepurification or enrich- 
ment of the targeted compound prior to enzymatic labeling. One of the 
reasons for this is to prevent the formation of radioactive background due 
to self-radiolysis from normal nucleoside 3'-monophosphates. It should be 
added that the removal of the largely normal nucleotides facilitates the 
phosphorylation of oxidized DNA substrates. For this purpose, three ap- 
proaches were used. The first one involves chromatographic enrichment 
of the 3'-phosphate ester of 2'-deoxyadenosine N-l-oxide (66) (Mouret et 
al. 199o, 1991b), 5-(hydroxymethyl)-2'-deoxy~uridine (15) and the cis dias- 
tereoisomers of 5,6-dihydroxy-5,6-dihydrothymidine (12) (Weinfeld and 
Soderlind 1991) prior to labeling. A second possibility, which was employed 
for the measurement of 8-oxo-7,8-dihydro-2'-deoxyguanosine (47) is 
based on the higher stability of the N-glydosidic bond of the related 
3'-nucleotide with respect to that of 2"-deoxyguanosine 3-monophosphate 
(3'-dGMP) (Lutgerink et al. 1992). The third method is based on the resis- 
tance of formylamine nucleoside (11) to the exonuclease activity ofnuclease 
P1 (Maccubbin et al. 1992b). The latter damage is released as dinucleoside 
monophosphates, whereas the bulk of the normal and oxidized nucleosides 
is converted into nucleosides which are not substrates for the polynu- 
cleotide kinases. 

Chemical derivatization was also used for the detection of modified 
DNA nucleosides through the esterification of the alcoholic functions of 
the bases and the sugar moieties with radioactive acetic anhydride (Frenkel 
et al. 1991). The assay has been applied to the measurement of 8-oxo-7,8- 
dihydro-2'-deoxyguanosine (47), 5-(hydroxymethyl)-2'-deoxyuridine (15) 
and the cis diastereoisomers of 5,6-dihydroxy-5,6-dihydrothymidine (12). 
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Fluorophore labeling of2'-deoxyribonucleoside monophosphates was also 
considered (Sharma et al. 199ob). After enzymatic digestion of DNA to 
nucleotides, the compound of interest is converted into a fluorescent 
derivative through the formation of a phosphoramidate (Sharma et al. 
199oa). The limit of detection is close to one modification per lO 6 DNA 
bases using about 1oo lag DNA, which makes the assay difficult to use for 
biological applications. 

3.2.3 
Other Chromatographic Methods 

HPLC separation associated with amperometric detection (HPLC-EC) rep- 
resents a sensitive and quantitative method for measuring several oxidized 
bases and nucleosides. The assay is widely used for the quantitative deter- 
mination of 8-oxodGuo (47) in DNA samples. Initially reported by Floyd 
et al. (1986) using an amperometric detection, the method has been con- 
tinually improved (Adachi et al. 1995) and extended to other oxidized DNA 
components that exhibit low oxidation potentials. These include 8-oxo-7,8- 
dihydroadenine (4oa) and their nucleosides (Berger et al. :990) together 
with 5-hydroxyuracil, 5-hydroxycytosine (26a) and the related nucleosides 
(Wagner et al. 1992). It may be added that formamidopyrimidine deriva- 
tives of adenine (41a) and guanine (48a) are also electroactive compounds 
that can be detected by the HPLC-EC assay. The sensitivity of the method 
is close to one modification per 5 x lO 5 normal DNA bases. However, the 
assay requires at least 25 pg DNA to accurately quantify DNA modifications 
in cellular DNA (Douki et al. 1996b). 

The measurement ofthymidine hydroperoxides may be also carried out 
in a specific way. This is achieved by a postcolumn reaction since the 
hydroperoxides are able to oxidize the ferrous sulphate xylenol orange 
reagent, allowing a colorimetric detection with a sensitivity in the picomole 
range. An example of the application of the assay is the separation and 
detection of the five hydroperoxides of thymidine induced by menadione 
photooxidation (Wagner et al. 1994). However, the method is not enough 
sensitive to be used for monitoring the formation of thymidine hydroper- 
oxides in cellular DNA. For this purpose, better alternatives would involve 
either postcolumn chemiluminescence (Zhang et al. 1995) or electrochemi- 
cal detection in the reduction mode (Korytowski et al. 1995). 

During the last decade, a major development among the methods aimed 
at measuring oxidized DNA bases occurred by the association of mass 
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spectrometry used as a detector with chromatographic separation me- 
thods. The high resolutive capabilities of GC were coupled with accurate 
mass spectrometry using either electron ionization (EI) (GC/SIM) or elec- 
tron capture negative ion (ECNI). Both methods require derivatization of 
the oxidized bases and nucleosides which are not enough volatile to be 
analyzed directly. In the original approach described by Dizdaroglu (1984), 
the bulk of the nucleobases (obtained after formic acid hydrolysis of DNA) 
were converted into the corresponding trimethylsilyl derivatives. The de- 
tection was achieved online by electron impact. The sensitivity of the 
GC-MS assay in the selected ion monitoring mode (SIM) (Dizdaroglu 1985, 
1991) is close to that obtained with HPLC-EC. In addition, it was recently 
shown that the limit of detection of tert-butyldimethylsilyl derivatives of 
modified nucleobases, such as 5-(hydroxymethyl)-uracil (15a), 5-formylu- 
racil (16a), 5-hydroxycytosine (26a) and 5-hydroxyuracil is about fourfold 
lower than that of the corresponding trimethylsilylated compounds (Faure 
et al. 1993; Incardona et al. 1995). The other approach using GC/ECNI 
involves offline alkylation of oxidized nucleosides to their highly electro- 
phoric pentafluorobenzyl derivatives after initial isolation by either HPLC 
or solid-phase extraction (Teixeira et al. 1993, 1995). The use of this proce- 
dure allows an efficient and sensitive measurement of 8-oxo-7,8-dihydro- 
2'-deoxyguanosine (47) and 5-(hydroxymethyl)-2'-deoxyuridine (15) at the 
femtomole level. 

Mass spectrometry has been also used online with HPLC separation 
methods. Thermospray MS associated with reversed-phase HPLC has been 
applied to the analysis of radiation-induced thymine and thymidine de- 
composition products. These include, in particular, 5-hydroxy-5,6-dihy- 
drothymine, the cis isomer ofs,6-dihydroxy-5,6-dihydrothymine (12a) and 
the related 2'-deoxyribonucleosides (Berger et al. 1992). The sensitivity of 
the detection is, at best (for 5-hydroxy-5,6-dihydrothymine), of the order 
of one modification per lO 5 DNA bases in a sample size of 2o lag DNA. 
HPLC-MS detection assays were also used to measure OH.-mediated de- 
composition products of adenine nucleosides, including 8-oxo-7,8-dihy- 
droadenosine (4oa) and 8,5'-cycloadenosine (Alexander et al. 1987). This 
was achieved by utilizing HPLC/tandem mass spectrometry with an atmos- 
pheric pressure chemical ionization (APCI) source. Similar approaches 
were used to monitor the formation of oxidized guanine compounds, 
including 8-oxo-7,8-dihydroguanine (47a) (Hayakawa et al. 1991) and gua- 
nine-malondialdehyde (MDA) adducts (Jajoo et al. 1992). Further devel- 
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opment is expected in the field with the availability of electrospray as a 
versatile ionization source. 

Mass spectrometric detection provides accurate structural information 
on base and nucleoside damage. In addition, this method allows precise 
quantitative measurement when isotopically labeled compounds are used 
as internal standards. Thus isotopically labeled oxidized DNA bases and 
nucleosides were synthesized (Stadler et al. 1994; Incardona et al. 1995; 
Scheller et al. 1995) and used for isotope dilution mass spectrometry 
analysis (Dizdaroglu :993; Faure et al. 1993; Hamberg and Zhang 1995; 
Teixeira et al. 1995). 

4 
Oxidative Base Damage to DNA in Cells and Organisms 

4.1 
Cellular DNA Damage: Comparison of the Available Data 

The bulk of the available information on the formation of oxidative base 
damage to cellular DNA has mostly been obtained by using GC-MS and 
HPLC-EC assays. However, comparison of the available data on the levels 
of oxidative base damage in cellular DNA reveals striking differences 
depending largely on the method which was used for the measurement. The 
best examples of these conflicting results are provided by the results 
concerning the yields of 8-oxo-7,8-dihydroguanine (47a) and its related 
2'-deoxyribonucleoside 47 in DNA exposed to similar conditions of oxida- 
tive stress (for a review, see Halliwell and Dizdaroglu 1992). The values 
obtained by the GC-MS assay are generally one order of magnitude higher 
than those determined by the HPLC-EC detection method. For example, 
the background level of 8-oxoGua (47a) in commercial calf thymus DNA 
as determined by HPLC-EC detection was reported to range between eight 
and 70 modifications per 1o 6 DNA bases. On the other hand, 159-318 
8-oxoGua (47a) residues per lO 6 DNA bases were measured by using the 
GC-MS technique (Halliwell and Dizdaroglu :992). The observed discrep- 
ancies may, in part, be attributed to the DNA hydrolysis method used. 
Enzymatic digestion is generally used for the HPLC-EC assays, whereas 
acid hydrolysis is preferred for the GC-MS method (Floyd et al. 199o). It 
was suggested that the GC-MS assay may lead to some overestimation of 
the results, whereas the HPLC-EC measurement provides underestimated 
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data, as remarked in a recent review article (Halliwell and Dizdaroglu 1992). 
Relevant information was recently obtained from a direct comparison of 
the results obtained for the measurement of 8-oxo-7,8-dihydroguanine 
(47a) by the GC-MS and HPLC-EC assays using identical hydrolysis condi- 
tions (Ravanat et al. 1995). It was found that the derivatization reaction used 
prior to the GC-MS analysis induces an artifactual oxidation of guanine 
(42a) that generates significant amount of 47a. These observations were 
independently confirmed by Hamberg and Zhang (1995), who showed that 
the temperature used for the trimethylsilylation of the DNA samples was 
critical for promoting oxidation of guanine. A method for the derivatiza- 
tion of DNA samples that minimizes the artifactual formation of 47a has 
been developed (Hamberg and Zhang 1995). Another possibility to prevent 
the formation of artifactual background of 47a from the large amount of 
guanine present in the bulk ofDNA hydrolysate is to prepurify 8(8-oxo6- 
a)oxoGua (47a) initially produced. This may be achieved either by immu- 
noaffinity chromatography or HPLC prior to derivatization. Under these 
conditions, the yields of 47a obtained by either GC-MS analysis or HPLC- 
EC measurement are similar (Ravanat et al. 1995). The artifactual formation 
of 47a during GC-MS workup may explain conflicting conclusions drawn 
from results obtained using the two latter methods. Thus Nagashima et al. 
(1995) have recently shown by HPLC-EC analysis that the levels of 8- 
oxoGua (47a) in breast cancer cells are not different from those in sur- 
rounding normal tissues, as inferred from HPLC-EC analysis. In addition, 
the values are about ten times lower than those obtained by CG-MS meas- 
urement (Malins and Haimanot 1991). 

Interestingly, it was recently shown that not only guanine (42a) may be 
oxidized during derivatization. This also applies to thymine (la), cytosine 
(17a) and adenine (34a) which undergo partial oxidation during trimethyl- 
silylation (Douki et al. 1996b). In particular, 5-formyluracil (16a) and 
5-(hydroxymethyl)-uracil (15a) were found to be generated in significant 
yields during the derivatization of thymine (la). In addition, derivatization 
of 17 and 34 gives rise to 5-hydroxycytosine (26a) and 8-oxo-7,8-dihy- 
droadenine (4oa) respectively (Douki et al. 1996b). This probably explains 
why the steady-state level of 5-hydroxycytosine (26a) and 5-hydroxyuracil, 
as determined by Wagner et al. (1992) using a HPLC-EC assay, is eightfold 
lower than that obtained by GC-MS (Aruoma et al. 1991). From these 
observations, it is clear that the previous data obtained by CG-MS analysis 
have to be considered with caution. Work is in progress in our laboratory 
aimed at determining the level of electroactive oxidized bases such as 
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8-oxo-7,8-dihydroadenine (4oa), 5-hydroxycytosine (26a), 5-hydroxy- 
uracil, and formamidopyrimidines by using both the HPLC-EC method 
and the improved CG-MS assay. 

Comparison of the values of 8-oxo-7,8-dihydroguanine (47a) obtained 
by HPLC-EC measurement are also partly inconsistent with other methods, 
including immunoassays and DNA repair method. Thus data inferred from 
immunoaffinity-monoclonal antibody-based ELISA and HPLC-EC assays 
correlated quite well. In contrast, the levels of 47a determined by ELISA are 
approximately sixfold higher than those obtained by HPLC-EC (Musarrat 
and Wani 1994; Yin et al. 1995). On the other hand, values as low as 5 x lO 7 
8-oxoGua (47a) per DNA base pairs were obtained for the control level of 
8-oxoGua (47a) from the assay involving the combined use of Fpg DNA 
repair protein (Boiteux 1993) and the alkaline elution technique (Pflaum et 
al. 1994). Further work is required to resolve these discrepencies. 

4.2 
Noninvasive Assays 

Another possibility to determine in vivo DNA oxidation is to measure 
oxidized bases and nucleosides in biological fluids (Pryor and Godber 
1991). When DNA is damaged, base-specific repair glycosylases may excise 
the oxidized base; which are then transported through the blood and 
excreted in urine. In addition, other enzymes excise DNA lesions as short 
oligonucleotides (Lin and Sancar 1989; Kow et al. 199o) that may be enzy- 
matically converted to nucteosides before excretion in urine. Therefore, the 
level of the modified bases and nucleosides might reflect the general 
"oxidative stress" status of individuals. Thus several authors have devel- 
oped analytical techniques to use the amount of oxidized bases and nucleo- 
sides in urine as biological markers of oxidative DNA damage (Shigenaga 
et al. 1989; Simic 1992). 

The analytical techniques that have been developed for this purpose 
involve the initial prepurification of the modified base from urine. The 
compounds of interest are then separated and detected using a sensitive 
assay. Thus the level of thymine glycol (x2a) and its corresponding nucleo- 
sides, 12 have been determined in human and rat urine (Cathcart et aI. 1984). 
It was found that both 12 and 12a were present in human and rat urine, and 
it was suggested that these modifications arise at least partly from repair 
of oxidatively damaged DNA. 8-Oxo-7,8-dihydro-f-deoxyguanosine (47) 
has been also detected in human urine (Shigenaga et al. 1989, 199o). 



Oxidative Damage to DNA: Formation, Measurement, and Biological Significance 55 

8-OxodGuo (47) was prepurified using a series of solid-phase extractions 
and analyzed by HPLC with electrochemical detection (Shigenaga et al. 
1989,199o). More recently, the same group has used monoclonal antibodies 
(Park et al. 1992) for the prepurification step. This allows the determination 
not only of the modified 2'-deoxyribonucleoside, but also of the free base 
and the related ribonucleoside. However, the HPLC-EC detection method 
associated with various prepurification techniques has so far been used for 
several interesting applications (Loft et al. 1995; Suzuki et al. 1995; Tagesson 
et al. 1995). Using both methods, changes in the level of urinary excreted 
8-oxoGua (47a) was observed. An increase was detected after exposure to 
reactive oxygen species (Suzuki et al. 1995). The level of 8-oxo-7,8-dihy- 
droguanine (47a) in the urine of smokers was found to be about two times 
higher than that of nonsmokers (Suzuki et al. 1995). In contrast, a decrease 
in 47a content was observed in the urine of humans who were fed with 
potential antioxidants such as Brussels sprouts (Verhagen et al. 1995). A 
method was also developed for the determination of 5-(hydroxymethyl)- 
uracil (15a) in human urine involving the use of HPLC for prepurification 
and GC-MS isotope dilution assay for quantification (Faure et al. 1993). It 
was shown that the yield oflsa increases in the urine of cancer patients who 
have received adriamycin (doxorubicin hydrochloride) treatment (Faure 
et al. 1996). 

However, there is still a pending question regarding the origin or origins 
of the oxidized bases and nucleosides in urine. As already mentioned, it is 
likely that the release of urinary oxidized bases and nucleosides involves, 
at least partly, DNA damage processes within cells. However, alternative 
sources, independent of DNA repair, cannot be ruled out. Thus the level of 
thymine glycol (12a) (Cathcart et al. 1984) and 8-oxo-7,8-dihydroguanine 
(47a) (Park et al. 1992) in urine of rat fed with a nucleic acid-free diet (only 
glucose and water) was found to be 40% and 9o% lower, respectively, than 
that of rat fed a normal diet. This is indicative of at least a partial dietary 
origin for 12a and 47a. In contrast, the level of the corresponding nucleo- 
sides is not affected by the diet. However, it should be remembered that the 
release of nucleosides is not mediated by the base excision-repair pathway, 
which is probably the most efficient repair mechanism for most of the 
oxidized nudeobases. As postulated recently, oxidized nucleosides might 
derive from degradation of DNA within dead cells. This involves nonspe- 
cific nucleases and phosphatases, whereas oxidation may occur during 
passage through the kidney (Lindah11993). It is clear that efforts have to be 
made to further validate the application of these noninvasive assays. In this 
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respect, it appears quite important to measure several types of oxidative 
base damage, including both the base and the nucleoside, under well-es- 
tablished conditions of oxidative stress. 

5 
Biological Significance of Oxidative Base Damage 

The determination of the biological role of oxidative DNA damage mainly 
requires indirect approaches that are largely based on the use of modified 
oligonucleotides. In addition, an important parameter deals with the as- 
sessment of the repair capacity of the DNA lesions, including the measure- 
ment of the specificity and the kinetics of excision of the oxidized bases, 
nucleotides, or sugar moieties (for recent reviews, see Boiteux 1993; Tchou 
and Grollmann 1995). In addition, the DNA repair machinery which copes 
with oxidative DNA damage is completed by the MutT protein (Maki and 
Sekiguchi 1992; Hayakawa et al. 1995). The latter specific repair protein has 
been shown to convert 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphos- 
phate into the corresponding nucleoside 5'-monophosphate, preventing 
misincorporation of the former nucleoside triphosphate into DNA from 
the nucleotide pool. 

5.1 
Synthesis of Modified Oligonucleotides 
and Conformational Studies 

At least three main approaches have been used to prepare site-specific 
modified oligonucleotides. The most usual method includes the chemical 
site-specific insertion of a modified nucleotide in a defined sequence of 
oligonucleotides. This requires the synthesis of the related synthon with 
the appropriate protecting groups, which have to be compatible with 
solid-phase oligonucleotide synthesis methods. However, in most cases 
mild conditions of deprotection are used in order to prevent decomposi- 
tion of the oxidized nucleotide during the deprotection steps, particurlarly 
those involving alkaline treatment. The chemical insertion of several oxi- 
dized nucleosides into DNA fragments has been achieved. These include 
8-oxo-7,8-dihydro-f-deoxyguanosine (47) (Kuchino et al. 1987; Bodepudi 
et al. 1991; Moryia et al. 1991; Shibutani et al. 1991; Tchou et al. 1991; Klein 
et al. 1992; Reddy et al. 1994), 8-oxo-7,8-dihydro-2'-deoxyadenosine (4o) 
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(Guy et al. 1988; Bodepudi et al. 1992; Shibutani et al. 1993), N-(2-deoxy-13- 
D-erythro-pentofuranosyl)formamide (11) (Guy et al. 1991; Shida et al. 1993, 
1994; Baillet and Behr 1995), the 5R* and 5S* diastereoisomers of 1-(2-de- 
oxy-f~-D-erythro-pentofuranosyl)-5-hydroxy-5-methylhydantoin (13) (Guy et 
al. 1993), 5-(hydroxymethyl)-2'-deoxyuridine (15) (Sowers and Beardsley 
1993), and 5-formyl-2'-deoxyuridine (16) (Ono et al. 1994; Berthod et al. 
1996). Interestingly, 3-(2-deoxy-13-D-erythro-pentofuranosyl)-pyrimido[1, 2- 
a] purin-lo(3H)-one (78), the main malondialdehyde adduct to 2'-deoxy- 
guanosine (42) has been site-specifically incorporated into oligonu- 
cleotides (Reddy and Marnett 1995) using 2-(acetoxymethyl) benzoyl pro- 
tecting groups. This has avoided the use of alkaline conditions during 
synthesis. In addition, 1,N2-propano-2'-deoxyguanosine, a more stable 
analogue of the latter adduct, has been inserted into short DNA fragments 
(Marinelli et al. 199o; Weisenseel et al. 1995) using the convential solid-state 
methodology. A second approach, which may represent an alternative to 
chemical methods for the insertion of unstable nucleotides into oligonu- 
cleotides, is based on the use of specific enzymes with appropriate sub- 
strates. RNA ligase was found to be able to insert 8-oxo-7,8-dihydro-2'-de- 
oxyguanosine (47) as its 3',5'-diposphate ester in short DNA fragments 
(Wood et al. 199o). More recently, a less time-consuming enzymatic 
method has been developed for the incorporation of several oxidized 
nucleosides as their 5'-triphosphate derivatives. Thus 5,6-dihydroxy-5,6- 
dihydrothymidine (12), 5-hydroxy-2'-deoxycytidine (26), 5-hydroxy-2'-de- 
oxyuridine, 8-oxo-7,8-dihydro-2'-deoxyadenosine (4o) and 8-oxo-7,8-di- 
hydro-2'-deoxyguanosine (47) have been successfully site-specifically in- 
corporated into short oligonucleotides (Hatahet et al. 1993) that were 
extented using the phage T4 DNA ligase (Hatahet et al. 1993). A third 
approach, which was mostly used for the introduction of the alkali-labile 
thymidine glycol, (12) was based on the specific oxidation of the unique 
thymine residue within the sequence of oligonucleotides by either osmium 
tetraoxide (Clark and Beardsley 1987; Basu et al. 1989) or potassium per- 
manganate (Kao et al. 1993). 

Relevant information on the conformational changes induced by the 
presence of a modified nucleoside within oligonucleotides has been in- 
ferred from detailed 1H NMR analysis. The DNA duplexes containing the 
cis diasteroisomers of 5,6-dihydroxy-5,6-dihydrothymidine (12) are close 
to the normal B structure with, however, a large localized conformational 
change in the vicinity of the lesion (Kao et al. 1993). In addition, the thermal 
stability of the duplex DNA was found to be significantly decreased. Only 
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significant structural changes were also observed at the site of 8-oxo-7,8- 
dihydro-z'-deoxyadenosine (4o) within duplex oligonucleotides (Guschl- 
bauer et al. 1991). The latter modified purine nucleoside was found to 
mostly exist in the 8-keto form with an anti orientation within the oligonu- 
cleotides. Similarly, only significant conformational changes were ob- 
served in the vicinity of 8-oxo=7,8-dihydro-2'-deoxyguanosine (47) in a 
self-complementary dodecanucleotide. In particular, 8-oxodGuo (47) was 
found to be base-paired to cytosine in a Watson-Crick hydrogen bond 
arrangement within a B-form structure (Oda et al. 1991 ). Similarly, 8- 
oxodGuo (47) forms a stable pair opposite dAdo (34) in a duplex DNA 
(Kouchakdjian et al. 1991). It was also shown that the oxidized purine 
nucleoside is mostly in a 6,8-diketo form with a preferential syn orientation 
in both types of duplexes. Further confirmation of the lack of sigificant 
changes in the overall conformation of duplex oligonucleotides containing 
8-oxodGuo (47) with different opposite bases was provided by a circular 
dichroism study (Plum et al. 1995). However, it was shown that the presence 
of 47 influences the thermal and thermodynamic features of the duplexes. 
5-(Hydroxymethyl)uracil (15a) may mispair with guanine (42a) through 
either a partly ionized Watson-Crick structure or a wobble base pair 
(Mellac et al. 1993). 

Interesting information on the conformational properties of modified 
oligonucleotides containing 8-oxopurine bases was inferred from several 
X-ray cristallography studies. In particular, similarity in the structure of 
8-oxo-7,8-dihydroguanine (47a)-adenine mispair was observed in aque- 
ous solution (Kouchadjian et al. 1991) and in the solid state (Brown et al. 
1993; McAuley-Hecht et al. 1994). In a recent X-ray study, it was shown that 
8-oxo-7,8-dihydroguanine (47a) forms a Watson-Crick base pair with op- 
posite cytosine (Lipscomb et al. 1995). However, in contrast to what was 
observed in the liquid phase, the oxidized guanine moiety exhibits a pref- 
erential anti orientation. It should be added that an unusual guanine 
(anti)-8-oxo-7,8-dihydroadenine (4oa) (syn) wobble conformation was 
noticed in the X-ray structure of a synthetic dodecamer (Leonard et al. 
1992). 

Restrained molecular dynamics studies based on the use of nuclear 
Overhauser effect data have provided complementary structural informa- 
tion on duplex DNA containing 5,6-dihydroxy-5,6-dihydrothymidine (12) 
(Kao et al 1993) and x,N2-propano-2'-deoxyguanosine (Weisenseel et al. 
1995). Forthcoming theoretical investigations of modified oligonucleotides 
should involve the combined utilization of molecular dynamics and ab 
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initio approaches. This should be the case for the cis diastereoisomers of 
5,6-dihydroxy-5,6-dihydrothymidine, (12) for which detailed conforma- 
tional features obtained from an ibitio calculations are now available 
(Jolibois et al. 1996). 

5.2 
DNA Replication and Mutagenesis 

Thymidine glycol 12 has been shown to be an efficient blocking lesion in 
several replication studies involving DNA polymerases (Ide et al 1985; Basu 
et al. 1989; Rouet and Essigmann 1985; Clark and Beardsley 1986,1987; Basu 
and Essigmann 1988; Evans et al. 1993). However, the latter lesion 12 may 
be bypassed in a peculiar sequence context such as 5'-cytosine-thymine 
glycol 12a-purine-3' (Hayes and Leclerc 1986). 5-(Hydroxymethyl)uracil 
(15a) does not appear to be strongly mutagenic, since replication investi- 
gations have shown that, in most cases, the correct adenine base is incor- 
porated opposite 15a (Mellac et al. 1993). Two main oxidized cytosine 
lesions, including 5-hydroxycytosine (26a) and 5-hydroxuracil, were found 
to be efficiently bypassed in in vitro DNA polymerase studies (Purmal et al. 
1994). However, both 5-hydroxycytosine (26a) and 5-hydroxyuracil may be 
considered as premutagenic lesions, as inferred from the observation of 
misincorporation of adenine opposite the lesions, depending on the se- 
quence context.This is particularly true for 5-hydroxyuracil. The incorpo- 
ration of guanine opposite 8-oxo-7,8-dihydroadenine (4oa) was found to 
occur with a very low efficiency on a short DNA template in the course of 
in vitro translesional synthesis (Shibutani et al. 1993). A lack of mutation 
was noticed upon transfection into E. coli cells of a single-strand phage 
DNA containing a single 8-oxo-7,8-dihydroadenine (4oa) residue. On the 
other hang  the presence of 8-oxo-7,8-dihydroguanine (47a) may lead to 
o.3% of G---~T transversions (Wood et al. 199o). The latter observation is in 
agreement with similar results obtained in plasmid replication studies 
using a single-strand gap (Moriya et al. 1991) and a double-stranded phage 
vector (Cheng et al. 1992). Similarly, 8-oxodGuo (47) to T targeted tranver- 
sions were also observed in mammalian cells with the oxidized guanine 
positioned at a unique site in episomal DNA (Moriya 1993; Le Page et al. 
1995). The extrachromosomal DNA used for the latter replication study 
consisted of a fragment of human Ha-ras bearing a single 47a that was 
subsequently inserted into the shuttle plasmid. These results are consistent 
with translesional studies which have shown that cytosine or adenine might 
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be incorporated opposite 8-oxodGuo (47) of the template (Shibutani et al. 
1991). 

Apurinic sites are likely mutagenic lesions, since preferential incorpo- 
ration of adenine opposite the damage was observed using synthetic DNA 
as the templates (Kunkel et al. 1983; Shager and Strauss 1983). It may be 
added that 3'-glycolate end, a major OH.-mediated oxidation product of 
the sugar moiety of DNA is a blocking lesion (Henner et al. 1983b). 

6 
Conclusions 

The present review illustrates the complexity of the oxidation reactions of 
DNA. Further efforts should be made to investigate in greater depth the 
formation of complex oxidative DNA lesions, including clustered base 
damage and DNA-protein cross-links. It is also clear that there is still a need 
for accurate and sensitive methods to detect oxidative damage within 
cellular DNA. Further developments should involve both molecular biol- 
ogy techniques such as the polymerase chain reaction (PCR) approach and 
highly resolutive analytical methods such as capillary electrophoresis. In 
particular, the association of the PCR technique with monoclonal antibod- 
ies against DNA damage should provide a much higher sensitivity than the 
currently available immunological assays. The capillary gel electrophoresis 
technique coupled with either fluorescence or mass spectrometry (Tseng 
et al. 1994; Norwood et al. 1993) offers interesting potential. In this respect 
the availability of electrospray mass spectrometers with an ion trap device 
is particularly relevant for both structural characterization of the damage 
and improvement in the sensitivity of detection. Another sensitive method 
for the measurement of oxidative DNA damage in single cells, the so-called 
comet assay, has already been used in interesting applications (Fairbairn 
et al. 1995; Ashby et al. 1995; Nocentini 1995). It should be added that 
noninvasive assays are particularly relevant for epidemiological studies. 
However, validation of the methods will require further investigation. 
Finally, there is still a considerable need for information on the biological 
role of oxidative DNA damage. 
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1 
Introduction 

The existence of enzymatic activities that cleave the nicotinamide-ribose 
bond in NAD + has been known for more than 5o years (Handler and Klein 
1942). This pathway was regarded as a catabolic route of NAD ÷, whose 
important role as a coenzyme in biological oxidation-reduction reactions 
was well recognized. However, the amount of energy required for the 
resynthesis of NAD + from ADP-ribose and nicotinamide questioned its 
continuous formation and degradation to be a reasonable physiological 
process. The discovery of ADP-ribosylation (Chambon et al. 1963) and the 
realization of its biological role has changed the view of the reaction 
catalyzed by NAD + glycohydrolases (NADases, EC 3.2.2.5 and 6). As com- 
pared to ADP-ribosyl transferases, NADases would transfer ADP-ribose 
onto water rather than protein, possibly forming a metabolite with biologi- 
cal function. It has been suggested that, as a subsequent reaction, free 
ADP-ribose could specifically modify proteins via a nonenzymatic mecha- 
nism (reviewed in Jacobson et al. 1994; Richter and Kass 1991 ). Another 
aspect of potential physiological significance ofNAD + glycohydrolases was 
realized following the demonstration that a cell differentiation marker, 
CD38, possesses NADase activity (Gelman et al. 1993; Howard et al. 1993; 
Kontani et al. 1993; Summerhill et al. 1993; Takasawa et al. 1993a; Zocchi et 
al. 1993). 

Recent studies have led to the discovery of cyclic ADP-ribose (Clapper 
et al. 1987; Lee et al. 1989), a potent intracellular Ca2+-mobilizing metabo- 
lite. Cyclic ADP-ribose (cADPR) is synthesized from NAD + by enzymes 
previously known as NAD ÷ glycohydrolases. Some ADP-ribosyl cyclases 
have been shown to be bifunctional in that they also catalyze the hydrolysis 
of cyclic ADP-ribose to ADP-ribose (H. Kim et al. 1993a; Howard et al. 1993; 
Takasawa et al. 1993a; Zocchi et al. 1993; Muller-Steffner et al. 1994). 
Therefore, recent developments in this field let appear NAD + glycohydro- 
lases to function as key regulators of intracellular calcium signalling. 
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2 
NAD + Glycohydrolases 

NAD + glycohydrolases catalyze the hydrolysis of the [3-N-glycosidic link- 
age between the nicotinamide and the ADP-ribose moieties of NAD ÷ 
(Fig. 1, reaction 1). For most eucaryotic enzymes the reaction mechanism 
appears to include a stabilized protein-ADP-ribose intermediate permit- 
ting a pyridine base exchange (transglycosidation). This feature of 
NADases has been utilized to synthesize several analogs ofNAD + contain- 
ing pyridine bases such as nicotinic acid or 3-acetyl pyridine (Kaplan and 
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Fig. 1. Proposed catalytic mechanism of NAD + glycohydrolases and cADP-ribosyl 
synthases/hydrolases. The reactions proceed via an oxocarbenium ion intermediate 
(center). The NAD ÷ glycohydrolase reaction (1), the cyclase reaction (2), and the cADPR 
hydrolase reaction (3) are indicated. The reversible reaction from NAD + to the oxocar- 
benium ion intermediate represents the transglycosidation reaction if another pyridine 
base (e.g., nicotinic acid) is present 
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Ciotti 1954; Zatman et al. 1954; Schuber et al. 1976; Anderson and Anderson 
1984). The ability of several of these enzymes to synthesize cyclic ADP-ri- 
bose will be discussed in the subsequent section. 

The occurrence, characteristics, and assays of NAD + glycohydrolases 
have been comprehensively reviewed by Price and Pekala (1987). Here, only 
some major aspects regarding the NAD + glycohydrolase reaction will be 
covered. 

2.1 
Occurrence 

NAD + glycohydrolases have been detected in a variety of species including 
procaryotes and eucaryotes. While all known NADases of procaryotic 
origin are soluble proteins (Price and Pekala 1987), the majority of these 
enzymes from mammalian tissues are membrane-bound. Naturally occur- 
ring soluble forms of mammalian NADases have been found only in bovine 
seminal fluid (Yuan and Anderson 1971) and bovine brain (Yamauchi and 
Tanuma 1994). The NADases of other nonmammalian eucaryotes, for 
example, Neurospora crassa or Bungarus fasciatus, are soluble proteins 
(Price and Pekala 1987). The NAD + glycohydrolase from Aplysia ca lifo rnica 
is soluble. However, this enzyme appears to function almost exclusively as 
ADP-ribosyl cyclase (Hellmich and Strumwasser 1991; Lee and Aarhus 
1991). 

Mammalian NADases have been isolated from a variety of tissues, for 
example, from erythrocytes (Pekala and Anderson 1978; Kim et al. 1993; 
Zocchi et al. 1993), spleen (Swislocki et al. 1967; Schuber and Travo 1976), 
liver (Swislocki et al. 1967; DiAugustine et al. 1978; Moser et al. 1983; J. Zhang 
et al. 1995), testes (Yuan and Anderson 1971), kidney and brain (Swislocki 
et al. 1967; Yamauchi and Tanuma 1994). The subcellular localization of 
many of these enzymes has so far not been conclusive. Enzyme activity has 
been detected in plasma membrane and microsomal fractions (Price and 
Pekala 1987). NADase activity appears also to be associated with mitochon- 
drial membranes (L6tscher et al. 198o; Hilz et al. 1984; Masmoudi and 
Mande11987; Ziegler et al. 1996a). The NADase activity of erythrocy-tes has 
been found on the outer surface of the plasma membrane (U.-H. Kim et al. 
1993; Lee et al. 1993a). 
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2.2 
Stru~ure 

M. Ziegler et al. 

Although NAD + glycohydrolases have been known for a long time, little 
information is available as to the primary structure of these enzymes. In 
fact, considering NADases from eucaryotes, cDNA and deduced amino 
acid sequences have been reported only for those from ApIysia (Glick et al. 
1991; Nata et al. 1995), as well as CD38 (Jackson and Bell 199o; Harada et al. 
1993; Koguma et al. 1994) and BST-1 (Kaisho et al. 1994; Dong et al. 1994; 
Itoh et al. 1994; Furuya et al. 1995) from human and rodent species. These 
enzymes have been of major interest due to their ability to form cyclic 
ADP-ribose. The RT6 T cell differentiation markers have also been shown 
to possess NADase activity (Takada et al. 1994; Haag et al. 1995). 

Several bacterial toxins exerting NADase activity have been reported. 
These toxins catalyze a monoADP-ribosyl transfer reaction leading to 
modification of highly specific target proteins in the host cell and the 
subsequent pathological response (Moss and Vaughan 1988). Their 
NADase activity occurs apparently only in the absence of the acceptor 
protein. 

The amino acid composition of NADases from rat liver microsomes 
(DiAugustine et al. 1978), bovine seminal fluid (Yuan et al. 1972), Neuro- 
spora crassa (Everse et al. 1975), Streptococcus pyogenes (Grushoff et al. 
1975), and Bacillus subtilis (Everse et al. 1975) has been compared (Price and 
Pekala 1987). It is striking that both the Neurospora and the Bacillus 
enzymes do not contain any cysteine or tryptophan residues. As will be 
discussed in a later section, cysteine residues appear to be essential for the 
metabolism of cyclic ADP-ribose by NAD + glycohydrolases. 

Estimates of molecular masses have been derived primarily from SDS- 
PAGE or gel filtration analyses. Since a number of NADases contain sig- 
nificant amounts of carbohydrates, these data may not be easily compared 
with respect to potential similarity. For example, the degree of glycosyla- 
tion was determined in the NADases from Bacillus subtilis and Neurospora 
crassa. In both cases the sugars contributed substantially to the dry weight, 
namely about 55% and about 80%, respectively (Everse and Kaplan 1968; 
Everse et al. 1975). In another report the carbohydrate content of the 
Neurospora enzyme was estimated to be about 20% (Menegus and Pace 
1981). The human CD38 migrated in SDS-PAGEs according to an apparent 
molecular mass of 46 ooo, while the calculated mass of the polypeptide 
chain amounts only to about 34 ooo (Jackson and Bell 199o). The esti- 
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mated molecular masses of some known NADases are summarized in 
Table 1. 

Some of the enzyme preparations from mammalian tissues have been 
obtained using crude pancreatic lipase (steapsin) for solubilization. As 
apparently both lipolytic as well as proteolytic activities are required for 
the solubilization by steapsin (Green and Bodansky 1965; Swislocki et al. 
1967; Bock et al. 1971; Schuber and Travo 1976), the original size of the 
membrane-bound form has remained unknown. In two instances the 
original size was compared to the steapsin-solubilized form. While the 
apparent molecular mass of the enzyme from calf spleen microsomes was 
reduced from about 3o ooo (Muller-Steffner et al. 1993) to about 24 ooo 
(Schuber and Travo 1976), the NADase isolated from bovine liver mito- 
chondria exhibited an apparent molecular mass of about 28 ooo after the 
steapsin treatment as compared to its original size of about 3o ooo (Ziegler 
et al. 1996a). Considering these variabilities, direct comparison of NADases 
from different sources regarding their size has only limited value unless 
molecular data is available. 

So far little is known about the tertiary and quaternary structure of 
NADases. The available evidence suggests that the active form of these 
enzymes consists of a single polypeptide chain. 

A number of NADases is sensitive to reducing agents such as dithiothre- 
itol (Cayama et al. 1973; Kontani et al. 1993; Zocchi et al. 1995; Ziegler et al. 
1996b ) suggesting the presence of an essential disulfide bridge. It is unlikely 
that such a disulfide bridge would link two subunits, because the mobility 
of these enzymes on SDS-PAGEs is virtually unaffected by reducing agents 
(Jackson and Bell 199o; Ziegler et al. 1996a). 

Models have been presented for the structure of CD38 (Malavasi et al. 
1994; Jacobson et al. 1995a) considering the mode of anchoring within the 
membrane and the presence of disulfide bridges in the extracetlular do- 
main. 

2.3 
Kinetic Properties 

Studies using either detergents or steapsin for solubilization of membrane- 
bound enzymes from calf spleen (Schuber and Travo 1976) or bovine liver 
(Ziegler et ol. 1996a) indicated that the steapsin treatment did not affect the 
catalytic properties. Therefore, values obtained from steapsin-solubilized 
enzymes are likely to represent those of the intact forms. Table 1lists kinetic 
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characteristics of some NADases. Both Km and Vmax values vary widely 
among these enzymes. Most mammalian NADases exhibit Km values 
around or below 1oo ~tM. In general, enzymes from lower organisms ex- 
hibit a significantly lower substrate affinity (Price and Pekala 1987). 

Product inhibition has been reported for most of the known mammalian 
NADases. While ADP-ribose inhibits competetively, the inhibition by ni- 
cotinamide is of the noncompetitive type. Only the enzyme from bovine 
erythrocytes has been detected to be competetively inhibited by nicoti- 
namide and noncompetetively by ADP-ribose (Pekala and Anderson 1978). 

NADases exhibit a high specificity towards the [5-configuration of 
NAD +. None of these enzymes would cleave c~-NAD +. NADP + serves as a 
substrate, but less efficiently. A number of analogs of NAD + have been 
utilized for the characterization of NADases. Of them the most valuable has 
been the fluorescent analog :,N6-etheno-NAD + (e-NAD+). The fluores- 
cence enhancement after separation of the quenching nicotinamide moiety 
from the modified fluorescent adenine (Barrio et al. 1972) has been widely 
used as a simple continous assay of NADase activity. The known NADases 
appear to tolerate modifications in the adenine as well as in the nicoti- 
namide moieties to varying extent (Price and Pekala 1987). 

The NADase from calf spleen microsomes is one of the most thoroughly 
studied mammalian NADases. It was recently found that this enzyme also 
catalyzes the hydrolysis of cyclic ADP-ribose (Muller-Steffner et al. 1994). 
Calf spleen NADase catalyzed the hydrolysis of a number of NAD + analogs 
(Schuber et al. 1978; 1979), as well as a transglycosidation reaction using 
3-acetylpyridine as pyridine base (Schuber et al. 1976). These properties 
were consistent with a kinetic mechanism best described by an ordered 
ping-pong bi-bi model. From the observation that the reaction products of 
the transglycosidation retained the configuration it was concluded that the 
reaction proceeded via an intermediary complex of the enzyme with ADP- 
ribose. The available evidence suggests this complex to be a stable, solvent- 
equilibrated oxocarbenium ion (Bull et al. 1978; Schuber et al. 1979; Tarnus 
et al. 1988; Oppenheimer 1994). Therefore, hydrolysis and transglycosida- 
tion may be regarded as competition between water and a pyridine base for 
this complex (Fig. 1). 
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3 
ADP-Ribosyl Cyclases (Cyclic ADP-Ribose Synthases) 

M. Ziegler et al. 

Only a decade ago it was discovered by Lee and coworkers (Clapper et al. 
1987) that a metabolite ofNAD + greatly stimulated the release of Ca 2+ from 
sea urchin egg microsomes. It was found that the pathway of Ca 2+ mobili- 
zation was independent but as potent as that ofinositol 1,4,5-trisphosphate 
(IP3). This metabolite was in subsequent studies shown to be a cyclic analog 
of ADP-ribose and, therefore, termed cyclic ADP-ribose. Since then it has 
received enormous attention and it is now beyond doubt that cyclic ADP- 
ribose represents a key regulator of the calcium homeostasis in a variety of 
cells. 

3.1 
Structure of Cyclic ADP-Ribose 

Structural studies of cyclic ADP-ribose have revealed an unprecedented 
form of nucleotide. Figure I presents the structure of this metabolite. The 
enzymatic synthesis of cyclic ADP-ribose includes the cleavage of the 
nicotinamide-ribose bond followed by the cyclization of the anomeric 
carbon of the ribose to the N 1 nitrogen of the adenine ring (Fig. 1, reaction 
2). This structure has been confirmed using several approaches including 
mass spectrometry (Lee et al. 1989), NMR (Lee et al. 1989; Wada et al. 1995), 
and UV-spectroscopy (H. Kim et al. 1993b). Subsequently, the crystal 
structure of cyclic ADP-ribose has been obtained demonstrating in addi- 
tion the retention of the [3-configuration (Lee et al. 1994a). This aspect has 
been established also using NMR techniques (]acobson et al. 1995b). 

As a consequence of the cyclization linkage to the N 1 atom, the adenine 
ring becomes positively charged at physiological pH (Fig. 1). The pKa of the 
protonated group is about 8.3 (Jacobson et al. 1995b). The question arises 
as to whether this feature may be of importance for the physiological 
function of cyclic ADP-ribose. Both circular dichroism and nuclear mag- 
netic resonance properties of cyclic ADP-ribose indicated a pH-dependent 
existence of at least two distinct conformations (Jacobson et al. 1995b). 
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3.2 
NAD + Glycohydrolases as ADP-Ribosyl Cyclases 
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The first enzyme shown to catalyze the formation of cyclic ADP-ribose 
from NAD + was isolated from ovotestis of the mollusc Aplysia californica 
(Hellmich and Strumwasser 1991; Lee and Aarhus 1991). At that time it was 
referred to as NAD + glycohydrolase, because it appeared to generate ADP- 
ribose and nicotinamide from NAD +. However, later on it was demon- 
strated that this enzyme functions virtually exclusively as ADP-ribosyl 
cyclase, forming cADPR, and did not appear to produce any free ADP-ri- 
bose (Lee and Aarhus 1991). In the mean time, a number of enzymes, 
previously known as NAD + glycohydrolases, have been demonstrated to 
possess cyclase activity (Table z). Recently, ADP-ribosyl cyclase activity has 
been reported for a procaryotic enzyme (Karasawa et al. 1995). Besides the 
Aplysia enzyme, an ectoenzyme of red blood cells and lymphocytes, CD38, 
has been extensively characterized in various mammals (Malavasi et al. 
1994; Lund et al. 1995). The NAD + glycohydrolase and ADP-ribosyl cyclase 
isolated from canine spleen (H. Kim et al. 1993a) would appear to be the 
canine homolog of CD38 (Jacobson et al. 1995a). The gene encoding the 
protein BST-1 has been cloned from a bone marrow stromal cell line 
(Kaisho et al. 1994). This protein is homologous to CD38 and the Aplysia 
enzyme and was shown to possess ADP-ribosyl cyclase activity (Hirata et 
al. 1994; Table 2). Other NADases capable of synthesizing cyclic ADP-ri- 
bose have been detected in brain from dog, chicken, and salamander as well 
as in sea urchin eggs (Lee 1994). The NADase isolated from bovine liver 
mitochondria did also exhibit cyclase activity (Ziegler et al. 1996b). 

It should be noted that some NAD + glycohydrolases do not appear to 
have the ability to produce cyclic ADP-ribose. For example, the NADase 
from Neurospora crassa did not catalyze the formation of the cyclic meta- 
bolite (Graeffet al. 1994b; Fig. 2). On the other hand, as pointed out above, 
the cyclase from Aplysia is apparently unable to catalyze a conventional 
NAD ÷ glycohydrolase reaction yielding ADP-ribose. In any case, formation 
of cyclic ADP-ribose would appear to be accomplished by a class of en- 
zymes that is related to NAD + glycohydrolases, since on a molecular basis 
the Aplysia enzyme is highly similar to CD38 (States et al. 1992), which is 
capable of catalyzing both reactions. 

ADP-ribosyl cyclase activity has been detected in a great variety of cells 
and tissues (Rusinko and Lee 1989). The occurrence of this type of enzyme 
in molluscs, snake venom, sea urchins, mammals, and other organisms 
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suggests that it is widespread and may serve a fundamental function, for 
example, in calcium signalling. 

However, the problem remains as to the function of "classical" 
NADases, that is, those that do not catalyze the cyclization of ADPR. 

3.3 
Structure and Properties of ADP-Ribosyl Cyclases 

The first cDNA of an ADP-ribosyl cyclase was cloned and sequenced by 
Glick et al. (1991) from the mollusc Aplysia californica. The deduced amino 
acid sequence showed no significant similarity to any known protein. Only 
following comparison to the human leukocyte marker CD38 (Jackson and 
Bell 199o) it was obvious that ADP-ribosyl cyclases may represent a protein 
family of their own (States et al. 1992). As mentioned before, several 
homologs of CD38 have been cloned and sequenced from other mammals. 

The molecular mass of the enzyme from Aplysia as calculated from the 
amino acid sequence amounts to about 30 ooo (Glick et al. 1991) which is 
in good agreement with its mobility on SDS-PAGE (Hellmich and Strum- 
wasser 1991; Lee and Aarhus 1991; Fig. 2). On the other hand, while the 
human CD38 has a calculated molecular mass of about 34 ooo, its mobility 
on SDS-PAGE corresponds to a molecular mass of about 46 ooo (Jackson 
and Bell 199o). It is likely that this apparent discrepancy is due to the 
carbohydrate content of this ectoenzyme. Its primary structure contains 
four potential glycosylation sites (Table 2). 

As opposed to the cytosolic ADP-ribosyl cyclase from Aplysia, CD38 is 
a typical type II membrane glycoprotein. It contains a short cytoplasmic 
domain and a single transmembrane helix. The majority of the peptide 
chain, including the catalytic site, is located at the external surface. This 
location of the catalytic center has raised the problem regarding the poten- 
tial role of CD38 in intracellular calcium signalling. The possibility is being 
discussed that this enzyme may exert its catalytic function within the cell 
following internalization by endocytosis. In such a case, at least a transient 
occurrence of an intracellular form of CD38, perhaps, even solubilized by 
specific cleavage from the membrane, should be found. 

A similar situation has to be considered for BST-1, a membrane-bound 
protein with structural and functional similarities to CD38 (Kaisho et al. 
1994). BST-1 appears, however, to be attached to the membrane via a GPI- 
anchor (Kaisho et al. 1994). 
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Table 2. Characteristics of ADP-ribosyl cyclases from Aptysia californica, human CD38, 
and human BST-1 

Aplysia Cyclase CD38 BSTq 

Mr, calculated 29 500 
Mr, SDS-PAGE 29 ooo 
Potential None 
glycosylation sites 
Amino acid identity 30% 
with CD38 
SubceUular localization Cytosol, granules 
Mode of anchoring - 
in the membrane 
Occurrence Ovotestis 

34 ooo 30 200 
46000 43000 
4 4 

1oo% 33% 

Cell surface Cell surface 
Transmembrane GPI 
protein 
Leukocytes, Bone marrow stromal 
erythrocytes, cells, pancreatic islet 
pancreatic islet cells, and others 
cells 

3.4 
Cyclic ADP-Ribose Hydrolase Activity 

Since cyclic ADP-ribose acts as a potent Ca2+-mobilizing agent, the require- 
ment for an efficient way of inactivation of this metabolite is obvious. 
Indeed, an enzymatic activity catalyzing the hydrolysis of cADPR to ADPR 
(Fig. 1, reaction 3) has been detected in a variety of animal tissues (Lee and 
Aarhus 1993). Surprisingly, only ADP-ribosyl cyclases have been shown to 
catalyze the reversal of the cyclization liberating free ADP-ribose (H. Kim 
et al. 1993a; Howard et al, 1993; Takasawa et al. 1993a; Zocchi et al. 1993; 
Muller-Steffner et al. 1994), which is biologically inactive. Therefore, regu- 
lation of the level of  cyclic ADP-ribose would lie exclusively with the 
ADP-ribosyl cyclases. However, the enzyme from Aplysia does not itself 
hydrolyze cyclic ADP-ribose (Lee and Aarhus 1991 ) raising the possibility 
of the existence of a separate hydrolase activity or even an alternative 
degradation pathway. In addition, if cyclic ADP-ribose were to be a second 
messenger, it would appear unlikely that its formation and degradation 
depended on an equilibrium maintained by  a single class of  enzymes. In 
this respect the possibility that ADP-ribosyl cyclase may be regulated via a 
cyclic GMP-dependent kinase receives further importance. It has been 
demonstrated that cGMP stimulated the formation of cyclic ADP-ribose in 
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sea urchin eggs (Galione et al. 1993a). In addition, the amino acid sequences 
of both CD38 and the cyclase from Aplysia contain potential phosphoryla- 
tion sites for cGMP-dependent kinase (Lee et al. 1994b). Therefore, the 
cyclase or hydrolase activity of these enzymes may be switched by phos- 
phorylation. However, so far no direct experimental evidence for such a 
regulation has been presented. 

3.5 
Reaction Mechanism of the Bifunctional ADP-Ribosyl Cyclase/ 
Cyclic ADP-Ribose Hydrolase Enzymes 

The possibility that ADP-ribosyl cyclases themselves may hydrolyze cyclic 
ADP-ribose to ADP-ribose was first demonstrated by Kim et al. (1993a) 
using an enzyme isolated from canine spleen as well as from Bungarus 
fasciatus. 

The NAD + glycohydrolase activity associated with ADP-ribosyl cyclases 
may possibly be ascribed to the sequential occurrence of synthesis (from 
NAD +) and hydrolysis of cyclic ADP-ribose. Assuming the existence of a 
stable enzyme-ADP-ribosyl intermediate, hydrolysis of NAD + could also 
be regarded as a competition of water with the N 1 atom of the adenine ring 
(acceptor in the cyclase reaction) for the anomeric carbon of the terminal 
ribose linked to the enzyme. Only the latter mechanism would appear to 
account for the different velocities observed for the NAD + glycohydrolase, 
ADP-ribosyl cyclase and cyclic ADP-ribose hydrolase activities: CD38 has 
been reported to possess these activities in a ratio of roughly lOO:1:1o 
(Zocchi et al. 1993). If the NADase activity were a result of two consecutive 
reactions, the rate at which added cyclic ADP-ribose is hydrolyzed should 
at least equal that ofNAD + hydrolysis. On the basis of kinetic studies using 
a calf spleen NADase, a reaction mechanism has been derived that includes 
an enzyme-stabilized ADP-ribosyl oxocarbenium ion intermediate that 
can be formed from either NAD + or cyclic ADP-ribose (Muller-Steffner et 
al. 1994). The proposed mechanism is depicted in Fig. 1. From this model, 
the formation of NAD ÷ from cyclic ADP-ribose and nicotinamide would 
also be predicted. In fact, this reaction was shown to take place (H. Kim et 
al. 1993a), whereas free ADP-ribose is unlikely to be a substrate for the 
generation of an oxocarbenium ion intermediate, as it lacks the energy 
conserved in the glycosidic bond. Under in vivo conditions, the availability 
of a certain substrate, for example, water or pyridine base, to the catalytic 
center may be regulated by conformational changes. Consequently, either 
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cyclase or hydrolase may be favored depending on the conditions. A 
possible way for such a mechanism would be cGMP-dependent (Galione et 
al. 1993a) or calmodulin-dependent (Takasawa et al. 1995) phosphoryla- 
tion. The successful crystallization of the enzyme from Aplysia (Prasad et 
al. 1996) will provide further insight into the catalytic mechanism of this 
class of enzymes. 

3.6 
Role of Cysteine Residues 

Analysis of the primary structures of the Aplysia ADP-ribosyl cyclases and 
CD38 from several mammals revealed, besides a high degree of overall 
similarity, the conservation of most of the cysteines. Two cycteines corre- 
sponding to Cl19 and C2ol of the human CD38 are present in all CD38 
sequences, but not in those from Aplysia californica or Aplysia kurodai 
ADP-ribosyl cyclases. Introduction of cysteines at the respective positions 
of the enzyme from Aplysia kurodai by site directed mutagenesis conferred 
cyclic ADP-ribose hydrolase activity to this enzyme (Tohgo et al. 1994). It 
was also shown that the presence of both cysteines was required for this 
activity. CD38 mutants in which these cysteines (either individually or 
together) were substituted with the corresponding amino acids of the 
Aplysia enzyme retained cyclase activity, but lacked cyclic ADP-ribose 
hydrolase activity (Tohgo et al. 1994). 

While the mammalian cyclases (CD38 and the enzyme isolated from 
bovine liver mitochondria) are highly sensitive towards reducing agents 
(Guida et al. 1995; Ziegler et al. 1996b), the Aplysia enzyme is not (Zocchi 
et al. 1995; Inageda et al. 1995). Treatment of CD38 with reducing agents 
(DTT or [3-mercaptoethanol) led to aggregation of the protein into an 
oligomeric complex (Franco et al. 1994; Zocchi et al. 1995). Moreover, 
aggregation and concomitant enzyme inactivation were prevented by 
crosslinking the enzyme to the erythrocyte membrane with glutaraldehyde 
prior to the addition of reducing agents (Guida et al. 1995). These observa- 
tions were interpreted to rule out any catalytic function ofcysteine residues 
suggesting only a structural role, namely to maintain a functionally active 
monomeric structure. Perhaps, this apparent contradiction to the mu- 
tagenesis experiments (Tohgo et al. 1994) will be resolved, when the cyste- 
ine residues involved in potential disulfide bridge(s) will be identified. It 
would be interesting to test, whether the mutated CD38 (Cl19 K/C2olE) 
having lost the hydrolase but retaining the cyclase activity is still sensitive 
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to reducing agents. Also, it has not been reported, whether the mutated 
Aplysia enzyme (K95C/E176C), gaining hydrolase activity, has also been 
rendered thiol-sensitive. 

3.7 
Synthesis of Other Pyridine Nucleotide Derivatives 
with Calcium-Mobilizing Activity by ADP-Ribosyl Cyclases 

According to a number of recent studies, the ability of most ADP-ribosyl 
cyclases to catalyze the hydrolysis of NAD ÷ to ADP-ribose, as well as the 
synthesis and hydrolysis of cyclic ADP-ribose does still not exhaust the 
repertoire of these enzymes. At least some of these enzymes are capable of 
utilizing analogs of NAD ÷ as substrates. For example, analogs containing 
a modified purine base, such as guanine or hypoxanthine, are used by the 
enzymes to form fluorescent cyclic nucleotides with the link between the 
ribose and the purine ring via the N 7 atom (see Sect. 5.3). 

Importantly, the ADP-ribosyl cyclase from Aplysia as well as CD38 have 
been found to be able to form a cyclic product from NADP ÷ (F.-]. Zhang et 
al. 1995; Vu et al. 1996). This product has been identified to be cyclic 
ADP-ribose-f-phosphate (2'-P-cADPR). Moreover, this metabolite has 
also been shown to represent a novel calcium-mobilizing agent. Addition 
of 2'-P-cADPR to brain microsomes resulted in a calcium release from 
stores that were apparently distinct from those activated by IP 3, but sensi- 
tive to cyclic ADP-ribose (Vu et al. 1996). 

In addition to z'-P-cADPR, another metabolite of NADP +, nicotinate 
adenine dinucleotide phosphate (NAADP+), has been demonstrated to 
exert calcium-mobilizing activity when added to sea urchin egg homogen- 
ates (Chini et al. 1995; Lee and Aarhus 1995) or when microinjected into 
intact cells (Perez-Terzic et al. 1995). It was found that this compound can 
be synthesized by ADP-ribosyl cyclases in the presence of NADP + and 
nicotinic acid (Chini and Dousa 1995; Aarhus et al. 1995). The reaction 
obviously resembles the transglycosidation described for NADases. As 
opposed to 2'-P-cADPR, NAADP + mobilizes calcium from intraceUular 
stores that are not directly activated by cyclic ADP-ribose or IP3 (Chini et 
al. 1995; Lee and Aarhus 1995). NAADP + would therefore represent a novel 
calcium-mobilizing agent involved in a hitherto unknown signalling 
mechanism. 
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4 
Calcium-Mobilizing Activity of Cyclic ADP-Ribose 

105 

As outlined before, cyclic ADP-ribose was actually discovered due to its 
ability to mobilize Ca 2+ from internal stores in sea urchin eggs (Clapper et 
al. 1987). This experimental system has a number of advantages for study- 
ing the regulation of the intracellular Ca 2+ level (Lee et al. 1994b). In recent 
years the potential of cADPR to raise the intracellular Ca 2+ concentration 
has been established in a number of other systems, including pituitary cells 
(Koshiyama et al. 1991), rat dorsal root ganglion cells (Currie et al. 199z), 
brain (M~sz~iros et al. 1993; Takasawa et al. 1993b; White et al. 1993), bullfrog 
sympathetic neurons (Hua et al. 1994), T cells (Guse et al. 1995; Bour- 
guignon et al. 1995), bovine oocytes (Yue et al. 1995), intestinal longitudinal 
muscle (Kuemmerle and Makhlouf 1995), cardiac and skeletal muscle 
(M~sz~iros et al. 1993; Morrissette et al. 1993; Sitsapesan et al. 1994; Sitsape- 
san and Williams 1995), opossum renal epithelial cells (Beers et al. 1995), 
liver nuclear envelope (Gerasimenko et al. 1995), pancreatic [3-cells 
(Takasawa et al. 1993b), pancreatic acinar cells (Thorn et al. 1994; Gromada 
et al. 1995; Gerasimenko et al. 1996), and plant vacuoles (Allen et al. 1995). 
The physiological significance ofcADPR as a calcium-mobilizing agent has 
been corroborated by investigations demonstrating the presence of this 
metabolite in a variety of cells and tissues (Walseth et al. 1991), along with 
the widespread occurrence of the enzymatic activity catalyzing its synthesis 
(Rusinko and Lee 1989). Therefore, cyclic ADP-ribose has emerged as a 
widely distributed potent intracellular agent controlling the level of Ca 2+. 
Its CaZ+-mobilizing activity is comparable to that oflP 3 (Dargie et al. 199o). 

The possibility exists that Ca 2+ mobilization by cADPR could be medi- 
ated via a calmodulin-sensitive pathway. Calmodulin, which did not itself 
cause a Ca 2+ efflux in sea urchin eggs (Tanaka and Tashjian 1995), was 
suggested to be a positive modulator for the cADPR-mediated calcium 
release, not only in sea urchin egg microsomes (Lee et al. 1994c; 1995) but 
also in mammalian microsomes (Takasawa et al. 1995). While in rat islet 
microsomes the calmodulin-activated calcium mobilization was abolished 
by inhibitors for calmodulin-dependent protein kinase II (Takasawa et al. 
1995), in the sea urchin system calmodulin seemed to confer cADPR sensi- 
tivity through a more direct mechanism, possibly through interaction with 
a specific receptor (Lee et at. 1994c; Tanaka and Tashjian 1995). 

As pointed out earlier, the intracellular level of cADPR may also be 
regulated by phosphorylation of the cyclase in a cGMP-dependent manner. 
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A number of current investigations have been focused on the identifi- 
cation of the receptor for cADPR and its mode of action. Although there is 
good evidence for cADPR to interact with ryanodine receptors (Sitsapesan 
et al. 1995), a specific, physiologically relevant binding site has yet to be 
established. The existence of a highly specific site exhibiting a binding 
affinity of about 17 nM has been demonstrated in sea urchin egg mi- 
crosomes (Lee 1991). 

4.1 
Relationship with Inositol Trisphosphate- 
Dependent Calcium Release 

The role of IP 3 as a major endogenous agent triggering the efflux of Ga s+ 
from the endoplasmic or sarcoptasmic reticulum has been well known and 
characterized (Berridge 1993). The extent of cADPR-induced calcium re- 
lease from sea urchin egg homogenates has been found to be comparable 
to that induced by IP 3 (Dargie et al. 199o; Lee 1991). In addition, the 
concentration of cADPR required to achieve a half-maximal effect, about 
18 nM, was about five to seven times lower than that of IP 3. Therefore, 
cADPR may be regarded as an even more potent Ca2+-releasing agent. 

It was an important observation that cyclic ADP-ribose triggered cal- 
cium release from internal stores independently of IP 3 (Dargie et al. 199o; 
Galione et al. 1991). That is, egg homogenates desensitized to IP 3 remained 
fully responsive to cADPR and vice versa (Dargie et al. 199o; Galione et al. 
1991). These experiments, which have been confirmed in other systems (Lee 
et al. 1994b), suggest that elevation of internal calcium levels maybe evoked 
by independent mechanisms depending on the external signal. The calcium 
release induced by IP 3 and cADPR did not appear to be additive (Dargie et 
al. 199o). It was suggested, therefore, that the stores from which Ca s+ was 
released by these two agents were overlapping. However, the possibility 
that different calcium stores may be activated by different agents cannot 
be excluded (Gromada et al. 1995). 

Observations that normal development after fertilization of sea urchin 
eggs proceeded when calcium stores were activated by both IP 3 or cADPR 
(Galione et al. 1993b; Lee et al. 1993a) raise the possibility of localized 
increases of the Ca 2+ concentration depending on the messenger. Although 
the occurrence of ordered calcium waves has been a well documented 
phenomenon, a spatially limited rise in the calcium concentration would 
represent yet another mode of regulation by this ion. 



Metabolism of Cyclic ADP-Ribose: A New Role for NAD+Glycohydrolases lo7 

The possible existence of other calcium-activating agents derived from 
NADP + has been demonstrated recently (F.-J. Zhang et al. 1995; Vu et al. 
1996). NAADP + was shown to stimulate Ca 2+ release from sea urchin egg 
homogenates independently of both cADPR and IP3 (Chini et al. 1995; Lee 
and Aarhus 1995). Also, 2'-P-cADPR exerted calcium release activity from 
brain microsomes. Further experimentation should explore the physi- 
ological significance of these metabolites. 

4.2 
Calcium Release via a Ryanodine-Sensitive Mechanism 

Since the discovery of cADPR it has been of major interest to establish its 
mode of action that eventually leads to calcium release. First evidence that 
cyclic ADP-ribose may exert its function via a ryanodine receptor-depend- 
ent pathway was presented by Galione et al. (1991). In their experiments on 
sea urchin eggs cADPR-dependent Ca z+ release was modulated by effectors 
of calcium-induced calcium release (CICR) a pathway that proceeds via the 
ryanodine receptor (Endo 1977). Thus, the cADPR-induced (but not the 
IP3-induced) Ca 2+ release was selectively blocked by procaine and ruthe- 
nium red. Moreover, cADPR desensitized the microsomes to ryanodine 
receptor agonists such as ryanodine and caffeine, but not to IP 3 (Galione 
et al. 1991). These as well as studies using other systems suggested the 
ryanodine receptor as a possible target of cADPR. 

Several isoforms of ryanodine receptors have been described (Ogawa 
1994). The mammalian type i ryanodine receptor is expressed in skeletal 
muscle, while the type 2 receptor has been found in cardiac muscle and 
brain (Ogawa 1994). A third isoform is expressed in the brain as well as in 
other tissues (Meissner 1994; Giannini et al. 1995). There appear to be 
homologs of the type 1 and type 3 ryanodine receptors in other species 
including bird, fish, amphibia, and insects (Sitsapesan et al. 1995). Ryano- 
dine receptor-Ca2+-channel complexes exist as homotetramers with mo- 
lecular masses of the subunits of approximately 55o ooo (Ogawa 1994). 

Paralleling the diversity of ryanodine receptors, cADPR appears to 
interact differently with different isoforms (Sitsapesan et al. 1995). Studies 
in several laboratories on mammalian ryanodine receptors have led to 
partially controversial results (reviewed in Sitsapesan et al. 1995) regarding 
the ability of cADPR to interact with certain isoforms and to activate Ca 2+ 
fluxes. Apparently, the influence of various effectors on channel activity 
and ryanodine binding depends strongly on the conditions of the experi- 



108 M. Ziegler et al. 

ment, for example, the luminal Ca 2+ concentration. Despite these uncer- 
tainties, the available evidence suggests that cADPR may activate primarily 
the type z ryanodine receptors (Lee et al. 1994b; Sitsapesan et al. 1995). The 
regulation of ryanodine receptors appears to be quite complex involving 
binding of effectors at different sites. Binding of cADPR to the receptor 
greatly enhances Ca 2+ release from the endoplasmic reticulum, but only at 
elevated intracellular Ca 2+ levels. Therefore, cADPR may function as a 
modulator of CICR by influencing the sensitivity of the ryanodine receptor 
to Ca 2+ (Galione and White 1994). 

Considering the experimental systems studied so far the activating 
ability of cADPR on ryanodine receptors is most potent and specific in sea 
urchin eggs. Perhaps, some of the controversy can be resolved when this 
receptor will be isolated and characterized. 

Using a specific photoaffinity probe, 8-azido-cADPR, two specific 
cADPR-binding proteins with molecular masses of 14o ooo and lOO ooo 
were identified in sea urchin egg homogenates (Walseth et al. 1993). Since 
the size of these proteins would not suggest them to be ryanodine receptor 
molecules, it was proposed that they may represent proteins that interact 
with the receptor (Walseth et al. 1993). It would indeed be an interesting 
experiment to test the ability of these proteins to mediate the influence of 
cADPR on type 1 and type z ryanodine receptors, as has been suggested 
(Sitsapesan et al. 1995). 

An important contribution emphasizing the potential of cADPR to be a 
second messenger was provided by the observation that cGMP stimulated 
the release of Ca 2+ from sea urchin egg homogenates via a cADPR-sensitive 
pathway (Galione et al. 1993a). It was found that stimulation by cGMP 
occurred only in the presence of NAD + and was abolished by prior desen- 
sitization to cADPR, but not IP 3. The cGMP-induced Ca 2+ release was 
sensitive to effectors of the ryanodine receptor. Also, it has been reported 
that nitric oxide (NO) induces mobilization of intracellular calcium via a 
cGMP- and cADPR-, but not IP3-dependent pathway (Willmott et al. 1996). 
Furthermore, there are indications that the activation of ADP-ribosyl 
cyclase may have been mediated by a cGMP-dependent kinase (Lee et al. 
1994b). A mechanism has been proposed (Galione and White 1994; Lee et 
al. 1994b) suggesting the activation of guanylate cyclase by extracellular 
stimuli, such as NO (Publicover et al. 1993). As a consequence, enhanced 
production of cyclic ADP-ribose, perhaps, via phosphorylation, and open- 
ing of the ryanodine receptor-associated calcium channel would take place. 
Such a pathway would be consistent with the latency of about 30 s of 
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cGMP-induced Ca 2+ release in sea urchin eggs (Whalley et al. 1992; Galione 
et al. 1993a) as welt as with the sensitivity of this mechanism to ryanodine 
receptor effectors. 

At present it cannot be clearly distinguished whether cADPR acts as a 
true second messenger or as a modulator of CICR via the ryanodine 
receptor (Galione and White 1994). 

4.3 
Possible Physiological Roles of Calcium Mobilization 
by Cyclic ADP-Ribose 

Cyclic ADP-ribose has been implicated in the regulation of calcium levels 
in a variety of cells. In all cases studied cADPR-induced Ca 2+ release was 
independent of the IP3 pathway. Moreover, there is ample evidence that 
mobilization of Ca 2+ from internal stores proceeds via a ryanodine-sensi- 
tive mechanism. Although a great number of processes in the cell are 
regulated by alterations of the calcium concentration (Carafoli 1987; Ber- 
ridge and Irvine 1989; Berridge 1993; Clapham 1995), the individual signal- 
ling mechanisms (via IP 3 or cADPR or, perhaps, yet another messenger) 
have to be established. 

For at least two physiological events there clearly seems to be an essen- 
tial role for cADPR. First, the propagation of calcium waves in sea urchin 
eggs at fertilization was shown to be mimicked by microinjection ofcADPR 
agonists. Second, a number of studies have demonstrated an involvement 
of cADPR in the mechanism of insulin secretion in pancreatic islet cells. 

The fertilization response in sea urchin eggs is characterized by a 
transitory rise in intracellular Ca z+ at the sperm-egg fusion site that then 
spreads across the egg as a propagating wave (Jaffe 1991). This calcium wave 
appears to be both necessary and sufficient to promote the activation of the 
quiescent egg (Whitaker and Steinhardt 1985). The occurrence of the cal- 
cium transient is independent of the influx of extracellular Ca 2+ (Whitaker 
and Swann 1993) and, therefore, mediated by the activation of intracellular 
stores. Two different mechanisms have been shown to contribute to the 
release of calcium: both IP 3- and cyclic ADP-ribose-dependent pathways 
may be activated at fertilization (Galione et al. 1993b; Lee et al. 1993b; Shen 
and Buck 1993). When the IP3-dependent calcium release system was 
blocked by heparin, the fertilization response changed only insignificantly. 
On the other hand, inhibition of the ryanodine-sensitive pathway, which is 
likely to involve cADPR, by ruthenium red did also not substantially affect 
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the fertilization response (Galione et al. 1993b). That the cADPR-dependent 
pathway could indeed be blocked without abolishing the fertilization re- 
sponse was demonstrated using the specific antagonist 8-amino-cADPR 
(Lee et al. 1993b). Microinjection of either IP 3 or cADPR have been shown 
to induce calcium transients resembling those at fertilization as well as the 
cortical exocytosis reaction (Lee et al. 1993b). Most importantly, if both 
pathways were blocked simultaneously neither calcium transients nor a 
cortical reaction could be observed nor could these phenomena be induced 
by adding sperm (Galione et al. 1993b, Lee et al. 1993b). In this case the eggs 
would become polyspermic (Galione et at. 1993b). These experiments sug- 
gest a functional redundancy of calcium signalling pathways. Although the 
functional significance of such a phenomenon would have to be explored, 
the structural similarity of IP 3 and ryanodine receptors may support such 
a notion (Furuichi et al. 1994). The existence of independent alternatives 
for activating calcium stores may also indicate the possibility of spatially 
limited regulatory events. 

The involvement ofcADPR in the secretion mechanism of insulin from 
pancreatic islets was initially suggested on the basis of the following obser- 
vations (Takasawa et al. 1993b): cADPR induced the release of Ca 2+ from 
microsomes of pancreatic islets via a ryanodine-sensitive mechanism. The 
cADPR concentration in pancreatic islets was raised by glucose and, finally, 
insulin secretion from digitonin-permeabilized islets was stimulated by 
cADPR. These findings indicate that glucose-induced insulin secretion may 
be mediated by a CICR mechanism involving cADPR and a ryanodine-sen- 
sitive channel. The presence of a CICR mechanism in islet cells has been 
demonstrated. It was, however, rather insensitive to ryanodine (Islam et al. 
1992; Hellmann et al. 1992; Roe et al. 1993). The potential role of cADPR 
metabolism in insulin secretion was also supported by experiments in 
which transgenic mice were investigated that overexpressed CD38 in pan- 
creatic islet cells (Kato et al. 1995). Recently, it was also reported that, 
besides CD38, the GPI-anchored ADP-ribosyl cyclase BST-I is expressed in 
pancreatic islet cells (Kajimoto et al. 1996) lending further support for the 
potential role of cADPR in these cells. 
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5 
Methods of Detection of ADP-Ribosyl Cyclase Activity 

III 

The activity ofADP-ribosyl cyclases can be measured in two principal ways: 
by determining the formation of cADPR, or by testing the biological effect 
of the product formed from NAD ÷ during the enzymatic reaction. The 
biological assay has been initially used to verify the identity of cADPR. The 
physical methods that have been developed over the past few years are 
certainly preferable, because of their ease and efficiency. 

5.1 
Biological Assay 

The original assay that led to the discovery of cyclic ADP-ribose (Clapper 
et al. 1987) may be utilized to determine the calcium-mobilizing activity of 
metabolites. Calcium fluxes are monitored with purified microsomes from 
sea urchin eggs by following changes in the calcium concentration of the 
medium using specific fluorescent dyes such as Fura 2. Addition of cADP- 
ribose will lead to release of calcium from the microsomes which is detected 
as a decrease of fluorescence. Since IP 3 and pyridine nucleotide derivatives 
other than cADP-ribose may also exert calcium-mobilizing effects, this 
assay is not specific. However, specificity can be verified using the cADPR 
antagonist 8-amino-cADPR (Walseth and Lee 1993). 

5.2 
Detection of Cyclic ADP-Ribose by Chromatog raphic Procedures 

Cyclic ADP-ribose can be separated by all methods conventionally used for 
nucleotides. For quantitative determinations, HPLC procedures have been 
described using ion-exchange or reverse-phase columns and UV-detec- 
tion. These techniques provide a good separation of ADP-ribose, cyclic 
ADP-ribose, NAD ÷ and nicotinamide as well as analogs ofNAD + and their 
derivatives (e.g., Graeff et al. 1994b; H. Kim et al. 1993a). 

Thin layer chromatography enables a sufficiently sharp separation of 
NAD +, ADP-ribose and nicotinamide in various solvent systems (Galione 
et al. 1993a). Although adequate sensitivity can only be achieved using 
radioactive substrates, this method permits the simultaneous analysis of 
several samples. 
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The problem of unsatisfactory separation of ADP-ribose from cyclic 
ADP-ribose in some systems can easily be overcome by treating the sam- 
ples to be analyzed with phosphodiesterase I from snake venom: This 
enzyme cleaves ADP-ribose to AMP and ribose phosphate, whereas cyclic 
ADP-ribose does not serve as substrate. 

5.3 
Fluorescence Assay Using Analogs of NAD + 

ADP-ribosyl cyclases can utilize substrates other than NAD + to synthesize 
cyclic purine nucleoside diphosphoriboses (Graeffet al. 1994b, 1996; Zhang 
and Sih 1995). When the adenine moiety of NAD ÷ is replaced by guanine, 
hypoxanthine, xanthine, or 1,N6-etheno-adenine, the ADP-ribosyl cyclase 
from Aplysia, as well as human CD38 will produce analogous cyclic prod- 
ucts. However, cyclization occurs between the anomeric carbon of the 
terminal ribose and the N z of the purine ring (Zhang and Sih 1995; Graeff 
et al. 1996), rather than the N 1 position, as is the case with NAD + as 
substrate. As a consequence of the cyclization at the N z position, the 
products are fluorescent. Since the NAD ÷ analogs themselves as well as 
their noncyclic purine nucleoside diphosphoribose derivatives are not 
fluorescent, the cyclyzation reaction can be easily followed fluorimetri- 
cally. 

Figure 2, right panel, demonstrates that the Aplysia ADP-ribosyl cyclase 
can be renatured after SDS-PAGE in such a way that its activity can be 
visualized fluorimetrically directly within the gel using nicotinamide hy- 
poxanthine dinucleotide as substrate. The NADase from Neurospora crassa 
does not catalyze a cyclization reaction, but its position in the gel can be 
detected using e-NAD + as substrate (Fig. 2, left panel). The fluorescence 
enhancement of (cyclic)-a-ADP-ribose, as compared to a-NAD +, is due to 
the separation of the fluorescent a-adenine ring from the quenching nicoti- 
namide (Barrio et al. 1972). Since this separation occurs also in the cycliza- 
tion reaction, the ADP-ribosyl cyclase from Aplysia can be visualized using 
a-NAD +, too (Fig. 2, left panel). 
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Fig. 2. "Activity staining" of SDS-PAGEs for NADase and ADP-ribosyl cyclase activi- 
ties. NADase from Neurospora crassa (lanes 1) and ADP-ribosyl cyclase from Aplysia 
californica (lanes 2) were separated in duplicate on a lO% SDS-PAGE. After a renatu- 
ration procedure the gel was cut in half. One part was then incubated with 1,N6-etheno - 
NAD + (e-NAD+; left panel), the other with NHD + (right panel). NADase activity (left 
panel) and ADP-ribosyl cyclase activity (right panel) were then visualized under 
UV-light 

5.4 
Radioimmunological Detection of Cyclic ADP-Ribose 

Takahashi et al. (1995) have used an antiserum raised against cADP-ribose 
couple d to bovine serum albumin to detect cADP-ribose levels in HL-6o 
cells. This assay is highly sensitive. Its specificity is greatly enhanced, if the 
samples are treated with 5'-nucleotidase and snake venom phosphodi- 
esterase to degrade other nucleotides that exhibit cross-reactivity, for 
example, NAD ÷ and NMN. 

5.5 
Detection of Cyclic ADP-Ribose Hydrolase Activity 

The enzymatic hydrolysis of cyclic ADP-ribose or its analogs can be as- 
sessed in several ways, similar to those for its synthesis. For example, the 
resistance of cyclic ADP-ribose towards phosphodiesterase from snake 
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venom as discussed above can be utilized to follow the formation of 
ADP-ribose by converting it specifically to AMP and ribose phosphate. 

Enzymatic activity of cyclic ADP-ribose hydrolases can also be meas- 
ured using fluorescent analogs of cyclic ADP-ribose, such as cyclic GDP- 
ribose or cyclic IDP-ribose (Graeffet al. 1996). The absence of a substitution 
at the N z position of the purine ring (which is a result of the hydrolysis) 
renders the molecule again nonfluorescent. Therefore, the hydrolase activ- 
ity would be proportional to the decrease of fluorescence. Similarly to the 
synthesis reaction, although this assay has been successfully applied to 
CD38 and the Aplysia enzyme, the possibility exists that not all hydrolases 
of cyclic ADP-ribose will be able to utilize these analogs as substrates. 

6 
Mitochondrial NAD + Glycohydrolase Activity 
and Regulation of Calcium Fluxes 

It has long been known that mitochondria possess a high capacity to 
sequester calcium from the surrounding medium (Carafoli :987; Denton 
and McCormack 199o). Therefore, these organelles had been thought to 
represent a potential store that may be activated as a regulatory event. 
However, no specific mechanism has been described that would trigger 
instantaneous calcium release from mitochondria. The known Ca 2+ signal- 
ling pathways, via IP3 or ryanodine receptors, do not activate mitochon- 
drial calcium stores. Nevertheless, recent investigations have provided 
clear evidence, that the metabolic state of mitochondria influences the 
occurrence of cytosolic calcium waves (Jouaville et al. 1995). Moreover, the 
activity of calcium-dependent mitochondrial dehydrogenases was strongly 
influenced by changes in the cyctosolic calcium concentration (Hajn6czky 
et al. 1995). Therefore, there is likely to be a calcium signalling pathway 
across the mitochondrial membranes. 

Several years ago studies on isolated mitochondria have revealed a 
correlation between the pyridine nucleotide status and calcium move- 
ments across the inner membrane of these organelles (Lehninger et al. :978; 
L6tscher et al. :979, :98o). In a number of investigations Richter and 
coworkers (reviewed in Richter and Kass 1991) have obtained evidence that 
treatment of rat liver mitochondria with prooxidants resulted in the oxi- 
dation and subsequent degradation ofmitochondrial pyridine nucleotides. 
Concomitantly, efflux of Ca 2÷ from the mitochondria was observed. Since 
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under these conditions an enhanced degree of ADP-ribosylation was de- 
tected within the organelles, it was hypothized that this protein modifica- 
tion may be related to a calcium release pathway. The proposed model 
(Richter and Kass 1991) suggested prooxidant-induced hydrolysis ofNAD + 
followed by nonenzymatic ADP-ribosylation of specific mitochondrial 
proteins by the liberated ADP-ribose (Fig. 3, pathway 1). Free ADP-ribose 
has indeed been shown to be able to covalently modify mitochondrial 
proteins (Hilz et al. 1984; Frei and Richter 1988). However, there are reports 
demonstrating the occurrence of mitochondrial ADP-ribosylation using 
NAD + as substrate under conditions that lead to virtually complete inhibi- 
tion of NADase activity, and, therefore, no formation of free ADP-ribose 
(Masmoudi and Mande11987; Ziegler et al. 1996b). It was concluded from 
these studies that, besides the possibility of nonenzymatic ADP-ribosyla- 
tion, mitochondria contain monoADP-ribosyl transferase activity (see 
Fig. 3). These findings raised the question as to the function of the NADase, 
as this enzyme appeared not to be required for mitochondrial ADP-ribo- 
sylation using NAD ÷ as substrate. Considering the ability of some known 
NADases to form cyclic ADP-ribose it was an obvious experiment to test 
the mitochondrial enzyme in this regard too. Recently, it was established 
that the NADase from bovine liver mitochondria catalyzes the formation 

corresponding NAD of cyclic GDP-ribose and cyclic IDP-ribose from the " + 
analoga (Ziegler et al. 1996b). These findings suggest that the previously 
observed prooxidant-induced calcium release from mitochondria may 

Fig. 3. Two possible pathways of mitochondrial ADP-ribosylation. 1, Nonenzymatic, 
via free ADP-ribose generated by the mitochondrial NAD + glycohydrolase; 2, enzy- 
matic, by mono(ADP-ribosyl) transferase 
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actually be mediated by a cADPR-dependent mechanism. It is interesting 
in this regard that ADP-ribosyl cyclase as well as NADase activities are lost 
after treatment of the mitochondrial enzyme with dithiothreitol (Ziegler et 
al. 1996b). On the other hand, it has been observed that prooxidant-induced 
calcium efflux is also sensitive to reducing agents (Schweizer and Richter 
1996) and requires the oxidation of vicinal thiols in mitochondria 
(Schweizer and Richter 1994; Schweizer et al. 1994). Similarly, both NADase 
activity and Ca 2+ efflux (Hofstetter et al. 1981) are inhibited by ATP. 

Taken together, a mechanism for prooxidant-induced calcium release 
from mitochondria appears to emerge that includes the oxidation of mito- 
chondrial pyridine nucleotides (and, perhaps, the formation of a disulfide 
bridge within the NADase), followed by the synthesis of cyclic ADP-ribose 
from NAD + by the NADase. Although a mitochondrial target for cyclic 
ADP-ribose has not been described, it is a possibility that it would trigger 
calcium release from the organelles. Further studies should, therefore, 
establish whether intramitochondrial cyclic ADP-ribose would cause cal- 
cium release. Alternatively, as pointed out above, other metabolites with 
calcium-mobilizing activity could possibly be formed by the NADase. A 
possible approach to these questions would be the use ofsubmitochondrial 
particles (exposing the matrix side of the inner membrane to the outside) 
with fluorescent calcium indicators entrapped. 

The novel role ofmitochondrial NADase indicates that formation of free 
ADP-ribose for nonenzymatic ADP-ribosylation may not be its physiologi- 
cal function. Nevertheless, mitochondrial ADP-ribosylation, presumably 
catalyzed by specific enzyme(s), has repeatedly been found (Masmoudi and 
Mande11987; Boyer et al. 1993; Ziegler et al. 1996b). In view of the possible 
mechanism of calcium release discussed above, it is likely to be involved in 
regulatory processes unrelated to calcium fluxes. Therefore, it should be of 
great interest to establish the role of this protein modification in mitochon- 
dria. 
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1 
Introduction 

Two classes of post-translational modification by ADP-ribose, poly(ADP- 
ribosyl)ation and mono(ADP-ribosyl)ation are found in eukaryotes. Al- 
though the biological roles of these protein modifications are still unclear, 
their involvement in metabolic and regulatory pathways of cellular biology 
is undisputed. Poly(ADP-ribosyl)ation is principally a nuclear reaction 
and, hence, in contrast to mono(ADP-ribosyl)ation, limited to eukaryotes. 
So far poly(ADP-ribosyl)ation could not be detected in prokaryotic organ- 
isms. The modification of nuclear proteins by poly(ADP-ribose) is induced 
by DNA-damaging agents. Polymer synthesis and transfer onto protein 
acceptors is catalyzed by the enzyme poly(ADP-ribosyt) transferase, here 
abbreviated as ADPRT (EC 2.4.2.3o). Due to the different enzymatic activi- 
ties of this protein, also other names are used in the literature, for example, 
poly(ADP-ribosyl) synthetase or polymerase. ADP-ribose polymers are 
degraded by the catabolic enzymes poly(ADP-ribose) glycohydrolase, 
phospodiesterase, and (ADP-ribose) protein lyase. 

In this review we focus on ADPRT as polymer synthesizing enzyme, and 
its interaction with and modification of target proteins and the conse- 
quences onto cellular processes (for reviews see Althaus and Richter 1987; 
de Murcia et al. 1991; Boulikas 1991; de Murcia and Menissier-de Murcia 
1994; Lindahl et al. 1995; and the special issues of Molecular and Cellular 
Biology vol. 138 (1994) and Biochimie vol. 77 (1995). 

2 
Poly(ADP-Ribose) 

2.1 
Discovery of Poly(ADP-Ribose) 

About 30 years ago the groups of Paul Mandel, Takashi Sugimura, and 
Osamu Hayashi, motivated by different intentions, independently made 
the observation that proteins were covalently modified by the addition of 
ADP-ribose residues. The first published observation (Chambon et al. 1963) 
was a 1ooo times enhanced incorporation of (14C-adenine)-labelled ATP 
into the acid-insoluble fraction of a nuclear preparation from chicken liver 
stimulated by nicotinamide mononucleotide (NMN). The polymer product 
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was first considered to be poly(A) but was identified as poly(ADP-ribose) 
3 years later by the same group (Chambon et al. 1966). During this time, 
two different Japanese groups made the same observation of an increase of 
insoluble acid-precipitable material in nuclear preparations after addition 
of NMN. The analaysis of these products confirmed Mandel's conclusion 
about the structure ofpoly(ADP-ribose) (Fujimura et al. 1967a,b; Nishizuka 
et al. 1967). 

Further investigations of hydrolysis products of poly(ADP-ribose) led 
to the conclusion that NAD + was formed from NMN and ATP by NAD + 
pyrophosphorylase in nuclei, and the ADP-ribose moiety of NAD + was 
then converted to poly(ADP-ribose) with concomitant release of nicoti- 
namide (Fig. 1). 

Since then a large number of biological systems have been described, in 
which poly(ADP-ribose) seems to be involved in nuclear processes. 

2.2 
Structure of Poly(ADP-Ribose) 

The first information concerning the structure of poly(ADP-ribose) was 
obtained by analyzing the degradation products following enzymatic di- 
gestion. From these results it was possible to deduce structural features for 
the complex macromolecule. 

Hydrolysis of poly(ADP-ribose) with snake venom phosphodiesterase 
results in a major hydrolysis product of 2'(or 3')-(5"-phosphoribosyl)- 
5'AMP, which was named q~-ADP-ribose (Chambon et al. 1966), or phos- 
phoribosyl AMP, abbreviated as PR-AMP (Fujimura et al. 1967b), indicat- 
ing that the polymer consists of ADP-ribose monomers covalently linked 
via (2'-1") glycosidic bonds. 

The identification of a further product of hydrolysis, 2'-[l"-ribosyl 
2"-(or 3"-)(l'"-ribosyl)]adenosine-5',5"5"'-tris(phosphate) (PR)2-AMP) 
revealed the existence of a branched portion of poly(ADP-ribose) (Miwa 
et al. 1981). The molar ratio of phosphodiesterase hydrolysis products 
5'AMP, (PR)2-AMP, and PR-AMP is about 1:o.5:24, which is consistent with 
one branch per polymer chain with an average length of 25 ADP-ribose 
units (Juarez-Salinas et al. 1983). Branching of polymers synthesized in 
vitro could be visualized by electronmicroscopy as impressive "Christmas- 
tree-like" structure (de Murcia et al. 1983; Hayashi et al. 1983), and distinct 
positions of branching were assigned for polymers attached to histones 
(Boulikas 1989). Synthesized polymers detached from protein could be 
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Fig. 1. Poly(ADP-ribosyl)ation reaction. ADPRT catalyzes the transfer and the poly- 
merisation of (ADP-ribose) moieties to protein acceptors using NAD + with concomi- 
tant release of nicotinamide. The conformation (a or t3) of glycosidic bonds in NAD + 
and poly(ADP-ribose), respectivly, and potential cleavage sites for enzymes involved 
in polymer catabolism are indicated: PL, protein lyase; PDE, phosphodiesterase; GH, 
poly(ADP-ribose) glycohydrolase 
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separated electrophoretically (Tanaka et al. 1978), and the length of poly- 
mers could be determined (Alvarez-Gonzalez and Jacobson 1987; Panzeter 
and Althaus 199o; Fig. 2B). While a lot of investigations have been done on 
the structure of poly(ADP-ribose), the nature of the 5'phosphoribosyl 
glutamic ester, which is the attachment site of polymers to proteins, is not 
well documented in the literature. 

Some physicochemical properties of poly(ADP-ribose)polymers, re- 
viewed by Althaus and Richter 0987), resemble that of other polymers such 
as poly(A), DNA, and RNA. Yet, the thermal hyperchromicity ofpoly(ADP- 
ribose) is considerably lower than that ofpoly(A). No hyperchromic effect 

Fig. 2 A-C. Automodification of human ADPRT. Purified recombinant human fuU- 
length ADPRT was incubated with o.1 pM [32P]NAD + (1) and i mM [3zP]NAD+ (2) in 
the presence ofDNA. A Probes were subjected to 8% SDS-PAGE and Coomassie stained. 
Relative sizes of marker proteins (M) are indicated. B Autoradiogram of polymer size 
analysis according to Panzeter and Althaus (1992) of both probes. Relative polymer 
lengths are indicated. C Autoradiogram of an activity blot (according to Simonin et al. 
1991) of recombinat full-length ADPRT (1) and the 56-kDa C-terminal catalytic domain 
of ADPRT (2). In brief, proteins were seperated by lo% SDS-PAGE and transferred onto 
nitrocellulose. Blots were incubated with [32p]NAD+, washed, and autoradiographed 
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was observed when poly(ADP-ribose) was mixed with poly(U). A helical 
conformation of long-chain poly(ADP-ribose) has been proposed (Minaga 
and Kun 1983a,b), coupled with helical forces in long-chain polymers under 
formation of higher order helices. 

2.3 
Occurrence of Poly(ADP-Ribose) 

Poly(ADP-ribosyl)ation reactions seem ubiquitous in higher eukaryotes, 
and known sequences of the polymer synthesizing enzyme ADPRT from 
different species show high homology (Uchida and Miwa 1994). Poly(ADP- 
ribosyl)ation activity has been demonstrated in a number of plants (Chen 
et al. 1994; O'Farrel 1995), but also in lower eukaryotes and even in the 
dinoflagellate Crypthecodinum cohnii (Werner et al. 1984), an organism, 
which lacks histones and has a chromatin arrangement similar to pro- 
karyotes. Therefore, such primitive eukaryotes provide an interesting 
model system to reevaluate some functional significance of poly(ADP-ri- 
bosyl)ation reactions. Nevertheless in yeast no poly(ADP-ribosyl)ation 
activity could be detected (Hayashi and Ueda 1982 ). 

The natural content of poly(ADP-ribose) in most tissues is rather low, 
compared to related polymers such as nucleic acids, and ranges between 
3-3o ng ADP-ribose per mg DNA (Ueda and Hayashi 1985). The presence 
of poly(ADP-ribose) in all tested mammalian nucleated cells could be 
demonstrated with antibodies raised against poly(ADP-ribose) except for 
granulocytes with segmented nuclei (Kanai et al. 1974; Kawamitsu et al. 
1984; Ikai et al. 198o). Enzyme activity was also substantially lowered or 
undetectable in terminally differentiated epidermal cells (Ikai et al. 1982) 
and intestinal epithelial cells (Porterus et al. 1979). Besides that, the pres- 
ence of poly(ADP-ribose) has been revealed by several chemical methods 
(reviewed in Akhaus and Richter 1987). The formation of branched poly- 
mers in vivo has been observed (Kanai et al. 198z), which was stimulated by 
carcinogen (Malanaga and Althaus 1994). 

Other studies on the intranuclear distribution of the enzyme demon- 
strated that ADPRT is closely associated with the nuclear matrix ("scaf- 
fold") of interphase cells (Adolph and Song 1985a,b; Adolph 1987) and 
partially complexed to the attachment points of loop DNA on the chroma- 
tin matrix (see Table 2). An analysis of the in vivo distribution ofpoly(ADP- 
ribosyl)ation activity showed a preferential localization of the activity in 
polynucleosomal preparations (Girl et al. 1978), whereas immunoelectron 
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microscopy detected a preferential association of the enzyme ADPRT to 
the nucleosomal core (Leduc et al. 1986). Although ADPRT is primarily 
located in the nucleus, a cytoplasmic enzymatically active ADPRT has been 
found in the microsomal-ribosomal fraction of rat spermatogenic cells 
(Concha et al. 1989). 

3 
The Synthesis of Poly(ADP-Ribose) 

The synthesis of poly(ADP-ribose) is catalyzed by the multifunctional 
nuclear enzyme ADPRT (EC 2.4.2.30). A total of lO6-1o z molecules of 
ADPRT are present in mammalian cell nuclei. ADPRT catalyzes the trans- 
fer of (ADP-ribose) moieties from its substrate NAD + to protein acceptors 
(heteromodification) as well as to the enzyme itself (automodification; 
Fig. 1). ADPRT has been isolated and characterized from different species. 
The Km for NAD + of purified ADPRT is about 50 pM (reviewed in Althaus 
and Richter 1987). The enzymatic activity of ADPRT is strongly enhanced 
by the presence of DNA breaks (Benjamin and Gill 1980). Molecularbiologi- 
cal recombinant DNA technologies enabled the overexpression of enzy- 
matically active recombinant ADPRT constructs in Escherichia coli cells 
(Gradwohl et al. 1989; Ikejima et al. 1989) or the baculovirus system (Giner 
et al. 1992) facilitating structural and functional analysis. Nevertheless the 
physiological role of ADPRT in cellular processes is still unknown. 

3.1 
Structure of Poly(ADP-Ribosyl) Transferase 

Following limited proteolysis and functional analysis (Nishikimi et al. 1982; 
Kameshita et al. 1984) three distinct domains of ADPRT could be identified 
(Fig. 3): A 46 ooo aminoterminal fragment including the DNA binding 
domain (DBD), a central 22 ooo polypeptid fragment containing the main 
acceptor sites for automodification with poly(ADP-ribose), and a 54 ooo 
carboxyterminal fragment bearing the NAD+-bindlng domain. This or- 
ganization of serial functional elements is also reflected by an "identity 
profle" obtained from a sequence alignment of ADPRT from various 
species (de Murcia et al. 1994; Miwa et al. 1995). Regions with strongest 
conservation correspond to the functional domains and subdomains of 
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1 372 573 1014 

DBD Auto NBD 
Fig. 3. Schematic representation of functional domains of human ADPRT. The DNA 
binding (DBD), automodification (Auto), and catalytic NAD+-binding (NBD) domains 
and relative amino acid positions of the human ADPRT enzyme are indicated, fl, ill, 
Zn 2+ coordinated finger motifs; N, nuclear localization signal; L, putative leucine zipper 
region 

ADPRT; more than 90% identity was found within the catalytic, C-terminal 
NAD+-binding domain. 

ADPRT isolated from mammalian species (Mendel et el. 1977; Nieder- 
gang et el. 1979; lump and Smulson 198o; Petzold et el. 1981; Agemori et el. 
1982) yielded proteins with apparent molecular weights of  about  
112 ooo-135 ooo. The use of  affinity chromatography (Burtscher et el. 1986) 
allowed to purify the enzyme to homogeneity. Both, protein and full-length 
cDNA sequences have been obtained for human (Alkhatib et el. 1987; 
Cherney et el. 1987; Kurosaki et el. 1987; Schneider et el. 1987; Uchida et el. 
1987); mouse (Huppi et el. 1989); bovine (Saito et el. 199o); chicken (Ittel et 
el. 1991); Xenopus (Uchida et el. 1993b), Drosophila (Uchida et el. 1993a), 
and Sarcophaga peregrine ADPRT (Masutani et el. 1994). The human 
ADPRT gene was localized on chromosome 1 (q41-q42) (Cherney et el. 1987; 
Herzog et el. 1989; Baumgartner et el. 1992) and its genomic DNA was 
analyzed (Auer et el. 1989). The promoter  region of the rat (Potvin et el. 
1992, 1993) and human ADPRT genes have been sequenced and charac- 
terized (Ogura et el. 199oa,b; Yokoyama et el. 199o; Schweiger et el. 1992; 
Oei et el. 1994; Schweiger et el. 1995). 

3.1.1 
DNA Binding Domain 

DNA binding is a prerequisite for enzymatic activity of  ADPRT. As re- 
ported by Zahradka and Ebisuzaki (1984), ADPRT is a metalloprotein and 
the N-terminal domain of ADPRT was found to bind to DNA in a Zn2+-de - 
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pendent manner (Menissier-de Murcia et al. 1989; Mazen et al. 1989). Later 
the characterization of the aminoterminal D BD domain of human ADPRT 
revealed the presence of a repeated sequence of the form CX2CX28/3oHX2C 
(residues 2-97 and lO6-2o7) consistent with two zinc finger like motifs 
(Mazen et al. 1989) (indicated as fl and flI in Fig. 3). Crucial residues involved 
in metal coordination and DNA binding, identified by mutagenesis, are 
strictly conserved during evolution (reviewed in de Murcia et al. 1994). The 
second zinc finger (ill) plays a fundamental role in specific single strand 
DNA binding (Gradwohl et al. 199o), whereas the first finger (fl) is involved 
in the DNA-dependent mediation of the catalytic activity without affecting 
the DNA binding ability of ADPRT (Ikejima et al. 199o). Full enzymatic 
activity of ADPRT is absolutely dependent on binding to DNA strand 
breaks and hence on the integrity of the zinc finger domain (Simonin et al. 
199o; Ikejima et al. 199o). In addition, besides the N-terminal zinc finger 
domain another region binding to "DNA with special secondary struc- 
tures" has been postulated, located in the 36 ooo automodification domain 
(Sastry et al. 1989; Thibodeau et al. 1993; own unpublished observations). 

The binding-ability of ADPRT to DNA of different origins has been 
analyzed (Hengartner et al. 1991). DNase I protection experiments indi- 
cated that ADPRT specifically binds to single strand DNA breaks in a 
sequence-independent manner, symmetrically, covering 7-8 nucleotides 
on each side of the break (Menissier de Murcia et al. 1989; Gradwohl et al. 
199o). The binding of ADPRT to a DNA nick induces a V-shaped sharp 
bend, with the enzyme located at the kink as visualized by electronmicros- 
copy studies (Le Cam et al. 1994). It has been reported that ADPRT binds 
also preferentially to supercoiled DNA (Zahradka and Ebisuzaki 1984) 
DNA loops (Gradwohl et al. 1987), and cruciform structures (Sastry and 
Kun 199o). 

A bipartite nuclear localization signal (Fig. 3) has been found in mam- 
malian ADPRT (Schreiber et al. 1992). The coupling of DNA binding and 
nuclear localization signal, reviewed by La Casse and Lefebvre (1995), may 
allow to coordinate regulation of both motifs. 

3.1.2 
Automodification Domain 

The main acceptor of poly(ADP-ribosyl)ation is ADPRT itself both in vitro 
(Yoshihara et al. 1977; Kawaichi et al. 1981) and in vivo (Kreimeyer et al. 
1985; Adamietz 1987). The automodification domain contains 15 highly 
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conserved glutamate residues, which mayinclude most of the acceptor sites 
for poly (ADP-ribose). ADP-ribosylation of bovine ADPRT in vitro led to 
a modification of 28 amino acid residues (Desmarais et al. 1991). Some of 
these modified residues were even located within the catalytic domain 
(55 2oo C-terminal part) and the DBD (4~ 500 N-terminal part). 

Within the automodification domain of Drosophila melanogaster 
ADPRT a putative leucine zipper motif has been found suggesting that this 
region might be involved in protein-protein interaction (Uchida et al. 
1993a). 

Automodification of ADPRT interferes with DNA binding, probably due 
to electrostatic repulsion between the negatively charged ADP-ribose poly- 
mers and the DNA (Ohgushi et al. 198o; Zahradka and Ebisuzaki 198~). It 
has been reported by Kirsten et al. (1991) that automodification not only 
alters the DNA binding capability of the protein but converts it to a 
NAD+ase. 

3.1.3 
Catalytic NAD + Binding Domain 

The 40 ooo C-terminal NAD + binding domain of ADPRT has been derived 
by recombinant DNA technologies (see Fig. 2C). This domain alone exerts 
all catalytic activities (NAD÷-binding, NAD÷ase activity, poly(ADP-ribose) 
synthesis and branching ability) of the whole enzyme with the exception of 
DNA-dependent activation (Simonin et al. 1993b). The Km of this 4o ooo 
protein for NAD + is quite comparable to that of the full-length ADPRT 
(5o ~tM), but its specific activity is approximately 5oo-fold lower than that 
of the full-length enzyme activated by DNA. 

The catalytic C-terminal domain bears two conserved putative dinu- 
cleotide binding motifs GX3GKG (amino acids 888-894 in human ADPRT) 
and GXGKT (amino acids 95o-954), although the latter one is not con- 
served in Drosophila (reviewed by de Murcia et al. 1994). Based on sequence 
similarities of the ADPRT NAD÷-binding domain to Leu and Glu dehydro- 
genases (Simonin et al. 1993a), a Rossmanfold (Rossman et al. 1975), con- 
sisting ofa [31-o~A-~z arrangement and potential active-site residues within 
the C-terminal domain has been postulated. 

Mutational analyses revealed, that a non conservative mutation of Lys- 
893 (K893I) and of Asp-993 (D993A) respectively completely abolished the 
catalytic activity (Simonin et al. 199o, 1993b) probably by interfering with 
the initial modification reaction. Moreover, a gain-of-function mutant 
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(L713F) has been described, with a 9 times increased kcat in vitro (Miranda 
et al. 1995). 

X-ray studies of the catalytic domain to provide a three-dimensional 
structure are in progress (lung et aI. 1994). 

3.2 
The Mechanism of Poly(ADP-Ribosyl)ation 

The exact mode of modification and transfer of poly(ADP-ribose) is not 
totally understood yet. This process, reviewed by Alvarez-Gonzalez et al. 
(1994), could be divided into three enzymatic steps: (a) initiation reaction 
(Kawaichi et al. 1981); (b) (ADP-ribose) chain elongation (Ueda et al. 1979; 
Taniguchi et al. 1987; Alvarez-Gonzalez 1988); and (c) branching reaction 
(Miwa et al. 1979). In in vitro studies with limited amounts of NAD +, ADPRT 
activated by DNA has been shown to produce polymers with an average 
length of seven ADP-ribose units (Fig. zB). These oligomers synthesized in 
the priming reaction were attached to a small subfraction of enzyme 
molecules in a processive reaction mode (Naegli et al. 1989). 

Controversy exists about the elongation of ADP-ribose chains: Ikejima 
et al. (1987) postulate a protein proximal mechanism of elongation, while 
several results indicate a protein-distal mechanism (Taniguchi 1987; A1- 
varez-Gonzalez 1988; Mendoza-Alvarez and Atvarez-Gonzalez 1993). Auto- 
modification experiments of Ueda and Hayashi (1985) and Bauer and Kun 
(1985) argued for an intramolecular mechanism, while on the other hand 
data by Holtlund et al. (1983) and Kameshita et al. (1984) are consistent with 
an intermolecular mechanism ofautomodification. Kinetic studies suggest 
that automodification occurs via an intermotecular and not an intra- 
molecular reaction with an enzymatically active dimer-intermediate (Men- 
doza-Alvarez and Alvarez-Gonzalez 1993; Panzeter and Althaus 1994). Ho- 
modimerization regions within the aminoterminal part and the automodi- 
fication domain of ADPRT have been found (Bauer et al. 199oa; Buki et al. 
1995; Griesenbeck et al. submitted). 

In addition to the catalytically active residues Lys-893 and Asp-993 
identified by mutagenesis (Simonin et al. 199o, 1993b), an intermediate 
His-(ADP-ribose) within a 56 ooo C-terminal proteolytic fragment has 
been proposed, which appears to be an intermediate of the modification 
reaction in vivo (Bauer et al. 1986, 199ob). 

Further analyses are required to clarify the precise mechanism of the 
modification reaction. 
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The Catabolism of Poly(ADP-Ribose) 
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At high levels of DNA damage, the half-life of poly(ADP-ribose) polymers 
in vivo may be less than 30 seconds, whereas in a slower catabolism of a 
constitutive polymer fraction in undamaged cells a half-life of about 7.7 h 
was observed (Alvarez-Gonzalez and Althaus 1989). Affectors of catabo- 
lism, listed in Althaus and Richter (1987), are DNA intercalators (Tavassoli 
et al. 1985) which may directly interact with the polymers and may facilitate 
the action of endo- and exonucleolytic enzymes on poly(ADP-ribose). 

To date, three different enzymes, poly(ADP-ribose) glycohydrolase, 
phosphodiesterase, and ADP-ribosyl protein lyase are known to be in- 
volved in the catabolism of poly(ADP-ribose). The cleavage sites of these 
enzymes are indicated in Fig. 1. Some characteristics of these enzymes have 
been reviewed by Althaus and Richter (1987). 

No cDNAs of the poly(ADP-ribose) catabolic enzymes have been cloned 
and sequenced yet. 

4.1 
Poly(ADP-Ribose) Glycohydrolase 

The physiological counterpart of ADPRT is the poly(ADP-ribose) glycohy- 
drolase. This enzyme cleaves the ribose-ribose bonds of linear and 
branched portions of polymers (Fig. 1) yielding free ADP-ribose (Miwa and 
Sugimura 1971; Ueda et al. 1972; Miwa et al. 1974). Nuclear poly(ADP-ribose) 
glycohydrolase with an apparent Mr of 59 ooo as well as a cytosolic form of 
the glycohydrolase (Mr about 75 ooo) have been purified and characterized 
from different organisms: guinea pig liver (Tanuma et al. 1986a; Maruta et 
al. 1991), pig liver (Tavassoli et al. 1983), calf thymus (Hatakeyama et al. 
1986; Thomassin et al. 1992), mouse mammary tumor cells (Tsai et al. 1992), 
human erythrocytes (Tanuma and Endo 199o), and human placenta 
(Uchida et al. 1993c). The biological relationship and differences between 
the nuclear and cytoplasmic glycohydrolases have been determined 
(Maruta et al. 1991; Tanuma et al. 1986b; Uchida et al. 1993c). The biochemi- 
cal properties and function of poly(ADP-ribose) glycohydrolase are re- 
viewed in Desnoyers et al. (1995) and a lot of potent inhibitors of glycohy- 
drolase activity have been described (Tsai et al. 1992; Aoki et al. 1993; Slama 
et al. 1995). 
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From in vitro studies it has been proposed, that poly(ADP-ribose) 
glycohydrolase operates in a biphasic, bimodal reaction mode (Hatakeyama 
et al. 1986). While large polymers are degraded to smaller polymers in a 
fast and processive reaction, further degradation then proceeds in a slowly 
distributive reaction mode. Rapid initial degradation of large polymers, 
which may be facilitated by initial endoglycosidic incision was observed by 
Ikejima and Gill (1988). Accordingly, Braun et al. (1994) proposed that the 
glycohydrolase reaction can be divided into three steps: (a) endoglycosidic 
cleavage; (b) endoglycosidic cleavage plus exoglycosidic, processive deg- 
radation; (c) exoglycosidic, distributive degradation. 

Poly(ADP-ribose) turnover was investigated in an in vitro system, con- 
sisting of ADPRT and glycohydrolase acting simultanously, to elucidate the 
in vivo situation (Menard et al. 199o; Brochu et al. 1994; Shah et al. 1995). 

4.2 
Phosphodiesterase 

Phosphodiesterases have been isolated from different species. The snake 
venom phosphodiesterase (EC 3.1.4.1) splits the pyrophosphate bond of 
poly(ADP-ribose) endonucleolytically (Sugimura 1973) yielding PR-AMP, 
as described earlier (see Sect. 2.2), and 5'AMP released from the polymer 
terminus. In contrast, phosphodiesterase isolated from rat liver (EC 3.1.3.1) 
cleaves poly(ADP-ribose) exonucleolytically, and also hydrolizes NAD ÷, 
NADH, and ADP-ribose (Futai et al. 1968). Hydrolysis proceeds from the 
AMP-terminus of each polymer to the bound protein and does not produce 
oligomers of PR-AMP. Phospodiesterase isolated from tobacco cells also 
cleaves the phyrophosphate bonds in poly(ADP-ribose), ATP, NAD +, in- 
organic pyrophosphate, cyclic nucleotides, dinucleotides, and in the cap- 
structure of the 5'terminus of mRNA (Shinshi et al. 1976). Besides that 
human urinic (Ito et al. 1987) and bull seminal (Codini et al. 1992) phos- 
phodiesterase activities have been described. 

4.3 
ADP-Ribosyl Protein Lyase 

Very little is known about the third enzyme of poly(ADP-ribose) catabo- 
lism, the ADP-ribosyl protein lyase. This enzyme cleaves the protein proxi- 
mal ADP-ribose-glutamic ester bond (Fig. 1) (Okayama et al. 1978). The 
elimination reaction catalyzed by the lyase yields an unsaturated sugar 
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identified as 5'-ADP-3"-deoxypent-2"-enofuranose (Oka et al. 1984). The 
removal of the proximal ADP-ribose residue bound to the acceptor protein 
has been proposed to be the rate-limiting step in the catabolism of carcino- 
gen-induced polymers (Wielkens et al. 1982). 

Williams et al. (1984) have ascribed a heriditary neurological disorder 
in humans to a defect in activity of the lyase. 

5 
The Function of Poly(ADP-Ribosyl)ation 

The physiological role of poly(ADP-ribose) metabolism in cells is still 
unclear. Several hypotheses suggest an involvement in central nuclear 
processes, such as DNA repair, differentiation, transcriptional regulation, 
cancerogenesis, chromosomal stability, or apoptosis, which are not neces- 
sarily mutually exclusive. Undoubtedly, the role of ADPRT contributes to 
a complex metabolic pathway. Loetscher et al. (1987) proposed, that 
poly(ADP-ribose) serves a hitherto unrecognized function by signalling 
altered metabolic conditions to the chromatin and thus modulating its 
functions dependent on the metabolic state of the cell. 

Initiation of DNA synthesis is blocked by ADPRT and automodification 
reverses this inhibition by diminishing the DNA binding ability of the 
protein, indicating that ADPRT is a primarily structural DNA binding 
protein, whose catalytic activity serves to modulate its interaction with 
DNA (Nobori et al. 1989). Thus, ADPRT is suggested to be a critical 
regulatory component of a DNA binding multiprotein system, playing a 
central role in defining DNA structures in the intact cell (Rice et al. 1992.). 
Following the observation that automodification of ADPRT interferes with 
DNA binding, a shuttle mechanism as a dynamic DNA-protein interaction 
model has been proposed (Zahradka and Ebisuzaki 1982.). In this model, 
the dissociation of modified ADPRT from DNA and, consequently, the 
inactivation of the enzyme is reversed by subsequent action of poly(ADP- 
ribose) glycohydrolase, which reestablishes the DNA binding activity of 
ADPRT and, thus, reinitiates the conditions for enzyme activation. Ten 
years later Realini and Althaus (1992) proposed a "histone-shuttle model." 
This mechanism involves four distinct reaction intermediates, as shown in 
vitro. In the first step, ADPRT bound to DNA automodifies itself in the 
presence of histone-DNA complexes. In the second step the negatively 
charged ADP-ribose polymers bind noncovalently to histones, and the 
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histone-polymer-ADPRT complex dissociates from the DNA. The depro- 
teinized DNA then becomes susceptible to nuclease digestion. In the third 
step, poly(ADP-ribose) glycohydrolase degrades ADP-ribose polymers 
and thereby eliminates the binding sites for histones. In the last step, 
histones reassociate with DNA, and the resulting histone-DNA complex is 
equivalent to the starting condition. This shuttle model would enable 
nucleosomal unfolding of chromatin in processes such as regulation of 
DNA excision repair. However, an in vivo occurence of the intermediates 
suggested by the histone-shuttle model has not been proven yet. Further- 
more, such a putative conformational change in chromatin seems not to 
be required for DNA repair (Scicchitano and Hanawalt 1989). 

5.1 
Analytical Methods 

Different experimental approaches have been designed to study poly(ADP- 
ribosyl)ation reactions. Detection of poly(ADP-ribosyl)ation in vitro and 
in vivo (reviewed in Althaus and Richter 1987; Shah et al. 1995), structure 
analyses, and kinetic studies led to a considerable progress in this field. 

One way to get information about the role of ADP-ribosylation in 
cellular processes and to study the reaction mode is the application of 
specific (ADP-ribosyl)ation inhibitors (reviewed in Althaus and Richter 
1987; Rankin et al. 1989; Banasik et al. 1992; Banasik and Ueda 1994). Besides, 
inhibitors of poly(ADP-ribosyl)ation are expected to provide novel 
chemotherapeutic drugs against malignancies. Therefore, a great number 
of investigations have been carried out, in vitro and in vivo, to determine 
the structural requirements for potent ADPRT inhibitors (reviewed in 
detail in Griffin et al. 1995). A very potent ADPRT inhibitor is 3-aminoben- 
zamide with a Ki of about 2 pM (Purnell and Whish 198o), and the high 
affinity of ADPRT to this nicotinamide analog was utilized for an efficient 
enzyme purification with an affinity column (Burtscher et al. 1986). Several 
experiments were performed using this inhibitory effect to study the influ- 
ence of ADPRT on processes such as DNA repair. 

"Knocking-out" ADPRT activity in in vivo systems is another approach 
to elucidate the physiological role of this enzyme, and modern technologies 
offered the possibilities to produce recombinant enzymes (Ikejima et al. 
1989; Gradwohl et al. 1989; Giner et al. 1992), and to create directed mutants 
ofADPRT (Gradwohl et al. 199o; Simonin et al. 1993a,b; Cherney et al. 1991). 
Table i summarizes various approaches undertaken in this field. The physi- 
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ological significance of results obtained by these experiments and pre- 
sented in Table 1 are discussed in Sect. 5.3. The following four main strate- 
gies have been developed. 

(a) ADPRT antisense RNA (antisense to full-length or the 5'-part of the 
messenger RNA) expressed in human or rodent cells inhibited endogenous 
translation of ADPRT mRNA. Using this method Stevnser et al. (1994) 
found that ADPRT appears to stimulate gene-specific repair of DNA after 
damaging by alkylating agents, but not the repair of UV-induced pyrimid- 
ine dimers. In addition, cells depleted of ADPRT activity with antisense 
RNA showed changes in chromatin structure and cell morphology, and 
strand rejoining of DNA single strand breaks seems to be delayed (Ding et 
al. 1992). ADPRT is probably also required in early stages of differentiation 
of some cell types (Smulson et al. 1995), and its involvement in the regula- 
tion of the IFN- 7inducible MHC class II expression has been discussed (Qu 
et al. 1994). 

(b) In another series of experiments ADPRT activity is decreased by 
transdominant inhibition by overexpression (tde) of the N-terminal DNA 
binding domain of the enzyme. This domain exhibits only the DNA binding 
ability but is catalytically inactive. Overexpression or microinjection of this 
ADPRT domain has been shown to repress the enzymatic activity of the 
resident ADPRT. Whereas cell-proliferation of hamster CV6o cells was not 
affected by trans-dominant inhibition (Kiipper et al. 1995) such experi- 
ments combined with DNA damaging by alkylating agents or 7-irradiation 
led to the conclusion that ADPRT is involved in the DNA excision repair 
pathway (Molinette et al. 1993). The constitutively transdominant expres- 
sion of the ADPRT DNA binding domain in a stable HeLa cell line had 
drastic consequences for these cells when treated with genotoxic agents 
(Schreiber et al. 1995). 

(c) By Chatterjee et al. (1987) a strategy for selection of cell variants 
deficient in ADPRT activity has been developed. Spontaneous mutants 
from rodent cells with a drastic decrease of ADPRT enzymatic activity 
showed prolonged doubling time, increased frequencies of sister chroma- 
tid exchange, and an increased temperature-sensitivity, which could be 
restored by reintroducing the wild-type ADPRT gene (Chatterjee et al. 1989; 
Yoshihara et al. 1992). 

(d) The ultimate success was the cloning ofhomozygote ADPRT nega- 
tive mice, although it was quite surprising that ADPRT negative mice are 
alive, healthy and even fertile (Wang et al. 1995). 
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5.2 
Protein-Protein Interactions of ADPRT 

A participation of ADPRT in regulatory processes is inevitably coupled to 
an interaction with partner proteins. Modification of acceptor proteins has 
been observed in vitro using reconstituted systems with purified ADPRT. 
Alternatively, proteins modified in vivo were isolated from "broken cell" 
systems or polynucleosomal preparations. Althaus and Richter (1987) re- 
viewed in detail target proteins of poly(ADP-ribobosyl)ation known until 
1987 and discussed the resulting effects of this modification. It is a general 
feature of identified acceptor proteins that they physiologically act on 
deoxynucleotide or nucleotide polymers. Generally, modification of such 
potential target enzymes suppressed their catalytic activity in vitro, prob- 
ably due to the fact that modification decreases their DNA binding ability 
as it has been reported for the automodification reaction of ADPRT itself 
(Yoshihara et al. 1981; Ferro and Olivera 1982; Zahradka and Ebisuzaki 
1982). Target proteins of heteromodification are histones in vitro (Caplan 
et al. 1979; Tanaka et al. 1979), and in vivo (Burzio et al. 1979; Lichtenwalner 
and Suhadolnik 1979), topoisomerases I and II (Jongstra-Bilen et al. 1983; 
Ferro and Olivera 1984; Adamietz 1985; Darby et at. 1985), DNA polymerase 
c~ and ~ (Yoshihara et al. 1985), DNA ligase I and II (Yoshihara et al. 1985), 
high mobility group proteins (Levy-Wilson 1981; Poirier et al. 1982; 
Faraone-Mennella et al. 1982; Tanuma et al. 1983), and low mobility group 
proteins (Faraone-Mennella et al. 1984). 

Since 1987 a lot of work has been done on identification and further 
characterization of potential acceptors of poty(ADP-ribose) and proteins 
interacting with ADPRT (Table 2). In recent years the protein-protein 
interaction of ADPRT with histones, low- and high-mobility group pro- 
teins, DNA polymerases, topoisomerases and ligases, already known to be 
target proteins of ADP-ribosylation, has been investigated and described 
in more detail. Protein-Protein interaction of ADPRT with DNA polym- 
erase e¢ led to a stimulation of polymerase activity in vitro (Simbulan et al. 
1993), while modification of polymerases o~ and e with poly(ADP-ribose) 
decreased their activity (Eki 1994; Eki and Hurwitz 1991). The affinity of 
ADPRT to the nuclear matrix (D'Erme et al. 199o; Kaufmann et al. 1991; 
Quesada et al. 1995) and cell cycle dependent patterns of modification 
(Adolph 1987) suggest an involvement of ADPRT in chromatin arrange- 
ment in DNA replication or recombination during the cell cycle. Modifica- 
tion ofhistones and HMG proteins with poly(ADP-ribose) in vitro resulted 
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in a resistance to proteolytic cleavage of the modified proteins (Boulikas 
and Poirier 1992 ) and repressed nucleases in their activity (Quesada et al. 
199oa,b). 

Phosphorylation of ADPRT by proteinkinase C inhibited ADPRT activ- 
ity in vitro (Tanaka et al. 1987; Bauer et al. 1992) and phosphorylation of 
ADPRT in vivo in permeabilized human leukocytes was observed (Bauer et 
al. 1994), suggesting a biological significance of ADPRT in cellular signal 
transduction. 

Several experiments were performed to study the noncovalent interac- 
tion of poly(ADP-ribose) with proteins. Affinity chromatography with 
poly(ADP-ribose)-agarose beads (Panzeter et al. 1992) made it possible to 
screen for proteins which may interact with polymers, as has been shown 
for histones. Another approach to detect noncovalent interactions between 
polymers and cellular proteins transblotted onto nitrocellulose has been 
described by Nozaki et al. (1994). The interaction of poly(ADP-ribose) 
polymers of automodified ADPRT in vivo with adjacent proteins, predomi- 
nantly histones, may provoke alteration the chromatin conformation 
through noncovalent interactions with histones (Panzeter et al. 1993). 

Nevertheless, up to now no functional relevant ADPRT partner protein 
has been dearly established in vivo, which would allow to assign ADPRT to 
any distinct regulatory process. 

5.3 
Influence on Cellular Processes 

5.3.1 
DNA Repair 

Numerous reports have demonstrated that alkylating agents and ionizing 
radiation lower intracellular NAD + levels (reviewed in Althaus and Richter 
1987), and it has been shown that the major cellular pathway of NAD + 
catabolism refers to ADPRT activity (Whish et al. 1975; Smulson et al. 1975). 
Accordingly, depletion of the intracellular NAD + pool after treatment with 
alkylating agents or radiation has been found to be due to ADPRT activity 
stimulated by the presence of DNA single-strand breaks (Miller 1975). Since 
Durkacz et al. (198o) proposed a strong link between poly(ADP-ribo- 
syl)ation reactions and DNA excision repair, several analyses in different 
systems have been performed to determine the role of ADPRT in DNA 
repair (reviewed in detail by Althaus and Richter 1987). Recent efforts to 



The Role of Poly(ADP-Ribosyl)ation 149 

study the participation of ADPRT in DNA repair revealed that ADPRT is 
not a necessary repair enzyme (reviewed in Lindahl et al. 1995), but it is able 
to stimulate the excision repair pathway. In cell-free HeLa extracts, de- 
pleted of endogenous DNA and ADPRT enzyme, DNA repair of y-irradi- 
ated plasmids occured in a NAD ÷ independent manner, whereas after 
addition of purified ADPRT DNA repair was accelerated in the presence of 
NAD + (Sathoh and Lindah11992; Satoh et al. 1993). In contrast to conclu- 
sions deduced from the histone-shuttle model (Realini and Althaus 1992), 
Satoh and Lindahl (1992) proposed a model of a histone independent 
participation of ADPRT in the excision repair pathway. Polymer synthesis 
during DNA repair was investigated in an in vitro system (Satoh et al. 1994) 
in agreement with a proposed model for ADPRT cycling and DNA strand 
break rejoining (Smulson et al. 1994). Screening for ADPRT activity in 
dependence on DNA damage showed, that the polymer metabolism in vivo, 
especially the formation of branched polymers, is enhanced (Malanga and 
Althaus 1994). Analyses with ADPRT anti-sense RNA expression or 
transdominant inhibition of ADPRT support a correlation between ADPRT 
activity and DNA repair after y-irradiation or exposure to alkylating agents 
in vivo (see Table 1). 

ADPRT negative mice showed no drastic decrease in their DNA repair 
capability (Wang et al. 1995), implying that ADPRT is not directly partici- 
pating in DNA excision repair. 

5.3.2 
Antirecombination and Genomic Stability 

Eukaryotic cells contain substantial amounts of repeated DNA sequences, 
and frequent recombination between such repetitive elements would lead 
to genomic instability. During recombination events DNA breaks appear. 
ADPRT is able to bind rapidly and tightly to such breaks, suggesting a 
possible participation of this enzyme in recombination processes. Far- 
zaneh et al. (1988) discussed the involvement of this enzyme in eukaryotic 
DNA recombination. They observed that ADPRT activity stimulates the 
integration of donor DNA into the host genome during DNA transfection 
of eukaryotic cells. 

A mutant hamster cell line, defective in ADPRT activity, showed pro- 
longed doubling times and increased frequencies of sister chromatid ex- 
changes (Chatterjee et al. 1989). Furthermore, inhibition of ADPRT activity 
by 3-aminobenzamide led to an increase of recombination events in several 
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animal and plant cell systems, as shown by an enhanced sister chromatid 
exchange frequency (Oikawa et al. 198o; Puchta et al. 1995). Studies with 
the ADPRT inhibitor 3-methoxybenzamide in mouse cells showed influ- 
ences of this drug on different recombination pathways in mammalian 
cells. 3-Methoxybenzamide inhibited illegitimate recombination by re- 
pressing intrachromosomal homologous recombination (Waldman and 
Waldman 1991), whereas no effect on extrachromosomal recombination 
events could be observed (Waldman and Waldman 199o). 

ADPRT inhibitors potentiate the recombinogenic but not mutagenic 
action of alkylating agents in somatic Drosophila cells in vivo (Magnusson 
and Ramel 199o). An increase in antibody class switching in mouse lym- 
phoma cells following the application of ADPRT inhibitors was observed, 
due to an enhanced rearrangement in genomic DNA segments (Shockett 
and Stavnezer 1993). Local poly(ADP-ribose) synthesis in the vicinity of 
DNA strand interruptions causes a negative charge repulsion between the 
polymer and the DNA, probably to prevent accidential homologous recom- 
bination within tandem repeat DNA sequences (Satoh et al. 1994; Chatterjee 
and Berger 1994). 

From these observations a regulatory role of ADPRT in recombination 
events has been suggested. 

5.3.3 
Gene Expression and Differentiation 

Slattery et al. (1983) found that ADPRT copurifies with a fraction of tran- 
scription factors of the polymerase II system. Therefore, ADPRT was 
suggested to be a secondary factor in gene transcription by suppressing 
nick-induced pol II dependent transcription. However, no direct correla- 
tion between gene transcription and poly(ADP-ribosyt)ation could be 
observed in vitro (reviewed in Zahradka and Yau 1994), but a role in the 
signal transduction pathway leading to an activation ofrRNA gene expres- 
sion has been proposed (Mishima et al. 1993). 

Differential expression of human ADPRT mRNA has been observed (Mc 
Nerney et al. 1989; Cesarone et al. 199o; Menegazzi et al. 1991; Chabert et al. 
1992; Alcivar et al. 1992). While this observation could be partially ascribed 
to a difference in stability of the transcripts (Negroni and Bertazoni 1993), 
expression of ADPRT is suggested to be mainly regulated by transcription 
(Ogura et al. 199oa,b). A mechanism of autoregulation of the human 
ADPRT gene has been proposed (Oei et al. 1994; Schweiger et al. 1995). 
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Studies with a chimeric protein, in which the catalytic domain of ADPRT 
was fused to the DNA binding domain of the glycocorticoreceptor revealed, 
that ADPRT activity can be targeted to specific DNA sequences and re- 
presses gene expression (Rosenthal et al. 1994). Transcription of the 
ADPRT gene turned out to be regulated during the cell cycle of conca- 
navalin A stimulated rat thymocytes (Wein et al. 1993) and after stimulation 
of human 1ymphocytes with a nonmitogenic dose of TPA (Menegazzi et al. 
1992). Inhibition of glycohydrolase activity indicated that poly(ADP-ribo- 
syl)ation of histone H1 and HMG 14 and 17 is associated with the suppres- 
sion of the glucocorticoid-sensitive mouse mammary tumor virus mRNA 
synthesis (Tsai et al. 1992). Applying hormones to rats and measuring 
ADPRT activity led to the suggestion that the enzymatic activity is control- 
led by thyroid hormones (Cesarone et al. 1994). 

Cytotoxic effects of carcinogens seem to be consistently enhanced by 
ADPRT inhibitors. Drugs interacting with ADPRT inhibited carcinogen- 
induced cellular transformation (Kun et al. 1983; Milo et al. 1985), prevented 
tumorgenesis (Tseng et al. 1987), and led to an altered chromatin structure, 
resulting in gene amplification (Biirkle et al. 199o). Concerning cancer 
research, numerous investigations have been done to develop potent spe- 
cific ADPRT inhibitors (reviewed in Griffin et al. 1995). The relevance of 
ADPRT in transcription regulation is supported by the observation that in 
cells of ADPRT negative mice proliferation following y-irradiation was 
impaired (Wang et al. 1995). 

ADPRT seems also to be regulated on a posttranscriptional level (Her- 
zog et al. 1989; Bhatia et al. 199o). A potential role of ADPRT in differentia- 
tion processes has been discussed. Treatment of Trypanosoma with the 
specific ADPRT inhibitor 3-aminobenzamide resulted in a delay of the 
morphological switch of the parasites surface proteins (Cornelissen et al. 
1985), which could enable the infected host to a fitting antigen response. A 
treatment of Leishmania mexicana amazonensis with ADPRT inhibitors 
diverted this parasite from differentiation to proliferation, indicating that 
poly(ADP-ribosy1)ation is required for the initiation of differentiation 
(Taylor and Williams 1988). The down-regulation of ADPRT is suggested 
to be required for the process of IFN-yinduced MHC class II expression in 
murine leukemia cells (Taniguchi et al. 1993; Nomura et al. 1991; Tomoda 
et al. 1992), as well as in human leukemia cells (Otsuka et al. 1991; Hiromatsu 
et al. 1992; Qu et al. 1994). The activity of ADPRT is controlled by regulation 
of protein levels during differentiation of human leukemia and neutro- 
philic cells (Bhatia et al. 1995). 
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These results suggest that modulation of ADPRT gene transcription is 
required for cellular differentiation and maturation of certain cell lineages. 

5.3.4 
Cell Cycle 

Poly(ADP-ribosyl)ation of nuclear proteins was investigated in depend- 
ence on the cell cycle (Adolph 1987). A specific pattern of modified nuclear 
proteins was found in synchronized HeLa cells. While more than lOO 
acceptor proteins could be detected in interphase nuclei, in the metaphase 
only ADPRT itself served as acceptor of poly(ADP-ribose) polymers. As 
shown by Tanuma and Otsuka (1991) the activity of poly(ADP-ribose) 
glycohydrolase is doubled during the G1 phase of HeLa cells. In response 
to genotoxic treatment HeLa cells deficient in ADPRT activity accumulated 
in the G2+M phase, suggesting an ADPRT function critical for the G2 
checkpoint (Schreiber et al. 1995). Accordingly, ADPRT content as meas- 
ured immunologically in rat fibroblasts was found to increase from G1 to S 
and G2+M phases. Quiescent cells showed a lower ADPRT content than cells 
in the G, phase indicating a cell cycle specific event activating ADPRT 
expression before the G2+M phase (Leduc et al. 1988). The ADPRT mRNA 
level during the cell cycle was analyzed and was found to culminate in the 
G1 phase (Thibodeau et al. 1989). A possible cell cycle dependent biosyn- 
thesis of ADPRT has also been proposed for mouse SV4o-3T3 cells (Sooki- 
Toth et al. 1987). ADPRT seems to be critical for the induction of G~ arrest 
and is involved in the regulation of G2 arrest (Masutani et al. 1995). 

The expression of ADPRT cDNA in yeast cells, lacking ADPRT and 
poly(ADP-ribose) glycohydrolase activities, resulted in the synthesis of 
poly(ADP-ribose) polymers in yeast. These polymers then provoked a cell 
cycle retardation, as a result of a specific delay of the G1 phase, a decreased 
cell viability in stationary cultures, and an increased sensitivity to radiation 
(Kaiser et al. 1992; Avila et al. 1994; Collinge and Althaus 1994). Therefore, 
it is likely that ADPRT is an element of the G2 checkpoint. 

5.3.5 
Ageing/Apoptosis 

A positive correlation between life-span and ADPRT activity of 13 different 
mammalian species has been observed (Grube et al. 1992). The higher 
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poly(ADP-ribosyl)ation capacity in long-living species might be more 
efficient in preventing genetic alterations. 

Increased ADPRT activity after application of DNA damaging cytotoxic 
drugs led to apoptosis (Marks and Fox 1991). Inhibitors of ADPRT partially 
prevent cell lysis of cytolytic T lymphocytes (Redegeld et al. 1992). ADPRT 
inhibitors interacting with the zinc finger domain completely suppressed 
the proliferation of leukemic and other malignant human cells and cause 
endonuclease-mediated cell death (Rice et al. 1992). H202, in concentra- 
tions achieved in the proximity of stimulated leukocytes, induced injury 
and lysis of target cells. Cell lysis was found to be associated with the 
activation of ADPRT (Schrauffstatter et al. 1986). Toxicity of chemically 
generated nitric oxide towards pancreatic islet cells and inhibition of 
cellular respiration in cells exposed to peroxynitrite can be prevented by 
ADPRT inhibitors (Kallmann et al. 1992; Radons et al. 1994; Szabo et al. 
1996). It is proposed that nitrooxygen-induced neurotoxicity is caused by 
NAD + depletion due to stimulated ADPRT activity, resulting in cell lysis 
(Zhang et al. 1994). After exposure to DNA-damaging radicals ADPRT 
negative mutant islet cells were more resistant to the toxicity of nitric oxide 
and reactive oxygen intermediates (Heller et al. 1995). During the onset of 
apoptosis (recently reviewed by Vaux and Strasser 1996) specific proteases 
(Tewari et al. 1995; Nicholson et al. 1995) were activated, resulting in the 
appearance of specific proteolytic ADPRT fragments (Kaufmann et al. 
(1993). The proteolytic products were considered as markers of apoptosis 
(Lazebnik et al. 1994). However, it seems unlikely that ADPRT cleavage 
during apoptosis is a relevant signal of cell death in vivo. 

6 
Conclusions 

The immediacy of the transient response of ADPRT activity, which appar- 
ently precedes DNA repair processes, as well as the high energy cost of 
polymer synthesis suggest that the poly(ADP-ribosyl)ation reaction cata- 
lyzed by ADPRT is an event of major importance in perturbed cell nuclei. 
However, it is still impossible to define the exact physiological role of 
ADPRT. 

In 198o Durkacz et al. suggested for the first time an involvement of 
poly(ADP-ribosyl)ation in DNA repair. Since then a lot of effort has been 
done to clarify the role of ADPRT in DNA excision repair. The influence of 
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specific ADPRT inhibitors on DNA repair indicated a participation of 
poly(ADP-ribosyl)ation reactions in the recovery from DNA damage. From 
these studies only the cytotoxic effects of carcinogens seem to be consis- 
tently enhanced by ADPRT inhibitors. Recent investigations using en- 
zyme-depleted extracts or cells and even ADPRT "knocked-out" mice show 
that ADPRT does not directly participate in DNA repair. The absence of a 
striking difference in phenotype of ADPRT-negative mice (Wang et al. 
1995) and their normal fetal and postnatal development revealed that 
poly(ADP-ribosyl)ation is not essential for mouse development and their 
cellular processes. This entangling result leads to the speculation of alter- 
native, presently unknown mechanisms, which may substitute for the 
ADPRT function in these mice. Impaired proliferation and the onset of skin 
lesions in older mice suggest a function for ADPRT in response to environ- 
mental stress (Wang et al. 1995). Thus, these mice can provide a valuable 
system for testing the mutagenic and carcinogenic potential of agents in 
our environment and are also expected to aid studies on the role of ADPRT 
in other regulatory functions. 

HeLa cells with depressed enzymatic ADPRT activity showed chromo- 
somal instability, an increase in their doubling time, G2+M accumulation, 
and a marked reduction of cell survival in response to genotoxic treatment 
(Schreiber et al. 1995). It seems worthwhile to examine the role of 
poly(ADP-ribosyl)ation reactions under these aspects. 

The future will provide discovery of physiological partner-proteins of 
ADPRT and hopefully allow to define the precise biological roles of this 
enzyme. 
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1 
Introduction 

It has been proposed that damage to DNA byvarious chemical agents leads 
to a number of diseases such as cancer. The repair of lesions induced on 
DNA by various xenobiotic agents is mediated by a series of DNA repair 
proteins. Through evolution, these proteins have evolved to insure the 
integrity of the genome Therefore, a balance exists between damage and 
repair, which is critical to the maintenance of the genome. 

Under aerobic conditions, living organisms generate superoxide and 
peroxide which are products of oxygen metabolism. These agents, in the 
presence of metals, can form powerful oxidants which oxidize nucleic acids 
as well as induce strand breaks (Halliwell and Gutteridge 1989). Recently, 
another small molecule, nitric oxide, has been shown to be produced in 
vivo throughout the animal kingdom and to participate in the regulation 
of a number of key physiological roles (Ignarro 199o; Moncada et al. 1991; 
Feldman et al. 1992). This discovery was surprising since NO, in an aerobic 
environment, generates a number reactive nitrogen oxide species (RNOS) 
which are known to be toxic to living cells. This report will discuss some of 
the mechanisms by which NO is involved in various genotoxic mechanisms 
and the importance that the NO interaction with DNA repair proteins plays 
in these events. 

To understand some of the mechanisms by which NO might mediate 
genotoxic events, a discussion of some of the chemistry and biochemistry 
of NO is useful. There are numerous reviews on biology of nitric oxide 
which cover the production of NO in various cells and biological conditions 
Nitric oxide is formed from the oxidation of arginine to citrulline, which is 
mediated by the enzyme nitric oxide synthase (NOS; Nathan and Xie 1994; 
Marletta 1993; Griffith and Stuehr 1995). This protein has similarities to the 
monoxygenase, cy~ochrome P45o. NOS contains several cofactors such as 
calmodulin, tetrahydrobiopterin, FAD and FMN, as well as heme prothetic 
group. The oxidation of arginine to yield NO is mediated at the heme site. 
There are several isoforms of NOS which can be categorized into constitu- 
tive and inducible. The constitutive form (cNOS) is stimulated by an influx 
of extracellular calcium which binds to calmodulin thereby activating the 
enzyme. This isoform is present in specific cell types and modulates various 
physiological functions such as vascular tone (Ignarro 199o; Moncada et al. 
1991 ). The inducible form (iNOS) is induced by combinations of several 
cytokines and/or endotoxins (Nathan and Xie 1994; Griffith and Stuehr 
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1995). iNOS is calcium independent and generates nitric oxide for pro- 
longed periods of time yielding higher NO fluxes than cNOS. The duration 
and amounts of NO production has a tremendous influence on the chem- 
istry of NO in biological systems, and this is probably the major reason for 
the two distinct isoforms of NOS. Thus, the chemistry of NO at different 
NO fluxes can give insight into the different roles NO can play in biology. 

2 
Chemical Biology of NO 

An important aspect of NO in various genotoxic mechanisms is the chem- 
istry. A discussion of what we termed the "chemical biology of NO" is 
useful. The chemical biology of NO can be defined as the pertinent chemical 
reactions which occur in biological systems (Wink et al. 1996). These 
reactions can be categorized into direct and indirect effects. Direct effects 
are those reactions where NO directly interacts with specific biological 
molecules. Indirect effects are the chemical reactions between RNOS de- 
rived from NO and various biological molecules. Therefore, the direct 
effects are the chemistry of NO, whereas the indirect effect is the chemistry 
of RNOS. The advantage of separating the NO chemistry into these two 
effects is that the concentrations of NO distinctly determine which effects 
can occur. For instance, direct reactions occur at lower concentrations of 
NO such as those that might be derived from cNOS. Yet, at higher concen- 
trations, as expected from iNOS, indirect reactions may occur. Therefore, 
the relevance of the chemical reactions might depend on the isoform of 
NOS under a specific condition. The chemical biology provides insight into 
the role NO plays in genotoxic mechanism. 

Nitric oxide is a relatively unreactive molecule (see review in Wink et 
al. 1996; Wink and Ford 1995). NO interacts directly in biological conditions 
with metalloproteins such heme containing enzymes but doesn't react 
directly with bio-organic molecules which contain thiol or amines. One 
example of a direct effect is the binding of NO to the heme moiety in 
guanylate cyclase which stimulates the conversion of GTP to cGMP (Ig- 
narro 199o). However, under aerobic conditions, NO can react with oxygen 
or superoxide to form reactive nitrogen oxide species such as N203 and 
peroxynitrite (see review in Wink et al. 1996; Wink and Ford 1995). These 
two species are proposed to be the primary RNOS formed in vivo. N203 can 
be derived from several sources: the reaction of NO with 02, acidic nitrite, 
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or as will be discuss below, from the NO/O2- reaction. The primary mode 
of chemistry is to nitrosate amines and thiols to form nitrosamines and 
S-nitrosothiols (Williams 1988). The formation of these adducts occurs 
through the donation of NO+ to the amine or thiol complex (Eqs. 1, 2): 
N203+RSH--4RSNO+NO2- (1) 
N203+R'R"NH-->R'R"NNO+ NOz- (z) 
The conditions where these nitrosative adducts are formed in biological 
systems are referred to as nitrosative stress. 

The reaction between NO and superoxide (Eq. 3) to form peroxynitrite 
has received a lot of attention in the literature, as being either a potential 
deleterious species or representing a detoxication mechanism for ROS 
formed from peroxide and metals (Pryor and Squadrito 1996): 
NO+O2--->OONO- (3) 
Peroxynitrite is relatively unreactive in basic solutions, slowly dismutating 
to nitrite and oxygen. In addition, peroxynitrite reacts with sulphydryl 
complexes resulting in the formation of disulfides, at a rate constant of 
6Xlo3M/s (Radi et al. 1991). However, protanation at neutral pH of per- 
oxynitrite forms a reactive intermediate (Eq. 4) which can oxidize various 
biological substrates (Eq. 5) or simply isomerize to nitrate (Eq. 6; Koppenol 
et al. 1992). 
OONO---gHOONO (4) 
HOONO+substrate -4substrate oxidation 
HOONO--4NO 3- (6) 

The reactive intermediates formed from protonation were thought to 
be nitrogen dioxide and hydroxyl radical in aqueous solution. However, it 
appears that this intermediate is less potent oxidant (Koppenol et al. 1992). 
A recent study has shown that peroxynitrite can oxidize its substrate by 
either one or two electrons (Pryor et al. 1994), showing a distinctly different 
reactivity pattern from either OH or NO2. A very interesting reaction which 
could have biological implications is the nitration oftyrosine by peroxyni- 
trite in the presence of metal ions (Ischiropoulous et al. 1992), which may 
contribute to the inhibition and alteration of key cellular proteins. How- 
ever, the yield of this reaction is less than 5%. Overall, the predominant 
chemistry mediated by OONO- is oxidation, and therefore peroxynitrite 
represents a form of oxidative stress. 

Though peroxynitrite may represent a mechanism by which NO can be 
activated to a potent oxidizing species, several recent reports suggest that 
oxidation mediated by this species is influenced by the relative amounts of 
NO and superoxide formed (Miles et al. 1995, 1996). It has been suggested 
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that N203 can be formed from the interaction of NO and superoxide. In 
the presence of excess of NO or superoxide, peroxynitrite is converted to 
nitrogen dioxide (Miles et al. 1996; Koppeno11996; Eqs. 7, 8): 
H+ 
OONO-+NO---~H+NO2+N02- (7) 
H+ 
OONO-+O2--~H+NO 3 (8) 
Nitrogen dioxide can rapidly react with NO to form the nitrosating species, 
N203 (Eq. 9): 
NO2+NO-->N203 (9) 
Thus relative amounts of NO and superoxide will impact the chemistry of 
peroxynitrite in vivo. 

NO has been shown to generate chemical species which could alter 
biological macromolecules. However, several studies have shown that NO 
can abate oxidation reaction mediated by Fenton type reactions (Kanner 
et al. 1991; Rubbo et al. 1994; Hogg et al. 1993; Wink et al. b 1994). In the 
presence of reactive chemical species such as those derived from nitric 
oxide, superoxide or peroxide (via Haber-Weiss chemistry)~ there are two 
basic types of stress, oxidative and nitrosative. Oxidation occurs from the 
reaction of peroxide and metals to powerful oxidants like hydroxyl radical 
and hypervalent metals. The derivation of these types of oxidants are metal 
dependent oxidative stress. The reaction between 02- and NO to form 
peroxynitrite, where peroxynitrite mediates oxidative damage, can be 
termed metal independent oxidative stress. Since ROS derived from per- 
oxide and OONO- do not mediate nitrosation (Miles et at. 1995; Wink et al. 
1993), then nitrosative stress primarily arises from N203. Categorizing these 
effects can help to sort out when and where these types of reaction might 
occur and allow for discussion of different genotoxic mechanisms (Fig. 1). 
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Fig. 1. The chemical biology of NO 

3 
Chemistry of NO and DNA 

The presence of NO in an aerobic environment results in the formation of 
RNOS which can nitrosate amines, forming potentially carcinogenic ni- 
trosamines (Eq. 1; Williams 1988). It was first shown that induced macro- 
phages could generate nitric oxide from iNOS. In the presence of secondary 
amines, these induced macrophage formed nitrosamines (Marietta 1988 ). 
It was proposed that nitrosamines formed from the activated immune 
system might play a role in carcinogenesis associated with inflammation. 
Liu et al. (1991, 1992) demonstrated that nitrosamines could be generated 
from woodchuck liver chronically infected with hepatitis, suggesting that 
there exists under certain conditions in vivo sufficient nitrosative stress to 
form carcinogenic nitrosamines. These studies suggest that one mecha- 
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nism by which NO could be carcinogenic is via the formation of nitrosami- 
nes. 

Though NO itself does not interact with bio-organic molecules such as 
DNA or proteins, RNOS such as N203 and peroxynitrite can alter DNA, 
resulting in a variety of lesions (Wink et al. 1996). It was shown that 
exposure of bacteria and mammalian cells to NO results in the formation 
of DNA single strand breaks (Arroyo et aI. 1992; Nguyen et al. 1992). Further 
studies showed that deamination also occurred (Wink et al. 1991; Nguyen 
et al. 1992 ). It was proposed that the formation of RNOS via the autoxida- 
tion of NO was responsible for these lesions. In addition to cells being 
exposed to NO, several studies showed that when DNA was exposed to NO 
under aerobic conditions, cytosine, adenine and guanine underwent 
deamination (Wink et al. 1991; Nguyen et al. 1992). It was proposed that 
nitrosation of the exocyclic amine group resulted in a primary nitrosamine 
(Eq. lO). This was then followed by rapid deamination resulting in hydroxy 
group (Eq. 11): 
NH2-R+N203----)R-NHNO+NO2- (1o) 
R-NHNO--~R-NNOH----)R-OH+Nz (11) 
This chemistry would result in the conversion of cytosine to uracil, guanine 
to xanthine, methylcytosine to thymine, and adenine to hypoxanthine. It 
has been proposed that this mechanisms involving NO could contribute to 
the spontaneous deamination which occurs in vivo. 

Further studies have examined the resultant mutations in a shuttle 
vector treated with nitrosative agents then transfected and retrieved from 
bacterial and mammalian cells to determine the types of mutations after 
repair in prokaryotic and eukaryotic systems. Plasmids were treated with 
nitrosating agents from NO gas (aerobic) (Routledge et al. 1993), NO donor 
compounds (Routledge et al. 1994a) and acidic nitrite (Routledge et al. 
1994b) and were transfected into different cells. The plasmids were recov- 
ered and the mutations determined. As shown in Table 1, the types of 
mutations varied. Though many of the mutations were attributed to deami- 
nation, a recent study has suggested that these lesions were not due to 
deamination in human tumor lines (Schmutte Crideout et al. 1994). 

Another potential genotoxic agent is peroxynitrite formed from the 
reaction between NO and superoxide. Several studies have shown that 
synthetically generated peroxynitrite can cause various lesions to DNA. 
Peroxynitrite concentrations ranging from o.o5 to 8 mM were used to 
induce DNA strand breaks in vitro (King et al. 1992; Salgo et al. 1995). 
Oxidation of guanine to form C8-oxoguanine (HOdG) in the presence of 
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Table L Summary of distribution of mutations in the psP189 vector transfected into 
Ad293 cells 

Mutations Plasmid treatment 
NO donors NO (gas) Nitrite (pH 5.4) OONO- 

Transversions 
GC-~TA 14 4 29 65 
GC~CG 8 1 9 28 
Transitions 
GC-~AT 55 29 46 11 
AT-~GC 7 6o 12 - 

SIN-l, an NO donor thought to generate NO and superoxide, was observed 
(Inoue and Kawanishi 1995), though another study suggested that per- 
oxynitrite did not increase HOdG levels in DNA (Yermilov et al. 1995a,b). 
In addition to oxidation products, 8-nitroguanine has also been detected 
as a product of peroxynitrite reacting with guanine, suggesting that nitra- 
tion could be an important process (Yermilov et al. 1995a,b). In cell culture, 
deRojas-Walker et al. (1995) have suggested that oxidative damage to DNA 
in activated macrophage is due to the formation of peroxynitrite. ]uedes 
and Wogan transfected into E. coli and AD293 cells a peroxinitrite-treated 
plasmid (]uedes and Wogan 1996): a treatment with 2.5 mM peroxynitrite 
resulted in primarily GCII----)TA (65%) transversions; GC1--~ICG (28%) 
transversions; GC1---~IAT (11%) transitions, suggesting a different mutation 
spectra from agents which induce nitrosative stress (Table 1). 

Most of the studies involving peroxynitrite where conducted in the 
presence of large boluses of the synthetically generated compound. These 
preparations are contaminated with excessive nitrite and hydrogen perox- 
ide which could contribute to the observed results. Contrary to bolus 
delivery of peroxynitrite, the chemistry of peroxynitrite formed in vivo 
depends on the relative fluxes of NO and superoxide in that microenviron- 
ment, as discussed above (Eqs. 4, 7-9; Miles et al. 1996). The amount of 
peroxynitrite which directly reacts with the biological target is minimal, if 
the NO flux is in excess. In fact, XO and peroxide mediated damage to DNA 
is abated by the presence of NO (Pacelli et al. 1994). It is presumed that 
Fenton chemistry mediates the DNA strand breaks which is abated by NO. 
Furthermore, hydroxylation reactions are also quenched by the presence 
of NO (Miles et al. 1996). These results suggest that the presence of NO 
could abate the oxidation chemistry mediated by oxidants generated in the 
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classical Haber-Weiss chemistry. Taken together, these protective effects 
indicate that involvement of RNOS to modify DNA directly might be 
limited in vivo while NO could protect the chemistry of oxidative stress. 

The conditions to induce strands breaks, oxidation and deamination of 
DNA require high concentrations of RNOS or NO which may not be 
physiologically relevant. In vivo, antioxidants and RNOS scavengers, such 
as ascorbate and GSH, are abundant decreasing the chance that these 
chemical species directly modify DNA. This prompts the question: "How 
can NO be involved in genotoxic mechanisms?" One mechanisms which 
we have begun to explore is that NO and RNOS may affect DNA repair 
mechanisms. 

4 
NO and DNA Repair Proteins 

RNOS have a particular high affinity for amino acids containing thiol 
residues (Wink et al. a 1994) suggesting that enzymes which have thiol 
residues critical to their function may be inhibited. We have surveyed 
several purified DNA repair proteins. The first was the O6-alkylguanine - 
DNA alkyltransferase (alkyl transferase) which, exposed to the NO donor 
DEA/NO, was inhibited (Laval and Wink 1994). The alkyl transferase 
proteins, involved in the repair of O6-methylguanine and 04- 
methylthymine residues, contain a thiol group in their active site (Ling- 
Ling et al. 1992; Zak et al. 1994). It was shown that NO inhibited the alkyl 
transferase activity, not only in the mammalian purified protein, but also 
in whole cells (Laval and Wink 1994). As shown in Fig. 2, the methyl group 
of O6-methylguanine is repaired by the alkyt transferase protein by simply 
transferring the methyl group from the 06 position of the methylated 
guanine to a cysteine residue within the protein. Exposure to NO in an 
aerobic solution results in nitrosation of the thiol, thereby preventing the 
methyl transfer (Fig. 2). Since this NONOate compound releases NO over 
a period of time, a time dependent experiment was done. The inhibition 
was time dependent suggesting that NO or RNOS was mediating these 
effects. Cysteine has been shown to scavenge the RNOS formed from the 
autoxidation of NO (Wink et al. a 1994). When the protein was treated with 
NO in the presence of lO mM cysteine, its activity was not inhibited This 
result suggests that NO itself was not responsible for the inhibition, but the 
resulting RNOS presumably N203. 
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Fig. 2. Mechanism for 06-methyl-guanine DNA methyltransferase inhibition by NO. 
(dG is one random deoxyguanine in DNA) 

Another important class of DNA interacting proteins includes those 
containing zinc finger motifs (Schmeidescamp and Klevit 1994). Zinc finger 
motifs contain either two or four cysteine residues. One example is the 
E. coli formamidopyrimidine-DNA glycosylase (Fpg protein), which re- 
pairs atkylation damage to guanine, such as 2,6 diamino-4-hydroxy-5-N- 
methylformamidopyrimidine residues (Fapy) and oxidative damage such 
as 8-oxoguanine residues (rewieved by Laval 1996). This protein has a 
glycosylase activity, incises DNA at abasic sites by a ~-6 elimination reac- 
tion, has a dRPase activity and contains a Zn finger motif which is manda- 
tory for its various activities (O'Connor et al. 1993). It was shown that the 
Fpg protein activity was inhibited in the presence of aerobic NO (Wink and 
Lava11994). It was suggested that N203 nitrosates the thiol residue, result- 
ing in the ejection of the zinc. This degradation of the structural integrity 
of the protein does not allow its interaction with DNA, and hence inhibits 
repair in vitro and in vivo (Fig. 3). Another study showed that the zinc finger 
protein, LAC9, was degraded by the presence of NO (Kroncke et al. 1994). 
Using Raman spectroscopy, it was shown that S-nitrosothiol adducts were 
formed (Kroncke et al. 1994). 

DNA ligases are enzymes which restore single strand breaks and are 
critical for the DNA integrity during processes such as replication and 
repair. The eukaryotic and T4 DNA ligases are active in the presence of ATP 
and act in two steps: the formation of protein-AMP intermediates then the 
ligation of DNA breaks (Lindahl and Barnes 1992). When T4 DNA ligase 
was exposed to the NO generator, DEA/NO {Et2N[NO(NO)]Na}, a dose- 
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Fig. 3. Mechanism for the degradation of zinc finger motifs mediated by NO in the fpg 
protein 

and time-dependent inhibition of these two steps, adenylylation of the 
protein and ligation of the substrate, was observed (Graziewicz et al. 1996). 
This inhibition was abated by the presence of cysteine, suggesting that 
RNOS rather than NO mediate the inhibition of the ligase activity. Recovery 
of the activity was observed neither with time nor in the presence of 
dithriothreitol, suggesting that the reaction is different from that observed 
in the case of the alkyltransferase protein. A critical lysine residue is present 
in the active site of the T4 DNA-ligase protein (Lindahl and Barnes 1992). 
This residue initially forms an intermediate with an adenyl group from 
ATP, then the adenyl group is transferred to the 5'P end of DNA (Fig. 4). 
In the final step, unadenylylated ligase is required for the generation of a 
phosphodiester bond. The initial adenylylation of the lysine is therefore a 
crucial step. In the presence of NO, nitrosation of the lysine would form a 
primary nitrosamine, which would rapidly rearrange to the diazonium salt 
followed by hydrolysis to yield the corresponding hydroxy adduct (Eq. 12): 
Protein-NH2+N203-->-NH-NO-->Protein-N2OH+OH- (12) 

It has been reported that the lysine residue is partially in the depro- 
tonated form in the ligase protein (Engler and Richardson 1982). The lone 
pair electrons of the nitrogen atom that bind to adenylate group via 
nucleophilic attack provides a site for electrophilic attack. In the presence 
of NO, nitrosation of the partially deprotonated amine could occur via N203 
which then resuks in a primary nitrosamine. Since primary nitrosamines 
undergo deamination (Williams 1988), this nitrosamine would result in a 
hydroxy group (Fig. 4). This chemistry represents a new mechanism by 



186 F. Laval et al. 

[Proteinligase] 

NOIO2--'l~ H+, ~ NO 2 . N203 

a N O ,  O 2-  

[Proteinligase] ~ NH2.NO + 

,l 
[Prote in l igase ]  ~ O H  

1t+ 
- -  N H  2 . ~ [Prote inHgase]  - -  N H 3  + 

A T P o r  

[Prote inl igase]  

O 

II 
NH 2 --P-O-R-A 

I 

R= ribose 
A = adenine 

Ligase Activity 

Fig. 4. Mechanims for the inhibition of ligase mediated by NO 

which NO (via RNOS) can interact with proteins suggesting that the pH of 
the protein site of the critical 1ysine residue is an important determinant 
for interaction with RNOS. 

Different DNA ligases have been found in mammalian cells (Tomkinson 
et al. 1991). DNA ligase I is involved in the joining of Okazaki fragments 
during DNA replication (Li et al. 1994). A role in meiotic recombination 
has been suggested for DNA ligase II (Higashitani et al. 199o) and DNA 
ligase III activity has been related to DNA repair (Caldecott et al. 1994; 
Ljungquist et al. 1994). Recently, a fourth DNA ligase has been identified 
(Wei et al. 1995). It has also been shown that an inherited molecular defect 
in DNA ligase I resulted in immunosuppression, lymphoma and hypersen- 
sitivity to DNA damaging agents (Tomkinson et al. 1991). Therefore, inhi- 
bition of the DNA ligase activity could play a crucial role in the cells and 
could explain some previous observations. Exposure of cells to NO results 
in an increased number of DNA single strand breaks (Nguyen et al. 1992). 
However, when purified DNA is exposed to NO, even at doses resulting in 
RNOS concentration of i M, there is no formation of single strand breaks 
(Routledge et al. 1993). This implies that direct chemical modification of 
DNA by NO or RNOS does not occur to form DNA breaks, which, in vivo, 
are probably due to another mechanism. Our results suggest that one 
possibility is the inhibition of the DNA ligase activity by NO, resulting in 
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the accumulation of DNA breaks formed either during transcription or 
repair. The increase in DNA breaks due to NO-mediated inhibition ofligase 
could in turn activate the tumor suppressor gene, P53 (Messmer et al. 1994), 
or activate poly (ADP-ribose) synthesis (Zhang et al. 1994). 

5 
Conclusions 

The involvement of NO in genotoxicity and carcinogenic mechanisms may 
be varied. On one hand NO can form RNOS which can modify DNA. Most 
of these experiments were done under very high concentrations of NO and 
RNOS and may have little or nothing to do with in vivo mechanisms. 
However, NO can affect DNA specific repair systems even in whole cells at 
lower NO and RNOS concentrations which might enhance the damage of 
another agent. Though NO might alter DNA directly, the most likely 
involvement of its genotoxic action is through the increase in sensitivity to 
other mutagenic agents. From this discussion, it appears that the primary 
source of RNOS is from iNOS. Thus genotoxicity either by direct chemical 
alteration of DNA or interference with the repair system would be from an 
iNOS source. 
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