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Introduction 

The immune system has the task of warding off the continuous daffy on- 
slaught of microorganisms, thus protecting the body from infections. The 
first line of defense mobilizes macrophages, polymorphonuclear granulo- 
cytes, natural killer cells and cytotoxic lymphocytes. Upon activation, these 
directly attack and destroy foreignbodies. An inflammatory response with 
the characteristic symptoms of local hyperthermia, swelling, redness and 
pain is the result. 

Cytokines and lipid mediators constitute the signals which enable com- 
munication between the different leukocyte populations and the coordina- 
tion of defense of major organs. In this way, a response overshoot, which 
would result in tissue or organ damage, can be prevented. The intricate 
regulation of the immune system by the vast variety of mediators will 
probably remain largely a mystery owing to the high level of redundancy, i.e. 
many of the messengers differ only slightly in the responses they provoke; 
and to the pleiotropy of the mediators, i.e. the same molecules are employed 
as mediators in a variety of different situations throughout the body. The 
colony-stimulating factors (CSF), endogenous cytokines now cloned and 
commercially available, bring about definite, reproducible immunomodula- 
tory effects in vitro and in vivo, including the proliferation of selected leuko- 
cyte populations and the intensification of their mature functions. 

This review will examine the immunomodulatory properties of granulo- 
cyte colony-stimulating factor (G-CSF) and granulocyte-macrophage col- 
ony-stimulating factor (GM-CSF), which have been studied most extensively 
up until now, as well as monocyte colony-stimulating factor (M-CSF) and 
interleukin-3 (IL-3, multi-CSF). Although these four cytokines mediate 
highly specific, overlapping biologic activity, their amino acid sequence 
dissimilarities within one species indicate that they are not derivatives of a 
common evolutionary ancestral regulatory molecule (Metcalf 1986). Fur- 
thermore, the homology between the human and murine genes varies be- 
tween the CSF, consequently crossreactivity is not homogenous (Table 1). 

Table 1. Homology and crossreactivity of human and murine CSF 

CSF 

G-CSF 

homology hu : mu 

73% 

crossreactivity 

yes 

GM-CSF 56% no 

M-CSF 82% hu--)mu 
n o  IL-3 29% 



Immunomodulation by Colony-Stimulating Factors 

t \ ' , ,  
/ ~ ~ IL-3 

q[- / ~  ~/Eosinophils~,~,~ / ~. '~Basophils'~ 
GM-CSF/\ ~ 

[ , '  \ , 
M-CSF/ / G'CSF ~ 

I I , "  ,," " ' 
J I /  ." \ 

Fig. 1. The role of the four colony-stimulating factors in hematopoesis. The dia- 
gramm summarizes the hematopoetic effects of G-CSF, GM-CSF, M-CSF and IL-3. 
Bold arrows refer to strong and dashed arrows to weak stimulatory activities 

General aspects of the molecule, its production, its receptor and its role 
in hematopoiesis (Fig. 1) will be discussed briefly for each of the CSF. Then, 
the immunomodulatory effects on the various leukocyte populations will be 
addressed. Since anti-infectious defense is accomplished by a joint effort of 
all immune cells, a separate chapter is devoted to the overall effect of the 
CSF on the course of infectious diseases. The final part of each section will 
discuss the emerging dinical potentials arising from the immunomodula- 
tory activities of the CSF. If not stated otherwise, all data refer to the human 
system. 

A number of biological activities, which provided names for a variety of 
putative mediators, are now attributed to the four pertinent CSF. Table 2 
lists some examples of mediators found to be identical with these CSF. Table 
3 provides a compilation of the bioassays established for the CSF discussed 
in this review. 
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Table 2. Common abbreviations of the names used for the colony-stimulating fac- 
tors 
G-CSF ; 
CSF-G 

granulocyte colony-stimulating factor 

CSF-~ ; colony-stimulating factor 1~ or 3, respectively 
CSF-3 
MGI-1G ; macrophage-granulocyte inducer 1G or 2 resp. 
MGI-2 
G/M-CSA granulocyte-macrophage colony-stimulating activity 
DF differentiation factor 

pCSF 
GM-CSF ; 
CSF-GM 

NIF-T 
M-CSF ; 
CSF-M 

pluripoietin 
pluripotent CSF 
granulocyte-macrophage colony-stimulating factor 

CSF-cz; colony-stimulating factor ct or 2, respectively 
CSF-2 
MGI-1GM macrophage-granulocyte inducer 1GM 
Eo-CSF eosinophil CSF 
HCGF hematopoietic cell growth factor 
KTGF keratinocyte-derived T-cell growth factor 

T cell-derived neutrophil migration inhibition factor 
macrophage colony-stimulating factor 

CSF- 1 
urinary CSF 
MGI-1M 
MGF 
IL-3 

colony-stimulating factor 1 

macrophage-granulocyte inducer 1M 
macrophage growth factor 
interleukin 3 

CSF-2(x ; colony-stimulating factor 2ct or 2~3, respectively 
CSF-2~ 
ECSF erythroid CSF 
EoCSF 
MEG-CSF 
MCSA ; 
multi CSF 
Multi HGF 

CFU-S 
CFU-SA 
CFU-S MF 
HCGF ; 
HPGF 

eosinophil CSF 
megakaryocyte CSF 
multi-colony-stimulating activity Or factor, resp. 

multilineage hemopoietic growth factor 
mixed CSF 
colony-forming unit spleen 
colony-forming unit stimulating activity 
colony-forming unit spleen maintenance factor 
hematopoietic cell growth factor 

MCGF ; mast cell growth factor 
MGF 
SAF 

HP-2 

stem cell activating factor 
histamine producing cell stimulating factor 
helper peak 2 or hemopoietin 2 
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Table 2 Icontinued) 
PSF ; 
PCSA 
PSH 

WGF 
BP ; 
BPA 

(Ibelgaufts 1992). 

persisting cell-stimulating factor or activity, respectively 

panspecific hematopoietin 
20tx-dehydrogenase-inducing factor 
Thy- 1 inducing factor 
WEHI-3 growth factor 
burst-promoting activity 

Table 3. Bioassa, 

CSF 

G-CSF 

GM-CSF 

M-CSF 

IL-3 

,s for the different CSF 

biological basis of assa}r 
proliferation 

granulocgte colony formation 
enhance superoxide production 
proliferation 

granulocyte macrophage colony 
formation 
enhance oxidative burst 
degranulation 
proliferation 

cell/assay system 
NFS60 cell line (human 
leukemia), 
GNFS-60 (routine leukemia) 
bone marrow colony assay 

i neutrophils 
TF-1 (human erythro- 
leukemia), 
MO7e (human megkaryo- 

blastic leukemia), 
AML-193 (acute myeloid 
leukemia) 
bone marrow colony assay 

neutrophils 
neutrophils 
M-NFS60 (murine leukemia) 

macrophage colony formation bone marrow colony assay 

induce production of IFN, TNF, macrophages 
G-CSF, IL-1 

i proliferation 

erythroid, granulocyte and 
[ macrophage colony formation 

(Thorpe et al. 1992). 

TF- 1 (human erythro- 
leukemia), 
MO7e (human megkaryo- 
blastic leukemia), 
AML-193 (acute myeloid 
leukemia) 
bone marrow colony assay 
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I 
G-CSF 

Thomas Hartung 

1 
General Information 

1.1 
Molecular Biology and Endogenous Production 

A 
The Molecule G-CSF 

The various names originally given to G-CSF (see Table 2) reflect its numer- 
ous bioactivities. Only later were these activities traced back to one and the 
same molecule. Human G-CSF was first purified from the bladder carcinoma 
cell line 5637 in 1985 (Moore 1991) and subsequently cloned and expressed 
in E. coli (Souza et al. 1986) and monkey COS cells (Tsuchiya et al. 1986; 
Nagata et al. 1986). 

The single copy of the gene encoding G-CSF is situated on the q arm of 
chromosome 17 near other genes involved in the development of neutro- 
philic grannlocytes (Gabrilove and ]akubowski 1990). A chain of 174 amino 
acids with a molecular mass of 18 kD forms the protein, which is O- 
glycosylated in its native form. Therefore, the apparent relative weight is 
approximately 19.6 kD (Moore 1991). Murine and human G-CSF share 73% 
homology at the amino acid level, which explains the significant species 
cross-reactivity (Moore 1991). Structural homology between G-CSF and IL-6 
indicates that these two factors may share a common ancestral gene (Ogawa 
1993). 

Approved pharmaceutical forms of G-CSF include a recombinant non- 
glycosylated protein expressed in E. coli (Filgrastim) and glycosylated forms 
expressed in Chinese hamster ovary cells or yeast (Lenograstim). Both forms 
share practically the same pharmacodynamic properties (Yuo et al. 1990), 
though their pharmacokinetics differ (Nissen et al. 1994). Glycosylation 
stabilizes the molecule in vitro by suppressing polymerization and/or con- 
formational changes (Oh-eda et al. 1990) and lends resistance to protease 
degradation in human serum (Nissen et al. 1994). Whether the differences 
between the glycosylated and non-glycosylated forms of G-CSF are of sig- 
nificance in clinical use has not yet been established (Frampton et al. 1995). 
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B 
Endogenous Production of G-CSF 

CSF are produced continuously in some tissues such as in bone marrow. 
The}, are also produced readily at the focus of infectious or inflammatory 
disorders. The endogenous production of the CSF is often overlooked when 
treating patients with the recombinant material. Therapeutic efficacy can 
only be reached if there is an absolute or relative CSF-deficiency. Therefore, 
the endogenous production and its regulation deserve careful attention with 
regard to putative indications. 

Induction of G-CSF 

The production of G-CSF is initiated by a number of factors in various ceU 
populations (Table 4). 

In resting monocytes, the levels of G-CSF transcripts are low (Ernst et al. 
1989). Stimulation of human monocytes with lipopolysaccharide (LPS), 
peptidoglycan breakdown products, phorbol myristate acetate (PMA) or 
cycloheximide had little effect on the transcription rate of the gene, but in- 
stead resulted in the stabilization of G-CSF mRNA (VeUenga et al. 1988; 
Ernst et al. 1989; de Wit et al. 1993; Cluitmans et al. 1993; Dokter et al. 1994; 
Hamilton 1994). Direct subsequent translation of the mRNA to G-CSF pro- 
tein in these cells was observed in response to LPS (Vellenga et al. 1988; 
Hamilton et al. 1992b; SaUerfors and Olofsson 1992), phytohemagglutinin 
(PHA) plus PMA (Oster et al. 1989c), GM-CSF (Oster et al. 19891); Sallerfors 
and Olofsson 1992), interleukin-1 (IL-1) (SaUerfors and Olofsson 1992), IL-3 
(Oster et al. 1989b), interleuk~n-4 (IL-4) (Wieser et al. 1989), M-CSF 
(Ishizaka et al. 1986; Motoyoshi et aL 1989) and peptidoglycan breakdown 
products (Dokter et al. 1994). Tumor necrosis factor-~ (TNF-cz) and inter- 
feron-y (IFN-7) also induced the release of G-CSF by human monocytes 
separately and synergized in combination in ~nlture (Lu et al. 1988a). Anti- 
IL-l-antibodies partially blocked G-CSF release by human blood leukocytes 
in the presence of human serum (Quesniaux et al. 1992), suggesting an auto- 
or paracrine role for IL-1 in G-CSF induction. Gram-positive stimuli, e.g. 
heat-killed Staphylococcus aureus and lip0teichoic acid (LTA), an dement of 
their cell waU, were potent inducers of G-CSF release in human whole blood 
(Hartung and Wendel 1998). Further, Mycobacterium avium strains have 
been shown to induce the release of G-CSF in human macrophages in vitro 
(Fattorini et al. 1994). Mature, alveolar macrophages produced greater 
amounts of G-CSF in response to LPS in comparison with peripheral blood 
monocytes (Nelson 1994). Unseparated peripheral blood mononudear cells 
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(PBMC) were noted to release G-CSF in response to PHA plus PMA (Oster et 
al. 1989c). 

Although monocytes and macrophages are considered the major produc- 
ers of G-CSF, cells which are likely to be near the site of an inflammation, 
such as endothelial cells, or which are recruited there fastest, i.e. polymor- 
phonuclear granulocytes (PMN), are able to release substantial amounts of 
the factor when activated by the relevant mediators: LPS (Ichinose et al. 
1990) or GM-CSF (Lindemann et al. 1989b) induced a significant G-CSF 
release from PMN in vitro. Human T-cells responded to TNF-cx or IFN-3' 
with the production of G-CSF; their effects were potentiated when both fac- 
tors acted in synergy (Lu et al. 1988b). 

Human bone marrow stromal cells were induced by IL-1 (Fibbe et al. 
1988) or LPS (Nelson et al. 1994) to release G-CSF; umbilical vein endothelial 
cells responded to IL-1 and TNF with the production of G-CSF (Seelentag et 
al. 1987; Zsebo et al. 1988). Formation of G-CSF mRNA was described in 
fibroblasts stimulated with either TNF-~ phorbol ester, cydoheximide 
(Koeffler et al. 1988) or IL-l(Nelson et al. 1994), but the subsequent release 
of the G-CSF protein was only described in response to TNF (Koeffler et al. 
1987 and 1988; Seelentag et al. 1989; Furman et al. 1992; Shannon et al. 1992) 
and IL-1 (Seelentag et al. 1989; Shannon et al. 1992; Nelson et al. 1994). Epi- 
dermal growth factor (EGF), LPS, TNF-o~ and IL-1 each induced G-CSF tran- 
scripts in human mesothelial cells (Demetri et al. 1989; Lanfrancone et al. 
1992). 

Furthermore, a number of tumor cell lines, e.g. derived from squamous 
cell carcinoma and hepatoma (Demetri and Griffin 1991; Lai and Bauman 
1996), produced G-CSF. A case of thyroid cancer and its metastatic lesions 
producing both G-CSF and GM-CSF autonomously has been reported 
(Nakada et al. 1996). 

Modulation of G-CSF production 

Apart from the primary mediators which induce the production of G-CSF, 
other factors may regulate the extent of its production by working with the 
inductor to cause an additive or a synergistic effect or by canceling out its 
action, as displayed in Table 5. 

LPS- or IL-1-inducible G-CSF production by human monocytes was in- 
creased by IFN-7 (Hamilton et al. 1992b; de Wit et al. 1993), prostaglandin E 2 
(PGE~) (Hamilton 1994; Lee et al. 1990) and calcium ionophore A23187 
(Vellenga et al. 1991; de Wit et al. 1993), but suppressed by dexamethasone 
(Hamilton et al. 1992b; Hamilton 1994), indomethacin (Lee et al. 1990; 
Hamilton 1994) and by IL-4 (Vellenga et al. 1991; Hamilton et al. 1992b; de 
Wit et al. 1993; Hamilton 1994), a contradiction to the aforementioned in- 
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ductive effects of IL-4. IL-10 inhibited the production of G-CSF at the tran- 
scriptional level in monocytes activated with TNF-o~ and/or IFN-y (Kruger et 
al. 1996b). Auti-IL-10-antibodies increased G-CSF release in LPS-stimulated 
monocytes (Kruger et al. 1996b). When human whole blood was incubated 
in the presence of LPS, we found a significant inhibition (about 50°,6) of 
primarily monocyte G-CSF-formation by IL-6, IL-13 and IFlq- 7. In the same 
series of experiments, IL-1, IL-3,IL-8, IL-10, IL-11 and TNF had no major 
effect and GM-CSF slightly increased G-CSF release (Hartung and Wendel 
1998). 

Monocytes and macrophages infected with human immunodeficiency vi- 
rus (HIV) downregulated G-CSF production, an effect which may provide 
part of the explanation of neutrophilic dysfunction in HIV-infected patients 
(Esser et al. 1996). Neither cephalosporins nor cort/costeroids affected LPS- 
stimulated monocyte secretion of G-CSF (Lenhoff and Olofsson 1996). How- 
ever, in IL-lo~-stimulated endothelial ceils, the former downregulated and 
the latter enhanced the production of the factor (Lenhoff and Olofsson 
1996). 

The combination of EGF with either TNF or LPS induced threefold more 
G-CSF transcripts in mesothelial cells than did either factor alone (Demetri 
et al. 1989). Although HIV-infected stromal cultures constitutively expressed 
normal levels of G-CSF, IL-10t-induced release of G-CSF was reduced (Moses 
et al. 1996). In this way, the capacity of hematopoietic stroma to respond to 
regulatory signals, that normally augment blood cell production during 
periods of increased demand, is reduced (Moses et al. 1996). The stimulatory 
action of IL-1 on the production of G-CSF by fibroblasts was suppressed by 
IFN-7, dexamethasone and cyclooxygenase inhibitors, but potentiated by 
basic fibroblast growth factor and IL-4 (Hamilton et al. 1992a). 

Leukemic cells from some AML (acute myelogenous leukemia) patients 
were found to secrete cytoki_nes such as TNF and IL-1 to stimulate accessory 
ceils in a paracrine manner to produce G-CSF (Oster et al. 1989a). 

Serum G-CSF 

G-CSF was detectable in the healthy rat lung, but not in the serum. After 
challenge with Pseudomonas aeruginosa, the amount of G-CSF in the lung 
rapidly increased and serum levels became measurable by 24 h (Nelson et al. 
1994), suggesting an important physiological role for G-CSF in host defense 
against pneumonia. When mice were challenged with Listeria monocyto- 
genes, their endogenous G-CSF serum levels rose to a relative maximum 
after 48 h, preceding the increase in colony-forming cells in the bone mar- 
row and the subsequent reduction in numbers of viable bacteria, and were 
still above the normal level after five days (Cheers et al. 1988). The G-CSF 



16 Thomas Hartung 

serum levels of dogs injected with endotoxin (LPS) increased within two 
hours, peaked at four hours and had not returned to normal 24 h after chal- 
lenge (Dale et al. 1992). In a routine fecal peritonitis model (Barsig et al. 
1996) and in murine endotoxic shock (Hartung and Wendel 1998), we found 
significant serum G-CSF levels starting two hours after challenge and 
reaching a plateau after ten hours at levels of 200 ng/ml. 

G-CSF serum levels are only Seldom detectable in healthy humans 
(Watari et al. 1989; Kawakami et al. 1990), but the factor is extractable from 
all major organs at levels higher than those present in the circulation; tissue 
production levels can be elevated rapidly (in minutes or hours) after stimu- 
lation (Metcalf 1987). Administration of TNF-o~ to cancer patients resulted 
in the accumulation of G-CSF in the serum (Furman et al. 1992). After injec- 
tion of 10 pg/kg G-CSF subcutaneously (s.c.) into humans, serum G-CSF 
levels remained above 10 ng/ml for 10 to 16 h (Lieschke and Burgess 1992b). 
Pharmacological doses of G-CSF raised the serum levels of the factor to 
those attained by endogenous production during infection. Therefore, the 
potential of G-CSF seems to lie in maintaining the defense signal for a longer 
time or in initiating the signal earlier by substituting insufficient endoge- 
nous production. 

In hyperthermic patients with or without neutropenia G-CSF serum lev- 
els were elevated compared with those of afebrile control patients (Cebon et 
al. 1994; Robins et al. 1995), especially in the acute phase of infection 
(Kawakami et al. 1990). During this period, patients suffering their first bout 
of infection had significantly higher G-CSF serum levels than patients who 
had already experienced previous infections (Kawakami et al. 1992). 

The level of G-CSF in the serum peaked within three hours of injury in 
trauma patients and rapidly decreased again during the following seven 
days, whereas patients with sepsis retained high plasma levels of the factor 
throughout the duration of the illness, though these decreased significantly 
during this time in the survivors (Tanaka et al. 1996). 

G-CSF serum levels were found to be elevated in a variety of neutropenic 
disorders: Half of the patients with acute leukemia during induction chemo- 
therapy (Sallerfors and Olofsson 1991) and the same proportion of patients 
with myelodysplastic syndrome (Watari et al. 1989) displayed increased G- 
CSF levels, as did five of six patients with aplastic anemia (Omori et al. 
1992). For the latter disease, a reverse correlation between blood neutrophil 
count and serum G-CSF has been demonstrated (Watari et al. 1989). In a 
patient with cyclic neutropenia, the elevated levels of G-CSF rapidly de- 
creased below detection limit when the PMN count recovered (Misago et al. 
1991). The same was observed in children and adults after aUogeneic or 
autologous bone marrow transplantation (Cairo et al. 1992a). Here, the rate 
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of increase or decrease of endogenous G-CSF was thought to be predicative 
of either failure to engraft or duration of neutropenia (Cairo et al. 1992a). In 
a patient with autoimmune neutropenia, peripheral PMN counts changed 
almost in parallel with G-CSF levels (Omori et al. 1992). It is still unclear 
whether G-CSF is released in direct response to neutropenia or whether its 
release is only the result of interactions resulting from infections. 

It seems that increased neutrophil levels correlate with increased dear- 
ance of G-CSF: patients receiving a continuous infusion of G-CSF after mel- 
phalan apparently induced additional clearance mechanisms during the 
second phase of the biphasic neutrophil response. Patients receiving G-CSF 
after chemotherapy and autologous bone marrow transplantation retained 
high serum levels while they were still neutropenic (Layton et al. 1989). The 
mechanism by which exogenous G-CSF is metabolized and excreted is un- 
known (Frampton et al. 1995). 

Notably, the production of G-CSF by leukocytes of neonates was signifi- 
cantly reduced (Cairo 1993). G-CSF levels were significantly higher in pre- 
term newborns compared with full-term newborns and adults (Cairo et al. 
1993). A reduced capacity to produce G-CSF has also been shown in HIV 
patients (D. Pitrak, personal communication). For other patient groups with 
reduced neutrophil response to infection, e.g. diabetics, no studies on G-CSF 
production capacity are available yet. Such studies are mandatory to define 
clinical situations of G-CSF deficiency giving a rationale for therapeutic 
substitution. 

Deficient G-CSF 

G-CSF knock-out mice exhibited chronic neutropenia and impaired ability 
to control infection with Listeria monocytogenes (Lieschke et al. 1994a). 
Their infection-induced granulopoiesis was severely impaired. Similarly, G- 
CSF-receptor deficient mice had decreased numbers of phenotypically nor- 
mal neutrophils, decreased numbers of hematopoietic progenitors in the 
bone marrow and the expansion and terminal differentiation of these pro- 
genitors to granulocytes was impaired (Liu et al. 1996). Furthermore, iso- 
lated neutrophils from these mice had an increased rate of apoptosis. 

When rats were passively immunized with rabbit anti-G-CSF-antibodies, 
intrabronchial application of Pseudomonas aeruginosa induced diminished 
PMN recruitment and bactericidal activity (Nelson 1994), but the circulating 
PMN counts remained normal. In contrast, when we injected mice with 
sheep anti-murine-G-CSF-antiserum they developed severe neutropenia. 
These animals became much more susceptible to infection with a human 
stool suspension and died of otherwise sublethal fecal peritonitis. If, on the 
other hand, the anti-G-CSF-antiserum was injected at the time of infection, 
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it had no effect on survival or early neutrophilia (3 h) but blunted the late 
neutrophilia (12 h) (Barsig et al. 1996). Although human G-CSF did not elicit 
antibodies in humans, dogs given human G-CSF repeatedly developed 
autoimmune neutropenia due to the formation of autoantibodies which 
neutralized the endogenous canine G-CSF (Hammond et al. 1991). 

Patients with severe congenital neutropenia (SCN; Kostmann Syndrome) 
have increased G-CSF serum levels, yet myelopoieis is arrested at promyelo- 
cyte stage and neutrophils are absent in bone marrow and blood. The re- 
sponse of their neutrophil precursors to endogenous G-CSF is defective 
(Mempel et al. 1991). This may be explained by a nonsense mutation of the 
G-CSF receptor gene found in five patients with the disease (Dong et al. 1994 
and 1997). When this mutation was expressed in murine myeloid cells, it 
transduced a strong growth signal but was defective in maturation induction 
(Dong et al. 1994). 

These findings indicate that G-CSF is a major player in the regulation of 
granulopoiesis, both in normal and emergency situations, but that there also 
exist alternative or additional regulatory mechanisms for neutrophil pro- 
duction. 

Excess G-CSF 

Lethally irradiated mice transplanted with marrow cells expressing G-CSF 
through a retroviral vector had high serum G-CSF levels and mostly re- 
mained healthy. Neutrophilic granulocytosis and tissue infiltration of their 
lung and liver was observed and spleen, peritoneal and peripheral blood 
cellularity and progenitor numbers increased, but total bone marrow ceU 
counts remained unaffected. No tumors developed regardless of chronic G- 
CSF stimulation (Chang et al. 1989). 

Toxicity 

The most common side effects of short-term G-CSF use are bone pain and 
myalgia, headache and tiredness (Schwab and Hecht 1994). These are usu- 
ally mild and transient and can be treated with analgesics (Frank and Man- 
dell 1995). Local inflammation at sites of injections and asymptomatic ele- 
vations of lactate dehydrogenase and alkaline phosphatase have also been 
observed. Splenomegaly was seen in one third of children who received G- 
CSF for chronic neutropenia, but became symptomatic in only 10% (Frank 
and Mandell 1995). Considering that more than 2 million patients have been 
treated with G-CSF already, it is remarkable that reports of more severe 
side-effects are so rare. 
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C 
Receptors and Signal Transduction 

The gene for the G-CSF receptor (G-CSF-R, CDll4) is located on the short 
arm of chromosome 1. Three distinct human G-CSF receptor cDNA have 
been obtained. The major human G-CSF receptor has a calculated molecular 
weight of 90 kD, but an apparent molecular mass of 150 kD due to extensive 
glycosylafion. It is an 813 amino acid polypeptide with a single transmem- 
brane domain, a small cytoplasmic domain and a large extracellular domain 
with the tryptophane-serine-x-tryptophane-serine (WSXWS) motif (Rapo- 
port 1992). One of the three cDNA isolated from human cells lacked most of 
the transmembrane sequence, suggesting that it encodes a soluble, secreted 
form of the receptor. The physiological role of such a receptor is unclear; it 
may serve as a 'sink' for eliminating excess cytokines and thus modulate 
their activities. The mouse and human G-CSF receptor cDNA share more 
than 60% homology at the amino acid level, consistent with the ability of 
both human and murine G-CSF to bind to both species' G-CSF receptors 
(Rapoport 1992). 

PMN displayed about 300 to 1000 G-CSF high-affinity receptors per cell, 
depending on their level of differentiation, which can already effect biologi- 
cal responses at low levels of occupancy (Moore 1991; Demetri and Griffin 
1991; Nelson 1994). A low affinity binding activity has been described in the 
murine myeloid NFS-60 cell line, which is probably derived from the 
monomeric G-CSF-R protein, whereas high affinity is the result of ho- 
modimerization (Avalos 1996). When G-CSF binds to its receptor, the com- 
plex is internalized, a mechanism necessary for G-CSF to perform its func- 
tional activity (Schwab and Hecht 1994). The G-CSF receptors were rapidly 
downmodulated when human neutrophils were incubated with the neutro- 
phil-activating agents LPS, fMLP (N-formylmethionyl-leucyl-phenylalanine) 
or GM-CSF (Nicola et al. 1986; Rapoport 1992). 

Myeloid progenitor cells, monocytes, macrophages, platelets, some T and 
B lymphoid cell lines, endothelial cells, placenta and trophoblastic cells also 
all express G-CSF receptors, but eosinophils and erythroid cells do not 
(Nicola and Metcalf 1985; Shimoda et al. 1990 and 1993; Moore 1991; Avalos 
1996). Acute nonlymphocytic leukemia cells classified as M4 and the murine 
WEHI-3b(D ÷) cells display G-CSF receptors and were induced by G-CSF to 
undergo terminal differentiation to macrophages and granulocytes (Souza et 
al. 1986). Furthermore, the myeloid leukemia cell lines KG-1 (Avalos et al. 
1990) and HL-60 (Welte et al. 1987; Avalos et al. 1990) as well as the small- 
cell lung carcinoma cell lines H128 and H69 have high affinity binding sites 
for G-CSF (Avalos et al. 1990). TNF-ot reduced G-CSF-R number on murine 



20 Thomas Hartung 

peritoneal exsudate macrophages transiently in a time- and dose-dependent 
process (Shieh et al. 1991). GM-CSF, M-CSF and G-CSF all reduced the G- 
CSF binding capacity of murine macrophages, but IL-1 and IFN-~' had no 
such effect (Avalos et al. 1990; Shieh et al. 1991). 

When a plasmid for G-CSF receptor expression was introduced into a line 
of mouse myeloid precursor cells that are normally unresponsive to G-CSF, 
the proliferation of these cells was stimulated by G-CSF and expression of 
neutrophil-specific genes such as myeloperoxidase (MPO) and leukocyte 
dastase was induced (Fukunaga et al. 1993). In this model, GM-CSF and IL-3 
inhibited G-CSF receptor-mediated MPO gene expression. Mutational 
analysis of the receptor identified a region of the cytoplasmic domain which 
is sufficient to transmit the proliferation signal into cells, while another 
region plays an essential role in transducing the differentiation signal. 

The precise second messenger pathways used by G-CSF have not yet been 
identified. G-CSF had no direct effect on membrane depolarization, Ca ~+ flux 
or intracellular free Ca 2÷ concentrations (Rapoport 1992). Prior to the prolif- 
erative response induced by G-CSF binding to murine myeloblastic NFS-60 
cells, a time-dependent activation of the guanosine triphosphate-binding 
proteins and the adenylate cydase system has been observed (Matsuda et al. 
1989). 

1.2 
Role in Hematopoiesis 

Studies using donal transfer and the delayed addition of other regulators 
showed that G-CSF could directly stimulate the initial proliferation of a large 
proportion of the granulocyte-macrophage progenitors in adult bone mar- 
row and also the survival and/or proliferation of some multipotential, 
erythroid and eosinophil progenitors in fetal mouse liver. However, G-CSF 
alone was unable to sustain continued proliferation of these cells resulting in 
colony-formation (Metcalf and Nicola 1983). But, G-CSF may act in synergy 
with IL-3 to support lineages, such as megakaryocytes, resulting in platelet 
production (Gabrilove and Jakubowski 1990) as well as early pluripotential 
stem cells, accelerating their entry into cell cycle (Moore 1991) and pre-B- 
cells, promoting their activation and growth (Gabrilove and Jakubowski 
1990). Low concentrations of G-CSF predominantly stimulated pure PMN 
colonies, while high concentrations of G-CSF resulted in the development of 
macrophage-containing colonies (Metcalf and Nicola 1983; Moore 1991). 
TNF-o~, TNF-~ and IFN-y all had a suppressive effect on human cell colonies 
formed after stimulation with G-CSF in vitro (Barber et al. 1987). This action 
of IFN-y was antagonized by IL-4 (Snoeck et al. 1993). G-CSF in vitro had no 
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effect on murine T-cell proliferation (Aoki et aL 1995) or on the mixed lym- 
phocyte reaction of human blood mononuclear cells in vitro (Kitabayashi et 
al. 1995). 

In experiments with rodents, injection of G-CSF resulted in neutrophilia 
by increasing the production of PMN in the bone marrow and hastening the 
release of less mature forms into the circulation (Tamura et al. 1987; Ulich et 
al. 1989; Cairo et al. 1990a; Tkatch and Tweardy 1993). G-CSF was able to 
cross the placenta, stimulate fetal rat granulopoiesis and to augment the 
marrow and spleen neutrophil-storage pools (Med]ock et aL 1993). Repeti- 
tive s.c. injection of G-CSF for seven days into rats resulted in a biphasic 
increase in PMN counts (Ulich et al. 1989). In mice (Tamura et al. 1987) or 
humans, no such transient negative-feedback mechanism on PMN release 
from bone marrow was found. The increase in monocyte production in mice 
receiving G-CSF (Lord et al. 1991) seems to be attributable to its stimulation 
of endogenous M-CSF production, as it could be selectively canceled out by 
M-CSF antiserum (Gilmore et al. 1995). G-CSF obliterated the cycling of 
neutrophils, platelets and reticulocytes in dogs with cyclic neutropenia 
(Hammond et al. 1990). 

In vivo experiments with cynomolgus monkeys treated with s.c. doses of 
G-CSF for 14 to 28 d resulted in dose-dependent increases in the peripheral 
white blood call count (WBC), which reached a plateau after 1 week of G- 
CSF treatment. The elevation of WBC was the result of an increase in the 
absolute neutrophil count (ANC) (Welte et al. 1987). In cydophosphamide- 
induced myelosuppression, G-CSF shortened the time of WBC recovery in 
two treated monkeys to one week, as compared with more than four weeks 
in the control monkey (Welte et al. 1987). 

Thirty minutes after healthy volunteers were injected with G-CSF s.c., 
their circulating PMN counts declined, probably owing to increased adher- 
ence of the activated cells to the endothelium of blood vessels of the lung 
(Morstyn et al. 1988; Bronchud et al. 1988; Katoh et al. 1992). We made 
similar observations in healthy volunteers, where the PMN count fell below 
500 PMN/gl 30 min after s.c. injection of G-CSF. The subsequent increase in 
PMN is attributable to the release of less mature PMN from the bone mar- 
row, not to recruitment from this marginated pool (Katoh et al. 1992). Doses 
of G-CSF ranging from 1 to 60 I~g/kg/d given for five or six days produced 
dose-dependent increases of 1.8- to 12-fold of the original ANC (Dale 1994). 
Blood neutrophil half-life was not altered significantly by G-CSF treatment. 
In a recent human volunteer study, we found a dose-dependent increased 
PMN count with a plateau lasting for the whole treatment with G-CSF. 72 h 
after the last injection, counts equal to those prior to treatment were deter- 
mined (Hartung and Wendel 1998). No significant differences in PMN re- 
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cruitment were observed when comparing the parameters of young and 
elderly subjects (Dale 1994; Price et al. 1996). Dexamethasone increased the 
levels of neutrophilia induced in normal subjects by G-CSF, which indicates 
that such a combination may be useful for the mobilization of PMN in the 
peripheral blood ofgranulocyte donors (Liles et al. 1997b). 

Human volunteers injected with 480 pg of G-CSF s.c. developed monocy- 
tosis, i.e. an approximately 3-fold increase of blood monocytes was observed 
within one day (Hartung et al. 1995a). In a volunteer study, we also followed 
an increase in monocyte numbers until day 8 of daily 300 pg G-CSF admini- 
stration, which was maximally 5-fold, after which the count fell despite con- 
tinued treatment (submitted for publication). A different study recorded no 
change in monocyte counts and an increased proportion of immature mye- 
loid cells as well as an increase in the levels of both erythroid and myeloid 
precursor cells in the bone marrow (Asano et al. 1988). G-CSF infusion 
[30 pg/kg] in non-neutropenic patients with advanced malignancies resulted 
in a transient but nearly complete decrease of monocytes after 15 to 30 min, 
which normalized after 60 min (Lindemann et al. 1989a). At later time points 
and high doses of G-CSF [30-60 pg/kg] an up to tenfold monocytosis was 
observed (Morstyn et al. 1988; Gabrilove et al. 1988). Smaller G-CSF doses 
resulted in a threefold increase in monocyte counts (van der Wouw et al. 
1991), which correlated with an increase in CFU-GM, i.e. granulocyte and 
monocyte precursors, in bone marrow (Liu et al. 1993). 

A phase I/II trial with 30 cancer patients receiving G-CSF documented a 
dose-related increase in the absolute number of circulating progenitor cells 
of granulocyte-macrophage, erythroid, and megakaryocyte lineages, which 
remained elevated two days after the cessation of therapy. Here, the relative 
frequency of different types of progenitor ceils in peripheral blood remained 
unchanged. Also, the frequency of progenitor cells in the marrow was vari- 
able after G-CSF treatment, but in most patients was slightly decreased 
(Diihrsen et al. 1988). 

Effects of G-CSF treatment on lymphocyte counts in humans were al- 
ready noted in the very early reports (Morstyn et al. 1988; Kerrigan et al. 
1989). Treatment with high doses of G-CSF [10 or 100 pg/kg/d] was associ- 
ated with a 1.5- to 2.5-fold increase in absolute lymphocyte counts (Demetri 
and Griffin 1991). A relative lymphocytosis was also documented in a study 
carried out in our laboratory with volunteers treated repeatedly with G-CSF 
resulting in a maximal lymphocyte count on day 8. Lymphocyte subtyping 
(CD4, CDS, CD16, i.e. natural killer cells and CD19, i.e. B cells) revealed that 
all subpopulations increased during treatment, without major changes in the 
proportions. Furthermore, we observed an augmented proliferation of lym- 
phocytes in response to anti-CD3-antibodies or PHA, or through initiation 
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of a mixed lymphocyte reaction with Daudi cells ex vivo. However, at times 
later than 72 h after initiation of treatment, the proliferative response of 
lymphocytes was markedly suppressed. During the twelve days of treatment, 
there was no effect on NK (natural killer) cell function (submitted for publi- 
cation). Another study on nine healthy volunteers reported an increase in 
absolute lymphocyte and monocyte counts after four days of G-CSF admin- 
istration (Sica et al. 1996). Of the lymphocyte subsets analyzed, CD3 ÷, CD19 ÷, 
NK cells and activated T-lymphocytes collected in the leukapheresis product 
were all increased (Sica et al. 1996). G-CSF aided in the recovery of CD8" T- 
cells after autologous bone marrow transplantation; this CD8 * regeneration 
was produced mainly by activated cells (CD38÷/HLA-DR ÷) lacking CDllb 
antigen (Miguel et al. 1996). 

G-CSF further enhanced colony-formation by the human myeloid leu- 
kemic cell lines HL-60 and KG-1 as well as by non-hematopoietic small cell 
lung cancer lines H128 and H69 (Avalos et al. 1990). 

Risk assessment studies found no or only minimal suppression of 
erythropoiesis and no suppression of the production of other cell types in 
short- and long-term studies, but explained the shift in relative proportions 
of cell types with an unchanged population size of erythroblasts and a con- 
comitant overwhelming increase of granulocytes (Keller and Smatling 1993). 

2 
Effects on Granulocytes 

2.1 
Effects on the Functions of Neutrophilic Granulocytes 

Neutrophilic granulocytes have a variety of defense mechanisms against 
invading organisms: ingestion of the particles or cells; release of reactive 
oxygen species (ROS), i.e. oxidative burst; degranulation of catabolic en- 
zymes and production of mediators to coordinate their activity with other 
cells involved in the immune response. As these weapons can in part be 
detrimental to the body's own cells (Smith 1994), they must be employed 
only at the site of invasion. 

The pleiotropic nature of G-CSF is already apparent when its actions on 
neutrophils only are considered. Over all, G-CSF appears to induce only 
minor PMN responses by itself, but rather modifies the response of these 
cells to subsequent stimulation: While phagocytosis and oxidative burst are 
augmented, G-CSF barely affects degranulation and chemotaxis. This is the 
benefit of the priming effect G-CSF has on PMN: their functions are poten- 
tiated in case of stimulation by exogenous signals. On the one hand, influ- 
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ences of G-CSF on surface molecule expression were attributed at least in 
part to the recruitment of PMN in different stages of maturation. On the 
other hand, there was a de novo expression of CD64 associated with in- 
creased antibody-dependent cellular toxicity (Valerius et al. 1993). Mediator 
release by PMN is shifted by G-CSF in favor of an anti-inflammatory bal- 
ance, i.e. enhanced release of IL-lra and IFN-tx and decreased formation of 
the chemotactic leukotriene B,. 

A 
Phagocytosis 

Pure G-CSF had no bactericidal effect as such (Souza 1990). Phagocytosis by 
neutrophils was greatly augmented by opsonization of particles with either 
antibodies or complement. G-CSF induced a rapid change from low- to 
high-affinity neutrophil CD89 (IgA Fc receptors), which was associated with 
IgA-mediated phagocytosis (Weisbart et al. 1988). A number of studies have 
been performed on the phagocytosis and killing of microbes. PMN exposed 
in vitro to G-CSF acquired an increased potency to kill opsonized E. coli 
(Kropec et al. 1995; Daschner et al. 1995; McKenna et al. 1996) and Staphylo- 
coccus aureus (Roilides et al. 1991; Bober et al. 1995a; McKenna et al. 1996). 
Increased Micrococcus lysodeikticus and yeast particle phagocytosis by PMN 
in vitro has also been observed (Bober et al. 1995a). Variable results were 
reported as to the in vitro efficacy of G-CSF in increasing Candida albicans 
killing (Roilides et al. 1991; Yamamoto et aL 1993; Roilides et al. 1995; Bober 
et al. 1995a). In one of these studies, PMN from healthy volunteers incubated 
with G-CSF displayed enhanced antifungal activity toward Candida tropi- 
calis and Candida albicans, but toward Candida parapsilosis only when 
incubated with high concentrations of G-CSF (Roilides et al. 1995). 

Phagocytotic activity of G-CSF-treated hamster neutrophils was deter- 
mined with opsonized latex beads in vitro, but was not significantly stimu- 
lated ex vivo (Cohen et al. 1988). By chaLlenging whole blood with Salmo- 
nella abortus equi CFU, we found that the bactericidal activity of blood from 
G-CSF-treated healthy volunteers was increased by several orders of magni- 
tude in comparison to blood from a placebo-treated control group. The 
augmented killing activity ex vivo was shown to be mediated by PMN 
(unpublished observations). 
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B 
Oxidative Burst 
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G-CSF itself failed to induce an oxidative burst by isolated human PMN in 
suspension (Nathan 1989). G-CSI: did not induce superoxide release in neu- 
trophils adherent to fetal bovine serum-coated or uncoated plates (Kadota et 
al. 1990). But, PMN adherent to  laminin or membrane proteins were re- 
ported to react to G-CSF directly with a massive respiratory burst similar in 
e x t e n t  to that obtained by stimulation with TNF-~ and TNF-~ (Nathan 
1989). 

In vitro, G-CSF primed PMN for an enhanced oxidative burst triggered 
by the bacterial chemotactic peptide fMLP (Kitagawa et al. 1987; Nathan 
1989; Kadota et al. 1990; Yuo et al. 1990; Balazovich et al. 1991; Khwaja et al. 
1992; Roilides et al. 1992; Yamamoto et al. 1993; Sullivan et al. 1993), iono- 
mycin (Balazovich et al. 1991), wheat germ agglutinin (Yuo et al. 1989), 
complement factor CSa (Khwaja et al. 1992), opsonized zymosan (Katsura et 
al. 1993) and E. coli o~-hemolysin (Konig and Konig 1994). However, there 
are also reports indicating that G-CSF has no effect on the release of ROS 
mediated by fMLP (Treweeke et al. 1994), concanavalin A (ConA), ionomy- 
cin or phorbol ester (Yuo et al. 1989; Kadota et al. 1990), of which the latter 
two bypass the receptors to stimulate the cells. G-CSF enhanced PMN oxi- 
dative burst in response to opsonized blastoconidia and pseudohyphae of 
Candida albicans (Roilides et al. 1992) and toward Aspergillus fumigatus 
hyphae (Roilides et al. 1993). Apparently, TNF synergized with G-CSF in 
priming the cells for enhanced oxidative burst (Khwaja et al. 1992), while 
protein kinase C inhibitors or pertussis toxin inhibited the actions of G-CSF 
in this respect (Balazovich et al. 1991). The impaired oxidative burst in re- 
sponse to fMLP of PMN from rats made diabetic by streptozocin treatment 
could be partially restored by G-CSF in vitro (Sato and Shimizu 1993). 

Neutrophils isolated from G-CSF-treated hamsters displayed an in- 
creased oxidative burst in reaction to opsonized zymosan particles (Cohen 
et al. 1988). G-CSF increased ROS release by PMN in response to opsonized 
zymosan from neonatal or adult animals ex vivo (Wheeler et al. 1994). Peri- 
toneal exsudate cells from G-CSF-treated rats displayed a greater superoxide 
production in response to fMLP than controls, which in turn produced more 
superoxide on stimulation than peripheral blood neutrophils (Murata et al. 
1995). After cecal ligation and puncture, rats showed a suppressed ex vivo 
PMA-inducible burst, which was restored by in vivo G-CSF treatment (Goya 
et al. 1993). 

When PMN were isolated from G-CSF-treated individuals, patients or 
volunteers, an augmentation of ex vivo fMLP-, ionomycin- and C5a-stimu- 
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lated burst similar to in vitro results was recorded (Lindemann et al. 1989a; 
Ohsaka et al. 1989; Balazovich et al. 1991; Khwaja et al. 1992; Weiss et al. 
1994 and 1995; Iacobini et al. 1995), though G-CSF appeared to fail to in- 
crease burst stimulated by phorbol ester (Ohsaka et aL 1989; Iacobini et al. 
1995; own unpublished results) or zymosan (Weiss et al. 1994 and 1995). 
Furthermore, G-CSF primed neutrophils for sustained respiratory burst in 
response to extracts of Candida albicans, Aspergillus fumigatus and Rhizo- 
pus arrhizus (Liles et al. 1997a). Daily in vivo G-CSF treatment did not affect 
the oxidase activity per neutrophil in whole blood, though chemical and 
opsonin-stimulated MPO oxygenation activities per neutrophil were greatly 
increased (Allen et al. 1997). Furthermore, superoxide production, which 
was impaired in AIDS patients in comparison to controls, was greatly aug- 
mented ex vivo in response to zymosan 48-72 h after s.c. administration of 
G-CSF (Vecciarelli et al. 1995). 

C 
Adhesion and Chemotaxis 

G-CSF had no effect on the adhesion of neutrophils to endothelium in vitro 
(Yong 1996). Instead, the adhesion of PMN to nylon fibers was augmented 
(Yuo et al. 1989 and 1990). Peripheral blood neutrophils of rats treated in 
vivo with G-CSF showed less adherence to plastic plates coated with fetal calf 
serum, whether they were stimulated with fMLP or TNF-~t or neither, in 
comparison to PMN from control rats, but peritoneal exsudate neutrophils 
from the same G-CSF-treated rats adhered more than those of control rats 
(Murata et al. 1995). 

G-CSF itself is weakly chemokinetic, i.e. it promoted migration of neu- 
trophils independent of a gradient (Smith et al. 1994). In vitro, G-CSF was 
shown to induce a chemotactic response of PMN at fMLP concentrations 
below the normal minimum required for reaction (Wang et al. 1988; Bober 
et al. 1995a). Leukotriene B, (LTB,)-inducible chemotaxis was not altered 
(Bober et al. 1995a). The effect of G-CSF on trans-endothelial migration in 
vitro across unstimulated endothelium is controversial, but there seems to 
be a consensus that migration across TNFqx- or IL-l-stimulated endothe- 
lium is not affected (Smith et al. 1994; Yong 1996). 

In rodents, G-CSF treatment restored experimentally impaired chemo- 
taxis, i.e. after thermal injury in mice (Sartorelli et al. 1991) or after perito- 
nitis brought about by cecal ligation and puncture in rats (Goya et al. 1993). 
Nevertheless, in the model of s.c.E, coli injection into rats, G-CSF pretreat- 
ment resulted in less infiltration as assessed by local MPO activity and glu- 
cose uptake compared with controls (Lang et al. 1992a), however, at the 
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same time resulted in a better elimination of bacteria. Even in mice with 
inactivated G-CSF genes, the typical accumulation of neutrophils in re- 
sponse to an injection of casein containing bacteria was observed (Metcalf et 
al. 1996). These conflicting data suggest that the positive results may have 
been caused by the rapid recruitment of a greater number of PMN into the 
circulation rather than by a stimulatory effect of G-CSF on their chemotaxis. 

Furthermore, we have explored the in vivo effects of G-CSF alone and G- 
CSF pretreatment before LPS exposure on the microvasculature of the rat 
liver by intravital fluorescence microscopy (Vollmar et al. 1997): G-CSF 
alone enhanced the adhesion of leukocytes to endothelium, but did not af- 
fect the activity of the Kupffer cells. In contrast, G-CSF treatment followed 
by LPS administration attenuated the leukocyte adhesion due to LPS stimu- 
lation, reduced the Kupffer cells' activity and protected against microcircula- 
tory perfusion failure and hepatic dysfunction. 

Consistent with this interpretation are observations in this respect in 
human volunteers or patients: In human volunteers, G-CSF treatment re- 
sulted in a 50% reduction of PMN influx into implanted skin chambers 
(Price et al. 1996) and, in another study, in minimal reduction of PMN entry 
into skin windows (Demetri et al. 1990). G-CSF treatment for local skin 
abrasion in healthy volunteers did not attract increased numbers of PMN to 
the site (Dale 1994). No effect of G-CSF infusion on PMN chemotaxis was 
found in a group of 12 patients with small-cell lung cancer undergoing che- 
motherapy (Bronchud et al. 1988). 

D 
Cytotoxicity 

The antibody-dependent cellular cytotoxicity (ADCC) of neutrophils from 
normal mouse bone marrow neutrophils or induced peritoneal neutrophils 
toward antibody-coated thymoma cells was enhanced in the presence of G- 
CSF. In this respect G-CSF and GM-CSF showed an additive effect (Lopez et 
al. 1983), although only G-CSF, not GM-CSF, alone promoted this activity in 
human neutrophils. G-CSF enhanced human neutrophil-mediated ADCC 
toward a mastocytoma and two different thymoma target cell lines (Vadas et 
al. 1983) as well as toward neuroectodermal tumor target ceils in vitro, an 
activity which was inhibited by Fc'/RII antibodies (Baldwin et al. 1993). G- 
CSF also augmented the cytotoxic function of human neutrophils toward 
HIV-infected MOLT-3A cells in vitro (Baldwin et al. 1989). Neutrophils are 
apparently not infected by HIV, therefore they offer an ideal focus for en- 
hancement of their cytotoxic function in patients with AIDS. 
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When the tumor-cell growth inhibition by peripheral blood neutrophils 
and peritoneal exsudate neutrophils toward the RL1 targets from G-CSF- 
treated rats was compared with control cells from normal animals, it was 
found that cytotoxic activity of the peritoneal exsudate cells outweighed that 
of controls, but peripheral blood neutrophils from G-CSF-treated rats were 
less active in this respect than cells from control animals (Murata et al. 
1995). 

E 
Mediator and Enzyme Synthesis 

In vitro, G-CSF was only a weak direct inducer of the secretion of arachi- 
donic acid metabolites (Sullivan et al. 1987; Di Persio et al. 1988c; Herrmann 
et al. 1990), but it primed neutrophils for enhanced arachidonic acid release 
in response to the calcium ionophore A23187 (Di Persio et al. 1988c). The 
priming of neutrophils with G-CSF before exposure to leukocidin from 
Staphylococcus aureus or calcium ionophore resulted in a substantial in- 
crease in LTB, formation (Hensler et al. 1994). However, G-CSF had no effect 
in vitro on LTB, release by neutrophils challenged with E. coli or-hemolysin 
(Konig and Konig 1994). G-CSF was reported to initiate the release of IFN-a 
by PMN in vitro (Shirafuji et al. 1990), while it had no effect on IL-8 release 
by neutrophils in the presence of E. coli ~x-hemolysin (Konig and Konig 
1994). 

Ex vivo, in neutrophils from G-CSF-treated volunteers, LPS-inducible IL- 
l receptor antagonist (IL-lra) release was increased in whole blood com- 
pared with controls, while the shedding of soluble TNF receptors was unaf- 
fected when calculated per PMN, which were of course present in higher 
numbers in the blood of G-CSF-treated donors (Hartung et al. 1995a and 
1995b). Concomitantly, their LTB 4 release capacity on stimulation with LPS 
per individual cell was decreased significantly (unpublished observations). 

The IL-lra, TNF and sTNF-R (soluble TNF receptor) p55 and p75 plasma 
levels increased in healthy volunteers injected with a single dose of G-CSF. 
After a second single dose one week later, when all values had returned to 
baseline, the rise in IL-lra was greater, the increment in sTNF-R p75 was 
smaller and the other two increases were similar to the first attempt 
(Pollm/icher et al. 1996). In 14 patients with myelodysplastic syndromes, 
combined treatment with all-trans retinoic acid and G-CSF increased serum 
concentrations of soluble TNF receptors (Ganser et al. 1994). 
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F 
Degranulation 

The peroxidase-positive (azurophil or primary) granules of human PMN 
contain MPO, the protease elastase, bacterial permeability increasing pro- 
tein (BPI) and ~-glucuronidase. Markers for peroxidase-negative (specific or 
secondary) granules are the iron binding protein lactoferrin and neutrophil 
alkaline phosphatase (NAP) (Borregaard et al. 1993). 

In vitro, G-CSF had no effect on fMLP-inducible release of MPO (Tre- 
weeke et al. 1994) or on s-hemolysin-induced release of [3-glucuronidase 
(Konig and Konig 1994). However, the activity of NAP was enhanced by G- 
CSF in vitro in PMN from normal volunteers and to a greater extent in PMN 
from patients with chronic myelogenous leukemia (Teshima et al. 1990). 
However, this effect could be suppressed by GM-CSF in a dose-dependent 
manner when the PMN were incubated with both CSF (Teshima et al. 1990). 

In ex vivo experiments carried out with samples from G-CSF-treated 
healthy volunteers, we found no change of degranulation of primary gran- 
ules (MPO, elastase, BPI). Contrary to our expectation, we observed a 50% 
reduction of secondary granule release (lactoferrin) in LPS-stimulated blood 
from G-CSF-treated healthy volunteers (unpublished observations). 

PMN from G-CSF-treated volunteers displayed an increased number of 
primary granules compared with cells from untreated control donors (Dale 
1994). The levels of plasma elastase, bound to its physiologic inhibitor czl- 
antitrypsin, increased within one hour of injection of G-CSF into healthy 
volunteers (de Haas et al. 1994). Increased elastase serum levels were re- 
ported in non-neutropenic patients with advanced malignancies receiving 
G-CSF therapy (Lindemann et al. 1989a). The neutrophils of healthy volun- 
teers injected s.c. with G-CSF contained significantly decreased levels of 
NAP during the first four hours post injection, but thereafter a sharp rise in 
NAP was measured. Moreover, the plasma levels of lactoferrin increased 
significantly within one hour (de Haas et al. 1994). Patients with urothelial 
cancer treated with G-CSF before chemotherapy also had PMN containing 
increased amounts of NAP (Gabrilove et al. 1988). 

Therefore, it appears that G-CSF has only little impact on degranulation 
in vitro or ex vivo, even though it changes the granule content of PMN in 
vivo. 
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G 
Expression of Surface Molecules 

The mature neutrophil expresses complement receptors CR1 (CD35) and 
CR3. CR3 receptors are composed of an identical ~ subunit (CD18) plus a 
different o~ subunit (CDlla, CDllb = Mol, CD11c), corresponding to LFA-1, 
Mac-l(= C3bi receptor) and P150,95 (Gillan et al. 1993). Fc receptors for 
immunoglobulin G, including FcyRI (CD64), FcTRII (CD32) and FcyRIII 
(CD16) are found on mature neutrophils (Gillan et al. 1993). Adhesion is 
thought to be modulated primarily by interaction between LFA-1 (CD1 la/18 
complex) on the surface of the neutrophil, with receptors on vessel endothe- 
lium (GiUan et al. 1993). 

The available data on the effect of G-CSF on the expression of neutrophil 
surface receptors in vitro are confusing. Apparently, G-CSF has no effect on 
the expression of CD54 (ICAM-1) (Bober et al. 1995a) or fMLP-receptor 
(Yuo et al. 1989), but upregulates CD89 (IgA receptor) (Dale et al. 1995) 
expression in vitro. The CD11b/CD18 expression has been reported as unaf- 
fected (Demetri et al. 1990; Treweeke et al. 1994; Bober et al. 1995a) or 
upregulated (Yuo et al. 1989 and 1990; Linch 1992; Liles et al. 1994a; Dale et 
al. 1995; Yong 1996), and one study determined that upregulation only took 
place in neonatal, but not in adult rat granulocytes in vitro (Wheeler et al. 
1994). CD35 has also been described as unchanged (Bober et al. 1995a) or 
upregulated (Dale et al. 1995), whereas CD62L (LAM-1; L-selectin) has been 
found to be increased (Demetri et al. 1990), decreased (Spertini et al. 1991; 
Yong and Linch 1992; Ohsaka et al. 1993; Liles et al. 1994a; Dale et al. 1995; 
Yong 1996) or unaffected (Griffin et al. 1990). The expression of CD64 was 
only upregulated by G-CSF in bone marrow cultures, not in peripheral blood 
neutrophils in vitro (Kerst et al. 1993a). The duration of incubation of the 
neutrophils with G-CSF seems to play a role in their reaction to the cytokine 
with regard to receptor expression (Liles et al. 1994a). 

Some of these great differences in the in vitro results become clearer 
when the in vivo measurements are considered. G-CSF apparently has dif- 
ferent effects on the peripheral blood PMN and on the granulocytes newly 
recruited from the bone marrow. The former are distinct within 30min after 
administration of G-CSF parallel to the transient neutropenia. Increased 
expression of CD11b/CD18 (Ohsaka et al. 1989; Katoh et al. 1992; de Haas et 
al. 1994), CD62L (Yong and Linch 1992), CD66b (de Haas et al. 1994) and 
CD16 (Kerst et al. 1993b; de Haas et al. 1994) have been measured, while the 
values of CD14 receptor expression were not affected (Kerst et al. 1993b). 
The effects on the bone marrow only come into play later, when the affected 
granulocytes have entered the peripheral blood stream: Within hours of 
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administration of G-CSF, the CD 11b/CD18 expression remained above base- 
line (Yong and Linch 1992) or returned to baseline (Demetri et al. 1990; de 
Haas et al. 1994); CD62L returned to baseline values (Demetri et al. 1990; 
Yong and Linch 1992) as did CD66b (de Haas et al. 1994) and CD16 (Kerst et 
aL 1993b; de Haas et aL 1994). An increase in the plasma levels of soluble 
CD16 was measured (de Haas et al. 1994). CD14, an opsonic receptor for 
LPS-binding proteins was expressed at higher levels on PMN in response to 
G-CSF (Kerst et al. 1993b; Hansen et al. 1993; Dale et al. 1995), as was CD64, 
which is usually restricted to mononudear cells (Repp et al. 1991; Dale et al. 
1995) and CD62L (Dale et al. 1995). In another case, no change in the ex- 
pression of CD62L was found throughout the experiment (de Haas et al. 
1994). Neither the expression ofCD32 (Kerst et al. 1993b; de Haas et al. 1994) 
nor CD 63, a marker for primary granules (de Haas et al. 1994), was changed 
by G-CSF. 

After five consecutive days of G-CSF administration, the neutrophils of 
normal human subjects displayed elevated CD62L and CD14 expression, but 
decreased expression of CD11b and CD18 in comparison to their levels be- 
fore the treatment (Liles et al. 1994a). In human healthy volunteers treated 
with G-CSF for twelve days, we observed shedding of CD62L with concomi- 
tantly increased serum levels of soluble L-selectin. Other PMN surface 
markers such as CD11b/CD18, CD14 and CD71 were hardly affected. How- 
ever, we also observed the well-known increase in CD64 which was paral- 
leled by decreased CD16 (unpublished results). 

Similarly, in 10 postoperative/posttraumatic patients treated with tow- 
dose G-CSF infusions, CD64 expression of PMN was increased by 50% 
(Weiss et al. 1994). G-CSF also restored the CD64 receptor number and bio- 
logic activity mediated by this receptor, i.e. oxidative metabolism and pri- 
mary granule degranulation, on PMN from patients with septic shock 
(Simms and D'Amico 1994). 

In summary, the available data on PMN surface markers are not com- 
pletely consistent. Divergent results may be explained by differential stimu- 
lation of PMN during isolation procedures. In any case, different treatment 
regimes and the heterogeneity of the patients' underlying diseases make 
direct comparisons impossible. 

H 
Microbial Killing 

Ex vivo, G-CSF enhanced PMN-mediated killing of Aspergillus fumigatus 
and Rhizopus arrhizus 4-fold and 15-fold, respectively. In contrast, the kill- 
ing of Candida albicans by PMN was unaffected by G-CSF (Liles et al. 



32 Thomas Hartung 

1997a). However, some PMN from patients with AIDS showed significantly 
impaired destructive activity against Candida albicans or encapsulated or 
acapsular Cryptococcus neoformans. This could be rectified by s.c. admini- 
stration of G-CSF (Vecciarelli et al. 1995). 

I 
Other 

G-CSF interfered with the physiological apoptosis of PMN (Williams et al. 
1990; Colotta et al. 1992; Adachi et al. 1993; Liles et al. 1994b; Sullivan et al. 
1996), apparently by suppressing CD95-mediated apoptosis (Liles et al. 
1996) and may thus have importance in regulating the sizes of normal he- 
matopoietic precursor populations in the bone marrow (Williams et al. 
1990). Furthermore, local G-CSF production at the focus of infection and 
inflammation might prolong PMN lifetime by this mechanism. Apart from 
prolonging neutrophil survival in vitro, G-CSF also preserved the oxidative 
burst capacity for longer as with the CD16 and CD18 expression and main- 
tained bactericidal function (Ichinose et al. 1990; Sullivan et al. 1996). Pro- 
tein kinase C inhibitors counteracted this anti-apoptotic effect (Adachi et al. 
1993). As this effect of G-CSF on PMN takes place in isolated cells and be- 
cause it lengthens the survival time at concentrations below those required 
for colony- stimulating activity, it may be considered a separate activity 
from bone marrow stimulation (Nelson 1994). Further, the rapid apoptosis 
of PMN from patients with AIDS could be attenuated in vitro by incubation 
with G-CSF (Pitrak et al. 1996). However, the physiological significance of 
the anti-apoptotic activity of G-CSF remains to be clarified. 

PMN may also be capable of contributing to the elimination of G-CSF, as 
constant rate G-CSF infusions resulted in decreasing G-CSF serum levels 
when neutrophil counts increased (Morstyn et al. 1989). 

2.2 
Effects on Eosinophilic and Basophilic Granulocytes 

To the author's knowledge, no literature is available on the effects of G-CSF 
on eosinophilic granulocytes. G-CSF had no effect on basophil migration or 
survival in vitro (Yamaguchi et al. 1992a and b). 
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3 
Effects on Mononuclear Cells 

33 

The ability of G-CSF to enhance the functional activity of mononudear ceils 
was overlooked for a long time as its action on neutrophils was perceived as 
the most important immunomodulation. For this reason, the data concern- 
ing these cells are still sparse. 

3.1 
Effects on the Functions of Monocytes/Macrophages 

A 
Synthesis of Mediators and Enzymes 

G-CSF failed to induce IL-lra protein production in monocytes stimulated 
with LPS or cultured on adherent IgG (Jenkins and Arend 1993), though 
neopterin production by the myelomonocytic cell line THP-1 in response to 
IFN- 7 was increased in the presence of G-CSF (Marth et al. 1994). Further- 
more, in contrast to the other three CSF discussed below, G-CSF did not 
induce any urokinase-type plasminogen activator (u-PA) activity (Hamilton 
et al. 1991). G-CSF had no effect on the synthesis of the components C3 or B 
in human monocytes (H#g~sen et al. 1993). Exposure of various rodent 
macrophage populations (G6rgen et al. 1992) or human monocytes (Tera- 
shima et al. 1995) to G-CSF in vitro did not change TNF production induced 
by LPS, but its release was attenuated when neutrophils were additionally 
present in the assay (Terashima et al. 1995). In contrast, in our hands, highly 
purified human monocytes produced less LPS-inducible TNF4x in the pres- 
ence ofrhuG-CSF (unpublished observations). 

When we measured the ex vivo LPS-stimulated TNF release of a number 
of different rodent macrophage populations prepared from donor animals 
pretreated in vivo with G-CSF, we found that TNF release was markedly 
suppressed compared with cells from control animals (G/Srgen et al. 1992). 
This was also the case when human whole blood of G-CSF-treated volunteers 
was employed in the assay (Hartung et al. 1995a; Baram et'al. 1996) and held 
true also for a variety of stimuli other than LPS, such as preparations from 
Gram-positive bacteria, superantigens or phorbol ester (Hartung et al. 
1995a). However, the ex vivo spontaneous TNF release by human monocytes 
from volunteers was the same, whether these were treated in vivo with G- 
CSF or not (Wiltschke et al. 1995). When volunteers were challenged in vivo 
with endotoxin 24 hrs after treatment with G-CSF, decreased TNF, IL-6 and 
IL-8 were found, while sTNF-R and IL-lra were increased (Pajkrt et al. 1997). 
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These findings therefore confirm the antiinflammatory activity of G-CSF 
treatment observed ex vivo. However, when the endotoxin challenge was 
performed 2 h after injection of G-CSF, both pro- and anti-inflammatory 
factors were increased. Therefore, G-CSF required a certain time to establish 
an anti-inflammatory state of endotoxin responsiveness. 

In some infection models, e.g.E, coli peritonitis in dogs (Eichacker et al. 
1994) and cecal puncture in rats (Lundblad et al. 1996), G-CSF treatment 
also reduced the release of TNF in response to the infection. Unfortunately, 
it could not be determined whether less TNF was produced because the 
bacteria were eliminated faster by the increased numbers of granulocytes, or 
whether G-CSF had a direct effect on TNF production. 

During G-CSF therapy of cancer patients after chemotherapy, serum TNF 
(3 out of 5 patients) and urinary peptido-leukotriene metabolites decreased 
(Denzlinger et al. 1994). In 18 patients with acute leukemia where G-CSF was 
administered in the recovery phase during 27 courses of consolidation che- 
motherapy, peripheral blood monocytes spontaneously produced high con- 
centrations of IL-6 ex vivo (Liu et al. 1993). In 38 neutropenic gynecological 
cancer patients, G-CSF treatment doubled the concentration of serum 
neopterin (Marth et al. 1994), which is regarded as a marker of macrophage 
activation. 

B 
Expression of Surface Molecules 

The expression of HLA-DR antigen was not affected by G-CSF in culture 
(Gerrard et al. 1990). 

We measured a significant decrease of monocytic HLA-DR (-40%) on 
monocytes from G-CSF-treated volunteers (unpublished results). In con- 
trast, monocytes in the blood of refractory testicular cancer patients treated 
with G-CSF, expressed more MHC-I, while MHC-II remained unaffected 
(Wiltschke et al. 1995). In our volunteer study, CD16 and CD64 on mono- 
cytes was significantly increased under G-CSF treatment. 

C 
Other 

The release of reactive oxygen species was neither induced directly by G-CSF 
nor augmented when human monocytes were exposed to an exogenous 
signal such as fMLP or wheat germ agglutinin (Nathan 1989; Yuo et al. 1989). 
G-CSF had no effect on monocyte cytotoxicity toward WEHI fibrosarcoma 
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cells (Cannistra et al. 1988) or toward the tumor cell line U937 (Wiltschke et 
al. 1995). 

3.2 
Effects on the Functions of Lymphocytes 

To date, the effect of G-CSF on tymphocytes has found little attention. Since 
lymphocytes apparently have no G-CSF receptors, indirect effects via by- 
stander cells, endogenous mediators or effects on lymphocyte precursors in 
bone marrow must be assumed. 

A 
Mediator and Enzyme Synthesis 

TNF secretion by human PBMC in response to allogeneic Daudi cells was 
suppressed by G-CSF in vitro (Kitabayashi et al. 1995). However, the pro- 
duction of IL-2 by lymphocytes in response to staphylococcal enterotoxin B 
(SEB) was not affected by the presence of G-CSF in vitro (Aoki et al. 1995). 
T-cells from G-CSF-treated normal mice showed reduced IL-2 and IFN-y 
release while IL-4 formation was augmented (Pan et al. 1995). In contrast, in 
vivo G-CSF-treated galactosamine-sensitized mice were protected against T- 
cell mediated liver injury initiated by the superantigen SEB and exhibited 
reduced IL-2 serum levels without an effect on TNF release (Aoki et al. 
1995). 

When we treated human healthy volunteers acutely with G-CSF, we ob- 
served a reduced capacity of blood lymphocytes to release IFN-y (Hartung et 
al. 1995a). On the one hand, this attenuated IFN-~/formation can be attrib- 
uted to reduced TNF and IL-12 formation by monocytes from G-CSF-treated 
donors. On the other hand, this decrease in IFN-7 release was also noted in 
response to direct lymphocyte stimulators such as bacterial exotoxins and 
phorbol esters. In a recent study, we examined the effects of dally G-CSF 
treatment for a period of twelve days in 24 healthy volunteers. Compared to 
a placebo group, TNF-o~, IL-12 and IFN- 7 release of whole blood samples in 
response to ex vivo stimulation by LPS was reduced in each G-CSF group 
(75, 150 or 300 btg per day) throughout treatment. The presence of IL-12 
added in vitro to LPS-stimulated blood from G-CSF-treated donors partly 
restored the attenuated IFN-~ and TNF-~x release capacity, indicating that 
the suppression of IL-12 release is pivotal in the anti-inflammatory activity 
of G-CSF (submitted for publication). In this study, we also found that the 
release of IL-2 by ex vivo anti-CD3-stimulated whole blood or mononuclear 
cells was increased 24 h after the first injection. However, the increase in 
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IL-2 release was no longer significant after a further 24 h (submitted for 
publication). IL-2 may be involved in stimulating lymphocytosis which was 
observed in this treatment group. 

Increased IL-2 formation and lymphocytosis might have therapeutic 
benefits especially for HIV-infected patients. These observations, therefore, 
prompted a further study, where we compared cytokine release of stimu- 
lated blood from volunteers and patients with advanced HIV infections and 
determined the effect of prior incubation with G-CSF in vitro. G-CSF did not 
have a suppressive effect on HIV-infected patient blood concerning LPS- 
induced TNF-a and IFN- T formation, as it did in the blood of normal con- 
trois. However, G-CSF was able to partially restore impaired IL-2 but not IL- 
4 production by blood of HIV-infected patients in response to SEB (sub- 
mitted for publication). 

B 
Expression of Surface Molecules 

FcRII (CD32) can be induced by G-CSF on various human myeloid leukemia 
cell lines (KG-1, HL-60, U937, K562), though less potently than by GM-CSF 
(Liesveld et al. 1988). In 19 patients who had received high-dose chemother- 
apy (Dreger et al. 1993) and in 14 patients with myelodysplastic syndromes 
(Ganser et al. 1994), G-CSF or G-CSF combined with all-trans retinoic acid, 
respectively, resulted in an increase in the serum concentration of soluble 
IL-2 receptor, which is regarded a marker of T-cell activation. In a case of 
SCN, the level of endogenous G-CSF was elevated to 300 pg/ml before treat- 
ment and the lymphokines GM-CSF, IL-2 and IL-3 were slightly elevated. 
The patient showed only moderate response to high dose G-CSF 
[1600 pg/m2/d], but a drastic increase in soluble IL-2 receptor was found in 
the absence of significant changes in the levels of lymphokines (Shitara et al. 
1994). 

C 
Other 

When we treated healthy volunteers for 12 consecutive days with G-CSF, a 
biphasic change in ex vivo blood lymphocyte proliferation inducible with 
either PHA or anti-CD3-antibodies was found: 24 h after the first injection, 
lymphocyte proliferation doubled but returned to pre-treatment values after 
48 h; continuation of treatment led to suppression of lymphocyte prolifera- 
tion. The clinical significance of this finding, e.g. in transplant rejection or 
autoimmune diseases is not yet clear. 



Immunomodulation by Colony-Stimulating Factors 37 

In mice, delayed-type hypersensitivity to sheep erythrocytes was en- 
hanced by G-CSF (Terashita et al. 1996). 

4 
Effects on the  Functions of  O ther  Cells 

G-CSF acts mainly on leukocytes; the pertinent actions are summarized in 
Fig. 2. However, effects on other ceils have also been noted as discussed in 
the following. G-CSF stimulated proliferation and migration of endothelial 
cells in vitro (Bussolino et al. 1989). G-CSF also augmented the secondary 
aggregation of platelets induced by a low concentration of adenosine di- 
phosphate (Shimoda et al. 1993). The priming effect of G-CSF on platelets 
was specific to G-CSF as it could be prevented by anti-G-CSF antibody. In- 
jection of G-CSF into mice induced histidine decarboxTlase and ornithine 
decarboxylase in the spleen and bone marrow, suggesting that these two 
enzymes that catalyze the production of histidine and putrescine, respec- 
tively, may act as pacemakers in the early stages of hematopoiesis (Endo et 
al. 1992). 
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Fig. 2. Pertinent immunomodulatory effects of G-CSF on different leukocyte popu- 
lations. The diagramm summarizes the predominant effects of G-CSF on immune 
functions of different leukocyte types 
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5 
Infections 

A 
Bacterial Infections 

Improved neutrophil counts and functions through treatment with G-CSF 
were beneficial in a variety of infection models with absolute or functional 
neutropenia: Mice made neutropenic with cyclophosphamide and chal- 
lenged with Pseudomonas aeruginosa, Serratia marcescens or Staphylococcus 
aureus (Matsumoto et al. 1987; Ono et al. 1988) had a higher survival rate 
when treated with G-CSF. G-CSF also improved recovery in a Pseudomonas 
aeruginosa burn wound infection model in mice (Mooney et al. 1988; Silver 
et al. 1989; Sartorelli et al. 1991), especially in combination therapy with 
gentamycin (Silver et al. 1989). G-CSF treatment was further beneficial to 
mice challenged with Pseudomonas aeruginosa pneumonia after hemor- 
rhage (Abraham and Stevens 1992). Newborn rats known to have impaired 
PMN functions challenged with group B streptococci were protected (Cairo 
et al. 1990b and c; Cairo et al. 1992b) when G-CSF was given simultaneously 
with challenge. When G-CSF was given prenatally six days before an LD~0 
challenge with group B streptococci at birth, the survival of the pups was 
increased dramatically (Novales et al. 1993). However, in another study, 
pretreatment with G-CSF had no effect on the survival of newborn rats 
challenged i.p. with the same pathogen (Iguchi et al. 1991). 

In comparison to the information available on infections in neutropenic 
animals, infection in nonneutropenic hosts has been studied and reviewed 
even more extensively (Metcalf 1987; Roilides et al. 1991; Nelson 1994; Dale 
1994), so only a few model examples will be quoted here. 

LPS is a building block of the Gram-negative bacterial membrane. 
Therefore, injection of LPS is considered a model for the response to un- 
specific bacterial infection. When we induced endotoxic shock in mice and 
rats by injection of high doses of LPS, the G-CSF-pretreated animals' sur- 
vival was significantly improved in comparison to controls (G6rgen et al. 
1992). In the same way, G-CSF prevented LPS-induced liver injury in galac- 
tosamine-sensitized rodents. In both cases, decreased serum TNF activity 
was measured. Glucose utilization upon LPS challenge was augmented in G- 
CSF-treated rats due to increased uptake by ileum, spleen, liver and lung 
(Lang et al. 1992b). In addition, in LPS-chaUenged pigs and guinea pigs, lung 
injury was partially attenuated after G-CSF pretreatment (Kanazawa et al. 
1988; Fink et al. 1993). 
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G-CSF also offered protection in a variety of peritonitis models: As little 
as 2 ~tg/kg administered after the onset of peritonitis brought about by cecal 
ligation and puncture was beneficial and synergized with antibiotics 
(O'Reilty et aI. 1992; Goya et al. 1993), while a dose of 1 ~tg/kg G-CSF resulted 
in decreased lethality and improved histopathology in lung as well as renal 
and hepatic functions (Toda et al. 1993). Similarly, in a rat cecal puncture 
model, G-CSF decreased lethality and serum TNF levels (Lundblad et al. 
1996). Rats were also protected by G-CSF in combination with antibiotics 
when a human stool suspension was inoculated into the peritoneum, in 
comparison to rats receiving only antibiotics (Lorenz et al. 1994). Here, a 
correlation between TNF levels and mortality rate was observed and G-CSF- 
treated animals were found to have total suppression of TNF serum levels. 
Benefits were obtained in analogous mouse and rat models without concur- 
rent antibiotic therapy (Barsig et al. 1996; Dunne et al. 1996). Sepsis after 
intraperitoneal (i.p.) implantation of an E. coli-infected clot in dogs was 
improved by G-CSF (Eichacker et al. 1994). 

In pneumonia models, G-CSF effects were not unequivocally advanta- 
geous: G-CSF pretreatment protected rats against pneumococcal pneumonia 
(Lister et al. 1993), but no effect was noted in rats fed a chronic ethanol diet, 
a model for immunosuppression experienced by alcohol abusers. In a simi- 
lar experimental infection model (KlebsieUa pneumoniae), however, G-CSF 
protected both control and ethanol-treated animals (Nelson et al. 1991). 
Rabbits inoculated transtracheally with Pasteurella multocida and adminis- 
tered G-CSF 24 h postchallenge tended towards improved survival (77 vs. 
67%), but showed a slight increase in inflammation of liver, spleen and lung 
(Smith et al. 1995). Detrimental effects of G-CSF were described in rats 
treated before, during and after intrabroncheal application of E. coli with or 
without hyperoxia (Freeman et al. 1996). In a mouse model, G-CSF adminis- 
tered from 24 h before challenge to three days postchaUenge was found to 
improve survival in splenectomized mice exposed to an aerosol of Strepto- 
coccus pneumoniae. G-CSF administered for two days after infection, was 
also greatly beneficial to the survival rate in a lethal model of soft tissue 
infection with Pseudomonas aeruginosa in mice (Yasuda et al. 1990). 

Mice pretreated daffy with a combination of darithromycin and G-CSF 
for three days before intravenous (i.v.) challenge with Mycobacterium avium 
complex and treated further until sacrifice had significantly decreased levels 
of infection in spleen and lungs compared with those treated with either 
factor alone or control animals (Lazard et al. 1993). 

SCID, i.e. mice devoid of lymphocytes, and normal mice inoculated i.v. 
with Listeria monocytogenes, then injected i.p. with G-CSF for five days, had 
lower counts of viable bacteria in the liver than non-treated mice. Possible 
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contributions by activated neutrophils, but not y/~ T-cells nor activated 
macrophages, to the augmentation of anti-listerial activity were shown in the 
SCID mice (Kayashima et al. 1993). 

Taken together, G-CSF treatment was found to be beneficial in a broad 
variety of infection models. In general, it was necessary to initiate treatment 
concurrent with challenge or even as pre-treatment, which might be easily 
explained by the enormous subsequent endogenous production of G-CSF. 
On the other hand, only very few negative side-effects were recorded, which 
might in part be explained by the artificial nature of the infection models: 
When a large bacterial inoculum is injected into a body compartment, this 
does not reflect the pathophysiology of normal infections. After G-CSF pre- 
treatment, this bacterial inoculum will meet an already multiplied and alert 
army of leukocytes. Under these extreme circumstances, the fulminant 
stimulation and the amplified defense may result in damage to the host. 

B 
Viral, Fungal and Parasitic Infections 

G-CSF was found to be effective for stimulation of nonspecific protection 
against Sendal virus infection in normal mice (Azuma et al. 1992). Mice 
made neutropenic with cyclophosphamide treatment were protected against 
challenge with Candida albicans, Cryptococcus neoformans or Aspergillus 
fumigatus by G-CSF (Matsumoto et al. 1987; Ono et al. 1988; Uchida et al. 
1992; Hamood et al. 1994). Others however, noted no beneficial effect in 
neutropenic murine cryptococcosis (Polak-Wyss 1991a) and local candidosis 
(Polak-Wyss 1991b). 

6 
Potential Clinical Applications 

To date, there is broad consensus on the dinical efficacy of G-CSF in neu- 
tropenic disorders such as iatrogenic neutropenia (due to chemotherapy, 
radiotherapy or myelosuppressive drugs), idiopathic neutropenia, leukemic 
neutropenia, refractory or aplastic anemia and agranulocytosis (HoUings- 
head and Goa 1991; Gabrilove 1992; Glaspy and Golde 1992; Roilides and 
Pizzo 1992 and 1993; Steward 1993; Dale 1994; Frampton et al. 1995). In 
phase III clinical studies of patients with chemotherapy-induced neutro- 
penia, a decrease in the incidence of infection after standard regimens and 
fewer days with infectious and febrile neutropenic episodes during recovery 
from bone marrow transplantation occurred concomitantly with the amelio- 
ration of neutropenia. The decrease in morbidity was associated with shorter 
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hospitalization times and reduced administration of parenteral antibacterial 
agents (Frampton et al. 1995). G-CSF may facilitate dose optimization and 
permit limited dose intensification of standard chemotherapy. Furthermore, 
G-CSF is effective in mobilizing peripheral blood progenitor cells for subse- 
quent reinfusion. But, it is not yet firmly established, how great the effect of 
dose intensification through G-CSF or stem cell rescue is on remission rates 
or survival times (Frampton et al. 1995). In addition, G-CSF was able to 
partially restore defective neutrophil functions, including oxidative burst 
and bactericidal activity in PMN from children receiving chemotherapy for 
cancer to levels similar to normal PMN in vitro (Lejeune et al. 1996). There 
is also a potential value in treating patients with severe neutropenia and 
sepsis who are unresponsive to antibiotics with neutrophils collected from 
donors whose pools have been expanded by G-CSF (Grigg et al. 1996). Such 
infusions were successful in three patients without multi-organ dysfunction 
and prophylactically in two patients with localized fungal infections under- 
going bone marrow transplantation (Grigg et al. 1996). 

In contrast to in vitro findings, various phase III clinical studies on pa- 
tients with AML discerned that G-CSF therapy had no effect on blast cell 
proliferation. There has also been no evidence of stimulation of non- 
myelogenous malignancies by G-CSF, although a number of neoplasms are 
known to express the G-CSF receptor. On the other hand, stimulation with 
hematopoietic growth factors could be exploited to increase cell-cycling of 
leukemic blasts, making them more susceptible to chemotherapy (Frampton 
et al. 1995). Although G-CSF is known to reduce the risk of infections and to 
improve the quality of life (Kalra et al. 1995; Welte and Dale 1996), the rela- 
tionship between therapeutic G-CSF and the leukemic transformation in 
patients with SCN is undear (Kalra et al. 1995). As no patients with cyclic or 
idiopathic neutropenia have been reported to have developed leukemia, it 
seems that G-CSF is not involved in the pathophysiology of leukemia (Welte 
and Dale 1996). 

In patients with HIV infection, G-CSF has reversed or prevented neutro- 
penia even during periods of full-dose myelotoxic therapy (Mitsuyasu 1994; 
Frumkin 1997). Furthermore, G-CSF has improved defective neutrophil 
function in vitro and in vivo in the setting of HIV infection (Frumkin 1997). 
A study with eight AIDS patients with serious infections and neutropenia 
treated with G-CSF achieved successful treatment of life-threatening bacte- 
rial infections by stimulating the neutrophil immune system (Hengge et al. 
1992). As monocytes and macrophages are prone to infection by HIV, G-CSF 
is potentiaUy more valuable in this situation than GM-CSF (Hengge et al. 
1992). In a phase I/II trial with 22 AIDS patients, the combined therapy of G- 
CSF and erythropoietin improved neutropenia and anemia. Increases in 
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neutrophil number, CD4 ~ and CD8*, lymphocyte proliferative response, 
bone marrow cellularity and hemoglobin levels were seen. Re-institution of 
zidovudine resulted in a decline in reticulocytes and hemoglobin in 8 of 20 
patients. Limiting dilution plasma and lymphocyte co-cultures for HIV as 
well as serum p24 antigen levels did not change significantly during G-CSF 
or combined G-CSF and erythropoietin therapy; HIV p24 antigen decreased 
significantly with zidovudine therapy. Opportunistic infections, which still 
occurred in 14 patients, were all successfully treated with myelosuppressive 
antimicrobial agents without the development of neutropenia (Miles et al. 
1991). In animal models, G-CSF has been beneficial against opportunistic 
pathogens common to the HIV-infected population, though the clinical 
relevance of these findings remains to be explored (Frumkin 1997). 

Diabetic patients are prone to infection characterized by a lack of neutro- 
philia and neutrophil dysfunction. The typical foot ulcers of these patients 
were efficiently treated compared to placebo treated controls by systemic 
application of G-CSF for 7 days (Gough et al. 1997). Concomitantly, superox- 
ide formation by neutrophils of these patients was improved. 

A promising indication for the use of G-CSF in non-neutropenics is sep- 
sis prophylaxis and treatment in cases where the time point of a risk is 
known (major surgery) or can be anticipated (trauma, burn, local infection). 
For instance, 756 patients enrolled in a double-blind controlled multi-center 
study with community acquired pneumonia showed reduced incidence of 
adult respiratory distress syndrome (ARDS) and disseminated intravascular 
coagulation (DIC) (Andresen and Movahhed 1998). In another investiga- 
tional study, 37 liver allograft recipients treated with G-CSF showed de- 
creased septic episodes and less sepsis-associated death compared with 49 
patients who did not receive G-CSF treatment (Foster et al. 1995). In 42 hu- 
man neonates with presumed bacterial sepsis treated in a randomized con- 
trolled study with G-CSF, increased PMN counts had no association with any 
acute toxicity (Gillan et al. 1993 and 1994). It was proposed that neutropenia 
and deficient G-CSF production may predispose newborn infants to sepsis 
(25-30% incidence in neonates weighing 500 to 1000 g). However, there are 
still doubts whether respiratory distress syndrome in neonates is an indica- 
tion for G-CSF (Yurdak6k et al. 1994). 

In another study ten postoperative/posttraumatic patients, who are 
known to be prone to sepsis due to an immunocompromized anergic state, 
were treated with G-CSF [1 ~tg/kg/d] for four days: none of these patients 
developed sepsis (Weiss et al. 1994 and 1995, Gross-Weege et al. 1997). The 
efficacy of G-CSF therapy was also investigated in 24 patients with neutro- 
penia and sepsis who had failed to respond to antibiotics. In this study, 19 
patients responded to daily injection of 75 pg G-CSF s.c. with an increase in 
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PMN and all survived. The five patients with no response to G-CSF died 
(Endo et al. 1994). 

G-CSF may also have a therapeutic bearing for inflammatory diseases. 
Pretreatment of rabbits before or at induction of experimental immune 
complex colitis with G-CSF had anti-inflammatory effects, such as increased 
tissue MPO levels, decreased LTB 4 and thromboxane B 2 and unaffected PGE 2 
dialysis fluid levels in comparison to untreated controls (Hommes et al. 
1996). 

In addition, G-CSF was able to lower the incidence of chronic graft- 
versus-host-disease (GVHD) in mice and patients receiving allogeneic bone 
marrow transplants (Hirokawa et al. 1995). It was observed that patients 
receiving G-CSF had a lower incidence of increased TNFqx serum levels than 
their counterparts not given G-CSF (Hirokawa et al. 1995). On the other 
hand, recipient survival was significantly improved in a murine acute GVHD 
model when the donors were pretreated with G-CSF (Pan et al. 1995). The 
advantage is thought to lie in the reduction of the secretion of IL-2 and IFN- 
y and stimulation of the production of IL-4 by T-lymphocytes, a pattern 
which was observed in vitro. Thirteen days after transplantation, the spleno- 
cytes of recipients of G-CSF-treated bone marrow showed an increase in IL-4 
along with a decrease in IL-2 and IFN-y production. 

There are indications that patients with glycogen storage disease (type 
lb), who have experienced severe and/or recurrent infections, may benefit 
from G-CSF therapy (Frampton et al. 1995). G-CSF may also find a role in 
immunotherapy directed toward the proto-oncogene product HER-2/neu 
which is overexpressed in some breast cancers and other carcinomas: whole 
blood or isolated neutrophils from patients or volunteers were highly cyto- 
toxic toward HER-2/neu breast cell carcinoma lines in the presence of a 
bispecific [HER-2/neu x CD64] antibody. G-CSF application not only in- 
creased effector cell numbers, but also induced their expression of CD64 
(Repp et al. 1995; Stockmeyer et al. 1997). Similar observations were made 
with bispecific [HLA class II x CD64] antibodies toward malignant B-cell 
lines with G-CSF-primed human neutrophils in vitro (Elsasser et al. 1996). 

The results of these orientating clinical investigations support the notion 
that an overwhelming concordance exists between the hitherto available set 
of preclinical data and the practical experiences gained by the world-wide 
usage of the drug. It therefore seems appropriate to explore the use of the 
pharmacological potential of G-CSF further for new indications such as non- 
neutropenic infection, sepsis prophylaxis, chronic inflammation and AIDS. 
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I I  
GM-CSF 

Thomas Hartung 

1 
General Information 

1.1 
Molecular Biology and Endogenous Production 

A 
The Molecule GM-CSF 

GM-CSF was purified from mouse lung-conditioned medium in 1977 and 
from the supernatant of a HTLV I infected T-cell line (Mo) in 1984 (Freund 
and Kleine 1992). Murine GM-CSF was cloned in 1984 (Gough et al. 1984) 
and human GM-CSF in 1985 (Wong et al. 1985; CantreU et al. 1985). Gasson 
et aL first demonstrated that NIF-T (neutrophil migration inhibition factor) 
and GM-CSF were one and the same protein, which acts on progenitors as 
well as mature ceUs of the granulocyte and monocy~e lineage (Gasson et al. 
1984). 

The single copy of the gene encoding human GM-CSF is localized on 
chromosome 5, region 5q21-Sq32 (Huebner et al. 1985), dose to the genes 
for IL-3, IL-4, IL-5, M-CSF, the M-CSF receptor and an early growth re- 
sponse factor (EGR-1). Interstitial deletions in this region are seen predomi- 
nantly in therapy-related myelodysplastic syndromes and acute leukemias as 
well as in patients with deletions in the 5q region, who display a refractory 
anemia with morphologic abnormalities of the megakaryocytes (Gasson 
t991). It is speculated that the deletion of this region unmasks aberrant or 
recessive alleles that are involved in the generation of abnormal hematopoi- 
esis, or that the deletion of an important suppressor gene, which may be 
closely linked to these hematopoietic regulators, is the cause. 

The gene for GM-CSF encodes a protein of 144 amino acids (CantreU et 
al. 1985), which undergoes cleavage of a 17-amino acid segment from the 
amino terminus, resulting in a mature protein of 127 amino acids (Ruef and 
Coleman 1990), with four ~x-helices and 2 [3-sheets, stabilized in a bilobed 
configuration by two disulfide bridges. The apparent range of molecular 
mass lies between 14'500 and 35'000 (Clark 1988). This heterogeneity is due 
to the variable N-linked addition of complex carbohydrate at two sites and 
the glycosylation of two serine residues near the amino terminus. 
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Although non-glycosylated GM-CSF expressed in E. coli (Molgramostim) 
and glycosylated GM-CSF expressed in Chinese hamster ovary (CHO) carci- 
noma have comparable effects on the induction of leukocytosis in monkeys 
in vivo (Mayer et al. 1987), their pharmakokinetics, as studied in healthy 
volunteers, were quite different: the serum concentration of the non- 
glycosylated form reached a higher maximum faster and also decreased 
more rapidly than the glycosylated form (Denzlinger et al. 1993). The two 
forms may be distributed differently in the body, in which case they would 
be differentially effective in reaching the various populations of target ceils. 

Preclinical studies with recombinant human GM-CSF are limited by the 
lack of cross species reactivity in mice (Metcalf 1986). The protein sequence 
homology between human and murine GM-CSF is only 60% (Wong et al. 
1985). Human GM-CSF does not appear to activate canine PMN in vitro and 
may actually down-regulate their inflammatory responses (D'Alesandro et 
al. 1991). Even in monkeys, only short-term studies can be undertaken be- 
cause antibodies develop toward human GM-CSF (Morstyn et al. 1989). 

B 
Endogenous Production of GM-CSF 

The expression of GM-CSF by T-lymphocytes (Herrmann et al. 1988; Bickel 
et al. 1990), B lymphocytes (Akahane et al. 1991), fibroblasts (Nimer et al. 
1989), mast cells (Wodnar-Filopowicz et al. 1989; Gasson 1991), endothelial 
cells (Sieff et al. 1987a; Gasson 1991), epithelial ceils (Galy and Spits 1991; 
Churchill et al. 1992; Ohtoshi et al. 1994), macrophages (Akahane and 
Pluznik 1993), NK cells (Cuturi et al. 1989; Levitt et al. 1991) and even cul- 
tured astrocytes (Ohno et al. 1990) is controlled by either transcriptional or 
posttranscriptional regulation: neither T-cells, macrophages nor NK cells 
produced stable cytoplasmic mRNA in the absence of stimulating signals in 
cttlture conditions (Oster et al. 1989c; Levitt et al. 1991). In the case of the T- 
cells and mesothdial ceils, the upregulation occured through the increase of 
GM-CSF mRNA production (Di Persio and Abboud 1992). In contrast, the 
activation of fibroblasts, endothelial cells and macrophages resulted in in- 
creased stability of the mRNA and therefore increased protein synthesis 
(Munker et al. 1986; Koeffler et al. 1987; Nimer et al. 1989; Di Persio and 
Abboud 1992). Obviously, both transcriptional and posttranscriptional sig- 
nals act together to modulate the level of GM-CSF mRNA in NK cells (Levitt 
et al. 1991). The secretion of GM-CSF protein was increased greatly on matu- 
ration of monocytes to macrophages in vitro (Krause et al. 1992; Kruger et 
al. 1996a). Two of four tested malignant mesothelioma cell lines expressed 
GM-CSF transcripts autonomously (Demetri et al. 1989). A case of a thyroid 
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cancer producing GM-CSF and G-CSF autonomously has been reported 
(Nakada et al. 1996). 

Induction of GM-CSF production 

Table 6 provides an overview of the factors involved in initiating the pro- 
duction of GM-CSF. Monocytes/macrophages were directly activated by 
immune or inflammatory stimuli, such as LPS (Thorens et al. 1987; Lee et al. 
1990; Sallerfors and Olofsson 1992; Hamilton et al. 1992b; Kruger et al. 
1996a), IL-1 (Sallerfors and Olofsson 1992), PHA (Imakawa et al. 1993), fetal 
calf serum, thioglycolate broth as well as phagocytosis or adherence to fi- 
bronectin (Thorens et al. 1987) to produce GM-CSF protein. IL-3 induced a 
minor secretion of protein, but TNF, G-CSF and M-CSF were unable to in- 
duce the secretion of GM-CSF (SaUerfors and Olofsson 1992). There are 
conflicting reports as to the actions of IFN-~/and M-CSF. One study states 
that neither had any effect on GM-CSF production in monocytes (Sallerfors 
and Olofsson 1992), while one found that GM-CSF protein was produced by 
human monocytes stimulated by M-CSF (Motoyoshi et al. 1989). Another 
investigation found that concentrations of IFN-7 as low as 10 U/ml were able 
to induce the secretion of GM-CSF in these cells (Herrmann et al. 1986). 
However, the same study found that the response to IFN-~, was biphasic, i.e. 
concentrations greater than 250 U/m1 did not induce detectable GM-CSF 
activity, as a humoral G/M-progenitor cell inhibitor was released that 
masked the effect of GM-CSF (Herrmann et al. 1986). The smooth-domed 
opaque variants of Mycobacterium avium induced the secretion of GM-CSF 
in infected macrophages, which seemed to suppress their own proliferation. 
In comparison, the smooth transparent variant of this strain, which prolif- 
erated better, did not induce the production of GM-CSF (Fattorini et al. 
1994). 

PBMC produced GM-CSF in response to PHA plus PMA (Oster et al. 
1989c). T-lymphocytes produced GM-CSF when stimulated by IL-2 (Oster et 
al. 1989c), ConA + PMA (Borger et al. 1996) or staphylococcal enterotoxin A 
(SEA), but not LPS or IL-1 (Sallerfors and Olofsson 1992). However, another 
study found that T-lymphocytes do produce GM-CSF when stimulated with 
IL-1 (Herrmann et al. 1988). Phorbol ester has been shown to induce GM- 
CSF production by routine T-lymphocytes (Bickel et al. 1990). T-cells were 
found to be able to differentially secrete GM-CSF and IL-3 independently 
(Fitzpatrick and Kelso 1995). GM-CSF production by NK cells was regulated 
by the IL-2R[~ and CD2 receptor, but not by IL-2R~x (Levitt et al. 1991). Both 
rIL-2 and CD16 ligands induced accumulation of GM-CSF mRNA in NK cells 
and the combined effect of the two stimuli was synergistic (Cuturi et al. 
1989). As these cells are part of the first line of defense against infection and 
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tumor metastasis, their secretion of this factor may contribute to the activa- 
tion of macrophages and neutrophils and to the recruitment of other effec- 
tor cells (Ross and Koeffler 1992). 

Other leukocytes may also be stimulated to produce GM-CSF: Murine B 
lymphocyte cell lines were induced to express GM-CSF by IL-lo~ or LPS 
(Akahane et al. 1991). CD23 (IgE)-mediated activation of murine mast cells 
in vitro, as it happens in allergic diseases in vivo, resulted in the production 
of GM-CSF (Wodnar-Filopowicz et al. 1989), which may be interpreted as a 
mechanism of local tissue defense. Human peripheral blood eosinophils can 
be stimulated to release GM-CSF by ionomycin in vitro, suggesting a novel 
role for eosinophils in the pathophysiology of allergic inflammation and 
host-defense mechanisms (Kita et al. 1991). When patients with asthma were 
challenged with allergen inhalation, peripheral blood eosinophils expressed 
no GM-CSF mRNA or protein. Instead, both bronchoalveolar lavage eosino- 
phils and mononuclear cells expressed GM-CSF mRNA and protein (Sulli- 
van and Broide 1996). 

In addition, PMN produced GM-CSF when stimulated by ionomycin in 
vitro. Even though they synthesize far smaller quantities of the cytokine than 
PBMC stimulated by PMA under similar conditions on a single cell basis, 
one must consider that granulocytes constitute the majority of infiltrating 
cells in inflamed tissues and may thus represent an important source of 
cytokines in such tissues (Cassatella 1995). 

Apart from the cells of the immune system, various other tissues also 
have the ability to produce GM-CSF in response to an exogenous signal or 
the mediators of inflammation. TNF4x and IL-1 stimulated the production 
of GM-CSF by human endothelial cells in vitro (Broudy et al. 1986; Munker 
et al. 1986; Sieff et al. 1987a; Seelentag et al. 1987; Zsebo et al. 1988; Akahane 
and Pluznick 1993), apparently via different mechanisms, as they were found 
to have an additive effect (Seelentag et al. 1987). On the contrary, IFN-y and 
IL-2 had no effect on GM-CSF production by human umbilical cord endo- 
thelial cells (Ross and Koeffler 1992). GM-CSF mRNA transcripts in normal 
human mesothelial cells in vitro could be induced by a combination of EGF 
and TNF (Demetri et al. 1989) or by IL-1 (Lanfrancone et al. 1992). Internal 
mammary artery and aortic smooth muscle cells produced GM-CSF when 
stimulated by IL-1 or TNF-t~ (Filonzi et al. 1993). Fibroblasts increased their 
production of GM-CSF upon exposure to TNF (Munker et al. 1986; Koeffler 
et aL 1987; Nimer et al. 1989) or IL-1 (Nimer et al. 1989). These two cytokines 
may synergize in this respect (Seelentag et al. I989). Phorbol diester also 
stimulated fibroblasts to produce GM-CSF (Nimer et al. 1989). Monolayers 
of human colon epithelial cell lines (T84, HT29, Caco-2) upregulated GM- 
CSF expression and release when infected with invasive strains of bacteria 
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(Salmonella dublin, Shigella dysenteriae, Yersinia enterocolitica, Listeria 
monocytogenes, enteroinvasive E. coli) or when stimulated by TNF-~ or IL-1 
(Jung et al. 1995). In contrast, cytokine gene expression was not altered after 
infection of these cells with noninvasive bacteria or the noninvasive proto- 
zoan parasite Giardia lamblia (Jung et al. 1995). Human thymic epithelia 
also upregulated their production of GM-CSF in response to IL-1 (Galy and 
Spits 1991). Human airway epithelial cells in culture released GM-CSF in 
response to a wide variety of air pollutants (Ohtoshi et al. 1994); the subse- 
quent actions of GM-CSF on eosinophils was suggested to explain the recent 
increase in the prevalence of allergic disorders. GM-CSF production by 
bronchial epithelial cells of patients with respiratory diseases may also be 
upregulated by IL-4 or IL-13, but not by IL-10 (Nakamura et al. 1996). Fur- 
thermore, GM-CSF mRNA has been found localized in the luminal and 
glandular epithelium of the uterine endometrium (Imakawa et al. 1993). 
Cultured astrocytes released GM-CSF in response to stimulation by LPS 
(Ohno et al. 1990). 

GM-CSF production has been reported from different cell sources in 
some types of disease: For example, leukemic cells from some patients with 
AML secreted cytokines induding TNF and IL-1, which in turn stimulated 
accessory cells to produce, among others, GM-CSF (Oster et al. 1989a; Ross 
and Koeffler 1992). Several AML patients have been identified, whose blast 
cells are autocrine for GM-CSF, suggesting that in a population of leukemic 
cells, there may be a selective advantage in producing GM-CSF (Clark and 
Kamen 1987). When T-cells are activated in some autoimmune diseases, the 
observed eosinophilia may in part be due to the production of GM-CSF 
(Gabrilove and Jakubowski 1990). 

In conclusion, GM-CSF is produced by a broad variety of cells exceeding 
the immune cells. Since most inflammatory stimuli and mediators are ca- 
pable of inducing GM-CSF formation, the presence of GM-CSF at any in- 
flammatory focus must be assumed. Notably, systemic GM-CSF levels are 
found only rarely, which indicates a primarily auto- and paracrine role for 
this local GM-CSF formation. 

Modulation of GM-CSF production 

In the presence of LPS, GM-CSF production by purified human monocytes 
was upregulated by cyclooxygenase inhibition (indomethacin); this action 
was reversed by exogenous PGE 2 (Lee et al. 1990; Hamilton 1994). The ac- 
cumulation of GM-CSF mRNA in macrophages was prevented by the corti- 
costeroids, e.g. dexamethasone and IFN-y (Thorens et al. 1987; Hamilton et 
al. 1992b; Lenhoff and Olofsson 1996). Exogenous as well as endogenous IL- 
l0 has also been reported to inhibit the expression of the GM-CSF gene in 
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stimulated monocytes (Kruger et al. 1996b). Human blood monocytes in- 
fected in vitro with HIV-I downregulated their GM-CSF production (Esser et 
al. 1996). IL-4, a T-cell-produced cytokine, had an inhibitory function on 
GM-CSF production in LPS-stimulated monocytes (Hamilton et al. 1992b) 
and in normal PBMC (Sallerfors 1994). In an autologous mixed lymphocyte 
reaction in human PBMC, IL-10 suppressed the production of GM-CSF 
(Sagawa et al. 1996). IFN4x inhibited the gene expression of GM-CSF in 
PBMC, whether mitogen- or antigen-induced (Krishnaswamy et al. 1996). 
1,25 dihydroxyvitamin D~ (Tobler et al. 1987) as well as corticosteroids, cy- 
closporin and cephalosporins (Lenhoff and Olofsson 1996), inhibited the 
GM-CSF production by stimulated T-lymphocytes in vitro. Furthermore, 
activation of the cAMP-dependent signaling pathway, e.g. by 2'-O-dibutyryl- 
cAMP (db-cAMP), PGE 2 or isoproterenol, reduced the secretion of GM-CSF 
protein in ConA _+ PMA-activated T-cells (Borger et al. 1996). TNF-~ or IFN- 
y, which synergize at suboptimal concentrations, enhanced the release of 
GM-CSF by PHA-stimulated subsets of T-lymphocytes in vitro (Lu et al. 
1988b). IL-4 also inhibited GM-CSF production by IL-l~x-stimulated murine 
B cells (Akahane and Pluznik 1992). 

The secretion of GM-CSF by endothelial cells was downregulated by cy- 
closporin and cephalosporins (Lenhoff and Olofsson 1996). IFN-y downregu- 
lated the production of GM-CSF by murine vascular endothelial cells by 
destablizing the mRNA (Akahane and Pluznick 1993) and by TNF- or IL-1- 
stimulated fibroblasts (Hamilton et al. 1992a). Similarly, dexamethasone 
(Hamilton et al. 1992a; Sallerfors 1994) or 1,25 dihydroxyvitamin D3 (Saller- 
fors 1994) or IL-4 (Hamilton et al. 1992a) decreased, while basic fibroblast 
growth factor and cyclooxygenase inhibitors, although nonstimulatory 
themselves, potentiated GM-CSF release by fibroblasts (Hamilton et al. 
1992a). Both IFN-y and IL-4 inhibited IL-l-stimulated GM-CSF production 
in thymic epithelial cells (Galy and Spits 1991), and dexamethasone as well 
as steroids and anti-allergic drugs, lowered GM-CSF production (Churchill 
et al. 1992; Ohtoshi et al. 1994), but histamine as well as IL-1 enhanced the 
release of GM-CSF by these cells (Churchill et al. 1992). 

An amplification network, i.e. positive feedback loops, seems to exist at 
many sites the immune response, as IL-1 and GM-CSF are produced by 
many of the same cells and GM-CSF can induce secretion of both IL-1 and 
TNF (Ruef and Coleman 1990). Conversely, TNF produced for instance by 
macrophages, causes the secretion of GM-CSF by a variety of cells (Munker 
et al. 1986). The reader is referred to Table 7 for a summary of these interac- 
tions. In general, anti-inflammatory cytokines, such as IL-4 and IL-10, ap- 
pear to attenuate GM-CSF formation, but the pro-inflammatory IFN-y has 
similar effects in some cells. 
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Serum GM-CSF 

GM-CSF has rarely been found in the circulation at detectable levels, but is 
extractable from all major organs at higher concentrations (Metcalf 1987). It 
usually acts locally in a paracrine manner (Gasson 1991). 

Mice infected with Listeria monocytogenes produced only smaU amounts 
of GM-CSF measurable in the serum (Cheers et al. 1988). The blood of pa- 
tients with experimental endotoxemia (Granowitz et al. 1992), neutropenic 
fever (Cebon et al. 1994), cyclic neutropenia (Misago et al. 1991), sepsis 
(Cebon et al. 1994) or acute lymphoblastic leukemia (ALL) or acute undif- 
ferentiated leukemia (AUL) (SaUerfors and Olofsson 1991) also did not show 
elevated GM-CSF serum levels. 

The cerebrospinal fluid of patients with meningitis may contain a meas- 
urable concentration of GM-CSF, emphasizing a role for local production of 
the CSF (SaUerfors 1994). An increase in plasma GM-CSF in conjunction 
with infections in immunosuppressed renal transplant patients as well as in 
patients with inflammatory disorders such as asthma (Sallerfors 1994), AML, 
aplastic anemia and granulocytosis due to infection (Omori et al. 1992) has 
been described. A woman with a thyroid carcinoma, which produced GM- 
CSF and G-CSF autonomously, had significantly elevated serum levels of 
both factors without any evidence of infection (Nakada et al. 1996). 

Deficient GM-CSF 

Mice with homozygous mutations of the GM-CSF gene showed no major 
deficits in hematopoiesis until 12 weeks of age, but they developed abnormal 
lungs with extensive peribronchovascular infiltration of lymphocytes, espe- 
ciaUy B cells; the alveoli contained granular eosinophilic material and lamel- 
lar bodies indicative of surfactant accumulation, and there were numerous 
large intra-alveotar phagocytic macrophages. Some mice had sub-clinical 
bacterial or fungal infections (Stanley et al. 1994). These observations indi- 
cate that GM-CSF is not essential for the maintenance ofhematopoietic cells 
and their precursors, but rather for normal pulmonary physiology and resis- 
tance to local infection (Stanley et al. 1994). 

Mice deficient in both GM-CSF and M-CSF displayed the sum of the fea- 
tures observed in mice lacking production of either protein alone: they had 
osteopetrosis, were toothless and developed a more severe form of the lung 
pathology described above. Their survival was significantly reduced com- 
pared to that of mice deficient in only one of the factors and aU mice had 
pneumonia at death. The diseased lungs contained numerous phagocytically 
active macrophages and the levels of circulating monocytes were compara- 
ble to those of M-CSF-deficient mice (Lieschke et al. 1994b). 
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Excess GM-CSF 

Administration of a high dose of canine GM-CSF to dogs for twelve days 
reduced the survival of labeled platelets measured in vivo, by increasing the 
hepatic uptake and destruction of platelets. Platelets were identified in as- 
sociation with Kupffer cells in the liver, which might be due to increased 
expression of CDlc and CDllc on these liver macrophages (Nash et al. 
1995). 

GM-CSF caused increased adhesion of monocytes to endothelial cells 
(Gamble et al. 1989), which implies that egress of monocytes into the tissue 
spaces is also enhanced. This may also be the case with neutrophils via TNF 
production stimulated in monocytes by GM-CSF (Cannistra et al. 1987). 
These effects combined with the subtle activation of PMN by GM-CSF may 
combine to produce excessive tissue infiltration and inflammation. Inap- 
propriate or excessive production of GM-CSF was examined in transgenic 
mice which carried the murine GM-CSF gene expressed via a retroviral 
promoter and exhibited high serum levels of GM-CSF. Accumulations of 
macrophages in the eyes, striated muscle and peritoneal and pleural cavities 
were observed, leading to blindness and muscle wasting (Lang et al. 1987). 
The engraftment of bone marrow cells infected with a recombinant retrovi- 
rus, MPZen (GM-CSF), into irradiated mice also resulted in very high levels 
of serum and tissue GM-CSF. The mice died within 4 weeks of transplanta- 
tion with extensive neutrophil and macrophage infiltration of the spleen, 
lung, liver, peritoneal cavity, heart and skeletal muscles. Furthermore, the 
thymus and lymph nodes were deficient in lymphoid cells. Yet, no disease 
occurred when infected cells from hematopoietic tissues of the primary 
transplanted animals were injected into normal or sub-lethally irradiated 
mice (Johnson et al. 1989). Highly expressed GM-CSF in rat lung, after in- 
trapulmonary transfer of the gene coding for murine GM-CSF using an ade- 
noviral vector, led to the sustained but self-limiting accumulation of eosino- 
phils and macrophages associated with tissue injury in the lung. After this, 
varying degrees of irreversible fibrotic reactions were observed in later 
stages, suggesting that GM-CSF plays a role in the development of respira- 
tory conditions characterized by eosinophilia, granuloma and/or fibrosis 
(Xing et al. 1996). There is no evidence from murine studies that the over- 
production of GM-CSF in transgenic mice has any effect on leukemic trans- 
formation, even when an attempt was made to induce leukemia by irradia- 
tion (Scarffe 1991). 

The in vivo administration of GM-CSF to a severely pancytopenic mon- 
key infected with simian type D retrovirus caused not only leukocytosis, but 
also a substantial reticulocytosis, which might be explained by a synergy 
between GM-CSF and the high circulating levels of erythropoietin measured 
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in this monkey in comparison to a control animal (Donahue et al. 1986). 
High doses of human GM-CSF given to the monkey resulted in generalized 
polyserositis, hepatic necrosis and panceUular h~erplasia of the bone mar- 
row. 

In conclusion, a variety of pronounced side-effects were associated with 
high GM-CSF levels in a number of animal studies. However, at lower, 
pharmacologically active doses, GM-CSF was generally well tolerated in both 
rhesus monkeys and humans (Robinson and Myers 1993). 

Toxicity 

Adverse effects of GM-CSF are more common and more severe than those of 
G-CSF. Toxicity is dose related and greater with i.v. than s.c. administration 
(Frank and Mandell 1995): First-dose reactions may consist of flushing, 
tachycardia, hypotension, hypoxia, myalgias and vomiting. At high doses in 
humans, toxicities such as bone pain, rash, fever and chills, myalgias, phle- 
bitis, thrombosis, capillary leak syndrome, edema, lethargy, anorexia and 
pericardial and pleural effusions were reported (Di Persio 1990; Frank and 
Mandell 1995). It is difficult to determine the frequency of the side-effects 
attributable to GM-CSF, because many of these symptoms are common after 
bone marrow transplantation: There are also case reports in which GM-CSF 
appeared to reactivate autoimmune thyroiditis, rheumatoid arthritis and 
hemolysis. Thus, GM-CSF should be used cautiously in patients with a his- 
tory of autoimmune or chronic inflammatory disease (Lieschke and Burgess 
1992b). 

C 
Receptors and Signal Transduction 

GM-CSF receptors are expressed on human neutrophils, eosinophils and 
monocytes, on purified CFU-GM and on some non-hematopoietic cells (Di 
Persio et al. 1988a). Neutrophils displayed only a single class of high-affinity 
receptors, while monocytes and myeloid leukemic cell lines had two classes 
of binding sites, one with high and one with lower affinity (Moore 1991). The 
cDNA for two receptor subunits, designated ¢z and ]3, have been cloned 
(Gearing et al. 1989; Hayashida et al. 1990). The ~-subunit cDNA encodes a 
low-affinity binding protein for GM-CSF, but cotransfection of this suhunit 
with the [~-subunit cDNA reconstituted the high-affinity GM-CSF-R 
(Hayashida et al. 1990). Isolated expression of the [~-subunit, which is shared 
with the receptors for IL-3 and IL-5 (Kitamura et al. 1991; Tavernier et al. 
1991), did not generate any binding capacity for human GM-CSF. 
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The high-affinity receptor has a molecular weight of 84'000 (Di Persio et 
al. 1988a) with an affinity of approximately 30 pM (Weisbart et al. 1989). It is 
expressed in low numbers (50-1000 sites per cell) (Rapoport 1992). The c~- 
subunit was down-regulated by GM-CSF, PMA and calcium ionophore 
A23187 (Rapoport 1992). 

GM-CSF receptors are expressed as soluble forms as well as membrane- 
anchored proteins (Lopez et al. 1992); the soluble isoforms arise from 
translation of specific mRNA and are the product of differential splicing. 

GM-CSF had no direct effect on membrane depolarization, Ca 2÷ flux or 
intracellular free Ca ~÷ concentration (Sullivan et al.1987; Rapoport 1992) and 
produced no detectable increase in neutrophilic inositoltriphosphate or 
diacylglycerol levels, making phospholipase C activation an unlikely second 
messenger system (Rapoport 1992). Though there is no region on the low- 
affinity human GM-CSF receptor that would be expected to have tyrosine 
kinase activity (Rapoport 1992), it was found that especially p42 and p44 
MAP kinases are prominently tyrosine-phosphorylated in response to GM- 
CSF in a temperature-dependent fashion in vitro, even in non-proliferative 
neutrophils (McColl et al. 1991; Okuda et al. 1992). The guanylate cyclase 
system is another possible pathway of GM-CSF-induced signal transduction 
in neutrophils. GM-CSF raised cGMP levels (Rapoport 1992), an effect that 
was abrogated by pertussis toxin, which inactivates certain G proteins. Some 
of the effects of GM-CSF on human PMN were attenuated by a guanylate 
cyclase inhibitor (Coffey et al. 1993). Lastly, the direct stimulation of arachi- 
donic acid, LTB 4 and PAF (platelet activating factor) synthesis and release 
may play a role in signal transduction (Rapoport 1992). An inhibitor of 5- 
lipoxygenase attenuated some of the effects of GM-CSF on human neutro- 
phils (Coffey et al. 1993). 

Protein kinase C and other kinases may be involved in down-modulating 
the GM-CSF receptor and signal, since exposure of neutrophils to protein 
ldnase inhibitors impaired receptor internalization after ligand binding and 
enhanced the effects of GM-CSF on neutrophils (Rapoport 1992). TNF, PMA 
and fMLP downregulated GM-CSF receptors, but G-CSF was found to induce 
increased expression of GM-CSF receptors in a G-CSF responsive, GM-CSF 
unresponsive murine hematopoietic precursor cell line, resulting in differ- 
entiation of the cells in the presence of GM-CSF to monocytes and granulo- 
cytes (Rapoport 1992). 
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1.2 
Role in Hematopoiesis 

GM-CSF was originally identified as a growth factor capable of supporting 
the donal proliferation of granulocyte-macrophage progenitors in culture 
(reviewed by Clark 1988). It was found that in vitro granulocyte and mono- 
cyte progenitor cells die by apoptosis within a few hours in the absence of 
GM-CSF (Ruef and Coleman 1990; Dexter and Heyworth 1994), whereas they 
become irreversibly committed to the production of neutrophils, eosino- 
phils and monocytes if the factor is present (Ruef and Coleman 1990). This 
may be a means of regulating population size of GM-CSF-dependent cells in 
vivo: There may be a slight overproduction of progenitor cells during steady 
state, where the excess cells die when the concentration of growth factor 
becomes limited. In this case some of the additional cells recruited by ad- 
ministration of exogenous GM-CSF would be derived from progenitor cells 
otherwise destined to die (Dexter and Heyworth 1994). When bipotential 
granulocyte-macrophage progenitors were treated with high concentrations 
of GM-CSF in vitro, many cells were forced to enter the granulocytic path- 
way whereas low concentrations resulted in the formation of pure macro- 
phage progeny (Metcalf 1985). This phenomenon may be explained in part 
by the observation that GM-CSF downregulates M-CSF-receptor expression 
(Rapoport 1992). In the presence of M-CSF, suboptimal concentrations of 
GM-CSF greatly enhanced human macrophage colony-formation (Clark 
1988). The synergism between M-CSF and GM-CSF concerning proliferation 

- here using murine alveolar macrophages - was found to be one-sided: The 
cells' response to M-CSF was greatly enhanced by the concurrent addition of 
low doses of GM-CSF, but not vice versa (Chen et al. 1988). Macrophages 
from GM-CSF cultures were rounder, less stretched and displayed less FcR- 
mediated phagocytic activity than those produced in M-CSF cultures (Chen 
et al. 1988). TNF, LT and IFN-y each suppressed the clonal proliferation of 
granulocytes, macrophages and mixed granulocyte/macrophage colonies 
stimulated by GM-CSF (Barber et al. 1987), although GM-CSF-stimulated 
cells were less sensitive toward these factors than cells stimulated by G-CSF. 
GM-CSF also markedly enhanced the proliferation of liver macrophages of 
rats pretreated in vivo with LPS (Feder and Laskin 1994). 

GM-CSF can also stimulate megakaryocyte colony-formation and can act 
in synergy with erythropoetin to further the growth of erythrocyte precur- 
sors in vitro (Donahue et al. 1985; Sieff et al. 1985; Ruef and Coleman 1990). 
GM-CSF was shown to have burst-promoting activity on peripheral blood 
erythroid progenitors in an in vitro assay involving the delayed addition of 
erythropoietin (Donahue et al. 1985). It was also shown to support the 
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growth of colony-forming units of blast pluripotential progenitors of 
granulocytes, erythrocytes, monocytes and macrophages, progenitors of 
megakaryocytes and blast-forming units of erythrocytes. Furthermore, GM- 
CSF in combination with IL-3 could stimulate the growth of mast cells, al- 
though their numbers were decreased by GM-CSF in the absence of IL-3 
(Rottem et al. 1994). 

In vitro, GM-CSF supported the growth and function of Langerhans' cells 
(Ruef and Coleman 1990) and stimulated TRAP + (tartrate resistent acid 
phosphatase, a marker for osteoclasts) cells from monkey bone marrow cells 
expressing the CD34 antigen (Povolny and Lee 1993). GM-CSF is involved in 
the proliferation and differentiation of murine dendritic cell progenitors to 
dendritic cells with strong T-cell stimulatory function (Inaba et al. 1992). 

An in vivo experiment with rhesus monkeys showed an increase in leu- 
kocytosis (granulocytes fivefold, lymphocytes twofold to fourfold, mono- 
cytes threefold to fourfold, platelets and erythrocytes unaffected) during 
treatment with glycosylated or non-glycosylated GM-CSF for seven days. S.c. 
administration was found to be more effective than i.v. infusion. Within a 
week after termination of treatment, the WBC had normalized (Mayer et al. 
1987). Parallel results were achieved in macaque monkeys (Donahue et al. 
1986). In these studies, GM-CSF was also given to one animal for a month, 
during which time the WBC was maintained at very high levels without any 
apparent adverse effects. 

The lenkocytosis initiated by administration of GM-CSF is dose depend- 
ent (Scarffe 1991) and phase I studies in humans have found that route and 
schedule are also important, with lower doses required for s.c. or continuous 
i.v. administration for responses similar to those achieved with short i.v. 
infusion of higher doses (Scarffe 1991). In clinical practice, usually no extra 
production of red cells and platelets was observed, when patients were 
treated with GM-CSF, so perhaps GM-CSF acts only as a proliferation in- 
ducer, but not as a survival stimulus on the precursors of these cells 
(Aglietta et al. 1989; Dexter and Heyworth 1994). However, there is a study 
where GM-CSF was used in combination with pentavalent antimony against 
Leishmania chagasi, where an increase in hemoglobin levels was observed at 
days 5 and 10 of treatment and a rise in platelet count on day 30 (Badar6 et 
al. 1994), suggesting that there might be a delayed effect. Peripheral blood 
progenitor cells increased after GM-CSF treatment (Scarffe 1991), but little 
increase in bone marrow progenitors has been observed, because of the 
dilutional effect of increased marrow cellularity (Scarffe 1991). GM-CSF 
increased the birth rate of cycling cells and decreased the duration of the S 
phase and the cell cycle time (Aglietta et al. 1989). The discontinuation of 
GM-CSF treatment in patients was followed by a period of relative refrac- 
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toriness of bone marrow ceils toward ceil cycle-active antineoplastic agents 
(Aglietta et al. 1989). GM-CSF aided T-cell recovery and was found to favor 
the regeneration of CD4 ÷ cells after autologous bone marrow transplantation 
(Miguel et al. 1996). 

Many primary myeloid leukemias and leukemic ceil lines as well as sev- 
eral T-ceil-acute lymphocytic leukemias are dependent on (or responsive to) 
GM-CSF for growth in culture (Clark 1988). Although there was concern that 
the hematopoietic growth factors such as GM-CSF might stimulate the 
growth of solid tumors or leukemias, such stimulation has not been ob- 
served to date (Bokemeyer and Schmoll 1995; Hast et al. 1995). 

2 
Effects on Granulocytes 

2.1 
Effects on the Functions of Neutrophilic Granulocytes 

GM-CSF displays direct and indirect actions on neutrophils. The indirect 
action is a priming effect which fortifies the cells for enhanced responsive- 
ness to physiologically relevant agents (chemotactic factors, leukotrienes, 
PAF, IL-8), which may be released locaUy at sites of inflammation (Di Persio 
and Abboud 1992). These secondary stimuli can directly activate chemo- 
taxis, the respiratory burst, arachidonic acid metabolism, calcium fluxes, 
phagocytosis and degranulation, but their effects are dramatically potenti- 
ated by pre-exposure to GM-CSF. It seems that the action of GM-CSF on 
neutrophils is the priming for enhanced functions in a sequence of time- 
dependent physiologic events corresponding to chemotaxis (5 to 15 min), 
immobilization (30 min), phagocytosis (1 to 2 h) and enhanced oxidative 
metabolism (2 h) (Weisbart et al. 1989). 

A 
Phagocytosis 

GM-CSF induced a rapid change from low- to high-affinity neutrophil CD89 
(IgA Fc receptors), which is associated with IgA-mediated phagocytosis 
(Weisbart et al. 1988). The phagocytosis of opsonized Staphylococcus aureus 
(Fleischmann et al. 1986) and opsonized E. coli (Liehl et al. 1994) by neutro- 
phils, through an increase in the percentage of cells phagocytozing and the 
number of cells ingested, was stimulated by GM-CSF in vitro, but non- 
opsonized S. aureus were still not  ingested (Fleischmann et al. 1986). GM- 
CSF restored neutrophils' S. aureus killing capacity suppressed with dex- 
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amethasone (Bober et al. 1995a). The internalization and killing of patho- 
genic parasites, such as Trypanosoma cruzi (Villalta and Kierszenbaum 
1986), serum-opsonized yeast (Lopez et al. 1986; Bober et al. 1995a) and 
Candida albicans (Fabian et al. 1992; Bober et al. 1995a) byhuman PMN was 
enhanced in the presence of GM-CSF in vitro. 

When monkeys were given GM-CSF, their granulocytes displayed en- 
hanced killing of an E. coli strain ex vivo (Mayer et al. 1987). 

B 
Oxidative Burst 

Direct triggering of ROS release in suspended neutrophils by GM-CSF is 
controversial (Yuo et al. 1990; Balazovich et al. 1991). The direct GM-CSF- 
induced release of ROS that was reported could be inhibited by cyclic AMP 
agonists (PGE~ and dibutyryl cAMP) or cytochalasin B (Yuo et al. 1990). 

PMN were primed by GM-CSF to increase the production of ROS in re- 
sponse to the bacterial chemoattractant fMLP (Weisbart et al. 1985; Lopez et 
al. 1986; Khwaja et al. 1992; Treweeke et al. 1994) in vitro and ex vivo 
(Sullivan et al. 1989a; Kaplan et al. 1989; Khwaja et al. 1992) as well as in 
vitro to C5a (Weisbart et al. 1987; Khwaja et al. 1992), cz-hemolysin (Konig 
and Konig 1994) or LTB~ (Weisbart et al. 1987), but not in response to PMA 
(Weisbart et al. 1987). Augmented oxidative response was recorded towards 
pathogenic parasites (Villalta and Kierszenbaum 1986) in vitro and toward 
bacteria, here E. coli in monkeys, in vivo (Mayer et al. 1987). In another 
study, cytochalasin B was required in addition to fMLP to enhance superox- 
ide production of GM-CSF-primed neutrophils in vitro (Nagata et al. 1995). 
Here, there was no inhibition with anti-CD18 antibody, but instead with a 5- 
lipoxygenase-activating protein antagonist The CD32 (Fc~II)-mediated 
production of superoxide was augmented by GM-CSF without a change in 
CD32 expression in vitro in studies of neutrophils from healthy individuals 
or in vivo in studies of patients receiving GM-CSF (Roberts et al. 1990). In 
summary, GM-CSF appears to prime receptor-mediated initiation of the 
oxidative burst rather than PMA-induced ROS formation. 

The enhanced neutrophil oxidative response to stimulation with fMLP 
after priming with GM-CSF was induced in a temperature-dependent man- 
ner (potentiated at 37 °C) and extraceUular Ca ~÷ was not required for func- 
tional enhancement. Also, there was no alteration of the phospholipid con- 
tent effected by incubation in vitro with GM-CSF alone (English et al. 1988). 
The acceleration in the rate of ROS release was accompanied by an antece- 
dent increase in membrane depolarization, which was independent both of 
the resting transmembrane potential and of alterations in the extent of 
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membrane potential change induced by stimuli such as fMLP (SuUivan et al. 
1989b). 

Human neutrophils adherent to proteins derived from serum or plasma, 
or to laminin showed a markedly more delayed, prolonged and greater res- 
piratory burst in response to soluble agonists when primed by GM-CSF in 
comparison to neutrophils in suspension (Nathan 1989). 

The addition of monocytes and lymphocytes to PMN resulted in a near 
doubling of GM-CSF-primed fMLP-stimulated ROS release by the PMN. No 
cell-free "enhancing factors" could be detected, but cell-to-cell contact fur- 
ther enhanced this oxidative activity. Polyclonal rabbit anti-TNF antibody 
decreased the extent of the oxidative burst by fMLP-stimulated GM-CSF- 
primed PMN as well as by the leukocyte mixture, suggesting that TNF on the 
PMN surface might enhance GM-CSF-primed oxidative burst (Sullivan et al. 
1993). 

C 
Adhesion, Chemotaxis and Migration 

Although one study states that GM-CSF did not influence the adhesion of 
neutrophils to plastic surfaces or endothelial cells (Lopez et al. 1986), other 
studies found that GM-CSF increased adherence of PMN to plastic surfaces 
(Zeck-Kapp et al. 1989) and increased neutrophil adhesion to cultured hu- 
man endothelium in vitro by upregulating CDllb (Yong and Linch I992) 
and CDllc and downregulating CD62L (Yong and Linch 1992). GM-CSF also 
enhanced cell-to-ceU adhesion of human mature granuloo/tes (Arnaout et 
al. 1986), an effect which was inhibited by a monoclonal antibody directed 
against the CDllb antigen. Furthermore, GM-CSF potentiated PMN aggre- 
gation responses to fMLP, but did not induce this response when adminis- 
tered alone (Conti et al. 1992). 

There are conflicting statements on whether GM-CSF is itself a chemo- 
tactic factor (Wang et aL 1987) or merely chemokinetic (Yong and Linch 
1993; Smith et al. 1994). In the latter two studies, the presence of GM-CSF 
enhanced migration of neutrophils across filters or unstimulated endothe- 
lium in vitro dose-dependently, but independent of its own concentration 
gradient and to a lesser extent than with IL-8. In contrast, GM-CSF inhibited 
neutrophil migration across IL-l-activated endothelium and almost com- 
pletely abolished IL-l-induced migration (Yong and Linch 1993). Similarly, 
exposure of neutrophils to GM-CSF decreased their migration through TNF- 
activated endothelial monolayers (Smith et al. 1994), suggesting little role for 
GM-CSF in neutrophil diapedesis at inflammatory sites in vivo. 
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GM-CSF had a biphasic effect on neutrophil motility: within 5 to 15 min 
after incubation with GM-CSF, there was enhanced chemotaxis along a gra- 
dient to fMLP, a potent chemoattractant (Weisbart et al. 1986; Bober et al. 
1995a). Further experiments showed that enhanced chemotactic responses 
to fMLP were no longer evident after prolonged incubation of neutrophils 
with GM-CSF (Weisbart et al. 1986; Kharazmi et al. 1988). The migratory 
capacity of neutrophils toward LTB, was also increased by GM-CSF (Bober et 
al. 1995a). However, an ex vivo study using PMN from carcinoma patients 
treated with GM-CSF, could not find enhancement of chemotaxis in re- 
sponse to fMLP or CSa (Kaplan et al. 1989). 

Furthermore, GM-CSF inhibited migration and locomotion of neutro- 
phils to sterile inflammatory sites (Peters et al. 1988). After incubation with 
GM-CSF for 30 to 120 min there was a decrease in "random migration" of 
neutrophils (Di Persio and Abboud 1992). These observations were con- 
firmed in vitro (Di Persio and Abboud 1992) and in vivo using a micropore 
skin window technique (Addison et al. 1989), suggesting that GM-CSF may 
impair the ability of neutrophils to infiltrate an inflammatory focus. 

In mice with an inactivated GM-CSF gene, typical neutrophil migration to 
an inflammatory site still took place, confirming that GM-CSF plays no ma- 
jor role in this mechanism (Metcalf et al. 1996). Taken together, only a mod- 
est or no augmentation of leukocyte migration can be attributed to GM-CSF. 

D 
Tumor Cytotoxicity 

Purified GM-CSF enhanced the ADCC of human neutrophils toward various 
tumor targets; this stimulation was rapid in onset and required direct con- 
tact with the targets for killing (Vadas et al. 1983). In another study, both 
purified normal mouse bone marrow neutrophils or induced peritoneal 
neutrophils displayed enhanced ADCC activity when incubated with 
rmuGM-CSF and could kill TNP-coupled mouse thymoma cells coated with 
anti-TNP antibodies at low antibody concentrations. RmuGM-CSF and 
rmuG-CSF had an additive effect in this case (Lopez et al. 1983). RhuGM- 
CSF potentiated 3FS-mediated ADCC of GD2-positive tumor targets (mela- 
noma and neuroblastoma) by human granulocytes in vitro, whether GM- 
CSF was present in the ADCC assay or whether granulocytes were incubated 
with GM-CSF and washed before the assay (Kushner and Cheung 1989). 
Non-oxidative mechanisms may be important for ADCC, as this phenome- 
non was also observed with granulocytes from two children with chronic 
granulomatous disease (Kushner and Cheung 1989). In line with this find- 
ing, the GM-CSF-enhanced ADCC activity toward neuroectodermal tumor 
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target cells can be inhibited in the presence of antibody to CD32 (Baldwin et 
al. 1993). 

E 
Synthesis of Mediators and Enzymes 

Human neutrophils were primed to produce and release arachidonic acid by 
GM-CSF in response to the chemotactic factors fMLP, LTB o PAF as well to 
calcium ionophore in a concentration- and time-dependent manner (Sulli- 
van et al. 1987; Di Persio et al. 1988c). The prompt release of arachidonic 
acid from plasma membrane phospholipids is an event which may represent 
the receptor-mediated activation of membrane phospholipases and that may 
contribute to the priming of the cells for enhancement of their functional 
responsiveness (Sullivan et al. 1987). However, it was determined in another 
study that GM-CSF is unable to induce the release of cell-incorporated ara- 
chidonic acid or to increase the level of phosphatidic acid directly (Ulich et 
al. 1990a). 

PMN were also primed by GM-CSF to synthesize the arachidonic acid 
metabolite LTB 4 and its derivatives when induced by fMLP and cytochalasin 
(Nagata et al. 1995) or C5a (Dahinden et al. 1988), fMLP (Di Persio et al. 
1988b; Dahinden et al. 1988), the ionophore A23187 (Di Persio et al. 1988b 
and c; Hensler et al. 1994), s-hemolysin (Konig and Konig 1994), PAF 
(McColl et al. 1991) or leukocidin from Staphylococcus (Hensler et al. 1994) 
in a dose-, time- and temperature-dependent manner (Di Persio et al. 
1988b), though GM-CSF alone has no effect on LTB~ production (Di Persio et 
al. 1988b; Conti et al. 1992). The enhancing effect of GM-CSF was ablated 
when neutrophils were stimulated with ionophore and exogenous arachi- 
donic acid, but co-addition of arachidonic acid with fMLP did not entirely 
mask the effect of GM-CSF (Di Persio et al. 1988b). LTB, produces the same 
enhancement of the oxidative burst function as does the incubation with 
GM-CSF, suggesting that LTB o induced by GM-CSF, may transmit the main 
effect on superoxide production (Nagata et al. 1995) and may also play a role 
in the promotion of neutrophil chemotaxis by modulating phospholipid 
methylation (Di Persio and Abboud 1992). 

GM-CSF further primed neutrophils for increased PAF synthesis in re- 
sponse to secondary stimuli, but the importance of cell-associated PAF re- 
mains controversial. Arguments are reviewed by Di Persio and Abboud 
1992. 

IL-6 (Cicco et al. 1990; Sallerfors 1994) and also IL-8, a potent chemotac- 
tic factor for neutrophils(Takahashi et al. 1993; Gatti et al. 1995), M-CSF, G- 
CSF and TNF-a (Lindemann et al. 1989b) were produced by neutrophils on 
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stimulation with GM-CSF in vitro. However, it seems that IL-8 release from 
human PMN ch~enged with E. coli a-  hemolysin was not affected by the 
addition of GM-CSF (Konig and Konig 1994). The levels of IL-lra mRNA 
and protein synthesis were increased transiently by GM-CSF though an 
increased transcription of IL-113 was detected in some studies, but not in 
others (Lindemann et al. 1988; Re et al. 1993; Malyak et al. 1994; Fernandez 
et al. 1996). PMN may therefore be a major source of IL-lra, which has been 
shown to inhibit the in vitro and in vivo effects of IL-1 in inflammatory ex- 
sudates where these ceils predominate. Neutrophils isolated from an in- 
flammatory milieu, i.e. the synovial fluid of patients with rheumatoid arthri- 
tis, were found to respond to GM-CSF in terms of tL-lra synthesis, indicat- 
ing that the in vitro observations are likely to occur in an inflammatory 
setting in vivo (McColl et al. 1992). 

IL-8 release, but not IL-6 or TNF-a, was induced in healthy volunteers 
injected with a single dose of GM-CSF (van Pelt et al. 1996). The levels of IL- 
8 and IL-6 in the bronchoalveolar lavage fluid of patients with unresectable 
small-ceU lung cancer treated with GM-CSF were increased shortly after the 
treatment in concordance with the increased neutrophil and macrophage 
levels (Gatti et at. 1995). 

In summary, GM-CSF augments the formation and release of a number 
of inflammatory mediators such as eicosanoids, PAF and cytokines by PMN. 

F 
Degranulation 

Degranulation was induced by GM-CSF directly in a dose-dependent man- 
ner as assessed by measurement of the cytochalasin B-induced release of 
MPO from primary granules and lactoferrin from secondary granules 
(Richter et al. 1989; Treweeke et al. 1994). This effect is possibly mediated via 
a GTP- binding protein and/or changes in local intracellular calcium concen- 
trations, as it was partly prevented by pertussis toxin and an intracellular 
calcium buffer. GM-CSF also stimulated the degranulation and the release of 
the enzymes [~-glucuronidase from primary and arylsulphatase from secon- 
dary granules (Fabian et al. 1992) and induced enhanced degranulation of 
vitamin Bl2-binding protein from secondary granules that can be increased 
further by the addition of fMLP, PAF or ionophore A23187 (Kaufman et al. 
1989), although another study found that the release without prior incuba- 
tion with cytochalasin B is negligible and also found no MPO in the super- 
natant (Smith et al. 1990c). 

GM-CSF enhanced the degranulation of fMLP-stimulated, cytochalasin B 
pretreated neutrophils as measured by the release of lysozyme (Lopez et al. 
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1986; Coffey et al. 1993) and ~-glucuronidase (Coffey et al. 1993). However, 
the release of [~-glucuronidase from human PMN challenged with ~- 
hemolysin was not affected by the addition of GM-CSF (Konig and Konig 
1994) and GM-CSF does not affect the NAP synthesis in vitro, in spite of 
enhanced incorporation of amino acids into PMN, but GM-CSF suppresses 
the enhancement of both of these functions by G-CSF (Teshima et al. 1990). 

In an in vivo study with healthy volunteers, a single injection of GM-CSF 
resulted in increased serum levels of the degranulation products lactoferrin 
and elastase (van Pelt et al. 1996). 

G 
Expression of Surface Molecules 

Since GM-CSF can directly induce degranulation and since both fMLP recep- 
tors and CD 11b are stored in specific granules, enhanced degranulation may 
have a major role in the increased surface expression of both of these pro- 
teins (Di Persio 1990). GM-CSF also displays acute upregulatory effects on 
PMN by mobilizing CD35 and CD18/CD11 complexes from intraceUular 
compartments within 30 rain, a process which does not depend on protein 
synthesis (Neuman et al. 1990). 

In vitro, the expression of the PMN surface antigens CDllb, CD14, 
CD18/CDllc, CD35, CD54 and CD64 was increased in the presence of GM- 
CSF (Lopez et al. 1986; Arnaout et al. 1986; Griffin et al. 1990; Neuman et al. 
1990; Treweeke et al. 1994; Bober et al. 1995a; Yong 1996; Kruger et al. 
1996a). GM-CSF increased the number and affinity of neutrophiI CD89 
(Weisbart et al. 1988) and down-regulated the expression of IL-6 receptors 
(Henschler et al. 1991), LTB, receptors and IL-8 receptors (Di Persio and 
Abboud 1992). During short incubation times with GM-CSF, there was a 
rapid increase in the number of high-affinity fMLP receptors expressed on 
PMN; a more prolonged incubation was accompanied by a change to low- 
affinity fMLP receptors (Weisbart et al. 1986; Yuo et al. 1990; Gasson 1991). 
The leukocyte adhesion molecule CD62L, which mediates the binding of 
leukocytes to human high endothelial venules of peripheral lymph nodes 
and of neutrophils to the endothelium at inflammatory sites, was seen to be 
downregulated in the presence of GM-CSF in vitro (Griffin et al. 1990; Sper- 
tini et al. 1991; Yong 1996). 

GM-CSF can induce MHC class II antigens in pure cultures of PMN 
(Gosselin et al. 1993), though this induction was found to be distinctly donor 
dependent. Their potential to express class II antigen suggests that PMN 
could play a significant role in immunoregulation and disease pathogenesis 
(Gosselin et al. 1993). Although freshly isolated peripheral blood neutrophils 
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neither bind nor respond to IL-3, incubation with GM-CSF resulted in the 
expression and transcription of the IL-3 receptor o~-subunit (Smith et al. 
1995). Addition of IL-3 to the GM-CSF medium led to an increase in HLA- 
DR expression on PMN that was greater than with GM-CSF alone (Smith et 
al. 1995). GM-CSF also induced the synthesis of MHC class I protein 
(Neuman et al. 1990). 

In vivo, administration of GM-CSF resulted in changes that were similar 
although of lesser magnitude (Dale 1994). An in vivo study on patients un- 
dergoing GM-CSF treatment confirmed the in vitro observations that CD11b 
and CD35 expression by neutrophilic granulocytes is markedly increased, 
while there was a substantial decrease or even loss of CD16 (Socinski et al. 
1988; Maurer et al. 1991). These results were also documented in a study 
with healthy volunteers in addition to a decrease in CD62L on neutrophils 
(Kishimoto et al. 1996). CDlla and CDllc expression remains unchanged 
(Socinsld et al. 1988). Another study confirms that there is a rapid in vivo 
increase in cellular adhesion molecule (CAM) expression after GM-CSF 
administration, paralleling the development of transient neutropenia due to 
margination in the pulmonary vasculature. These data suggest that adhesion 
promoting glycoproteins play a part in margination (Devereux et al. 1989). 
In a patient with partial leukocyte adhesion deficiency, GM-CSF administra- 
tion in vivo was still associated with margination of neutrophils despite no 
detectable upregulation of CD11b, implying other mechanisms in this proc- 
ess (Di Persio and Abboud 1992). Demargination occured at a time when 
neutrophil CAM expression was still high, so the dissociation of the neutro- 
phfl-endothdial cell interaction is likely to depend on other factors 
(Devereux et al. 1989). 

These rapid and direct effects on surface adhesion molecule or receptor 
expression may result in a more efficient migration of mature and primed 
effector neutrophils to areas of inflammation by preventing extravasation 
into and damage of normal tissues by activated neutrophils (Di Persio 1990; 
Di Persio and Abboud 1992). However, the importance of this effect in vivo 
is questionable (see chemotaxis). 

H 
Other 

The survival of neutrophils was increased in vitro by GM-CSF which pro- 
tects the cells from apoptosis, i.e. programmed cell death (Lopez et al. 1986; 
Begley et al. 1986; Colotta et al. 1992; Brach et al. 1992). 

GM-CSF induced morphological changes in human PMN in vitro such as 
the extrusion of filamentous fflopodia, polarization and the development of 
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intraceUular vesicles (Zeck-Kapp et al. 1989; Coffey 1989). GM-CSF seems to 
have a direct, but slow effect on neutrophil F-actin polymerization as seen in 
vitro, and also primes neutrophils for F-actin polymerization. This process 
may increase the mechanical stiffness and neutrophil trapping in the mi- 
crovasculature of the lungs (Di Persio and Abboud 1992). 

The cytotoxic function of neutrophils from patients with AIDS towards 
HIV-infected MOLT-3A cells was markedly augmented by GM-CSF in vitro 
(Baldwin et al. 1989). 

2.2 
Effects on the Functions of Eosinophilic Granulocytes 

A 
Phagocytosis 

GM-CSF enhanced the phagocytosis of Candida albicans by human eosino- 
phils in vitro (Fabian et al. 1992), although their kiUing capacity was not 
affected. 

B 
Oxidative Burst 

FMLP-stimulated superoxide generation by eosinophils was significantly 
enhanced when incubated in the presence of GM-CSF (Nagata et al. 1995; 
Sedgwick et al. 1995). This was inhibited by an anti-132 (CD18) antibody in 
the same study, suggesting that CD18 is associated with the increased cell 
function (Nagata et al. 1995). 

C 
Adherence, Chemotaxis and Migration 

GM-CSF increased the adhesion of eosinophils to tissue culture plates 
(Nagata et al. 1995) and increased the PAF- or fMLP-induced adherence to 
gelatin-coated plastic (Tomioka et al. 1993). Spontaneous adhesion to hu- 
man umbilical vein endothelial cell monolayers was increased after exposure 
of human eosinophils to GM-CSF (Sedgwick et al. 1995). Furthermore, pre- 
incubation of eosinophils with GM-CSF their mean adhesion strength to 
endothelial cells mediated by the VLA-4 (very late antigen 4) receptor, in- 
creased significantly through the transition of VLA-4 from low to high affin- 
ity (tung et al. 1997). 



68 Thomas Hartung 

Pre-incubation of eosinophils with picomolar concentrations of GM-CSF 
caused a significant increase in the chemotactic response toward LTB 4 and 
induced a significant chemotactic response toward IL-8 and fMLP. Nanomo- 
lar concentrations of GM-CSF inhibited C5a-induced as well as LTB,- 
induced chemotaxis. If, on the other hand, the cells were washed after prein- 
cubation with GM-CSF the potentiation of the chemotactic response re- 
mained and the inhibitory action disappeared (Warringa et al. 1991). 

Intraperitoneal injections of GM-CSF into guinea pigs and subsequent 
exposure to an aerosol of PAF resulted in a selective pulmonary eosinophil 
accumulation which was significantly enhanced in comparison to control 
animals that received no CSF or which were injected with IL-3 (Sanjar et al. 
1990). 

D 
Cytotoxicity 

GM-CSF increased the cytotoxicity of eosinophils toward various target cells 
(Vadas et al. 1983; Lopez et al. 1986; Owen et al. 1987), such as a number of 
tumors, antibody coated targets or toward Schistosoma mansoni larvae by 
enhanced ADCC in vitro (Silberstein et al. 1986). In the latter reaction, not 
only the eosinophil schistosomicidal ability is increased, but the threshold 
for antibody or complement required in the killing reaction was also low- 
ered (Dessein et al. 1982): antibody-coated larvae were frequently found 
covered by several layers of eosinophils in tubes containing GM-CSF. GM- 
CSF also enhanced the temperature-dependent reaction that ensures the 
irreversibility of eosinophil attachment to schistosomula (Dessein et al. 
1982). 

E 
Synthesis of Mediators 

Calcium ionophore A23187-induced generation of leukotriene C, (LTC,) was 
augmented in vitro (Silberstein et al. 1986; Fabian et al. 1992; Nagata et al. 
1995) and IL-2 mRNA expression in human eosinophils increased upon 
costimulation with ionophore and GM-CSF (Bosse et al. 1996). 

F 
Degranulation 

GM-CSF activated eosinophils to transform the storage form of eosinophil 
cationic protein into the secreted form and enhanced its secretion when 



Immunomodulation by Colony-Stimulating Factors 69 

induced by a secretory signal, such as sepharose coated with C3b or se- 
pharose-activated whole autologous serum (Tai et al. 1990). The release of 
arylsulphatase and [3-glucuronidase from granules of human eosinophils 
was induced by GM-CSF (Fabian et al. 1992). 

G 
Expression of Surface Molecules 

Incubation of murine eosinophils with GM-CSF produced a potent induc- 
tion of the transcription of CD32 (FcyRII) and CD16 (Fc3,RIII) (de Andres et 
al. 1994) and increased membrane expression of PAF receptors (Kishimoto 
et al. 1996), CD18 as well as CD11b (Sedgwick et al. 1995; Tomioka et al. 
1993) in comparison to the constitutive expression in cultures without GM- 
CSF. In addition, in vitro incubation of human eosinophils with GM-CSF 
resulted in and induced increased CD11b responses to PAF and fMLP 
(Tomioka et al. 1993). After a single in vitro injection of GM-CSF into 
healthy volunteers their eosinophils also displayed an upregulation of 
CD11b (van Pelt et al. 1996). 

H 
Microbial Killing 

The killing of Staphylococcus aureus by human eosinophils was increased by 
GM-CSF, but not that of Candida albicans (Fabian et al. 1992). 

I 
Other 

Eosinophils survived longer in vitro in the presence of GM-CSF (Lopez et al. 
1986; Begley et al. 1986; Tai et al. 1990 and 1991). The in vitro survival of 
peripheral blood eosinophils without CSF is limited to two days before they 
die by apoptosis (Tai et al. 1991). Of normo-dense human peripheral blood 
eosinophLls cultured with GM-CSF, 43% survived for seven days and in the 
additional presence of mouse 3T3 fibroblasts they survived for at least 14<t. 
The resulting eosinophils became hypo-dense and had an augmented ca- 
pacity to generate LTC, and to kill Schistosomula mansoni larvae (Owen et 
al. 1987). The prolongation of eosinophil survival is inhibited by the gluco- 
corticoids dexamethasone, prednisolone and hydrocortisone by signals 
mediated via a glucocorticoid receptor (Lamas et al. 1991). The sex steroids 
testosterone and [3-estradiol had no such effect. Culture of eosinophils with 
cholera toxin produced a concentration-dependent decrease in GM-CSF- 
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induced survival that was associated with an increase in the cAMP concen- 
tration (Hallsworth et al. 1996). This inhibition of cell survival could be pre- 
vented by the addition of a protein kinase inhibitor. GM-CSF-induced cell 
survival could also be prevented with dibutyryl cAMP, but not with dibu- 
tyryl cGMP (Furman et al. 1992). The survival stimulus transmitted by GM- 
CSF apparently does not affect intracellular cAMP levels (Hallsworth et al. 
1996). 

2.3 
Effects on the Functions of Basophilic Granulocytes 

A 
Histamine Release 

One study found that the direct release of histamine by basophils of most 
healthy volunteers was increased in the presence of GM-CSF (Haak- 
Frendscho et al. 1988), while another found that only relatively high doses of 
GM-CSF caused a release of small amounts of histamine from the ceils of few 
allergic donors, not from cells of non-allergic donors (Alam et al. 1989). 
Histamine release could be achieved with lower concentrations of GM-CSF 
in the presence of D20 by some allergic donors' cells (Alam et al. 1989). 

GM-CSF markedly enhanced histamine release in a dose dependent 
manner upon stimulation with anti-IgE, fMLP or ionophore (Hirai et al. 
1988; Miadonna et al. 1993). The enhancement was rapid and temperature 
dependent, but no additive effect was observed when GM-CSF and IL-3 were 
combined (Hirai et al. 1988). GM-CSF was found to render basophils capable 
of responding to C3a by releasing histamine, but the effect was smaller than 
with IL-3 (Bischoffet al. 1990). 

B 
Chemotaxis 

GM-CSF had potent human basophil chemotactic activity at picomolar con- 
centrations, but whether it primarily induces chemotaxis or simply chemo- 
kinesis is controversial (Tanimoto et al. 1992; Yamaguchi et al. 1992a). 

£ 

Other 

GM-CSF had a slight positive effect on the survival of human basophils in 
culture (Yamaguchi et al. 1992b). 
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3 
Effects on Mononuclear  Cells 

3.1 
Effects on the Functions of Monocytes/Macrophages 

Incubation of murine peritoneal macrophages with GM-CSF induced a rapid 
spreading and increase in cell size within 24h, suggesting a stimulation of 
metabolism: an increase in RNA and protein synthesis was detected, but 
DNA synthesis was not induced (Heidenreich et al. 1989). 

A 
Maturation of Monocytes to Macrophages 

GM-CSF stimulated the differentiation of human blood monocytes to 
macrophages under various in vitro conditions with a higher yield than M- 
CSF or IL-3 (Lopez et al. 1993). The ceils displayed similar CD14, CD64, 
CD71, HLA-DR and Max1 antigen expression and similar in vitro anti- 
tumoricidal activity against U937 cells, whether the differentiation was 
stimulated with GM-CSF, M-CSF or IL-3 or simply in culture with autolo- 
gous lymphocy-tes. Macrophages derived from monocytes through incuba- 
tion with GM-CSF in culture secreted more TNF in response to LPS than 
freshly isolated monocytes (Ross and Koeffler 1992) which suggests that 
GM-CSF may influence TNF production by accelerating the maturation of 
monocytes to macrophages. 

B 
Phagocytosis 

Although GM-CSF was found to stimulate the phagocytosis of Cryptococcus 
neoformans, an encapsulated fungal pathogen that was opsonized with 
complement, by peritoneal macrophages in vitro. This effect was dramati- 
caUy up-regulated when GM-CSF and TNF-cx synergized at low concentra- 
tions, such that the anti-phagocytic properties of the virulent yeast were 
overcome completely (CoUins et al. 1992). Elutriated human monocytes 
primed with GM-CSF reduced the number of viable Candida albicans in 
culture compared with non-primed monocytes and monocytes incubated 
with G-CSF (Smith et al. 1990a; Liehl et al. 1994). Pretreatment of murine 
macrophage monolayers with GM-CSF before infection led to an increased 
level of phagocytosis of Leishmania tropica (Handman and Burgess 1979). 
Treatment of already infected murine monolayers with GM-CSF caused the 
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intraceUular parasites to undergo morphologic damage whereas they survive 
unharmed in control macrophages (Handman and Burgess 1979). GM-CSF 
stimulated Fc-dependent phagocytosis by peritoneal macrophages, although 
the stimulation of resident macrophages was less dramatic than that of 
thioglycolate-elicited cells (Coleman et al. 1988). 

In an experiment where mice were injected with rmuGM-CSF for a pe- 
riod of 11 weeks, the number and phagocytic activity of peritoneal macro- 
phages toward Indian ink droplets, which increased in the beginning, nor- 
malized despite the continuing GM-CSF treatment as did other hematologi- 
cal parameters (Podia et al. 1989). 

An example of enhanced phagocytosis in patients was the rapid fall in 
platelet counts in a patient with auto-immune thrombocytopenia, most 
likely due to enhanced removal of partially damaged platelets (Jones 1993). 

C 
Oxidative Burst 

GM-CSF does not affect the respiratory burst of adherent monocytes 
(Nathan 1989), but instead does affect that of monocytes in suspension by 
priming them and enhancing the release of ROS stimulated by fMLP or 
ConA, but not by PMA which bypasses the receptors to stimulate the cells 
(Yuo et al. 1992). The priming effect of GM-CSF was greater than that of M- 
CSF or IL-3 and was achieved in only 10 min of pre-incubation. Incubation 
with GM-CSF induces an incremented monocyte oxidative response to both 
an anti-CD32-antibody and fMLP, although the apparent increase in priming 
is less than that seen in neutrophils, although this may depend on the setup 
of the experiment (Roberts et al. 1990). Another study states that rmuGM- 
CSF increased PMA or opsonized zymosan-elicited H~O 2 release by resident 
and thioglycolate-elicited murine macrophages after 48h in vitro (Coleman 
et al. 1988). 

Monocytes from patients treated with a high dose of GM-CSF over a pe- 
riod of 14 d displayed no increase in basal superoxide anion production ex 
vivo, but their production capacity when maximally stimulated with phorbol 
dibutyrate increased, though not significantly (Perkins et al. 1993). In an- 
other study, the priming effect observed in vitro when monocytes from pa- 
tients who had undergone high dose chemotherapy were stimulated with 
LPS or opsonized Staphylococcus aureus even lasted several weeks after the 
cessation of GM-CSF therapy (Williams et al. 1995). 
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D 
Adhesion, Chemotaxis and Migration 

Monocytes showed an enhanced adhesion to plastic and to endothelial ceils 
in vitro in the presence of GM-CSF (Gamble et al. 1989). GM-CSF also in- 
duced polarization and migration of human peripheral blood monocytes 
(Wang et al. 1987). 

E 
Tumor Cytotoxicity 

GM-CSF stimulated peripheral blood monocytes in vitro to become cyto- 
toxic towards a malignant melanoma ceil line (Grabstein et al. 1986a) and 
two ovarian tumor ceU lines (Bernasconi et al. 1995) without further exoge- 
nous signals. This activity was also observed with murine peritoneal macro- 
phages in vitro towards TNF-a insensitive Eb lymphoma cells (Heidenreich 
et al. 1989). Conditioned medium containing GM-CSF, however, failed to 
activate macrophages for effector activities against fibrosarcoma, lymphoma 
or Leishmania tropica amastigotes (either resistance to infection or intracel- 
lular destruction) (Ralph et al. 1983). GM-CSF treatment of freshly isolated 
monocytes resulted in enhanced ADCC against melanoma target ceUs, es- 
pecially when GM-CSF was used in conjunction with a secondary stimulus 
(Baldwin et al. 1993). Cytotoxicity of peripheral blood monocytes towards 
some other tumor ceil lines also requires an additional exogenous signal to 
GM-CSF, such as LPS. This was the case in a study employing WEHI 164 
fibrosarcoma cells as targets (Cannistra et al. 1988), where it was suggested 
that the augmented activity was mediated through increased release of TNF, 
as the cytokine-enhanced effect was abolished by anti-TNF antibody. Murine 
peritoneal macrophages failed to generate cytotoxicity toward TNF-~ sensi- 
tive L929 cells when treated with GM-CSF alone, but were primed by GM- 
CSF to produce increased levels of TNF-cx in response to IFN-y plus LPS 
(Heidenreich et al. 1989). This priming effect of GM-CSF disappeared upon 
longer incubation (>12 h) and was followed by reduced responsiveness to 
signals which induce TNF-cx release. 

A comparison between the dose-response curves of alveolar macro- 
phages and monocytes towards GM-CSF showed dramatic differences in 
their cytotoxic activity: alveolar macrophages exhibited significant cytotoxic 
activity at all doses tested, while monocytes displayed significantly less ac- 
tivity than macrophages at every dose. Tumoricidal activity seems to be 
related to maturity, as monocytes matured in vitro showed enhanced activity 
when exposed to GM-CSF. This tumoricidal activity was not dependent on 
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oxidative metabolism, TNF-o~ or IL-I~ (Thomassen et al. 1989). GM-CSF 
enhances Kupffer-cell mediated cytotoxicity toward the SW948 colon carci- 
noma cell line and the tumor line U937 in vitro, an effect which is enhanced 
by the addition of IFN-y (Schuurman et al. 1994). TNF-ot secretion by human 
Kupffer cells increased in parallel with their cytotoxicity after incubation 
with GM-CSF and was identified as the main cytolytic mechanism of human 
Kupffer-cell-mediated cytotoxicity. 

Monocytes derived from GM-CSF-treated patients produced more TNF 
than did cells from control patients and they showed a significant increase in 
cytotoxic activity against U937 tumor cells (Wiltschke et al. 1995). In pa- 
tients with solid malignancies, treatment with GM-CSF led to a significant 
enhancement of direct monocyte cytotoxicity against the human colon car- 
cinoma (HT29) cell line ex vivo, but there was no increase in serum TNF-a 
or IL-1B and no consistent in vitro induction of TNF-a or IL-1[5 from mono- 
cytes posttreatment (Chachoua et al. 1994). In a study where patients were 
treated with GM-CSF i.v., the tumorilytic properties of monocytes were only 
enhanced significantly in one of seven patients and neither IL-1 nor TNF 
production were stimulated (Kleinerman et al. 1988). The tumoricidal activ- 
ity of monocytes from volunteers treated with GM-CSF for three days 
showed significant elevation when stimulated in vitro with LPS, but the ac- 
tivity of cells harvested after ten days of treatment returned to pretreatment 
values (Thomassen et al. 1991). 

In a murine melanoma model, in which irradiated tumor cells alone do 
not stimulate significant anti-tumor immunity, irradiated tumor cells engi- 
neered to express murine GM-CSF stimulated potent, long-lasting and spe- 
cific anti-tumor immunity, requiring both CD4 + and CD8 ÷ cells (Dranoff et 
al. 1993). GM-CSF was also found to be active in this way in other tumor 
models, such as cell lines derived from colon, renal cell and lung carcinoma 
as well as fibrosarcoma (Dranoffet al. 1993). 

t= 
Synthesis of Mediators and Enzymes 

Elutriated, cultured monocytes responded to GM-CSF with the production 
of pro-inflammatory IL-I~, IL-6, IL-8 and TNF-~ mRNA as weU as expres- 
sion of autoregulatory IL-lra and the M-CSF gene (Cluitmans et al. 1993; 
Takahashi et al. 1993). Expression of the IL-8 gene (Takahashi et aL 1993) 
and of the TNF gene (Cannistra et al. 1987) was also measured in the U937 
cell line in response to addition of GM-CSF to the medium. However, the 
production of IL-1, IL-6, IL-8,TNF protein and PGE 2 was hardly influenced 
by GM-CSF in blood monocytes in vitro (Hart et al. 1988; Bernasconi et al. 
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1995). However, in another study, IL-8 secretion by monocytes was stimu- 
lated after incubation with GM-CSF (Takahashi et al. 1993), although here 
GM-CSF also did not induce detectable secretion of IL-1, TNF-o~ or IL-6 
protein by monocytes (Takahashi et al. 1993). Instead, GM-CSF did directly 
induce the production of cell-associated IL-1 (Danis et al. 1991) and IL-lra 
was found in the cell supernatants of adherent peripheral blood monocytes 
induced by GM-CSF (Shidds et al. 1990). 

GM-CSF induced the transcription and secretion of M-CSF in monocytes 
(Horiguchi et al. 1987; Gruber and Gerrard 1992). This effect was enhanced 
further by TNF-~, IFN-y or M-CSF (Gruber and Gerrard 1992). Therefore, 
GM-CSF may indirectly control specific monocyte functions by regulating 
the production of M-CSF (Horiguchi et al. 1987). Further, GM-CSF alone or 
in synergistic concert with IL-3 induced the transcription of the G-CSF gene 
and the release of biologically active G-CSF in vitro from peripheral blood 
monocytes (Oster et al. 1989b; Sallerfors and Olofsson 1992). Monocytes of 
human newborn infants did not produce IFN-y, but have been shown to 
commence its production in a medium conditioned with GM-CSF in vitro 
(McKenzie et al. 1993). GM-CSF also enhanced the secretion of IFN-y by 
normal monocytes (De Witte et al. 1995). 

Combinations of GM-CSF with IFN-y, IL-2 or TNF-~ synergistically en- 
hanced IL-1 secretion and had an additive effect on cell-associated IL-1 pro- 
duction by monocytes (Hart et al. 1988; Danis et al. 1991). GM-CSF had a 
priming effect on TNF production in response to LPS. Sisson and Dinarello 
(1988) found that human peripheral blood mononuclear cells in vitro re- 
sponded to a low dose of GM-CSF by increasing the production of TNF, 
whereas some donor's cells also produced more IL-I~ and/or IL-I~. In- 
domethacin increased the amounts of TNF and IL-113 produced in response 
to GM-CSF, but did not affect the values of IL-I~ The primed state was 
quickly followed by a period of relative unresponsiveness to LPS. This is 
apparently due to the secretion of PGE 2 in response to GM-CSF, which did 
not affect the production of TNF mRNA but rather blocked its translation, 
possibly by a mechanism involving cAMP. This may be one of the mecha- 
nisms used in vivo to contain the inflammatory response and tissue de- 
struction. The priming effect was restored by the cyclooxygenase blocker 
indomethacin (Heidenreich et al. 1989). The temporally delayed generation 
of TNF-cc and subsequently PGE 2 suggests an autoregulatory circuit in which 
PGE 2 limits GM-CSF-induced macrophage activation. 

GM-CSF provided a priming stimulus similar to IFN-y for LPS-induced 
TNF and IL-12 p40 mRNA in human monocytes, but primed poorly for the 
other LPS-inducible IL-12 p35 (Hayes et al. 1995). Furthermore, GM-CSF 
synergistically enhanced TNF-(x secretion induced by IFN-y but not by LPS, 
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IL-2 or TNF-a (Hart et al. 1988; Danis et al. 1991; Kohn et al. 1992). GM-CSF 
potently stimulated IL-8 secretion in cultures of heparinized whole blood 
(Takahashi et al. 1993), which is primarily released by monocytes under 
these conditions. 

GM-CSF also appears to modulate factor release by mature macrophages. 
The expression of membrane-bound IL-1 was stimulated and the de novo 
synthesis of Ia molecules of the murine equivalent of MHC dass II was in- 
duced by GM-CSF in routine bone marrow-derived macrophages in vitro, 
but to a lesser extent than with IFN-y (Fischer et al. 1988). Further, the pro- 
duction of IL-6 and IL-8, but not IL-I and TNF, was increased in tumor- 
associated macrophages in the presence of GM-CSF (Bernasconi et al. 1995). 
The down-regulation of apolipoprotein E secretion by macrophages in re- 
sponse to GM-CSF was found to be mediated by a TNF- dependent autocrine 
mechanism, as it was inhibited by a monoclonal antibody against TNF 
(Zuckerman and O'Neal 1994). The promyelocytic cell lines H-161, AML-193 
and HL-60, differentiated to adherent macrophage-like cells under the influ- 
ence of PMA, responded to GM-CSF with the production of IL-lra (Mazzei 
et al. 1990). 

GM-CSF activated PGE 2 production with IFN- 7, but not with LPS (Hart et 
al. 1988). The basal production of complement factor C3, but not factor B, by 
human monocytes was inhibited by GM-CSF (H¢#lsen et al. 1993). The LPS- 
stimulated production of both the complement factors C3 and B was abro- 
gated by GM-CSF, and, in line with this finding, anti-GM-CSF added to un- 
stimulated or LPS- stimulated cells caused an increase in C3 production 
(HogAsen et al. 1993). Plasminogen-activator inhibitor PAl-1 and PAI- 
2 mRNA and protein levels were enhanced by GM-CSF in vitro (Hamilton et 
al. 1993). They may play a role in modulating the effects of the CSF on 
monocyte u-PA activity at sites of inflammation and tissue remodeling 
(Hamilton et al. 1993). However, GM-CSF also seemed to directly stimulate 
the production of a u-PA in both murine bone marrow-derived and perito- 
neal macrophages (Hamilton et al. 1991). This increase in u-PA activity was 
abrogated by dexamethasone, PGE 2 and cholera toxin. 

In animal studies, we found GM-CSF to be a potent enhancer of LPS- 
induced TNF-~x production in normal as well as in experimentally immuno- 
compromised (LPS-tolerant) mice (Bundschuh et al. 1997; Randow et al. 
1997). Our results in murine endotoxic shock as well as in an endotoxic liver 
failure model demonstrated a potentiation of LPS toxicity by GM-CSF. GM- 
CSF pretreated (10 min) mice died within 24 h of a challenge with a subtoxic 
dose of LPS, while control animals survived >72 h and monodonal anti-GM- 
CSF antibody had a protective effect. GM-CSF potentiated systemic TNF 
release and hepatotoxicity induced by a subtoxic dose of LPS in galacto- 
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samine-sensitized mice. Polyclonal anti-GM-CSF IgG protected against sep- 
tic liver failure and attenuated serum TNF concentrations. In vitro and ex 
vivo experiments revealed that LPS-induced IL-1 release from bone marrow 
or spleen cells was also enhanced (Tiegs et al. 1994). Therefore, GM-CSF 
seems to be an endogenous enhancer of LPS-induced organ injury, possibly 
by potentiating the release of pro-inflammatory cytokines such as TNF and 
IL-1. 

When a high dose of GM-CSF was administered to sarcoma patients with 
neutropenia for a duration of two weeks, no increase in basal release of TNF- 
o~ or IL-I~3 by monocytes ex vivo was found, though the LPS-stimulated 
release of both factors reached 8-fold and 10-fold the respective values of 
day 0 (Perkins et al. 1993). GM-CSF-treated patients' monocytes produced 
more TNF than control patients" cells in response to tumor cells of the line 
U937 (Wiltschke et al. 1995). Thomassen et al. demonstrated that GM-CSF 
therapy of patients with lung cancer caused their monocytes and alveolar 
macrophages to increase their synthesis of TNF, IL-1 and IL-6 mRNA 
(Thomassen et al. 1991). They found differential response in cytokine secre- 
tion: the monocytes showed enhanced secretion of all three cytokines on the 
third day of treatment by continuous infusion, but the alveolar macrophages 
showed only enhanced IL-6 secretion by day 10 (Thomassen et al. 1991). 
Administration of GM-CSF augmented the release of TNF-cz by alveolar 
macrophages ex vivo without altering their capacity to release reactive ni- 
trogen intermediates (Mandujano et al. 1995). Furthermore the ex vivo cy- 
tokine secretion, i.e. TNF-cz, IL-I~, IL-6 and IL-8, of peripheral blood mono- 
cytes was impaired, but their oxygen radical release was increased (Maurer 
et al. 1993). 

Shortly after in vivo treatment of patients with GM-CSF, an increase in 
neutrophil and alveolar macrophage levels took place parallel to a rise in IL- 
6 and IL-8 levels in the bronchoalveolar lavage fluid (Gatti et al. 1995). In 
vivo treatment of volunteers with GM-CSF resulted in IL-8 release but no 
increased IL-6 or TNF-c~ serum levels (van Pelt et al. 1996). A single close of 
GM-CSF resulted in the significant increase of in vivo plasma levels of 
sCD25 and IL-lra as well as a trend to increased IL-8 levels (Aman et al. 
1996). Patients with myelodysplasia treated in vivo with GM-CSF excreted 
more urinary cysteinyl leukotrienes than did untreated patients, indicating 
increased lipid mediator synthesis (Di Persio and Abboud 1992). A correla- 
tion to the expansion of the WBC was found. To investigate whether GM- 
CSF causes an activation of cellular immunity, urinary neopterin levels of 
gynecological cancer patients were assessed and found to have increased in 
response to GM-CSF (Marth et al. 1994). Neopterin, whose physiological role 
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is unknown, is a sensitive marker of macrophages activated by interferons 
(Marth et al. 1994). 

Taken together, although it induces the expression of the mRNA of vari- 
ous mediators, GM-CSF alone appears to induce only little monokine re- 
lease. However, monocytes/macrophages become primed to respond to a 
variety of stimuli. As GM-CSF is known to be produced by monocytes 
spontaneously and on stimulation, GM-CSF thus might also have an 
autocrine function. 

G 
Expression of Surface Molecules 

It was found that the expression of CD14, a known LPS receptor, on mono- 
cytes is down-modulated by GM-CSF in vitro (Kruger et al. 1996a). As with 
neutrophils, exposure to GM-CSF caused the rapid and complete loss of 
CD62L from the cell surface of monocytes in culture (Griffin et al. 1990). The 
surface expression of CD54 and CD18 was augmented in human blood 
monocytes and tumor-associated macrophages after incubation with GM- 
CSF, but CDS0 (ICAM-3) was not influenced (Bernasconi et al. 1995). The 
IL-2 receptor was downregulated on human peripheral mononuclear cells in 
vitro by GM-CSF through the induction ofPGE 2 (Hancock et al. 1988). 

GM-CSF was shown to cause an increase in monocyte expression of sur- 
face HLA-DR and HLA-DP molecules important for monocyte T-cell inter- 
actions in vitro (Smith et al. 1990b; Chantry et al. 1990; Gerrard et al. 1990). 
In the presence of dexamethasone, GM-CSF caused a marked augmentation 
in HLA-DR, DP and DQ mRNA levels as well as surface expression on 
monocytes (Sadeghi et al. 1992). Overnight incubation of adherent murine 
spleen cells with antigen and GM-CSF led to more efficient antigen- 
presenting cells than without GM-CSF (Morrissey et al. 1987). The mecha- 
nism was found to lie in a GM-CSF-dependent increase in IL-1 secretion and 
Ia antigen expression (Morrissey et al. 1987). The antigen- presentation 
function of bone marrow-derived macrophages cultured with M-CSF was 
greatly enhanced after pulse treatment with GM-CSF (Fischer et al. 1988). 
GM-CSF enhanced macrophage accessory function in ConA-, mitogen- or 
antigen-stimulated T-cell proliferation in a dose dependent manner in vitro 
(Kato et al. 1990; Smith et aL 1990b). Incubation with GM-CSF also increased 
the number of CD32 receptors on monocytes (Liesveld et al. 1988), but an- 
tagonized the TGF-~-induced expression of CD 16 (Kruger et al. 1996b). 
Exposure of human monocytes to GM-CSF also induced the expression of 
CD23 (FcERII) (Hashimoto et al. 1997). This effect could be abrogated by 
TNF. High, but not low, doses of GM-CSF down-modulate the expression 
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and transcription of the M-CSF receptor on immature progenitors and 
monocytes (Panterne et al. 1996). This action was found to work via post- 
transcriptional mechanisms (Gliniak and Rohrschneider 1990). GM-CSF 
induces high levels of Ia expression in murine bone marrow-derived macro- 
phages (Willman et al. 1989). Low, but not high, concentrations of GM-CSF 
result in a marked increase in the numbers of GM-CSF receptors on murine 
peritoneal exsudate macrophages (Fan et al. 1992). This effect was abrogated 
by the protein synthesis inhibitor cycloheximide. 

The monocytes of healthy volunteers displayed increased expression of 
CDllb in response to a single dose of GM-CSF (van Pelt et al. 1996). Mono- 
cytes derived from patients receiving GM-CSF therapy show an significant 
increase in MHC class I and II antigen expression (Wiltschke et al. 1995; 
Aman et al. 1996). When cancer patients were given GM-CSF before and 
after chemotherapy, their peripheral blood monocytes displayed markedly 
stimulated expression of CD44 (Aman et al. 1996) 

H 
Microbial Killing 

GM-CSF in synergy with TNF-a activated macrophages to kill or inhibit 
intracellular growth of Mycobacterium avium, when given both before and 
after establishment of infection (Bermudez and Young 1990). GM-CSF plays 
an important role as an endogenous mediator for the activation of macro- 
phages by vitamin D 3 to kill or inhibit intraceUular growth of these bacteria. 
Enhanced killing of avirulent M. avium by GM-CSF was demonstrated to be 
dependent on the generation of reactive nitrogen intermediates (Freund and 
Kleine 1992). 

GM-CSF was also found to activate the intracellular killing of Leishmania 
donovani (intraceUular parasitic protozoa) by human monocyte-derived 
macrophages. This antileishmanial effect did not depend on LPS as a secon- 
dary signal and reached maximal activation sooner than with IFN-y (Weiser 
et al. 1987). Another group, using Leishmania mexicana amazonensis-infec- 
ted macrophages, found a significant dose- dependent reduction of the 
parasites on incubation with GM-CSF and an even greater effect when a 
combination of GM-CSF with IFN-y was used (Ho et al. 1990). GM-CSF fur- 
ther enhanced the growth inhibition of Candida albicans by fresh and aged 
human peripheral blood monocytes (Wang et al. 1989; Liehl et al. 1994). 
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I 
Other 

GM-CSF reduced the activity of the HIV enzyme reverse transcriptase in 
persistently infected monocytic U-937 cells. When GM-CSF was added to the 
medium before and during infection, it reduced reverse transcriptase activ- 
ity by 90-100% and eliminated most viral antigen expression, but did not 
prevent return of productive infection after removal (Hammer et al. 1986; 
Freund and Kleine 1992). 

3.2 
Effects on the Functions of Lymphocytes 

LAK cell function was generated in PBMC from cancer patients in vitro by 
brief exposure of the cells to IL-2 or, to a greater extent, through the synergy 
between low-dose IL-2 and GM-CSF (Baxevanis et al. 1995). RmuGM-CSF 
plays a role in the differentiation of murine B lymphocytes to fully func- 
tional antibody-secreting cells. In conjunction with IL-2, a plaque-forming 
cell (PFC) response by murine spleen cells was recorded (Grabstein et al. 
1986b). A further study found that only splenic adherent cells and neither 
resting nor activated T or B cells expressed specific GM-CSF receptors, so 
splenic adherent cells were pulsed with GM-CSF before addition to macro- 
phage-depleted cultures, where they reconstituted the PFC response to a 
greater degree than did control macrophages (Morrissey et al. 1987). In 
addition, GM-CSF augmented IL-2 production by splenic T-cells. 

The GM-CSF-dependent growth of AML blast cells was enhanced by TNF; 
TNF and GM-CSF together induced AML blasts to produce IL-I~. GM-CSF 
increased the synthesis of IL-lra by PMA- differentiated AML-193 cells 
(Kindler et al. 1990). In another study on AML blasts, IL-1 was found to 
stimulate the proliferation of blasts grown with GM-CSF in five of eight 
examined cases. This effect was inhibited by anti-TNF antibodies in four of 
the five cases (Ross and Koeffler 1992). These interactions were suggested to 
be useful for the treatment of leukemia. 

4 
Effects on the Functions of Other Cells 

The main actions of GM-CSF are directed at leukocytes as displayed in Fig. 
3. However, GM-CSF was also found to have effects on other cells. GM-CSF 
was found to specifically bind to normal human endothelial cells, activate 
the Na+/H ÷ antiport, and promote their proliferation (Di Persio 1990). GM- 
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Fig. 3. Pertinent immunomodulatory effects of GM-CSF on different leukocyte 
populations. The diagramm summarizes the predominant effects of GM-CSF on 
immune functions of different types of leukocytes 
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Plasma ceils 

CSF markedly enhanced the proliferation of liver endothelial cells of rats 
pretreated in vivo with LPS (Feder and Laskin 1994). It also plays a role in 
the proliferation and the migration of endothelial ceUs across gelatin-coated 
polycarbonate fdters (Bussolino et al. 1989). 

The proliferative effect of GM-CSF also extends to tumor cell lines: small- 
cell lung carcinoma cell lines, which have high-affinity GM-CSF receptors, 
were shown to be responsive, as were two osteogenic sarcoma cell lines, a 
breast carcinoma cell line, a SV40-transformed marrow stromal cell line and 
colon adenocarcinoma cell lines (Gasson 1991). To date, however, there is 
no evidence of tumor promotion in cancer patients treated with GM-CSF. 

Animal data also suggest a role for GM-CSF in wound healing: In mice 
instilled with bleomycin to elicit pulmonary fibrosis, a significant increase in 
GM-CSF mRNA was recorded on day 5 after bleomycin administration. GM- 
CSF had an inhibitory influence on the alveolar remodeling and collagen 
deposition associated with pulmonarg fibrosis. Anti-GM-CSF antibody had 
opposite effects to GM-CSF and decreased TNF-o~ mRNA levels as seen on 
day 15, but otherwise had no influence on TGF-[3, IL-lo~ or platelet derived 
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growth factor mRNA levels (Piguet et al. 1993). Topical rmu- or rhuGM-CSF 
effectively inhibited the retardation of wound closure produced by bacterial 
contamination in rats with acute and chronic granulating wounds by de- 
creasing the bacterial counts and increasing the speed of healing in compari- 
son to controls without increasing the coUagen activity (Kucukcdebi et al. 
1992; Robson et al. 1994). The mechanisms forming the connection between 
GM-CSF and the fibroblasts are still unclear. Incisions in rats injected with 
methylprednisolone and treated locally with GM-CSF healed better and 
faster than did controls or when GM-CSF was given systemically, indicating 
that GM-CSF activated the tissue macrophages and that an increased circu- 
lating WBC does not affect wound healing (Jyung et al. 1994). 

5 
Infection 

A 
General 

No systemic GM-CSF levels can be detected in patients with infection, so it is 
likely that endogenous GM-CSF plays its physiological role in the immediate 
vicinity of the cells by which it is secreted (Freund and Kleine 1992). The 
exogenous administration of GM-CSF is aimed at stimulating nonspecific 
resistance to potentially lethal infections by increasing the WBC. But to 
fulfRl these expectations, the induced monocytes and neutrophils must be 
functionally mature and primed for microbial killing. 

The infection of GM-CSF-pretreated, myelosuppressed mice with nor- 
really lethal doses of Pseudomonas aeruginosa, Staphylococcus aureus or 
Candida albicans resulted in a significant dose-dependent improvement of 
survival (Tanaka et al. 1989; Liehl et al. 1994). There has also been research 
on combinations of GM-CSF with IL-6 or leukemia inhibitory factor (LIF), 
which are both potent inducers of the acute-phase response and can induce 
an increase in platelet counts (Liehl et al. 1994). The rationale for these 
combinations is that the synergism of the induction of opsonization of mi- 
croorganisms by acute phase proteins with the activation of phagocytes by 
GM-CSF should increase resistance to infections. This hypothesis was 
proven to be correct when myelosuppressed mice were treated with either of 
the combinations and infected with Pseudomonas aeruginosa (Liehl et al. 
1994). 

Prophylactic rmuGM-CSF given i.p. six hours before a 90% lethal dose 
chaUenge of $. aureus significantly improved the survival in a neonatal rat 
model of infection (Frenck et al. ~1990). Neonatal rats, which have been 
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found to have deficient PMN production and function in infection, with 
streptococcal sepsis were given rhuGM-CSF after infection. A higher sur- 
vival rate than control animals not given rhuGM-CSF was reported, appar- 
ently caused by phagocyte priming and/or cellular influx into the perito- 
neum (Wheeler and Givner 1992), although human GM-CSF is generally 
believed to be non cross-reactive in mice. GM-CSF administered in con- 
junction with penicillin to neonatal rats with established group B strepto- 
coccal infection decreased the mortality rate substantially in comparison to 
penicillin alone (Givner and Nagara i 1993). The survival in two mouse 
models of gut-derived sepsis was improved by GM-CSF through better gut 
barrier function and better bacterial clearance (Gennari et al. 1994). How- 
ever, we found that the prophylactic administration of rmuGM-CSF neither 
augmented leukocyte numbers nor protected mice from lethal fecal perito- 
nitis (Barsig et al. 1996). 

Rats with sepsis-induced organ injury by cecal ligafion and puncture 
given rmuGM-CSF showed no increased survival rates, but rather earlier 
deaths than the control group; an inhibition of early leukosequestrafion in 
the peritoneal cavity was observed (Toda et al. 1994). In addition to the mild 
hepatic injuries observed in shock, the livers of GM-CSF-treated rats showed 
centrflobular degeneration and necrotic changes. These rats also had an 
earlier increased plasma alanine-ct-ketoglutarate-aminotransferase (ALT) 
level, suggesting that liver dysfunction may have contributed to their earlier 
death (Toda et al. 1994). The inhibition of neutrophil migration by systemic 
administration of GM-CSF and its stimulating activity on the expression of 
TNF might play a role in the process. Therefore, the systemic application of 
GM-CSF, as opposed to its natural local production, might be dangerous 
when infection is already present. 

In a murine model of 20% surface burn plus cecal ligation and puncture 
on day 10 after injury, survival was significantly better in animals treated 
with GM-CSF on days 5-9 after the burn (Molloy et al. 1995). ConA- 
stimulated T-cell proliferation and IL-2 production, which were suppressed 
after burn injury, were also improved by treatment with GM-CSF (Molloy et 
al. 1995). 

Mycobacterium avium complex synthesizes superoxide dismutase, which 
can inactivate macrophage-derived superoxide anions as well as enzymes 
which can hinder their production (Bermudez 1994). However, the stimula- 
tion of M. avium infected murine and haman macrophages with GM-CSF 
induced increased ROS production and enhanced mycobacte- 
riostatic/mycobactericidal activity ex vivo (Denis 1991a; Bermudez 1994). 
GM-CSF and TNF-¢~ had additive effects on bacteriostatic activity of macro- 
phages towards 3/1. ariura (Denis 1991a). 
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B 
Specific Pathogens 

The in vitro findings that GM-CSF and TNF-cz synergize to allow peritoneal 
macrophages to overcome the anti-phagocytic properties of virulent yeast 
were studied further by administering neutralizing monoclonal antibody 
specific for GM-CSF to Cryptococcus neoformans-infected mice. However, 
this increased mortality and induced the rapid progression of the disease 
(Collins et al. 1992). 

Endogenous GM-CSF plays a role in the initial host defense response to 
Leishmania donovani as could be seen by the upregulation of GM-CSF 
mRNA in infected mouse livers and the exacerbation of infection when the 
anmals were treated with anti-GM-CSF antibody (Murray et al. 1995). In an 
animal model, GM-CSF was found to reduce the proportion of cultured 
peritoneal macrophages infected with Leishmania tropicana collected from 
mice (Scarffe 1991). There was an indication of increased killing of the para- 
sites. But, GM-CSF may also play a role in the pathogenesis of Leishmania 
infection itself: murine lung-conditioned medium has colony-stimulating 
activity on bone marrow cells and on promastigotes of Leishmania mexi- 
cana amazonensis. Both activities are abrogated by immunoprecipitation 
with an anti-murine-GM-CSF antibody. The hypothesis that GM-CSF plays a 
part in the Leishmania pathogenesis is supported by the fact that T- 
lymphocytes and macrophages, both GM-CSF producers, actively participate 
in the leishmanial infection (Freund and Kleine 1992). Leishmania donovani 
infection of bone marrow-derived macrophages was found to induce gene 
expression of, among others, GM-CSF and TNF, which were shown to inhibit 
apoptosis of these macrophages induced by the removal of M-CSF (Moore et 
al. 1994). 

Mice chronically infected with Trypanosoma cruzi (Chagas disease) have 
a defect in their cellular immune response, that was corrected by the ad- 
ministration of GM-CSF in vivo. The effect seemed to depend on an en- 
hancement of the expression of Ia antigen and IL-2 mRNA in accessory cells 
of the spleen and on the stimulation of IL-1 production in peritoneal macro- 
phages (Reed et al. 1990). GM-CSF can inhibit the replication of Trypano- 
soma cruzi by activating macrophages in both human and murine cultures 
and increasing their ability to release ROS (Reed et al. 1987). 

Neurologic damage from cerebral malaria is mediated by high local levels 
of TNF. Anti-TNF antibodies are protective (Ross and Koeffler 1992), but 
there seems to be an interaction between GM-CSF and TNF in this disease, 
as antibodies against both GM-CSF and IL-3 are also protective in mice in- 
fected with Plasmodium berghei (Grau et al. 1988), by preventing the devel- 
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opment of high TNF levels. However, antibodies against GM-CSF or IL-3 
alone have no effect. It is thought that GM-CSF and IL-3 effect the produc- 
tion of macrophages and cause them to accumulate in infected tissue, while 
IFN-y and Plasmodium products activate them to produce TNF. 

Pneumocystis carinii pneumonia (PCP) is a major cause of morbidity and 
mortality in patients with AIDS. In mice depleted of CD4* T-lymphocytes 
and inoculated with P. carinii, the intensity scores of PCP infection were 
significantly decreased in mice treated with rmuGM-CSF in comparison to 
control mice, which may be due to an increased production of TNF-a by 
alveolar macrophages, which has been shown to bind and k~l P. carinii in 
vitro (Mandujano et al. 1995). These results suggest that impaired cytokine 
production rather than an intrinsic macrophage defect may predispose 
AIDS patients to opportunistic infections. GM-CSF therapy could reverse the 
relative deficiency of endogenous GM-CSF in such patients and enhance the 
cytotoxic activity of macrophages and the release of cytokines important for 
host defense (Mandujano et al. 1995). 

RmuGM-CSF has been found to protect mice against Sendal virus infec- 
tion when given intranasaUy one or three days before the infection (Freund 
and Kleine 1992). GM-CSF also showed protective activity when adminis- 
tered s.c. to cyclophosphamide-treated mice before i.v. infection with herpes 
simplex virus (Freund and Kleine 1992). 

In summary, GM-CSF administered prophylactically seems to be benefi- 
cial in animal infection models in most cases. But, when severe active infec- 
tions are already present, it has detrimental effects when administered 
alone, though it maybe a useful adjuvant to antibiotic therapy. In contrast to 
G-CSF, GM-CSF appears to act as a pro-inflammatory factor. A further indi- 
cation for GM-CSF may be to increase eosinophil cell counts to combat 
parasitic infection. Here, GM-CSF has an advantage over G-CSF, as it also 
activates monocytes and macrophages. If enhanced macrophage activation 
including the production of IL-1 and TNF is desired, GM-CSF may again be 
indicated (Gabrilove and Jakubowski 1990). To date, too little is known 
about a possible benefit of GM-CSF in the treatment of viral infections. 

6 
Potential Clinical Applications 

Nissen and Hovgaard formulated the clinical uses of the CSF such as GM- 
CSF: 1. to increase proliferation of normal bone marrow cells in primary 
marrow disorders, such as aplastic anaemia, cyclic neutropenia, myelodys- 
plastic syndromes and in secondary-induced marrow hypofunction, e.g. 
after conventional chemotherapy, bone marrow transplantation and other 



86 Thomas Hartung 

drug-induced cytopenias; 2. to increase the number of circulating stem cells; 
3. to recruit tumor cells into S-phase of cell cyde to increase their suscepti- 
bility to subsequent cytotoxic agents; 4. to increase effector cell function, e.g. 
anti-neoplastic effect, anti-infective effect and reversal of leukocyte function 
defects (Cairo et al. 1992a). 

To date, the predominant clinical use for GM-CSF (similar as for G-CSF) 
is in neutropenia associated with cancer therapy. After the rapid recovery of 
neutrophil counts was demonstrated in myelosuppressed monkeys (Liehl et 
al. 1994), the efficacy of GM-CSF was evaluated in patients with cancer che- 
motherapy-induced myelosuppression (Antman et al. 1988), patients who 
had been accidentally exposed to cesium-137 (Ruef and Coleman 1990) and 
patients undergoing bone marrow transplantation (Liehl et al. 1994). Now, 
GM-CSF is used extensively to decrease the severity and duration of leuko- 
penias, as reviewed by Moore (1991). 

The effectiveness of GM-CSF does depend on a sufficiently large popula- 
tion of target cells, so it is not surprising that in progressed stages of aplastic 
anaemia with corresponding hypocellularity of the bone marrow, the in- 
crease in bone marrow cellularity and peripheral leukocyte counts were 
disappointing where earlier stages showed greater effects (Ruef and Cole- 
man 1991). Combination of GM-CSF with factors acting earlier on in he- 
matopoiesis such as IL-3 or IL-1 might be more beneficial (Moore 1991). 
But, as there is great interindividual variation in the response to the therapy, 
its use still seems justified in progressed cases (Ruef and Coleman 1991). 

In patients with myelodysplastic syndromes, GM-CSF therapy increased 
the WBC, but some patients with a certain level of marrow blasts developed 
AML (Lieschke and Burgess 1992a). Here, a different approach is to admin- 
ister GM-CSF concurrently with cytorabine in an attempt to increase the 
susceptibility of malignant cells to cytotoxic therapy (Lieschke and Burgess 
1992a). 

Furthermore, short treatment with GM-CSF before chemotherapy could 
reduce the hematopoietic toxicity of cytostatics and thereby also enabled the 
dose intensity of protocols to be increased (Aglietta et al. 1993). This was 
investigated on the basis of observations that the suspension of GM-CSF 
treatment resulted in a reduction of the proliferative activity of the hyper- 
plastic marrow to values below the baseline after three days, suggesting 
refractoriness of hematopoietic progenitors to the action of cell cycle- 
specific cytostatic agents (Aglietta et al. 1993). 

The possibility of augmenting GM-CSF's effect on the WBC still further 
by administering it in combination with another growth factor was tested on 
a normal rhesus monkey, that was given IL-3, known to induce enhanced 
cellularity and increase of progenitors in the bone marrow, and then GM- 
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CSF. The peripheral blood counts of all colony types evaluated were sub- 
stantially increased over the levels observed with GM-CSF or IL-3 mono- 
therapy (Liehl et al. 1994). In vivo, the combination IL-3/GM-CSF resulted in 
a high number of biologically active progenitor cells as shown by a rapid 
engraftment of neutrophils and platelets after autologous transplantation 
(Kanz 1994). 

The rationale behind the use of GM-CSF in AML, beside stimulating re- 
generating hematopoiesis, is to improve the efficacy of chemotherapy by 
triggering leukemic progenitor cells into cycle (Hast et al. 1995). Leukemic 
progenitor cells express GM-CSF receptors on their surface and can be re- 
cruited into cycle by cytokine stimulation both in vitro and in vivo. This can 
be exploited by employing the S-phase specific cytarabine. In vitro, GM-CSF 
potentiated the cytotoxicity of cytarabine by increasing the number of cells 
in the t-phase (Scarffe 1991). The metabolism of cytarabine, which is neces- 
sary for its full cytotoxic activity, seemed to be antagonized by GM-CSF to a 
greater degree in normal cells than in leukemic cells, which should result in 
improved selectivity of cytarabine for leukemia. 

GM-CSF therapy was further found to increase the number of complete 
remissions in patients with non-Hodgldn's lymphoma significantly (Ger- 
hartz et al. 1995). As the improved adherence to the chemotherapy schedule 
was not thought to be sufficient to evoke such high response rates, it was 
postulated that direct effects of GM-CSF might also play an important role in 
tumor response by increasing the susceptibility of some cell populations to 
cytolysis by LAK cells; by enhancing effector cell phagocytosis, possibly 
mediated by increased superoxide generation and increased cytokine pro- 
duction by such cells; or by enhancing ADCC (Gerhartz et al. 1995). 

Beside reversal of neutropenia by administration of CSF, these factors 
also have a potential role in bone marrow transplantation: G-CSF and GM- 
CSF not only support engraftment but are also increasingly used for collec- 
tion of stem cells from peripheral blood. The ability of GM-CSF to induce 
the substantial mobilization of progenitor cells into the peripheral blood 
(Liehl et al. 1994) allowed the induction of sufficient peripheral blood stern 
or progenitor cells to harvest them for autotransplantation (Scarffe 1991; 
Liehl et al. 1994; Kanz 1994). This procedure enabled a further escalation of 
the intensity of the chemotherapy where a relationship between this and 
tumor response had been defined. Positive selection of CD34 + peripheral 
blood progenitor cells reduced the number of potentially contaminating 
tumor cells within the preparations of patients with solid tumors (Kanz 
1994). Patients receiving progenitors collected with GM-CSF demonstrated 
faster recoveries of total and neutrophit counts compared with the control 
group and a recovery in platelet counts and a reduction in the severity of 
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mucositis have been reported (Scarffe 1991). Further studies suggest that the 
engraftment of peripherally collected stem cells, augmented by GM-CSF may 
be so reliable that concomitant bone marrow transplantation is no longer 
required (Scarffe 1991). The use of GM-CSF in the collection of peripheral 
blood stem cells promises to reduce the requirement for extensive support 
measures such as sterile environments, antibiotic therapy and platelet 
transfusions, making intensive chemotherapy cheaper and safer (Scarffe 
1991). 

In conclusion, the clinical use of GM-CSF in neutropenic patients is very 
similar to the one of G-CSF. However, the fact that only one tenth of patients 
receives GM-CSF while G-CSF is more broadly used is only partially a result 
of marketing strategies. Due to the pro-inflammatory nature of GM-CSF in 
contrast to the anti-inflammatory characteristics of G-CSF, GM-CSF therapy 
was found to be associated with many more severe side-effects. Therefore, 
additional indications have been targeted where the immunostimulatory 
efficacy of GM-CSF beyond mere leukocyte recruitment is favourable. 

One of these leukocyte-stimulating activities might be tumor ceU cytotox- 
icity of leukocytes, which is partially induced by the pro-inflammatory me- 
diators increased by GM-CSF. The potential of GM-CSF in activating macro- 
phages and monocytes to destroy cytokeratin (CK2) positive cells (micro- 
metastases) in the bone marrow of patients with gastric cancer when tested 
in a very small study was promising: signs of monocyte activation and a 
decrease in the number of CK-positive cells in the bone marrow were ob- 
served (Schlimok et al. 1995). There was also a positive trend in the relapse 
rate for patients treated with GM-CSF. 

The rationale for the use of GM-CSF in leukemic patients receiving T- 
cell-depleted allogeneic bone marrow transplantation is based on properties 
of GM-CSF of inducing potential anti-tumor mechanisms in monocytes, 
such as the secretion of pro-inflammatory factors and the stimulation of 
ADCC. If GM-CSF exerts these anti-leukemic effects, it should accelerate 
engraftment and minimize the incidence of leukemic relapse after removal 
of T-cells (De Witte et al. 1995). There are also studies suggesting that GM- 
CSF will improve the outcome for patients with graft failure without exacer- 
bating graft-versus-host disease (GVHD) (Scarffe 1991). A small study sug- 
gested that GVHD might actually be ameliorated by the use of GM-CSF 
(Lang et al. 1987). 

Monocytes matured to macrophages with GM-CSF display similar recep- 
tors and tumoricidal activity to those differentiated in the presence of 
autologous lymphocytes (Lopez et al. 1993). When activated with IFN-y, 
these cells can be used for adoptive immunotherapy trials (Lopez et al. 
1993). 
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Another, positive aspect of the immunostimulatory activity of GM-CSF 
could be improved host defense, which might have a bearing for the treat- 
ment of infectious diseases. Various clinical studies have shown that therapy 
with GM-CSF significantly reduced the incidence of infections from either 
bacterial or fungal sources due to neutropenia, thereby reducing the demand 
for antibiotics and allowing the therapy to proceed according to schedule, 
e.g. with non-Hodgkdn's lymphoma (Scarffe 1991; Gerhartz et al. 1994; Ger- 
hartz 1995) or in the case of bone marrow transplantation (Moore 1991; 
Gulati et al. 1995; De Witte et al. 1995; Gorin et al. 1995) and heightened the 
response rates to antibacterial and perhaps even antifungal treatment 
(Bode), et al. 1994). A case has been reported where a patient in intensive 
care with acquired agranulocytosis and sepsis experienced rapid neutrophil 
recovery and resolution of a clinical infection when treated with GM-CSF 
(Weiss et al. 1992). 

Yet, in a smaU study of patients receiving intensive chemotherapy for 
lymphoma, the number of infections acquired by patients receiving GM-CSF 
only was greater than that of patients receiving prophylactic antibiotics 
(Scarffe 1991), suggesting that GM-CSF can be used as an adjunct to antibiot- 
ics, but not instead of them. 

The migration of aUogeneic transfused neutrophils to sites of a Candida 
albicans infection was reported to be effective in a patient receiving GM-CSF 
and pentoxifylline (Montgomery et al. 1991). Pentoxifylline decreased TNF- 
cz levels in vivo (Montgomery et al. 1991) and prevented and reversed the 
ability of TNF-o~ to inhibit neutrophil migration in vitro while decreasing 
CDllb expression (Montgomery et al. 1991). In addition, pentoxifglline 
inhibited GM-CSFs induction of TNF-ec in early myeloid cells without affect- 
ing proliferation (Montgomery et al. 1991), which makes the combination of 
these two agents in clinical practice attractive. 

Acute visceral leishmaniasis causes a suppression of the immune system. 
The patients demonstrate an abnormal production of Th~ lymphocyte- 
derived macrophage-stimulating factors, such as IL-2, IFN-y, GM-CSF and 
IL-3, that may be explained with the increased production of Th, cytokines, 
such as IL-4 and IL-10, which downregulate the anti-leishmanial response 
(Badar6 et al. 1994). A patient treated with GM-CSF plus antimony produced 
IFN-y, which two patients receiving only antimony did not do, suggesting 
that GM-CSF may function to atter the immune balance in patients with 
acute visceral leishmaniasis. This hypothesis must still be verified. 

GM-CSF was effective for the stimulation of nonspecific protection 
against Sendai virus or herpes simplex type 1 virus (HSV) in mice (Azuma et 
al. 1992). 
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A variety of clinical conditions are associated with functional impairment 
of leukocytes. CSF also have the potential to reverse this functional leuko- 
penia, e.g. in HIV infection, in newborn and preterm infants or following 
trauma, burn or sepsis. Qualitative and quantitative defects in neutrophils 
and monocytes in AIDS patients, which may be exacerbated by antiviral 
therapy with zidovudine probably contribute to the high incidence of oppor- 
tunistic infections and neoplasms (Scarffe 1991). Therapy with GM-CSF 
increased the numbers of granulocytes, monocytes and eosinophils, en- 
hanced the anti-HIV-activity of zidovudine as welt as the ADCC and phago- 
cytic capacity of patient neutrophils; superoxide generation capacity was 
enhanced in response to a chemotactic agent (Moore 1991; Mitsuyasu 1994). 
Although the functions of neutrophils from most patients were found to be 
normal and normally enhanced by GM-CSF, abnormalities of neutrophils 
from patients with phagocytosis or intracellular killing were corrected by 
GM-CSF infusion in vivo (Baldwin et al. 1988; Scarffe 1991; Mitsuyasu 1994), 
suggesting that GM-CSF might improve control or prophylaxis of opportun- 
istic infections and possibly mortality and survival. Furthermore, neutro- 
phils produced in vivo in response to GM-CSF functioned normally and 
showed signs of priming and activation in vivo (Baldwin et al. 1988). Never- 
theless, a number of opportunistic infections developed in patients receiving 
GM-CSF (Moore 1991). GM-CSF plus ganciclovir given to patients with 
AIDS-associated cytomegalovirus retinitis and bone marrow intolerance to 
the antiviral agent resulted in normal ANC with no resistance to ganciclovir 
and prevention of retinits progression in virtually all surviving, evaluable 
patients (Scarffe 1991). Whether the benefits GM-CSF, as shown in animal 
models of opportunistic infections common in the HIV-infected population 
can also be reaped in a clinical setting with HIV-infected patients, remains 
to be seen (Frumkin 1997). When GM-CSF and zidovudine therapy were 
alternated, an increase in HIV replication was observed, but in combination 
therapy this effect was absent and there was a decrease in HIV (p24)-antigen 
in the blood (Ruefand Coleman 1991). In vitro studies suggest that GM-CSF 
stimulates the replication of HIV in monocytes, but that the antiviral effect 
of zidovudine is enhanced by GM-CSF (Lieschke and Burgess 1992a). Al- 
though ADCC can be mediated by various classes of lymphocytes and 
monocytes, these may also be infected with HIV, therefore it seems better to 
focus on the neutrophils, as these are apparently not productively infected 
by the virus, i.e. G-CSF seems to be the therapeutic cytokine of choice (Bald- 
win et al. 1989; Hengge et al. 1992). 

Severe trauma and sepsis results in states of suppressed immune func- 
tions. First in vitro studies are promising that GM-CSF might be suitable to 
treat this type of immunodeficiency (Randow et al. 1997). When treating 
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these patients, additional effects beyond reactivation of paralyzed immune 
cells by recruitment of new leukocytes from bone marrow can be expected. 
Burn patients treated with GM-CSF displayed an increased WBC, normal 
stimulated oxidative function, increased MPO activity which returned to 
normal after a week and normal oxidative burst activity compared with 
patients not receiving GM-CSF (S 116). 

The immunostimulatory effect of GM-CSF might be useful as a vaccine 
adjuvant: When monkeys were treated with rhGM-CSF and IL-3, their anti- 
body titers to IL-3 were substantially greater than with IL,3 monotherapy 
(Liehl et al. 1994). Mice immunized with bovine serum albumin (BSA) and 
given GM-CSF developed a substantially increased antibody response com- 
pared with mice not given GM-CSF (Liehl et al. 1994). The adjuvant effect of 
GM-CSF might, however, also be a source of side-effects: In a study of ovar- 
ian cancer patients receiving GM-CSF, two patients who had demonstrated a 
low titre of anti-thyroid antibodies before the study showed an increase in 
antibody titre and transient thyroiditis after administration of GM-CSF, 
which suggests a systemic effect of GM-CSF on primary and secondary anti- 
body responses. When antibody corresponding to a specific idiotype ex- 
pressed on B ceU lymphomas was fused to GM-CSF and injected into mice 
with B-cell lymphoma xenografts, the mice developed antibodies to the lym- 
phoma which showed a protective effect towards disease progression. These 
antibodies were not produced when the two molecules were injected sepa- 
rately at the same site. Preliminary clinical trials suggest that GM-CSF en- 
hances antibody responses to hepatitis B vaccine (Jones et al. 1994). 

Taken together, a number of putative indications for GM-CSF beyond re- 
versal of neutropenia are emerging. These new opportunities are closely 
linked to the immunostimulaory capabilities of GM-CSF. In each case, how- 
ever, the benefit of immunostimulation and the risk of adverse effects must 
be weighed up. For example, the fact that GM-CSF primes bone marrow 
precursors for enhanced leukotriene synthesis (Di Persio and Abboud 1992) 
and macrophage TNF-a release (Thomassen et al. 1991, Wiltschke et al. 
1995) may be associated with the greater systemic toxicities incurred by 
patients when given GM-CSF in vivo. Increased adhesion and increased 
toxic radical production by granulocytes have been strongly implicated in 
the pathogenesis of ARDS, yet GM-CSF was not implicated in the patho- 
genesis of neonatal RDS, as the GM-CSF plasma levels of infants who devel- 
oped the syndrome were similar to a control group; both were higher than 
adult tevels (Yurdak6k et al. 1994). Nevertheless, GM-CSF will have to be 
explored much more carefully in patients prone to sepsis than the anti- 
inflammatory G-CSF. 
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I!1 
M-CSF 

Thomas Hartung 

1 
General Information 

1.1 
Molecular Biology and Endogenous Production 

A 
The Molecule M-CSF 

The molecular biology of M-CSF is the most complex of all CSF. The M-CSF 
gene (22 kb), which is located on the short arm of chromosome 5 in humans, 
has 10 exons and 9 introns. Alternate splicing within exon 6 produces 3 
forms of M-CSF mRNA that are translated into M-CSF-a, -J] and -~/. The 
signal sequence (32a.a.), the biologically active part of the molecule 
(149a.a.), a transmembrane domain (23a.a.) and a cytoplasmic domain 
(36a.a.) are common. Genomic and cDNA clones reveal that the difference 
between the forms is the length of an insertion sequence after amino acid 
181. The N-terminal domain has two N-linked glycosylation sites and seven 
cysteine residues. The M-CSF-~ soluble protein is a disulfide-bonded ho- 
modimer with a molecular weight of 47-56 kd, whereas M-CSF-[3 and q, 
secreted proteins are disulfide-bonded homodimers of 88 kd (Herrmann et 
al. 1990). Removal of the transmembrane and cytoplasmic domains by dele- 
tion mutagenesis abolished M-CSF surface expression and favored a more 
efficient secretion of the protein, suggesting that M-CSF is normally synthe- 
sized as a membrane-bound precursor that is proteolytically cleaved to re- 
lease the soluble form (Heard et al. 1987). 

Human M-CSF binds to the murine M-CSF receptor but not vice versa 
(Hamblin 1988). 

B 
Endogenous Production of M-CSF 

M-CSF gene expression is primarily controlled posttranscriptionally (Ernst 
et al. 1989; Herrmann et al. 1990). tn vitro, activated monocytes (Rambaldi et 
al. 1987), neutrophils (Lindemann et al. 1989b), bone marrow stromal cells 
(Gualtieri et al. 1987; Fibbe et al. 1988), epithelial cells of the endometrium 
of pregnant uterus (Pollard et al. 1987) and of the thymus (Galy et al. 1993), 
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endothelial cells (Cannistra and Griffin 1988), mesothelial cells (Lanfrancone 
et at. 1992) and smooth muscle cells (Filonzi et al. 1993) produce M-CSF. 
Human neuroblastoma cells and murine neurons, namely granule cells of 
the cerebellum, also might produce M-CSF; the mRNA, but not the protein, 
is present in mouse brain including cerebellum (Nohava et al. 1992). 

Expression of M-CSF is also subjected to autocrine regulation (Herrmann 
et al. 1990): Monocytes, which are a major source of M.CSF, also bear high- 
affinity M-CSF receptors. Both transcripts of M-CSF and its receptor tran- 
scripts are induced during monocytic differentiation of human HL-60 leu- 
kemia cells, suggesting that the)" can regulate their own survival, growth and 
differentiation (Horiguchi et al. 1986). 

Induction of M-CSF 

The levels of M-CSF mRNA in resting monocytes were found to be very low 
(Horiguchi et al. 1986). Stable M-CSF mRNA was only produced by mono- 
cytes in vitro in response to an exogenous signal (Rambaldi et al. 1987; Oster 
et al. 1989c). Treatment of monocytes with PMA, cycloheximide, IL-3, GM- 
CSF (Rambaldi et al. 1987; Ernst et aL 1989), PMA plus PHA (Oster et al. 
1989c), IFN-y (Rambaldi et al. 1987; Gruber and Gerrard 1992), phorbol ester 
(TPA) (Horiguchi et al. 1986), TNF-ct (Gruber and Gerrard 1992) or IL-4 
(Wieser et al. 1989) in vitro induced the accumulation of M-CSF transcripts 
in the cells; the induction of the gene was due to mRNA stabilization, not 
increased transcription. The release of the biologically active protein was 
induced by PMA (Rambaldi et al. 1987; Gruber and Gerrard 1992), IL-3 
(VeUenga et al. 1988) or GM-CSF (Horiguchi et al. 1987; Vellenga et al. 1988; 
Gruber and Gerrard 1992; Hamilton 199,t) in monooftes. Stimulation of 
human monocytes with immobilized monodonal antibodies directed 
against the CD45, CD44 or LFA-3 antigen induced the stabilization ofmRNA 
transcripts and the production of M-CSF protein (Gruber et al. 1992). M-CSF 
mRNA and protein secretion became detectable when monocytes were cul- 
tured in the presence of TNF-~ but under identical conditions TNF-J3 failed 
to induce M-CSF synthesis (Oster et al. 1987). The enhanced release of M- 
CSF in response to TNF-cx by human monocytes was confined to the leu 
M3 +, HLA-DR ÷ population of cells (Lu et al. 1988a). LPS could enhance M- 
CSF formation in adherent or elutriated monocytes (Lee et al. 1990; Hamil- 
ton 1994), but the levels were influenced by cyclooxygenase products. In 
contrast, LPS-induced monocytes in nonadherent cultures did not express 
M-CSF (Lee et al. 1990). 

PMN accumulated M-CSF mRNA in response to GM-CSF and were 
shown to translate this mRNA into secretory protein (Lindemann et al. 
1989b). Both IL-1 and TNF-ct induced an accumulation of M-CSF mRNA in 
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endothelial cells in vitro; simultaneous treatment with both factors had an 
additive effect, suggesting that they acted via different pathways (Seelentag 
et al. 1987). Untreated internal mammary artery and aortic smooth muscle 
cells make M-CSF constitutively (Filonzi et al. 1993). IL-1, TNF-cx and, in 
addition, IFN-? raised the M-CSF levels produced by these cells. Bone mar- 
row stromal cells produce M-CSF constitutively, but this action could be 
supported by the addition of IL-1 in vitro (Fibbe et al. 1988). Human perito- 
neal mesothelial cells constitutively produce M-CSF (Lanfrancone et al. 
1992), an effect which was not altered by the addition of IL-1. Thymic 
epithelial cells produce M-CSF constitutively (Galy et al. 1993). Their pro- 
duction was up-regulated by IL-1 or to a lesser extent by IFN-y, IL-4 had no 
effect (Galy et al. 1993). The expression of an alternatively spliced M-CSF 
mRNA by murine uterine glandular epithelial cells was regulated by the 
synergistic action of female sex steroids, estradiol-17[~ and progesterone 
(Pollard et al. 1987). See Table 8 for a summary of the factors influencing the 
production of M-CSF. 

Modulation of M-CSF production 

GM-CSF induced the production of M-CSF by monocytes, an effect that was 
enhanced by IFN-~/, M-CSF or TNF-~, of which TNF-~ synergized with GM- 
CSF in this respect (Gruber and Gerrard 1992). M-CSF release by monocytes 
in response to TNF-~ noted in another study was synergistically enhanced 
by IFN-?. Further experiments showed that pre-incubation of the monocytes 
with TNF-[$ before TNF-~ abolished the inductive effects of TNF-~, suggest- 
ing that it plays a role as an antagonist to TNF-oc (Oster et al. 1987). The 
stimulatory action of the antibodies against CD45, CD44 or LFA-3 was dra- 
matically augmented by LPS, IL-1[3, but not IL-6 or TNF-cx, though neither 
of these was able to induce M-CSF secretion alone in the absence of antibody 
(Gruber et al. 1992; Gruber and Gerrard 1992). M-CSF production by puri- 
fied human monocytes in the presence of LPS was upregulated by cydooxy- 
genase inhibition by indomethacin; this effect is canceled by PGE 2 (Lee et al. 
1990; Hamilton 1994). In LPS- treated cells, IL-4 as well as dexamethasone 
lowered the amount of M-CSF produced by purified human monocytes 
(Hamilton 1994). Monocytes and macrophages infected with HIV downregu- 
lated M-CSF production, an effect which may provide part of the explana- 
tion of the immunological dysfunction in HIV-infected patients (Esser et al. 
1996). 

Cycloheximide potentiated the effects of IL-I and TNF-cc on M-CSF 
mRNA levels of arterial smooth muscle ceUs. These results suggest that cy- 
tokine-stimulated arterial smooth muscle cells may be a source of the M-CSF 
found in arteriosclerotic lesions (Filonzi et al. 1993). 
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The independent regulation of M-CSF by different humoral signals may 
be physiologically relevant: chronic fungal infections that are associated with 
enhanced T-cell-mediated immunity result in the secretion of GM-CSF and 
IL-3 from activated T-cells which selectively induce M-CSF secretion by 
monocytes which in turn stimulates the monocytosis often observed during 
fungal disease or tuberculosis (Cannistra and Griffin 1988). See Table 9 for a 
list of the modulators of M-CSF production. 

Serum M-CSF 

After mice were infected with Listeria monocytogenes, the bulk of elevated 
serum colony-stimulating activity represented M-CSF and G-CSF, the degree 
of elevation depended on the infecting inoculum and the numbers of bacte- 
ria growing in the spleens and livers of the two mouse strains compared 
(Cheers et al. 1988). 

Radioimmunoassay (RIA) results of 10 normal individuals suggest that 
endogenous circulating M-CSF is present at a low but detectable concentra- 
tion (Shadle et al. 1989). M-CSF is elevated in febrile neutropenic or non- 
neutropenic patients in comparison to afebrile subjects and remains so for 
up to 10 days after resolution of infection (Cebon et al. 1994). M-CSF eleva- 
tion in sepsis is correlated with fever, renal impairment and known patho- 
gen (Cebon et al. 1994). 

Deficient  or excess M-CSF 

Mice with an inactivating mutation of the M-CSF gene were toothless be- 
cause of failure of incisor eruption, had skeletal abnormalities, developed 
osteopetrosis (op/op), were low in body weight and had compromised fer- 
tility (Wiktor-Jedrzejczak et al. 1991; Lieschke et al. 1994b). They displayed a 
major deficiency in macrophage-derived osteodasts and partial deficiencies 
in other macrophage populations. These abnormalities could be corrected 
by the administration of exogenous M-CSF (Wiktor-Jedrzejczak et al. 1991; 
Umeda et al. 1996) and resolved spontaneously as the animals aged (Begget 
al. 1993). Other deficient cell populations, which only responded minimally 
to exogenous M-CSF, included microglia in brain, synovial A ceils and 
MOMA-1 ÷ or ER-TR9+ macrophages. Their development seemed to be due 
either to M-CSF produced in situ or to expression of the M-CSF receptor 
(Wiktor-Jedrzejczak et al. 1991; Umeda et al. 1996). Although osteoclastic 
production was restored by M-CSF in op/op cell cultures, differentiation of 
these cells could not be induced (Hattersley et al. 1991). It seems that 
macrophages induced by M-CSF suppressed the differentiation to osteo- 
clasts which is also induced by M-CSF (Hattersley et al. 1991). 
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Mice lacking both GM-CSF and M-CSF displayed the combined features 
corresponding to mice deficient in either factor alone: they had osteopetro- 
sis, were toothless and had a characteristic alveolar-proteinosis which was 
more severe than that of only GM-CSF-deficient mice and was often fatal 
(Lieschke et al. 1994b). Some older mice with these mutations had poly- 
cythemia, their survival was reduced in comparison to mice deficient in 
either factor alone and they all had broncho- or lobar-pneumonia at death. 
These mice had circulating monocytes at levels comparable with those in M- 
CSF-deficient mice and their diseased lungs contained numerous phagocyti- 
cally active macrophages, indicating that there are alternative mechanisms 
to ensure macrophage production and function in vivo. 

M-CSF toxicity in humans is minimal and limited to reversible though 
sometimes dose-limiting thrombocytopenia and ophthalmological symp- 
toms (Vial and Descotes 1995). 

C 
Receptors and Signal Transduction 

M-CSF receptors are 165 kd proteins encoded by the c-fms proto-oncogene, 
which is also located on chromosome 5 (Cannistra and Griffin 1988). The 
number of receptors per cell is higher than for the other CSF at 3,000 to 
16,000 per cell, though the degradation of the receptor complexes appears to 
be very rapid (Metcalf 1985). M-CSF molecules bound to cell-surface recep- 
tors are internalized and degraded in lysosomes (Horiguchi et al. 1986). The 
receptors have tyrosin kinase activity and their autophosphorylation has 
been noted after the binding of M-CSF (Metcalf 1985). 

GM-CSF and IL-3 significantly decreased levels of M-CSF receptor and its 
mRNA in a murine myeloid precursor cell line, probably through reduction 
of the stability of the mRNA (Gliniak and Rohrschneider 1990; Rapoport 
1992). 

Introduction of the M-CSF receptor into hematopoietic cell lines of mye- 
loid and T-lymphoid origin and addition of M-CSF to the medium led to the 
proliferation of only the myeloid cells, suggesting that cells of this origin, 
which do not normally express the receptor, still have an intact signal trans- 
duction pathway (yon Ruden et al. 1991). But, although a murine hemato- 
poietic cell line with this receptor proliferated clonally when stimulated by 
GM-CSF, IL-3 or M-CSF alone, the combination of M-CSF with either other 
factor strongly inhibited colony-formation, with loss of clonogenicity in 
affected cells accompanied by increased macrophage differentiation (Metcalf 
et al. 1992). 
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1.2 
Role in Hematopoiesis 

Of the four CSF discussed, M-CSF has the peculiarity of stimulating the 
proliferation of only a single type of leukocyte lineage, the monocyte/ 
macrophage population. Furthermore, the effects on non-hematopoietic 
ceils are limited to very few examples. 

Human M-CSF selectively stimulated monocyte/macrophage colony- 
formation from normal human bone marrow in vitro, although the stimulus 
rhuM-CSF was more potent (Clark and Kamen 1987; Motoyoshi et al. 1989). 
Stimulation of bipotential cells by M-CSF throughout two to three cell divi- 
sions irreversibly commited the cells to form macrophage progeny, regard- 
less of the CSF used subsequently to maintain proliferative stimulation 
(Metcalf 1985). Other less specific growth factors such as IL-3 and GM-CSF 
synergized with M-CSF and dramatically increased the number of monocytic 
colonies derived from human bone marrow (Caracciolo et al. 1987; Di Persio 
1990; Herrmann et al. 1990). The combination of GM-CSF with M-CSF acting 
on murine bone marrow cells resulted in a significant decrease in the for- 
mation of certain macrophage colonies compared with that elicited by M- 
CSF alone (Metcalf and Nicola 1992). Pulmonary alveolar macrophages in 
vitro were induced to proliferate and develop into macrophage colonies by 
high doses of lVI-CSF and after a longer incubation time than with GM-CSF 
(Chen et al. 1988). However, this induction was greatly enhanced when a 
combination of M-CSF and a low dose of GM-CSF was employed (Chen et al. 
1988). M-CSF, especially in combination with IL-3, stimulated a subpopula- 
tion of hematopoietic progenitors, likely osteoclast progenitors, that could 
give rise to TRAP* cells from monkey CD34 antigen positive bone marrow 
cells (Povolny and Lee 1993). However, another study found no TRAP* cells 
were formed in the absence of 1,25 dihydroxyvitamin D 3 or primary os- 
teoblastic cells in a routine bone marrow culture system, but that the addi- 
tion of M-CSF to these prerequisites enhanced the formation of TRAP* 
mononuclear cells better than did GM-CSF, G-CSF or IL-3 (Takahashi et al. 
1991). 

Both GM-CSF and IL-3 synergized with M-CSF in the induction of DNA 
synthesis in peripheral monocytes in vitro (Cheung and Hamilton 1992). 
The monocyte DNA synthesis due to M-CSF could be suppressed by IL-4, 
IFN-7 and TNF-o~ as well as cAMP-elevating agents BrcAMP, cholera toxin 
and PGE 2 (Cheung and Hamilton 1992). 

M-CSF enhanced the proliferation of endothelial cells as well as macro- 
phages from endotoxemic rats, which are more sensitive to CSF than cells 
from untreated rats (Feder and Laskin 1994). Only in the presence of IL-3 
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could M-CSF stimulate the proliferation of mast cells in vitro; alone it 
caused a decrease in their numbers (Rottem et al. 1994). 

Injection of rmuM-CSF into mice, especially after pretreatment with hu- 
man lactoferrin, increased the fraction of progenitors in active cell cycle in 
an in vivo study with normal mice (Broxmeyer et al. 1987). Intravenous 
administration of rmuM-CSF to mice pretreated with cyclophosphamide 
also increased the fraction of bone marrow progenitor cells in active cell 
cycle (Cannistra and Griffin 1988). In mice receiving a single s.c. dose of M- 
CSF, the number of F4/80 ÷ alveolar macrophages, Kupffer cells and splenic 
macrophages increased with low doses of M-CSF, but did not alter in either 
of the groups when high doses of the factor were employed (Held et al. 
1996). Single daily i.v. administration of rhuM-CSF to mice for four days led 
to a dose-dependent increase in circulating monocyte counts that was 10- 
fold at the highest dose tested as well as to an increase of the macrophage 
content of liver and peritoneal cavity (Herrmann et al. 1990). In contrast, 
multiple daily injections of the factor into mice suppressed progenitor cell 
cycling and failed to increase bone marrow, spleen, or blood cellularity 
(Chikkappa et al. 1989). 

Recombinant human as well as purified urinary M-CSF administered to 
healthy volunteers caused an increase in the numbers of circulating mono- 
cytes without changing the bone marrow cellularity (Herrmann et al. 1990). 

2 
Effects on Granulocytes 

No stimulating effects of M-CSF on either type of granulocytes have been 
documented so far: Neither rat nor human PMN responded to rhuM-CSF in 
respect to oxidative burst, chemotactic activity and adherence protein ex- 
pression (Nathan 1989; Griffin et al. 1990; Wheeler et al. 1994). Also, M-CSF 
had no effect on the chemotactic activity (Yamaguchi et al. 1992a) or sur- 
vival ofbasophils (Yamaguchi et al. 1992b). 

3 
Effects on Mononuclear Cells 

3.1 
Effects on the Functions of Monocytes/Macrophages 

Of all the leukocyte lineages, M-CSF, in contrast to the other CSF discussed, 
apparently only affects the numerous functions of the monocyte/macro- 
phage population. 
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A 
Maturation of Monocytes to Macrophages 
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Blood monocTtes differentiated in vitro to macrophages in the presence of 
M-CSF (Becker et al. 1987; Lopez et aL 1993). 

B 
Phagocytosis 

The macrophage colonies resulting from incubation of pulmonary macro- 
phages in vitro with M-CSF possessed pronounced FcR-mediated phagocytic 
activity (Chen et al. 1988). M-CSF enhanced the phagocytosis of opsonized 
heat-killed yeast (Bober et al. 1995b). Further, M-CSF was effective in pre- 
venting dexamethasone-induced suppression of monocyte anti-bacterial 
(Staphylococcus aureus) and anti-fungal (Candida albicans) phagocytic 
capacities (Bober et al. 1995b). 

C 
Oxidative Burst 

M-CSF primed human monocytes and enhanced O 2 release in response to 
the receptor-mediated agonists fMLP or ConA, but not to PMA which 
stimulates the cells independent of receptors. This effect was less pro- 
nounced than with GM-CSF and of similar extent as with IL-3 (Yuo et al. 
1992). However, M-CSF had no effect on the ability of macrophages to ex- 
hibit a respiratory burst after Listeria infection in vitro (Denis and Gregg 
1991). 

D 
Chemotaxis and Migration 

Monocyte chemotaxis towards either the chemoattractants fMLP or LTB, 
was enhanced by M-CSF in culture (Bober et al. 1995b). 

E 
Tumor Cytotoxicity 

M-CSF has been reported to stimulate the ADCC of normal human macro- 
phages (Cannistra and Griffin 1988), especially in conjunction with a secon- 
dary signal such as IFN-y (Baldwin et al. 1993). However, M-CSF failed to 
activate macrophages for effector activities toward fibrosarcoma, lymphoma 
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or Leishmania tropica (Ralph et al. 1983), but pre-incubation of human pe- 
ripheral blood monocytes with M-CSF markedly enhanced their ADCC to- 
ward a Burkitt lymphoma-derived cell line in a concentration dependent 
manner (Suzu et al. 1990). Pretreatment of peptone-elicited macrophages 
with M-CSF induced moderate killing and greatly stimulated lyrnphokine- 
induced killing of sarcoma ceils (Ralph and Nakoinz 1987), but M-CSF did 
not stimulate freshly harvested exsudate macrophages to lyse these targets 
whether in the presence or absence of lymphokine activators. Therefore, M- 
CSF may be useful in combination with these activators in promoting resis- 
tance to cancer in mature mononuclear cells. 

M-CSF further induced antibody-independent monocyte tumoricidal ac- 
tivity against the WEHI-164 murine fibrosarcoma cell line (Cannistra and 
Griffin 1988). Pre-incubation of human peripheral blood monocytes with M- 
CSF resulted in more effective killing activity towards K562, U937, Daudi, 
and HL60 ceils than when the monocytes were pre-incubated with medium 
alone (Suzu et al. 1989). Anti-TNF antiserum partially blocked this tumori- 
cidal activity augmented by M-CSF. The factor human peripheral blood 
monocytes produced when incubated with M-CSF and induced with LPS and 
PMA that was cytotoxic to L929 cells, was also identified as TNF-o~ (Warren 
and Ralph 1986). These results have been reproduced in vivo in studies in 
mice, where the sequential injection of rhuM-CSF and LPS showed maximal 
secretion ofTNF-c~ (Sakurai et al. 1994). Neither M-CSF alone, nor LPS alone 
induced cytotoxic activity. Furthermore, pre-injection of M-CSF further 
enhanced the priming effect of IFN-~' for TNF production. As M-CSF treat- 
ment has been proven to prevent myelosuppression induced by murine IFN 
in vitro and in vivo, the combination of these two factors, which caused a 
synergistic priming effect on endogenous TNF production (Sakurai et al. 
1994) may be effective in cancer therapy without severe myelosuppression. 

A preliminary experiment where rhuM-CSF/LPS treatment was applied 
in cancer therapy in mice with metastatic B16 melanoma, resulted in all mice 
having reduced or no visible tumor colonies in the liver, but lung metastatic 
tumor colonies were only weakly inhibited (Sakurai et al. 1994). 

F 
Synthesis of Mediators and Enzymes 

M-CSF appears to induce little mediator release and only some mRNA syn- 
thesis by itself. M-CSF treatment of mouse bone marrow-derived macro- 
phages led to a rapid and sustained increase in IL-lcz and IL-113 mRNA as 
well as IL-lra mRNA (Matsushime et al. 1991). Cycloheximide inhibited the 
M-CSF-induced IL-la mRNA synthesis, but augmented IL-I~ mRNA pro- 
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duction and did not affect the induction of IL-lra mRNA. Murine peritoneal 
macrophages treated with human M-CSF or L929-derived M-CSF did not 
reveal either PGE 2, IL-1 or IL-6 secretion (Strassmann et al. 1991). There was 
no increase in IL-lcc mRNA or IL-6 mRNA levels in these cells. M-CSF in- 
duced murine bone marrow macrophages did not synthesize or release 
PGE 2, despite active PLA 2 (Shibata et al. 1994). In vitro, M-CSF alone, how- 
ever, stimulated human mature monocytes prepared from the peripheral 
blood of healthy volunteers to produce GM-CSF and G-CSF protein, but 
neither IL-1 nor IFN-y (Ishizaka et al. 1986; Motoyoshi et aL 1989) nor IL-lra 
(Jenkins and Arend 1993). Murine peritoneal cells also produced G-CSF in 
response to M-CSF (Metcalf and Nicola 1985). 

M-CSF enhanced the mRNA and protein levels PAII and 2 (Hamilton et 
al. 1993). PAI may modulate the effects of CSF on monocyte urokinase-type 
PA activity at sites of inflammation and tissue remodeling (Hamilton et al. 
1993). However, there was also evidence that M-CSF directly stimulated the 
production of a u-PA activity in both murine bone marrow-derived and 
peritoneal macrophages (Hamilton et al. 1991). This increase in u-PA activ- 
ity could be abrogated by dexamethasone, PGE~ and cholera toxin (Hamilton 
et al. 199I). M-CSF also stimulated the basal production of complement 
factor C3 by monocytes in vitro, though neither basal factor B nor LPS- 
stimulated production of either of the factors was affected by M-CSF 
(Hog~isen et al. 1993). 

M-CSF and LPS synergized in vitro and induced a murine thymocyte cell 
line to express higher levels of mRNA for IL-loc, IL-I[3, TNF-o~ and IL-6 and 
to cause the release of more bioactivity than macrophages treated with LPS 
alone (Evans et al. 1992). Human peripheral blood monocytes incubated 
with M-CSF and induced with LPS and PMA produced significantly elevated 
levels of TNF-c~ and colony-stimulating activity (Warren and Ralph 1986). 
M-CSF-treated monocytes induced with poly-I C secreted increased levels of 
IFN- 7 (Warren and Ralph 1986). Murine peritoneal macrophages, however, 
incubated with both LPS and M-CSF produced less IL-1 bioactivity and IL- 
lra than ceils incubated with only LPS (Strassmann et al. 1991). M-CSF also 
had no effect on the production of IL-lra protein in human monocytes 
stimulated with LPS or cultured on adherent IgG (Jenkins and Arend 1993). 
In murine macrophages, M-CSF synergized with LPS and IFN-y to induce 
nitric oxide production (Feder and Laskin 1994). 

Injection of mice with M-CSF resulted in dose-dependent elevated TNF-~ 
and IL-6 levels in the bronchoalveolar lavage fluid (Held et al. 1996). Also, 
the sequential injection of rhuM-CSF and LPS into mice caused secretion of 
TNF-cx into the serum (Sakurai et al. 1994). Furthermore, pre-injection of M- 
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CSF also enhanced the priming effect of IFN-? for TNF production (Sakurai 
et al. 1994). 

Taken together, M-CSF appears to exert effects similar to GM-CSF, i.e. it 
induces little mediator release on its own, but primes leukocytes for in- 
creased release of pro-inflammatory factors. 

G 
Expression of Surface Molecules 

In contrast to GM-CSF and IL-3, M-CSF partially inhibited the expression of 
GM-CSF receptors on peritoneal exsudate macrophages (Fan et al. 1992). 
High concentrations of M-CSF downregulated M-CSF receptor mRNA ex- 
pression in immature progenitors and monocytes derived from bone mar- 
row CD34 ÷ cells in culture (Panterne et al. 1996). The expression of M-CSF- 
induced CD23 was reduced by TNF-cx by suppression of the mRNA and by 
enhancement of the release of the soluble receptor (Hashimoto et al. 1997). 
M-CSF failed to augment the expression of CD54 or HLA class I or II in hu- 
man monocytes (Sadeghi et al. 1992). Instead, M-CSF suppressed the basal 
levels of Ia gene expression in bone marrow-derived macrophages, and also 
inhibited its induction by IFN-? or GM-CSF (Fischer et al. 1988; Willman et 
al. 1989). 

The expression of Ia antigen and CD11b/CD18 complex increased on the 
splenic macrophages of mice treated in vivo with M-CSF, but was not af- 
fected in their alveolar macrophages and Kupffer cells (Held et al. 1996). 

H 
Microbial Killing 

M-CSF made human monocytes more vulnerable towards two virulent 
strains of Mycobacterium avium and stimulated the extraceUular growth of 
this parasite in vitro in tissue culture medium (Denis 1991b). Macrophages 
pre-treated with M-CSF were also more permissive for the growth of Listeria 
monocytogenes (Denis and Gregg 199t). Treatment of macrophages previ- 
ously infected with Leishmania mexicana amazonensis with M-CSF caused a 
significant dose-dependent reduction in intraceUular parasites in vitro. This 
effect was augmented by the addition of IFN-T (Ho et al. 1990). M-CSF- 
conditioned medium failed to activate macrophages for effector activities 
toward Leishmania tropica (Ralph et al. 1983). At rdatively high concentra- 
tions, M-CSF enhanced monocyte toxicity toward Candida albicans, but to a 
smaller degree than IL-3 or GM-CSF (Wang et al. 1989). 
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Human monocyte-derived macrophages cultured in medium containing M- 
CSF were more susceptible to infection with HIV-I: The frequency with 
which the cells became infected, the level of HIV mRNA expressed per in- 
fected cell and the level of proviral DNA expressed per infected culture were 
all increased by M-CSF (Gruber et al. 1995). Infected cells maintained in the 
absence of exogenous M-CSF produced this cytokine at high levels (Gruber 
et al. 1995), but the pro-inflammatory cytokines were not produced. The 
endogenous M-CSF production may contribute to the survival of HIV- 
infected macrophages and enable them to function as a reservoir for HIV 
and facilitate the spread of the virus in vivo. 

3.2 
Effects on the Functions of Lymphocytes 

To the author's knowledge, no effects of M-CSF on the functions oflympho- 
cytes, which express no receptors for M-CSF, have been documented so far. 

M-CSF 

/ 

Chemotaxis t 
Cytotoxicity t 
Pro-inflammatory cytokines't 

Fig. 4. Pertinent immunomodulatory effects of M-CSF on different leukocyte popu- 
lations. The diagramm summarizes the predominant effects of M-CSF on immune 
functions of different types of leukocytes 
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4 
Effects on the Functions of Other Cells 

Thomas Hartung 

The effects of M-CSF discussed above are displayed in Fig. 4. As with the 
other CSF, some effects of M-CSF in other cells have been recorded. In endo- 
thelial cells, M-CSF synergized with LPS and IFlq-y to induce nitric oxide 
production (Feder and Laskin 1994). M-CSF also induced the expression and 
synthesis of the insulin-like growth factor-1 (IGF-1) in murine bone marrow 
cells (Kelley et al. 1996). 

5 
Infection 

M-CSF administration to mice protected them from a subsequent lethal 
challenge with Candida albicans, demonstrated by increased survival times 
and a reduction in recovery of viable C. albicans from various organs (Cenci 
et al. 1991). 

In a phase I uncontrolled trial, bone marrow transplantation patients 
with severe fungal infections were given M-CSF in conjunction with antifun- 
gal therapy. M-CSF was well tolerated and appeared to hasten the resolution 
of infection (Nemunaitis et al. 1991). 

6 
Possible Role of M-CSF in Disease 

Genomic analysis of 17 patients with myelodysplastic syndromes deter- 
mined only 2 patients whose blast cells expressed both the M-CSF and M- 
CSF receptor genes as an autocrine mechanism of growth. Thus, deregula- 
tion of genes encoding certain hematopoietic growth factors or receptors 
were deemed not to represent a major mechanism of myelodysplastic syn- 
drome progression (Mareni et al. 1994). Nevertheless, a variety of epithelial 
neoplasms (uterus, ovary, breast, lung) and myeloid leukemias have been 
shown to express M-CSF and/or its receptor (Herrmann et al. 1990). In pa- 
tients with ovarian cancer, elevation of M-CSF serum levels was correlated 
with cancer activity (Herrmann et al. 1990). 
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7 
Potential Clinical Applications 

When 46 patients with gynecologic malignancies in a randomized controlled 
study received urinary M-CSF in chemotherapy cycles, the average period of 
neutropenia was significantly shortened and the average nadir of platelets 
increased significantly in comparison to identical cycles without exogenous 
M-CSF in the same patients (Herrmann et al. 1990). 

Clinical trials in Japan have demonstrated that M-CSF can relieve the 
myelosuppression associated with a number of diseases including chronic 
childhood neutropenia and myelodysplastic syndromes (Garnick and Reilly 
1989). Other prospective dinical roles that have been proposed for M-CSF 
include acting as a promoter of monocyte-mediated tumor cell cytotoxicity 
and as a terminal differentiation inducer for AML cells (Whetton 1990). 

IV 
IL-3 

1 
General Information 

1.1 
Molecular Biology and Endogenous Production 

A 
The Molecule Interleukin-3 

This protein was originally described in 1963 as a mast cell growth factor in 
thymic cell cultures. Later, IL-3 was found to be constitutively produced by 
myelomonocytic WEHI 3 cells and was biochemically characterized and 
purified from the culture supernatant of this cell line in 1982 (Frendl 1992). 
The cDNA clones of routine IL-3 were decoded in 1984, whilst the corre- 
sponding human sequence remained unknown until 1986 (Hamblin 1988). 

The IL-3 gene, made up of 5 exons separated by one large and three small 
introns (Cannistra and Griffin 1988), is located together with GM-CSF, M- 
CSF, M-CSF-R, IL-4 and IL-5 on chromosome 5 in humans. IL-3 and GM- 
CSF are evolutionarily related, have some similarity in structure (Yang et al. 
1988) and their expression is coordinately regulated to a certain extent 
(Frendl 1992). Human IL-3 consists of 152 amino acids with a signal se- 
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quence of 19 amino acids (Hamblin 1988) and exhibits one disulphide bond. 
The apparent molecular weight of IL-3 ranges from 14 to 30 kd, although the 
expected size of the mature polypeptide is only 14 to 15 kd. This heteroge- 
neity in size results from variable degrees of glycosylation at two asparagine 
residues (Cannistra and Griffin 1988). 

The homology between human and murine IL-3 is 29% at amino acid 
level, which explains why these two proteins are not cross-reactive 
(Cannistra and Griffin 1988). There is a 93% homology between human and 
gibbon IL-3 though, so these two factors should have identical biological 
activities (Clark and Kamen 1987). 

B 
Endogenous Production of 11.-3 

IL-3 is produced by activated T-cells (Yang et al. 1986; Otsuka et al. 1988), 
mast cells (Wodnar-Filopowicz et al. 1989; Plaut et al. 1989), neutrophils 
(Cassatella 1995), eosinophils (Kita et al. 1991), epidermal keratinocytes and 
thymic epithelial cells in vitro (Frendl 1992). Furthermore, IL-3 was found to 
be expressed in the developing fetal thymus, in tissues that had undergone 
syngeneic or allogeneic transplantation (Frendl 1992) and during allergen- 
induced late-phase cutaneous reactions in atopic patients (Kay et al. 1991). 
IL-3 is the only cytokine produced during syngeneic mixed lymphocyte 
reactions (Suzuki et al. 1986), indicating a role in the interaction of synge- 
neic antigen-presenting cells and T-cells. 

Purified T-lymphocytes produced IL-3 in response to PHA plus PMA and 
IL-2 (Oster et al. 1989c). The inductive effects of ConA or ConA plus PMA 
on IL-3 production by T-cells were abrogated by factors which activate the 
cAMP signaling pathway, such as dibutyryl-cAMP, PGE 2 or isoproterenol 
(Borger et al. 1996). PBMC could be stimulated by the T-cell mitogen PHA 
(McHugh et al. 1996) or PMA (Oster et al. 1989c; Cassatella 1995) to produce 
IL-3. IL-3 secretion by T-cells is probably not involved in the maintenance of 
baseline hematopoiesis, as no stable mRNA was produced without a secon- 
dary signal in vitro (Oster et al. 1989c). It is more likely that T-lymphocytes 
are activated by antigen to produce IL-3 at peripheral sites of infection so as 
to amplify the effector function of local granulocytes and monocytes 
(Cannistra and Griffin 1988). Both Th~ and Th~ type CD4 ÷ clones produced 
substantial amounts of IL-3 upon activation in vitro (Frendl et al. 1990) and 
it has been determined that the expression of IL-3 and GM-CSF are differ- 
entially regulated in activated CD8* and CD4* T-cell clones (Fitzpatrick and 
Kelso 1995). 
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Table 10. Factors affecting the 

Stimulus type Stimulus 

Constitutive none 

Other 

Key:. + 

PHA 
PMA 
PMA + PHA 

C o n  A 

ConA+ 
PMA 

~roduction of the IL-3 protein 

Cell type 

I T cells 

PBMC - 
PBMC 
T cells 

T cells 
T ceils 

Results 

+ 

+ 

+ 

+ 

+ 

References 

Oster et al. 1989c 

Oster et al. 1989c 
Oster et al. 1989c 
Oster et al. 1989c 

Borger et al. 1996 
Borger et al. 1996 

IL-2 T ceUs + Oster et al. 1989c 

ionomycin PMN + CasateUa 1995 
eosinophits + Kita et al. 1991 

IgE mast cells + 

: induction of IL-3 production and secretion 
: no effect on the production of IL-3 

Wodnar 
Filipowicz et al. 
1989 
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Although PMA-stimulated mononudear  cens made greater quantities of 
IL-3 than PMN stimulated with ionomycin under similar conditions on a 
single-cell basis, one must consider that granuloqrtes constitute the majority 
of infiltrating cells in inflamed tissues (Cassatella 1995). Human peripheral 
blood eosinophils were stimulated to release IL-3 in vitro by ionomycin; an 
effect which was inhibited by cyclosporin A (Kita et al. 1991). IgE-receptor- 
mediated activation of murine mast ceils in vitro, as happens in aUergic 
diseases in vivo, resulted in the production of IL-3 (Wodnar-Filopowicz et 
al. 1989). 

Table 10 summarizes the activity of various factors in promoting the pro- 
duction of IL-3. 

Serum IL-3 

There have been virtually no situations in mice that have resulted in detect° 
able circulating levels of IL-3, even under the conditions that result in IL-3 
production in vitro (Nicola 1989). In mice infected with Listeria monocyto- 
genes, no IL-3 was detectable in the serum (Cheers et al. 1988). 
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Toxicity 

No major side effects of IL-3 administration have been observed in non- 
human primates, other than some skin lesions characterized as urticaria, 
which may be due to basophil activation (Whetton 1990). Toxicities reported 
with IL-3 in humans include flu-like and constitutional symptoms, severe 
headache or skin rash (Vial and Descotes 1995). 

C 
Receptors and Signal Transduction 

The high-affinity IL-3 receptor is expressed on eosinophils, basophils and 
monocytes (Valent et al. 1989a; Lopez et aL 1989; Elliot et al. 1989), but not 
on mature neutrophils (Weisbart et al. 1989). The subclass II GM-CSF recep- 
tor, which is present on AML cells and normal monocytes (Oster et al. 1991), 
can bind either GM-CSF or IL-3 (Frendl 1992) which compete with an 
equally high affinity. Cross-competition between GM-CSF and IL-3 for 
binding has also been confirmed in eosinophils (Lopez et al. 1989) and ba- 
sophils (Lopez et al. 1990). Cloning of the IL-3 receptor yielded a 140 kD 
protein that can bind IL-3 with low affinity upon transfection into fibro- 
blasts (Itoh et al. 1990). A second membrane protein has been found that 
does not bind IL-3 itself, but its expression is co-regulated with the de- 
scribed 140 kD protein (Frendl 1992). However, neither of these components 
possess tyrosine kinase activity or high-affinity binding characteristics, indi- 
cating the involvement of additional receptor components (Frendl 1992). It 
therefore seems that the IL-3 receptor, similar to the GM-CSF receptor, is 
composed of two chains, a ligand-specific co-chain, which binds the cognate 
ligand with low affinity and a common [3-chain which, although it cannot 
bind the ligand itself, confers high affinity binding when co-transfected with 
the m-chains (Lopez et al. 1992). The sharing of the [3-chain may explain the 
cross-competition between the two factors. 

The primary event in IL-3-induced cellular activation seems to be protein 
tyrosine phosphorylation, especially of the MAP kinases p42 and p44 
(Okuda et al. 1992), independent of protein kinase C (PKC) (Frendl 1992). 
The role of pertussis toxin-sensitive G-proteins in the IL-3-mediated cellular 
activation process has been specifically demonstrated and was found to 
affect primarily the cells of the macrophage lineage (Frendl 1992). 
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In vitro and in vivo, IL-3 primarily stimulates the proliferation of early pro- 
genitors and supports the specific actions of other endogenous or exogenous 
hematopoietic growth factors, especially M-CSF, G-CSF and stem cell factor. 

The term "multi-CSF" was coined because the growth of various multipo- 
tent progenitors (Spivak et al. 1985; Cannistra and Griffin 1988; Sieff et al. 
1987b) is supported by IL-3, as is that of progenitors with a more restricted 
commitment status such as granulocyte/monocyte, eosinophil and mega- 
karyocyte colony-forming units (Sieff et al. 1987b). IL-3 did not trigger cell 
cycling of dormant stem cells, but instead supported the proliferation of 
multipotential progenitors after they exited the G0-phase (Ogawa 1993). IL-3 
was able to induce growth and differentiation of human basophils in bone 
marrow suspension cultures (Valent et al. 1989b) and also induced the pro- 
liferation of persisting cells in a dose-dependent manner (Ihle et al. 1983). 

IL-3 further stimulated the growth of mast cells from bone marrow cul- 
tures alone (Ihle et al. 1983; Rottem et al. 1994) or in combination with stem 
cell factor and, to a lesser extent, with IL-4 and IL-9 (Ihle et al. 1983; Rottem 
et al. 1994). The addition of M-CSF, GM-CSF or IFN-y, on the other hand, 
decreased the number of mast cells in these experiments (Rottem et al. 
1994). IL-3, in syner~ with M-CSF, stimulated a subpopulation of he- 
matopoietic progenitors, probably osteodasts, that could give rise to TRAP* 
cells (Povolny and Lee 1993). The addition of GM-CSF to cultures grown in 
the presence of IL-3 did not result in enhanced colony-formation, suggesting 
that most if not all GM-CSF progenitors also respond to IL-3 (Clark and 
Kamen 1987). In contrast, addition of G-CSF to IL-3-containing cultures 
resulted in substantially greater numbers of neutrophil colonies than with 
IL-3 alone, without depressing colony-formation of other cell types (Clark 
and Kamen 1987; Weisbart et al. 1989). 

Infusion of IL-3 into mice led to splenomegaly with a concomitant in- 
crease in the numbers of splenic myeloid progenitor cells present (Whetton 
1990). Mice pretreated with sublethal irradiation showed a tenfold increase 
of bone marrow progenitor cells to near normal levels during a 7 day treat- 
ment with IL-3 (Kindler et al. 1986). Single injections of IL-3 increased the 
fraction of hematopoietic progenitors in active cell cycle in an in vivo study 
with normal mice (Broxrneyer et al. 1987). Here, pretreatment with human 
lactoferrin made the cells more sensitive toward IL-3. In another study, mice 
receiving IL-3 i.p. over six days showed a tenfold elevation of blood eosino- 
phil levels and a threefold elevation of peripheral neutrophil and monocyte 
counts (Metcalf et al. 1986). Their spleens were enlarged by an accumulation 
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of mast cells, maturing granulocytes, eosinophils, nucleated erythroid cells 
and megakaryocytes. A significant rise in intraperitoneal macrophage levels 
was also noted (Metcalf et al. 1986). IL-3 and G-CSF administered concur- 
rently as an i.v. injection in rats induced a peripheral neutrophilia that was 
approximately additive in comparison to the neutrophilia induced by the 
factors individually (Ulich et al. 1990b). Daily injection of IL-3 plus G-CSF 
also caused a significant decrease in erythroid, lymphoid, and eosinophilic 
marrow precursors in rats, despite the fact that IL-3 alone induced a signifi- 
cant erythroid hyperplasia (Ulich et al. 1990b). 

During the second week of s.c. IL-3 administration rhesus monkeys re- 
sponded with a two- to threefold increase of WBCs caused by a dose- 
dependent elevation of basophils (up to 40% of WBCs) and eosinophils 
(Mayer et al. 1989). 

No information on IL-3 deficiency, excessive IL-3 production or toxicities 
related to the use of IL-3 in humans is available at present. 

2 
Effects on Granulocytes 

2.1 
Effects on the Functions of Neutrophilic Granulocytes 

Freshly isolated mature neutrophils have no IL-3 receptors and are therefore 
not responsive to IL-3 (Smith et al. 1995). However, incubation with GM- 
CSF induces the expression of the ~-subunit of the IL-3-R. Subsequent addi- 
tion of IL-3 results in the expression of HLA-DR which is greater than with 
GM-CSF alone (Smith et al. 1995). 

Stimulation of PMN with high concentrations (1000 U/ml) of IL-3 re- 
suited in adhesion of the cells to a plastic layer and development of long 
protrusions (Zeck-Kapp et al. 1989). In contrast to GM-CSF, a lower number 
of intracytoplasmic vesicles was detected (Zeck-Kapp et al. 1989). Produc- 
tion of H202 was observed at the gramtocytes' outer surface and in the lumi- 
nal part of the vesicles (Zeck-Kapp et al. 1989). 
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A 
Phagocytosis 

IL-3 increases the phagocytotic activity of human eosinophils toward Can- 
dida albicans (Fabian et al. 1992), but does not enhance the killing of this 
fungus. 

B 
Chemotaxis and Migration 

Eosinophils purified from patients with hypereosinophilic syndrome be- 
came adherent in the presence of IL-3 (Taiet al. 1990). Pre-incubation of 
eosinophils with picomolar concentration of IL-3 induced a chemotactic 
response toward IL-8 and fMLP and enhanced PAF-induced chemotaxis 
(Warringa et al. 1991). Nanomolar concentrations of IL-3 inhibited the CSa- 
induced chemotaxis, unless the cells were washed after pre-incubation 
(Warringa et al. 1991). 

C 
Synthesis of Mediators 

IL-3 enhanced the generation of LTC 4 induced by calcium ionophore A23187 
in human eosinophils (Fabian et al. 1992). 

D 
Degranulation 

IL-3-activated eosinophils transformed the storage form of eosinophil cati- 
onic protein (ECP) into the secreted form in vitro, but this was only released 
when the ceils were exposed to secretory stimuli, such as sepharose coated 
with C3b or sepharose-activated whole autologous serum in greater amounts 
than with the stimuli alone (Tai et al. 1990). The release of arylsulphatase 
and lg-glucuronidase from specific andsmall granules of human eosinophils 
was stimulated by IL-3 in vitro (Fabian et al. 1992). 
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E 
Expression of'Surface Molecules 

IL-3 increased PAF receptor levels on human eosinophils in vitro 
(Kishimoto et al. 1996). 

F 
Microbial Killing 

The killing of Staphylococcus, but not of Candida by human eosinophils was 
increased by IL-3 (Fabian et al. 1992). 

G 
Other 

IL-3 prolonged the lifespan of blood eosinophils in a dose-dependent man- 
ner by preventing apoptosis and inducing the expression of the activation 
forms of eosinophil ribonucleases (Tai et al. 1990 and 1991). 

2.3 
Effects on the Functions of Basophilic Granulocytes 

A 
Histamine Release 

IL-3 has been described as an effective, direct, time and temperature de- 
pendent histamine releasing factor acting on basophils from allergic and, 
less frequently, from normal subjects (Haak-Prendscho et al. 1988; Mi- 
adonna et al. 1993). However, in another study, only relatively high doses of 
IL-3 directly caused a release of small amounts of histamine is some allergic 
donors' cells (Alam et al. 1989). 

IL-3 enhanced the release of histamine on stimulation via the IgE recep- 
tor or with fMLP or ionophore A23187 by basophils in vitro in a rapid, tem- 
perature-dependent manner, presumably along the same pathway as GM- 
CSF, as they both reached a similar plateau value and showed no additive 
effects when combined (Hirai et al. 1988; Miadonna et al. 1993). However, a 
different study determined that IL-3 had a greater potency in stimulating 
IgE-mediated histamine release than GM-CSF and that it effected the release 
of greater amounts of histamine than GM-CSF (Lopez et al. 1990). IL-3 could 
also mediate the release of histamine when present at low concentrations 
when incubated with basophils in the presence of D20 in some allergic do- 
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nors (/dam et aL 1989). Pretreatment of basophils with IL-3 makes them 
responsive to very low concentrations of C3a, resulting in a rapid release of 
large amounts of histamine and also in the generation of leukotrienes 
(Bischoff et al. 1990). This phenomenon could be of relevance in various 
inflammatory processes, especially hypersensitivity reactions (Bischoff et al. 
1990). 

Consistent with these in vitro data, IL-3 induced a dose-dependent in- 
crease of histamine (up to 700-fold above normal values ) in the blood of 
monkeys treated with IL-3 (Mayer et al. 1989). 

B 
Expression of Surface Molecules 

CD 11b/CD18 complex expression on peripheral blood basophils was in- 
duced by IL-3 in vitro (Bochner et al. 1990). 

C 
Adhesion and Chemotaxis 

IL-3 promoted basophil adherence to vascular endothelium (Bochner et al. 
1990). IL-3 induced chemotacic activity in human basophils, but whether the 
induced migration form is chemotaxis or chemokinesis is still controversial 
(Tanimoto et al. 1992; Yamaguchi et al. 1992a). 

D 
Other 

IL-3 maintained numbers of viable human basophils in culture (67% at day 
7; 11% in controls) (Yamaguchi et al. 1992b). 

3 
Effects on Mononuclear  Cells 

3.1 
Effects on the functions of monocytes/macrophages 

A 
Maturation of Monocytes to Macrophages 

Monocytes differentiated to macrophages in the presence of IL-3 in vitro 
(Lopez et al. 1993). IL-3 induced morphologic changes in macrophages, 
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including increased spreading, vacuolation and number of cytoplasmic 
processes (Gilan et al. 1993). 

B 
Phagocytosis 

Increased phagocytosis of opsonized yeast in IL-3-activated, bone marrow- 
derived and peritoneal macrophages in vitro were reported (Crapper et al. 
1985). When mice received IL-3 i.p. for a period of 6 days, an enhancement 
ofmacrophage phagocytic activity was noted (Metcalfet al. 1986). 

C 
Oxidative Burst 

IL-3 primed monocytes to increase the production of ROS in response to the 
secondary stimuli fMLP and ConA, but not in response to PMA which binds 
no receptor. The effect was smaller than with GM-CSF, but similar to that 
achieved with M-CSF (Yuo et al. 1992). 

D 
Tumor Cytotoxicity 

IL-3 enhanced monocyte killing of WEHI 164 fibrosarcoma cells by a TNF- 
dependent mechanism in response to a second stimulatory event, e.g. endo- 
toxin in vitro (Cannistra et al. 1988). However, IL-3 was unable to induce 
tumoricidal activity of macrophages toward P815 target cells and could not 
modulate the inductive effect of IFN-T in this regard (Frendl 1992). 

E 
Synthesis of Mediators and Enzymes 

Monocytes responded to IL-3 with the expression of the pro-inflammatory 
cytokines IL-113, IL-6, IL-8 and TNF~x, the autoregulatory IL-lra and the M- 
CSF (Cluitmans et al. 1993) as weU as G-CSF (Oster et al. 1989b). Of these 
only IL-8 (Cannistra et al. 1988; Takahashi et al. 1993), IL-lra (Jenkins and 
Arend 1993; Jenkins and Arend 1993) and G-CSF (Metcalf and Nicola 1985; 
Oster et al. 1989b) were translated into protein and secreted directly. In 
contrast, another report stated that IL-3 decreased the transcription rate of 
the IL-113 gene (Oster et al. 1992). 

M-CSF-induced accumulation of IL-113 mRNA was enhanced by IL-3 via 
unknown posttranscriptional means that may relate to an increased expres- 



Immunomodulation by Colony-Stimulating Factors 117 

sion of the M-CSF receptor mRNA (Oster et al. 1992). IL-3 seemed to syner- 
gize with GM-CSF in the induction of G-CSF in peripheral blood monocytes 
(Oster et al. 1989b). IL-3, in conjunction with IFN-y, stimulated the produc- 
tion of TNF by monocytes, though, whether the production of IL-1 is also 
stimulated is controversial (Cannistra et al. 1988; Hart et al. 1990; Frendl et 
al. 1990). IL-3 was also found to contribute synergistically to LPS-induction 
of increased TNF-c~ (Cannistra et al. 1988; Hart et al. 1990; Frendl et al. 
1990), IL-1 (Hart et al. 1990; Frendl et al. 1990) and IL-6 activities (Frendl 
1992) by murine and human macrophage cell lines. 

IL-3 directly stimulated the production of a u-PA in both murine bone 
marrow-derived and peritoneal macrophages (Hamilton et aL 1991). The 
increase in u-PA activity was abrogated by dexamethasone, PGE 2 and chol- 
era toxin (Hamilton et al. 1991). 

Taken together, IL-3 appears to favor and support pro-inflammatory 
mediator release. 

F 
Expression of Surface Molecules 

High, but not low, doses of IL-3 resulted in the downmodulation of the M- 
CSF receptor in immature progenitors and monocytes in culture (Gliniak 
and Rohrschneider 1990; Panterne et al. 1996). IL-3 induced the upregula- 
tion of GM-CSF receptors on peritoneal exsudate macrophages, an effect 
which was abrogated by cy'cloheximide, a protein-synthesis inhibitor (Fan et 
al. 1992), and also induced the expression of the IL-1 receptor on human and 
murine bone marrow ceUs as well as lymphoid and myeloid progenitor cell 
lines (Frendl 1992). 

Although one report described IL-3 as having no effect on the gene ex- 
pression of the murine MHC component Ia in macrophages from bone mar- 
row cultures (Willman et al. 1989), others have determined that IL-3 is able 
to induce the expression of class II MHC antigens in murine peritoneal ex- 
sudate cells (Frendl and Belier 1990). IL-3 and IFN-y probably work via dif- 
ferent mechanisms in this respect, as induction by IL-3 was delayed in com- 
parison and the combination of IL-3 with IFN-y or low doses of LPS pro- 
duced a synergistic effect, but high doses of LPS inhibited the induction of Ia 
expression by IL-3 (Frendl and Beller 1990; Frendl 1992). IL-3 plus IL-4 in- 
duced monocyte expression of CD1, a molecule which presents bacterial 
antigens to certain T-lymphocytes (Thomssen et al. 1996). The stimulatory 
effect of IL-3 could be countered by IL-10. 

IL-3 also had the potential to induce CDlla/CD18 expression with kinet- 
ics similar to IFN-y or LPS in murine peritoneal exsudate cells (Frendl and 
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Belier 1990). Combination of IL-3 with IFN-7 had an additive effect in this 
respect, but neither a synergistic nor an additive effect could be established 
with the combination of IL-3 with LPS, already a potent inducer of 
CDlla/CD18 (Frendl 1992). IL-3 induced the expression of CD23 in mono- 
cyte cultures, an effect which was abrogated by the addition of TNF-o~ 
(Hashimoto et al. 1997). 

G 
Microbial Killing 

The treatment of human monocytes with IL-3 led to increased permissive- 
ness of these ceUs for two virulent strains of Mycobacterium avium and also 
dramatically increased extraceUular M. avium growth in vitro in tissue- 
culture medium (Denis 1991b). IL-3 made macrophages more vulnerable to 
Listeria monocytogenes and had no effect on the oxidative burst capacity of 
macrophages after Listeria infection (Denis and Gregg 1991). 

In contrast, IL-3 effectively enhanced human monocyte-mediated anti- 
candidal activity in vitro by fresh as well as aged cells, even at very low con- 
centrations (Wang et al. 1989). 

H 
Other 

IL-3 was found to be able to sensitize human peripheral blood monocytes to 
lysis by autologous LAK cells (Djeu et al. 1989). 

3.2 
Effects on the Functions of Lymphocytes 

A 
Migration 

Potent, temperature-dependent stimulation of human lymphocyte migration 
was observed in response to IL-3 in vitro; this effect was abolished in the 
presence of cytochalasin B (Bacon et al. 1990). IL-3-desensitized cells could 
no longer be stimulated to migrate by either IL-3 or IL-4, suggesting that the 
post-receptor signal transduction mechanism is the same for these two fac- 
tors (Bacon et al. 1990). 
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B 
Mediator Synthesis 
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PMA-differentiated AML-193 leukemic cells were stimulated to produce IL- 
lra by IL-3 (Kindler et al. 1990). 

4 
Effects on the Functions of Other Cells 

Although TL-3 acts mainly on leukocytes as summarized in Fig. 5, some 
effects on other cells have also been characterized. Mouse bone marrow cells 
cultured in the presence of IL-3 released PGE 2 and LTB 4 when stimulated 
with calcium ionophore A23187, but not when PMA was used (Shibata et al. 
1990). Neither these cells nor IL-3-dependent cell lines released significant 
amounts of PGE~ when stimulated with IL-3 alone, although translocation of 
protein kinase C to the membrane fraction was induced (Shibata et al. 1990), 
indicating that elevated cellular Ca ~* is required and PKC activation alone is 
an insufficient stimulus. IL-3 induced a marked increase in the histamine 
synthesis of normal C57BL/6 bone marrow cells (Ihle et al. 1983). 

IL-3 induced dose-dependent IL-2 receptor (CD25) expression on early 
myeloid cells in normal human bone marrow, an effect which requires pro- 

Chemotaxis t ~ 
Bacter!al killing t /  \ ~ Histamin t 
LTC,t ( Eosino~hil~ ~ Adhesion t 
Degranulation t ~ . . . . . .  '- ..... ) ~ ~ Apoptosis 
Apoptosis '1' ~ IL-3 / ' , ,  

P h a g o c y t o s i ~  
Oxidative burst t 
Pro-inflammatory cytokines t 

Migration t 

Fig. 5. Pertinent immunomodulatory effects of IL-3 on different leukocyte popula- 
tions. The diagramm summarizes the predominant effects of IL-3 on immune func- 
tions of different types of leukocytes 
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tein synthesis as it was inhibited by cycloheximide (Gazzola et al. 1992). 
Similar to M-CSF, IL-3 induced the expression and synthesis of the IGF-1 in 
murine bone marrow cells (Kelley et al. 1996). 

5 
Role of IL-3 in Disease 

IL-3, as well as GM-CSF, played a part in the macrophage infiltration of the 
white pulp of the spleen and brain in an experimental malaria model (Grau 
et al. 1988). Anti-IL-3 and anti-GM-CSF antibodies were beneficial in the 
prevention of the neurological symptoms of malaria infection in this ex- 
periment. 

An IgG auto-antibody mimicking the effect of IL-3 has been found in the 
sera of a stem ofautoimmtme-prone mice (Ohta et al. 1988). 

6 
Potential Clinical Applications 

Although IL-3, like GM-CSF, augmented HIV expression in monocytes, it 
did not interfere with the anti-retroviral activity of zidovudine and counter- 
acted the myelosuppressive side effects of this drug (Schuitemaker et al. 
1990). On the other hand, IL-3 exacerbated AZT-induced toxicity in mice: 
Anaemia, neutropenia and thrombocytopenia developed earlier than in mice 
receiving erythropoetin (S 139). 

The peripheral monocytes of patients with myelodysplastic syndromes 
showed an impaired secretion ofTNF-tz, IL-6, IL-I~ and IL-8 which could be 
restored by therapy with IL-3; in addition, the capacity for production of 
oxygen radicals was increased (Maurer et al. 1993). However, IL-3-induced 
disease progression in myelodysplastic patients has also been suggested 
(Vial and Descotes 1995). 

Studies of a new molecule called PIXY321 formed by the fusion of GM- 
CSF and IL-3 are being conducted (Frank and Mandell 1995). 

Conclusion 

A collaborative coordination of the cellular defense strategies between 
macrophages, granulocytes and the various subsets of lymphocytes is man- 
datory for the host to limit tissue damage through uncontrolled immune 
responses. The non-specific immune response mobilizes macrophages, 
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neutrophilic granulocytes (PMN), natural killer cells and cytotoxic 1ympho- 
cytes. The different CSF strongly contribute not only to the emergency for- 
marion of these cells, but also mature peripheral cells and modulate their 
functions. 

Increased hematopoiesis enables continuous recruitment of leukocytes 
over the entire time span of an infectious disorder. An increased consump- 
tion of leukocytes to eradicate infectious material therefore requires the 
peripheral production of hematopoietic growth factors controlled from the 
site of infection as an efficient mechanism to guarantee the supply of leuko- 
cytes. Notably, the four CSF covered in this review are formed at the focus of 
infection and inflammation. In addition to changing the average maturity of 
peripheral cells by preferential release of premature forms of leukocytes 
from the bone marrow, hematopoieric growth factors can also promote the 
differentiation process of peripheral white cells. 

During permanent overactivation of the immune system, the dilemma 
arises that any signal recruiting more leukocytes and activating them repre- 
sents a source of potential danger. It therefore makes teleological sense to 
focus the activity of augmentation and activation of a given growth factor on 
a single leukocyte population with constraints of activity directed towards 
other leukocytes. This type of hierarchic regulation provides coordinated 
termination of activities and thereby avoids an overshoot of the inflamma- 
tory response. This might explain why CSF often exert opposite effects on 
different leukocyte subpopulations. 

G-CSF differs from other CSF (perhaps with exception of M-CSF) with 
regard to the amount of cytokine formed: Serum levels can reach several 
hundred ng/ml and remain elevated over a long rime span. This might ex- 
plain how G-CSF, in contrast to the other CSF, transmits very pronounced 
anti-inflammatory activities, restricting the overall defense reaction. 

In concordance with their assigned endogenous functions, CSF, when 
given to laboratory animals, volunteers or patients in the form of exogenous 
pure compounds, act as biological response modifiers by interfering with 
the body's humoral signaling system. Therefore, the therapeutic use of he- 
matopoietic growth factors has potentials beyond alterating absolute as well 
as relative numbers of leukocytes. From the lessons learnt in basic research 
which assign each CSF with a specific role in the orchestration of the im- 
mune system, promising indications are expected to be identified. In addi- 
tion, the identification of patient populations with an absolute or relative 
lack of production of the CSF will give a rationale for their therapeutic sub- 
stitution. 

G-CSF and GM-CSF have been used in dose to 2 million patients since 
their introduction into the clinics in the late eighties. Over all, they have 
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proven to be safe drugs and even broader use is restricted primarily by 
cost/efficacy considerations. In light of the emerging new findings of prom- 
ising new indications, an expansion in the clinical use of these factors can be 
predicted easily. 

In this sense, it is impressing to recaU the prophecy of George Bernhard 
Shaw, who wrote in 'The Doctor's Dilemma' in 1904: 

'There is at the bottom only one genuine scientifc treatment of all dis- 
eases: Stimulate the phagocyte - drugs are delusion!' 
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1 
Introduction 

A variety of body functions like heart beat, sleep-wake cycle, secretion of 
hormones and control of behavioural state, depend on the action of so- 
called pacemakers, specialized cells that are able to generate rhythmic, 
spontaneously firing action potentials. The archetypal organ displaying 
autonomic rhythmicity is the heart. Pacemaking of the heart is accomplished 
by the rhythmic discharge of the sinoatrial node (DiFrancesco 1993, 1996; 
Brown and Ho 1996). The firing rate of the sinoatrial node cells is deter- 
mined by the diastolic depolarization phase of the action potential. During 
this phase the membrane potential is slowly depolarized to the threshold 
triggering the next action potential. The ionic conductance underlying the 
cardiac pacemaker depolarization was identified in the late seventies and 
early eighties (Brown et al. 1977; Yanagihara and Irisawa 1980; DiFrancesco 
1981) and called If (ffor "funny") or I h (h for hyperpolarization activated). At 
about the same time a similar current was discovered in neurons, first in 
photoreceptors (Attwell and Wilson 1980;, Bader and Bertrand 1984; Barnes 
and HiUe 1989) and then in various central neurons e.g. hippocampal py- 
ramidal cells (Halliwell and Adams 1982) where it was called Iq (q 
for"queer"). Later on this type of current was found in a rich diversity of 
central and peripheral neurons (Pape 1996). The common properties of 
Ih/I/I q are (1) activation by hyperpolarization negative to potentials of -50  to 
-70 mV; (2) conductance of Na + and K ÷ ions and (3) enhancement by cyclic 
AMP. Intriguingly, cAMP increases I h by a mechanism that is independent of 
protein phosphorylation, but which involves direct binding of the cyclic 
nucleotide to the channel that mediates I~ (DiFrancesco and Tortora 1991; 
Pape and McCormick 1989). These unique properties make the current 
ideally suited for generating the depolarization of cardiac pacemaker cells 
(DiFrancesco 1993, 1996; Brown and Ho 1996). Hyperpolarization at the 
termination of the cardiac action potential activates I h which then gradually 
depolarizes the membrane. Acceleration of the heart rate in response to 
sympathetic stimulation is due to activation of [3 adrenergic receptors lead- 
ing to activation of G~ protein and in turn adenylyl cyclase. The resulting 
increase in intracellular cAMP levels directly activates the I h channel, cAMP 
binding to the channel leads to a shift of the activation curve towards more 
positive voltages. This shift results in an increased inward current at a fixed 
membrane potential and therefore an acceleration of the diastolic depolari- 
zation. Muscarinic stimulation leads to an opposite effect, in part due to a 
decrease in cAMP levels and reduction of the I h current (DiFrancesco er al. 
1989; see also Wickman et al. 1998). 
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In the central nervous system, the role of I h is likely to be more complex 
than in heart (for detailed reviews see Pape 1996; Liithi and McCormick 
1998). Like its cardiac counterpart, the neuronal I h current critically controls 
the rate of rhythmic oscillations of single neurons and neuronal networks 
("neuronal pacemaking"). Additionally, at least two other roles for neuronal 
I h have been demonstrated: determination of the resting membrane poten- 
tial and contribution to the neuronal response to hyperpolarizing currents. 

Due to the lack of cloned cDNAs, I h channels could only be investigated 
in native cells up to now. The recent molecular identification of five different 
genes (Gauss et al. 1998; Ludwig et al. 1998; Santoro et al. 1998) encoding Ih 
channels has now provided the tools for a detailed analysis of molecular 
mechanisms underlying I h channel function. In this review we will mainly 
focus on the discussion of the structure and function of the cloned channels 
and will, whenever feasible, correlate the properties of cloned and native 
channels. 

2 
Molecular Cloning 
of Hyperpolarization-Activated Cation Channels 

Although several attempts were made in the last ten years to  clone the genes 
underlying I h the cDNAs of this channel class were identified only recently. 
A first done was found in mouse brain (BCNG-1), via a yeast two-hybrid 
screen designed to detect proteins interacting with N-Src (Santoro et al. 
1997). However, since the done could not be functionally expressed in the 
initial study, assignment as a cyclic nudeotide-modulated K* channel was 
based on sequence alignments to cydic nudeotide-gated (CNG) and K* 
channels. Later on it turned out that BCNG-1 was indeed a member of an 
extended family of hyperpolarization-activated cation channels (Santoro et 
al. 1998). Independently ofSantoro et al., channels underlying I h were cloned 
based on the idea that I~ channds like CNG channels (Zagotta and Siegel- 
baum 1996; Finn et al. 1996; Bid et al. 1998) or cyclic nucleotide-dependent 
protein kinases (Pfeifer et al. in press) should contain a cyclic nudeotide- 
binding domain (CNBD). By screening the EST data base for sequences 
matching the CNBD of CNG channels, a partial sequence was identified and 
subsequently used to isolate three homologous cDNAs from mouse brain 
(Ludwig et al. 1998). Similarly, a PCR-based approach using degenerate 
primers to amplify sequences of new CNBDs resulted in the isolation of an I~ 
channel from sea urchin testis (Gauss et al. 1998). Three different names 
have been proposed for the clones underlying I h. To avoid misunderstand- 
ings arising from the use of different designations for the same protein, it is 
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dearly desirable to find a common nomenclature for the channels. As has 
been recently proposed (Clapham 1998) we suggest HCN for Hyperpolariza- 
tion-activated, Cyclic Nucleotide-gated channel as an adequate new name. 
Table 1 summarizes old and new designations for the different members of 
the channel family. 

3 
Mammalian HCN Channels 

Four different members of the HCN family (HCN1-4) have been identified in 
mouse and human (Fig. 1). The channels are closely related to each other 

Pore 

BD 

b 

I I t I t 
50 60 70 80 90 

HCN2 (brain, heart) 

HCN4 (brain, heart) 

HCN1 (brain) 

HCN3 (brain) 

spHCN (Sea urchin 
sperm) 

1 
100 Percentage identity 

Fig. 1. a Model of the transmembrane structure of HCN channels. The six trans- 
membrane segments $1-$6 are numbered 1-6, the regularly spaced positively 
charged residues in the voltage-sensing $4 segment are indicated by plus signs. 
CNBD, cyclic nucleotide-binding domain. The arrow illustrates inward cation flux 
through the pore region, b Phylogenetic tree of the HCN channel family. The tree 
was calculated by comparison of the corresponding regions from segment S1 to the 
end of the CNBD. The tissue expression of  HCN1-4 in mammals and of spHCN in 
sea urchin is shown to the right of the dendrogramm 
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having an overall sequence identity of about 60%. The central portion of the 
channels which includes the transmembrane segments and the CNBD is 
even higher conserved with a sequence identity of 80-90%, whereas N- and 
C-termini diverge more strongly between the different genes. Hydropathi- 
city analysis and sequence alignments indicate that HCN channels belong to 
the superfamily of voltage-gated cation channels. Like K*-channels (Jan and 
Jan 1994; MacKinnon 1995, Pongs 1996), they contain six transmembrane 
hdices ($1-$6) including a positively charged $4 segment, and an ion- 
conducting pore loop between the fifth and sixth transmembrane hdix. 
Similar to CNG channels, HCN channels contain a CNBD in the cytosolic C- 
terminus which is separated from the last transmembrane helix by a linker 
region. Thus, HCN channels combine structural features common to both 
voltage-gated K÷-channels and CNG channels. Like these channels (Doyle et 
al. 1998; Liu et al. 1996; 1998) HCN channels are almost certainly composed 
of four subunits. It will be interesting to see whether heteromeric channels 
exist between different members of this dass. At least in brain heteromers 
may exist since in this tissue expression pattern of HCN subunits are at least 
partially overlapping (see below). 

Structural basis of channel activation by hyperpolarization. The voltage- 
sensing $4 segment of HCN channels has a unique structure, consisting of 
two sequences, each of which contains five positively charged residues at 
every third position (Fig. la and Fig. 2a). These two sequences are separted 
by an 'in-frame' serine residue. The presence of an elongated positively 
charged voltage-sensor in HCN channels is suprising since these channels 
are activated by membrane hyperpolarization (Fig. 3) and not by depolari- 
zation as most other channels with positively charged $4 segments. Based on 
studies on mutated Shaker channels (Miller and Aldrich 1996) and on the 
HERG K + channel (Trudeau et al. 1995; Smith et al. 1996), a mechanism ex- 
plaining HCN activation was proposed recently (Santoro et al. 1998; Clap- 
ham 1998; Gauss et al. 1998). In this model the three sequential states of 
voltage-gated channels, respresenting dosed, open and inactivated pores are 
shifted in HCN channels to negative membrane voltages with respect to the 
states of depolarization-activated channels. Thus, at resting potential, HCN 
channels are already inactivated, even though the activation gates (the $4 
segments) may be in the open configuration. Hyperpolarization would then 
open the channels simply by reversing the inactivation reaction. The mo- 
lecular structure of the "inactivation gate" as well as the mechanism coupling 
$4 movement to pore gating is not known at present. However, a first clue 
towards an understanding of HEN activation is provided by a recent study 
on the inwardly rectifying K ÷ channel KAT1 from Arabidopsis thaliana 
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(Marten and Hoshi 1998). KAT1 resembles HCN channels in that it is both 
activated by hyperpolarization and also contains a positively charged $4 
segment (Fig. 2a). By investigating the effect of N-terminal deletions and a 
$4 mutation in the KAT1 channel Marten and Hoshi concluded that in this 
channel the hyperpolarizing shift in the activation curve is due to the inter- 
action of cytoplasmic N-terminus with the $4 segment. A similar mechanism 
may also exist in HCN channels. 

a 

HCN2 ~TA~AL~ I V~FT~ I LS LD~LL~Lg~L I~Y ~ 312 
mEAG ~ 
KAT1 SM/~LW SSLFA~LE~DI~FNYFW I Re 198 

b 
HCN2 
CNG3 

~PKA 
CAP 

HCN2 
CNG3 
PKA 
CAP 

E g LT VA D;R E~E~QF~%'~ P~.O~ F ~ ~ R R $  EN K ~ E ~ A  326 
T~EW ~SHCH 1 H Ky pS KST ~KAET ~y~V~l%~K- ~'~ I ~ ~  75 
aA {~I ~2 p3 p4 #~S 1~e 

I KGS K S O ~  l~.q l~IS DI@~I~ Ol ~ E A ~ K G P 4 2  II]gMKD~I L I DE~ 635 

I~? ~8 ,a8 aC 

C 
I Pore Heli~--~--~ 

HCN2 YSFALFKAMSHM~P 408 
mEAG YISSLYFTMTSL~SVGFGNI~P 471 
KATI YVTALYWSITTLT~TGYGDF~A 268  

CNG3 YIYSLYWSTLTLT~IG,.ET~P 390 

Fig. 2. a Multiple sequence alignment of the putative voltage-sensing $4 segment of 
HCN2 with that of other channels. Basic residues at every third position are high- 
lighted in black with reverse type. mEAG, mouse ether-/~-gogo potassium channel 
(Warmke and Ganetzlq, 1994); KAT1, hyperpolarization-activated potassium chan- 
nel of Arabidopsis thaliana (Anderson et al. 1992); CNG3, bovine cone photorecep- 
tor channel (Biel et al. 1994). b Comparison of the CNBDs from various proteins. 
PKA, bovine cAMP-dependent protein kinase (Titani et al. 1984); CAP, catabolite 
activator protein of E. coli (Weber and Steitz 1987). a(A-C) helices and B (1-8) 
strands in the CAP crystal structure are underlined. Residues identical in at least two 
sequences are highlighted by a black background. The residue D604 controling 
ligand selectivity in rod photoreceptor CNG channel (see text) is equivalent to D628 
of CNG3 and I636 in HCN2. c Comparison of the pore region of HCN with that of 
other channels. The pore helix and selectivity filter (SF) are indicated according to 
the crystal structure of the Streptomyces liwdans potassium channel (Doyle et al. 
1998) 
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Fig. 3a-c. Functional properties of the hHCN2 channel cloned from human heart 
(Ludwig et aL unpublished). HEK293 ceils were transiently transfected with an ex- 
pression vector containing the hHCN2 cDNA and the current was measured in 
whole-ten voltage clamp, a voltage protocol. The cell was voltage clamped from a 
holding potential of-40 mV to the various voltages (ranging from -140 to -30 mV); 
this was followed by a step to -t40 inV. b current traces of a cell expressing hHCN2. 
c activation curve of the current shown in (b). Tail currents measured immediately 
after the voltage step to -140 mV (indicated by the arrow in (b) were plotted as a 
function of the preceding membrane potential 

Modulation by cyclic nudeotides. The native I h channel as well as expressed 
HCN channels are dually gated by hyperpolarization and cyclic nucleotides. 
The effect of cyclic nucleotides on the channel is complex comprising at 
least two components, a 2-13 mV shift of the activation curve towards posi- 
tive membrane potentials and an acceleration of the activation kinetics. 
Cyclic nucleotides regulate HCN channel activity by directly binding to a 
CNBD which is situated in the C-terminus of the protein. The CNBD of HCN 
channels reveals a striking sequence similarity with CNBDs of other cyclic 
nudeotide-regulated proteins like the catabolite activator protein (CAP) of 
E. coli, cAMP- and cGMP-dependent protein kinases and CNG channels 
(Fig. 2b). Amino acids which have been determined in the CAP crystal 
structure to lie close to the cAMP molectfle (Weber and Steitz 1987) are well 
conserved in HCN channels. Th e native I h channel (DiFrancesco and Tortora 
1991) and also the expressed mHCN2 channel reveal an about 10 fold higher 
apparent affinity for cAMP than for cGMP (see Table 1) whereas CNG chan- 
nels are about 40-100 fold more sensitive for cGMP than for cAMP (Zagotta 
and Siegelbaum 1996). Mutagenesis studies indicated that a negatively 
charged amino acid in the aC helixof the CNBD (D604 in the rod photore- 
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ceptor channel; see legend to Fig. 2b) is a major determinant of selectivity 
for cGMP in CNG channels (Varnum et al. 1995). Replacement of D604 by 
neutral amino acids results in CNG channels that no longer select cGMP 
over cAMP. The amino acid corresponding to D604 is replaced by an iso- 
leudne residue in HCN channels being consistent with the notion that the 
aC helix also critically controls ligand selectivity in these channels. In con- 
trast, a threonine residue in the 67 roll which determines cGMP selectivity in 
cyclic nucleotide-dependent protein kinases (Shabb et al. 1990) is unlikely to 
be involved in determining ligand selectivity in cyclic nudeotide-dependent 
cation channels since it is present in both cAMP-selective HCN channels 
(T592 in mHCN2) and cGMP-selective CNG channels (T584 in CNG3). The 
activation of native (DiFrancesco and Tortora 1991) and heterologously 
expressed HCN channels by cAMP reveals no cooperativity (Hill coefficients 
of about 1; see Table 1). This finding is very surprising since the activation 
by cyclic nucleotides of the structurally related CNG channel is a highly 
cooperative process. Thus, despite the high degree of sequence similar@ in 
the CNBDs of various cyclic nucleotide-binding proteins, the mechanism 
coupling cyclic nudeotide-binding to channel activation may be signifi- 
can@ different in each case. 

Ion selectivity. Under physiological conditions, the I h current is carried by 
both Na + and K ÷. The native I h channel slightly (about 4 fold) selects K + over 
Na ÷, whereas it is almost impermeable to Li ÷ (Wollmuth and HiUe 1992; Ho 
et al. 1994). Divalents and anions cannot pass through the I h channel (Frace 
et al. 1992a; Pape 1996). The ion selectivity of the heterologously expressed 
HCN channels concurs well with the relative permeation ratios of native 
channels. Sequence analysis of doned HCN channels revealed that the puta- 
tive ion conducting pore region of these channels is much more related to 
the pore of K*-sdective channels (Doyle et al. 1998; Choe et al. 1998) than 
one might have been expected. The pore of K ÷ channels is formed by a short 
loop structure localized between the fifth and sixth putative transmembrane 
segment (Fig. la and 2c). Three amino adds, glycine-tyrosine-glycine, in the 
centre of the pore loop are a haUmark of almost all K ÷ pores (in some chan- 
nels like the ether-a-gogo (EAG) K*-channel, the tyrosine residue is replaced 
by phenyIalanine, see Fig. 2c). The GYG sequence has been shown to form 
the selectivity filter of K" channels (Heginbotham et al. 1994; Doyle et al. 
1998). Surprisingly, HCN channels also contain a GYG sequence, although 
they pass both Na ÷ and K*. Thus, a GYG sequence alone is not sufficient to 
mediate selectivity for K ÷. The recent determination of the crystal structure 
of the bacterial KcsA K ~ channel (Doyle et al. 1998) gives a first clue to the 
question why HCN channels may have lost K ÷ selectivity. In K*-selective 
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channels the narrowest part of the pore is formed by the carbonyl backbones 
of the GYG residues which are constrained in an optimal geometry so that 
only o~ K + ion fits with proper coordination. The strutural rigidity of the 
carbonyl backbone is provided by two layers of aromatic amino acids that 
form a cuff around the pore, presumably pulling the pore opening to the 
correct distance like a ring of springs. In HCN channels the carbonyl back- 
bone simply may have lost some of its structural rigidity, thus allowing both 
K ÷ and Na ÷ to pass the pore. The pore of HCN channels carries several 
amino acids that are not conserved with respect to the pore of selective K ÷ 
channels (Fig. 2c). These amino acid replacements may provide the struc- 
tural basis that underlies the "relaxation" of ion selectivitiy in HCN channels. 

Potassium is not only a permeating ion of HCN channels, it also regulates 
permeation of Na ÷ in a complex fashion. Both the current amplitude and the 
P~,/PK ratio of HEN channels depend on the extracellnlar K ÷ concentration 
i.e. an increase in extracellnlar K ÷ concentration results in a strongly in- 
creased current amplitude and in a slightly reduced selectivity for K + over 
Na ÷ (Frace et al. 1992b; WoUmuth and HiUe 1992; Brown and Ho 1996). The 
striking interdependence of Na ÷ and K + permeation in HCN channels is 
illustrated by the finding that the channels conduct little, if any, Na ÷ in the 
absence of K ÷ ions. Thus, although Na + is the major carrier of inward current 
in HCN channels at a range of membrane potentials where the channel is 
important physiologically, yet K ÷ is required for the channel to carry any 
current. The structural basis of the intimate connection of K ÷ and Na + per- 
meation pathways is unknown at present. However, it seems reasonable to 
assume that the pore of HCN is, like that of CNG channels (Sesti et al. 1995) 
and Ca 2÷ channels (Hess and Tsien 1984), a multi-ion pore possessing at 
least two cation binding sites: one at the external mouth of the channel hav- 
ing a higher affinity for K ÷ and another having a higher affinity for Na ~ 
(WoUmuth 1995). HCN channels are not only regulated by K + but also by 
external CI-. Substitution of external C1- by larger anions such as isothionate 
or gluconate results in a pronounced reduction of the current amplitude of 
both native (Frace et al. 1992a) and expressed channels (Santoro et al. 1998; 
Zong et al. unpublished). Thus, the pore of HCN channels is likely to contain 
a binding site for CI" at the extracellular face of the channel. It is tempting to 
speculate that the positively charged residues present in the pore of HEN 
channels (Fig. 2c) may be involved in the formation of such an anion- 
binding domain. The physiological function of the chloride-dependence of 
HCN channels is not understood yet. It was speculated that CI" may perform 
a screening role for cations bound at external sites of the multi-ion channel 
and thereby represent a necessary step in channel permeation by cations 
(Frace et al. 1992a). 
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4 
Correlation Between Native and Cloned HCN Channels 

Neuronal HCN channels. Four different HCN channel types have been 
identified in brain (Table 1). In situ hybridization indicates that HCN2 is the 
most widely expressed channel type in brain. Transcripts of HCN2 are 
nearly ubiquitously distributed in brain whereas HCN1 expression is more 
limited to specific parts of the brain like hippocampal CA1 neurons, supe- 
rior colliculus, cerebral cortex and cerebellum. The partiaUy overlapping 
expression pattern of HCN1 and HCN2 suggests that these channels may 
form heteromers in subsets of neurons. At present, the expression of HCN3 
and HCN4 has not been mapped at high resolution in brain, however the 
rather faint signal observed in Northern blots indicates that at least HCN3 is 
restricted to specific parts of the brain and/or expressed at much lower 
density than HCN1 and HCN2. The presence of multiple HCN channels in 
brain is in good agreement with properties of I h currents in different types of 
neurons. The various I~ currents significantly differ in terms of activation 
kinetics, modulation by cAMP, and voltage-dependence of activation (for 
review see Pape 1996). The region-specific expression of HCN channels, 
possibly in combination with the formation of heteromeric channds, could 
well explain the observed current diversity. This notion is supported by the 
expression of HCN1 (Santoro et al. 1998) and HCN2 (Ludwig et al. 1998) 
channels in heterologous expression systems. The expressed channels reveal 
the principal properties of native I h channels like activation by hyperpolari- 
zation (Fig. 3), permeability for Na ÷ and K ÷, and blockage by extraceUular Cs ÷ 
but also significantly differ from each other in terms of their activation ki- 
netics and modulation by cAMP. HCN1, which is expressed in hippocampal 
neurons, resembles the native hippocampal channel (Maccaferri et al. t993; 
Pedarzani and Storm 1995) in that it activates relatively rapidly upon hyper- 
polarization and is only weakly shifted by cAMP (1.8 mV). In contrast, 
HCN2, which is highly expressed in thalamic neurons, resembles channels 
characterized in these neurons (McCormick and Pape 1990; Pape 1992), in 
that it activates rather slowly but is profoundly regulated by cAMP (13 mV 
shift and significant acceleration of activation kinetics). 

Cardiac HCN channels. Two HCN channel genes are expressed in mouse 
and human heart, HCN2 and HCN4. In situ hybridization (Ludwig et al. 
1998) and PCR analysis (Santoro et al. 1998) revealed that HCN2 is expressed 
throughout the heart including the sinoatrial node (Santoro et al. 1998). The 
exact distribution of HCN4 within the heart has not yet been investigated, 
however the relatively low abundance of HCN4 clones in human heart cDNA 
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libraries (Ludwig et al. unpublished data) indicates that this channel may 
exist in much lower concentrations in total heart than HCN2. The presence 
of HCN channels in a variety of heart cells is consistent with data from the 
literature describing I h currents in both spontaneously firing pacemaker 
ceils of sinoatrial node and ventricular myocytes that are normally not in- 
volved in generating pacemaker potential (Yu et al. 1995; Baker et al. 1997; 
Hoppe et al. 1998). The major difference between I~ currents from ventricu- 
lar myocytes and sinoatrial node cells is refered to the voltage dependence of 
channd activation. Sinoatrial I h channds activate at significantly more posi- 
tive potentials than I h channds in ventricular myocytes. The expressed 
HCN2 channel (Ludwig et al. 1998) fits the general properties of sinoatrial 
channels in terms of activation kinetics, pharmacology and modulation by 
cyclic nudeotides. However, HCN2 activates at membrane potentials (V~ - 
-100 mV) which are more consistent with potentials reported for ventricular 
(range of V~: -95 mV to -135 mV; Yu et al. 1995; Baker et al. 1997; Hoppe et 
al. 1998) than for sinoatrial node channels (range of V~: -65 mV to -90 mV; 
Denyer and Brown 1990; Tortora and DiFranceso 1991; DiFrancesco and 
Mangoni 1994). The reason for this discrepancy is unknown at present. An 
intrinsic factor that is present in sinoatrial node cells but is missing in het- 
erologous expression systems may be necessary to confer channel activation 
at more positive voltages. Alternatively, the native sinoatrial node channel 
may be a heteromer consisting of HCN2 and another channel subunit. It is 
obvious that HCN4 would be a good candidate for this potential second 
subunit. 

5 
Invertebrate HCN Channels 

The identification of a HCN channel from sea urchin Strongylocentrotus 
purpuratus (original name: SPIH (Gauss et al. 1998); proposed new name: 
spHCN) indicates that HCN channels have emerged early in evolution. The 
primary structure of spHCN reveals all the hallmarks of mammalian chan- 
nels. Especially the core region of the channels including the six transmem- 
brahe segments, the pore loop and the CNBD are highly conserved among 
vertebrate and invertebrate channels (Fig. lb). This structural similarity 
concurs well with the variety of functional properties that are shared by both 
vertebrate and invertebrate channels, namely activation by hyperpolariza- 
tion, permeation of both Na ÷ and K*, blockage by Cs ÷ and sensitivity for 
cAMP. However, there are also dear differences between the channels (Table 
1). For example, spHCN activates at much more positive potentials than 
mammalian HCN channels. In addition, the spHCN current is transient, 
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whereas mammalian HCN currents reveal no inactivation during main- 
rained hyperpolarization. The most striking difference is refered to the 
mechanism that underlies cylic nucleotide modulation, cAMP enhances 
both vertebrate and spHCN channels. However, the augmentation of the 
current arises in the case of spHCN from an up to 20fold increase in the 
maximum current whereas in mammalian HCN channels cAMP does not 
increase maximum current but shifts the activation curve towards positive 
membrane potentials. In addition, spHCN is not sensitive to cGMP whereas 
mammalian channels are affected by both cAMP and cGMP. Given the high 
similarity in the CNBD of spHCN and mammalian channels it will be inter- 
esting to see which amino acid residues determine these functional differ- 
ences. 

The functional role of spHCN is only poorly understood at present. The 
channel is expressed in sperm flagellum and it was postulated that it may be 
involved in the control of flagellar beating (Gauss et al. 1998). It is unknown 
at present, whether or not HCN channels are involved in the regulation of 
sperm motility in mammals. So far, transcripts of HCN1-4 could not be 
detected in testis (Ludwig et al. 1998; Santoro et al. 1998) indicating that 
either another channel type is expressed in this tissue or that movement of 
mammalian sperm does not require the activation of HCN channels. 

6 
Conclusions 

Since the first discovery of an I h current in heart pacemaker cells about 
twenty years ago our knowledge on this ion channel class has increased 
substantially. Studies from a variety of groups have clearly demonstrated 
that I h is not only required for cardiac pacemaking but also is a key regulator 
of several neuronal functions. The long-sought molecular cloning of the 
genes underlying I h has now provided the basis to achieve a deeper under- 
standing of the molecular function and physiological regulation of these 
channels. In addition, the powerful approaches of mouse genetics will enable 
us to study the physiological roles of the channels in significantly more de- 
tail than it was possible up to now. 
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Abbreviations 

~AR, ~-adrenergic receptor; ~ARB, ~i-adrenergic receptor mRNA binding 
protein; ARE, AU-rich element; AUF1, AU-rich element RNA- 
binding/degradation factor 1; bp, base pair(s); CRE, cAMP response ele- 
ment; Gs, stimulatory G-protein; G[~/, G-protein ~)'-subunits; GRE, gluco- 
corticoid response element; GRK, G-protein-coupled receptor kinase; nt., 
nucfleotide(s); PKA, protein kinase A; PKC, protein kinase C, TRE, thyroid 
hormone response element; TSS, transcriptional start site; UTR, untrans- 
lated region 

I 
Introduction 

[3-adrenergic receptors (~AR) are prototypical members of the family of G- 
protein-coupled receptors, which comprise a large group of seven- 
transmembrane-helix cell surface receptors for such diverse stimuli as light 
(Khorana, 1992; Hargrave and McDowell, 1992), hormones and neurotrans- 
mitters (Dohlman et al. 1991; Lohse, 1993) and olfactory stimuli (Lancet, 
1986; Buck and Axel, 1991). In particular, [~AR mediate metabolic and neu- 
rocrine actions of the endogenous catecholamines, adrenaline and norad- 
renaline, as welt as of a wide variety of synthetic ligands. Because of their 
widespread tissue distribution - the [~IAR is the predominant subtype in the 
heart, the [~2AR is primarily expressed in liver, lung, and smooth muscles, 
and the [~3AR is highly abundant in brown adipose tissue - and their ability 
to couple to well-defined effector-systems they serve as a model for the in- 
vestigation of transmembrane signalling. Upon agonist stimulation ~AR 
couple to the stimulatory G-protein, Gs, which in turn activates the adenylyl 
cyclase leading to an increase in intracellular cAMP concentrations and 
subsequently to an activation of protein kinase A (PKA; Hausdorff et al. 
1990; Collins et al. 1991; Dohlman et al. 1991; Lohse, 1993). All three compo- 
nents of this signal transduction cascade are subject to complex regulation 
on both mRNA and protein levels. To date, three ~AR-subtypes, termed 
~IAR, [32AR, and ~3AR, have been cloned and sequenced from different 
species. 

In order to discriminate stimuli over a wide concentration range of the 
respective ligand many G-protein-coupled receptors share the ability to be 
desensitized, an adaptation process by which they become refractory to 
further stimulation after an initial response, despite the continuous presence 
of a stimulus of constant intensity (Hausdorff et al. 1990; Lohse, 1993). Phe- 
nomenologically, desensitization can be classified along serveral lines: 
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mostly important (1) according to the causative stimulus (gener- 
alized/heterologous v e r s u s  receptor-specific/homologous), (2) according to 
the time frame (rapid v e r s u s  slow), or (3) depending on the type of regttla- 
tory mechanism involved (impaired receptor function/uncoupling v e r s u s  

loss of receptor number/down-regulation). Over the past years, remarkable 
advances in the understanding of densitization and regulation of ~AR have 
been achieved, however, mainly focusing on regulation of receptor function 
(Hausdorff et al. 1990; Collins et al. 1991; Dohlman et al. 1991; Lohse, 1993). 
Therefore, this review emphasizes how changes in ~AR gene expression that 
take place at different levels of regulation - transcription, mRNA stability 
and translation - create a dynamic and versatile environment for the regu- 
lation of BAR receptor responsiveness. 

I I  
Desensitization of Receptor Function 

Much of the knowledge about receptor desensitization is based on studies of 
the ~2AR-subtype, which may be due to the fact that the [~2AR was the first 
G-protein-coupled receptor which was purified in significant quantities 
(Benovic et al. 1984), and the first (apart from rhodopsin) whose primary 
sequence was elucidated (Dixon et al. 1986; Kobilka et al. 1987a). This recep- 
tor shows a pronounced desensitization behaviour (Fig. 1). The individual 
mechanisms involved in the regulation of ~2AR responsiveness are listed in 
Table 1, together with their respective half-lives and the extent to which they 
can reduce receptor signalling. Some of these pathways are also responsible 
for desensitization of other G-protein-coupled receptors, but on the other 
hand there are many exceptions which are not subject to all of these 
mechanisms. Therefore, it appears that one reason for the existence of mul- 
tiple receptor subtypes may be their distinct regulatory properties, since 
otherwise their responses upon agonist stimulation would be basically the 
s a m e .  

A 
~AR Phosphorylation - Functional Uncoupling 

Agonist-induced loss of receptor function occurs within seconds after recep- 
tor stimulation (Table 1) and is mediated primarily by uncoupling of the 
receptors from their G-proteins. Such uncoupling can be brought about by 
the action of two types ofkinases: (1) specific kinases, the G-protein-coupled 
receptor kinases (GRK), and (2) the effector kinases of the BAR system, the 
protein kinases A and C (PKA, PKC). 
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Fig. 1. Schematic illustration of the mechanisms involved in 132AR desensitization. 
Agonist stimulation of ~2AR triggers binding and activation of Gs and subsequently 
of the effector molecule, adenylyl cyclase. To attenuate the signal, the receptors can 
be functionally uncoupled from their G-proteLns by subsequent phosphorylation, 
binding of ~-arrestin and sequestration via dathrin-coated pits (short-term re- 
sponse). After internalization in endosomal vesicles most of the ~2AR are recycled 
to the plasma membrane. Prolonged or repeated agonist stimulation induces a de- 
crease in ~2AR number (receptor down-regulation; long-term response), which can 
either be due to enhanced lysosomal degradation of the receptor protein or reduced 
receptor synthesis caused by changes in transcription rate, mRlqA stability or trans- 
lational regulation, respectively 

A.1 
Desensitization via Receptor-Specific Kinases 

GRKs only phosphorylate agonist-occupied, i.e. active receptors (Benovic et 
al. 1986). To date, six members of this family have been identified and char- 
acterized in molecular detail: GRK1 (rhodopsin kinase), GRK2/3 (9- 
adrenergic receptor kinases 1/2) and GRK4/5/6 (Letkowitz, 1993; Lohse et al. 
1996; Palczewski, 1997). Even though all six kinases appear to be capable to 
phosphorylate the ~2AR in vitro, only two, GRK2 and 3, have been demon- 
strated to be involved in the in vivo regulation of receptor function. Three 
serine (Ser-396, Ser-401, Ser-407) and one threonine residues (Thr-384) at 
the ~2AR C-terminus have been identified as GRK2-phosphoryhtion sites in 
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Table 1. Mechanisms of ~2AR desensitization. Listed are the individual mechanisms 
that have been proposed to be responsible for receptor desensitization, together with 
their onset of occurrence (tl/2), and the extent to which they reduce receptor- 
mediated signalling 

Mechanism Half life Extent 
t½ (% of receptor function) 

Receptor uncoupling: 

GRK2/~-arrestin 0.1-1 min 50-70 

PKA 1-3 min 20-50 

Receptor down-regulation: 

protein degradation 0.5-48 h 30-50 

red. transcription 0.5-24 h 40-50 

raRNA-destabilisation 0.5-24 h 40-50 

vitro (Fredericks et al. 1996), but their importance in vivo still remain con- 
troversial (Se~old et al. 1998). 

An absolute requirement for GRK activity is their association with the 
plasma membrane (Stoffel et al. 1997). In the case of GRK2 and 3, this mem- 
brane-association is triggered by activation of the ~2AR. The two kinases 
bind G~)'-subunits and are thereby targeted to their membrane-bound re- 
ceptor substrates (Haga and Haga, 1992; Pitcher et al. 1992a). The G~)'- 
binding site of GRK2 has been mapped to a 125-amino acid stretch near its 
C-terminus (Koch et al. 1993). More recent data indicate that certain phos- 
pholipids, in particular phosphatidylinositol 4,5-bisphosphate, are also re- 
quired for membrane targeting of GRK2 (Touhara et al. 1995; Pitcher et al. 
1996). 

The capacity of ~AR to activate Gs is not markedly altered by GRK- 
mediated phosphorylation, but phosphorylation, on the other hand, in- 
creases the affinity of the ~2AR for ~-arrestin (Lohse et al. 1990b; 
Palczewski, 1994; Sterne-Marr and Benovic, 1995). Binding of ~-arrestin to 
the phosphorylated receptors inhibits ~2AR/Gs-coupling, thereby creating 
the desensitized state of the receptor (Lohse et al. 1992). The validity of this 
model is supported by the observation that overexpression of either GRK2 
or ~-arrestin enhances homologous desensitization of ~2AR (Pippig et al. 
1993). Furthermore, Gurevich et al. (1997) demonstrated that ~2AR/~- 
arrestin complexes have a higher affinity for agonists than receptors alone. 
Two isoforms of ~-arresfin with several splice variants have been identified 
(Lohse et al. 1990b; Attramandal et al. 1992). However, several studies sug- 
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gested that ~-arrestin2, like GRK3, may predominantly be responsible for 
desensitization of olfactory receptors (Dawson et al. 1993; Schleicher et al. 
1993; Boekhoff et al. 1994). Both PKA and PKC appear to be involved in this 
regulation, possibly acting in a sequential fashion with GRK3. 

With respect to rapid receptor desensitization the ~ 1AR appears to be 
remarkably similar to the ~2AR (Freedman et al. 1995). Although certain 
intracellular domains of the ~ 1AR differentiate it from the ~2AR at the level 
of Gs-coupling and sequestration, the primary structures relevant to GRK- 
mediated phosphorylation are indeed similar. In contrast, the ~3AR exhib- 
ited a much less pronounced short-term desensitization or is even resistant 
to it (Liggett et al. 1993; Nantel et al. 1993; Jockers et al. 1996). The latter 
study using ~3/~2AR-chimeras revealed that determinants in the carboxy- 
terminal tail, the second and the third intracellular loops of the [~2AR pro- 
vided additive contributions to receptor desensitization, whose interplay has 
not been investigated in detail so far. 

A.2 
Desensitization via Effector Kinases 

~AR phosphorylation by the effector kinases PKA and PKC provides a 
negative feedback system, in which PKA controls its own activation. In ad- 
dition, this mechanism aUows a generalized (i.e. heterologous) form of de- 
sensitization, since phosphorylation is independent of agonist occupancy of 
the substrate receptors. Thus, activation of the kinases by any pathway is 
sufficient to cause phosphorylation (Benovic et al. 1985). Two PKA- 
consensus sites have been identified in th e ~2AR (Blake et al. 1987; Bouvier 
et al. 1987; Clark et al. 1989), one in the third intraceUular loop in a region 
essentiell for Gs-coupling, and another in the N-terminal part of the C- 
terminus (Strader et al. 1987; O'Dowd et al. 1988; Mtinch et al. 1991). How- 
ever, the site in the third intraceUular loop is the clearly preferred one. 
Phosphorylation in this region seems to be per se sufficient to interfere with 
G-protein activation (Okamoto et al. 1991; Pitcher et al. 1992b). PKC appears 
to phosphorylate the ~2AR at the same sites that are utilized by  PKA 
(Bouvier et al. 1987; Pitcher et al. 1992). ~-arrestins are apparently not in- 
volved in heterologous desensitization (Lohse et al. 1992; Pitcher et al. 
1992b). 

Under optimal conditions, the extent of heterologous desensitization is 
comparable to that mediated by the homologous pathway (Table 1). Never- 
theless, there are two important differences: PKA-mediated desensitization 
is considerably slower than the GRK-catalyzed pathway (tl/2 2 min versus 
15 s; Roth et al. 1991), but is much more sensitive to agonist concentrations 
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(half-maximal effects at 10 nM v e r s u s  300 nM; Hausdorffet al. 1989; Lohse et 
al. 1990a). Therefore, it is tempting to speculate that PKA-mediated desensi- 
tization of the ~2AR is a sensitive ubiquitous process, whereas the receptor- 
specific pathway might occur at synapses, where high agonist concentrations 
are present (Lohse et al. 1990a). Indeed, both GRKs as well as ~-arrestins are 
concentrated at postsynaptic compartments (Attramandal et al. 1992; Arriza 
et al. 1992). 

The number of PKA-phosphorylation sites within the different [~AR- 
subtypes - two for the ~2AR, one for the ~IAR, none for the ~3AR - corre- 
sponds to the extent of regulation: the ~2-subtype shows a pronounced 
heterologous desensitization, the ~IAR a much reduced effect, and the ~3- 
subtype virtually no response (Nantel et al. 1993; Freedman et al. 1995). 
Another level of complexity in the regulation of ~AR-signaUing was added 
by the observation that GRK2 is subject to phosphoryiation by PKC (Chuang 
et al. 1995; Winstel et al. 1996), which connects the desensitization feedback 
loop mediated by GRK2 with the effector pathway of PKC. 

B 
Receptor Sequestration 

~AR can also become physically uncoupled from Gs by agonist-induced 
removal from the cell surface and translocation to intracellular compart- 
ments, a process called sequestration (Fig. 1). The best evidence for actual 
internalization of sequestered receptors was obtained by immunofluores- 
cence confocal microscopy (von Zastrow and Kobilka, 1992; von Zastrow et 
al. 1993), which showed ~AR immunoreactivity associated with intracellular 
vesicles (endosomes). 

While originally sequestration was thought to be a mechanism of recep- 
tor desensitization, more recent data suggest that its main function might be 
to resensitize receptors (Sibley et al. 1986; Lohse et al. 1990a; Roth et al. 
1991). Receptors appear to be dephosphorylated in intracellular vesicles, and 
recycled back to the cell surface. Two studies confirmed this hypothesis (Yu 
et al. 1993; Pippig et al. 1995). The authors showed that blockade of seques- 
tration prevented both receptor dephosphorylation and resensitization. It 
was concluded that ~2AR sequestration and subsequent recycling to the 
cellular surface serves to restore the function of desensitized receptors. 

The steps following sequestration which lead to resensitization are es- 
sentially unknown. A specific membrane-associated G-protein-coupled 
receptor phosphatase, a member of the PP-2A phosphatase family, has pre- 
viously been identified (Pitcher et al. 1995). Furthermore, it was shown that 
~2AR dephosphorylation requires a specific receptor conformation induced 
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by vesicular acidification (Krueger et al. 1997). Sequestration might facilitate 
the translocation of ~2AR to an acidified compartment, where a conforma- 
tionally altered receptor associates with the phosphatase, becomes dephos- 
phorylated and subsequently recycled to the plasma membrane (Hausdorff 
et al. 1989; Lohse et al. 1990a; Yu et al. 1993; von Zastrow and Kobilka, 1994; 
Pippig et al. 1995). 

The molecular determinants of the ~2AR involved in sequestration are 
still unknown. Sequestration is initiated by receptor activation, but early 
data indicated that it does not seem to require receptor phosphorylation 
either by GRK2 or by PKA (Strader et al. 1987; Hausdorffet al. 1989; Lohse et 
al. 1990a). More recent studies, however, suggest that GRK-mediated phos- 
phorylation plus binding of ~-arrestin might be a mechanism of receptor 
sequestration. This hypothesis is based on the observations (1) that overex- 
pression of either GRK2 or ~-arrestin rescued the reduced sequestration 
behaviour of sequestration-defective receptor mutants (Ferguson et al. 1995, 
1996), and (2) that ~-arrestin can act as a clathrin adaptor, and that this 
indirect binding of clathrin moves the receptors into clathrin-coated pits 
(Goodman et al. 1996, 1997). Phosphorylation of Ser-412 in the C-terminus 
of ~-arrestin may regulate its endocytotic function (Lin et al. 1997), since 
cytoplasmatic ~-arrestin is constitutively phosphorylated and translocated 
to the plasma membrane upon ~2AR activation. At the membrane, ~- 
arrestin is rapidly dephosphorylated and this permits binding to dathrin. 
Additionally, Zhang et al. (1996, 1997) provided evidence that expression 
levels of ~-arrestin are cell-specific. 

An alternative sequestration pathway was recently suggested by a ~2AR 
mutant lacking a di-leucine motif in its C-terminus which showed a marked 
reduction in sequestration (Gabilondo et al. 1997). Di-leucines have been 
shown to play a role in the intracellular trafficking of many proteins 
(Letourneur and Klausner, 1992) and appear to represent binding sites for 
the APIlAP2 clathrin adaptor proteins (Heilker et al. 1996). The relative 
importance of the ~-arrestin- versus the APl/AP2-dependent pathway may 
well be ceU-specific and influenced by a given cellular milieu. 

Whereas the ~2AR shows a marked sequestration, this process is dra- 
matically reduced or even abolished in the case of the two other ~AR- 
subtypes (Suzuki et al. 1992; Nantel et al. 1993; yon Zastrow et al. 1993; 
Rousseau et al. 1996). Consequently, the subtype-specific internalization and 
trafficking properties may also contribute to the specificity of ~AR- 
mediated signalling (Neer and Clapham, 1988). 
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Iii 
Regulation of Receptor Number 

Another mechanism leading to pAR desensitization is a decrease in receptor 
number, a process also termed receptor down-regulation. While receptor 
function is regulated rapidly (over seconds to minutes), regulation of recep- 
tor number takes much longer, commonly many hours. In isolated cells it is 
often maximal only after 24 h of continuous agonist exposure. Changes in 
~AR number can be effected by two classes of mechanisms (Fig. 1): en- 
hanced proteolytic receptor degradation and decreased receptor synthesis, 
i.e. modulation of gene expression (section IV). Whereas regulation of re- 
ceptor funct ion always results in decreased activity, receptor expression can 
either be up- or down-regulated. Since the mechanisms affecting pAR num- 
ber operate superimposed on the basal receptor turnover, they are often 
difficult to quantify separately. 

A 
~AR Turnover 

Receptor expression is the result of a dynamic steady state determined by 
the rates of degradation and synthesis (Mahan et al. 1987). Under basal 
conditions most studies in isolated cells have indicated a ~AR turnover with 
half-lives of receptor degradation and synthesis of 24 h, but in vivo values of 
several days have been observed. It appears that receptor recovery following 
agonist- or cAMP-dependent down-regulation occurs at a faster rate than 
basal receptor turnover (Mahan et al. 1985; Hughes and Insel, 1986), al- 
though the opposite has also been reported (Neve and Molinoff, 1986). In 
growing cultures receptor turnover is the same or slightly larger than the 
growth rate of the cells. ~AR half-lives between 30 h and 200 h have been 
determined (Mahan et al. 1987). In some cell lines ~AR half-lives increase 
with the degree of confluence of the cuttures (Mahan et al. 1987). 

In whole animals receptor turnover is comparably slow. For example, ba- 
sal turnover of ~IAR and ~2AR in rat heart and lung was found to have half- 
lives between 5 days and three weeks. However, turnover was somewhat 
faster in young compared to old animals (Mahan et al. 1987). In rat renal 
cortex recovery of ~2AR from down-regulation has a tl/2 of 18 h, that of the 

1AR of 45 h (Snavely et al. 1985). Therefore, basal turnover of [3AR seems 
to be too slow to play a major role in rapid regulation of receptor expression. 
As a further consequence, decreases in receptor synthesis probably take 
even longer - at least in vivo - than 24 h (Table 1) to affect receptor hum- 
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bers. Thus, under most circumstances alterations in receptor mRNA-levels 
will only affect receptor levels over very extended periods of time. 

B 
Receptor Down-Regulation 

The processes underlying proteolytic receptor degradation are still poorly 
understood. In some cases, ~IAR recovery has been shown to require de 
novo protein synthesis, while in other cases it has not (Benovic et al. 1988). 
However, two components appear to be involved in ~2AR degradation: one 
which is induced only by agonists, i.e. appears to require agonist occupancy 
of the receptors, and another mediated by PKA (Bouvier et al. 1989). 

BA 
Agonist-Dependent Pathway 

The agonist-dependent pathway was documented in mouse $49 lymphoma 
cells that either lack PKA activity (kin) or display perturbed Gs-effector 
coupling (H21a), but are nevertheless capable of ~2AR down-regulation 
(Shear et al. 1976; Suet al. 1980; Mahan et al. 1985; Allen et al. 1989). Mu- 
tants with impaired receptor-Gs coupling (cyc, unc), however, show a 
blunted, but not a completely blocked down-regulation (Shear et al. 1976; Su 
et al. 1980; Mahan et al. 1985; Hadcock et al. 1989a; Campbell et al. 1991). 
These findings raised the possibility that ~2AR-Gs interactions were more 
important for triggering receptor down-regulation than activation of 
adenylyl cyclase. This issue was addressed by Campbell et al. (1991) using a 
series of [32AR mutants displaying different degrees of impairment in Gs- 
coupling. Their ability to undergo agonist-mediated down-regulation indeed 
appeared to reflect their capacities to physically couple to Gs. In the pres- 
ence of cAMP-inhibitors, no increase in the extent of down-regulation was 
observed, which implies that the primary defect was not lack of PKA activa- 
tion. While there is evidence that a Gs-mediated, but PKA-independent 
pathway is required for ~2AR degradation, the underlying mechanisms, 
possibly preferential degradation of receptor-Gs complexes, are unknown. 

B.2 
PKA-Dependent Pathway 

The participation of second messengers in ~2AR down-regulation was 
originally demonstrated in hamster DDT1-MF2 smooth muscle cells, in 
which prolonged exposure to ~AR-agonists or cAMP-analogs resulted in a 
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loss of receptor binding sites, accompanied by a substantial decrease in 
~2AR mRNA levels (Hadcock and Malbon, 1988a; Collins et al. 1989). cAMP 
triggers ~2AR down-regulation probably via two independent pathways: 
cAMP-dependent degradation of the receptor protein itself, and cAMP- 
dependent reduction of the receptor mRNA which will be discussed in later 
sections. 

In order to examine the role of cAMP in promoting ~2AR down- 
regulation Bouvier et al. (1989) compared wild-type ~2AR with mutants in 
which one or both consensus sites for PKA phosphorylation were substi- 
tuted. Upon activation, cAMP-induced phosphorylation of the mutant 
~2ARs was completely abolished, but down-regulation was only moderately 
decreased compared to the wild-type receptor. Thus, the delay in the rate of 
down-regulation induced by cAMP is most likely due to alterations of recep- 
tor phosphorylation, although phosphorylation is certainly not the only 
factor contributing to this regulatory process. As discussed above, early 
studies suggested that GRK-dependent phosphorylation did not influence 
receptor downregulation (Strader et al. 1987; CampbeLl et al. 1991). How- 
ever, since the GRK/~-arrestin pathway seems to be involved in receptor 
sequestration (see above) and since at least some studies suggest that se- 
questration is a prerequisite for subsequent receptor degradation (yon Zas- 
trow and Kobilka, 1992), it seems plausible that GRKs also play a role in 
receptor downregulation. 

The other two [3AR-subtypes exhibit markedly different patterns of 
down-regulation: ~IAR show only a modest, ~3AR little or no down- 
regulation. In Chinese hamster fibroblasts transfected with ~IAR cDNAs no 
receptor down-regulation was detected in the first 4 h of agonist treatment, 
compared with an about 50% reduction of ~2AR (Suzuki et al. I992). After 
24 h 60% of ~IAR were still present, whereas less than 20% of ~2AR re- 
mained. Similar results were obtained in human neuroepithelioma cells 
(Fishman et al. 1991) and in 3T3-F442A adipocytes, respectively (Thomas et 
al. 1992). In the case of the ~3AR, down-regulation is not only blunted but 
receptor expression has been found to be actually increased to about 160% 
of basal expression (Thomas et al. 1992; Nantel et al. 1993), which indicates a 
unique regulatory mode for this subtype, whose physiological relevance still 
remains unclear. 

IV 
Regulation of ~AR Gene Expression 

Because of their function in signal transduction it appears plausible that the 
gene expression of ~AR is also tightly regulated in response to changes in 
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agonist concentrations. This hypothesis was originally confirmed in hamster 
DDT1-MF2 smooth muscle cells as well as in rat C6 glioma cells, in which 
the agonist-induced reduction of~AR numbers was closely associated with a 
decrease of the corresponding mRNA levels (Hadcock and Malbon, 1988a; 
Hadcock et al. 1989b; Collins et al. 1989, 1990). 

Such down-regulation of mRNA levels can occur even without receptor 
occupancy by agonists. In contrast to receptor agonists, cAMP treatment led 
to a more modest decrease in ~2AR mRNA. A correlation between activa- 
tion of the PKA-dependent pathway and a reduction of ~2AR mRNA con- 
centration was demonstrated by Hadcock et al. (1989a) for various mouse 
$49 1ymphoma mutant cell lines. Agonist stimulation reduced ~2AR mRNA 
levels in wild-type cells by about 50%, whereas down-regulation was unaf- 
fected in kin- cells. In the ~2AR-Gs coupling mutants, cyc and unc, receptor 
mRNA levels were decreased only upon activation of PKA by forskolin. The 
result in mutant H21a was, however, surprising, since a significant reduction 
of ~I2AR mRNA levels was determined even though in these cells there is no 
coupling of receptor activation to an increase in cAMP levels. 

Bouvier et al. (1989) also reported a considerable decrease of the corre- 
sponding ~2AR mRNA levels of both the wild-type and mutant receptors, 
which preceded the reduction of BAR numbers. Down-regulation of ~i2AR 
mRNA levels in these cells occurred in the absence of the endogenous pro- 
moter, suggesting that posttranscriptional mechanisms must play an impor- 
tant role in the regulation of ~2AR gene expression. 

Today we know that - like regulation of the receptor protein itself - mul- 
tiple mechanisms are involved in the regulation of the receptor mRNA. 
These involve both alterations in gene transcription and regulation at the 
posttranscriptional, i.e. mRNA- level. In order to understand these various 
mechanisms, the structure and function of the respective genes and mRNAs 
need to be known. 

A 
Gene Structure 

BAR-subtypes show striking similarities in their gene structures and there- 
fore appear to have evolved from a common ancestor gene. One of the most 
surprising characteristics of both the ~ 1AR and ~2AR genes is their lack of 
introns, a very unusual feature of eukaryotic genes (Dixon et al. 1986; Ko- 
bilka et al. 1987b; Frielle et al. 1987; Emorine et al. 1989; Machida et al. 1990). 
Most other adrenergic receptors also lack introns in their genes, with the 
exceptions of the CqAAR and the C~IBAR which have been shown to contain 
introns (Ramarao et al. 1992; Perez et al. 1994). The existence of an intron 
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was also observed within the gene of the turkey ~IAR, which differs from its 
mammalian counterpart in pharmacological properties (Wang and Ross, 
1995). Removal of this intron resulted in a 59 amino acid-residue extension 
of the receptor which blocked its abi~ty to undergo agonist-mediated endo- 
cytosis (Wang and Ross, 1995). 

In contrast to the ~I- and ~2AR genes, the ~3AR genes of man and ro- 
dents contain two protein-coding exons (Nahmias et al. 1991; Granneman et 
al. 1992, 1993; van Spronsen et al. 1993; Granneman and Lahners, 1994). 
Furthermore, the mouse and rat genes contain an additional intron in the 
3"-untranslated region (3 ~UTR) of the gene. The introns interrupt the cod- 
ing region twelve (rat, mouse) or six amino acids (man) from the carboxy- 
terminus of the receptor. They may contain enhancer elements that could be 
important for the predominant adipose tissue specific expression of this 
gene. In addition, a sequence region within the intron of the human ~3AR 
gene is highly homologous to the second exon of the mouse ~3AR gene. 
Whether this observation has any physiological significance, however, re- 
mains unclear. Likewise, the possible function of the second intron in the 
3"UTR of the rodent ~3AR genes is unknown (Granneman et al. 1992, 1993; 
van Spronsen et al. 1993). 

Multiple transcriptional start sites (TSS) have been identified in all three 
~AR-subtypes (Fig. 2): in the human and rat ~IAR genes they are located 
between positions -270 and -220 relative to the start codon (Searles et al. 
1995; Evanko et al. 1998), in the mouse ~IAR gene between positions -450 
and -350 (Cohen et al. 1993); transcriptional start sites of the human, ham- 
ster, and rat ~2AR genes are found approximately 250 bp upstream of the 
start codon, in the case of the rat gene an additional TSS is located at posi- 
tion -60 (Kobilka et al. 1987b; Emorine et al. 1987; McGraw et al. 1996; Jiang 
et al. 1996; Baeyens et al. 1998); and the start sites of rodent and human 
~3AR genes are located between positions -200 and -150 (van Spronsen et 
al. 1993; Granneman and Lahners, 1994). 

Alternative polyadenylation sites have been reported in the 3"UTRs of all 
these sequences which explain the different transcript sizes obseverd. ~IAR 
transcripts vary between 2.5 kb and 3.0 kb in length (Frielle et al. 1987; Feve 
et al. 1990; Machida et al. 1990; Cohen et al. 1993; Evanko et al. 1998), for the 
~2AR two mRNA species have been detected - a major one ranging between 
2.0 kb and 2.2 kb in size and a minor one between 1.6 kb and 1.8 kb 
(Emorine et al. 1987; Collins et al. 1988, 1989; Baeyens and Cornett, 1993; 
Jiang et al. 1996). ~3AR transcripts between 2.1 kb and 2.8 kb have been 
found in several human and rodent tissues (Emorine et al. 1989; van Spron- 
sen et al. 1993; Kriefet al. 1993; Granneman and Lahners, 1994). However, in 
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Fig. 2. Comparison of the proximal promoter regions of the three human 13AR sub- 
types. The I~AR coding regions are indicated by hatched boxes, the transcriptional 
start sites as arrows. The regulatory elements depicted are referred to in the text (see 
also Table 2) 

some human organs larger mRNA species were also visible (Emorine et al. 
1989). 

B 
Promoter Organization 

The ~AR promoter regions share many general characteristics of promoters 
for so-called housekeeping genes, i.e. genes that are constitutively expressed 
at low levels. These include a high G+C-content, the lack of canonical TATA 
and CAAT boxes and a high frequency of the CpG dinucleotides (Bird, 1986; 
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Table 2. Comparison of the gene structures/promoter regions of the three ~AR 
subtypes based on the respective sequences of man, rat, mouse, and hamster avail- 
able so far. TF, transcription factor; n.d., not determined. Numbers in brackets indi- 
cate the numbers of the respective sites 

Sequence feature IS,AR [$~AR ~AR 
Gene structure: 

i lntrons "~ (-) - +(1-2) 

5'ORF ~ (-) + - 

Promoter region: 

CRE +(1) +(1) +(1-4) 

GRE +(2-3) +(>_ 5) +(1) 

TRE +(2) +(1) n.d. 

TATA-box - - - 

CAAT-box c3) (-) (-) (-) 

GC-box + + + 

TF binding sites: 

CREB/CREM +(1) +(1) +(1-4) 

AP-1 +(I) n.d +(I) 

AP-2 +(5) +(4) n.d 

Spl +(3) +(3-4) !n.d 

others AP-4 CP-1, C/EBP~ NF-I 

ICER NF-1, NF-rd3 

(1) The turkey I~IAR subtype consists of two exons and an alternatively spliced 
intron (Wang and Ross, 1995). (2) Two small ORFs of unknown function have been 
reported within the rat, mouse, and human 131AR 5"UTRs (Machida et al. 1990; 
Cohen et al. 1993; Evanko et al. 1998). (3) All three I3AR subtypes posses CAAT-box 
approximations but no canonical sequence motifs. 

Smale and Baltimore, 1989; Zawel and Reinberg, 1993). The proximal pro- 
moter regions of the three human pAR genes are schematically shown in 
Fig. 2, and the most important features that are present in the human, rat, 
mouse, and hamster sequences are summarized in Table 2. 

Deletion analyses of the ~IAR and ~2AR 5" regions demonstrated pro- 
moter activity for at least two separate domains: the primary promoter of 
the human ~IAR gene is located between positions -440 and -360 (Evanko 
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et al. 1998). Two repressor elements and one transcriptional enhancer have 
been identified between positions -3000 and -2000 and around position 
-1900, (Evanko et al. 1998). In the rat sequence the basal promoter activity is 
located around 50 nt. downstream compared to the human promoter 
(Searles et al. 1995; Bahouth et al. 1997b). Again, two repressor elements 
have been identified (positions -2800 and -120), the latter interestingly 3" of 
the TSS. These discrepancies suggested that expression and transcriptional 
regulation of the p 1AR gene are regulated in a species-specific manner. 

The basal promoters of the human and rat P2AR genes are both located 
between positions -400 and -100 (Kobilka et al. 1987b; Emorine et al. 1987; 
McGraw et al. 1996; Jiang et al. 1996; Baeyens et al. 1998). Jiang et al. (1996) 
reported two alternative promoters between -300/-180 and -100/-40 and an 
additional repressor element around position -1000. No deletion analyses 
are currently available for the P2AR gene. However, based on the location of 
the TSS at ---250 and =-60 (see above) the primary promoter shotdd be 
localized also around positions -300 to -100. 

Gene expression of all three pAR-subtypes is tightly regulated by steroid 
hormones (glucocorticoids, thyroid hormones) as well as by cAMP. Differ- 
ent 'response elements' (GRE, TRE, and CRE; Evans, 1988; Roesler et al. 
1988) recognized by the respective hormone receptors and cAMP-dependent 
transcription factors, respectively, are found in various numbers and loca- 
tions within the pAR promoter sequences (Fig. 2 and Table 2). They are 
discussed in more detail in the following section. 

Another characterisitc feature of pAR promoters is their high G+C- 
content. In the PIAR and P2AR genes several binding sites for the tran- 
scription factor Spl(GGGCGG; Dynan and Tjian, 1985) have been identified 
(Kobilka et al. 1987b; Emorine et al. 1987; Collins et al. 1993; Cohen et al. 
1993; Searles et al. 1994; Iiang and Kunos, 1995; Jiang et al. 1996). Addition- 
ally, all these promoters are bound by members of the CREB/CREM-family 
of transcription factors (Habener et al. 1995) and by AP-1/AP-2 (activating 
protein-i/-2), dimeric transcription factors composed of Jun, Fos or ATF 
(Karin et al. 1997). Footprinting analyses and sequence compilation studies 
revealed that the pAR promoter regions are targets of a series of different 
transcription factors, including AP-4, CP1, NF-KB, NF-1, and C/EBPO~ 
(Collins et al. 1993; van Spronsen et al. 1993; Searles et al. 1994; Jiang and 
Kunos, 1995; Jiang et al. 1996). The selective binding of these different t rans -  

acting factors may be involved in the tissue-specific and developmental 
regulation of ~AR gene expression. 
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C.I 
Steroid Hormones 

Some of the first studies to address transcriptional control of ~AR focused 
on regulation by glucocorticoids and thyroid hormones. Glucocorticoids 
increase ~2AR numbers and adenylyl cycIase activities 2-5 fold depending 
on the ceU-type investigated (Hadcock and Malbon, 1988b; Malbon and 
Hadcock, 1988; Collins et al. 1988; Nakada et aL 1989; Feve et al. 1990), an 
effect preceded by a rapid elevation of the corresponding mRNA. A direct 
increase in the ~2AR gene transcription rate (approximately threefold) was 
shown to be the mechanistic basis of this observation (Collins et al. 1988), 
since the half-life of the ~2AR transcript remained unchanged even after 
prolonged hormonal treatment (Hadcock and Malbon, 1988b; Hadcock et al. 
1989b). Sequence elements within the 5'UTR of the ~2AR gene (GILEs are 
also present in the coding region and the 3"UTR) with great homology to the 
15 bp glucocorticoid response element (GRE) consensus sequence (Evans, 
1988) were identified as the responsible c/s-acting elements (Malbon and 
Hadcock, 1988; Nakada et al. 1989; Cohen et al. 1993; McGraw et al. 1996). 
Treatment of DDT1-MF2 smooth muscle cells with a combination of both 
~2AR-agonists and dexamethasone, a synthetic glucocorticoid, demon- 
strated a dynamic regulation and adaptation of receptor gene expression to 
different hormonal signals. The agonist-mediated down-regulation of both 
~2AR numbers and mRNA levels could be reversed by glucocorticoid treat- 
ment (Hadcock et al. 1989b). The enhanced rate of gene transcription was 
sufficient to overcome down-regulation, and vice versa ~2AR up-regulation 
after steroid treatment was significantly lowered by addition of a receptor 
agonist. This finding is also of clinical importance since therapy of asthmat- 
ics with ~AR-agonists to relax bronchial smooth muscles over time results 
in receptor refractoriness. In a recent study (Mak et al. 1995), it was shown 
that glucocorticoids can prevent ~2AR down-regnlation at the transcrip- 
tional level without affecting ~IAR. Interestingly, the transcription factor 
CREB appeared to he involved in this phenomenon. 

In contrast to the ~2AR, the [~1-subtype is down-regulated by about 50% 
upon glucocorticoid treatment due to a suppression of ~IAR gene tran- 
scription (Guest et al. 1990; Feve et al. 1990; Kiely et al. 1994). However, the 
detailed mechanistic basis for this effect has not been elucidated so far. In 
3T3-F442A adipocytes long-term exposure to dexamethasone not only led to 
a significant reduction of ~ 1AR gene ~expression but also to a sharp 4-8 fold 
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decrease of both ~3AR mRNA steady-state levels and ~3AR numbers (Feve 
et al. 1992). The glucocorticoid receptor was identified as the major media- 
tor of this inhibition, presumably by negative interaction with the activator 
protein-1 (AP-I) and/or additional tissue-specific factors (Feve et al. 1990, 
1992). 

~AR gene expression can also be modulated by thyroid hormones which 
may be the basis for the many sympathomimetic effects accompanying hy- 
perthyroidism (Nakada et al. 1989; Lazar-Wesely et al. 1991). However, thy- 
roid hormones modulate the adrenergic effects of catecholamines in a ~AR- 
subtype- and tissue-specific manner, an observation that is not understood 
in terms of its mechanisms. In cultured rat cardiac myocytes, ~IAR mRNA 
levels are up-regulated about threefold by thyroid hormones, whereas the 
~2AR mRNA levels remain unaffected (Bahouth, 1991). The thyroid hor- 
mone-promoted regulation of ~AR gene expression occurs via activation of 
a thyroid hormone response element (TRE; Evans, 1988) located in the 5"- 
flanking region of the receptor gene. Bahouth et al. (1997a) further demon- 
strated that the ~ 1AR TRE is unusual in that it is a direct repeat separated by 
five instead of four nudeotides and that it is located 3" to the TSS. This un- 
derscores again the specificity of ~AR transcriptional regulation. 

C.2 
cAMP 

Gene expression of the different ~AR-subtypes is also regulated by cAMP, in 
a process referred to as 'autoregulation', i.e. the ability of the recep- 
tor/effector complex to directly regulate the transcription of its own genes, 
which has been most thoroughly investigated for the ]32AR gene so far 
(Hough and Chuang, 1990; Collins et al. 1989, 1990; Hosoda et al. 1994, 
1995). Short-term exposure (< 30 min) to ~-agonists or cAMP analogs re- 
suited in a 3- to 5-fold elevation of ~2AR mRNA levels due to a direct tran- 
scriptional activation of the ~I2AR gene, without any effects on transcript 
stability at these early time points (Collins et al. 1989). The increase in 
mRNA concentration is transient and followed, upon prolonged ~2AR 
stimulation, by a typical pattern of down-regulation, accompanied by a re- 
duction of ~AR numbers and changes in mRNA turnover which will be 
discussed later (Collins et al. 1989, 1990). These dynamic alterations in both 
the transcription rate and mRNA stability, represent a complex regtflatory 
paradigm. 

The transcriptional response of the ~2AR gene to cAMP is mediated by 
binding of the 'cAMP response element binding protein' (CREB), a 43 kDa- 
phosphoprotein (Habener et al. 1995) to the respective response element 
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(CRE; Roesler et al. 1988), GTACGTCA, in the ~2AR promoter region 
(Kobilka et al. 1987b; Collins et al. 1990; McGraw et al. 1996). In a recent 
report, Rohlff et al. (1997) provided evidence that Spl, one of the predomi- 
nant transcription factors modulating ~2AR gene expression, is regulated by 
PKA. Therefore, it is tempting to speculate that stimulation of Sp1 may also 
contr~ute to the observed cAMP-induced enhancement of the ~2AR tran- 
scription rate. However, the physiological significance of this cAMP- 
promoted up-regulation still remains undear. 

This biphasic regulatory pattern described above, with short-term ago- 
nist treatment increasing and prolonged treatment decreasing the levels of 
receptor mRNA, holds also true for the ~l-subtype (Hough and Chuang, 
1990; Hosoda et al. 1994). The latter authors demonstrated that the ~IAR 
mRNA down-regulation depends on de novo protein synthesis suggesting 
the participation of an inducible, short-lived protein component. In the case 
of the ~IAR the half-life of the receptor transcript was unaffected, which in 
turn led to the conclusion that the reduction in mRNA levels is indeed me- 
diated by a cAMP-induced decrease in ~IAR transcription. Consistent with 
these results was the identification of CREs in the human, rat, and mouse 

1AR promoter regions (Collins et al. 1993; Cohen et al. 1993; Searles et al. 
1994, 1995). It is tempting to speculate that stimulation of the ~ 1AR results 
in a PKA-dependent phosphorylation of members of the CREB/CREM- 
family of transcription factors, which in turn activates receptor gene ex- 
pression. Rydelek-Fitzgerald et al. (1996) have identified an 'inducible cAMP 
early repressor' (ICER) in rat C6 glioma cells, whose gene expression is rap- 
idly induced upon agonist-stimulafion of the ~IAR. It appears that ICER 
binds to the CRE in the ~IAR promoter region and thereby causes tran- 
scriptional repression. 

Contradicting results have been reported for the cAMP-dependent regu- 
lation of ~3AR gene expression. Thomas et al. (1992) detected a dramatic 
increase (about 65%) in ~3AR mRNA levels upon chronic agonist exposure 
in the white adipocyte cell-line 3T3-F442A, probably caused by the presence 
of four CREs within the ~3AR Y-flanking region. On the other hand, in 
brown fat cells a transient (24 h) 50% down-regulation of ~3AR transcript 
concentrations was observed, which was further shown to be due to a cAMP- 
mediated cessation of transcription and not caused by an increased mRNA- 
instability (Bengtsson et al. 1996). These findings represent another example 
of a cell type-specific regulation. 
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C.3 
Cell-Type Specificity 

Transcriptional control of gene expression appears to be the only pathway 
regulating the ~IAR- and the ~3AR.subtypes. In the case of the ~2AR the 
situation is more complex, and regulation of this mRNA appears to occur in 
a cell type-specific manner: in ceils with a vast majority of ~IAR, such as C6 
glioma cells, ~2AR mRNA down-regulation occurs via a reduction of the 
transcription rate (Hough and Chuang, 1990; Collins et aL 1989, 1990; Ho- 
soda et al. 1995; Danner and Lohse, 1997), whereas in cells with a high por- 
tion of ~2AR, e.g. DDT1-MF2 smooth muscle cells, mRNA levels are modu- 
lated at the posttranscriptional level via a decrease in transcript stability 
(Hadcock and Malbon, 1988a; Hadcock et al. 1989b; Danner and Lohse, 
1997). However, the extent of down-regulation is largely comparable in both 
ceU lines. Upon agonist-stimulation ~2AR mRNA levels were reduced by 
50%, but the receptor numbers were decreased by about 80%. This demon- 
strates that, due to degradation of the receptor protein, receptor down- 
regulation exceeds the extent of mRNA reduction (Bouvier et al. 1989; Dan- 
ner and Lohse, 1997). Elevation of cAMP levels with forskolin also caused a 
50% reduction in ~2AR mRNA levels, which led to the conclusion that in 
both cell types ~2AR mRNA regulation is essentially mediated by cAMP. In 
contrast to isoproterenol, however, forskolin reduced receptor numbers by 
only 50%, i.e. by the same extent as it reduced receptor mRNA levels. These 
data suggest that the larger receptor down-regulation seen with agonists 
(= 80%) compared to forskolin (~- 50%) is cAMP-independent and probably 
due to degradation of the receptor protein. 

Determination of the receptor mRNA half-tires in DDT1-MF2 ceils 
showed a 50% reduction after agonist-treatment, i.e. in this cell-type ~2AR 
mRNA down-regulation can be solely explained by transcript destabilization 
(Hadcock and Malbon, 1988a; Hadcock et al. 1989b; Danner and Lohse, 
1997). In contrast, the ~2AR half-life in C6 glioma ceils was completely unaf- 
fected by agonists (Hosoda et al. 1995; Danner and Lohse, 1997). In both 
cases - i.e. inhibition of mRNA transcription and destabilization of the 
mRNA - inducible short-lived protein components appear to be involved: in 
DDT1-MF2 cells, the extent of ~2AR mRNA destabilization was significantly 
reduced (about 50%) by addition of exotoxin A to prevent de novo protein 
synthesis, whereas in C6 glioma cells the agonist-induced down-regulation 
of the receptor transcript was completely abolished by exotoxin A treatment 
(Hosoda et al. 1995; Danner and Lohse, 1997). These results clearly under- 
line a cell type-specific regulation of [32AR gene expression at either tran- 
scriptional or posttranscriptional levels. The molecular factors that deter- 
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mine the choice of the respective regulatory pathway in an individual cell 
have not been identified to date. However, in rat liver both regulatory 
mechanisms participate in modulating ~2AR gene expression during devel- 
opment (Baeyens and Cornett, 1993, 1995; Baeyens et al. 1998). The hepatic 
~2AR density declines progressively during postnatal development. Both 
reduction of the transcription rate mediated by a repressor protein and a 
decrease in mRNA-stability equally contribute to this regulatory pattern. 

D 
Regulation of ~=AR mRNA-Stability 

First hints on the regulation of ~2AR mRNA down-regulation at the post- 
transcriptional level were obtained by Bouvier et al. (1989) who showed that 
agonist-mediated down-regulation occurs even if the receptor gene is under 
the control of a cAMP-independent promoter. Malbon and coworkers 
(Hadcock et al. 1989) provided direct evidence for ~2AR transcript destabi- 
lization in DDT1-MF2 cells in which the receptor mRNA half-life decreased 
by about 50% upon stimulation with isoproterenol. Since the half-life was 
determined after transcriptional blockade by actinomycin D, this reduction 
must be due to an increased mRNA turnover. Since then it turned out that 
posttranscriptional control of gene expression is widely distributed among 
G-protein-coupled recepors, such as the OtlBAR (Izzo et al. 1990), the m]- 
muscarinic acetylcholine receptor (Lee et al. 1994) and the angiotensin AT 1 
receptor (Lassegue et al. 1995; Wang et al. 1997, Thekkumkara et al. 1998). 
Again, the prototypical receptor in such studies is the [~2AR, whereas for the 
two other ~AR-subtypes no regulation via changes in mRNA-stability has 
been observed so far. 

Posttranscriptional mechanisms are of particular interest, since they par- 
ticipate in the stability and turnover of various highly labile mRNAs, such as 
the transcripts of granulocyte/macrophage colony stimulating factor (GM- 
CSF), cytokines and the proto-oncogenes c-los and c-myc (Sachs, 1993; Ross, 
1995; Chen and Shyu, 1995; Iacobson and Peltz, 1996). AU-rich elements 
(AREs) are often found within the 3"UTRs of these mRNAs and appear to be 
key determinants of their short half-lives (Caput et al. 1986). The sequence 
features of these motifs are summarized in Table 3. Their functional impor- 
tance was demonstrated by Shaw and Kamen (1986) who observed a het- 
erologous destabilization of the normally highly stable ~-globin mRNA after 
insertion of an ARE from GM-CSF into the ~-globin 3"UTR. Although AREs 
are actually the predominant class of mRNA stability determinants, mRNA 
turnover does not strictly depend on these motifs (Ross, 1995; Jacobson and 
Peltz, 1996). For example, Brown et al. (1996) defined a new class of stem- 
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Table 3. Structural and functional features of the three classes of AREs (modified 
according to Chen and Shyu, 1995). The sequence elements represent only minimal 
consensus motifs and can vary considerably in an individual case. A biphasic mRNA 
decay kinetics means that deadenylation precedes the degradation of the mRNA 
body. Thereby, synchronous deadenylation results in decay intermediates with 
poly(A) tails of 30-60 residues, whereas asynchronous (progressive) deadenylation 
leads to the formation of completely deadenylated mRNAs 

ARE Sequence feature, Example 
mRNA decay kinetics 

AUUUA-containing 
Class I 

1-3 scattered copies of AUUUA-motifs c-los 
additional U-rich regions c-myc 
biphasic; synchronous deadenylation 

AUUUA-containing at least two overlapping copies of the GM-CSF 
Class II nonarner UUAUUUA(U/A) (U/A) IL-3 

embedded in a U-rich region 
biphasic; asynchronous deadenylation 

Non-AUUUA U-rich sequences c-jun 
additional still unknown features 
biphasic; asynchronous deadenylation 

loop containing destabilization motifs present in a variety of cytokine- 
mRNAs. Furthermore, in the c-los and c-myc mRNAs determinants within 
the coding sequence also contribute to transcript stability (Kabnick and 
Housman, 1988; Shyu et al. 1991; Herrick and Ross, 1994). In the case ofc-fos 
these determinants have been shown to function independently from each 
other and from the AREs within the 3"UTR (Wellington et al. 1993; Schiavi 
et al. 1994). 

The exact sequence requirements of an ARE are a matter of intensive re- 
search. Based on two recent in vitro studies with artificial sequences, the 
minimal ARE destabilization motif was suggested to he 
UUAUUUA(U/A)(U/A) (Lagnado et al. 1994; Zubiaga et al. 1995). Two cop- 
ies of this nonamer efficiently destabilize ~-globin reporter mRNAs. How- 
ever, there is also evidence that an AUUUA pentamer need not be an inte- 
gral part of a functional ARE (Chen and Shyu, 1994; Peng et al. 1996). On the 
other hand, very recent studies indicate that a reiteration of AUUUA- 
pentamers is the essential ARE sequence motif (Xu et al. 1997). Therefore, it 
appears that each ARE represents a combination of structurally and func- 
tionally distinct domains, such as AUUUA motifs, AU-nonamers and U-rich 
elements, and that it is the combination of these sequence elements, which 
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determines its ultimate destabilizing potency (Chen et al. I994; Chen and 
Shyu, 1995). 

AREs appear to represent the recognition sites for several cytoplasmic 
and nuclear-associated RNA-binding proteins, generally 30-50 kDa in size, 
which either mediate mRNA degradation (Brewer, 1991; Vakalopoulou et al. 
1991; Bohjanen et al. 1991, 1992; Zhang et al. 1993; Myer et al. 1997) or pre- 
vent mRNA decay by 'masking' the ARE (Maker, 1991; Rajagopalan and 
Malter, 1994). Although some of these ARE-binding proteins have been 
purified, their precise roles in the regulation of mRNA-stability and turn- 
over have not been elucidated so far. 

Several AREs have also been identified in the 3"UTRs of different G- 
protein-coupled receptor mRNAs, in particular within the ~2AR transcripts 
of man, rat, and hamster, respectively (Dixon et al. 1986; Kobilka et al. 
1987a; Huang et al. 1993; Baeyens and Cornett, 1995; Tholanikunnel et al. 
1995; Pende et al. 1996; Tholanikunnel and Malbon, 1997; Danner et al. 
1998). Interestingly, none of them exactly fits the proposed ARE consensus 
motif mentioned above (Lagnado et al. 1994; Zubiaga et al. 1995). Addi- 
tionally, pronounced species-specific differences in their sequence compo- 
sition as well as localization make a general regulatory pattern very unlikely 
(Fig. 3). However, AREs appear to play an important role also in destabiliz- 
ing the ~2AR mRNA upon agonist-stimulation. 

Three binding proteins have been described for the ~2AR mRNA so far 
(Fig. 3): (1) the '[~-adrenergic receptor mRNA binding protein'(~ARB), a M r 
35,000 cytosolic protein presumably specific for the ~2AR which was identi- 
fied in hamster DDT1-MF2 smooth muscle cells whose concentration varies 
inversely with the level of receptor mRNA (Port et al. 1992; Huang et al. 
1993); (2) a Mr 85,000 factor regulating ~2AR transcript destabilization in 
adult rat hepatocytes which, however, appears to be restricted to these cells 
because of its unusual size and its association with ~2AR-mediated glucose 
metabolism in liver (Baeyens and Cornett, 1995; Baeyens et al. 1998); and (3) 
the M r 37,000/40,000 'AU-rich element RNA-binding]degradation factor' 
(AUF1), which has also been shown to bind the ~IAR 3"UTR (Pende et al. 
1996). AUF1 is the only one of these factors which has been cloned (Zhang et 
al. 1993; Ehrenman et al. 1994; Wagner et al. 1998), and one of the few RNA- 
binding proteins for which a causal function in mRNA decay has been dem- 
onstrated (Brewer, 1991; Zhang et al. 1993). AUF1 binds an ARE presumably 
as a hexameric protein via its two RNA recognition motifs (RRM; Burd and 
Dreyfuss, 1994) and additional N- and C-terminal sequence domains 
(DeMaria et al. 1997). Furthermore, it was shown that its ARE binding affin- 
ity correlates very well with the potency of an ARE to direct mRNA degrada- 
tion (DeMaria and Brewer, 1996). 
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~ U U U U r t ~ A U  ~ U U U A U A U U A A A  

Human I~IAR mRNA: 3"UTR pos. 198-274 + 769-779 

? 
C n ~ A U  ............ U A A U A U A U U  / 

Human p2AR mRNA: 3"UTR pos. 329-337 

U 6 A U U U U A  A U A A ( U A ) 6 U U  

Rat I}2AR mRNA: 3"UTR pos, 124-135/353-370 

~ U U U U U U A U U U U A U U U U U U U A A  

Hamster 132AR mRNA: 3"UTR pos. 125-145 

Fig. 3. RNA-binding proteins involved in the regulation of ~2AR mRNA stability. 
Potential protein binding motifs within the respective ~2AR 3"UTRs are indicated. 
For the two AREs shown in bold protein binding has been demonstrated in vitro 
(Tholanikunnel and Malbon, 1997; Danner et al. 1998). The nucleotide following the 
stop codon was numbered with 1 in all four 3"UTR sequences. ~ARB, [3-adrenergic 
receptor binding protein; AUF1, AU-rich element RNA-bindingJdegradation factor 
1; P85, 85 kDa ]SAR mRNA-binding protein 

Binding of all three ~2AR mRNA-specific proteins is selectively reduced 
by poly(U) RNA (Port et al. 1992; Baeyens and Cornett, 1995; Pende et al. 
1996). Furthermore, in vitro binding of ~ARB to the hamster ~2AR mRNA 
requires both an AUUUA pentamer and U-rich flanking domains (Huang et 
al. 1993). Since neither the hamster nor the human ~2AR 3"UTRs possess 
any AU-rich consensus motifs, it is tempting to speculate that agonist- 
induced 132AR mRNA destabilization occurs via unique cis-acting elements. 
This hypothesis was confirmed in two recent studies (Tholanikunnel and 
Malbon, 1997; Danner et al. 1998), in which a 20 nudeotide AU-rich domain 
with an unusual AUUUUA hexamer core in the 3"UTR of the hamster tran- 
script, and a non-canonical AU-nonamer in the human [32AR mRNA 
3"UTR, respectively, were shown to be obligate for agonist-induced ~2AR 
mRNA destabilization (Fig. 3). Tholanikunnel and Malbon (1997) demon- 
strated that the 20 nt. ARE at positions 125-145 of the 3"UTR functions as 
the binding site for ~ARB in vivo. Interestingly, substitution of the rare 
hexamer by an AUUUA-pentamer resulted in a 50% reduction of [3ARB 
binding activity, which paraUes results of Bohjanen et al. (1992) with the AU- 
B protein and underscores the specificity of this regulatory element. U to G 
substitutions that interrupt the hexamer and/or the 5"- or 3"-flanking U-rich 
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domains of this ARE reduced or even abolished agonist-induced destabili- 
zation of the hamster ~2AR mRNA. 

In the human ~2AR mRNA, the nonamer UAAUAUAUU at positions 
329-337 of the 3"UTR represents the destabilization element. This nonamer 
differs from the proposed ARE consensus sequence at positions 2 and 5 (A 
for U in both cases) which both have been shown to be important for the 
general destabilizing potency of AREs (Lagnado et al. 1994; Zubiaga et al. 
1995). However, mutation of these positions to the consensus sequence did 
not result in enhanced destabilization of the receptor mRNA (Danner et al. 
1998). Since the region, in which the ARE is embedded, does not resemble 
the U-rich sequences found in other highly labile mRNAs (Ross, 1995; Chen 
and Shyu, 1995), the deviations from the ARE consensus may be compen- 
sated by other ~2AR-specific elements. These might be located in two addi- 
tional AU-rich domains within the 3"UTR and/or secondary structure ele- 
ments, such as a predicted stem-loop immediately downstream of the AU- 
nonamer. 

The importance of this ARE in the human ~2AR mRNA was comfirmed 
by the observation that a protein (or a protein complex) selectively bound to 
the 3" half of the human receptor transcript (Danner et al. 1998). The ~2AR 
mRNA-protein interaction had a sequence specificity identical to that found 
in destabilization experiments, and protein binding can be selectively sup- 
pressed by an excess of oligomer comprising the AU-nonamer (Danner and 
Lohse, unpublished). The synthesis of this mRNA binding factor(s) was 
induced in DDT1-MF2 smooth muscle cells by [~2AR-stimulation. However, 
its nature has not been elucidated so far. It is tempting to speculate that it 
may be identical to AUF1 which has been shown to bind both human ~ 1AR 
and ~2AR 3"UTRs and whose expression is induced in DDT1-MF2 cells 
upon ~2AR stimulation (Pende et al. 1996). The biochemical and functional 
relatedness of AUF1 and ~ARB led initially to the assumption that they 
might be identical, but immunochemical experiments suggested that they 
were distinct (Pende et al. 1996) 

The analysis of a ~-giobin/~2AR 3"UTR chimeric transcript demon- 
strated that elements encoded in the human ~2AR 3"UTR are not only nec- 
essary but also sufficient for mRNA destabilization. Cloning of the ~2AR 
3"UTR behind the coding sequence of the normally stable ~-globin gene 
resulted in a cAMP-sensitive chimeric mRNA (Danner et al. 1998). Although 
the stability of the chimeric mRNA was only about one third of the wild-type 
~-giobin transcript, increases in cAMP with either isoproterenol or forskolin 
caused a further 2-fold decrease of the mRNA half-life. The almost identical 
results obtained with isoproterenol and forskolin suggest a predominant 
role for cAMP as a regulator of ~2AR mRNA stability. However, the bio- 
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chemical mechanisms mediating this cAMP-dependent regulation of B2AR 
mRNA stability remain to be elucidated. 

Gene expression of the two other BAR-subtypes, B1AR and BBAR, ap- 
pears to be exclusively regulated on the transcriptional level (see section 
IV.C). To date, there are no reports available postulating any participation of 
posttranscriptional mechanisms. However, Pende et al. (1996) demonstrated 
that AUFI also interacts with the 3"UTR of the B1AR mRNA. This observa- 
tion is intriguing since AUF1 and its corresponding mRNA are up-regulated 
in the failing human heart, in which both BIAR numbers and BIAR mRNA 
levels are reduced by about 50% (Ungerer et al. 1993; Bristow et al. 1993). 
The questions whether an increase in AUF1 protein is associated with an 
increased B1AR mRNA turnover in the failing heart or whether AUF1 in- 
deed regulates B 1AR mRNA-stability still remain to be answered. 

E 
Regulation of 13=AR mRNA Translation 

In addition to transcriptional and posttranscriptional control mechanisms, 
B2AR gene expression can also be regulated on the translational level (Fig. 
4). In the 5"UTR of the receptor mRNA a small open reading frame (sORF) 
was identified encoding a 19 amino acid peptide (B2AR upstream peptide, 
BUP), which is highly conserved in the human, rat, mouse, and hamster 
sequences, (Dixon et al. 1986; Kobilka et al. 1987a). The ATG triplet at posi- 
tion -110 serving as the putative start codon of the sORF is, in contrast to 

BUP 
............................. o 

t --GC 
5"-cap sORF ~2AR ORF 

Ribosome 
B=, 

blocked 

Fig. 4.Regulation of 132AR mRNA translation. Model of the inhibition of ~2AR 
mRNA translation by the ~2AR upstream peptide (BUP), which is encoded by a 
small open reading frame (sORF) within the J32AR 5"UTR (adapted from Parola and 
Kobilka, 1994). The GC-rich element upstream of the sORF enhances mRNA rec- 
ognition by the ribosome. After translation the nascent BUP binds ist own mRNA 
and thereby prevents ribosome scanning past this complex. The I32AR ORF is trans- 
lated by ribosomes that either scan past the sORF start codon without initiation or 
that reinitiate at the receptor start codon after translating the sORF 
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the ~2AR start codon, in a poor sequence context for translational initiation 
(Kozak, 1984, 1991). However, as revealed by a -110ATG --> CCT substitu- 
tion translation initiates at the sORF ATG as efficiently as at the receptor 
start codon (Parola and Kobilka, 1994). It has been speculated that a GC-rich 
sequence element located 5" to the sORF (positions -173 to -117 of the hu- 
man ~2AR mRNA), which is highly conserved in mammalian ~2AR tran- 
scripts, may function as a translational enhancer. ~2AR mRNAs lacking this 
upstream open reading frame were found to be translated almost ten times 
more efficiently than the wildtype transcript both in an in vitro rabbit reticu- 
locyte system and in Xenopus oocytes (Kobilka et al. 1987c). Mutational 
inactivation of the sORF start codon increased ~2AR expression about two- 
fold in transiently transfected COS-7 cells (Parola and Kobilka, 1994). Fur- 
thermore, it could be demonstrated that mutations within the 5'UTR in- 
creasing translation of the sORF comcomitantly decrease ~2AR translation. 
Additional mutations in the peptide coding region suggested that BUP 
translation is a requirement for inhibition of receptor expression (Parola 
and Kobilka, 1994). The same authors proposed a model in which this pep- 
tide binds its own mRNA and thereby interferes in ribosome-mRNA inter- 
actions, possibly by preventing ribosomes from scanning past the BUP- 
mRNA complex. The ~2AR open reading frame is translated by ribosomes 
that either scan past the sORF start codon without initiation (leaky scan- 
ning) or by ribosomes that reinitiate after translation of the sORF. Alterna- 
tively, the nascent peptide may directly bind to the ribosme, which subse- 
quently impedes translational initiation at the downstream receptor cistron. 
The specificity of this inhibition may be achieved by the high local concen- 
tration of BUP (threefold stoichiometric excess compared to ~2AR). On the 
other hand, BUP is not a 'classic' trans-acting factor at low peptide concen- 
trations. Dissociation of the peptide from the transcript would relieve 
translational inhibition. For the two other ~AR subtypes no comparable 
regulation at translational level has been reported so far. 

The 50% decrease in ~2AR translation observed in COS-7 cells caused by 
this translational mechanism is similar in magnitude to the agonist-induced 
reduction of the ~2AR transcription rate in C6 glioma cells (CoUins et al. 
1989, 1990; Hosoda et al. 1995; Danner and Lohse, 1997), as well as the 
changes in ~2AR mRNA-stability upon prolonged receptor stimulation in 
DDT1-MF2 smooth muscle cells (Hadcock et al. 1989b; Tholanikunnel and 
Malbon, 1997; Danner and Lohse, 1997; Danner et al. 1998). Since ~2AR gene 
expression in general appears to be regulated in a cell type-specific manner, 
one might assume that translational modulation is the essential regulatory 
pathway in COS-7 cells. However, it is unclear, whether BUP is always 
translated with the same efficiency Compared to the ~2AR. Future studies 
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will have to elucidate how the distinct but probably additive pathways inter- 
act and whether they can be observed in a single cell. Furthermore, the fac- 
tors which determine how ~2AR responsiveness is primarily regulated un- 
der specific conditions remain to be identified. 

V 
Conclusions 

Chronic stimulation of BAR results in a decrease of receptor responsiveness, 
a process called agonist-induced receptor desensitization. Distinct mecha- 
nisms operating on both mRNA and protein levels contribute to this com- 
plex regulatory network. The three BAR-subtypes differ markedly in their 
general desensitization properties - 62 receptors display a pronounced, 61 
receptors only a modest and 63 receptors little or no regulation, which may 
be one of the reasons for the existence of different receptor subtypes. Fur- 
thermore, not all of the regulatory cascades described are utilized in a given 
setting. It has previously turned out that cell-type specific mechanisms are 
used depending on the capacity of an individual cell or tissue to synthesize 
the protein components necessary to elicit or to modulate BAR desensitiza- 
tion as well as on the quality of the desensitizing stimulus. Recent findings 
concerning both ~IAR transcriptional regulation as well as ~2AR mRNA 
stability add an additional level of complexity to this system since the tran- 
scripts of various species differ significantly in their cis-acting sequence 
elements, suggesting distinct regulatory pathways. 

Undoubtly, the elucidation of the molecular mechanisms responsible for 
the regulation of BAR responsiveness is only beginning to be unravelled. 
There are still many questions to be answered which concern not only the 
mode of activation, but also of inactivation of these receptors. Little is 
known about the proteins that mediate intracellular sorting and trafficking 
of BAR, and the intriguing variability of modulation of ~2AR gene expres- 
sion is just emerging. 

So far, BAR signalling and regulation have been extensively studied in vi- 
tro. However, the in vivo relevance of the individual pathways remains un- 
clear, so that generation and analysis of transgenic mice will further help to 
elucidate the regulation and the physiological or pathophysiological role 
played by the different pAR-subtypes and the various pathways that can 
regulate their function and expression. 
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