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Preface

‘This book is written as an introductory text in computer architecture for the
SPARC! reduced instruction set architecture. It is assumed that readers have a
working knowledge of C and UNIX.? The GNU compiler gec and the gdb debugger
are used.

Computer architecture is closely related to assembly language programming, as
it is through assembly language programs that the architecture of a machine is
made apparent. The presentation of the material breaks from the tradition of com-
puter architecture texts in which assembly language programming was presented as
a language in which one might write programs; with a knowledge of the computer
architecture, there are, today, antimber of high-level languages, such as C, which
provide most of the capablhfles of assembly language programming. The use of
high-level langua,ges«results in much higher programmer efficiency and level of rep-
resentation. It is, however, important to understand the machine at the assembly
language level in order to write high-level programs intelligently: to decide between
competing data and control structures, the use of global variables and function pa-
rameters, the use of recursion, nested procedures, etc. While many of these choices
are influenced by high-level factors, the machine architecture has a profound effect
on the computational efficiency of the resulting choice.

While the machine langnage of a computer is easy to understand, its use results
in vast quantities of numeric data that have little meaning. Related to the very
heart of computer science is the use of symbol manipulation to simplify and to
bring to a clear level of understanding the manipulation and generation of low-level
numeric codes. Therefore, symbol manipulation is introduced in the first chapter
of the text in the form of the m4 macro processor. Throughout the remainder of
the book macros are used to simplify and clarify what is being programmed. The
generation of reams of assembly language code is discouraged in favor of the highest
level of representation possible.

The computer is introduced by way of the calculator, as most students are
familiar with calculators. We make use of the Hewlett-Packard programmable cal-
culator, which reveals many details of machine architectures. The HP calculators
have a natural machine language. Assembly language programming is introduced

1SPARC is a registered trademark of SPARC International, Inc.
2UNIX is a registered trademark of AT&T Bell Laboratories.
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to generate calculator programs making use of m4. A more formal introduction to
the machine is presented in the latter half of the first chapter. Stack, accumulator,
and load/store machine architectures are also introduced in the first chapter.

The second chapter introduces the SPARC architecture so that students may
start programming as early as possible. Like swimming, assembly language pro-
gramming is not learned i a library! Making use of the machine registers for
variable storage, students may start writing short programs by the end of the chap-
ter. The assembler, as, is introduced along with gdb, the debugger. Formatted
output is deferred until very late in the text to prevent students from developing
the “insert a print statement”
duced as a natural way to examine memory and registers, and to execute programs.
The assembler, as, lacks a macro expansion capability, as it was only designed to
be an efficient final pass for the compiler, which has its own macrd facilities. In
general, we will use the assembler as a second pass to m4, which,.p{ovides a Imacro
facility. Branching is introduced in the second chapter, as it is difficult to write
very interesting programs without branches. Together with branching, pipelining
is introduced with the resulting need for “delay slot” instructions. As the initial
specification of the SPARC architecture did not have a multiplication or division
instruction, calls to the system routines .mul and .div, etc., are introduced in the
second chapter without discussing what happens when the call is made.

As each of the architectural features of the machine is introduced it is related as
closely as possible to C language constructs so that students learn the relationship
between C and the resulting machine language structures. In the second chapter
the control structures of C are introduced in assembly language form. In general,
algorithms are written in C and then hand-coded into assembly language. TFre-
quently, optimizations are then seen and the assembly language code optimized.
However, we then return to C to learn how the optimized code might have been
generated directly from C or why it could not. In this way students learn the prob-
lems compiler writers must face and the reasons why many programs are written
the way they are.

Once students are able to write and execute simple assembly language programs,
binary logic and arithmetic are introduced. Chapter 3 introduces binary storage
devices and number systems: binary, octal, and hexadecimal and their conversions.
Bit-wise logic operations are introduced and the use of the register %g0, which
always yields a zero when used as a source register, effectively increasing the in-
struction set of the machine. Chapter 4 introduces modulus arithmetic and binary
multiplication and division. The treatment of multiplication is fairly extensive, as
it is needed to understand the multiply step instruction of the SPARC architec-
ture. Signed and unsigned comparisons are discussed. The chapter concludes with
extended precision arithmetic and tagged arithmetic.

Chapter 5 introduces the stack for the storage of variables. Frames are intro-
duced in order to provide local storage for functions. The definition of variable
offsets is discussed and problems of memory alignment and the load and store
instructions. Macres are made use of in the definition of stack offsets and the ad-

mode of program debugging. Instead, gdb is intr/o//

-
-
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justment of the stack pointer to provide storage. Variables are addressed relative
to the frame pointer, which is natural for this architecture. We defer the use of
static data until Chapter 9, as their use is clumsy with the SPARC architecture
and is not representative of current programming practice.

Chapter 6 introduces multidimensional arrays and structures. Problems of array
bound checking and lower bounds differing from zero are discussed along with
the problems of dynamic arrays so that students understand the reasons for array
addressing restrictions in C. Multiplication by constants for array subscripting is
introduced and macros for the automatic generation of multiplication sequences
developed in Appendix B. The simplicity of structure addressing is presented so
that students understand that arrays, while conceptually simple, are usually a poor
choice when structures may be used in their place. Macros are developed for the
definition of structure fields and storage allocation.

Functions are then introduced, with discussion of the following: register sets,
subroutine linkage, arguments, and return values. Examples are given of simple
function calls and of function calls with many argutnents or that return aggregates.
Finally, leaf routines are presented with their limited register usage.

Chapter 8 introduces the machine language of the SPARC architecture and
presents the concepts of instruction decoding and operand access. The handling of
32-bit constants is presented together with program counter relative addressing.

Chapter 9 discusses global data, initialized data, and addressing methods. ASCII s
strings are introduced and formatted output discussed. The switch C statement’s 3
translation into assembly language is introduced in this chapter. The handling of
C command line arguments is presented along with linking with other code.

Chapter 10 discusses input/output from character devices up through I/0 pro-
cessors. The chapter concludes with a section on system input/output using traps.

It is not until Chapter 11 that floating-point is introduced. Floating-point
may be left out of a course without affecting the other material. The concept
of additional processors with multiple functional units is discussed as well as the
interlocking of the floating-point processor with the integer unit. Single, double,
and extended precision number formats are described along with NalN’s (not a
number) and subnormal numbers.

Chapter 12 discusses supervisor mode, processor state registers, and traps. Reg-
ister window saving by means of traps is discussed in detail. Interrupts are intro-
duced together with hardware traps. This chapter may also be left out of a course
without f&t\racting from the other material.

_Chapter 13 introduces sharing of the processor between many users and the :

AR il s

. . ___-thechanisms for so doing. Sharing memory is of primary importance and the SPARC

virtual memory mapping, translation lookaside buffer, and cache memory system
are presented. The chapter concludes with a discussion of context switching.

Chapter 14 presents some alternative architectures, the pdp 11 for historical
interest, the VAX as an example of a CISC machine, and the MIPS RISC machine
as a contemporary architecture. This chapter may also be left out of a course
without detracting from the other material.
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Appendices include the macro definitions used in the book, the use of macros to
generate an open subroutine for integer multiplication by constants, the user mode
instruction set, a table of powers of two, and the description of m4.

In an introductory course for students, Chapters 1 - 9 would logically be followed
in order. Additional material could then be selected by the instructor: System 1/0,
Ploating-point, Traps, Virtual Memory, Other Architectures; each of these chapters
ig independent and may be covered in any order.

TFor the professional reader, Chapter 2 provides an introduction, followed by
the discussion of multiplication on the SPARC at the end of Chapter 4. This
should then be followed by Chapters 5 - 13. The appendices provide all the neces-
sary reference material for those interested in user mode programming. The text
should be supplemented by the SPARC architecture manual for the professional
programmer|[18].

The book was produced by the Latex document preparation system [10]. Po-
stscript files were generated by Textures [16]. Figures were drawn using the xfig
progratm.

The software to accompany this text {macro definition file, example
programs in the text, and exercises) can be obtained from University of
Pennsylvania CIS Department by readers who have Internet access, via
anonymous ftp:

Use “ftp” to connect to ftp.cis.upenn.edu. Specify “anony-
mous” when asked for a username, specify your full email ad-
dress when asked for a password. The compressed tar file can
be found in /pub/lou/sparc-arch.tar.Z. Be sure to use “bi-
nary” mode to “get” the file, then use “uncompress sparc-
arch.tar.Z — tar xf - to extract the individual items.

If you do not have Internet access, you can request the software directly
from Prentice Hall by contacting your sales representative or by sending
an e-mail message to books@prenhall.com. Please specify disk size.

An instructor’s manual is also available which includes solutions to all exercises,
and the originals for all figures and tables suitable for making slides.
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Chapter 1

THE COMPUTER

1.1

1.2

Introduction

Computers are very simple machines, much simpler than the people who designed
them and the students who study them. Tn order to understand computers we need
to have a solid grasp of their capabilities; to do this we need to master a number
of simple concepts. The approach we will take is to introduce these concepts in
a number of different ways: We start with the hand-programmable calculator, a
device with which a number of people are familiar; we then introduce the funda-
mental definition of the computer and its basic cycle; finally, we describe three
classic implementations of the computer leading up to the SPARC machine, which
is the subject of the book.

Much of computer architecture involves the substitution of numeric codes for
symbols. In fact, much of computer science involves the manipulation of symbols
and their cventual translation into numbers. Manipulating symbols is facilitated
by a macro processor, and in this chapter we introduce m4 the UNIX macro
processor [22].

Calculators

The calculator has replaced most other forms of calculation such as the slide rule,
the mechanical calculator, pencil and paper, the abacus, ete. It is appropriate
for calculations that are performed only once, such as a discount, a total, or the
cvaluation of a simple expression. The calculator with which most people are
familiar has a numeric keyboard and a few function keys, +, -, x, /. It has a
single register, the accumulator, into which rumbers may be entered or combined
with other numbers using the function keys. The contents of the accurmmulator
are displayed after each entry and operation. Such a calculator may be obtained
cheaply.
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1.2.1 Stack Calculators

If we wished to use such a simple calculator to evaluate the following expression for
=10
(z—1){x=7)
=z 1.1
y @10 (1.1)

we would also need a pencil and paper to write down the intermediate results
(10—-1), (10 -7), and (10— 11}, in order to combine them, following the usual rules
of precedence in which the parenthesized expressions are evaluated first, as follows:

(10-1) = 9 (1.2)
-7 = 3 (1.3)

943 = 27 (1.4)
(10-11) = -1 (1.5)
W/H-1) = -—27 (1.6)

A simple calculator provides only computational power, an arithmetic logic unit
(alu) capable of performing arithmetic operations such as addition, subtraction,
multiplication, etc. The piece of paper we used functions as mermory, a place to
store data for later retrieval.

The lack of memory is a rather severe limitation, as many expressions we might,
wish to evaluate have intermediate results that must be saved temporarily {we
don’t need the piece of paper in the above example once the calculation has heen
performed). Memory can be provided for the temporary results of expressions in
the form of a stack. A stack is a first-in last-out data structure in which only the
top stack elements are accessible [9]. If, in the previous example, a stack were
available, the first result (10 — 1)} = 9 could be placed on the top of the stack when
it had been computed. This could be followed by the result of (10— 7). These two
results, now on the stack, could be removed from the stack, multiplied together,
and their result once again placed onto the stack. Finally, the top element on the
stack could be divided by the result of computing (10 — 11) to yield the desired
result. Placing data items on a stack is frequently referred to as “pushing” and
removing items from the stack as “popping.”

The placing of results onto the stack can be combined with the computation of
expression values if all arithmetic operations take place between the top two ele-
ments of the stack. That is, the operations of addition, subtraction, multiplication,
and division remove the top two elements of the stack and then push the result of
the arithmetic operation back onto the stack. If 3 is then pushed onto the stack,
followed by a 4, and the addition operation performed, the stack will hold only one
element, 7.

Stack memory is very convenient as it is used in a direct manner without the
need to name or address the memory cells. The Hewlett-Packard calculators are
built to perform arithmetic by using a stack. When a number is typed, it is entered
onto the top of the stack. When an arithmetic key is typed, the top two elements
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of the stack are removed and replaced with the result, If two numbers have to be
entered without an arithmetic operation, then the “enter” key is used to separate
the two numbers. Such a caleulator is shown in Figure 1.1 and described fully in [8].
The top of the stack is always displayed.

X REGISTER, DISPLAYING TOP-OF-STACK
A B c D E
1 CHS 7 8 9 /
LBL
2 ssT| |Gro| |siN| |cos| [tan| |Bxx 4 5 6 x
PSE :
3 RIS | | GSB N 1 2 3
RN T
E
4 ON f £ STG | | RCL R 0 +
1 2 3 4 5 6 7 8 9 0

Figure 1.1: The HP-15C Programmable Calculator

In order to perform the above expression, evaluation for z = 10, we would enter
the following key sequence:

10 enter Push 10 onto the stack

1- Push 1 and then subtract the top of the stack from
the element imimediately below it on the stack,
leaving a 9 on the stack

10 enter Push 10 again onto the stack

7 - Push 7 and then subtract leaving 3 above 9 on the
stack
* Multiply the top two elements of the stack leaving

27 on the stack

10 enter Push 10 onto the stack again

11 - Subtract 11 leaving a —1 above the 27

/ Divide the top of the stack into the next element
below it leaving a —27 on the stack
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The subexpressions are evaluated in precedence order with the results being natu-
rally saved and used from the stack. Naming of the memory cells is not needed in
order to store the temporary results.

As the calculation progresses the state of the stack is shown in Figure 1.2. Notice
how the numbers are pushed onto the stack and then combined by the arithmetic
function keys. When evaluating arithmetic operations the top two elements of the
stack are popped and the result pushed back onto the stack.

10 enter 1 - 10 enter
10 1 9 10
10 9
7 - * 10 enter
7 27 10
10 9 27
9
11 - /
11 -1 =27
10 27
27

Figure 1.2: The Evaluation of y = (10 - 1){10 — 7}/{10 - 11)

1.2.2 The Use of Registers

If we wished to evaluate the expression for x = 3.172843, we could proceed as before
but we would need to type in the number 3.172843 three times! As we continued
to type in 3.172843 we would start to think that there must be a better way, and
of course there is. Registers are provided to hold constants such as x = 3.172843.
These registers are named by number, starting at 0, and some 10 are provided.
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Numbers may be stored into registers by first typing the number into the calculator
followed by the key sequence sto and then the register name. This operation
copies the number from the top of the stack into the named register. A number
may be retrieved from a register to the top of the stack by typing rcl followed
by the register name. Registers may also be used to hold intermediate results
in evaluating expressions; however, unlike the stack, registers must be named by
specifying their number. The use of registers to hold temporary results would make
expression evaluation cumbersome, as we would have to remember the name of the
register into which we placed each temporary result. The stack accepts and returns
temporary results in the same order as an expression is naturally evaluated.

To evaluate the above expression, using the stack and a register, for 2 = 3.172843
we might enter the following key sequence:

3.172843 sto 0 Store the constant 3.172843 into register 0, leaving
a copy of it on the top of the stack

1 - Push 1 and then subtract the top of the stack from
the element immediately below it on the stack,
leaving 2.172843 on the stack

rcl O Copy the contents of register 0 onto the top of the
stack, 3.172843

7 - Push 7 and then subtract leaving —3.827157 above
2.172843 on the stack

* Multiply the top two elements of the stack leaving
-8.316811 on the stack

rcl O Copy the contents of register 0 onto the top of the
stack, 3.172843

11 - Subtract 11 leaving a —7.827157 above —8.315811

/ Divide the top of the stack into the next element

below it leaving a 1.062431 on the stack

In this case we first store the constant 3.172843 into register 0 and then use it
by recalling it to the top of the stack instead of entering it each time it is used, as
we did in the first program.

Let us take stock of where we are. We have seen the use of an arithmetic logic
unit to performn arithmetic operations. We have also seen the need for memory to
facilitate expression evaluation, and to store constants. Memory was provided in
two forms, a stack and registers. A stack is convenient for expression evaluation as
memory addresses are not needed. Registers are useful when values enter into
the computation in a less structured manner. However, in order to facilitate this
less structured use, a register name must be specified. Registers may, however, be
used in place of a stack.
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1.2.3 Programmable Calculators

Now let us suppose that we wish to plot a graph of the above function for values of
x such that 0 < z < 10. We could proceed to store values of z into register 0 and
then type the keys to evaluate the expression. It would be much simpler if we could
just enter the value of x and then have the keystrokes automatically repeated. In
order to do this we must program the calculator.

In order to program the calculator we first change the calculator into a program
mode. When the calculator is in program mode the keystrokes are not executed,
but a code representing each key is stored into a memory that has both an address
(a location in memory) and data (the keystroke entered).

We begin by storing the keystrokes into memory location zero. After each
keystroke is entered, the memory address is incremented so that the next keystroke
will be stored into the next memory location. How are keystrokes stored? The keys
are stored as small numbers, the tens digit is the column number, and the units
digit is the row number of the key. Columns and rows start numbering from the
top left-hand corner of the keyboard. The top row is 1 and the bottom 4. The first
column is 1 and the last 10. The tens digit is dropped from the column number
so that columns are stored as 1, 2, 3, 4, 5, 6, 7, 8, 9, 0. The only exception to
this is for the number keys when the code stored is simply the digit. Thus, the key
sequence 3, enter, 5, +, would be stored as 3, 36, 5, 40. Check these key codes by
referring to Figure 1.1.

All keys have three designations:

¢ The principal designation, printed on the face of the key in white ink, is
obtained by simply using the key.

» Above the key is a second designation printed in yellow; to obtain this function
you must first press the yellow £ key foliowed by the function key.

* To obtain the designation on the lower face of the key, printed in blue, one
must first press the blue g key followed by the function key.

To indicate the end of the following program, the rtn key is entered after the blue
prefix g (see Figure 1.1).

To evaluate the expression for a particular value of z, we will type the value
of @ into the calculator and then execute the stored program to compute y. The
program will first store the last entered value into register 0 leaving a copy of it
already on the stack, and will then proceed as before to evaluate the expression:
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sto 0 Store the number entered into register 0, leaving
a copy of it on the top of the stack

1 - Push 1 and then subtract the top of the stack from
the element immediately below it on the stack

rcl 0  Copy the contents of register 0 onto the top of the

stack

7 - Push 7 and then subtract, leaving the result on
the stack

* Multiply the top two elements of the stack

rcl 0 Copy the contents of register 0 onto the top of the
stack

11 - Subtract 11

/ Divide the top of the stack into the next element

below it leaving the result on top of the stack
g rtn Return from the program to regular execution
mode

If we then type 3.172843 followed by R/S to execute the program, first “running”
will appear in the display and then 1.062431 as before. We may now evaluate the
expression for a rumber of values of z and plot the resulting y values.

We have now seen another use of memory, to store the program. Unlike the
stack and the registers, this memory is addressed. Memory functions as a large
array of numbers that may be indexed starting from zero. In the C programming
language (8] we might declare such an array as:

char memory[1024];

which would declare a 1024-byte memory array. The index of the array corresponds
to the address. Memory addresses, like array indices, may be computed, unlike the
registers, which are similar to a C structure and may be selected but not indexed:

struct registers {
int r0, rl, r2, r3, r4,
r5, r6, r7, r8, r9;

In the case of the calculator, the contents of the memory are the codes for the
keystrokes. These codes are the machine language of the calculator. It is these
codes that the central processing unit (cpu) executes. The codes are fetched
one by one from memory, in sequence, and are executed. The address of the next
keystroke to be executed is stored in a register called the program counter (pe).

The contents of the calculator’s memory after it has been programmed are shown
below. Check the key encodings with the key sequences by examining Figure 1.1.
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Address Machine Code Keystrokes Comments

(00 44 0 sto O Store into register 0
002 1 1 Enter 1

063 30 - Subtract

004 450 rcl O Register 0 to stack
006 7 7 Enter 7

007 30 - Subtract

008 20 * Multiply

009 45 0 rcl O Register 0 to stack
011 1 1 finter 1

012 1 1 Make it 11

013 30 - Subtract

014 10 / Divide

015 43 32 g Rtn Return to calculator mode

1.2.4 Machine Language Programming

When functioning as a calculator the keyboard merely sends appropriate numeric
code, the machine language to the alu. When it is being programmed, the
keyboard sends the appropriate numeric codes to memory. We could replace the
function keyboard with a simple numeric keyboard if we were prepared to type the
machine langunage instructions in place of using the calculator function keys.

Thus, to program the calculator to perform the expression evaluation above, we
would need to type the numbers from the second column of the program shown
above:

440130450730204501 1301043 32

and we would have the calculator programmed. The keyboard, however, helps us to
remember the machine language — the codes that the keys represent. If we were
to write a machine language program we would need a piece of paper with the
key mnemonics and their corresponding machine language instructions written
on it to remind us of the keys. For example, we might have the following list of
symbols:

44 0 | rel 450
add 40

div 10
ent 36

mul 20
rtn 43 32

sto
sub 30

Making use of this list we could translate the program, with symbols representing
the keys:!

sto
1
sub

IHere sto will generate the sequence sto ¢ and rcl will generate the sequence rcl 0.
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rcl
7

sub
mul
rcl
1

1

sub
div
rtn

Inputting the program would now involve only looking up each mnemonic in the
table and substituting the appropriate machine instruction. A program in the above
form is known as an assembly language program. It is a program with symbols
representing numeric values. Translating an assembly language program into a
machine language program involves looking up the symbols and mnemonics in
a symbol table (our piece of paper with the keys and their codes) and substituting
the matching numeric value.

m4, the Macro Processor

There is a program, called m4 [22] that may be used to translate symbols into
numeric constants. md4 is a macro processor and it basically copies its input to its
output; however, as it does this, it checks all alphanumeric tokens in case they are
macro definitions. An alphanumeric token is a string of letters or digits starting with
a letter; the underbar character _ ig also considered an alphanumeric character. If
m4 finds a macro token, it removes the token from the input and pushes its definition
back into the input to be rescanned.

Macros may be defined using the define macro. define takes two arguments,
the macro token and the definition. For example, to define the machine instructions
for the calculator we would enter into a file the information we had earkier written
on a piece of paper:

define(sto, 44 0)
define(rcl, 45 0}
define(div, 10)
define(mul, 20)
define(sub, 30)
define(add, 40)
define(ent, 36)
define(rtn, 43 32)

If these definitions were saved in a file, called, for example, cal.m, along with the
program:
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sto

sub
rcl

sub

mul

rcl

1

1

sub

div

rtn

and m4 run:

%m4d cal.m

the output would be a series of blank lines, one for each define, followed by the
translated symbols, the machine language:

44 0
1
30
45 0
7
30
20
45 0
1
1
30
10
43 32

1.3.1 Macros with Arguments

Macros may up to nine arguments. Arguments are specified in the macro definition
by $n, where n is a digit between 0 and 9. When scanning text, a macro name
followed émmediately by an open parenthesis ( indicates the presence of arguments.
If there are arguments, each is evaluated before being substituted into the macro
definition in place of the $n formal parameters. The entire macro text is pushed back
into the input and rescanned. The macro scanner expands everything it possibly
can.

In collecting arguments white space? before the argument is ignored so that the
definition of cat:

2White space consists of spaces, tabs, end-of-line characters.
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define(cat, $1$2$3$4$5$6$7$539)
and its call:

cat( a, b, c,
d; e, f:g: h’ 1)

results in:
abcdefghi

If we had fewer arguments than the nine specified, unsupplied arguments would
be replaced by nulls. So that:

cat( a , b, c)
would result in:
abc

Notice that the trailing blank after each argument is not removed but becomes part
of the argument string.

In our definition of mnemonics we treated sto and rcl to always store and
retrieve register 0. There are, however, 10 registers. The register number should be
an argument to sto and to rcl. We can redefine the macros to do this; instead of
defining sto as define(sto, 44 0) we could define it as define(sto, 44 $1?)
and rcl as define(rcl, ‘45 $1°) and enter the program as:

sto{0)
1

suhb
rcl(9)
-

sub
mul
rcl{0)
1

1

sub
div
rtn

which would produce the same machine code as before.

Why the single quotes in the above definitions of sto and rc1? define itself
is only a macro, although a built-in macro and one you could not define; its argu-
ments are evaluated as are all macro arguments. We may prevent the evaluation
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of arguments by enclosing the arguments in single quotes.? When a string enclosed
by single quotes is encountered, the quotes are removed, and the string is passed
through without the evaluation of any macros that might be in the string. In the
case of the above definition of sto we do not want an argument, evaluated for the $1.
We want only the macro expansion text associated with the token. Thus, the string
of characters is surrounded with single quotes. On macro, or argument, evaluation
when a single quote is scanned, it is removed and the text passed through with no
further expansion until the matching closing single quote is scanned. This quote is
also removed from the string. Thus, strings inside single quotes are not expanded,;
instead, the single quotes are removed.

One normally quotes all macro names being defined in case they were previously
defined. Consider what happens when a macro is redefined:

define (N, 100)
N
define(N, 200)
N

The above macro text results in both evaluation of N ag 100. This happens as
a result of the evaluation process described above. The argument to the second
define, N, is a macro name and is immediately expanded to its definition of 100.
The second argument to the call to define, 200, is not a macro name and is not
replaced. Thus, the input to the second define is define (100, 200). This makes
no sense and is ignored by m4. An error message might be appropriate but is not
given. The second evaluation of N, following the second definition of N would be
100 once again.

One further refinement is to replace the numeric register argument with a sym-
bolic argument. Instead of writing sto(0) we could write sto(x_r). Why would
we want to do this? If we had a program with a lot of variables stored in registers,
we would have to remember into which register all the variables in the program
were stored. We would, once again, need a piece of paper to keep track of the
register assignments. We can, of course, use m4 to do this for us. In the case of
this simple program we could use a macro definition to define x_r to be 0. We
can then use x_r as the argument to the sto and rcl macros. Notice that we have
defined the register name holding the value of x to have the suffix _r to distinguish
it from a symbol x defined to be the value of x. Our program then becomes:

define(f, 42)
define(g, 43)

3The emacs editor {19] may be changed to match single quotes, as it matches parentheses, by
including the following two lines in the .emacs file in your home directory:
(modify-syntax—entry 7° "(’" text-mode-syntax-table)
(modify-syntax-entry 7’ ")‘" text-mode-syntax-table)
The characters that syntactically represent the single quotes may also be changed by a macro
changequote (see Appendix G).
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define(x_r, 0)
sto{x_r)
1

sub
rcl(x_r)
7

sub

mul
rcl(x_x)
1

1

sub

div

rtn

13

This also produces the identical machine code, but from the numeric constants,
everything is defined symbolically, which is good programming practice becauge it
makes programs much easier to understand.

1.3.2 Memory Location

We could also add the memory address information to our program, by redefining

all the macros as follows:

define(f, 42)
define(g, 43)
define(loc, 0)
define(sto, ‘loc
define(rcl, ‘loc
define(div, ‘loc
define(mul, ‘loc
define(sub, ‘loc
define(add, ‘loc
define(ent, ‘loc
define(rtn, ‘loc
define{digit, ‘loc

44
45
10
20
30
40
36

$1 define(‘loc’, eval(loc + 2))?)
$1 define(‘loc’, eval(loc + 2))7)
define(‘loc’, eval(loc + 1))7)
define(‘loc’, eval(loc + 1))?)
define{‘loc?, eval(loc + 1)}7)
define(‘loc’, eval(loc + 1))7)
define(‘loc’, eval{loc + 1))?)

g 32 define(‘lec’, eval(loc + 2))7)

$1

define(‘loc’, eval(loc + 1))’)

Here we have first defined a symbol, loc, to have the value 0. This symbol will
represent the location counter, the memory address of the instruction being as-
sembled. Each macro definition has been changed to first print the current value of
loc and then to redefine loc to be loc plus the memory locations needed to store

the instruction.

‘The arguments to macros are characters and strings of characters, not numeric
values. In redefining the value of loc we make use of another built-in macro —
eval. eval takes its string argument to represent an arithmetic expression. eval
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evaluates this expression and returns its value in the form of a numeric character
string. Redefining a macro in m4 is the equivalent of the assignment operation in
C. We have also defined a new macro digit to handle the input of numbers so that
the location counter is also advanced.

When the macro definitions and program are run through m4 the following text
results:

0 44 0
2 1

3 30

4 45 ¢
6 7

7 30

8 20

9 45 0
11 1

12 1

13 30
14 10
15 43 32

Note the addresses in the left-hand column.

1.3.3 Conditionals and Branching

Returning to our expression and graph generation, we may go one step further. If
we wished to evaluate the expression for values of x 0 < z < 10 in increments of 1,
we would still have a fair amount of typing just entering in the values of z. What
we want to do is to execute the program, which evaluates the value of y given a
value of z, a number of times for a sequence of values of z. To achieve this we must
be able to do two additional things: determine when we should stop evaluating the
expression and change the address of the next instruction to be executed. These
two capabilities are, of course, testing and branching.

In the HP15C Calculator we may test if the current value is zero. If it is not, the
next instruction in line is skipped. Normally, the instruction following the test is
a goto instruction, which will transfer control to some other point in the program.
Targets of branches are labels. We will need three more macros to handle labels
and branching:

define(label, ‘define($1, loc)’)
define(ifeq, ‘loc g 20 define(‘loc’, eval{loc + 23)}7)
define(gto, ‘loc 22 $1 define{‘loc’, eval(loc + 2))7)

The first of these macro definitions, 1abel, defines its argument, a letter, to have as
value the current value of the location counter. If the label is later evaluated, it will
have the value of the location of the next instruction to be executed. The second



1.3. M4, THE MACRO PROCESSOR, 15

macro ifeq is the key code to test if the current value of the expression evaluation
is zero. If it is mero, then the next instruction is oxecuted; otherwise, the next
instruction is skipped. The third macro, gto, corresponds to the gto key. Tt has
a label as argument. When it is executed, the program counter is assigned the
value of the argument, which is the location of the target of the branch instruction.
The next instruction to be executed will then be the labeled instruction, not the
next instruction in line.

Finally, we will need to see the values of the expression evaluation. To do this
with the calculator we would use the pause key £ pse. This causes the caleulator
to pause and to display the current expression value:

define(pse, ‘loc f 31 define(‘loc’, eval(loc + 2))°)

We will use three labels in the program: A for the start of the program, B for
the loop, and C for the return to calculator mode. The first piece of code is simply
the labeled rtn statement. This code must appear first as in m4 all symbols have
to be defined before they are used:

label(C)
rtn

Then follows the code to initialize the z register:

label(A)
digit (C)
sto(x_1)

The loop then follows: First the value of z is compared to 11 to see if the loop is
to be executed; if it is to be cxecuted, the value of ¥ is computed and printed:

label(B)
rcl(x_r)
digit(1)
digit (1)
sub
ifeq
gto(C)
rel(x_x)
digit (1)
sub
rcl(x_r)
digit(7)
sub

mul
rcl(x_r)
digit(1)
digit(1)
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sub
div
pse
Finally, the value of z is incremented and the program branches back to the test:

rcl(x_r)
digit(1)
add
sto(x_r)
gto(B)

If the macro definitions are modified to compute the value of the location counter
but not to print it out:

define(g, 43)

define(f, 42)

define{loc, Q)

define(sto, ¢ 44 $1 define(‘loc?, eval(loc + 2)}7)
define(rcl, ° 45 $1 define(‘loc’, eval(loc + 2))7)
define(div, ¢ 10 define(‘loc’, eval(loc + 1})7*)
define(mul, ¢ 20 define(‘loc’, eval(loc + 13)7)
define(sub, ¢ 30 define{‘loc’, eval(loc + 1))7)
define(add, ¢ 40 define{‘loc’, eval(loc + 1))?)
define(ent, ¢ 36 define(‘loc’, eval(loc + 1))7)
define(rtn, * g 32 define(‘loc’, eval(loc + 2)3°)
define(digit, * $1 define(‘loc’, eval(loc + 1))°)
define(label, ‘define($1, loc)’)

define(ifeq, ‘ g 20 define(‘loc’, eval(loc + 2)}7)
define(gto, ° 22 $1 define(‘loc’, eval(loc + 2))7)
define(pse, ° f 31 define(‘loc’, eval{loc + 2))7)

and the macro definitions and the above program are run through m4; the following
machine language is generated:

43320440450113043202204501304507302045011 30
104231450140440225

If the program is then run, the following numbers are generated:

-0.636364
.000000
.555656
.000000
285714
.333333
. 000000

e = =)
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0.000000
-2,333333
-8.000000

—-27.000000

The von Neumann Machine

The HP15C Programmable Calculator is a small computer and fits the definition
of the stored program computer proposed by von Neumann in 1946 [2]. He had
joined Eckert and Mauchly, who had designed and built the world’s first electronic
general-purpose computer, ENIAC, at the Moore School of the University of Penn-
sylvania [24]. ENIAC had 20, 10-digit registers (each 2 feet long) and a total of
18,000 vacuum tubes; it took 200 micro seconds? to perform an add operation!
Programming of ENIAC was done by plugging cables and setting switches. Von
Neumann helped to formulate the idea of a stored program computer in which
the program was to be stored in the machine’s memory as numbers together with
the data. The first stored-program computer, EDSAC, was built at Cambridge
University by Wilkes in 1949 [23].

The machine von Neumann helped to define consists of an addressable memory,
capable of holding instructions and data, coupled with an arithmetic logic unit
capable of executing the instructions fetched from memory. The address of the
next instruction to be executed was held in a register called the program counter.
The cycle the von Neumann machine executed was:

pc = 0; /* initialize the program counter */
do {
instruction = memory[pc++]; /% fetch the instruction */
decode{instruction); /% decode the instruction */
fetch (operands); /* fetch the operands */
execute; /* execute the instruction */
store (results); /* store the results */

} while (instruction != halt);

While it is clear that instructions were to be fetched from memory and executed,
it is not clear how they were to be executed or how the operands were to be obtained.
Let us look a little more closely at how the HP Calculator fits the definition of a
von Neumann machine.

Stack Machine

In the HP Calculator instructions, such as add and sub, are clearly fetched from
memory. These instructions have no operands, as in a stack architecture the

4The miero prefix implies 105,
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operands for arithmetic functions are always on the stack. The machine must
decode the number it has fetched from memory to decide what operation is to be
performed, a form of hardware switch statement. The instruction is executed by
first removing the operands from the top of the stack peforming whatever operation
is specified by the instruction and storing the result, if any, back on to the top of
the stack.

The test instruction ifeq has no operand. The gto instruction does have an
operand, the new value of the program counter, the pe. The digit instruction is a
little strange, as it simply stores a single digit of a number, fetched from memeory,
onto the stack. The HP Calculator distinguishes between instructions and data
based on the magnitude of the value fetched. If the instruction fetched is less than
10, it is a datum and is to be converted to a number and eventually pushed onto the
stack. For example, digit(1) immediately followed by another digit (1) results
in the constant 11 being pushed onto the stack. A constant stored in the program
in this manner is called a literal.

An architecture such as the HP Calculator is similar to a “stack” architecture;
Burroughs developed the first such machine in 1963, the B5000 [1]. A stack ar-
chitecture differs from the calculator in that it does not have a set of registers for
holding constants and intermediate results, and that constants are handled in one
operation. Thus, in our program, to compute the expression Eq. (1.1), we need to
store the variables » and y in memory along with the constants 1, 7, and 11. In
order to push these onto the stack we will introduce a new instruction, push, which
has one operand, the memory address of where the data are stored in memory. To
store the result away we will define a pop instruction with opcrand the address
in memory where the top of the stack is to be stored. The stack architecture is
shown in Iligure 1.3. The machine has a program counter and an instruction decode
register. Logic and arithmetic are performed by the arithmetic logic unit between
the top two elements of a stack; the top two elements are popped from the stack
and the result pushed back onto the stack. Memory is accessed by first loading an
address into the memory address register, MAR; on a pop instruction, the top of
the stack is popped into the memory data register, MDR, for storing into memory;
on a push instruction, the MDR is loaded from memory and then pushed onto the
top of the stack.

Let us define some macros to load the memory for such a stack machine in the
same manner as we did for the calculator. We will load the constants and variahbles
first in memory and then follow this with the program. We will associate a symbol
with a constant when we load it into memory. The symbol will be defined to have
as value the address where the constant is stored. Then when we need this address
as the operand to a push or pop instruction, we may use the symbol in place of the
address

define(loc,0)
define(word,
‘define($1,loc)loc: $2 define(‘loc’, eval(loc + 1))7)
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The first macro defines the symbol loc to have as an initial value zero. This is
the memory location into which the next instruction of data is to be loaded. The
word macro has two arguments. The first is the symbolic name of the variable or
constant that is defined to have the current value of the location counter loc. The
second argument is the value to be stored in the location loc. Finally, the value of
loc is redefined to be loc + 1. Note that we have also defined the macros to print
out the value of the location counter into which the instructions and data are to be
stored.

If we call the three polynomial coefficients of Eq. (1.1}, a2, al, and a0, we can
define the data, and load memory, as follows:

define{a2, 1)
define(al, 7)
define(al, 11)
word(a2_m, a2)
word(al_m, ai)
word(aO_m, a0)
word(x_m, 1)

word(y_m, 0)

Notice how we first defined a2, al, and a0 to have the values 1, 7, and 11 respectively.
We then used these symbols as the values to be stored into memory. We defined
the memory addresses to have a suffix _m to distinguish the address of the data
from the data themselves, in the same manner as we added the suffix _r to indicate
the name of a register to hold the value of a given variable.

We then need macros to assemble the instructions. We will, rather arbitrarily,
define push to have the machine instruction code 50 and pop to have code 60.

define(div, ‘loc: 10 define(‘loc’, eval(loc + 1))°’)
define{mul, ‘loc: 20 define(‘loc’, eval{loc + 1))?)
define{sub, ‘loc: 30 define(‘loc’, eval(loc + 1)}7?)
define(add, ‘loc: 40 define(‘loc’, eval(loc + 1)) 7)
define(push, ‘loc: 50 $1 define(‘loc’, eval(loc + 23)7)
define(pop, ‘loc: 60 $1 define(‘loc’, eval(loc + 2))7)

Having defined the data, we will use the label macro to define the location
of the beginning of the executable program, start, and then follow this with the
program:

label (start)
push(x_m)
push(a2_m}
sub
push{x_m)
push(al_m)
sub
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mul
push{x_m)
push (a0_m)
sub

div

pop (y_m)

If this program is run through m4 the following output is generated:

0: 1

1: 7

2. 11

3: 1

4; 0

5: 50 3
7: ho 0
G: 30

10: 50 3
12: 50 1
14: 30

15: 20

16: 50 3
18: 50 2
20: 30

21 10

22: 60 4

In the above program we have labeled the starting address, but the machine
does not know that we have done so. Historically, the starting address is always
specified as the last number loaded into memory. That is, when memory is loaded,
the last value loaded is also stored into the program counter, pc, and execution is
started at that address. We will follow this practice by defining a macro, end, to
specify the starting address and also to signal the end of the program:

define(end, * $17)

Our program, in macro definition form, is shown below. We have also defined a
comment macro. This macro is normally evaluated with a quoted argument, which
is evaluated, removing the quotes, and then discarded.

define(comment)

This enables us to add comments to our program without affecting the machine
code generated. The comment itself should be enclosed in single quotes to prevent
any macro names in a comment being evaluated when the arguments to comment
are evaluated by m4. We can make use of the divert macro to eliminate all the
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blank lines due to the macro definitions. divert(-1) discards all input until a
divert macro without an argument is encountered.

divert(-1)
define(loc,0)
define(word,
‘define($1,loc)loc: $2 define(‘loc’, eval{loc + 1))7?)
define(label, ‘define($1, loc)’)

define(div, ‘loc: 10 define(‘loc’, eval(loc + 1))°)
define(mul, ‘loc: 20 define(‘loc’, eval{loc + 1))7)
define(sub, ‘loc: 30 define(‘loc?, eval(loc + 1))7)
define(add, ‘loc: 40 define(‘loc’, eval(loc + 1))’)
define{push, ‘loc: 50 $1 define(‘loc’, eval(loc + 2))°’)
define(pop, ‘loc: 60 $1 define(‘loc’, eval(loc + 2})7)
definef(end,* $17)

def ine (comment}

divert

define(a2, 1)  comment(‘define the poly. coefficients’)
define(al, 7)
define(al, 11)

word{a2_m, a2) comment{‘define and initialize memory’)
word(ai_m, al)
word (a0_m, a0)

word(x_m, 1) comment ( independent variable’)
word(y_m, 0) comment ( ‘dependent variable’)
label(start) comment (‘ starting address’)
push(x_m) comment(‘x — a2’)

push(a2_m)

sub

push(x_m) comment(‘x - al’)

push(al_m)

sub

mul comment{‘ (x - a2)*(x - al)’)
push{(x_m) comment(‘x - a0?’)

push{a®_m)

sub

div comment(‘(x — a2)+(x - al)/(x - a0)?)
pop{y.m) comment (‘store in y’)

end(start) comment ( ‘specify starting address’)
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Accumulator Machines

'The stack architecture was not the first architecture developed. The architecture
of the EDSAC computer was an accumulator machine [23]. An accumulator
machine is like the very simple calculator. Tt has a single register, the accumulator,
whose contents are combined with a single operand, with the regult of the operation
replacing the contents of the accumulator. For example, an add instruction, has a
single operand and the result of executing the instruction is:

accumulator += operand;

In order to add two numbers together we must first place one of the numbers
into the accumulator, then execute the add lnstruction, and finally, store the
contents of the accumulator back into memory. There are two instructions to Toad
and store the accumulator, both of which take a single operand:

load operand
store operand

The architecture of an accumulator machine is shown in Figure 1.4. Here you
will see that the input to the ALU is the accumulator, the ACC, and the memory
data register, MDR. The result of the arithmetic or logic operation is always placed
back into the ACC.

Accumulator machines do not have registers or a stack for storing temporary
results but make use of the main memory. The operand for all instructions is a
memory address. Thus, to add the contents of memory location 100 to the contents
of memory location 102, placing the result into memory location 300, we would
execute the following instructions:

load 100
add 102
store 300

A program to compute the expression, Eq. (1.1}, for an accumulator machine
might be:

word(a2_m, 1) comment { “the polynomial coefficients’)
word(al_m, 7)

word{aC_m, 11)

word{x_m, 1) comment (‘ independent variable’)
word(y m, Q) comment ( ‘dependent variable’)
word(templ_m, 0) comment(‘needed for temporary results’}
word (temp2_m, Q)

label (start) comment { ‘starting address’)
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load(x_m) comment (‘templ = x ~ a0’)
sub{a0_m)

store(templ_m) comment { ‘the denominator’)
load{x_m) comment(‘temp2 = x - a2’)
sub(a2_m)

store(temp2_m)

load(x_m) comment (‘x - al’)
sub{(al_m)

mul (temp2_m) comment{‘(x - al) * (x - a2)’)
div{templ_m) comment (‘x - a0’)
store(y_m)

end(start)

Notice that in the above program we have had to make use of a memory location
templ and temp2 to store intermediate results. If we were to define machine codes
of 50 for load and 60 for store, then the following equivalent machine language code
would be generated:

0: 1

1 7

2: 11

3: 1

4: ¢

5: 0

6: 0

7: 50 3

9: 30 2

11: 60 5

13: 50 3

15: 30 0

17: 60 6

19: 50 3

21: 30 1

23: 20 6

25: 10 5

27 60 4
7

Compare the machine code for the two architectures, stack and accumulator,
shown on pages 21 and 25. You will see that there are only 23 words of program
for the stack machine, whereas the accumulator machine requires 28. However,
the code for the accumulator machine is much more regular, as every instruction
has one operand, an address. The accumulator architecture is also referred to as a
single address machine.
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Although the program is shorter for the stack machine, the lack of regularity
of the instructions might make decoding them more time-consuming than for the
accumulator machine. This is a fundamental question related to the design of
computers — space versus time. That is to say, if we were to add more instructions
with more operands to reduce the length of a program (space), decoding instructions
and fetching operands might take more time and could lead to slower execution.
Obviously, these questions have economic consequences, as one is interested in the
fastest computer for the smallest cost. Although there was a debate related to the
relative merits of accumulator architectures versus stack architectures, increasing
memory size soon changed the debate to one related to the time required to access
MEImory.

Load/Store Machines

Early machines had some hundreds of words of memory and the time to access any
particular memory location was the same for all addresses. Soon, however, memory
sizc started to increase due to the need for longer, more complex programs and with
the development of technology to build much larger memories. With increasing
memory size camc another cost tradeoff — cost versus access time. The faster
a memoty can be accessed, the greater its cost. As programs typically accessed
a small number of variables much more frequently than others, it was natural
to design machines with a memory hierarchy in which a small amount of high-
speed memory was provided for frequently accessed variables and a much larger,
slower memory was provided for the rest of the program and data. This high-speed
memory frequently took the form of a register file. The machine would load and
store these registers from memory and the arithimetic, and logic instructions would
then operate with registers, not main memory, for the location of operands [15].

The architecture for the load/store machine looks very similar to the archi-
tecture of the stack machine with a register file replacing the stack. The main
difference between the stack and the register file is that any of the registers may be
selected with cach instruction, whereas only the top two elements of the stack may
be accessed at any time. The architecture for the load/store machine is shown in
Figure 1.5.

If the machine is addressing only a small number of registers, then the instruc-
tion field to refer to a register will be short and there is no real limitation on the
number of operands for each instruction; these machines frequently have instruc-
tions with three opcrands, two source operands and a destination operand, for
example, the add instruction:

add srcl, src2, dest

will add the contents of register srcl to the contents of src2 and store the result
into register dest. These machines are called “load/store” machines and the SPARC
architecture, the subject of this book, is of this form.
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We may define macros for a load/store machine as follows: The load and store
instructions are like the load and store instructions for the accumulator machine
except that they have an additional operand, the register, from which to load or to
store:

define(load,

‘loc: 50 $1 $2 define(‘loc’, eval(loc + 3))} %)
define(store,

‘loc: 60 $1 $2 define(‘loc’, eval{loc + 3))}?)

The macros for the arithmetic instructions now take three operands each, two source
operands and a destination operand:

define(div,

‘loc: 10 $1 $2 $3 define(‘loc’, eval(loc + 4))?)
define(mul,

‘loc: 20 $1 $2 $3 define(‘loc’, eval{loc + 4))’)
define(sub,

‘loc: 30 $1 $2 $3 define(‘loc’, eval(loc + 4))°)
define(add,

‘loc: 40 $1 $2 $3 define(‘loc’, evalfloc + 4))*)

We will need to define the machine code for the registers and will assume that in
our machine we have eight registers:

define(r0, 0)
define(r1l, 1)
define(r2, 2)
define(r3, 3)
define(r4d, 4)
define(rbs, 5)
define(r6, 6)
define(r7, 7)

With these definitions we can write the program to evaluate the expression given
in Eq. (1.1):

define(leoc,d)
define(word,

‘define($1,loc)loc: $2 define(‘loc’, eval{loc + 1))?)
define(label, ‘define($1, loc)’)

define(div,

‘loc: 10 $1 $2 $3 define(‘loc’, eval(loc + 4))7)
define(mul,

“loc: 20 $1 $2 $3 define(‘loc’, eval(loc + 4))’)
define(sub,
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‘loc: 30
define(add,
‘loc: 40
define(load,
‘loc: 50
define(store,
“loc: 60

define(end, *
define (¢comment)

define(r0, 0)
define(rl, 1)
define(rz, 2)
define(r3, 3)
define(r4, 4)
define(r5, 5)
define(r6, 6)

define(a2, 1)
define(al, 7)
define(a0, 11)

word(a2 m, a2}
word(al_m, al)
word(aQ_m, al)
word{x_m, 1)
word{y_m, 0)

label(start)
load(x_m, rl1)
load(a2_m, r2)
load{al_m, r3)
load(ad_m, rd)
sub(rl, r2, rQ)
sub(rl, r3, rh5)
nul{x0, r5, ro}
sub{ril, r4, rE)
div(r0, r5, r0)
store(r0, y_m)
end(start)

$1 $2 $3 define(‘loc’, eval{loc + 4))’)
$1 $2 $3 define(‘loc’, eval{loc + 4))7)
$1 $2 define(‘loc’, eval(loc + 3))7?)
$1 $2 define(‘loc’, eval(loc + 3))?)

$17)

comment { ‘the registers?)

comment { ‘define the poly. ceoefficients?’)

comment (‘define and initialize memory’)
comment { ‘ independent variable?’)
comment { ‘dependent. variable’)

comment  ‘starting address®)
comment( ‘load variables into registers’)

comment (‘r0 = x - a2’)
comment (‘r5 = x - al’)
comment(‘r0 = (x - a2) * (x - al)’}
comment{‘r5 = x - a0?)

comment (‘r0 = (x - a2)*(x - al)/{x - a0d)’)
comment (‘store r0 into memory’)

1
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The resulting machine code is:

0: 1

1:

2: 11

3: 1

4: 0

5: 50 31

11: 50 02

14: 50 13

17: 50 24

20: 30 120

24 30 135

28: 20 050

32: 30 145

36: 10 050

40Q; 60 04
5

Comparison of the machine code for the load /store machine, shown above, with
that for the stack and accumulator architectures, shown on pages 21 and 25, might
give the impression that the code for the load/store machine is much longer, 42
words versus 23 and 28. However, as the register addresses are very short (a single
digit each in the case of the machine defined above), the register addresses are
normally packed into a single word with the instruction code, the opcode.

Thus, by redefining the macros to take out the intervening space in the arith-
metic instruction code as follows:

define(div, ‘loc: 10$1$2%3 define(floc’, eval(loc + 1))7)
define(mul, ‘loc: 20$1$2%$3 define(‘loc?, eval{loc + 1))7%)
define(sub, ‘loc: 30$13$2%$3 define(‘loc’, eval(loc + 1)) %)
define(add, ‘loc: 40%$1$2$3 define(‘loc?, eval(loc + 1))7)
define(load, ‘loc: 50%$1$2 define(‘loc’, eval(loc + 1})7)

define(store, ‘loc: 603132 define(‘loc’, eval(loc + 1))7)

we would obtain the following machine code:

0: 1
i:
2: 11
3: 1
4:
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5: 5031
7: 5002
8: 5013
G: 5024
10: 30120
11: 30135
12: 20050
13: 30145
14; 10050
15: 6004
5

In this case we would only need 15 words of memory. Of course, the decoding of
instructions would now be more complicated, as the digits specifying the registers
would have to be separated out from the instruction. A further complication is that
the load and store instructions have only one register to be so obtained, whereas
the arithmetic instructions have three. This means that the instruction type would
first have to be ascertained before the registers could be decoded.

If we look at the above program, the code is not very readable, and even more
difficult to write, as we have to keep track of which register contains which variable.
Once again, we noed a piece of paper, and this is always an indication that we should
be making some definitions. We can make these symbolic definitions when we assign
registers to variables. We will add a suffix _r to name the register assigned to hold
the value of a variable just as we added the suffix _m to indicate the memory address
of the variable. If we do this, our program becomes:

define(a2, 1}  comment(‘define the poly. coefficients’)
define(al, 7)
define(al, 11)

word(a2_m, a2) comment(‘define and initialize memory’)
word{al_m, al)

word{a0_m, a0}

word(x_m, 1) comment (‘ independent variable®)
word(y_m, 0) comment (‘dependent variable’)

define(y_r, r0) comment(‘variable assigmments to registers’)
define{x_r, ril)

define(a2_r, r2)

define(al_r, r3)

define(alO_r, r4)

define(temp_r, r5)
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label(start} comment (‘starting address’)

load(x_m, x_r) comment(‘load variables into registers’)
load(a2_m, a2_r}

load(al_m, al_r)

load(al_m, a0_x)

sub(x_r, a2_r, y_r) comment(‘y_r = x - a2’)

sub{x_r, al_r, temp_r) comment(‘temp r = x - al’)
mil{y_r, temp_r, y_r)} comment(‘y_r = (x - a2)*(x - al)’)
sub{x_r, al_r, temp_r) comment(‘temp_r = x - al’)
div(y_r, temp_r, y_r} comment(‘y.r = y_r / (x - a0)")
store(y_r, y._m) comment{ ‘store y_r into memory’)
end(start)

Assemblers

An assembler is a macro processor specialized for translating symbolic programs
into machine language programs. This process is called “assembling” a program.
The assembler does essentially what we have been using m4 to do; that is, sub-
stitute one symbol for another, eventually translating all symbols into numbers.
However, the assembler allows us to remove an important restriction — symbols
may be used before they are defined. Careful examination of all our uses of m4
will reveal that we have arranged always to define a symbol before it is used. If we
had not, the translation would not take place. An assembler effectively reads a file
twice, once to determine all the symbol definitions and the second time to apply
those definitions and thus translate the symbolic text into numeric instructions and
data.

For example, in an assembler we could have written the load/store program
with the variables moved to the end of the program:

comment ( ‘variable assignments to registers’)
define(y_r, r®)

define(x_r, r1)

define{a2_r, r2)

define{al_r, r3)

define(al r, r4)

define(temp. r, rb)

label(start) comment (‘starting address’)
comment ( ‘load variables into registers’)
load(x_m, x_1)
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load(a2_m, a2_r)

load(al_m, al_r)

load{al m, al_t1)

sub(x_r, a2_r, y_r) comment{‘y_r = x - a2’)

sub(x_r, al_r, temp_r) comment(‘temp_r = x - al’)
mul(y_r, temp_r, y_r) comment(‘y_r = (x - a2}*{x - al)’)
sub(x_r, a0_r, temp_r) comment(‘temp_r = x - a0’)
div(y_r, temp_r, y_r) comment(‘y_r = y_r / {x - a0)?)
store(y_r, y_m) comment (‘store y_r into memoxy’)
end(start)

comment (‘variable assignments to memory’)
word(a2_m, a?2)

word{al_m, al)

word{al_m, a0Q)

word{x_m, 1)

word(y_m, 0)

If the above program were processed by m4 the symbols defining the memory
locations, a2_m, al_m, ... y_mwould not be translated into addresses. We could
handle this problem, of forward references, in m4 by redefining the macros for the
load/store machine into two halves, the first to define the location counter valies
for labels and the second to generate the code. The code would have to be read
twice s0 it is best placed into a separate file which we might call source . m:

comment (‘variable assignments to registers’)
define(y_r, rQ)

define(x_r, rl)

define(a2_r, r2)

define(al_r, r3)

define(al_r, r4)

define(temp_r, rb5)

label (start) comment { ‘starting address’)
comment.{‘load variables into registers’)

load{x.m, x_r)

load(a2_m, a2_r)

load(al_m, al_x)

load(a0_m, al_r)

sub(x_r, a2_r, y_r) comment(‘y_r = x - a2’)

sub(x_r, al_r, temp_r) comment(‘temp_r = x - al’)
mul(y._r, temp_r, y_r) comment(‘y_r = (x - a2)*(x - al)?)
sub(x_r, a0_r, temp_r) comment(‘temp_r = x - a0’)
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div(y_r, temp_r, y_r) comment(‘y_r = y_r / (x - a0)’)
store(y_r, y_m) comment (‘store y_r into memory’)

comment { ‘the polynomial coefficients?)
word(a2_m, 1)
word(al_m, 7)
word(al_m, 11)

word(x_m, 1) comment { ‘ independent variable’)
word(y_m, 0) comment { ‘dependent variable’)
end(start)

We will place the macro definitions, which determine the location counter values,
into a file pass?.m:

divert(-1)
define(loc,9)
define(word,

‘define($1, 'eval{loc) ‘) ’define(‘loc’, eval(loc + 1))°)
define(label, ‘ ‘define($1,’eval{loc) ‘) *)
define(halt, ‘define(‘loc’, eval(loc + 1))dnl’)
define(div, ‘define(‘loc’, eval(loc + 2))dnl’)
define(mul, ‘define(‘loc’, eval{loc + 2))dnl’)
define(sub, ‘define(‘loc’, eval(loc + 2))dnl’)
define(add, ‘define(‘loc’, eval{loc + 2))dnl’)
define(load, ‘define(‘loc’, eval(loc + 2))dnl?)
define(store, ‘define(‘loc’, eval(loc + 2))dnl’)
define(bge, ‘define(‘loc’, aval(loc + 2))dnl’)
define(ba, ‘define(‘loc’, eval{loc + 2))dnl?)
define(print, ‘define(‘loc’, eval{loc + 2))dnl’)
define (comment)
define(end, ‘dnl’)
divert
include(source.m)

The output of passi must be redirected into a file called symbols.m:
Jnd passl.m > symbols.m
The following definitions are generated in passi and placed in the file symbols:

define(start,0)
define(a2_m,20)
define(ai_m,21)
define(a0_m,22)
define(x_m,23)
define(y_m,24)
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The macros that generate the instructions may then be placed in a file pass2.m:

divert(-1)
include(symbols.m)
define(loc,0)

define(word, ¢ $27)
define(label, ')

define(div, ¢ 10 $1 32 $37)
define(mul, ¢ 20 $1 $2 $31)
define{sub, ‘ 30 $1 $2 $37)
define(add, ¢ 40 1 $2 $37)
define(load, ¢ 50 $1 $2
define(store, ° 60 $1 $27)
define(end, * $1)
define(comment)

define(rQ, Q)
define(rl, 1)
define(r2, 2)
define(r3, 3)
define(rd, 4)
define(r5, 5)
define(r6, 6)
divert
include(source.m)

when this second pass is run:
#md pass2.m

the following output is generated:

50 23 1

50 20 2

50 21 3

50 22 4

30 120
30 1356
20 050
30 145
10 050
60 0 24

1

7
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—

0

Another important difference betwesn an assembler and n4 is the definition
of location counter values. Many of our macros involve saving, defining, or using
location counter values; word, for example, defines a symbol to have the value of the
location counter and generates a word consisting of its second argument. Likewise,
label macro defines a symbol to have as its value the current value of the location
counter. In an assembler, a symbol immediately followed by a colon (:) defines the
symbol to have as its value the current value of the location counter. Making use
of this feature we could further rewrite our program:

comment {‘variable assignments to registers’)
define(y_r, r0)

define(x_r, rl)

define(a2_r, r2)

define(al_r, r3}

define(al_r, r4)

define(temp_r, r5)

comment{ ‘load variables into registers’)

start:
load(x_m, x_1)
load{a2_m, a2_r)
load(ail_m, al_r)
load(a0_m, al_r)}
sub(x_r, a2_r, y_r) comment (‘y_r = x - a2’)
sub(x_r, al_r, temp_r) comment(‘temp r = x - al?)
mul(y_r, temp.r, y r) comment(‘y_r = (x - a2)*(x - al)?)
sub(x_r, a0_r, temp_r) comment(‘temp_r = x - aQ’)
div(y_r, temp_r, y_r} comment(‘y_r = y_r / (x - a0)’)
store(y_r, y_m) comment (‘store y_r into memory’)
end(start)

comment ( ‘varijable assignments to memory’)

aZ2_m: 1
al_m: 7
al_m: 11
X_m: 1
y_m: 0
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An identifier followed by a colon is called a “label.” Labels are the arguments for
goto instructions. Assemblers improve the syntax of programs, eliminating many of
the parentheses, and perform some checks, such as ensuring that register symbols
are used when register symbols are needed. We will be using the UNIX Assembler
as [13] with m4 (to perform some preprocessing of our programs). For example,
as will not handle the redefinition of register names but m4 will allow us to do this.
The assembler also allows us to terminate lines with comments beginning with an
exclamation point (!). The exclamation point and remaining text on the line are
ignored. Our program, written for m4 and as is: -

define(y_r, r0} lvariable assigmments to registers
define{(x_r, ri)

define(a2_r, r2)

define(al_r, r3)

define(al_r, r4)

define(temp_r, r5)

start: mov 0, %x_r !load variables into registers
mov a2, %a2_r
mov al, Jal_r
mov alb, %a0_r
sub hx_r, Y%a2_r, fy_r 'y = x - a2
sub hx_r, %al_r, Ytemp_r !temp = x - al
mul hy_r, Ytemp_r, Yy_r 'y = (x - a2) * (x - al)
sub hx_r, %a0_r, Ytemp_r 'temp = x - a0
div hy_xr, %temp_r, fy_r ly = (x - a2) * (x - %al)

If the program is first processed by m4, the symbolic register definitions are
processed to yield a program suitable for as:

start: mov 0, Yrl 'load variables into registers
mov a2, %r2
mov al, %r3
mov a0, %rd
sub wri, ¥r2, ¥r0  fy = x - a2
sub %ri, %r3, %r5 'temp = x ~ al
mul %0, %5, %r0  ly = {x - a2) * (x - al)
sub hrl, Yrd4, %r5 ltemp = x - a0
div %r0, %r5, %r0 ly = (x - a2) * (x - %al)
1/ (x - a0)

In these programs we have avoided using memory for the variables by employing
literals instead. Remember that a literal is a constant appearing directly in a
machine instruction instead of its address. The mov instruction will load a constant
directly into a register instead of fetching the constant from memory. Likewise, we
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have left the computed value for y in y_r instead of storing it back into memory.
We will leave accessing memory for variables for a later chapter.

Summary

We first introduced the computer by way of the programmable calculator. Although
the computer predates the calculator, everyone is now familiar with the calculator,
although probably not in its programmable form; the programmable calculator is,
of course, a computer. The simplest calculator has only an arithmetic logic unit.
With the calculator we also introduced postfix notation for arithmetic expressions.
Expressions given in postfix notation are simply computed using a stack. We in-
troduced the need for registers, to store frequently occurring constants, and for
memory, to store key sequences so that computations could be repeated.

Having introduced the calculator we then dispensed with its keyboard by storing
the machine code for key sequences directly into memory. In order to translate
symbolic programs into machine codes we introduced the macro processor m4d. With
md we went on to define various computer architectures, an accumulator machine, a
stack machine, and finally a load/store machine. We introduced the assembler, and
demonstrated how it simplifies the translation of symbolic programs into machine
code.

Concepts defined in this chapter were:

Arithmetic Logic Unit (alu): capable of performing arithmetic and logical op-
erations on its inputs to produce an output.

Registers: provide for the storage of temporary results and constants. ‘They may
be named, but unlike memory, they have no address.

Memory: randomly accessible store of data. When read, the memory, presented
with a numeric address, will return the data stored there; when written, the
memory, presented with data and an address, will replace the contents of the
addressed memory location with the new data.

Central Processing Unit (cpu): consists of an arithmetic logic unit and a con-
trol unit capable of fetching and executing instructions.

Machine Language: numeric values that represent the operations of a machine
and the location of operands. The machine language is directly executable
by the central processing unit.

Assembly Language: symbolic representation of the machine language of a com-
puter.

Program Counter (pc): holds the address in memory of the next instruction to
be executed.
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von Neumann Cycle:

pc = 0; /* initialize the program counter #*/

do {
instruction = memoryipc++];/* fotch the instructicn */
decode(instruction); /# decode the instruction %/

fetch {(operands); /* fetch the operands */
execute; /* execute the instruction */
store {(results); /* store the results */

} while (instruction != halt);

Macro Processor: identifies macro tokens and arguments in its input stream and
substitutes the macro definition in its place in the input stream to be res-
canned.

eval: macro that considers its string argument as a numeric expression, returning
a string that represents the evaluation of the expression.

define: macro that defines its first argument to be a macro token to be replaced,
on evaluation, by its second argument.

Stack Machine: pushes operands onto the top of a stack from memory and pops
results from the top of the stack back into memory. Arithmetic logic instruc-
tions operate between the top elements of the stack, popping all operands
and pushing the result back onto the stack.

Accumulator Machine: combines an operand from memory with the contents
of a single register, the accumulator, to produce a result that replaces the
contents of the accumulator. The accumulator may be loaded from memory
and its contents stored back into memory.

Load/Store Machine: performs all operations between the contents of a set of
registers. The registers may be loaded from or stored into memory.

Assembler: program for translating between a symbolic representation of a pro-
gram and its numeric machine language. An assembler allows for forward
variable references by implementing a two-pass algorithm in which symhols
are defined in its first pass ta be used in the second pass.

Label: a symbol, whose value is the address where the instruction, or data, it
references will be located in memory.

Symbol Table: table of symbol, value pairs.

Location Counter: variable, whose value is the address where the next instruc-
tion of data element will be assembled into nemory.
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Exercises

1-1 Define assembly language and machine language, clearly indicating the dif-
ference between them.

1-2 What is a symbol table and what is it used for in an assembler?

1-3 Use m4 to define all the constants in the following program symbolically:

for (i = 27; i < 305; i++)
{
a=1+ 37;
b[305 - i] = a;
}

1-4 How would you type arguments h, o, w, n, o, wto the macro cat,
(define{cat, $1$2$3$485$687%8$9)) so that the printed result was:

how now
1-5 What is the output of the following macro text? Interpret.

define(m, 4)

define{ sum, ‘incer($1) + $27)
define(incer, ‘$1 + 1°)}

sum({ n, m)
sum{(‘n’, ¢
sum{‘ ‘n’?,
Sum(((tn::)’ ttlm))))
sum("“n””, l“fm::)3)

1-6 Define a macro add_loc with one argument, the number to add to the variable
lac, to replace the lines of code in the example on 22 such as:

define(sto, ‘loc 44 $1 define(‘loc’, eval(loc + 2))7)
with
define(sto, ‘loc 44 $1 add_loc(2)’)

1-7 Write a C program to simulate the HP15C Calculator. Declare the following: a
char array, memory, to hold the program; a double array, stack, for the calculations;
a 20-element double array, register_set, for the register values. First read the
output of a calculator program, processed by md, into the char array. Then start
fetching instructions from your calculator memory and executing them, printing
the results.
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1-8 If you have written a simulator for the HP15C Calculator, use the macro
definitions given for the HP15C Calculator to write a program for the calculator to
evaluate factorial 10,

1-9 Write a C prograimn to simulate a single address, accumulator machine. Declare
an int array, memory, to hold the program and an int for the accurnulator. First read
the output of a machine program, processed by m4, into the char array. Then start
fetching instructions from your simulator’s memory and executing them, printing
the results. You should implement the following instructions: load, store, add, sub,
mul, div, branch on greater than or zero result, branch always. You should also
define an instruction that prints the value of a memory location. Then write a
program to evaluate the maximum value of the expression:

x? — 14z + 562 — 64

with z in the range ~2 <= z <= 8. Be careful that all your labels are defined
before you use them as the target of a branch instruction.

1-10 Write a C program to simulate a load/store machine. Declare an int array,
memory, to hold the program and an array of eight integers for the registers. First
read in the output of a machine program, processed by m4, into the char array.
Then start fetching instructions from your simulator’s memory and executing them,
prioting the results. You should implement the following instructions: load, store,
add, sub, mul, div, branch on less, branch on greater than or zero, branch always.
You should also define an instruction that prints the value of a memory location.
Then write a program to evaluate of the sum of powers of four:

y=11 4213t 404 g gt
by the closed form expression:
y = (62 + 152% + 1022 — 1) * /30

for @ = 10. (If this is too easy, you might want to include looping to evaluate the
series for 1 < x < 30.} Be careful that all your labels are defined before you use
them as the target of a branch instruction.

1-11 Define macros for a two-pass assembler for a single address machine that will
handle references to addresses before they are defined.

1-12 What is the von Neumann machine cycle for a stack machine?

1-13 Exactly what happens when word(a, 3) is evaluated, if it were in the follow-
ing macro definition file:
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define{loc, 0}
define{word, ‘define($1,loc) $2 define(‘loc’, eval{loc + 1))°)
word(a, 3)

List each step in m4’s evaluation process and the results of all macro argument
and macro evaluations.

1-14 Exactly what happens when m4 is processing a file and encounters a token,

which has been defined as a macro, followed immediately by an open parenthesis
(C(”?



Chapter 2

SPARC ARCHITECTURE

2.1

2.2

Introduction

The SPARC architecture is a load/store architecture [15]. The architecture is de-
scribed in detail in the SPARC Architecture Handbook [18]. All arithmetic and
logical operations are carried out between operands located in registers. Load and
store instructions are provided to load and store register contents from memory.
The machine has 32 registers available to the programmer at any one time. It can
address memory for a total of 2°°, or approximately 10°, instructions or integers.

Registers

Registers provide for rapid, direct access in computation, and C register variables
will in general be stored there. The Sun SPARC provides 32 registers for use by the
programmer. These registers are logically divided into four sets: global, in, local,
and out. The global registers are for global register data, data that have meaning
to an entire program and are accessible from any function. The in registers contain
calling function arguments and we will describe their use in Chapter 7. The local
registers are for local function variables and we will store our program variabies in
these registers. The out registers are for use as temporaries, passing arguments to
functions, and obtaining returned values from functions. For the present, we will
not make use of the in registers. The registers are referred to in the assembler as
Tog0 — %7, %0 — %17, %00 — %07, and %i0 — Y%i7. Two of the out registers,
%06 and %07, are reserved for a special use and you should not use them. The
first of the global registers, %g0, is also a special register, always returning a zero
when read and discarding whatever is written to it. All registers will store a signed
integer n, —2% < n < 2% or approximately [n| < 109,

43
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Register Synonyms Usage
%g0 %ro Always discards writes and returns zero
%el rl First of seven registers for data with
g2 %2 global context
%3 4r3
hed %rd
%eb hr5
hgd pALS
hev 47
%00 %r8 First of six registers for local data
%ol %r9 and arguments to called subroutines
%o %r10
%03 Yri1
%od %ri2
%05 %ril3
%sp %ri4 %06 | Stack pointer
%oT %rib Called subroutine return address
%10 ri6 First of eight registers for local
%11 w7 variables
%12 %ris
%13 %r19
yak: %20
w15 %r2l
pALs #r22
hiv %r23
%i0 hrad First of six registers for incoming
#i1 #r25 subroutine arguments
%i2 %r26
%i3 hr27
%id %r28
%i5 %r29
ttp %r30 %if, | Frame pointer
hi7 hr31 Subroutine return address

SPARC Assembly Language Programming

We have already seen what is almost an assembly language program for the SPARC
machine in the last chapter on page 37. In the form given there, it would not execute
and we need to describe the assembler in more detail together with instructions on
how to load the program into memory and execute it.

The SPARC assembler, as [13], is in effect a two-pass assembler. In the first pass
the assembler updates the location counter as it processes machine statements, with-
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out paying attention to undefined labels that might be used as operands. Whenever
it sees a label followed by a colon (:) it defines the label symbol to have the value of
the location counter. The program is then read a second time; this time, however,
all the symbols and labels have been defined, and whenever a label is encountered
its value is substituted for the symbol. During the second pass, labels followed by
a colon are ignored.

Assembly language programs are line based, with each statement typically spec-
ifying a single instruction or data element. Statements may be labeled; an identifier
followed by a colon labels a statement. Labels start at the beginning of a line and
the instruction or data specification one tab stop in. Operands follow a further tab
stop in. Finally, comments start at about the center of the line, commencing with
an exclamation point (). C style comments may also be used opening with a /*
and closing with a */. These comments may extend over many lines and are used
for opening comments. Extensive commenting is required for assembly language
programs, as they are far less readable than high-level language programs such as
C. For example:

/* instructions to add and to subtract the contents of

registers %o0 and %ol storing the result into %10 and %11 */

start: add %00, %ol, %l0 110
sub %00, %ol, %1t 111

o0 + ol
00 - o1

il

1

All machine instructions have mnemeonics such as add and sub. There are other
statements that do not generate machine instructions, such as data definitions and
statements that provide the assembler information. These instructions are called
“pserdo-ops” and generally start with a period. The word macro we defined in
Chapter 1 to initialize a memory location, along with defining a symbol to have the
value of the Jocation counter, corresponds to the .word pseudo-op in as. Like any
other statement, such a pseudo-op may be labeled. The .word pseudo-op has any
number of arguments that are evaluated as integer expressions and the resulting
values loaded into sequential memory locations. We will need the .global pseudo-
op to define a label to be accessible outside of the program in which it is defined.
Thus, for example, to define the label _main to be global we would write:

-global _main
_main:

We will make use of the C compiler to call the assembler as and to load our
program for us. As we know, all C programs have a “.c¢” file name extension,
The C compiler will produce files of the same name but with an “.o” extension
— the object file. These files are the machine code corresponding to the C code
for each file. After the C compiler has produced all the “o” files, it calls the
linker to combine all the object files with library routines, such as the input Joutput
functions, to make an executable program. This executable program is by default
stored in a file called “a.cut.”
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Compiling & C program is a two-step process; first, the compiler translates the
C program into assembly language, placing the code in a file with a “.5” extension
to indicate that it is assembly language. The compiler then calls as to assemble
this file to produce the “.¢” file. Most of these files disappear when the compilation
process is completed but may be retained if we desire. If you would like to see
the assembly language for one of our C programs, call the compiler with the “5”
switch and it will produce only the “.s” assembly language file, which you may then

examine:
%gcc -8 program.c

If the compiler is given a file with an .s extension, it assumes that it is a file
containing assembly language statements and simply calls as to assemble the file
to produce the “.0” machine code. We will learn how to combine C programs with
assembly language programs that we write, byt to start with we will just assemble
one assembly language program. For example, we might write the program to
evaluate the expression, BEq. (1.1), in a file called expr.s. To the have this assembled
and made ready for execution we would type:

hgcc —g expr.s —o expr

This will assemble our program and place it in a file called expr ready for execution.
The “g” switch also loads symbols for the debugger, gdb, which we will need later.

When we assemble and load our program we must also specify the starting
address. In Chapter 1 we did this with the end macro. The C compiler expects to
start execution at an address _main. This label must appear in our program at the
first statement we want executed and, furthermore, it must be declared global by
using the .global pseudo-op.

The first instruction to be executed should be:

.global _main
_main: save %sp, -64, %sp

The save instruction provides space to save our registers when the debugger is
running. This instruction will be explained fully in Chapter 7.

We will normally have macros to be expanded before we assemble our program
in which case we will write our program in a file with a .m extension indicating that
m4 must first be run to produce the .s file:

Y4 expr.m > exXpr.s
YECC —g eXpr.s -¢ expr

An Example
We can now begin to write a program to evaluate the expression in Chapter 1. We

will use two of the local registers, %10 and %11, to store & and y respectively. We
will use the polynomial coefficients directly as “literals:”
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/* This program computes the expression:
y= -1 * x-7 /7 x-11
The polynomial coefficients are:
*/
define(a2, 1)
define(al, 7)
define(al, 11)

/% Variables x and y are stored in %10 and %11 */

define(x_r, 10)
define(y_r, 11)

.global _main
_main: save hsp, —64, Ysp

We now need to describe a number of the SPARC instructions to evaluate the
expression. Most SPARC instructions take three operands: two registers and a
literal constant, or three registers:

op TeGrs,, TEG_OT_LiMmm, reg.,

The contents of the first register Tegrs, is combined with the literal or the contents
of the second source register refrso to produce a result that is stored in reg,q. The
contents of the source registers are unchanged. A literal constant, ¢, must have a
range of —4096 < ¢ < 4096.

The first instruction we will need is used to clear a register to zero:

clr reg,rg

The second instruction we will need is the mov instruction used to copy the contents
of one register to another register, or to load a constant into a. register:

mov reg_or_imm, reg.,

The add and subtract instructions combine the contents of the two source registers,
or source register and literal, with the sum or difference going into the destination
register. In the case of the sub instruction, the second operand is subtracted from
the first, as follows:

add TeYrs1y TEG_OT_IMiM, regyq
sub Tefrsy, TEG_OT_IMmm, Teg.q

We are now in for an unpleasant surprise: The SPARC architecture does not
have a multiply or divide instruction! The SPARC architecture is a Reduced In-
struction Set Computer (RISC). [15] These architectures are carefully designed in
close cooperation with compiler writers to make sure that all the instructions are
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necessary and actually reduce the execution time of programs. By minimizing the
number of instructions the machine may be made to run faster and its architecture
easier to implement. RISC architectures endeavor to execute an instruction each
clock cycle of the computer. Multiplication and division are complicated instruc-
tions and would be very hard to implement to execute in one cycle; it is more
efficient to implement multiplication and division in the form of a small number of
simpler instructions than to implement them as separate machine instructions. To
multiply or divide, we place the two arguments into two of the out registers %00
and %ol and then call for the multiply or division instructions to be executed. This
is done with the call instruction, which is described fully in Chapter 7. The result
of the multiplication or division is returned in %o00. Thus, to achieve:

a=b *x ¢

we would load b and ¢ into %00 and %o1 and then call the multiplication subroutine:

mov b, %o0

mov c, %ol

call .mul
To divide:

a=b/c

we would write:

mov b, %00
mov ¢, hol
call .div

Be careful, as a called function may use any of the first six out registers, %00 through
%05 possibly changing their contents. These registers are for temporary results,
and their contents are not preserved over function calls. One further complication
remains before we are ready to write our program.

Pipelining

In order to achieve very fast execution, computers are “pipelined.” That is, the
von-Neumann ¢ycle is broken up into its components (instruction fetch, instruction
decode, operand fetch, instruction execute, store results), and then each component
executed independently and concurrently. Thus, the instruction fetch component
proceeds to fetch the next instruction immediately after it has finished fetching
the prior instruction. The instruction fetch component does not wait until the
instruction has been executed, this will be done in another component. This is
illystrated in Figure 2.1.

On the top line of the figure you will see the normal sequential execution of
the von Neumann cycle — instruction fetch, instruction decode, operand fetch,
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Non-pipelined execution
Fetch Decode | Operand | Execute Store Fetch Decode | Operand | Execute Store
fetch fetch
Pipelined execution
Fetch Fetch Fetch Fetch Feich Fetch
Decode Decode Decode Decade Decode Decode
Operand | Operand | Operand | Operand Operand | Operand
fetch fetch fetch fetch fetch fetch
Exccute Execute Execute Execute Execute Execute
Store Store Store Store Store Store
I Y S Y R e I T

Time in machire cycles

Figure 2.1: Pipelined Execution
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instruction execute, store results. If each component of the cycle takes one machine
cycle, it will take five cycles to execute each instruetion (in the figure two instruction
executions are shown). The lower part of the figure shows pipelined execution.
There are five processes running together in parallel. As soon as each component
finishes its work, which takes only one cycle, it starts work on the next instruction.
The pipelined machine can execute one instruction every machine cycle, five times
the rate of the nonpipelined machine. Note that the hardware does not have to
run five times faster; instead, the hardware is broken into five parts and all parts
run concurrently. This pipeline is five deep. In the non pipelined architecture each
component remains idle 80% of the time.

A problem occurs, however, with a pipelined machine when a branch instruction
is encountered, as a branch instruction changes the program counter; instructions
after the execution of the branch instruction are to be fetched from the branch
target address in memory. What happens to all the instructions that have been
fetched and decoded when a branch instruction is executed? These instructions
have to be discarded. The pipeline has to be emptied and new instructions fetched
to fill the pipeline starting from the new address. Obviously, if the program had
many branch instructions, it would not execute much faster in a pipelined machine
than in a non pipelined machine.

Part of the concept of the new RISC architectures is to make these architec-
tural features evident to the programmer. The apparent depth of the pipeline of
the SPARC architecture is only two, and the SPARC architecture does not discard
the instruction it has fetched to be executed after executing a branch instruction;
the instruction following a branch is always executed. How does this help? It is
frequently possible to place an instruction after the branch, which can be usefully
executed. The SPARC architecture allows the progammmer to make use of these
instructions following a branch by maintaining two program counters, %pc and
%npe, the program counter and the next program counter. In the SPARC archi-
tecture the machine executes the instruction to which the %pc is pointing while
at the same time fetching the instruction to which the %npec is pointing. When a
branch occurs, the instruction following the branch has already been fetched and
will be executed. A simplified SPARC machine cycle diagram is shown in Figure 2.2

The left half and the right half of the diagram execute simultanecusly with time
running down the page. The contents of the %npe are copied into the %pc after the
first instruction has been executed. The dashed line labeled “next” is to indicate
that what lies above it has to be executed before that which lies below it may be
executed. If a branch is executed and is taken, so that the next instruction fetched
will be from the memory location of the branch address, then the %npc is loaded
with the branch address; otherwise, it is incremented to point to the next instruction
in line. Note that, independently of what happens to the %npec, the instruction
that was fetched before the branch instruction is always executed. When we call
a function we are branching to another address in memory and the instruction
following the call instruction will be executed before the first instruction of the
called function is executed.
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The simplest thing to do following any branch instruction is to insert a nop
instruction. This is a mnemonic for “no operation” and is an instruction that does
nothing to change the state of the machine:

nop

The Example Continued

‘We can now write our program to compute the expression, for x = 9 given in
Eq. (1.1):

/* This programs computes the expressiom:
y=x-1) % x-7) / {x~11) for x =9
The polynomial coefficients are:
*/
define(a2, 1)
define(al, 7)
define(a0, 11)

/% Variables x and y are stored in %10 and %11 */

define(x_r, 10)
define(y_r, 11)

.global _main

_main:
save %sp, -64, Usp
mov 9, Yx_r tinitialize x
sub Yx_r, a2, %ol 1(x - a2) into %00
sub Yx_r, al, %ol 1(x - al) into %ol
call .mul
nop Iresult in %o0
sub Yx_xr, a0, %ol I1{x - a0) into %ol, the divisor
call Ldiv
nop tresult in %o0
mov %00, Yy_r Istore it in y
mov 1, %egl lexit request
ta 0 'trap to system

The last two instructions in the program return us to the operating system. The
trap instruction ta calls the operating system with the service request encoded into
register %gl. A few of the traps are as follows:
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%gl  Service Request
exit
fork
read
write
open
close
cregte

GO O o W b

We will discuss traps in more detail in Chapter 12, but for now the sequence:

moy 1, %el lexit request
ta 0 !trap to system

is a good way to get back to the system after executing a program.

The rest of the program should be fairly clear. The value 9 is first stored into
4x_r and then the first two terms computed, storing the results inte %00 and %o1
where they are needed to be multiplied together. The result of the multiplication,
conveniently, is in %00, where we need it for the division. The third term is evaluated
and stored into %ol, the divisor, and the division performed. The result of the
division in %00 is then stored into %y_r before trapping to the operating system.

If this program were saved in expr.m and run through ma4:

hm4 expr.m > expr.s
with the output redirected into expr.s the following assembly code would be pro-
duced:
.global _main
_main:
save %sp, -64, Ysp
mov 9, %10 'injitialize x
sub %10, 1, %e0 I(x - 1} into %o0
sub %10, 7, %o1 '{x - 7) into %ol
call .mul
nop Iresult in %00
sub %10, 11, %ol '(x - 11) into %ol, the divisor
call Jdiv
nop tresult in %o0
mov %00, %11 Istore it in y
mov 1, %el !trap dispatch
ta ¢ trap to system

This could then be assembled and the executable output put into a file expr by:

hece —g exXpr.s -0 expr
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If the program is then executed:

fhexpr

%

The Debugger gdb

Having written a program, which apparently executed, we have no way of knowing
what it did, as it produced no output. In fact, we do not even know if the program
was correct. The technique of inserting printf statements into a program to verify
correctness and to find bugs is a rather cumbersome process in assembly language,
as arguments have to be placed in registers and _printf called. If we are trying
to debug a program that has other variables stored into the registers needed to call
printf, real problems start to develop. The debugger gdb provides a way of printing
out values without having to change the program in any way. The debugger gdb
may also be used to execute a program, to stop execution at any point, and to
single-step execution. A detailed description of gdb is to be found in [20], however,
the discussion relates mostly to C language debugging.

In order to use gdb, it is necessary to run the compiler with the “g” switch.
Having assembled the program, placing the output into expr as we did in the above
example, gdb may be entered by typing:

<

%gdb expr
gdb prints a disclaimer and waits for commands:

GDB 3.2, Copyright (C) 1988 Free Software Foundation, Inc.
There is ABSOLUTELY NO WARRANTY for GDB; type "info warranty"
for details. GDB is free software and you are welcome to
distribute copies of it under certain conditions; type
"info copying" to see the conditionms.

Reading symbol data from /home2/lou/expr...deone.

Type "help" for a list of commands.

(gdb)

To run the program in gdb, type “r”:
(gdb) r
Starting program: /home2/lou/book/ch2/sparc

Program exited with code 0345.
(gdb)

Apparently the program executed, but we are not much further ahead than we were
when we executed the program within the shell. We need to set a “breakpoint” in
the program. A breakpoint may be set at any address and whenever the computer
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is about fo execute the instruction at which the breakpoint was set, it stops and
returns to gdb, whereupon the program and its state of execution may be examined.
Typing “c” will tell gdb to continue execution from the breakpoint. In order to set
a breakpoint at a memory address we need to type:

(gdb)b *addr

where addr is the machine memory address. A good place to break our program
would be at the first instruction after the save instruction has been executed. To
do this in gdb we type:

(gdb) b main
Breakpoint 1, 0x2290 in main ()
(gdb)

Why did we type only main and not _main? The C compiler prepends an _ to
all identifiers so that the symbol main in C becomes _main in assembly language.
As this happens all the time, gdb always tries prepending an _ to any symbol
typed in case the _ version is present. The command “b” followed by a label sets
a breakpoint at the instruction following the labeled instruction; gdb assumes the
labeled instruction to be a save instruction.

If we then run the program:

(gdb) r
Starting program: /home2/lou/book/ch2/sparc

Breakpoint 1, 0x2290 in main ()
(gdb)

gdb tells us that we are at Breakpoint 1, which should be the first instruction in
our program. The program counter, %pc, will have the address of the instruction
2294,

We can examine memory by typing “x” followed by an address. In this case we
would like to use the contents of the %pc as the address. To do this, we type:

{gdb) x/i $pc
0x2294 <main+4>: mov 9, %10
(gdb)

The examining command “x” has to be followed by a format specified to tell gdb
how to print out the value stored in the memory location. The “¢” format specifier
states that the contents of the memory location should be interpreted as a machine
instruction, In gdb all machine registers are referred to by a $ in place of the %
used in as.

By typing a return we repeat the last command but with the address incre-
mented by the size of the last data element typed out:
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(gdb)
0x2298 <main+8>: sub %10, 1, %00
(gdb)

We may print the entire program by typing disassemble!. This command
prints all the instructions of the current function:

(gdb) asdump
Dump of assembler code from 0x2290 to 0x22h3:
0x2290 <main>: save %sp, -64, Ysp

0x2294 <main+4>: mov 9, %10

0x2298 <main+8>: sub %10, 1, %00

0x229¢c <main+12>: sub %10, 7, %ol

0x22a0 <main+16>: call 0x409c <_DYNAMIC+156>
0x22ad <main+20>: nop

0x22a8 <main+24>: sub %10, 0xb, %ol

0x22ac <main+28>: call 0x4090 <_DYNAMIC+144>
0x22b0 <main+32>: nop

0x22b4 <main+36>: mov %o, %11

0x22b8 <main+40>: mov 1, %gl

0x22bc <main+44>: t O

End of assembler dump.

{gdb)

If we want to see whether the program ran correctly we can set another break-
point at the trap instruction located at main+44. To obtain an address, given a
label, we prepend an & much as we would do in C. Thus, to set a breakpoint at
_main + 44, we would type:

{gdb) b *& main + 44
Breakpoint 2 at 0x22bc
{gdb)

While #& is an identity operation in C, it is not in gdb.
We would then command gdb to continue execution by typing “c” (remember
we are currently stopped at the first location in our program):

(gdb) ¢
Continuing.

Breakpoint 2, 0x22bc in main ()
(gdb)

The program executes and stops at the last breakpoint we set. At this point the
value should be stored in register %l1. To print the contents of a register we use
the print command “p:”

In some versions of gdb the disassemble command is: asdump,
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(gdb) p $11
$2 = -8
(gdb)

This tells us that the contents of register %l1 is —8, the correct value. The 32 =
is part of gdb's history feature. The value —8 has been saved in a history variable
$2 and may be used at any time by typing $2.

What would happen if our program were incorrect and did not compute the
correct value? We could single-step the program starting at the beginning by
typing “ni” for next machine instruction. To do this at this point we would need
to run the program again:

(gdb) r

The program being debugged has been started already.
Start it from the beginning? (y or n) y

Starting program: /home2/lou/book/sparc/ch02/a.out

Breakpoint 1, 0x2294 in main ()
1: x/i $pc 0x2294 <main+4>: mov 9, %10
(gdb)

We are executing the program, but it would be helpful to know what instructions
were being executed. We can discover this by examining the memory location the
%pc is pointing to:

(gdb) x/i $pc
0x2294 <main+4>: mov 9, %10
{gdb)

and indeed we have just executed the first instruction and are about to execute the
second. If we execute the second instruction, then %10 should contain the value 9:

(gdb) p $10
$2 = 9
(gab)

and indeed it does.

As we single-step our program we would probably like to have the instruction to
which the program counter is pointing printed out every time without our having
to type p $pc. We can do this with the “display” command, which prints its value
every time a command is executed:

(gdb} display/i $pc

1: x/i $pc  0x2298 <main+8>: sub %10, 1, %00
(gdb) ni

0x229¢ in main ()

1: x/i $pc  0x229¢ <main+i12>: sub %10, 7, %ol
(gdb)
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Then when we execute the next command, the instruction about to be executed
is automatically printed out. We are now about to execute the call to .mul:

(gdb} ni

0x22a0 in main

1: x/i $pc 0x22a0 <maint+i6>: call 0x409c <.mul>
(gdb)

0x22a4 in main ()

1: x/i $pc  0x22a4 <main+20>: nop

(gdb)

0x22a8 in main ()

1: x/1 $pc  0x22a8 <main+24>: sub %10, Oxb, %ol
(gdb)

Note that the “delay slot” instruction is executed before the call to .mul. We have
heen typing “ni” for next instruction. We could have typed “si” but this would have
stepped us through the .mul routine, a thing we probably don’t want to do. Both
“ni” and “si” execute single instructions, but “ni” does not single-step through any
functions that are called. Note also that after typing “ni” the first time, we then
typed only a carriage return; in gdb a carriage return repeats the last command.
These commands are not all the commands available to gdb but are enough to
begin with and will enable you to write and to debug simple programs. One final

113 bt

command you must know is “g,” to quit gdb and to return to the operating system:

{gdb) gq
The program is running. Quit anyway? (y or m) y
>

Filling Delay Slots

The call instruction is called a “delayed control transfer” instruction. A delayed
transfer instruction changes the address from which future instructions will be
fetched after the instruction following the delayed transfer instruction has been ex-
ecuted. The instruction following the delayed control transfer instruction is called
the “delayed instruction” and it is located in the delay “slot.” Whenever a branch
or call instruction is executed it changes the contents of %npc, not the %pc. The in-
struction that follows the branching instruction will be executed before the branch
or call happens. By filling the delay slot with a nop instruction we have not ac-
complished very much; the pipeline machine wastes an instruction execution every
time it branches. However, as the delay instruction is executed before the first
instruction at the branch address was executed, we may move the instruction prior
to the branch instruction into the delay slot.

In the following version of the program we have moved the sub instructions,
which compute the final argument to .mul and .div into the delay slots thereby
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eliminating the nop instructions. The resulting code does not lose any cycles at
all.

.global _main

_main:
save hsp, -64, Y=p
mov 9, %10 tinitialize x
sub %10, 1, %o0 '(x - 1) into %00
call .mul
sub %10, 7, %ol t(x - 7) into Yol
call .div
sub %10, 11, %ot I(x - 11) into %ol, the divisor
mov %00, %11 !store it in y
mov 1, %egl !trap dispatch
ta 0 Itrap to system

Filling the delay slots in this manner makes reading the program more difficult,
but by filling the delay slots the resulting execution is faster and the size of the
program smaller. Care must be taken in filling delay slots in order to ensure that the
algorithm is not changed. In general, when we write assembly language programs
we will be expected to fill all possible delay slots.

Branching

We can now add, subtract, multiply, divide, and move data around. What we
cannot yet do is to test and to branch. Without these capabilities we will not be
able to write very interesting programs. Branching is used in conjunction with
testing, which we will discuss first.

2.9.1 Testing

In the HP Calculator, the last number computed could be tested. For example,
there was an instruction ifeq, which would skip the next instruction in line if the
result last computed was zero. A similar technique is used in many computers, in
which the state of the execution of each instruction may be tested. In order to do
this, only information about the result need be kept, not the result itself. The state
of execution is saved in terms of four variables:

Z whether the result was zero
N whether the result was negative

V' whether execution resulted in a number too large to store in the register
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C whether execution resulted in a number that generated a carry out of the register

This information is kept in four variables, the integer condition codes: Z, N, V,
and, C.

When we discussed pipelining it was shown that moving instructions around
could eliminate empty delay slots. This causes a problem when we wish to condi-
tionally branch, based on the result of a prior instruction execution, if the instruc-
tion was not immediately executed before the branch instruction. This problem
is solved in the SPARC architecture by having a duplicate set of computational
instructions, such ag add and sub, which in addition to performing the arithmetic
operation, set the condition codes. These instructions have “cc” appended to the
mnemonic, which indicates that the instruction is to set the condition codes Z, N,
V, and, C to save the state of the instruction execution. We have so far encountered
two instructions that have such equivalents, add and suh:

addcc T€Grsry TEG_OT_TIMUNML, TEGyg
subcc T€Grs1y TEG_OV_IMIL, TEGrd

These two instruction are exactly the same as add and sub except that they also
set the condition codes. The multiply and divide routines do not set the condition
codes.

2.9.2 Branches

Branch instructions, like the call instruction, have as their operand the label
of the instruction to which they are to branch, if the condition specified is met.
Branch instructions are delayed control transfer instructions such that the following
instruction will be executed before the effect of the branch takes place. Be careful,
the delay slot of a conditional branch instruction may not be filled with another
branching instruction. Branch instructions test the condition codes in order to
determine if the branching condition exists:

b_{icc} label

where b, stands for one of the branches testing the integer condition codes. There
are a number of branches and we will introduce only the signed number branches
for the present:

Assembler Unconditional
Mnemonic Branches

ba Branch always, goto
bn Branch never
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Assembler  Signed Arithmetic
Mnemontc Branches

bl Branch on less than zero

ble Branch on less or equal to zero

be Branch on equal to zero

bne Branch on not equal to zero

bge Branch on greater or equal to zero
bg Branch on greater than zero

With these branch instructions we could extend our program to evaluate the
expression for integer values of x from 0 up to 10 as we did in Chapter 1. Let us
first write a C program to make clear what we are doing:

#define A2 1
#define Al 7
#define A0 11

main()
{
int x, y;
x =0
do {
y=({x - A2) * (x - A1) / (x - KD);
X++;
} while (x < 11);
}

The program is basically a do loop with some initialization.

When we translate this into assembly language a “branch less” instruction would
be appropriate at the end of the loop. We will need to set a label at the beginning
of the do loop for the target of the branch instruction:

/* This programs computes the expression:
y=(x=-1) * &x-7/{(x-11) forx =0, 1, ... 10
The polynomial coefficients are:
*/
define(a?2, 1)
define(al, 7)
define{a0, 11)

/* Variables x and y are stored in %10 and %11 %/

define(x_r, 10) 1410 x_r°
define(y_r, 11) %11 y_x?
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.global _main
_main:
save %sp, -84, %sp

clr Yx_r linitialize X to zero

.global loop

leop: Ithe do loop
sub fx_r, a2, %ol 1(x - a2) into %o0
call .mual
sub %x_r, al, %ol 1(x - al) into %ol
call .div
sub Yx_r, a0, %ol 1(x - a0) into %ol, the divisor
mov %o0, %y_r store it in y,
add dx_r, 1, Yx_r Ix++
subcc  Yx_r, 11, %g0 'set condition codes
bl loop
nop
mov 1, %el ltrap dispatch
ta 0 !trap to system

Note that the bl instruction is followed by a nop instruction in the delay slot.
We cannot fill the delay slot, as we did in the case of the call instruction, by
simply moving the instruction immediately before the branch into the slot, as this
statement sets the condition codes to be evaluated by the bl instruction. If it is
possible to rearrange the code before the conditional branch statement, so that the
instruction immediately before the branch does not affect the condition codes set
for the branch instruction, then this instruction may be moved into the delay slot.
We may rearrange the last few instruction as follows:

add Yx_r, 1, Yx_r Uyt

subcc  Yx_r, 11, %g0 !set condition codes
mov %00, %y.r !store it in y,

bl loop

nop

We have maoved the instruction which copies the contents of %00 into %y_r to the
end of the loop. Note that we could not move the add instruction as it computes
the value of x used in the subcc instruction. We are now free to move the mov
instruction into the delay slot. The modified “.s” version of the program is as
follows:
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1410 X_Tr
1711 y_r
.global _main
_main:
save %sp, -64, ¥%sp
clr %10 'initialize x to zero
.global loop
loop: !the do loop
sub %10, 1, %o0 1{x - 1) into %00
call .mul
sub %10, 7, %ot '{(x - 7) into %ol
call .div
sub %10, 11, %ot (x - 11) into %ol, the divisor
add %10, 1, %10 bx++
subcc %10, 11, %g0 'set condition codes
bl locp
mev %o, %11 Istore result in v,
mov 1, %e1 'trap dispatch
ta 0 Itrap to system

The assembler recognizes:

crp Teldrs,, TEH Or_tmim
for
subce TeYrs, TEG_Or_imm %g0

so that we might have written:

add fx_r, 1, Yx_r I X+

cmp Yx_r, 11 Iset condition codes
bl loop

mov #o0, fy_r lstore it in vy,

and generated the same code. However, gdb will still print this instruction as a
subcc instruction. _

When we execute the program we will need to set a breakpoint at the loop to
print out the value of 4

{(gdb) b *&main
Breakpoint 1 at 0x2290
(gdb) display/i $pc
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(gdb) r
Starting program: /home2/lou/book/sparc/ch02/a.out

Bpt 1, 0x2290 in main ()

1: x/i $pc  0x2290 <main>: save sp,0xffffffcO,sp
(gdb) b loop

Breakpoint 2 at 0x2298

(gdb) ¢

Continuing.

Bpt 2, 0x2298 in loop ()

1: x/i $pc  0x2298 <loop>: sub 10,0x1,00
(gdb) p $11

$1 = 8848

(gdb) ¢

Continuing.

Bpt 2, 0x2298 in loop ()

1: x/i $pc 0x2298 <loop>: sub 10,0x1,00
{(gdb) p $11

$2 =0

(gdb) ¢

Continuing.

Bpt 2, 0x2298 in loop ()

1: x/i $pc 0x2298 <loop>: sub 10,0x1,00
(gdb) p $11

$3 =0

{gdb)

This works well but involves a lot of typing. We can program gdb to do this for us
with the commands instruction. This instruction specifies a number of commands
to be executed when the breakpoint is reached; its argument is the breakpoint at
which the commands are to be executed. In our case it is Breakpoint 2 (the first
breakpoint is set at _main).

{(gdb) commands 2

Type commands for when Breakpoint 2 is hit, one per line.
End with a line saying just “end".

p $11

c

end

(gdb)

This informs gdb that when it reaches breakpoint 2 it is to print out the contents
of register %l1 and then to continue. If we then run the program again:
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(gdb) r

The program being debugged has been started already.
Start it from the begimming? {y or n) y

Starting program: /home2/lou/book/ch2/sparcé

Bpt 1, 0x2290 in main ()

1: x/1i $pc  0x2290 <main>: save sp,0xffffffcO,sp
(gdb) ¢

Continuing.

Bpt 2, 0x2298 in loop (O
1: x/1 $pc 0x2298 <loop>: sub 10,0x1,00
$4 = 8848

Bpt 2, 0x2298 in loop ()
1: x/i $pc  0x2298 <loop>: sub 10,0x1,00
$5 = 0

Bpt 2, 0x2298 in loop ()
1: x/1i $pc  0x2298 <loop>: sub 10,0x1,00
$6 = 0

Bpt 2, 0x2298 in loop ()
1: x/i $pc 0x2298 <loop>: sub 10,0x1,00
$7 = 0

Bpt 2, 0x2298 in loop ()
1: x/i $pc  0x2298 <loop>: sub 10,0x1,00
$8 =1

Bpt 2, 0x2298 in loop ()
1: x/i $pc 0Ox2298 <loop>: sub 10,0x1,00
$9 = 1

Bpt 2, 0x2298 in loocp ()
1: x/i $pc  0x2298 <loop>: sub 10,0x1,00
$10 = 1

Bpt 2, 0x2298 in loop ()
1: x/i $pc 0x2298 <loop>: sub 10,0x1,00
$11 = 1

Bpt 2, 0x2298 in loop (O
1: x/i $pc  0x2298 <loop>: sub 10,0x1,00
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$12 =0

Bpt 2, 0x2298 in loop ()
1: x/i $pc  0x2298 <loop>: sub 10,0x1,00
$13 = -2

Bpt 2, 0x2298 in loop ()
1: x/i $pc 0x2298 <loop>: sub 10,0x1,00
$14 = -8

Program exited with code 0345,
(gdb)

We see the values of ¢ each time through the loop.
If you have a file .gdbinit in your home directory containing gdb commands,
it. will be executed first when you enter gdb. For example:

break *&main
display/i $pc
T

which are the commands to be ecxecuted before debugging the assembly language
program.

Control Statements

When we write assembly language programs it is generally a good idea to first write
the algorithm in a high-level language or at least in a pseudo-high level language.
In this way we can check the logic of the program, assign variable names, etc. When
we are satisfled with our algorithm it becomes a fairly direct process to translate the
high-level program into assembly language. Of course, if we have already written
our algorithm in a high-level language, we may use the compiler to translate the
program. In many cases, this is what we will do, but as we are learning assembly
language we need to know how to translate basic control structures into machine
language and the architectural implications of that process.

We have already seen the representation of a C do loop in assembly language.
The loop begins with a label, and at the end of the loop there is a conditional
branch, which corresponds directly to the test specified in the while statement at
the end of the loop. The branch is back to the beginning of the loop. This is the
simplest form of loop and corresponds directly to the DO loop in Fortran, one of
the first high-level programming languages. It is very efficient from an assembly
language point of view, in that the branch is made at the end of the loop. As
a consequence of this simple structure the body of a the do statement is always
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executed once. This is fairly cbhvious in the C form but was never really obvious in
its Fortran form, leading to much confusion.

2.10.1 While

The while loop is considered the most basic loop from a high-level language point
of view, but causes some problems in assembly language. Consider translating the
following while statement into assembly language:

while ( a <= 17)
{
a=a + b;
c++:

’

}

The most obvious way to go is to perform the test, which must be performed before
the loop is executed, execute the loop, and then branch back to the test:

test:
cmp ha_r, 17, 'subtract 17 from a setting the
!condition codes and discarding the
fresult, i.e. storing it in %g0
bg done we have to reverse the logic of the
'test as we need to branch over the
!loop when a > 17

nop !the delay slot
add ha_r, %b_r, Ya_r la=a+b
add %e_r, 1, Yc_r To++
ba test !branch back te the test
nop !second delay slot
done: lwhat ever follows the while loop

The number of instructions to be executed initializing a loop is generally small
compared to the number of instructions to be executed inside a loop, when mul-
tiplied by the number of times the loop will be executed. If we are interested in
minimizing the number of instructions to be executed, we should concentrate on
the instructions inside the loop. Inside the loop, of the above example, there is a
cmp, a conditional branch, two add instructions, a branch and two nop instructions.
The cmp, and the two add instructions must be there with the conditional branch.
However, the unconditional branch ba test might be removed, as may the two the
nop instructions.

By repeating the compare and test at the end of the loop we may eliminate the
ba instruction:

test:
cmp  fa_r, 17 !'subtract 17 from a setting the
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lcondition codes and discarding the
'result, i.e. storing it in ¥g0

bg done !we have to reverse the logic of the
ttest as we need to branch over the
'loop when a > 17

nop !the delay slot
loop:
add Ya_r, %b_r, Ya_rla=a + b
add Ye_r, 1, %e_r lct+
cmp fa_r, 17 Itest
ble loop 'branch back to the beginning of the loop
nop !second delay slot
done: !what ever follows the while loop

Note that the loop is now two add instructions, the cmp, the conditional branch
(all of which must be there), and a nop instruction — an improvement of two
instructions! Notice also that the conditional branch inside the loop is the same
logically as the condition in the while loop in C. We might also eliminate the code
for the initial test, especially if the test is more complicated than that given in the
example, by branching unconditionally to the test at the end of the loop:

ba test 'branch to test at end of loop to see
'if loop should be executed.
nop 'the delay slot
loop:
add %a_r, %b_r, Ya.rla=a + b
add he_r, 1, he_r to++
test:
cmp ha_r, 17 ltest
ble loop !'branch back to the beginning of the loop
nop !second delay slot

The nop following the initial unconditional branch can be replaced by a copy of the
first instruction of the test if the test label is then moved to the next instruction:

ba test 'branch to test at end of loop to see
'if loop should be executed.

cmp %a_r, 17 !the delay slot, first instruction of the test
loop:

add Ya_r, fb_r, fa_rla=a+ b

add Ye_r, 1, %e_r lo++

cmp Ya_r, 17 ltest
test:

ble loop !branch back to the beginning of the loop



2.10. CONTROL STATEMENTS 69

nop Isecond delay =lot

The nop following the conditional branch is more important as it lies in the loop
and Is executed every iteration of the loop. We might be tempted to move the first
instruction from the loop into the delay slot:

ba test 'branch to test at end of loop to see
!if loop should be executed.

cmp %a_r, 17 !the delay slot, first instruction of the test
Yoop:

add Ye_r, 1, Y%e_r P+

cmp ha_r, 17 test
test:

ble loop !branch back to the beginning of the loop

add fa_r, %b_r, %a_r ta =a + b

However, unlike the do loop, the conditional branch instruction here precedes the
first. instruction in the loop, and if the condition is not met, the loop, including the
first instruction of the loop, is not to be executed. The first instruction of the loop,
add, that we moved into the delay slot after the conditional branch instruction will
be executed once every time we pass through the loop, and it will, unfortunately,
be executed even if the loop were not to be executed at all. If initially @ > 17, the
a = a + b; statement would still be executed once, which is, of course, not correct
in a while loop.

The SPARC architecture provides a way around this problem. All conditional
branches may be annulled. If a conditional branch is annulled the delay instrue-
tion is executed when the branch is taken but not if the branch is not taken (see
Figure 2.3). That is, the instruction execution of the delayed instruction is annulled
if the branch “falls through.”

In order to specify to the assembler that we want an annulled branch, we follow
the branch mnemonic with , a. The following version of the while loop is correct:

ba test branch to test at end of loop to see
'if loop should be executed.

cmp ha_r, 17 !the delay slot, first instruction of the test
loop:

add he_r, 1, %e_r lc++

cmp ha_r, 17 ltest
test:

ble,a loop 'branch back to the beginning of the loop

add %a_r, %b_r, Y%a_r la=a+b
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Figure 2.3: Annulled Conditional Branches
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Of course, it we knew that the while loop would be executed at least once, we
would not need the initial unconditional branch to the test. However, if we knew
that the loop would be executed at least once we should have used a do loop, which
automatically eliminates the need for the initial test.

2.10.2 Do

Translating the code for a do loop is very direct and has been considered above. In
the example the delay slot at the end of the loop was filled by moving an instruction
from the body of the loop. We had to be careful in doing this to avoid changing
the code that evaluated the condition to be tested:

loop: !the do loop
sub %10, 1, %o0 '(x - 1) into %o0
call .meul
sub %10, 7, %ol I(x - 7) into Yol
call .div
sub %10, 11, %ot 1(x - 11) into %ol, the divisor
add %10, 1, %10 Ix++
cmp hx_or, 11 !set condition codes
bl loop
mov %00, %11 Istore result in vy,

A simpler approach, making use of the annulled branch feature, is to simply
repeat the first instruction of the Ioop in the delay slot, annul the branch, and
change the target of the branch to the second instruction in the loop:

sub %10, 1, %o0 I{x - 1) into %o0
loop: 'the do loop

call .mul

sub 410, 7, %ol '(x - 7) inte %ol

call .div

sub %10, 11, %ol '{x - 11) into %ol, the divisor

mov %00, %11 I'store result in y,

add %10, 1, %10 P+

cmp Yx_r, 11 !set condition codes

bl,a loop

sub %10, 1, %o0 1(x - 1) into %o0

This approach, while simple to ireplement, results in a program that is one
instruction longer (generally not important) and wastes one machine cycle when
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the execution of the delay slot instruction is annulled (which only happens when
the loop is finally exited).

2.10.3 For

A for statement is very simple to translate into assembly language if we follow the
C definition of a for:

for ( exl; ex2; ex3 ) st
as

exl;

while ( ex2 ) {
st
ex3;

}
Thus, the translation of the following segment of C code:

for (a = 1; a <= b; at+)

c *= a;

would be:

ba test

mov 1, %a_r la = 1;
loop:

call .mul

mov he_r, %ol

mov %00, fe_r

add %ha r, 1, bar
test:

cmp ha_r, %b_r

ble,a 1loop

mov Y%a.r, %ol Ifirst instruction of loop

2.10.4 1If Then

Translating an if statement into SPARC assembly language is fairly straight for-
ward. The statement following the relational expression is to be branched over, if
the condition is not true; to accomplish this we need to logically complement the
sense of the branch, following the relational expression evaluation, before the code
for the statement. The complements of the branches are as follows:
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Condition Complement

bl bge
ble bg
be bne
bne be
bge bl
bg ble

Thus, for example, to translate:

d = a;

if (@ +b) >c) {
a += b;

ct++;

}

a=c¢+d;

we would write, complementing the test into a ble:

mov
add
cmp
ble
nop
add
add
next.
add

%a_r, %d_r lassignment statement before if
ka_r, %b_r, %00 levaluate condition

%00, %c_r !'subtract and set condition codes
next !branch over code if false

ha_r, fb_r, %a_r!the then code
he_r, 1, Y%e_r  lincrementing c

%e_r, Yd_r, Ya_rtassignment statement following if
g 24

In order to fill the delay slot here we could move an instruction from before the if
into the delay slot if the instruction had no effect on the if condition evaluation:

add
cmp
ble
mov
add
add
next:
add

ha_r, ¥b_r, %o0 !evaluate condition

%00, Y%e_r !'subtract and set condition codes
next !branch over code if false

ha_r, 4d_r lagsignmeni statement before if
%ha_r, ¥b_r, %a_r!the then code

he_r, 1, %eor !incrementing ¢

he_r, Yd_r, %a_r!assignment statement following if

If there is no such instruction we could copy the instruction following the if
into the delay slot, annul the branch, and change the target of the branch to skip
over the copied instruction:

mov
add

ha_r, Yd_r !assignment statement before if
ha_r, Yb_r, %00 levaluate condition
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cmp %o0, %c_r !subtract and set condition codes

ble,a next Ibranch over code if false

add %e_r, #d_r, %a_rlassignment statement following if

add Ya_r, %b_r, %a_r!the then code

add %ec_r, 1, %e_rx tincrementing ¢

add %e_r, %d_r, %a_rlassignment statement following if
next:

Once again, the latter method is simpler but wastes an instruction and a cycle
of execution if the branch is untaken.

2.10.5 If Else

An if-else statement allows us to do a little better with regard to filling the delay
slot. Consider:

if (@ + b) >=¢) {

a += b;
C++,

} else {
a -= b;
c——;

}

c += 10;

We will complement the initial test to branch over the then code to the else code
if the condition is false. Note that it is not considered good assembly language
programming practice to exchange the then code with the else code to avoid
complementing the test. One expects to rcad the code in the order in which it was
written. After the then code we will need an unconditional branch over the else
code and then the else code itself:

add %a_r, %b_r, %o0 !compute condition
cmp o0, %eo_r !compare it to ¢
bl else 'if less branch to less part
nop
add Y%a_r, %b_r, ha_r!then code
add %e_r, 1, %e_r
ba next 'branch over else code
nop
else:
sub Ya_r, %b_r, Ya_rlelse code
sub Ye_r, 1, %e_r
next:
add Yc_r, 10, %e_r
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We may eliminate the first nop instruction by replacing the bl instruction with
an annulled bl,a instruction and moving the first instruction of the else part into
the delay slot. If the else part is to be executed, the branch “takes” and the first
instruction of the else part is executed in the delay slot. If the then part is
executed, the branch is not “taken” and the first instruction of the else part is
annulled:

add ha_r, #b_r, %00 !compute condition
CEp %00, Yc_r 'compare it to ¢
bl,a else 'if less branch to less part
sub ha_r, %b_r, Ya_r!first instruction of else code
add ha_r, %b_r, %a_r!then code
add %e_r, 1, Y%e_r
ba next Ibranch over else code
nop
else:
sub Ye_r, 1, %e_r !end of else code
next:
add Ye_r, 10, Yc_r

We can then deal with the nop after the unconditional branch instruction by moving
one of the instructions from the end of the then part into the delay slot:

add ha_r, %b_r, %00 !compute condition
cmp %00, Yc_r Ycompare it to ¢
bl,a else 'if less branch to less part
sub ha_r, Yb_r, Ya_.r!first instruction of else code
add ha_r, ¥%b_r, %a_r!then code
ba next 'branch over else code
add fe_r, 1, Y%c_r 'last instruction of then code
else:;
sub he_r, 1, Yec_r lend of else code
next:
add he_r, 10, Ye_r

Or by copying the instruction following the if else into the delay slot following
the ba instruction:

add %a_r, %b_r, %00 !compute condition

cmp %400, Yc_r lcompare it to ¢

bl,a else 'if less branch to less part
sub ka_r, %b_r, %a_r!first instruction of elze code
add ha_r, %b_r, Ya_r'then code

add he_r, 1, Ye_r

ba next Ibranch over else code

add heor, 10, Ye_r
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else:
sub Y%c_r, 1, %e_r lend of else code
add Y%e_r, 10, Y%c_r

next:

Once again, we add an instruction to the length of the program but, in this
case, do not add an additional cycle to the execution.

FETCH
Gopc->instruction
next —————-—-—- * ____________________________________________________
EXECUTE FETCH
Yope->instruction Fnpe->instroction

branch branch

instruclion instruction

cxeculed cxceuted

QEKL ——|——m~===d4 == s m e mmm e m m o s — e — - o — oo oSS ST S S ST
R =
Gonpe++ e
branch address
pext — |~ ——-=-=--q4--=--—--="-—--—-=-= - o el e e
EXECUTE FETCH
Spnc->instruction Sbnpc->instruction

Figure 2.4: Annulled Unconditional Branches

2.11 Annulled Unconditional Branch

The ba unconditional branch instruction may also be annulled. Why would this be
necessary, as an unconditional branch is always taken? Annulling an unconditional
branch has been implemented to have the exact opposite effect of annulling a con-
ditional branch; that is, if an unconditional branch is annulled, then the delay slot
instruction is not executed. An annulled unconditional branch provides a branch
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instruction that, in effect, has no delay slot and may be used to branch in a single
instruction. Sometimes it is desirable to replace a single instruction with a branch
to an emulation subroutine and in this case an annulled unconditional branch may
be used. However, annulling an unconditional branch instruction wastes a machine

cyele, and it should not be used except when the branch must replace a single
instruction.

The SPARC machine cycle is shown in Figure 2.4 to reflect the execution of an-
nulled branches. You will see that if a “branch always” instruction was executed in
the previous cycle it was clearly taken, bringing the machine to the annul decision
point. If the “branch always” instruction was not annulled then delay slot instruc-
tion is selected for execution. If the “branch always” instruction was annulled, then
the delay slot instruction is simply skipped.

212 Summary

The SPARC load/store architecture registers were described together with the
arithmetic instructions, including calls to multiply and to divide, allowing for sim-
ple programs to be written. In conjunction with the call instruction, pipelining
was described (pipelining makes it easier for a computer to execute one instruction
every machine cycle). An extensive discussion of gdb followed so that the execution
of a program could be monitored and the results examined. We then introduced
the branching and testing instructions and used them to translate the C control
structures into SPARC assembly language. In translating the C control structures
many of the features of the architecture were made apparent including the annulled
branch. A summary of gdb commands follows:
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2.12.1 gdb Commands

Command Function

run args Run file with command line args.

run Run program with previcus command line args.
break funct Set breakpoint at function entry

break *addr Set breakpoint at address

break ... if cond Set breakpoint, break if conditions

clear funct Remove breakpoint at function entry

delete bnum
disable bnum
enable bnum
condition bnum
commands bnum
cont

step

stepi

next

nexti

print expr
print/f expr

x/sf addr

display /I expr
display/sf addr
undisplay n

jump *addr

printf string, exprs

info data

Delete breakpoint boum

Disable breakpoint bnum

Enable breakpoint bnum

Set conditions for breakpoint bnum

Set commands for breakpoint bnum

Continue execution from breakpoini

Step next source level statement

Step next machine instruction

Step next source level statement or function

Step next machine instruction or function call

Print value of expression including $n for machine registers
Print value of expression according to format specified by f: x
hexadecimal, d decimal, u unsigned decimal, o octal, a address,
¢ character, f single precision floating point

Examine memory of size s bytes in format f: s = b one byte, s
= h halfword, s = w word, s = g double word; x hexadecimal,
d decimal, u unsigned decimal, o octal, a address, ¢ charac-
ter, f single precision floating point, s ascii string, i machine
instruction

p/sf, print every gdb command

x/sf, examine every gdb command

Remove item n from display list

Execute next instruction at address addr

Formatted output, similar to printf in C but without the paren-
thesis surrounding the arguments

Information about break, display, registers, functions, variables

gdb reads commands from a file .gdbinit in you home directory before execution

starts.
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Exercises

2-1 Write an assembly language program to compute:
y=(a+b)*(a-b)/c

where:
a=17;
b = -3;
c =3

Iry to eliminate all nop instructions. Run the program using gdb to verify correct-
ness.

2-2 Write an assembly language program to compute:
v =32 +52° —172% 4 332 — 15

when z = 3. Eliminate all nop instructions and run the program using gdb to verify
correctness.

2-3 Write a program to find the maximum of:
z® — 1427 + 562 — 64
in the range —2 <=z <=§, by stepping one by one through the range.

2—4 Write a program to find the square root of a number y = /z, say for x —= 1000,
using the Newton Raphson method outlined below:

pick v = x/2

do {

old = y;

dx = x -y * y;
y=y+ds / 2y;
} while(y !'= o1d)

2-5 Assuming that all variables are in registers:

define(a_r, 10)
define(b_r, 11)
define(c_r, 12)
define(x_r, 13)

translate the following C while loop into assembly language minimizing the number
of instructions thus filling all delay slots with useful instructions:
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while ((a + b) * ¢ <= x)
{

1

X
c

x - 10;
(c * a) / b;

}

2-6 You are to find a zero of:

CHAPTER 2. SPARC ARCHITECTURE

y = 3zt — 172 + 142® — 23z + 15

by starting with z = 10 and decrementing = until you find the zero; that is, when
y = 0. Your program should include a specific check so that z is not decremented

below zero.

You are to write a program in which constants and registers are symbolically defined

using m4.




- Chapter 3

'DIGITAL LOGIC AND
BINARY NUMBERS

3.1 Binary Hardware Devices

Bistable devices are easy to design and build. These are devices that are either on
or off: they have two states. On the other hand, analog devices, such as amplifiers,
throttles, variable speed drives, etc. are difficult to design, as they must provide
for a continuous output related functionally to the input. Analog devices employ
negative feedback to maintain an accurate functional relationship between input
and output which slows down the response of the system; bistable devices, on
the other hand, employ positive feedback to maintain the state of the device which
speeds up the response of the system. If one needs a system based on large numbers
of devices, then the choice of bistable devices leads to a more reliable and faster
design. Computers are such systems, involving millions of devices, all of which must
function correctly if the computer is to function as a whole.

Bistable devices have two states, which might be called:

s on/off
e YES/NO

true/false
« 1/0

The last representation uses two digits, 0 and 1, to represent the two states.
'This is called a binary digit, or “bit.” A single bit can represent two states, 0 and
1, or on and off.

81
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Two such bits could represent four states:

Bit; Bity | State
0 0 1

0 1 2
1 0 3
1 1 4

depending on whether the bits were on or off, taking all possible combinations.
Three bits would have eight states:

Bity, Bit; Bitg | State
0 0 0 1
0 0 1 2
0 1 0 3
0 1 1 4
1 0 0 5
1 0 1 6
1 1 0 7
1 1 1 8

How many states can n bits represent? Clearly 2™ states.

If we have such devices how should we store decimal numbers? Three bits
would be insufficient, as three bits can only represent eight states and with decimal
numbers we have ten states. We would need four bits to represent the ten digits:

Bity Bity Bity Bity | Decimal Digit

—_ -0 o0 oD oo
Rl an B SRR S B s B e B s e
oo RrR R OOoHHOO
— D e O e O OO
O S0 =1 S T Lo B = O

Unfortunately, we have six states left over that are not used. On some machines
this four-bit representation is used to represent decimal digits together with the
plus {+) and minus (—) signs.
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B’if‘g B?:fg B?;tl B'itg Decimal Digit
0 0 0 0

T+ O W — o

HHEe o0 o000
PO O e O SO
O OO O S OO M=o
HOrHROoOH SR ODROMm

Note that the representation for 12 is used to represent “+” and 13 to represent,
‘=" Such a group of four bits is called a “nibble” and a group of such nibbles
is used to represent a decimal number, called “packed decimal,” or “BCD”{binary
coded decimal). Apart from business applications of computers, packed decimal
representation is seldom used. Instead, a representation that makes use of all the
possible states is used to represent numbers. For bistable devices the representation
is a base two number system. Decimal numbers, with which we are familiar, are
base 10. That is, each digit. represents some multiple of a power of 10. In base
2 numbers each digit represents a power of two. There are only two digits in a
base 2 number representation, 0 and 1, and the binary digits are the bits we have
described above.

Decimal and Binary Number Systems

If we use a binary number system, then we can store the number representations
directly in a bistable memory using one bistable device for each bit. For example,
the number 14 may be represented in binary as 1110. The number 14, 1110, could
be stored in a four-bit memory device.

Using positional notation an n digit number may be represented by an optional
sign and a sequence of digits Sdy_1dn_s...dad;dy where S is a sign. The interpre-
tation of such a representation is:

N="8(dn 1R '+ dy 2R dyR? 4 dyRY + do)
where:

R is the number system base, 10 for decimal numbers
N is the the number in base R,

S'is the sign, + or —

n I8 the number of digits
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Note that digits are in the range 0 <= d; <= (R — 1}. For decimal numbers the
digits are in the range from 0 to 9 and for binary numbers they are in the range
from O to 1. When one is using numbers in different bases a trailing subscript
indicating the base is frequently used:

1410 = 11105

When storing an n-bit binary number n bistable devices are needed and all possible
97 gtates are used. This is the most efficient storage systemm, allowing for the largest
range of numbers to be stored in the smallest number of bistable devices.

Numbers in computers are stored in memory. If we are using bistable devices
and storing binary numbers, then we need a sequence of addressable n-bit binary
memory cells. Fach memory cell will have an address. Memory addresses also
need to be stored and manipulated, as do the contents of the memory. Clearly,
the arguments we made for a binary number representation for data would equally
apply to memory addresses. That is, memory addresses should also be binary
numbers. Using binary addresses, the minimum number of bits of address, will
allow us to address the largest number of memory registers. Another factor in
favor of binary addressable memory relates to the decoding of memory addresses in
which one or another path is selected based on the state of each bit of the address
in turn. If memory addresses, are binary then memory sizes will be powers of two.
Thus, what is referred to as a 1K memory (k = kilo == thousand) is actually 1024
words of memory and needs 10 bits of address. 21° = 1024 (see Appendix F).

On actual machines memory addresses are typically much larger; 32 bits are
quite popular, resulting in 232 = 4 9294, 967,296 memory registers. If we iry to
write down such large numbers in binary, we will have trouble keeping track of
all the zeros and ones. To compare such numbers would require careful bit-by-
bit comparisons. While binary numbers might be good for computers, they are
difficult for humans, who would rather make use of a larger vocabulary of symbols
and have fewer digits. Octal and hexadecimal number systems provide us with a
larger vocabulary of symbols and bear a very simple relationship to binary numbers.

3.2.1 Octal and Hexadecimal Numbers

By grouping the bits of a binary number into threes starting from the right, or least
significant bit (lsb), we obtain:

N = §(..(ds2® + dv2T + dg2%) + (ds2® + da2* + da2®) + (d22” + d12' + do))
or:
N = S(.(ds2® + dr2" + dg)223 + (ds2® + dy2' + d3)2° + (do2° + di 2" + do))

but in the above form, the parenthesized expressions (ds2?* + dr2' + dg) are the
coefficients of base 8§ digits N = 5(d28% + dy * 8 + dg) by grouping binary digits
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into threes, we obtain the octal equivalent of the number. The translation of the
groups of three bits is as described before:

B'.';tg Bitl B’ito Octal Dlglt
0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
i 1 1 7

Note that there are eight octal digits. We may thus group the binary mumber
011010110110, into sets of three bits, 011,010, 110,110, and then write it as 32665,
Octal numbers are normally used by programmers to write down binary numbers
and to do arithmetic. In C, octal numbers are indicated by writing the number
with a leading 0, and we would write 03266 if we wanted the constant 32663,

Some time ago memory registers were standardized into multiples of eight bits
called bytes. A byte can represent 25 = 258 possible states and is suitable for
representing small numbers and character fonts, when each character in a font is
represented by a small number. Translating an eight-bit number into octal creates
a problem, as we have two groups of three and one group of two bits. Grouping
the bits into groups of four would be a better match to register sizes, which are
multiples of eight bits. This would result in a base 16 number system. If we do
this, however, we have to invent additional symbols to represent the digits heyond
the 9. The standard approach to this is to use the first six letters of the alphabet
for the digits beyond 9 to represent the 16 digits:

0123456789abedef

Such a number system is called “hexadecimal.” To translate 0110101101105, into
hexadecimal we first group the bits, starting from the right, into sets of four:
0110,1011,01105. These groups of four bits may then be translated according
to the following table:
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Bity Bit, Bit, Bity | Octal Digit

[ e T e T el e e R o e B e o= v e i s Y e )

=m0 SO~ OOCO
H O OO - OO -0 o
—_ O = O R, O OO OO O
RO LG TR OG- O

Thusg, our number 0110, 1011, 01102 =6b614. In C, hexadecimal numbers are desig-
nated by a leading Ox so that 0x6b6 would be interpreted by the compiler as 6b61s
and stored in the computer as 011010110110.

3.2.2 Converting from Decimal to Binary

The conversion of numbers from decimal to binary is as follows. Consider the
positional representation of a binary number where the left-hand side is the decimal
number we wish to convert:

Nig = S{dn-12"" 4 dn—22® .. .da2? + d12' + dy)

and the d; are the binary bits that we wish to determine. By dividing both sides
of the equation by the base 2, we obtain:

Nio/2 = S(dn-12" 2 + d,_ 22" 2. dg2! + dy)

plus a remainder, dy, the least significant bit (Isb). Dividing again, we obtain, as
remainder, the next least significant bit, dj:

Nig/2/2 = S(dnA12n73 + dn_22”_4...d2)

For example, to convert 37419 to binary, we continue to divide by two until the
quotient is zero. The remainders are the binary digits, Isb first:
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374
187
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—
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‘The resulting number is 101110110.

While this process is correct, handling all the divisions by 2 is eITor-prone.
Conversion to base 8 requires fewer divisions and is less-error prone. In order to
convert to octal, we repeatedly divide by 8, with the remainders the octal digits,
least significant digit first. Repeating our example, converting 374 first to octal and
then to binary:

8 | 374

8) 46 + 6
8 5 4+ 6
2 0 + 5

yields the number 5665. This number may then be converted to binary by trans-
lating each octal digit into the three-bit equivalent:

51 6 | 6 |
0

1 1 1.1 0 1 1 0

If we are working in hexadecimal, we might wish to convert from decimal. This
would involve dividing repeatedly by 16, which is difficult. A simpler approach is
to convert first to octal (which is easy) then to binary (also easy) and then, finally,
to group the binary bits into fours, from the right, translating each group into a
hexadecimal digit. Following the above example, if we were requested to convert
37419 into hexadecimal, we would first convert to octal, shown above, to obtain
566¢ and then to binary, also shown above, to obtain 101110110,. These bits can
then be grouped in fours to obtain:

000 0101 1101 1 0
1 | 7 | 6 |

or 17616-
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3.2.3 Converting from Binary to Decimal

If we need to convert from binary, octal, or hexadecimal to decimal, we first convert
the representations to octal. That is, we convert binary to octal and hexadecimal
to binary and then to octal. We are then left with the problem of converting from
octal to decimal. Let us consider the conversion of 3abyg to decimal. The conversion
to binary is:

From binary we convert to octal or, if we were starting with a binary number, we
would start here:

The conversion from octal to decimal is the evaluation of the equation defining
positional notation:

Nig = S(dn_18""1 + dn_28"" 2. .ds8% + d18" + do)

or as:
Nig = S({(dn_18 + dn_2)8 + 27 2)8... + d2)8 + d1)8 + do)

and might be mechanized as follows. The number is first written down in a column,
most, significant digit first:

wo -

then the polynomial is evalnated:

1 = 1
1«8 + 6 = 14
14 * 8 + 5 = 117
117 * 8 + 3 = 939

yielding the result of 939;,.
The debugger gdb may be used to convert numbers between bases by specifying
the print format. For example:
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(gdb) p/d 0x3ab

$1 = 939

(gdb) p/d 01653

$2 = 939

{gdb) p/x 939

$3 = 0x3ab

(gdb)

ASCII Representation of Characters

The printable character set, including carriage control and tab characters, is rep-
resented in memory ag small integers. The characters are usually represented as
octal numbers. The mapping between characters, as defined in C, and the ASCII!
octal code are given in Table 3.1.

Constants to represent, the ASCII character set are conveniently stored in the
byte data type. When these constants are needed in an assetnbly language program,
they may be represented by their octal code or by placing the single character in
single quotes (’). Unfortunately, the use of single quotes is frequently used by m4
and their use to signify ASCII character constants would lead to confusion. The as
assembler allows us to use double quotes {”) to delimit characters. For example, to
move the character representing the lowercase “a” into register 4ri1, one may write
either:
mov 0140, %r1
or:
mov ’a’, Yri
or:
mov "a", %ri
Bit-wise Logical Operations

The complement of a binary variable is simply its opposite state; that Is, the com-
plement of 1 is 0 and the complement of 0 is 1. This is similar to a unary minus
operator in arithmetic expressions and might similarly be referred to as the “not”
operator. Thus, if a binary variable “a” had value 1, then “not a” would have value
0.

Binary variables representing the two states 0 and 1 may be combined in boolean
expressions. Consider the “and” function of two boolean variables: It is true only

LASCIIL, American Standard Code for Information Interchange {ASCID).
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ASCIH Character Code

Char Octal Char Octal Char Octal Char Octal
\O 0

\a 7
\b 10 \t 11 \n 12 \v 13
A 14 \r 15
U 40 ! 41 ” 42 # 43
$ 44 % 45 & 46 k 47
( 50 ) 51 * 52 + 53
, 54 - 55 . 56 / 57
0 60 1 61 2 62 3 63
4 64 5 65 6 66 7 67
8 70 9 71 : 72 ; 73
< 74 = 75 > 76 7 77
@] 100 A 101 B 102 C 103
D 104 E 105 F 106 G 107
H 110 I 111 J 112 K 113
L 114 M 115 N 116 O 117
P 120 Q 121 R 122 5 123
T 124 U 125 Vv 126 w 127
X 130 Y 131 Z 132 [ 133
\ 134 ] 135 - 136 ~ 137
¢ 140 a 141 b 142 c 143
d 144 e 145 f 146 g 147
h 150 i 151 152k 153
1 154 m 155 n 156 o 157
P 160 q 161 r 162 8 163
i 164 u 165 v 166 w 167
X 170 ¥ 171 Z 172 { 173
1 174 } 175 - 176

Table 3.1: The ASCl} Character Code
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when both its arguments are true; otherwise, it is false. By considering 1 to rep-
resent truth and 0 to represent falsity, we may write a truth table for the and
tunction as follows:

Similarly for the or function, which is true when either or both its arguments
are true:

Another function used frequently is the exclusive or function xor, which is true
only when one of its inputs is different, one true and one false:

T'wo other functions have been named, as they relate to the boolean operation
of two very simple electrical circuits, nand the logical complement of and:

and nor the logical complement of or:

Neither of these functions has any particular merit computationally.
A single boolean variable has two possible states, and for each of these two
possible states there are four possible functions:
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a | 0 1 | Logical Operation
0 0| false
O 1|a
1 0| nota
1 1§ true

With the exception of not a, all the other functions are trivial. With two variables
there are four possible states and for each of these four possible states there are 16

possible boolean functions:

Logical Sparc with
Operation Instruction %r0

OO~ W W e R

R e e e = O D DO 0D OO OO O

— == O OO DR RO OO

= D D e OO D OO SO

F O OO, O RO QMO O —

false

aand b and
a and {not b) andn
a

b and (not a)

b

a xor b XOr
aorb or
anorb

a xor {not b) xnor
not b

a or (not b) orn
not a

b or (not a)

a nand b

true

not(a) or not(b)

‘We have numbered these functions in the left-hand column. Of the 16 the first and
last are trivial, as are 4, a, and 6, b. Two pairs of functions are symmetric, with
only the arguments reversed: 3 and 5, 12 and 14. Two functions are functions of
only one variable: 11 and 13, not a and not b. If we eliminate these we have left:

a0 0 1 1] Logical Sparc with
b0 1 0 1| Operation Instruction Sor0
210 0 0 1|aandb and
310 0 1 0] aand(notbh) andn
710 1 1 0|axorb xor
810 1 1 1]aorb or
911 0 0 O|anorhb
101 0 0 1| axor(noth) Xnor not(a) or not(b)
121 0 1 1]aor(noth) orn
1511 1 1 0}anandb
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Of these remaining functions, nor and nand may be obtained by first perform-
ing an and or or operation followed by a not operation, and, are not included as
instructions. The remaining functions are implemented in SPARC as machine in-
structions [18]. Note that the not operation may be obtained by using the xnor
instruction with either source operand 0. Thus, the bit-wise logic instructions pro-
vided in the SPARC architecture are:

and P€Grsz, TEG_OT_iMiN, reg.q
andn T€Grsi, TEG_OT_tmim, reg.q
xor T€Grs:s TEG_OT_IMM, reg.q
or regrs:, TEG_OT_imm, reg.y
Xnor T€Grs1y TEG_OT_IINTIL, TEGrg
orn TeGrs1y PEG_OT_LMM, Tef.q

Instructions that perform the operation and set the condition codes are also
provided:

andcc T€Grs:s TEG_OT_IMIM, Teg.y
andnce  regrsy, TEg_Or_imm, reg,y
xorcc Tedrs:y TEG_OP_tMm, reg,y
orce reQrs1y TEG_OT_imim, regyy
XDOECC  Tefry,, TEY._OT_itmm, reg.q
orncc TeGrs1y TEY_OT_ITIN, Te€g 4

The assembler recognizes:

not Ters1y T€Grd
not regyq
as:
xnor TeYrsyy HG0, TEG.q
xnor regrd, %go, regyy

thus, in effect, providing a not instruction.

All these instructions combine their 32-bit operands bit-wise in pairs to produce
a 32-bit result, in which each bit represents the logical combination of the bits
occupying the same position in the operands. In C, these operations correspond to

the bit-wise logical operations: & and, | or, = xor, ~ not.

3.4.1 Synthetic Instructions Using %g0

The SPARC architecture frequently makes use of the fact that the %10, or %g0,
always discards anything written to it and always has a value of zero. The mov
instruction is actually an or instruction, since mov is recognized by the assembler
as:

or hgo, reg_or_imm, reg,q



94 CHAPTER 3. DIGITAL LOGIC AND BINARY NUMBERS

These alternative forms of instructions, or instructions with one operand always
%0, are called synthetic instructions.

Another synthetic instruction we have used is clr, which the assembler recog-
nizes for:

or %go, hgo, reg.q

We have already discussed the synthetic cmp instruction. A similar synthetic
instruction is tst, provided for the following situation:

if (a > O)
b++:

>

It is unnecessary to translate this into assembly language specifying a second oper-
and of zero:

cmp %a_xr, O

ble next

nop

add Yb_r, 1, ¥b_r

next:
which willi become, on expanding the macro for cmp:

subcc Ya_r, %gl, %g0

ble next
nop
add %b_r, 1, %b_r

next:

Instead, we may write:

tst da_r

ble next

nop

add %b_r, 1, %b_r

next:
which will expand into:

orce ha_x, he0d, %g0

ble next
nop
add Yo_r, 1, Yb_r

next:

The orcc instruction or’s zero with the contents of register ¥a_r, which does not
change the contents of the destination register but does set the condition codes.
The assembler recognizes:
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tst reg, s
for:

orcce reGrs:s %go, %ego
3.4.2 Flags

Individual bits are frequently used to represent boolean flags, and a word may
contain 32 such flags. Operations on flags typically involve setting, clearing, and
toggling. The following mnemonics are recognized by the assembler for setting,
clearing, and toggling flags, making use of the logical instructions:

bset or bit set

belr  andn  bit clear

btog  xor bit toggle
Thirty-two flags may be operated in parallel using these instructions. Note the use
of the andn instruction to clear flags which is why it is normally included in an
instruction set.

A synthetic instruction, btst, is provided to test if any or no flags are set:

btst reg_or_imm, reg,;,

which the agsernbler expands to:
andcc T€Grg:, TEG_OT_imm, }go

For example, to test if either flags 0x10 or 0x8 are set in register, %a_r we would
write:

btst 0x18, Ya_r
be clear
nop

set:

clear:

Notice that in this synthetic instruction the order of the operands is reversed to
allow us to place the constant in the first operand and the flag register in the second.
Summary

Bistable devices were introduced together with the binary number system. Posi-
tional notation was defined as:

N =8(dn-1R" " +dyaR* 2 .o R? + dy R! + dy)

where:
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R is the number system base, 10 for decimal numbers
N is the the number in base R

S is the sign, + or —

n is the number of digits.

Octal and hexadecimal number systems were then introduced to represent and
to manipulate binary numbers. Conversion between numbers in different bases was
presented using pencil-and-paper methods. The ASCII encoding of characters was
given, allowing characters to be stored in memory and compared as numbers. The
logic instructions of the SPARC architecture were introduced together with versions
that set their condition codes. The use of instructions in conjunction with register
%g0 extended the instruction set without increasing the number of instructions to
be decoded or increasing the time to execute these instructions. Finally, flags were
described together with the SPARC instructions to set, clear, and toggle them.

Exercises

3-1 Write a program in assembly language to assemble the ASCII characters for
the number 1365 into a register, the ASCII code for 1 in the most significant eight
bits, the code for 3 in the next eight bits, etc. Then write a program that selects
each digit by using logical instructions and shifts to convert each digit to binary.
Accumulate the number in binary by multiplying the number accumulated so far
by 10, by shifting and adding, and adding in subsequent digits.

3-2 Write a program in assembly language to generate each of the sixteen possible

states shown in the table on page 92, using one or two machine instructions, each
with operands 0011 and 0101. For example, the second line might be generated by:

and %hol, %o2, %ol

where %01 would contain 3, %02, 5, and the result, 1, would go into register %o0.
3-3 Write a program to extract a field from register %l0. The position of the least
significant bit is to be specified in register %12 and the number of bits in the field in
register %13. The result of executing your program is to extract the field specified
from register %10, storing the field in %l1.

3-4 How many states can a 10-bit binary number represent?

3-5 Convert 6709;0 hexadecimal. Show all your working.

3-6 Evaluate 016515 — 00735z using either two’s complement or eight’s complement
arithmetic. Show all your working.
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3—7 In addition to binary devices, tristate digital devices are also possible, a circuit
may either be on positively, off, or on negatively. Such devices would naturally
employ a base 3 number system.

Solve the following problem using base 3 numbers and three’s complement arith-
metic:
372 — 281

Perform the arithmetic in base 3 and then convert the result back into decimal.
Check you result in decimal. Show all working.

3-8 What range of decimal numbers may be represented in three’s complement
arithmetic using two base 3 digits? List the base 3 numbers and their decimal
equivalents.






Chapter 4

BINARY ARITHMETIC

4.1

4.2

Introduction

Bistable devices may be used to represent numbers in base two. It is possible to
convert between base two numbers and decimal and it is possible to perform logic
with such a representation. We will now consider arithmetic: Addition, subtraction,
multiplication, and division. The use of two’s complement arithmetic allows us to
reduce subtraction to addition. Multiplication is also reduced to addition, and
division reduced to addition and subtraction. Base two arithmetic is much simpler
than decimal arithmetic. See {17] for an extensive discussion of computer number
systems and arithmetic.

Binary Numbers and Addition

When two decimal digits are added, a sum and carry are produced. For example, if
we add 7 to 5 we obtain a sum of 2 and a carry of 1. If we add 3 to 4 then the sum
is 7 and the carry 0. The procedure for adding multidigit numbers is to add the
digits in pairs, starting from the right, producing both a sum and carry for each
digit. Then as we shift to the left, the carry is added to the next more significant
pair of digits to produce a sum and carry. For example, to add 377 to 419, we first
add the 9 to the 7 producing a sum of 6 and a carry of 1:

3 7

4 1

sum
Carry

= o -
€+

The carry of 1, left-shifted, is then added to the 1 and 7 producing a sum of ¢ and
a carry of 0.

99
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The carry, left-shifted, is added to the 3 and 4 to produce a final sum of 7 with |
again a 0 carry and the process is complete.

+

| = g
Wi~
@0~

Sum

If we were to add 1 to 99,999, then a carry of 1 would ripple left turning all the 9’s
into 0°s. This is called a ripple carry.

Turning our attention to binary numbers, the addition of a single bit is very
simple, a sum and carry are produced, but in the binary case these may only be
one or zero. There are four possible cutcomes from the addition of two bits:

a b | Carry
0 0 0
0 1 0
1 0 0
1 1 1

but comparison of the xor and and truth tables given earlier will reveal that the
sum bit of the addition of two bits is the exclusive or and that the carry is simply
the and of the two bits.

The process of addition may be represented in a C function as:

add (int a, int b) /* addition using logical operations */

{

int s; /Esamx/
int c; /xcarry*/
s =a " b; /*sum is the xorx/
while (¢ = (a & b) << 1) /#carry is the and of inputs*/
{
a= s;
= ¢;
s =a b;
¥
return (s);
}

For example, adding 13 to 11 by the above algorithm we have:
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Add 001101 =13
001011 =11

sum 000110
carry 001001

sum 000110
carry << 1 (01001

sum 010100
carry 000010

sum 010100
carry << 1 00010

sum 010000
carry 000100

sure 010000
carry << 1 (0100

sufn 011000
carry 000000

and the sum is 110004 = 24,,.

Half and Full Adders

The generation of the sum and carry bits may be performed by very simple elec-
tronic circuits. These circuits are available in chip form to perform the logical
functions described above and are called gates. The generation of the sum and
carry requires an and gate and an xor gate. These may be obtained together in a
circuit called a half adder {see Figure 4.1). Two half adders may then be combined
together with an or gate to add two inputs, A and B, with a carry in, to produce a
sum and a carry out. Such a circuit is called a full adder (see Figure 4.2). See [12]
for a full discussion of digital logic.

Modulus Arithmetic

Modulus arithmetic considers only numbers in a range 0 <= n < M, where M is the
modulus. A modulus eperator % in C will force a number to be in the appropriate
range by performing an integer division by M and keeping the remainder. A car
odometer is another, possibly more familiar, example of modulus arithmetic. The
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A B
w =)
carry out sum

Figure 4.1: Half Adder

A B carry in

)

and ch

carry out sum

Figure 4.2: Full Adder
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odometer counts up until it reaches 99999, whereupon it returns to 0. Computers
normally perform modulus arithmetic, as they have registers of fixed size, like the
car odometer. If we have an n bit register and count up from 0, then when the
number reaches 2" — 1 (represented by all ones), the next increment returns the
register to all zeros. A carry out of the msb (most significant bit) has heen lost.

Consider a computer with four bit registers: The largest number will be 27 —1 =
21 -1 =15 = 1111,. Consider the addition of 3 + 92

3= 0011
2= 0010 -+
5= 0101

further addition of 6 will result in 11:

5= 0101
6= 0110 +
11 = 1011

and then if we add 7 we will obtain (11 + 7) % 16 = 2;

11 = 1011
7= 0111 +
2= 0010

the carry of 1 out of the msb is lost.

Subtraction

While addition is fairly simple, subtraction requires borrowing if the digit you are
subtracting excceds the digit from which it is to be subtracted. However, a neat
hack can avoid these horrowing problems. Consider the following expression with
arithmetic performed modulus #* where r is the base and n the number of digits:

a—b=a+ (" —-1-b+1

In the above expression the addition of r* does not affect the result of the calculation
as the arithmetic is performed modulus »™. The subtraction of b from ™ — 1 ig
particularly simple and involves no borrowing.

Consider the following example in decimal arithmetic with + = 10 and two digit
registers and thus n = 2:

23-07 = 234+(10°-1-07)+1
= 23+(99-07)+1
= 2349241
= 23493

= 16
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What about 07 — 237
07 — 23

CHAPTER 4. BINARY ARITHMETIC

07 + (99 — 23) -+ 1
07 + 76 + 1
07 + 77 = 84

What does 84 represent? Let us look at 00 — 16.

00 — 16

84 is negative 16. What then is —17
00 —01

00 + (99 — 16) + 1
00+ (83) + 1
84

00 + (99 — 01) + 1
00+ 98 +1
99

Let us, using some intuition, list numbers around zero:

3
2
1
0
-1
-2
-3

03
02
01
00
99
98
97

Let us go further and look at the mid range, —49:

00 ~ 49

What is —507

Fifty is its own complement. Let us

49 49
48 48
-3 3
22

1 1

0 0
-1 99
—2 98
. —48 52
—-49 51
—50 50

00 + (99 — 49) +1
00 + 50 + 1
51

00 + (99 — 50) + 1
00 +49 + 1
50

summarize our findings:

largest positive number

negative

largest negative number
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This is called complement arithmetic and the representations of the negative num-
bers have names:

rt—1-b diminished radix complement 9% complement
r* —1-—H+1 radix complement 10’s complement,

Radix complement arithmetic has Zero, positive, and negative numbers. In radix
complement arithmetic the largest negative digit is its own complement and thus has
no positive equivalent. Furthermore, for decimal numbers, if the most significant
digit {msd) > 5, then the number is negative. Subtraction may then be performed
by the addition of the negative of the number that is to be subtracted.

Considering now binary numbers, we will see that complementing is even simpler
than for decimal numbers. Let us consider four-bit arithmetic with n = 4, We will
first subtract 2 from 4:

4-2 = 44(-2)
4 = 0100
2 = 0010
2t = 10000
201 = 1111
29-1-2 = 1101
24-1-241 = 1110
0100
1110 +
0010 =2

2% — 1 -2 = 1101 is called the one’s complement, as the subtraction of a binary
number from all ones is the logical complement. All ones are replaced by zeros and
all zeros are replaced by ones. 24 —1—2+1 = 1110 is called the two’s complement,
and it is no more than the one’s complement plus one.

Consider 2 — 4;

2= 0010
4= 0100
one’s complement. 1's = 1011
two's complement 2's = 1100
0010
1100 +

1110

1110 must be a negative number, so let us complement it:

1110
I's 0001
2% 0010 -2
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Let us use some intuition and list all the four-bit two’s complement numbers:

0111 7
0110 6
0101 )
0100 4
0011 3
0010 2
0001 1
0000 0
1111 -1 0000 4+ 1 = 0001
1110 -2
1101 -3
1100 -4
1011 -5
1010 -6
1001 -7

1000 —8 its own complement 1000

If the most significant bit, the sign bit, is a one, then we know that the number is
negative.

A signed number has a range of [-271,27~! — 1] and an unsigned number has
a range of [0, 2" —1]. The two’s complement system is an interpretation of numbers
in registers; the hardware always performs binary addition. If we wish to subtract,
we first form the two’s complement of the number and then add; there is then no
need for a hardware subtractor as well as a hardware adder. We will still, however,
frequently consider numbers to be unsigned, considering the sign bit only as the
most significant bit of the number; pointers arc always unsigned numbers, as they
refer to memory addresses.

Two’s Complement Number Branching Conditions

In Chapter 2 we introduced signed arithmetic branches; these are the appropriate
branches when we are interpreting the numbers in the machine as two’s complement.
Branching conditions are based on the setting of the N (negative), 7 (zero), and V
(overflow) bits. The Z bit is set when all the bits of the result are zero. The N bit
is set when the most significant bit is 1. The overflow V bit is set when the register
is not long enough to hold the true representation of the number. On subtraction,
the V bit is set when the signs of the minuend and the subtrahend are different
and the sign of the difference is the same as the subtrahend (difference = minuend
— subtrahend).

‘When we compare two two’s complement numbers, we subtract one from the
other; overflow can frequently occur when this happens. Consider subtracting any
positive number from the largest negative number.
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The conditions for signed branches are:

Assembler  Signed Arithmetic

Mnemonic  Branches Condition Codes
bl Branch on less (Nxor V) =1

ble Branch on less or equal Zor (Nxor V) =1
be Branch on equal Z=1

bne Branch on not equal Z=10

bge Branch on greater or equal (N xor V)=0

bg Branch on greater Zor (NxorV) =0

When overflow occurs the sign is complemented. On integer addition the overflow
bit is set when the sign of the addends is the same, but the sign of the result is
different,

4.6.1 Shifting

"Three shift instructions are provided in the SPARC architecture to compute the
contents of a register shifted left or right by & number of shifts. There are two shifts,
arithmetic and logical. In the case of an arithmetic shift, the sign bit is copied into
the most significant bit position on right shifts. In the case of a logical right shift,
zeros are copied into the most significant bit position. Left shifts are identical in
both cases with zeros shifted in from the right (see Figure 4.3).

stl

]

sra

Tl ]

sil

[

Figure 4.3: Shift Instructions

The shift count is the low five bits of regrsz O the low five bits of the immediate,
These five bits are interpreted as a positive number, and thus the largest shift
possible is 2° — 1, or 31.

‘The shift instructions are as follows:

s11 TeYrs1y TEG_OT_imm, reg,y shift left logical
sra T€Grs1y TEG_OT_tMMm, regrq  shift right arithmetic
srl Tegra.s Teg_or_imim, reg,; shift right logical

Shifting a number left corresponds to multiplication by two; shifting right arith-
metic corresponds to division by two.
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Unsigned Arithmetic

In addition to signed arithmetic there is a need to perform unsigned arithmetic.
In unsigned arithmetic, number representations are always considered positive and
numbers have a range of {0, 2"], twice that of signed numbers. In C, the declaration
unsigned informs the compiler that the variable is to be interpreted as an unsigned
number. Hardware operations on signed and unsigned numbers are identical.

There is no problem with addition, with a carry out of the most significant bit
(C = 1), now indicating overflow. A carry out of the most significant bit occurs
when the most significant bit of both operands is set but the most significant bit
of the result is a zero, or when the most significant bit of either operand is set, but
the most significant bit of the result is zero.

It is also still possible to subtract unsigned numbers by imagining that there
is an extra bit in the register to the left of the most significant bit. Then, by
first forming the two's complement of the subtrahend and adding, we would expect
a carry out of the most significant bit to be added to the imaginary one of the
subtrahend to indicate a positive result; the imaginary bit of the minuend would
then be a zero. In the case of subtraction, the C bit is set if there is no carry
out of the most significant bit. The test for unsigned overflow is then simply a
test of the C bit.

Consider a four-bit register, which has an unsigned range of 0 <= n < 16,
subtracting 3 from 12:

12-03 = 1100 —0011
= 1100 4 (10000 — 1) — 0011 -+ 1
— 1100 + 1111 — 0011 + 1
= 1100 4 1101
9 = 1001

As expected, the carry occurred indicating a positive result.

Unsigned Number Branching Conditions

When performing unsigned arithmetic, the overflow bit, V, has no meaning, as it is
related to tests on the signed numbers, The N-bit has no significance when dealing
with unsigned numbers. All unsigned branching tests are made, based on the state
of the C and Z bits alone. The C bit is set when a carry occurs out of the most
significant bit on addition and when it does not occur on subtraction.

There is a set of unsigned branch instructions that malkes the following tests:
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Assembler  Unsigned Arithmetic

Mnemonic  Branches Condition Codes
blu Branch on less C=1

bleu Branch on less or equal C=lorZ=1
be Branch on equal Z=1

bne Branch on not equal Z=20

bgeu Branch on greater or equal € =0

bgu Branch on greater C=0andZ =0

4.9 Condition Code Tests

There is also a set of branches that tests the individual condition codes:

Assembler  Condition Code

Mnemonic  Branches Synonym
bneg Branch on negative N=1

bpos Branch on positive N=0

bz Branch on equal to zero Z=1 bhe

bnz Branch on not equal to zero Z=0 bne

bvs Branch on overflow set V=1

bve Branch on overflow clear V=0

bes Branch C set C=1 blu

bee Branch C clear C=0 bgeu

4.10 Multiplication

If we had to multiply 23 x 32 using pencil and paper, we might proceed as follows:

23

32 x

46
69

736

In the above, we multiply the multiplicand by the each digit of the multiplier,
eventually adding these partial products to form the product. We might. organize
the above calculation somewhat. We will make use of two two-digit registers to
eventually hold the product. We will initialize the first of these to zero and the
second to the multiplier. We will examine the right-most digit of the multiplier and
then multiply the multiplicand by the digit and add it to the left-hand register.
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Having made use of the right-most digit of the multiplier we will shift the two
registers right one digit before repeating the process until all digits of the multiplier
have been examined. The two registers will thus hold both the partial product and
the partial multiplier until they hold the product.

Multiplicand  Product Multiplier

|700 _l I 32 ] add multiplicand x lsd
[ 23 |7 | 46
Stepl [ 46 |—{ 32 | shift right
—_——

add multiplicand x lsd

[ 28 |? I__I———J
Step2 [ 73 |—{ 63 | shift right
—_—
[ or | | 36 |

What would happen if we tried to multiply 23 x —327 Let us try using 10’s
complement, arithmetic. First we need to find the 10’s complement of —32:

99
32 -
67
1+
68

Let us now proceed to use our algorithm multiplying 23 by 68:
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Multiplicand  Product Multiplier

add multiplicand x lsd

shift right

add multiplicand x lsd

Step 2 156 shift right

;i!
g!

The result should be —736 or, in complement form, 9264, which it clearly is not.
What went wrong? A careful examination of the algorithm will reveal that we have
evaluated:

23 x (10% - 32)
23 x 10% - 23 x 32

The correct result is —23 x 32; our result is too large by 23 x 102. Do not forget
that we are computing a result of twice the number of digits as the multiplier and
multiplicand. When performing this computation we should be using twice as many
digits when representing negative numbers. If we do not use twice as many digits
when the multiplier is negative, then we must subtract from the high-order part of
the final result, the multiplicand, which in our case is 23 x 102

23
76 9’s complement
77 10’s complement

1564
7+

8264

0735 9°s complement
0736 10’5 complement

This gives the correct result. There is no problem when the multiplicand is
negative, as we are simply adding scaled versions of it to obtain the result. It is
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only when the multiplier is negative that we need to make the final subtraction to
obtain the correct result.

Let us now turn our attention to binary arithmetic. Consider the multiplication
of 3 x 5, or 0011 x 0101:

Multiplicand  Product Multiplier

[ 0000 | [ 0101 | iflsb == 1, add multiplicand
+
[ o011 | 7 | 0011J~—J
Step1 | 0011 |— 0101 | shift right
—_——
[ 0001 | [ 1010 | iflsb == 1, add multiplicand
_|.
L o011 | 7 [ o000 }.—J
Step2 | 0001 |— 1010 | shift right
——
| 0000 | r1101 l if Isb == 1, add multiplicand
+

| o011 | 7 [ oon1

Step 3 | 0011 |— 1101 | shift right

——

[ 0001 | [ 1110 | if lsb == 1, add multiplicand

+ 1
[ oot | 2 [ oooo

Step4 | 0001 |—| 1110 | shift right

——

| oooo | | 1111 |

1111, 15 the correct result!
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How about 3 x —57 Qr 0011 x 1011

multiplicand  product multiplier

0000 I ! 1011 I if Isb == 1, add multiplicand
+
[ 0011 | 7 L_0011F———-————dj

Step 1 0011 '——-I 1011 shift right

————
0001 I 1101 | if Isb == 1, add multiplicand
+

0011 | ? | 0011
Step 2 0100 I——-! 1101 | shift right

r——
0010 0110 if Isb == 1, add multiplicand

| o011 | 2 [ 0000

Step 3 shift right

il Isb == 1, add multiplicand

0011 ?
Step 4 0100 I—-| 0011 I shift right

—_—
I 0010 l | 0001

+

1101 multiplier negative — subtract multiplicand
| 1111 | 0001

As the multiplier was negative we had to subtract the multiplicand from the
high-arder part of the result. The multiplier was 3, or 00115, and its two's comple-
ment 1101,
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Finally, let us multiply —3 x —5, or 1101 x 1011.

Multiplicand  Product Multiplier

| 0000 | | 1011 | if Isb == 1, add multiplicand
+
1101 | 7 | 1101 }-—J
Step1 | 1101 |—| 1011 | shift right
—_—
[ 1110 | [ 1101 ]| if lsb == 1, add multiplicand
+
1101 | 7 | 1101 k————————J
Step2 | 1011 |~ 1101 | shift right
e
] 1101 | | 1110 | it lsb == 1, add multiplicand
+
| 1101 | 7 | 0000 }-—J
Step3 | 1101 |—| 1110 | shift right
_—
[ 1110 | [ 1111 | iflsb == 1, add multiplicand

+
[ 1101 | 7 | 1101

Step 4 | 1011 || 1111 | shift right

it s e
[ 1101 | | 1111 |
+
multiplier negative — subtract multiplicand
[ oooo | | 1111 |

We obtain the correct result again, 15. Note the arithmetic shift right, shifting in
one’s when the number is negative.
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4.10.1 SPARC mulscc Instruction

While the SPARC architecture does not include a multiply instruction it does have
an instruction which performs one step of a multiply, the mulsce instruction. This
instruction works in conjunction with a special machine register called the %Y reg-
ister which initially holds the multiplier and eventually holds the low order part of
the product. Multiplication using the mulscc instruction on the SPARC machine
is as follows:

1. The multiplier is loaded into the %Y register and the high order part of the
product cleared to zero.

2. 'The multiplier is tested to set the N and V bits,

3. This is then followed by 32 mulscc instructions. The mulsce instruction shifts
N = Vinto the first source register, shifting the contents of the register right
one place, the bit shifted out of the right hand end of the register is kept. The
least significant bit of the Y register is tested, and if a one, the contents of the
second source register or sign extended constant, arc added to the destination
register. Finally, the kept bit, shifted out of the first source register, is shifted
into the Y register, shifting the contents of the Y register right one place.

4. One additional mulsce instruction with the multiplicand zero forms a final
shift to produce a two word result with the high order part of the product in
the %rd register and the low order pait in %Y,

(see Figure 4.4).
For example, to multiply 3 x 5 with the three in %02 and five, the multiplier,
in %00 we wonld write:

mov 3, %o2

mov 5, %o0

mov %00, %y

nop it takes time to get to the Y%y register
nop

nep

andce  %g0, %g0, %ol  l!zero the partial product
! and clear N and V

mualscc  %ol, %o2, %ol 132 mulscc instructions
mulscc  %ol, %o2, %oi

milsce  %ol, %02, %ol

mulsce %ol, %o2, %ol

mulscc  Yol, %o2, Yol

mulsce  %ol, %02, %ol
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mulscc
milscc
mulscc
mulscc
mulsce
mulscc
mulscc
mulscc
mulscc
mulscc
mulscc
mulsce
mulscc
mulscc
mulscec
mulsce
mulsce
mulscc
mulscc
mulscc
mulscc
mulscc
mulscc
mulscc
mulscc
mulscc
mulscc
mov
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hol, %o2, Yol
%ol, %02, %ol
%ol, %oZ, %ol
%ol, %o2, %ol
%ol, %02, %ol
%ol, %o2, %ol
%ol, %02, %ol
%ol, %02, %ol
%ol, %o2, Yol
%01, %o2, %ol
%ol, %o2, %ol
%ol, %02, Yol
Y%ol, %o2, Yol
%ol, %o2, Yol
%01, %02, %ol
%ol, %o2, %ol
%01, %o2, %ol
%ol, %o2, Yot
Yol, %o2, %ol
%ol, %o2, %ol
%hol, %o2, %ol
%ol, %o2, %ol
%ol, %02, %ol
%ol, %o2, %ol
%ol, %02, %ol
%ol, %02, Yol
%ol, %g0, %ol  !final shift
%y, %o0 thigh order part back from %y

System routines are provided for multiplication, .mul for signed multiplication,
and .umul for unsigned multiplication. The multiplicand is passed in %00 and the
multiplier in %o1. The low-order part of the result is returned in %00 and the
high-order part in %ol.
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muisce

mutlsce

mulsce

mulsce

mulsce

%02 %ol %Y
%ol, %02, %ol 1000
>> 1
NAY == 0000 = 0
0011 0011 +
>> 1
%ol %02, %ol [_oot ]
> 1
NAV ——= 0001 —> |
0011
%01, %02, %01

NAY

%ol, %02, %ol

N~V

%01, %g0, %ol

N2V

Figure 4.4: SPARC Multiplication
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Right shift partial product
If1sb %Y ==1 add multiplicand

Right shift %Y

Right shift partial product

If1sb %Y ==1 add multiplicand
else add zero

Right shift %Y

Right shift partial product

If 1sb %Y ==1 add multiplicand
¢lse add zero

Right shift %Y

Right shift partial product

IfIsb %Y ==1 add multiplicand
else add zero

Right shift %Y

Final right shift
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4.11 Division

Finally, we must consider division. Consider the division of 737 by 32:

32 ) 737
64-
97
96-

1

The result is 23 with a remainder of 1.

Binary division is much easier, as a number either subtracts or it does not. One
does not have to try to estimate how many times the dividend will successfully
subtract from the dividend. Let us translate the previous example into binary. Of
course, we will subtract by adding the two’s complement.

10111 + 1
0100000 ) 01011100001 737 / 32
1100000 -32
00011100001 positive, set 1 into quotient
1100000 shift and subtract again

1111100001 negative, set 0 into quotient

0100000 add dividend back
0011100001
1100000 shift and try again

001100001 positive, set 1 into quotient
1100000
0100001 positive, set 1 into quotient
1100000 shift and subtract again
000001 positive, set 1 into quotient
remainder is 1.




4.11. DIVISION 119

This is very simple and one could formalize the algorithm as we did for mul-
tiplication, However, there is a further simplification that we should introduce:
When we subtract the divisor and the result is negative we must add it back, shift
it right one place, and then subtract again. For example, if b is the divisor and g
the dividend:

a—b+b—p27!

Regrouping terms we obtain:

a—b+ (26— b2-!
a—>b-+b271

Having subtracted and produced a negative result we only nced shift the divisor
right one place and add in place of subtracting:

16111 + 1
0100000 ) 01011100001 737 / 32
1100000 -32
00011100001 positive, set 1 into quotient
1100000 shift and subtract again
1111100001 negative, set 0 into quotient
0100000 shift and add
001100001 positive, set 1 into quotient
1100000 shift and subtract
00100001 positive, set 1 into quotient
1100000 shift and subtract
000001 positive, set 1 inte quotient

remainder is 1.

This is called nonrestoring division [15].

An assembly language program to perform the abave division is given below.
The program first creates a dividend by multiplying two numbers together; it then
divides the dividend by one of the factors used to produce the dividend. The
dividend is 64 bits long and is in registers %ol and %c0. The divisor is placed into
register %02, The quotient then appears in %00 with the remainder in %o1.

In the program, we will need to shift the contents of two registers. This is
accomplished by the following code:
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addcc  %lo_r, ¥lo_r, %lo_r
bece 1f

add %hi_r, %hi_r, 4hi_r
bset 1, %hi_r

Note the use of a numeric label, “1.” The assembler allows single-digit labels
to appear many times in a single source file. A branch to such a label must be
distinguished by appending the single letter “b” or “f” to the digit to indicate
whether it is the first occurrenee of the label in the backward direction in the file
or the first occurrence of the label in the forward direction in the file. The use of
such numeric labels is recommended for labels that have no intrinsic significance,
such as labels needed to create control structures. This relieves the programmer
of the need to create names that have no significance. Numeric labels also solve a
problem when writing macros that require labels, allowing the same label to appear
in each incantation of the macro without leading to multiply defined symbol errors:

define{lo_r, o0) 1“low part of dividend’
define(hi_r, ol) 1‘high part of dividend’

define(divisor_r,o2)

define{count_r, o3) ! ‘number of times to iterate’
define(n_bits, 32) t ‘number of bits in register’
define(quotient,0x101) !trial quotient’
define{dividend,Oxff) I ‘trial dividend’

define (remainder,0x2) !‘trial remainder’

.global _main
_main:
save %sp, 64, Ysp

mov quotient, %00 !“form num as trial dividend’
call umul

mov dividend, %ol

add %00, remainder, %o0 !‘add in a remainder’

mov dividend, %02 t‘use same number as divisor’
mov n_bits, %count_r 1*initialize count to n_bits’
ba pos I“start off with a shift’

addcc  $lo_r, %lo_r, %lo_x
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test:
bge pos
addcc  }lo_r, %lo_r, %lo_r
neg: !“result negative, shift’
bcec 1f
add $hi_r, %Yhi_r, %hi_r
bset 1, ¥hi_r
1:
ba fin

addce  Yhi_r, ¥%divisor_r, %hi_r!‘finished?’

pos: | ‘positive -> ghift & sub’
bce 1f
add dhi_r, %hi_r, %hi_r
bset 1, %hi_r

1:

subcc  Y%hi_x, Ydivisor_r, Yhi_r

fin: bl 8zero
subce  Yicount_r, 1, %count_r
or %lo_r, 1, %lo_r '“set bit into quotient’
szero:
bg test
tst Yhi r
done:
bge ck ! ‘restore remainder?’
mov 1, %gl
add %hi_r, %divisor_r, %hi_r
ok:
ta 0

Integer division occurs much less frequently in code than multiplication and
the SPARC architecture does not provide an instruction equivalent to mulscc for
division. Four routines are, however, provided: two for signed arithmetic .div,
which returns the quotient, and .rem, which returns the remainder; two routines
for unsigned arithmetic, .udiv and .urem. In all cases the dividend is in register
%00 and the divisor in %o1. The result is returned in %00,
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Extended Precision Arithmetic

QOccasiconally there is a need to perform arithmetic to greater than 32 hits of pre-
cision. Consider the case where it is desired to perform integer arithmetic with 96
bits of precision. We may store such a 96-bit number in three sequential registers
with the most significant bits in the lowest of the three registers. If such a number
were stored in registers %10, %11, and %12, then the sign bit would be bit 31 of %10
and the least significant bit of the 96 bit number would be bit 0 of %12.

4.12.1 Addition of Extended Precision Numbers

There is no machine instruction to add three register numbers; instead, we have to
proceed by adding the two low registers of both numbers, bits 0 — 31, then adding
the two registers containing bits 32 — 63 along with any carry that was generated
when the two low registers were added. Finally, we add the two high registers
containing bits 64 - 95 along with any carry generated when the mid registers were
added. There is a machinc instruction cspecially for this purpose that adds the
contents of two registers together plus one if the C, carry, bit is set. A carry from
the previous add will set the carry bit:

addx TCGrg1y TEG_OT_1IMIM, TEG.y
addxcc TeGrs,, TEG_OT_iMMm, Teg,q

In both cascs the operation result is:
Teg,d = Teg,s, + reg_or_imm + C

with the addxcc instruction also setting the condition codes. Thus, if the second
number were in registers %13 — %15, with the result to go into %00 — %e2, the code
for the extended precision addition would be:

addcc %12, %15, %o2 tadd bits 0 - 31
addxcc %11, %14, %ol ladd bits 32 - 63 + C
addx %10, %13, %00 ladd bits 64 - 95 + C

4.12.2 Subtraction of Extended Precision Numbers

On subtraction we need to form the two’s complement of one of the multiregister
numbers. We could do this by first forming the one’s complement of each register,
and then add one to the low register (propagating any carry). We would then add
the numbers as before:

not %15, %415 'form complement in place
not %14, %14

not %13, %13

incce %15 tadd one to form two’s comp.

addxcc %14, %g0, %14 Ipropagate carry
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addx w13, g0, %13

addcc %12, %15, %o2 ladd bits ¢ - 31
addxcec %11, %14, %ol fadd bits 32 - 63 + C
addx %10, %13, %o0 'add bits 64 - 95 + ¢

We can reduce this to three instructton like the multiple-precision add by making
use of the subx and subxcc instructions. These instructions subtract their second
operand from their first and, in addition, subtract one more if the C bit is set:

subx Teg,s:y, TEG_OT_imm, reg.q
subxcc Tegrs:, TEY_Or_imim, reg.,

In both cases the operation result is:
Teldrd = Tegrs; — reg_or_imm—C

with the subxcc instruction also setting the condition codes.
By proceeding to directly use the subcc instruction to subtract the two low
registers:

subcc %12, %15, %o2
we achieve the same effect as three of the above instructions:

not 415, %15 'form complement in place
incce %15 'add one to form two’s comp.
addcc %12, %15, %02 'add bits 0 - 31

If we use the subcc instruction to subtract the two mid registers:
subce %11, %14, %ol
we will perform:

not %14, %14
inc %14, %14
addxce %11, %14, %ol

which results in a number too large by one. However, if a carry had been generated
by the previous subtraction, this would be the correct result after carry propagation.
If a carry were not generated by the previous subtraction, we need to subtract one.
This is exactly what the subx instruction does so that we can rewrite the entire
three-word subtraction code in a similar form to the addition code:

subcc %12, %15, %o2 !'subtract bits 0 - 31
subxcc %11, %14, %ol !subtract bits 32 - 63 + C
subx %10, %13, %o0 I'subtract bits 64 - 95 + ¢
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4.12.3 Multiplication of Extended Precision Numbers

By keeping track of the binary scaling of each word and remembering that each 32-
bit multiplication results in a two-word, 64-bit result, we can also perform muitiple-
precision multiplication. Consider the case of the multiplication of two 64-bit un-
signed numbers. The first number is represented by A3z B and the second by Cay
D where A, B, C, and D are the four registers containing the two numbers and
the subscripts refer to the binary scaling. The product, Eqgg, Fas, Gog, Hog may be
written as:

Az Bsy
Csz D3y x
BDs; BD
BCss BCj
ADgs ADss
ACgs ACy +

Egﬁ FQG GQG HQG

This may be translated into the following code making use of . umul to perform 32-
bit unsigned multiplication. The multiply routine produces 64 bits of result with
the high-order part in %o1 and the low-order part in %00,

.global _main

~main:
define(A, i0) 'multiplicand
define(B, i1)
define(C, i2) Imultiplier

define(D, i3)

define(E, 10) tproduct
define(F, 11)
define(G, 12)
define(H, 13)

mov Ox1, %A !initialize A and B
mov OxfEf£FF£E, YB

mov 0x1, %C

mov Oxffffffff, YD !initialize € and D
mov 4B, %00 'BD

call .uamul

mov 4D, %ol

mov %00, %H 'H = BD
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mov %hol, 4G 'G = DB32
mov 4B, %00 IBC

call .umul

mov %C, %ot

addcc %00, %G, UG 'G = G + BC32
addx hol, %g0, %F IF = BC64
mov %D, %ol YAD

call .umuel

mov A, Yol

addcc %00, %G, %G IG = G + AD32
addx hol, %F, YF IF = ADg4
mov %C, %o0 1AC

call .umul

mov %A, %ol

addcc %o0, YF, YF 'F = F + ACB4
addx hol, %g0, Y%E IE = AC96
mov 1, %egl

ta 0

Division can also be performed, in a nonrestoring manner, by making use of
multiple-precision addition and subtraction.

Summary

Binary arithmetic was shown to be very simple to implement using elementary logic
operations, and and xor in the form of half and full adders, Modulus arithmetic was
introduced to handle negative numbers. The diminished radix complement {one’s
complement for binary numbers) and radix complement (two’s complement, for
binary numbers) were defined. Modulus arithmetic makes use of the top half of the
representable states of an n-bit binary number to represent the negative numbers.
A two’s complement negative number has the most significant bit set. Subtraction
may be handied in the same manner as addition, using two’s complement arithmetic
simplifying hardware requirements for arithmetic logic units.

Two’s complement branches were described, used in conjunction with the V,
N, and Z condition codes. Handling unsigned numbers was presented in terms of
an imaginary high-order bit. Unsigned branches, which tested the C and Z bits,




126 CHAPTER 4. BINARY ARITHMETIC

were presented. A fairly extensive discussion of multiplication was given, as the
SPARC architecture does not include a multiply instruction. This section concluded
with the SPARC mulscc instruction to provide for multiplication. The section,
on multiplication was followed by a section on division, introducing nonrestoring
diviston and concluding with an assembly language division routine. The chapter
concluded with a section on extended precision arithmetic.

4.14 Exercises

4-1 Write addition and subtraction algorithms for two’s complement numbers using
the machine logical instructions:

and reg_rsl, reg_or_imm, reg_rd
andn reg_rsl, reg_or_imm, reg rd
Xor reg rsl, reg_or_imm, reg_rd
or reg_rsl, reg_or_imm, reg_rd
Xnoer reg rsl, reg_or_imm, reg_rd
orn reg_rsl, reg_ or_imm, reg_rd

You may not use the add or sub instructions, or their cc versions.

The following addition algorithm is suggested:

int add (int a, int b) l'addition using logical operations :
: !
int s; !sum
int ¢; lcarry

¢ = b linitialize carry

s =a " ¢; !sum is the xor

while (c = (a & ¢) << 1) !carry is the and of inputs
s=f{a=3s8) " c;

return (s);

and for subtraction:

int sub (int a, int b) !subtraction using logical operations

{
int d; !difference
int c¢; 'carry
¢ = "b linitialize carry to one’s comp of b

d=a" c; 'diff is the xor + 1
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c=(akc) <<l | 1; INote the extra one to make two’s comp
do
d=(a=4d) " c;
while (c = (a & c) << 1)!carry is the and of inputs
return (d);

3
Your program should form the sum of:
07707 and 00101

and the difference of:

00710 and 01010

For both the addition and the subtraction you are to print out the partial sum and
carry each iteration through the loop. You are also to print out the result of the
addition and subtraction. Note that the input given above is in octal.

4-2 Write an addition algorithm, which also sets the condition codes, for two’s
complement numbers using the machine logical ingtructions such as:

and reg.rsl, reg_or_imm, reg_rd
andn reg_rsl, reg_ or_imm, reg_rd
xor reg_rsl, reg_or_imm, reg rd
or reg_rsl, reg_or_imm, reg_rd
XNnor reg rsl, reg_or_imi, reg_rd
orn reg_rsl, reg_or_imm, reg_rd

You may not use the add or sub instructions, or their cc versions.

Your code is also to set the four condition code bits, N, V, Z, and C as outlined
in the definition of addec instruction given on page 358 of the text. The N bit is
to be set if the result is negative; the V bit is to be sct, indicating overflow, if the
resulting number is too large to store in 32 bits; the Z bit is to be set if the result
Is zero; the C bit is to be set if a carry occurred on addition and if a carry did not
occur on subtraction. You may use the use the logic given on page 358 to set the
bits or generate the bits in the course of your algorithm. The condition codes are
to be stored in the low-order four bits of a register:

define{Z, 8) !‘Z = 010’
define(N, 4) ‘N = 004’
define(V, 2) 'V = 002’
define(C, 1) 1‘C = Q01°

]

A simplification in the boolean expression for V on page 358 is:
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V = (rlrsi1]<31> & op2<31>) & “rl[rd]l<31>) |
("(rlrs1]<31> | op2<31>)) & rlrd]<31>)

To compute such an expression you can perform logical operations between the
registers and then test the sign bit, bit 31. The following two branches will directly
test if bit 31 is set of clear:

bpos branch if bit 31 clear
bneg branch if bit 31 set.

You can run your program with different numbers in gdb by setting a breakpoint at
_main and then using the print command. For example, to set %10 to Ox7EfffILf
and %11 to -5 you could type:

(gdb) p/x $10 = OxTEffffff
$1 = OxTELffffs

(gdb) p/x $11 = -5

$2 = Oxfffffffb

(gdb)

Run you program with four inputs, which demonstrate the setting of the Z, N, V,
and C bits. Print out the condition codes and the sum for each pair of numbers.

4-3 Modify the algorithm on page 115 to handle signed integers as well.

4-4 Write an assembly language program to multiply two four-bit unsigned num-
bers together using no more than five milscc instructions.

4-5 Write an assembly language program to perform the division of two unsigned
integers employing the restoring division algorithm.

4-6 Write an assembly language program to perform signed 64-hit multiplication
to produce 128 bits of result

4~7 Write an assembly language program to perform unsigned 64-bit division with
a 128 bit dividend.

4-8 Divide 17 by 5 using two’s complement nonrestoring division. Show all your
working and comment the generation of each bit of the quotient.



Chapter 5

THE STACK

5.1

Memory

The SPARC architecture specifies a 32-bit address providing 0x100000000 bytes of
memory. Variables may be stored in memory occupying one, two, four, or eight
bytes of memory. These memory data types arc referred to as byte, halfword,
word, and doubleword, occupying one, two, four, and eight bytes of memory, re-
spectively [18].

While all integer instructions operate on 32-bit, four-byte quantities, variables
known to have a small magnitude may be stored in one or two bytes. Instructions
are provided to load a 32-bit register from a variable stored in one, two, or four
bytes of memory. Instructions are also provided to store the low byte, low two
bytes, or all four bytes of a registor into memory. These data types correspond to
the following C data types, and have the following ranges:

'C' type SPARC type bits unsigned signed

char byte 8 0, 255 —128, 127

short half 16 0, 65,535 —32,788, 32,767
int,Jong  word 32 0,4,204 x 10°  £2,147 x 10°

In order to make the implementation of the architecture efficient, all mem-
ory references must be aligned. That is to say, two-byte quantitics may only be
addressed in memory with addresses that are divisible by two, even addresses.
Four-byte quantities may be addressed in memory only if they are aligned on a
four-byte boundary, that is, that the address is evenly divisible by four. Similarly,
an eight-byte quantity must have a memory address evenly divisible by eight.
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The Stack

When a program is loaded into memory for execution, it is loaded into low memory:
the first executable instruction is at location 0x2000 in the SPARC architecture.
Subsequent instructions occupy higher memory addresses. The operating system
provides additional memory for automatic variables near the top of metmory. This
space is called the stack and is intended to be used in a first-in last-out manner.
Functions may use the stack to allocate space for automatic variables, as they
observe a strict first-in last-out order. The address of the last occupied stack
memory element is always kept in register %o6. This register is also know to the
assembler as %sp, the stack pointer.

This stack, and the stack we discussed in Chapter 1, are entirely different. We
do not push items onto this stack, nor do we pop items off the stack; nor does the
machine perform arithinetic between the top two clements of the stack. The only
reason that the space at the top of memory is called the stack is because it provides
a first-in last-out data structure.

The stack, located at top of memory grows downward. It is also possible to
grow a program upwards from the bottom of memory to provide for a “heap,”
spacc which in not handled on a first-in last-out order. This allows for the largest
possible size of program in a given memory space; whon the stack and heap overlap
the program can no longer execute. In this book in figures showing the stack,
memory always increased down the page, as in writing programs. Thus, when
we increase stack space, we subtract from the stack pointer bringing us back up
the page, as if we were writing a program and assigning space at the end of the
program.(see Figure 5.1).

If in our program we need to obtain additional memory, we only have to subtract
the number of bytes of additional storage needed from the stack pointer %sp. For
example, to obtain an additional 64 bytes of memory:

sub hsp, 64, Y%sp

The stack, however, is always kept doubleword aligned for reasons that will become
clearer later. In order to ensure that the stack is doubleword aligned, the address
in the stack pointer, %sp, must be evenly divisible by cight. If we want 94 bytes
of stack memory space, then we must ask for 96 in order to keep the stack aligned.
Asking for two more bytes of memory than we really need is not important.

If we clear some of the low-order bits of a two’s complement binary number we
“chop” the number and make it evenly divisible by a power of two. If we clear the
low three bits, then the number will be evenly divisible by eight.
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Fosp -> |

O 0000

Top of the stack

! 08000000

Figure 5.1: The Stack

Decimal  Binary Chopped  Result
31 011111 011000 24
25 011001 011000 24
24 011000 011000 24
23 010111 010009 16
17 010001 010000 16
16 010000 010000 16
15 001111 {01000 8

9 001001 001000 8
7 000111 000000 0]
1 000001 (000000 0
-1 111111 111000 —&
-2 111110 111000 —8
-7 111001 111000 -8
-8 111000 111000 -8
-9 110111 110000 —16
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The resulting chopped two’s complement number is the next largest number to the
left on the axis of integer numbers evenly divisible by eight.

It, instead of subtracting a positive number from the stack pointer, we were
to add a chopped negative number, then we would be guaranteed to obtain the
additional bytes of storage we need plus the additional bytes of storage to keep
the stack pointer aligned. How do we chop a number in assembly language? The
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assembler provides full expression evaluation just like C. We may write expressions
containing constants and variables that will be evaluated by the assembler to com-
pute a constant that may then be assembled. Thus, to clear the low-order three
bits, we need to form the bit-wise and of the number with ...111111111000:

add %sp, -94 & Oxffeffffs, Ysp

The constant 0xf££££££0 is the hexadecimal representation of —8 and so we might
write:

add hsp, -94 & -8, Ysp

This would result in 96 being subtracted from the stack pointer. In general, we will
always add or subtract negative numbers from the stack pointer that are evenly
divisible by 8 to ensure stack double-word alignment.

The stack pointer %sp marks the top of the stack. Memory locations below
where the stack pointer is pointing may be changed by the operating system and,
indeed, frequently are. We should never refer to an address negative with respect
to the stack pointer.

5.2.1 The Frame Pointer

The stack pointer is frequently changed during program execution and does not
remain constant enough to reference automatic variables stored on the stack. For
example, if we had a word variable stored at %sp + 20 and subsequently changed
the stack pointer to obtain more storage, the variable would no longer be located
20 bytes from the stack pointer. To solve this problem the SPARC architecture
provides a second register, %i6, known as the frame pointer, %fp, into which is
stored a copy of the stack pointer before it is changed to provide more storage. The
frame pointer %{p points to what was the top of the stack before %sp was changed.
The save instruction both performs an addition and saves the contents of the stack
pointer in %fp. A save instruction is normally executed once at the beginning of
a program to provide storage for all automatic variables. The save instruction is
used to provide not only storage for automatic variables but also to provide space
on the stack to save some of the registers. We will be describing why registers must
be saved in Chapter 7, but for now we need to provide 64 extra bytes of storage to
save registers whenever executing a save instruction:

save %sp, -64 - bytes_of_local_storage, %sp

Suppose, for example, we wished to store five variables, a0 — a4, on the stack
instead of in the registers. We would first need to make room at the beginning of
our prograin by:

save wsp, (-64 -(5 * 4)) & -8, Y%sp

which makes room for five four-byte variables together with 64 bytes in which to
save registers if necessary. Note that the expression:
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(-64 -(5 * 1)) & -8

is evaluated by the assembler to yield a constant that is assembled in place of the
expression. After executing the save instruction the stack pointer %sp points to
the location on the stack in which the registers may be saved, if necessary.

The first variable, a0, will be at the memory addressed by the contents of
4fp - 4, that is, four bytes above the old top of the stack. The second variable,
al, will be at ¥fp - 8; the third at %fp - 12, etc. (see Figure 5.2).

—

64
bytes
of
storage

osp:

to
save
registers

ad:  9elp - 20:

al:  %ip- 16;
az:  %fp-12:
al: ofp - 8:
aQ: %efp -4

ofp:

Figure 5.2: Automatic Variables on Stack

Addressing Stack Variables

How do we address stack variables and load them into and from the registers?
'The only instructions that reference memory are the load and store instructions,
which are used to load data into registers and to store data back into memory.
These instructions handle single byte, halfwords, words, and double-words. That
I8 one-, two-, four-, and eight-byte quantities. While bytes may be fetched and
stored at any memory address, halfwords may only be loaded from, or stored into,
memory addresses evenly divisible by two. Similarly, words may only be loaded
from, or stored into, memory addresges evenly divigible by four. Finally, doubleword
quantities may be only accessed from memory addresses evenly divisible by eight.
In the case of double loads and stores, the register must also have an even number,
as two registers are needed to store a doubleword quaantity,
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5.3.1 Load Instructions

The load instructions are as follows:

Mnemonic Operation

ldsh Load signed byte, propagate sign left in register
ldub Load unsigned byte, clear high 24 bits of register
ldsh Load signed halfword, propagate sign left in register
lduh Load unsigned halfword, clear high 16 bits of register
1d Load word

ldd Load double, register number even, first four hytes

into register n, next four into register n + 1.

The load instruction has two operands, with the second operand specifying the
register into which the data are to be loaded. The first arpument. is enclosed in
square brackets | |, to indicate that the first operand is being used as a pointer,
and it is the contents of the memory location addressed that is to be loaded into
the register. The first argument, enclosed in square brackets may be a register,
a register plus a constant, or two registers. Where a register and a constant are
specified, the memory address of the data to be loaded is the sum of the register plus
the constant. Constants are stored in 13 bits in the instruction word and are first
sign-extended to 32 bits before they are added to the contents of the register. Thus,
the address in the register may be modified by a constant in the range —4096 <
constant < 4093. Where a single register is specified, a second register, %g0, is
specified by the assembler. When two registers are specified, the address is the sum
of the contents of the two registers.” Thus, to load the first variable into %11:

1d ifp - 4], %11 1a0 into %1l
to load the second variable, al, into ¥%12:

1d [%fp - 8], %12 !al into %12
To load the fourth variable, a3, we would write:

1d Cifp - 161, %14 'a3 into %14

"When a load instruction is executed, the data may not be stored in the destination register
until after the next instruction has been executed. This is due to the pipelining design of the
processor (see Figure 2.1). The execution of a load instruction involves the fetching of the data
from memory, and it might not be until the next cycle that the data are obtained and actually
stored in the destination register. A machine interlock is, however, provided to stall the processor
to prevent a program executing an instruction that would access the prior data in the next
instruction cycle. A programmer should, if possible, arrange to load data into registers at least
one cycle before the data are needed. This is not normally a problem, as data in a load/store
machine must be loaded into registers before they can be manipulated.
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5.3.2 Store Instructions

The store instructions are as follows:

Mnemonic Operation

sth Store low byte of register, bits 0 — 7 into memory

sth Store low two bytes of register, bits 0 — 15 into
memory

st Store register

std Store double, register number even, first four bytes

from register n, next four from register n + 1.

Like the load instruction, the store instruction has two operands. The first operand
is the register whose contents are to be stored. The second argument is enclosed
in square brackets to indicate that the second operand is being used as a pointer,
and it is into the the memory location addressed that the contents, or part of the
contents, of the register are to be stored. The second argument,, enclosed in square
brackets, may be a register, a register plus a constant, or two registers. Where a
register and a constant are specified, the memory address of where the data are
to be stored is the sum of the register plus the constant. Constants are stored in
13 bits in the instruction word and are first sign-extended to 32 bits before adding
to the contents of the register. Thus, the address in the register may be modified
by a constant in the range —4096 < constant < 4095. Where a single register is
specified, a second register, %g0, is specified by the assembler. When two registers
are specified, the address is the sum of the contents of the two registers. Notice
that when storing data there is no need to distinguish between signed and unsigned
data; if only part of the register is being stored, no sign extension or zeroing of
high-order bits is involved. Note that the square brackets around the address part
of these instructions are used to make clear that we are using the contents of the
registers, plus the constant, as a pointer to address memory. Thus, to store the
first. variable %11 back into a0:

st %L1, [hfp - 41 %11 into a0
and to store the second variable, %12, into ai:

st %12, [%fp - 8] 1912 into al

Defining Stack Variable Offsets

The constants in the operand to the 1d instruction are ohviously a problem, and
we would prefer to define these constants symbolically, using m4.:

define(al_s, -4)
define(al_s, -8)
define(a2_s, -12)
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define(a3_s, -18)
define(ad_s, -20)

If we do this, we can write:

1d [%ifp + a0_s], %11
1d [ifp + ai_s), %12
1d [Wfp + ad4_s], %14

which is much more readable and far less prone to error.

The macros were, however, used to only define constants representing the offset
between the stack address of the variable and the frame pointer %fp. We could
define macros to compute the offsets as well as to make the definitions.:

define(local_var, ‘define(last_sym, 0)’)
define(var, ‘define(‘last_sym’,
eval(last_sym - $2))$1 = last_sym ’)

The macro local_var, used first, defincs last_sym to be zero. The second macro
var has two arguments, the variable name and the size of the variable in bytes.
The var macro first computes the stack offset, the evaluation of last_sym - $2
and assigns this to last_sym. Note the use of the built-in macro eval to force
the cvaluation of its arguments as numbers. If eval were not used, an arithmetic
expression would have been assigned, not its value {see Appendix B). The macro
then prints the assignment

$1 = last_syn

which will evaluated by the assembler, Pay particular attention to the single quotes
in this macro.
An example of the use of these macros is:

define(local_ var, ‘define(last_sym, 0)’)
define(var, ‘define(‘last_sym’,
eval(last_sym - $2))$1 = last_sym ’)
local_var
var(al_s, 4)
var(al_s, 4)
var(a2_s, 4)
var(a3_s, 4)

.global _main

_main:
save 4sp, (-64 + last_sym) & -8, Ysp
1d [Afp + a0_s], %11
14 [4fp + al_s], %12
1d [%fp + a3_s], %14
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When run through m4 the following code results:

a0_g = ~4
al s = -8
a2_s = -12
ad_s = -16

.global _main

_main:
save hsp, (~64 + -18) & -8, #hsp
1d [fp + a0_sl, %11
1d [%fp + al_s], Y12
1d [4fp + a3_s], 414

'To assign variables on the stack corresponding to the following C variables:

int a, b;
char ch;
short c;
int d;

using the macros we could write:

local_var

var(a_s, 4}
var(b_s, 4)
var(ch_s, 1)
var(c_s, 2)
var{d_s, 4)

with the following assembler code resulting:

as = -4
b_s = -8
ch_s = -9
c_s = -11
d_s = -15

Ii, however, we then tried to access these variables by:

1dsh Uifp + c_s], %o0
1d [%fp + d_sl, %o1

we would get a nonaligned memory error and our program would stop executing;
the address %fp - 11 is not divisible by two, which it must be for a halfword
access. Halfwords must be fetched from addresses divisible by two and words must
be fetched from addresses divisible by four. If the stack pointer and the frame
pointer are doubleword aligned and thus evenly divisible by eight, then #fp - 11
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is clearly not divisible by two, nor is %fp -15 divisible by four. To correct this
situation we need to make surc that each variable is aligned. While the obvious
modification to make is to and the offset with the negative of the variable alignment
eval(last_sym - $2 & -$2) md cannot perform the bit-wise and operation &, so
we will have to write a macro to do this. Consider the following macro align_d,
which will align its first negative argument in accordance with its second argument:

define(‘align_d’, ‘eval($2 * ((($1 + 1) / $2) - 1))

Given the following inputs it produces:

$1  align.d($1, 8)

—20 —24
-19 —24
—18 —24
-17 —24
~16 —16
-15 16
~14 —16
-13 -16
-12 ~16
-11 -16
—10 —16
~0 -16
-8 -8
-7 —8
-6 —83
-5 -8
—4 —8
-3 -8
—2 -8
-1 —8&

which is the correctly aligned result.
Inserting this macro expression into var we obtain:

define(‘align_d’, ‘eval($2 * (({$1 + 1) / $2) - 1))*)
define(var, ‘define(‘last_sym’,
align_d{eval(last_sym - $2)}, $2))$1 = last_sym ’)

and our program now expands into:

a_s = -4
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c_s = —-12
d_s = -16

.global _main
_main:
save 4sp, (-64 + -16) & -8, Ysp
ldsh [htp + c_s], %o0
14 [(%fp + d_s], %ot

with the variables on the stack correctly aligned. Note that there is now a wasted
byte after the ch variable to align the stack variables.

Dosp= Y%ip- 16 d |

%lp - 12
Dfp - 9
%fp-8
%fp - 4 a

Tolp

Figure 5.3: Automatic Variables Aligned on Stack

5.5 An Example

We are now in a position to write quite sophisticated programs. Consider the
following C code:

int a, b;
char ci;
int ¢, d;

register int x, ¥, Z;

x = 17;
y = -5
for (z = 1; z < x + y; z++)
for (a=2z; a>z*y; a-=10)
{
d=a+z;
cl = d *x b;
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To translate this program into assembly language we first assign variables to the
stack and to registers making use of macros:

local_var

var{a_s, 4)
var(b_s, 4)
var(cl_s, 1)
var{c_s, 4)

var{(d_s, 4)

define(x_r, 10) tfx_r 10°
define(y_r, 11) Py _r 11°
define(z_r, 12) Vég ¥ 12°

We might define two more macros for the program entry and exit:

define(begin_main, ‘. global _main
_main: save %sp, align_d(eval( -64 + last_sym))}, 8), %sp’)

define(end_main, ‘mov 1, %el
ta 07)

After defining the stack offsets for automatic variables we need the program entry,
macro begin_main, followed by the variable initialization statements:

begin_main
mov 17, Yx_r Ix = 17
mov -5, dhy_r ly = -§

In the case of the for loops, we branch to a test at the end of the loop, filling the
delay slots with the initialization statements of the fors, before writing the loop
code:

local_var

var(a_s, 4)
var(b_s, 4)
var{ci_s, 1)
var{c_s, 4)
var(d_s, 4)

define(x_r, 10) !‘x_r 10’
define(y_r, 11) !‘y_r 11’
define(z_r, 12) !‘z_r 12°

begin_main
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mov 17, %x_r lx = 17
mov -5, Yy_r 'y = -5
b outer_test 'branch to outer loop test
mov 1, Yz_xr ‘use delay slot for initialization
!'statement
cuter: code for outer loop
b inner_test !similarly for immer loop
st %z_r, [Ufp + a_s] 'la = z
inner: !code for inner loop
1d [Afp + a_s], %o0
add %00, %z_r, %o0
st wo0, [Ufp + d_s]
1d [%fp + d_s], %00
call .mul
1d [ifp + b_s], %ol
stb hol, [¥fp + cl_s]
mov wy_r, %o0
call .div
mov Yz_r, Yol
1d [hfp + a_s), %ol
add %00, %ol, %00
st ho0, [fp + c_s]
inner_inc: linner for increment statement
1d [Afp + a_sl, %00
sub %00, 10, %00
st %00, [Ufp + a_sg]
inner_test: !inner for test
mov %z r, %ol
call .mul
mov hy_r, %ol
1d Chtp + a_s], %ol
cmp %ol, %00
bge inner
nop
outer_inc: louter for increment statement

add Yzr, 1, Yz r
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outer_test:

add Wx_r, hy_r, %o0
cmp hz_r, %ol

bl outer

nop

end_main

We may fill the delay slots following the inner loop test by moving the first instruc-
tion of the inner loop into the delay slot and annulling the bge instruction. We
may also fill the delay slot of the outer loop by branching directly to the inner test
and filling the delay slot with the initialization test of the inner loop. We must also
annul the bl instruction:

local_var
var(a_s, 4)
var(b_s, 4)
var(ci_s, 1}
var(c_s, 4)
var(d_s, 4)

define(x_r, 10) !‘x_r 10’
define(y_r, 11) t¢y_r 11’
define(z_r, 12) !‘z_r 12’

begin_main

mov
mov

b
mov

inner:
add
st

id
call
14
sth

mov
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louter for test

17, %x_r Ix = 17

-5, %y_r ly = -5

outer_test 'branch to outer loop test

1, %z_r 'use delay slot for initialization
!statement

!code for imner loop
#ho0, %z_r, %ol
ho0, [fp + d_s]

[Vfp + d_s], %o0
.mul

[%fp + b_s], %ol
%00, [hfp + cl_sl

hy_r, %o0
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call Ldiv
mov hz_r, %ol
1d ifp + a_s], %ol
add %00, %ol, %00
st w0, [Ufp + c_s]
inner_inc: !inner for increment statement
1d [hfp + a_s1, %00
sub o0, 10, %o0
st %00, [Ufp + a_s]
inner_test: finner for test
mov hz_r, %o0
call .mul,
mov hy_r, %ot
1d (htp + a_s], %ol
cmp %ol, %o0
bge,a inner
1d (%fp + a_s], %o0
outer_inc: 'outer for increment statement
add hz_r, 1, Y=z_r
outer_test: fouter for test
add hx_r, %y_r, %0
cinp hz_r, %o0
bl,a inner_test
st hz_r, [4fp + a_s) 1a = »
end_main

When this code is processed by m4 we obtain the assembly language:

as = -4
b_s = -8
cl s = -9
c_8 = -16
d_s = -20
'z_r 10
'y_r 11
tz_r 12

.global _main
_main: save hsp, -88, Ysp
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mov
mowv

mov

inner:
add
st

1d
call
1d
stb

mov
call
mov
14
add
st

inner_inc:
14
sub
st

inner_test:
mov
call
mov
14
cmp
bge,a
1d

outer_inc:
add

outer_test:
add
cmp
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17, %10 Ix = 17

-5, 411 'y = -5

outer_test !pranch to outer loop test

1, ¥12  luse delay slot for initialization
!statement

!code for inmer loop
%00, %12, %o0
%o0, [%fp + d_s]

[4fp + d_s], %o0
.mul

[%fp + b_s]l, %ol
%00, [Afp + ci_s]

%11, %o0

.div

%12, %ol

[ifp + a_s], %ol
%00, %ol, %o0
%00, [Afp + c_s]

linner for increment statement
[%fp + a_s], %00
%00, 10, %00
ho0, [Wfp + a_s]

tinner for test

%12, %e0

.mul

%11, %ol

[ifp + a_sT, %ol

%ol, %o0

inner

[hfp + a_s]l, %o0

louter for increment statement
%12, 1, Y12

'outer for test
10, 411, %o0
%12, %o0
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bl,a inner_test

st w2, [4fp + a_s] ta = z
mov 1, ¥%gl

ta 0

The program is loaded into memory, by calling the C compiler. The resulting code
in memory is then:

0x2290 <main>: save %sp, -88, %sp
0x2294 <main+4>: mov Ox11, %10

0x2298 <main+8>: mov ~5, %11

0x229¢ <main+12>: b 0x2300 <main+112>
0x22a0 <main+16>: mov 1, %12

0x22ad <main+20>: add %o0, %12, %a0
0x22a8 <main+24>: . 8t Yo0, [Ufp+-20]
0x22ac <main+28>: 1d [Yfp+-201, %00
0x22b0 <main+32>: call 0x4090 <_DYNAMIC+144>
0x22b4 <main+36>; 1d [%fp+-81, %o1

0x22b8 <main+40>: 8tb %00, [%fp+-9]
0x22bc <main+a4>: mov %11, %o0

0x22¢0 <main+48>: call 0x409c <_DYNAMIC+156>
0x22¢c4 <main+52>: mov %12, %o1

0x22¢8 <main+56>: 1d [Yfp+-41, %ol

0x22cc <main+60>: add %00, %ol, %o0
0x22d0 <main+64>: st %oC, [¥fp+-18]
0x22d4 <main+68>: ld [Ufp+-4], %o0
0x22d8 <main+72>: sub %00, Oxa, %o0
0x22dc <main+76>: st %00, [%fp+-4]

0x22e0 <main+80>: mov %12, %ol

0x22e4 <main+84>: call 0x4090 <_DYNAMIC+144>
0x22e8 <main+88>; mov %11, %o1

Ox22ec <main+92>: 1d [%fp+-4], %ol

0x22f0 <wain+96>: cmp %ol, %00

0x22f4 <main+100>: bge,a 0x22ad <maint+20>
0x22f8 <main+104>; 1d [hfp+-41, %00
0x22fc <main+108>: inc %12

0x23C00 <main+112>: add %10, %11, %o0
0x2304 <main+116>: cmp %412, %00

0x2308 <main+120>: bl,a 0x22e0 <main+80>
0x230c <main+124>: st %12, [Lfp+-4]

0x2310 <main+128>; mov 1, %gl

0x2314 <main+132>: t 0

We should make sure that we fully understand the three representations of the
program: the macro version, the assembler version, and the gdb version. It is also
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important that we understand stack variables and the manner in which macros may
be used to compute the offscts so that the variables will be correctly aligned. Note
that gdb prints the nop instruction as sethi %hi(0x0), g0.

One-dimensional Arrays

A one-dimensional array, or vector, is a block of memory into which a number of
variables, all of the same type, may be stored. The array address is the address
of the first element of the array in memory and is a pointer to the array. The ith
array element may be accessed in memory at:

address_of_first_element + i * size_of_array_element_in_bytes

which is consistent with the definition of an array in C. Thus, a five-element integer
array:

int ary[5];

would be represented in memory as shown in Figure 5.4. It occupies 5 x 4 bytes of
nmemory.

ary: ary[0]

ary +4: ary[1]

ary + 8: ary[2]

ary + 12; ary[3]

ary + 16: ary[4]
ary + 20;

Figure 5.4: The array ary[5)

In order to provide space for such an array on the stack we nced to modify
our stack offset macros slightly to allow us to specify a variable of a number of
bytes different from its alignment. We will do this by providing an optional third
argument to var which if present specifies the total number of bytes of storage with
the alignment still specified by the second argument.:

define(var, ‘define(‘last_sym’,
align_d(eval(last_sym - ifelse($3,,$2,$3)), $2))$1 = last_sym’)

This macro makes use of a new construct “ifelse.” Ifelse is a built-in m4 macro
that evaluates all its arguments and then, if the first string argument is identical to
the second string argument, the value of the ifelse is the third string argument. If
the first two arguments are not identical, then the value of the ifelse is the fourth
argument. For example:
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ifelse(a,b,c,d)

results in the string “d,” as the string “a” is not the same as the string “h.”

In the use of the ifelse in the var macro, the third argument is evaluated and
compared to the null string. Tf the third argument is not supplied, then it hag
the null value and so this functions as a test to see if a third argument has been
supplied. Where the third argument i3 missing, the number subtracted from the
last, sym is the second argument. Where a a third argument is supplied, then
the third argument is subtracted. The alignment of the stack is still the second
argument. For example, to declare the following automatic variables:

int a;

char c1;
int ary(&];
char ¢2;
int 4d;

we would write:

local_var

var(a_s, 4)
var{cl_s, 1)
var(ary_s, 4, 4 * B)
var(c2_s, 1)
var(d_s, 4)

which would result in the following expansion:

as = -4
¢l_s = -5
ary_s = -28
c2_s = -29
d_s = -38

It will be seen in Figure 5.5 that the array begins at %fp -28 allowing successive
array elements to be accessed at higher memory locations. For example, ary[2]
is located at %fp - 28 + 8. Notice that the macros generate addresses that are
always aligned, assumning that the stack and frame pointers are doubleword aligned.

To load ary({i] into %00, if 1 were stored in register %i_r, would be:

s11 hi_r, 2, %00 Mmultiply i by 4°
add #tp. %o0, %00 !‘add the frame pointer’
1d (%00 + ary_sl, %o0

Consider the following program to find the maximum element in the array nums:
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%ip - 36:
fp - 29:
%fp -28:

%fp -28 + 4:
%fp -28 + 8:
%fp <28 + 12:
%1p -28 + 16:
Tofp - 5:
Dfp - 4:
Gfp:
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Figure 5.5: an array on the stack

int nums[100] = {1, 45, -16, 23, 238, 45, 17};

int n = 7; /* number of elements in array */
register int 1i; /% for index */

register int max; /* to hold the maximum element */
max = nums[0]; /* initialize max to first element */

for (i = 1; i < n; i++) /* run through rest of array */

if (nums[i] > max) /* storing largest number */

max = nums[i];

Its translation into assembly language is a follows:

define(‘local_var’, ‘!local variables

define(‘last_sym’, 0)’)

define(‘align_d’, ‘eval($2 * ((($1 + 1) / $2) - 1))

define(‘var’, ‘define(‘last_sym’,

align_d(eval(last_sym - ifelse($3,,$2,$3)), $2))$1 =
define{‘begin_main’,‘.global _main

_main: save %sp, align_d(eval(

—64 ifdef(‘last_sym’,‘+ last_sym’)), 8), %sp’)

define(‘end_main’, ‘mov 1, Y%gt
ta 0’}

local_var
var{nums_s, 4, 100 * 4)
var(n_s, 4)

!‘the array nums’

lagt_sym’)
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define(i_xr, 10) I*index in %10’
define(max_r, 11) Vimax in %11°

begin_main

/* a macro to initialize the array nums */
define(initialize, ° mov $2, %o0
st %00, [%fp + nums_s + $1]
ifelse($3,,, ‘initialize(
eval ($1 + 4),8$3,$4,$5,$6,%7,$8,$9) "))

initialize(0, 1, 45, -16, 23, 38, 45, 17)

mov 7, %o !“initialize the variable n = 7°

st %00, [fp + n_s]

14 [%fp + nums_s], Ymax_r !‘max = nums_s [0]°

b fortest !“branch to the for test’

wov 1, #i_r !‘the for initialization expression’
for: 811 #i_r, 2, %00 o0 = 4 % 47

add Afp, %00, %00 1900 = Yfp + i * 4

14 (%00 + nums_s], %00

cmp %00, Ymax_r

ble keep

nop

mov %00, Ymax_r !“found a larger ome’
keep:

add hir, 1, it 1i++?
fortest:

1d [%fp + n_s], %00 I “the test’

cmp wi_r, %00

bl for

nop

end_main

Stack variables have to be initialized by loading the constant into a register and
then storing it on the stack. We wrote a macro, initialize, to do this instead of
writing a number of mov and st instructions. The arguments to initialize are
the stack offset in bytes from the beginning of the array on the stack, followed by
up to eight initializers. The macro generates a mov and st instruction to initialize
the first array element and then uses an ifelse to check if there is an additional
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array element to initialize. If there is, it calls initialize again, with the first
argument incremented by four and all the remaining arguments one place to the
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left {remember that missing arguments are replaced by null strings).

Note that in accessing numsfi] we must first multiply i by four, which we do
by left-shifting two, and then add the result to %fp beforc we can load the value
using as address the register containing %fp + i * 4 plus nums. We have not yet
attempted to remove the nop instructions. The program’s expansion into assembly

language is as follows:

nums_s

n.s

= -400 !the array nums
~-404

lindex in %10
Imax in %11

.global _main

_main: save

hsp, -472, sp

/* a macro to initialize the array nums */

mnov
st
mov
st
mov
st
mnov
st
mov
st
mov
st
mov
st

mov

st

1d

mov

1, %00

%00, [%fp + nums_s + 0]
45, %00
%00, [ifp
-16, %00
%00, [4fp + nums_s + 8]
23, %ol

%00, [%fp + nums_s + 12]
38, %o0

%00, [4ifp + nums_s + 16]
45, %o0

%00, [hip + nums_s + 20]
17, %o0

o0, [ffp + nums_s + 24]

+

nums_s + 4]

7, %00 l!initialize the variable n = 7
%00, [#fp + n_s]

[%fp + nums_s], %11 Imax = nums_s[0]

fortest 'branch to the for test
1, %10 fthe for initialization expression
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for: s11 %10, 2, %00 o0 = i * 4
add WEp, %00, %o0 'o0 = Jfp + i * 4
1d [%00 + nums_s], %00
cmp #o0, %11
ble keep
nop
mwov %o0, %11 'found a larger onme
keep:
add %10, 1, %10 li++
fortest:
1d [%fp + n.s], %o0 'the test
cmp %10, Y%o0
bl for
nop
mov i, %sl
ta 0

Note the macro expansion of the initialization of the array.

We are beginning to accumulate a number of macros that we will need in all
our programs. Instead of copying them into the beginning of each program, we
can put them all into a file and simply include the file at the beginning of each
program. This is done by the include macro, whose argument is the name of the
file to include. The macros we have accumulated so far, and placed in a file called
macro_defs.m, are:

divert(-1)
define(‘local_var’, ‘l!local variables
define(‘last_sym’, 0)’)
define(‘align_d’, ‘eval($2 * ((($1 + 1) / $2) - DI
define(‘var’, ‘define(‘last_sym’,
align_d(eval(last_sym - ifelse($3,,$2,$3)), $2))%1 = last_sym’)
define(‘begin_main’,‘.global _main
_main: save hsp, align_d(eval(

~64 ifdef(‘last_sym’, ‘+ last_sym’)), 8), %sp’)
define(‘end_main’, ‘mov 1, %gl

ta 07)

divert

We have surrounded the file with divert macros to avoid extra blank lines in our
output.
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Improvements to the Code

Observation of the macro code for the above program indicates that n should be
stored in a register to avoid the need to repeatedly load it into a register:

include{macro_defs.m)

define{n_r, 12)

mov

1d

mowv

for: s11
add
14
cop
ble
nop
mov

keep:
add

fortest:
cmp
bl
nop

7, ¥n_r

[%fp + nums_s],

fortest
1, 4i_r

%i_r, 2, %ol
%ip, %o0, %ol

[%00 + nums_s],

%00, Ymax_r
keep

%00, Ymax_r

$i_r, 1, %i_r

fi_r, dn_r
for

‘n in %12°
Ymax

Y00 = 1 * 47
o0 = Jfp + 1 * 4?
%00

Poidr?

It is possible to fill the first delay slot by moving back the increment statement,
following the label keep. The increment statement is always executed, whether or
not the value of max is updated. The second delay slot can be filled by moving the
first instruction of the for into the slot and annulling the statement:

mov

7, %n_r
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1d U4fp + nums_s], Ymax_r
b fortest
mov 1, %i_r
for: add %fp, %o0, %00 o0 = ¥%fp + 1 * 4’
1d (%00 + nums_s], %00
cmp 400, Ymax_r
ble keep
add #r, 1, Y%i_r 1Eids?
mov %00, Ymax_r
keep:
fortest:
cmp %i_r, Yn_r
bl,a for
sll %i_r, 2, Y%o0 1900 = 1 % 47
end_main

By using a pointer variable, we can replace the subscript computations that involve
many instructions, with the addition of four to the pointer, to point to the next
element in the array:

define{ptr_r, 13) prr_r in %13’
mov 7, dn_r
add “fp, nums_s + 4, hptr_r “points to nums[1}’
14 Ciptr_r - 4], Ymax_r Vfirst value’
b fortest
mov 1, %i_r
for: cmp ho0, Ymax_r
ble keep

add wir, 1, %i_r 1Oi44?
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mov
keep:
add
fortest:
cmp
bl,a
14
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%00, Ymax_r
sptr_r, 4, Yptr_r 'ptr_r++?
hi_r, %o_r

for
[Yptr_r], %00 !‘#ptr_r’

Note the initialization of %ptr_r by adding %fp to nums. We have replaced the s11
instruction in the delay slot by the first instruction of the for, the 1d instruction.
By counting down we can eliminate the cmp instruction setting the condition codes
as we decrement %i_r:

14 Lifp + nums_s], Ymax_r

orce %g0, 6, Yi_r |“set icc for test’

b fortest

add #fp, nums_s + 4 * 6, Yptr_r

! “points to seventh element’

for:

cmp %00, Ymax_r

ble keep

subcc Ki_r, 1, %i_r 194—-7

mov %00, Ymax_r
keep:

sub dptr_r, 4, Yptr.r
fortest:

bg,a for

1d Chptr_rl, %00

end_main

Note that we have to set the condition codes before the branch to fortest. I
we did not use the orce instruction, the condition codes would not be set for the
execution of the bg instruction. The loop is now seven instructions long.
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One final improvement is to move the pointer decrement instruction between
the 1d and the use of the loaded data in the immediately following cmp instruction
{see footnote on page 134).

1d [%fp + nums_s], Ymax_r !‘max = nums[0]’

oree %g0, 6, %i_r | “set icc for test’

ba fortest

add 4fp, nums_s + {4 % 6), Yptr_r

!‘points to seventh element’

for:

sub iptr_r, 4, Yptr_r ptr--?

cmp %00, Ymax_r

ble fortest

subcc  Yi_r, 1, %i_r ti-—-

mov %o0, Ymax_r
fortest:

bg,a for 'testing %i

1d (Vptr_rl, %o0

What would the C program to produce this code look like?

int nums[1001 = {1, 450, -16, 23, 38, 45, 17};

register int i; /* for index */
register int max; /* to hold the maximum element */
register int *ptr; /* array pointer */

for(max = nums[0], i = 6, ptr = nums + 6; 1 > 0; —1i)
if (#ptr-- > max) /* storing largest number */
max = *ptr;

Tests against zero are better if the test can be combined with an addce or subcc
instruction, as they generally eliminate the need for a separate cmp instruction.
The use of pointers is generally better than an indexing, as it avoids computing an
index expression, especially when stepping through an array element by element.

Summary

In this chapter we introduced the stack to store data. We also introduced the load
and store instructions and described the need to align memory data. Macros were
given to define stack offsets for variables to be stored on the stack. These macros
handled the alignment of byte, halfword, word, and double-word data as well as
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defining stack offsets for arrays. A fairly extensive example was given demonstrating
the use of the stack for automatic variables and the coding of a nested for statement.

One-dimensional arrays were introduced with macros to assign space on the
stack for them. A second example demonstrated the coding and optimization of a
routine to find the maximum element in an array.

Exercises

5-1 Define symbolic stack offsets in an assembly language program for the following
automatic variables:

int a, b;
char d;
int c;
short e;

and write the appropriate save instruction to provide the storage.

5-2 Define stack offsets for an assembly language program using the macros defined
in macro_defs.m: local_var, var, and begin_fn, for the following automatic
variables:

char a, b;
int d;

char c;
short e;

5-3 Bearing in mind alignment problems, how would it be best to declare automatic
variables in C programs to minimize stack space?

5-4 Write a program to initialize an array:
int ary{l = {3, 4, -5, 6, 2, 0}
and then to find the largest element by searching the array.
5-5 Write a program to initialize an array:
int aryl[l = {3, 4, -5, 6, 2, O}
and then to sort the array, smallest element first.

5—6 Write a program to initialize each element of an array:

int fact[6];
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to the factorial of the subscript.

57 You are to translate the following C code into assembly language. All variables
are to be allocated space on the stack using local_var and var macros. For
program entry you are to use begin_main and end_main macros. In the program
you are to use only registers %00 and %o1. All variables are to be accessed from
the stack such that at any time during program execution the latest values of the
variables are located on the stack.

You are to execute the statements in the order given. Do not try to optimize your
code.

char ca;

short sb;

int ic;

char cd;

short se;

int ig;

ca = 17;

cd = ca + 23;
ic = -63 + ca;

ig = ic + cd;
sb = ic / ca;
se = ¢d * sb + ic;

At the end of the program the values of the variables should be ca = 17, 8b = -2,
ic = -46, cd = 40, se = -126, and ig = -6,

5-8 Translate the following C code to assembly language using macros suitable
for processing by m4. You may include macro_defs.m, which defines local_var,
var, begin_main, and end_main. Apart from the temporary registers %00 and %ol,
define all register names symbolically and allocate the space on the stack for the
array.

int ary[10];
register int i, j, sum;

i=20;
sum = 0;
do{
j=1
do

sum += j++;
while (j <= i);
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aryli++] = sum;
}
while (i <= 10);

5-9 Translate the following C code to assembly language using macros suitable for
processing by m4. You may include macro_defs.m, which defines local_var, var,
begin_main, and end_main. Assign all variables to the stack, updating their values
every time a new value is computed, unless they have a register declaration. Apart
from the temporary registers %00 and %o1, define all register names symbaolically.
No constants are to appear as machine instruction operands except for 2, 3, and 4.

Eliminate all nop’s.

int a=4, b= 3;
char c;
register int d, e;

c=a*xb/ 2;
if (a+b>c)
d = at++;
else
b=b/ c;
¢ = —-b;

5-10 Translate the following C code into assembly language using macros suitable
for processing by m4. You may include macro_defs.m, which defines local _var,
var, begin_main, and end_main. Apart from the temporary registers %o0 and
%ol, define all register names symbolically. No constants are to appear as machine
instruction operands except for the constant 10. Eliminate all nop instructions.

int ary[10];

register int i;
register int *ptr;

for(ptr = ary, i = 10;-—-1i >= 0;)
*ptr++ = 1 * i;
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'DATA STRUCTURES

6.1

6.2

Introduction

Arrays and structures cannot be stored in registers hecause in both cases it is
necessary to perform address arithmetic; registers do not have addresses. Multi-
dimensional arrays and structures provide for more sophisticated data structuring;
they add complexity at the architectural level in addressing both clements and
fields. While the addressing of structures is handled at assembly time, arrays re-
quire repeated multiplication by constants and addition to compute the address of
array clements. Macros to generate code for the multiplication by constants are
developed in this chapter.

Array Storage and Addressing

An array is an indexable data structure whose elements are all of the same type.
That is, given indices ¢, 5, &,... the ith, Jth, kth element may be accessed. We
discussed one-dimensional arrays in the last chapter in which the ith element may
be accessed by:

address_of _first_clement + i size_of_array_element_in_bytes

In order to make space on the stack for such a one-dimensional atray, for example:
int a[100];

we would use the var macro:
var(a, 4, 100 * 4)

which defines the offset a for the first element of the array and reserves 400 bytes
of storage on the stack, aligned on a four byte boundary. Accessing the i element
requires a shift, an add, and a load or store instruction:

159
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s1l %i_r, 2, %0 o0 = i % 4
add Wip, %00, %o0 100 = %ip + i * 4
14 [%00 + a_s], %00 1%00 = [Wfp + a + %i_r * 4]

Multidimensional Arrays

While the mapping of a multidimensional array may take many forms, two are
predominantly used, row major order and column major order. The mapping, for
row major order, of the ith, jth, kth element of an array ary is:

int arr{di] (dj] [dk] ;
%fp + arr_s + i x dj * dk * 4 + j*dk x4 + k % 4
or:
Mp +arr.s + ((4 *x dj + j) * dk + k) * 4

where the 4 relates to the size of an int, four bytes.
The same array stored in column order would be addressed as:

%fp+arr_s+i*4+j*di*4+k*di*dj*4
Qr:
‘Z,fp+arr_s+((k*dj+j)*di+i)*4

With the exception of Fortran, most languages, including C, use row major
order for addressing arrays. Fortran uses column major order to make more efficient
array addressing for a class of computations. When we are aware of the addressing
arithmetic, we may find it beneficial to transpose arrays in some computations to
make the addressing more efficient. We will discuss here only row major order
storage of multidimensional arrays.

In order to provide storage for a multidimensional array we may use the var
macro. Consider the array:

short ary[16] [3]{4][15];
This will require 16 * 3 * 4 % 15 * 2 bytes of storage, halfword aligned:

define(d1l, 16)
define(d2, 3)
define(d3, 4)
define(d4, 15)
var(ary_s, 2, dl * d2 * d3 * d4 * 2)
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Addressing requires evaluation of:

Mp +ary s + (((1 % d2 + §) *d3 + k) * dd + 1) * 2

which we might write as:

moev
call
mov
add
call
mov
add
call
mov
add

811

add
1d

Hi_r, %o

.mul

d2, Yol

%i_r, %oC, %o0
.mul

a3, %ol

#e_r, %o0, %oD
.mul

d4, %ol

%1_r, %o0, %00
%o, 1, %00

WEp, %o0, %00
(%00 + ary_s],

1%00 = i * d2
1%00 = i * d2 + j

1

'{i * d2 + j) * 43
(i % d2 + j) * d3 + k

PO % d2 + §) * d3 + k) * d4
PO(L # d2 + 3) * d3 + k) * d4
'+ Y1l r

PCCGL * d2 + §) % d3 + k) * d4
P+ %l_r) » 2

%o 1%00 = ary[i][j] (k] [1]

In general, an n-dimensional array requires n adds and 1 — 1 multiplics to compute

an address.

6.3.1 Lower Bounds Different from Zero

Arrays may be declared with a lower bound differing from zcro, as in Pascal [7):

b: arrayf1l1,.ul, 12..u2, 13..u3] of integer;

Each subscript now has a dimension u, —I,, +1 and we might define the dimensions

a8:

dil =
d2
d3

ul - 11 + 1
uz2 - 12 + 1
ujd - 13 + 1

The storage required is d1 * d2 * d3 * 4 bytes and thus the storage might be

obtained by:

define(dl, eval(u_1 -
define{d2, eval(u_2 -
define(d3, eval(u_3 -
var(b_s, 4, eval(dl =

11+ 1))
1.2 + 1))
1.3 + 1))
d2 * d3 * 4))

Note that b_s is the address of b[11, 12, 13].
The address of the ith, jth, kth element is:
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Mp +bos + (((4-11) *dj+ (G -12)) *dk + (k - 13)) * 4
or:

Mp +b.s + (A *xdj +j) *dk + k) * 4
- ((11 * dj + 12) * dk + 13) * 4

By defining a further constant:
define(b0, eval(b_s - ((11 = dj + 12) * dk + 13) * 4)

we may write the code to load the ith, jth, kth element of arr: array [-2..3, 0..9,
2..4] of integer:

define(1_1, -2)
define(u_1, 3)
define(1_2, 0)
define(u_2, 9)
define(1_3, 2
define(u_3, 4)

define(di, eval(u_1 - 1_1 + 1))
define(d2, eval(u_2 - 1_2 + 1))
define(d3, eval(u_3 - 1.3 + 1))

define(i_r, 10)
define(j_r, 11)
define(k_r, 12)

local_var
var(arr_s, 4, dl * 42 * 43 * 4)

bO = arr_s - ((1_1 * d2 + 1_2) * d3 + 1.3) * 4

mov -2, Y%i_r

mov 0, %i_r

mov 2, %k_r

mov #i_r, %o0

call .mul

mov d2, joil 1%00 = 1 * d2

add %i_r, %00, %o0 1%00 = i * d2 + j

call .mul

mov d3, Yol (i * d2 + j) * d3

add Yk_r, %o0, %o0 1(i *d2 + 3) * 43 + k.

s11 %00, 2, %o0 PCCCL * d2 + j) * d3 + k) * 4
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add “Efp, %00, %o0
14 [%00 + b01, %00 1%c0 = ary[i][j] [k]

Thus, arrays whose lower bounds differ from zero do not require any additional
instructions in the array element access.

6.3.2 Array Bound Checking

In many high-level languages, array bounds are checked before an array is accessed.
For instance, in the example given above, we must check that —9 <1< 3 and
0 <7 <9andsoon. In order to provide for this in assembly language we must
check each subscript:

lower-bound < index < upper-bound
0 < index — lower-bound < upper-bound — lower-bound
0 < index — lower-bound < dimension

In assembly language:

define(1_1, -2)
define(u_1, 3)
define(1_2, 0)
define(u_2, 9)
define(1_3, 2)
define(u_3, 4)

define(dl, eval(u_1 ~ 1_1 + 1))
define(d2, eval(u_2 - 1_2 «+ 1))
define(d3, eval(u_.3 - 1_3 + 1))

define{i_r, 10)
define(j_r, 11)
define(k_r, 12)

local_var
var(arr_r, 4, d1 # d2 * d3 =* 4)

begin_main

mov -2, $i_r
mov 0, #j.r
mov 2, fk_r

subcce Ai_r, 1.1, %ol 1¢4 - 1._1°
bl error
cmp %hol, di
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bge
add
call
mov
subcc
bl
cmp
bge
add
call
mov
subce
bl
cmp
bge
add

a1l
add
1d

error:

end_main

error

hol, %g0, %00
.mul

d2, %ol

%i_r, 1.2, %ol
error

%o1, d2

error

%ol, %00, Y%o0
.mul

43, %ol

Yk_r, 1.3, %ot
error

%ol, d3

error

%ol, %00, %e0

%00, 2, %00
#tp, %ho0, %o0
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!“for consistency’

P%o0 = (1 - 1_1) * 42’

%00 = (i - 1_1) * d2 + (j - L_2)"

1@ - 1_1) # d2 + (§ - 1_2) * d3’

19{i - 1_1) * d2 + (j - L_2) > 43’
t+ (k - L_3)?
1iw 47

(%00 + arr_rl, %eo0 !‘%o0 = ary[il[j][k]’

For each dimension of the array we now need three additions and one multiplication,
which is quite expensive.

If the subscripts in an array access are given as constants, such as: arr[-1] [3] [3],
then the offset may be computed by the assembler:

define(1_1, ~2)
define(u_1, 3)
define(l_2, 0)
define{u_2, 9)
define(1_3, 2)
define(u_3, 4)

define(dl, eval(u_1l - 1_1 + 1))
define(d2, eval(u_2 - 1.2 + 1))
define(d3, eval(u.3 - 1.3 + 1))

local_var
var(arr_r, 4, di * d2 * d3 * 4)

b0 =

arr_r - (1.1 * d2 + 1_2) * d3 + 1_3) * 4
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begin _main

1d [Afp + b0 + ({{(~1 * d2 + 3) * d3 + 3) << 2)1, %00
1%00 = ary[i] [j] [k]

end_main

and the resulting code is the same as if we had accessed a simple variable. However,
not all compilers will do this and, in general, one should expect considerable arith-
metic for subscript computations, Arrays should be used only when the subscripts
do indeed need to be computed and are not constants. If we are using arrays with
constant subscripts, then structures are appropriate,

Address Arithmetic

If the array dimensions are constant, as in C, then the multiplications in the array
address computations involve the product of a number with a constant. If this
is the case, then the multiplication is better handled by shifting and adding. For
example, to multiply the contents of register %00 by five, leaving the result in %o1,
we might write:

mov %00, %ol Itimes one
sll %00, 2, %a0 ltimes four
add hoO, %ol, %ol Itimes five

Given the binary representation of a number, it is a simple matter to generate
such code:

*/ multiply %o0 by 03514 octal = 011 101 001 100 binary/+

g1l %00, 2, %ol 104
gll %ol, 1, %o0
add %ho0, %ol, %ol 1014

sll %00, 3, %00
add %00, %01, %ol 10114

sl1 %00, 2, %o0
add %o, %ol, %ol 10514
s11 %00, 1, %00
add %00, %ol, %ol 101514
g1l %00, 1, %o0
add o0, %ol, %oi 103514

Scanning the multiplier from the right in binary whenever we see a one we add the
multiplicand to the product and then shift the multiplicand left one place; when
we see a zero we simply shift the multiplicand left one place.
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If we need to multiply by constants containing strings of ones, then we may
make use of the Booth recoding, which eliminates strings of ones by means of the
following recoding:

01110 = 10000 — 10

Here the repeated adding and shifting are replaced by a subtraction, a shift,
and an add. Bits in the multiplier are examined one by one starting from the least
significant bit; the bits are compared to a state bit, which is initialized to zero.
After each bit is examined it replaces the state bit. When the comparison is made:

o If the state and the examined bit are the same, shift the multiplicand left one
place.

o If the state is a one and the examined bit a zero, a one/zero transition, add
the multiplicand to the product and then shift.

o If the state is a zero and the examined bit a one, a zero/one transition,
subtract the multiplicand from the product and then shift.

Consider multiplying %00 by 7 = 011%L

The initial state is zero and the first bit examined a one, thus we subtract
and shift, the state becomes a one; the next bit is the same as the state,
shift; the next bit is the same, shift again; finally, we encounter the
high-order bit a zero, with a one/zero transition we add.

In assembly language:

sub 0, %o, %ol Iresult into %ol
511 %00, 3, %00 'three shifts accumulated
add %o0, %ol, %ol ltimes seven

Multiplication by constants occurs quite frequently and a set of macros has been
developed to generate the code in line (see Appendix B).

In Appendix B a macro cmul is developed with arguments: the register that
contains the multiplicand; the positive, constant multiplier; a temporary register
into which to place the shifted multiplicand; and, finally, the register into which
the product is to be placed.

‘emul (1=multiplicand register, 2=constant multiplier, 3=temp,
4 = product)’

'The macro works only for positive constants and requires that the multiplicand
and temp registers are different.

Making use of the cmul macro we can rewrite the multiple array access code,
given on 161, as:
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cmul(  %i_r, 42, %gl, %o00)

add Ri_r, %00, %00 1'%00 = i % d2 + i’

cmul { %o0, d3, %el, %o0)

add Wk_x, %00, %0 19(i % 42 + j) * d3 + k’

cmul (%00, d4, %gl, %o0)

add #_r, %00, %00 PE((i * d2 + j) * d3 + k)
! * d4 + %17

81l %00, 1, %00 PO * d2 + j) * d3 + k)

P dd + Y1) % 22
add hEp, %00, %00
ldsh (%00 + ary_s], %00 !‘%0 = ary[i) [ [k]’

which generates the following code:

!'start open coded multiply for
tho0 = %10 * 3, using %gl as temp
811 0, 2, %gl
sub kgl, %10, %e0

! end open coded multiply
add %11, %00, %00 %00 = i % d + h|

!start open coded multiply for

%00 = %00 * 4, using %gl as temp
s11 %o0, 2, %00

! end open coded multiply

add %12, %00, %00 !(i * d2 + j) * d3 + k

!'start open coded multiply for
1%00 = %00 * 5, using Y%gl as temp
511 %00, 2, gl
add hel, %o, %o0

! end open coded multiply

add H13, %00, %00 1((i * d2 + J) *d3 + k) * d4
P+ 1

81l %00, 1, %00 ({4 * 42 + 3 * d3 + k)
'+ dd + %1) % 2

add WEp, %00, %00

ldsh [%o0 + ary_s], %00 %0 = ary[i] [5] k]

When declaring multidimensional arrays, as in C, it is to our advantage to keep
dimensions as powers of two.
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Structures

A structure is a block of contiguous memory allocated to store a number of variables.

The variables of a structure are referred to as fields, and a structure may contain

variables of many different types. A structure definition relates to the offsets of the

individual fields with respect to the beginning address of the structure. Individusl

fields may be accessed with respect to a pointer to the beginning of the record.
Thus, the structure:

struct example {
int a, b;
char 4d;
short x, y;
int u, v;

}

defines the following offsets:

example_a = 0
example_b = 4
example d = 8

example_x = 10
example_y = 12
example_u
example_v = 20

size_of _example = 24

]
—
[»23

I

The fields of the structure are shown in Figure 6.1.

a=0

b=4

d=3§ v

x=10

y=12
.

u=16

v =120

Figure 6.1: The Fields of the Structure

If a pointer to the first element in the structure is in a. register, say, 410, then
the various fields may be accessed by:
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1d (410 + example_a], %o0 100 = a
1d [%10 + example_bl, %o0 1%00 = b
ldub [%10 + example_dl, %00 %00 = 4
1ldsh [410 + exawple x], %00 1400 = x
ldsh [#10 + exanple_y], %00 %0 = y
1d (%10 + example_ul, %o0 o0 = u
14 [%10 + example_v], %00 %00 = v

We clearly need to use macros to define these offsets; however, we must be
carcful of memory alignment. Note that in the above example we defined the
offset for example_d to be eight not at seven, which would have caused a MEemory
alignment error when we tried to access the variable.

Macros to define structure field offsets are very similar to the macros used to
define the local variable offseis on the stack; the differonce is that structure offgets
increase positively, whereas stack variable offsets increase negatively, We also need
to define the size of the structure in bytes and the maximum alignment needed
by the structure. We will define two symbols for these quantities consisting of
the string “size_of_” appended with the struct name and “align_of_" appended
with the struct name. We will define three macros:

‘begin defining the fields of a structure’
‘$1 = struct pame’

define(begin_struct, ‘!‘define’ structure $1
define(‘size_of_struct’,O)define(
‘namehof_struct’,$1)define(

' ‘align_of _struct’, 0)7)

‘define a field of a struct’
‘$1 = name of field, $2 = alignment, $3 if present no. bytes?’
define(field,

‘name_of_struct‘ﬂ’$1 = align_d(size_ofhstruct,$2)define(

'size_oqutruct’, eval(align_d(sizehof_struct,$2)

+ ifelse($3,,$2,$3)))define(

‘align_of_struct’, ifelsef

eval($2 > align_of_struct),1,$2,align_of_struct))’)

‘end definition of a struct’
‘$1 = name, defines size_of_$1 to be the gize in bytes aligned
to align_of_struct’
define(‘end_struct’, ‘ifelse(
$1,name_of_struct,‘define(
‘size_of_$1’,align_d(size_of_struct, align_of_struct)) defipe(
‘align_of_$1’,align_of_struct)

'size_of_$17, size_of _$1 bytes’,®
errprint (* structure begin does not match end’)’)?)
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The first macro defines two symbols, size_of _struct and asymbol representing
the alignment of the structure, align_of_struct, to be zero. The second macro,
field, has three arguments: the name of the field, its alignment, and the size in
bytes if not equal to the alignment. The field name is prepended with the name
of the struct. The second macro defines the field to be equal to size_of_struct
appropriately aligned. The macro then updates the size of the structure and the
alignment, keeping track of the maximum alignment so far. Note that the arithmetic
relational operator “>” has the value “1” if the condition is true and “0” if false.

" We have redefined the align_d macro to include positive mumbers, which are
needed in the case of structures:

‘returns $1 aligned according to $2’
define(‘align_d’, ‘ifelse($1,0,0,eval($l < 0,1,
‘eval ($2 * ((($1 + 1) / §2) - 1))°,

‘eval (32 + ((($1 - 1) / $2) + 133°)7)

The final macro, end_struct, defines a symbol to represent the size of the
structure and the alignment,

An example of the use of the macros is the representation of the C structure
declaration:

struct ex2 {

char a;
int b;
short cl[3];
char d;
int e;
char f£;

}
in assembly language as:

begin_struct (ex2)
field(a, 1)
field(b, 4)
field(c, 2, 2 * 3)
field{(d, 1)
field(e, 4)
field(f, 1)
and_struct(ex2)

which results in the following code being generated:

ldefine structure ex2

ex2_a =0
ex2_b

H
X
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ex2_.c =8
ex2_d4 = 14
ex2_e = 16
ex2_f = 20

'size_of_ex2, 24 bytes

The fields of the structure are shown in Figure 6.2,

0 .a:
4 b

8 .c[0]:
<[1]:
[2]:

14 d:
16 e
20 i

size_of_ex2 =24
align_of ex2 =4

Figure 6.2: The Fields of the Structure ex?

Structures as Automatic Variables

We might declare two such structures, si and s2, as local variables as follows:

and then

local _var
var{sl, align_of_ex2, size_of_ex2)
var(s2, align_of_ex2, size_of _ex?2)

access the fields of the structure as follows:

begin_struct (ex2)
field(a, 1)
field(b, 4)
field(ec, 2, 2 * 3)
field{(d, 1)
field(e, 4)
field(f, 1)
end_struct (ex2)

local_var

171
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var(sl, align_of_ex2, size_of_sx2)
var(s2, align_of_ex2, size_of_ex2)

begin_main

1d [ifp + st + ex2 b], %o0 1fa2.f = s81.b’
sth %00, [hfp + 82 + ex2_f]

1ldsh [Hfp + 81 + ex2_c + 2 * 2], %00 !s2.e = s1.c[2]°
st %00, [Kfp + 32 + ex2_el

end_main

which results in the following code being generated:

0x2290
0x2294
0x2298
0x229c¢
0x22a0
0x22ad
0x22a8

<main>: save %sp, -112, %sp
<main+4>: 1d [%fp+-20], %00
<main+8>: stb %00, [Yfp+-28]
<main+12>: ldsh [¥#fp+-12]1, %00
<main+16>: st %o0, [%fp+-32]
<main+20>: mov 1, %gl
<main+24>: ta 0

Notice that in comparison to array access, structure access is always as efficient
as simple variable access. In the case of structures, it is the assembler that has to
compute the offsets from the origin of the structure. This is done at assembly time,
not during program execution. Structure elements, or fields, cannot be accessed by
a variable index, whereas array elements can.

6.6.1

Nested Structures

Nested structures do not present any additional problem. Consider the following:

struct date {
char day, month;
short year,

}

struct person {
char name[20];
int ss;
struct date birth, marriage;
char married, sex;
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struct date d1, d42;
struct person pl, p2;

dl.day = 13;
dl.month = 5;
dl.year = 1967;

pl.birth = di;
p2.marriage.day = 3;
Pl.sex = p2.gex;

In assembly language:

begin_struct(date)
field(day,1)
field(month,1)
field(year,2)
end_struct(date)

begin_struct (person)

field(name,1,21)

field(ss,4)
field(birth,align_of&date,size_of_date)
field(marriage,align_of_date,size_of_date)
field(married,1)

field(sex,1)

end_struct (person)

local_var
var(di,align_of_date,size_of_date)
var(d2,align,of_date,size_ofmdate)
var(pi,align_ofuperson,size_of_person)
var(p2,align_of_person,size&of_person)

begin_main

mov 13, %00 !dl.day = 137;
stb %00, [%fp + d1 + date_day]

mov b, %00 '‘dl.month = ;.
stb %00, [ifp + di + date_month]

mov 1967, %00 1dl.year = 1967 ;
sth %00, [%fp + d1 + date_year]
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1d
st

mov
stb

ldub
stb
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[%fp + d1], %00 1pl.birth = d1’

%00, [4fp + pl + person_birth]

1¢all four bytes will fit into a single register’
3, %o !‘p2.marriage.day = 3°;
%00, [hfp + p2 + person_marriage + date_day]

[%fp + p2 + perscn_sex], %o0 !“pl.sex = p2.sex’;
%00, [ifp + pl + person_sex]

After processing by m4:

'!define structure date

date_day =
date_month

0
=]

date_year = 2

!size_of_date, 4 bytes

ldefine structure person

person_name = (
person_ss = 24
person_birth = 28
person_marriage = 32
person_married = 36
person_sex = 37

!size_of _person, 40 bytes

'local variables

di = -4
dz = -8
pl = -48
p2 = -88
-global _main
_main: save %sp, -152, %sp
mov 13, %o0 Idl.day = 13;
stb %00, [hfp + d1 + date_day]
mov 5, %o0 !dl.month = 5;.
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stb %00, [%fp + dl + date_month]

mov 1967, %00 'dl.year = 1967;
sth %00, [%fp + dl + date_year]

1d [%fp + d1], %o0 'pl.birth = di
st %00, [%fp + pl + person_birth]

'all four bytes will fit into a single register
mov 3, %o0 !p2.marriage.day = 3;
stb %00, [%fp + p2 + person_marriage + date_day]

ldub [%fp + p2 + person_sex], %o0 !pl.sex = p2.sex;
stb %00, [%fp + pl + person_sex]

Finally, the loaded version printed by gdb:

0x2290 <main>: save %sp, -152, %sp

0x2294 <main+4>: mov Oxd, %ol
0x2298 <main+8>: stb %00, [hfp+-4]
0x229¢c <main+12>: mov 5, %o0

0x22a0 <main+16>: stb %00, [Vfp+-3]
0x22ad <main+20>: mov 0x7af, %ol
0x22a8 <main+24>: sth %00, [%fp+-2]
0x22ac <main+28>: 1d [%fp+-4]1, Y%c0
0x22b0 <main+32>: 8t %00, [Vfp+-20]
0x22b4 <main+36>: mov 3, %o0

0x22b8 <main+40>: stb %00, [%fp+-56]
0x22bc <main+44>: ldub [%fp+~51]1, %00
0x22¢0 <main+48>: stb %00, [%fp+-11]

Tagged Arithmetic

In some computer languages it is difficult to determine the type of all variables
at compile time; instead, it is left until execution time to determine the type.
So far we have assumed that we knew the type of all variables when we wrote a
program. We loaded an integer variable into a register and then added it to another
integer, or we loaded the pointer to an array into a register and then accessed a,
particular element in the array. In the case of multidimensional arrays this was
quite complicated, requiring knowledge of the dimensions of each of the subscripts.
If we did not know the type of variables at execution time, we could access all
variables through a linked list structure that would specify the type, and access
information. For example, the first element of the list could be a type field: ing,
int vector, int multidimensional array, real, and so on. Additional elements would
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then specify the subscript bounds for arrays, types of structure fields, and so on
Finally, there would be a value field where the actual value, or values, would be
stored. Arithmetic operators, such as add and sub, would then be given pointers to
these lists, through which the data could be accessed and the appropriate operation
performed. For example, if both data types were ints and the operation was an add,
then the add instruction would be executed when the values had been loaded into
registers. [f the data types were integer vectors of the same dimension, then a
loop would be executed, adding pairs of values together, a much more complicated
procedure.

While this procedure would work for all possible data types, it would vastly slow
down integer arithmetic, as it would require operands to be accessed through list
structures. If the majority of computations in a program were between integers,
it would be nice to be able to assemble code that would use the add and sub
instructions directly, assuming that the data were integer, but to indicate if the
data turned out to be a pointer to a structured data type. When this happened
an appropriate subroutine would be called to handle the more complex operation.
The SPARC architecture provides tagged arithmetic instructions to handle this.

When using tagged arithmetic all integers are stored in words left-shifted two
bits. A tag occupies the low two bits. If the tag is zero, then the high 30 bits
represent the integer directly. If the tag is a three, then the data are a pointer to a
linked property list that will specify the type of data and thelr accessing method.
If the tag is zero for both operands, indicating integer data, then an add or sub
instruction may be used directly to compute the result with a resulting tag of zero.

Tagged add and sub instructions exist that will set the overflow bit V bit if
the tags are not both zero {or if an overflow occurs): taddec and tsubce. Two
additional instructions will also cause a trap if the V bit is set as a result of overflow
or the tags not both zero: taddcctv and tsubcetv. In the first case, a test of the
V bit is neeessary to deteet that integer data were not processed, whereas, in the
second case, no additional instructions are needed, the condition being handled by
the operating system.

If the tag is a three, then the list cell, which contains two pointers and occupies
two words, is accessed as word data with the pointer —1 for the first cell and the
pointer 43 to access the second cell. If the tag was neither zero nor threc, then a
memory alignment trap will occur, indicating invalid data.

Summary

Data storage and access methods for multidimensional arrays and structures were
presented. It was shown that there was a computational cost related to array
accessing proportional to the number of subscripts involved. Tt was also shown
that providing for arrays with subscripts differing from zero did not increase the
array access code. Checking subscript ranges did, however, increase the access time.
Code examples of all forms of array access were provided. In conjunction with array
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access, the need to multiply variables by constants was introduced together with
the Booth encoding, which allowed for very efficient shift, add, and subtract code to
be written to perform the multiplication, thus avoiding the need to call the multiply
routine,

In the case of structires, macros were developed to define field offsets in g
manner that allowed for the nesting of structures. It was shown that, as in all
forms of variable access, strict alignment must be maintained.,

FExercises

6-1 Write a macro to generate the factorial of its argument. For example: fact(4)
will generate the string “24”,

6-2 Why is it to our advantage, in C, to declare arrays with dimensions that are
powers of two?

6-3 Why is it necessary to enclose assembly language comments in single quotes
¢ * when using ma?

6-4 Write a macro to initialize each element of a two-dimensional automatic array,
alil[jJ, to:

alil[j]1 = i * 10 + i;
6-5 Write a program to initialize an array a(10] [6] as indicated in the previous

exercise; then declare an array ©[6]1[10] and write a program to transpose the
array a into b. That is:

b[iI[3] = aljI[i];
6-6 A piece-wise linear approximation has been made to some data representing

input/output relationship. These data are represented as a list of x, y pairs and
are represented as follows:

.align 4
diode: .word di

Jhalf 0, 0
dz2: .word d3

.half 20, 5
dh: .word dé

Jhalf 40, 70
d3: .word d4

.half 30, 30
d4. .word ds

-half 35, 60
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di: .word d2
~.half 10, 1
dg: word d7
.half 45, 75
dar: .word O

.half 100, 90

Each list element consists of a pointer to the next element on the list, a word, and
then two halfwords representing the x, y pair. The list terminates with a NULL or
0. You are to write a program with two word variables x, and y. Given a value of y
vou are to return the value for x based on linear interpolation from the data given
above. Check that you do not run off the end of the list. Your program should
start at the beginning of the list and move down the list comparing v values until
you either have a match, in which case you return the element x value, or you have
bracketed the y value between two list entries. In this case you should interpolate
between the list x values to compute the correct value to return.

67 Given the following C integer array definition:
int ary[16] [3] (4] -
and its representation in assembly language as:

define(d1l, 16)
define(d2, 3)
define(d3, 4)

var{ary_s, 4, d1 * d2 * d3 * 4)

write code to load ary[i] [j] (k] into %o0 if the subscripts are in registers %i_r,
%j_r, and Y%k_r.

6-8 You are to translate the following C code into assembly language which gener-
ates random entries into a three-dimensional array, density, which represents some
density function. 4000 random entries are generated and the appropriate elements
of the array density are incremented as each number is processed. Then the array
is searched for the largest entry and the value of the entry and its subscripts are
stored in max, max_i, max_j, and max_k.

#define D1 &5
#define D2 9
#define D3 14
#define COUNT 4000

main()
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{
int density[D1] [D2] [D3];
register int max = (; /* maximum density */
int max_i, max_j, max_k; /* 1,j,k for maximum value */
register int c; /* a counter =/
register int r; /* the random number */
register int i, j, k; /* array indices x/
register int *ptr; /* pointer to clear array */
for {(ptr = *xdensity, ¢ = D1 * D9 * D3; --c >=0;)
*¥ptr++ = 0; /* clear array to zero */
for (¢ = COUNT; --c >= 0;) { /x start generating entries =/
r = rand();
i=r D1,
r=r / Di;
j =1 % D2;
r=r/D2;
k=1r % D3;
density[i] [§] [k]++: /* incrementing the cell #/
}
for(i = D1; —-i >= 0;) /* now search for the largest */
for(j = D2; --j >= 0,
for(k = D3; --k >= 0;)
if ((r = density[i]{j]1[k]) > max) {
max = r; /* store the maximum */
max_i = ji; /* and its indices */
max_j = j;
max_k = k;
}
}

Register variables are to be stored in registers and all other variables kept on the
stack. You are to use the emul macro for the array address calculations. The rand
function has no arguments and may be called like .mul and .div with.

call _rand
nop

The random number will be returned in %00. Do not miss the _ Use .div for
division (/) and .rem for the remainder (%).

Use gdb to print out the maximum value and its indices at the end of your program.
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6-9 Construct a magic square of numbers.! The magic square consists of an array
of numbers from 1 to N * N arranged in an N x N square so that the sum of each
column, of each row, and of each of the main diagonals is identical.

You are to construct a square of size 5 x 5 using the method of De La Loubere
describes below.

1. Initialize a variable n to 1.

2. Store n in the center cell of the top row of the square

3. Move to the next cell in a diagonal manner, right one place and up one place.
Whenever you go off the top in this manner, go instead to the bottom row.
‘Whenever you step off the right side, go instead to the left column. Increment
n and place it in the new cell.

4. When you move to a square that has a number stored in it move back left one
cell and down two. That is store n into the cell below the the last cell you
stored a number into.

5. When all cells are filled stop.

The magic square of size 3 is:

8 1 6
3 5 7
4 9 2

Prints out the 5 x 5 square from within gdb. Make sure that your program is
written so that it may be used to generate squares of any odd size greater than 1
by simply changing the definition of N in your program.

Note that the following in C:
unsigned a, b, c;
a=b¥ c;

may be translated into assembly language as:

mov b, %o0
call .arem
mov c, ol
mov %0, a

If the array has N rows in it then to move back one row, if i is the row subscript:

= (i+N-1) % N;

1 Adapted from [3].
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6-10 Declare a stuct powers consiting of four fields: a byte to hold an interer, a,
halfword to hold the square of the integer, a word to hold the cube of the integer,
and a pointer to a struct of the type powers. In C such a declaration might be:

struct powers {
char one;
short two;
int three;
struct powers * next;

+

In your program declare an array of 11 such structs:
struct powers num[11]; /* an array of 11 structs */

Declare also two pointers to struct powers:

register struct powers * head; /* points to list of structs */
register struct powers #* ptr; /* points to current struct */

and then initialize each strut, numfi] to:

ptr = & num[il; /% get pointer to struct */
ptr->one = i; /* initialize one to i #/
ptr->two = i * i; /% two to i x i %/

ptr->three = ptr->two * i; /* and three to i * i % i %/
ptr->next = head; /* add struct at head of list */
head = ptr;

The last two statments link the current struct into the head of a list of such structs.
Initialize the structs for 0 <= { <= 10. Then run down the list by using the pointer
next. Each time you move to the next struct print out the values of the fields one,
two, and three:

ptr = head;
while (ptr) {
printf ("Yd square = %d, cube = %d\n",
ptr->one, ptr->two, ptr->three);
ptr = ptr->next;

b

You will need to use gdb to print the values in place of the call to printf shown
above.







Chapter 7

SUBROUTINES

7.1

Introduction

In programming there is frequently a need either to repeat a computation or to
repeat the computation with different arguments. It is possible to repeat a com-
putation by means of a subroutine, Subroutines may be either open or closed. An
open subroutine is handled by the text editor or by the macro Preprocessor and
is the insertion of the required code whenever it is needed in the program. The
cmul macro is an example of such an open subroutine. Its arguments are passed in
three registers that are given as arguments to the subroutine. A closed subroutine
is one in which the code appears only once in the program; whenever it is needed,
a jump to the code is executed and when it is completes a return is made to the
instruction cccurring after the Jump instruction. Arguments to closed subroutines
may be placed in registers or on the stack.

A subroutine also allows you to debug code once, and then to be sure that all
future instantiations of the code will be correet. The use of subroutines provide for
the control of errors; it is also the hasis for structured programming.

A subroutine represents a specialized instruction written by the programmer.
As such, there is a general concept that the execution of the subroutine should
not change the state of the machine, except possibly for the condition codes. That
means that any registers that the subroutine uses must first be saved and then
restored after the subroutine completes execution. Arguments to subroutines are
normally considered to be local variables of the subroutine, and the subroutine js
free to change them. This is not always the case, however; cmul, for example, does
not change the contents of the multiplicand register.
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Open Subroutines

‘I'he macro we defined in Chapter 6 to handle multiplication by constants:
cmul (%r0, 603, Y%gl, %rl)

is called an “open subroutine.” Whenever we need to multiply by a constant we
simply expand the macro code for the multiplication. This is very efficient; in fact,
we went to great pains in writing cmul to ensure efficient code tailored to every
possible initial condition and use of registers. The cmul open subroutine to multiply
%x0 by 100 is:

emul (%r0, 100, %gl, %ro)
and expands into:

!start open coded multiply for
thr0 = %x0 * 100, using Ygl as temp

sll %0, 2, %r0
sll a0, 3, ¥%gl
sub e, %gl, %ro
s1I1 g1, 2, Ygl
add %wr0, %gl, %4r0

! end open coded multiply

Open subroutines are very efficient in execution with no wasted instructions. Argu-
ments to open subroutines are very flexible and can be as general as the programmer
wishes to make them. However, every time we need to multiply and insert the open
subroutine, we generate additional code. If the open subroutine results in a short
section of code, then this is the probably the correct thing to do. If the code gen-
erated were longer, then simply repeating the code every time it was needed would
begin to take up a lot of memory. It might be better to write code once, as a closed
subroutine, and to “branch” to the code when needed, and then to “return” to the
next instruction immediately after the branch.

Register Saving

Almost any computation will involve the use of registers. Historically registers
that were needed for use by a subroutine were pushed onto the stack at the begin-
ning of the subroutine and were subsequently popped from the stack at the end of
the subroutine execution. This required the execution of a number of instructions
and involved considerable execution time overhead, especially as programmers were
being encouraged to break up their programs into many simple subroutines. Re-
cent developments in computer architecture have related to special instructions for
saving registers. In one example this took the form of an instruction that would
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examine a “register save mask” that would indicate, by bits that were set, which
registers were to be saved. Such an instruction is typical of a Complex Tnstruction
Set Computer, CISC, and while these instructions reduced the instruction count,
they did little to reduce the time to save the registers.

The SPARC architecture provides for a register file with g mapping register
that indicates the active registers. Typically, 128 registers are provided, with the
programmer having access to the 8 global registers, and only 24 of the mapped
registers at any one time. The save instruction changes the register mapping so
that new registers are provided. A similar instruction, restore, restores the register
mapping on subroutine return,

‘The 32 registers are divided into four groups: “in,” “local,” “out,” and “zen-
eral.” The eight general registers, %g0 - %g7 are not mapped and are global to all
subroutines. The in registers are used to pass arguments to closed subroutines, the
local registers are for a subroutine’s local variables, and the out registers are used
to pass arguments to subroutines that are called by the current subroutine. The
in, local, and out registers are mapped. When the save instruction is executed the
out registers become the in registers, and a new set of local and out registers is
provided. The mapping pointer into the register file is changed by 16 registers (see
Figure 7.1).

In Figure 7.2 is shown a register set. The current register set is indicated by the
current window pointer, “CWP,” a machine register. The last free register set is
marked by the window invalid bit, “WIM,” another machine register. Each regis-
tor set contains 16 general registers; the number of register sets is implementation
dependent. After a save instruction is executed the situation represented by the
diagram on the right in Figure 7.2 results. Note that there are really 8 x 16 hard-
ware registers and that the set selected is controlled by the cwp. When the save
instruction is executed the prior subroutine’s register contents remain unchanged
until a restore instruction is executed, resetting the cwp.

If a further six subroutine calls are made without any returns, then the situation
in Figure 7.3 exists. The out registers being used are from the invalid register
window marked by the wim bit. If an additional subroutine call is made, then a
hardware trap occurs. The hardware trap will be discussed fully in Chapter 12,
but its effect is to move the 16 registers from window set seven onto the stack
where the stack pointer of register window seven is pointing, The trap handler
may use the local registers of the invalid window. The cwp and wim pointers are
moved as shown in Figure 7.2. Note also that the pointer to the location of the
saved registers on the stack is in register window set six and is accessible when it is
needed to restore register window set seven. Of course, if another subroutine call
is made, then register set six will be written to the stack where the stack pointer,
located in register set five, is pointing.

Saves and restores can be made in a range of eight without window overflows
or underflows occurring. While this ig efficient for general programming, it would
become expensive if deeply nested recursive subroutine calls were frequently made.

Register window mapping explains the process by which the stack pointer be-
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comes the frame pointer. The stack pointer is register %06, which, after a save,
becomes %16, the frame pointer. The save and restore instructions are both also
add instructions. However, the source registers are always from the current register
set, and the destination register is always in the new register set. Thus:

save, %sp, -64, %sp

subtracts 64 from the current stack pointer but stores the result into the new
stack pointer, leaving the old stack pointer contents unchanged. After the save
instruction is executed, the old, unchanged stack pointer becomes the new frame
pointer.

The restore instruction, which we have not used until now, restores the register
window set. On doing this a register window can underflow if the cwp is moved to
the wim. When this happens the window trap routine restores the registers from
the stack and resets the pointers.

As we mentioned, the restore instruction is also an add instruction and is
frequently used as the final add instruction in a subroutine, as we will presently
see.

Subroutine Linkage

In order to branch to the first instruction of a subroutine a ba instruction might
be used; unfortunately, if it is used there is no way of returning to the point where
the subroutine was called. The SPARC architecture supports two instructions
for linking to subroutines. Both instructions may be used to store the address
of the instruction that called the subroutine into register %07, As the instruction
following the instruction that called the subroutine will also be executed, the return
from a subroutine is to %o7 + 8, which is the address of the next instruction to be
executed in the main program. If 2 save instruction is executed at the beginning
of the subroutine, then the contents of %07 will become the contents of %i7 and the
return will have to be to %i7 + 8.

If the subroutine name is known at assembly time, then the call instruction
may be used to link to a subroutine. The call instruction has as operand the label
at the entry to the subroutine and transfers control to that address. It also stores
the current value of the program counter, %pc, into %o7. The call instruction, like
any instruction that changes the %pe, is always followed by a delay slot instruction.
‘The call instruction delay instruction may not be annulled.

If the address of the subroutine is computed, then it must be loaded into a
register. If this is done, the jmpl instruction is used to call the subroutine. The
Jmpl instruction has two source arguments and a destination register like most
other instructions. The source may be a register and a constant or two registers.
The address of the subroutine is the sum of the register contents or the sum of
the register and the constant. It is this address to which the transfer takes place.
Like all branching instructions, Jmpl is followed by a delay slot instruction. The
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address of the jmpl instruction is stored into the destination register. Thus, to call
a subroutine whose address is in register %00 storing the return address into %o7
we would write:

Jjmpl %00, %o7

The assembler recognizes:

call %00
as:
jmpl %ho0, %o7

and you may use the call for both types of subroutine calls.

The return from a subroutine also makes use of the Jjmpl instruction. In this
case we need to return to %i7 + 8 and the assembler recognizes the mnemonic ret
for:

jmpl #i7 + 8, ¥%g0

Notice that in the case of the return the program counter is stored into %g0, which
is discarded.
The call to a subroutine is then:

call subr
nop

and at the entry of the subroutine:
subr:  save hsp, ... Yep
with the return:

ret
restore

The restore instruction is normally used to fill the delay slot of the ret instruction.
The ret instruction, of course, is expanded by the assembler to:

jmpl %i7 + 8, %g0
restore

Arguments to Subroutines

Arguments to subroutines can follow in-line after the call instruction, be on the
stack, or be located in registers. If the addresses and values of all arguments are
known at assembly time, as in Fortran, then the arguments may follow the call
instruction. For example, a Fortran routine to add two numbers, three and four,
together would be called by:




190 CHAPTER 7. SUBROUTINES

call add
nop
.word 3, 4

and handled by the following subroutine code:

add: save #sp, -64, Isp
1d [4i7 + 8], %i0 !first argument
1d (%17 + 121, %il lsecond argument
add %il, %i0, %i0
jupl #i7 + 16, Yg0  lreturn address
restore

Note that the return is to %i7 + 16 jumping over the arguments. This type of
argument passing is very efficient (one of the reasons why Fortran is efficient) but
is limited. Recursive calls are not possible, nor is it possible to compute any of the
arguments.

Placing argument onto the stack is, on the other hand, very general but time-
consuming. Each argument must be stored onto the stack before the subroutine may
be called. However, passing arguments on the stack allows us complete flexibility
to compute arguments, pass any number of arguments, and to support recursive
calls. Placing arguments on the stack is frequently wasteful, as the arguments are
generally computed in registers, and are moved from there to the stack. Then,
when the subroutine is called, the first thing to be done inside the subroutine is to
move the arguments from the stack back into registers, The SPARC architecture
recognizes this problem and allows the first six arguments to be simply placed in
the out registers where the subroutine may access them directly. Unfortunately,
there are only six out registers available, as %06 is the stack pointer and %o7 will
be the return address if we call another subroutine. After the execution of a save
instruction the arguments will be in the first six in registers, %i0 - %i5.

The convention established in the SPARC architecture is to pass the first six
arguments in the first six out registers, %00 - %05, with any additional arguments
placed on the stack. However, space is always reserved for the first six arguments
on the stack even though they are not there. In fact the space is reserved even if
there are no arguments at all. Each argument occupies one word on the stack or
register, so that when passing byte arguments to subroutines they must be moved
into word quantities before passing.

The arguments are located on the stack, after the 64 bytes reserved for register
window saving. However, immediately after the 64 bytes reserved for register win-
dow saving, there is a pointer to where a structure may be returned (this will be
discussed in Section 7.7). Thus, the structure return pointer will be at %sp + 64
and the first argument, if it were on the stack, at %sp + 68.

Before arguments may be placed onto the stack, space on the stack must be
provided by subtracting the number of bytes required for arguments from the stack
pointer. As we will always provide for a structure pointer and six arguments we
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may as well create this space when we execute the save instruction on subroutine
entry:

-global subroutine _name

subroutine _name:
save %sp, -(64 + 4 + 24 + local) & -8, hsp

This save instruction will provide:
¢ Space for saving the register window set, if necessary
o A structure pointer
* A place to save six arguments
® Space for any local variables

keeping the stack pointer aligned on a doubleword boundary.
If we had a subroutine vector with local variables:

vector ()

{
int a, b;
char d;

then the save instruction would be:
save 4sp, —(64 + 4 + 24 + 9) g -8, %sp

resulting in 104 bytes being subtracted from the stack pointer. The resulting stack
is shown in Figure 7.4.

Notice that the structure pointer and space to save the called routine’s argu-
ments are all accessed positively with respect to the stack pointer, whereas the local
variables are accessed negatively with respect to the frame pointer. The subrou-
tine’s arguments are located positively with respect to the frame pointer.

The reigon of the stack addressed with respect to the frame pointer, %£p, relates
to the called subroutine’s local variables and incoming arguments. The region of the
stack addressed with respect to the stack pointer, %sp, is the start of a call frame for
any subroutine called by the current subroutine. As long as the two regions do not
overlap then they are quite distinct. Of course, the two regions are both created
at the same time with the execution of the save instruction as the subroutine
is entered. Note also, that the register saving region for the called subroutine is
addressed by the stack pointer, %sp, as if the called subroutine’s registers are saved,
then the frame pointer %Ep, will be written out onto the stack in the save area and
will no be available to restore the registers when an eventual window underflow
occurs; the stack pointer, %sp is saved in the next register window set and is always
present when a register underflow oceurs.
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The argument offsets are logically defined as:

define{struct_s, 64)
define(argl_s, 68)
define(arg2-s, 72)
define(arg3-s, 76)
define(argd_s, 80)
define(argh_s, 84)
define(arg6_s, 88)

or in terms of a macro arg_d:

define(struct_s, 64) :
define(arg d,‘eval($l * 4 + struct_s)’)

and we might define a subroutine entry macro, begin_fn, to be called after the
definition of local variables with the name of the subroutine as argument;

‘subroutine entry, $1 = subroutine name’
define(begin_fn,‘.global $1
$1: save %sp, align_d( eval(

-92 ifdef(‘last_sym’,‘+ last_sym’)), 8), %sp
undefine(‘last_sym’)define(‘name_of_funct’,$1)’)

and & macro to end the subroutine with optional arguments to the restore in-
struction:

‘subroutine end, return sequence,
$1 = subroutine name, $2 = srcl, $3 = src2 or imm, $4 = dst’
define(end_fn, ‘ifelse(
$1,name_of _funct, ‘ret
restore’ ‘ifelse(
$2,,, %2, %3, $4’) undefine(‘name_of _funct’),*
errprint (‘ subroutine begin does not match end’)’)?)
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7.6  Examples

Let us look at an example. We will express the algorithm in C, as follows:

int example(int a, int b, char c)
{

int x, ¥;
short ary[128];

register int i, j;

X =a+ b;
i=c¢ + 64;
ary[i] = ¢ + a;
¥y =x % a;
j=x+1i;
return x + y;

Its translation into assembly languages is:

include(macro_defs.m)

define(a_r, i0) ‘' a_r in %i0’
define(b_r, ii) ‘1 b_r in %it?
define{c_r, i2) t c_r in %i2’
local_var

var{x_s, 4)

var{y_s, 4)

var(ary_s, 2, 128 % 2)

define(i_r, 10} “ti_r in %10’
define(j_r, 11) “13.r in %11’

begin_fn(_example)

add ha_r, %b_r, Yoo ‘lx = a + p?

st 400, [Afp + x_s]

add hc.r, 64, Yi r “1i = ¢ + 84

add ha_r, Ye_r, %00 “laryli] = ¢ + a’
sll hi_r, 1, %ol

add Wtp, ary_s, /o2
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sth #o0, [hol + %o2]

14 [%fp + x_sl, %00 ly = x * a’
call .mul

mov ha_r, Yol

st 400, [hfp + y_s]

1d Chtp + x_s], %o0 1 = x + i
add i_r, %00, %j_r

1d Chtp + x_8], %00 ‘lreturn x + y’
1d Citp + y_s1, Yo1

ret

restore %o0, %ol, %00
This code expands into:

a_r in %i0
! b_r in %i1
! c.r in %iR

Ilocal variables

.5 = ~4
y_& = -8
ary.s = -264
li_r in %10
tj_r in %11
.global _example
_example: save %sp, -360, Y%sp
add %10, %il, %o0 Ix =a+b
st %ho0, [%fp + x_s]
add %i2, 64, %10 i = ¢ + 64
add %i0, %i2, %o0 lary[i]l = ¢ + a
511 %10, 1, %ot
add %fp, ary_s, %o?
sth %ho0, [hel + %o2]
1d [htp + x_s], %00 'y =x*a
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call .ml
mov %i0, %ol
st 400, [hfp + y_s]
14 [hfp + x_8], %o0 'i=x + i
add 410, %00, %11
1d [4fp + x_s), %00 return x + y
1d (Afp + y_s1, %ot
ret

Testore %o0, %ol, %o0

With the resultant code loaded into memory:

0x22d0 <example>: save Ysp, -360, Y%sp
0x22d4 <example+4>: add %i0, %il, %o0
0x22d8 <example+8>: st %00, [%fp+-4]
0x22dc <example+12>: add %i2, 0x40, %10
0x22e0 <example+16>: add %i0, %i2, %00
0x22e4 <example+20>: sll %10, 1, Yo1
0x22e8 <example+24>: add Jfp, -264, %ol
Ox22ec <example+28>: sth %00, [%o1+%02]
0x22f0 <example+32>: 1d [%fp+-41, %00
0x22f4 <example+38>: call 0x2390 <.mul>
0x22f8 <example+40>: mov %4i0, %ol

0x22fc <example+d4>. st %00, [%fp+-8]
0x2300 <example+48>: 1d [Utp+-4], %00
0x2304 <example+52>: add %10, %00, %11
0x2308 <example+56>: 1d [%ep+-41, %o0
0x230c <example+60>: 1d [%fp+-81, %o1
0x2310 <example+64>: ret

0x2314 <example+68>: restore %00, %ol, %o0

Return Values

Subroutines that return a value are called functions. All subroutines in C are
functions with the option that they do not have to return a value, and even if they
do it may be ignored by the caller. The valuye returned by a function or subroutine
is always returned in register %00, that is, %00 of the calling program. If a save
instruction has been executed, then %00 will be %i0 before the restore instruction
is executed.
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Functions in C may also return a structure. Consider the following:

struct point {
int x, v;

};

struct point zero()

{

struct point local;

local.x
local.y

0;
0;

return local;

}

main()

{

gtruct point x1, x2;

zero()};
zero{);

x1
x2
}

The tunction zero returns a structure. When the call is made to zexro, a pointer
to where the returned struct is to be stored is passed to the function at %sp + 64,
the address of x1 in the example given above. The equivalent C code in assembly
language would appear as:

include(macro_defs.m)

begin_struct (point)
field(x, 4)
field(y, 4)
end_struct{point)

local_var
var(local, align_of_point, size_of_point)

begin_fn(zero)

14 [%fp + struct_s], %o0 ‘!get pointer into %o0’
st %g0, [%o0 + point_x]  ‘“!clear local.x’
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st %g0, [Yo0 + point_y] ‘Iclear local.y’
ret
restore

local_var
var(xl, align_of_point, size_of_point)

var(x2, align_of_point, size_of_point)

begin_fn{_main)

add wEp, x1, %o0 ‘!pointer to x1’

call Zero

st %00, [%sp + struct_s]  ‘lIstore it in struct_s’
add %Tp, x2, %00 ‘ipointer to x2’

call zero

st %00, [Usp + struct_s]  ‘!store it in struct_s’
ret

restore

Returning structures in this manner ig a little dangerous, as some called sub-
routine is assuming that a pointer exists to a region of memory of sufficient size to
receive data. If anything were to g0 wrong, such a situation would be difficult to
debug. To prevent such an occurrence, an additional handshaking procedure has
been specified. The caller, expecting to receive data, passes a pointer to the begin-
ning of the storage in %sp + struct_s and places the number of bytes of storage
expected to be received, in-line, in the program after the delay slot of the call to
the subroutine. The called function must check that the size of data it ig about to
return is the same as the constant stored in %i7 + 8. If not, it is not to return any
data. For example:

local_var
var(xl, align_of_point, size_of_point)
var(x2, align_of_point, size_of_point)

begin_fn(_main)

add  Yfp, x1, %00 !‘pointer to x1’
call zero

st 400, [%sp + struct_s]

-word size_of _point !‘size of x1’
ret

restore
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The called routing first checks the size of the data to be returned and, if cor-
rect, returns the data using the pointer in %fp + struct_s. The return from the
subroutine must, however, be to %17 + 12, skipping over the data size:

begin_struct (point)
field(x, 4)
field(y, 4)
end_struct(point)

local_var
var{local, align_of_point, size_of_point)

begin_fn(zero)

14 (%17 + 8], %ol 1‘expected size in bytes’
cmp Y%ol, 8

bne  return 1‘do nothing’

1d [4#fp + struct_s], %ol !‘get pointer into %00’

st %g0, [%o0 + point_x]
st %gl, [%o0 + point_y]

return:
jmpl %i7 + 12, ¥g0 '“jump over unimp’
restore

If a subroutine is called that is expected to return a structure but does not do
so, then the normal return will be to the size of data. Such a small constant appears
to be an unimplemented instruction that will cause a system error.

Subroutines with Many Arguments

Arguments beyond the sixth are passed on the stack. In this case, we must first
make room for the arguments by subtracting {rom the stack pointer. For example,
to call a subroutine with eight arguments:

foo(l, 2, 3, 4, 5, 6, 7, 8)
which returns the sum:

int foo (int al, int a2, int a3, int a4,
int ab, int a6, int a7, int a8)

{
return al + a2 + a3 + ad + ab + a6 + a7 + a8;

¥
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We first have to make room for arguments seven and eight which will go on the
stack:

add hsp, -2 % 4 & -8, hsp

making sure that the stack is still doubleword aligned. The seventh and eighth
arguments will go onto the stack at hsp + 92 and at %sp + 96, respectively. We
can then pass the arguments as follows:

add %sp, -2 * 4 & -8, Ysp ‘!make space on stack’
mov 8, %o0 ‘!load args in reverse’
st %00, [%sp + arg_d(8)]

mov 7, %o0

st %o, [%sp + arg_d(7)]

nov 6, %ob

mov 5, %od

mov 4, %03

mov 3, %o2

mov 2, %ol

call foo

mov 1, %00

sub 48p, -2 * 4 & -8, Ysp ‘Irelease space on stack’

The stack, when foo has been entered, is shown in Figure 7.6. Inside foo the
arguments may be accessed by:

define(a8_s, arg d(8))
define(a7_s, arg_d(7))
define(a6_r, ib)
define(ab_r, i4)
define(ad_r, i3)
define(a3_r, i2)
define(a2_r, il)
define(al_r, i0)

begin_fn(_foo)

1d [%fp + a8_s], %00 “the eighth argument’
1d [hfp + a7_s], %ol ‘“the seventh argument’
add %00, %ol, Y00

add haé_r, %00, %o0 !“the sixth argument’
add %ab_r, %o0, %00 t“the fifth argument’
add had_r, %00, %o0 !“the fourth argument’
add ha3_r, %00, %o0 !‘the third argument’
add ha2_r, %00, %o0 !“the second argument’

end_fn{_foc, %al_r, %o0, %o0) !“the first argument’
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Figure 7.6: The Stack with Additional Arguments
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7.9 Leaf Subroutines

AleafrouﬂneisonethatdoesnotcaHany(mherrouﬁneS.Ifoneconﬁdersapwogranl
structure to be like a tree with the main function at the root and functions that
are called by the main function the first branches, then the leaves of the tree are
subroutines that do not call any other subroutines. These subroutines are called
“leaf routines,” and a simplified calling protocol may bhe employed for them. For
a leaf routine the register usage is restricted as follows: The leaf routine may only
use the first six out registers and the global registers %g0 and %gl. A leaf routine
does not execute either a save or a restore instruction but simply uses the calling
subroutine’s register set, observing the restrictions listed above. The elimination of
register saving and restoring makes calling a leaf routine very efficient. The .mul
routine is a leaf routine.

A leaf routine is called in the same manner as a regular subroutine placing the
return address into %o07. As a save instruction is not executed, the return address
for a leaf routine is %07 + 8, not %i7 +8. The assembler recognizes:

retl
for:
jmpl %o7, 8, %g0

which is the correct return.
The subroutine foo should have been written as a leaf routine:

define(a8_s, arg_d(8))

define(a7_s, arg d(7))

define(a6_r, ob) ‘args in out regs’
define(ab_r, o4)

define{ad_r, o3)

define{(a3_r, o2)

define(a2_r, ol)

define(al_r, o0)

define(sum_r, o0)

-global _foo
_foo:

add ha2_r, %al_r, %o0 100 = first + second’
add #a3_r, %00, %o0 160 += third argument’
add %ad_r, %o0, %o0 100 4= fourth argument’
add hab_r, %00, %00 1400 += fifth argument’
add hab_r, %00, %00 190 += gixth argument’
1d [¥sp + a7_s], %ol !‘the seventh argument ’

Pwrt the stack pointer’
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add %ol, %00, %o0 !“00 += seventh argument’
1d [%sp + a8_s], %ol !‘the eighth argument’
retl

add hol, %o0, %o0 100 += eighth argument’

Pointers as Arguments to Subroutines

Let us now consider passing pointers as arguments to subroutines. Consider the
classic problem of the swap function; pointers must be passed to the function in

order for the values to be swapped:

swap(int *x, int *y)

{
int temp;
temp = *x;
¥ = *y;
*y = temp;
}

and the assembler code:

include(macro_defs.m)

local_var
var{x_s, 4)
var(y_s, 4)

begin_fn{_main)

mov 5, %o0

st %00, [hfp + x_s]
mov 7, %o0

st %00, [hfp + y_s]
add %tp, x.s, %o
call -swap

add %fp, y_s, %ol
ret

restore

.global _swap
_swap: 1d [%00], %o2
1d [%011, %03

“lint x’
“tint y’

‘lx = 5’

ity = 77
‘Ipointer to x in %00’

‘lpointer to y in %ol’

‘1 a leaf routine’
“1%02 = x°
“1%03 = y’
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st %02, {%o1]
retl
st %03, [%o0]

Notice how the addresses of x and ¥ are computed and passed as function arguments
for swap. Note also how swap picks up the values by means of the pointers. If we
had stored x and y in registers in the main function, we would have a problem
when we tried to call swap, as registers have no address. We would have to move
the data onto the stack before the call and then back into the registers:

include(macro_defs.m)

define(x_r, 10) Ix in %10
define(y_r, 11) “ly in %11°
local_var

var(x_s, 4) ‘!vhere x may be stored on stack’
var(y_s, 4) ‘Ivhere y may be stored on stack’

begin_fn(_main)

mov 5, Wx.r ‘lx = 52
mov 7, hy_r fly = 72
‘!now call swap’

st hx_r, [hfp + x_s] ‘Iplace args on stack’

st %y_r, [%fp + y_s]

add e, x_s, %00 ‘!pass -> to args on stack’

call _swap

add #Ep, y_s, %ol

1d Uitp + x_s], %x_r ‘Imove values to registers’

1d [htp + y_sl, Y%y_r

ret

restore

.global _swap ‘! a leaf routine’
_swap: 1d [%00], %o2 “tho2 = x?

1d [%o1], %03 ‘1403 = y?

st %ho2, [%o1l

retl

st %03, [%e0]
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Summary

Subroutines simplify writing code, provide structure, and help to control program-
ming errors. Subroutines may be expanded as open subroutines or as closed sub-
routines. In the case of closed subroutines the SPARC architecture provides a
register-saving mechanism to facilitate subroutine linkages. A stack frame was for-
mally introduced as storage for the registers, arguments, local variables, and the
return address. The return of both scalars and structures was discussed. Passing
arguments both in registers and on the stack was presented. The chapter concluded
with the introduction of leaf routines in which a call frame was not necessary, al-
lowing the subroutine to access only the out registers.

Exercises

7-1 Write an open subroutine, using mé, to perform the absolute value function.
The macro is to have one or two arguments, both register names. The absolute
valuc of the first argument is to be returned in the last argument.

7-2 Write an open subroutine, using m4 to return the factorial of the first argument
in the second argument. Both arguments are register names.

7-3 Write a main function to call a factorial function, which computes the factorial
iteratively.

7-4 Write a main function to call a multiply function that, in turn, calls an add
function, the appropriate number of times, to perform multiplication. The add
function should be a leaf routine.

7-5 Write a function, max, with eight integer arguments. Max is to return the
maximum of the eight arguments. Write a main function to call max with eight
arguments.

7-6 Write a function, max, with up to eight integer arguments, and an argument
count as the first argument. This function is to return the maximum of the given
arguments. Write a main function to call max with seven arguments.

7-7 Write a main function with 10 local integer variables, al — al0, assigned on
the stack. To each variable assign its square, i.e., to a3 assign 9, to a4 assign 16, |
ete. Then return the sum of the squares.

7-8 Translate the following functions into assembly language:

struct point {
int x, ¥y;

+;
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struct quad {
struct point pl, p2, P3, p4;
};

struct quad box(int size)
{

struct quad s;

8.pl.x = size;
s5.pl.y = size;
8.p2.x = -gize;
s.p2.y = size;
8.p3.x = -gize;
5.p3.y = -size;
5.pd.x = size;
s.pd.y = -size;
return s;
h
int area (struct quad *b)
{
return (b->pl.x - b->p3.x) * (b->pl.y - b->p3.y);
}
main()
{

struct quad si, 82;
int al, a2;

sl = box(3);
82 = box(5);
al = area(&s1);
a2 = area(&s2);

}

7-9 Write a function that computes the factorial recursively and a main function
to call the factorial function.

7-10 Translate the following C function into assembly language, making use of
macros defined in macro_defs . m:

fn(int a, b, c, d, e, f, g
{ |
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register int x, ¥y, Z;

x=a+b* c;
y=d-e/f;

z = power(x, g);
z=z> 072z . -2;
return x + y + z;

}

7-11 Translate the following C function into assembly language, making use of
macros defined in macro_defs.m. Translate each C statement into assembly lan-
guage, filling as many delay slots as possible.

blah(int a, b, c, d)

{
register int i, x, y;
int ary[10];

X=a+c¢ * d;
if (x > b)
y = baz(a / b);
for (1 = 10; --1i »= 03)
ary[i] = foo(--x, b);
return x + a;

}

7-12 Translate the following two functions, quick and swap, into assembly language;
quick will be a regular subroutine and swap will be a leaf routine. When they are
written, link them with the C main function. If your assembly code is in asG.m,
then running md will produce a as6.s, which may then be assembled and linked
with the C main program by:

%gcc ~g main.c as6.s -o as6
The functions and main program are defined as follows:

int ary[] ={1, -5, 27, 3, 5, 0, 89, -100, 28, 0, 25};
#define LENGTH sizeof(ary) / sizeof(int)

void swap (int * a, int f, int t)
{

register int temp;

temp = *¥(a + f);
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*(a + f)
*(a + t)

}

*(a + 1)
temp;

il

void quick(int * ary, int left, int right)
{

register int i, last, pivot;

if (left >= right)
return;
swap {(ary, left, (left + right) »>> 1);
pivot = x{ary + (last = left)):
for (i = left + 1; i <= right; i++)
if (x(ary + i) < pivot)
swap (ary, ++last, i);:
swap (ary, left, last);
quick (ary, left, last - 1);
quick (ary, last + 1, right);
}

main()
{

register int i, *pty;

for (i = 0, ptr = ary; i < LENGTH; i++)
printf ("%5d", *ptr++);

putchar(’\n’);

quick(ary, 0, LENGTH - 1);

for (i = 0, ptr = ary; i < LENGTH; i++)
printf(")5d", *ptr++);

putchar(’\n’);

1

T'he quick function calls a function swap to exchange elements of the array being
sorted. You will at once see that quick calls itself recursively. An executable version
of the program produces the following output:

% a.out
1 -5 27 3 5 0 89 -100 28 0 25
-100 ~5 0 0 1 3 5 25 27 28 89







Chapter 8

MACHINE INSTRUCTIONS

8.1

8.2

Introduction

astructions on the SPARC architecture occupy one word, 32 bits. Once an instruc-
tion is fetched, all the information needed to cxecute the instruction is encoded in
the instruction word, It is important that decoding the instruction format be sim-
ple and dircet if we arc to cxeceute an instruction cach machine cycle. Of the 32
bits of an instruction word, 8 are reserved to specify the instruction. The need to
specify three registors, cach requiring 5 bits of addroess, leaves us with 9 bits. One
of these bits is needed to specify whether there is a second source register or an
immediate constant. The remaining 8 bits arc then either combined, with the 5
necded to specify the second source register, to give 13 bits for a signed immediate
constant or to provide an additional 8 hits to specify floating-point instructions.

Instruction Decode

Instructions are specified by two fields, op which is two bits long and op3 which is
six bits long. The op field is decoded as follows:

op Instruction Class

00 Branch instructions

01  call instruction

10 Format Three instructions

Il Format Three instructions

Format Three instructions are then decoded using the least significant bit of op
with the remaining six bits of the op3 field.

211
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Format Three Instructions

The majority of instructions executed are Format Three instructions and their
format is shown in Figure 8.1.

] op I rd ] op3 | sl IO} f rs2 i
3130 29 25 24 19 18 14 13 12 5 4 0
[ op | rd | op3 I rsl | 1 | signed immediate 13 bit constant

3130 29 25 24 19 18 14 13 12 0

Figure 8.1: Format Three Instructions

The op field is in bits 30 and 31, denoted by <31:30>. This is followed by five
bits needed to specify the destination register, bits <29:25>. This field is followed
by the op3 field, which specifies the instruction, bits <24:19>. The frst source
register is specified by bits <18:14>. Format Three instructions have then two
options, a constant or a second source register. The next bit, bit <13>, indicates
whether a constant or a second source register is to be specified. If the bit is a
one, then a constant fills the remainder of the instruction word, bits <12:0>. If
bit <13> is a zero, then the second source register is specified by bits <4:0>. A
constant is specified by bits <12:0> allowing for a signed 13-bit constant. Such
a constant provides for a range from ~4096 to 4095. While small constants are
used in programs frequently, it ig in specifying stack offsets for variables that the
constant is most needed. With 13 bits, we may access variables with offsets up to
4096 with respect to the frame pointer. If the field were any smaller, we would run
into trouble in functions having more bytes of local storage than allowed by the size
of the constant. As the 32-bit word is fairly standard at present, it can be seen that
any change in the number of registers, requiring more bits to specify the register,
or in the number of instructions, will cause an impact on the size of constant or the
number of registers that may be specified. This is of serious concern to computer
architects.

An example of a Format Three instruction is:

sub %10, 5, %o0

For the sub instruction the op3 field is 000100, %10 is register 10000, and %00 is
register 01000:

16 01000 000100 10600 1 0000000000101
op | %rd = 8 op3 Yorsl =16 | i =1 | signed constant = 5

The instruction may be written as the hexadecimal constant 0x90242005.
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The program segment:

include (macro_defs.m)

local_var

var{ary, 4, 20)
var(res, 4)

begin_fn{_main)

add #Ep, 2 << 2, %00 %10 = ary[2]

1d [%00 + ary], %10

sub 410, B, %00

add #i0, %10, %o0 lres = argl + ary[2]
st #10, [%fp + res]

appears in the machine as:

0x2290 <main>:
0x2294 <main+4>:
0x2298 <main+8>:

0x22%9¢ <main+1%9>:
0x22a0 <main+18>:
0x22a4 <main+20>:

and in hex as:

(gdb) x/xw main
0x2290 <main>: Ox9de3bf
(gdb)

0x2294 <main+4>:
(gdb)

0x2298 <main+8>:
(gdb)

0x22%c <main+12>:
(gdb)

0x22a0 <main+i6>:
(gdb)

0x22ad <main+20>:
(gdb)

save j%sp, -120, %sp

add %fp, 0x8, %o0
1d [%00+-20], %10
sub %10, 5, %60
add %10, %10, %o0
st 410, [¥fp+-24]

88

0x9007a008
0xe0023fec
0x90242005
0x20060010

0xe027hfes

213
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These are all Format Three instructions and may be decoded as follows:

op=10,dst=01110,0p3=111100,rs1=01110,i=1, 1111110001000
op=10,dst=01000, 0p3=000000, rs1=11110, i=1, 0000000001100
op=11,dst=10000,0p3=000000,rs1=01000,i=1,1111111101100
op=10,dst=01000,0p3=000100,r51=10000, i=1, 0600000000101
op=10,dst=01000,op3=000000,r31=11000,i=0 <. Ts2=10000
op=11,dst=10000, 0p3=000100,rs1=11110,i=1,1111111101000

Seven bits can specify 27 = 128 instructions; these arc listed in numeric order.
Unimplemented instructions are listed as unimp. Many of the instructions will not
be familiar, but these relate to the operating system, which will be described in
Chapter 13. User mode instructions are defined in Appendix C, while the reader
is referred to the SPARC architecture manual [18] for the definition of instructions
reserved for operating system use.

"There are two tables, the first with op = 10 and the second with op = 11. The
instructions with op = 10 are three-address register instructions, such as add and
sub. The instructions with op = 11 are the load/store instructions, all of which
refer to memory.

Examination of the table of the three address register instructions will reveal
that a pattern exists to simplify decoding. The first eight instructions:

000000 add
000001 and
000010 or
000011 =xor
000100  sub
000101  andn
000110  orn
000111  xnor

are decoded usng the three least significant bits. The “x” versions, addx and subx,

have bit three set. The “cc” versions, addcc, subcc, ete., have bit four set. The
“xce” instructions have both bits set. This pattern changes when the most signifi-
cant, bit, bit five, is set, to allow for the remaining instructions to be decoded on a
one-to-one basis. The floating point instructions are all encoded within the fpopl
and fpop2 instructions which will be described in Chapter 11.
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The Format Three instructions are as follows:

op = 10, Format Three Instructions
op3 Instruction | op3 Instruction
000000 | add 100000 | taddcc
000001 | and 100001 | tsubce
000010 | or 100010 | taddcctv
000011 | xor 100011 | tsubcctv
000100 | sub 100100 | muisce
000101 | andn 100101 | sll
000110 | orn 100110 | srl
000111 | xnor 100111 | sra
001000 | addx 101000 | rdy
001001 | unimp 101001 | rdpsr
001010 | unimp 101010 | rdwim
001011 | unimp 101011 | rdtbr
001100 | subx 101100 | wnimp
001101 | unmimp 101101 | wnimp
001110 | unimp 101110 | unimp
001111 | wunimp 101111 | unimp
010000 | addecc 110000 | wry
010001 | andcc 110001 | wrpsr
(10010 | orce 110010 | wrwim
010011 | xorce 110011 | wrthr
010100 | subec 110100 | fpopl
010101 | andnce 110101 | fpop2
010110 | ornce 110110 | ¢popl
010111 | xnorec 110111 | cpop2
011000 | addxce 111000 | jmpl
011001 | unimp 111001 | rett
011010 | wnimp 111010 | ticc
011011 | unimp 111011 | iflush
011100 | subxcc 111100 | save
011101 | unimp 111101 | restore
011110 | unimp 111110 | wnimp
011111 | unimp 111111 | unimp

215
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op = 11, Format Three Instructions

op3 Instruction | op3 Instruction
000000 | id 100000 | 1df
000001 | 1dub 100001 | ldfsc
000010 | lduh 100016 | unimp
000011 | 1dd 100011 | 1ddf
000100 | st 100100 | stf
000101 | stb 100101 | stfsr
000110 | sth 100110 | stdfq
000111 | std 100111 | stdf
001000 | unimp 101000 | wnimp
001001 | ldsb 101001 | unimp
001010 | 1dsh 101010 | wunimp
001011 | wnemp 101011 | wnimp
001100 | unemp 101100 | wnimyp
001101 | Idstub 101101 | unimp
001110 | unimp 101110 | wunimp
001111 | swap 101111 | wnimp
010000 | lda 116000 | ldc
(010001 | lduba 110001 | Idcsr
010010 | lduha 110010 | unimp
(10011 | Idda 110011 | ldde
010100 | sta 110100 | stc
010101 | stba 110101 | stesr
010110 | stha 110110 | stdeq
010111 | stda 110111 | stde
011000 | wunimp 111000 | unump
011001 | ldsba 111001 | wnimp
011010 | ldsha 111010 | wnimp
011011 | wnimp 111011 | wnimp
011100 | unemp 111100 | unimp
011101 | ldstuba 111101 | unimp
011110 | unimp 111110 | wnimyp
011111 | swapa 111111 | wnimyp
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Format One Instruction, the call Instruction

‘There is only one Format One instruction, the call instruction. The call instruc-
tion must be able to transfer control to any location in the 32-bit address space.
The target of such a transfer must be an instruction and thus word aligned. A
word-aligned address has the least significant two bits, both zero, so that any pos-
sible target address contains 30 bits of information. A Format One call instruction
contains an op field of <01> followed by 30 bits of address.

While the actual address could be stored, right-shifted two bits, in the instruc-
tion, it is the address relative to the current contents of the program counter that is
stored. Why is this? Programs are frequently moved around in Mmermory, requiring
that the addresses of all labels be changed. Thus all the subroutines addressed
in call instructions would also have to be changed. However, if the address were
stored relative to the program counter, then no matter where the program was
moved in memory the relative address would remain the same. Program counter
relative addresses do not have to be changed when a program is moved in memory
and can be computed by the assembler at assembly time.

Thus, the address to which control is transferred by a call instruction is:
npc = (instruction<29:0> << 2) + pc
and the rather tight loop:
-global _main
_main: call _main
nop

appears in the machine as:

0x2290 <main>: call 0x2290 <main>
0x2294 <main+4>: nop

with the machine instruction at main:
(gdb) x/xw main

0x2290 <main>: 0x40000000

Format Two Instructions

Format Two instructions are the branch instructions and an instruction we have
‘not previously discussed, the sethi instruction. The op field for Format Two
instructions is 00.
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' op |a| cond op2 ] displacement 22 —|
31 30 29 28 25 24 22 21 [t

Figure 8.2: Branch Instructions

8.5.1 Brahch Instructions

The format of the branch instruction is shown in Figure 8.2.

In this case, the target of the branch is also stored relative to the program
counter right-shifted two bits. However, in the case of a branch, only 22 bits are
available for the displacement so that the target of branches may only be 492!
instructions from the program counter. Branches to targets that are further away
than +8, 388, 604, —8, 388, 608 bytes will be discussed shortly. However, such long
branches are rare, almost always involve jumping out of a function, and generally
require special handling. The remaining ficlds of the Format Two instructions
specify the type of branch. The op2 = 010 field specifies an integer condition code
branch, the type of branch we have been using. If the branch is to be annulled, the
a bit is set. Finally, the condition under which branching is to occur, the four-bit
field cond, is specified as follows:

Unconditional Condition

as cond Branches Codes

ba 1000 Branch always, goto 1

bn 0000 Branch never 0
Signed Arithmetic Mach.. Condition

as cond Branches Instr, Codes

bl 0011 Branch on less than zero N xor V

ble 0010 Branch on less or equal Z or (N xor V)
to zero

be 0001 Branch on equal to zero bz Z

bne 1001 Branch on not equal to bz not 7
Zero

bge 1011 Branch on greater or not (N xor V)
equal to zero

bg 1010 Branch on greater than not (Z or (N xor V))
ZET0
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Unsigned Arithmetic Mach.  Condition
as cond Branches Instr. Codes
blu 0101 Branch on less, unsigned  bes C
bleu 0100 Branch on less or equal, not C

unsigned
be 0001 Branch on zero bz Z
bne 1001 Branch on not zero bnz not 7
bgeu 1101 Branch on greater or bee not ¢

equal, unsigned
bgu 1100 Branch  on  greater, not (C or Z)
unsigned

Condition Code

as cond Tests

bneg 0110 Branch on N = 1

bpos 1110 Branchon N = 0

bz 0001 Branch on Z = 1

bnz 1001 Branchon Z = 0

bes 0101 Branch on C = 1, carry
out of register

bee 1101 Branchon C =0
bvs (L1l Branch on Vv = 1,
overflow

bve 1111 Branch on V = ¢

An example of a program with call and branch instructions is:

include(macro_defs.m)
/* call function add to add two positive integer arguments */
begin_fn(_main)

mov 4, %o0 'first arg
mov 3, %o1 !'second arg
call _add 'call add
nop

ret

restore

/* leaf routine which adds by decrementing its second argument to
zero while incrementing its first argument, */

.global _add
_add:

b test 'branch to test at end of loop
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nop
loop:
add
test:
bg
nop

retl
nop

CHAPTER 8. MACHINE INSTRUCTIONS

sub %ol, 1, %ol 'decrement

%00, 1, %o0
tst %ol
loop

tand increment
Itest second arg

This program may be contorted to remove nop instructions and to reduce the
add function loop to the minimum necessary three instructions:

include{macro_defs.m)

begin_fn{_main)

mov 4, %a0

call _add

mov 3, %ol

ret

restore

.global _add
_add:

b test

tst %ol
loop:

subcc  %ol,1,%ol
test:

bg,a loop

add %00,1,%00

retl

nop

!the arguments

!branch to the test
Isetting the condition codes

'the decrement

!the test
Ithe increment

The code loaded into memory for the second version of the program is:

0x2290
0x2294
0x2298
0x229c¢
0x22a0
0x22a4d
0x22a8
0x22ac

<main>:
<main+4>:
<main+8>:
<main+12>:
<main+16>:
<main+20>;
<add>:
<add+4>:

save sp,0xffffffal,sp
or g0,0x4,00

call 0x22a8 <add>

or g0,0x3,01

Jumpl i7,0x8,g0
restore g0,g0,p0

b 0x22b4 <add+12>
orcc g0,0l,g0
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0x22b0 <add+8>:
0x22b4 <add+12>:
0x22b8 <add+16>:
0x22bc <add+20>:
0x22¢0 <add+24>:

subcc o1,0x1,01
bgt,a 0x22b0 <add+8>
add o0,0x1,00

jumpl o7,0x8,g0
sethi %hi(0x0),g0

As hex constants:

(gdb) x/xv &main

0x2290 <main>: 0x9de3bfal
0x2294 <main+4>: 0x90102004
0x2298 <main+8>: 0x40000004
0x229¢ <main+12>: 0x92102003
0x22a0 <main+16>: 0x81c7e008
0x22a4 <main+20>: 0x81e80000
0x22a8 <add>: 0x10800003
0x22ac <add+4>: 0x80900009
0x22b0 <add+8>: 0x92a26001
0x22b4 <add+12>: Ox34bfffff
0x22b8 <add+16>: 0x80022001
0x22bc <add+20>: 0x81c3e008
0x22¢0 <add+24>: 0x01000000

These hex constants may then be decoded as:

0x9de3bfal:
0290102004 ;
0x40000004 :
0x52102003:
0x81¢72008:
0x81e80000:
0x10800003:
0x80900009:
0x92a26001:
Ox34bfffff:
0x90022001 :
0x81c3e008:
0x01000000:

op=10,dst=01110,op3=111100,r51=01110,i=1,1111110100000
op=10,dst=01000,op3=000010,rsi=00000,i=1,0000000000100
0p=01,disp30=C00000000000000000000000000100
op=10,dst=01001,op3=000010,rsi=00000,i=1,0000000000011
op=10,dst=00000,op3=111000,rsi=11111,i=1,0000000001000
op=10,dst=00000,op3=111101,r51=00000,i=0 o T82=00000
op=00,rd=01000, 0p2=010,disp22=000000000000000000001 1
op=10,dst=00000, 0p3=010010,rs1=00000, i=0 ... rs2=01001
op=10,dst=01001,0p3=010100,rs1=01001, i=1, 0000000000001
op=00,rd=11010,0p2=010,disp22=1111111111111111111111
op=10,dst=01000,0p3=000000,151=01000, i=1, 0000000000001
op=10,dst=00000,0p3=111000,rs1=01111, i=1, 0000000001600
0p=00,rd=00000, 0p2=100, disp22=0000000000000000000000

Note the call instruction at main+8 to add:

0x2298 <main+8>:

The constant four indicates that the program should branch four instructions ahead.

0x40000004

The unconditional branch instruction at add:

0x22a8 <add>:

0x10800003
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decodes as a “branch always” instruction to three instructions ahead. At add+12
is the bgt,a instruction:

Ox34bfffff op=00,rd=11010,0p2=010,disp22=1111111111114111111111

from which we can decode the rd field as bg with the annul bit on. The target in
this case is —1, or one instruction back.

8.5.2 Loading 32-bit Constants

So far we have only worked with small constants in our programs. We were limited
by the 13-bit signed-immediate field of the instruction. It would be difficult to load
constants that were longer than 13 bits. If we need a larger constant, then we will
need to use the sethi instruction, which will load the high 22 bits of a register
while clearing the low 10 bits. This instruction is also a Format Two instruction
except that the annul bit field and the cond fields are combined togethor to form
a five-bit rd field, the register into which the constant is to be loaded. The format
is shown in Figure 8.3.

i op | rd l 100 | 22 bitimmediate
3030 29 25 24 22 21 4

Figure 8.3: The sethi Instruction

Note that the op2 ficld is 100 to distinguish this instruction from the integer
branch instructions, which have op2 of 010, The execution of this instruction
results in the 22-bit immediate constant being loaded into the left-hand 22 bits of
the register rd with the low 10 bits of the register cleared to zero. To load a 32-hit
constant, two instructions arc needed, a sethi to load the high 22 bits, followed by
an or instruction to “or” in the low 10 bits of the constant. For example, to load
register %o0 with 0x30cf0034, wo would write:

sethi  0x30cf0034 >> 10, %00
or %00, 0x30cf0034 & 0x3ff, %o

Notice that the 32-bit constant must be right-shifted 10 bits to become the
first argument to sethi and that only the low 10 bits of the 32-bit constant form
the second operand to the or instruction. The machine provides two arithmetic
operators to do this, %hi and %1lo. The % symbols have, in this case, nothing to
do with register names but simply distinguish the symbols from other symbols the
assembler has to process. These two operators, %hi and %lo, are just like other
arithmetic operators, +-*/, etc. They arc defined as follows: :

$hiGx), =x >> 10
%lo(x), =x & Ox3ff

Thus, to load the constant 0x30c¢f0034 into register %00, we could write:




8.5, FORMAT TWO INSTRUCTIONS 223
sethi  Jhi(0x30¢f0034), %o0
or %00, %10(0x30cf0034), %ol

We frequently load constants in this manner in assembly language and the assembler
as expands set x, reg into:

sethi  %hi(x), reg
or reg, 4lo(x), reg

so that we might simply have written:

set 0x30cf0034, %00

and obtained the necessary sethi and or instructions to load the constant into the
register,




8.6

224 CHAPTER 8. MACHINE INSTRUCTIONS

Summary

The machine instruction formats were presented in this chapter with a discussion ‘
of the need for simple decoding schemes that would allow for parallel access of

operands. Branch instructions and their encoding were presented. The sethi
instruction were introduced to set the high 22 bits of a register allowing for the

loading of 32-bit constants.
The instruction formats are shown in Figure 8.4.

Format 1, call

Ii 1 | displacement 30

31 30

Format 2, branch

ILO nl cond { op? | 22 bit immediate

330 29 28 25 4 ]

Format 2, sethi

o 0] rd 1.0 0 22 bit immediate

31 30 20 25 24 22 21 0
Format 3, second source register

Ll % | rd op3 15t I 0 ! rs2

3130 29 25 24 19 18 14 13 12 0

Format 3, immediate constant
l 1 x [ rd | op3 I 15l | 1 ’ sighed immediate 13 bit constant _I
3130 29 25 M 19 18 14 13 12 0

Figure 8.4: The Instruction Formats
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8.7 Exercises

8-1 Translate the following machine language into assembly language:

(gdb} x/x &main

0x2290 <main>: 0x9de3bfcO
(gdb)
0%x2294 <main+4>: 0x90820012
(gdb)
0%x2298 <main+8>: Ox1cbff75a
(gdb)
0x229¢ <main+12>; 0x92100012
(gdp)
0x22a0 <main+16>: 0x81¢7e008
(gdb)
0x22a4 <main+20>: 0x81e80000

8-2 Translate the following assembly language program into machine code:

.global _main

_main: save 4sp, 64, %sp
mov 4, %411
mov -2, %12

loop: addee %11, %12, %10
ble,a loop

sub #11, 1, Y11

mov 1, %gl
ta 0

8-3 Write a macro to translate an eight digit hexadecimal number into a binary,
Format Three instruction representation as shown on page 214,

8-4 Write a macro to translate an eight digit hexadecimal number into a binary,
Format Two instruction representation.

8-5 The code that follows is a recursive factorial routine. Translate the first three
instructions of the function, i.e., the cmp through the mov instruction, into machine
language in the form of hexadecimal constants.

def_reg(a, i0)
def_reg(ret, o0)

begin_fn(_fact)
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return:
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cmp ¥n_r; 1 1if (n <= 1) return 1°
ble return
mov i, Zret_r
I‘return n * fact(n-1)°’
call _fact
sub Yn_r, 1, %00
call .mul
nov wn_r, %ol

end_fn(_fact, %g0, %ret_r, Yret_r)



Chapter 9

EXTERNAL DATA AND
TEXT

9.1

9.2

Introduction

So far we have made use of memory only to store our programs for exccution
and to store our local variables and function arguments. In this chapter we will
discuss external and static variables. Local variables, stored on the stack, may
be addressed relative to the frame pointer; however, to make those same variahlos
available to other functions would be very difficult. As the value of static variables
in functions docs not change between function calls, they may not be stored on
the stack where storage is created and released between function calls. To solve
this problem, external and static variables are stored in memory much like the
program. 'Their addresses are then made available to all functions that need to
access the variables,

External Variables

There are two classes of external variables, those that are to be initialized to values
other than zero and those that are to be initialized to zero. When a program
is loaded into memory the program text, initialized variables, and zero-initialized
variables are loaded into different regions of memory. These regions are called
segments and each generally starts on a 0x2000 byte boundary. In this way INemory
protection may be applied differently to different parts of the program. Program
text is normally “read only,” meaning that if we attempt to store something into
this area of memory, we will get a system trap. The other two regions are “read-
write,” meaning that all accesses are valid. These three regions of memory are
called the text, data, and bss segments, respectively. The text segment is where
the program and any read-only data are located. The text segment is where the
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assembler puts things unless we tell it otherwise; the data segment is for initialized
data; and the bss (block starting symbol) segment is for zero-initialized data. The
assembler may be told to assemble into these different segments by the pseudo ops,
.text, .data, and .bss. So far, of course, we have no reason to load anything but
program text into memory. When the program is loaded into memory, the text and
data segments are loaded first into low memory. Then space is zeroed for the bss
segment. These three segments are all at low memory, leaving the stack at high
memory. The stack has nothing to do with program segments. In C, all the external
variables, that are not specifically initialized are located in the bss segment. The
first 0x2000 bytes of memory are reserved for the operating systern and are not
used by regular programs. A diagram indicating memory assignment is shown in
Figure 9.1,

The assembler maintains three location counters, one for cach of the text, data,
and bss segments. When we issue the segment changing pseudo-ops we change the
location counter that the assembler will use until the next segment changing pseudo-
op. At the end of the assembly, code and data for each of the three segments are
gathered together. Each of the three location counters starts at zero and increases
as instructions and data are assembled.

The text Segment

Code in the text segment is loaded into memory starting at memory location 0x2000.
While this might seem a problem (we have always assembled the code assuming that
the first instruction would be at location zero), examination of any of the programs
we have written so far will reveal that they are position independent. That is,
the program text may be loaded into memory starting at any location and it will
execute correctly. Why is this? Obviously, all the instructions that only reference
registers are position independent. The call and branch instructions’ operands
are all program counter relative so that if the program is moved in memory the
program counter will be changed by the identical amount.

It is only the symbol _main that is needed by the operating system in order that
the program starting address may be found. This information is made available by
the use of the . global pseudo-op, which tells the operating system that this address
is to be made available for other program segments.

The data Segment

The data segment is used primarily for initialized data. There are a number of
assembler pseudo-ops for initializing the segment. For example, .word indicates
that the list of comma, separated expressions is to be evaluated and each loaded as
a 32-bit constant:
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Memory

1 0x0000
not used

0x2000

Senpe, %pc > text

data

bss

S~
T

stack

%fp, %osp ->

OxiBOCO0OD

Figure 9.1: Segments in Memory
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.data
.word 3, 3% 3, 3%x3>>3

would result in the following three constants in the data segment:

3
9
1

Normally such data are labeled so that they may be referred to in a program:

.data
im: word 3
jm: word 9
k_m: word 3 + 9

Notice that we have appended _m to all the memory addresses to distinguish these
from stack offsets, (_s) and registers (_r).

To access such data we need to load them into a register, or to store the contents
of a register into addressed memory. To do this we need to load the 32-bit addresses
of the data inte a register before the data may be accessed. For example, to compute
k = i+ j, we would write:

include(macro_defs.m)

.data
.global im, j_m, k_m
_ .word 3
jm: .word 9
k_m: .word 3+ 9
Jtext

define(i_xr, 10)
define(j_r, 11)
define(k_r, 12)
begin_fn(_main)

sethi %hi(i_m), %o0

1d [%00 + ¥lo(i_m)], %i_r
sethi  %hi(j_m), %00

1d [%00 + %lo(j_m)1, %j_r
add hi_r, %j_r, %o0

set k_m, %ol

st %400, [%oll]

In this program we have, for the first time, labels appearing as operands to
instructions as arguments of %hi and ¥1lo. All labels, until now, have been as the
target of branch and call instructions, in which case the program relative offset
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was stored in the instruction, The labels, addresses appearing as arguments to %hi
and %lo, are to be the actual machine addresses when the program is loaded into
memory. These addresses are not known until the program is loaded into memory,
when a process of relocation occurs in which all the addresses are corrected so that
the instructions have the correct operands. This places restrictions on the operands
to %hi and %lo. The arguments may only be a label plus or minus a constant. The
same restriction, of course, applies to set.
We may also initialize bytes and halfwords:

.half 3
.byte 7

If we simply need space and are not concerned with its initialization, then we
may use the . skip pseudo-op which only advances the location counter a specified
number of bytes, thus providing space. For example:

ary: .8kip 4 * 100

will provide space for a hundred-word uninitialized array, ary,

Note that external data must be aligned in memory. In the case of external data,
it is the assembler that provides the correct alighment by changing the contents of
the location counter. The -align pseudo-op provides for this:

.align n

The .align pseudo-op ensurcs that the location counter, the address where the
next data will be assigned, will be evenly divisible by n. If the value of the location
counter is not cvenly divisible by n (s0 as to produce no remainder), the .align
pseudo-op will increase the value of the location counter until it is evenly divisible
by n. If we are not sure that the alignment is correct, then we nced to use an
-align 4 before any word data, an -align 2 before any halfword data, and an
-align 8 before any doubleword data. Thus, if the first data word in the following
example were assembled into location zero, then:

a: .word 3
b: -byte 5
.align 2
c: Jhalf 5
d: byte 6
.align 4
e: .word 17

The variable b will be at location four, the variable ¢ at six, d at eight, and e at
12. Byte data are always aligned.

If we have read-only initialized data, these may be loaded into the text segment..
"The data must, of course, be placed in the text segment where it will not be mistaken




232 CHAPTER 9. EXTERNAL DATA AND TEXT

for program text and executed. Placing the data before or after any function is
generally fine.

If the variables are true externals, that is variables whose names are to be made
available to other independently assembled program segments, then the variables
names must be declared global, using the .global pseudo-op:

-global buf_size
buf_gize: word  O0x1000

If the name is to be available only to functions defined in the same file as the data
definitions, external static in C, then the .global declaration is not needed. If we
want gdb to use our variable names, then they must be declared global.

9.4.1 ASCII Data

We frequently make use of ASCII codes in programs. The assembler recognizes a
character enclosed in double quotes "" to indicate that we want the ASCII code for
that character. For example, to load the string “hello” into five consecutive bytes
of memory, we could write it as:

.byte 150, 145, 154, 154, 157

but more clearly as:
.byte  “h", "e", "1", "1n, woo

The use of single characters is normally restricted to constants in instructions:
add %00, "a" - "A" Y80 lconvert to lower case

The definition of strings is handled more directly by two other pseudo-ops, ascii
and asciz. These two pseudo-ops take a string enclosed in quotes, assetbling the
ASCII codes for each character into successive bytes of memory. We could write
the string initialization for “hello” as:

.ascii "hello"

There are two ways of indicating the end of a string, by marking it with a zero
byte, \0, or by giving the length of the string in bytes. C uses the first method,
marking all strings with a byte containing a zero. Thus, our string “hello” should
have an additional byte:

.ascii "hello"
.byte 0

This can be achieved using the .asciz pseudo-op. The .asciz pseudo-op appends
a zero byte to the end of its string argument.

.asciz "hello"
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would generate the same zero-byte-terminated string.
Strings are frequently read-only as in format strings. Consider the classic C
program:

main()

{
printf("hello, world\n"};
}

This translates into assembly language as:
include(racro_defs.m)
-global _printf

fmt: .as¢iz  "hello, world\n"

.align 4
begin_fn{_main)
sethi  %hi(fmt), %o0

call _printf

or #hoO, %lo(fmt), %o
ret

restore

Notice that the string is in the text segment and is thus read-only. This program
may be run from the shell producing output. The symbol -printf is a global
defined in some other code that will be loaded with our program and the addresses
modified appropriately.

9.5 Pointers

When we needed pointers to variables stored on the stack we had to compute the
pointer. For example, to pass a pointer to a local variable x, defined by its stack
offset x_s, we would have written:

add “Ip, x_s, %o0

For external data we would use set instead:

set x_m, %o0

‘This synthetic instruction set, of course, expands into:

sethi  Yhi{x_m), %o0
or %00, Ylo(x_m), %00
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An external array of pointers is fairly straightforward. The equivalent to the C
declaration:

char *month [] = {ujanll s nfahh s "mar" , 1|apr|r , “ma.y” ,
"jun“’ "ju]-"’ "augll, "Sep", ||0Ct|l’ Ilnov“’ 1|dec‘|};
would be:

.align 4

.global _month
_month: .word jan_m, feb_m, mar m, apr_m, may_m, jun_m
.word jul_m, aug_m, sep_m, oct_m, nov_m, dec_m

jan_m: .asciz "jan"
feb_m: .asciz "feb"
mar_m: .asciz "mar"
apr_m: .asciz '"apr"
may_m: .asciz 'may"
jun_m: .asciz "jun"
jul_m: .asciz "jul"
aug_m: .asciz "aug"
sep_m: ,asciz "sep"
oct_m: .asciz "oct"
nov_m: .asciz "nov"
dec_m: .asciz "dec"

To obtain the pointer to “jul?, month[6], in register %00, we would write:

set _month + (6 << 2), %ol
1d {%00], %00

To then obtain the second character, “u,” we would write:

1ldub [%00 + 11, %ol

The .bss Segment

In the bss segment we may only define [abels such as:

.bss
.align 4
ary: 8kip 4 * 100

i_m: .skip 4
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These variables will be initialized to zero immediately before the program is exe
cuted. Initialized data, other than initialized to Zero, may not be in the hgg segment.

The . common pseudo-op may also used to define global labels in the .bas seg-
ment. In the case of .common a size in bytes is also specifted.

-common  ary, 4%100

The same line of code Imay appear in many different source modules and the loader
will resolve all references to the same location in memory. This allows many source
modules to define a common block of data in the same manner without having
to decide which module will actually assign space, and which will define global
references.

The switch Statement

We have deferred discussing the switch statement until this chapter as it requires
a table of pointers. Consider the following C switch statement:

switch (1 + 3) {

Case 1: i += 1;
break;

case 2: 1 += 2,
break;

case 18: i += i5;

case 3: i += 3;
break;

case 4: i += 4;

ctase 6: 1 += §;
break;

cagse 5: i += B;
break;

default: i--;
break;

The smallest and the largest labels are identified.

The smallest label is subtracted from the switch expression.

The resulting value is then checked against the range, the largest labe!
— the smallest label,
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This value is used as an index into a pointer array where the pointers
are to the switch statement code, the pointers are in switch statement
order.

Missing labels are replaced with a pointer to the next statement after
the switch, or to the default statement.

If the switch expression is outside of the range, then either no code is
executed or, if present, execution beging at the default statement.

The code of the switch statement follows in the same order in which is
was written in C to allow for statements that are not followed by break
statements.

Following this algorithm we would translate the above C code as:

define(i_r, 10) {‘variable i’
define(min, 1) t‘amallest label’
define(max, 15) 1 ‘largest label’

define(range, eval{max - min)) !‘range’

add Yi.xr, 3, %00 | ‘compute switch expression’
subcc  Y%o0, min, %o0 | ‘reduce by min, and comp. to zero’
blu default | ‘expression too small’
cmp %00, range | ‘compare to range’
bgu default f‘too large’
.empty f‘tell assembler that all is well’
set table, %ol ¢ jump table’
s11 %00, 2, %o0 t‘word offset’
1d [%o1l + %o0], %00!‘pointer to executable code’
jrpl %o0, %g0 | ‘transfer control’
nop
table:

.word L1, L2, L3, L4, L5, L6, L7, 18, L9, !'in numeric order
.word L10, L11, Li12, L13, Li4, L1i5,

!“the code also in order of writing’

L2:

ba end

add Yi_r, 1, %i_r 19+

ba end

add $i_r, 2, Y%i_r r14i 4= 250

L15:
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add #ir, 15, Yi_r 1°i += 15; note no break;’
L3:
ba end
add di_r, 3, %i_r i += 3,7
L.4:
add hi_r, 4, Yi_r '*i += 4; note no break;’
L6&:
ba end
add i_r, 8, %ir i += §;°
L5:
ba end
add hir, 5, %ir i 4= 5,2
L7: lall defaults, these labels could
L8: !also have been replaced by the
LS: fuse of the default label in the
L10: 'pointer table.
Li1;
Li2:
L13:
Li4:
defanlt:sub hlr, 1, i x 1 -y
end:

While therc is greater overhead in a switch statement, compared to a series
of if else statements, it becomes increasingly efficient as the number of choices
increases. The use of a switch statement becomes questionable when the number
of choices is limited or when the labels have a great range. Of course, a compiler
might translate such code iuto the if else form.

Relocation and Linking with Other Code

An important aspect of any language system designed to implement large projects
is its support of separate compilation and assembly; C supports such separate
compilation. A C program consists of a number of external objects, variables, and
functions. These external objects may be grouped together into any number of
separate source files and each file may be compiled and assembled separately. They
are combined by a program called the loader, 1d; the loader is generally called
by the compiler as a final pass. The loader’s main task is to resolve the external
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symbols so that all references to a particular symbol refer to the same location. The
scope of symbols in assembly language is the extent of the source file. If symbols
are to be made available to other software modules, the .global declaration must
be used.

Each assembly source file is processed by the assembler as if its text, data, and
bss segments all started at memory location zero. When a program consisting of
a single source module is loaded, the text, data, and bss segments will be located
in memory at different addresses. This process is referred to as relocation. During
assembly, all operands that refer to memory addresses, such as the operands of
%hi and %1o, are marked as relocatable with respect to the segment in which they
are located. The value initially stored in the machine instruction is the value the
symbol would have if the segment started at zero. When the loader loads each
segment into memory, it adds the starting address of the seginent to the ficlds of
the instructions, which have relocatable constants.

The .global declaration in as simply informs the assembler that a symbeol is
to be made available to the loader. If the global symbol is defined in the file, by
appearing as a label, then its address will be used to correct all references to it in
othor modules. If the symbol is not defined in the file {(by appearing as o label),
then the loader will eorrect the reference to the address once the address is defined
in some other file:

Consider the following two source files:

include(macro_defs.m)

.global cl, c2, al_m, aZ_m
.global foo, baz

.data
al_m: .word aZ_m

.text
begin_fn(_main)

cl = 17

sethi Yhiaz2_m), %o0 laddress of a2_m in %00
or %ho0, %lo(a2_m), %o0

14 [%00], %o0 'pointer to al_min %o0
14 [%00], %00 Ivhat a2_m points to

mov cl, %oO

call baz

mov c2, %ol
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ret
restore

foo: sub %00, Yol, %o0
retl
nop

and the second source file:

include (macro_defs.m)

.global ci, ¢2, al_m, a2 m
.global foo, baz

.data
a2_m: .word ai_m
c2 = 87
.text
-global second
second: sethi  Jhi(al_m), %00 taddress of al_min %00
or %00, %lolail.m), %00
1d (%001, %o0 Ipointer to aZ_m in %00
1d [%00], %o0 vhat a2_m points to
mov cl, %o0
call foo
mov c2, %ol
ret
restore
baz: add %00, %ol, %o0
retl
nop

‘There are two global variables, ai_m and a2_m, one defined in each source file.
Both variables are initialized to a pointer to the other variable. There are two
global constants, c1 and c2, one defined in each source file. Both constants are
used in both files.

When loaded into memory, we have:
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0x2290 <main>: =ave sp,0xffffffal,sp

0x2294 <mpain+4>: sethi %hi(0x4000),00
0x2298 <main+8>: or o0,0xal, o0

0x229c <main+12>: 14 [00],00

0x22a0 <main+16>: 1d [00],00

0x22a4 <main+20>: or g0,0x11,00

0x22a8 <main+24>: call 0x22ec <baz>
0x22ac <main+28>: or g0,0x57,01

0x22b0 <main+32>: jumpl i7,0x8,g0
0x22b4 <main+36>: restore p0,g0,g0

0x22b8 <foo>: sub o0,01,00
0x22bc <foo+4>: jumpl o7,0x8,g0
0x22c0 <foo+8>: sethi %hi(0x0),g0

0x22c¢c4 <foo+l12>: unimp

0x22c8 <gecond>: sethi %hi{0x4000),00
0x22cc <second+4>: or o0,0x98,00
0x22d0 <second+8>: 1d [00],00

0x22d4 <second+12>: 1d [00],00

0x22d8 <second+16>: or g,0x11,00

0x22dc <second+20>: call 0x22b8 <foo>
0x22e0 <second+24>: or g0,0x57,01

0x22e4 <second+28>: jumpl i7,0x8,g0
0x22e8 <second+32>: restore g0,g0,g0

0x22ec <baz>: add o0,01,00
0x22f0 <baz+4>: jumpl o7,0x8,g0
0x22f4 <baz+8>: sethi %hi(0x0),g0

followed by:
(gdb) x/a &al m

0x4098 <al_m>: 0x40a0 <a2_m>
(gdb)

0x409c <al_m+4>: O0x0

(gdb)

0x40a0 <aZ_m>: 0x4098 <al_m>
(gdb)

0x40ad <a2_m+4>: 0x0

On execution:

{gdb) si

0x2294 in main ()

i: x/1i $pc 0x2294 <main+4>: sethi %hi(0x4000),00
1: x/i $pc 0x2298 <main+8>: or o0,0xal,o00

(gdb) display/a $00
4: /a $00 = 0x4000 <etext+6896>
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(gdb) si

4: /a $00 = 0x40a0 <a2_m>

1: x/i $pc  0x229c <main+12>:  1d [00],00

4: /a $00 = 0x4098 <al_m>

1: /i $pc 0x22a0 <main+16>: 1d [00],00

4: /a $00 = 0x40a0 <a?_m>

1: x/i $pc  0x2224 <main+20>:  or g0,0xl1,00

etc.

Makefiles

When working with more than one source file it is very convenient to use make. The
following makefile combines a C main program, main.c, together with an assembly
language program with macros, sincos .m, to make an exccutable file as8:

as8: main.o sincos.o
gcc -g main.o sincos.o -1m -o as8
Uptime

main.o: main.c makefile
gee —g -0 -¢ main.c

sinces.o: 8incos.m macro_defs.m makefile
chmod -f 600 sincos.s
m4d sincos.m > sincos.s
chmod 400 sincos.s
as sincos.s -o sincog.o
cleanup:
rm -f *,0 as8 *” core
du

Ifenhermain.cormakefilearechanged,main.cisremnnpﬂedtonoducernadﬂne
codehlmain.o.Ifeﬁherofsincos.m,ormacro_defs.m,ormakefileaIechanged
then the assembly fanguage program is re-assembled. In order to do this sincos.s
is made writable, the macro processor m4 is run on the .m file to produce sincos. s.
This is then made read only so that it may not be inadvertently changed. Finally,
the assembler is called to produce the second machine language file, sincos.o.
The first line of the makefile checks to see if either of the two object files must
be “re-made,” if not it calls gee to link the two files together with debugging
information, and to search the math library to make the executable file, as8. The
system command make will produce as8. The command make cleanup will delete
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all .o files along with as8 any editor backup files *~ and any core file. !

Suffixes may be defined in make to automate much of the detail in a makefile,
The next example is a makefile which combines together two source files, called
globall.m and glebal2.m to make an executable a.out file. Note the definition
of the new suffix .m and the rules to produce a .o file from a .m source file. In this
example the .s files are not produced, instead the output of m4 is piped directly
into as.

m.o
md $< | $(AS) - -o %@

FILES = globall.m global2.m macro_defs.m makefile
OBJECTS = globall.o global2.o

a.out: $(OBJECTS)
gecec -g $(0BJECTS)

globall.o: macro_defs.m
global2.o: macro_defs.m

print: $(FILES)
lpr $7
touch print

cleanup:
rm -f *,0 a,out *~ core
du

C Command Line Arguments
As we know, C main programs have arguments:
main(int argc, char *argv[])

The first is the number of strings given to the shell when the program was cxecuted,
and the second argument is a pointer to an array of pointers to the strings. There
is also an additional third argument that is a pointer to an array of pointers to
strings representing the environment in which the program is executing. We will
not consider the environment pointer further.

Consider the following C program, which sums its command line arguments:

'If make is run in emacs by the M-x compile command errors may be located with the C-x°
command. In the case of errors in sinces.s the lines will be found, but as the file is read-only,
we will be prevented in attempting to make corrections in the .s file instead of in the .m file.
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int summer(int *acc, char * ptr)
{

register int n;

n = atoi(ptr);
*aCc = *kace + n;

b

main{int argc, char *argv([])

{
int sum = 0Q;

while (--argc)
summer (&sum, *+targy)

printf("sum is hd\n", sum);

+

We could translate the summer function into assembly language and link it with a
C main program with the definition of summer replaced with a declaration:

int summer(int *acc, char *ptr);

main(int arge, char *argv[])

{
int sum = ¢;

while (--argc)
summer (&sum, ¥++argy) ;

printf ("sum is Y%d\n", sum) ;

}

with the following assembly language version of summer:;

include(macro_defs.m)

define(acc_r, i0) !pointer to sum in %i0
define(ptr_r, i1) Ipointer to number string in %i1

begin_fn(_summer)

call _atol 'eall atoi to convert to number
mov wptr_r, Yoo
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1d [(Yace_rl, %ol  tpick up sum

add %o0, %ol, %o0 tadd new value
st %00, [%acc_r] tstore the result
ret

restore

In this case, if we had translated the summer .m file into a . s file called summer . s,
we could the call the C compiler to compile the C program and assemble the .s
program. If the C program were in a file called sumi. ¢ then:

hgee suml.c summer.s

would produce the necessary a.out file. The use of a makefile would, of course, be

cleaner.

We could also translate the main program:

fmt:

loop:

test:

include{(macro_defs.m)

define(arge_r, i0)
define(argv_r, il)

local_var
var(sum_s, 4)

.asciz "sum is #d\n" !read-only string for printf

.align 4
begin_fn{_main)

clr %o0 lsum = 0

st %00, [hfp + sum_s]

b test 'while test

nop

add %fp, sum_s, %o0 l&sum

call _summer

1d [%argv_r]l, %ol !pointer to first number string

subcc  %arge_r, 1, Yargc_r !decrement argc
bg,a loop
add hargv_r, 4, fargv_r !increment argv pointer

set fmt, %00 iprint results
P
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call _printf

1d [hfp + sum_sl, %ol
ret

restore

Note the handling of arge and argv. If the assembler version of the main program
were in sur2. s, then the C compiler could be called with:

hgee sum2.s summer.s

Summary

The ability to load a 32-bit constant into registers allows us to access external
static data stored at fixed memory addresses. The access of external variables
was discussed along with the three segments: text, data, and bss. Storage and
accessing of strings fits into place in this chapter in which pointers to the beginning
of the string are manipulated. The G switch was introduced in which pointers into
the switch code must be handled,

The linking of individually compiled and assembled sections of code is discussed
with the use of makefiles. The chapter concluded with code to handle C command
line arguments and provided an example of the use of pointer arrays.

Fixercises

9-1 This exercise is adapted from “Pascal User Manual and Report” by Jensen
and Wirth [7] and relates to recursive procedures. Problems whose definition is
naturally recursive lend themselves to recursive solutions. Consider the problem
of translating arithmetic expressions into postfix form according to the following
syntax:

eXpression ::= <term> { + | - <term> }
term ::= factor { * factor }

factor ::= identifier | ( expression }
identifier ::= <letter>

Translation is done by constructing an individual conversion function for each of the
syntactic constructs, expression, term, and factor. As these syntactic constructs are
defined recursively, their corresponding procedures may be activated recursively.
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(a +b) * (¢ ~ 4d)
a+b=*xc-d
(a+b) x¢c-4d
a+bx*x(c-d
a*a*ax*a
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b+cx*x(d+c*ax*a)*b+a.
(a period terminates the input)

the following program will translate the input to a postfix output:

ab+cd-*
abc*+d—
ab+c*xd-
abcd—*+
aa*akxak
bedecakax+kbr+a+

#include <stdioc.h>
char ch;

main()
{
find();
do {
expression();
putchar(’\n’);
} while (ch '= *.7%);
}

find()
1{
do
scanf ("¥c",kch);
while (ch == * ?);
if (ch == EOF) exit(};
}

term() ;
expression()
{

char op;
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term() ;
while (ch == ’+’ || ¢h == ’-7)
{
op = ch;
find{();
term() ;
printf ("%c", op);

}
factor(}:

term()
1
factor():
while (ch == %)
{
find();
factor();
printf ("*");
}

factor()
{
if (ch == 7 ()
{
find();
expreszion(}; /¥ ch == 7)1 x/
}
elge
printf("¥c", ch);
find();
}

Translate the functions expression, term, factor, and find into assembly language
to be called by the function main given above. Check your program against the
input given above.

9-2 Given that all choices are equally probable, when is a switch statement more
efficient than a sequence of if else statements?

9-3 Write an open subroutine, using m4, to perform the absolute value function.
The macro is to have one or two arguments; arguments represent register names,
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The absolute value of the first argument is to be returned in the last argument.

9-4 Given the declaration for an external pointer array months_m initialized to
point, to strings representing the months of the year:

jan_m: .asciz "January"

feb_m: .asciz "February"

mar_m: .asciz "March"

nov_m: .asciz "November"

dec_m: .asciz "December"
.align 4

months_m: .word jan_m, feb_m, mar_m, apr_m, may_m, jun_m
.word jul_m, aug m, sep_m, oct_m, nov_m, dec_m

write an assembly language program to accept as command line arguments three
integer strings representing a date in the format mm dd yy. Your program is then
to print the date with the name of the month as well as with the correct suffix, for
cxample:

% a.out 9 11 90

11th. September, 1990
% a.out 9 21 90

21st. September, 1990
Y a.out 9 22 90

22nd. September, 1990
% a.out 9 23 90

23rd. September, 1990
% a.out 9 24 90

24th. September, 18590
% aout 110

1st. January, 1900

Be careful about the 1st, the 2nd, and the 3rd, distinguishing the 1st. from the
11th. from the 21st. and the 31st. Don’t forget the comma after the month.

Your program should exit, printing an error message, if three arguments are not
given:

usage mm dd yy

You will need to call _atoi to convert strings to numbers and _printf to produce
the output.




Chapter 10

INPUT/OUTPUT

10.1

| JO

Introduction

There are two problems that must be addressed in performing input and output
to and from the centra) processing unit. The first problem relates to matching
the speed of the central processing unit to devices that are much slower. If the
computer is transferring data over a modem that accepts characters at 300 per
second, involving the execution of a single load byte instruction, can the computer
execute other useful instructions, other than looping waiting for the next character
to become available? If the computer does execute other instructions, how may it
then be synchronized with the modem?

The second problem relates to mass data transfers in which bytes of data are
either stored into, or written from, sequential memory locations at rates approach-
ing the instruction rate of the computer. If the central processing unit is to execute
the necessary load or store instructions, it will have little time to perform other,
more useful work.

In this chapter we will first discuss the interfacing of hardware devices to the
computer and how the problems, outlined above, have been solved. However, we
will not have the opportunity to write input/output programs, as this is not possible
in a time-sharing environment where input and output are handled by the operating
system. Instead, we will discuss input/output within the operating system using
traps.! The reader is referred to [12] for a full discussion of input/output at the
digital logic level.

Memory Mapped I/0

Communication with input/output devices is accomplished through memory in the
SPARC architecture. A section of memory, from 0xfff00000 to Oxf££fe000, is

1The impiementation of traps is discussed in detail in Chapter 12.
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replaced by device registers. When load and store instructions have addresses in
the device register section of memory, devices are activated, instead of the normal
storing and retrieving of data. Each device has a unique address, or addresses,
agsigned to it. When the computer reads or writes to one of these reserved device
memory locations, it is not addressing memory but instead communicates with the
device. In this way input and output may be performed with the regular instruction
set of the computer and no special input/output instructions are needed.

Character Devices

The simplest devices are those that accept or produce a single character at each
input/output transaction. Many of these devices have R8232 serial connections in
which the character code is sent bit by bit. These encodings may also involve the
generation and checking of parity information to ensure the correctness of the data
transmitted. We will not consider bit serial data transmission further here, as the
subject is better treated in a digital hardware course.

To write characters to a simple character device the stb instruction is used,
addressing a physical hardware device register. To read from a character device the
1dub instruction is used, once again addressing a physical hardware device register.
If, for example, a CRT device data register were interfaced to memory location
0xffff0000, then the character “a” could be written by:

mov "a", %o
set 0x££££0000, %ol
stb %00, [%ol]

Similarly, if a keyboard data register were interfaced to memory location Oxffff0008
and a key was struck on the keyboard, then the ASCII code corresponding to the
key struck could be obtained by loading the byte from the device register at memory
location Oxff0008. If the “h” key were struck, then the following instructions would
obtain 0150 in %o00:

set OxffFf0008, %ol
1ldub i%o1], %00

Programmed I/0

In the previous section we described device data registers, the register into which
output data are stored and from which input data are loaded. There still remains
the problem of synchronization. How do we know when a character has been typed
s0 that we may load it from the device data register? How do we know when a CRT
is ready to accept the next character for display? This information is provided by
another device register called the status register. For a simple device like s CRT
or a keyboard, the status register would be a single byte and would be located in
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memory adjacent to the data register. The interfacing of & device normally resalts
in a block of memory containing the device registers. In the status register there
is normally a ready bit to indicate that the device is ready to accept data or that
it has data ready to be taken from the data register. The status register may also
contain an error bit to indicate that a device error has occurred. As we will see
later, it also contains an interrupt for service bit,
Let us assumne that the CRT status register is as shown below:

[ ready | error [intr. 0 [0 [0 [0 | 0 ]

7 6 5 4 3 2 1 0
Before storing the ASCII character code of the byte we wish to display into the data,
register, we must first check that the ready bit is set. If the ready bit is set, then
we may write the character to the data register. At this point the device will clear
the ready bit. When the device has processed the character in its data register, it
will set the ready bit to indicate that it is ready to accept another character., Code
to transfer the string "hello, world\n" might look something like:

crt = Oxfff£0000 Ifictitious crt davice
begin_struct(crt) 'ert registers
field(data, 4) !data register
field(status, 4) !'status register

end_struct (crt)

!status register bits

crt_ready = 0x80 ready
crt_error = 0x40 terror
crt_intr = 0x20 !interrupt
crt_reset = 0Ox1 !reset device

'define registers

define(crt_r, 12) 1%12 crt base register
define(ptr_r, 13) %13 pointer to string
define(ptr_adr_r, 14) 1414 address of pointer
define(data_r, 15) 1415 data
define(status_r, 16) 1716 status

-global helle, ptr_m

hello:
.ascig "hello, world\n"
.data
ptr_m:
.word hello
.text

.align 4
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begin_fn(_main)

set  ptr_m, Yptr_adr_r taddress of string peointer
1d iptr_adr_r], Yptr_r tpointer to string
set crt, Yert_r taddr. crt device struct
mov crt_reset, Ystatus_r lclear error and int status
stb  Ustatus_r, [fert_r + status] !'and thus set ready bit
ldub [Uptr_r], %data_r loutput first character
stb  Ydata_r, [%crt_r + data]
next:
inc fptr_r lincrement pointer
ldub [Yptr_rl, %data r load byte of data
tst Ydata_r Icheck to see if end string
be dons
ldub [Y%crt_r + status], %status_r !load status
walt:
btst crt_ready, Ystatus_x ldevice ready?
be wait !no loop
ldub [%cxt_r + status], ¥status_r
ba next
stb  Ydata_r, [hcert_r + data]!output next character
done:
mov crt_reset, %status_r tand reset device
stb  Ystatus_r, [fcrt_r + status] !clear error and int
end_fn(_main) land return

In the code, the starting address of the CRT device registers is first defined,

“ert =

0xf£££0000”; the two fields are then defined as if they were a structure,

data, and status. These registers would be addressed as 1dub [%crt_r + status],
or as stb Ydata_r, [fcrt_r + data]. The bits of the status register are then

defined:

crt_ready; crt_error; crt_intr; crt_reset. Five registers are de-

fined for use: a pointer to the CRT structure in memory; a pointer to the string

"hello,

world\n"; the address of the pointer; a register to hold the byte of data;

and a register to hold the status bits. The code starts at main with the pointer
and the CRT structure base address being loaded into registers. The device is then
reset, which turns on the ready bit, at which point the first character is stored in



10.5

10.5. INTERRUPT DRIVEN 1/0 , 253

register. When the nulj at the end of the string is encountered, the device is reget
and the program returns. This program wastes huge amounts of time in the wait

loop, wait.
cycles.

The CRT might be accepting characters, once every 1000 machine

Interrupt Driven I /O

Assuming that the computer has something useful to do while the input or output
is going on, it would be efficient if the machine were able to proceed, only returning
to service the input/output device when it was ready. This facility has always been

terms of interrupts. Input/output devices may interrupt the computer

when they need service, for exarmple, by setting the ready flag. When an interrupt

routine address. For example, the program to print the string "hello, world\n"
using interrupts might be as follows:

crt =

begin_st
field(da
field(st

Oxf£££0000 fictitious crt device
ruct (crt) ert registers

ta, 4) 'data register
atus, 4) 'status register

end_struct (crt)

I'status

crt_read
Crt_erro
Crt_intr
Crt_rese

register bits
¥ = 0x80 'ready
r = 0x40 lerror
= 0x20 !interrupt
t = 0x1 'reset device

'define registers
define (¢
define(p
define(p
define(d
define (s

rt_r, 12) %12 crt base register
tr_r, 13) 1%13 pointer to string
tr_adr_r, 14) %14 address of pointer
ata_r, 15) 1%15 data register

tatus_r, 16) %18 statug




254 CHAPTER 10. INPUT/OUTPUT

.global hello, ptr_m
hello: .asciz "hello, worldi\n"

.data

ptr_m: .word hello
-text
.align 4

begin_fn(_main)

!code to start transmission

start:
gset ptr_m, Yptr_adr_r taddress of string pointer
14 [hptr_adr_r], Yptr_r 'pointer to string
set crt, Yert r taddr. crt device struct
mov cri_reset, Ystatus_r tclear error and int status
stb  Ystatus_r, [Ycrt_r + status] 'and thus set ready bit
mov  crt_intr, Ystatus_r !enable interrupts

stb  Ystatus_r, [Jert_r + status]

ldub [¥ptr_r]l, %data_r foutput first character
stb  Ydata_r, [Y%ert_r + datal

inc  ptr_r lincrement pointer

st Yptr_r, [iptr_adr_r]

end_fn(_main) land return

linterrupt code
.global next, done

next:
set ptr_m, Yptr_adr_r Ipointer address
14 [Vptr_adr_r], Yptr_r Ipointer to string
1dub [Yptr_r], ¥data_r Iload byte of data
tst Ydata_r Icheck to see if end string
be done
set crt, Yert_r laddr. crt device struct

stb  Jdata_r, [fcrt_r + data]'!output next character
inc  Yptr_r lincrement pointer

st Yptr_r, [iptr_adr_r]

Ireturn from interrupt

done:
clr  Yptr_r fjust clear pointer
st %ptr_r, [Yptr_adr_r]
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mov ¢rt_reset, Ystatus r fand reset device
stb  Ystatus_r, [hert_r + status] 'clear error and int
'return from interrupt

This program has the same definitions as the previous program. The initializa-
tion of the registers and the device begins in the same way with the exception that,
after the device has been reset, the interrupt bit is set. When the interrupt bit is set
the computer is interrupted whenever the ready flag is set. We have arranged that
the code labeled “linterrupt code” will be executed when an interrupt occurs. At
the end of this code segment, labeled by the comment “Ireturn from interrupt,” the
computer will continye doing whatever it was doing when the interrupt occurred.

Following initialization, when the interrupt flag is set the first character is ontput
and the routine returns, allowing other processing to occur. The routine does not
wait for the ready flag to be set.

When the ready flag is set an interrupt occurs and the code starting at the label
next is executed. As we will see in Chapter 12 an interrupt routine may use the
local registers %12 -— %17; local register %10 contains the %pc and %11 the Ynpc at
the time the interrupt occurred.

Block Devices

By using interrupts we avoid the problem of not keeping the cpu waiting for g slow
device. If, however, the device transfers dasta at very high rates we have » different
problem. The interrupt, code shown ahove takes 10 cycles, without consideration
of any overhead involved in saving the state of the machine in preparation for
executing the interrupt code. Many devices, such as disks, transfer data at rates
comparable to the instruction execution rate of the computer. Further, the code
to transfer a block of data is very simple, involving storing or retrieving data from
sequential locations in memory. Block transfer devices are capable of executing
such simple transfers independently of the epu. A block transfer device is given a

starting address and an item count. The device is capable of addressing memory

Directory Devices

Data storage devices are either sequential, such as a CRT or a tape, or blocked,
such as a disk. To write to a tape we must first position the drive at the end of
the written portion of the tape and then we May resume writing. While data on
tapes are written in records, with g distinguishing mark between each record, there
is no information kept as to what data are located in what record. The retrieval
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of information from a tape involves reading the entire tape, discarding information
that is not wanted. Rewriting a block on a tapc involves rewriting the entire
tape. Disks are unlike tapes in that they are formatted before any information is
written to them. Additional information tracks are provided to locate individual
records on disks. This information is only written during a formatting process.
After a disk has been formatted, information may be located with respect to the
formatting information. Thus, individual records on a disk may be read or rewritten
in essentially a random manner.

Addressing of individual records on a disk is in terms of logical block numbers,
which are translated into physical block numbers by the device. In order to address
an individual record the logical block number must be stored in a device register.
If the device is a block transfer device, the starting memory address and data item
count must also be stored in device registers. Such devices have many registers and
states, represented by bits of the status register. The operating system maintaing
a directory, relating file path names to physical locations on the device of the data.

Input/Output Processors

Handling of input/output is complicated, and some computers have additional pro-
cessing units to handle input /output interfaced to the memory, Thesc input/output
processors have an instruction set relevant to data transfer with branching and
arithmetic instructions. With such a system the central processor is free to per-
form computations, while the input/output processors handle the devices and the
transfer of data to and from memory.

System I/0

Input and output are handled by the operating system citeUnix. It is the op-
erating system that controls all input/output devices. The relationship betwoeen
input /output and the selection of processes to run is complicated and beyond the
scope of this book. However, the interface between the user and the operating
system is of concern to us as it provides our interface to the input/output devices.
In order to perform any input or output from a program one must make a
request to the operating system. Such a request is called a “trap,” or “system
call.” We have alrecady secn the use of a trap to “exit” at the end of a program:

clr %l
ta 0

The service requested is represented by the number in register %gl. The trap
instruction ta is like a subroutine call in that it transfers control to a different
address. Unlike a call instruction, the trap instruction has no delay slot. The
address to which the trap istruction transfers control is stored in a table in the
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operating system (see Chapter 12). The trap instruction, as a side effect, changes
the mode in which the computer is operating from “user” mode io “supervisor”
mode. In supervisor mode a program may execute additional instructions and may
address the input/output devices.

There are many traps, but we will concern ourselves only with those related to
input and output:

%gl  Service Request

3 read
4 write
5 open
6 close
8 create

All devices arc represented by files in the UNIX operating system. To write to
our CRT, we write to a file; to read from our keyboard, we read from a different file,
These are special files; you may read from the keyboard file only when characters
have been typed. When wo read from & file in our directory, we are reading from a
file located on a digk.

Before a file may be accessed it must first be “opened.” Opening a file relates
a path name and access modes to the physical location of the data on a device.
Checking also oceurs at the time of opening a file in case the file is being accessad
in a manner that violates the protoction of the file. If the file docs not exist, or if the
access mode is inappropriate, the trap routine sets the carry, “C” bit. Trap routines
have historically sct the “C” bit to indicate an error. If the open is successful, a file
descriptor is returncd. A file descriptor is a small positive integer, usually less than
16 in magnitude. The file descriptor is used for all future accesses to the file. The
arguments to a trap are stored in the “out” rogisters in exactly the same manner
as in a function call. The return value from a trap instruction is located in %c0.

Our discussion of inpit /output parallels the discussion of low-level input/output
in Kernighan and Ritchie. In UNIX, the lowest-level interface to the input/output
systemn s in terms of the following functions:

int n_read = read{int fd, char * buf, int n);

int n_written = write(int fd, char # buf, int n);
int fd = open(char * name, int flags, int perms);
int fd = creat(char * name, perms);

clese(int fd);

in which fd is a file descriptor; buf is the character buffer into which characters
will be read or from which characters will be written; n is the number of characters
to be written or rcad; name is the path name of the file to be accessed; flags
and perms arc described fully in the UNIX documentation. If code generated by
the C compiler is examined, it will be seen that the above functions simply move
their arguments into the out registers and execute the appropriate trap instruction.
Following the trap instruction is some error-checking code.
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As an example of low-level 1/0 we will code the following C program, which
copies a file, directly into trap-handling assembly language.

#define PERMS 0666
#define BUFSIZ 8192

main()
{
int ff, ft;
int n;
char buf [BUFSIZ];

if ((ff = open("foo", 0, 0)) < O)
exit(1);

if ((ft = creat("baz", PERMS)) < 0)
exit(2);

while ((n = read(ff,buf, BUFSIZ)) > 0)
if (write(ft, buf, n) != n)
exit(0);

The assembly language with the function calls replaced directly with traps em-
ploying the C bit as error indicator is:

include(macro_defs.m)

define (OPEN, 5) !“trap definitions’
define (CREAT, 8)

define(READ, 3)

define (WRITE, 4)

define (O_RDONLY, 0) ! ‘defined in <fcntl.h>’
stril: .asciz "foo"
str2: .asciz  "baz"
.align 4
define(ff_r, 10) VE%Ef_r = %107
define(ft_r, 11) V9% Ft_r = %11°
define(n_r, 12) 'in_r = %127

define(BUFSIZ, 16) Vbuffer size’
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local_var
var (buf, BUFSIZ, 1)

begin_fn(_main)

set
clr
clr
mov
ta

bcc
mov
clr
ta

open_ok:

set
mov
mov
ta

bec
nov
clr
ta

ba
mowv
read_ok:
add
mov
mov
ta
cmp
be
mov
clr
ta

add
moev
nov
ta
addcc
bg
mov

strl, %o0
%ol

%o2

OPEN, %g1
0

open_ck
hoO, Yff_r
hel

0

str2, %o0
0666, %ol
CREAT, Yg1
0

creat_ok
%00, Yft_r
%el

0

creat_ok:

write_ok
YEEf_r, %00

#fp, buf, %ol
%o_r, %o2
WRITE, Ygi

0

%00, %n_r

write_ok
WEE_r, %00
%el

0

write_ok:

htp, buf, %Yol
BUFSIZ, %o2
READ, %gl

0

%00, 0, Yn_r
read_ok
%ft_r, %o0

| ‘read/write buffer’

!*open file to read’
! ‘mode’
!“open file for reading’

read file descriptor
!“error, exit’

!file access permissions
'create file’

lwrite file descriptor
| ‘error, exit’

'test

'read file descriptor
'buffer peinter
!number bytes to write
lwrite

!check pumber written
Iread file descriptor
!Yerror, exit’
!pointer to buffer
'max chars to read

lread

!check if any chars read

read file descriptor

259
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be all_done

clr gl
ta v} Yerror, exit’
all_done:

end_fn{(_main)

The assembly language is much more efficient than the C version, but when one
takes into account the system operations involved with trap execution the increase
in efficiency becomes irrelevant.

10.10 Summary

This chapter discussed input/output operations in general, Unfortunately, when
programming in user mode we are unable to directly perform input/output oper
ations. Discussion started with memory mapped character devices. Programmed
input /output was first discussed then interrupt input/output motivated by its lim-
itations. This lead naturally to block devices and finally to the input/output pro-
cessor. ‘The chapter concluded with a discussion of the trap implementation of
input/output system calls under UNIX.

10.11 Exercises

10-1 Why is character input/output to a slow device handled by means of inter-
rupts?

10-2 Write lowercase to uppercase copy

10-3 Write word copy, wc.



Chapter 11

FLOATING-POINT

11.1 Introduction

So far in our discussion of programming we have considered only integer arithmetic.
We may extend our definition of the positional notation for decimal numbers (seo
page 83) to include fractional quantities [15]:

NmS{d B 4+ +diR b dy + doy R+ d_oR™2... 1 d_sR~7)
where:

R s the number system base, 10 for decimal numbers

N is the the number in base R

Sis the sign, + or —

7 is the number of digits

fis the number of digits to the right of the decimal place

A string approximating =, 3.14159, is interpreted as the number;
34+1x107 +4x 107241 x 1073 5 x 1074 4+ 9 x 10~

The accuracy of representation relates to the number of decimal places, five in
the example given above. The representation of a number with f decimal places is
accurate to f+10~/, Many numbers do not have an exact representation with such
a system; numbers such as 1/3 result in an infinite repeating string of digits, called
a recurring decimal. Other numbers, such as 7 and V2, may not be represented,
only approximated. Arithmetic is performed to obtain a result accurate to a given
number of decimal places.

The number 3.14159 may also be represented as a binary number with six binary
places as:

11.001001

261
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where the first bit to the right of the binary point represents halves and the next bit
to the right quarters and so on, with the sixth bit to the right of the hinary point
representing sixty-fourths. The binary representation of m with six binary places is
accurate to +279 The equivalent of recurring decimal numbers occurs also with
binary numbers, for example, 0.1 in binary is 0.00017. 1

The simplest way to convert a decimal number to binary is first to multiply the
decimal number by 2/ where f is the number of binary places required and $o then
proceed to convert the integer part of the resulting number using the methods of
Chapter 3.

Fixed Binary Point Numbers

Fractional quantities may be represented by shifting the binary point in an integer
word. We have thus far always assumed that the binary point (the binary cquivalent
of the decimal point) was at the right-hand cnd of the word, to the right of bit zero.
However, we may consider the binary point to be located anywhere in the word.
Another way of looking at the problem is to consider that the integer quantity does
not reprosent integers but might represent, for example, 1/16ths. In this casc the
binary point would be to the right of bit four (see Figure 11.1).

7% 16 8 4 2 1 12 14 18 116
- T T T T T
31 30 8 7 6 5 4 3 2 1 0

Figure 11.1: Scaled Integer Number

We may use the add and sub instructions to add and subtract such scaled
numbers without any change except to note that for cvery additional binary place
we lhialve the range of numbers that may be represented in a fixed-length register.

When we multiply two such numbers we generate twice as many binary places.
Consider a x 2= multiplicd by # x 2% the result is a x b x 278 with eight binary
places. If the multiplicand and the multiplier were both accurate to four binary
places the result of the multiplication will only be accurate, at best, to four bi-
nary places, so that we should seliminate binary places beyond the fourth. This
is most simply done by right-shifting four places; however, the number might also
be rounded. That is, if the most significant bit of the bits to be discarded was
a one, then we might increment the number after shifting. We will not address
rounding here, as this is properly the subject of numerical analysis, other than to
mention that this is an important problem when fractional quantities are involved
and approximated to a fixed number of bits of precision.

!The same problem occurs with hundredth which can cause a problem when performing ac-
counting using floating-point arithmetic. It is customary to represent dollars and cents x100 to
avoid this problem.
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Disregarding questions of rounding, the code to multiply the two numbers would

be:
mov ha_r, %o0 163 % b7
call .mul
mov ib_r, %ol
sTra ho0, 4, Yo0 '“normalize’

Similarly for division:

s11 ha_r, 4, %o0 !‘pre-normalize dividend’
call ~div
nov %b_r, Yot

11.3 Scientific Notation

In addition to the need to represent fractional quantitics, there is the need to
represent numbers of a great range, usually much greater than can be provided
by conventional fixed-length registers. In general scientific calculations a range
of £10%20 j5 quite common, with relative accuracy of 10~10, Thjs would require a
register with 66 bits to represent the largest number and with an additional 100 bits
to represent the smallest numher to the given relative accuracy, a 166-bit register!
Only the most significant 33 hits of ally number would have any meaning. The
remaining bits would only be needed to indicate the position of the most significant
bits. Thus, we might represent such numbers in a much more practical way by
storing the 30 significant bits in one word, keeping the position of the binary point in
a second word, This is, of course, a binary equivalont of scientific notation in which
decimal numbers are represented in the same relative Precision by incorporating a
multiplicr of a power of 10; for example, 3.1826 x 10% to represent 3182.6 where the
exponent of 10 is used to indicate the location of the decimal place. Note that the
number is represented to five significant places. 3.1826 x 10729 is also represented
to five significant places but is a much smaller number.

In order to handle scientific notation we might keep two worcds for each number;
the first word would store the significand, a number between 1.0 and 2.0, the
second word an exponent of hage two. The number would then be interpreted as
this significand, scaled by two raised to the power of the exponent, For example
the number 16 might be represented as 1.0 x 24, The significand f is hormally
constrained to be 1.0 < f « 2.0 g0 that the product p of two such significands will be
such that 1.0 < p < 4.0 close to the original range. If this is done, renormalization
involves at most a single arithmetic shift. The addition of two such significands also
will lie between 2.0 and 4.0, once again requiring only a single shift to renormalize
a sum. Of course, the significand could be much smaller or larger, but then the
range of the result would no longer be so limited and renormalization would be
more difficult.
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For example, let us pick a representation in which the significand will represent

a positive number, greater than 1.0 and less than 2.0, with the binary point located

to

the right of bit 29. Bit 29 will then always be a one. This will then leave us

two bits, 30 and 31, to avoid overflow problems and to enable us to perform two’s
complement arithmetic.? The integer contents of a register would then have to be
scaled by 272%, to be interpreted as the significand. With such a representation
multiplication would be simple, involving the product of the first pair of words and
the addition of the exponents stored in the second pair of words.

If we were to store the significands with the binary point to the right of bit 29

we could represent unsigned numbers such as 1.5, 3 and 9 as follows:

one: word  0x30000000, 0x0 141 1/2 % 270 = 1.5
three: .word 0x30000000, Ox1 11 1/2 % 271 = 3
nine: .word 0x24000000, 0x3 11 1/8 * 2°3 = @

by

If we use umul to perform multiplication, we will obtain the product scaled
275 in two registers, the high-order bits in %01 and the low bits in %00. To

renormalize, without worrying about rounding, we would need to shift right 29
times. That involves shifting %o1 right 20 — 32 = -3, or loft 3 times.> The low part

in
in

be

%00 needs to be shifted right 29 times, leaving only its three most significant bits
the register; these three bits are the low three bits of the product and must then
ored into %ol after it is shifted. If the product of the significands was greater

than two the result would need to be shifted right 30 times and the exponent of
the sum incremented. Consider the product of three and nine:

W~ DT WA -

/* scientific notation program to multiply two numbers */
include(../macro_defs.m)
.data

three_m:.word  0x30000000, Ox1 !'‘1 1/2 x 2°1 = 3°

nine_m: .word 0x24000000, 0x3 !4 1/8 * 273 = 9§

n27_m: .word 0,0 ! “gyhere to store 27°
.text

cdef (three_r, 10)

cdef (nine_r, 11)

cdef (n27_r, 12)

cdef (mask_r, 13)

cdef (mask, 0x8000000) !‘2 bit after mul’

begin_main
set  three_m, Ythree_r !¢w> three_m’
set nine_m, %nine_r '*—> nine_m’
set n27_m, %n27_r V> n27_m?
set mask, Ymask _r 141/2 bit after mul mask’
14 [%three_r], %00 multiply fractions'’

2We will address signed numbers later.
¥The contents of the register containing the high-order part is already scaled by 232,
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19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

call .umil
1d (Ynine_r], %oi
1d [4three_r + 4], %02 !“add exponents’
1d (¥nine_r + 4], %03
t‘add %03, %02, %02 move addition into delay slot’
andcc %ol, Y%mask_r, heo !“fraction < 27
be shft3 Iyes?
add o3, %o2, Y%o?
'“fraction >= 2, << 2, exp++’
shft2:
811 %ol, 2, %ot P ‘fract << 27
srl %00, 30, %o0 '“two msb of low part’
ba ok
inc o2 ! “increment exponent’
!“fraction < 2, << 3’
shft3:
sll  Jol, 3, Yot I'fract << 3’
srl  %e0, 29, %o0 '“three msb of low part’
ok:
or %ol, %00, %o1 '“fract in %ol’
st ho2, [%n27_r + 4] ! “store result’
st hol, [¥n27_r]
end_main

The numbers arc declared using two words, lines 4 - 6. After pointers are loaded

into the registers, lines 14 - 18 umul Is called to perform the multiplication. The
exponents are added in lines 21, 22, and 26. The high bit of the product is tested
in linc 24 and then either two shifts or three arc made to renormalize the number,
lines 28 - 38,

Addition and subtraction are more difficult, as we must first align the signifi-

cands so that the exponents are equal. This is done by right-shifting the significand
whose exponent is smaller, thus increasing its exponent for each right shift, until
both exponents match. If both addends are positive, then we will need at most one
shift to renormalize. In he case of subtraction, assuming that we are subtracting
a smaller positive number from a larger positive number, we may obtain a result
with many leading zeros if the numbers are close together. In this case normalizing
becomes a problem, as we have to have a loop with a test and shift for as many
leading zeros as there are in the result,

G WM

Consider the subtraction of 128 — 127:

/* Scientific notation program to subtract two numbers %/
include(. ./macro_defs.m)
.data

one28_m: . word 0x20000000, 0x7 191 % 2°7 = 128*
one27_m: .word 0x3£800000, 0x6 1°1 63/64% 2°6 = 1977
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6 one_m: .word 0,0 | ‘vhere to store result’
7 .text

8 cdef (one28_r, 10)

9 cdef (one27_r, 11)

10 cdef (one_r, 12)

11 cdef(mask_r, 13)

12 cdef (mask, 0x20000000) 191/2 bit?

13 begin_main

14 set  one28_m, %one28_r !‘-> one28_m’

15 set one27_m, %one27.r !‘~-> one27_m’

16 set one_m, %one_r 1Y -> one_m’

17 set  mask, Ymask_r 11/2 bit after mul mask’
18 1d [%one28_r], %o0 “fractions’

19 1d [%one27_x]1, %ol
20 1d [Yone28_r + 4], %02 !‘exponents’
21 1d [Yone27._r + 4], %o3

22 sub  %o2, %03, %o3 !“# shifts to align fract’
23 srl  %ol, %03, %ol “align fractions’
24 sub %00, %ol, %ol 1“form difference’
25 andcc Y%ol, Ymask_r, %gd !‘normalized?’

26 bne ok

27 nop

28 norm:

29 sl1  Yol, 1, Yol | “fract << 1’

30 test:

a1 andcc %ol, Ymask_r, %g0 !‘normalized?’

32 be norm

33 sub %02, 1, %o2 !fexp-—-’

34 ok:

35 st %02, [fhone_r + 4] !'‘store result’

36 st %ol, [%one_r]
37 end_main

The data are declared and pointers are loaded, lines 4 — 17. ‘I'he exponents are
then subtracted to calculate the number of shifts to align the significands, lines 22
~ 23. The difference of the signiticands (which are now aligned) is then computed
in line 24. If the high-order bit of the result in not set, line 25, a loop is entered to
renormalize, lines 29 — 33. This body of this loop is executed once for every shift
necessary to renormalize the significand.

A representation, very similar to the one we have described, is called floating-
point. In floating-point format the exponent and significand are packed together in
one or more words. In the SPARC architecture, floating-point numbers are normally
handled by a separate processor. If a floating-point processor is not available, then
code very similar to that presented above must be present to perform floating-
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peint arithmetic operations. Floating-point numbers are normally stored in sign-
magnitude format, not in two's cotmplement format. In sign-magnitude format bit
31 indicates the sign of the number, a one indicates a negative number and a zero
a positive number. The significand is always stored as a positive quantity. The
negation of such a number simply involves complementing the sign hit.

11.4  Floating-Point

The SPARC architecture implements the ANSI/IEEE Standard 754-1985 [14] which
defines three formats: floating-point single, double, and quad. The floating-point
single format is shown in Figure 11.2.

5 | e(7:0] | f[22:0§ ]
3130 23 22 &

Figure 11.2; Floating-point Single Format

A floating-point single representation occupies one four-byte word. The number
it represents is:

N=(-1) %2712 1 ¢
where

8 18 the sign bit
¢ 15 a hiased exponent
fis the fractional part of the significand.

The number is stored sigh magnitude with only the fractional part of the mag-
nitude of the significand present. ‘T'he exponent is biased by 0x3f so that the biased
exponent is always a positive munher, 4 As the significand is always to be normal-
ized, so that the high-order bit is always a one, this bit is not stored, allowing for
additional precision with the available 23 bits of significand. Before the significand
can be used 1.0 must be added to the fraction. The following table shows the
representation for some simple numbers.

Number s e - Ox3f €(binary} 1. fivinaryy fivinary) Single Aoat
1.0 0 0 0111 1111 1.000 0000 0x3f800000
-1.0 1 0 0111 1111 1.000 0000 0xbf800000
1.5 0 0 0111 1111 1.100 1600 0x3£c00000
0.5 0 -1 0111 1110 1.000 0000 0x31000000
0.25 0 -2 0111 1101 1.000 0000 0x3e800000
2.0 0 1 1000 0000 1.000 0000 0x40000000

*This allows an integer compare to be used 1o compare the magnitudes of floating-point
numbers.
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We could use owr multiply and subtraction code with this format if we first
unpack the data. The following leaf routine will do this for us, taking care of a sign
as well:

1 /% leaf routine to unpack floating single numbers into

2 significand, exponent, and sign in %00, %ol, and %02 =*/
3 .global unpack

4 unpack: )

5 orcc %g0, %o0, %g0 I‘test for negative’

6 bpos exp

7 or hgl, %gl, %o2 1‘set sign positive’

8 xnor %g0, %gl, %o2 !“set sign’

9 exp:
10 srl  %o0, 23, %ol !*shift exp back into Yol’
11 andn %ol, 0x100, %ol !“clear sign bit’
12 sub  Y%ol, 127, %ol !‘unbias exponent’
13 signif:
14 sll  %o0, 9, %00 “place fraction into Y%o0’
15 srl  %oO0, 3, %o0 |‘normalize’

16 sethi %hi{0x20000000), %03 '“place 1 into %03’

17 lfor %00, %03, %ol -> delay slot’

18 retl

19 or %00, %03, %00 '‘significand in %00’

Here the sign is first extracted, lincs 5 — 8, the exponent retrieved and unbiased,
lines 10 - 12. Finally, the one is restored to the fraction and it is normalized to
form the significand, lines 14 — 19.

The largest biased exponent we may use is Oxfe which corresponds to 247
The largest possible biased exponent, Oxff, is restricted to represent quantities
that are not numbers, such as /—1 and infinity oc. Likewise, the smallest biased
exponent, 0x0, which would correspond to 2727 is also restricted to represent so
called subnormal numbers, which we will describe in Section 11.8. The smallest
biased exponent is 0x1 which corresponds to 2126,

This gives us a range of magnitudes from 1.0 x 27'2% yp through (2.0 — ¢) x 217,
or from 1.17549435e-38 to 3.40282347e+38. This range of numbers would be rep-
resented in the machine as a four-byte hexadecimal quantities 0x00800000 through
0x7£7fiftf. Floating single numbers are represented to approximately seven dec-
imal digits accuracy. Zero is represented as a word containing 0. This is the same
representation as an integer zero, which simplifies testing. Floating single numbers
may be either positive or negative, and we end up with two ranges of numbers and
zero, form -3.40282347e+38 to ~1.17549435e-38, a gap to zero, and then another
gap to the positive range from 1.17549435e-38 up to 3.40282347e+38.
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The Floating-point Processor

The SPARC architecture specified a floating-point coprocessor. This is a separate
processor from the integer unit we have been discussing. The floating-point proces-
sor is capable of executing a number of floating-point instructions and has its own
set of registers. The floating-point processor cannot, however, address memory or
fetch instructions. This is done by the integer unit. The integer unit has additional
mstructions to load and store the floating-point registers. When the integer unit
fetches a floating-point instruction it simply passes it to the floating-point unit for
execution. As soon as it has done this it may fetch the next instruction and start
the execution of that instruction in parallel. The execution of floating-point in-
structions is handled within the floating-point processor by a number of specialized
floating-point arithmetic units. These may include one or more adder /subtractor,
multiplier /divider units. The processor keeps track of which units are working
on what instructions, which floating-point registers they need for their input, and
which registers they will change when they have completed their computation., The
floating-point processor makes sure that no invalid computations take place by
stalling individual processors until the valid data have been computed. All this
Is transparent to the user, however, understanding the nature of the floating-point
processor is helpful in writing code for eficient execution. For example, if a number
of multiplications and additions of unrelated data must take place, the interleaving
of additions with multiplications will allow the processor to perform at twice its
rate rather than performing all the additions first and the multiplications later.
The floating-point processor can also compare foating-point numbers. Subsequent
branching would, of course, have to be done by the integer unit, which is fetching
instructions. This is provided for by the addition of a number of floating-point
branch instructions, which test the floating-point condition codes,

The floating-point processor has 32 registers, referred to as %10 through %31,
which may hold integer data or floating-point data. Unlike the integer unit there
is no register file and all registers that contain data must be saved when calling a
function.

The floating-point registers may be loaded and stored into memory by the in-
teger unit by executing the following instructions:

Mnemonic Operation
ldf Load word into floating-point register
stf Store floating-point register into memory

‘The assembler does not actually recognize the mnemonic 1df or stf but will
assemble these instructions when the instructions 1d and st refer to a floating-point,
register. The operands to these two instructions are identical to the integer load and
store instructions; namely, the address is the sum of the contents of two registers,
or a register and a constant, with the exception that the source or destination is
a floating-point register. The address registers are specified by rs1 and rs2, while
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the floating-point register is specified by the rd. The address is, as usual, enclosed B

in square brackets.

The single floating instructions that are exccuted by the floating processor are §

as follows:

Mnemonic Operands Description

fadds fregrs,, fregrs. fregr.a Add

fsubs freg..., freg,,. freg.q Subtract

fmuls fregrs,, fregrs. freg.a Multiply

fdivs fregrs., fregr.. freg.q Divide

fsqrts fregre. frege Square root

fmovs freges. freg.y Move data. between float-
ing registers

fnegs fregrss fregea Negate

fabss Jrege.. fregea Absolute value

Add, subtract, multiply, and divide, operate

to combine the contents of two

floating registers to produce a result for a third register. The square root in-
struction, while appearing somewhat sophisticated, turns out to be very simple to
implement in floating-point. This instruction, and thosc that follow, takes a single
source register to compute a result. The last three instructions are very simple,
involving no more than copying the data and modifying the sign bit.

Converting between integer format and floating-point is quite complicated and
occurs frequently so that conversion instructions are also provided. In this case an
integer is loaded into a floating register or stored from one.

Mnemonic Opecrands Description
fitos freg.s. fregrq Convert integer to single float
fstoi fregrsa freg.q Convert single float to integer
Finally, there is a compare instruction:
Mnemonic Opecrands Description
femps fregrs, freg,,. Comparc

The compare sets a condition code in a similar manner to the integer unit
compare instruction. However, the condition code represents different information.

The condition codes are:

fcc  Mnemonic Relation

§ E fs1 = {52

1 L fs} < fs2

2 G fs1 > fs2

3 U fs1 7 52, unordered
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The last condition code, U, indicates that one or both numbers were not floating-

point mumbers so that an ordering relation
floating condition codes may be tested by t
manner as the integer conditional branch in

tions are:
as cond Floating Unconditional Condition
Mremonic  op2 = 110 Branches Codes
fha 1000 Branch on always 1
fbn 0000 Branch never
as cond Floating Conditional Condition
Mnemonic  op?2 = 110 Branches Codes
fbo 1111 Branch on ordered EorLorG
fbu 0111 Branch on unordered U
fhul 0011 Branch on unordered I, or U
or less
bl 0100 Branch on less L
fhule 1110 Branch on unordered E or 1, or U
or less or equal
fbhle 1101 Branch on less or equal EorL
thue 1010 Branch on unordered E or U
or equal
fbe 1001 Branch on equal E
fbne 0001 Branch on not equal LorGor U
fblg 0010 Branch on less or Lor@
greater
fbuge 110G Branch on wunordered E or G or U
or greater or equal
fbge 1011 Branch on greater or E or G
equal
fbug 0101 Branch on unordered G or U
or greater
tbg 0110 Branch on greater G

A word of caution: A floating branch instruction may not follow immediately after
a floating compare instruction.

ship could not be established. These
he integer processor in much the same
structions operate. The testing instruc-
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11.6 A Floating-point Program

Given these instructions, let us look at a sample program. The following program
computes the inner product of two six-vectors represented by single floating-point

numbers:
1 /+ Compute the magnitude of the dot product of two six
2 element vectors, a and b stored as float singles */
3 include(../macro_defs.m)
4 .data  !‘floats must be initialized in memory’
5 a_m: .8ingle 0r1.0, Or1.5, Or-1.5
6 .single Ori10E2, 0r-1.0, 0ri16.0
7 b_m: .single 0r2.0, 0r4.0, 0r0.125
8 .8ingle 0r0.0625, 0r3.0, 0r5.0
9 zero_m: .single 0r0.0
10 .text
11 cdef(ap_r, 10, ‘pointer to vector a’)
12 cdef(bp_r, 11, ‘pointer to vector b’)
13 cdef(i_r, 12, ‘loop counter’)
14 cdef (mag_r, 0, ‘magnitude’)
15 cdef(sum_r, f1, ‘sum of products’)
16 cdef(a_r, £2, ‘component of a’)
17 cdef{b_r, £3, ‘component of b’)
18 cdef (prod_r, f4, ‘product’)
19 begin_main
20 set a_m, hap.r 1'set up pointers’
21 set b_m, %bp_r
22 mov 6, hi_r !“loop counter’
23 set zero_m, %o0 gsum = 0’
24 1d [%00], %sum_r
25 loop:
26 1d Uhap_rl, Ya_r !“first components’
27 1d (Zbp_r], %b_r
28 fmuls %a_r, Yb_r, Yprod_r
29 add hap_r, 4, fap.r ! “increment pointers’
30 add bp_r, 4, %bp_r
31 subce %i_r, 1, %i_r ! ‘decrement counter’
32 bg loop
33 fadds Ysum_r, ¥prod_r, Y%sum_r
34 fsqrts Ysum_r, Ymag r ! ‘obtain sqgrt’

35 end_main
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Notice the .single pesudo-op in lines 5 - o It assembles the floating-point
representation for each of igg floating-point operands. It accepts anything that C
would recognize as a floating-point number; however, each humber must be preceded
by Or to let the assembler know that the number that it is reading is to be read
as floating-point. As there is no literal mode for floating-point, all numbers must
be initialized in memory, including zero. There is no nstruction to zero a floating-
point register.® In the program we declare registers to hold pointers to the two
arrays, lines 11 and 12. We will yse a do loop with index variable i declared in line
13. Floating-point registers are declared to hold the Imagnitude, the sum, a pair of
components, and the product, lines 14 — 18,

The program first initializes the pointers, the index variable i and, zeros out
the sum, lines 20 - 24, Computation is then in loop executed six times. Two
components are loaded into %a_r, and %b_r, their product computed, both pointers
incremented, and the loop index decremented, The addition of the product to the
summn is placed in the delay slot. When the loop exits the magnitude is computed in
line 34 hefore the program exits,

Note that we have indented the floating-point instructions to indicate that they
are being computed in parallel with the instructions that follow. The fmuls in-

on to increment the pointers, If the computation of the product has been com-
pleted by the time the Processor reaches line 33, the faddg instruction will start
while the integer brocessor moves ahead to load the next two components into
the floating-point registers, line 26. If the fmuls instruction was still executing,
the Hoating-point brocessor would stall at line 33 until the multiply instruction
completes.

11.6.1 Debugging Floating-point Code with gdb

The contents of the floating-point registers may be addressed in gdb by $fn where
0 < n <32, The contents of a floating-point register are always interpreted by gdb
as a single floating-point number 80 that if a floating point 5 had been loaded into
%£0 the following printout would occur within gdb:

(gdb) p/d $£0

$0 =5
(gdb) p/f $f2
$1 =5

When éxamining memory we may specify how many bytes are to be examined
and in what format the bytes examined are to be printed, so that if the floating
single constant 5.0 were located in memory at 0x4098, then the following printout
would occur:

5If any floating-point regiter contains a valid floating point number then, a floating subtract

instruction may be used to subtract the cantents of the register from itself, storing the resulting
Zero into the desired register,
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(gdb) x/wf 0x4098
0x4098 <fl>: 5
{(gdb) x/wx 0x4098
0x4098 <f1>: 0x40a00000
(gdb) x/wd 0x4098
0x4098 <f1>: 1084227584

11.6.2 An Improved Version of the Code

An improved version of the program follows, obtained by unrolling the loop once.
We will compute two products in the loop, executing the loop only half as many
times. This has the obvious advantage of halving the number of times we have
to increment pointers and make the test on the loop variable. However, with a
floating-point coprocessor with a number of multipliers and adders, we may make
use of more than one of these units, possibly avoiding any processor stall to wait
for a floating-point computation to complete. To do this we need to make sure that
the multiplier and adder units access their own registers.

1 /* Compute the magnitude of the dot product of two six
2 element vectors, a and b stored as float singles */
3 include(. ./macro_defs.m)

4 .data  !‘floats must be initialized in memory’
5 globals:

6 a_m: .single 0r1.0, Ori.5, Or-1.5

7 .single OriQE2, 0r-1.0, 0ri16.0

8 b_m: .single 0r2.0, 0r4.0, 0r0.125

9 .8ingle 0r0.0625, 0r3.0, 0r5.0

10 zero_.m: .single 0r0.0

11 .text

12 cdef(ap_r, 10, ‘pointer to vector a’)

13 cdef(bp_r, 11, ‘pointer to vector b’)

14 cdef(i_r, 12, ‘loop counter’)

15 cdef(base_r, 13, ‘base pointer to globals’)
16 cdef (mag_r, £0, ‘magnitude’)

17 cdef(sum_r, f1, ‘sum of products’)

18 cdef(al_r, £2, ‘component of a’)

19 cdef(bl_r, £3, ‘component of b’)
20 cdef(a2_r, f4, ‘component of a’)
21 cdef (bZ_r, £5, ‘component of b?)
22 cdef(prodl_r, £6, ‘product?’)

23 cdef{prod2_r, £7, ‘product’)

24 begin main
25 sethi Jhi(globals), Ybase_r
26 or #base_r, Jlo(a_m), %ap_r !‘set up pointers’
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27 or “base_r, %lo(b_m), Abp_r !iset up peinters’
28

29 14 [Ybase_r + Alo{zero_m)], Yprodi r !“zero prodi’
30 nov 6, Yi_r '“loop counter’

31 fmovs Yprodi_r, Yprod2 r ‘zero prod2 and sum’
32 fwovs Yprodi_r, hsum_r

33 loop:

34 14 (hap_r], %ai_r '"first components’
35 1d (Wbp_rl, %bi_r

36 fadds Ysum_r, kprodi_r, Ysum_r

37 add  Yap_r, 8, hap_r

38 fmuls Yal_r, %bl_r, #prodl_r

39 1d (hap_r - 41, %a2_r !“second components’
40 1d [Fbp_r + 41, %b2_r

41 fadds Ysum_r, 4prod2_r, %sum_r

42 subce Yi_r, 2, %i_.xr '‘decrement counter’

43 fmuls %a2_r, %b2_r, Aprod2_rx

44 bg loop
45 add  %bp_r, 8, Ybp_r

46 fadds Ysum_r, hprodi_r, Ysum_r '“final additions’
47 fadds Ysum_r, 4prod2_r, Y%sum_ r
48 Isqrts %sum_r, Ymag r !‘obtain sqrt’

43 end_main

This time we have tried to optimize the loading of pointers by first loading the
high-order 22 bits of the address of the first of the globals into a register %bage,
line 25. We are then able to load the pointers using only a single or instruction for
each one, lines 26 - 27, In order to zero out the registers we first load zero into the
first of the registers that we wish to zero, line 29, and then fmove it to zero out the
other needed registers, lines 31 — 32,

In the loop we will need twice as many floating-point registers to be able to
compute two products. These are declared in lines 16 — 23, The unrolled loop
starts by loading two components into jal and %bt. The product, previously
computed into ¥prodi, is then added to hsum before the contents of %al and Ybi1
are multiplied into hprodi, lines 33 - 38. Note that one of the pointer incrementing
instructions is moved between the two Hoating-point instructions to keep the integer
unit computing while instructions are passed to the floating-point unit, line 37. The
next two vector components are then loaded into %a2 and %b2 before the product
computed into Y%prod2 is added into heum, freeing up %prod2 to receive the second
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and the square root obtained, probably involving some processor stalls, but as the
code is not in a loop the extra time involved is not too significant., Note that
in this program two multiplier units are used and that cach unit has the time it
takes to execute seven integer unit instructions to compute the product. In the
previous version of the program time for only four instructions existed. Notice also
that instructions intervene hetween loading a register and using its contents for a
computation: al and bl are loaded in 34 and 35 followed by an add instruction
in 37 before the fmuls using them in 38. In some processors a wait might happen
if the result of a load instruction is immediately vsed in the following instruction.

If we were writing in C we would need to write the program in the following
style to obtain the same efficiencies:

1 #include<math.h>

2 static fleat al]l = { 1.0, 1.5, -1.5, 10E2, -1.0, 16.0};
3 static fleat bl = { 2.0, 4.0, 0.125, 0.0625, 3.0, 5.0};
4 main()

5 {

6 register int i = 6;

7 register float *ap = a, *bp = b;

8 register float magnitude, sum = 0.0;

9 register float al, bl, a2, b2, prodl = 0.0, prod2 = 0.0;
10 do{

11 al = =*ap;

12 bl = #*bp;

13 sum += prodl;

14 ap += 2;

15 prodl = al * bi;

16 a2 = «(ap -~ 1),

i7 b2 = *(bp + 1);

i8 sum += prod2;

19 bp += 2;
20 prod2 = a2 % b2;} while ((i -= 2) > 0);

21 sum += prodil;

22 sum += prod2;

23 magnitude = sqrt(sum);
24}

Notice that the C code follows the same structure as the assembly language
given above.
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Floating NaN'’s

Floating single numbers with a biased exponent of 0xff do not represent con-
ventional numbers but are instead reserved to represent quantities that may not
be represented as numbers, like v/~1 and infinity co. Plus oo is represented by
0x3£800000, that is, a biaged exponent of Oxff and & zero fraction. Minus oo is
the same as oo but with the sign bit set, 0xf£800000. Infinity will be the result
of a floating divide of 1.0 by 0.0. Infinity compared to infinity is considered equal,
whereas infinity compared to any other number is considered larger. The repre-
sentation of co is useful in such cases as atan(oo), which can be programmed to
return the correct result of +m /2.

All other numbers with a biased exponent of 0xff are considered to represent
quantities that cannot he represented as numbers. If is customary to initialize all
uninitialized single floating variables to integer —1, which is, of course, OxffLfLFFF
a NaN. The hardware can detect such an inappropriate floating operand and cause
a floating exception, which, in turn, may cause a trap.

Subnormal N umbers

Single floating numbers with a biased exponent of 0x00 are not interpreted as
normal floating-point numbers but instead represent “subnormal” floating-point
numbers. When the smallest number that can be represented, 1.17549435¢-38, is
reached there is a gap until zero is reached and then another gap until we reach
~1.17549435e-38. In order to soften the encounter with this gap, subnormal num-
bers were defined, They are represented with o biased exponent of 0x00 and are
interproted as:

N=(-1) x 27126 » g 5
where

& Is the sign big
Jis the significand now a fraction.

Note that the implicit one of the significand is no longer present and that the
fraction is indeed Just that, a fraction. We can now move down from the small-
est single float 1.17549435e-38 represented as 0x00800000 to 1. 17549421e-38
represented as Ox007££££f, and continye down till we reach 1 -40129846e-45 rep-
resented as 0x00000001. The numbers are now being represented with constant
absolute accuracy, no longer with constant relative accuracy. The smallest sub-
normal, 1 -40129846e-45, is represented to +1.4 X 107% with a relative accuracy
of 450%. While subnormal numbers increase the range of floating-point, numbers,
they do not dramatically increase that range and they are a problem to implement
in hardware; subnormal numbers are frequently handled in software by arranging
that the floating-point processor traps when such a number is encountered.
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Extended Precision Floating-point

While single floating numbers and the associated foating-point processor appar-
ently solve the problem of representing real numbers of considerable range, the range |
+1.0 x 10+% js quite limited and the relative accuracy of seven digits also limited.
Numerical analysis frequently requires a much larger range of numbers represented
to greater relative significance. To this end, two additional floating-point formats |
are specified, floating-point doubleword, and floating-point quadword. Hardware
normally exists to perform floating double computations while floating-point quad
is normally handled (very slowly) in software. The C programming language per-
forms most calculations involving real numbers in floating point double.

The floating-point double representation takes eight bytes (see Figure 11.3) and
is interpreted as follows:

[s1 2[10:0] | [[51:32] |
31 30 20 19 Q0

f131:0] —]

3 ¢

Figure 11.3: Floating Double Format

N = (1) x 2071028 1 7
where

s is the sign bit
e is a biased exponent
f is the fractional part of the significand

Floating double numbers have a range starting from the very small number
2.2250738585072014e-308 up to 1.7976931348623157e+308 and arc represented
with approximately 17 decimal digits relative accuracy. As with floating single
numbers, the largest biased exponent is reserved to represent oo and NaN’s. Plus
infinity is represented as:

.word Ox7££00000, 0
Minus infinity is represented as:
.word Oxf££00000, 0

and NaN’s as anything with the biased exponent 0x7ff and the fraction nonzeto,
Initializing double floating variables to integer —1 will enable the detection of unini-
tialized variables during computation.
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the assembler recognizes 1dd and std in their place when the register is a floating
register. Of course, floating doubles must be stored in doubleword aligned memory

locations.
Munemonic Operation
Idd Load doubleword into two floating-poing registers
std Store two floating-point registers into memory

All the single floating instructions also exist in floating double form including
a multiply instruction, fsmuld, whose source operands are single and the result

double:
Mnemonic Operands Description
faddd freg,,., freg,., Jreg.s Add
fsubd freg.,,, freg,,, freg.q Subtract
fmuld .f'regr'.u) .f'regrsz fregqg MUItip]y
fsmuld fregr.,, Freg,., freg., Multiply single to double
fdivd freg.s,, freg .. freg,, Divide
fsqrtd Freg, .. freg., Square root

Once again the registers refer to the first register of the pair containing the
operands.

The three single floating move instructions fmovs, fregs, and fabss do not
exist for Aoating doubles, as a double may be handled by using fmovs, fnegs, or
fabss to move the high part and a second fmovs to handle the remainder of the
fraction:

\ 0 = | £2 |

fabss Yf2, %f0
fmovs %3, %1

Conversion routines exist between double and integer data as wel] as between
single and double floating-point;:
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Mnemonic Operands Description

fitod Ffreges. freg.y; Convert integer to dou-
ble float

fdtoi freg.s. freg.qs Convert double float to
integer

fdtos fregrs. fregrq Convert double foat to
single float

fstod Jreg.s. freg.y Convert single float to

double float

Finally, there is a compare instruction that sets the four status bits G, L, E, and
U:

Mnemonic Operands Description
fempd Jregrs, fregr,, Compare

The integer unit branch instructions are the same for all floating compares.
Let us look at an example of double-precision floating-peint, the computation
of a vector cross product:

1 /% vector cross product:

2 c.Xx=ay*hbz-azx*hb.y

3 ¢y =az * b_x - a_x * b_z

4 c_Z = ax *b.y - ay*b.x

B/

6 include(../macro_defs.m)

7 .data

8 .align 8

9 globals:

10 a_m: .double 0ri.0, 0r0.0, 0r0.0 !‘vect a’
11 b_m: .double 0r0.0, 0rl1.0, 0r0.0 !‘vect b’
12 c_m: .skip 8 * 4 !*vect c’
13 .text

14 cdef(ap_r, 10, ‘points to a’)

15 cdef(bp_r, 11, ‘points to b’)

16 cdef(cp_r, 12, ‘points to c the result’)
17 cdef (base_r, 13)

18 cdef(cx_r, f0, ‘vector components?’)
19 cdef (cy_r, £2)
20 cdef(cz_r, f4)
21 cdef (ax_r, £6)
22 cdef (ay_.r, £8)
23 cdef(az_r, £10)
24 cdef(bx_r, £12)

25 cdef(by_r, £14)
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26 cdef (bz_r, f£16)

27 cdef(cxl_r, £18, ‘product terms?’)

28 cdef (ex2_r, £20)

29 cdef(cyl_r, £22)

30 cdef(cy2_r, £24)

31 cdef{czl_r, £26)

32 cdef(cz2_r, £28)

33 cdef (subx, ‘+ %g0’) !“subscript offsets’
34 cdef (suby, ‘+ 8)

35 cdef (subz, ‘+ 18')

36 begin_main
37 sethi %hi(globais), fbase_r !|‘load baze address’

38 or #base_r, %lo(a_m), %ap_r !‘vector pointers’
39 ldd (hap_r subyl, %ay_r '*load a_y’

40 or hbase_r, %lo(b_m), %bp_r

41 ldd [%bp_r subzl, %bz_r !“load b_z’

42 fmuld %ay_r, %bz_r, %exi r | first comp. of ¢_x’

43 ldd (hap_r subz], Yaz_r
44 1dd [4bp_r subyl, %by_r
45 fmuld Yaz_r, %by_r, Y%cx2_.r !¢sec, comp. of c¢_x’
46 1dd (Abp_r subx], ¥bx_ r
47 ldd (hap_r subx], %ax_r

48 fsubd Yexl_r, %ex2_r, %ex. r tie_x?

49 fmuld Yaz_r, Ybx_r, eyl r Vfirst comp, of c_y’
50 or Jbase_r, Ylo(c_m), sep_r

51 fmuld Jax_r, %bz_r, Y%cy2.r 1¢sec. comp. of c¢_y’
52 std hex_r, [hep_r subx]

53 fsubd %cyl_r, %cy2_r, hey_x Vo_y?

54 std hey.r, [hep_r suby]

55 fmeld Yax_r, %by.r, Yczl_r 'first comp. of c_z’
56 fmuld Zay_r, %bx_r, Y%cz2_r !‘sec. comp. of c_z’
57 fsubd Yczl_r, %cz2_r, hez_r  tic zm?

58 std hez_r, [%ep_r subz]
59 end_main

Note the use of the .double pseudo-op to assemble double-precision numbers
in lines 10 — 12. In the program we have attempted to interlace integer unit in-
structions with floating-point instructions. We have also tried to optimize for the
availability of two floating multiplier units, however, the code is equally efficient
when there is only one. Note that the optimization tends to fall off at the end of
the program, as we have to wait for all our results to be available,

It is hard to debug programs containing floating double, as gdb is unable to print
the contents of two floating-point registers interpreted as a floating double. Double
floats stored in memory can, however, be examined by using the giant format to
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specify eight bytes:

(gdb) x/gf 0x4098
0x4098 <fl1>: 3.5

Finally, we need to mention quad floating-point. Floating quad numbers occupy
16 bytes of memory and four floating-point registers (see Figure 11.4). Quad floats
may only be stored in registers %fn where n is divisible by four with no remainder.

[s1 e[14:0] | f[111:96] |
3t 30 la i5 0
f195:64}

31 0
f[62:32]

3l 0
131:0)

31 0

Figure 11.4; Floating-point Quad Format

The range of such numbers with 15 bits for the biased exponent and 112 bits
of precision should satisfy even the most demanding numerical analysts. A full set
of instructions is provided for handling quad numbers. Instruction execution is,
however, frequently emulated in software and not implemented in hardware. We
will not discuss quad floating numbers further here.

11.10 Function Calls

When a function call is made the first six arguments are placed in registers %o0
through %05 with any additional arguments placed on the stack. In C, floating-point
value arguments are also passed in %00 through %o5 with any additional arguments
placed on the stack. As a foating-point double argument will occupy two integer
registers, this means that at most three double-float arguments may be passed by
value in registers %o0 through %o5. A pointer to a floating-point argument, of
course, occupies only one register. If a function is called with an integer argument
followed by three double-floats, the integer argument will be in %00 and the next
two double-floats in Yol — %o4. Notice that the double-float value arguments are not
in even registers so that they may nof be loaded there by a 1dd instruction; instead,
each part of the value argument must be loaded by a 14 instruction. Furthermore,
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while the high-order part of the last float argument will be in %05, its low-order part
will be on the stack at %5p + 92. This can make passing double-float arguments
by value difficult.

Furthermore, when the function is entered, the floating arguments will be needed
in the floating registers, not in the out registers. There is no instruction to move the
contents of an integer register to a floating register. In order to move data between
the floating-point processor registers and the integer unit registers, the data nust
be first stored in memory, from one processor and then loaded, from memory, into
the other processor’s registers. Space in the stack frame is normally allocated for
this purpose.

For example, to call the following function:

double fsum(int i, double al, double a2, double a3, double ad)
{

double sum = al;

if (~-i) sum += a2; else return sum;

if (--i) sum += a3; else return Sum;

if (--i) sum += a4; else return sum;

if (--i) exit(); else return sum;

}

assuming that the arguments to be bassed were in floating-point registers: %£0,
%£2, %14, and %£6. and that we had provided a temp space on the stack to move
double-floats between processors:

var{ftemp, 8)

We would proceed as follows:

1 add  Ysp, -(3 * 4) & -8, %sp ! ‘make room for args’
2 mov 4, %00 Ifirst int arg’

3 std  Jf0, [%fp + ftemp] !'“store second arg’

4 1d [%fp + ftemp], %ot !“high-order part’

5 14 [Afp + ftemp + 41, %02 t‘low-order part’

6 std  %f2, [Yfp + ftemp] !“third arg’

7 1d [%fp + ftempl, %03

3 1d [hfp + ftemp + 4], Yoa

9 std  %f4, [Ysp + arg_d{6)] !'“fourth arg into

10 P %fp + argé_s

11 ! and ¥fp + arg7_s’
12 1d [%sp + arg_d(6)], %o5 !“high-order part
13 ! back into %05’

14 call _fsum

15 std  Uf6, [Ysp + arg_d(8)] '“fifth arg to stack’

16 sub  Ysp, -(3 x 4) & -8, ¥%sp !‘release space for args’
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Note that while the first two float arguments may be stded to the stack they
must be lded back into the out registers, lines 3 — 8. Note also that, because space
is left on the stack for the struct pointer, the argument location, %sp + argb_s, is
doubleword-aligned, as is %sp + arg8_s, we may therefore use the std instructions
to store the arguments onto the stack, lines 9 and 15. The high-order part of the
third floating argument has to be put back into %05 so that the first six words of
arguments are in the registers.

Once in the function, the reverse operation has to occur to move the arguments

back into registers:

1 st wil, [%fp + ftemp] ! “high-order part’
2 st »i2, [hfp + ftemp + 4] !‘low-order part’

3 ldd  [ifp + ftemp], %fO ! ‘first float’

4 st %13, [%fp + ftemp]

5 st %i4, [Afp + ftemp + 4]

6 ldd [%fp + ftemp], %f2 ! ‘gecond float’

7 st %wis, [ifp + arg d(6)] ! “high~order part
8 ! back onto stack’
9 lda  [Ufp + arg_d(6)], %f4 !“third float
10 ldd  [ifp + arg_d(8)1, %fs !*fourth float’

The function is of type double and will thus return a double-float. Single floating
valucs are returncd in %£0, doubles are returned in %£0 and %f£1, and quad floats
are returned in %£0 through %£3.

If we had passed pointers to the double arguments in the function:

double

fsum(int i, double &al, double &a2, double &a3, double &a4)

then the call would be vastly simplified:

~N 3O W

mov 4, %00 !‘first int arg’

set al_m, %ol !‘&second arg’

set a2_m, %o2 !‘&third arg’

set a3_m, %o3 !‘&fourth arg’

sethi %hi(a4_m), %o4 !‘high part’

call _fsum

or %od, %lo(ad_m), %o4 !‘low part of adr’

and the movement of the double arguments into the floating-point registers also

vastly simplified:

ldd [#i1],
lad [%i2],
1ldd [%i3],
ldad [%i4],

B W N

hal_r !‘store second arg’
hal2_r !‘third arg’
4a3_r 1‘fourth arg’
Yad_r 1fifth arg’
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In general, it is much more efficient to bass a pointer to any data clement, larger
than the register length of a machine.

We mentioned earlier that there was no register file of floating-point registers,
only the 32 registers that are unaffected by save and call instructions. Some
protocol has to be established for a function call, either the calling function must
save all its active floating-point registers or the called function must save any reg-
isters that it uses. There are, of course, more complicated arrangements, such as
saving some of the registers, ete. In the SPARC architecture the protocol is that
the calling function must save all its active floating-point registers, that is, all the
registers that contain valid data. This then allows a called function to use any of
the floating-point registers without having first to save them.

"This convention has implications. Consider the program on page 276 that places
most of its local variables into registers. If it were to call another funetion, all its
floating-point registers would have fo be maoved onto the stack before the call conld
he made, thus invalidating the storage of the variables in the floating-point registers
in the first place. If the function called performed only a trivial computation, it
would be hetter replaced by a macro to be expanded, in-line, by cpp whenever
needed, thus avoiding the need to move all the registers to and from the stack. It
really only makes sense, in this architecture, to assign floating point variables to
registers in functions that do not call any other funetions, leaving floating-point
variables in other functions on the stack to be loaded and stored into the floating
registers us needed. The loading and storing of floating-point variables to and from
the stack do not, however, have to slow down the machine if the loads and stores
arc interleaved with floating-point computations.

11.11  Summary

The Hoating-point. format was first introduced to allow for the representation of
real numbers. Examples of integer processor code to add and to multiply such
number formats were then given. The floating-point processor was then introduced
to directly handle these floating-pbint, format numbers. The floating-point unit has
its own register set capable of holding 32 single-precision floating-point numbers
and executes floating-point instructions fetched by the integer Processor.

The single-precision floating-point format was first introduced together with
the single-precision floating-point instructions. Conversion instructions between
foating-point and integer format were presented with the floating-point compare
instruction. The floating-point compare instruction sets floating condition codes
that may be tested by the integer processor by means of a complete set of floating.-
point branch instructions; it is the integer unit that fetches instructions and controlg
the instruction flow. Debugging floating-point programs with gdb was discussed in
terms of an example that reveals some of the intricacies of the multiple arithmetic
units within the floating point processor.

Floating-point Not a Numbers were discussed with subnormal numbers. Double-
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precision floating and extended precision floating-point numbers were discussed.
The chapter concluded with a discussion of function calls involving floating-point
arguments and return values.

11.12 Exercises

11-1 Write functions to add, subtract, multiply, and divide integer quantities rep-
resenting dollars and cents in terms of cents.

11-2 The following program prints the Cartesian coordinates of a vector in a coor-
dinate system which is rotated -90 degrees about the z axis and translated by x =
10, y = 20, z = 1. Input of 0, 0, 0 produces output of: 10.00 20.00 1.00. Input of
10, 0, 0 produces output of: 10.00 10.00 1.00,

Translate the main function and the function matmul into assembly language,
double atof (char #);

matmul (float r[4], float al4][4], float b[4])

1{
register int i, j; /% indices */
double sum; /* dot product */
for (1 = 0; i < 4; i+4) /* for each row *x/
{ /* compute dot product */
sum = 0.0;
for (j = 0; j < 4; j++)
sum += a[il[j] * b[j];
r[i] = sum; /* store result */
}
}
float al4]1[4] = { /* rotated -90 deg */
{0, 1, 0, 10}, /* about z axis */
{-1, 0, 0, 20}, /* located at 10, 20, 1 */
{0, o, 1, 11,
{0, 0, 0, 1}};

main(int argc, char * * argv)

{
register int i; /¥ index */
float c[4]; /* result vector */
float b[4]; /* input vector */
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if (arge != 4) /* check number of args */
{
printi("usage, ax, bx, cx\n");
exit (1);
}
for (i = 0; 1 < 3; i++) /* convert args into floats */
bli] = atof (x++argv);
b[3] = 1.0;

matmul (c, a, b); /* transform the vector */

for (i = 0; i < 3; i++) /% print the result x/
printf ("¥%8.2f", c[i]);
printf ("\n");

11-3 Write a 4x4 floating-point matrix multiply routine. 4x4 matrices are used in
computer graphics and in robotics to represent translation and rotation between
objects in space. The determination of the absolute or relative position of objects
involves the multiplication of such matrices. Hardware is normally provided in

graphics workstation but in this assignment we will investigate the writing of an
efficient matrix multiply routine.

The matrix product ig simply written as:

*/

matmul (float r[][4], float a[][4] , fleat B[] [4])
{

register int i, j, k;

’

double gum;

for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)

{
sum = 0.0;
for (k = 0; k < 4; k++)

sum += alil[k] * b[k][j];

rlil[j]1 = sum;

}

}

/* given the data #*/
float al4l[4] = { /* object rotated 90 deg */
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{0, 1, o0, 10}, /* about z axis */
{-1, 0, 0, 20}, /% located at 10, 20, 1 =/
{0, o, 1, 1},
{0, 0, 0, 1}};
float b[4]1[4] = { /¥ rotate 90 deg about x*/
{1, 0, 0, o0}, /* and translate z=10 */
{0: 0; _1: O}s
{0, 1, o0, 107},
{0, 0, 0, 1}}
float c([4][4]; /* the result of a * b */
main()
{

register int i, j;
matmul (c, a, b);

for (1 = 0; 1 < 4; i++)
{
for (j = 0; j < 4; j++)
printf ("%8.2f", c[il(jl);
putchar(’\n’);
}
putchar{’\n’};
T

/* produces the following output:
0.00 0.00 -1.00 10.00
-1.00 0.00 0.00 20.00
0.00 1.00 0.00 11.00
.00 0.00 0.00 1.00

‘The matrix multiply, as written, is not very efficient. As the elements of the matrices
being multiplied, a and b, are accessed four times each, they should be moved into
floating-point registers once. Unfortunately, there are not sufficient registers. All
the elements of the matrix a may, however, be moved directly into the oating-point
registers, leaving 16 registers free. A single column of the matrix b may then be
moved into four more registers to be used to generate the first column of the result.
Then the next column may be moved into the same floating-point registers and the
second column produced. All this will involve some pointer arithmetic. Note that
while the multiplies may be done in single precision, the addition must be done in
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double-precision.

You are to write the improved matmul routine, described above, with the three
matrices as arguments, in assembly language to be called by the main program,
given above, using the global data, also given above.

11-4 Write a C main program that will call vector functions written in assemnbly
language to verify the following vectorial equality:

ax(bxc)=b(a.c)—c(a.b)

where a, b, and ¢ are three-dimensional vectors (i.e., 3-tuples of the form <X,¥,2>),
and the symbols “” and “¢” denote dot-product and cross-product, respectively.
Your C program should start with the following external data definitions:

double af] = {1.0, 2.0, 3.0};
double b[] = {4.0, 2.0, 0.0};
double cf] = {4.0, 2.0, 5.0};

double res1[3];
double res2{3];
double tmpl[3];

double tmp2[3]:

This initializes a, b, and ¢ to be three-clement double arrays and declares some
other arrays that you will need to store temporary and the final result,

Your C program should have a main program, which will set up arguments and
call auxiliary functions, which you are to write in assembly language, to perform
cross-product, dot-product, scale operation, and vector subtraction. These function
names must be prepended by an _ and declared as external symbols by using the
.glabal pscudo-op.

Your program should compute the left-hand side of the equation and store the
resulting vector triple in the array resl. It should then independently compute the
right-hand side of the equation and store the result in res2. The two triples should
be equal and, in fact, should be <60.0, 30.0,-40.0>.

A C main program to do this is as follows:

main()
{
cross(rest, a, cross (tmp, b, ¢));
subv(res2, scale(tmp, b, dot(a, c)) »scale(tmp2, c, dot(a, b))});
printf(" a x ( bxc )} = 48.2f%8.2£%8. 2f\n" ,
res1lC], resi[i], resif2]):
printf("bla.c) - c(a.b) = uA,8.2:If‘Z,8.2f‘7°8.2f\1:1“,
res2[0], res2[1], res2[2]) ;
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Note that the functions that compute vector results all return a pointer to the result
vector, which enables you to write the infix style of C shown above. Do not forget
to declare your external functions in the C program:

double
double
double
double

*/

double
double
double
double
double
double
double

double

double

deuble

double

main{)

{

*cross( double *result, double *a, double *b) ;
dot (double *a, double #b);

*subv{double *resuli, double *a, double #*b);
*scale(double *result, double *a, double f);

all = {
bl = {
cl] = {4.
resi(3];
res2[3];
tmp[3];

tmp2[3] ;

};
};
}

]

0,
0:
0

2

0,
0,
0

[
B BN N
o W

0
.0
0

*cross( double *result, double *a, double *b);
/* result = a x b */

dot (double *a, double #*b):

/* returns a . b */

*subv(double #result, double *a, double *b);
/* result = a - b */

*scale(double *result, double *a, double f);
/* result = a scaled by f */

cross(resl, a, cross(tmp, b, c));
subv(res2, scale(tmp, b, dot(a, ¢)),

scale(tmp2, ¢, dot{a, b))):

rintf(" ax (bxc ) = %8.21%8 . 2£%8. 2f\n",
P

resi[0], resi[i], resi[2]};

printf("b(a.c) - c(a.b) = #8.2£%8.2£%8.2f\n",

res2[0], res2[1], res2[2]);
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TRAPS AND EXCEPTION S

12.1 TIntroduction

In order o execute our program the operating system first loads the program into
memory along with any library programs we will need, such as printf. After
loading our program into metnory, the shell collects the progran arguments (typed
after the program file name) and places them into a pointer array of strings. The
operation system then exceutes a call to the _main function with two arguments,
the number of arguments typed to the shell, and array of strings. When the
program completes execution it returns to the operating system by executing a ret
instruction.

When the program exccutes there are two additional types of functions executed
that we probably did not write, those that do not involve any shared resources, such
a8 sin and sscanf, and those that do involve shared resources, such as read and
write. During execution we may examine the first type of routine with gdb and
may single-step through its execution if we wish, The second type of routine, which
accesses a shared resource, is executed by the operating system and we may neither
examine the code nor single-step through it, Why is this? A shared resource must
be handled in such a manner that a programming error on your part does not
invalidate the use of the resource for us or for others. Consider the file system, if
we accidentally wrote over a directory block we could destroy data, our own and
possibly others. Shared rescurces are handled by the operating system, and their
access to users is protected.

The mechanism for breventing access to shared resources, and the operating
system itself, is by means of two mechanisms, a different mode of execution and the
trap mechanism. Programs may execute in two modes in the SPARC architecture,
supervisor and user. Certain instructions may ouly be executed in supervisor mode,
such as those that access state registers and input /output devices, We cannot
access the processor state register when executing a program in user mode, but
the operating system may read and write the register. The current state of the

201
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processor, supervisor or user, is kept in the processor status word. A number of
load and store instructions exist to access other segments of memory that contain
the devices and memory management. These load and store alternate instructions
may only be executed in supervisor mode and are know as “privileged” instructions.

Access to memory is also limited by current execution mode. In user mode we
have only limited access to memory, whereas in supervisor mode all of memory may
be accessed. The operating system code along with all system tables is located in
memory, which may only be accessed in supervisor mode. To call the operating sys-
tem to perform a function, a trap instruction is executed. This instruction canses
the machine to change to supervisor mode and to branch to system code to deter-
mine what service the user needs. As both system and user are loaded together
in memory, it is very simple for the operating system to locate variables and data
buffers in the user memory. Once the system has performed the service, it returns
execution to the user program by executing a, return from trap, rett, instruction,
which among other things restores the state of the machine to its provious mode,
The rett instruction is privileged so that a user may not inadvertently move into
supervisor mode. It is very simple and cfficient to move from user mode to super-
visor mode, involving at most only a few instructions. The trap instruction is a
nondelayed branch and does not involve the execution of a delay slot instruction.

Traps also occur when the user trics to execute a privileged or unimplemented
instruction, or tries to access memory that has not been assigned to the program.
Additional events can be programmed to cause a trap; divide by zero causcs an
exception flag to be sct in a state register and, if the trap enable bit is also sek, a
trap will occur.

Traps are also used to handle input/output devices. When an input /output
device requires service it generates an interrupt, which may then cause a trap.

In order to understand trap handling we need first to look at the various proces-
sor state registers. There are a small number of these and we will deseribe them in
the following scction. The reader is referred to the SPARC architecture handbook
for a complete discussion of processor state registers and trap handling [18].

Processor State Registers

The integer processor has the following state registers: the multiply /divide register,
Y; the program counters, PC and nPC; the processor state register, PSR, the
window invalid mask, WIM; the trap base register, TBR.

The multiply/divide register, Y, already discussed in Section 4.10.1, is used in
conjunction with integer multiplication and division; it is readable and writable
by the rdy and wry instructions in user mode. The program counters, PC and
nPC, are not readable or writable directly but only indirectly by instructions such
as jmpl. The other registers relate to the state of the processor, which we will
describe now in some detail.
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12.2.1 Processor State Register, PSR
The Processor State Register, PSR, is shown in Figure 12.1,

[ | e | [EF P [slesp] cwe ]
31 23 20 12 11 8 7 6 5 4 0

Figure 12.1: The Processor State Register, PSR

The varicus fields are as follows:

Bits  Field Description
23:20 icc The integer condition codes, N,Z,V, and C.
12 EF  The floating-point processor enabled.
11:8 PIL  The interrupt level at which the processor will ac-
cept external device interrupts,
7 5 Supervisor mode.
6 PSs Processor execution mode at the time of the most
recent trap.
5 ET  Traps enabled.
40 CWP The current window pointer. The hardware decre-
ments CWP on a save instruction and increments
It on a restore instruction execution.

The integer condition codes are stored in the PSR whenever an instruction
that sets the condition codes is executed; they are tested by the integer branch
instructions. The EF bit refers to the presence of the floating-point processor. The
PIL field stores the interrupt level at which the processor will accept interrupts,
which we will discuss in Section 12.3. Bit 7 is the supervisor mode bit; when set, the
machine is in supervisor mode; when zero, the processor is in user mode. Whenever
a trap oceurs the current mode is saved by copying the S bit into the P8 bit. The
ET bit is set when traps are enabled. When a trap occurs this bit is cleared; it is
set again, by the rett instruction. The machine may handle only one trap at s
time, if a trap occurs, when the ET bt is cleared, the machine resets and current
execution halts. Finally, the current window pointer is stored in the CWP field
of the PSR. Two privileged instructions, rdpsr, and wrpsr, allow the operating
system to read and write the psr.

12.2.2 Window Invalid Mask Register, WIM

The second of the integer unit state registers is the Window Invalid Mask Register,
WIM. This register, 32 bits long, has active bits for each register set present and
has one of the bits set for the register window set which is invalid, WIM[CWP]
= 1; all other bits are zero. After registers are saved to the stack the invalid bit
is rotated right once, and when a register set is restored from the stack the bit is
rotated left. The operating system can read and write the wim with the privileged



294 CHAPTER 12. TRAPS AND EXCEPTIONS

instructions rewim and wrwim. A wrwim with all 32 bits set followed by a rewin
returns a word with bits set for each register set present; from 2 to 32 sets are
possible.

12.2.3 Trap Base Register, TBR

The trap base register, TBR, holds the memory address of the first of four instruc-
tions of the code to handle the trap. As the qode to handle all but the most trivial
traps will typically be many instructions long, a branch instruction, along with its

delay slot instruction, will typically be located among the first four instructions -

in the table. There are 256 possible trap types specified, half software traps and
half hardware. When a trap occurs it is uniquely identificd by its trap type tt
number. When a trap occurs, the trap number field, cight bits long, is written
into TBR[11:4]. The low four bits of the TBR, TBR{3:0] are always zero as the
TBR addresses memory in four-word increments, providing room for the first four
instruction of each trap handler. The high order 20 bits of the TBR, the trap
base address, TBA, are written by wrtbr and read by rdtbr. These privileged
instructions are used by the operating system to set the address of the table of trap
handler code entries. The TBR. is shown in Figure 12.2.

| TBA | 1 | zero |
H 12 1 4 3 0

Figure 12.2: The Trap Base Register, TBR

12.2.4 TFloating-point Processor State Register, FSR

Like the PSR for the integer unit, the FSR keeps track of the state of the floating-
point processor. It is shown in Figure 12.3. Due to the nature of the Hoating-point
processor, with multiple floating-point arithmetic units, floating-point exceptions
may occur in one of a number of Hoating-point instructions currently under execu-
tion. A floating-point instruction queue is kept by the floating-point processor and
by this means the integer unit can determine which instruction caused an exception.
This is fairly complicated and outside the scope of this text; we will only deseribe
those fields of the FSR that relate to rounding and condition codes. The various
fields of the FSR are as follows:

[ RD ] |  TEM ] | e [T e ] [ eexe |
31 30 27 23 16 14 110 4 0

Figure 12.3: The Floating-point Processor State Register, FSR

The RD field controls how rounding is to be handled:
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RD  Round Toward

0 Nearest number (even, if equally close)
1 0

2 +oo

3 —00

The fcc field is set by the floating-point compare instructions and has the
following interpretation:

fcc  Relation

0 sl = fg2
1 fs1 < fs2
2 fs1 > fs2
3 fs1 7 f52, unordercd

The floating-point exception ficld, cexe, is set when each floating-point instrue-
tion completes execution. Tts bits represent:

coxXe

Condition

0x10
0x08
0x04

0x02
()1

Invalid operation such as oo — oo or 0 =0

Floating overflow

Floating underflow, number not zero and too small to represent as
a normalized floating-point number

Division by zoro

Result mexact

The TEM field is the trap cnable mask. After each instruction completes the
cexe field is ored with the TEM field, and if the result is nonzero a trap is gencrated.
The ftt field indicates the type of floating-point trap:

ftt

Trap Type

WD = O

None

Floating-point exception, coded in cexe
Unfinished floating-point operation
Unimplemented floating-point. instruction
Invalid floating-point register

In the case of fcc 2 or 3 software would be expected to execute, or complete
the instruction execution.

12.3 Traps

For each exception that may cause a trap and for each external inferrupt request,
a priority and trap type tt are defined (see Table 12.1). The traps are grouped
together in the table: machine and memory failure, page faults, window overflow
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and underflow, privileged and illegal instructions, floating-point, arithmetic, trap
instructions, interrupts. Memory access errors relate to direct failures, whereas
exceptions relate to reading and writing protected memory. The MMU_miss traps
relate to virtual memory accesses to sections of program or data that are not in
physical memory, to be discussed in Section 13.2. When a trap instruction is
executed, the least significant seven bits of its effective address, plus 128, are written
into the tt field; hence, tt fields 0x80 — Oxff are reserved for trap instructions.
Interrupts follow traps in priority level, with interrupt_level 15 having the highest
priority of 17. Interrupt_level_1 has the lowest level of 31.

While ET is set, the integer processor, between instruction executions, prior-
itizes exceptions and external interrupt requests according to Table 12.1. Only
interrupts whose level is greater than the processor interrupt level, or an interrupt
at level 15, can cause a trap. It is assumed that interrupts at lower levels will persist
until they are eventually acknowledged. The processor interrupt level is stored in
the PIL field in the processor state register, PSR. When a trap occurs the following
cvents take place:

1. The ET bit is cleared. If ET is already clear, then the machine executes a
reset trap. A reset trap loads the pc with 0 and the npc with 4 and the
machine enters an error state. A reset trap may also be caused externally by
a signal on the processor bus. When ET is set to zero all further interrupt
requests are ignored, including those at level 15.

2. The current processor execution state, stored in the S bit of the PSR, is stored
into the previous state bit PS and the S bit set. This places the Processor
into supervisor mode.

3. The current window pointer, CWP, is decremented without testing for window
overflow. This will allow the trap handling code to use the local registers
in the new window. Even if decrementing the CWP would have caused a
window overflow, the local registers are always free; it is the out registers in
the overflowed window that must be saved.

4. The pc, npe, and psr are stored in the first three local registers leaving the
remaining five local registers for the trap handling code.

[

. The tt field of the trap base register, TBR, is then written from the trap
table and pc = TBR, and npc = TBR + 4.

The trap handler code is then executed with the processor in supervisor mode
able to access all memory and input/output devices. The pc stored in %10 gives
the location in the user code of the source of the trap. If a register window will
be needed, the trap handler must check if the current register window must be
saved and, if so, save it to the stack. The global registers must also then be saved
and, if the trap was caused by an interrupt, the processor interrupt level must be
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Exception or Interrupt Request  Priority tt
reset 1 —
instruction_access_error 3 0x21
data_access_error 12 0x29
register_access_error 4 0x20
instruction_a.ccess_exception 5 0x01
data_access_exception 13 0x09
mem_address_not_aligned 10 0x07
instruction_access MMU _miss 2 0x3¢
data_access_MMU_miss 12 0x2¢
window_overflow 9 0x05
window_underflow 9 0x06
privileged_instruction 6 0x03
illegal_instruction 7 0x02
fp_disabled 8 0x04
fp_exception 11 0x08
division_by_zero 15 0x2a
tag_overflow 14 Ox0a,
trap_instruction 16 Ox80 — Oxff
interrupt_level 15 17 Ox1f
interrupt_level 14 18 Oxle
interrupt_level .13 19 Ox1d
interrupt_level 12 20 Oxle
interrupt_level_11 21 Ox1b
interrupt_level_10 22 Oxla
interrupt_level 9 23 0x19
interrupt level 8 24 0x18
interrupt_level 7 25 0x17
interrupt_level 6 26 0x16
interrupt_level 5 27 0x15
interrupt_level_4 28 0x14
interrupt_level 3 29 0x13
interrupt_level 2 30 0x12
interrupt _level 1 31 Ox11

Table 12.1: Traps
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changed appropriately. Traps are then reenabled by resetting the ET bit, and the
trap handled by higher-level code.

In order to return from a trap the rett instruction is used. First, if register
windows were used, a window may have to be restored along with the global reg-
isters; the processor interrupt level might also need to be reset. With the ET bit
then clear the rett instruction performs the following actions.

1. The CWP is incremented.

2. A delayed transfer to the effective address of the rett instruction is initiated
by loading npc.

3. Restore the S bit from the PS bit,

4. Set ET to 1.

'The instruction executed immediately before the rett instruction must be a
jmpl instruction; otherwise the instruction following the rett will be fetched from
supcrvisor memory when the processor in in user mode. A jmpl instruction can
first be used to load the pc and the following rett loads the npec.

If the return is to reexecute the instruction that caused the trap {a save instruc-
tion, for example, which caused a window overflow trap,) the following sequence
will have the desired effect:

jmpl %10, %g0 !load npc with saved pc
rett w11 load npc with save npc

When the jmpl instruction is about to be executed:

pc > jmpl and
npc —> rett

When the rett instruction is about to be executed:

pc —> rett and
npe ~> saved pe

After the rett instruction has been exccuted:

pc —> saved pe and
npc —> saved npc

This two-instruction sequence is required, as the trap instructions do not have
delay slot instructions and thus the contents of the npe would be lost if not restored
in the above manner.

In order to return to the instruction after that which caused the trap, such as
a system call (ta 0) we would use the following sequence:
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jmpl w1, Ygo 'load npc with saved npc
rett A1l + 4 'load npc with saved npc + 4

In this case, when the jmpl instruction is about to be executed:

pc —> jmpl and
npc -> rett

When the rett instruction is about to be executed:

pc ~> rett and
npc ~> instruction following trap

After the rett instruction has been executed:

pc —> instruction following trap and
npc -> instruction following, instruction following $rap

which follows the instruction that followed the trap. Note that even if the instruc-
tion that followed the trap were a hranch instruction, the instruction that followed
it would be the delay slot instruction.

The rett instruction is a privileged instruction that will cause a trap if oxe-
cuted in user mode. The supervisor normally also clears the stack and any rogistor
windows it has used before returning from a trap.

12.4 Window Traps

In order to describe window overflow trap handling we will give a detailed account
of a machine that has only four register sefs. The initial situation is shown in Fig-
ure 12.4. "T'he user is in the first register set, set 3. Sets 3, 2, and 1 are marked valid
by corresponding zero bits in the Window Invalid Mask register (WIM); register
set 0 is marked invalid by a 1 WIM bit. The Current Window Pointer (CWP) field
of the processor status register indicates the currently active registers. The stack
pointer %sp points to an area of the stack where the in and local registers may he
saved if necessary.

If & new set of registers is needed, the SAVE instruction is executed. If the
WIM bit of the next register set is zero, indicating that the register set is valid,
the CWP is decremented and the next set of registers becomes the current set, (see
Figurc 12.5). The out registers of the calling function become the in registers of
the called function. The called function is provided with eight new local registers
and eight new out registers. The localregisters are used for temporary resulfs and
variables of the called function. The out registers are used to pass arguments to g,
called function.

If the current function calls yet another function, the situation is shown in
Figure 12.6 as might be expected.
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WIM

Figure 12.4: The Initial State of the Registers with the User in Set 3
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REGISTERS

in 3

CWpP —

local 3

Tos

STACK

5ave
area

out

in3
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WIM REGISTERS STACK
in 3
0 local 3 Save
arca
out 3 | in 2
0 CWP —————jocal 2 Save
7 area
08
out
0
1
in 3
lglobalsl

Figure 12.5: The Second Function Call with the User in Set 2
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WIM REGISTERS

in 3

0 local 3

TRAPS AND EXCEPTIONS

STACK

out 3

in 2

local 2

inl

out 2

0 CWP —+locall

%8
out f

in3

Figure 12.6: The Third Function Call with the User Now in Set 1
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WIM REGISTERS

in 3
local 3

Save

area

Bave
areg

Figure 12.7; Registers Saved on Stack from within Window Overflow Trap

If another function call is ma
will point to the window, whick ‘ i
invalid, as its out registers are being used as the in registers of register set 3, the
first register set used. Remember that the registers form a ring. =~ - , ,
As the window is marked invalid, the attempt to execute the SAVE instruction

set or by the first register set in the ring.

, ~ The trap routine first decrements the Cwp
- set 3, the first set used. The local and in re
1 /08P register is pointing. Remember
. Teglster set (see Figure 12.7). :
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WIM REGISTERS STACK
1 in 3
i local 3
in 2
0 local 2 —save ]
ares,

in 1 out 2

0 CWP —+locall —save |
T3 - BTES
out ‘
0

Figure 12.8: Register Set Invalid Mask Rotated and CWP Restored

Note that after the registers have been saved on the stack the pointer to theil
saved location is still in a valid register, %i6 of register set 2. After the registes3
have been saved, the CWP is incremented twice and the WIM is rotated one bit
mark the first register set as invalid, leaving register set 0 available for the functidy
call (see Figure 12.8). ']

‘When the window overflow trap returns the SAVE instruction is reexecuted a 1
now successfully completes (see Figure 12.9). :

If another function were called, the in and local registers of register set 2 woult]
be saved on the stack and the WIM rotated again (see Figure 12.10). Note that tilg
pointer to the in and local registers of set 3 is now also saved on the stack with ti%
in registers of set 2. This is not a problem, however, as register set 2 would ha:
be restored before register set 3 could be restored, and the necessary pointer wot
be in a register before it was needed.
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WIM REGISTERS STACK
out 0
1 in 3
|local 3
in 2
0 local 2 —save ]
J area
inl | out2
0 local 1 —ave
ares
out 1 | out 0
0 CWP —————local 0 —55ve
- r— ares .:!-
out B
globals 5

Figure 12.9: The Fourth Function Call with the User in Set 0
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8 WIM REGISTERS STACK
|
‘;; in3
EF “1 local 3 .
- in -1 J
1 in 2
- . local 2
inl
0 local 1 [ gave |
| area
o out 1 | out 0
. 0 local 0 ~55vE |
Iy area
i out -1 | out 0 '
Fy
g 0 CWP —flocal -1 ‘ save |
"% —%E—'—- N area
i in ¢

Figure 12.10: Registers after the Fifth Function Call
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112.5 Summary

Traps provide the communication facility between a user program and the oper-
ating system. Processor state is maintained in a small number of registers: the
processor state register, the window invalid mask register, and the floating-point
status register. These registers facilitate the handling of traps and the maintenahce :
of integrity of a multi-user computing environment, i
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MEMORY MANAGEMENT

i

13.1 Introduction

"‘:: ¢ structions. This is difficult to achieve in the case of a workstation designed for a

puter goes up so does the cost, and the economics of a single-user machine grows
steadily worse, so that more powerful machines are generally designed to support
a number of users at the same time, This is called “time-sharing,” handled by

switching the processor between users for some fraction of & second each, so that

all users appear to have a less powerful machine entirely to themselves, When one
user’s program is not executing, the processor is free to concentrate on executing
other programs that are runable, The machine switches between users after exe-
cuting some quantum of time, typically 1/60 of a second, and whenever a process
performs some input/output or other operation that would idle a uger’s program
or process. When a process stops for user input, the processor will immediately

_important attribute of a computer. Switching between users is relatively simple in
the SPARC architecturs in supervisor mode; the register file is saved along with the
program counters and some other minimal state information. A rett instruction

;s then used to continue another user, at his or her saved process state, returning
g the processor to user mode. We will be describing & context switch in Section 18.5.
If we are to be able to switch between ugers it is, however, imperative that both
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users’ processes are resident in memory. It would cbviously be inefficient if, at t
time of a context switch, the processor had to write to a disk the entire contents- m
memory and then to reload the entire memory with ancther user’s process.
Memory is handled in the SPARC architecture by a unit called the memon
management unit, MMU [18], which is presented with virtual addresses by thg
processor and translates these addresses info addresses of the physical memmox
attached to the memory management unit (see Figure 13.1).

< Data -

Main J]
CPU ‘

Virtual address[31 :g_ Physical address[BS:O;

MMU Memory ,

Figure 13.1: The Memory Management Unit, MMU
o

The MMU can map virtual addresses into different physical addresses to allog
more than one user to occupy physical memory at the same time. This is especia,
importent es each process that is to be executed has the same starting virtug
address, 0x2000, and expects to find the stack at 0xf8000000, and so on. THY
mapping of virtual addresses into physical addresses takes into account s contexd
register. Each user process is assigned a unique context number. This MMY
register is loaded by the operating system with the context number of the usel
whose memory is to be mapped. The context is included with the virtual addrs '1
to produce a unique physical memory address for similar virtual addresses, but w1
different context numbers. -

Virtual Memory and Paging

The SPARC architecture specifies a 32-bit virtual address and a 36-bit physicd]
memory address. Memory is byte addressable. The 36-bit physical address
obtained most simply from a virtual address and a context by means of a pa
table entry in a context table that is itself located in physical memory. The pa
table entry describes the location and access permission of a page of memory.
page of memory may be as large as four gigabytes, or as small as four kilobyte
the mapping we will discuss first here is for four gigabyte pages, that is, an ent
32-bit process virtual address space. Such a page is called & context and 16 su
contexts would occupy the entire 36-bit physical memory We will discuss sma.ll
pages shortly.

The context table is located in physical memory by an MMU register, the coi3
text table pointer register, and is indexed with the contents of the MMU contei{
register. The high 30 bits of the context table pointer register, left-shifted four bit}
are ored with the contents of the context register, left-shifted two bits, to form t u
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36-bit physical address of the page table entry in physical memory (see Figure 13.2).
The process of oring registers together is extremely fast compared to the operation
of addition, which might have seemed more logical in handling pointers. The low
two bits of the context table pointer register must be zero to allow for 16 contexts
to be addressed by oring the context table pointer register with the context register
(see Figure 13.2). : ‘ '

[ Physical Memory Address [35:0] of Context Page Table Entry [ofo]
] 1 1
/I\ ! h '
1 1 I
1 1 1
1 ] :
[ ‘ Cortext Table Pofnter Reglster [ofo]
. " 1 1 1
| ! !
ar 1 1 i
n 1 1 1
1 ¥ 1
N Context Reglster ]

Figure 13.2: Forming the Address of the Page Table Entry

Either page table entries or page table descriptors are stored in the context
. table. We will discuss page table descriptors shortly. ‘
A page table entry is a 32-bit word, shown in Figure 13.3, with the following
fields:

[ ____PPN[31:3] lcIM/R] acc [1 0]

Figure 13.3: Page Table Entry, PTE

¢ PPN, physical page number, the high order 24 bits of the 36-bit physical
address ‘

C, cacheable, see Section 13.4

M, modified, memory page has been written .

R, referenced, memory page has been read or written

ACC, access permission

ACC  User Access Supervisor Access
0 read only read only
1 read /write read /write

The first time & process accesses memory the R bit is set; when it first writes to
‘memory the M bit is set. If it becomes hecessary to replace a page of memory the M
bit is tested and, if set, the page of memory has to be written to an external device,
such as a disk, before a new page is read in, Ifthe M bit is clear, the page does not
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PSR. By this means a user is prevented from accessing operating system pag
memory. X

The translation of a virtual address to a physical address in its most simple foRg
uses the context to index into the context table to retrieve the page table e
PTE, If the access permission is correct, the physical memory address is for
by the or of the high 24 bits of the PTE and the virtual address. If we are usii
an or to form the address, all but the high 4 bits of the 24-bit PPN of the PTi
must be zero. Physical pages in memory must be aligned on page boundaries
example, if the page size is four gigabytes, 32-bits, then pages must be aligned
32-bit boundaries. If this alignment exists, then the PPN entry for four gigabyg
pages will indeed have all but the four high-order bits zero. This mapping is shov}
in Figure 13 4.

a

| Physical Memory Address [35:0] [0l
0 E

L ‘ Page Tahle Entry [31:8], PPN ‘ |

or

| Virtual Address

Figure 13.4: Mapping Four Gigabyte Pages

Mapping four gigabyte pages, “contexts,” of memory is rather unwieldy and veify
few installations have 64,000 Megabytes of physical memory. A further proble
that with only one page teble entry, PTE, for each context the entire context mis
be executed entirely in supervisor mode or in user mode; furthermore, the e
virtual address space of the context must be either all read only or all read/w

Smaller sections of memory may be mapped, the first division below a conte!
is called a “region.” A region of memory is 16 Mbytes long and 256 regions nl\l\
make up a four gigabyte context (see Appendix F). 3

How are regions mapped? A page table entry, PTE, is characterized by ha:
its two low-order bits <1:0> = 10, A page table entry may be replaced in
context table by a “page table descriptor,” PTD, distinguished by having its
order bits <1:0> = 01, see Figure 13.5.

| PTP312)

Figure 13.5: A Page Table Descriptor PTD

When 2 PTD is encountered in the context ta.ble the h1gh-order eight bits of ¢l
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virtual address are used to index into a second level mapping table. This table is
addressed by the page table descriptor. The high 30 bits of the page table descriptor
are called the page table pointer, PTP (see Figure 13.6).

[ Context Table Polter |— \ Context Table
Context :
L— Page Table Descriptor —Reglon Table

Region _

! | Page Table Entry

1 1

| :‘ '

[[31:24] ] i i |

Yirtual Address

Figure 13.6: Mapping Regions

The PTP is left-shifted four places and ored with the high eight bits of the
virtual address to form a pointer to the page table entry. The page table entry
will now address individual 16 Mbyte regions, each of which may carry its own
protection and access information (see Figure 13.7).

L ' Physical Memory Address (35:0] To]o]
i
[ Page Tabls Descriptor [31:2], PTP ]

or

{_Virtual address [31:24] | <

Figure 13.7: Forming the Address of the Region Page Table Entry

The low four bits of the page table pointer, PTP, must be zero to allow the or
operation to access a table of 1024 word entries, If the accessed entry in the region
table is a page table entry, characterized by having ita two low bits 10, the memory
address is formed by oring the high-order 24 bits of the PTE, the PPN, with the

 remaining 24 low-order\hits of the virtual address, the high-order eight bits have
; already been used to fetch the region page table entry (see Figure 13.8). All but

L the 12 high-order bits of the PPN must be zero when we are addressing regions.

: The UNIX operating system occupies the four top regions in memory, and the
- mapping tables for all contexts have identical mappings to the same region table for
the top four regions. The next region will be mapped to physical memory for the
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[ Physlcal Memory Address [35:0] |

N

Page Table Entry [31:8], PEN

or

[0 00000 00] Virtual Address

Figure 13.8: Mapping 16 Mbyte Kilobyte Pages

stack for each user process; these will all be unique mappings to physical memoig
There can then be a hole with many zero entries in the region table indicating ti
these virtusl addresses are not currently mapped. In fact, for all but user procesis
larger than 16 Mbytes, all but the first region will be zero. Note that the protect1
and access permiission for the kernel will be different from the protection and acegl
permission for the user regions. With the use of regions, a context switch can nigl
change between users, keeping the same operating system kernel common to er

Regions are still rather large units of memory, and regions may be further o
vided into 64 segments each of 256 Kilobytes. This is done by replacing the pag
table entry in the region table with another page table descriptor. If a page tal]
descriptor is found ih the region table then the next six high-order bits of the virty
address are used to locate an entry in a segment table (see Figure 13.9). "

2 3
| Physical Memory Address [35:0] To]o

/]\

Page Table Descriptor [31:2], PTP |

ar

ST Ty

Virinsl nddress

Figure 13.9: Forming the Address of the Segment Page Table Entry
If the entry in the segment table is a page table entry, the physical addressf
then formed by oring the low 18 bits of the virtual address with the PPN, Hei
all but the high 18 bits of the PPN must be zero (see Figure 13.10). j
One further division may be made to map individual four Kilobyte pages, know
simply as “pages,” by locating yet another page table descriptor in the segment p
table. To do this another six bits are selected from the virtual address to form
index into a page table containing, in this case, only page table entries. The f:
address is formed with PPN and the low 12 bits of the virtual address, commo
known as the “offset,” (see Figure 13.11). Here the entire 24 bits of the PPN:
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Physical Memory Address [35:0]

/’\

Page Table Eniry [31:8], PPN

or

[0 000000000000 9] ' Virtual Address

Figure 13.10: Mapping 256 Kilobyte Pages

combined with the 12 bit offset to form the memory address.

Physical Memory Address [35:0]

™

[ Page Tabls Descriptor [31:2], PTP

2 [ onm | <

Virtual address

Figure 13.11: Forming the Address of the Page, PTE

: The complete hierarchical mapping scheme to map individual pages is shown in
Figurs 13,12,

With paging, an entire program does not have to be resident in memory for
the program to be executed. Ouly a few bages are necessary to start the program,
an initial text page, data page, bss segment page, and a page of stack. Such a
‘set of pages is called & “working set.” When a process starts, a context number is
assigned by the operating system and a region table created occupying 1024 bytes of
memory. The top four entries in the region table are filled in to point to the kernel
address space. The fifth entry from the top is filled in with a pointer to a newly
created segment table for the stack. The remainder of the region table is zeroed
except for a pointer in the first entry, which is initialized to point to another newly
created segment table for the program. These two segment tables will each occupy
+256 bytes of physical memory. The stack segment table will be zero except for the
top entry, which will contain a pointer to a newly created page table. Likewise, the
program segment table will be zero except for the first entry. This entry will point
to another newly created page table. The stack and program page tables will use
only another 256 bytes each of memory. The top entry of the stack page table will

- be set to point to an initial page of the stack. Finally, the first three entries in the
program page table will be set to point to memory for program text, data, and bss
segments. .
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When a page that is not in main memory is accessed and the zero page table
entry encountered, a “page fault trap” occurs, The operating system then arranges
to have the missing page placed somewhere into memory and the page table up-
dated. During this time, called “paging,” some other process is run. When the page
has been loaded into memory and the page table updated, the system executes g
rett instruction to re-execute the instruction that caused the page fault. By this
means the operating system can keep many more than 16 contexts in memory and
ready to execute. The replacement of Ppages, when memory becomes full, is based
on a count kept for each page relating to its access; the least recently used page is
replaced. This is called an LRU replacement policy.

Page Descriptor Cache, the Translation Lookaside
Buffer

In the mapping scheme we have described, accessing memory for each instruction
fetch or data load/ store would take four physical memory fetches if we had mapped
memory in pages. This ig far too slow. To speed up the process, the memory
management unit maintains a cache of deseriptor translations. This cache is an
associative memory entered with the virtual address, less any offset, and the con- _
text, together called a “tag.” If this tag is found in the cache the corresponding
page table entry is immediately returned. If a “miss” occurs, that is, for a virtual
address and context presented by the processor, no bage table entry is located,
then the process we described in the Previous section takes place; this process is

~called “table walking” and is handled by hardware, necessitating up to four mem-

ory fetches. When g page table entry is retrieved by this process it is first used to
access memory for the processor and then the page table entry is placed into the
page descriptor cache along its associated tag (see Figure 13.13). Memory fetches
take only one cycle, as for an unmepped temory, with the page descriptor cache
once the cache has been loaded with page table entries.

|

Virtual page # | Page oifset _l ‘
] l

Tag Page table entry 0
Page table entry 1 [ 35:12] [11:0] |
Virtual Page Context . Physical address
Page table entry n

Context register

Figure 13.13: Page Descriptor Cache
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13.4 Cache Memory

Even with a Page Descriptor Cache, accessing memory is too slow for the processch
which has a cycle time considerably faster than that of the fetch or store time g}
conventional memory. To provide data and instructions from memory at spesds
approaching that of the processor, a cache memory s provided. The cache memo
is an expensive, small, high-speed memory that can match the processor’s speeg
of operation. Whenever a fetch is made to. main memory, a “line” of data ]
instructions is fetched and placed in the cache memory. This line is up to
bytes of instruction of data. If any of this line of data is subsequently required, i
can be fetched from the cache memory. It has been shown that programs exhihif
considerable locality of reference to memory. For example, instructions are typically
fetched from sequential locations in memory. Likewise, when a write to memo
occurs, the processor simply writes to the cache, and then the cache writes to maig
memory without delaying the processor. K
The cache memory is in parallel with the memory management unit and boif i
attempt to provide data to the processor (see Figure 13.14). If the data are in thg
cache the cache wins out and the MMU stops its fetch. If the data are missing fron}
_ the cache, the MMU provides the data to both the processor and the cache. Thig
might simply involve using the Page Table Descriptor Cache, or it might invol/§
accessing page tables to retrieve both the data and the page table entry. :

Data
- —= e — —=]
I Cache Main
CPU
Memory I

Figure 13.14: Cache Memory

In addressing the cache memory, a virtual address is broken up into three field:\
the tag, line, and byte. The byte is the address of a particular byte in the line, up}
to 128 bytes. The line then addresses lines in the cache memory and the numbej
of bits dedicated to the line depends on the size of the cache. A 64-Kbyte cachd
with 32-byte lines would need 5 bits to address the byte in a line and 10 m
bits to address the line in the cache. "This would leave the 17 bitg for the tag (s
Figure 13.15). 4

The cache tag combines the context number with the tag part of the virtyil
address. Associated with the tag are the access information and protection bifs)
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[ Tag [31:15] [ ime [14:5] [ Byterao) ]

Virtual Address

Figure 13.15: Cache Memory

When an address is presented to the cache, the tag is accessed by the line number:
if the tag matches the rest of the address, and the protection and access permission
are correct, the data are provided to the processor. If a miss occurs, the line in the
cache is replaced automatically from main memory dnd the tag updated,

Context Switching

When it becomes necessary for the operation system to switch between users, the
following actions take place in order to save the state of the current user’s process
and the to restore the state of the process of the next user to run:

» Save the stack pointer, %sp.

*» Save the progtam counter, PC, the return address.
e Save the global registers,

¢ Save the ﬂoating—point registers.

* Execute NWINDOWS - 2 save instructions to flush all the active active register
windows of the process to the stack, Otie window is always invalid and the
operating system will be in the other window.

¢ Execute NWINDOWS - 2 restore instructions to move the CWP back to the
original window so that the next restors instruction, at the end of the context
switch, will cause a window underflow, restoring the first new window from
the new stack.

Io Change context in the MMTU. |
* Restore ﬂoating—poinﬁ registers.
¢ Restore global registers.

¢ Load new pe.

¢ Load new Ysp.

® restoras.

¢ Return,
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The program counters and stack point are first saved, then the active registers 43
written out to the stack by performing NWINDOWS - 2 save instructions. Note't
the execution of the save instructions does nothing but to decrement the cwp un
there are active registers, in which case the regxsters are written to the stack, T
MMU context is then changed and the next user’s registers restored along W1th i
program counters and stack pointers.

Summary

5 Sharing the processor with a number of users is important for the efficient utiliz3
N tion of the machine. In order to share the processor more than one process must
i resident in main memory at the same time. An elaborate memory mapping scher
* was defined for the SPARC architecture, which was described in detail defining coxg
texts, regions, segments, and pages. The mapping is accomplished by the memon
; mapping unit, the MMU. Supporting memory mapping, to make it efficient, is t} ho:
i use of a tra.nsla.t:on lookaside buffer and of a cache memory.
i

{
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i4.1 Introduction

developed at the same time as the SPARC architecture.

-:' . user and his or her file system had not yet evolved.

7 321

- The SPARC architecture is known as s Reduced Instruction Set Computer, RISC,
;.. ¢ It is in many respects similar to the earliest computers, which certainly had very
- limited instruction sets, as they were made out of discrete components all of which
had to be assembled into printed circuit boards to process each and avery instruge
tion. The development of cotnputers followed developments in technology, and e
will trace that development in this chapter, The first computer we will describe
is the pdp-11, whose development coincided with the creation of the C program-
ming language [8]. The second machine we will discuss is the vax-11, which was
an extension of the pdp-11 to provide for virtual memory. The vax-11 is now
.. known as a Complex Instruction Set Computer, CISC, and the SPARC, Reduced
|~ Instruction Set Computer, RISC, represented s radical change of technological de-
 velopment [15]. The last machine we will discuss is the MIPS, another RISC machine

The pdp-11 was one of the first minicomputers powerful enough to perform
useful computations, but smaller than the large machines prevalent at the time

. of their introduction. Until the 1970s computers were large and were located in
central computer rooms where programs wete brought to be executed. Programs
were stored on punched cards and were executed in batch mode in which program
after program was be loaded into the machine’s memory and executed till it com-
Pleted and was replaced by the next program to be executed. Minicomputers were
. designed to be used in either dedicated control applications or in small computing
_ environments where the machine cost was not so great as to necessitate the maxi-
mization of the computer’s use. These machines typically had small address spaces

of 16 bits, and a modest number of registers. They were not suitable for executing
large programs and were equivalent in power to today's personal computer. The
concept of a personal computer in which a computer would be dedicated to a single
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While computer hardware was becomhing cheaper due to the rapid developmer
of integrated circuits, computer memory was neither cheap nor fast. In orde
maximize the speed of & machine, instructions were made more powerful to mini
the number of instruction to be stored and then fetched from memory, and a regi
set was provided to hold temporary results eliminating the need to store tempo
results back into memory. The pdp-11 was such a machine. It provided a mult
and divide instruction, a mark of a sophisticated machine at that time, and provi
eight general purpose registers. It provided for no virtual memory management;
its 16 bit address space supported only 64 Kbytes of memory, small even at
time it was introduced.

The vax-11 computer was a virtual memory version of the pdp-11. Its virtus A
address space was, like the SPARC machine's, 32 bits allowing four gigabytes g
virtual themory to be addressed. Physical memory was still, however, very limited
and the 32-bit virtual address was only translated into a 24-bit physical a.ddrea
Contrast this to the SPARC architecture in which the 32-bit virtual address B
transleted into a 36-bit physical address! With the development of the vax-1
came microprogramming, in which instructions were decoded into a stream of mi
croinstructions located in extremely fast memory [21). This allowed the machm
to implement very sophisticated instructions. These machines are now known e
Complex Instruction Set Computers, CISC.

While it was thought that the more complex instructions would make 8 comd
puter more efficient; programmers were no longer writing in assemably language and
the compilers rarely made use of the more esoteric instructions. Compiler writs
ing technology was also advancing dramatically during this time period with morg
sophisticated translation of high-level languages into very efficient assembly land
guage. Together with CISC computers came breakthroughs in memory technologyy
reducing the need to provide for powerful instructions to reduce storage require!
ments. The response to these changes in compiler and memory techuclogy was th
Reduced Instruction Set Computers, RISC, of which the SPARC machine was one
of the first. ‘

The pdp-11

The pdp-11 provided eight general registers and a 16-bit, unmapped, address spacdl
supporting 64 Kbytes of memory. Memory was byte addressable and the maching
provided instructions that operated on single-byte and two-byte quantities, referred
to as words [3]. Sixteen-bit word quantities had to,be aligned on even-byte a.ddresse‘
a8 in the SPARC architecture. The address of a word quantity in the pdp-11 wag
of the low-byte with the more significant-byte at the next higher odd address. Thi
is referred to as “little endian” addressing. In the SPARC architecture, the addres
of multi-byte data types halfword, word, single, double, and quad, is of the mosj
significant-byte, with less significant data lying at higher-byte memory addresse
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the SPARC memory addressing is called “big endian.”! These differences in data
- storage and access of multi-byte date do not cauge problems unless binary data is
to be exchanged between machines of different endian.

Two of the eight general registers of the pdp-11 were reserved for use as a
stack pointer and as the program counter. In the pdp-11 architecture the program
counter was one of the general-purpose registers. The pdp-11 was not & load/store
machine but allowed for operands to be located in memory or in registers, There

the pdp-11 as there are in the SPARC architecture; nor were there sufficient bits
to specify more registers in the 16-bit instruction word. In order to allow for the
flexibility in addressing, two levels of instruction decoding were employed, In the
SPARC architecture, the bit fields specifying register arguments may be decoded
and fetched directly, while in the Pdp-11 additional stages of decoding were neces-
sary, leading to a much slower machine in instruction execution.

3 Instruction operands of the pdp-11 were specified by a six-bit feld. Three bits
N were used to specify the addressing mode and three to specify a register, The direct
[:. . addressing modes were as follows:

Mode Assembler Description

0 Rn Register direct mode, the register specified con-
taing the operand.

2 (Rn)+ Auto increment mode, register is used to a pointer

, . to data and then incremented after use (by one for
‘ a byte operation and by two for a word operation).
‘ 4 -(Rn) Auto decrement mode, register is decremented be-
fore use (by one for a byte operation and by two
for a word operation) and then used to a pointer
= to data.

S 6 X(Rn) Displacement mode, velue X is added to the con-
tents of Rn to produce a pointer to the operand.

Neither X nor (Rn) are modified.

' : If the addressing mode was odd then a deferred addressing mode was specified;

_ 1The terms big endian and ktile endian are due to Jonathan Bwift, whose Guiliver’s Trovels
B 7 referred to politicians who made war over which end of an egg should be opened, the hig end or
o the little end. The term was introduced into computer science by Cohen in 1981,
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Mode Assembler Description

1 *Rn Register deferred mode the register specified con-
tains a pointer to the operand.

3 *(Rn) + Auto increment mode deferred. Register is used to

& pointer to a pointer to the data. Register is then
incremented after use by two (a pointer is always
& word quantity). 4

5 %= (Rn) Auto decrement mode deferred. Register is decre- 4

mented before use by two and then used to & . 4
- pointer to a pointer to the data.

7 *X (Rn) Displacement mode deferred, Value X is added to
the contents of Rn to produce a pointer to a pointer ]
to the operand. Neither X nor (Rn) are modified. '

When an instruction was decoded, except in the case of register direct modél
another register would have to be fetched and used to form the address of:t
operand. It might take another memory access to obtain a constant and, if
deferred addressing mode was specified, yet another memory access was required ¢
obtain an operand. This process resembled the table walking algorithm employed
by the memory management unit of the SPARC when a cache miss occurs and t}
‘page table entry is not in the translation lookaside buffer. In the case of the SPA
architecture this only occurs once for every 4 Kbytes of mapped memory and néj
for every operand fetched. Constants could be loaded into general registers of thg
pdp-11 by specifying the program counter as the register of the addressing mode}
Consider the following mov instruction which moves data from their first, sourcel
operand to their second, destination, operand: 4

mov (pe)+, x0
.word 3756

The program counter is always incremented by two in the pdp~11 so that afte :
the mov instruction has been fetched the program counter has the saddress of th

as & pointer to the data, 3756, which is then accessed. As soon as the constant
has been accessed, the program counter is again incremented to point to the nexf
instruction in memory. The second mode register pair is decoded to determine thed
the source operand, 3756, is to be loaded into register r0. In the pdp-11, r0 wal

like the other general purpose registers and did not discard data or return ZETO &Y
it does in the SPARC architecture. E

If we wished to copy the contents of location 3756 into location 4024: i
nov *(pc)+, *(pcl+ |
.word 37566
.word 4024

Here the program counter, pointing to the .word 3756, is used to retrieve t  ‘
3756, which it will then use as a pointer to the data. It then increments th3
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Program counter to point to the .word 4024 When the second operand mode
register pair is decoded, the program counter is once again used to retrieve the
4024 used to determine where the data obtained from 3756 are to be stored. The
program counter is again incremented to point to the following instruction.

- If asis normally done, we wished to uge program counter relative addressing,
assuming that the mov instruction was located at 100 in memory, we would have
written: ~

100:  mov (3766 - 104) (pc), (4024 - 106) (pc)

Here the constants (3756 — 104) and (4024 ~ 106) are evaluated by the assembler
to yield:

100: mov 3652(pc), 3918(pc)

The displacement is stored in line after the instruction, the following two words
1 the above example, and although it is not indicated in the addressing mode the

: counter is incremented.
These addressing modes are used extensively and the programmer is not re-
quired to compute the constants, especially the program counter relative constants;
instead, the following assembler syntax specifies the above modes:

. Mode Assembler Description
= ‘ 2 #n - Operand follows Instruction.
3 *#4 Absolute address follows operand,
. 6 A Relative address follows operand (assembler will
P compute program counter relative address).

7 *4 Displacement value is the relative address of g
pointer to the operand. :

So that we might have written the above three instructions 28:

‘ nov #3766, ro
5% mov *#3756, *#4024
: mov 3756, 4024

One would, of course, normally use assembler labels as operands. The use of
the program counter was novel in this context as was the uge of %g0 novel in the
 SPARC architecture to increase the apparent number of instructions.
The similarity of the Pdp-11 instruction set and the C brogramming language
Is striking. Consider the code to copy a string: .

Kbt = k4t

;- ( and, assuming that pointers to + and f were in registers r2 and r3;

E
(e
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movb *(r3)+, *(r2)+

The pdp-11 introduced the concept of condition codes, the N,Z,V, and C bitg
of the SPARC architecture. However, in the case of the pdp-11, which was not 3
pipelined machine, all instructions set the condition codes if appropriate. Bra.nchl g
instructions tested the condition codes as in the SPARC architecture.

Byte and word instructions were normally distinguished in the pdp-11 byt
most significant bit of the instruction. If set, the instruction used byte operands; if 1
clear, the instruction used word operands. The instruction set consisted of severd]
two operand instructions:

Mnemonic Op code Operation

mov{b) 'x1SSDD move, d <~ 8

cmp(b) x285DD compare, s - d

add 06SSDD add,d <~ & + d
sub 168SDD sub,d <- d ~ & s 4

bit(b) x38SDD  bit test, s & &
bic(b) x45SDD  bit clear,d <- (l8) & d
bis(b) x6SSDD  biteet,d <- 8 | d

The opcode referred to in the above table is in octal digits. Fach 88 and Do}
refers to a source and destination mode register pair. The leading x is a one if it i
& byte instruction and zero if a word instruction. 1

There are a few more instructions involving one general opera.nd specified b
a mode register pair, and the other operand located only in a register and needl
only three bits to specify the register: ‘

Mnemonic Op code Operation
mul 070RSS multiply, r < r * s

div 071RSS  divide,r <- r / s

ash 072RSS  shift arithmetically

ashc 073RSS  shift arithmetically combined
xor 074RDD exclusive or

These instructions use the bits <14:12> to decode the instruction. Notice tha
the pdp-11 provided a multiply and divide instruction. The low speed of instructios
execution precluded the milscc approach of the SPARC architecture. Also, at the]
time of introduction of the pdp-11, the presence of a multiply and divide instructionl
was an important selling point, setting the machine apart from the mlcroprocessor
of the day, which provided only very primitive instructions. However, the timing of
these multiply and divide instruction was orders of magnitude greater than = moyj
or add instruction.

The remaining instructions are either single address instructions or branch i 111
structions. These instructions all have <14:12> = 0 and use <11 :6> to decode th
instruction. The single address instruction are as follows:

.3
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Mnemonic  Op code Operation
clr x050DD  clear, d <~ 0

com x051DD  complement (1's), d <~ 1d
ine x(052DD  increment, d <- d + 1

dec x053DD  decrement, d <- 4 - 1
neg x054DD  negate (2's comp.), d <- -d
tst x057DD  test, setting condition codes
ror x060DD  rotate right one bit, =>¢,d
rol x061DD  rotate left one bit, C,d<~
asr x062DD  arith shift right one bit, d/2
asl x063DD  arith shift left one bit, 2d
swab 0008DD  swap bytes in word

adc x055DD  add carty,d <- d + C

sbe x056DD  subtract catry, d <- d - ¢
8xt 0067DD  sign extend

Notice that the pdp-11 lacked a register that always returned zero. Instead
of providing the minimal set of logic instructions, as in the case of the SPARC
architecture, which could be combined with %10 to provide operations such as mov
and clz, these instructions were provided explicitly in the pdp-11 at the expense
of the more general logic instructions. .

Notice also that the shift instructions only shifted one place. In this case the in-
struction reflected the implementation in which shifting was an expensive operation
proportional in time to the number of shifts. In the case of the implementation of
the shift instruction in the SPARC architecture, the instructions are implemented in
& manner in which the number of shifts does not affect the timing of the instruction.

The branch instructions of the pdp-11 are identical to the branch ingtructions on
the SPARC architecture and occupy opcodes 0004000 through 0034000 and from
1000000 through 1034000. The branch address was word relative with respect to
the program counter and the offset occupied the low-byte of the branch instructions,
Branching was only possible to instructions —128 < pc < 128, .
~ In order to jump to any address in memory & jmp instruction was provided
in which its effective operand replaced the contents of the Program counter. Of
course, on the pdp-11, with the brogram counter an accessible general register a
jump could be effected by a mov instruction;

mov -main, pc

Subroutine linkage was provided for by & jsr, rts instruction pair. The jer
instruction transferred control to its effective address storing the current pc in the

- specified register.

Mnemonic  Op code Operation
jmp 0001DD  pc <- dst
jar 004RDD pc <- dst, R <- pc

rta 0G020R pc <- R
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The rts instruction moved the address from a register back into the pe.
stack was normally used to store the return address as well as subroutine a
ments. No separate frame pointer was provided, although it could be provide
a programmer, but rarely was, due to the limited number of registers availabl

The pdp-11 provided for user and supervisor mode with trap instruction a
return from trap instruction in a manner similar to the SPARC. The top 4 Kbyt
memory were reserved for device registers, limiting even further the memory &
able to a program. The pdp-11 only provided floating-point hardware in certaig
of its implementations. The rapidly decreasing cost and increasing speed of mers
ory obsoleted the pdp-11 as programmers moved to writing in high-level languag
making use of much larger memories.

The vax-11

The vax-ii was introduced in the 1980s {4] [11] . The premier feature of thg
vax-11 was the provision of a 32-bit virtual memory. One of the principal lin#
itations of the pdp—11 had been its severely limited address space. The vax-i
was 8 microprogrammed machine in which the machine instructions, referred to 4
macro instructions, were decoded to a number of micro instructions. These micng
ingtructions were located in a very high speed memory, called a micro store. Micrgg
programming allowed the development of many specialized instructions. This w3
used in two ways, to design a machine with instruction sets appropriate to
different application fields, and to reduce the instruction fetch bandwidth. It W
thought that the provision of machine ingtructions to perform code sequences, such
at the end of loops or in subroutine calls, would simplify a programmer’s tagk ang
would speed up the execution of programs. Unfortunately, very few programmer
were writing in assembly language at the time of introduction of the vax-11 and th@
complicated instructions found little favor with compiler writers who would hav
to “special case” their compilers for-every such machine. Many of the most complil
cated instructions were never used in high-level languages. A second problem wit
microcoded machines was that the overhead of micro decoding instructions added
e time overhead to all instructions, even the simplest. The vax-11 was a class ¢
example of a complicated instruction set computer, CISC. The vax-11 had ovej
240 instructions with over 20 addressing formats. The vax-11 even had a “com!
patibility mode” which, making use of micro programming, allowed it to execu
all pdp-11 instructions.

Such an architecture has to be considered in terms of technology, at the time. n'
introduction of the vax-11 microcoding was the technologically correct approach
However, as memory continued to drop in cost and to increase in speed, reducing i
struction bandwidth became less important; what was necessary was to increase t
execution speed of instructions fetched, and this trend, of course, led to the RI
machines. Another technological factor favoring RISC machines was developme:
in compiler writing allowing for highly optimized code to be generated for simplg
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instruction sets, Finally, writing microcode was difficult and, like the assembly
language programs of the past, machine specific; this increased the cost of reim-

thousands of bytes of microcode to implement the vax-11 instruction set.

The vax~11 supported one-, two-, and four-byte integer quantities along with
single and double floating-point data. The machine had 16, 32-bit, general registers
which could hold any of the above data types. Byte and halfword data, however,
only occupied the low order bits in the register and did not change the high order
contents of the register, Double-precision data occupied two registers.

Instructions were provided to manipulate al] data types; for example, there were
the following add instructions:

Mnemonic  Op code : Operation

addb2 80 add byte, dst <- srg + dst

addb3 81 add byte, dst <- grei + 8rc2?

addw2 A0 add halfword, dst <- grc + dst
addw3 Al add halfword, dst <- srci + src?
add12 Co add word, dst <- src + dst

addl3 C1 add word, dst <- srel + sre2
addf2 40 add single float, dst <- gre + dst
addf3 41 add single float, dst <- srci + src2
adddz2 60 add double float, dst <- Brc + dst
addd3 61 add double float, dst <- srel + sreg

The opcode occupied a single byte. As in the pdp-11, operands were specified
by register-mode pairs. In the case of the vax-11 with 16 registers, four bits were
needed to specify the register. The addressing modes were expanded from the 8 of
the pdp-11 to 16 for the vax=11. The addressing modes were ag follows:




330 CHAPTER 14. OTHER ARCHITECTURES

Mode Assembler Description

0-3 #literal Register/mode byte represents literal < 64.

4 [Rx] Index mode, after computing address use register

' as an index.

5 Rn Register direct mode, the register specified con-
tains the operand.

6 *Rn, Register deferred mode, the register specified con-
tains & pointer to the operand.

7 ~(Rn) Auto decrement mode, register is decremented be-
fore use and then used to & pointer to data.

8 (Ro)+ Auto increment mode, register is used to a pointer
to data and then incremented after use.

9 *(Rn)+ Auto increment mode deferred, register is used to

a pointer to a pointer to the data. Register is then
incremented after use by four (a pointer is always
a word quaatity).

A X(Rn) Byte displacement mode, byte X is added to the
contents of Ra to produce a pointer to the operand.
Neither X nor (Rn} is modified.

B *X(Rn) Byte displacement mode deferred, byte X is added

‘ to the contents of Rn to produce a pointer to a
pointer to the operand. Neither X nor (Rn) is
modified.

C X(Rn) Halfword displacement mode, halfword X is added
to the contents of Ra to produce a pointer to the .
operand. Neither X nor (Rn) is modified.

D *X (Rn) Halfword displacement mode deferred, halfword X
is added to the contents of Rn to produce a pointer
to a pointer to the operand. Neither X nor (Rn) is
modified.

E X(Rn) ‘Word displacement mode, word X is added to the
contents of Rn to produce a pointer to the operand.
Neither X nor (Rn) is modified.

F *X (Rn) Word displacement mode deferred, word X .is

' added to the contents of Rn to produce a pointer
to a pointer to the operand. Neither X nor (Rn) is
modified.

As many small constants appesr in programs, literal mode allowed for co
stants, of magnitude less than 63, to directly replace the register/mode byte. The
displacement modes of the pdp-11 were extended in the vax-11 to handle: byte}
halfword, and word offsets. Index mode was used in array addressing in whicll
the base address of the array could be formed with any of the addressing modée]
and then indexed by the contents of another register containing the index into thg
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array. Depending on the data type of the instruction (byte, halfword, word, single,
or double) the contents of the index register would be multiplied by 1,2 4, or 8
before being added to the address of the base of the array. This allowed for index
variables to be used in loops, without prior shifting, before being used in address
computations.

As with the pdp-11 the program counter was a general register, register OxF
and could be used to extend the addressing modes:

Mode Assembler Description

8 #n Operand follows instruction.

9 *i# A Absolute address follows operand,

A A Byte relative address follows operand (assembler
will compiite program counter relative address),

B *A Byte relative value is the program counter relative
address of & pointer to the operand,

C A Halfword relative address follows operand {as-
sembler will compute program counter relative
address).

*A Helfword relative value is the program counter rel-
ative address of a pointer to the operand,

E A Word relative address follows operand (assembler
will compute program counter relative address).

F *4 Word relative value is the Program counter relative

address of a pointer to the operand,

Depending on the distance of the operand from the instruction to which the
program counter was pointing, the assembler could decide to use byte, halfward,
or word relative addressing. This choice was very difficult to make and assemblers
. frequently ignored this feature, always using word relative addressing.

The instruction format of the vax-11 wag a one-byte opcode followed by a
“number of operand register/mode bytes with constants in the instruction stream.
.- The length of instructions varied from one, such a halt, to approximately 64,
Instruction decode was slow, as each operand had to be Processed sequentially.
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Some of the 16 general registers some were reserved for special purposes: -

Register Use

RO General use, also for the result of certain
instructions

R1 General uge, also for result of certain double-

precision instructions

R2-R5  General use, used to store temporary results of
string operations if interrupted

R6 - R11 Local registers.

R12 Argument pointer
R13 Frame pointer
R14 Stack pointer
R15 Program counter

The first six registers, RO - RB, were for temporary results, much like the
%00 - %ob registers on the SPARC. The next six registers, R6 - R11, were sim
to the local registers on the SPARC. The vax-11 did not use registers for passitl
arguments to subroutines.

The integer and floating-point instructions on the vax-11 were almost identicg
to the pdp-11 with additional features. Instructions were provided for all d
types, byte, halfword, word, single, and double-precision; three-opsrand and ¢
operand forms of many instructions existed, such as addw?2 and addw3; instructiong
existed to convert between all possible data formats similar to the convert instru@
tions on the SPARC. Instructions also existed to evaluate a polynomial in ejthel
single or double-precision, POLYS and POLYD; these instructions had as one opera
a pointer to a list of coefficients. The poly instructions were used by library routing
to evaluate such functions as sin and cos. :

The vax-11 also provided specialized instructions that did not exist in +
pdp-11. An index instruction provided for array indexing and array bound chedf
ing; queue instructions provided for inserting and removing items from doul
linked lists representing queues; other instructions made it possible to work wi
arbitrarily specified sub-bitfields in words. For example, the index instruction heg
six operands, any of which might be any one of the possible 16 addressing mode

opcode subscript, low, high, size, indexin, indexout
The operation of this instruction was as follows:

indexout = (indexin + subscript) * size;
if (subscript < low || subscript > high)
trap(subscript range);

Th1s would enable us to tra.nslate the code for multidimensional array access gis f._‘=.
on 163 as: |
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define(l_1, -2)
define(u_1, 3)
define(1_2, O
define(u_2, 9)
define(1_3, 2)
define(u_3, 4)

di = eval(u_1 - 1_1 + 1)
d2 = eval(u 2 - 1_2 + 1)
d3 = eval(u_3 - 1_3 + 1)

define(i_r, 10)
define(j_r, 11)
define(k_r, 173)

local_var
var(arr_r, 4, dl * d2 » 43 * 4)

begin main

nov -2, %i_r
mov 0, %i_r
mov 2, %k_r

index i r, 1_1, u.l, d2, %g0, %o0

index %j.r, 1.2, u.2, 43, %00, %00

Andex %k_r, 1_3, u.3, 4, %00, %00

: add #Ep, %00, %o0 :
id [%00 + arr_z], %00 1%00 = ary[1] [31[x][11°

the time to execute each index instruction
instructions, such as add

Branching instructions, making use of the condition codes existed on the vax-11;
-however, the branch target had to lie within —127 and +128 bytes of the branch
instruction. If the terget of the branch was further, then a jump instruction had to
be added to the code (the sense of the branch must be complemented and targeted
to skip over the next instruction, a jump to the target of the branch). There were

- additional loop control statements such as add, compare, and branch, which would

increment an index variable, make a comparison to & loop-terminating condition,

. and branch back to the beginning of the loop if appropriate. There was also a cage
) - statement that replaced the dispatch table (see page 236).

L The vax-11 provided special instructions to handle function calls. Subroutine
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calls were difficult to implement on the pdp-11: the arguments had first to bg
placed on the stack; the call made; registers saved to the stack; arguments placed
into registers; the subroutine code executed; registers restored from the stack; thg
return made. All the above required explicit instructions. There was no register filg
as in the SPARC architecture and, of course, no save and restore instructions oy
gither the pdp~11 or on the vax-11. At about the time of the introduction of the
vax-11 structured programming was becoming popular and programs were brokez
up into many small subroutines, making the need for efficient subroutine handling
important. The vax-11, calls instruction was provided for arguments passed o1
the stack. Having moved the arguments onto the stack a calls instruction wag
executed with two arguments, the number of arguments placed onto the stack and
the address of the subroutine entry. At the address of the subroutine entry was
a register save mask with bits indicating which registers would be used in th
subroutine and needed to be saved on the stack.

When the calls instruction ig executed the following actions take place:

1. The number of arguments, the first argument to calls is pushed onto th
stack.

2. The register save mask is scanned from bit 11 through bit 0 and a reglste
whose number corresponds to a set bit is pushed onto the stack.

. The program counter, the return address, is pushed onto the Btack.
. The frame pointer is pushed onto the stack.
. The argument pointer is pushed onto the stack.

. The condition codes are cleared.

o R = - T = | S N ]

. The processor status word and the register save mask are pushed onto t 5
stack :

8. A zero is pushed onto the stack, which might be replaced with a trap handl it
if necessary from within the subroutine. .

9. The frame pointer is replaced by the stack pointer.

10. The argument pointer is set to point to the word on the stack containing tli
number of arguments passed to the subroutine. This work is 1mmedlatel
above the first of the arguments.

11. The program counter is replaced by the subroutine address +2 to pomt n:
the first executable mstructlon in the subroutine. :

The vax—-11, calls instruction does a lot and, unfortunately, takes a lot of ti :
to execute. The SPARC architecture replaces many of the functions by making ug3
of a hardware solution, the register file, and by passing arguments in registers, -4
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In order to return from a subroutine the vax-11, ret instruction is used:
1. The stack pointer is replaced by the frame pointer +4.

2. The saved processor status word and the register save mask are popped from
the stack. '

. The program counter is popped from the stack,
The frame pointer is popped from the stack.

- The argument pointer is popped.from the stack.

= R < S O

Registers are restored by scanning the register save mask from bit 0 through
bit 11,

7. A word containing the number of arguments is popped from the stack,

8. Four times the number of arguments, just popped from the stack, are added
to the stack pointer, thus removing the arguments from the stack.

Such a subroutine linkage is very gemeral, but wasteful if its only purpose is to
structure programs, ' ‘

Although we have only discussed the integer and floating-point instructions of
the vax-11. The vax-11 also had instructions for handling strings of characters
very efficiently, and for editing text strings, making the machine appropriate for
the execution of COBOL programs. ' ‘

The vax-11 virtual memory wes handled by a single-level of mapping tables
" resident in mernory. This was combined with a scheme of memory segmentation in
which the kernel occupied the top half of virtual memory and the user the lower
* half. Further, these segments were broken into regions that could grow up from the
bottom and down from the top, making single-level mapping possible, The vax-11
also needed cache memory and a translation look aside buffer to make the handling
of virtual memory efficient. ‘ '

MIPS Architecture

The final architecture we will discuss is the MIPS architecture, a contemporary of
the SPARC and, as we will see, very similar. Both machines were developed at
the same time; SPARC at Berkeley and MIPS at Stanford. They are both 32-bit,
RISC, load/store machines and have very similar instruction setséiteMips.
The instruction formats are shown in Figure 14.1. All instructions are decoded
first on their opcode and then, in the case of opcodes 0 and 1, further decoded
“based on the op2 field. In the case of MIPS, the immediate form of instructions
have different opcodes from their register equivalents. For example, add ¥%ri,
#r2, %r3 has the following machine code, 0,1,2,3,0,040 where each of the fields
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N 9
Jump
| opcade jump targer«<28:2>
Register
000000 11 182 | d shift op?
Branch
0 000 0 1 81 op2 | signed 16 bit offset
Immediate
opeode 18l | rd | signed 16 bit constant

Figure 14.1: MIPS Instruction Formats

i
g

is given in octal;, when the op field is zero this indicates that decoding is to tals
place based on the op2 field which, in the case of the add instruction is, 040. On tf
other hand, the addi %ri, 17, ¥r3 instruction has the following machine cod
010,1,3,17. In this case, the opcode is 010 and the low 16 bits of the instructi
are treated as a signed 16-bit constant to be sign extended to 32 bits before use. TH
MIPS architecture allows for 16 bit constants in contrast to the 13-bit constants §
the SPARC, thus allowing for much larger blocks of memory to be accessed r,,
respect to a single base register. 4

The MIPS processor is also pipelined so that delay slot instructions are necessay
after all instructions that change the contents of the program counter. In the caj
of MIPS, however, the load instruction is not interlocked to prevent the destinatig
register of a load instruction being used in the following instruction.? In the MIj
architecture an instruction must be inserted between the load instruction and$
following instruction that uses the loaded data. K

There are no condition codes in the MIPS architecture, but branch instructidi
are provided to compare a register to zero and branch if the appropriate conditiot
are met. The SPARC cmp instruction is equivalent to the “set less than,” slf
instruction in MIPS; this instruction will set the destination register true if its fit
‘operand is less than its second. Thus, for example, the C code:

if (a > b)
at+;

would be translated in SPARC as:

?Hence the acronym for MIPS, Microprocessor without Interlocked Pipeline Stages.
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cmp %a, b
ble next

nop

, add %a, 1, Ya
next:

would be translated in MIPS as:

8lt e, %a, %t

begq %t, %g0, next

nop

addi %, 1, %a
next:

The beq and bneq instructions on MIPS compare the contents of two registers and
must be used in conjunction with #g0 to provide the equivalent SPARC be and bne
instructions. In the cage of MIPS, the branch address is stored as a 16-bit signed
word offset that is ored with the high four bits of the program counter to form the
target address. Annulled branch instructions are also provided, but in the case of
the MIPS architecture each annulled branch instruction ig a separate instruction
indicating that the branch is “likely.” For example, the annulled form of the beg
instruction is beql, which will annul the delay slot instruction if the branch is not
taken, ~

The MIPS architecture supports the same load and store instructions with the
exception of load and store double. The operands of the load and store ingtructions,
however, are a register and/or a 16-bit sign-extended constant. An address formed

. from the sum of two registers, as.in the SPARC architecture, is not possible,

The arithmetic instructions in MIPS, include add, sub, mul, and div, These in-
structions are present in signed and unsigned forms; the signed forms cause a trap
on overflow. The mul and div instructions are unusual, as they take many more cy-
cles than one to execute, somewhet in contradiction to the RISC approach. These
two instructions are, however, handled in much the same manner as the floating-

' point instruction are handled in the case of SPARC. Both instructions start and
run to completion; as soon as they are started the machine continues to execute
other instructions. If the results of the multiply or division are needed, then the

. processor stalls until the instructions complete. Later forms of the SPARC archi-
tecture also support gimilar multiply and divide instructions. These instructions
work in conjunction with two special machine registers, HT and 10, A subset of the

“logical instructions is present: and, xor, nor, and, or, as well as the three shift

_instructions. '

A major difference occurs with' the registers. There ig no register file in the
MIPS architecture.® Instead, there are only 32 general registers that must be saved
and restored by the programmer whenever subroutines are called.

3 The lack of & floating-point register file allows the memory management unit to be integrated
onto the same chip in MIPS, reducing memory access time, . = -
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4

The 32 general registers have the following assignment:

Rn Name Use

0 %e0 Always zero.

1 %at Temporary for use by the set less instructions.
2.3 %00, %01  Return values from functions.

4-7 %i0-Y%i3 To pass the first four arguments to subroutmes
Additional arguments are places on the stack. :
8-15 U4t0-%t7 Temporary regmters, not preserved over subrou-
: tine calls.
16 - 23 %10 - %17 Locel variables, preserved over subroutine calls.
24,25 - 4t8, %59 A couple more temporary registers. '
26, 27  %k0, %k1  Reserved for the operating system.

28 %gl Global pointer register.

29 %sp Stack pointer.

30 %18 Another local variable register, preserved over sub-
routine calls.

31 Yi7 Subroutine return address.

?.‘

When a subroutine call is to be made any local registers, %10 — %18, contai ‘-w
data that will be needed after the subroutine returns must be saved either by
caller or by the calles.*: The convention is that a called program must save
of the local registers that it will use on subroutine entry to the stack. Before
return all the saved registers must be restored. This, of course, involves an st
an 1d instruction for each register saved. While this might appear to degrade
performance of the machine, one must bear in mind that when a context sw
occurs & SPARC machine must save the entire register file to the stack. The
architecture does not support a frame pointer; instead stack offsets must be han
relative to the stack pointer. The subroutine call places the return address
register 31, which must then be saved to the stack before another subroutine

The MIPS supports & separate floating-point coprocessor in the same me
as the SPARC architecture. The MIPS architecture provides instructions to n
data between the integer unit reglsters and the floating-point registers, lack
the SPARC 'architecture. Although data have to be moved from the integer
to the floating-point unit via the stack in the SPARC architecture, such moves
normaﬂy be interleaved with floating-point instruction execution and thus doﬁl i
involve any tlme penalty. :

£A compiler may use & technique celled “interprocedural register allocatlon” to minimize iJu(:
number of registers that must be saved.
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Summary

' The SPARC architecture represents an evolution of computer architecture of almost

50 years. Much of this evolution has been driven by technological advances relating
to the relative cost and reliability of the various components of computers: registers,
arithmetic logic units, and memory. We have seen the transition from vacuum
tube technology through transistors to the VLSI chips of today, which embody an
entire processor in a single device. Memory has similarly developed from magnetics

" to the solid-state memories of today. Concurrent with these advances have been

developments in programming languages and operating systems. The hand-coded
machine language programs of the first computers, occupying some few memory
locations, have been replaced by high-level language-generated programs occupying
megabytes of memory. Operating systems now allow for the efficient execution
of many programs simultaneously occupying memory and sharing common bulk

‘storage. Current research is devoted to parallel machines in which large numbers
- of processing elements replace the single von Neumann machine,

In this chapter we have tried to trace the recent development that led to the

SPARC architecture and to RISC architectures in general. We first discussed the

pdp-11 computer, as it is a very clean architecture and was concurrent with the
development of the C programming language. This machine transitioned into the
vax-11 in order to provide for virtual memory. The vax-11 took advantage of
microprogramming to provide an extensive instruction set. The RISC architecture

‘was based on the development of compiler technology, which eliminated the need for
complicated instructions, allowing for the efficient execution of the reduced resulting

instruction set. RISC was also introduced at & time when the cost of memory was
decreasing, eliminating the need to reduce the size of programs, Concurrent with
the developrment of the SPARC architecture was the MIPS architecture. The two
architectures are very similar, with the principal difference being the elimination of
the register file requiring the compiler to manage the allocation of variables to the
available registers. g B

_ An understanding of machine architecture is necessary if one is to make intelli-
gent use of the features provided by high-level languages. In order to understand a
machine architecture it is necessary to understand its programming at the assembly
language programming level. It is important to understand how various high-level
program constructs translate into machine language in order to intelligently select
control and data structures for efficient programming. While much emphasis is
ii’lven to structured programming, a program must be efficient as well as correct,

d this requires an understanding of a machine's architecture.
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Exercises

14~1 Why is there no need to provide the separate, condition code setting inst ae
4 tions of the SPARC architecture for the pdp-117 »

14-2 Why is it difficult for assemblers to decide on byte, halfword, or

e St

14-3 word offsets when computing program counter relative addresses?

14-4 What is the difference between CISC and RISC processors?

(PR X




’ ppendix A
MACRO DEFINITIONS

divert(-1)
k ‘%%%Z%%X%%%%%%%%%%%%%%%ZZZ%%Z%%%%%%Z%%%%%%%%Z%%%%%%%%%%%%%Z%%%%%%Z%’
‘returns $1 aligned according to $2’
' define(‘align_d’, ‘ifelse($1,0,0,eval($1 < m,1,

‘eval($2 * ((($1 + 1) / $2) - 1)),

feval($2 * ((($1 - 1) / $2) + 1))
‘%Z%%%%%%%%%%%%%%Z%%%%%%%%%%Z%%%%%%%%%%%%%%%Z%%%%%%%%%%Z%%%%%%%Z%%%’
‘define(‘local_var’, ‘l!local variables

define(‘last_sym’, 0)°)

define(‘var’, ‘define(‘last_sym’,align_d(

‘ eval(last_sym - ifelse($3,,$2,%$3)), $2))31 = last_gym’)

-define(‘begin_main’,‘.global main
-main: save %8p, align_d(
eval( -64 ifdef(‘last_sym’, ‘+ last_sym’)), 8), Ysp’)

define(‘end_main’, ‘mov 1, “gl
ta 0

f%%%%%Z%%Z%%%%%%%%%Z%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Z%%%%%%%%%X%’
‘stack offset definitiona’

define(struct_s, 64)

‘define stack offset for the n th. argument, $1, starting at 1’
define(arg d, ‘eval($1 * 4 + struct_s)’)

341
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o

'%L%%%%ZYA%%%%%%%%%%%%%%%VA%Z%%%%%%%%?A%%%%K%%%%%%%ZVL%%%%%%%%%%%VF
‘subroutine entry, $1 = subroutine name’
define(begin_fn, ¢ .global $1

$1: save %sp, align_d{ eval(

-92 ifdef(‘last_sym’,‘+ last_sym’)), 8), %sp
undefine(‘last_sym’)define(‘name_of_funct’,$1)’)

‘subroutine end, return sequence,
$1 = subroutine name, $2 = srci, $3 = src2? or imm, $4 = dst’
define(end_fn, ‘ifelse(
$1,name_of _funct, ‘ret
restore’ ‘ifelse(
$2,,, ‘%2, $3, $4’) 'undefine{‘neme_of_funct’),*
errprint(‘ subroutine begin does not match end’)’)’)

%%%%K%%K%VA%%%Z%%%%%%%%%Z%YA%%%%%%Vﬁ%%yA%%%%%%%%Z%%Z%%%%%%%%%%%%%%=
‘begin defining the fields of a structure’ ‘
‘$1 = struct name’

define(begin_struct, ‘!‘define’ structure $1
define(‘size_of_struct’,0)define(

‘name_of _struct’,$1)define(
‘align_of_struct’, 0)?)

‘define a field of a struct’
‘$1 = name of field, $2 = alignment, $3 if present number of bytes’ |
define(field, ‘name_of_struct_’$1 = align_d( ‘
aize_of_struct,$2)define(
‘size_of_struct’, eval(align d(size_of_struct,$2)

+ ifelse($3,,$2,$3)))define(

‘align_of_struct’, ifelass(

eval($2 > align_of_struct),1,$2,align_of_struct))?’)

‘end definition of a struct’
‘$1 = name, defines size_of_$1 to be the size in bytes aligned to
allgn_of_struct’
define(‘end_struct?, ‘ifelse(
$1,name_of_struct, ‘defina(
‘size_of_$1’,align d(size_of_struct, align_of_struct)) define(
‘align_of_$1%,align_of_struct)
l‘align_of_$1°, align_of_$1 bytes
|‘size_of _$1’, size_of_$1 bytes’,®
errprint(‘ structure begin does not match end’)’)’)
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‘%%%%%%%%%%%%%%%%%Z%%%Z%%%%%%Z%%%Z%%ZZZ%%%%%%%%%%KZ%%%%%%%%%%%Z%%%%’
‘convert a decimal number into reverse binary, i.e. lsb as mab’
define(convgrt_d,‘ifélse(eval($1/2),0,$i,

‘eval($l ¥ 2)convert_d(eval($1i /2))7)?)

‘generate code to multiply in terms of shifts < and adds +’
define(translate_d,
‘119199($i,,,substr($1,0,1),1,‘+<translate_d(substr($1,1))',
‘<translate_d(substr($1,1))*}’)

‘detect where to apply booth_d recoding’
define{booth_d,
‘ifelse($1,,,
‘ifelss($1,<,,substr($1,0,4),+<+<,‘-<<gobble_d(substr($1,4))’,
C ‘substr($1,0,1)booth;d(subﬂtr($1,1))’)’)')

‘gobble.d up rest of string of <'g’
define(gobble_d,
‘ifelse($1,,+, :
‘ifelse(substr($1,0,2);+<,'<gobb1e_d(substr($1,2))’,
: ' ‘+<booth_d(substr($1,1))°)?)?)
‘digits of a base 30 number system’ ‘
define(code_d,01234567851Q$% &x="|\/<>{}[]:;")

‘translate_d <<< into counts’

definé(compact_d,‘ifelse($1,,,
‘ifelse(substr($1,0,1),<,‘cqunt_d($1,0)’,
‘substr($1,0,1)compact_d(subgtr($1,1))’)’J’)

‘counts strings of <<< in base 30’

- define(count_d,
’ifelse(substr($1,0,1J,(,‘count_d(substr($1,1),incr($2)3',
‘substr(dodé_q;$2,1)compact_d($1)’)’)
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‘emul (1=multiplicand register, 2=constant multiplier, |
3=temp, 4 = product)’

define(cmul,
‘ifelse($4,, ‘errprint(
‘cmul usage: multiplicand reg, const mult, temp reg, prod Teg’)?,
substr{$2,0,1),-, ‘errprint(‘positive constants only?’)*, )
$1,$3, ‘errprint(
‘emul: multiplicand and temp registers must be different’)’,
index(0123456789, substr($2,0,1)),-1, ‘errprint(
‘ecmul: attempt to covert non numeric comstant’)’,
¢

!start cpen coded multiply for

184 = §1 * $2, using $3 as temp

start_d(

$1,compact_d(booth_d(translate_d{convert_d($2)))),$3,$4)

! ‘end’ open coded multiply
27

‘generates the beginning of multiply code’

‘$1 = multiplicand, $2 = string, $3 = temp, $4 = prod’

define(start_d,

‘ifelse($2,, ‘clr $a’,

$2,+, ifelse($1,%4,, ‘mov $1, $4)°,

len($2),2,s11 $1, index(code_d,substr($2,0,1)), $4°,

substr($2,1,1),+,s1l $1, index(code_d,substr($2,0,1)), $4¢
8ll $4, index(code_d,substr($2,2,1)), $3

genorate_d(substr($2,3),$3,%4)’,

substr($2,1,1),-,¢s11 $1, index(code_d, substr($2,0,1)), $4
8ll $4, index(code_d, substr($2,2,1)), $3
sub $3, $4, 34

generate_d(substr($2,4),$3,$4)7,

substr{$2,0,1),+, ‘ifelse(

substr($2,2,1),+,‘s1l $1, index(code_d,substr($2,1,1)), $3
add $3, 81, %47,

‘51l $1, index(code_d,substr($2,1,1)), $3
sub 31, $3, $47)

generate_d(substr($2,3),$3,$4)°,

‘gll $1, index(code_d, substr($2,1,1)), $3
aub $3, $1, $4

generate_d(substr($2,3),$3,$4)')?)

‘generates tail of code’
‘$1 = string, $2 = temp, $3 = prod’
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define{generate_d,
‘ifelse($1,,,

‘ifelse(substr($1,0,1),+,* add $3, $2, $3
generate_d(substr($1,1),$2,$3)",
substr($1,0,1),-,* sub $3, $2, 3
generate_d(substr($1,1),$2,$3)",

¢ 81l $2, index(code_d,substr($1,0,1)), $2
generate_d(substr($1,1),82,$3)7) 7)) '

‘%%%%%Z%%%%%%%%%%%%K%%%%%ﬁ%%%ﬂ%%%%2%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Z’
‘define which also prints an assembly language comment’
define(‘cdef’,‘define(‘$1’, $2°)1¢¢1 = $2 $37*)

divert dml







j;Appendix B

' MULTIPLICATION BY
| CONSTANTS

' B1 Introduction

In this appendix we develop macros to generate code to multiply by constants,
required in multidimensional array access code. The multiplicand will be located
in a register together with a temporary register thet may be used to compute the
product into a final register. The final register may be the same as the multiplicand
register. The constant is small and positive. The product is generated by shifts,
adds, and subtracts. We start by converting & multiplier into a binary representa-
tion of ones and zeros. We will then convert this to a string of <, indicating shifts,
and + to indicate additions. Having done this, we will perform the booth recoding
introducing the symbol - to indicate subtraction. We will then replace strings of
<<< by a base 31 digit representing the count. Having generated this string we will
then generate the corresponding code, which would be simple apart from the initial
conditions. This is a good test of our macro writing capabilities.

m4 Built-in Macros

In order to handle these strings of characters we will need to make use of number
of built-in macros of m4. We will start with the string macros. .

- B.2.1 String Macros

N The macro processor md4 provides macros for operations on strings,
The macro len returns the length, in characters, of its string argument:

347
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len(how now brown cow)

returns 17, il

A second macro substr(string, begm, length) returns a substring of the firg
string argument starting at the “begin” character, with the first character in tr“
string at zero’th position, and of length “length”:

subsatr (how now brown cow,8,5) ' ‘ .;;,

results in the string “brown.” If the final argument is missing, then the rest of«“& 4
substring starting at the “begin” cha.racter position is returned:

substr Chow now brown cow,8)

results in “brown cow.” -
One can also look for the occurrence of a substring in a string employmg u ‘
macro index; 1

index(how now brown cow, brown)

returns 8. If the subgiring is not in the string the index returns -1.

Finally there is a transliteration built-in macro translit(string, from, to} in whig
any character in the string found in “string” is replaced by the character in “to8
which has the same index as the character in “from.” For example: E

translit(how now brown cow, hnbc, HNBC)
results in “How Now BrowN Cow.” O
" translit¢how now brown cow, aeioun)

results in the elimination of all vowels from the string “hw nw brwn ew.”

B.2.2 Conditionals

We will also need to sharpen our definition of ifelse. The complete form of ife
is:

ifelse( al, a2, ri, a3, a4, r2, a5, ag, rl3)
and evalustion is a follows:

If the string a1 matches a2, then the result is the string r1

If the match did not occur, then a3 is checked to see if it matches a4, if
it does the result is r2 _

1 If a3 does not match a4, then a5 is checked against a6 and if it matches
the result is r3

If the arguments come in triples, as described here, and no matches are
# detected, then the result would be the null string

If one additional argument were supplied, and no matches occurred,
4 then the result would be the last string argument.
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For example, if we were to add one additional argument to-the above ifelse:
ifelse( al, a2, ri, a3, a4, r2, ab, a6, r3, r4)

and no matches occurred, the result would be r4 instead of the null string. There
is no limit to the number of arguments that are given to ifelse. We must remember
that all the arguments to an ifelse are evaluated before the strings are compared to
determine the value of the ifelse.

B.2.3 Arithmetic Expression Evaluation, eval

The built-in macro eval treats its argument as an arithmetic expression and re-
turns a string corresponding to the evaluation of that expression. The arithmetic
operators handled by eval are as follows:

unary + and -

** or * exponentiation

* / multiplication and division
% modulus

== I= < <= > >= grithmetic relational operators
! logical not

& or && logical and

| or || logical or

Logical false is zero while true is one. Note that, unlike in C, & is the same as &&
and both are logical operators, not bit-wise! Parentheses may be used to control
the order of evaluation. For example:

eval({(B & 1) * 2 #*x 4 + 1) % 3)

has the value 2.
. One additional arithmetic built-in function is incr, which adds one to its argu-
ment:

incr(100)

" results in 101.

Conversion to Binary

Let us look at a macro to convert a decimal number to binary. We must make use
of a recursive definition; '

} define(convert_d, ‘ifelse(eval($1/2),0,%1,
‘convert_d(eval($1i / 2))eval($1l % 2)°)?)




. recursively with the remainder of the string. The evaluation of:

350 APPENDIX B. MULTIPLICATION BY CONSTA _

If the division of the number by 2 is zero, then there is oniy one digit and that
is $1. Otherwise we need to append the remainder of the number, divided by
to the conversion of the original number divided by two. Consider the conve
of decimal 100 to binary. The first division by two results in a remainder of z
and a quotient of 50, As the quotient is not zero we need to append a zero (the fi
remainder) to the conversion of 50 to binary. The recursive call to convert resy
in another remainder of zero with a quotient of 25; thus we will need to appetig
zero (with the first zero appended to this) to the conversion of 25 to binary. 3
next recursive call to convert results in a remainder of 1 and a quotient of 12, §
the quotient is not zero so that we must now append & 1 ( with 00 to be appen
to the conversion of 12 to binary, and so on. The conversion, using the macro: 1

convert_d(100)

results in 1100100.

It is easier to scan strings from the left with macros; we will reverse the bindi®
conversion so that the least significant bit is in the most significant bit positiZQy
This requires a simple modification of convert_d shown above: '

define(convert_d, ‘ifelse(aval{$1/2),0,81,
‘oval($1l % 2)convert_d(eval($l /2))7) ")

Converting 100, convert_d(100), now results in 0010011, the reverse of the bina®
representation. :

We will now translate this into a shift and add pattern represented by a strif]
consisting of the characters < to indicate a left shift, and a + to indicate an additif}

define(translate_d,
‘ifelse($l,,,
‘ifelse(substr($1,0,1),1,+<,<)translate_d(substr($1,1))?)’)

In this macro we have two nested ifelse’s. The first tests to see if the string is ng
if it is, the translation is complete. Otherwise, the first character is examined :'g.a
is replaced by a +< if it is & one and by < if a zero. The macro then calls itd

translate_d({coenvert_d{100))

results in <<+<<<+<+<, the correct shifting and adding algorithm. :

We could translate this string into machine instructions, but before we do so3
will apply the Booth recoding to reduce the number of shifts and adds. The
recoding recognizes a sequence of shifts and adds and replaces it by an
subtraction, followed by the same number of shifts, without adds, but folle
finally by sn addition. A sequence such as:

FCbLHCHCF<HC

may be replaced by:
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€ L<LC<+

This éncdding is performed by th macros, booth_d and gobble_d. Booth rec-
ognizes the beginning of a string of +<+ and gobble gobbles up the rest of the <+
strings:

- ‘detect where to apply Booth recoding’
. define(booth_d,
' ‘ifelse{$1, ,, _ .
‘ifelse($1,<,,substr($1,0,4) yH<+<, f~<<gobble_d(substr($1,4))’ .
‘substr($1,0,1)booth_d(substr($1,1))?)?)?)

‘gobble up rest of string of <’s’
define{gobble_d,
‘ifelse($1,,+, _ : x
‘ifelse(substr($1,0,2),+<, ‘<gobble_d(substr($1,2))’,
‘+<booth_d(substr($1,1))?)*)?)

so that while the output of:
translate_d(convert_d(63))
| Is +<+<+<+<+<+< the output of:
. - booth_d(tranlate_d(convert_d (83)))

is —<<<cc,

B.4 Conversion to Base 31 Number

The string we have generated is the correct representation, but it will be more
convenient to have the strings of <<< replaced by a single digit, repregenting the
number of shifts. This will make code generation easier and will simplify pattern
i .~ matching when we generate the initialization code. Unfortunately, there might be
.. more than nine shifts so we need symbols to represent 10, 11, 12, ... 31, These
" need to be nonalphabetic, as they might become concatenated to the beginning of
& macro name.  We pick the following symbols and define them as & string:

. ‘digits of a base 31 fumber system’ _
. - defina(code_d,0123456789!@$%"&*="l\/<>{}[] )|

In order then to translate our string into a string consisting of only +-d, where
d represents a base 31 digit we make use of the following macros:

) ‘translate <<< into counts.
. find beginning of string and call count’
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define{compact_d, ‘ifelse($1,,,
‘ifelse(substr($1,0,1),<, ‘count($1,0)’,
‘gubstr($1,0,1) compact_d(substr($1,1))7)?)?)

‘counts strings of <<< in base 31’
define(count_d,

‘ifelse(substr($1,0,1),<, ‘count_d(substr($1,1),incr($2))’,
‘subgtr(code_d,$2,1)compact _d($1)’)’)

For example, the nuraber 603 has the binary representation, 1001011011, and 2
verse binary representation 1101101001. Applying the Booth recoding results’ i
—<<H+<-<<H<+<<<+, and on calling compact we obtain —2+1-2+1+3+,

Instruction Generation

Instruction generation consists of shifts, adds and subtracts. A macro genera
generajies the instructions:

‘gensrates code’

‘$1 = string, $2 = temp, $3 = prod’

define(generate_d;

‘ifelse($1,,,

‘ifelse(substr($1,0,1),+,° - add $3, $2, 83
generate_d(substr{$1i,1),$2,$3)’,

substr{$1,0,1),-,¢ sub $3, $2, 33
generate_d({substr($1,1),$2,$3)’,

¢ 8ll $2, index(code_d,substr($1,0,1)), $2
generate_d{substr($1,1),$2,83)7)*)*")

For example,the evaluation of:

generate_d(compact_d(booth_d(translate_d(
convert_d(603)))), Ygl, %r0)

results in;

sub %ro, %gl, %r0
s11 %el, 2, gt
add wro, %gl, %ro
all hgl, 1, %gl
sub w0, %gl, Y%xo
gll %gl, 2, Y%gi
add %ro, %gl, %xo
sll g1, 1, Y%gl
add 40, %gl, %x0
81l %gl, 3, %zl
add %0, %gl, %x0
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This macro assumes that the product register has been cleared to zero and that
the multiplicand is in the temp register. In order to ensure that these conditions
are met we need to define a macro to set up the initial conditions.

This time we will start with the top-level routine, cmul;

‘cmul (i=multiplicand régister, 2=constant multiplier, 3=temp,
4 = product)’ - '

‘ define(cmul,

[ - ‘ifelse($4,, ‘errprint(

: ‘emul usage: multiplicand reg, comst mult, temp reg, prod reg’
}?, substr($2,0,1),-, errprint(‘positive constants only?’)’,
$1,$3, ‘errprint (

‘multiplicand and temp registers must be different’)’,
r

!“start’ open coded multiply for-
'$4 = $1 * $2, using $3 as temp
SRR start_d($1,compact_d(booth_d(translate_d(convert_d($2)))),$3,84)
' | ‘end’ open coded multiply -
2

The arguments to this mecro are the register that contains the multiplicand; the
positive, constent multiplier; a temporary register into which to place the shifted
multiplicand; and, finally, the register into which the product is to be placed. All
this macro does is to perform some error checking, and to call start_d with ar-
guments: the multiplicand register, the shift-add-subtract string, the temporary
register, and the product register.

The macro that cmul calls, start_d, handles the initialization. This macro rec-
ognizes the initial conditions given in the following table and distinguishes between
the case where the multiplicand register %m is the same as the product reigister*'/.p
and when they are different. Shift counts are referred to by n and m. The temporary
register is referred to as %t: :
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String _Code, Ym == %p  Code, Ym != %p
a clr Yp clr Up

||"+" rl‘ll‘ nov ./'m’ %P ‘

Nyt sl %p, =n, %p sll %m, n, Yp

"g+m..." 81l Y%p, n, #p sll Y%m, n, %p
sll Yp, m, %t 81l Yp, m, %t
"n-m+,.." 811 %p, =, #p sll Ym, =, %p
sll Jp, m, %t sll %p, =n, %t
sub %t, %p, %p sub %t, Yp, Yp
4 "0+, ., " gll ¥m, n, %t sll Ym, n, %t
i : ‘ add %t, %p, %p add %t, %m, %p
i "4p-..." 81l Ym, n, %t 811 Y%m, n, %t
b sub Yp, %%, %p sub Ym, %t, %
& "-n+..."  sll Jm, =n, % 811 %m, n, %t
sub %t, Yp, Yp sub %t, %m, %p

H The start_d macro encodes these states:

‘generateslthe beginning of multiply code’

‘$1 = myltiplicand, $2 = string, $3 = temp, $4 = prod’

] défing(gtart;d,

. ‘ifelse($2,,‘clr $47,

3 $2,+, ‘ifelse($1,$4,, ‘nov $1, $47)7, ‘

4 ' len($2),2,‘611 $1, index(code_d,substr($2,0,1)), $4’,

' substr($2,1,1),+,s1l  $1, index(code_d,substr($2,0,1)), $4
sll .. $4, index(cede_d,substr($2,2,1)), $3

generatés_d(substr($2,3),$3,$4) ’,

substr($2,1,1),-,4s11 $1, index{code_d, substr($2,0,1)), $4
811 $4,  index(code_d, substr($2,2,1)), $3
sub $3, $4, $4 .

generate_d(substr($2,4),$3,$4)’,

gubgtr($2,0,1) ,+, ‘ifelss(

substr($2,2,1),+,‘sll  $1, index(code_d,substr($2,1,1)), $3

o add $3, 81, $47, _

‘811 $1, index(code_d,substr($2,1,1)), $3
sub $1, $3, $4°)

generate_d(substr($2,3),$3,$4)’,

‘g1l %4, index(code.d, substr($2,1,1)), $3

. ) aub $3; $1.| $4 .

generate_d(substr($2,3),$3,84) 7))

There is an unpleasant number of initial cases, and the initialization code generatio j
is tricky if we are not to overwrite the contents of registers that we will subsequentljj
need, and are to avoid the use of unnecessary mov and neg instructions. ;
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An example of the use of the cmul macro is:

mov 64, Yol
cmul (%01, 100, %00, %10)

which expands to:

mov 64, %ol

!start open coded multiply for

: 1410 = %ol * 100, using %00 as temp
81l %01, 2, %10
51l %10, 3, %o0
sub %10, %00, %10
g1l %00, 2, %0
add %10, %o0, %lo

! end open coded multiply
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| Appendix C

'USER MODE MACHINE
INSTRUCTIONS

$C.1 Syntax

SYNTAX
Symbol _ Definition Comment _
<n:m> Bits n through m inclusive ]
L rln] %g0 ... %o7 Integer register n
E r[rd] Destination register
' r[rsi] Source register
r[rs2] Source register
f{n] HWEO ... %£31 Floating-point register n
consti3 | value A signed constant that fits into 13 bits
const22 | value A constant that fits into 22 bits
const30 | value A constant that fits into 30 bits
regaddr | rl[rsi] Address formed with the contents of
rirsi] + r[rs2] | registers only
address | r[rsi] + rlrs2] | Address formed from the contenis
r[rsl] + constid | of registers, immediate constant,
: rlrei] — consti3 | or both
. constld 4 rl[rai]
i const13

357
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C.2 Arithmetic Instructions

Arithmetic addition and subtractions instuctions including tegged arithmetic X
extended arithmetic instructions. /

add

(10 | zd [ 000000 | ral [ i =0 [ ignored | re2 |
op2 = 1 == 0 7 r[re?] : sign-extend(l3 bit immediate); .
[ 10 | xd | 000000 | rel | i=1 | signed 13 bit immediate | . -4

. Purpose: perform integer addition
. Format: add ral, op2, rd
. Operation: r[rd] = r[rsi] + op2
. Condition Codes: unaffected

. Description: Performs the addition of r[rel] and op2, using two's comﬂ
ment arithmetic, storing the result into r(xd]. The contents of r [rs1] and opg
are not affected.

T o O B =

addcc

1 [10 [ =a [ 010000 | xsi | i= 0 | ignored | ra2 |
‘ op2 = i == 0 ? rlrs2] : sign-extend(13 bit immediate)};
: [0 [ xd [ 010000 | rsi [ i=1 | signed 13 bit immediate |

‘ 1. Purpose: perform integer addition, set condition codes
M 2. Format: addcc rsl, op2, rd
.1'? 3. Operation: r[rd] = r[rsi] + op2
4. Condition Codes:
11 N = r[rd]<3t> ==
i Z = r[rd] ==
‘ V = (rlrs1]<3i> & op2<31> & r[rd1<31>) |
i (“r[rs1]<31> & ~op2<31> & rl[rd]<31>)
= (r[rsi]<31> & op2<31>) |

[ ("rlrdl<31> & (rlrsil<31> | op2<31>)) k
5. Description: Performs the addition of rsi and op2, using two’s complemen

] arithmetic, storing the result into rd and setting condition codes. The conten 5
{E of ra1 and op2 are not affected.
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addx

[10 [ xa [ 001000 | va1 [ 1="0 ] ignored | T2 |
op2 = i == 0 ? r[rs2] : sign-extend(i3 bit immediate);
[10 | zd [ 001000 [ rel [i=1] signed 13 bit immediate ]

. Purpose: perform extended precision integer addition
Format: addx ral, op2, rd

- Operation: r[rd]l = rlrs1] + op2 + €

. Condition Codes: unaffected

. Deacription: Used in multiple precisionla-.rithmétic to perform the addition of
r[rs1] and op2, plus 1 if the carry bit is set, using two’s complement arithmetic,
storing the result into rIxd]. The contents of r[xsi] and op2 are not affected.

A < R I

addxcc

[0 [ =d [ 011000 | zs1 [ 1 =0 [ lgnored | a2 |
op2 = i == 0.7 rlrs2] : sign-extend(i3 bit imnediate) |
[ 10 | d [ 011000 [ rsi [i=1] signed i3 bit immediate [

1. Purpose: perform extended precision integer addition, set condition codes
2. Format: addxcc rai, op2, rd
3. Operation: rfrd] = rlrei] + op2 + €

N= r[;'d]<31> ==

Z=x[rd] ==0 _ _

V = (r[rsil<31> & op2<31> &~r{rd]<31>) |
- ("rirs1]<31> & ~op2<31> & r[rd]<31>)
. C = (rlrs1]<31> & op2<3is) |

("rlrdl<31> & (r[rs1l<31> | op2<31>))

4. Description: Used in multiple precision arithmetic to perform the addition of

" ! ] rsl and op2, plus 1 if the carry bit is set, using two’s complement arithmetic,

' storing the result into rd and setting condition codes. The contents of rel and
op2 are not affected.
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taddcc

| 10 | xd | 100000 | rsi [1=10 [ ignored | rs2 |
op2 = 1 == 0 7 rlrs2] : sign-extend(13 bit immediate);
(10 [ »d | 100000 | xsi [i=1] signed 13 bit immediate |

. Purpose: perform tagged integer addition, set condition codes
. Format: taddcc rsl, op2, rd

. Operation: r{rd] = rlrsi] + op2

. Condition Codes: '

N = rlrdl<3i> == 1
Z=rird] ==0

B e N o=

V = (rlrs11<31> & op2<31> &*r[rd]<31>) |
i ("rlrs1l<31> & ~op2<31> & rlral<ai>) |
| (r[rs1]<1:0> != 0 | op2<i:0> 1= 0) :
B C = (rlre1l<3i> & op2<3i>) |
|

("rird]l<3i> & (r[rse1]<31> | op2<31>))

4

5. Description: Performs the addition of rsi and op2, using two's complemeni]
arithmetic, storing the result jnto rd and setting condition codes. The overflov]
flag is set if either of the source operands’ low-order two bits are not zero.
contents of ral and op?2 are not affected.

taddcctv

B | [[10 [ xd [ 100010 | zsi | i=0 | ignored | 82 |
‘ . op2=41 == 0 7 rlre2] : sign-extend(13 bit immediate);
10 [zd [ 100010 [ xsi Ji=1 " signed 13 bit immediate |

1. Purpose: perform tagged integer addltmn, trap if either source operands’ low
order two bits are not zero

. Format: taddcctvy rsl, op2, rd
. Operation: rfrd] = rlrsi] + op2
. Condition Codes: unaffected

Deseription: Performs the addition of rs1 and op2 using two’s compIemen
arithmetic, storing the result into rd. Trap if either of the source operandsj
low-order two bits are not zero. The contents of ral and op2 are not affected]

e N

R
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sub

[ 10 | %xd ] 000100 | %zsl [ 0 [ ignored | hre2
' Op2 = i == 0 ? r[rs2] : sign-extend(13 bit immediate);
(10 [ %rd 000100 | %rsl [ 1 | wigned 13 bit immediate |

- Purpose: perform integer two's complement subtraction
. Format: sub rel, rs2, rd

. Operation: r(rd] = r{rsi] - op2

. Condition Codes: unaffected

- Description: Performs the subtraction of the subtrahend operand from the
minuend operand, using two’s complement arithmetic, storing the result into
the difference operand. The contents of the subtrahend and the minuend are
not affected.

subcc

(10 [ %rd | 010100 | %rsi [ 0 | ignored | hra2
op2 = i == 0 ? r[rs2] : sign-extend(i3 bit immediate);
[ 10 | %xd [ 010100 | %zsi | 1 |__signed 13 bit immediate |

- Purpose: perform integer subtraction and’ set condition codes
. Format: subce rsl, rs2, rd ' '

. Operation: r[rd] = r[rsi] - op2

. Condition Codes;

N = rd<31> == 1

Z=71rd == (

V = (rei<3i> & “re2<3i> &7 rd<3i1>) |
("rs1<31> & ra2<31> & rd<31>)

€ = ("rsl1<31> & rg2<31>) | i
(rd<31> & (“rei<31> | rs2<31>))

. Description: Performs the subtraction of the subtrahend operand from the
minuend operand, using two's complement arithmetic, storing the result into
the difference operand and setting the condition codes. The contents of the
subtrahend and the minuend are not affected.
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subx
[10 [ rd | 001100 | rsl | i =0 | ignored | Ts2 |
op2 = i =m 0 7 r{rs2] : sign-extend(13 bit immediate);
[10]xd [ 001100 T ret [i=1 [ signed 13 bit immediate |
1. Purpose: perform extended precision integer subtraction
2. Format: sybx rsi, rs2, rd
3. Operation: r[rd] = rlrsi] - op2 - C
4. Condition Codes: unaffected
5. Description: Used in multiple precision arithmetic to perform the subtractlo i

subxcc

2. Format: subxcc rel, re2, rd
3. Operation: r[rd] = rlresi] - op2 ~ C
4. Condition Codes:

. Purpose: perform extended precision integer subtraction, setting the condmo

2 =1rd ==
¥ = (rsl<31> & “ra2<3i> §"rd<si>) |
("rsi<31> & rs2<31> & rd<31>)
C = ("rei<3i> & rs2<3i>) | ' k
(rd<31i> & ("rsi<31> | rs2<31i>)) o
. Description: Used in multiple precision arithmetic to perform the subtractids
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of the subtrahend operand from the minuend operand, minus 1 if the carry big
is set, using two's complement arithmetic, storing the result into the differencg
operand. The contents of the subtrehend and the minuend ere not affected. §

[10 [ rd [ 011100 [ z81 | i = 0 | ignored | T2 |
op2 m i == 0 ? rlrs2] : sign-extend(13 bit immediate);
[ 10 [ zd | 011100 [xs1 [i=1] _signed 13 bit immediate |

codes

N = rd<B81i> == 1

of the subtrahend operand from the minuend opersnd, minus 1 if the carry
is set, using two’s complement arithmetic, storing the result into the differe
operand setting the condltmn codes. The contents of the subtrahend and
minuend are not affected.
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tsubce

B W A

[ 10 { d [ 100001 | xsi | i=0 ] ignored [ rs2
op2 = i == 0 ? r[rs2] : sign-extend(13 bit immediata);
(10 | rd ] 700001 [rei [i=1] signed 13 bit immedinic ]

. Purpose: perform tagged integer subtraction, setting the condition codes
. Format: tsubce rsl, re2, rd

. Operation: r(rd] = r[rsi] - op2

. Condition Codes:

N e rd<31> == 1

Zwyrd =20

V = (rsi<31> & “rs2<31> £"rd<3i>) |
("rei<31> & rs2<31> & rd<31>) |
(r[rsil<i:0> 1= 0 | op2<L:0> I= Q)

C = ("rei<31> & rs2<31>) |
(xd<31> & (“rei<31> | rs2<3i>))

. Description: Performs the,s’libtraction of the subtrahend operand from the

minuend operand, using two’s complement srithmetic, storing the result into
the difference operand and setting the condition codes. The overflow flag is set
if either of the source operands low-order two bits are not zero. The contents
of the subtrahend and the minuend are not affected.

tsubcctv
[ 10 [ xd [ 100011 [zei [i=0 | ignored | rs2

or s

op2 = i == () 7 r[rsl] : sign-extend (13 bit immediate) ;
[ 10 [xd [ 100011 | zs1 [1=1] signed 13 bit immediate |

. Purpose: perform tagged integer subtraction, trap if either source operands’

low-order two bits are not zero.

Format: tsubcctvy rsi, re2, »d

- Operation: rfrd] = r[rsil - op2
. Condition Codes: unaffected

. Description: Performs the subtraction of the subtrahend operand from the

minuend operand, using two’s complerent arithmetic, storing the result into
the difference operand and setting the condition codes. Trap if either of the
source operands’ low-order two bits are not zero. The contents of the subtra-
hend and the minuend are not affected. :
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mulsce

2. Format: mulecc rsl, op2, rd

3. Operation:

rdy

R

. Purpose: perform one step of a multiply algorithm

. Conditiqn Codes:
N = rlrd]<31> ==
Zwr[rd]l ==0
V = (rlrs1]<31> & op2<31> & rlrd]<31>) |
(“rirs1]1<31> & "op2<31> & rlrd]l<31>)
C = (r[re1]l<31> & op2<3i>) |
(“rlrd]<81> & (r[rs1]<3i> | op2<3i>))
. Description: Performs one step of the multiply algorithm: The contents

. Operation: r[rd] = r[Yl
. Condition Codes: unaflected
. Description: Read the contents of the Y register The contents of ¥ are] o
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[10] xd ] 100100 | xre1 | i =0 | ignored | T2 |

[10 ] rda T 100100 | xet [ i =1 [ signed 13 bit immediate |

opl = (N = V), rlrsil<3i: :L>
op2 = Y<0> == 0 ? O
i==0 7 rlrs2] : sign-extend(13 bit immediate)
rlrd] = opl + op2
+¥ = r[rall<0> ¥<31:1>

r[res] are right-shifted one with N = V being shifted in from the left to
opl. If the Isb of the ¥ register is a one then the contents of op2 are add
opl to form the result. The contents of the Y register are then left shifted
place with the bit shifted out of the right-hand side of r[rsi] being sh.tfte i
on the left. The condition codes are set.

[[10 ] xd ] 101000 | ignored | ignored | ignored |

Purpose: to read the contents of the Y register
Format: xd Wy, rd

‘r

affected.
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Wry
(10 [ ignored | 170000 | zs1 [ i=0 T ignored | rs2
op2 = 1 == 0 ? r[rs2] : sign-extend(i3 bit immediate);
10 | ignored [ 110000 [ ra1 | i =1 signed 13 bit immediate
1. Purpose: to write the contents of the Y register
2. Format: wr rs1, op2, rd
3. Operation: r[Y] = r[rsi] - op2
4. Condition Codes: unaffected
5. Description: Write the contents of the Y register with the xor of rlrsi] and

op2. The contents of ral and op2 are not affected,
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C.3 Logical Instructions

Machine bit-wise logical instructions.

and
[10 [ zd | 000001 | rsi | i =0 | ignored | rs2 |
op2 = i == 0 7 r[rs2] : sign-extend(i3 bit immediate);
[10 [ zd [ 000001 | rs1 [ 1=1{ signed 13 bit immediate |
1. Purpose: perform bit-wise and operation

1 2. Format: and rel, op2, rd .
: 3. Operation: r[zrd] = rlrsi] & op2
i 4. Condition Codes: unaffected 1
| 5. Description: Performs the bit-wise and of r [rs1] and op2 storing the resulf

into r[rd]. The contents of r[rell and op2 are not affected.
andcc

[10 | zd [ 010001 | a1 | i =0 [ ignored | ra2 |
op2 =i == 0 ? r[rs2] : sign-erxtend(13 bit immediate);
[10 [ xd [ 010001 [ rs1 [i=1] signed 13 bit immediate |

Purpoase: perform bit-wise and operation, set condition codes
Format: andcc rel, op2, rd

. Operation: r[rd] = r[rsi] & op2

. Condition Codes:

~ e o e

|
\ N = r[rdl<31> ==
‘ Z = r[rd] == 0
| V=0
C=0

5. Description: Performs the bit-wise and of r[rs1] and op2 storing the :*T_Iii
into r[rd] setting condition codes. The contents of xr[rsi] and op2 are g
affected. )

andn
[10 ] xd ] 000101 | re1 | i =0 | ignored | Ta2 |
op2 = i =a 0 7 r[rs2] : sign-extend(13 bit immediate);
[10 [ zd [ 000101 [ ret [ i=1] signed 13 bit immediate |

Purpose: perform bit-wise and operation with complement of op2
Format: andn rsl, op2, rd

Operation: r(rd]l = rlrsl] & “op2

Condition Codes: unaffected

Description: Performs the bit-wise and of r[rsi] and complement of ¢
storing the result into r [rd]. The contents of rlrsi] and op2 are not affect

;o o=
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andncc

(10 [ xd [010101 [ zs1 [ i =0 | ignored | ra2 ]
0p2 = i == 0 ? r{re2] : pign-extend(i3 bit immediate);
[ 10 [ rd T 010101 [ o1 i =1 | _signed 13 bit immediate - |

—

. Purpose: perform bit-wise and operation with bomplemeﬁt of §p25et condition
codes ' '
- Format: andn rai, op2, rd
3. Operation: rlrd] = rlrsl] & “op2
4, Condition Codes:
= rlrd]<3t> == 1
= rlrd] == 0
= 0

. Description: Performs the bit-wise and of r[rsi] and complement of op2
storing the result into r[rd] setting condition codes. The conténts of r[rsi}
and op2 are not affected. : ' '

|_10]rd|[]00010|:rsifi=0m§d|' ral
0p2 = i == 0 ? rire3] : sign-extend(13 bit imrediate);
[ 10 [ xd [ 000010 [ zs1 [ = I | _signed 13 bit immediate ]

. Purpose: perform bit-wise or operation with op2

. Format: or rsl, op2, rd
. Operation: r[rq] = rlrail | op2

. Qonditlon Codeas: unaffected

. Description: Performs the bit-wise or of x[rs1] and op2 storing the result
into r[rd]. The contents of r[rs1] and op2 are not affected. '
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orcc

I

orn
[10 [ xd [ 000110 | rs1 [ i =0 [ ignored | rs2 |
op2 = 1 == 0 ? r[re2] : sign-extend(13 bit immediate);
[10]xa [ 000110 [ rst [1=1] signed 13 bit immediate |
1. Purpose: perform bit-wise or operation with complement of op2
2. Format: orn rsl, op2, rd
3. Operation: rird]l = rlrsil | “op2
4, Condition Codes: unaffected
5. Description: Performs the bit-wise inclusive or of r[rs1] and complemeid

. Operation: r[rd]l = r(rsi] | op2
. Condition Codes:

. Description: Performs the bit-wise or of rlrsi] and op2 storing the resuft

APPENDIX C, USER MODE MACHINE INSTRUCTI

[10 [ rd [ 010010 | rst | i =0 | ignored | rs2 |
op2 = i == 0 7 r[rs2] : sign-extend(13 bit immediate);
[10 | rd [ 010010 | rsl | i=1| signed 13 bit immediate |

Purpose: perform bit-wise or operation with op2, set condition codes

Format: or rsl, op2, rd

N = r[rd]l<3i> == 1

Z = r{rd] == 0
V=20
=0

into r[rd] setting condition codes. The contents of rrsi] and op2 are ngl
affected. !

of op2 storing the result into r(rd]. The contents of r[rsi] and op2 are ¢
affected. - : |
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orncc

[ 10 ] xd [ 010110 [ vel [ 1= 0 | ignored | rs2 }
op2 = 1 =='0 ? rlrs2] : sign-extend(13 bit immediate);
| 10 [ xd [ 010710 [rel [i=1] signed 13 bit immediate |

. Purpose: perform bit-wise or operation with complement of op2, set condition

codes

. Format: orn rai, op2, rd

3. Operation: rlrd] = rlrst] | ~op2
4. Condition Codes:

N = rlrdl<31> == 1
Z=r[rd] == 0
V=0

c=0

. Description: Performs the bit-wise inclusive or of rlrst] and complement

of op2 storing the result into rfrd] setting condition codes. The contents of
rlrsi] and op2 are not affected.

Xor
[ 10 [ .xd T 000011 | rs1 [ i=0 [ ignored | ra2
' op2 = i == 0 ? r[rs2] : sign-extend(13 bit immediate);
10 [ rd [ 000011 [rsi [i=1] signed i3 bit immediate |
1. Purpose: perform bit-wise xor operation with op2
2. Format: xor rsi, op2, »d
3. Operation: r[rd] = r[rs1] - .op2
4. Condition Codes: unaffected _
5. Description: Performs the bit-wise exclusive or of r [rs1] and op2 storing the

result into x[rd]. The contents of r[rs1] and op2 are not affectad.
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xXorcce
[10 ] rd | 010011 [ rel [i=0{ignored | —  rs2 |
op2 = i == 0 ? r[rs2] : sign-extend(is ‘bit immediate);
[ 10 | rd I 010011 [rel [1=1" signed 18 bit immediate |
1. Purpose; perform blt—m_se xor operation with op2, éet condition codes
2. Format: xor rel, op2, rd
3. Operation: r[rd] = rlrsi] ~ op2
' 4. Condition Codes:
; N = r[rd]<31> == 1
‘ z = r[rd] nane
i V=0
‘ C=0
5. Description: Performs the bit-wise exclusive or of r [rs1] and op2 storing i@
regult into r[rd] settmg condition codes. The contents of r[rsi] and op2ag
not affected. 1
|
xnor
[10 [ zd [ 000111 | rs1 | i =0 [ ignored | ra2 |
op2 = i == 0 7 rlre2] : eign-extend(13 bit immediate);
| 10 | zd { 000111 [ retl [i=1] signed 13 bit 1mmed1ate |
1. Purpose' perform blt—Wlse xnor operation with op2
2. Format: xnor rsil, op2, rd
3. Operation: r[rd] = “(r[rs1] = op2)
4, Condxtmn Codes: unaffected
5. Description: Performs the complement of the b1t-w1se exclusive or of r[r‘

and op2 storing the result into r[rd]. The contents of r[rs1] and op2 are .m
affected. j
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Xnorcc

[ 10 | rd [ 010111 [ rsi [ 1=0 | ignored | rs2 |
op2. =1 == 0 7 r[rs2] : sign-extend (13 bit immediate);
[10 [ zd [ 010111 [rsl [i=1] signed I3 bit mmediate |

. Purpose: perform bit-wise xnor operation with op2, set condition codes

1
2. Format: xnor rel, op2, rd

3. Operation: r[rd] = ~(r[rsi] = op2)
4. Condition Codes:

N = r[rd]<31> ==
Z=yr[rd] == 0
v=0

C=9

5, Description: Performs the complement of the bit-wise exclusive or of rrsi]
and op2 storing the result into r[rd] setting condition codes. The contents of
r[rai] and op2 are not affected.
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s

C.4 Shift Instructions

Machine shift instructions.

sll

(10 [ rd | 100101 | rsl | i=10 | ignored | 82 |
op? = 1 == ) 7 rlral]<4:0> : shift count
[ 10 | rd | 100101 | rel [ i=1 | ignored | shift count |

Purpose: perform logical left-shift

Format: a1l rsi, op2, rd

Operation: rlrd] = logical left-shift(r[rsi], op2)
Condition Codes: unaffected

b

U AR e

Description: Shift r [rs1] left logically (shifting in zeros from. the right) -:"-
places storing the result into r[rd]. The contents of r[rei] and op2 are f
affected.

srl

o110 | rd | 100110 | zal | i =0 | ignored |  rs2 |
op2 = 1 == 0 ? r[re2]<4:0> : shift count
(10 | rd | 100110 | rs1 | i =1 | ignored | shift count |

Purpose: perform logical right shift

Format: exrl rsi, op2, rd

Operation: r[rd] = logical right shift(r[rsi], op2)
Condition Codes: unaffected

Description: Shift r[xsi] right logically (shifting in zeros from the left) op2
places storing the result into r[rd]. The contents of r[rsi] and opZ2 are ngj
affected. 3

sra

LS

[10 [ rd | 100111 | xrsl | i=0 | ignored | rs2 |
op2 = i == Q ? r[rs2]<4:0> : shift comnt
| 10 | xd | 100111 | rsi | i =1 | ignored | shift count |

Purpose: perform logical right arithmetic

Format: sra rsl, op2, rd

. Operation: rlrd] = arithmetic right shift(x([rsil, op2)
. Condition Codes: unaffected

. Description: Shift r[rs1] right logically (replicating the sign bit from ¢
; left) op2 places storing the result into x{rd]. The contents of r[ra1] and

} are not affected. ;
Note: Arithmetic left-shift by one settmg the condition may be lmplemen Gl
with and addec instruction.

[ B S R R




C.5. LOAD INSTRUCTIONS 373

C.5 Load Instructions
- Machine load instructions.

ldub

[ 11 [ xd [ 000001 [ xsl [T=0 | asi | re2
op2 = i == 0 ? r[ral] : sign-extend(13 bit immediate);
[ 11 [ xd [ 000001 [ xs1 [i=1] signed 13 bit immedinte |

. Purpose: load register with unsigned byte from memory
. Format: ldub [rsi + op2], rd

Operation: rlrd] = memory[r[rai] + op2]

. Condition Codes: unaffected

. Description: Load register with byte from memory; address is the sum of the
contents of rs1 and op2. Either address operand may be missing. Zero fill
rlrd)<31:8>,

' \ ldsb

ok W

[11 | xd | 001001 [ red [i=0 [ asi | - r82
op2 = i == 0 7 rrs2] : sign-extend(13 bit imrediate);
[ 11 [»rd [ 001001 [xsl [i=1] slgned 13 bit immediate |

. Purpose: load register with signed byte from memory
. Format: 1deb [rsi + op2], rd

. Operation: r[rd] = memory[r[rsi] + op2]

. Condition Codes: unaffected

. Description: Load register with byte from memory; address is the sum of the
contents of rsl and op2. Either address operand may be missing. sign-extend
byte through r[rd]<31:8>,

lduh

o (A1 rd [ 000010 [ xs1 [i=10 [ asi | T
1 o op2 =i ==0 ? r[rs2] : eign-extend(13 bit izmediate);
[ 11 [ zd | 000010 | rel [i=1] signed I3 bit immedinte |

OF B O )

. Purpose: load register with unsigned halfword from memory
. Format: 1duh [resl + op2], rd

. Operation: r[rd] = nemory[r[rsi] + op2]

. Condition Codes: unaffected

. Description: Load register with unsigned halfword from memory; address is
E the sum of the contents of rs1 and op2. Either address operand may be missing,
T Address must be halfword aligned. Zero fill r[rd]1<31: 16>.

L2L I - N L I
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ldsh

I I

1d

SR

dd -

1. Purpose: load two registers with a doubleword from memory
. Format: 1d [rsl + op2], rd
. Operation:

4. Condition Codes: unaffected _ i
. Description: Load registers from memory; address is the sum of the con S

. Description: Load register from memory; address is the sum of the conteif

APPENDIX C. USER MODE MACHINE INSTRUCTIO

(11 [ =d [ 001010 [ zel [1=10 | asi | ra2 |
op2 = i == 0 7 r[rs2] : sign-extend(13 bit immediate);
[11 [ xra [ 001010 | ra1 [i=1] signed 13 bit immediate |

Purpose: load register with signed halfword from memory
Format: ldsh [rsl + op2], rd

Operation: r[rd] = memory[r[rsi] + opZ2]

Condition Codes: unaffected .

Description: Load register with signed halfword from memory; address i&
the sum of the contents of rsi and op2. Either address operand may B3
missing. Address must be halfword aligned. sign-extend halfword through
rlrd]<3i:16>, p

1t

| 11 | zd | 000000 [ xs1 | i=0 | asi | rs2 |
op2 = i == 0 ? rl[rs2] : sign-extend(13 bit immediate);
{11 | xd | 000000 [ rs1 | i=1 [ signed 18 bit immediate |

Purpose: load register with word from memory
Format: 1d [rsi + op2], rd '
Operation: r[rd] = memory[r[rsi] + op2]
Condition Codes: unaffected

of ral and op2. Either address operand may be missing. Memory address muigh
be word aligned. >

[11 ] rd | 000011 | rel [i=0 | asi | re2 |
op2 = i == 0 ? r(rs2] : sign-extend(13 bit immediate);
[ 11 | xd | 000011 | xst | i=1 | signed 13 bit immediate |

r{rd] = memory[r[rsi] + op2]
r{rd+l] = memory[r(rsi] + op2 + 4]

of rel1 and op2. Either address operand may be missing. Memory add
must be doubleword saligned. Register number must be even; two register
loaded. ‘
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_'C.6 Store Instructions

Machine store instructions.

stb

[T [ =d [ 000101 | xai [ i =10 asl ] Te2
op2'= i == 0 ? rlrs2] . sign-extend(13 bit immediate);
(11 [ =d [ G000 | vsl [i=1] signed 13 b% immediate |

. Purpose: store low byte df register into memory
. Format: stb rd, [rel + op2]

Operation: memory[r[re1] + op2] = r[rd]'

. Condition Cddeg: unaffected

- Description: Store low byte of register into memory; address is the sum of
the contents of rat and op2. Either address operand may be missing,

sth

L S

|£L|rd|000110|raifi=0[asi|'  ra2 ]
op2 = i == 0 ? r[re2] : sign-extend(13 bit immediate);

| 11 [=d [ 00DTI0 [ xet [ 1= 1 | signed 13 bit immediate |

. Purpose: store low hé.lf of register into mefnory
. Format: sth rd, [rsl + op2]' I

- Operation: memory[r[rsi] + op2] = r[rd]

. Condition Co'c_les: unaffscted

. Description: Store low half of register into memory; address is the sum of
the contents of re1 and op2. Either address operand may be missing. Memory
address must be halfword aligned. :

U B W B e

== Lll[rd|000100|rai|i=0|asi] " rs2
o op2 = i == 0 ? r[re2] : sign-extend(13 bit immediate);
e [ 11 [ rd T 000100 [ rsi Ji=1T signed 13 bit immediate |

Purpose: store register into memory

. Format: st rd, [rsi + oj:2]
. Operation: memory [r[rsl] + op2] = r[rd]
Condition Codes: unaffected -

b - Description: Store register into memory; address is the sum of the contents
. of rs1 and op2. Either address operand may be missing. Memory dddress must
be word aligned. ‘ ' '




376

std | s

1. Purpose: store two registers into memory

2. Format: std rd, [rsl + op2]

3. Operation:
memoryfr[rail] + op2] = r[rd}
memoryf{r[rel] + op2 + 4] = r[rd + 1]

4, Condition Codes: unaffected ‘

8. Description: Store two registers into memory; address is the sum of the cog8
tents of rei and op2. Either address operand may be missing. Memory addxgZ
must be doubleword aligned. Register number must be even; two registers g
stored. 1

Swap
[11 [ zd [ 001111 [ re1 [i=0 [ asi | re2 |
op2 = 1 == 0 ? r[rs2] : sign-extend(13 bit immediatae);
[11 [ zd | 001111 [ rsl | i=1 ] signed 13 bit immediate |

1, Purpose: swap the contents of register with memory

2, Format: swap [ral + op2], rd

3. Operation: r[xd] < memory[r[rsi] + op2]

4. Condition Codes: unaffected

5. Description: Swap the contents of a register with memory; address is {2

APPENDIX C. USER MODE MACHINE INSTRUCTId

{11 | zd | 000111 | xsl | i=0 | asi | rs2 |
op2 = i == 0 7 r[ra2] : si;p:extend(is blt immediate); i
[11 | xd [ 000111 | vei | i=1 | signed 13 bit immediate |  §

sum of the contents of ral and op2. Either address operand may be miss m;.
Memory address must be word aligned.
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IC.7 Integer Branch Instructions

Integer branch instructions,

ba

[[00 [ [ 1000 | 010'] disp22 ]

1. Purpose: branch always

2. Format: ba label

3. Operation:
. zlpc] = rlnpcl;
rlnpe] = rlpcl + sign_extend(disp22) << 2;
e if (a == 1) annul next instructionm;

4. Condition Codes: unaffected

6. Description: Branch always. Instruction operand is a label that is converted
to & program counter relative address. The branch target address is stored
as the number of words relative to the location of the branch instruction. If
annulled, the next instruction in line is not executed.

bn

(_00 [ a [ 0000 T 010 | disp22 ]
1. Purpose: branch never A
2 2. Format: bz label
3. Operation:
: rlpc]l = r[npcl;

-, rlnpe] = rlope] + 4;
if (a == 1) anmul next instruction;

4. Condition Codes: unaffected

E _ 5. Description: Branch never. Instruction operand is a label that is converted to

S & program counter relative address. The branch target address is stored as the

e number of words relative to the location of the branch instruction. If annulled,
the next instruction in lne is not exscuted. '
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be

(G0 [ a | 0001 ] 010 | di=po2 ]

1. Purposé: branch on equal
2. Format: be label
3. Operation:

ripe] = rinpel;
if (Z == 1)
rlnpc] = + sign_extend(disp22) << 2;
else{
rinpc] = r[npc] + 4
. if (a == 1) abnul next imstruction;}

4. Condition Codes: unaffected

5. Description: Branch on equal to zero. Instruction operand is a label t
converted to a program counter relative address. The branch target add
stored as the number of words relative to the location of the branch instru
If the branch instruction is annulled and not taken, the next mstructmn i
is not executed.

bne

[00 [a | 1001 [ 010 ] — diep

‘ 1. Purpose: branch on not equal
2. Format: bne label
3 Operdtion:

rlpc] = rlnpcl;
if (Z == 0)

rlnpc] = + sign_extend(diep22) << 2;
else{

r[npe] = rlnpc] + 4;

if (a == 1) annul next instruction;}

4. Condition Codes: unaffected

5. Description: Branch on not equal to zero. Instruction operand is a label t
is converted to a program counter relative address. The branch target addresgj3

| stored as the number of words relatlve to the location of the branch instructi

‘ If the branch instruction is annulled and not taken, the next instruction in iz
is riot executed. E
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bl

[00 [a [ 0011 | 010 |

1. Purpose: branch on less
2. Format: bl label

3. Operg.tion:

rlpe]l = rinpel;
if (N~ V) = 1)

rnpc] = + sign_extend(disp22) << 2;
elaa{

rlope] = rlape] + 4;

if (a == 1) annul next instruction;}

4. Condition Codes: unaffected

5, Description: Branch on less then zero. Instruction operand is a label that is
converted {0 a program counter relative address. The branch target address is
stored-as the number of words relative to the location of the branch instruction.
If the branch. instruction is annulled and not taken the next instruction in line
is not executed.

ble

[00 [ [ 0010 | 010 ]

1. Purpose: branch on less or squal
2, Format: ble label
3. Operation: '

rlpc]l = rlnpc);
PF(ZIN~V)==1)
rlnpc] = + sign_extend(disp22) << 2;
elaa{
rlnpel = rinpcl + 4; .
if (a == 1) annul next instruction;}

4. Condition Codes: unaffected

5, Description: Branch on less than or equal to zero. Instruction operand is
a label that iz converted to a program counter relative address. The branch
target address is stored as the number of words relative to the location of the
branch instruction. If the branch instruction is annulled and not taken, the
next instruction in line is not executed.
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bge

[00 [a [ 1011 | 010 | disp22

1. Purpose: branch on greater than or equal
2. Format: bge label
3. Operation:

r[pe] = rfupel;

if ((N ~ V) == 0)
rlnpc] = + sign_extend(disp22) << 2;

elsed{
rnpe] = rlope] + 4;
if (a == 1) annul next instruction;}

4, Condition Codes: unaffected

5. Description: Branch on greater than or equal to zero. Instruction op
is & label that is converted to a program counter relative address. The br:
target address is stored as the number of words relative to the location o
branch instruction. If the branch instruction is annulled and not taken
next instruction in line is not executed.

bg

[00 [ = [ 1610 | 010 | disp22

1. Purpose: branch on greater than
2. Format: bg label
3. Operation:

rlpel = rlopel;
ifF ((ZIN~V)==0)

rlnpe]l = + sign_extend(disp22) << 2;
elae{

r[npel = rlnpe] + 4;

if (a == 1) apnul next imstruction;}

4. Condition Codes: unaffected

5. Description: Branch on greater than zero. Instruction operand is a label tha
is converted to a program counter relative address. The branch target address g
stored as the number of words relative to the location of the branch instructi
If the branch instruction is annulled and not teken, the next instruction in li
is not executed.
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blu

(00 [ = [ 0101 | 010 ] disp22 ]

1. Purpose: branch on less, unsigned
2. Format: blu label

3. Operation:
rlpe] = rnpcl;

1f (C == 1)
rlnpc] = + gign_extend(disp22) << 2;
else{

rlupc] = rnpe] + 4; ‘
if (a == 1) annul next instruction;}

4. Condition Codes: unaffected

5. Description: Branch on less than zero, unsigned. Identical to the bes instruc-
tion, Instruction operand is a label that is converted {0 a program counter
relative address. The branch target address is stored as the number of words
relative to the location of the branch instruction. If the branch instruction is
annulled and not taken, the next instruction in line is not executed.

bleu

[[00 [ = [ 0100 ] 010 ] ' disp22

1. Purpose: branch on less than or equal, unsigned

2. Format: bleu label

3. Operation:

rlpe]l = rlnpel;
if ((C | 2) ==0)

rlnpc] = + sign_extend(dizp22) << 2;
elseq

rlopc] = rlopc] + 4;
if (a == 1) annul next instruction;}

4. Condition Codes: unafected

. Description: Branch on less than or equal to zero, unsigned. Instruction
operand is a label that is converted to a programn counter relative address. The
- branch target address is stored as the number of words relative to the location

of the branch instruction. If the branch instruction is annulled and not taken,
the next instruction in line is not executed.
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bgeu

[00 [ a [ 1101 [ 010 | disp22

1, Purpose: branch on greater than or equal, unsigned
2. Format: bgeu label
3. Operation:

rlpcl = r[npcl;
if (C == 0)

rlnpc] = + sign_extend{disp22) << 2;
else{

r[npe]l = rinpe]l + 4;

if (a == 1) annul next instructiom;}

4. Condition Codes: unaffected :

5. Description: Branch on greater than or equal to zero, unsigned. Identicil
to the bee instruction. Instruction operand is a label that is converted
a program counter relative address. The branch target address is stored &
the number of words relative to the location of the branch instruction. If ti§
branch instruction is annulled and not taken, the next instruction in line is ndj
executed. 4

bgu

(00 { a 1100 | 010 | disp22

1. Purpose: branch on gfea.ter than, unsigned
2. Format: bgu label
3. Operation:

rlpcl] = rlopel;
if ({C | Z) == 0)
\ rlope]l = + sign_extend{disp22) << 2;
elsef
r[rpe]l = rlape] + 4;
if {a == 1) annul next instruction;}

4. Condition Codes: unaffected

5. Description: Branch on greater than zero, unsigned. Instruction operandg
a label that is converted to a program counter relative address. The brazich
target address is stored as the number of words relative to the location of thE
branch instruction. If the branch instruction is annulled and not taken, -w
next instruction in line is not executed.
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, bpos i

[00 [ = [ 1110 ] 010 ] disp22 ]

1. Purpose: branch on positive R
2. Format: bpos label :.- i
3. Operation: '

rlpel = rlnpel; :
if (N == 0)

rlnpe]l = + sign_extend(disp22) << 2; i
else{

rlope] = r[npc] + 4;

if (a == 1) annul next :Lnstruction }

4. Condition Codes: unaffected | .

5. Description: Branch on positive. Instriction operand is & label that is con-
verted to & program counter relative address. The branch target address is
stored as the numiber of words relative to the location of the branch instruc-
tion, If the branch instruction is annulled and mot taken, the next instruction
in line is not executed.

bneg

[00 [ = [ 0110 | 010,] Tp22

1. Purpose: branch on negative
2. Format: boeg label
3. Operation:

J r[pc]l = rlnpel;

if (N == 1) o
rlnpc] = + sign_sextend(disp22) << 2;
elea{

rlnpel = rnpel + 4; ,
if (a == 1) ennul next instruction;}

Li : 4. Condition Codes: tnaffected

5. Description: Branch on negative. Instruction operand is a label that is con-
verted to a program counter relative address. The branch target address is
stored as the number of words relative to the location of the branch instrue-
tion. If the branch instruction is annulled and not taken, the next instruction
in line is not executed. .
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bes B
[00[a]otol[010] _ disp22

1. Purpose: branch on C set
2. Format: bcs label
3. Operation:

rlpc] = rinpcl; '
if (C == 1)

rlnpe] = + sign_extend(disp22) << 2;
else{

rinpel = rlopel + 4;

if (a == 1) annul next instruction;}

4, Condition Codes: unaffected

5. Description: Branch on C bit set. Instruction operand is a label thaig®
converted to a program counter relative address. The branch target address
stored as the number of words relative to the location of the branch instructi
If the branch instruction is annulled and not taken, the next instruction in I
is not executed. ;

bce

[00] = [ 1101 | 010 | disp22 ]

1. Purpose: branch on C clear
2. Format: bcc label
3. Operation:

rlpcl = rinpel;
if (¢ == Q) .
rlope] = + sign_extend{disp22) << 2;
else{
rlnpel = rinpel + 4;
" if (a == 1) annul next instructiom;}

4. Condition Codes: unaffected

5. Description: Branch on C bit clear. Instruction operand is a label th:
converted to a program counter relative address. The branch target addr
stored as the number of words relative to the location of the branch instructid
If the branch instruction is annulled and not taken, the next instruction in: h
is not executed.
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bvs

[0 [= [ 0111 [ 010 T dipt2 ]

1. Purpose: branch on signed overflow
2. Format: bve label
3. Operation:

rlpe]l = rnpcl;
if (V == 1)

rlope] = + gign_extend(disp22) << 2;
elseq

rlnpe] = rlopc] + 4;

if (a == 1) annul next instruction;}

4, Condition Codes: unaffected

5. Description: Branch on signed overflow. Instruction operand is a label that is
converted to a program counter relative address. The branch target address is
stored as the number of words relative to the location of the branch inktruction.

If the branch instruction iz snnulled and not taken, the next instruction in line -

is not executed.

bve

(00 [ a 1111 T 010 | disp22 ]

1. Purpose: branch on no signed 6verﬂ0w
2. Format: bve label

3. Operation:

*rlpel = rlnpc];
if (V== 0)
rlnpe] = + sign_extend(disp2R) << 2;
else{ . ‘
rlope] = rlopc] + 4;
if (a == 1) annul next inmstruction;}

4. Condition Codes: unaffected

5. Description: Branch on no signed overflow. Instruction operand is a label that
is converted to a program counter relative address. The branch target address is
stored as the number of words relative to the location of the branch instruction.
If the branch instruction is annulled and not taken, the next instruétion in Hne
is not executed. S '
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C.8 Trap Instructions

Machine trap instructions.

ta

4

[10 [ ignored [ 1000 | 111010 | ¥ai [ =0 | ignored | )

] :"3

tt = 0x80 | (i == 0 ? rlrs2] : sign-extend(i3 bit immediate)<8:0>};

[ 10 [ ignored | 1000 [ 111010 [ rsi | i=1 |

signed 13 bit immediate

R

. f’urpbaei trap always

. Format: ta address
Operation: trap

Condition Codes: unaffected
Description: Trap always.

th

[1D

ignored | 0000 | 111010 [ zsl [i=0 [ ignored | ze2

lw

tt = 0x80 | (i == 0 7 r[re2] : sign-extend(l3 bit immediate)<6:0>);

[0 [ ignored | 0000 | 111010 | zei | i=1 |

signed 13 bit immediate

1
2
3
4
5

te

. Purﬁose:’ trap“never

. Format: tn address

. Operation: no operation

. Coridition Codes: unaffected
. Description: Trap never.

| ;.
It

[0 [ ignored ] 0001 | 111010 | 71 | 1= 0 | ignored | rs2

£t =.0x80 | (i == 0 ? rlrs2] ; sign-extend(13 bit immediate)<6:0>);

[ 10 | ignored [ 0001 [ 111010 [ zsi [ i=1 |

signed 13 bit immediate

1
2

=~

4
5

. Purposé: trap on equal
. Format: te address
. Operation:
it (Z == 1)
trap;
else{
rlpecl = rlnpel;
rlnpcl = rinpel + 4;}
. Condition Codes: unaffected

. Déscription: Trap on equal to zero.
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tne |

(10 [ Ggnored | 1001 | 111010 [ sl | 1= 0 | ignored | rs2 ] i
tt = 0x80 | (1 == 0 ? r[rs2] : sign-extend(13 bit immediate)<B:0>);

[ 10 | ignored | 1001 | 111070 [rsl [i=1 ]  signed 13 bit immediate i

. 1. Purpose: trap on not equal
- 2. Format: tne addreas
- 3. Operation:
- it (Z == 0)
trap;
alsef
rlpel = rlnpcl; ‘
rlopc] = r[npc] + 4;} S .
4, Condition Codes: unaffected i
5. Description: Trap on not equal to zero, \ H

tl

(10 [ ignored | 0011 [ 111010 [ze1 | i=0 | jgnored |~ zs3 |
tt = 0x80 | (i == 0 7 rirs2] : sign-extend(13 bit immediate)<6:0>);
(10 | ignored | 0011 [ 111010 [ral [i=1] signed I3 bit immediate |

1. Purpose: trap on less
2. Format: t1 address
3. Operation:
if (N " V) == 1)

. trap;
& else{

rlpel = rlnpel; -

rlopc]l = r[npc) + 4;}
4. Condition Codes: unaffected
5. Description: Trap on less than zero.

PR
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tle

[10 [ ignored | 0010 [ 111010 | rsi | i =0 | ignored | 82 ]

tt = 0x80 | (1 == 0 ? r[rs2] : sign-extend(13 bit immsdiate)<6:0>);j;-
| 10 | ignored | 0010 | 111010 [ rsl [i=1] signed 13 bit immediate

1. Purpose: trap on less or equal
2. Format: tle address
3. Operation:
if ((Z 1 N"~W =1)
trap;
else{
rlpc]l = rlnpel; .
r[ope]l = rlnpe]l + 4;}
4. Condition Codes: unaffected

5. Description: Trap on less than or equal to zero.

tge

| 10 | ignored [ 1011 [ 111010 [ rs1 [ i= O [ ignored | re2 }
tt = 0x80 | (1L == 0 7 r[ra2] : sign-extend{13 bit immediate)<6:0>); I
[ 10 | ignored | 1011 [ 111010 f rei [i=1] signed 13 bit immediate }

1. Purpose: trap on greater than or equal
2. Format: tge address
3. Operation:
if (N~ V) == 0)
trap;
elsed{
rlpcl = r[upcl;
rlnpel = rinpe] + 4;}
4. Condition Codes: unaffected

5. Description: Trap on greater than or equal to zero.
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tg

{10 [ ignored [ 1010 | 117010 | xsi [ i =0 | ignored | rs2 |
bt = 0x80 | (i == 0 ? r[rs2] : sign-extend(13 bit immediate)<6:03); o
[ 10 [ ignored [ 1010 | 117010 [ xsl [ i=1]  signed 13 bit immediate |
1. Purpose: trap on greater than
2. Format: tg address : "

3. Operation:

if (ZIN~V) =0 .
trap;
alse{ e
rlpc]l = rlnpc]; f-”'
riapc] = rlnpc] + 4;}

4. Condition Codes: unaffected .|;!I| ]

. il
, 3. Description: Trap on greater than zero.

tlu

[ 10 | ignored | 0101 [ 111010 | rel | 1= 0 | ignored | re2 j
tt = 0x80 | (1 == 0 7 r[re2] : sign-extend(13 bit immediate)<6:0>);
(10  fgnored [ 0101 [ 111010 [ zs1 [i=1]  signed 13 bit hmmediate |

1. Purpose: trap on less, unsignéd
2. Format: tlu address

3. Operation:

if (€ == 1}
trap;

else{
rlpc] = rnpel;
rlnpe] = rinpc]l + 4;}

4. Condition Codes: unaffected

/ 5. Description: Trap on less than zero, unsigned. Identical to the tcs instruc-
i tion. :
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tleu

| 10 [ignored [ 0100 ] T11010 [ vel [ 1= 0] ignored | 782 ]
=0x80 | (i == 0 ? rrs2] : aign-extend(is bit immediate)<6:0>); !
[ 10 ] ignored | 0100 [ 111010 [ ral [i=1] . signed 13 bit immediate

1. Purpose: trap on less than or equal, unsigned
2, Format: tleu address
3. Operation:
if ((C ] 2) =0)
trap;
elgef
rlpc] = rinpel;
rlnpc] = rlmpc] + 4;}
! 4. Condition Codes: unaffected
| 5. Description: Trap on less than or equal to zero, unsigned.

tgeu

Llﬂ | ignored | 1101 | 111010 | rei [ i =0 [ ignored | re2 ]
=0x80 | (i == 0 ? r[re2] : sign-extend(13 bit immediatae}<6:0>),.
| 10 [ ignored | 1101 [ 111010 [rel [i=1] signed 13 bit immediste j

1. Purpose: trap on greater than or equal, unsigned
2. Format: tgeu address
3. Operation:
if (C == 0)
trap;
alsaf{
rlpe]l = rlnpcl;
r[npe]l = r[opc] + 4;}
4. Condition Codes: unaffected

5. Description: Trap on greater than or equal to zero, unsigned. Identical
the tece ingtruction.




C.8. TRAP INSTRUCTIONS : 391

tgu

[ 10 [ ignored [ TT00 | 111010 | vsi [ i=0 [ ignored | 73

tt = 0xB0 | (i ==0 7 rlze2] : gign-extend (13 bit immediate)<6:05); -

L 10 [ ignored [ 1100 | 117010 | vet | i=1] signod 13 bit imimedinte ]

1. Purpose: trap on greater then, unsigned
2. Format: tgn address

3. Operation:

if ((C | 2) == Q)
trap;

else{
rlpe] = rlnpc];
rnpe] = rlnpel + 4;}

. Condition Codes: unaffected
- Description: Trap on greater than zero, uilsigned.

tpos

[0 T igrored | 1170 | 111010 [ a1 [ 1 =0 T fgmored [ rs2

tt = 0x80 | (i == 0 ? r[rs2] : Bign-extend(13 bit immediate)<6;0>);

[ 10 [ ignored [ 1110 T 171010 | a1 Ji=1]  signed 13 bit mmadicte ]

1.
2,
3.

Purpose: trap on positive
Format: tpos address
Operation:

if (N == 0)
trap;

elsa{ _
rlpe] = rlnpc];
rlopel = rlape] + 4;}

4. Condition Codes: unaffected
5. Description: Trap on positive.
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tneg

(10 | ignored [ 0110 [ 111010 | rsi | i= 0 | ignored | rs2 —|t"‘
tt = 0x80 | (i == 0 7 r[rs2] : sign-extend(13 bit immediate)<6:0>);
(10 | ignored [ 0110 | 111010 [ rs1 [i=1] . signed 13 bit immediate |

1. Purpose: trap on negative
2. Format: tneg address
3. Operation:
if (N == 1)
trap;
elae{

r[pcl = rlnpcl;
rlnpe] = rlope] + 4;)

4. Condition Codes: unaffected
5. Description: Trap on negative,

tcs

[[10 [ ignored [ 0101 [ 111010 | ze1 [ 1 =0 | iznored | r82 4
tt = 0x80 | (i == 0 7 r[re2] : sign-extend(13 bit immediate)<@:0>); E
|10 | ignored | 0101 [ 111010 [reI [i=1] signed 13 bit immediate |4

1. Purpose: trap on C set
2. Format: tcs address

3. Operation:
if (C == 1)
trap;
elzef
rlpcl = rinpel;
rlnpel = rlnpel + 4;}
4. Condition Codes: unaffected
5. Description: Trap on C bit set.
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tce

[ 10 ] ignored T 1107 [ 111010 | ze1 | {= 0 | lgnored | Ted ] o
tt = 0x80 | (i == 0 ? r[rs?] : sign-extend(13 bit immediate)<6:05>); '
(10 [ ignored [ 1101 | 111010 | zal J i =1 [ signed 13t immediate |

i
1. Purpose: trap on C clear By
2. Format: t¢c address
3. Operation: ::;I
if (C == 0) '
trap; o
else{ '!
ripel = rlnpel; -
riopc] = rlnpe] + 4;}
- 4. Condition Codes: unaffected T
F 5. Description: Trap on C bit clear. C : !

tvs

( 10 [ignored | 0111 | 111010 [ xs1 [ i =0 [ ignored | I re2
i Bt = 0x80 | (1 == 0 ? r[rs2] ; sign-extend(13 bit immediate)<6:0>);
= (10 [ ignored [ G11 | 111010 | rsl |i=1]" signed 13 bit immediate |

1. Purpose: trap on signed overflow

2. Format: tvs address

o o e

g 3. Operation: |
5 v
i trap; o
4 else{ uog

rlpc]l = rlnpcl;
rlnpc]l = rlope] + 4;}

4. Condition Codes: unaffected
3. Description: Trap on signed overfiow.
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tve

[10 Tignored { 1111 | rel |i=0 | ignored | rs2 | ,
tt = 0x80 | (L == 0 ¥ rlrs2] : sign-extend(13 bit immediate)<6:0>); §
[0 [ fgnored [ 1111 | 111010 { zsf | i=1 | signed 18 bit immediate [§

1. Purpose: trap on no signed overflow
2. Format: tvc address
3. Operation: ‘
if (V == 0)
trap;
eloed
rlpc] = rlopel;
r[nape] = rinpel + 4;}
4. Condition Codes: unaffected
5. Description: Trap on no signed overflow.
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C.9 Control Instructions

Machine control instructions.

call

[ 01 ] disp30 ]
1. Purpose: function call
2. Format: call labsl
3. Operation:

r[o7] = rlpcl; /* return address */
rlpel = rinpel;
rlope]l = rlpe] + sign_extend(disp30) << 2;
4. Condition Codes: unaffected
5. Description: Call instruction causes an unconditional transfer to any address
in memory. The current value of the pbrogram counter, which contains the

address of the call instruction, is written into #oT. Note: If the target address
is located in a register, then use the Jmpl instruction with rd = %o7.

jmpl

[ 10 [rd 171000 [ rstl | i=0 | ignored | ra2
op2 = i == 0 ? r[rs2] : sign-extend(13 bit irmediate);
[ 10 | rd [ 111000 [rsl [i=1 ] signed 13 bit immediate ]

1. Purpose: Unconditional, register—indireqt control transfer
2. Format: jmpl address, rd
3. Operation:

vk

rird] = r[p;c]; /#* return address */
r[pcl = rlnpel;
rlopc] = rrsi] + op2;

4. Condition Codes: unaffected
. Description: jmpl instruction causes an unconditional, register-indirect de-

layed control fransfer to rlrsi] + op2. The current value of the program

counter, which contains the address of the jmpl instruction, is written into
rlrd].

Note 1: jmpl with rd = %g0 is used for & subroutine routine return, see syn-
thetic instructions ret and retl.

Note 2: jmpl with rd = %07 is used as & register-indirect subroutine call.
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rett

1. Purpose: Return from trap and a register-indirect control transfer

4. Condition Codes: unaffected _ )
5. Description: the register set is restored, the rett instruction then causes &Jj

sethi

oo W e

. Format: rett address

. Operation:
increment CWP of PSR; , /*restore register setw/
rlpel = rlnpcl;
rinpe]l = x[rs1] + op2; " /*delayed control transfers/
restore 8§ field of PSR from PS; /#previous mode+/
set ET field of PSR = 1i; /*enable traps#*/

. Purpose: set high 22 bits of register
. Format: sethi const22, r[rd]

. Description: sethi zeros the least significant 10 bit of the destination regl il
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{107 0] 111001 [ ral | i =0 | ignored | ra2 |
op2 =i == 0 ? r[rs2] : sign-extend(13 bit immediate);
[10 70 ] 111001 [ rei [i=1| signed 13 bit immediate |

unconditional, register-indirect delayed control transfer to r[rs1] + op2. Thg
supervisor/user state is restored from the P8 field and then traps are enablec}

Note 1: The instruction immediately before a rett must be a jump.

Note 2: rett is a privileged instruction and is included here only for complet
ness.

[00 ] =d | 100 | imm22

Operation: r[rd] = (const22 << 10) & Oxfffff600;
Condition Codes: unaffected

and replaces its high-order 22 bits with const22.
sethi 0, %g0 is recommended as a nop instruction.
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save

[ 10 [ xd [ T11100 | rei | i =0 | Ignored | rs2 |
op2 = i == 0 7 r[rs2] : sign-extend(13 bit immediata);
[ 10 [ »d [ 117100 [ rsl [i=1] signed 13 bif immediate ]

1. Purpose: save caller’s window

2, Format: save rsl, op2, rd
3. Operation:

save caller’s register window
rird]l = rlrsi] + op2

4. Condition Codes: ynaffected

5. Description: The save instruction decrements the cwp and compares it against
" the register invelid mask, wim, If the comparigon indicates a register window
overflow, & trap is generated; if not, the +cwp+ is updated and the active
window becomes the previous window, thus saving the caller’s register window.
The instruction then behaves like an add instruction except that the source
registers come from the old register set while the destination register is in the
new register set. : ' ‘

restore

[ 10 | rd 711101 | raf [ 1 =0 | ignored | re2 ]
op2 = i == 0 ? r[rs2] : sign-extend(13 bit immediate};
[ 10 [ xd TIi110T [ sl [i=1] signed 12 bit immediate 1

1. Purpose: restore celler’s window
2. Format: restore rai, op2, rd
3. .Opersation:

restore caller’s ragister window
xlrd] = r[rsi] + op2

4. Condition Codes: unaffected

5. Description: The restore instruction increments the cwp and comperes if
against the register invalid mask, wim. If the comparison indicates a register
window underflow, a trap is generated; if not, the +ewp+ is updated and the
previous window becomes the active window, thus restoring the caller’s register
window. The instruction then behaves like an add ingtruction except that the
source registers come from the old register set while the destination register is
in the new register set.
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C.10 Floating-point Instructions

Machine floating-point instructions.

1df

[11] xd | 100000 | a1 [ i =0 | ignored | rs2 |
op2 = i == 0 ? r[rs2] : sign-extend(13 bit immediate);
[11 [ xd ] 100000 [ xe1 [i=1] signed 13 bit immediate |

Purposez load floating-point register with word from memory
Format: 1d [rel + op2], rd

. Operation: £[rd] = memory[r[rel] + op2]

. Cond:.tmn Codes: unaffected

. Descnptlon' Load floating-point register from memory; address is the sum gj
the contents of ral and op2. Either address operand may be missing. Memo 7
address must be word aligned.

S I TR R

1ddf

[11 ] xa ] 100011 [ rsi [ i=0 [ ignored | ra2 ! f
op2 = i == 0 7 r(rs2] : sign-extend(13 bit immediate}; k
[1T1Trd [100011 [ re1 [i=1| signed 13 bit immediate |

1. Purpose: load two floating-point registers with a doubleword from memo ;
2. Format: 1ddf [rsi + op2], rd
3. Operation:

£ [rd] -.mamory[r[rsil + op2]
£[rd+1] = memory[r[rsi] + op2 +4]

4. Condition Codes: unaffected

5. Description: Load floating-point registers from memory; address is the sy
of the contents of rs1 and op2. Either address operand may be missing. M
ory address must be doubleword aligned. Register number must be even; rw w
registers are loaded. ]
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stf

[(T1 [ =d [ 106700 | =at [ 1= 0 igiored | Te2 7
op2 = i == 0 ? r[rs2) : sign-extend(13 bit imhediate);
[11Trd | 100100 [ xe1 | i=1T7 signed 13 bit immediate
. Purpose: store ﬂ.,o,ating-poi.m register into me_mqi'y A
. Format: stf rd, [rs1 + op2] '

- Operation: memory[z[rs1] + op2] = £[rd]
. Condition Codes: unaffected

Tt W N

. Description: Store ﬂoati.ng—poiqt register into memory; address is the sum of
the contents of re1 and op2, Either address operand may be missing. Memory
address must be word aligned. ' '

stdf

( 11 | xd T 100111 [ ve1 | i=0 ] ignored | T2 .
op2 = i == (0 ? r[rs2] ; ‘Bign-extend (13 bit immediate);
| 11 [ zd [ 100111 [ xsl | i=1] signed 13 bRt immediate |

1. Purpose: store two ﬂoatiﬁg—point registers into memor;lr
2, Fofmat: stdf rd, [rai + op2] '
3. Opersation:
memory [r[rs1] + op2] = #[rd]
memory[r!:rai] +op2 + 4] = £lrd + 1)
4. Condition Codes: unaffected

sum of the contents of rs1 and op2. Either address operand may be missing.
Memory address must be doubleword aligned. Register number must be even;
two registers are stored. T

fitos

[, [ 10 | xd T 110100 | ignored | 011000100 a2 |

. Purpose: .con\fert from'integer to single precision floating-point
. Format: fitos rs2, rd .

. Operation; flrd] = (float) f[rs2];

- Condition Codes: unaffected

. Description: Convert 32-bit inte
precision floating-point.

ger in ﬂoqting—point register to single-

5. Description: Store two floating-point registers into memory; address is the
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fitod

1. Purpose: convert from integer to double-precision foating-point
2. Format: fitod ra2, rd
3. Operation:

4. Condition Codes: unaffected ‘
5. Description: Convert 32-bit integer in floating-point register to doub =

fitoq

1. Purpose: convert from integer to extended-precision floating-point

4. Condition Codes: unaffected
. Description: Convert 32-bit integer in floating-point register to extendeds

fstoi

[ I L

. Format: fatol ra2, rd
. Operation: £{rd] = (int) f[rs2];
. Condition Codes: unaffected

. Description: Convert single-precision floating-point to integer and round

APPENDIX C. USER MODE MACHINE INSTRUCTIOR

| 10 | rd | 110100 | ignored | 011001000 | re2 |

flrd]l, £lxd + 11 = (double) f[rs2];

precision floating-point. Destination register must be even.

[[10 [ a | 110100 | ignored | 011001100 | rs2 |

Format: fitoq re2, rd
Operation:

f[xd], f[rti + 1], f[rd + 2] , £[rd + 3]= (extended) f[re2];

precision floating-point. Destination register number must be divisible by fon

[ 10 [ xd | 110100 | ignored | 011010001 | rs2 |

Purpose: convert from single-precision floating-point to integer and round

bit result in floating-point register.
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fdtoi

[ 10 [ zd | 110100 | ignored | 011010010 | ra2 |

. Purpose: convert from double-precision flosting-point to integer and round
. Format: fdtoi rs2, rd
. Operation: £{rd) = (int} £[rs2], f[ra2 + 11;

Condition Codes: unaffected

Description: Convert double-precision floating-point to integer and found.
32-bit result in floating-point register. Source register must be even,

fqtoi

[ 10 [ =d | 110100 [ ignored | 011010011 | &3 |

. Purpose: convert from extended-precision floating-point to integer and round

2. Format: fqtol rs2, rd’

. Operation:

£lrd] = (int) £(rs2], £[rs2 + 1], £[rs2 + 21, f[rs2 + 3];

. Condition Codes: unaffected

. Description: Convert extended-precision floating-point to integer and round.
* 32-bit result in floating-point register. Source register number must be divisible

by four.

fstod

o s W N

[0 [ =d [ 110100 | ignored | 011001001 | zs2 |

. Purpose: convert from single-precision floating-point to double-precision

floating-point

. Format: fsted rs2, rd
. Operation: £[rd], £lrd + 1] = (double) f [re2];
. Condition Codes: unaffected

Description: Convert single—preéisipn floating-point to double-precision
floeting-point. Destination register must be even.
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fstoq

[10 | rd | 110100 | ignored | 011001101 | rs2 |

. Purpose: convert from single-precision floating-peint to extended-precision

fioating-point

2. ¥ormat: fstoq rs2, rd

Operation:
flrdl, fird + 11, flrd + 2], flrd + 3] = (extended) f[rs2];
Condition Codes: unaffected

. Description: Convert single-precision floating-point to extended-precision

floating-point. Destination register number must be divisible by four.

fdtoq

[[10 [ xa [ 110100 | ignored ] 011001110 | xs2 |

Purpose: convert [rom double-precision floating-point to extended-precision
floating-point
Format: fdtoq rs2, rd
Operation:
f£{rd}, flrd + 11, £flrd + 2], £flrd + 3] =

(extended) flrs2], flrs2 + 11;
Condition Codes: unaffected

Description: Convert double-precision floating-point to extended-precision
floating-point. Source register must be even. Destination register number must
be divisible by four.

fdtos

[10 | rd [ 110100 | ignored | 011000110 | rs2 |

. Purpose: convert from double-precision floating-point to single-precision

floating-point and round

Format: fdtos rs2, rd

. Operation:

flrd] = (float) flrs2], flrs2 + 1]:
Condition Codes: unaflected

5. Description: Convert double-precision floating-point to single-precision

floating-point. Source register must be even.
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fqtod

[ 10 { rd [ 110100 [ ignored | 011001011 | rs2 |

. Purpose: convert from extended-precision floating-point to double-precision
floating-point and round

Format: fqtod rs2, rd
Operation:
flrd), flrd + 1] =
(double) flrs2], flrs2 + 1], flrs2 + 2], f[rs2 + 3];

Condition Codes: unaffected

. Description: Convert extended-precision floating-point to double-precision

floating-point. Source register rumber must be divisible by four. Destination
register must be even.

fqtos

[ 10 [ rd | 10700 | ignored | 011000111 [ rs2]

. Purpose: convert from extended-precision floating-point to single-precision

floating-point and round

. Format: fqtos rs2, rd

. Operation:

flrd] = (float) flrs2], f[rs2 + 11, £[rs2 + 2], f[rs2 + 31;

. Condition Codes: unaffected

Description: Convert extended-precision floating-point to single-precision
floating-point. Source register number must be divisible by four.

ovs
[ 10 | =d [ 110100 [ igrored | 000000001 [ zs2 |
Purpose: move a word from £ (rs?] to f [rd]
. Format: fuovs rs2, rd
Operation: f[rd] = f[rs2];
Condition Codes: unaffected
- Description: Copy the contents of a floating-point register; multiple fmovs

instructions are necessary to transfer multiple-precision data.
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fnegs

A e

| 10 | rd | 110100 | ignored | 000000101 | rs2 |

Purpose: negate a word from £ [rs2] to f[rd]
Format: fnegs rs2, rd

Operation: £f[rd] = - £[rs2];

Condition Codes: unaffected

Description: Copy the contents of a floating-point register complementing the
sign bit.

fabss

A

[ 10 | rd | 110100 [ ignored | 000000101 [ rs2 |

Purpose: copy absolute value from f[rs2] to £ [rd]
Format: fabss rs2, rd

Operation: flrd] = | flrs2] |;

Condition Codes: unaffected

Description: Copy the contents of a floating-point register clearing the sign
bit.

fadds

A

[ 10 [ rd | 110100 ] rsi | 001000001 | rs2 |

Purpose: single-precision floating-point add
Format: fadds rsl, rs2, rd

QOperation: £lrd] = £[rs1] + flrs2];
Condition Codes: unaffected

Description: Single-precision floating-point add. Contents of rsl and 152
unaffected.

faddd

[ 10} rd [ 110100 | rs1 [ 001000010 | rs2 |

Purpose: double-precision floating-point add

2. Format: faddd rsi, rs2, rd

3. Operation:

firdl, flrd + 11 = flrs1], firsi + 1] + flrs2], flrs2 + 11;

4. Condition Codes: unaffected

5. Description: Double-precision floating-point add. Contents of rsl and 1s2

unaffected. All registers must be even.
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faddq

(10 [ xd | 110100 | rs1 [ 001000011 | rs2 |

—

. Purpose: extended-precision floating-point add
i 2. Format: faddq rsi, rs2, rd
} 3. Operation:

flrd], £lrd + 11, f[rd + 2], flrd + 3] =
flrst], flrs1 + 11, flrsl + 2], flrst + 3] +
flrs2], flrs2 + 1], flrs2 + 21, flrs2 + 3];

4. Condition Codes: unaffected

5. Description: Extended-precision floating-point add. Contents of rs1 and rs2
unaffected. All registers numbers must be divisible by four.

fsubs

[10 ["xd [ 110700 | rsi | 501000101 | rs2 |

. Purpose: single-precision floating-point subtract

1
2. Format: fsubs rsi, rs2, rd

3. Operation: £[rd] = £[rs1] - f[rs2];
4

5

. Condition Codes: unaflected

. Description: Single-precision floating-point subtract. Contents of rsl and 152
unaffected.

fsubd

[ 10 [ xd [ 110100 | rs1 [ 001000110 | rs2 |

1. Purpose: double-precision floating-point subiract
2. Format: fsubd rsl, rs2, rd
3. Operation:
flrd]l, fled + 1] = flrsi), flrsl + 11 - f[rs2], flrs2 + 1];
4. Condition Codes: unaffected

5. Description: Double-precision floating-point subtract. Contents of rsl and
rs2 unaffected. All registers must be even.
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fsubq

[10 | rd | 110100 | rs1 | 001000111 [ rs2 |

1. Purpose: extended-precision floating-point subtract

2. Format: fsubq rsl, rs2, rd

Operation:

flrd]l, flrd + 1], flxd + 21, flrd + 31 =
flrsi1], flrs1l + 11, flrsl + 2], flrsl + 3] -
flrs2], flrs2 + 11, flrs2 + 2], f[rs2 + 31;

4. Condition Codes: unaffected

5. Description: Extended-precision floating-point subtract. Contents of rsl and

rs2 unaffected. All registers numbers must be divisible by four.

fmuls

A

fmuld

2. Format: fmuld rsi, rs2, rd

3. Operation:

5. Description: Double-precision floating-point multiply. Contents of rsl and

[10 [ xd [ 110100 | rs1 | 001001001 | rs2 |

Purpose: single-precision floating-point multiply
Format: fmuls rsl, rs2, rd

Operation: £{rd] = flrsi] * f[rs2];
Condition Codes: unaffected

Description: Single-precision floating-point multiply. Contents of rs1 and rs2
unaffected.

[[10 [ rd [ 110100 [ rsi | 001001010 | rs2 |

Purpose: double-precision floating-point multiply

flrd], flrd + 1} = flrs1], flrsl + 1} * £[rs2], flrs2 + 1];
Condition Codes: unaffected

rs2 unaffected. All registers must be even.
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fmulq

{ 10 [ rd [ 110700 | rs1 ] 001001011 | rs2 |

. Purpose: extended-precision floating-point, multiply

Format: fmulq rsi, rs2, rd

Operation:

flrd], fled + 11, £[rd + 2], flrd + 3] =
flrs1l, flrsi + 1], flrsl + 21, flrsl + 3] =*
flrs2], flrs2 + 1}, f[rs2 + 2], flrs2 + 3];

Condition Codes: unaffected

5. Description: Extended-precision floating-point multiply. Contents of rs1 and

rs2 unaffected. All registers numbers must be divisible by four.

fsmuld
[ 10 [ rd | 110100 | rs1 | 001101001 ] rs2 |
1. Purpose: single-precision to double-precision floating-point multiply
2. Format: fsmuld rsl, rs2, rd ?
3. Operation: f[rd], f[rd + 1] = flrs1] » f[rs2];
4. Condition Codes: unaffected
5. Description: Single-precision to double-precision. floating-point multiply.

Contents of rs1 and rs2 unaffected. Destination register must be even.

fdivs

A A

[ 10 [ rd ] 110700 | rst | 001001101 ] rs2 |

Purpose: single-precision floating-point division
Format: fdivs rsi, rs2, rd

Operation: £rd} = f[rsi] / flra2];
Condition Codes: unaffected

Description: Single-precision floating-point division. Contents of rsl and rs?
unaffected.
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fdivd

[10 [ xd [ 110100 ] rst [ 001001110 | rs2 |

1. Purpose: double-precision floating-point division

2. Format: fdivd rel, rs2, rd

3. Operation:

flrdl, flrd + 1] = flrsl), flrsl + 1] / £lrs2], flrs2 + 1];

4. Condition Codes: unaffected

5. Description: Double-preciston floating-point division. Contents of rsl and rs2

unaffected. Al registers must be even.

fdviq

[[10 [ rd [ 110100 [ rsi | 001001111 | rs2 |

Purpose: extended-precision floating-point division

2. Format: fdviq rsl, rs2, rd

3. Operation:

fird], flxd + 1], flrd + 21, fird + 3] =
flrs1], flrsl + 1}, flrsl + 2], flrsl + 3] /
flrs2], flrs2 + 11, flrs2 + 2], flrs2 + 3];

Condition Codes: unaffected

5. Description: Extended-precision floating-point division. Contents of rsl and

rs2 unaffected. All registers numbers must be divisible by four.

fsqrts

SN S s

[ 10 | rd [ 110100 | ignored [ 000101001 [ rs2 |

Purpose: single-precision square root
Format: fsqrts rsl, rs2, rd
Operation: £[rd] = sqrt(f{rs2]);
Condition Codes: unaffected

Description: Single precision floating-point square root. Contents of rs2 un-
affected.
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fsqrtd

[ 10 [ rd [ 116100 [ ignored | 000101010 | rs2 |

1. Purpose: double-precision square root

! 2. Format: fsqrtd rsi, rs?, rd

3. Operation: f[rd], ffrd + 1] = surt(f[rs2], flrs2 + 11);

. 4. Condition Codes: unaffected

j 5. Description: Double-precision floating-peint square root. Contents of rs?

unaflected.

fsqrtq

[10 [ xd [ 170100 | ignored [ 000TOI011 | rs2 |

1. Purpose: extended-precision square root
2. Format: fsqrtq rsi, rs2, rd
3. Operation:

flrdl, flxd + 1}, £frd + 2], flrd + 31 =
sqrt (flrs2], flrs2 + 11, flrs2 + 2], £lrs2 + 3]);

4. Condition Codes: unaffected

5. Description: Extended-precision floating-point square root. Contents of rs2
unaffected.

fcmps

[ 10 | ignored | 110701 | rs1 | 001010001 | rs2 |

Purpose: single-precision compare, set floating condition codes
Format: fcmps rsi, rs2 ?

. Operation: compare £ [rs1] to f[rs2] and set floating condition codes
Condition Codes:

oWk e

E
L
G
u

flrsl] == f[rs2]
flrs1] < f£[rs2]
flrs1) > £{rs2]
flrsi]l 7 f[rs2]

tt

5. Description: Compare single-precision sources and set floating condition
codes. Causes an exception if either source is a signaling NaN.

Note: A non-floating-point instruction must be executed between a floating-
point compare instruction and a foating-point branch instruction.
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femmpd

L

[ 10 [ ignored [ 110101 | rsi | 001010010 [ rs2 |

Format: feopd rsi, rs2?

. Purpose: double-precision compare, set floating condition codes

Operation: compare f [rs1] to £[rs2] and set floating condition codes

Condition Codes:

E = flrs1], flrsl +

L = flrs1], flrsl + 1] <
G = flrsl], flrsl + 1] >
U= flrsi], £flrsl1 + 1] 7

1] == f£lrs2], flrs2
flrs2], flrs2
flrs2], flrs2
flrs2], flrs2

+
+
+
+

1]
1]
1]
1]

. Description: Compare double-precision sources and set Hoating condition

codes. Causes an exception if either source is a signaling NaN.

Note: A non-floating-point instruction must be executed between a floating-
point compare instruction and a floating-point branch instruction.

fcmpq

B

| 10 | ignored | 110101 | rsi | 001010011 | rs2 |

Format: fempq rsl, rs2 7

- Purpose: extended-precision compare, set floating condition codes

Operation: compare £ [rs1] to £[rs2] and set floating condition codes

Condition Codes:

E = flrs1], ... flrsl +
L = ffrsl], ... flrsl +
G = flrs1], ... £lrsl +
U = flrsi1], ... flrsl +

3] ==
3] <
3] >
3] 7

flrs2],
flrs2],
flrs2],
flrs2],

. flrs2 + 3]
. £flrs2 + 31
. flrs2 + 3]
. flrs2 + 3]

- Description: Compare extended-precision sources and set floating condition

codes. Causes an exception if either source is a signaling NaN.

Note: A non-floating-point instruction must be executed between a floating-
point compare instruction and a floating-point branch instruction.
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fcmpes

[ 10 [ ignored | 110101 [ rs1 [ 001010101 | rs3 |

. Purpose: single-precision compare, set floating condition codes, exception if

unordered

. Format: fcmpes rsl, rs2 7

. Operation: compare £ [rs1] to £ [rs2] and set Hoating condition codes
4. Condition Codes:

E = flrs1] == f[rs2]

L = flrsl] < f[rs2]
G = £flrs1] » f[rs2]
U= flrsl] ? $lrs2]

. Description: Compare single-precision sources and set floating condition

codes. Causes an exception if either source is a signaling or a quiet NaN.

Note: A non-floating-point instruction must be executed between a floating-
point compare instruction and a floating-point branch instruction.

fcmped

| 10 [ ignored [ 110107 | rs1 | 001010110 | rs2 |

. Purpose: double-precision compare, set floating condition code, exception if

unordered

Format: femped rsi, rs27?

3. Operation: compare £ [rs1] to £[rs2] and set floating condition codes
4. Condition Codes:

E = flrs1], flrsl + 1] == f[rs2], £lrs2 + 1]
L = flrs1], flrsl + 1] < f[rs2], flrs2 + 1]
G = flrsil, £lrsl + 1] > £lrs2], flrs2 + 1]
U= flrs1], flrsl + 11 ? £lrs2], flrs2 + 1]

Description: Compare double-precision sources and set floating condition
codes. Causes an exception if either source is a signaling or a quiet NaN,

Note: A non-floating-point instruction must be executed between a floating-
point compare instruction and a floating-point branch instruction.
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fcmpeq

| 10 [ ignored | 110101 [ rsi [ 001010111 [ xs2 |

1. Purpose: extended-precision compare, set floating condition codes, exception
if unordered

2. Format: fcmpeg rsi, rs2 7
3. Operation: compare f[rs1] to f[rs2] and set Aoating condition codes
4. Condition Codes:

E = flrs1], ... £flrsl + 3] == flrs2], ... flrs2 + 3]
L = flrs1], ... flrsl + 3] < flrs2}, ... £flrs2 + 3]
G = flrs1], ... flrs1 + 3] > flrs2}, ... flrs2 + 3]
U= flrs1], ... flrsl + 3] 7 £[rs2], ... flrs2 + 3]

5. Description: Compare extended-precision sources and set floating condition
codes, Causes an exception if either source is a signaling or a quiet NaN.

Note: A non-floating-point instruction must be executed between a floating-
peint compare instruction and a floating-point branch instruction.
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C.11  Floating-point Branch Instructions

Machine floating-point branch instructions.

fba

(00 Ta [ 1000 [ 110 | disp22 ]

1. Purpose: floating branch always

2. Format: fba label

3. Operation:
rlpcl = rlnpcl;
r(npc]l = ripc] + sign_extend(disp22)} << 2;
if (a == 1) annul next instruction;

4. Condition Codes: unaffected

5. Description: Floating branch always. Instruction operand is a label that is
converted to a program counter relative address. If annulled, the next instruc-
tion in line is not executed.

Note: An integer instruction must be executed between a floating compare and
a floating branch instruction.

fon

(00 Ta [0000 | 110 | disp22 ]
1. Purpose: floating branch never
2. Format: fbn label
3. Operation:
ripcl = rlnpcl;

rlopc]l = rlnpe] + 4;
if (a == 1) annul next instruction;

4. Condition Codes: unaffected

5. Description: Floating branch never. Instruction operand is a label that is con-
verted to a program counter relative address. If annulled, the next instruction
in line is not executed.

Note: An integer instruction must be executed between a Hoating compare and
a floating branch instruction.




414

APPENDIX C. USER MODE MACHINE INSTRUCTIONS

fbu

[00[a]o111] 110 ] disp22

. Purpose: branch on unordered
2. Format: fbu label

3. Operation:

r[pc]l = rlnpcl;

it W==1)

rlnpe]l = + sign_extend{disp22) << 2;
elsel

rlnpcl = rlnpcl + 4;

if (a == 1) annul next instruction;}

. Condition Codes: unaffected

5. Description: Branch on unordered. Instruction operand is a label that is

converted to a program counter relative address. If the branch instruction is
annulled and not taken, the next instruction in line is not executed,

Note: An integer instruction must be executed between a floating compare and
a floating branch instruction.

fbo

[00 [a] 1111 | 110 | disp22

. Purpose: floating branch on ordered
2. Format: fbo label

. Operation:

ripc] = rlnpcl;
if ((EJL |G ==1)
rlopc] = + sign_extend(disp22) << 2;

else{
rlopcl = rlope] + 4;
if (a == 1) annul next instruction;}

. Condition Codes: unaffected

5. Description: Branch on ordered. Instruction operand is a label that is con-

verted to a program counter relative address. If the branch instruction is an-
nulled and not taken, the next instruction in line is not executed.

Note: An integer instruction must be executed between a floating compare and
a floating branch instruction.
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fbe

[ 00 [ a ][ 1001 | 110 | disp22 H

1. Purpose: floating branch on equal
2. Format: fbe label

3. Operation:

rlpel = rinpcl;

if (E == 1)

rinpcl = + sign_extend(disp22) << 2:
elsef

rlopec] = r{npc] + 4;

if (a == 1) annul next instruction;}

4. Condition Codes: unaffected

5. Description: Floating branch on equal to zero. Instruction operand is a label
that is converted to a program counter relative address. If the branch instruc-
tion is annuiled and not taken, the next instruction in line is not executed.
Note: An integer instruction must be executed between a floating compare and
a floating branch instruction.

fbue

[00 [ aT 1010 [ 110 ] disp22 ]

1. Purpose: floating branch on unordered or equal
2, Format: fbue label
3. Operation:

rlpc] = rlnpc);

if ((E 1 U) == 1)
r[onpc] = + sign_extend (disp22) << 2;

elseq{
rlnpc] = rinpel + 4;
if (a == 1) annul next instruction:}

4, Condition Codes: unaffected

5. Description: Branch on unordered or equal. Instruction operand is a label
that is converted to a program counter relative address. If the branch instruc-
tion is annulled and not taken, the next instruction in line is not executed.

Note: An integer instruction must be executed between . floating compare and
a floating branch instruction.
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fbne

[ 00 [ a] 0001110 ] disp22

1. Purpose: floating branch on not equal
2. Format: fbne label
3. Operation:

r[pc]l = rlnpel;

if (Llgclw==1
rlnpcl = + sign_extend{disp22) << 2;

elseq{
rlnpel = rlopel + 4;
if (a == 1} annul next instruction;}

4. Condition Codes: unalffected

o

. Description: Floating branch on not equal to zero. Instruction operand is a
label that is converted to a program counter relative address. If the branch in-
struction is anmulled and not taken, the next instruction in line is not executed.
Note: An integer instruction must be executed between a. floating compare and
a floating branch instruction.

fblg

{ 00 ] a]0010] 110 ] disp22 j

1. Purpose: floating branch on less or greater
2. Format: fblg label
3. Operation:

ripcl = rlnpcl;

if ((L[Gy==1)
rlnpcl = + sign_extend(disp22) << 2;

else{
rlnpel = rlopel + 4;
if (a == 1) annul next instruction;}

4. Condition Codes: unaffected

2. Description: Floating branch on less than or equal to zero. Instruction oper-
and is a label that is converted to a program counter relative address. Tf the
branch instruction ts annulled and not taken, the next instruction in line is not
executed.

Note: An integer instruction must be executed between a floating compare and
a floating branch instruction.
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fbl

(00 [ a [0100 [ 110 | disp22 ]

I. Purpose: Hoating branch on less
2. Format: fbl label
3. Operation:

rlpec] = rlnpcl;

if (L == 1)
rlope] = + sign_extend (disp22) << 2;
elsed

rinpcl = rlnpcl + 4;
if {a == 1) annul next instruction;}

4. Condition Codes: unaffected

5. Description: Floating branch on less. Instruction operand is a label that is
converted to a program counter relative address. If the branch instruction is
annulled and not taken, the next instruction in line is riot executed.

Note: An integer instruction must be execyted between a floating compare and
a floating branch instruction.

fbul

[ 00 ] a ] 0011|110 ] disp22 ]

1. Purpose: branch on unordered or less
2. Format: fbul label
3. Operation:

rlpcl = rlnpcl;

if (L | W ==1)
rlopc] = + sign_extend (disp22) << 2;

elsed{
rinpc]l = riape] + 4;
if (a == 1) annul next instruction;?}

4. Condition Codes: unaffected

5. Description: Floating branch on unordered or less than zero. Instruction
operand is a label that is converted to a program counter relative address. If
the branch instruction is annulled and not taken, the next instruction in line is
not executed.

Note: An integer instruction must be executed between a floating compare and
a floating branch instruction.
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fble

[00]af 1101 [110] disp22

1. Purpose: floating branch on less or equal
2. Format: fble label
3. Operation:

r[pcl = rlnpcl;

if ((E | L) == 1}
rlnopc]l = + sign_extend(disp22) << 2;

elsed{
rlnpc] = rlnpcl + 4;
if (a == 1) annul next instruction;}

4, Condition Codes: unaffected §

5. Description: Floating branch on less or equal to zero. Instruction operand is
a label that is converted to a program counter relative address. If the branch
instruction is annulled and not taken, the next instruction in line is not exe-
cuted.

Note: An integer instruction must be executed between a floating compare and E
a floating branch instruction.

fbule

[00 Ja 1110 [ 110 ] disp22 ]

1. Purpose: floating branch on unordered, less or equal
2. Format: fbule label
3. Operation:

r[pcl = rlupel;

if ((ETL I W ==1)
rlnpcl = + sign_extend(disp22) << 2Z;

elseq{
rlupcl = rlnpe] + 4;
if (a == 1) annul next instruction;}

4. Condition Codes: unaffected

5. Description: Floating branch on unordered, less or equal. Instruction oper-
and is a label that is converted to a program counter relative address. If the
branch instruction is annulled and not taken, the next instruction in line is not
executed.

Note: An integer instruction must be executed between a floating compare and
a floating branch instruction.
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fbge

(00 [a1011 [T10] disp22 ]

1. Purpose: branch on greater than or equal
2. Format: fbge label
3. Operation:

ripcl = rlnpel;

if ((E | @) == 1)
rlnpc] = + sign_extend(disp22) << 2;

else{
rlopc] = rlnpc]l + 4;
if (a == 1) annul next ingtruction;}

4. Condition Codes: unaffected

5. Description: Branch on greater than or equal to zero. Instruction operand is
a label that is converted to a program counter relative address. If the branch
instruction is annulled and not taken, the next instruction in line is not exe-
cuted.

Note: An integer instruction must be executed between a floating compare and
a floating branch instruction.

fbuge

[ 00 [ a [ 1100 [ 110 ] disp22

1. Purpose: floating branch on unordered, greater or equal
2. Format: fbuge label
3. Operation:

r(pcl = rlnpcl;

if ((ETGI1UY ==1)
rlopc] = + sign_extend(disp22) << 2;

else{
rlnpel = rlnpcl + 4;
if (a == 1) annul next instructiom;}

4. Condition Codes: unaffected

5. Description: Floating branch on unordered, greater or equal. Tnstruction

; operand is a label that is converted to a program counter relative address. If

3, the branch instruction is annuiled and not taken, the next instruction in line is
; not executed,

Note: An integer instruction must be executed between a floating compare and
a floating branch instruction.
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fbg

f00]afo0110 110 | disp22

. Purpose: floating branch on greater
2. Format: fbg label

. Operation:

rlpcl = rlnpcl;

if (G == 1}

rlnpcl = + sign_extend(disp22) << 2;
else{

r[npel = rlopel + 4;

if (a == 1) annul next instruction;}

4. Condition Codes: unaffected

5. Description: Floating branch on greater. Instruction operand is a label that

is converted to a program counter relative address. If the branch instruction is
annulled and not taken, the next instruction in line is not executed.

Note: An integer instruction must be executed between a floating compare and
a floating branch instruction.

fbug

100 [a]o101]110 ] disp22

1. Purpose: floating branch on unordered or greater
2. Format: fbug label

. Operation:

rlpc]l = rlnpcl;
if ((G1 W ==1)
rlnpcl = + sign_extend(disp22) << 2;

elsed{
rlopel = rinpel + 4;
if (a == 1) annul next instruction;}

4, Condition Codes: unaffected

5. Description: Floating branch on unordered or greater. Instruction operand

is a label that is converted to a program counter relative address. If the branch
instruction i annulled and not taken, the next instruction in line is nof exe-
cuted.

Note: An integer instruction must be executed between a floating compare and
a Hoating branch instruction.
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 SYNTHETIC

| INSTRUCTIONS AND

PSEUDO-OPS

Synthetic Instruction Instruction Generated Comment

Cup  Tegrs., Teg_or_imm | subcc T'€Grs:, Teg_or_imim, %g0 | Compare

jmp  address jumpl address, Yo7 Jump

call reg_or_imm Jumpl  reg_or_imm, %07 Call,
pointer in
register

tst Tersy orcc Tegrsy hg0, %gld Test.

ret Jmpl  %i7 + 8, ¥g0 Return from
subroutine

retl jmpl %07 + 8, %g0 Return from

leaf

subroutine
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Synthetic Instruction

Instruction Generated

Comiment

set

value, regyq

or

%20, value, regyy

If —4096
<value<
4095

set

value, reg,g

sethi

thi{value), regrg

If
((value &
Ox1iff)

set

value, reg,q

sethi
or

whi{value), reg.q;
regrq4, hlo(value), reg.q

Otherwise
Warning: Do
not  use
sel in an
instruc-
tion’s de-
lay slot.

not

not

neg

neg

TE€Qrsiy TEGrd

TeYrd

TEgrszy TEGrd

Tegdrd

Xnor

Xnor

sub

sub

TEGrs1s Vngos Terd
Tegrd, 480, TeGrd
g0, TeGrsay TEGrg

%gO, Te€grdy TE€Grd

One's
complement
One's
complement
Two's
complement
Two's
complement

inc

inc

incce

inccc

Tegrd

const,,, T€g-g

T€grd

const,,, regyy

add

add

addcc

addce

Teg d, 1, regqd

TE€grds C0n5t13= TEgrd

Tefrdsl, TEGrg

regrg, CONsty,, Tegry

Increment by
1

Increment by
conatia
Increment
by 1 and
set ice
Increment,
by

constyz

and  set
ice




423

Synthetic Instruction Instruction Generated Comment

dec regrd sub Tegrdsl, TEg.g Decrement,
by 1

dec const,,, regyy sub Te€Grdy CONSL i, TEg,y Decrement by
constys

deccc  regpg subcc  reg.q,1, reg.y Decrement
by 1 and
set icc

decce  econst,,, reg.q subce  reg.q, const ,, reg.y Decrement by
constya
and  set
ice

btst reg_or_imm, reg,., andecc  reg,,,, reg_or_imm, %g0 Bit test

bset reg_or_imm, reg. or regrd, Teg_or_imm, reg,; | Bit set

belr reg_or_imm, regy; | andn regrd, reg_or_imm, reg,q | Bit clear

btog  reg_or_imm, reg,y; | xor T€9rd, TEG_OT_tmm, reg,q | Bit toggle

clr T€Grq or 80, %e0, reg.q Clear
register

clrb  [address] sth %80, |address] Clear
byte

clrh  [address] sth %g0, |address) Clear
halfword

clr laddress] st %e0, laddress] Clear
word

mov reg_or_imm, reg,y | or hg0, reg_or_imm, TeGrd

mov Ly, regra. rd hy, regrs;

mov reg_or_imm, Ly Wr %g0, reg_or_imm, Yy
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APPENDIX D. SYNTHETIC INSTRUCTIONS AND PSEUDQ-0OPS

Mnemonic

Arguments

Description

.ascii

“string” [,“string”|*

Generates the given sequence of
ASCIT character bytes

.asciz

“string” |[,“string”|*

Generates the given sequence of
ASCII character bytes, each string
terminated by null byte

.text

“ghring”

Changes the current segment to
text, and sets the location counter
to the location of the next available
byte in that segment. The default
segment at the beginning of assem-
bly is text.

.data

“string”

Changes the current segment to
data, and sets the location counter
to the location of the next available
byte in that segment.

.bss

“string”

Changes the current segment to
bss, and sets the location counter
to the location of the next available
byte in that segment.

.skip

Increments the location counter by
n, which allocates n bytes of empty
space in the current segment.

.align

boundary

Aligns the location counter on a
0-mod-boundary boundary; bound-
ary may be 1 {which has no effect},
2,4, or 8.

.byte

Sbitval [,8bitval]*

Generates (a sequence of} initial-
ized bytes in the current segment.

.half

16 bitval [,16hitval|*

Generates {a sequence of) initial-
ized haltwords in the current seg-
ment. The location counter must
already be aligned on a halfword
boundary {use .align 2).

.word

32bitval [,32bitval}*

Generates (a sequence of) initial-
ized words in the current segment.
The location counter must already
be aligned on a word boundary
{use .align 4).
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Mnemonic Arguments Description

.single Orfloatval [,Orfloatval]*  Generates (a sequence of) intiial-
ized single-precision floating-point
values in the current segment. The
location counter musi already be
aligned on a word boundary (use
.align 4).

.double Orfloatval [Orfloatvall* Generates (a sequence of) ini
tialized double-precision floating-
point values in the current seg-
ment. The location counter must
already be aligned on a double-
word boundary {use .align 8).

.quad Orfloatval [,Orfloatval]*  Generates (a sequence of) initial-
ized quad-precision floating-point
values in the current segment
(.quad currently generates quad-
precision values with only double-
precision significance). The lo-
cation counter must already be
aligned on a doubleword boundary
{(use .align 8).

.global symbol, size [,symbol] Marks the {list of) user symbols as
“global.” Note that when a sym-
bol is both declared to be global
and defined (that is, used as a la-
bel, used as the left operand of an
= pseudo-op, the . global must ap-
pear before the definition.

. common symbol_name, size Declares
the name and size (in bytes) of
a FORTRAN-style NAMMED COM-
MON area.

.empty Used in the delay slot of a Control
Transfer Instruction (CTT), this
suppresses assembler complaints
about the next instruction’s pres-
ence in a delay slot. Some instruc-
tions should not be in the delay
slot of a CTI.







INSTRUCTIONS SORTED
ALPHABETICALLY

A add 358
addce 358
addx 359
addxcc 359
.align 424
and 366
andcc 366
andn 366

: andnce 367

Z .ascii 424

i .asciz 424

B b 377

ba 377
bece 384
beclr 423
bcs 384
be 378
bg 380
bge 380
bgeu 382
bgu 382
bl 379
ble 379
bleu 381
blun 381
bn 377
bne 378
bneg 383
bpos 383
bset 423
.bss 424

btog 423
btst 423
bve 385
bvs 385
.byte 424

call 395
clr 423
clrb 423
clrh 423
cmp 421
.common 425

.data 424
dec 423
deccc 423
.double 425

.empty 425

fabss 404
faddd 404
faddq 405
fadds 404
fba 413
fbe 415
fbg 420
fbge 419
fbl 417
fble 418
fblg 416
fbn 413
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fbne 416
fbo 414
fbu 414
fbue 415
fbug 420
fbuge 419
fbul 417
fbule 418
fcmpd 410
femped 411
fempeq 412
fcempes 411
fcmpq 410
fcmps 409
fdivd 408
fdivs 407
fdtoi 401
fdtoq 402
fdtos 402
fdviq 408
fitod 400
fitoq 400
fitos 399
fmovs 403
fmuld 406
fualq 407
fmuls 406
fnegs 404
fqtod 403
fqtoi 401
fqtos 403
fesmuld 407
fsqrtd 409
fsqrtq 409
fsqrts 408
fstod 401
fstoi 400
fstoq 402
fsubd 405
fsubg 406
fsubs 405

.global 425

INSTRUCTIONS SORTED ALPHABETICALLY

H
I

-half 424

inc 422
inccc 422

jmp 421
jmpl 395

14 374
1ldd 374
lddf 398
laf 398
ldsb 373
1dsh 374
1dub 373
1duh 373

mov 423
mulsce 364

neg 422
not 422

or 367
orcc 368
orn 368
orncc 369

.quad 425

rdy 364
restore 397
ret 421
retl 421
rett 3496

save 397
set 422
sethi 396
.single 425
.skip 424
sll 372

sra 372




INSTRUCTIONS SORTED ALPHABETICALLY

X

srl 372
st 375
stb 375
std 376
stdf 399
stf 399
sth 375
sub 361
subcc 361
subx 362
subxcc 362
swap 376

t 386

ta 386
taddcc 360
taddcctv 360
tce 393
tes 392

te 386
.Ltext 424
tg 389

tge 388
tgeu 390
tgu 391

t1 387

tle 388
tleu 390
t1u 389

tn 386

tne 387
tneg 392
tpos 391
tst 421
tsubcc 363
tsubcctv 363
tve 394
tvs 393

.word 424
wry 365

F¥nor 370
xnorce 371
xor 369
xorcc 370
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APPENDIX F. POWERS OF TWO

Powers of Two in Hexadecimal, Decimal, and Pages

n 276 (277 —2")16 2%

1 2 fffffffe 2

2 4 fffffffc 4

3 8  fffffffs 8

4 10 ffEfEL£0 16

5 20  ffffffel 32

6 40  ffffffcO 64

T 80  ffffff80 128

8 100 ffEEfE£00 256

2] 200 fifffel0 512

10 400  fffffcO0 1024 1Kk

11 800  fffffe00 2048 2Kb

12 1000 £££££000 4096 4Kb 1 page
13 2000 ££££e000 8192 8Kb 2 pages
14 4000 fE£££c000 16384 16Kb 4 pages
15 8000  £f££8000 32768  32Kb 8 pages
16 10000  ££££0000 65536  64Kb 16 pages
17 20000  ££fe0000 131072 128Kb 32 pages
18 40000 £££c0000 262144 256Kb 1 segment
19 80000  £££80000 524288 512Kb 2 segments
20 100000  £££00000 1048576 1Mb 4 segments
21 200000  ££e00000 2097152 2Mb 8 segments
22 400000  ££c00000 4194304 4Mb 16 segments
23 800000  ££800000 8388608 8Mb 32 segments
24 1000000  ££000000 16777216 16Mb 1 region
25 2000000  £e000000 335564432  32Mb 2 regions
26 4000000  £c000000 67108864  64Mb 4 regions
27 8000000  £8000000 134217728 128Mb 8 regions
28 1000000¢  £0000000 268435456  256Mb 16 regions
29 20000000 0000000 536870912 512Mb 32 regions
30 40000000  <0000000 1073741824 1Gb 64 regions
31 800000060 80000000 2147483648 2Gb 128 regions
32 100000000 4294967296 4Gb 1 context
33 200000000 8589934592 8Gb 2 contexts
34 400000000 17179869184  16Gb 4 contexts
35 800000000 34359738368  32Gh 8 contexts
36 1000000000 68719476736  64Gb 16 contexts
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M4 (1V) USER COMMANDS M4(1V)

NAME
m4 — macro language processor

SYNOPSIS
md [ filenome ] ..

SYSTEM ¥ SYNOPSIS
fusr/Shin/md [ —es | [ -Bime 1 [ -Hinr ] [ Sint 1 [ ~Tint | [ -Dname=val 7 [ -Uname 11 filename J...

AVAILABILITY
The System V version of this command is available with the System V software installation option,
Refer to Instelfing SunOS 4.1 for information on how to install optional software.

DESCRIPTION
m4 is a macro processor intended as a front end for Ratfor, C, and other ]anguagee Each of the argu-
ment files is processed in order; if there are no files, or if a file name is ‘— , the standard input is read.

The processed text is written on the standard output.
Macro calls have the form:
name{argument [, argument2, .. ,] argumentn)

The ‘(" must immediately follow the name of the macro, 1f the name of a defined macro is not fol-
lowed by a (", it is interpreted as a call of the macro with no arguments. Potential macro rames con-
sist of letters, digits, and * °, (underscores) where the first character is not a digit.

Leading unquoted SPACE, TAB, and NEWLINE characters are ignored while collecting arguments, Left
and right single quotes (°”) are used to quote strings. The value of a quoted string is the string stripped
of the quotes.

When a macro name js recogrized, the arguments are collected by searching for a matching right
parenthesis. Tf fewer arguments are supplied than are in the macro definition, the trailing arguments are
taken to be NULL. Macro evaluation proceeds normally during the collection of the arguments, and any
comrnas or right parentheses which happen to turn up within the value of a nested call are as effective
as those in the original input text. After argument collection, the value of the macro is pushed back
onto the input stream and rescanned.

SYSTEM ¥V OPTIONS
The options and their effects are as follows:

- Operate interactively. Interrupts are ignored and the output is unbuffered.
-5 Enable line sync outpat for the C preprocessor (#line ...)
—Bint  Change the size of the push-back and argument collection buffers from the default of 4,096.

—Hint  Change the size of the symbol table hash array from the default of 199. The size should be
prime.

-Sint  Change the size of the call stack from the default of 100 slots. Macros take three stots, and
DOD-MACIO arguinents [ake one.

~Tint  Change the size of the token buffer from the default of 512 bytes.
To be effective, these flags must appear before any file names and before any —D or —U flags:

-Dname[=val]
Define filename to be val or to be NULL jn val’s absence.

—Uname
Undefine name.

USAGE
Built-In Macros

Sun Release 4.1 Last change: 23 September 1987 1
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M4(1V)

define

undefine
ifdef

changequote

divert

undivert

divnum
dnl

ifelse

incr

eval

len

index

substr

translit

include
sinclude
sysemd
maketemp
errprint
dumpdef

Sun Release 4.1

USER COMMANDS M4(1V)

md makes availabie the following built-in macres. They may be redefined, but once this is done the
original mearing is lest. Their values are NULL unless otherwise stated.

The second argument is installed as the value of the macro whose name is the first argo-
ment. Each occurrence of $n in the replacement text, where # is a digit, is rcplaced by
the #’th argument. Argement 0 is the name of the macro; missing argumcnts are
replaced by the NULL string.

Remove the definition of the macro named in the argument.

If the first arpument is defined, the value is the second argument, otherwise the third. If
there is no third argument, the value is NULL. The word wxix is predefined.

Change quote characters to the first and second arguments. changequote without argu-
ments restores the original values {that is, ¢ *).

m4 maintains 10 output streams, numbered 0-9. The final output is the concatenation of
the streams in numerical order; initially stream 0 is the current stream. The divers macro
changes the current output stream to the (digit-string} argument, Output diverted to a
stream other than O through 9 is discarded.

Display immediate cutput of text from diversions named as arguments, or all diversions
if no argument. Text may be undiverted into another diversion. Undiverting discards the
diverted text.

Return the value of the current output stream.
Read and discard characters up to and including the next NEWLINE,

Has three or more arguments. 1f the first argument is the same string as the second, then
the value is the third argument. If not, and if there are more than four arguments, the
process is repeated with arguments 4, 5, 6, 7 and so on. Otherwise, the value is either
the last string not used by the above process, or, if it is not present, NULL.

Return the value of the argument incremented by 1. The value of the argument is caleu-
lated by interpreting an initial digit-string as a decimal number.

Evaluate the argument as an arithmetic expression, using 32-bit arithmetic. Operators
include +, — *, /, %, " (exporentiation); relationals; parentheses,

Return the number of characters in the argument.

Return the position in the first argument where the second argument begins {zero origin),
or —1 if the second argument does nol occur.

Relurn a substring of the first argument. The second argument is a zero origin number
selecting the first character; the third argument indicates the length of the substring. A
missing third argument is taken to be large cnough to extend to the end of the first string.

Transliterate the characters in the first argument from the set given by the second argu-
ment to the set given by the third. No abbreviations are permitted.

Return the contents of the file named in the argument,

Is similar to include, except that it says nothing if the file is inaccessible.
IExecute the system command given in the first argument. No value is returned.
Fill in a string of XXXXX in the argument with the current process ID.

Print the argument on the diagnostic cutpul lile.

Print current names and definitions, for the named items, or for all if no arguments are
given.

Last change: 23 September 1987 2




436 APPENDIX G. MACRO LANGUAGE PROCESSOR M4

M4 {1V} USER COMMANDS M4 (1V)

SYSTEM ¥V USAGE
In the System V versicn of mé4, the following buil-in macros have added capabilitics.

Built-In Macros

define ‘$#' is replaced by the number of arguments; $+ is replaced by a list of all the arguments
separated by commas; $@ is like *$*°, but each argument is quoted (with the current
quotes).

changequote Change quote symbols to the first and second arguments. The symbols may be up tc five
characters long.

eval Additional operators include bitwise ‘&', 1°, ** and . Octal, decimal and hex
numbers may be specified as in C. The sccond argument specifies the radix for the

result; the default is 10. The third argument may be used to specify the minimum
number of digits in the result.

The System V versicn of md makes available the following additional built-in macros.

defn Return the quoted definition of the argument(s). Tt is useful for renaming macros, espe-
cially built-ins.

pushdef Like define, but saves any previous definition.

popdef Remove current definition of the argument(s), exposing the previous one, if any.

shift Return all but the first argument. The other arguments are quoted and pushed back with

commas in between. The quoting nullifies the effect of the extra scan that will subse-
quently be performed.

changecom  Change left and right comment markers from the default # and NEWLINE. With no argu-
ments, the comment mechanism js effectively disabled. With one argument, the left
marker becomes the argument and the right marker becomes NEWLINE. With two argu-
ments, both markers are affected. Comment markers may be up to five characters long.

decr Return the value of the argument decremented by 1.

sysval Retun code from the last cail to sysemd.

mdexit Exit immediately from m4, Argument 1, il given, is the exit code; the default is 0.

mdwrap Argument 1 will be pushed back at final EOF. For example, ‘mdwrap(‘‘cleanup()’'y".

traceon With no arguments, turn on tracing for all macros (including built-ins). Otherwise, turn
on tracing for named macros.

traceoff Turn off trace globally and for any macros specified. Macros specifically traced by tra-
ceon can be untraced only by specific calls o traceoff.

SEE ALSO
ce(1V)

m4 — A Macro Processor, in Programming Utilities and Libraries

NOTES
While the compiler allows 8-bit strings and comments, 8-bits are net allowed anywhere else. The
cc(IV) command does not generate or support 8-bit symbol names because, until ANSI C, non-ASCIl
support was not cxpected. The ANSI C specification now suggests that string literals and coraments can
contain any characters from any character code set.

Sun Release 4.1 Last change: 23 September 1987 3
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145
[ 134
1134

A ACC 311
accumulator 1, 23
accumulator machine 23, 39
add 47, 358
addcc 60, 358
addition
fixed point 262
foating-point 270
addresses
physical 310
virtual 310
addx 122, 359
addxcc 122, 359
-align 231, 424
align_d 138
alphanumeric token 9
alu 2
and 93, 366
andcc 93, 366
andn 92, 93, 366
andnce 93, 367
annulled branch 69
unconditional 76
argc 242
argv 242
arithmetic
extended precision
addition 122
multiplication 124
subtraction 122
tagged 175
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unsigned 108
arithmetic logic unit 2, 17, 38
arrays
column order 160
constant subscripts 164
indexing 165
lower bounds non-zero 161
multidimensional 160
access 161
storage 161
one-dimension 146
row order 160
subscript range checking 163
.ascii 232, 424
ASCII character set 89
ASCII data 232
.asciz 233, 424
asdump 56
assernbler 32, 39
as 37, 44
SPARC 44
assembly langnage 9, 38
format 45

b 377

B5000 computer 18
ba 60, 377

hase two numbers 83
bee 109, 384

belr 95, 423

bcs 109, 384

be 61, 378
beginmain 140

bg 61, 380

bge 61, 380
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bgeu 109, 382

bgu 109, 382

big endian 323

binary coded decimal 83

binary point 262

bistable devices 81

bits 83

bl 61, 379

ble 61, 379

bleu 109, 381

block transfer 255

blu 109, 381

bn 60, 377

bne 61, 378

bneg 109, 383

bnz 109

Booth recoding 166, 350

bpos 109, 383

branch
annulled 218
condition codes 219
signed 218
unconditional 218
unsigned 108, 218

branching 14, 60

breakpoint. 54

bset 05, 423

bes 227

.bss 228, 424

bss segment 234

btog 95, 423

btst 95, 423

Burroughs 18

bve 109, 385

bvs 109, 385

byte 85, 129

.byte 231, 424

bz 109

C calculator 1
Hewlett-Packard 2, 17
key

enter 3
{6

INDEX

g6
programmable 6
stack 2
call 48, 188, 217, 395
carry 108
C bit 60, 257
central processing unit 38
cexe 295
CISC 321, 322
clr 47, 94, 423
clrb 423
clrh 423
cmp 63, 421
command line arguments 242
.common 235, 425
compare 63
compiler
switch
-g 46, 54
-5 46
complement 89
conditionals 14
condition codes 326
context 432
context switch 309, 319, 338
context table 312
control statements 66
conversion to base 31 351
converting decimal numbers 262
current, window pointer 293
CWP 185, 263

.data 228 424
data 227
data segment 228
data types

C 129
dec 423
deccc 423
decimal numbers 82
delay slot 58, 60
device files 257
disassemble 56
.div 48, 121
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division 118
by two 107
fixed point 263
restoring 119
do loop 71
fortran 66
.double 281, 425
doubleword 129

E ppsac 17, 23
EF-bit 293
emacs
matching parentheses 12

.empty 425

end main 140

ENIAC 17

ET-bit 293

exit 53

exponent 263

F fabss 404
faddd 279, 404
faddq 405
fadds 270, 404
fha 271, 413
fbe 271, 415
fbg 271, 420
fhge 271, 419
bl 271, 417
fble 271, 418
fblg 271, 416
fbn 271, 413
fbne 271, 416
fbo 271, 414
fbu 271, 414
fbue 271, 415
fbug 271, 420
fhuge 271, 419
foul 271, 417
fbhule 271, 418
fcc 295
fcmpd 280, 410
fcmped 411
fempeq 412

fcmpes 411
fempg 410
femps 270, 409
fdivd 408
fdivs 270, 407
fdtoi 280, 401
fdtoq 402
fdtos 280, 402
fdviq 408
file
.c 45
0 45
846
files
open 257
fitod 280, 400
fitoq 400
fitos 270, 399
fixed point numbers 262
flags 95
floating-point 266, 267
accuracy 268
ANSI/IEEE Standard 267
arithmetic units 269
biased exponent, 267
branch instructions 269
code debugging 273
compare instruction 269
compare restriction 271
condition codes 271, 295
division by zero 295
double precision 278
arguments 282
debugging 281
range 27§
exception field 295
extended precision 278
function arguments 282
function calls 282
function return valies 284
infinity 277
initialization to ~1 277
instruction fetch 269
instruction operands 270
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instruction queue 294
invalid operation 295
literals 273

NaN’s 268, 277
negation 267
overflow 295

pointer function arguments 284

processor 266, 269

quad 282

registers 269

register saving 285
result inexact 295
sign-magnitude format 267
single format 267

single range 268
Subnormal numbers 263
subnormal numbers 277
trap enable mask 295
underflow 295
unordered 271

zero 268

fmovs 270, 403
fmuld 279, 406
fmulq 407
fmuls 270, 406
fnegs 404
for loop 72

Y%fp

132, 188

fqtod 403
fqtod 401
tqtos 403
frame pointer 132
fsmuld 279, 407
fsqrtd 409
fsqrtq 409
faqrts 270, 408
FSR 294

fstod 280, 401
fstei 270, 400
fstoq 402
fsubd 279, 405
fsubg 406
fsubs 270, 405

g0 43, 93

gdb 54
break b5
carriage return 58
commands 64
continue 55

INDEX

converting between bases 89

display 57

giant format 281

i format 53

ni 57

print 56

quit 88

run 54

si 58

x 55
gdb commands 78
.gdbinit 66
.global 45, 46, 232, 425

Jhalf 231, 424

halfword 129

hello world 233, 252, 255
hexadecimal numbers 85
%hi 222

ice 293

if else 74

if then 72

inc 422

incce 422

input/output
block devices 2h5
character devices 250
data register 250
device registers 250
directory device 255
I/O processors 256
interrupt bit 255
interrupt code 255
interrupt driven 253
memory mapped 249
programimed 1/0 250
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INDEX

ready bit 251

status register 250

system I/0 256
instruction

branch 218

decode 17, 211

execute 17

fetch 17

format 211

format one 217

format three 212, 215

ibit 212
format two 217
literal 47
range 47

op 211

op3 211

operand 47

storc 17
instructions

store 1356
integer condition codes 60, 293
interprocedural register allocation 338
interrupts

priority 296

jmp 421
jmpl 188, 395

kilo 84

fabel 36, 39
numeric 120

last_sym 136, 138

1d 134, 374

1dd 134, 279, 374

1ddf 398

1df 269, 398

1dsb 134, 373

ldsh 134, 374

1dub 134, 373

lduh 134, 373

library routines 291

linking separate source modules 237

T R R RS
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literal 18, 37
little endian 322
#lo 222
load/store machine 26, 39
loading

32-bit constants 222
load instructions 133
locality of reference 318
local_var 136
location counter 13, 36, 39, 228
logical and 91
logical exclusive or 91
logical nand 91
logical nor 91
logical or 91
logic instructions 89
LRU replacement policy 317

m 230
md 9
machine langnage 7, 38
INACro
add 9
align.d 170, 341
align of 169
arg d 341
arguments 10
evaluation 11
missing 11
quoted 12
begin_fn 194
begin main 341
begin.struct 170, 342
booth_d 343, 351
cat 10
cdef 345
changecom 436
changequote 435, 436
cemul 166, 345, 353, 355
code_d 343, 351
comment 21
compact_d 352
convert_d 343, 350
count.d 343, 352
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decr 436

define 9, 39, 435, 436

defn 436

digit 13, 18

div 9

divert 21, 151, 435

divnum 435

dnl 435

dumpdef 435

end 21

end main 341

end struct 170, 342

errprint 435

eval 13, 39, 349, 435, 436
operators 349 °

field 170, 342

generate_d 345, 352

gobble_d 343, 351

gto 14

ifdef 435

ifelse 146, 348, 435

ifeq 14

include 151, 435

incr 435

index 348, 435

initialize 149

label 14

last_sym 341

len 348, 435

loc 13

local_var 341

mndexit 436

méwrap 436

maketemp 435

mul 9

popdef 436

pse 15

pushdef 436

rcl 9, 11

rtn 9

shift 436

sinclude 435

size_of 169

start.d 345, 354

sto 9, 11

struct_s 341

sub 9

substr 348, 435

syscmd 435

sysval 436

traceoff 436

traceon 436

translate_d 343, 350

translit 348, 435

undefine 435

undivert 435

var 341

word 18
macroarg.d 194
macro_defs.m 151
macroend_fn 194
macro processor 9, 39
_main 46, 55
makefile 241

suffixes 242
memory 2, 17, 38

address 6

alignment 129, 231

cache 318

line 318

context 310

data 6

fetch 318

hierarchy 26

page 310

page table 314

region 312

segments 228

segment table 314

SPARC 129

memory address register 18

memory data register 18

INDEX

memory management unit 310

memory mapping
operating system 313
stack 314

microinstructions 322

microprogramrning 322, 328
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minicomputers 321
MIPS 321, 335
branching 336
branch likely instructions 337
divide instruction 337
floating-point coprocessor 338
instruction format 335
load instruction interlock 336
multiply instruction 337
register assignment, 338
registers 337
slt instruction 336
MMU 310
mov 47, 93, 423
.mul 48, 116
mulscc 115, 364
multiplication 109
by two 107
fixed point 262
negative multiplier 111
multiplication by constants 165
multiply 47

N N bit 60
neg 422
next 50
next program counter 50
no operation 52
nop 52
not 93, 422
%npe 50
null byte 232
numbers

chopping 130

O octal mumbers 85
or 93, 367
orcc 93, 368
orn 92, 03, 368
orncc 93, 369

P page 432
access permission 311
cacheable 311

Q
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modified 311
referenced 311
page descriptor cache 317
pages
alignment 312
page table descriptor 311, 312
page table entry 311, 312
page table pointer 313
paging 315, 317
pc 7
%pc 50
pc relative addressing 217, 218
pdp-11 321, 322
deferred addressing modes 323
direct addressing modes 323
one operand instructions 326
shift instruction 327
similarity to C 326
subroutine linkage 327
two operand instructions 326
physical page number 311
PIL 293
pipeline 48
pointer arrays 234
pointers to external variables 233
pop 2, 18
positional notation 83, 95
fractions 261
powers of two 432
PPN 311
privileged instructions 292
processor interrupt level 293
processor state register 203
program counter 7, 15, 17, 38, 50
program counter addressing 325
PS-bit 293
pseudo-op 45
PTP 313
push 2, 18

.quad 425
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radix 96
RD 2G5
rdpsr 293
rdtbr 294
rdy 292, 364
read-only memory 227
read-write memory 227
region 432
register 4, 38, 43
context 310
context table pointer 310
CWT 299
file 185
floating-poiut state 294
general-purpose 323
global 43, 185
in 43, 185
local 43, 185
mapped 135
out 43, 48, 185
PSR, 293
saved 185
saving 184
trap base 294
WIM 299
window invalid magk 293
%Y 115, 292
register file 26
relocation 231, 237
.rem 121
renormalization 263
restore 185, 397
operands 188
ret 189, 421
retl 203, 421
rett 292, 293, 298, 309, 317, 396
RISC 321, 328
RS232 250

S-bit 293

save 46, 132, 185, 397
operands 188

scientific notation 263

segment 432

INDEX

set 223, 234, 422
sethi 146, 217, 222, 396
shift
arithmetic 107
logical 107
shifting 107
signed immediate 13 212
gignificand 263
.single 273, 425
.skip 231, 424
s1l 107, 372
%sp 130
SPARC 43
sTa 107, 372
srl 107, 372
st 135, 375
stack 2, 18, 130
doubleword alignment 130
expression evaluation 3
instruction execution 18
stack machine 17, 39
stack pointer 130
stall 134
stb 135, 375
std 135, 279, 376
stdf 399
stf 269, 399
sth 135, 375
store instructions 133
string macros 347
structure
access 172
fields 168
structures 168
automatic variables 171
nested 172
sub 47, 361
subcce 60, 361
subroutine
arguments 189
byte 190
halfword 190
in-line 190
registers 190
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space 190
stack 190
leaf 203
register usage 203
linkage 188
many arguments 200
open 184
efliciency 184
pointer arguments 204
return 189
returning a struct 198
return value 197
struct pointer 190
subtraction
fixed point 262
unsigned 108
subx 123, 362
subxcc 123, 362
supervisor mode 291
swap 376
switch statement 235
symbol table 39

T t 386
ta 52, 386
table walking 317
taddcec 176, 360
taddcctv 176, 360
tag 317
TBA 264
TBR 294
tece 393
tcs 392
te 386
TEM 205
testing 59
tests
condition codes 109
text 227 '

ctext 228, 424
text segment 228
tg 389

tge 388

tgeu 390
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tgu 391
time-sharing 309
t1 387
tle 388
tleu 390
tlu 389
tn 386
tne 387
tneg 392
token suffix
am 20
_r 20
tpos 391
transfer between floating-point and in-
teger registers 283
translation lookaside buffer 317
trap
base address 294
handler code 296
handling 296
page fault 317
priority 295
privileged instruction 292
registers 185
return 298
return reexecute instruction 298
return to next instruction 298
type 204
unimplemented instruction 292
window overflow 303
trap instruction 52, 292
traps 52, 256, 295
arguments 257
device interrupt 292
service request 257
traps enabled 293
tst 94, 421
tsubcc 176, 363
tsubcety 176, 363
tt 204
tve 394
tvs 393
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udiv 121
umul 116
.urem 121
user mode 291

var 136, 138, 146
variables
automatic 132
external 227
initialized 227
stack 133
offsets 135
zero initialized 227
vax-11 328
addressing modes 329
compatibility mode 328
floating-point 332
index instruction 332
instruction format 331
instructions 329
literal mode 330
memory mapping 335
POLY instructions 332
register assignment 332
subroutine linkage 333
virtual memory 328
V bit 60
ven Neumann cycle 17, 39
von Neumann Machine 17

while loop 67

WIM 185, 293
window overflow trap 188
window traps 299
word 230, 424

word 129

working set 315
write to memory 318
wrpsr 293

wrtbr 294

wry 292, 365

X xnor 92, 93, 370
xnorcc 93, 371
xor 93, 369
xorcc 93, 370

Y Y register 115, 292

Z Z bit 60
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