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1 Introduction 

M. D. Swope and E. Lolis 

Macrophage migration inhibitory factor (MIF) is a widely expressed protein 
that is secreted in response to inflammatory or hormonal stimuli. Studies 
with anti-MIF antibodies indicate that neutralization of MIF activity has 
therapeutic benefits in a number of animal models of inflammatory diseases 
(Bernhagen et al. 1993; Mikulowska et al. 1997; Lan et al. 1997; Makita et al. 
1998; Leech et al. 1998). MIF is postulated to function as a cytokine or pro- 
tein hormone via a receptor-mediated mechanism, yet a cell surface receptor 
has not been identified. Structural (Sun et al. 1996; Suzuki et al. 1996b; Kato 
et al. 1996) and biochemical (Rosengren et al. 1996; Rosengren et al. 1997; 
Kleeman et al. 1998) studies support an enzymatic function for MIF, yet its 
physiological substrate also has not been identified. This review describes 
recent progress in the biology, biochemistry, and structural properties of 
MIF, and discusses the potential link between the putative active site and 
cytokine-like properties. 

The inhibition of macrophage migration is considered one of the earliest 
cytokine activities to be identified. This activity was associated with delayed- 
type hypersensitivity reactions (George and Vaugn 1962) and attributed to a 
non-dialyzable secretion product from activated T cells (David 1966; Bloom 
and Bennett 1966). Over the next twenty five years macrophage migration 
inhibition was found to correlate with general macrophage activation func- 
tions such as enhanced cell adhesion, phagocytosis, and tumoricidal activity 
(Churchill et al. 1975; Nathan et al. 1971; Nathan et al. 1973). These early 
studies on MIF used conditioned media from activated T cells which con- 
tained other proteins (interferonq and IL-4) that also exhibited macrophage 
migration inhibition activity (Thurman et al. 1985; Herriot et al. 1993). Con- 
sequently, the biological activities and physiological functions first assigned 
to MIF are questionable. It was not until 1989, when the cDNA for MIF was 
cloned that a more rigorous analysis of its biological, biochemical, and bio- 
physical properties could be made (Weiser et al. 1989). 

Some aspects of MIF biology are unlike those of other cytokines. MIF has 
been found in a variety of organs including the pituitary (Bernhagen et al. 
1993), pancreas (Waeber et al. 1997), brain (Nishibori et al. 1996; Nishibori 
et al. 1997; Bacher et al. 1998), kidney (Lan et al. 1996), testes (Meinhardt et 
al. 1996), and ovaries (Suzuki et al. 1996a; Wada et al. 1997). The pro- 
tein/mRNA also has been found in early embryos and may have a role in 
development (Suzuki et al. 1996a). Moreover, homologues of MIF have been 
identified in species such as C. elegans and A. thaliana, which would not be 
expected to express a typical cytokine. In contrast to other cytokines that are 
synthesized and secreted in response to external stimuli, MIF is constitu- 
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tively expressed in the cytoplasm and secreted upon appropriate stimula- 
tion. In some cells, the protein is localized within secretory granules 
(Nishino et al. 1995). In others, the mechanism by which it is exported from 
the cell remains unknown, as MIF does not possess a signal sequence to 
direct its secretion. These observations suggest that this cytokine has unique 
properties and may have roles outside the immune system. 

MIF possesses a bewildering variety of activities (Table 1). The most un- 
usual activity of this putative cytokine/hormone is its ability to catalyze a 
number of chemical reactions. In the course of studying melanin biosynthe- 
sis, Rorsman and colleagues fortuitously discovered that MIF could catalyze 
the tautomerization of the non-natural D-isomer of 2-carboxy-2,3-dihydro- 
indole-5,6-quinone (D-dopachrome) to 5,6-dihydroxyindole-2-carboxylic 
acid (DHICA) (Rosengren et al. 1996). In an effort to identify a physiological 
substrate or ligand for MIF, the same group determined that MIF could 
catalyze the enolization of phenylpyruvate and the ketonization of p- 
hydroxyphenylpyruvate (Rosengren et al. 1997). Bernhagen and his co- 
workers recently reported that MIF catalyzes the reduction of disulfides in 
insulin and small molecular weight substrates via transhydrogenase reac- 
tions (Kleeman et al. 1998a). The three-dimensional structure of MIF is un- 
like any other cytokine (Sun et al. 1996; Suzuki et al. 1996b; Kato et al. 1996), 

Table 1. Activities of Macrophage Migration Inhibitory Factor 

Cytokine Activities Reference 

Macrophage Migration Inhibition 
Macrophage Phagocytosis 
Macrophage Killing of Intracellular Parasites 
Neutrophil Priming 
Regulation of T cell Growth 
Inhibition of Natural Killer Cell-Mediated Cell Lysis 
Regulation of IgE Synthesis 

Hormone Activities 

Counter-regulation of Glucocorticoid-Induced 
Cytokine suppression 
Potentiation of Glucose-Induced Insulin Secretion 
Inhibition of Inhibin Synthesis 

Catalytic Activities 

D-Dopachrome Tautomerase 
Phenylpyruvate Tautomerase 
Thiol Protein Oxidoreductase 

Weiser et al. 1989 
Onodera et al. 1997 
Juttner et al. 1998 
Swope et al. 1998 
Bacher et al. 1996 
Apte et al. 1998 
Mikayama et al. 1993 

Calandra et al. 1995 

Waeber et al. 1997 
Meinhardt et al. 1996 

Rosengren et al. 1996 
Rosengren et al. 1997 
Kleeman et al. 1998 
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but bears striking similarity to the global architecture and local active site of 
two microbial enzymes (Subramanya et al. 1996). These biological and 
structural observations have raised the intriguing possibility that MIF may 
have a dual role as a cytokine/hormone and enzyme. The suggestion also has 
been made that an enzymatic activity may underlie some of the immu- 
nological activities that have been described thus far (Swope et al. 1998b; 
Kleeman et al. 1998). This review discusses the cytokine, hormone, and en- 
zymatic activities of MIF (Table 1), and expands upon the unique structural 
and enzymatic properties of this protein. For more detailed information on 
the biological activities of MIF the reader is referred to several excellent 
reviews (Bernhagen et al. 1998; Metz and Bucala 1997; Bucala 1996). 

2 MIF as a Cytokine: Cellular Sources and Effectors 

Cytokines play a pivotal role in the regulation of the inflammatory and im- 
mune responses due to their effects on leukocytes. These proteins are pro- 
duced and secreted in response to external insults and act locally on effector 
cells through autocrine or paracrine mechanisms. Due to the transient na- 
ture of their production as well as their localized action, the levels of cytoki- 
nes in the serum are normally low. These proteins function to regulate the 
growth, differentiation, and activities of immune cells via receptor-mediated 
processes. To understand how MIF came to be viewed as a cytokine, it is 
important to consider both its source of production as well as its function on 
cells of the immune system. 

2.1 Monocytesand Macrophages 

For almost 25 years, MIF was considered to be exclusively a T cell product 
that acted on macrophages. Recent studies have led to the discovery that the 
macrophage is an important source of MIF during immune reactions 
(Calandra et al. 1994). High levels ofpre-formed MIF are found in unstimu- 
lated macrophages and monocytes. MIF is released from these cells upon 
activation by a variety of pro-inflammatory stimuli such as tumor necrosis 
factor (TNFc0, interferon-y (IFNy), lipopolysaccharide (LPS), toxic shock 
syndrome toxin-1 (TSST-1), streptococcal pyrogenic exotoxin A, and ma- 
laria pigment (Calandra et al. 1994; Calandra and Bucala 1996; Calandra et 
al. 1998). The production of MIF in response to these pro-inflammatory 
stimuli follows a bell shaped dose-response curve. This suggests that MIF is 
necessary for initiating an immune response, and that higher concentrations 
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of pro-inflammatory stimuli or MIF itself, acting through a negative feed- 
back loop, down-regulate MIF production. 

MIF activity has had a longstanding association with the delayed-type 
hypersensitivity (DTH) response. A detailed analysis of the DTH response 
utilizing RT-PCR, immunohistochemical analyses, and ELISA assays indi- 
cated that MIF is present in macrophages and that the macrophage, rather 
than the T cell, is the major source of MIF during DTH reactions (Bernhagen 
et al. 1996). To assess the role of MIF in DTH, mice treated with anti-MIF 
antiserum showed significantly reduced DTH reaction in the classical tuber- 
culin test. 

Recent studies support a role for MIF in macrophage activation as was 
first reported using T cell supernatants. MIF mRNA is up-regulated and 
protein released in an in vitro model of phagocytosis by macrophages 
(Onodera et al. 1997). Addition of latex beads to macrophages results in a 
marked increase of MIF release. Increasing concentrations of exogenous 
recombinant MIF resulted in enhanced phagocytosis of the latex beads by 
the macrophages. These studies indicate that MIF can regulate macrophage 
function by both autocrine and paracrine mechanisms. MIF is also very 
effective in activating macrophages to kill the intracellular parasite L. major 
(]uttner et al. 1998). This effect can be completely blocked by anti-MIF anti- 
body. The MIF-mediated killing of parasites appears to require both TNF-a 
and nitric oxide. Anti-TNFc~ antiserum was shown to reduce MIF-mediated 
macrophage killing of parasites. Macrophages deficient in the TNF receptor 
p55 (from knockout mice) were unable to destroy parasites in response to 
MIF. A specific inhibitor of inducible nitric oxide synthase (iNOS), L-N6-(1- 
iminoethyl)lysine dihydrochloride, also inhibited the antiparasitic proper- 
ties of MIF. MIF has been shown to induce TNFot secretion and nitric oxide 
production (when co-stimulated with IFNT) from macrophages (Herriott et 
al. 1993; Calandra et al. 1994). It is likely that these cytokines (MIF, TNFct, 
and IFN T) act together in a pro-inflammatory loop to activate the macro- 
phage and coordinate host defenses against infection or tissue invasion. 

Interestingly, pro-inflammatory molecules are not the only stimuli that 
induce the release of MIF from macrophages. Physiological concentrations 
of anti-inflammatory glucocorticoids result in the secretion of MIF, the only 
cytokine to be up-regulated in this way by glucocorticoids (Calandra et al. 
1995). At higher pharmacological concentrations of glucocorticoids, MIF 
secretion is turned off. The release of MIF by endogenous levels of gluco- 
corticoids leads to a reversal of steroid-induced suppression of cytokine 
(TNFot, IL-115, IL-6, and IL-8) synthesis. The observation that MIF is induced 
by glucocorticoids and, in turn, suppresses glucocorticoid activity has led 
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Bucala and his colleagues to propose that MIF functions as the physiological 
counter-regulator of glucocorticoids. 

2.2 T Lymphocytes 

Activated T cells have been known to be a source of MIF activity since 1966 
(David 1966; Bloom and Bennett 1966). The cDNA for the protein was 
eventually isolated from a lectin-stimulated T cell hybridoma (Weiser et al. 
1989). To examine whether MIF displays any autocrine functions on T cells, 
MIF expression and the effects of anti-MIF antibodies in activated T cells 
were studied. The most prevalent mechanism of T cell activation is based on 
stimulation of the T cell receptor (TCR) by antigen presented by the major 
histocompatibility complex (MHC). This results in secretion of the potent T 
cell mitogen IL-2 and in up-regulation of the IL-2 receptor, leading to T cell 
proliferation. Antibodies to the signaling component (CD3) of T cell recep- 
tors can also induce T cell activation. Superantigens such as TSST-1 can 
activate T cells by cross-linking MHC molecules with some T cell receptors 
(Marrack and Kappler 1990; Kappler et al. 1989). Stimulation of primary T 
cells with anti-CD3 antibody or TSST-1 was found to induce MIF mRNA and 
protein secretion (Bacher et al. 1996; Calandra et al. 1998). MIF released by 
activated T cells could be neutralized with an anti-MIF IgG. Addition of anti- 
MIF antibodies to stimulated T cells decreased proliferation by 40-60%. For 
comparison, addition of anti-IL-2 antibodies to neutralize the classical T cell 
growth factor (IL-2) had a more pronounced effect, decreasing proliferation 
by 70-75%. Addition of anti-IL-2 and anti-MIF antibodies did not act syn- 
ergistically (Bacher et al. 1996). Upon further study, it was determined that 
the reduction in T cell proliferation is likely due to the decrease in IL-2 se- 
cretion from activated T cells in the presence of anti-MIF antibodies. It ap- 
pears, therefore, that T cell activation results in secretion of MIF, which in 
turn contributes to the secretion of the T cell mitogen IL-2. Interestingly, 
exogenous MIF has no measurable effect on resting or stimulated T cells. 

The in vivo role of MIF in lymphocyte function during the immune re- 
sponse was examined employing anti-MIF antibodies. Pre-injection of anti- 
MIF antibody two hours before injection of TSST-1 minimized spleen en- 
largement and reduced proliferation of splenocytes ex vivo (Calandra et al. 
1998). The injection of a typical antigen (as opposed to a superantigen such 
as TSST-1) will normally provoke the production of antigen-specific T cells 
and antibodies. Treatment of mice with anti-MIF antibodies during and 
after injection of antigen resulted in marked attenuation of this primary 
immune response (Bacher et al. 1996). A decrease of antigen-specific IgG 
and a reduction in antigen-specific proliferation of splenic T cells were ob- 
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served. A role for MIF in the development of humoral immunity is sup- 
ported by expression studies with TH1 and TH2 T cell subsets. While both of 
these cell types release a basal level of MIF, secretion is increased only by 
activated Ta2 clones, which favor antibody responses. The in vivo suppres- 
sion of humoral immunity by anti-MIF antibodies appears to be in direct 
contrast to the role of MIF in cell-mediated immunity observed in DTH 
reactions. Further studies are necessary to address this paradox. 

The unique relationship between MIF and glucocorticoids is also evident 
in T cells. Physiological concentrations of glucocorticoids induce MIF secre- 
tion from T cells (Bacher et al. 1996). Recombinant MIF overrides the inhi- 
bition of proliferation and cytokine synthesis of stimulated T cells treated 
with high doses ofglucocorticoids. 

Glycosylation-inhibiting factor, a protein associated with a controversial 
issue in cellular immunology involving antigen specific T-cell factors (Ishi- 
zaka et al. 1996), has the same amino acid sequence as MIF (Mikayama et al. 
1993). GIF inhibits N-glycosylation of IgE binding factors. The unglycosy- 
lated IgE binding factors are involved in regulating the production of IgE by 
selectively suppressing IgE synthesis. Interestingly, while many types of cells 
express and secrete GIF/MIF, only suppressor T cells are reported to pro- 
duce bioactive GIF. The active form of GIF is speculated to be due to an 
uncharacterized post-translational modification that occurs only in suppres- 
sor T cells. It is known that this modification does not involve phosphoryla- 
tion or N-glycosylation (Liu et al. 1994). The modification presumably in- 
duces an active conformation that is not present in the unmodified protein 
(Sugie et al. 1997). T helper and natural killer cells are reported to be the 
only cellular targets ofbioactive GIF (Sugie et al. 1997). 

2.3 Neutrophilsand Eosinophils 

The release of MIF and other cytokines in response to pathogens results in 
an activated immune system and an enhanced inflammatory response. In 
the early phase of the immune response, neutrophils are induced to migrate 
to the site of infection and are one of the first cell types to arrive. Although 
one report has noted the absence of MIF in murine neutrophils (Calandra et 
al. 1994), we found that MIF mRNA and protein is present in unstimulated 
human neutrophils (M. Swope and E. Lolls, unpublished data). Moreover, 
MIF can act by an autocrine mechanism to prime neutrophils for an en- 
hanced respiratory burst upon stimulation with the formylated peptide 
fMLP (Swope et al. 1998a). Unprimed neutrophils from human blood pro- 
duce almost no oxygen radicals when treated with the formylated peptides. 
These peptides, found only in bacteria, are one of the key recognition mole- 
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cules used by the human immune system to identify microbes. The ability 
of MIF to deliver a priming signal to neutrophils so that they are mobilized 
to produce an immediate and robust response in the presence of pathogens 
suggests that MIF may play an important role in initiating the immune re- 
sponse. 

A recent study indicates that MIF is important in eosinophil-related in- 
flammatory disorders such as asthma (Rossi et al. 1998). Unstimulated eosi- 
nophils contain significant quantities of MIF in the cytoplasm. Stimulation 
by phorbol esters or the physiological pro-inflammatory molecules IL-5 or 
C5a induces secretion of MIF from these cells. Moreover, MIF levels are 
elevated in the bronchoalveolar lavage fluid of asthmatic patients as com- 
pared to controls, suggesting that MIF may play a role in asthma and other 
pulmonary inflammatory diseases. 

2.4 The Eye and Natural Killer Cells 

Significant amounts of MIF are expressed in the eye lens (Wistow et al. 
1993; Matsuda et al. 1996; Matsuda et al. 1997). The presence of pro- 
inflammatory molecules in the eye is a paradox because the eye is an im- 
mune-privileged site where immune-mediated inflammation is suppressed 
to prevent damage to ocular tissues. MIF has been proposed to function as 
an immunosuppressive cytokine that contributes to immune privilege (Apte 
et al. 1998). Specifically, MIF in the aqueous humor inhibits natural killer 
(NK) cell-mediated lysis of corneal endothelial and lens epithelial cells, 
which lack MHC class I molecule and would therefore be vulnerable to de- 
struction by NK cells. 

MIF may also have additional non-immune functions in the eye. The ex- 
pression of MIF correlates with the development of the eye lens, being pres- 
ent in the chicken embryo from 6 to 19 days after fertilization (Wistow et al. 
1993). RT-PCR of embryonic chicken lens microdissected into the inner 
epithelium (enriching for proliferating cells), outer epithelium (enriching 
for differentiating cells), and differentiated fiber cells revealed a strong as- 
sociation of MIF mRNA expression with differentiating cells. Wistow et al. 

speculate that MIF in the eye may therefore be involved in cell growth and 
differentiation. 

3 MIF as a Hormone:  Cellular Sources and Effectors 

Protein hormones are induced by physiologic variations, rather than exter- 
nal stimuli, and function to maintain homeostasis. The biosynthesis of hor- 
mones normally occurs within endocrine organs, and their cellular targets 
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are located at distant locations. Consequently, protein hormones are present 
in the serum at higher concentrations than cytokines. 

While these criteria may indicate there are real distinctions between cy- 
tokines and hormones, in practice, there appears to be a great deal of over- 
lap between these proteins. For example, protein hormones (such as prolac- 
tin and growth hormone) are induced during systemic inflammatory reac- 
tions and can have localized immunoregulatory effects (Weigent 1996). Al- 
ternatively, some cytokines that down-regulate the immune system or mi- 
grate to the bone marrow to function as hematopoietic growth factors can be 
considered hormones that maintain the homeostasis of the immune system. 

3.1 Corticotrophic and Thyrotrophic Cells of the Anterior Pituitary 

The hypothalamic-pituitary-adrenal axis plays a central role in neuroendo- 
crine interactions and is critical in mediating the host response to systemic 
stress. The pituitary is an endocrine organ that secretes follicle-stimulating 
hormone (FSH), luteinizing hormone, adrenocorticotropic hormone 
(ACTH), thyroid-stimulating hormone (TSH), growth hormone, and pro- 
lactin. The release of ACTH results in the secretion of cortisol from the ad- 
renal cortex, which acts as a modulator of the systemic stress response and 
the host response to infection. Cortisol and other glucocorticoids have pow- 
erful anti-inflammatory effects. This class of compounds is a mainstay of 
pharmacological therapy in the treatment of severe inflammatory diseases. 

Investigators noted that unlike many other systems in which homeostasis 
is maintained by both positive and negative regulators, there were no known 
negative regulators of the anti-inflammatory activities of glucocorticoids. 
When searching for negative regulators of glucocorticoid anti-inflammatory 
activities, MIF was found to be secreted from a pituitary cell line upon 
stimulation with lipopolysaccharide (LPS) (Bernhagen et al. 1993). Analysis 
of intact pituitary revealed that MIF protein is pre-formed and comprises 
-0.05% of total pituitary protein content. In comparison, ACTH and prolac- 
tin comprise 0.2% and 0.08%, respectively, of total pituitary protein. MIF is 
localized within three subtypes of secretory granules in both cortocotropic 
(ACTH-releasing) and thyrotropic (TSH-releasing) cells: granules with 
ACTH and MIF, TSH and MIF, or MIF alone (Nishino et al. 1995). The re- 
lease of MIF from corticotrophic cells is stimulated by the hypothalamic 
hormone corticotrophin-releasing factor (CRF) in a dose-dependent man- 
ner, resulting in a concomitant increase in serum MIF above basal levels 
(MIF normally circulates at 2-4 ng/ml in human serum) (Nishino et al. 
1995). More importantly, the concentrations of CRF needed to stimulate the 
release of MIF are lower than those needed for release of ACTH, resulting in 
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the discharge of MIF prior to ACTH. In vivo studies in rodents confirm that 
MIF is secreted from the pituitary during stress or LPS stimulation and re- 
suits in increased serum levels with an accompanying decrease in pituitary 
MIF (Calandra et al. 1995). Hypophysectomized mice injected with LPS have 
no detectable serum MIF at a time that MIF levels are highest in control 
mice, indicating that the pituitary is the major source of serum MIF during 
systemic inflammatory responses. Finally, MIF has been shown to potentiate 
the lethal effects of endotoxemia when co-injected with a sub-lethal dose of 
LPS (Bernhagen et al. 1993). The increased serum levels of MIF in response 
to systemic infection or stress suggest that MIF is an important component 
of the hypothalamic-pituitary-adrenal response. 

The observation that exposure of the pituitary to inflammatory stimuli 
could result in the release of both pro-infiammatory MIF from the pituitary 
and anti-infiammatory glucocorticoids from the adrenal cortex led to ex- 
periments to examine potential biological interactions of these two hormo- 
nal mediators. As mentioned previously, Bucala and co-workers determined 
that MIF is the only cytokine whose production and secretion is stimulated 
rather than inhibited by physiological concentrations of glucocorticoids. 
Moreover, the released MIF acts to antagonize the anti-inflammatory effects 
of glucocorticoids ultimately resulting in increased synthesis of cytokines. 
Therefore, the intensity of an inflammatory reaction depends on the balance 
between anti-inflammatory glucocorticoids and pro-inflammatory MIF. 

3.2 Pancreatic 13 Cells 

The expression and secretion of MIF from the anterior pituitary suggested 
that MIF might play a much larger role as a protein mediator within the 
endocrine system. This is borne out by the presence of MIF mRNA and 
protein in pancreatic islet 13 cells. Immunohistochemical studies showed that 
MIF is present in cells expressing insulin and the glucose transporter GLUT2 
(Waeber et al. 1997). Subcellular localization studies also indicate that MIF 
co-localizes with insulin in secretory granules of the highly differentiated, 
insulin-producing cell line INS-1. MIF mRNA levels increased in INS-1 cells 
and in primary [3 cells in response to 20-30 mM glucose. To probe a possible 
autocrine function of MIF in islet ~ cells, recombinant MIF was added to 
cells and found to increase (by 140%) glucose-induced insulin secretion. 
INS-1 cells transfected with MIF antisense cDNA or treated in tissue culture 
with anti-MIF IgG had the opposite effect: they significantly reduced (by 30- 
50%) the secretion of insulin induced by glucose. MIF is therefore the first 
protein mediator to be released by 13 ceils that positively regulates insulin 
secretion. Bucala and colleagues speculate that in this context, a decrease in 
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MIF secretion by ~ cells may contribute to diminished insulin release that is 
associated with type II diabetes. 

3.3 Ovarian and Testicular Cells 

MIF is present in reproductive organs of rodents (Meinhardt et al. 1996; 
Suzuki et al. 1996a). In the female mouse, MIF mRNA has been found in the 
ovary, oviduct, and uterus. The mRNA levels change in the uterus of the 
pregnant mouse, suggesting that MIF expression is regulated by endocri- 
nological changes during pregnancy (Suzuki et al. 1996a). MIF has also been 
found in the Leydig cells of the rat testis (Meinhardt et al. 1996). Neither 
recombinant MIF nor neutralizing polyclonal anti-MIF antibody has any in 
vitro effect on testosterone biosynthesis, the primary function of Leydig 
cells. MIF may, nonetheless, be involved in the physiology and regulation of 
testicular function. Recombinant MIF has been shown to decrease the pro- 
duction of inhibin by Sertoli cells of the testicular seminiferous epithelium. 
Inhibin is the primary regulator of the gonadotrophic hormone FSH pro- 
duced by the anterior pituitary. While the physiological role of MIF in re- 
productive physiology remains to be determined, the observation that MIF 
is present in reproductive organs of both sexes and affects inhibin biosyn- 
thesis suggests that it may play an important role as a regulatory hormone. 

4 MIF in Disease 

4.1 Infectious Diseases and Sepsis 

Gene-transfer experiments and studies with anti-MIF antibodies have been 
instrumental in identifying diseases in which MIF participates. For example, 
cytokines (MIF, TNFot, IFN T, or IL-2) delivered in a sustained fashion by 
oral administration of an attenuated S. typhimurium strain transfected with 
individual cytokine genes have been used to study their roles in L. major 
infection (Xu et al. 1998). BALB/c mice are normally susceptible to L. major, 
eventually dying from the infection. Prophylactic treatment of mice with the 
MIF-expressing S. typhimurium clone 1 week prior to infection with L. ma- 
jor significantly delayed disease progression, demonstrating a protective 
role for MIF in this animal model of infection. Experiments were also per- 
formed to test the therapeutic effectiveness of these cytokines. BALB/c mice 
were first infected with L. major and treated after one week with different 
combinations of S. typhimurium clones expressing MIF, TNF¢x, IFN T, and 
IL-2. Clones expressing a combination of MIF and TNFct provided the best 
therapeutic benefit - reduced lesion development and parasite burden - 
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compared to individual treatments or all possible pairings of the four cy- 
tokines. This benefit correlated with the expression level of inducible nitric 
oxide synthase from spleen and mesenteric lymph node cells of infected 
mice. 

While the above experiment probes the role of MIF expression in a local- 
ized infection, anti-MIF antibodies have been used to study the role of MIF 
in systemic infection (Bernhagen et al. 1993; Calandra et al. 1998). The injec- 
tion of a high dose of LPS or TSST-1 in mice induces all of the symptoms of 
bacterial septicimia and leads to death. The lethal effects of sepsis (in these 
animal models as well as in the actual disease in humans) are known to be 
mediated in large part by the systemic secretion of cytokines (such as TNFcc 
and IL-113). Co-injection of antibodies or antagonists of these sepsis- 
mediating cytokines protects mice from LPS-induced lethality (Tracey et al. 
1987; McNamara et al. 1993). Similarly, pre-treatment of mice with anti-MIF 
antibodies results in a dramatic increase in survival (Bernhagen et al. 1993; 
Calandra et al. 1998). 

The effects of sepsis can also be produced in animals by injection of high 
doses of the pro-inflammatory cytokines TNFa or IL-113 (Tracey et al. 1986, 
Okusawa et al. 1988). In contrast to the lethal effects of these cytokines, the 
administration of high doses (10-50 mg/kg) of MIF alone is not fatal. Co- 
injection of LPS (at a dose that would normally result in 30% lethality) with 
MIF potentiates the effects of endotoxemia, resulting in the survival of only 
10-15% of the mice (Bernhagen et al. 1993). The potentiation of the effects of 
LPS by MIF suggests that LPS induces the production of a co-factor that, 
together with MIF, is lethal. 

The counter-regulation of glucocorticoid activity by MIF observed in vi- 
tro is also evident in vivo. Early administration of glucocorticoids can pro- 
tect against the lethal effects of endotoxemia, presumably by suppressing 
cytokine production. Co-injection of recombinant MIF and glucocorticoids 
in a mouse model of sepsis abrogated the protective effect of the glucocorti- 
coids (Calandra et al. 1995). These studies demonstrate that MIF is a mem- 
ber of the cytokine network leading to death during endotoxemia. They also 
suggest that inhibition of MIF activity can increase the therapeutic benefit of 
glucocorticoid treatment in inflammatory diseases. 

4.2 Adult Respiratory Distress Syndrome 

Acute respiratory distress syndrome (ARDS) is a life-threatening inflamma- 
tory response that occurs in the lungs following acute trauma or sepsis. This 
condition is mediated by activated neutrophils and results in the breakdown 
of the endothelial and epithelial membranes of the lung leading to a reduc- 
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tion in arterial oxygen tension, pulmonary capillary pressure, and leakage of 
protein-rich fluid into the air space. In addition, patients with ARDS have 
elevated levels of pro-inflammatory cytokines in the alveolar airspace. In an 
in vivo experiment to study lung injury, anti-MIF antibody reduced the 
accumulation of neutrophils in the lung (Makita et al. 1998). This effect is 
believed to be indirect, as MIF is not chemotactic for neutrophils (M. Swope 
and E. Lolis, unpublished observations). These rats were found to have 
significantly reduced levels of the neutrophil chemoattractant macrophage 
inflammatory protein-2/cytokine-induced neutrophil chemoattractant 
(MIP-2/CINC-3) in bronchoalveolar lavage fluid, suggesting that MIF is 
involved in the up-regulation of this chemokine during lung injury. 

A role for MIF in ARDS is also supported by a recent study with humans. 
ARDS patients contain elevated levels of MIF in the alveolar airspace due to 
release by alveolar macrophages (Donnelly et al. 1997). Furthermore, the 
addition of exogenous MIF to alveolar cells harvested from ARDS patients 
resulted in increased TNFot and IL-8 production while the addition of anti- 
MIF antibodies to these cells inhibited their production. Finally, MIF was 
shown to over-ride the inhibitory effects of glucocorticoids in ARDS alveolar 
cells. These data suggest that MIF secreted by alveolar macrophages during 
ARDS could sustain the inflammatory reaction by inhibiting the therapeutic 
effects of endogenous or pharmacological glucocorticoids. 

4.3 Autoimmune Diseases: Rheumatoid Arthritis 
and Glomerulonephritis 

The therapeutic benefits of anti-MIF antibodies on sepsis and lung injury 
prompted studies into the role of MIF in other inflammatory diseases. The 
inflammatory and autoimmune disease rheumatoid arthritis (RA) was hy- 
pothesized to be subiect to the effects of MIF based on the importance of 
macrophages and T cells, two target cells of MIF, in mediating this disease. 
In an animal model that closely resembles RA, macrophages process and 
present collagen type II to T cells resulting in a T cell mediated immune 
response against collagen that damages joints. Experiments to determine the 
role of MIF in this animal model of RA have demonstrated that neutraliza- 
tion of MIF with anti-MIF antibodies during the immunization phase delays 
the onset and reduces the number of mice that develop the disease 
(Mikulowska et al. 1997). The severity of the disease in those mice that do 
develop arthritis, however, is undiminished relative to control mice. Nor 
does administration of anti-MIF antibodies after the disease has developed 
have any significant effects. The physiological mechanism by which MIF is 
involved in this autoimmune disease remains to be determined. However, 
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the study by Mikulowska et al demonstrated that anti-MIF reduced the pro- 
duction of IgG2a antibodies, a Thl-mediated isotype suggested to be highly 
arthritogenic. MIF may therefore be involved in the up-regulation of IgG2a 
during an immune response. 

In a second rodent model (rat adjuvant arthritis) of rheumatoid arthritis, 
MIF was absent from the synovium of normal rats (Leech et al. 1998). How- 
ever, significant levels were present a few days after injection of heat- 
inactivated M. tuberculosis to induce arthritis. The appearance of MIF in the 
synovium preceded the clinical symptoms of arthritis. Moreover, rats with 
arthritis had elevated levels of MIF in the serum. Neutralization of MIF by a 
high, non-toxic dose of anti-MIF antibodies had profound effects on the 
course of the disease. Intraperitoneal injection of the antibodies every 3 days 
(from 0 to 12 days after adjuvant injection) suppressed all clinical symptoms 
of arthritis in 5 of 6 rats on day 13, a time at which all control rats had devel- 
oped arthritis. Treatment with a lower dose decreased the effect, but still 
reduced the severity of arthritis. These studies indicate that induction of 
MIF is an important pro-inflammatory event in the induction of arthritis, 
and inhibition of MIF activity can ameliorate the symptoms of this disease. 

The role of MIF was investigated in a second autoimmune disease that 
also is mediated by macrophage infiltration and accumulation. A rat model 
of accelerated antiglomerular basement membrane glomerulonephritis was 
used to determine the role of MIF in the onset and severity of the disease 
(Lan et al. 1997). MIF up-regulation in the kidney had been observed during 
development of rat glomerulonephritis (Lan et al. 1996). This disease has an 
early phase characterized by deposition of antibody and complement fol- 
lowed by infiltration of neutrophils, and a progressive phase characterized 
by macrophage and T cell inftltration. Renal injury during the progressive 
phase is believed to be mediated by IL-lf3 production from macrophages 
because treatment with IL-1 receptor antagonist suppresses tissue injury 
(Lan et al. 1995; Lan et al. 1993). Pre-treatment of animals with anti-MIF 
antibodies had no effect on the early phase, but significantly inhibited the 
progressive phase of the disease (Lan et al. 1997). This effect was due to a 
combination of reduced infiltrating macrophages and T cells, decreased 
activation of remaining infdtrating macrophage and T cells, and inhibition 
of IL-I[3 and iNOS expression in both the infiltrating macrophages and kid- 
ney cells. 
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5 Enzymatic and Structural Properties of MIF 

5.1 Enzymatic Activities 

While most of the studies described above are consistent with a cytokine 
function for MIF, the catalytic activities and three-dimensional structure are 
inconsistent with a role as a cytokine. The first report of a catalytic activity 
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Fig. 1. Chemical reactions catalyzed by MIF. (A) D-dopachrome tautomerase (Ro- 
sengren et al. 1996). (B) Phenylpyruvate tautomerase (Rosengren et al. 1997). (C) 
Thiol-protein oxidoreductase (Kleeman et al. 1998a; Kleeman et al. 1998b) 
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for MIF was the result of a search to identify novel glutathione S-transferase 
isozymes (Blocki et al. 1992), but this was eventually shown to be an experi- 
mental artifact (Muhlhahn et al. 1996; Swope et al. 1998b). MIF has also been 
reported to possess three additional catalytic activities: D-dopachrome 
tautomerase (Rosengren et al. 1996), phenylpyruvate (and hydroxyphen- 
ylpyruvate) keto-enol isomerase (Rosengren et al. 1997), and thiol-protein 
oxidoreductase (Kleeman et al. 1998a) (Fig. 1). 

The late stages of the melanin biosynthetic pathway involves the enzy- 
matic conversion of 2-carboxy-2,3-dihydroindole-5,6-quinone (dopa- 
chrome) into 5,6-dihydroxyindole-2-carboxylic acid (DHICA) by a mem- 
brane-localized enzyme. The natural substrate for this reaction is the L- 
stereoisomer. In the course of studying the enzymatic reaction in cultured 
melanoma cells, a catalytic conversion to DHICA was observed when the 
non-physiological D-dopachrome was used as a control substrate. In con- 
trast to the reaction of the natural isomer which is associated with a mem- 
brane protein, the catalytic activity for D-dopachrome was present in the 
cytoplasm. Two proteins were eventually isolated that were responsible for 
the catalytic conversion of the non-physiologic substrate: MIF and a novel 
protein provisionally called D-dopachrome tautomerase. MIF and D- 
dopachrome tautomerase share 27% sequence identity (Zhang et al. 1995). 

In an attempt to identify natural ligands for MIF, the phenylpyruvate 
tautomerase activity was discovered (Rosengren et al. 1997). In this reaction, 
MIF catalyzes the keto-enol isomerization of both p-hydroxyphenylpyruvate 
and phenylpyruvate. These molecules are products of phenylalanine and 
tyrosine degradation and were observed in studies more than 40 years ago 
(Knox and Pitt 1957). Although MIF can act as a phenylpyruvate tautom- 
erase, neither hydroxyphenylpyruvate nor phenylpyruvate is proposed to be 
the true physiological substrate for MIF because the measured K M values are 
too high in comparison with the reported physiological concentrations 
(Rosengren et al. 1997; Deutsch 1997). It should be noted, however, that Ka 
values are not good indicators of the physiological relevance of substrate- 
enzyme pairs. Additional studies are required to address the significance of 
the phenylpyruvate tautomerase activity of MIF. 

Analysis of mammalian MIF sequences revealed a conserved CXXC se- 
quence motif. This same sequence has been shown to be part of the active 
site for thiol-protein oxidoreductases such as thioredoxin (Takahashi et al. 
1996), protein disulfide isomerase (Puig et al. 1994), and DsbA (Zapun et al. 
1994). The oxidoreductase activity in these enzymes is dependent on the 
formation and reduction of a disulfide bridge between the cysteine residues 
in the conserved sequence motif. Based on these observations, MIF was 
assayed and found to catalyze the reduction of disulfides in insulin and 2- 



Macrophage Migration Inhibitory Factor: Cytokine, Hormone, or Enzyme? 17 

hydroxyethyldisulfide. One paradox with this activity is that glutathione, 
which has been shown to have weak, if any binding to MIF (Muhlhahn et al. 
1996), can serve as a co-substrate to provide the reducing equivalents 
(Kleeman et al. 1996a; Kleeman et al. 1996b). 

5.2 Three-Dimensional Structure 

We determined the three-dimensional structure of human MIF by X-ray 
crystallography (Sun et al. 1996a). Additional X-ray and NMR studies were 
independently reported by others (Suzuki et al. 1996b; Kato et al. 1996; 
Muhlhahn et al. 1996). All high resolution studies found MIF to be a trimer 
of identical subunits with overall dimensions of 35 A x 50 A x 50 A. The MIF 
monomer contains two antiparallel a helices and six [~ strands, four of which 
form a mixed [3 sheet (Fig. 2A). Three monomers associate to assemble an 
~/15 structure consisting of six a helices surrounding three [3 sheets that 
form a barrel with a solvent accessible channel (Fig. 2B). The tertiary struc- 
ture of the MIF monomer is deceivingly reminiscent of the IL-8 dimer and 

A B 

C 

% 

4-OT CHMI 

Fig. 2. Three dimensional ribbon structure of (A) the MIF monomer, (B) the MIF 
trimer, (C) the 4-oxalocrotonate tautomerase (4-OT) hexamer and the 5- 
carboxymethyl-2-hydroxymuconate isomerase (CHMI) trimer 
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MHC. However, the quaternary structures and the topology (the sequential 
arrangement of the secondary structures) of the monomers for these three 
proteins are totally different. Suzuki et al. noted a striking structural simi- 
larity of MIF to two microbial enzymes, 4-oxaocrotonate tautomerase (4- 
OT) and 5-carboxymethyl-2-hydroxymuconate isomerase (CHMI) (Fig. 2C) 
(Subramanya et al. 1996; Suzuki et al. 1996b). Chorismate mutase from B. 
subtilis is more distantly related to MIF and is not considered to be a mem- 
ber of the evolving superfamily (Chook et al. 1994; Murzin 1996). Both 4-OT 
and CHMI catalyze reactions in a pathway that converts aromatic hydrocar- 
bons to intermediates which can enter the citric acid cycle (Haiipour et al. 
1993). CHMI is a trimer with a central barrel of [3 sheets, while 4-OT is a 
hexamer of a single subunit consisting of 62 amino acids. Two monomers of 
4-OT associate to form a dimer similar in structure to the MIF monomer. 
Three of these dimers form the hexamer with structural similarity to the 
MIF trimer. Although 4-OT, CHMI, and MIF share similar three- 
dimensional structures, no substantial sequence homology exists among the 
proteins. 

The structural similarity of MIF to 4-OT and CHMI extends to the active 
site. Both 4-OT and CHMI possess unusual enzymatic mechanisms in that 
the N-terminal amine functions as a catalytic base. In most proteins, the N- 
terminus (as well as C-terminus) protrudes from the protein and is usually 
flexible. In 4-OT and CHMI, the N-terminal residue is a proline (after the 
initiating methionine is cleaved) and sits at the base of a hydrophobic pocket 
(Subramanya et al. 1996). MIF also has a proline as its N-terminal residue, 
which is found in a hydrophobic deft. The importance of the N-terminal 
proline in MIF is highlighted by multiple sequence alignment of all MIF 
homologues (Swope et al. 1998a). The N-terminal proline is among only 11 
residues (10% of the sequence) that are invariant (Fig. 3A). Display of the 
other invariant residues on the three-dimensional structure of MIF shows 
that many of these residues duster around the N-terminal proline and illus- 
trates the evolutionary pressure to preserve this site (Fig. 3B). The residues 
do not form part of the hydrophobic core of the protein, but rather are sol- 
vent accessible. The solvent accessible cleft with the N-terminal pro!ine at its 
base resembles a catalytic active site that could accommodate small mole- 
cule substrates. 

The catalytic activities of MIF, the remarkable structural similarity to mi- 
crobial enzymes, and the pattern of invariant residues prompted further 
studies to more fully characterize the putative active site of MIF. The sub- 
strates phenylpyruvate, p-hydroxyphenylpyruvate, and D-dopachrome were 
useful probes in this regard. As an initial experiment to determine the resi- 
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Fig. 3. (A) Multiple sequence alignment of MIF homologues. Amino acid residues 
that are invariant are indicated by an asterisk (*). DT, D-dopachrome tautomerase; 
Arab, Arabidhopsis thaliana; C. el., Caenorhabditis elegans; Bm, Brugia malayi; Wm, 
Wuchereria bancrofti. (B) Invariant residues of MIF. The atoms of the invariant 
residues are shown in the context of the ribbon diagram of the MIF monomer. The 
two orientations are related by a 90 ° rotation along horizontal axis 

dues that interact with the substrates, we titrated p-hydroxyphenylpyruvate 
into 'SN-labeled MIF and monitored the change in chemical shift for each 
residue in a heteronuclear quantum correlation (HSQC) NMR experiment. 
The result from this experiment indicated that the N-terminal proline and 
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Fig. 4. Residues that are perturbed by the presence of p-hydroxyphenylpyruvate 
(HPP). The solvent accessible surface of two orientations of the MIF trimer is shown. 
The orientation on the right shows the solvent accessible channel coincident with the 
3-fold molecular axis. This view is rotated 125 ° along the horizontal axis relative to 
the orientation on the left. MIF residues with perturbed chemical shifts from a ~H-'SN 
HSQC NMR spectrum in the presence of excess of HPP are drawn in black, and Pro-1 
of a single subunit is indicated (Swope et al. 1998a) 

many of its surrounding residues were perturbed upon addition of p- 
hydroxyphenylpyruvate (Fig. 4). This experiment also provided evidence 
that the catalytically active form of MIF is comprised of a trimer, as two 
residues adjacent to the N-terminus that are perturbed by p-hydroxy- 
phenylpyruvate are from another subunit (Swope et al. 1998a). We have now 
embarked on crystallographic studies between MIF and p-hydroxyphenyl- 
pyruvate to study the interactions between these two molecules at atomic 
resolution and decipher the structural source of catalysis. 

Further evidence for the importance of the N-terminal proline in the 
catalytic activity of MIF has been provided by a number of labs including 
our own (Bendrat et al. 1997; Swope et al. 1998a; Stamps et al. 1998). Dele- 
tion or replacement of the N-terminal proline abrogates the catalytic activity 
of MIF (Bendrat et al. 1997; Swope et al. 1998a). Treatment of MIF with 3- 
bromopyruvate, an irreversible inhibitor of 4-OT, also inactivates MIF cata- 
lytic activity (Stamps et al. 1998). The 3-bromopyruvate is covalently at- 
tached to a site within an 11 residue amino terminal fragment, presumably 
Pro-1. While the importance of the N-terminus in the catalytic activity is 
certain, the actual mechanistic role for the proline remains to be resolved. 
Bendrat et al. suggest that Pro-1 may serve as a general acid catalyst based 
on modeling of the dopachrome substrate in the active site. Other studies 
indicate that Pro-1 can function as a general base (Swope et al. 1998a; 
Stamps et al. 1998). 
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For the nitrogen atom of a proline to serve as a catalytic base, the lone 
pair electrons on the nitrogen must be available for proton abstraction. For 
this requirement to be met, two criteria must be satisfied. The proline must 
be present at the amino terminus - as it is for 4-OT, CHMI, and MIF - so 
that the electrons are not involved in resonance stabilization of a peptide 
bond. The pKa of the secondary amine of the proline, which is normally 
greater than 9 (Stivers et al. 1996), also must be significantly lowered such 
that the proline remains uncharged at physiological pH. To investigate the 
possibility that the N-terminal proline of MIF functions as a catalytic base, 
its pKa was determined. We used NMR spectroscopy to directly titrate the 
N-terminal proline. The '~N chemical shift of the proline is easily resolvable 
from all other resonance peaks. Direct measurement of this chemical shift as 
a function ofpH reveals a pKa of 5.6 _+ 0.1 (Swope et al. 1998a), almost 4 pH 
units lower than the pKa of a proline amide (Stivers et al. 1996). Whitman 
and co-workers determined the pKa of MIF by use of k J K ~  profiles as well 
as irreversible inactivation by the active site-directed inhibitor 3- 
bromopyruvate as a function of pH (Stamps et al. 1998). These studies 
measure the pKa values of the uncomplexed protein and substrate (or in- 
hibitor). The pKa based on the pH dependence of ki,,o]K , for irreversible 
inhibition and of k J K  M for the enolization of phenylpyruvate are 5.7 + 0.2 
and 6.0 + 0.1, respectively, in reasonable agreement with the pKa of Pro-1 
determined directly by NMR. As with 4-OT and CHMI, the hydrophobic 
environment at the N-terminus is believed to be responsible for the reduced 
pKa of the amine. Formation of a positively charged amine in this environ- 
ment is disfavored in the absence of a negatively charged counter-ion. 
Careful inspection of the three-dimensional structure of MIF provides an 
alternative explanation for the reduced pKa. An electrostatic potential map 
reveals a region of positive potential arising from Lys-32 and Lys-66 that 
surrounds the N-terminal proline (Swope et al. 1998a). These two lysines sit 
at the entrance of the cleft. Formation of a positive charge in a region of 
positive potential without a neutralizing counter-charge is energetically 
unfavorable. The relative contribution of the hydrophobic pocket and the 
positive electrostatic potential on the reduced pKa of the N-terminal proline 
remains to be determined. 

The thiol-protein oxidoreductase activity is far more difficult to under- 
stand in the context of the three-dimensional structure. Bernhagen and his 
co-workers present a series of experiments that can be interpreted in terms 
of disulfide bond formation between Cys-57 and Cys-60 (Kleeman et al. 
1998a). This disulfide is required for the oxidoreductase activity. Mutation of 
Cys-60 (but not Cys-57) to serine abolishes the oxidoreductase activity. The 
lack of catalytic activity for this mutant correlates with the absence of bio- 
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logical activity as measured by a macrophage-mediated killing assay of 
L. major parasites. In the crystal structure of MIF, Cys-57 and Cys-60 are 
buried in the core of the protein and do not form a disulfide bond. The ab- 
sence of a disulfide is not due to a reducing environment as no reducing 
agents were present during purification and crystallization of the protein 
(Sun et al. 1996b). It is interesting to note, however, that Cys-57 and Cys-60 
are in close proximity to a second site containing invariant residues (Fig. 
3B). 

6 Conclusions and Future Directions 

While much has been learned about MIF and its role in disease, there are 
large gaps in our understanding of what this protein does and how it does it. 
Our knowledge regarding the physiological role of MIF is based predomi- 
nantly on inhibition studies with anti-MIF antibodies. It has not been pos- 
sible to address the physiological function of MIF by studying MIF knockout 
mice as attempts to create MIF -/ mice have been unsuccessful thus far 
(Kobayashi et al 1988). Ultimately, homologous recombination to generate 
MIF" mice and/or mice with temporal or cell-restricted MIF mutations will 
allow the physiological role of this protein to be studied. The presence of 
MIF homologues in C. elegans and A. thaliana offers alternative model or- 

ganisms for studying the physiological function of MIF. 
At the molecular level, the structural biology of this protein has outpaced 

the mechanistic studies required to understand how this protein functions. 
Questions are being asked regarding the roles of residues in catalysis or in 
receptor binding without having identified either a natural substrate or cell 
surface receptor involved in MIF biology. This reflects both the difficulty in 
identifying substrates or receptors for enzymes or cytokines/hormones, 
respectively, and the power of the structural approach to infer function (in 
this case, an enzymatic activity) from structural relationships among pro- 
teins. Until we identify a physiological substrate and/or a receptor for MIF, 
we will not be able to achieve a comprehensive understanding of how this 
protein works. Nor will we be able to resolve the dilemma of whether MIF is 
an enzyme or a cytokine/protein hormone. 

The potential link between MIF cytokine activities and the invariant 
catalytic site is also unclear. Bucala and colleagues report that a catalytically 
inactive Pro-1 mutant is still capable of overriding the inhibition of TNFa 
production by glucocorticoids (Bendrat et al. 1997). We have reported that a 
catalytically inactive Pro- 1 mutant of MIF has substantially reduced capacity 
to prime neutrophils (Swope et al. 1998a). The relationship between the 
catalytic and cytokine activities is more than an academic question. The 
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answer to this question has implications for the discovery and development 
of small molecule inhibitors that mimic the effects of anti-MIF antibody. 
There are many examples of small molecule inhibitors that target enzyme 
active sites, but very few that target the receptor-binding surface of cytoki- 
nes. Enzymatic catalysis occurs at a localized site within a protein surface. 
Binding between a cytokine/protein hormone and receptor occurs over a 
large surface area with the participation of many residues (de Vos et al. 
1992). Consequently, it is easier to identify small molecules that bind within 
the active sites of enzymes rather than small molecules that disrupt the large 
surface areas involved in cytokine-receptor interactions. If the N-terminal 
site is actually involved in the biological activity of MIF, then it should be 
fairly straightforward to identify small molecule inhibitors that bind to this 
site. Indeed, some low molecular weight compounds with micromolar in- 
hibition constants have already been identified (Swope et al. 1998b; Stamps 
et al. 1998). Such small molecules may be useful as lead compounds to treat 
the diseases associated with MIF. 

The possibility that MIF may catalyze an enzymatic reaction and bind to 
a cell surface receptor would not be unique. Over the last fifteen years, other 
proteins with "dual functions or mechanisms" have been identified (Table 
2). Of particular note is the recruitment of a variety of enzymes that serve as 
structural proteins in the eye (Piatigorsky and Wistow 1989). These proteins 
are encoded by one gene, yet have two entirely different functions. The 
genes for these proteins are subject to two distinct selective pressures: to 
maintain the active site required for catalysis and to maintain the sites re- 
quired for protein-protein interactions necessary for the optical properties 
of the lens. In light of the constitutive expression of MIF in the cytoplasm, it 
remains possible that this protein has an intracellular enzymatic function 
and a separate extracellular function when released under inflammatory or 
hormonal stimuli. The sites involved in each of these functions may arise 
from different regions of the protein surface. In this regard, it is interesting 
that the invariant residues cluster at two distinct sites (Fig. 3B). 

For some proteins in Table 2, the enzymatic and cytokine activities are 
mediated by a single site on the molecular surface. The molecular mecha- 
nism involving the catalytic and cytokine activities for thrombin are best 
characterized. Thrombin functions to promote clot formation by producing 
fibrin and activating a G protein-coupled receptor to induce platelet aggre- 
gation. The proteolytic site of thrombin functions in both fibrin formation 
and activation of the receptor. Thrombin cleaves fibrinogen to fibrin and 
also cleaves a portion of the N-terminal region of the receptor to unmask a 
tethered ligand that induces self-activation (Vu et al. 1991). 
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Table 2. Enzymes with Non-enzymatic Functions or Mechanisms 

Protein Enzymatic Activity Receptor Cytokine or Non- References 
ezymatic Activity 

g-Crystallin Lactate None Structural Piatigorsky 
dehydrogenase protein and Wistow 

1989 
x-Crystallin Enolase None Structural Piatigorsky 

protein and Wistow 
1989 

Thrombin Protease Thrombin Platelet Vu et al. 
receptor aggregation 1991 

Angiogenin Ribonuclease 170 kDa, Angiogenesis Shapiro et 
49 kDa al. 1989 

GPI/AMF Glucose-6- AMF Cell motility Chaput et 
phosphate receptor al. 1988; 
isomerase Watanabe 

et al. 1996 
Cyclophilin Cis/trans proline Unknown Neutrophil che- Sherry et al. 

isomerase motaxis 1992; 
Wu et al. 
1992 

FKBP Cis/trans proline Unknown Eosinophil Leiva and 
isomerase chemotaxis Lyttle 1992 

NAP-2  Heparinase CXCR2 Neutrophil Hoogewerf 
chemotaxis et al. 1996 

Factor Xa Protease EPR- 1 Cytokine Altieri and 
upregulation Stamnes 

1994 

The molecular components involved in angiogenin activity have not been 
well characterized, but the angiogenic activity of this protein also appears to 
require receptor binding and chemical catalysis (Shapiro et al. 1989). In 
contrast to thrombin, the uncharacterized cell surface receptor for angio- 
genin functions to transport the protein into the cell (Moroianu and Riordan 
1994a). Angiogenin possesses a nuclear localization sequence that allows it 
to enter the nucleus (Moroianu and Riordan 1994b). Once there, angiogenin 
presumably degrades RNA to induce its biological activity, as RNAse- 
deficient mutants of angiogenin do not harbor angiogenic activity (Shapiro 
et al. 1989). 

For the remaining proteins, the relationship of the catalytic and cytokine 
activities to the physiological function is less clear. The glycolytic protein 
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glucose-6-phosphate isomerase "moonlights" as a secreted hormone which 
binds with high affinity to the autocrine motility factor receptor (Chaput et 
al. 1988; Watanabe et al. 1996). A small molecule inhibitor of GPI blocks the 
interaction with the cell surface receptor indicating that the catalytic activity 
and receptor binding surface form an overlapping site (Watanabe et al. 
1996). Similar observations have been made for cyclophilin and FKBP, two 
cis-trans proline isomerases that possess chemoattractant activities. In both 
cases, specific inhibitors of the cis-trans proline isomerization reaction 
block their chemoattractant activities (Sherry et al. 1992; Xu et al. 1992; Leiva 
and Lytfle 1992). NAP-2 is one of many chemokines that bind glycosamine 
proteoglycans and activate a specific G protein-coupled receptor (Cerretti et 
al. 1993). NAP-2 also possesses heparinase activity (Hoogewerf et al. 1996). 
Proteoglycans have been found to play a role in the biological activity of 
some chemokines, but the biological significance of the heparinase activity 
of NAP-2 is not yet known. The serine protease factor Xa is not only in- 
volved in the proteolytic coagulation cascade, but also binds to a specific 
cells surface receptor with high affinity and regulates T cell activation 
(Altieri and Stamnes 1994). The role of the proteolytic activity in this func- 
tion is unknown. It remains to be seen whether MIF and these proteins rep- 
resent a new class of biological molecules that possess dual mechanisms 
(receptor binding and chemical catalysis) or dual functions to mediate their 
physiological activities. 

Postscript 

After submission of this review but prior to its publication, a number of 
studies on the immunoregulatory and catalytic roles of MIF were reported 
that are worth noting. Basophils and mast cells can be added to the list of 
cells that constitutively express MIF at high levels (Chen et al. 1998). The 
high level expression in these cells implicates MIF as one of the key media- 
tors of basophil and mast cell function in host defense. Further studies are 
required to address this role. 

The gene for MIF finally has been disrupted in mice (Bozza et al. 1999). 
The mice appear to develop normally and have no organ abnormalities 
based on gross examination and histopathological analysis. The initial phe- 
notypes of these MIF/ mice support the conclusions of some in vivo studies 
with anti-MIF antibodies. Upon treatment with a high dose of LPS (or 
S. aureus enterotoxin B in conjunction with D-galactosamine), the mice 
exhibited signs of endotoxemia, but were remarkably resistant to its lethal 
effects compared to MIF +/- and wild-type mice. The MIF" mice have a 
marked reduction in plasma levels of TNF-c~ during endotoxemia, which 
may partly explain their ability to survive what would normally be a lethal 
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challenge. In an alternate model of gram-negative infection, P. aeruginosa 
were instilled into MIF-'-, MIF +', and wild-type mice. The infection was 
cleared from the lungs much more efficiently in the MIF -/ mice than in the 
control mice. Moreover, the MIF-'- mice had reduced levels of neutrophils in 
the bronchoalveolar lavage, which agreed with a previous study of the effect 
of anti-MIF antibodies on LPS-induced lung inflammatory disease (Makita 
et al. 1998). 

A number of recent studies have focused on the catalytic properties of 
MIF. In an attempt to identify physiological substrates of the D-dopachrome 
tautomerase activity of MIF, the oxidized catecholamines 3,4-dihydroxy- 
phenylaminechrome, epinephrinechrome, and norepinephrinechrome were 
found to be converted by MIF to 5,6-dihydroxyindole, 3,5,6-trihydroxy- 
indole-l-methylindole, and 3,5,6-trihydroxyindole, respectively (Matsunaga 
et al. 1999). These products are precursors of neuromelanin, a pigment 
found in neurons and filial cells proposed to function as a sink for toxic 
metabolites of catecholamine biosynthesis. Consistent with this hypothesis, 
an inverse relationship has been found between neuromelanin content and 
neurological degeneration in Parkinson's disease. It is therefore possible that 
MIF contributes in the detoxification of these quinones in the brain. 

Finally, we and others have been successful at determining crystal struc- 
tures of small molecule ligands complexed to MIF. MIF has been co- 
crystallized with a substrate' and an inhibitor 2 of the phenylpyruvate 
tautomerase activity. Both studies find that the ligands interact with Pro-l, 
Lys-32, Ile-64, Tyr-95, and Asn-97. Pro-1 is positioned to function as a cata- 
lytic base. Interestingly, there is no functional group that polarizes the a- 
carbonyl of the substrate to weaken the adjacent C-H bond for transfer by 
Pro-1. The structures suggest a catalytic mechanism for this reaction, but the 
absence of a polarizing functional group also suggests that this substrate 
may not be a physiological substrate of an MIF-mediated enzymatic activity. 
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A b b r e v i a t i o n s  u s e d  

HVA - high-voltage-activated 

LVA - low-voltage-activated 
DHP - dihydropyridine 

PAA - phenylalkylamine 

BTZ - benzothiazepine 

HEK - human embryonic kidney 
HP - holding potential 
RyR - ryanodine receptor 
SNAP - synaptosome-associated 
protein 
ER - endoplasmic reticulum 

VAMP - vesicle-associated mem- 
brane protein 
SNARE - synaptic core complex 
A I D  - alpha subunit interaction 
domain 
B I D  - beta subunit interaction do- 
main 
IC~0 - half-maximal inhibition con- 
centration 
AKAP - A-kinase anchoring protein 
PKC - protein kinase C 
FHM - familial hemiplegic migraine 
EA - episodic ataxia 

Voltage-activated calcium channels regulate the intracellular calcium con- 
centration and contribute thereby to calcium signalling in numerous cell 
types. These channels are widely distributed in the animal kingdom and are 
an essential part of many excitable and non-excitable mammalian cells.The 
opening of these channels is primarily regulated by the membrane potential, 
but is also modulated by a wide variety of hormones, protein kinases, pro- 
tein phosphatases, toxins and drugs. Site-directed mutagenesis has identi- 
fied sites on these channels, which interact specifically with other proteins, 
inhibitors and ions. This article will focus on these recent developments. 
The older findings have been summarized in several excellent reviews 
(Striessnig et al. 1993; Hofmann et al. 1994; Catterall 1995; De Waard et al. 
1996a). 

A Subunit Composition of the Calcium Channel Complex 
and Genes 

A.I.I Subunit Composition of High-Voltage-Activated (HVA) Channels 

HVA calcium channels are heterooligomeric complexes of five proteins from 
four genes (Fig. 1): the ot 1 subunit, which contains the binding sites for all 
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Fig. 1. Proposed structures of the calcium channel subunits. (A) Membrane topology 
of the pore-forming c~ subunit, molecular diversity of the cz~ genes and pharmacol- 
ogical properties of the different classes. HVA, high voltage activated; LVA low 
voltage activated. (B), (C) and (D) Putative structures and genes of the accessory ¢~28, 
g and y subunits. Small letters indicate splice variants 

known calcium channel blockers, the voltage-sensor, the selectivity filter 
and the ion-conducting pore; the intraceUularly located fl subunit; the ct26 
subunit, a disulfide-linked dimer, and the transmembrane 3, subunit (for 
details see: Striessnig et al. 1993; Hofmann et al. 1994; Catterall 1995; De 
Waard et al. 1996a). The y subunit is specifically expressed in skeletal mus- 
cle, but recently additional V subunits have been detected in the retina, brain 
and other tissues (Letts et al. 1998; Klugbauer et al. 1999c). 
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The exact subunit composition of the LVA channels is unknown. Three a, 
subunits have been identified which induce large T-type current after ex- 
pression in Xenopus oocytes and in HEK cells in the absence of additional 
subunits (Perez-Reyes et al. 1998a, b; Cribbs et al. 1998; Klugbauer et al. 
1999b). Elimination of the four known t~ subunits in neurones of the nodose 
ganglion and in a neuroblastoma cell line by transfection with antisense 
oligonucleotides did not affect the size or voltage-dependence of the T-type 
current (Lambert et al. 1997; Leuranguer et al. 1998). Wyatt and coworkers 
(1998), who overexpressed the a28-1 and the neuronal fl2a subunits in undif- 
ferentiated NG108-15 cells, reported that the T-type current is affected by 
the c~28-1 but not by the t]2, subunit. However, the a28-1or c~28-3 subunits did 
not modulate the T-type current when coexpressed with the a,G subunit 
(Lacinov~ et al. 1999). LVA channels are possibly composed of a single (x, 
subunit protein which contains the voltage-sensor, the selectivity filter, the 
ion-conducting pore as well as the binding site for the T-type channel block- 
ers mibefradil and kurtoxin. 

A.II Genes 

A.II.1 The % Subunit 

Most of the prominent features of the calcium channel complex can be as- 
signed to the (z~ subunit. The a, subunit contains the ion conducting pore, 
the selectivity filter of the pore, the voltage sensor and the interaction sites 
for the f~ subunits, the By subunits of G proteins, the a25 subunit, the cal- 
cium channel blockers and activators. Nine individual genes have been 
identified for the a, subunit, which are homologous to each other and en- 
code proteins of predicted molecular masses of 212 to 273 kDa. They belong 
to the same multigene family as voltage-activated sodium and potassium 
channels and share a common ancestral protein with them. Hydrophobicity 
analysis of the ct 1 subunits predicts a transmembrane topology with four 
homologous repeats, each containing five hydrophobic putative a helices 
and one amphiphatic segment (Fig. 1). 

An early evolutionary event separated the al subunits into the electro- 
physiologically distinct low-voltage-activated (LVA) and high-voltage- 
activated (HVA) calcium channels, which share less than 30% sequence 
identity. The two LVA genes G and H induce T-type currents in the absence 
of additional subunits (Perez-Reyes et al. 1998a; Cribbs et al. 1998). A third 
LVA channel, an a~,, has been identified (Perez-Reyes et al. 1998b). An event 
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which occurred later separated the HVA-channels again in two subfamilies, 
the four (C, D, F, S) dihydropyridine (DHP)-sensitive and the three (A, B, E) 
DHP-insensitive calcium channels. The A, B and E genes are expressed al- 
most exclusively in neuronal tissues. Both groups share about 50% identical 
amino acids, whereas the amino acid identity of the individual members of 
each subfamily is generally over 60% (Fig. 2). 

The native currents of the HVA calcium channels have been subdivided 
into five distinct ctasses by biophysical and pharmacological criteria: L 
(long-lasting)-type, P (Purkinje)-type, N (neither L nor T channel)-type, Q- 
type and R (remaining)-type channels. The P-, Q-, N- and R-type currents 
have been mainly identified in neuronal and endocrine tissues, whereas L- 
type current (CZ,o o%, o~,~, ofiF) have been found in skeletal, heart and smooth 
muscles, in fibroblasts and kidney, but also in neuronal and endocrine tis- 
sues. N-type current is mediated by o% channels and is blocked specifically 
by c0-conotoxin GVIA (100-500 nM) and MVIIC (> 100 riM). P-type current 
is mediated by o~,, channels and is blocked by the funnel web spider toxin o- 
agatoxin (< 10 nM) and c0-conotoxin MVIIC (5-30nM) (Sather et al. 1993; 
Zhang et al. 1993; McDonough et al. 1996). The Q -type current, which may 
be mediated by o~,, channels, is blocked by c0-conotoxin MVIIC (> 100 nM) 
and o-agatoxin IVA (> 10 nM) (Sather et al. 1993; Zhang et al. 1993). L-type 
channels are readily blocked by the three groups of classical calcium channel 
blockers, i.e., the dihydropyridines, phenylalkylamines and benzothi- 
azepines. The functional role of L-type channels is rather diverse. In skeletal 
muscle they are crucial for excitation-contraction (e-c) coupling, which does 
not require an influx of calcium through the channel (Rios et al. 1992). In 
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heart, they are necessary for the generation of electrical impulses and for the 
initiation of contraction in atrial and ventricular muscle and in the smooth 
muscle they are involved in tension development. In neurons, L-type chan- 
nels provide the calcium for activation of small conductance, calcium- 
activated K ÷ channels (Marrion et Tavalin 1998). They do not participate in 
neurotransmitter secretion, a process which is linked in many neuronal cells 
to N- and P/Q-type channels. R-type channels (a~E) have been identified by 
cloning as a major neuronal calcium channel (Niidome et al. 1992; Soong et 
al. 1993; Schneider et al. 1994). 

A.II. I. I The L-Type a~ Channels 

The class S c~ 1 gene 

The complete cDNA sequence of the class S gene was originally cloned from 
rabbit skeletal muscle (Tanabe et al. 1987). Two isoforms of this calcium 
channel type can be identified in rabbit skeletal muscle: a 212 kDa polypep- 
tide equivalent to the full length calcium channel transcript and a smaller 
190 kDa protein, which is derived from the full length product by posttrans- 
lational proteolysis. This short form represents about 95% of the total C~s 
calcium channel protein (De Jongh et al. 1991) (Fig. 3a). 

The class C % gene 

The class C gene is expressed in heart and smooth muscle and in endocrine 
and neuronal cells. The human gene for the %c subunit is localized to the 
distal region of chromosome 12p13 (Schultz et al. 1993). The gene spans 
about 150 kb and is composed of 44 invariant and more than 6 alternative 
exons (Soldatov 1994). The % subunit of the cardiac (tx,c.,; Mikami et al. 
1989) and smooth muscle (%c-b; Biel et al. 1990) calcium channel differ only 
at four sites and share 95% identical amino acids. Molecular analysis showed 
that the alternatively spliced exon 8, which codes for the IS6 segment, is 
differentially expressed in cardiac and vascular smooth muscle and is re- 
sponsible, in part, for the different DHP sensitivity of the cardiac and vascu- 
lar smooth muscle L-type current (Welling et al. 1997). Two additional splice 
forms have been cloned from rat brain (Snutch et al. 1991) and human heart 
(Schultz et al. 1993). The brain clone is identical with the %c-b sequence but 
lacks the insert in the repeat I/II loop and contains a 3 amino acid insert in 
the repeat II/III loop and a 20 amino acid extension at the carboxy terminus. 
The human heart clone has a short amino terminus (start at Met 60 of the 
~,c-a) and an insert of 71 amino acids after Ser 1643 of the a,c_aclOne. 
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Fig. 3. Suggested topology of the L-type (a) and non L-type (b) calcium channel % 
subunits. The putative transmembrane configuration is based on the hydrophobicity 
analysis of the primary structure. The amphipathic segment that forms the voltage 
sensor of the channel is indicated by a +. The channel pore and selectivity filter is 
formed by a short a-helical segment and the connecting loop between this region 
and the sixth transmembrane segment. Grey boxes indicate regions involved in 
activation or inactivation kinetics. (p) indicates sites for cAMP kinase or protein 
kinase C (PKC). e-c coupling, excitation-contraction coupling; fl, binding site for the 
calcium channel t] subunit; Gfly, interaction sites with G protein fly subunit; Ca ~*, 
Ca 2. dependent inactivation. Syntaxin and SNAP25, binding sites for synaptic mem- 
brane proteins 

The class D % gene 

The cD~IA of the class D gene was isolated from neuronal and endocrine 
tissues and represents a neuroendocrine-specific L-type calcium channel 
(Williams et al. 1992b; Seine et el. 1992). Expression of c% cDNA in different 
host cells resulted only in a small dihydropyridine sensitive inward current, 
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indicating that the native channel may contain an additional, so far un- 
known subunit. 

The class F (z, gene 

Analysis of the locus for the incomplete form of X-linked congenital station- 
ary night blindness (CSNB2) identified mutations in a new L-type calcium 
channel ~, subunit as the cause of the disease (Strom et al. 1998; Bech- 
Hansen et al. 1998). The gene for the ~,F subunit is localized at Xp11.23. The 
F channel shows a 55-62% overall amino acid sequence identity with other 
L-type calcium channel ~ subunits. Apparently, this channel is expressed 
specifically in the retina and required for optimal night vision. 

A.II. 1.2 The Non L-Type cfi Channels 

The class A ~ gene 

Transcripts of the class A channel are present at high levels in the mammal- 
ian brain and peripheral nervous system (Mori et al. 1991; Starr et al. 1991). 
Because the cx~̂  transcripts are expressed in many neurons shown to possess 
P- and Q-type channels and because the properties of ~,^ exhibits similari- 
ties to both of these channels (Stea et al. 1994), the class A cDNA is referred 
to as P/Q-type calcium channel (Fig. 3b). 

The dass  B ~, gene 

The class B gene has been doned exclusively from brain (Williams et al. 
1992a; Dubel et al. 1992; Fujita et al. 1993). Expression studies using dysgenic 
myotubes or Xenopus ooc~es revealed that oh, induced a barium current 
which is inhibited by low concentrations of o-conotoxin GVIA (Fujita et al. 
1993; Williams et al. 1992a). These results identify the ~,, channel as the 
neuronal N-type calcium channel The ~,, subunit also binds 0~-conotoxin 
GVIA with high affinity (Dubel et al. 1992) at the extracellular side (Ellinor 
et al. 1994). Chimeras between the ~1, and ~,^ subunit indicated that each 
repeat contributes to the binding pocket with the pore region of repeat III 
being the most important determinant (E11inor et al. 1994). 

The class E ~1 gene 

The sixth gene has been cloned from rat, rabbit and human brain libaries 
(Niidome et al. 1992; Soong et al. 1993; Williams et al. 1994; Schneider et al. 
1994). Initially, this channel was characterized as a LVA T-type channel 
(Soong et al. 1993). However, later studies showed (Williams et al. 1994; 
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Schneider et al. 1994) that the expressed c~,~ channel has the activation and 
inactivation kinetics of a HVA neuronal channel. The human and rat %E 
currents have some properties in common with the R-type currents ob- 
served in cerebellar granule cells (Ellinor et al. 1993; Randall and Tsien 
1997). 

All. 1.3 The Low Voltage-Activated a, Channels 

The class G, H and I genes 

The recently cloned class G and H c~, subunits are LVA calcium channels, 
which have the basic electrophysiological characteristics of T-type channels 
(Perez-Reyes et al. 1998a; Cribbs et al. 1998). The G gene localizes to human 
chromosome17q22 and is expressed strongly in brain and less abundantly in 
heart. The expressed channel has a single channel conductance of 7.7 pS in 
115 mM Ba 2+. The Ca ~÷ current through expressed c~,~ is blocked half maxi- 
mally by Ni 2+ at 1.1 mM. The mibefradil block is slightly voltage dependent 
with ICso values of 0.4 pM and 0.1 pM at holding potentials (HPs) of-100 mV 
and -60 mY, respectively (Klugbauer et al. 1999b). The H gene localizes to 
the human chromosome 16p13.3 and is expressed strongly in kidney, at in- 
termediate levels in heart and at low abundance in brain. The expressed 
channel has a single channel conductance of 5.5 pS and is blocked by mibe- 
fradil with an ICso of 1.4 pM at HP -90 mV (Cribbs et al. 1998). The expressed 
(~IG subunit is inhibited with high affinity by the scorpion toxin "kurtoxin" 
(Chuang et al. 1998). 

A.II.2 Auxiliary Subunits of the Calcium Channel 

A.IL2.1 The a265ubunit 

The skeletal muscle (~26-1 subunit is a highly glycosylated membrane pro- 
tein of 125 kDa (Ellis et al. 1988). The protein is posttranslationally cleaved 
to yield a disulfide-linked % and 6 protein (for older literature see Hofmann 
et al. 1994; Catterall 1995; De Waard et al. 1996a). The 6 part anchors the % 
protein to the % subunit via a single transmembrane segment, whereas the 
% protein is localized extracellularly. This membrane topology of the %6 
subunit was confirmed and further refined (Wiser et al. 1996; Gurnett et al. 
1996, 1997; Felix et al. 1997). Recent evidence suggests that part of the %6-1 
subunit still binds to the plasma membrane after deletion of the transmem- 
brane segment of the 6 protein (Brown and Gee 1998). Extensive splicing of 
the %6 subunit results in at least five different isoforms, which are expressed 
in a tissue-specific manner (Angelotti and Hofmann 1996). Two additional 
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(x~5 genes, i.e., (Z2~5-2 and ch6-3 have been identified recently (Klugbauer et 
al. 1999a). The primary structures of the novel 0h5-2 and cx28-3 subunits are 
about 50% and 30% identical to the c~6-1 subunit, respectively. Northern 
blot analysis indicates that ch5-3 is expressed exclusively in brain, whereas 
0h6-2 is found in several tissues including heart and cx~6-1 is expressed 
ubiquitously. In situ hybridization of mouse brain sections showed mRNA 
expression of a~6-1 and cx~6-3 in the hippocampus, cerebellum and cortex, 
with c~8-1 strongly detected in the olfactory bulb and ch8-3 in the caudate 
putamen. The number of putative glycosylation sites and cysteine residues, 
hydropathicity profiles and electrophysiological character of the ¢x,8-3 
subunit are similar to those of the c~,8-1 subunit, if expressed together with 
the c~c and cardiac fl~a subunit (Klugbauer et al. 1999a). In general, coex- 
pression of the ~,8-1 subunit with cx, and ~ subunits shifts the voltage- 
dependence of channel activation and inactivation in a hyperpolarizing di- 
rection, accelerates the kinetics of current activation and inactivation and 
increases the current amplitude (Singer et al. 1991; De Waard et al. 1995a; 
Gurnett et al. 1996, 1997; Bangalore et al. 1996; Felix et al. 1997; Qin et al. 
1998b; Klugbauer et al. 1999a). Some inconsistencies in reported results can 
be accounted for by the experimental conditions, as various expression sys- 
tems (Xenopus oocytes or mammalian cell lines), different charge carriers 
(Ba ~+ or Ca2+), different splice variants of the ot~5-1 subunit, different cfi (or,c, 
al^, cc,~) and 13 (13,, 135, [53 or B4) subunits were used. Detailed analysis of the 
effects of the o h and 5 proteins suggests (Gurnett et al. 1996, 1997; Felix et al. 
1997) that the extracellular c h protein enhances current density and the 
affinity for the DHP isradipine, whereas the transmembrane segment of the 
6 protein interacts with repeat III and some additional parts of the channel 
(Gurnett et al. 1997). Changes in the channel kinetics are associated with the 
expression of the 6 protein. 

The mechanism whereby oh6 modulates the conductance of c~ is not 
clearly understood. The increase in current density can be partly accounted 
for by improved targeting of expressed a, subunits to the cell membrane 
(Shistik et al. 1995). The effects of the coexpression of the a~5 subunit on 
time course and/or voltage dependence on current activation and inactiva- 
tion also suggests a specific modulation of channel gating. In the presence of 
the ch5-1 subunit, the open probability of the channel is enhanced without a 
change in the mean open time (Shistik et al. 1995), and the amount of charge 
moved during channel activation increases (Bangalore et al. 1996; Qin et al. 
1998b). This increase in charge movement was coupled to an increased and 
an unchanged maximal conductance, when the L-type cqc calcium channel 
(Bangalore et al. 1996) and the neuronal cx,r channel (Qin et al. 1998b) were 
used, respectively. Shirokov (1998) reported that ot,8-1 speeds up the trans- 
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fer of the Oqc channel into a slowly inactivated state and slows down its re- 
covery from inactivation. These changes in channel gating may underlie the 
observed effects on the inactivation of the whole cell current. 

The anticonvulsant drug gabapentin binds stereospecifically with high 
affinity (K D 37.5 nM) to the cx26-1 subunit (Gee et al. 1996; Brown and Gee 
1998). Through C-terminal deletion mutagenesis of the 5 polypeptide, a 
segment was identified (residues 960-994) that is required for correct as- 
sembly of the gabapentin binding pocket. These residues are outside of the 
putative transmembrane segment of the 5 protein. The pharmacological 
significance of this high affinity binding site is not clear. Block of HVA cal- 
cium channels has not been observed or has been reported to occur at 1- 
10 ~tM gabapentin (Taylor et al. 1998; Stefani et al. 1998). 

A.II.2.2 The 8-Subunit 

The f~ subunits are intracellularly located proteins ranging from 50 to 72 
kDa. Four genes - ill, t]2, f13 and f14 - have been identified (Ruth et al. 1989; 
Hullin et al. 1992; Perez-Reyes et al. 1992; Castellano et al. 1993) which give 
rise to several splice variants. A primary structure alignment of fl subunits 
revealed that all share a common central core, whereas their N- and C- 
termini and a part of the central region differ significantly. Coexpression of 
a fl subunit with various a, subunits increases peak current (Singer et al. 
1991) most likely by increasing the number of functional surface membrane 
channels and by facilitating channel pore opening (Neely et al. 1993; ]o- 
sephson and Varadi 1996; Kamp et al. 1996). With the exception of the rat 
brain fl2a, all other fl subunits accelerate channel activation and inactivation 
and shift the steady state inactivation curve to hyperpolarized membrane 
voltages (Singer et al. 1991; Wei et al. 1991; Hullin et al. 1992; Castellano et 
al. 1993). All four fl subunits combine with the neuronal (x, subunits (Scott et 
al. 1996; Liu et al. 1996; Ludwig et al. 1997; Pichler et a1.1997; Volsen et al. 
1997; Vance et al. 1998). The brain expression of the fl, subunit increases 
about 10 fold between postnatal day 2 and maturity, during which time it 
associates with N- and P-type channels (Vance et al. 1998). In lethargic mice, 
ataxia and seizures are associated with mutation of the fl, subunit (Burgess 
et al. 1997). The lethargic phenotype could be caused by the persistence of 
an immature N-type calcium channel coassembled with the 6,b subunit 
(McEnery et al. 1998). In contrast to neuronal calcium channels, the skeletal 
and cardiac muscle calcium channels are associated apparently exclusively 
with the fl,a and cardiac fl2a subunits, respectively (Ruth et al. 1989; Ludwig et 
al. 1997; Qin et al. 1998a). 



Voltage-Dependent Calcium Channels: From Structure to Function 45 

~ :MVQKTSMSRGPYPPS QEIPMEVFDPSPQGK YSKRKGRFKRSDGST SSDTTSNSFV.RQ 

~2,neuronal : M .......................................... QC CGLVHRRRVRVSY 

~,.cardiac :MLDR ................................ HLAAPH ......... TQGL~L E 

~,~ :MNQASGLDLLKISY .............. GK GARRK//RFKGSDGST SSDTTSNSFY.RQ 

~, :M ........................................... Y DDSYVPGFEDSEA 

~ :M ...... SSSYAKNG AADGPHSP$SQVARG TTTRRSRLKRSDGS .... TTSTS~ILRQ 

NI--I2- ~~]_COOH 
" ~ AID 

~2.neur°nal:[ - ] 18 

~2, cardiac :[--I 17 

~2~ : [ 1 45 
~3 : ~ 17 
8, :[ I 48 

Fig. 4. Comparison of the primary structures of calcium channel fl subunits. (Top) 
Sequence alignment of the four different t] subunit genes and their splice variants. 
(Middle) Scheme of organization of the fl subunit. The regions of high and low de- 
grees of sequence conservation are shown in grey (first domain, second domain) and 
white, respectively. AID, interaction site ~vith the calcium channel a, subunit 
(Bottom) relative length of amino terminus 

Differential splicing of the primary transcripts of fl, results in the expres- 
sion of at least three isoforms (Ruth et al. 1989; PragneU et al. 1991; Williams 
et al. 1992b) (Fig. 4). B,, is exclusively expressed in skeletal muscle together 
with the a,s, a26-1 and y, subunits, whereas the other two isoforms offl, were 
identified in brain and spleen (Powers et al. 1992). Deletion of the ft, gene in 
mice leads to perinatal lethality (Gregg et al. 1996). The absence of the fl~ 
subunit lowers the concentration of the a,s subunit in skeletal muscle and 
impairs thereby e-c coupling. Coexpression of the brain splice variant fl,b, 
but not the skeletal muscle fl~, variant, together with the a,s, a~5-1 and 3', 
subunits has been reported to induce measurable inward current in oocytes 
suggesting that this specific splice variant has significant effects on the 
properties of the skeletal muscle calcium channel (Ren and Hall 1997). 
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The f12 gene is expressed abundantly in heart and to a lower degree in 
aorta, trachea, lung and brain (Biel et al. 1991), whereas the t~3-specific 
mRNA is detectable in brain and different smooth muscle tissues (Hullin et 
al. 1992; Ludwig et al. 1997). The t] 2 transcript is extensively spliced resulting 
in at least four different isoforms (Perez-Reyes et al. 1992; Hullin et al. 1992) 
Fig. 4). The rabbit cardiac t~2a (Hullin at al. 1992) and the rat brain fl2a (Perez- 
Reyes et aL 1992) are N-terminal splice variants of the same gene. The rat 
brain i~, has two cysteines at position 3 and 4 which are palmitoylated in 
vivo (Chien et al. 1996; Qin et al. 1998a). The t~2, expressed in rabbit heart 
does not contain the amino terminal cysteines (Qin et al. 1998a) and is iden- 
tical to the cloned cardiac fl2a (Hullin et al. 1992). Coexpressed with the al~ 
subunit, the brain i]2a reduces the rate at which CqE inactivates in response to 
depolarization and causes a rightward shift in the steady-state inactivation 
curve. The brain fl2a subunit does not support facilitation of the (x,c current 
(Olcese et al. 1994; Qin et al. 1998a). It prevents prepulse potentiation caused 
by G protein fl)' subunit interaction with neuronal cq subunits (Herlitze et al. 
1996). Prevention of the palmitoylation of the brain t~2a by mutation of the 
two cysteines to serines changes its properties to that of the cardiac t~2a, i.e. 
the mutated ~2a subunit shifts the steady-state inactivation curve to hyperpo- 
larized potentials, supports facilitation of the oqc current and interferes 
poorly with block of cz,E channel by carbachol (Qin et al. 1998a). The extent 
of palmitoylation is affected by mutation in other regions of the neuronal fl 
subunit, i.e. in a src homology 3 motif and in the t3 subunit interaction do- 
main (Chien et al. 1998) (see also under B.II.2). 

A. II. 2.3 The ySubunit  

The )'l subunit is an integral membrane protein consisting of 222 amino 
acids with a predicted molecular mass of 25 kDa (Bosse et al. 1990; Jay et al. 
1990), which is exclusively expressed in skeletal muscle (Eberst et al. 1997). 
Recently, a second 72 subunit has been identified in brain which has 25% 
identity with )', and whose expression is highest in cerebellum, olfactory 
bulb, cerebral cortex, thalamus, CA3 and dentate gyrus of the hippocarnpus 
(Letts et al. 1998). Additional putative y subunits )'3 and )'4 have been identi- 
fied (Klugbauer et al. 1999c). The )'~ clone is highly homologous to the )'2 
subunit and expressed mainly in various brain regions. The )', clone has 25% 
identity with the )'1 subunit and is present in muscular and other non- 
neuronal tissues. The human )'l and 3'2 subunits are encoded on chromo- 
some 17q23 and 22q12-13, respectively (Powers et al. 1993; Letts et al. 1998). 
Hydrophobicity analysis reveals the existence of four putative transmem- 
brane helices with intracellular amino- and carboxy-termini. The presence 
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of two extracellular potential N-glycosylation sites is consistent with the ob- 
served strong glycosylation of these subunits. Coexpression of each 3, 
subunit together with ct,, tx28 and fl subunits in oocytes induces a shift in the 
steady-state inactivation curves in the hyperpolarizing direction (Singer et 
al. 1991; Letts et al. 1998). The Y2 gene is mutated in stargazer mice leading to 
spike-wave seizures characteristic of absence epilepsy with accompanying 
defects in the cerebellum and inner ear (Letts et al. 1998). 

B.I Functional Domains of the co, Subunit 

B.I.1 The Pore and Ion Selectivity Filter 

Part of the pore structure of the calcium channel is formed by the linker 
connecting the $5 and $6 transmembrane segments in repeats I to IV (Guy 
and Conti, 1990). This P region is thought to contribute to the outer vesti- 
bule of the channel pore and to span the outer half of the membrane. In 
analogy to the recently obtained crystal structure of the Streptomyces 
lividans potassium channel (Doyle et al. 1998), the calcium channel pore 
can be envisioned to have the structure of an inverted teepee with the vertex 

Fig. 5. Proposed structure of the calcium channel complex with transmembrane 
segments of two repeats. The model has been designed according to the structure of 
the Streptomyces lividans potassium channel 
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inside the cell. The helices of the four $6 segments would form the poles of 
this teepee, which are widely separated near the outer membrane surface 
and converge towards a narrow zone at the inner surface. This outer struc- 
ture would stabilize an inner ring formed by the four P-regions, which con- 
trol the speed of permeation and the ion selectivity (Fig. 5). 

Mutational analysis of the ct~c (Tang et al. 1993; Yang et al. 1993) and (x~A 
(Kim et al. 1993) channel has shown that the four glutamic acid residues 
E413, E731, Ell40 and E1441 (amino acid numbering is according to the c~c . 
sequence (Biel et al. 1990)) in the P regions of repeat I, II, III and IV are 
critical in determining the ion selectivity of the calcium channel. Equivalent 
glutamates are present in all HVA calcium channels. Mutation of these glu- 
tamates decreased dramatically the ability of Ca ~÷ or Cd 2÷ to block monova- 
lent ion permeation (Yang et al. 1993; Kim et al. 1993; Yatani et al. 1994; 
Ellinor et al. 1995; Parent and Gopalakrishnan 1995). The studies showed 
that these glutamates form the high affinity Ca 2÷ binding site responsible for 
the Ca ~÷ selectivity within the pore. The glutamic acid residues of each repeat 
contribute differently to the Ca 2÷ affinity, selectivity and speed of permeation 
(Tang et al. 1993; Parent and Gopalakrishnan 1995; Ellinor et al. 1995). Mu- 
tation ofEl140 in repeat III has a much greater effect on ion selectivity and 
permeation than comparable mutations in the other three repeats. LVA 
channels have aspartates instead of glutamates in the pore of repeat III and 
IV. This difference may be the cause of their distinct ion selectivity (Perez- 
Reyes et al. 1998a; Cribbs et al. 1998; Klugbauer et al. 1999b). 

To explain rapid permeation of calcium ions, different models have been 
discussed with one or two - high and low affinity - site(s) for Ca 2. (Hess and 
Tsien, 1984; Tsien et al. 1987; Rosenberg and Chen, 1991; Armstrong and 
Neyton 1991; Kuo and Hess, 1993). In a recent study, Ellinor et al. (1995) 
demonstrated that these glutamates form a single high affinity Ca ~* site 
within the pore. This site may be accessed by two Ca 2. ions at the same time 
thereby allowing rapid permeation. The cloned smooth muscle (x~c. b channel 
allows rapid permeation of Ca 2÷ at physiological pH and voltages and has a 
high unitary conductance (Gollasch et al. 1996), whereas the unitary conduc- 
tance of the skeletal muscle (Z~s subunit is half that of the cardiac c~c subunit 
(Dirksen et al. 1997). The unitary conductance was reduced from that of 
cardiac to that of skeletal muscle, when the skeletal muscle ISS-IS6 linker 
was introduced into the cardiac CZ~c subunit (Dirksen et al. 1997). The net 
charges of the vestibule part of the cardiac and skeletal muscle ISS-IS6 link- 
ers are -5 and -2, respectively. It is plausible that the more negatively 
charged vestibule of the cardiac channel compared to the skeletal muscle 
channel increases conduction by electrostatic attraction of Ca 2÷ ions into the 
channel pore. 
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Increased extracellular proton (H +) concentrations which occur during 
episodes of intense neuronal activity or with ischemia in the heart strongly 
inhibit ion permeation through open calcium channels (Kuo and Hess 1993). 
A single H ÷ binding site has been invoked. Analysis of the mutated ¢xlc 
subunit localized this site to the glutamates of the pore region. Controversial 
data have been published suggesting that H ÷ binding requires either only 
El140 in repeat III (K18ckner et al. 1996) or E413 and Ell40 in repeats I and 
III (Chen and Tsien 1997). The two glutamate model may more readily ex- 
plain the unusually high pKa (pH > 8) of the protonated site than the single 
glutamate model. The interpretation of these results is further complicated 
by the observation that removal of protons increases L-type current only 
when the ~,c subunit is expressed together with the cardiac f12, subunit 
(Schuhmann et al. 1997). 

B.I.2 Channel Activation 

Mutational analysis in K + (Papazian et al. 1991; Liman et al. 1991) and Na + 
(Stiflamer et al. 1989) channels suggested that the positive charges of the $4 
segments in each repeat function as the voltage sensor. Mutation of individ- 
ual $4 arginines in repeats I and III of a skeletal/cardiac a, chimera affected 
the midpoint and time constant of activation, whereas those of repeat II and 
IV were without effect (Garcia et al. 1997). Mutation of the leucine heptad 
motif present in the region of $4-$5 in repeat I and III yielded inconclusive 
results. The speed of calcium channel activation is a property of the cx, 
subunit and is modulated by the a~5 (see under A.II.2.1) and fl (see under 
A.II.2.2) subunits. An over five-fold difference in the speed of activation was 
observed between the skeletal (slow) and cardiac (fast) cx I subunits. Func- 
tional expression of chimeric calcium channels showed that repeat I deter- 
mines the speed of activation (Fig. 2) (Tanabe et al. 1991). Initially, the $3 
segment and the linker IS3-IS4 were shown to control slow and fast activa- 
tion (Nakai et al. 1994). Analysis of several skeletal/cardiac chimeras sug- 
gests that although unitary conductance and speed of activation are encoded 
in different parts of repeat I, the linker IS5-IS6 affects not only the unitary 
conductance but also the speed of activation (Dirksen et al. 1997). In addi- 
tion, the sequence between IIIS5 and IVS6 contributes to the speed of chan- 
nel activation (Wang et al. 1995). 

B.I.3 Channel Inactivation 

HVA-calcium channels show two types of inactivation: slow and fast inacti- 
vation. Slow inactivation is voltage-dependent, whereas fast inactivation is 
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caused by the permeating calcium ion. The kinetics of slow/voltage- 
dependent inactivation, which is observed with all HVA calcium channels, 
differ considerably between the various types of calcium channels and are 
important in determining the amount of calcium entry during electrical 
activity. The IS6 segment and its flanking regions are critical for the inacti- 
vation properties of the channel (Zhang et al. 1994) as determined with chi- 
meric (z, subunits of channels with different inactivation rates, i.e. the (x, 
subunits of the class C, class A and doe-l, an cq subunit cloned from the 
marine ray Discopyge ommata. Chimeras between the (x,c and ~ls calcium 
channels confirmed this conclusion (Parent et al. 1995). However, inactiva- 
tion of the (x~c channel is also controlled by the intracellular carboxy termi- 
nal sequences (Wei et al. 1994). Removal of the carbox T terminus of the (X,c. a 
or ~,c-b subunit up to aa 1733 or 1728, respectively, increases the expressed 
current (Wei et al. 1994; K16ckner et al. 1995; Seisenberger et al. 1995) with- 
out increasing the charge moved or the density of DHP binding sites (Wei et 
al. 1994). Therefore, truncation of the channel up to aa 1733 does not in- 
crease the number of channels but removes an inhibitory action of the car- 
boxy terminus. Similar results have been obtained in vivo by perfusion of 
cardiac myocytes with trypsin (Hescheler and Trautwein 1988). However, 
the trypsinized channel lost its calcium sensitivity, whereas the truncated 
channel still showed calcium-dependent inactivation. 

Calcium-sensitive inactivation of (x,c channels is a biological negative 
feedback mechanism, by which the increase of intracellular calcium speeds 
up channel inactivation and prevents calcium overload of the cell. Using the 
L-type calcium current of guinea pig cardiac myocytes, Hescheler and 
Trautwein (1988) showed that intracellular application of trypsin or car- 
boxypeptidase increased the amplitude of calcium or barium currents and 
decreased calcium dependent inactivation. The trypsin dependent increase 
in current amplitude was confirmed by others (Schmid et al. 1995; You et al. 
1995), whereas the loss of calcium-dependent inhibition was seen by You 
(You et al. 1995) but not by Schmid (Schmid et al. 1995). These discrepancies 
were clarified by the use of the cloned ~, subunits (Fig. 2). Fast/Ca 2+- 
dependent inactivation is especially prominent in the cardiac and the 
smooth muscle channels and requires only the ~,c subunit (Welling et al. 
1993b; Neely et al. 1994; Zong and Hofmann 1996). Intracellular Ca 2+ inacti- 
vates the calcium current by binding to a single site with an ICs0 of 4 ~M Ca 2+ 
(H6fer et al. 1997) supporting the hypothesis of the presence of a single EF 
hand (Babitch 1990). Exchange of amino acids between residues 1572 and 
1651 by exons only found so far in the cc,c gene increases the speed of inacti- 
vation and, depending on the substitution, removes calcium dependent 
inactivation (Soldatov et al. 1998; Zfihlke and Reuter 1998). Exchange of the 
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same region of c~,c sequence for those of Or,E, a calcium insensitive channel, 
also results in a loss of calcium-dependent inhibition (de Leon et al. 1995; 
Zhou et al. 1997). However, no agreement exists on the importance of the EF 
hand binding motif, since its exchange or removal affected calcium sensitiv- 
ity (Soldatov et al. 1998; Ztihlke and Reuter 1998) or had no effect (Zhou et 
al. 1997). Further complication comes from the work of Adams and Tanabe 
(1997). An ctlc/C~s chimera, in which the carboxy terminal tx,c sequence 1633 
to 2166 was replaced by the skeletal muscle sequence 1510 to 1873, had lost 
calcium-dependent inactivation. However, the same chimera, in which the 
last 211 amino acids from the skeletal muscle (sequence used 1510 to 1662) 
were removed, regained Ca2*-dependent inactivation. It is quite likely that 
these very different sequence modifications affected either the Ca 2÷ binding 
site or the conformation of the carbox'y terminus that mediates channel 
inhibition or both. Agreement exists only in sofar as that Ca2+-dependent 
inactivation requires only the cz~c subunit and binding of Ca 2÷ to the in- 
tracellular amino acid stretch between residues 1513 and approximately 
1700. 

B.II Sites for Interaction with Other Proteins 

The % subunit interacts with a number of proteins such as its auxiliary tx~8, 
fl and y subunits and proteins such as the G protein fly subunit, the ryano- 
dine receptor and proteins necessary for fusion of neurosecretory vesicles 
with the presynaptic membrane. The potential interaction sites for the y 
subunit and the %8 are unknown or have been outlined above (see 
A.II.2.1).The major sites for interactions are the cytosolic loops between 
repeats I and II, II and III and the carbox-y terminal taft sequence. Proteins 
which interact with the loop I-II and the C-terminal sequences usually mod- 
ify channel kinetics, whereas loop II-III transduces the signal to intracellular 
partners. 

B.II.I Interaction of the cz I Subunit with the Ryanodine Receptor 

In cardiac muscle, e-c coupling does not require a direct contact between the 
calcium channel and the ryanodine receptor type 2 (RyR-2). Calcium release 
from the sarcoplasmic reticulum (SR) is triggered by the calcium flowing 
through the open L-type oc,c calcium channel into a restricted space between 
the plasma membrane and the SR (Sham et al. 1995). In contrast, in skeletal 
muscle e-c coupling requires direct coupling between the oti s subunit and 
the ryanodine receptor type 1 (RyR-1). The cytoplasmic loop between re- 
peats II and III of the Ohs subunit, but not that of the Ohc subunit, affects 
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ryanodine binding to the skeletal muscle RyR-1 and induces calcium release 
from the skeletal muscle SR (Tanabe et al. 1990). The Ct,s subunit can be 
replaced by a peptide containing the skeletal sequence E666 to L791 (Lu et 
al. 1994). Later refinement of this peptide showed i) that phosphorylation of 
$687 (RShrkasten et al. 1988) in the peptide E666-E726 prevents activation 
of calcium release from the SR (Lu et al. 1995), ii) that activation of RyR-1 
requires only the sequence T671-L690 (E1-Hayek et al. 1995) which contains 
the essential basic cluster RKRRK (E1-Hayek and Ikemoto 1998), iii) that 
activation of the RyR-1 by the peptide T671-L690 is prevented by the pep- 
tide E724-P760 which is localized in the carboxy terminal part of the II-III 
loop of C~ls (E1-Hayek et al. 1995). Using a,s/a,c chimeras expressed in dys- 
genic myotubes, Nakai and coworkers (1998b) have slightly revised the site 
which interacts with the RyR-1. Transfer of the skeletal muscle sequence 
between residues 711-765 to a cardiac a,c subunit yields skeletal muscle type 
e-c coupling. The core region between residues 725-742 is necessary for e-c 
coupling but gives only a weak response (Nakai et al. 1998b). 

Activation of the RyR-1 is not affected by truncation of the intracellular 
tail of the a~s sequence at N1662 suggesting that this part of the tail is not 
necessary for normal e-c coupling in skeletal muscle (Beam et al. 1992). 
RyR-1 expression is not only necessary for normal e-c coupling, but also for 
a high density of the DHP receptor complex in skeletal muscle (Nakai et al. 
1996) and neurons (Chavis et al. 1996). Work with chimeric RyR-1/RyR-2 
showed that the sequence from aa 1635 to 2636 of the RyR-1 couples to the 
c~lS subunit of the DHP-receptor, increases the density of the DHP receptor 
complex and is necessary for calcium release from the SR (Nakai et al. 
1998a). In addition, the carboxy terminal sequence aa 2659-3720 couples to 
the DHP-receptor complex as evidenced by an increase in calcium current, 
but does not allow calcium release from the SR (Nakai et al. 1998a) suggest- 
ing multiple contact sites between the skeletal muscle calcium channel 
complex and the cytosolic part of the RyR-1. 

The in vivo interaction between the (~c or (~,s subunit and RyR-2 or RyR-1 
may depend on the presence of a 22 kDa protein, named sorcin. Sorcin im- 
munoprecipitates with the cardiac (x,c and the skeletal muscle a,s protein 
(Meyers et al. 1998). C-terminal peptides from the a,c subunit suggest that 
sorcin binds to the sequence between residues 1622 and 1748. This sequence 
is N-terminal of the putative truncation site at residue 1870 and suggests 
that interaction with small peptides may be necessary to couple the calcium 
channel with the ryanodine receptor and to trigger calcium release from the 
sarcoplasmic reticulum in heart and skeletal muscle. 
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B.II.2 Interaction of Ca 2÷ Channels with Synaptic Vesicle Proteins 
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Neurotransmitter release is initiated by influx of Ca 2. through voltage- 
activated N- and P/Q-type calcium channels within 200 0s of the action po- 
tential arriving at the synaptic terminal, as the Ca 2+ concentration increases 
from 100 nM to > 200 oM. Exocytosis requires a high Ca 2÷ concentration 
with a threshold of 20-50 oM and half-maximal activation at 190 ~tM. The 
synaptic membrane proteins syntaxin, synaptosome-associated protein of 
25 kDa (SNAP25), and vesicle-associated membrane protein (VAMP)/syna- 
ptobrevin, are thought to form a synaptic core complex (SNARE), which 
mediates vesicle docking and membrane fusion. Synaptotagmin may be the 
low affinity Ca ~÷ sensor, but other Ca 2  ̀sensors are involved as residual neu- 
rotransmission persists in synaptotagmin deficient mice (for details see 
Siidhof 1995; Siidhof and Rizo 1996). The close proximity of calcium chan- 
nels and neurotransmitter containing vesicles in the presynaptic terminal is 
a prerequisite for synaptic transmission. The synaptic membrane proteins 
syntaxin and SNAP25 bind to the sequence 713-933 of the a~^ subunit, which 
is present in the intraceUular loop between repeat II and III (Leveque et al. 
1994; Sheng et al. 1994, 1996). The interaction is optimal at a Ca 2~ concentra- 
tion of 15 ~M and falls off at lower and higher Ca 2+ concentrations. Syntaxin 
1A interacts with the cx,B loop II-III sequence with its membrane anchor 
between residues 181-288 (Sheng et al. 1994). The same site, identified as a 
"synprint" site, also interacts with the SNARE complex in vitro and in vivo. 
An identical site is present in the II-III loop of the cx~̂  subunit (residue 722- 
1036 of the rabbit BI clone (Mori et al. 1991)), which binds syntaxin and 
SNAP25 calcium-independently (Martin-Moutot et al. 1996; Rettig et al. 
1996; Kim and Catterall 1997). Synaptotagmin I binds to the same site in 
both channels calcium independently with its calcium binding site C2B in 
vitro (Charvin et al. 1997; Sheng et al. 1997; Kim and Catterall 1997). This 
interaction may not occur in vivo, since syntaxin and SNAP25 bind with 
slightly higher affinity to the loop II-III sequence (40-50 nM versus 70 nM) 
(Charvin et al. 1997; Sheng et al. 1997). Phosphorylation of the synprint se- 
quence of the N-type channel by protein kinase C and calmodulin kinase II 
up to a stoichiometry of 3-4 mole/per peptide prevents the binding of syn- 
taxin 1A, SNAP25 and the SNARE complex (Yokoyama et al. 1997). The rat 
isoform of the (x~  ̂channel (Start et al. 1991) binds SNAP25 and synapto- 
tagmin I, but not syntaxin (Rettig et al. 1996; Kim and Catterall 1997). 

The functional significance of the interactions is not dear. Coexpression 
of the ~,A or cz,~ calcium channel and syntaxin 1A in Xenopus oocytes de- 
creased channel availability, slowed the recovery from inactivation and 
shifted the voltage for steady state inactivation by -20 mV (Bezprozvanny et 
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al. 1995). These responses would suggest that interaction of the proteins de- 
creases presynaptic Ca 2+ entry. Similar experiments were reported for the 
coexpression of the %c channel with syntaxin and SNAP25 (Wiser et al. 
1996), although a physical interaction of an L-type loop II-III sequence with 
these proteins has not been reported. Injection of the synprint sequence of 
the tx,~ subunit into embryonic spinal neurons indicated that the synprint 
peptide suppressed neurotransmitter release by 25% (Rettig et al. 1997). 
Recalculations of these results implied that 70% of the vesicles formerly 
linked to the calcium channel were uncoupled by the peptide. The peptide 
would interfere with the coupling of the SNARE complex with the N-type 
channel and sever thereby vesicle docking. It is possible that assembly and 
dissassembly of the membrane vesicle complex is modulated by cysteine 
string proteins, which are molecular chaperones and bind in vitro directly to 
the loop II-III sequence of the %A subunit (Leveque et al. 1998). 

B.II.3 Interaction of the o~, Subunit with the fl Subunit 

Coexpression of a fl subunit with % subunits alters the voltage-dependence, 
kinetics and magnitude of the calcium channel current. The differences in 
reported effects most likely depend on the particular combination of both 
subunits and splice variants. These modulatory effects are the consequence 
of conformational changes in the quarternary structure resulting from the 
specific interaction of subunit surfaces (Neely et al. 1993). To identify the fl 
subunit interaction site on the % subunit, an epitope library of the a,s 
subunit was screened with a labelled fl,b subunit probe (Pragnell et al. 1994). 
The fl subunit probe binds to the cytoplasmic linker between domain I and 
II of the a, subunit (Fig. 3). A detailed analysis of different % subunits re- 
vealed that a highly conserved sequence motif, called AID for alpha subunit 
interaction domain, is reponsible for this specific interaction, i. e. 428QQ-E-- 
L-GY--WI---E445 (amino acid numbering is according to the a,c-b sequence 
(Biel et al. 1990)), positioned 24 amino acids from the IS6 transmembrane 
domain in each a, subunit. Further mutations showed that only the se- 
quence -437Y--WI441- is essential for high affinity binding of the fl subunits 
(DeWaard et al. 1996b). Mutation of the tyrosine to a serine (-Y--WI- to -S-- 
WI-) reduces the affinity of the AID for fl subunits dramatically (Witcher et 
al. 1995). This mutation abolishes the increase of peak currents and the 
changes in the inactivation kinetics and the voltage-dependence of activa- 
tion by the fl subunit (DeWaard et al. 1996b). In a biochemical assay, De 
Waard and collegues (1995b) showed that the AID of the alA subunit binds 
f14 with a K D of 5 nM. The relative affinities for the various fl subunits to the 
AID^ were fl4>fl2a>fllb>>fl3. A second low affinity binding site (K D about 
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100 nM) for the f14 and f13 subunit has been detected in the carboxy terminal 
sequence of the a,^ subunit between residues 2090 and 2424 (Walker et al. 
1998). The neuronal fl2a subunit binds with the homology domain D4 
(residue 206-414) to the ohE subunit between residues 2035 and 2068 
(Tareilus et al. 1997; Qin et al. 1997). 

Since all four fl subunits can modulate the kinetics and voltage depend- 
ence of the ~ subunit and bind to the AID, it is likely that fl subunits contain 
a conserved motif, which binds to AIDs. To identify this structural domain, 
a series of truncated and mutated fl~b subunits was constructed and it was 
tested whether they interact with (x,^ in vitro (De Waard et al. 1994). A 30 
amino acid domain of the fl subunit (aa 215-245 offl,b) is sufficient to induce 
all the modulatory effects of this subunit. This sequence stretch is located at 
the amino terminus of the second region of high conservation among all 
four fl subunits. Modifications in this region changed or abolished the 
stimulation of calcium currents by the fl subunit and the binding to the o~ 
subunit. This central core region of the fl subunit is also required to relocate 
the ot~c subunit from the ER to plasma membrane (Gao et al. 1999). 

Deletion of the fl~ subunit gene showed that a proper targeting of the C~,s 
subunit in skeletal muscle depends on the coexpression of the fl,a subunit 
(Gregg et al. 1996). Transient transfection of the tim cDNA in deficient myo- 
tubes restored Ca 2÷ current, charge movement and Ca ~+ transients (Beurg et 
al. 1997). Slightly different results were reported when the homozygous dys- 
genic (mdg/mdg) cell line GLT was used (Neuhuber et al. 1998a). This cell 
line does not express the Ohs subunit. Proper targeting of the ilia subunit 
required coexpression of the Ot,s subunit, in which the binding site for fl 
subunits in the I-II loop (AID) was not mutated at the essential tyrosine 
(Neuhuber et al. 1998a). Further experiments on the interaction and target- 
ing of the c~,s subunit by the fl,a or neuronal fl2a in tsA201 cells yielded similar 
results (Neuhuber et al. 1998b). The biological significance of these findings 
is not clear since i) the fl~ subunit is expressed in the absence of the (x,s 
subunit in mdg/mdg myotubes, ii) the neuronal fl~a subunit is targeted by 
palmitoylation of the two amino terminal cysteines to the plasma mem- 
brane, iii) palmitoylation of the fl2a subunit is affected significantly by muta- 
tions in the BID and other domains (Chien et al. 1998) and iv) it is difficult 
to understand how the fl subunits affect barium currents without colocaliz- 
ing with the C~,s subunit (Neuhuber et al. 1998a, b). However, clear results 
were published by Yamaguchi and collegues (1998), who expressed the ohc 
subunit in Xenopus oocytes. Injection of the fl~ subunit protein rapidly 
modulated the current kinetics and voltage dependence of activation, 
whereas a large augmentation of the peak current amplitude occurred over a 
longer time scale. Prevention of protein translocation by baftlomycin A~ did 
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not affect the modulation of the current kinetics or voltage dependence, but 
completely abolished the increase in peak amplitude. These results provide 
clear evidence that, at least in Xenopus oocytes, the fl subunit has two func- 
tions: one is an allosteric modulation of the % subunit function and the 
other is a chaperoning of the % subunit to the plasma membrane. In sup- 
port of this interpretation is the finding that the loopI-II of the % subunit 
contains a ER retention signal, which is inactivated when the fl subunit 
binds to the AID site (Bichet et al. 1999). 

B.II.4 Interaction of the % Subunit with G Proteins 

The rapid release of neurotransmitters and secretion of hormones is initi- 
ated by an increased calcium influx through presynaptic N- and P/Q-type 
calcium channels. The activities of these channels are modulated by G pro- 
tein-dependent pathways. Previous studies in neurons have identified five G 
protein-dependent pathways for N-type calcium channel inhibition (Hille 
1994). One pathway is membrane-delimited and may involve only calcium 
channels, heterotrimeric G proteins and neurotransmitter receptors. Cal- 
cium channels inhibited via this pathway exhibit positive shifts in the volt- 
age dependence of activation, slowed activation kinetics, and reduced cur- 
rent amplitude. Such channels are described as "reluctant" to open and can 
be transiently reconverted into "willing" channels by a strong depolarizing 
prepulse (Bean 1989). This reconversion is known as facilitation. Initially it 
was thought that inhibition is mediated by specific G-protein cc subunits 
(Hescheler and Schultz 1993), until Ikeda (1996) and Herlitze and coworkers 
(1996) showed that the G protein fff subunit confers the reluctant 
"phenotype" to N- and P/Q-type calcium currents. In both studies, expres- 
sion of Ga did not mediate the voltage-dependent inhibition of the channels. 
Overexpression of the G-protein g,y: and g2'{3 subunits inhibited the N- and 
P/Q-type current, respectively (Ikeda 1996; Herlitze et al. 1996). Sequence 
analysis, site directed mutagenesis and various chimeras of the a,^ (P/Q-type 
current), cqB (N-type current) and txiE (R-type current) channels showed that 
high affinity binding of the Gfl), subunit requires the sequence QXXER which 
is present in the intracellular loop between repeat I and II (Herlitze et al. 
1997; DeWaard et al. 1997; Zamponi et al. 1997; Qin et al. 1997). The QXXER 
motif is not present in L-type calcium channels, which have the sequence 
QXXEE at the same position. In agreement, L-type channels are not regu- 
lated/ inhibited by G protein fly subunits. Mutation of the QXXER motif to 
QXXEE in the %^ or ct,B subunit prevented inhibition by the Gfl), subunit 
(Herlitze et al. 1997; DeWaard et al. 1997; Zhang et al. 1996), whereas muta- 
tion of the motif QXXEE to QXXER in the %c subunit allowed regulation by 
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the Gfl,/subunits (Herlitze et al. 1997). Identical conclusions were obtained 
by Furukawa and collegues (1998a, b). These authors also showed that cur- 
rent inhibition of the %^ and %B channel could be induced by overexpres- 
sion of the Gi3 a subunit and required the intraceUular C-terminal sequence 
of the a, subunits (Furukawa et al. 1998a). They provided evidence, that the 
Gflv subunit binds directly to loop I-II and the Gi3 % subunit directly to a C- 
terminal sequence (Furukawa et al. 1998b). 

Although these results appeared to be quite dear, later work indicated 
that the functional effects of the binding of the G protein fly subunit also 
required a domain in the cytosolic loop I-II. Zhang and coworkers (1996) 
indicated that the reluctant phenotype of the N-type current required part of 
the N-terminal-repeat I and the C-terminal sequence of the or,, subunit, 
whereas Meza and Adams (1998) suggested that the loop I-II, but not the C- 
terminal sequence of the a,B subunit is necessary for the functional effects of 
the Gfly subunit. Slightly different results were reported by Qin and cowork- 
ers (1997) who used the ¢x,r subunit. The Gfly subunit bound to the I-II loop 
and to the C-terminal sequence between residues 2035-2068. Inhibition of 
the current was mediated by the C-terminal sequence. This sequence also 
bound the neuronal fl subunit of the calcium channel. Overexpression of the 
fl2a subunit inhibited the functional effects of the Gfly subunit. A competition 
between the inhibitory effect of the G protein and the calcium channel fl 
subunit had been reported earlier (Campbell et al. 1995). This group also 
suggested that the N-terminal-repeat I-loop I-II sequence and part of the C- 
terminal sequence of a~B or %~o,g is involved in the inhibition of calcium 
current (Stephens et al. 1998; Page et al. 1998). From these results, it may be 
concluded that the functional binding pocket of the Gfl,/subunit includes 
residues of the intracellular N and C-terminal sequence and part of repeat I 
and the loop I-II sequence of the a,^, a~B and %E subunit. The differences 
reported probably reflect the use of different splice variants of the or, 
subunits and of the fl subunits. 

B.III Binding Sites for L-Type Calcium Channel Agonists 
and Antagonists 

B.lil.1 The Dihydropyridine Binding Site 

The L-type calcium channel ligands represent a dinically and experimentally 
important set of blockers and agonists. The major classes of these drugs are 
the dihydropyridines (DHP), phenylalkylamines (PAA) and benzothi- 
azepines. Different techniques have been used to localize potential binding 
sites of these drugs on the calcium channel complex. Earlier experimental 
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observations from photoaffinity labelling and peptide mapping studies on 
the skeletal muscle channel revealed that all three classes bind to the trans- 
membrane region of repeat IV of the al subunit (Regulla et al. 1991; Catterall 
& Striessnig 1992; Kuniyasu et al. 1998) with additional sites on repeat III 
(Catterall and Striessnig 1992; Kalasz et al. 1993) and repeat I (Kalasz et al. 
1993) for the DHPs. These localizations were refined by the use of chimeric 
cqc/c~i^ and C~c/a~ channels and site-directed mutagenesis of single amino 
acids in the Ct~s or ct~c subunit (Fig. 6 top). High affinity block of tx~c- 
mediated barium current (IBa) by the DHP blocker isradipine or (-)R-202- 
791 is prevented by mutation of the L-type specific amino acids (amino acid 
numbering is according to the tx~c_ b sequence (Biel et al. 1990)) Thr1061 and 
Gln1065 in IIIS5 (Ito et al. 1997; He et al. 1997), Ile1175, Ile1178, Met1183 
and the conserved Tyr1174 of IIIS6 (Bodi et al. 1997; Peterson et al. 1997) 
and Tyr1485, Met1486, Ile1493 and the conserved Asn1494 in IVS6 (Schuster 
et al. 1996; Peterson et al. 1997) (Fig. 3). The largest effects were observed 
with mutation of Thrl061 to Tyr, which lowered the affinity for isradipine 
more than 1000-fold (He et al. 1997; Ito et al. 1997). The removal of stimula- 
tion of IBa by the DHP agonists Bay K 8644 or (+)S-202-791 required muta- 
tion of fewer amino acids: Thr1061 in IIIS5 (Ito et al. 1997), 

DHP 

PAA 

Fig. 6. (Top) Localization of 
interaction sites for DHP cal- 
cium channel antagonists and 
agonists on the IIIS5, IIIS6 and 
IVS6 segments. (Bottom) Lo- 
calization of interaction sites 
for PAA calcium channel an- 
tagonist on the IIIS6 and IVS6 
segments and the pore region. 
Letters on white background 
indicate residues that are dif- 
ferent between DHP-sensitive 
and -insensitive channels. 
Letters on black background 
are residues that are conserved 
in all calcium channels and 
participate in the interaction 
with different ligands 
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Tyr1174 in IIIS6 (Bodi et al. 1997) and Tyr1485, Met1486 in IVS6 (Schuster et 
al. 1996). In contrast to these mutations, the replacement of the L-type spe- 
cific Phe1484 in IVS6 by Ala decreased the ICso for the DHP blocker isradip- 
ine from 6.8 nM to 0.014 nM (Peterson et al. 1997). More or less identical 
results were obtained when the binding affinity of the mutated (x~c or ~s 
subunit for isradipine was determined (Peterson et al. 1996; He et al. 1997). 
High affinity binding of DHPs requires Ca 2÷ ions (Schneider et al. 1991), 
which are coordinated by the glutamates in the pore region I, II, III, IV 
(Mitterdorfer et al. 1995). Mutation of the respective Glu to Gin in the cqs 
pore region III and IV decreased the affinity for isradipine 10- to 40-fold 
(Peterson and Catterall 1995). Although not completely excluded, it is un- 
likely that the high affinity binding of DHPs involves direct binding to the 
pore region glutamates. Most likely, the coordination of Ca 2÷ is required to 
maintain the optimal conformation for high affinity binding. In contrast, 
isradipine binds with low affinity (ICso about 1 ~M) to the open state of an 
(x~c subunit as revealed by the use of a channel in which Tyr1485, Met1486, 
Ile1493 of IVS6 were mutated (Lacinova and Hofmann 1998). Possibly, 
binding to the pore region is involved in this low affinity block. 

The transfer of parts of the (x,c sequence to the DHP-insensitive neuronal 
~1  ̂ subunit (Grabner et al. 1996) confirmed the above concept. Detailed 
analysis using the (x~  ̂subunit (Sinnegger et al. 1997; Hockerman et al. 
1997b) or the (z~r subunit (Ito et al. 1997) showed that the L-type specific and 
the non-conserved amino acids (see above) had to be present to allow high 
affinity block and stimulation of these channels by the DHP antagonist is- 
radipine and agonist Bay K 8644. The IC~ values for block of the chimeric 
channels was in the range of 10 to 100 nM. A similar range is obtained with 
the wild type ~c  channel at a holding potential of -80 mV suggesting that 
these amino acids transfer the affinity for a "resting block". The high affinity 
block by DHPs requires inactivation of the L-type Ca ~÷ channel. Inactivation 
of the channel results in ICs0 values of 0.1 nM or less. At present, it is not 
clear if this high affinity state requires the transfer of additional amino acids 
or cannot be obtained with the a,^ and air subunit, because these channels 
inactivate at different membrane potentials leading to a different conforma- 
tion of the binding site. Testing of the different mutations of the (x~c channel 
with charged and noncharged DHPs (Bangalore et al. 1994) indicated that 
inactivation of the mutated channel affected the channel block differently. 
The noncharged DHP behaved like the commonly used isradipine (Lacinova 
et al. 1997). In contrast, the charged DHP blocked wild type and mutated ~c  
channels with similar affinities indicating that charged DHPs may bind to a 
different conformation of the channel and interact with different amino 
acids than the neutral DHPs. The involvement of additional amino acids in 
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the high affinity block of the L-type channel by DHPs is supported by the 
results with a recently cloned L-type calcium channel (z~ subunit from jelly- 
fish (Jeziorski et al. 1998). The expressed jellyfish c~ subunit contains all 
amino acids identified in IIISS, IIIS6 and IVS6 which are necessary for high 
affinity block of the mamalian ~c channel. However, this channel is neither 
blocked by isradipine at submicromolar concentrations nor stimulated by 
(-)Bay K 8644. 

The work of several groups suggested that the coexpression of a ~ and 
c~26 subunit is required for high affinity binding of DHPs (Mitterdorfer et al. 
1994; Wei et al. 1995; Suh-Kim et al. 1996; but see Lacinowt et al. 1995). How- 
ever, at present it cannot be decided, whether these subunits help to localize 
the c~ subunit in the membrane, to obtain a correctly folded c~ subunit or 
directly influence the binding site. It was reported that high affinity binding 
of DHPs is already observed when the ale subunit was expressed alone 
(Welling et al. 1993a). Investigation of several splice variants of the ec~c 
subunit showed that additional sequences affect the DHP sensitivity 
(Welling et al. 1993b). In-depth analysis of the (Z~c_ , (cardiac) and C~C_b 
(smooth muscle) sequences showed that the alternative exon 8a or 8b, which 
codes for the IS6 segment, affects the affinity for neutral DHPs (Welling et 
al. 1997). The c~c_ ~ channel, which contains the segment IS6a and is ex- 
pressed in cardiac muscle, is blocked at higher concentrations of nisoldipine 
than the c~c_ b channel, which is expressed in vascular smooth muscle 
(Welling et al. 1997). IC~0 values for isradipine were 32 and 8 nM at a holding 
potential of-80 mV and 10 and 1.3 nM at a holding potential of -50 mV for 
the (x~c_ a and c~c_ b, respectively (Lacinova et al. 1998). Similar results were 
reported by Zfihlke and coworkers (1998) and Morel and coworkers (1998) 
demonstrating that the IS6 segment significantly affects DHP block. It was 
possible that the change in affinity was caused by different inactivation ki- 
netics of the two splice variants, since the IS6 segment strongly affects the 
inactivation kinetics of the channel (Zhang et al. 1994). However, the inacti- 
vation kinetics of the two channels are either identical or opposite to expec- 
tation, i.e. the cardiac c~,c_ a channel inactivated at more negative membrane 
potentials than the smooth muscle ~,c-b channel (Hu and Marban 1998). 
Together with the earlier photoaffinity results (Kalasz et al. 1993), it is obvi- 
ous that the increased affinity of the smooth muscle L-type calcium channel 
for DHPs is caused by structural differences in the IS6 segment, which con- 
tribute directly to the DHP binding pocket and not to the inactivation kinet- 
ics. Additional splice variations at the IIIS2 segment and in the intracellular 
carboxy terminal sequences could also contribute to an altered DHP affinity 
(ZOhlke et al. 1998). 
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B.III.2 The Phenylalkylamine and Benzothiazepine Binding Site 

Phenylalkylamines (PAA) such as verapamil, gallopamil or devapamil block 
L-type calcium currents in a use-dependent manner from the intracellular 
side of the membrane (Hescheler et al. 1982) and affect the binding of DHPs 
by allosteric interaction (Striessnig et al. 1993). In addition, benzothiaze- 
pines (BTZ) such as dilfiazem interact allosterically with the binding of 
DHPs (Striessnig et al. 1993). In contrast to PAAs, benzothiazepines label 
extracellular sites in the linker sequence between IVS5 and IVS6 in the a,s 
subunit (Watanabe et al. 1993), in agreement with a recent report that the 
quaternary 1,5 BTZ DTZ417 blocks the cardiac L-type channel only when 
applied from the extracellular side (Kurokawa et al. 1997). More recently, it 
was shown that like the PAA devapamil (Catterall and Striessnig 1992), the 
1,4-BTZ semotiadil labels a short sequence of the IVS6 segment (Kuniyasu et 
al. 1998). The PAA verapamil blocks the L-type cz,c Ca 2÷ channel and the non- 
L-type (~IA and a,E Ca2÷ channels at similar concentrations in a state-de- 
pendent manner (Cai et al. 1997), whereas diltiazem blocks all three chan- 
nels at similar concentrations, but only the cqc Ca 2÷ channel in a state-de- 
pendent manner (Fig. 6 bottom). 

Molecular analysis of the (~lC subunit (Schuster et al. 1996; Hockerman et 
al. 1995, 1997a) showed that the L-type channel-specific Ile1175 and the 
conserved Tyr1174, Phe1186 and Val1187 in IIIS6 and the L-type-specific 
Tyr1485, Ala1489 and Ile1492 in IVS6 are necessary to form a high affinity 
PAA site (Fig. 3). In addition, the two glutamates (Glu1140 and Glu1441) in 
the pore region of repeat III and IV are necessary (amino acid numbering is 
according to the al~-b sequence (Biel et al. 1990)) (Hockerman et al. 1997a). 
The effect of the mutation of the conserved Tyr1174 depends on the replac- 
ing amino acid. Substitution by phenylalanine decreased the affinity for 
devapamil 18-fold, whereas substitution by an alanine increased the affinity 
7-fold (Hockerman et al. 1997a). The increased affinity of the Y1174A mu- 
tant is most likely caused by a shift of the steady state inactivation curve by - 
11 mV. Transfer of the three IVS6 amino acids Tyr1485, Ala1489 and Ile1492 
from the a,c to the ¢~,̂  subunit introduced PAA and BTZ sensitivity, when 
measured in a use-dependent protocol (Hering et al. 1996). Furthermore, it 
was shown that the triple mutation Y1485A, A1489S and I1492A in IVS6 of 
the cfic channel reduced use-dependent block of the three PAAs, devapamil, 
verapamil and gallopamil, reduced the resting and depolarized block by 
devapamil, but poorly affected the resting and depolarized block by vera- 
pamil and gallopamil (]ohnson et al. 1996). 

Together, these results show that the IVS6 segment interacts with various 
PAAs and BTZ. State-dependent block of the L-type channel is mediated by 
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the same three amino acid residues in IVS6 for diltiazem and devapamil. 
However, different amino acids are required to allow high affinity interac- 
tion at the resting state for diltiazem, verapamil and gallopamil. A further 
problem arises from the finding that DHPs, PAAs and BTZs interact with the 
same (Tyr1485) or with the adjacent (Ile1492and Ile1493) amino acid side 
chain. It is difficult to reconcile this close location of interacting site chains 
with the allosteric modulation of DHP binding by diltiazem or phenylalky- 
lamines decribed previously (Striessnig et al. 1993). 

C.I Modulation of Expressed Calcium Channels by Protein Kinases 

C.I. 1 Modulation by cAMP-Dependent Phosphorylation 

In the heart, the positive inotropic action of catecholamines is mainly caused 
by an increased calcium influx through L-type calcium channels, cAMP- 
dependent phosphorylation of the (z, subunit or a closely associated protein 
increases the current 3- to 7-fold (Osterrieder et al. 1982; Kameyama et al. 
1985; Hartzell and Fischmeister 1992). Phosphorylation increases the prob- 
ability of channel opening upon depolarization by modulation of channel 
gating. Cardiac calcium channel currents also show facilitation during high 
frequency stimulation (Lee 1987) or after strong depolarization (Pietrobon 
and Hess 1990). Depolarization-induced facilitation was supposed to require 
voltage-dependent phosphorylation of the channel by cAMP kinase 
(Artalejo et al. 1992). However, these results of Artalejo and collegues were 
probably caused by the removal of secreted substances from the external 
solution and not by channel phosphorylation (Garcia and Carbone 1996). 
The adult skeletal muscle calcium channel is apparently not regulated by 
phosphorylation to a large extent. In contrast, the calcium channel of em- 
bryonic rat skeletal muscle myoballs shows voltage- and cAMP kinase- 
dependent facilitation (Sculptoreanu et al. 1993b). Facilitation depending on 
a strong depolarizing prepulse requires membrane localization of cAMP 
kinase (Johnson et al. 1994) by a 15 kDa cAMP kinase anchoring protein 
(Gray et al. 1998). 

In adult skeletal muscle, two forms of the oti s subunit are present, a large 
212 kDa form, containing the complete sequence of the cloned Ct,s cDNA, 
and a small 190 kDa form, which is truncated between amino acid 1685 and 
1699 (De Jongh et al. 1991). About 5% of the Ct,s subunits are the large 212 
kDa form and over 90% are processed to the small 190 kDa form (De longh 
et al. 1991). In intact rabbit skeletal muscle myotubes, cAMP kinase rapidly 
phosphorylates Ser1757 and Ser1854 in the large 212 kDa form and slowly 
phosphorylates Ser687 in the small 190 kDa form, which does not contain 
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the cAMP kinase sites at Ser1757 and Ser1854 (Rotman et al. 1995). Expres- 
sion of an a,s cDNA, which is truncated at Ash1662 and encodes the small 
form, fully restored both e-c coupling and calcium current in dysgenic 
myotubes, consistent with the idea that the small form of the CXls subunit 
performs both functions in adult muscle without cAMP-dependent phos- 
phorylation (Beam et al. 1992). These results are in line with the conclusion 
that the long form of the skeletal muscle CXls channel is modulated by cAMP 
kinase in myoballs, but that this modulation is attenuated or not present in 
adult skeletal muscle, in which the short form prevails. 

In contrast to the skeletal muscle L-type calcium channel, the precise 
mechanism of phosphorylation of the cardiac cx,c calcium channel is less 
clear. The fact that cAMP kinase-dependent phosphorylation significantly 
affects the function of the channel in vivo is undisputed. However, the 
mechanism causing the channel modulation is controversial. Rabbit heart 
sarcolemma contains a large 240 kDa and a small 210 kDa form of the cqc 
subunit (De Jongh et al. 1996). The small 210 kDa form is truncated at resi- 
due 1870 in the carboxy terminal sequence. The 240 kDa form is phosphory- 
lated by cAMP kinase at Ser1928 (De ]ongh et al. 1996). The expressed full 
length 250 kDa cqc_ , subunit is phosphorylated in vivo in CHO cells (Yoshida 
et al. 1992) and HEK 293 cells (Gao et al. 1997). Phosphorylation of the CX~c 
subunit is prevented by the mutation $1928A (Gao et al. 1997). The mutation 
$1928A also prevents a decrease in barium current induced by the cAMP 
kinase inhibitor H-89 in Xenopus oocytes (Perets et al. 1996). However, a 
direct effect of cAMP kinase on current amplitude was not observed in 
Xenopus oocytes (Singer-Lahat et al. 1994; Bouron et al. 1995; Perets et al. 
1996). In contrast to studies in oocytes, a cAMP-dependent increase in cur- 
rent amplitude was reported by several groups, who used either CHO or 
HEK cells as the expression system (Haase et al. 1993; Perez-Reyes et al. 
1994). The peak barium inward current showed facilitation following a pre- 
pulse to positive membrane potentials in CHO cells dialysed with active 
cAMP kinase (Sculptoreanu et al. 1993a). cAMP kinase-dependent facilita- 
tion was also reported by Bourinet and coworkers (1994), who used the neu- 
ronal a,c-c splice variant and the oocyte expression system. In a recent re- 
port, these authors observed facilitation of barium currents in the absence of 
cAMP-dependent phosphorylation and showed that facilitation was ob- 
served only in the presence of the fl,, t] 3 and f14 subunits and was not sup- 
ported by the neuronal fl~, subunit (Cens et al. 1998). Identical results were 
reported by Qin and coworkers (1998a), who used an N-terminally truncated 
a,c-, (expressed residues 60-2171) subunit. These recent results are in 
agreeement with the earlier reports by Kleppisch and coworkers (1994) and 
Bouron and coworkers (1995) that facilitation of the oqc current is independ- 
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ent of cAMP kinase-dependent phosphorylation. In a careful study, which 
used the otlc_ a and a,c_ b splice variants stably expressed in CHO and HEK 293 
cells and transient expression of cx~c_ b, cardiac fl2a and a28-1, Zong and co- 
workers (1995) showed that the current amplitude in these cells was not 
affected significantly by internal dialysis with cAMP kinase inhibitor pep- 
tide, catalytic subunit of the cAMP kinase or a combination of cAMP kinase 
and okadaic acid. Similar results were obtained by the coexpression of all 
subunits of the calcium channel complex, whereas the calcium current of 
cardiac myocytes was increased 3-fold during internal dialysis with active 
cAMP kinase or external superfusion with isoproterenol. Furthermore, di- 
alysis of cardiac myocytes with the phosphatase inhibitor microcystin 
stimulated the calcium inward current more than 2-fold, whereas the cur- 
rent of the expressed calcium channel was not affected. These conflicting 
results were apparently solved when Gao and coworkers (1997) reported that 
cAMP kinase-dependent stimulation of barium current required the coex- 
pression of the cAMP kinase anchoring protein AKAP 79, ohc_ a and the neu- 
ronal flea subunit in HEK 293 cells. AKAP 79 anchors the kinase at the 
plasma membrane. These authors reported that phosphorylation of Ser1928 
was required for cAMP-dependent stimulation of barium currents. How- 
ever, a careful reexamination of these results using overexpression of 
AKAP79 - cloned from HEK 293 cells and identical to that used by Gao and 
coworkers (1997) - failed to reproduce a cAMP kinase-dependent increase 
in current amplitude or facilitation of the current by strong depolarization 
(Dai et al. 1998). In contrast, cAMP-independent facilitation was observed 
when Ot~c_ a and cardiac fl~, or C~,c_,truncated at residue 1733 were used. Pre- 
pulse facilitation was prevented by expressing the c~,c_ a and cardiac fl2a 
subunits together with the cx25-1 or oh8-3 subunit, in line with the known 
effect of the a:8 subunit on the gating of the channel. These results demon- 
strate clearly that facilitation of the cardiac L-type current can be observed 
with channels which do not contain the established cAMP kinase phosphory- 
lation site at Ser1928. 

C.I.2 Modulation by Protein Kinase C-Dependent Phosphorylation 

L-type calcium channels are tightly regulated by hormonal and neuronal 
signals. Protein kinase C (PKC) is one such regulator, which enhances car- 
diac, smooth muscle and neuronal L-type currents (Lacerda et al. 1988;'Yang 
and Tsien 1993; Schuhmann and Groschner 1994) by an increase in the open 
probability of the channel (Yang and Tsien 1993). The response to PKC acti- 
vators is usually biphasic, with an increase followed by a later decrease 
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(Lacerda et al. 1988; Schuhmann and Groschner 1994). The biphasic re- 
sponse to PKC stimulators was fully reconstituted when the c~,c_ , subunit was 
expressed in Xenopus oocytes (Singer-Lahat et al. 1992). Bouron and co- 
workers (1995), who used a human %c splice form, which has the same 
amino terminus as the c~c_ b subunit, observed only a decrease in current 
suggesting that PKC-dependent regulation may be controlled by the differ- 
ent amino termini of the two splice variants. This prediction was confirmed 
(Shistik et al. 1998). Deletion of amino acids 2-46 in the amino terminus of 
the cx~c_ a subunit prevented the PKC-dependent current increase. The effects 
of PKC activation were larger in the presence of the ohc_ . and %6~1 subunits 
and were decreased by the coexpression of the cardiac fl~, subunit. Upregu- 
lation of the current was not affected by truncation of the a,c-a subunit at 
residue 1665, or mutation of the proposed PKC phosphorylation site Ser533 
in the I-II linker. Upregulation depended on the splice variation of the 
amino terminus and was not observed with the amino terminus of the a,c-b 
subunit. In agreement with Wei and coworkers (1996), these studies show 
that, depending on the splice variant, the amino terminus affects channel 
gating and mediates PKC-dependent upregulation. 

D.I Genetic Mutations of Calcium Channels 
and Associated Phenotypes 

Inheritable disorders of ion channels include a variety of different diseases 
such as cardiac arrythmias, epilepsy, migraine headache or episodic ataxias. 
These disorders are caused by mutations in sodium, calcium and chloride 
channels in skeletal muscle, in calcium and potassium channels in neurones 
or in neuronal nicotinic and glycine receptors. The molecular bases of chan- 
nelopathies have recently been reviewed (Ptacek 1997; Ophoff et al. 1998; 
Terwindt et al. 1998) (Table 1). 

D.I.I Linkage of OC,s Calcium Channel Mutations 
to Hypokalaemic Periodic Paralysis 

Hypokalaemic periodic paralysis is an autosomal dominant skeletal muscle 
disorder in which episodic weakness is associated with low serum potassium 
levels. The defect cosegregates with the skeletal muscle CC,s gene. Mutations 
occur at one of two adjacent nucleotides within the same codon resulting in 
the substitution of a highly conserved Arg1239 in the IVS4 segment by a His 
or Gly (Ptacek et al. 1994; Fouad et al. 1997) and Arg528 in the voltage sensor 
of repeat II by His (]urkatt-Rott et al. 1994). Initially, it was reported that in 
myotubes from affected patients, the mutation R1239H decreased current 
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amplitude, whereas mutation of R528H shifted the voltage-dependence of 
steady state inactivation by -40 mV (Sipos et al. 1995). Later analysis of the 
effect of the R528H mutation on channel kinetics, which used mutated cqc 
channels (Lerche et al. 1996), mutated Cqs channels (Lapie et al. 1996), mu- 
tated a,s channels and myotubes from affected patients (Jurkatt-Rott et al. 
1998) or only myotubes from affected patients (Morrill et al. 1998), did not 
confirm the earlier findings. It is not clear in which way the mutation leads 
to the phenotype. Inactivation of the a,s gene (Chaudhari 1992) or the fl, 
subunit gene (Gregg et al. 1996) in mice is associated with a lethal pheno- 
type, because e-c coupling is impaired in muscle preventing breathing after 
delivery. In contrast, deletion of the 3', subunit gene does not lead to gross 
physiological defects (Freise et al 1998). Taken together, these results do not 
establish the cause of the hypokalaemic periodic paralysis phenotype. 

D.I.2 Linkage ofc~,A Calcium Channel Mutations 
to Familial Hemiplegic Migraine and Cerebellar Ataxia 

Three disorders are known that are caused by mutations in the neuronal P/Q 
type calcium channel a,^ subunit. Familial hemiplegic migraine (FHM) is a 
rare autosomal dominant disorder that is characterized by migraine attacks 
with a transient hemiparesis. To date, four different missense mutations 
have been identified in the a,A subunit gene (Ophoff et al. 1996). A R192Q 
mutation in IS4, analogous to the mutation in the voltage sensor of a,s, 
changes a basic amino acid residue into an uncharged residue. The T666M 
mutation is located in the pore loop structure of repeat II that determines 
the ion selectivity of the channel. Changes in this region are believed to af- 
fect the normal functioning of the channel. The other two point mutations 
implicated in this disease were identified in the S6 segments of repeat II 
(V714A) and IV (I1811L). Introduction of these mutations into the rabbit cq^ 
sequence showed no effect for the R192Q mutation (Kraus et al 1998). The 
other three mutations, which are located in the pore region of the channel, 
alter the inactivation kinetics and may provide the basis for the postulated 
neuronal instability in patients with FHM. 

Truncating mutations of the CXl̂  subunit gene were found to be associated 
with episodic ataxia type 2 (EA2) (Ophoff et al. 1996). EA is a neurological 
disorder in which patients suffer from recurrent attacks of generalized ataxia 
and other symptoms of cerebellar dysfunction. The disorder is characterized 
by two clinically distinct syndromes. Episodic ataxia with myokymia (EA1) 
that includes brief episodes of ataxia and dysarthria is thought to be associ- 
ated with missense mutations in a potassium channel gene. The other type 
of episodic ataxia without myokymia (EA2) is heterogenous and is charac- 
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terized by paroxysmal cerebellar ataxias, paroxysmal vestibulocerebellar 
ataxias and hereditary paroxysmal cerebellar ataxias. One of the errors as- 
sociated with EA2 is a splice site mutation of an invariant G nucleotide of the 
intron consensus sequence that leads to aberrant splicing. This mutation 
causes a disruption of the reading frame in the transmembrane segment $2 
of repeat III. The other known EA2 mutation is a single nudeotide deletion 
of C4073 which also causes a premature stop in IIIS1. The truncated proteins 
are thought to be unable to form a functional calcium channel and may also, 
as a dominant negative effect, influence proper P/Q-type calcium channel 
assembly in the membrane. 

Numerous unstable expansions of trinucleotide repeats have been re- 
ported to be associated with neurodegenerative disorders that include mus- 
cular atrophy, different types of spinocerebellar ataxia and Huntington's 
disease. Normally, there are about 20 trinucleotide CAG repeats, whereas 
affected people either have 2- to 3-fold or even hundredfold increase in 
trinucleotide repeats. A multiplication of the CAG repeat was also identified 
in patients with chronic cerebeUar ataxia SCA6 in the 3"-untranslated region 
of the or1  ̂calcium channel gene (Ophoff et al. 1996). Another study showed 
that there are at least six different transcripts of oh^, of which three contain 
an insertion of five nucleotides which results in a shift of the open reading 
frame and translation of the CAG repeat as a polyglutamine stretch in the C- 
terminus (Zhuchenko et al. 1997). However, the pathogenic effect of the 
small expansion of the polyglutamine region in or1  ̂calcium channel subunits 
is still a matter of debate. First, the number of repeats (21-27) is considera- 
bly smaller than that of other neurodegenerative disorders (more than 100). 
Secondly, alternative splicing in the C-terminal part of the oh^ subunit RNA 
may result in transcripts in which the CAG repeat is either translated as 
glutamine or is part of the noncoding region. It is still not known how the 
different transcripts contribute to the onset of cerebellar ataxia. 

Mutations of the c~^ calcium channel have also been described in the 
tottering (tg) and leaner mice (tg ~a) (Fletcher et al. 1996). Mice with the re- 
cessive tottering mutation have been extensively studied as models for hu- 
man epilepsy (Noebels and Sidmann, 1979). Similar to the FHM disorder, 
the mutation in the tottering mouse is also a missense mutation in the pore 
loop region of repeat II. The more severe phenotype of the leaner mouse is 
associated with a splice site mutation that results in an aberrant intracellular 
C-terminus (Fletcher et al. 1996). The location of these mutations suggests 
that the underlying molecular mechanisms in leaner mice lead to a loss of 
function and in tottering mice to a gain-of-function mutation. 
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O.I.3 Diseases Caused by Mutations of L-Type a, Calcium Channel Subunits 

Mutations in calcium channel genes have led to the identification of the new, 
tissue specifically expressed t~,F subunit belonging to the family of L-type 
calcium channels. This novel retina-specific gene was characterized in fami- 
lies with incomplete X-linked congenital stationary night blindness and was 
found to encode an L-type calcium channel a,F subunit (Strom et al. 1998; 
Bech-Hansen et al. 1998). Mutation analysis of this oqF subunit revealed a 
variety of different types of changes in the primary structure, including mis- 
sense and nonsense mutations and the deletion and insertion of nucleotides. 
The nonsense and insertion/deletion mutations cause premature protein 
truncations and are distributed across the cqF subunit from the cytoplasmic 
loop between repeat II and III to the first portion of the cytoplasmic C- 
terminus. Missense mutations were also found in different regions of the 
channel. The significance of these mutations is supported by the high 
structural conservation of the affected residues between the ~x~ subunits 
(Strom et al. 1998). The aberrations in the alF gene are thought to cause the 
decrease in neurotransmitter release from photoreceptor presynaptic termi- 
nals frequently seen in the incomplete form of X-linked congenital station- 
ary night blindness. 

In Caenorhabditis elegans, the egl-19 gene plays a pivotal role in regulat- 
ing muscle excitation and contraction (Lee et al. 1997). The product of the 
egl-19 gene is a homologue of the ~,c calcium channel. Two myotonic muta- 
tions have been identified in the IS6 segment which is involved in voltage- 
dependent inactivation (Zhang et al. 1994). A third myotonic mutation im- 
plicates the IIIS4 segment, which is part of the voltage-sensor. In addition 
several lethal mutations of the egI-19 gene have been identified. In agree- 
ment with these findings, deletion of the (x,c gene in the mouse is lethal 
(Seisenberger et al. 1998). Surprisingly, the embryos develop normally up to 
day 14 pc and have a beating heart. Cardiac beating is suppressed at low 
concentrations of nisoldipine, a dihydropyridine. The channels involved are 
unknown. 

D.I.4 Diseases Caused by Mutations of Calcium Channel 13 and ? Subunits 

Not only the alteration of the main pore-forming ix, subunit results in differ- 
ent heritable neurological disorders, but also the mutation of the auxiliary fl 
subunit has similar severe effects. Defects in the t] 4 subunit gene on chromo- 
some 2 are associated with seizures and ataxia in recessive lethargic (lh) 
mice (Burgess et al. 1997). An insertion of four nucleotides into a splice do- 
nor site of the B, gene results in exon skipping and in a translational 
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frameshift. The truncated protein thereby loses the binding site for the c~, 
subunit and probably represents a loss of function mutation. The lethargic 
phenotype has many features in common with the tottering mouse including 
absence epilepsy and spontaneous focal motor seizures and ataxia. Previ- 
ously it was shown that the a,^ and fl~ subunits are colocalized and could be 
part of the P/Q-type calcium channel (Ludwig et al. 1997). It is therefore 
possible that mutation of the f14 subunit affects the cerebellar P/Q-type cal- 
cium current. Recently, it was demonstrated that neither a mutated nor a 
truncated g4 protein is present in the lethargic mouse brain (McEnery et al. 
1998). The absence of the fl~ protein is associated with with decreased ex- 
pression of the N-type channel (Or,B) in forebrain and cerebellum and an 
increased expression of the t~b subunit (McEnery et al. 1998). It was sug- 
gested that the persistence of an immature population of N-type channels is 
the basis for at least part of the lethargic phenotype. 

In contrast to the inactivation of the g~ and fl~ subunit, mice with a tar- 
geted disruption of the g3 gene are viable and indistinguishable from the 
wild type with no gross morphological or histological differences (Namkung 
et al. 1998; Cavali~ et al. 1998). Minor effects could only be detected in sym- 
pathetic neurons in which L- and N-type currents were reduced. In addition, 
the voltage dependent activation of P/Q-type calcium channels was also 
altered. These extremely different phenotypes dearly indicate that the t~ 
subunits are not redundant and are needed to "stabilize" specific calcium 
channels at specific locations. 

Similar to the identification of the (x,~ subunit, a new auxiliary calcium 
channel y subunit was described by genetic analysis of epileptic seizures of 
stargazer mice (Letts et al. 1998). The Y2 subunit is expressed only in the 
brain and was shown to shift steady-state inactivation of heterologously 
expressed c~,^ calcium channels in the hyperpolarizing direction. The dis- 
covery of a novel y subunit implicates that neuronal and other HVA calcium 
channel complexes may contain a y subunit as a fifth protein. 
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1 Preface 

M. Herrmann and P. Berger 

The current phenomenon of population aging will be a major determinant 
for future health trends. Due to this demographic change affecting devel- 
oped as well as third world countries, a major aim of geriatric medicine is in 
the maintenance of quality of life for the elderly and the containment of 
costs for care associated with age-related diseases. As most of the diseases 
that affect elderly people are in some way or another associated with the 
endocrine system, this aim can only be achieved by first elucidating the 
pathogenetic mechanisms that determine the most important endocrine 
diseases of later life, and secondly by clarifying the consequences of hormo- 
nal changes in the elderly. It is important to be clear that the goal is to im- 
prove the quality of life in old age rather than to extend the length of life, 
regardless of quality. Given the universal character of aging and the re- 
quirement to provide an array of medical and health-related services for the 
aged, world-wide attempts are on their way to understand mechanisms and 
consequences of age-related changes in the secretion of hormones, the ma- 
jor contributors in the orchestration of the processes necessary for orderly 
development and aging. 

2 Theories of Aging 

Aging-as a highly complex process-is still poorly understood despite of the 
rapid development of new biomolecular tools. A wide spectrum of ap- 
proaches, ranging from descriptive up to reductionistic studies, in the ex- 
amination of various age-related mechanisms at cellular or molecular levels, 
have led to several theories of aging (Carlson and Riley 1998). These can 
roughly be subcatagorized into genetic or epigenetic. A comprehensive de- 
scription of age-related aspects like for example oxidative damage by free 
radicals, protein glycation, the failure of DNA repair, "gerontogenes", de- 
creased or aberrant immune function, a decreased membrane fluidity or 
telomeric shortening would be beyond scope of this review (for information 
see Kirkwood 1996; Carlson and Riley 1998). As human beings undergo 
changes in all domains of their lives i.e. genetic, biochemical, metabolic, 
physiological, psychological and social, it is not expected that any single, 
overarching, predictive theory of senescence will ever be found. In addition 
the various theories of aging are not independent. 

The "disposable soma theory", proposes that aging is due to the accumu- 
lation of unrepaired somatic defects and the primary genetic control of lon- 
gevity operates through selection to raise or lower the investment in basic 



Aging of the Male Endocrine System 91 

cellular maintenance systems, in relation to the level of environmental haz- 
ards (Kirkwood 1992). 

The genetic paradigm assumes that aging is a continuation of the devel- 
opmental process in which a program of successive gene activations and 
inactivations leads to differentiation and maturation. The fact that rates of 
aging are variable among, but characteristic for, particular species, indicate 
the existence of genetic factors that influence the ageing process. The identi- 
fication of the gene responsible for the Werner's syndrome (Yu et al. 1996), a 
rare genetic disease in which individuals age prematurely, and the "age-l" 
gene found in Caenorhabditis elegans (lohnson 1990), which, when mutated, 
increases mean life span by 65%, to name just two examples, favour the 
theory that genes are being related in some way or another to life span. 

One of the oldest theories on aging states that longevity is inversely pro- 
portional to the metabolic rate (Pearl 1928). Although simplistic in nature, 
the observation of the inverse association between longevity and metabolic 
rate among many species is intriguing. However, its significance for the 
aging process per se is uncertain, as the prolongation of life span may also be 
a result of delayed maturation, hence leaving the rate of aging unchanged 
(Rose 1991). 

A link between metabolism and aging is provided by the "free radical 
theory" (Harman 1956; Martin et al. 1996). According to this theory, random 
tissue damages caused by oxygen radicals, produced by normal aerobic 
metabolism, accumulate during life and lead to various breakdown events at 
cellular or molecular levels. Aging would then result from this gradual ac- 
cumulation of cell and tissue damage caused by interactions with their mi- 
lieu. 

While an examination of the mechanisms of aging invariably seems to 
lead to the cellular and subcellular level (Rattan and Derventzi 1991), the 
meaning of aging may be lost in the absence of an organismal context 
(Carlson and Riley 1998). Comfort's aging model, the concept of a "hierarchy 
of clocks" suggests that aging is not caused by a single regulatory system but 
rather by the interaction between a number of processes, each with inde- 
pendent timing. The fastest of any of the docks can lead to deterioration or 
death (Comfort 1979). 

One candidate for such a pacemaker in humans is the endocrine system. 
The precise organisation of physiological, cellular and molecular events is 
governed by hormones and leads not only to processes like reproductive 
cyclicity in women but also to their cessation (Wise et al. 1996). The dra- 
matic and fairly rapid endocrine changes brought about by menopause have 
biological, social and cultural implications that profoundly influence the 
second half of a woman's life. Endocrine changes are also observed in men, 
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although not as drastic and sudden as in women (Warner et al. 1985). Thus, 
age-related changes in hormone secretion appear to be phenomenons affect- 
ing both genders. 

3 Endocrine Changes in Aging Men 

Human senescence is accompanied by various physiological and morpho- 
logical changes at molecular, cellular (Conover 1997) and organ levels. 
These range from alterations in receptor signal transduction and subsequent 
gene expression, to structural and morphological changes affecting - at least 
in part - endocrine functions. Although common, the pattern of changes can 
be highly variable between individuals and many aspects of the aging pheno- 
type bear marked similarities to states of hormone deficiency or excess. Nev- 
ertheless, the once popular concept that aging is a consequence of a single or 
multiple states of hormone deficiencies certainly does not hold true and has 
to be converted into a modern concept appreciating the complexity and 
heterogeneity of the aging process. Whatever the underlying mechanisms, 
the aging process leads to a state in which there are reductions in the num- 
ber and/or functional reserve capacities of various types of differentiated 
cells and the inability to repair defects or replace affected cells by prolifera- 
tion and/or differentiation of stem cells. This state may well apply to endo- 
crine organs and their regulatory centers. As a consequence, hormonal cir- 
cadian or seasonal biorhythms, pulsatile frequency or amplitude as well as 
absolute hormonal levels may change with age. 

A description of age-related endocrine dysfunctions must discriminate 
between intrinsic age-related changes and those of a variety of age-associ- 
ated, potentially confounding, comorbid variables or even changes caused 
by extrinsic factors like nutritional status, physical activity or the use of 
medications by individuals. The establishment of more precise normative 
data on the effects of aging on the endocrine system will improve interpre- 
tation of diagnostic endocrine tests during illness. More importantly, it will 
help identifying endocrine changes that may contribute to the normal aging 
processes per se and ultimately help us to discriminate normal processes of 
aging, from those with pathological relevance that require treatment. The 
findings that hormonal treatment beneficially affects non elderly hormone- 
deficient adults and that secretion of certain hormones is reduced with aging 
raises hopes that hormonal administration in the elderly might reverse or 
prevent some of the physiological effects associated with old age (Villareal 
and Morley 1994). 

Three male hormonal axes during aging are characterized by changes in 
concentrations of circulating hormones: 



Aging of the Male Endocrine System 93 

(I) The hypothalamic-pituitary-testicular axis (andropause/climacterium 
virile/PADAM): The magnitude of age-related alterations of the endocrine 
system is highly variable and sex dependent. In contrast to the dearly de- 
marcated event of the menopause in women, aging of the endocrine system 
in men is a more gradual, less defined and highly variable process. A dis- 
cussion concerning the menopause, being the most dramatic and rapidly 
occurring physiological change in women around the age of 50 (Wise et al. 
1996) would be beyond scope of this review devoted to changes in the endo- 
crine system of aging men. 

The term "andropanse" defined as "an indefinite syndrome composed of 
several constellations of physical, sexual, and emotional symptoms brought 
about by a complex interaction of hormonal, psychological, situational and 
physical factors" (Henker 1977) designated in analogy to the female meno- 
pause is a misnomer as in general there is no hormonal discontinuity in the 
reproductive lives of men and no upper age limit for male fertility. Besides 
the gradual decline of reproductive endocrine function and high variability 
among individuals in the degree of this reduction, not all men will become 
hypogonadal to a clinically significant degree. The complex of symptoms 
like nervousness, psychological depression, impaired memory, inability to 
concentrate, fatigue, insomnia, hot flushes, periodic sweating and loss of 
sexual vigor were first described by Werner in 1939 under the term "male 
climacteric" (Werner 1939; Werner 1946). 

In addition to "andropause" and "climacterium virile" a third term 
"PADAM" (partial androgen deficiency of the aging male) was proposed to 
describe the symptom complex of the aging male. The contribution of age 
per se to the questionable physiologic and epidemiologic basis of a male 
climacteric syndrome has been heavily discussed. Since various factors like 
psychological stress, acute or chronic non endocrine illnesses, physical ac- 
tivity, obesity, malnutrition and drug or medication use have an influence 
on the hypothalamic-pituitary-testicular axis as well as on sexual behaviour, 
it is hard to discriminate between such effects and the effects of aging per se 
(McKinlay et al. 1989). 

(II) The hypothalamic-pituitary-adrenal axis (adrenopause): The adreno- 
pause in both sexes is characterized by the age-related gradually declining 
serum levels of the adrenal androgens dehydroepiandrosterone (DHEA) and 
its sulfo-conjugated derivative DHEA-sulfate (DHEAS). Although being the 
most abundant circulating steroids in the human organism, their biological 
role in human aging remains undefined. Their progressive decrease with age 
suggests a role for both steroid hormones in the aging process. The zonation 
of the adrenal gland in aging men shows changes like a reduced size of the 
zona reticularis and a relative increase of the outer cortical zones. A reduced 
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mass of the zona reticularis may be at least one cause for the diminished 
production of DHEA and DHEAS in aged men (Parker et al. 1997). In view of 
the easy restoration of serum DHEA levels to those of young men, it would 
be of great interest to clarify the cause-and-effect relationship between the 
decreasing levels of DHEAS with age, and the physiological and pathological 
manifestations of aging. 

(III) The GH-IGF-I axis (somatopause): Within the somatopause, the 
growth hormone (GH)/insulin-like growth factor I (IGF-I) axis shows a 
gradual age-associated decline in hormone production. This is paralleled by 
clinical signs similar to those of GH-deficient adults (for reviews see Corpas 
et al. 1993; deBoer et al. 1995). 

4 The Hypothalamic-Pituitary-Testicular Axis 

4.1 Testosterone 

Aging in men is accompanied by clinical signs, such as changes in bone 
mineral density (Riggs et al. 1981), a decrease in Leydig cells (Neaves et al. 
1984), a decline in Sertoli cell function (Tenover et al. 1988), a decrease in 
muscle mass (Vandervoort and McComas 1986), and signs of decreased 
virility (Swerdloff and Wang 1993; summarized in: Vermeulen and Kaufman 
1995). Whether or not aging is also associated with a decrease in plasma 
testosterone concentrations, has long been a matter of debate (reviewed in: 
Vermeulen 1991). A decline in androgen levels with aging was first reported 
in 1958 using bioassays (Hollander and Hollander 1958). Further studies 
using radioimmunoassays to measure testosterone (T) levels in the sera of 
elderly men yielded in part contradictory results. This was mainly due to 
differences in the characteristics of the men studied, the study-design 
(morning or afternoon blood sampling for androgen levels and the fre- 
quency of blood sampling in view of the episodic nature of T secretion) and 
the cross-sectional character of the studies. However, several recent well- 
designed studies, controlling these variables, have shown convincingly that 
T levels do indeed decrease with age (Deslypere and Vermeulen 1981; Na- 
houl and Roger 1990; Gray et al. 1991; Simon et al. 1992; Morley et al. 1997). 
The investigation with the largest sample of men comprised 415 healthy men 
and 1294 men with one or more ailments, aged between 39 and 70 years old 
(Gray et al. 1991). In this study, obesity was associated with lower T levels 
and there were no significant differences between healthy and less healthy 
men, although T levels being 10-15% lower in the latter. Total serum T lev- 
els decline by 0.4% per year, sex hormone binding globulin (SHBG) (the 
carrier protein that binds approx. 60% of circulating T) increases by 1.2% 
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per year, with the net effect that free T levels dedine by 1.2% per year (Gray 
etal. 1991). The high-affinity binding of SHBG for T, and to a lesser extent 
for estradiol, influences the circulating levels of these sex steroid hormones 
and their biodisposal to target cells as well as their mutual balance. 

Whether plasma dihydrotestosterone (DHT) levels change with age is a 
matter of controversy since some investigators have found decreased serum 
DHT levels with aging (Pazzagli et al. 1975). Others have found no change 
(Pirke and Doerr 1975) and Bremner et al. (1983) even describe age-related 
increases in DHT serum levels of elderly men. The reduction products of 
DHT, androstanediol and androstanediol glucuronide, both considered to 
be biochemical markers of androgen action in target organs, are decreased 
in elderly men (Gray etal. 1991; Simon et al. 1992). 

4.2 Mechanisms of Decreased Reproductive Endocrine Function 

There is no consensus about the causes of decreased reproductive endocrine 
function with age in men. Changes at all three levels of the hypothalamic- 
pituitary-testicular axis, predominantly at the testicular level, seem to be 
associated with the modest decline of T serum levels in aging men. The 
lower basal serum T levels may originate from primary testicular changes as 
suggested by a decreased number of Leydig cells (Neaves etal .  1984), an 
impaired testicular perfusion (Suoranta 1971) and a reduced release of T 
upon stimulation by hCG (Rubens et al. 1974; Harman and Tsitouras 1980). 
In addition to the prevailing view of the primarily testicular origin as the 
cause of a decrease in bioavailable T in aging men, the relative contribution 
of the hypothalamic-pituitary-testicular axis to this decrease has been de- 
bated. This alternative perspective is supported by the fact that the ampli- 
tude of the nycthemeral variations in plasma T concentrations are signifi- 
cantly reduced in elderly men, probably a consequence of a decreased LH 
rhythm (Deslypere et al. 1987; Bremner et al. 1983), and/or the higher sensi- 
tivity of the gonadostat to the feed-back effect of androgens and/or estro- 
gens in elderly men (Winters etal. 1982; Deslypere etal. 1987). Notably, the 
elevated basal serum levels of LH in response to the decline of T levels with 
aging (Deslypere and Vermeulen 1981) are lower than those observed in 
younger men with similarly decreased T levels (Korenman etal.  1990). The 
decline of bioactive LH levels with aging, which is not appreciated when LH 
levels are determined by immunoassays (Mitchell etal. 1995) and the reduc- 
tions in the episodic frequency and amplitude of LH with aging result in a 
less effective stimulation ofT secretion. 

The reduced number of spontaneous high amplitude LH pulses in elderly 
men does not seem to be a consequence of a decreased sensitivity of the 



96 M. Herrmann and P. Berger 

gonadotrophs to  LHRH. Instead, they may be the consequence of the release 
of smaller amounts of LHRH at each pulse (Kaufman et al. 1991). 

4.30steoporosis 

Osteoporosis is widely viewed as a major public health concern. After some 
point in early middle age, bone loss ensues and is a universal phenomenon 
related to aging (Riggs et al. 1981). In men as in women, a higher incidence 
of osteoporosis is related to the decline in gonad function with increasing 
age. Although far greater attention has been given to osteoporosis and bone 
fractures in aging women, the incidence of osteoporotic fractures also in- 
creases in aging men (Santavirtas et al. 1992). Due to the slow and progres- 
sive decline of gonadal function in men compared to women and the higher 
peak bone mass at skeletal maturity, men are affected later and to a lesser 
degree than women (Crilly et al. 1981). The estimated frequency of non 
traumatic osteoporotic vertebral fractures in men is one sixth to that in 
women (Riggs and Melton 1983). In men and in women, hypogonadism is a 
well recognized cause for overt osteoporosis as well as asymptomatic os- 
teopenia (Francis et al. 1986; Seeman et al. 1983; Greenspan et al. 1986). 
Whether the physiological reduction of gonadal function in aging men 
(Baker et al. 1976; Foresta et al. 1984) leads to the age-related bone loss is 
still a matter of debate (Crilly et al. 1981; Meier et al. 1987). Besides being a 
slow and progressive process; the decline of male gonadal function can oc- 
cur at different ages, even when very late in life it can result in primary hy- 
pogonadism with low plasma levels of T and its metabolites, such as andros- 
tendione, and elevated gonadotropin plasma levels (Baker et al. 1976; Pirke 
et al. 1977; Madersbacher et al. 1993). 

Mastrogiacomo and co-workers observed a positive linear correlation 
between the bone mineral content (using the relief of the percent cortical 
area at the level of the second phalanx of the left-hand index finger by Garn's 
method) and T, androstendione and estrone plasma levels in 30 male sub- 
jects aged between 60 and 90 years (Foresta et al. 1984). In addition to in- 
creasing age, hypogonadism is also associated with osteoporosis in men 
(Odell and Swerdloff 1976; Swerdloff and Wang 1993). Bone mineralization, 
total osteoid surface, relative osteoid volume and bone density can be im- 
proved by T therapy in androgen deficient men (Finkelstein et al. 1989). In 
hypogonadal men, bone mineral density can be normalized and maintained 
in the normal range by continuous, long term T substitution (Behre et al. 
1997). The underlying mechanism by which androgens influence bone me- 
tabolism are still not understood (for review see Orwoll 1996). Several 
mechanisms are conceivable: 



Aging of the Male Endocrine System 97 

(I) Osteoporosis of male hypogonadism may be a secondary estrogen de- 
ficiency rather than a primary T deficiency (CriUy et al. 1981). Although not 
direct, the positive effects of estrogens on bone metabolism in women and 
the positive effects of a hormonal estrogen therapy are obvious. In addition 
to the stimulation of calcitonin secretion, estrogen treatment of postmeno- 
pausal women also increases calcium resorption by raising the serum levels 
of 1,25(OH)2D (Gallagher et al. 1980). Estrone, the main postmenopausal 
estrogen, which is largely derived from androstendione by peripheral con- 
version, is significantly reduced in postmenopausal osteoporotic women 
(Marshall et al. 1977). Whether the peripheral conversion of androgens into 
estrogens accounts for some of the osteoporotic effects seen in males, re- 
mains to be elucidated. Taking into consideration the elevated estro- 
gen/androgen ratio in elderly males, other mechanisms leading to osteopo- 
rosis in aging male must still be considered: 

(II) T may act directly on the bone. Human bone contains the enzyme 
5~-reductase, which can convert T into DHT (Schweikert et al. 1980). 

To conclude, as in women, the decline of gonadic function correlates with 
increased bone resorption in men. Due to the later and more gradual onset 
of the partial sex-steroid deficiency, elderly men are less affected by this 
process than elderly women (Foresta et al. 1984). 

4.4 Gonadotropins: The SENIEUR Protocol 

Solid studies of the aging process of the endocrine system are fundamentally 
based on two prerequisites, i.e. reliable assay systems and well characterized 
study populations. The Human Immunology Group of European Commu- 
nity's Concerted Action Programme on Aging (EURAGE) designed admis- 
sion criteria for gerontological studies, the SENIEUR protocol (Ligthart et al. 
1990). This protocol primarily aims at defining "healthy" populations for 
immuno-gerontological studies. It should replace the current widely spread 
practice using "apparently healthy" or "subjects without overt disease" as 
reference populations for age related investigations. These rather vague 
definitions of reference populations do not exclude underlying disease or 
medication and therefore might bias results and conclusions. In contrast, 
the SENIEUR protocol excludes, as much as is possible, endogenous and 
exogenous influences on the immune system and provides a standardized 
study population suitable for joint international gerontological studies. It is 
worth noting that any medication known to affect the immune and endo- 
crine system, such as anti-inflammatory drugs, hormones, and analgetics 
lead to exclusion ofprobands on the basis of the SENIEUR-protocol. 
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In addition to the "classical" pituitary-derived gonadotropins luteinizing 
hormone (LH) and follicle stimulationg hormone (FSI-I), chorion gonado- 
tropin (CG), which was thought to be present only during pregnancy and in 
the course of certain malignancies has been identified in sera of healthy non- 
pregnant women and even in apparently healthy men (Madersbacher et al. 
1992; Odell and Griffin 1987; Stenman et al. 1987). This was achieved by 
ultrasensitive MCA-based time-resolved immunofluorometric assays which 
have advantages over other detection systems due to their wide assay ranges, 
high sensitivities and the non-radioactivity of the europium chelate (Ma- 
dersbacher et al. 1993). 

The origins of hCG in non-pregnant individuals are most likely the pitui- 
tary gland and the testis (Odell et al. 1990; Dirnhofer et al. 1996; Berger et al. 
1994). It is therefore not surprising, that the serum levels of CG as those of 
LH and FSH increase with in both sexes age (Stenman et al. 1987; Maders- 
bacher et al. 1992); but it was only in the female population that the rise of 
hCG serum levels were statistically significant. 

As hCG was also present in SENIEUR-compatible individuals, it is obvi- 
ous that a physiological production of hCG, other than in pregnancy and 
malignancy, does exist. The biological function of extratrophoblastic hCG as 
well as the mechanism leading to an age-related increase are unknown. In 
parallel to the identification ofhCG in the serum of elderly males, the free (x- 
subunit common to all four GPHs has been shown recently (Madersbacher 
et al. 1992). Free a-subunit production can also be demonstrated under 
malignant conditions in vitro and in vivo and therefore has the potential of a 
tumor marker (Madersbacher et al. 1992). A biological function in males of 
the free (x-subunit in vivo is presently unknown. In parallel to GPH, we were 
able to demonstrate an age dependent increase of the free a-subunit secre- 
tion in SENIEUR protocol compatible individuals of both genders (Table 1 
A, B). 

Recently, the impact of aging and SENIEUR status on numerous non- 
endocrine parameters, such as immune variables (including functional 
tests), serum lipids, lipoproteins and neopterin has been intensively investi- 
gated. Reibnegger et al. observed a clear impact of age on the respective 
analytes, however no statistically significant difference between SENIEUR 
and NON-SENIEUR individuals was seen (Reibnegger et al. 1988). The same 
holds true for the endocrine parameters hLH, hFSH, hCG and free c~ none of 
which were significantly different between SENIEUR and NON-SENIEUR, 
despite clear age dependencies. This key observation led to the following 
conclusions: The rise of serum gonadotropins and of the free ot subunit in 
old age is caused by the aging process per se, as this rise can be demon- 
strated in "healthy" SENIEUR-individuals, and it is not modulated or due to 
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Table 1 A. Means, S.D.s and two-way ANOVA analysis of serum hFSH, hLH, hCG 
and free c~ in males. * n=20, age: 27 + 4a; ** n=18, age: 72 _+ 3a 

Parameter Males Levels of significance 

(ng/L) Young* Aged** Age SENIEUR 

hFSH 619 _+ 437 1948 _+ 1749 0.0002 0.0473 

hLH 54 + 137 487 _+ 296 0.015 0.1325 

hCG 4 _+ 3 7 -+ 7 0.191 0.4687 

free ct 142 _+ 54 279 _+ 142 0.005 0.7132 

Table 1 B. Means, S.D.s and two-way ANOVA analysis of serum hFSH, hLH, hCG 
and free ct in females. * n=21, age: 24 _+ 2a; ** n=16, age: 72.5 _+ 4a 

Parameter Females Levels of significance 

(ng/L) Young* Aged** Age SENIEUR 

hFSH 665 + 442 15312 _+ 5995 0.0001 0.6771 

hLH 466 _+ 613 2041 + 1186 0.0001 0.9428 

hCG 6 + 5 71 -+ 47 0.0001 0.3582 

free (~ 186 + 163 431 + 206 0.0001 0.8472 

According to reference Madersbacher et al. 1993. 

under ly ing  disease or medicat ion.  As SENIEUR and NON-SENIEUR indi-  
viduals  exhibi ted comparable  ho rmone  values, a r a n d o m l y  chosen, 
"apparent ly  healthy" popula t ion  may  be sufficient for reliable endocr i -  
nological  studies of  serum GPH. 

Lastly, the endocrinological  changes in SENIEUR individuals  under l ine  
the need for age adjusted ho rmone  reference intervals. The presence of  hCG 
and its free subunits  in SENIEUR-individuals and the defini t ion of  age- and 
sex-adjus ted  reference values may  have significant impact  on the appl ica t ion  
of  these molecules  in the field of  oncology as they have been shown to be 
secreted by  a variety of  tumors  (Marcillac et al. 1992; Dirnhofer  et al. 1998; 
Madersbacher  et al. 1992; Madersbacher  et al. 1994). Human  CG and /or  free 
(z are well recognized as t u m o r  markers  par t icular ly  for test icular  cancer,  
b l adder  cancer,  molar  pregnancy  and chor iocarcinoma.  As these mal ignan-  
cies are presen t  in both  sexes and in young  as well as aged pat ients  such 
defini t ions are the basis for their  rel iable clinical appl icat ion (Madersbacher  
et al. 1992). 
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5 The adrenopause 

5.1 Dehydroepiandrosterone Levels 

Dehydroepiandrosterone and its sulfo-conjugated derivative DHEAS, syn- 
thesized in the zona reticularis of the adrenal glands, are, quantitatively, the 
most abundant circulating steroids in humans, with 30-50% higher levels in 
men than in women. Despite their abundance in the circulation their bio- 
logical function, besides the partial transformation into sex steroids (Ebeling 
and Kovisto 1994), is unknown. During aging, the circadian rhythm of 
DHEAS secretion is lost (Del Ponte et al. 1990) and the levels in old men are 
only one-quarter to one-third of those observed in young adults (Orentreich 
et al. 1984) suggesting a possible relevance of this steroid hormone to the 
aetiology and management of a number of age-related clinical disorders. It 
is consistently observed that the response of DHEA secretion to adrenocor- 
ticotrophic hormone stimulation decreases markedly with age (Vermeulen 
et al. 1982) as do the DHEAS levels in serum (Orentreich et al. 1992). More- 
over the wide variability seen in DHEAS serum levels among individuals 
within normal populations still remains unexplained. 

A possible role for DHEA or DHEAS in atherosclerosis, as suspected ear- 
lier, was not confirmed in a study with which the DHEAS serum levels of a 
cohort of men, initially free of clinically detectable coronary heart disease, 
stroke and cancer, were compared between 238 cases who had definite coro- 
nary heart disease during the subsequent 18 years and 476 age-matched 
controls who survived the follow up period and remained free of clinicaUy 
detectable coronary heart disease (LaCroix et al. 1992). The findings do not 
support a role of DHEAS in the development of nonfatal myocardial infarc- 
tion or the progression of atherosclerosis. 

A potential effect of substitution with DHEA or DHEAS could be in re- 
versing the decline in immune functions of elderly people (Daynes et al. 
1993) but extended studies are required to verify the potential therapeutic 
benefits of DHEA. Being a potent antiglucocorticoid, DHEA may also be 
important for cerebral activity. The significant age-related decrements in 
both blood and cerebrospinal fluid of DHEA and DHEAS and the direct 
action of DHEAS on membrane-bound transmitter events such as gamma- 
aminobutyric acid (GABA(A)) receptors point to a role of DHEA and 
DHEAS in age-related alterations of brain function (Guazzo et al. 1996). This 
deserves further investigation since the concurrent influence of the neuro- 
active steroid DHEAS on transmitter-gated ion channels and gene expres- 
sion regulating neuronal function, extends the concept of "cross-talk" be- 



Aging of the Male Endocrine System 101 

tween membrane and nuclear hormone effects and provides a new role for 
the therapeutic applications of this steroid (Rupprecht 1997). 

Concerning the physiological and pathological significance of the con- 
version of DHEA into the potent sex steroid T, Roberts and coworkers dis- 
cussed that the fall in total T with age probably reflects an age-related de- 
crease in enzymatic capacity by forming DHEA or DHEAS, as precursors of 
T (Morley et al. 1997). Their work revealed that it was especially the 17,20 
lyase activity of the cytochrome P450c17 enzyme that was affected. Activity 
of this enzyme which catalyzes the side chain cleavage in 17~-OH 
pregnenolone and 17ix-OH pregnenolone sulfate to form DHEA or DHEAS 
(Miller et al. 1997) decreases with age, restricting the conversion into T. 

Another potential function of DHEAS may reside in the facilitation of T 
binding to albumin, thereby influencing the transport of T to its receptor. 
The molar concentration of albumin (~ 6.3 x 10E-4 M) is independent of age 
in healthy individuals. DHEAS and T can both bind to albumin, DHEAS, due 
to its anionic nature, with considerably higher affinity than T. DHEAS, at 
concentrations of 10 E-5 M or less, forms a 1:1 complex with albumin that 
has a greater affinity for T than unbound albumin. This is due to the high 
flexibility of the albumin molecule which can exist in different configura- 
tions when bound to various ligands. A molecule of T may bind to the 
DHEAS-albumin complex forming a ternary 1:1:1 complex, with T and 
DHEAS binding to separate sites on the same albumin molecule, thereby 
DHEAS may serve not only as a reservoir or precursor for T but also influ- 
ence the targeting of T to specific receptors for rapid actions at the cellular 
level (Morley et al. 1997). 

6 The Somatopause 

6.1 Growth Hormone 

Growth hormone and IGF-I serum levels decrease with age and appear to 
contribute to the decline of body functions that is associated with normal 
aging (Rudman 1985; Corpas et al. 1993; Rosen and Conover 1997). Never- 
theless more information is required before the conclusion of a direct rela- 
tionship between changes in the GH/IGF axis and the functional alterations 
of aging can be drawn (for review see Corpas et al. 1993; Rosen and Conover 
1997). While in boys GH secretion can be as high as 1.0-1.5 mg/day, healthy 
elderly men can produce as little as 50 ~tg/day (Veldhuis et al. 1995). Since 
GH secretion can be influenced by an array of age-related factors like lower 
sex steroid hormone serum-levels, a poor nutritional status, reduced physi- 
cal activity, altered body composition, aberrant sleep patterns and adiposity, 
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GH-serum levels can be highly variable between individuals (Veldhuis et al. 
1995). Interestingly, the strong positive correlation of the daily GH secretion 
with T in lean individuals cannot be observed in obese men. Latter show 
reduced GH secretion rates across all T concentrations (Iranmanesh et al. 
1991). A special characteristic of GH-deficient men is the increase in the 
amount of intra-abdominal (visceral) fat. Similarly, with increasing age, 
there is an increase in visceral fat and a correlation between the periodic GH 
release and visceral fat in aged men (Iranmanesh et al. 1991). Serious meta- 
bolic consequences including insulin resistance and an increased cardiovas- 
cular risk may result thereof (Thorner et al. 1997). 

6.2 Mechanisms Underlying the Decline of Growth Hormone Function 

The mechanisms underlying the hypoactivity of the GH/IGF-I axis in elderly 
men are still unclear, since there is little evidence of a change in sensitivity 
to IGF-I feedback or a diminution of the somatotroph cell mass with aging. 
A potential mechanism for the age-related decline in GH secretion may 
either reside in the decreased release of GH-releasing hormone (GHRH) or 
in an increase of somatostatin. As shown in rats, it is due to both, an in- 
creased somatostatin tone and an impaired activation of the GHRH-R in the 
somatotrophs. The latter is likely to be caused by a primary GHRH defi- 
ciency, as implied by the diminished GHRH expression in and release from 
the hypothalamus of old rats (Sonntag and Meites 1988). Due to the differ- 
ences in neuroendocrine regulatory mechanisms between man and rodents, 
it is not clear whether and to what extent the above mechanisms contribute 
to decreased GH secretion in  elderly men. As shown by administration of a 
synthetic growth hormone-releasing factor (hpGRF-44) to young and old 
men, the somatotroph cells become less sensitive to GHRF with aging 
(Shibasaki et al. 1984). The finding that repetitive administration of GHRH 
can restore the attenuated response also suggests that somatotroph cells 
become less sensitive to GHRH with normal aging (Iovino et al. 1989). Nev- 
ertheless, differently from the GHRH-induced GH release, the somatotroph 
response to combined administration of arginine (a GH secretagogue, prob- 
ably acting via inhibition of hypothalamic somatostatin release) and GHRH, 
does not vary with age, pointing to an increased somatostatinergic activity 
underlying the reduced GH secretion in normal aging (Ghigo et al. 1990). 
The function of GHRH-producing neurons in man can be tested by a with- 
drawal of SRIH infusion, promoting a rebound GH response. Measuring the 
baseline IGF-I levels before and after withdrawal of SRIH infusion, Uberti et 
al were able to show significantly lower levels of IGF-1 in elderly compared 
to young men. These findings are compatible with the view that an age- 



Aging of the Male Endocrine System 103 

related decrease in endogeneous GHRH function may at least in part con- 
tribute to the defective GH secretion in elderly men (Uberti et al. 1997). 

Circulating IGF-I and -II in their majority are bound to specific IGF- 
binding proteins (IGFBP). In healthy aging adults the molar ratio of IGF- 
1/IGFBP-3 decreases, leading to lower levels of free (biologically active) IGF- 
I serum levels (Juul et al. 1994). The generalized malnutrition and protein 
depletion (common conditions in the elderly) can be associated with marked 
changes in IGF-I serum levels and altered circulating IGFBPs, independent 
to the GH status (Clemmons and Underwood 1991), making the interpreta- 
tion of a single IGF-I measurement difficult. The function of the IGFBPs still 
requires a better understanding, especially concerning age-related changes 
in serum IGF-I. Interestingly conditioned medium levels of senescent hu- 
man fibroblasts have significantly increased levels of IGFBP-3, and IGFBP-3 
was found to be among the overexpressed genes in a senescent cell cDNA 
library. Besides influencing the IGF bioeffectiveness, IGFBPs may also pos- 
sess intrinsic biological activities (Conover 1997). 

7 Pulsatile Patterns of Hormone Secretion and Aging 

The dynamic regulation is a characteristic of the endocrine system. In addi- 
tion to varying hormone levels, hormonal information can also be encoded 
by distinct pulses with changing frequencies. Thus, with the development of 
sensitive methods for hormone measurements and high frequency blood 
sampling, the relevance of the pulsatile patterns of secretion for regulation 
of endocrine axes and its implications on diagnosis as well as on endocrine 
diseases was investigated in a series of studies (for review see Brabant et al. 
1992). 

Pulsatile patterns of hormone secretion are essential for target-cell regu- 
lation. Changes of mean serum concentrations of LH, FSH, TSH, prolactin, 
GH, i~-endorphin and adrenocorticotrophic hormone (ACTH) are generated 
by a modulation of the frequency and/or amplitude of hormone pulses 
(Veldhuis et al. 1990). Pulsatile, but not continuously applied, gonadotropin- 
releasing hormone (GnRH) is able to stimulate the secretion ofbioactive LH 
and FSH capable of fully inducing gonadal steroid secretion, follicular 
growth, or ovulation in women with hypothalamic amenorrhea (Southworth 
et al. 1991). LH and FSH synthesis and secretion are differentially regulated 
by the frequency of GnRH pulses. A low frequency of GnRH stimulation 
preferentially increases FSH, whereas LH is maximally stimulated by higher 
GnRH pulse frequencies (Knobil 1980; Shupnik and Fallest 1994). Elderly 
men have similar basal LH pulse frequencies compared to younger men, but 
the frequency of high LH pulses amplitude (greater than 2IU/L), mean and 
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maximal LH pulse amplitude, and pulse area are lower (Vermeulen et al. 
1989). 

The reproducibility of mean 24-h hormone levels and the responsiveness 
of LH or GH to exercise or fasting by an alteration of both pulse amplitude 
and frequency (Weltman et al. 1990; Ho et al. 1988; Cameron et al. 1991) 
indicate a physiological and functional significance of the pulsatile hormone 
patterns. Increased secretory irregularities with advancing age, as a wide- 
spread hormonal phenomenon, can also be demonstrated in older males 
since they secrete LH and T more irregularly, and jointly more asynchro- 
nously, than younger males. In this context the need for quantifications such 
as the model-independent statistic approximate entropy (ApEn) and cross- 
ApEn have to be emphasized. Mean hormone concentrations between two 
age groups may show no differences, giving no information concerning the 
irregularity of hormonal secretion in one of the two cohorts (Pincus et al. 
1996). 

8 Hormonal Replacement in Elderly Men 

8.1 Testosterone 

Despite the moderate fall in T levels, aging men show features compatible 
with androgen deficiency. The clinical significance of the age-related decline 
of T levels in men should be questioned. Should elderly men suffering from 
androgen deficiency related clinical signs like asthenia, impotence, a de- 
crease in muscle and bone mass or a decrease in libido be substituted with 
androgens (for review see Gooren 1996)? In absolute terms, T levels in aging 
men are nearly always within the normal reference values, although they 
may have fallen significantly in an individual's lifetime (Gray et al. 1991). 
Despite the recognition of decreasing T levels in aging men, indications for 
T replacement therapy in elderly men remain to be defined. This is espe- 
cially difficult since the symptoms of T deficiency may be subtle or unrec- 
ognised. A number of clinical problems prevalent in older men may be re- 
lated to androgen deficiency, including muscle weakness and wasting, 
changes in body composition, osteopenia, increased prevalence of hip and 
vertebral fractures, sexual dysfunction, decreased hematopoiesis, and mem- 
ory loss. Although all of these disorders are multifactorial, it has been 
speculated that age-related T deficiency or insensitivity plays a role in their 
pathophysiology, and that T replacement may help prevent or reverse these 
disorders. 

The most common indication for androgen therapy in men is hypogo- 
nadism which has numerous similarities with the aging process. These in- 
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elude: decreased musculoskeletal mass, increased adipose tissue and re- 
duced hematocrit and all can be in part adversed by T therapy in hypogo- 
nadal men (Greenspan et al. 1986; Jackson et al. 1987; Bhasin et al. 1997). 
Several T delivery systems have been approved, and many more are under 
development (Bagatell and Bremner 1996; Bhasin and Bremner 1997). Pre- 
liminary T replacement studies (Table 2 A) in old hypogonadal men (bio- 
available testosterone less than 70 ng/dl) aged 69 to 89 years have shown 
beneficial effects on libido, density lipoprotein levels and a significant in- 
crease in bone density and lean body mass (Katznelson et al. 1996; Finkel- 
stein et al. 1989). Adverse effects of T treatment included an increased hema- 
tocrit and higher prostate specific antigen (PSA) levels (Morley et al. 1993). 
In a study conducted by Tenover (1992) 13 healthy men, aged 57 to 76 with 
low or borderline serum testosterone levels received intramuscular T enan- 
thate (100 mg per week) for 3 months. Following treatment, lean body mass 
was significantly increased and urinary hydroxyproline excretion reduced. 
In addition, an increase in hematocrit was also documented as a negative 
side effect of the therapy. Furthermore, a decrease in cholesterol and a sus- 
tained elevation in serum PSA levels appeared in the T treated group 
(Tenover 1992). Although there appear to be some positive effects such as 
improved fitness and general well being after androgen treatment in aging 
males (Tenover 1994), the question about the long term side effects still 
persists. The sparse data regarding the effects of hypogonadism on age- 
associated physical and cognitive declines has led to a study in which the 
year-long effects of T administration were observed. Fifteen hypogonadal 
men (T levels of less than 60 ng/dL, mean age 68 + 6 yr) were randomly 
assigned to receive placebo, and 17 hypogonadal men (mean age 65 + 7 yr) 
to receive T (200 mg testosterone cypionate, biweekly for 12 months). The 
main outcome of the study was an improved strength, increased haemoglo- 
bin, and lower leptin levels in those probands treated with T. There were no 
significant changes between the two cohorts in memory or levels of PSA. 
Three probands receiving testosterone had to withdraw from the study due 
to an abnormal elevation in hematocrit (Sih et al. 1997). 

Although supraphysiologic doses of T, especially when combined with 
strength training, increase fat-free mass, muscle size and strength in normal 
men (Bhasin et al. 1996), the long term substitutions of supraphysiologic 
doses of T in frail elderly men are not recommended. Testosterone may have 
a role in treatment of frailty in males with hypogonadism; however, older 
men receiving T must be carefully monitored because of its potential risks. 
Future experiments will have to address this question, especially concerning 
a possible stimulation of malign prostatic growth after androgen treatment. 
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The undesired effects of androgens depend on both the type and dose ad- 
ministered (for review see Bagatell and Bremner 1996). Since only low-dose 
T supplements are used for elderly men, side-effects like those reported in 
athletes using high doses of alkylated androgens are not likely to be a prob- 
lem of androgen-therapy. Due to the physiological androgenic and estro- 
genic actions of androgens accounting for the main side effects of androgen 
replacement therapy, the cardiovascular system and the prostate deserve 
higher monitoring in androgen therapy. Despite the elementary importance 
of androgens for prostatic growth and the fact that BPH and prostate cancer 
do not develop without the exposure to T during puberty there is presently 
no evidence that replacement of androgens in hyopogonadal men will lead 
to BPH or even prostate cancer (Behre et al. 1994). Until now only moderate 
increases in prostate size and PSA levels have been documented in elderly 
men who were supplemented with androgens (Morley et al. 1993; Tenover 
1992; Holm/ing et al. 1993). Although androgens stimulate the growth of 
clinical prostate cancers, there are no data available showing that androgen 
administration enhances the progression from preclinical to clinical cancer. 
Nevertheless, at the second International Androgen Workshop in Long 
Beach, California in February 1995, it was recommended that androgen 
administration is not started if PSA levels are above normal, and should be 
discontinued if there is an increase of 2.0 ng/ml at any time or an increase of 
0.75 ng/ml per year over a 2-year period (Gooren 1996). 

Until now a hormonal supplementation is only reasonable given the 
clinical signs of a latent or manifested T deficiency i.e. a bioavailable T level 
of less than 70 ng/dl (2.43 nmol/L) on at least two occasions (Villareal and 
Morley 1994). The so far beneficial effects reported in studies on androgen- 
supplement therapy in aging men (see Table 2 A) will have to be verified by 
larger and long-term studies ruling out placebo effects, before a definitive 
conclusion concerning the prescription of androgens to elderly men can be 
drawTl. 

8.2 Dehydroepiandrosterone 

In a randomized placebo-controlled cross-over trial of nightly oral DHEA 
administration (50mg) of 6-month duration (13 men) the DHEA and 
DHEAS serum levels were restored to those found in young adults within 2 
weeks of DHEA replacement. The levels were sustained throughout the 3 
months of the study. Restoring the levels to those of young men resulted in 
an improvement of physical and psychological well-being, an increase in the 
bioavailability of IGF-1 and a small rise in androstendione serum levels. The 
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beneficial effects of DHEA replacement and the absence of side effects sup- 
port the need for long term studies of DHEA supplementation in older men. 
All studies that have been conducted in humans thus far (for review see 
Bellino et al. 1995), showed beneficial effects, and essentially no toxicity of 
DHEA treatment at doses that restore serum levels. This is very promising, 
but needs to be confirmed and warrants further well controlled long termed 
studies. Moreover, it needs to be clarified whether there is a cause-and-effect 
relationship between the decreasing levels of DHEAS with age and the 
physiological and pathological manifestations of aging. The easy restoration 
of DHEA serum levels by DHEA administration (Morales et al. 1994), its 
long biological half life (approx. 8-10 hrs), the limited physiological diurnal 
variations and the lack of noticeable changes of metabolism in aging people 
make DHEA an ideal candidate for an exogeneously admininstered hor- 
mone, for restoring the young in vivo situation. 

8.3 Growth Hormone 

The availability of recombinant hGH (rhGH), the new hexapeptide agonists 
of the growth hormone releasing peptide (GHRP) family and the nonpeptide 
analogues of such agonists, has led to a renewal of scientific and clinical 
interest in investigating wider indications for GH administration. The 
pharmacological and clinical aspects of hGH replacement therapy have been 
extensively studied (reviewed in: Jorgensen 1991). Reversing or attenuating 
the effects of GH deficiency by rhGH therapy (Salomon et al. 1989) has led to 
the question of whether some effects of normal aging may be overcome by 
treating aged people with rhGH. Because GH deficiency (Jorgensen 1991) 
and normal aging (Rudman 1990) are both associated with decreases in 
protein synthesis, percent of lean body and bone mass, and with increases in 
percent of body fat, it is possible that reduced GH secretion and IGF-I levels 
may account, at least in part, for one or more of the above effects of aging. 
Thus, some elderly people might benefit from treatment with rhGH in a way 
GH deficient adults do when treated with GH (Carrol et al. 1989; Jorgensen 
et al. 1989). Several studies (Table 2 B) have shown the beneficial effect of 
short-term treatment to older post-surgical patients (Ponting et al. 1988; 
Ziegler et al. 1992) or older malnourished people (Binnerts et al. 1988; Such- 
ner et al. 1990; Kaiser et al. 1991). Treatment of 18 healthy men and women 
aged 60 years and older for 1 week with three different doses of rhGH, re- 
vealed a dose-dependent increase in plasma IGF-I accompanied by reduc- 
tions in daily urinary excretion of nitrogen, phosphate, and sodium (Marcus 
et al. 1990). In a study conducted by Rudman 12 healthy men, aged 61-81 yr, 
who had basal plasma IGF-1 levels less than 350 U/liter, were treated with sc 
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injections of rhGH three times weekly for 6 months, with the dose adjusted 
monthly based on IGF-I responses. Administration of rhGH produced an 
8.8% increase in lean body mass, a 14.4% decrease in adipose tissue mass, 
and a significant increase in skin thickness (Rudman et al. 1990). Whether 
the stimulation of bone turnover as a result of GH treatment, as shown in 
hypogonadal men (Bravenboer et al. 1997), can also be achieved in elderly 
men, remains to be shown. As shown by Taaffe et al. (1994) supplementation 
of healthy elderly men (65-82 yrs) with rhGH does not augment the re- 
sponse to strength training. 

Since the pituitary GH releasable pool is still present in the aged, the GH 
axis may be stimulated by administration of either GHRH, GH-releasing 
peptide (GHRP) or GHRP mimetics like MK-677 (for review see Thorner et 
al. 1997). As shown by Corpas et al. (1992) the decreased GH and IGF-I levels 
in old men can be reversed by the administration of GHRH 1-29. Single 
nightly doses of GHRH are less effective than multiple daily doses of GHRH 
in eliciting GH- and/or IGF-I mediated effects (Vittone et al. 1997). 

The hexapeptide agonists of the GHRP family and the nonpeptide ana- 
logs work by facilitating GHRH action, leading to an enhanced pulsatile GH 
release, restoring IGF-I concentrations in GH deficient adults (Chapman et 
al. 1997) as well as in elderly men (Chapman et al. 1996). In contrast to the 
exogenous administration of GH, the feedback regulation at the pituitary 
level and the physiological pulsatile pattern of GH release are still preserved 
by these new agents. 

Although a positive regulation of body composition in older adults by the 
restored GH serum levels favor a therapeutic role of secretagogues for aged 
men, long term clinical trials are still necessary before such conclusions 
concerning efficacy and benefits may be drawn. It is still questionable 
whether GH serum levels in old men resembling GH serum levels in young 
man can be considered physiological. Finally, the results of a recent study 
showing that higher plasma levels of IFG-I are associated with higher rates 
of malignancy in the prostate gland, raise the concern that administration of 
GH or IGF-I over long periods may increase the risk of prostate cancer 
(Chan et al. 1998). 

8.4 Melatonin 

Melatonin (N-Acetyl-5-methoxytryptamine) is mainly biosynthesized from 
tryptophan by the pineal gland. Its secretion and release depend upon a 
number of exo- and endogenous factors e.g. light, drugs, sex and age. There 
is little or no melatonin secreted before the age of 3 months; Then melatonin 
production commences, becomes circadian, and reaches highest nocturnal 
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levels at the age of 1-3 years. During childhood nocturnal peak levels drop 
progressively by 80% until adult levels are reached. This alteration appears 
to be the consequence of increasing body size in face of constant melatonin 
production during childhood (Waldhauser et al. 1988). The biological sig- 
nificance of this decrease in melatonin secretion is presently unknown. Be- 
sides its well documented effects on the regulation of circadian rhythms (e.g. 
body temperature) and its sleep inducing properties, melatonin has also 
been shown to be a powerful antioxidant (reviewed in: Reppert and Weaver 
1995). Due to its lipophilic and hydrophilic nature it potentially affects not 
only every cell but also every subcellular compartment. IntraceUular actions 
of melatonin, some of which are receptor-independent, have become the 
focus of current investigations. Melatonin is capable of scavenging free radi- 
cals produced during catecholamine autooxidation (Miller et al. 1996), 
which have been implicated in the loss of dopaminergic neurones in the 
nigrostriatal region of the brain. This occurs during normal aging and in 
Parkinson's disease, thus the antioxidant effect of melatonin might have 
implications for the brain's antioxidant defences and may protect against 
subsequent dopaminergic neurodegeneration. In view of the pharmacologi- 
cal doses of melatonin required in order to see such scavenging effects, it is 
unlikely that it has such effects in vivo (Reiter et al. 1995). 

In addition, melatonin has been shown to possess immunoenhancing 
properties, which may be relevant when counteracting immunodepression 
following acute stress, drug treatment, viral diseases or aging. Physiological 
as well as pharmacological concentrations of melatonin induce interleukin 4 
production in T-helper cell type 2 lymphocytes, which in turn activates bone 
marrow stromal cells to release hematopoietic growth factors (Maestroni 
1995). 

Although the potential effects of melatonin in neuroimmunoendocrine 
interactions is presently being explored, there are too few dinical studies to 
establish a meaningful estimation of melatonin's involvement in human 
neuroimmunoendocrine interactions (Reppert and Weaver 1995). 

The claim that melatonin can reverse aging is based on a study per- 
formed in mice where the administration of melatonin in drinking water to 
aging mice prolonged their survival from 23.8 to 28.1 months. These data 
seem to indicate a place for melatonin in the physiological regulation of 
aging (Pierpaoli and Regelson 1994). The major drawback of this study is 
that these mice have a well-described genetic defect in pineal melatonin 
biosynthesis and do not produce melatonin, so the assertion that melatonin 
can increase longevity in mice in general can not be made. 

Presently, the only therapeutic application of melatonin in humans (jet 
lags and some circadian-based sleep disorders) takes advantage of its ca- 
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pability of modulating the circadian rhythms (Reppert and Weaver 1995). 
An interesting issue which merits further evaluation is its ability to induce 
sleep in humans (Dollins et al. 1994), especially in the light of the GH- 
secretion patterns which are known to be most reproducible shortly after the 
onset of sleep (Van Cauter and Plat 1996). Sleep loss in young subjects re- 
sults in endocrine disturbances which mimic those observed in the elderly 
(Van Canter et al. 1998). It is therefore conceivable that the decrease in sleep 
quality which characterizes aging and seems to contribute to age-related 
alterations in hormonal function might be counteracted via the administra- 
tion of melatonin. 

9 Conclusion 

A better understanding of the aging process will improve our geriatric care. 
In regard to this, the potential role of hormonal changes in the development 
of senescence is of highest priority, since the signs and symptoms of endo- 
crine gland failure are often similar to some of the classical age-related 
changes that result in a deterioration of quality of life and/or the develop- 
ment of frailty. The structural and functional changes during aging may at 
least in part be a consequence of the hormonal alterations seen in aged in- 
dividuals. The improved methodology to measure hormones and the un- 
derstanding that it is unlikely that a single hormone deficiency will explain 
the aging process per se have led to new interest in the putative role of de- 
clining hormonal levels in relation to frailty syndromes seen in association 
with male aging. 

Aging in men produces a variety of changes at the hypothalamic, pitui- 
tary, and testicular level, thereby possibly contributing to aging "syndromes" 
such as frailty with its concomitant impact on morbidity and mortality. 

The potential usefulness of hormonal replacement in elderly people de- 
serves further investigation due to the beneficial effects in individuals hav- 
ing subnormal hormone levels, thereby suffering from symptoms similar to 
those of aged people. 

Long term studies using novel methods of T administration such as en- 
hanced transdermal systems, transscrotal patches, or subcutaneous implants 
will show whether the benefits outweigh the long term risks and T can truly 
prevent or reverse frailty. Besides producing a more physiologic replace- 
ment of T than depot injections these new application systems also offer an 
easier, more acceptable mode of therapy in older individuals (for review see 
Kaiser and Morley 1994). 

Despite its decrease (Labrie et al. 1997a) the clinical significance of 
DHEAS for the aging process is uncertain. The local or intracrine biosyn- 
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thesis and action of androgens synthesized by steroidogenic enzymes from 
the precursors DHEA and DHEAS minimizes the risks of undesirable mas- 
culinizing or other androgen-related side effects of DHEA (Labrie et al. 
1997b). In addition, the activity of the steroid-converting enzymes present in 
peripheral tissues do not seem to decrease during aging (Belanger et al. 
1994). Interestingly, in rhesus monkeys, restriction of caloric intake, which 
extends life span and retards aging in laboratory rodents, slows down the 
postmaturational decline of serum DHEAS levels (Lane et al. 1997). 

Due to the complexity of the endocrine system it is unlikely that hormo- 
nal replacement of one or a few hormones will reverse or stop aging per se. 

Nevertheless a hormonal therapy may alleviate some of the symptoms of 
aging, helping us not to extend life but to improve the health such that it 
increasingly fits the life span to which we all now aspire. 

The potentially unlimited supply of biosynthetic hGH renewed the inter- 
est in the actions of GH, going far beyond promotion of longitudinal growth 
in children or GH replacement therapy in GH-deficient adults (Cuneo et al. 
1998). Normal aging is associated with declining GH serum-concentrations, 
a reduction in lean body mass and an increase in fat mass, in this way re- 
sembling adult GH deficiency. Although the administration of GH in the 
elderly has shown increments in lean body mass and reductions in fat mass, 
potential side effects like mitogenic actions of GH on potentially malignant 
cells, the risk of heart failure via fluid retention and increased resting heart 
rate, or the insulin antagonist actions of GH in a population with a high 
prevalence of non-insulin-dependent diabetes, to name just a few, should, 
especially in view of long-term administrations, not be underestimated. 
Another important point would be to define the gender differences observed 
in response to GHRH analog administration. Nightly administation of a 
GHRH analogue for 4 months in age-advanced men and women induced 
anabolic effects favoring men more than women (Khorram et al. 1997a). 
Interestingly no sex differences in the immune response were detected with 
the same GHRH analog ([norleucine27]GHRH (1-29)-NH2). Administration 
of that substance to aging men and women had profound immune- 
enhancing effects, pointing to a potential therapeutic benefit in states of 
comprised immune function in elderly people (Khorram et al. 1997b). 

As already stated in the Vienna International Plan of Action on Aging 
(1982), "research and practical experience have demonstrated that health 
maintenance in the elderly is possible and that diseases do not need to be 
essential components of aging". Recognizing some of the missing links and 
increasing our understanding of the endocrine changes affecting elderly 
men will hopefully enable us to ameliorate age-related symptoms and im- 
prove quality of life. 
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1 Introduction 

S. S. Shen, J. S. Kim and M. E. Weksler 

Adaptive immunity, measured by the level of protective antibodies or cyto- 
toxic T cells, wanes with age (Schwab et al. 1989). As a consequence, the 
elderly suffer greater morbidity and mortality from infections, autoimmune 
diseases such as pernicious anemia, and cancer. Aging of the immune sys- 
tem, immune senescence, leads to the most common but not the most se- 
vere, immunodeficiency state. Unlike severe acquired immune deficiency 
states, aging is not associated with a decrease in the concentration of serum 
immunoglobulins or in the number of lymphocytes. Immune senescence 
also leads to a state of immune dysregulation characterized by polyclonal B 
cell activation, autoantibody formation, and clonal lymphocyte expansions 
(LeMaoult et al. 1997), 

The most striking anatomical change in the immune system with age is 
the involution of the thymus gland. Thymic involution begins early in life 
and by mid-life the cellular mass of the thymus has fallen by 75 to 85% 
(Boyd 1932). The principal consequence of thymic involution is the de- 
creased capacity of the thymus to export a diverse repertoire of naive T cells 
(Scollay et al. 1980). The elderly, despite a decreased output of naive T cells 
from the involuted thymus, maintain a normal peripheral T lymphocyte 
count as self-renewal, combined with the small number of T lymphocytes 
produced by the thymus, is capable of making up for the normal loss of 
peripheral T lymphocytes (Rocha et al. 1989). However, when peripheral T 
cells are depleted, for example following intensive chemotherapy, the output 
of the involuted thymus gland does not permit the rapid regeneration of a 
normal T lymphocyte count observed in young individuals (Mackall and 
Gress 1997). It would be expected that the elderly could not maintain or 
regenerate their peripheral T lymphocyte population as well as young indi- 
viduals when the rate of peripheral T cell destruction increased following, 
for example, radiation therapy or HIV infection. 

2 Thymic Development and Aging 

The thymus gland first appears as a collection of epithelial cells which is 
colonized by thymocyte precursors and macrophages from the bone marrow 
midway through the fetal development (Miller 1992). The thymic epithelial 
cells form the microenvironment in which bone marrow-derived thymocyte 
precursors develop. Thymocyte development is rigorously censored so that 
less than 5% of thymocytes leave the thymus as mature T lymphocytes to 
populate the secondary lymphoid compartments (Scollay et al. 1980). 
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Anatomists had identified the lobulated thymus gland located in the up- 
per thoracic cavity and recognized its age-associated involution before its 
immunological function was established (Miller 1992). Each lobule of the 
thymus gland is divided into four zones (Stevens and Lowe 1997). The out- 
ermost zone, the subcapsular region, is the point of entry of bone marrow- 
derived thymocyte precursors. The outerzone of the cortex is just below the 
subcapsular region and contains actively dividing thymocytes. The inner 
zone of the cortex contains small, largely nondividing cells which then pass 
into the medulla. The medulla contains the most mature thymocytes prior to 
their immigration to the secondary lymphoid compartments. 

The stages of thymocyte maturation are defined by their location within 
the thymus gland as well as by their expression of cell surface molecules and 
the state of arrangement of the T cell antigen receptor (TCR) genes (Aspinall 
1997; yon Boehmer and Fehling 1997). The earliest T cell precursors in mice 
are CD3-, CD41ow, CD8-. The next stage of thymocyte maturation is identi- 
fied by the loss of surface CD4 expression. The CD3-, CD4-, CD8- thymo- 
cytes have the genes coding for the 13 chain of the TCR in their germline 
configuration and express CD44 but not CD25 on their surface. Thymocytes 
which have rearranged their 13 chain TCR genes express cell surface CD25 
becoming CD3-, CD4-, CD8-, CD25+, CD44+. The product of the rearranged 
TCR B chain genes is expressed on the cell surface in association with the 
TCR a chain equivalent (yon Boehmer and Fehling 1997). 

The next stage of thymocyte development is identified by the expression 
of both CD4 and CD8 on the cell surface (von Boehmer and Fehling 1997). 
These "double positive" thymocytes make up the largest population of cells 
within the thymus. During this stage of development, thymocytes rearrange 
their ot chain genes and express the mature TCR consisting of both the a and 
13 chains of the TCR. Double positive thymocytes are activated when their 
mature TCR interact with MHC-peptide complexes expressed on the surface 
of thymic epithelial and hematopoietic-derived cells. 

Double positive thymocytes whose TCR bind with high affinity to self- 
MHC class I or class II-peptide complexes enter a pathway of activation- 
induced cell death, termed apoptosis. This process in the thymus is called 
negative selection (Miller 1992). Negative selection contributes importantly 
to the establishment of self-tolerance by preventing the release of autoreac- 
tive T cells from the thymus. In contrast, thymocytes that interact with ei- 
ther self-MHC class I or self- MHC class II molecules with moderate affinity 
are activated to proliferate, a process called positive selection (Miller 1992). 
Those thymocytes that are not activated die of "neglect". Double positive 
thymocytes which interact with self-MHC class I-peptide complexes lose 
their cell surface CD4 while double positive thymocytes which interact with 
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self-MHC class II-peptide complexes lose their CD8 molecules. The "single 
positive" thymocytes move from the thymic cortex into the medulla prior to 
their immigration to the secondary lymphoid compartments. 

The age-associated involution of the thymus gland results predominantly 
from the decreasing mass of the thymic cortex (Boyd 1932). This suggests 
that age-associated defects in the early stages of thymocyte development are 
largely responsible for thymic involution. There is also some evidence that 
under competitive conditions the capacity of bone marrow thymocyte pre- 
cursors from old mice to reconstitute a young thymus gland is less than that 
of precursors from young mice (Sharp et al. 1996). It is not known whether 
the impaired capacity of bone marrow-derived thymocyte precursors to 
colonize the thymus reflects a lower number of circulating thymocyte pre- 
cursors released from the bone marrow of old mice or whether the thymo- 
cyte precursors in old mice are impaired in their capacity to enter the thy- 
mus gland. 

Aging is associated with a declining number of all thymocytes after the 
CD3-, CD4-, CD8-, CD25+, CD44- stage of thymocyte development (Aspinall 
1997). A similar age-associated change in thymocyte development has been 
seen following irradiation of old mice (Thoman 1997). The crucial transition 
from CD3-,CD4-,CD8-,CD25+,CD44- to CD3-,CD4-,CDS-,CD25+, CD44+ 
thymocytes depends upon the rearrangement of the TCR 13 chain genes. 
Thus, it is possible that an impaired capacity of thymocytes in old mice to 
rearrange their TCR [3 genes underlies the decline in thymocyte number and 
thymic involution. This hypothesis predicts that old mice with rearranged 
TCR [3 and cz chain transgenes, which do not need rearrangement prior to 
their expression, would not suffer thymic involution. Results consistent with 
this prediction have recently been published (Aspinall 1997). Thus, TCR [3 
and cx chain transgenic mice were reported to maintain thymocyte number 
during aging and not to undergo thymic involution. How completely thymus 
mass and thymocyte number are maintained appears to vary in different 
mice and with different transgenic TCR genes (P-I Linton et al. 1997). 

The precise mechanism underlying the age-associated impairment in the 
rearrangement of TCR [3 chain genes in old mice has not been defined. How- 
ever, a role for IL-7 in thymic involution must be considered. First of all, the 
addition of IL-7 to cultures of thymocytes increases their viability and pro- 
liferation associated with an increase in RAG gene expression by the cul- 
tured thymocytes (Muegge et al. 1993). Furthermore, the failure of thymus 
gland development in athymic, nude, mice also appears to be related to 
defects in the production of IL-7. Thus, nude mice that express an IL-7 
transgene under the control of an immunoglobulin promoter were reported 
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to develop thymocytes and functional peripheral T cells (Rich and Leder 
1995). 

While decreased rearrangement of TCR genes appears to be a dominant 
factor underlying age-associated thymic involution other intrathymic age- 
associated factors may also influence the development and function of T 
cells in old mice. Thus, decreased expression of MHC antigens on bone mar- 
row-derived stromal cells and macrophages may impair positive or negative 
selection of thymocytes (Farr and Sidman 1984). The decreased expression 
of MHC molecules would be expected not only to decrease thymocyte prolif- 
eration but also to decrease the stringency of self-MHC restricted T cell 
responses. Elderly humans and old mice have been shown to have less strin- 
gent self-MHC-restricted T cell responses which may reflect impaired posi- 
tive selection of thymocytes that could result from the decreased expression 
ofintrathymic MHC molecules (Schwab et al. 1992; Russo et al. 1993). 

The decreased output of T cells from the involuted thymus does not lead 
to a decrease in the number of peripheral T cells during aging. Although 
self-renewal of peripheral T lymphocytes is thought to maintain the T lym- 
phocyte count despite thymic involution, it is also possible that extra-thymic 
pathways of T cell production. There is little to suggest that T cell formation 
in the gut maintains the number or function of a/[3 TCR-expressing periph- 
eral T cells during aging. In contrast, the capacity of oncostatin M (OM) to 
stimulate the generation of functional T cells within lymph nodes of thymec- 
tomized or nude mice suggests a potential mechanism contributing to T cell 
development after thymic involution (Clegg et al. 1996). 

OM is a member of the IL-6 subfamily of cytokines that is expressed in 
hematopoetic tissues. Mice that express the OM gene, under the control of a 
p561ck promoter, develop large numbers of CD4-CDS- and CD4+CD8+ T 
cell precursors in their lymph nodes. Furthermore, the T cells that are 
stimulated to develop by the OM transgene are immunocompetent as as- 
sessed by their capacity to control the growth of an allogenic melanoma line. 
The thymic independence of this developmental pathway was demonstrated 
by showing that these early T cell precursors developed in thymectomized 
mice which were given transgenic but not control bone marrow cells. OM 
protein can also stimulate the development of T cells in nude mice. Thus, 
sublethally irradiated nude mice treated with OM showed an increase in 
CD4+CD8+ T cells in their mesenteric lymph nodes compared to unirradi- 
ated controls. These results suggest that OM stimulates an extrathymic 
pathway of peripheral T cell development although the origin of the T cell 
precursors that accumulate within the lymph nodes remains to be defined. 
The fact that the immature T cells stimulated by OM express the CD8 a/~ 
molecule and not the CD8 aAx molecule, typical of gut-derived T cells, sug- 
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gests a pathway that is independent of both the thymus and gut. Additional 
studies are necessary to show whether OM would be useful in reversing the 
age-associated defect in the generation of a diverse population of naive T 
cells by the thymus gland. 

Once it was realized that the thymus gland was the primary lymphoid or- 
gan responsible for the development of peripheral T cells and that this gland 
involuted with age, investigators began to study the effect of age on T cell 
function in vivo and in vitro (Price and Makinodan 1972; Roberts-Thomson 
et al. 1974; Weksler et al. 1974). It was shown that T-dependent antibody 
responses, T cell mediated delayed-type hypersensitivity reactions and the 
proliferation of T cells in culture were impaired in old compared to young 
subjects. Another prediction, following from the decreased export of a di- 
verse repertoire of naive T cells from the thymus, was an age-associated 
decrease in the diversity of the T cell repertoire. The age-associated appear- 
ance of clonal T cell populations observed in both old mice and elderly hu- 
mans is consistent with this prediction (CaUahan et al. 1993; Posnett et al. 
1994; Schwab et al. 1997). As the number of lymphocytes does not increase 
with age, clonal expansions must occur at the expense of other clones. Some 
clones may be completely lost creating "holes" in the lymphocyte repertoire. 

Although the involution of the thymus gland is the most striking ana- 
tomical change in the immune system during aging, it is not "unique within 
the immune system." as previously thought (George and Ritter 1996). Thus, 
we and others have shown that the generation of mature B cells from bone 
marrow B cell precursors is also decreased with age (Zharhary 1988; Stephan 
et al. 1996; LeMaoult et al. 1997). The defect in B lymphocyte development 
reflects the impaired transition of Pro-B cells into Pre-B cells (Szabo et al. in 
press). Pre-B cells appear to be an important check point for B cell develop- 
ment. To pass through this stage of B cell development, the immunoglobulin 
(Ig) heavy chain genes must be rearranged and their product expressed on 
the cell surface in association with the surrogate light chain (Li et al. 1993). 
Ig heavy chain genes are rearranging in Pro-B cells and we have preliminary 
evidence that evidence that RAG activity-mediated DNA breaks are lower in 
Pro-B cells from old compared to young mice. These observations may be 
the functional consequences of the age-associated decrease in RAG gene 
expression observed in bone marrow B cell precursors (Ben-Yehuda et al. 
1994; LeMaoult et al. 1997). Further support for the age-associated defect in 
passing the Pre-B cell checkpoint in B cell development comes from the 
increased rate of apoptosis in Pre-B cells from old compared to young mice 
Kirman et al. 1998). In summary, there is evidence that age-associated 
"functional involution" occurs in both the thymus and bone marrow, the 
primary sites of B and T cells generation, respectively. At both sites the 
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mechanism underlying the "functional involution" appears to be impaired 
RAG-mediated rearrangement of antigen receptor genes. 

3 Effect of Age on the Structure and Function of T Cells 

As thymic involution is the most striking change in the immune system with 
age, it is not surprising that most investigators of immune senescence have 
studied age-associated changes in the distribution and function of thymic- 
derived, T lymphocytes. Because T lymphocytes are found in lymphoid 
compartments throughout the body, the effect of age on the structure of the 
lymphoid tissue and lymphocyte function has usually involved comparisons 
of the same compartment in young and old individuals. Human studies 
have usually involved blood lymphocytes obtained from young and old do- 
nors. In mice, the spleen, lymph node or bone marrow cells from young and 
old animals have been compared. 

In addition to thymic involution, there are other important age- 
associated changes in the structure of the lymphoid tissues. There is a 
marked increase in the number of mature lymphocytes and plasma cells in 
the bone marrow and a marked reduction in the number of germinal centers 
in the lymph nodes and spleen with age (Benner et al. 1981; Gonzalez- 
Fernandez et al. 1994). Although it is clear that bone marrow becomes a 
dominant site of antibody production in old mice, the mechanism and sig- 
nificance of this age-associated change remains unclear. In contrast, the age- 
associated decline in T lymphocyte function explains the decrease in the 
number of germinal centers. Furthermore, as somatic mutation and isotype 
switching, the mechanisms underlying the generation of high affinity and 
IgG antibody, take place within germinal centers, the decline in the number 
of germinal centers with age explains the age-associated impairment in the 
most protective high affinity and IgG antibodies (Goidl et al. 1976; Zheng et 
al. 1997). 

Despite the age-associated involution of the thymus gland and the conse- 
quent decreased generation of naive T cells from the thymus, most studies 
report no change in the number of T cells although some studies report a 
decrease in T cells in elderly compared to young individuals (Sansoni et al. 
1997). The consensus is that the number of peripheral T cells change mod- 
estly, if at all, with age. Similarly, the expression of the cz/13 TCR or CD3 
complex by resting T cells does not change with age, although it has been 
reported that the expression of both TCR cx/J3 and CD3 are reduced on mito- 
gen-activated T cell from old compared to young T mice (Wakikawa et al. 
1997). Clonal T lymphocyte expansions become more frequent with age and 
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lead to a skewing of the T cell repertoire with respect to BV usage (Schwab et 
al. 1997). 

There is no consistent shift in the ratio of CD4+ to CDS+ T cells with age 
although reports exist that the ratio of CD4+ to CD8+ T cells both increases 
or decreases with age (Miller 1996). It is possible that the observed differ- 
ences in the ratio of CD4+ to CD8+ T cells reflect a difference in the fre- 
quency and size of the age-associated CD8+ and CD4+ T cell clonal expan- 
sion (Callahan et al. 1993, Schwab et al. 1997). 

There is general agreement that there are significant age-associated 
changes in the distribution of the T lymphocytes expressing CD45R, CD28, 
and CD40L cell surface molecules (DePaoli et al. 1988; Miller 1996; Waki- 
kawa et al. 1997). Aging is associated with a 20 to 50% increase in the ratio of 
CD45RO+, memory T cells to CD45RA+, naive T cells in both humans and 
mice. This shift from naYve to memory T cells with age is observed in both 
the CD4+ and CD8 peripheral T cell populations. The age-associated in- 
crease in the ratio of memory to naive T cells reflects decreasing generation 
of naive T cells by the thymus gland, greater immunological experience, and 
possibly, an increased apoptosis among naive T cells and a decreased apop- 
tosis among memory T cells (Mountz et al. 1997; Schwab et al. 1997). 

Memory T cells are more impaired with respect to age-associated defects 
such as decreased IL-2 secretion and T cell proliferation than naive T lym- 
phocytes (Miller 1996). However, increased immunological experience and 
the shift from a naive to memory phenotype may not be a requirement for 
the expression of these defects (Linton et al. 1997). Thus, T cells from TCR 
transgenic mice maintain their naive phenotype during aging although they 
become impaired in their capacity to proliferate and secrete IL-2. These 
results suggest that interaction with the nominal antigen and the shift from 
the naive to memory phenotype are not essential for transgenic T cells to 
develop characteristics observed in the heterogeneous population of T cells 
during aging. 

In addition to CD45R, there are other T cell surface markers which 
change during aging. The percentage of resting T cells expressing CD28 
decreases with donor age (Pawelec 1995). CD28 expression by T cells also 
declines during the in vitro passage of T cell clones. Thus, expression of 
CD28 may be not only a biomarker of immunosenescence but also a possible 
explanation for the impaired T cell response to foreign antigens. The ex- 
pression of CD40L by activated T cells has also been reported to decrease 
with increasing age (Li et al. 1995). Fewer T cells from old compared to 
young mice cultured with anti-CD3 antibody express CD40L. This age- 
associated change in cell surface phenotypic may also have functional con- 
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sequences with respect to the age-associated changes in humoral immunity 
and T cell activation. 

The changes in the structure of the lymphoid tissues and in the pheno- 
type of T lymphocytes associated with aging are associated with important 
defects in T cell function. Although the generation of a protective T cell- 
mediated immune response in vivo involves a multitude of processes includ- 
ing antigen presentation, lymphocyte or monocyte chemotaxis, lymphokine 
production, T cell proliferation, and the vascular responses to inflammatory 
mediators, it has become clear that T cells and not their environment are the 
major determinants of protective immunity. The most convincing experi- 
ments in this regard are the experiments which compare protection from 
tuberculosis and mortal@ in mice of different ages infected with tuberculo- 
sis (Orme 1987). Old mice suffer a much higher mortal@ from M. tubercu- 
losis than young mice and this fact is attributable to changes in the function 
of T cells and not the T cell environment. Thus, when mice of different ages 
are given T cells from young donors, all recipients, regardless of age, de- 
velop the same level of protective immunity. In contrast, when young mice 
were reconstituted with T cells from young or old mice higher protective 
immunity was observed in the recipients of T cells from young than old 
mice. 

The effect of age on the morbid@ and mortality from three viral dis- 
eases, influenza, H. zoster, and HIV, has been studied. Both elderly humans 
and old mice suffer excess morbidity and mortality from influenza even 
when immunized prior to challenge (Ben-Yehuda et al. 1993). The age- 
associated increase in susceptibility to influenza is linked to the impaired 
generation of both protective cytotoxic T cells and antibodies. Approxi- 
mately one half elderly humans and old mice fail to develop protective anti- 
influenza immunity after immunization with the conventional influenza 
vaccine. 

The reactivation of the latent Varicella-Zoster (VZ) virus leads to 
"shingles", a vesicular skin lesion that follows the distribution of the nerve 
supply to the skin. The VZ virus is acquired during childhood and lies dor- 
mant in the dorsal root ganglia of the peripheral nervous system. The latent 
virus reactivates when the level of anti-VZ viral T cell immunity declines. 
The incidence of shingles, and even more disturbing to the patient post- 
herpetic neuralgia, increases dramatically in persons over 45 years of age. It 
has been clearly demonstrated that the frequency of VZ specific T cells de- 
dines with age leading to the reactivation of the latent viral infection (Levin 
et al. 1992). It has been demonstrated that immunization of elderly humans 
with the attenuated, live Oka VZ virus vaccine boosts the number of VZ- 
specific T cells. Clinical studies are being undertaken to determine whether 
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immunized elderly individuals will be less susceptible to shingles and post- 
herpetic neuralgia. 

HIV is a viral disease which destroys peripheral CD4 T lymphocytes. For 
this reason it was speculated that the elderly, who are less able to compen- 
sate for peripheral T cell depletion would be more severely affected by HIV. 
This prediction was documented in hemophilic patients in whom the date of 
infection could be documented (Darby et al. 1996). There was an inverse 
correlation between age at infection and length of survival. Furthermore, the 
oldest cohort had a 4 fold greater death rate than the youngest cohort. 

Because T cell immunity plays such an important role in immune senes- 
cence, the activity of T lymphocytes in culture has been examined in consid- 
erable detail. Many studies have focused on the effect of age on the in vitro 
proliferative responses of T Iymphocytes cultured with mitogens, such as 
PHA, Con A, monoclonal antibodies to the CD3s chain, or to antigens to 
which the lymphocyte donor had been sensitized (Miller 1996). There is a 
broad consensus that the proliferative response of T cells in vitro decreases 
with age. As the T cell receptors for these ligands are not altered with age, it 
is widely believed that the defect in the response of T lymphocytes from 
elderly person reflects impaired signal transduction. This concept is sup- 
ported by a number of studies that have shown that mobilization of calcium 
and generation of phosphorylated intracellular proteins differ in activated T 
cells from old as compared to young subjects. 

In addition to the early steps of T cell activation, there is considerable 
evidence that cytokine generation by activated T cells is also altered with age 
(Kirman et al. 1996). More than 20 years ago, we demonstrated that T cells 
from old humans are impaired in their production of and response to IL-2 
(Weksler and Hutteroth 1974). There now is a general consensus that there 
is a reduced level of IL-2 gene transcription and IL-2 secretion by in vitro 
activated T cells from elderly humans and old mice compared to from young 
controls. However, not all cytokines produced by activated T ceils decrease 
with age (Shearer 1997). For example, activated T cells from older donors 
secrete more IL-4 and IL-6 than do activated T cells from young donors. 
Considering the profile of cytokines produced by T cells from old and young 
subjects, there is an age-associated shift from a profile typical of Thl to Th2 
cells. 

Since thymic involution seems to be the pacemaker of immune senes- 
cence, it was of interest to test the capacity of transplanting thymus into 
adult animals (Hirokawa et al. 1982; Kurashima et al. 1995). Thymus grafts 
from neonatal animals caused the most rapid reconstitution of the naive T 
lymphocyte population and the most complete recovery of responsiveness to 
cell mitogens and to T-cell dependent antigens. When thymus grafts were 
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taken from older animals, the pace of recovery was delayed and in many 
cases thymic-dependent immune function never reached that seen in intact 
animals or in animals reconstituted with neonatal thymus glands. Thus, the 
capacity of the thymus to affect the maturation of thymocyte precursors into 
mature T cells decreased with age. 

4 T Cell Helper Function and Age 

T lymphocytes not only mediate cellular immunity but also regulate hu- 
moral immunity. T cells modulate not only the quantity and quality of the 
antibody secreted by B lymphocytes but also the development of B lympho- 
cytes from precursors within the bone marrow. The age-associated defect in 
the antibody response to most protein antigens and vaccines is a conse- 
quence of thymic involution and the resulting impaired T lymphocyte 
helper function. These conclusions are derived from studies in mice using 
antigens that have been shown to induce T lymphocyte dependent (TD) or 
thymic independent (TI) antibody responses and that stimulate antibody 
secretion by B1 or B2 lymphocytes (Zhao et al. 1995). It was shown that the 
antibody responses to TI antigens and to antigens that stimulate B1 lympho- 
cytes do not diminish with age. In contrast, the response of old mice to TD 
antigens and to antigens that stimulate B2 lymphocyte responses are mark- 
edly diminished compared to the response of young mice. The quantitative 
impairment in humoral immunity is reflected in terms of the concentration 
of serum antibody or of the number of plaque forming cells specific for the 
nominal antigen. The qualitative impairment is reflected in the limited het- 
erogeneity of antibody produced by old mice in terms of antibody affinity 
for the nominal antigen, antibody isotype, and antibody idiotype (Goidl et 
al. 1976; Goidl et al. 1980). 

In parallel with the impaired antibody response of old mice to the nomi- 
nal foreign antigen, there is a significant increase in the autoantibody re- 
sponse (Goidl et al. 1980). One class of autoantibodies, auto-anti-idiotypic 
antibodies react with the antigen combining sites of the B cell antigen recep- 
tor and, thereby, inhibit antibody secretion by the B lymphocyte specific for 
the nominal antigen. Thus, some autoantibodies not only reflect the dys- 
regulated immune response associated with aging but contribute to the 
immune deficiency associated with aging. 

Despite the decreased antibody response to most foreign antigens with 
age, there is a marked and generalized increase in the secretion of Ig by old 
mice manifested by the increased concentration of serum Ig and the in- 
creased number of Ig-secreting lymphocytes in old compared to young mice 
(Zhao et al. 1995; Gueret et al. 1996). It is likely, but not yet proven that the 
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loss of T cell-mediated regulation of B lymphocyte activity leads to poly- 
donal activation of B cells in old mice. 

The antibody responses to TD antigens that are severely compromised 
with aging, depend upon cooperation between T and B lymphocytes within 
the secondary lymphoid tissue. In addition to the primary interaction be- 
tween the nominal antigen and the B cell antigen receptor, there are critical 
cognate interactions between the B-7 and CD40 molecules on the surface of 
B cells with the CD28 and CD40L molecules on the surface of T lymphocytes 
as well as B cell exposure to cytokines such as IL-4 and IL-6 secreted by the 
T cell (Abbas and Singer 1996). These critical interactions between B and T 
lymphocytes take place within the germinal centers of the secondary lym- 
phoid compartments. In the germinal centers, further diversification of B 
cells occurs, mediated by somatic mutation of the immunoglobulin genes, as 
well as isotype switching from IgM to IgG, IgA and IgE antibodies (Liu and 
Arpin 1997). The number and function of germinal centers are severely 
compromised with age as a consequence of thymic involution and the result- 
ing defects in T lymphocyte function. The failure of normal germinal center 
development leads to the impaired production of the most protective high 
affinity and IgG antibodies is impaired. 

While the influence of aging and thymic involution on the antigen- 
dependent phase of the B cell function, it is dear, aging and thymic involu- 
tion is now being recognized to influence the antigen-independent phase of 
B cell development. Specifically, we have shown that T lymphocytes and the 
soluble factors they secrete regulate the development of B cell from their 
bone marrow precursors (Szabo et al. 1998). The development of B lympho- 
cytes within the bone marrow, like the development of thymocytes within 
the thymus, can be separated into several stages. The early stages of B lym- 
phocyte development up to and including the Pro-B lymphocyte stage 
changes little with age. In contrast, the number of Pre-B cells, is much re- 
duced in old compared to young mice. 

The transition of Pro-B to Pre-B cells depends upon the rearrangement of 
the Ig heavy chain genes and the expression of the Ig heavy chain on the cell 
surface in association with the surrogate light chains, lambda V and VpreB 
(Li et al. 1993). This series of molecular and cellular events is similar to the 
rearrangement of the heavy chain genes of the TCR genes and the expres- 
sion of the TCR heavy chain in association with the surrogate light chain on 
thymocytes. The rearrangement of the BCR and TCR genes requires the 
activity of the RAG gene products. We have shown that RAG gene expres- 
sion by bone marrow B cell precursors decreases with age (Ben-Yehuda et al. 
1994). In preliminary studies, we have shown that RAG-mediated DNA 
breaks are decreased in Pro-B cells from old compared to young mice. It 
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appears reasonable to suggest that the age-associated defect in B lymphocyte 
development in old mice is due to the impaired capacity of B cell precursors 
to rearrange their Ig heavy chain genes. Impaired expression of RAG genes 
by B cell precursors is observed not only in old mice but also in athymic, 
nude mice (Szabo et al. 1998). Injection of IL-16 into old or athymic mice 
increases the expression of RAG genes by bone marrow B cell precursors 
and the number of bone marrow Pre-B cells. The impaired capacity of T 
lymphocytes from old mice to secrete IL-16 compared to young mice offers a 
mechanism linking age-associated T lymphocyte dysfunction with decreased 
expression of RAG genes by bone marrow B cell precursors and decreased 
numbers of Pre-B cells in thymic deprived mice. In summary, thymic invo- 
lution not only compromises T lymphocyte development and cell mediated 
immunity but also compromises B lymphocyte development and humoral 
immunity as T cells and/or the factors they secreted are required for the 
normal development and function of B lymphocytes. 

5 Clinical Significance of Immune Senescence 

There is much evidence that immune senescence contributes to the in- 
creased morbidity and mortality that accompanies aging (Roberts-Thomsen 
et al. 1974; Doria et al. 1997). The first link between immune senescence and 
mortality was the observation that elderly humans with reduced delayed 
cutaneous hypersensitivity reactivity were at increased risk of death. Subse- 
quently, studies showed that decreased delayed cutaneous hypersensitivity 
reactivity in humans over 60 years of age was associated with an increased 
mortality from pneumonia and cancer. In vitro immune parameters have 
also linked immune senescence to increased mortality. Thus, healthy men 
with a low lymphocyte counts were found to be at increased risk of death. 
Similarly, individuals between 86 and 92 years of age, with low proliferative 
responses to T cell mitogens, combined with low CD4, high CD8 T cell and 
low B cell counts were at increased risk of death. Some of the same factors 
have been studied in mice. Thus, mice with increased CD8 T cells and mem- 
ory T cells had decreased survival. 

There is every reason to believe that interventions that enhance adaptive 
immunity in the elderly will reduce their morbidity and mortality. Specifi- 
cally, increasing the capacity of the immune system in the elderly to produce 
the most protective high affinity, IgG antibodies as well as protective cyto- 
toxic lymphocytes should reduce the severity of infectious disease in the 
elderly. The regulation of autoantibody formation may well decrease the 
incidence of pernicious anemia and vascular diseases affecting the brain, 
heart, and kidney that are accelerated by the production of autoantibodies. 
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Finally, reversing the age-associated defects in immune surveillance that 
permit  growth of neoplastic cells and donal  lymphocyte expansions, likely 
precursors of lyrnphomas should reduce the morbidity and mortality from 
cancer. For these reasons, it is reasonable to believe that preventing or 
limiting immune senescence will improve the health of elderly adults. 
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"Aging is a progressive, generalized impairment of function resulting in a 
loss of adaptive response to stress and in a growing risk of age-related dis- 
ease. The overall effect of these changes is summed up in the increase in the 
probability of  dying, or age-specific death rate, in the population ..." (Kirk- 
wood 1995). 

During the last decades, life expectancy has significantly improved and 
the number of centenarians is expected to increase dramatically in the next 
century. Concurrently, the financial support for the elderly population will 
become an issue for public concern, especially with regard to the expendi- 
ture for health care for such age-related diseases as atherosclerosis, diabetes, 
neoplasias etc. 

As a consequence of these problems, research on the mechanisms of ag- 
ing has gained broad interest. Fundamental knowledge of the molecular 
processes underlying aging and senescence may enable medicine to alleviate 
or postpone age-related biological mechanisms. Thereby, the incidence of 
age associated diseases may be reduced permitting a vast majority of elderly 
people to enjoy life in good health and physical strength. 

This review will discuss data that supports evidence for DNA instability 
(caused by DNA damage) playing a central role in cellular senescence and, 
thereby, organismal aging. 

1.1 Theories of Aging 

1.1.1 "Programmed Aging" or Aging Under Genetic Control? 

The phenomenon of aging and mortality had fascinated scientists for centu- 
ries in their hunt for a formula for eternal youth. While many theories of 
aging have been proposed, two, each opposing, opinions have emerged: 
aging as a genetically programmed versus a stochastic process. Here, no 
comment on these theories will be made. (for review, see: Bernstein and 
Bernstein 1991). But with regard to the genetic character of this review, the 
term "programmed" needs to be specified. As long as programmed aging is 
understood as a carefully regulated sequence of genetically established 
physiological events leading to aging as a developmentally programmed 
adaptation (Finch 1972) is this theory assailable. Kirkwood (1984) and 
Hayflick (1987) argued that the existence of an inborn "dock" that limits life 
span in a deterministic way would not withstand the demands of selection 
and evolution. There is no rational explanation why programmed aging 
should render a species fitter (in terms of reproductiveness) than a longer 
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life. This statement, however, is not necessarily relevant for processes on the 
cellular level such as the programmed cell death (apoptosis) that, indeed, 
may be executed according to a special program. (for review, see: Evan and 
Littlewood 1998). But this kind of cell death is not a necessary consequence 
of aging. Thus, in the nematode Caenorhabditis elegans, mutations that 
block apoptosis do not extend life span (Driscoll 1995). They, rather, offer 
cells with irreparable damaged DNA the possibility to commit suicide and 
by that escape cancerogenesis. 

This reservation towards the existence of "programmed aging"" does not 
disprove the fact that senescence-associated cellular events are genetically 
regulated. It is widely accepted that genes are involved in aging. Many 
(probably several hundreds) of these genes termed "gerontogenes" (Rattan 
1985) are anticipated. Some have been identified, especially in lower eu- 
karyotes but also in humans (Iazwinski 1995; Guarente et al. 1998). Thus, 
aging stands under genetic control. 

1.1.2 Aging, a Stochastic Process? 

If there is no deterministic program for aging provided, what then makes us 
age? 

Aging could result from a sum of stochastic events. Orgel (1963) blaimed 
the protein-synthesis apparatus for becoming inaccurate over the years and 
proposed the famous "Error Catastrophe Theory of Aging". Many experi- 
ments were performed along that line which finally proved this hypothesis 
to be invalid (Harley et al. 1980; Rothstein 1987). Following the idea of sto- 
chastic events, other theories were suggesting that decay of one or the other 
organic system or macromolecules brought about the decay of the whole 
organism. (The neuroendocrine theory: Finch 1972; Herrmann and Berger, 
this volume. The immunological theory: Walford 1969; Shen et al~, this vol- 
ume. The Wear-and Tear Theory: Bernstein and Bernstein 1991. The So- 
matic Mutation Theory: Szilard 1959; the Disposable Soma Theory: Kirk- 
wood 1977; the Free Radical Theory: Harmann 1956). All these theories are 
reduceable to a common denominator: Aging may evolve from the ineffi- 
cency of the organism to maintain its somatic integrity. Since DNA contains 
information for all cellular requirements, this integrity can be maintained as 
long as error-free transcription is supplied from undamaged DNA. Thus, 
DNA damage and impairment of genetic information substantiated by 
chromosomal instability may be considered to be the key event in aging. 
The goal of this review will be to document the validity of this statement and 
to gather arguments for the linkage of genetic regulation and stochastic 
accumulation of damage as the initiator of aging. 
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1.2 "Quick-Motion" to Study Aging in Man 

1.2.1 Fibroblasts in Culture Perform Replicative Senescence 

The longevity of man along with the complexity of the human organism 
raise serious problems for the experimental gerontologist. Many short-living 
model systems have been established of unicellular as well as of multicellu- 
lar organisms (yeast, nematodes, flies, rodents and others). 

Even though key mechanisms of aging are expected to be universal, the 
comparability of these systems may be limited: adaptation to different envi- 
ronmental demands may have stimulated divergent age-controlling mecha- 
nisms impeding the direct application of experimental results to humans. 

Since the introduction of cytology in the beginning of the last century by 
Mathias Jakob Schleiden and Theodor Schwann it became obvious, that all 
organisms and all tissues are organized from cells, the smallest living entity. 
Cells taken from an individual and propagated in tissue culture turned out 
to replicate by dividing as cells do in vivo, but it also became obvious that 
this proliferation capacity is limited. This finding was first described by 
Hayflick (1965) for normal human fibroblasts. The ability to proliferate is 
gradually lost and normal human fibroblasts subcultivated (passaged) con- 
tinously enter proliferative senescence (Hayflick and Moorhead 1961). Thus, 
human diploid fibroblasts in culture promised to be a model system for 
human aging on condition that further properties in common could be 
found between cells in vitro and in vivo. Many experiments along this line 
proved, that a) the phenomenon of replicative senescence is not an artifact 
of cells in culture, b) cell senescence can be delayed but not reversed and 
reflects a process, which also occurs during organismal aging and c) senes- 
cence has a genetic background. At least four genes (involving mainly 
chromosomes 1, 4 and 7) can be expected according to complementation 
studies to control senescence in a dominant way (Smith and Pereira-Smith 
1996). Campisi (1996) described a neutral [3-galactosidase activity specific 
for senescent human cells in culture that is also expressed in vivo in human 
skin upon aging. Allsopp et al. (1992) reported telomer shortening in aging 
human fibroblasts and in lymphocytes not only in cell culture but also in 
vivo correlating with donor age. It could be shown that aging in cell culture 
is directly related to aging in vivo since the proliferative capacity of diploid 
fibroblasts decreases with increasing age and is directly related to the maxi- 
mum lifespan of the species from which they are derived (Martin et al. 1970; 
Rohme 1981; Weirich-Schwaiger et al. 1994). A reevaluation of these results 
was published very recently (Christofalo et al. 1998). The authors analysed 
skin fibroblast cell lines from 42 healthy donors with biopsies taken under 
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standard conditions. They did not find a relationship between donor age and 
the replicative lifespan in human cells in culture. Indeed, results obtained in 
cell culture have to be interpreted carefully. In particular, experience in 
handling of primary human cells must be guaranteed so that the utmost 
lifespan of each cell line will be reached (Cristofalo reported a regression 
line for in vitro maximum replicative lifespan (PDL) of all cell lines of all 
donor ages of between 20 and 30 PDLs, which appears to be rather low). 
Whatever the interpretation of these and the earlier results may be, it re- 
mains that the in vitro life span of human diploid fibroblasts derived from 
young and healthy donors of 60-70 passages according to culture conditions 
renders this cellular model system suitable to observe parameters of human 
senescence similar to the image created by rapid motion cinematography. 

1.2.2 Premature Aging Syndromes Exhibit Features of Accelerated Aging 

The understanding of many biological processes has been promoted by the 
study and comparison of wildtype and mutant individuals. In the field of 
aging human individuals exist who suffer from inherited diseases that are 
accompanied by symptoms of premature aging. Since many though not all 
features of aging seem to be accelerated, these diseases are called segmental 
progeroid syndromes (Martin 1985). The autosomal recessive inheritance of 
most of these congenital disorders is evidence for their monogenic origin. 
Since only one gene should be involved in each of these one may hope to 
learn about aging by elucidating the molecular basis of these diseases. Clini- 
cal features of some of these diseases, including Hutchinson-Gilford 
Progeria, (Progeria of Childhood) and Werner Syndrome, (Progeria of the 
Adult) the two most prominent progeroid syndromes that appear, are sum- 
merized in Bernstein and Bernstein chapter 7 (1991). One of the main fea- 
tures, a shortened life expectancy, is also reflected in the replication poten- 
tials of cultured fibroblasts of these patients (Weirich-Schwaiger et al. 1994; 
Brown et al 1984; Kipling and Faragher 1997). Thus, analysis of cells in cul- 
ture of young and old individuals and of patients with progeroid syndromes 
seems to be a legitimate and potent tool to study molecular events respon- 
sible for human senescence. 
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2 Chromosomal  Instabil i ty as a Central  Parameter  
of  Aging 

2.1 Chromosomal Instability: a Link Between Syndromes 
of "Chromosomal Instability" and "Premature Aging" 

Aside from morphological changes and a reduced number of population 
doublings one striking feature of progeroid syndrome fibroblasts in culture 
is an increased chromosomal instability either spontaneous or induced by 
exogenous agents (Epstein et al. 1966; Salk 1985; Miozzo et al. 1998). In the 
past, an increased chromosomal instability had been attributed to the so- 
called "chromosomal instability syndromes", a group of congenital diseases 
like Xeroderma pigmentosum, Cockayne syndrome, Ataxia telangiectasia, 
Down's syndrome, Bloomis syndrome, Nijmegen breakage syndrome, that 
were characterized by sensitivity to radiation and/or DNA damaging agents, 
chromosomal breakage and, most importantly, susceptibility to cancer. 
Defects in DNA repair mechanisms were suspected to be the molecular basis 
of these "reparatoses". Indeed some of these defects have been elucidated by 
cloning the mutated genes and the deduced proteins were shown to be in- 
volved in DNA repair processes. (Chu and Mayne 1996, review; Rotman and 
Shiloh 1998, review; Ellis et al. 1995; Schwaiger et al. 1989; Varon et al. 1998; 
Carney et al. 1998). Monitoring the symptoms of these "chromosomal in- 
stability syndromes", it became evident, that some of them (especially 
Cockayne syndrome, Ataxia telangiectasia, Down's syndrome) exhibited 
features of premature aging and that there was an overlap between prema- 
ture aging and chromosomal instability syndromes (Hirsch-Kauffmann et al. 
1990). 

2.2 Chromosomal Instability Results From Damaged 
or Structurally Altered DNA 

Genetic instability is to be expected in all DNA containing compartments of 
the cell (for review, see: Gaubatz 1990). Reorganization of the mitochondrial 
genome has gained high significance especially with regard to aging. (For 
the interested reader, see: Osiewacz 1995; Richter 1995; Wallace 1995; Shi- 
genaga et al. 1994). This review will be restricted to nuclear DNA. 
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2.2.1 Chromosomal Instability May be Reflected in Microscopic or Submi- 
croscopic Alterations of Chromatin 

Gross chromosomal instability of the nuclear genome may manifest in cul- 
tured cells as rearrangements of metaphase chromosomes, chromosomal 
loss, chromosomal breaks or as micronuclei (Heddle et al. 1978). The resul- 
tant instability may arise from either the injury itself (for example, strand- 
breaks following irradiation) or from incomplete attempts to repair injured 
DNA. Repair processes are initiated in order to free DNA from structural 
damage like crosslinks and bulky adducts, nucleotide or base alterations (for 
review, see: Sancar 1994; Lindahl et al. 1997). Such injuries may be brought 
about by endogenous processes such as hydrolysis of the DNA at 37 °C or 
oxidation by oxygen radicals arising from normal metabolic processes, or by 
exogenous noxes like DNA-damaging agents or radiation. Those defects 
amount to several thausend alterations per day per cell (Lindahl 1993) and if 
unrepaired would accumulate within the cell. Mechanisms to keep DNA 
stability and DNA flexibility in balance are numerous: antioxidants and 
genes controlling DNA stability and integrity (guardians of the genome) are 
involved in such processes. However, depending on the individual genotype 
and the individual environmental burden, repair capacity will be worn out 
sooner or later or repair genes themselves might become mutated, both 
leading to an insufficently repaired DNA and an accumulation of chromo- 
somal aberrations. 

At the submicroscopic level, DNA instability may be caused by structural 
alteration and relaxation of DNA domains such regions of methylation, 
heterochromatin, repetitive sequences and the telomeres. Such destabilized 
regions may become preferential targets for DNA damage. 

2.3 Chromosomal Instability in Aging Cells 

In order to verify whether chromosomal instability and waning DNA repair 
capacity mentioned above actually correlate with aging and actually play an 
important role in human senescence, signs of DNA destabilization have to 
be evident both in aging cells in vivo and in vitro and in cells from patients 
with premature aging syndromes. 

One main problem in reviewing the experimental results on this issue is 
the inconsistency of the findings. As discussed by Norwood and Gray (1996), 
great effort has been made in the 1980s to solve this problem. Now, almost 
20 years later, methods and knowledge in cell biology have significantly 
improved and more recent studies to evaluate chromosomal instability have 
to be cited. 
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As reviewed by Schneider (1985), aneuploidy increases in aging cells. The 
sex chromosomes in particular seem to be affected (Guttenbach et al. 1994). 
There, a higher level of aneuploid cells was found in fibroblasts of human 
progeroid syndromes (Mukherjee and Costello 1998). When one considers 
that the only viable human aneuploidy is Turner syndrome (XO) it could be 
surmised, that other aneuploid cells would have less chance to survive. 

2.3.2 Structural Chromosomal Aberrations 

Diverse structural aberrations result from chromosomal breakage events. In 
addition to chromatid and chromosome breaks, different kinds of translo- 
cations, deletions, inversions and dicentric chromosomes can be observed in 
metaphase spreads. The increase in dicentric chromosomes in senescent 
cells (Benn 1976; Sherwood et al. 1989) especially derive from telomeric 
association (TAS), that are stimulated by telomere shortening (see 2.3.3). 
The presence of dicentric chromosomes in turn initiates breakage-fusion- 
bridge cycles that further increase chromosomal instability (Toledo et al. 
1992; Mondello et al. 1997). 

Chromosomal fragments, if acentromeric, may become enveloped by 
nuclear membrane material and appear as micronudei in interphase cells. 
The contradictory results, formerly obtained when age-dependency of the 
amount of chromosomal and chromatid breaks was examined, are summer- 
ized by Rattan (1989). In the main, cytogenetic studies were performed with 
cultured human lymphocytes (Marlhens et al. 1986) or with primary human 
fibroblasts (DellOrco and Whittle 1981). In the latter a positive relation was 
found. Or, they were performed with lymphocytes from peripheral blood 
(Bender et al. 1989) or with fibroblasts in culture (Mayer et al. 1986). In the 
latter this effect could not be confirmed. Similar attempts with rodent cells 
in culture attained positive results (Martin et al. 1985; Sato et al. 1995). More 
recently, however, Weirich-Schwaiger et al. (1994) reported a significant 
increase in spontaneous chromosomal instability (chromosomal breaks and 
micronuclei) according to passage level in cultures of diploid human fibro- 
blasts derived from young and old donors and from patients with premature 
aging syndromes (Down's-, Werner- Cockayne syndrome and Ataxia 
telangiectasia). Under constant laboratory conditions, a direct correlation 
between prolongation of population doubling time on the one hand, and 
accumulation of chromosomal breaks and micronuclei on the other could be 
observed in the course of passages. That an increase in breakage events can 
be noticed in high passaged cultures of young and of old individuals as well 
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as in those of patients with progeroid syndromes, endorses a causal relation- 
ship between senescence and DNA damage and once again justifies both the 
study of cultured cells and of premature aging syndromes as valid model 
systems in aging research. 

In Werner syndrome do not only chromosome breaks accumulate exten- 
sively in fibroblasts during the shortened lifespan, but translocations, dele- 
tions and inversions are also reported (Salk et al. 1985; Fukuchi et al. 1989; 
Scappaticci 1990). That this instability does not reflect a cultural artifact but 
rather an outlet of the inborn error of this disorder is proven by the pres- 
ence of the instability trait seen also in fibroblasts of the heterozygotic sib- 
lings, albeit to a lesser extent than with the homozygotes. (Weirich et al. 
1996). A very recent publication confirmed these results: immortalized B 
lymphocytes of Werner syndrome patients and heterozygotic carriers are 
hypersensitive to 4-nitro-quinoline-l-oxide (4NQO) (Ogburn et al. 1997). 
This substance has a strong DNA-damaging, mutagenic and carcinogenic 
effect. Previously, Gebhart et al. (1988) had shown increased chromatid 
breaks and chromosomal interchanges after application of 4NQO to T- 
lymphocytes of Werner syndrome patients. 

2.3.3 Telomere Shortening 

The integrity of single chromosomes in eukaryotes is guarded by a nucleo- 
protein structure at both ends of the chromosomes, the telomeres 
(Blackburn 1991). The telomeric DNA consists of an array of short G/C rich 
tandem repeats (TTAGGG in man), with a length of 6-10 kb at birth (de 
Lange 1994) that is progressively shortened with increasing donor age (skin 
and blood telomeres by 15-40 bp per year) as shown, for example, in lym- 
phocytes by Lindsey et al. (1991) and with increasing passage number in 
cultured fibroblasts (30-200 bp per population doubling. Observed telomere 
lengths of 18-25 kb in young and 8-20 kb in senescent human fibroblasts.) 
(Harley et al. 1990; Allsopp et al. 1992; Vaziri et al. 1994). Telomere shorten- 
ing was first predicted by Olovnikov as early as 1973 based on the inability of 
the DNA replication enzymes to replicate the utmost 3"end of the parental 
DNA strand, thus leaving a gap after excision of the RNA primer at the 
5"end of the lagging daughter strand (Olovnikov 1973). This process has 
been shown to be directly coupled to cell division in somatic cells (Allsopp 
et al. 1995). Shortening of human telomeres only takes place in somatic cells 
and was widely regarded as the "mitotic clock", whereby cell proliferation is 
blocked when a telomere length of about 4 kb is reached (yon Zglincki et al. 
1995). The awareness of a wide variety of telomere lengths present in an 
individual cell leads one to believe that a single chromosome, reaching a 
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critical telomere length, may be enough to induce senescence. Such a short- 
ened chromosome may mimic a double strand break: A single double 
strand break, however, may stop the cell cycle in yeast (Sandell and Zakian 
1993) and in human cells (di Leonardo et al. 1994) via induction of proteins 
like p53 and Sdil (synonyms: p21/Cip 1/Wafl/Cap20), the latter being known 
to inhibit cyclin-dependent kinases and, by this means, the cell cycle (Sherr 
and Roberts 1995); Vaziri and Benchimol 1996). In germline cells (de Lange 
et al. 1990) and in most immortal cells (Counter et al. 1992; Kim et al. 1994) 
an enzymatic activity (telomerase) has been identified that aids in replicat- 
ing telomeric DNA (Morin 1990; Kim et al. 1994; review: Greider 1996). The 
block of replication (termed M1) in somatic cells at a critical telomere length 
(the Hayflick limit) can be overriden by transforming agents. If this occurs, 
telomere shortening proceeds until "crisis" when cell death occurs in M2. At 
that point, a few cells may regain telomerase activity and become immortal 
(Harley et al. 1992; Guarente 1996). 

Recently, it was suggested that the "end-replication problem" may not be 
the only reason for telomere shortening. An enzymatic activity was noticed 
that degrades the C bases containing strand of the telomeres. The discovery 
of up to 200 G-bases long single strands on both ends of the chromosomes 
has confirmed these findings (Wellinger et al. 1996; Makarov et al. 1997). 
Moreover, yon Zglinicki et al. (1995) propose the accumulation of single- 
strand breaks, gaps or terminal overhangs, measured experimentally as 
sensitivity to $1 nuclease degradation, in telomeres induced by mild hyper- 
oxia. This implies, that telomeres might be sensitive to oxidative DNA dam- 
age. Accumulation of $1 sensitive sites in telomeres is also evident in fibro- 
blasts cultured for extended periods at confluency. Since this effect is less 
prominent under conditions of serum deprivation, the metabolic state of a 
cell seems to contribute to telomere shortening and, thereby, to cellular 
senescence (Sitte et al. 1998). Under various experimental conditions leading 
to oxidative stress, S1 sensitve sites were found to be significantly more 
frequent in telomeres than in the overall genome. Furthermore, the repair of 
single stranded regions induced by H~O~ is almost twentyfold slower in te- 
lomeres than in non-telomeric DNA (Petersen et al. 1998). This repair insuf- 
ficency seems to be unique for oxidative damage. UV-light induced 
pyrimidine dimers are reported to be excised slower from telomeres than 
from actively transcribed genes but faster than from heterochromatin. At 
any rate, repair capacity declines with age (Kruk et al. 1995). Accumulated 
single strand regions, however, may accelerate shortening by nucleolytic 
degradation or by breakage events. 
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2.3.4 Telomere Shortening in Premature Aging Syndromes 

2.3.4. I Down's Syndrome 

Vaziri et al. (1993) demonstrated enhanced telomere shortening by determi- 
nation of telomeric restriction fragments (TRF) in Down's syndrome pa- 
tients compared to age-matched controls. In cytogenetic studies, however, 
Kormann-Bortolotto et al. (1996) did not find any preferential damage of 
distal regions in cultured 1ymphocytes of young and old individuals and in 
patients with Alzheimer's disease and Down's syndrome. These results do 
not exclude accelerated telomere loss but indicate the existence of a mecha- 
nism that protects chromosome ends from gross destruction. 

2.3.4.2 Ataxia Telangiectasia 

In Ataxia telangiectasia lymphoblastoid cell lines (Pendita et al. 1995) ) and 
in peripheral blood lymphocytes (Metcalfe et al. 1996) an accelerated te- 
lomere shortening was observed. A higher frequency of chromosome end- 
to-end associations may in part contribute to telomeric associations (TAS). 

2.3.4.3 Wemer Syndrome and Progeria 

The kinetics of telomeric repeat loss in four serially passaged fibroblast-like 
cell lines from Werner syndrome patients showed a faster decline of TRF 
lengths than those of three age-related control cell strains (Schulz et al. 
1996). This result confirms a study by Kruk et al. (1995) where one Werner 
syndrome strain was compared to five control fibroblast cultures from do- 
nors of different ages. 

Allsopp et al. (1992) investigated the mean TRF length in five fibroblast 
strains from donors with Hutchinson-Gilford syndrome compaired to five 
control strains and found the telomeres to be significantly shorter. 

The results on telomeres presented so far collectively emphasize the im- 
portant role telomeric instability plays in the course of cellular senescence 
even though it may not be the only relevant mechanism, since generalization 
of this phenomenon to all cell types is problematic. Mice, for example, have 
long telomeres and an active telomerase in their somatic cells while yeast 
telomeres do not shorten at all. However, senescence is a necessary mean for 
mammalian cells to escape immortalization and, thereby, cancer develop- 
ment (for review, see: Sedivy 1998). 
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2.3.5 Instability of Other DNA Regions 
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2.3.5.1 Ribosomal DNA (rDNA ) 

Gaubatz (1990) reviewed the loss of reiterated sequences during aging of 
human cells in vitro and in vivo. An age-related loss of DNA coding for ribo- 
somal RNA (rDNA) also in humans has been reported for different tissues. 
Also, fragmentation of the nucleolus, a structure consisting of rDNA, rRNA 
and proteins, was observed in very old yeast mother cells (Sinclair et al. 
1997; Guarente 1997). This fragmentation, with resultant aging, was en- 
hanced in yeast mutated in the helicase SGS1. This protein, localized to the 
nucleolus, belongs to the RecQ subfamily of helicases and is associated to 
top2p and top3p (topoisomerases) (Gangloff et al. 1994; Watt 1995). Topoi- 
somerases are involved in the faithful segregation of daughter chromosomes 
in transcription and recombination processes. Their function may be cou- 
pled to helicases and mutants in either transcription or recombination in- 
volved helicase may result in hyperrecombination, especially within the 
tandem repeats of rDNA copies, with subsequent loss of sequences. Tran- 
scription of rDNA may also be impaired and indeed Werner helicase, the 
protein affected in Werner syndrome (Yu et al. 1996) also belongs to the 
RecQ helicases and is localized to transcriptionally active nucleoli. Thus, 
SGSlp and WRNp may protect rDNA from hyperrecombination and damage 
and prevent precocious fragmentation of the nucleolus. (Sinclair and Guar- 
ente 1997). 

The essential role of the integrity of rDNA for longevity (ribosomal pro- 
teins are of central importance for protein synthesis) may be deduced from 
the fact that proteins otherwise linked to telomeres such as the SIR-complex, 
become relocalized to the nucleolus in aging cells. The result is beneficial to 
cell longevity (see yeast 2.4.3.3) (for review, see, Guarente 1997). 

2.3.5.2 Extrachromosomal Circular Genetic Elements 

Circular DNA molecules with homology to chromosomal DNA found in 
many species as a consequence of aging are hypothezised to be recombina- 
tion products (Kunisada et al. 1985). Flores et al. (1988) found such elements 
to hybridize to repetitive interspersed mammalian nucleotide sequences. 

An increase in small polydisperse circular DNA (spcDNA) was reported 
in cultured fibroblasts in Fanconi anemia, one of the well established chro- 
mosome instability syndromes (Motejlek et al. 1993). 

Extrachromosomal circular ribosomal DNA was shown to accumulate in 
old yeast cells promoting the fragmentation of the nucleolus. The amount of 
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such elements increased in yeast mutated for SGS1 followed by premature 
aging and life span reduction (Sinclair and Guarente 1997). It remains to be 
elucidated if mutations in the Werner syndrome gene, a homologue of yeast 
SGS1, have similar effects. 

2.3.5.3 Chromatin Alterations that Effect DNA Condensation 

One of the functions of chromatin organisation in eukaryotes serves regula- 
tion of gene expression. Genes located in dense heterochromatin domains 
are silenced due to an impaired accessibility of the transcription machinery 
to the DNA. This heterochromatin structure, however, is facultative since 
decondensation of the DNA may allow transcription of otherwise repressed 
genes according to the physiological state of a cell. Thus, during aging, het- 
erochromatin stability may be altered in a cell cycle-coupled fashion (Ho- 
ward 1996). After each round of replication, heterochromatic domains have 
to be accurately reassembled. Damage to the DNA or acetylation of the core 
histone H4, normally selectively underacetylated in heterochromatin (Csor- 
das 1990) may result in irreversible loss of repressive chromatin domains. 
Studies on the chromatin structure in cultured cells by differential scanning 
calorimetry revealed a reduction in the melting temperature of DNA with 
age, indicating an increase of single-stranded DNA in chromatin of aging 
cells (Almagor and Cole 1989). Such structural changes were attributed to 
the accumulation of DNA damages that would lower the supercoiling poten- 
tial of the DNA. Furthermore, with a highly sensitive assay, that provides for 
detection of one frameshift mutation in a background of 10 ~ wild-type se- 
quences, Jackson et al (1998) demonstrated oxidative damage to preferen- 
tially increase the instability of the repetitive sequences of microsatellite 
DNA. 

The failure to maintain the silencing effect ofheterochromatin may easily 
explain the dominant phenotype of senescence: dominant, antiproliferative 
genes may be activated that enhance senescence. Such a gene is Sdil (Noda 
et al. 1994), an inhibitor of the cyclin E/Cyclin dependent kinase2 complex, 
that is involved in the progression of cells from the Gl-to the S-phase (Peter 
and Herskowitz 1994; Pines 1994). Along this line several model systems 
have been proposed explaining the phenomenon of aging. (Villepontean 
1997; Imai and Kitano 1998). Indeed, there is a report (Wareham et al. 1987) 
indicating a loss of heterochromatic silencing for the X-chromosome located 
ornithine carbamoyl transferase gene in liver tissue of old mice. 

Heterochromatin loss also may be induced following telomere shortening 
as proposed in a model by Wright and Shay (1992), and documented in yeast 
(Gottschling et al. 1990; Guarente 1996). 
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2.3.5.4 DNA Methylation as a Source of DNA Stability 

The 5"methylCpG content of genomic mammalian DNA has been reported 
to decrease with age (Wilson and Jones 1983; Singhal 1987). Actually, 
methyl-modification of bases may be considered to play a role in the stabili- 
zation of heterochromatin domains, since demethylation of human fibro- 
blasts with 5-azacytidine shortens their in vivo lifespan (Fairweather et al. 
1987; Holliday 1986). Gray et al (1991), however, could not induce cell cycle 
arrest by a transient demethylation of DNA in fibroblasts. 

DNA hypomethylation leads to genomic instability as in, for example, 
ICF syndrome (immunodeficiency, centromeric instability, facial abnor- 
malities). This syndrome is characterized by undercondensation of the vari- 
able heterochromatin regions of chromosomes 1, 9 and 16 and an increase in 
spontaneously formed micronuclei (Stacey et al. 1995). Genomic instability 
was also shown in murine embryonic stem cells nullizygous for major DNA 
methyltransferase (Dnmt 1). Elevated mutation rates were observed at the 
hypoxanthin-phosphoribosyl-transferase locus as well as at the thymidine 
kinase locus mainly due to deletions (Chen et al. 1998). 

2.4 Deficiency in DNA Repair Capacity Links Chromosomal 
Instability to Aging 

2.4.10xidatively Damaged DNA Accumulates in Senescence 

To a great extent, damage to DNA is caused endogeneously. Spontaneous 
DNA hydrolysis represents one source, reactive oxygen intermediates (ROI) 
caused by metabolism the other. With the aid of modern chromatography 
methods, a broad spectrum of oxidative base modifications can be distin- 
guished (Dizdaroglu 1992). Poulsen et al. (1996) found a 33% increased rate 
of oxidatively modified DNA in 20 men subjected to extensive excercise up 
to 10 hours per day over a period of one month. They measured 8-oxo-7,8- 
dihydro-2"-deoxyguanosine excreted in urine as metabolic parameter indi- 
cating the excision-repair of this oxidized base, thereby documenting the 
risk to damaged DNA by excessive oxygen consumption. In healthy young 
organisms DNA repair (review: Demple and Harrison 1994) and antioxida- 
tive cellular defense mechanisms counteract the deleterious effects of ROI. 
However, an inverse relation was found between oxygen consumption 
(metabolism that generates radicals) and longevity of various species as 
published by Sohal and Orr (1994), indicating a correlation between oxida- 
tive damage and aging. Perez-Campo et al. (1998) reviewed the relationship 
of oxidative stress with the maximum lifespan in different vertebrate spe- 
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cies. They concluded the main characteristics of a long-lived species to be a 
high rate of DNA repair and a low production of free radicals in close 
proximity to DNA. Consequently, the most long-lived animals appeared to 
exhibit the lowest level of antioxidants. They deduced, that the low rate of 
free radical production may contribute to the low aging rate. A correlation 
between oxidative damage repair and aging has also been found in human 
senescence in culture. Homma et al (1994) examined the level of 8- 
hydroxydeoxyguanosine in the DNA of human diploid fibroblasts. They 
found a significant increase during cellular aging (50 population doublings) 
and a concomittant decline of the repair capacity for this oxidative lesion. 
Similar results were published by Chen et al. (1995). These authors found the 
level of 8-oxo-2"-desoxyguanosine in DNA to be about 35% higher in senes- 
cent human fibroblast cells than in young cells whereas old cells excised four 
times more 8-oxoguanine from the DNA than young-passage cells did. Cul- 
tivation of fibroblasts in 3% O 2 instead of 20% resulted in 50% more popula- 
tion doublings. The spin trapping agent ot-phenyl-t-butyl nitrone, acting as 
an antioxidant, also delayed senescence. These fndings could be confirmed 
in cultured lymphocytes from healthy donors of different ages. (Barnett and 
King 1995; King et al. 1997). With an ELISA, single strand breaks were re- 
corded in peripheral blood lymphocytes after damaging DNA by H202 
treatment. At the same time, the antioxidant status of the cells was deter- 
mined by measuring the level of several antioxidative enzymes like SOD, 
glutathione peroxidase, catalase and others. The authors concluded that the 
age-related increase in mutation frequency is due to a decrease in the repair 
efficiency of oxidative DNA damages and not to a decrease in the efficacy of 
the antioxidant defense system. 

Ames et al. (1993) emphazised that the radical production generated 
from normal metabolism with subsequent damage to DNA (and also to 
proteins and lipids) does not only contribute to aging but also to age-related 
degenerative diseases like cardiovascular diseases, immune-system decline, 
brain dysfunction, cataracts and cancer. 

2.4.1.1 Lesson from a Premature Aging Syndrome: 
Antioxidants Must be in Balance to Defend the Cell From Oxygen Radical Injury 

Work on Down's syndrome revealed the importance of a balanced antioxi- 
dant status to prevent premature aging. Schwaiger et al. (1988) showed that 
rat cells overexpressing the gene for the human Cu/Zn-superoxide dismu- 
tase (hSOD1) became X-irradiation sensitive to a similar extent as are cells 
from Down's syndrome patients. In Down's syndrome patients the addi- 
tional chromosome 21 (or part of it) supplies an overdose of SOD, thereby 
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increasing the amount of deleterious H20 ~ which, in turn, oxidatively dam- 
ages DNA. Supporting results came from de Haan et al. (1996). They found 
higher levels of H~O~ and signs of premature senescence in SOD1 transfected 
cell lines that had an elevation in the ratio of SOD1 to GPX1 (glutathione 
peroxidase). They also found a perturbation in the ratio of these enzymes in 
Down's syndrome fibroblasts and signs of senescence in H20 ~ treated cells. 
In all cells mRNA levels for Sdil were found to be elevated, the mediator, 
probably, for the slow proliferation potential. 

Recently, Raji and Rao (1998) analysed DNA repair parameters like 
"unscheduled DNA synthesis", DNA polymerase activities and endodeoxyri- 
bonuclease activities in lymphocytes from Down's syndrome patients of 
different age and found a lowered repair efficiency and a declining repair 
capacity with age. 

2.4.1.2 Strenghtening ofthe Antioxidant System lncreases Lifespan 
in Drosophila Melanogaster 

The most convincing proof to date for the involvement of oxygen radicals 
mediated DNA instability in aging comes from experiments with Drosophila 
melanogaster. Despite discordant results of earlier attempts to supplement 
the diet of a variety of species with antioxidants like cx-tocopherol, [3- 
carotene etc., Bracket al. (1997) increased the flies" median and maximum 
life span by feeding them the antioxidant N-acetylcysteine and found a dose- 
dependent increase: 10mg/ml food increased the life span by 26.6%. Spec- 
tacular experiments were performed with transgenic animals, introducing 
extragenes for SOD1 and catalase into the germline, thereby achieving a 
lengthening of the median and maximum lifespan by one-third. These ex- 
periments directly indicated that cellular oxidative status and aging are in- 
terrelated (Orr and Sohal 1994; review: Sohal and Orr 1995). Parkes et al. 
(1998) overexpressed SOD1 specifically in the motorneurons of transgenic 
Drosophila and thereby extended the life span of these cells by 40%. Thus, 
the oxygen burden and the antioxidative capacity of specific cells may be 
decisive for the whole organism. 

2.4.2 Accumulation of DNA Damage Outwears DNA Repair Capacity 
and Stimulates Cell Senescence. - DNA Repair Capacity Decreases with Age 

DNA repair mechanisms counteracting the endogeneous and exogeneous 
injuries to the integrity of the DNA are numerous. This repair capacity com- 
pensates DNA damages in young and healthy individuals but is outworn in 
healthy but elder people by an excess of noxious agents as has been shown, 
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for example, for endogeneous processes (Weirich-Schwaiger et al. 1994), for 
X-irradiation (Harris et al. 1986; Mayer et al. 1989), for UV-irradiation (Roth 
et al. 1989; Kruk et al. 1994; Moriwaki et al. 1996) and for cross-linking 
agents (Rudd et al. 1995). 

2.4.2.1 The Molecular Defects of Progeroid- and DNA Instabifity-Syndromes 
are Associated with DNA Repair 

As mentioned above (2.1), the molecular basis of some progeroid syndromes 
has been elucidated and the functions of the putative proteins have been 
associated with DNA repair processes. These findings indicate that unre- 
paired DNA lesions caused by DNA repair deficiency are of central impor- 
tance in the aging process. A detailed discussion is not possible in this re- 
view. However, a few results should be summerized in order to illustrate that 
DNA repair appears to be multi-faceted, involving not only excision of dam- 
aged or modified bases (base excision repair, BER) or of nudeotides 
(nucleotide excision repair, NER) and reconstitution of the original DNA 
sequence (reviewed by Lindahl et al. 1997), but also RNA transcription, rep- 
lication, recombination and cell-cycle checkpoints. Prevention of DNA dest- 
abilization (see 2.4.3.1) and prevention of excessive oxygen radical produc- 
tion (see 2.4.1.1) may also be considered as "repair processes". 

Xeroderma Pigmentosum and Cockayne Syndrome Display Deficiency 
in bIER and in Transcription-Coupled Repair 

As reviewed by Chu and Mayne (1996), some proteins responsible for the 
seven complementation groups of Xeroderma pigmentosum (XP), all in- 
volved in NER, are helicases. This inherited disease is characterized by ex- 
treme sun-sensitivity, cancerproneness and premature neuronal death. The 
two complementation groups of Cockayne syndrome (CSA and CSB), an 
inherited disease with features of UV-hypersensitivity and premature aging, 
are defective in proteins, that probably play a role in transcription by inter- 
acting with transcription factors thus coupling transcription to DNA repair. 
The CSA and the CSB genes contain a typical helicase sequence. The CSB 
protein exhibits DNA dependent ATPase activity (Citterio et al. 1998). Tran- 
scription-coupled repair becomes essential when polymerase II is arrested 
at the site of DNA damage. 
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A TM, the Protein Mutated in Ataxia Telangiectasia, is a Key Regulator 
in DNA Damage Signaling Cascades 

Ataxia telangiectasia (AT) is a disorder of autosomal recessive inheritance 
characterized by X-ray sensitivity, immunodeficiency, cancerproneness, 
cerebellar degeneration and premature aging of the skin. ATM is the gene- 
product found to be mutated in this disease (Savitsky et al. 1995). The ATM 
protein belongs to a family of proteins that share similarities to the catalytic 
domain of phosphatidylinositol 3-kinases at their C-terminus. ATM is a 
regulator of several cascades signaling DNA strand breaks and thereby acti- 
vating cell cycle checkpoints, DNA repair and apoptosis (Rotman and Shiloh 
1998). Yeast ATM homologues have been helpful in the elucidation of the 
protein functions. Thus, the homologue MEC1 acts as a phosphokinase, a 
highly conserved single-stranded DNA-binding protein, that phosphorylates 
the replication protein A (REP A), cell-cycle dependent and in response to 
radiation. Because AT cells are delayed in phosphorylation of REP A, the 
function of ATM may be similar to that of MEC1 (Brush et al. 1998). The 
ATM protein family has further been reported to be involved in telomere 
length regulation. In AT cells, however, this function could not be demon- 
strated unequivocally. Recently, yeast mutants could be cloned that were 
defective in two ATM homologues. All chromosomes in these cells were 
circular and lacked telomeric sequences, indicating the involvement of ATM 
in telomere stability (Naito et al.1998). 

Werner Syndrome Patients have mutations in a Protein 
that Belongs to the RecQ Helicase Subfamily 

Werner syndrome has been reviewed in numerous reports (for example: 
Epstein et al. 1966; Herd et al. 1993). It is the most prominent premature 
aging syndrome and the elaboration of the underlying defect has been in 
progress since the Werner gene was cloned in 1996 by Yu et al. 

The cDNA encodes a protein (WRN) 1432 amino acids in length, with a 
significant similarity to DNA helicases belonging to the RecQ subfamily. 
Besides WRNp, Escherichia coli RecQ, human RecQL, Saccharomyces cere- 
visiae SGSlp, Schizosaccharomyces pombe Rqhlp and the Bloom's syn- 
drome protein BLM all exhibit a high homology in the seven helicase do- 
mains of these proteins. (see: Lombard and Guarente 1996; Oshima et al. 
1996; Yu et al. 1997). Many mutations have been found in patients with 
Werner syndrome, not only in the central helicase region but distributed all 
over the gene. (Yu et al. 1996; Oshima et a.1. 1996; Yu et al. 1997; Goto et a. 
1997, Meifllitzer et al. 1997). Like other DNA helicases, WRNp was found 
exclusively in the nucleus, as could be shown by fluorescence microscopy 
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and a nuclear localisation signal was detected close to the C-terminus by 
site-directed mutagenesis (Matsumoto et al. 1997). 

Helicases are involved in unwinding of double-stranded DNA in order to 
create a single-stranded template for such vital processes as replication, 
transcription, recombination and DNA repair (Tuteja and Tuteja 1996). The 
question as to what special function the WRN helicase may serve may be 
answerable by the observation of homologous proteins in other systems 
which mutate and by consideration of the most striking features of the 
Werner syndrome phenotype. 

2.4.3 Functions of Proteins of the RecQ Subfamiliy Indicate 
the Involvement ofWRN Helicase in the Prevention of DNA Destabilization 

2.4.3. I The Wildtype Proteins Mutated in Wemer Syndrome 
and Bloom's Syndrome Prevent Hyperrecombination 

Werner syndrome cells exhibit chromosomal instability and spontaneous 
hypermutability. This "mutator" phenotype is characterized by unusually 
large deletions. (Fukuchi et al. 1989; Monnat Jr. 1992). These deletions are 
not the result of inefficient but of inaccurate ligation as was shown by an in 
vivo DNA ligation assay in which linearized plasmid DNA was transfected 
into WS cells and into those from normal donors. The recovered plasmid 
DNA was tested for circularization and mutations in bacteria. It became 
obvious that passage through WS host cells raised the mutation frequency 
significantly due to an inaccurate ligation (Riinger 1994). This tendency for 
nonhomologous or illegitime recombination demonstrated in Werner syn- 
drome cells is also seen in yeast SGSlp mutants (Watt et al. 1996). SGS1 also 
belongs to the RecQ subfamily with a helicase domain homologous to the 
human WRN and BLM proteins (Ellis et al. 1995). 

BLM is the protein mutated in Bloom's syndrome, an inherited disease 
characterized by a high incidence of sister-chromatid exchanges in somatic 
cells due to an increased rate of somatic recombination. Homozygotes for 
mutations of the BLM protein have a "mutator" phenotype with mutations 
all over the genome, a great number of breaks, and interchanges between 
homologous chromosomes. This DNA instability gives rise to an unusual 
cancerproneness. That all three proteins (SGS1,WRN,BLM) participate in 
the maintainance of genome stability by preventing hyperrecombination 
and illegitime recombination could be demonstrated by Yamagata et al. 
(1998). CDNAs coding for wildtype proteins BLM and WRN, respectively, 
were introduced into yeast strains mutated in the SGS1 protein. With the aid 
of plasmids recombination was measured in these constructs and compared 
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to SGS1 mutant strains. The genome stabilizing effect of BLM and WRN 
could be verified. 

2.4.3.2 The WRNp Maybe Involved in DNA Repair Mechanisms 

A high chromosomal instability has been found in Werner syndrome pa- 
tients and, to a lesser extent, in heterozygote siblings (Weirich et al. 1996). 
This instability was, in contrast to earlier reports, inducible by X-irradiation 
(Meifllitzer et al. 1997) pointing to a repair deficiency of oxidative damages. 
These findings are in line with those from Gebhart et al. (1988) and Ogburn 
et al. (1997) who reported the hypersensitivity of Werner syndrome patients 
and carriers to 4-nitro-quinoline-l-oxide. Webb et al. (1996) found a repair 
deficiency for UV-induced thymine-dimers in lymphoblastoid WS cells but 
not in primary fibroblasts. Weirich-Schwaiger et al. (1994) had previously 
analysed the capacity of Werner syndrome fibroblasts to repair a trans- 
fected, extracellularly UV-damaged plasmid. This eukaryotic expression 
plasmid, carrying the bacterial chloramphenicol-acetyltransferase as re- 
porter gene was less effectively repaired by WS than by normal cells. Defi- 
ciency in mismatch repair, on the other hand, was reported in lymphoblas- 
toid but not in fibroblastoid cell lines (Bennett et al. 1997). The authors sus- 
pect that this discrepancy may reflect a cell- or tissue-type specific function 
of the WRNp. Taken together, these results provide evidence for a reduced 
repair capacity of WS cells and contradict the earlier reports arguing, that 
repair in WS cells is not impaired (Stefanini et al. 1988; Fujiwara et al. 1977). 

A very recent report (Huang et al. 1998) analysed the non-helicase N- 
terminus of wildtype WRN and, using site-directed mutagenesis, found a 3'- 
5' exonuclease activity. This activity may serve repair functions. 

2.4.3.3 WRNp May function on Telomeres and Nucleofi as Reported 
for Yeast SGS l p 

Telomere instability seems to be an important mechanism for the induction 
of cellular senescence as soon as one telomere reaches a critical length (see 
2.3.3). This shortening may be brought about by telomerase inhibition and 
by damage to telomeric DNA. Certain proteins are attached to telomere 
sequences, regulating the length by inhibiting telomerase (TRF1), protecting 
the ends (TRF2), and avoiding double strand breaks (KuS0). These proteins 
seem to be stringently controlled as was recently shown for tankyrase (Smith 
et al. 1998). This enzyme was shown in vitro to ADP-ribosylate TRF1, 
thereby reducing the protein's ability to bind to telomeres, thus rendering 
telomer ends accessible for telomerase. Poly-ADP-ribosyl-transferase is an 
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enzyme type that posttranscriptionally modifies proteins and hereby seems 
to critically influence repair mechanisms (Schweiger et al. 1987; reviewed by 
Oei et al. 1998). 

In Werner syndrome cells telomere shortening was expected to be accel- 
erated. Abnormal telomere dynamics were actually found in those cells. WS 
strains showed both drastic shortening as well as lengthening of telomeres 
and they terminated their lifespans at a wider range of telomere length than 
normal cells did (Schulz et al. 1996; Tahar et al. 1997). This may indicate that 
in the absence of WRNp hyperrecombination is also active in telomeres. 
Non-homologous recombination may result in duplicated but also in deleted 
telomere regions such that critically shortened telomeres signal proliferation 
arrest prematurely. 

Werner helicase has been localized to transcriptionally active nucleoli of 
replicating cells (Gray et al. 1998). Considering the situation in yeast 
(Sinclair et al. 1997), WRNp might be targeted to the nucleoli during repli- 
cation and transcription of rDNA in order to prevent illegitime recombina- 
tion of the highly repetitive DNA and/or to repair damaged rDNA to enable 
transcription. Also, as verified for yeast SGS1 helicase, WRN helicase may 
interact with topoisomerases (Lebel and Leder 1998), thereby influencing 
chromosomal condensation / decondensation and the faithful segregation of 
chromosomes. Segregation without prior disentanglement leads to chromo- 
somal breaks and non-disjunctions (reviewed by Watt and Hichson 1994). 

2.4.3.4 Werner Heficase May be an Integral Part of the "Replication Foci" 

Besides DNA instability, the most striking feature of Werner syndrome cells 
in culture is their limited proliferation capacity and the prolongation of the 
S-phase of the cell-cycle. In fission yeast the helicase Rqhl+, a member of 
the RecQ subfamily with homologies to the Werner helicase, prevents hy- 
perrecombination that otherwise would lead to irreversible S-phase arrest 
(Stewart et al 1997). Thus, rqhl null cells became sensitive to DNA damage 
by UV- and X-irradiation. Overexpression of the wild-type gene also exhib- 
ited hypersensitivity to these agents associated with the inability to control 
and to regulate the exit from S-phase checkpoint. In summary, this protein 
appears to couple chromosomal integrity to cell cycle progression suggest- 
ing a similar function for WRNp (Davey et al. 1998). 

DNA replication starts from many origins of replication in eukaryotic 
cells. These origins contain 300-1000 DNA loops and a number of proteins to 
form a replication center or focus. One of the main proteins involved is RP- 
A (review: Wold 1997) a single stranded DNA binding protein, that is local- 
ized at the foci before, during and after replication. This fact raised the idea, 
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that the foci may be stable cellular structures which are not only important 
for replication but also for DNA-repair and -recombination. Yan and New- 
port (1995) described a protein with focus-forming ability (FFA-1). Further 
research indicated, that FFA-1 is a stable component of the foci with binding 
sites for RP-A. 

Surprisingly, Yah et al (1998) identified the FFA-1 protein from Xenopus 
laevis extracts to be a homologue of the Werner syndrome gene product. 
This protein does not only belong to the RecQ family due to its helicase 
domains and its ATPase activity but it also shows similarity in the N- 
terminus to RNaseD and exhibits 3"-5"exonuclease proofreading activity 
reminiscent of DNA-polymerase I from E. coli. Experiments characterizing 
the biochemical properties of WRN protein showed that the helicase activity 
was most extensively stimulated by human RP-A. (Shen et al. 1998) 

Meanwhile, the promoter structure of the human WRN gene has been 
characterized. Investigations by Wang et al. (1998) revealed features of an 
housekeeping promoter with a dramatically reduced activity in WS cells. 
The results from Yamabe et al. (1998) give insight into some possible regu- 
lation that may allow preliminary speculations about the part the WRN 
protein plays in chromosomal instability, cell cycle progression and senes- 
cence: Regulatory SPl-elements are modulated by the tumor suppressor 
proteins retinoblastoma (Rb) and p53. 

These tumor suppressor proteins have been also implicated in regulation 
of cellular senescence by Stein et al. (1990) and Shay et al. (1991). P53 signals 
single-stranded breaks and induces the production of the proliferation in- 
hibitor Sdil which inhibits phosphorylation of Rb. The unphosphorylated 
Rb, on his part, acts by cell cycle inhibition. 

3 Conclusion 

Chromosomal instability resulting from endogeneous and exogeneous DNA 
damaging agents, telomere shortening or iUegitime recombination accumu- 
late with age. Numerous repair mechanisms are provided to maintain 
genomic integrity. However, repair capacity decays during the life span of an 
individual depending on the excess of injuries accumulated, the genetically 
determined personal repair capacity and the amount of damage to genes 
coding for enzymes involved in repair processes. By means of cell cycle 
retardation cells acquire time for repair. Checkpoints in the cell cycle and 
inhibitors of proliferation like Sdil (Noda et al. 1994) are set up to arrest the 
cycle until all damages are removed, thereby avoiding replication of unre- 
paired chromosomal defects that would give rise to mutations and cancer. 
The age-related decay of repair capacities, however, entails the accumulation 
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of more and more injuries. No recovery of the cell cycle occurs and finally 
the cell dies. 

Human premature aging syndromes are model systems to learn about 
mechanisms of normal aging. Werner syndrome is an inherited disease in 
which the genetic basis has been recently elucidated. Considering all results 
obtained until now, it appears as if the WRN protein would link the damage 
signal in the cell to the cell cycle to induce repair in order to avoid prema- 
ture senescence. 

Evidence from this review may favor the following model: 
The WRN protein resides at the replication foci (like FFA-1) where it binds 
topoisomerases and generates binding sites for phosphorylated RP-A. RP-A 
phosphorylation is mediated by DNA damage that is recognized by p53. P53 
interacts with RP-A thereby leading RP-A to the damage-site. RP-A, how- 
ever, interacts with WRN as it does in Xenopus with FFA-1 and is attracted 
to the foci where it activates DNA helicases like WRN and topoisomerases, 
stimulating unwinding of double-stranded DNA and binding and stabilizing 
the single-stranded DNA exposed by WRN helicase. P53 initiates activation 
of Sdil that inhibits DNA synthesis during repair and inhibits phosphoryla- 
tion of Rb. The unphosphorylated Rb also blocks the cell cycle. Repair en- 
zymes are assembled by RP-A interaction. WRN exonuclease exerts proof- 
reading activity. RP-A and WRN prevent illegitime recombination of un- 
wound DNA. This is most important at repetitive DNAs such as rDNA, te- 
lomeres and streches of nucleotid repeats. WRNp, positioned at the site of 
replication, releases S-phase arrest if repair was successful. Rb becomes 
phosphorylated again and stimulates the expression of WRNp. If, however, 
defects remain unrepaired, p53 reduces the expression of WRNp drastically. 
Lack of WRN helicase raises the amount of iUegitime recombination and 
finally makes S-phase arrest irreversible. 

The elucidation of the gene-product responsible for features of prema- 
ture senescence in Werner syndrome and the preliminary knowledge of the 
function of WRN protein emphazise the importance of DNA instability for 
aging. Unrepaired lesions may signal senescence by reducing WRN protein 
expression. As a result, hyperrecombination and a "mutator" phenotyp are 
promoted as is demonstrated in WRNp deficiency. Incorrect chromatin 
condensation retards cell-cycle progression, fascilitating further mutations. 
The replicative potential declines and the loss of cellular function gradually 
entails loss of function of the organism, a characteristic feature in the proc- 
ess of aging. 
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