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Abstract

The realization that the microbiota—gut—brain axis plays a critical role in health and
disease has emerged over the past decade. The brain—gut axis is a bidirectional
communication system between the central nervous system (CNS) and the gastrointes-
tinal tract. Regulation of the microbiota—brain—gut axis is essential for maintaining ho-
meostasis, including that of the CNS. The routes of this communication are not fully
elucidated but include neural, humoral, immune, and metabolic pathways. A number
of approaches have been used to interrogate this axis including the use of germ-free
animals, probiotic agents, antibiotics, or animals exposed to pathogenic bacterial infec-
tions. Together, it is clear that the gut microbiota can be a key regulator of mood,
cognition, pain, and obesity. Understanding microbiota—brain interactions is an
exciting area of research which may contribute new insights into individual variations
in cognition, personality, mood, sleep, and eating behavior, and how they contribute to
a range of neuropsychiatric diseases ranging from affective disorders to autism and
schizophrenia. Finally, the concept of psychobiotics, bacterial-based interventions
with mental health benefit, is also emerging.

1. INTRODUCTION

A bidirectional communication between the brain and gut exists that
is referred to as the gut—brain axis (Rhee, Pothoulakis, & Mayer, 2009;
Wood, Alpers, & Andrews, 1999). Mammals live in a coevolutionary asso-
ciation with huge quantities of commensal microorganisms resident on the
exposed and internal surfaces of their bodies. The entirety of microorganisms
in a particular habitat is termed microbiota, with the collective genomes of
all the microorganisms in a microbiota referred to as the microbiome (Cryan
& Dinan, 2012). Accumulating evidence from both clinical and basic med-
ical research is driving our increased awareness of the significance of the hu-
man microbiota in maintaining a healthy central nervous system (CNYS)
(Mayer, Knight, Mazmanian, Cryan, & Tillisch, 2014).
It is estimated that 10'* microorganisms reside in the adult gastrointes-
tinal (GI) tract which amounts to 10 times the number of human cells in
the body, the majority of which are comprised of bacteria from 500 to
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1000 different species that vary in stability, diversity, and number
throughout development and across different human populations (Arumu-
gam et al., 2011; Eckburg et al., 2005; Frank & Pace, 2008). Interestingly,
the catalogue of microbial genes living in the human gut contains 3.3 million
microbial genes which amount to 150-fold more than the human gene
complement (Qin et al., 2010; Zhu, Wang, & Li, 2010). Though consider-
ably smaller in size, these approximately 100 trillion cells add up to a mass of
almost 1—2 kg in an adult individual—approximately the weight of a full-
grown human brain (Forsythe & Kunze, 2013; Parent, 1996; Stilling, Dinan,
& Cryan, 2014).

The human microbiota composition is host specific, and relatively stable
(Zoetendal, Akkermans, & De Vos, 1998). The microbiome is composed of
two major bacterial phyla, Bacteroidetes and Firmicutes, with others such as
Proteobacteria, Actinobacteria, Fusobacteria, Archaea, and Verrucomicrobia
phyla also present but in relatively small quantities (Grenham, Clarke, Cryan,
& Dinan, 2011). The microbiota matures in the first three years of life
(Gonzalez et al., 2011; Wopereis, Oozeer, Knipping, Belzer, & Knol, 2014)
and has a physiological fundamental role in intestinal motility and in the devel-
opment of the metabolic and immune systems (mucosal and systemic) (Cebra,
1999), thus protecting the host against pathogens, participating in the digestion
of meals and drugs, and influencing fat absorption and distribution (Musso,
Gambino, & Cassader, 2010; Patterson et al., 2014; Serino et al., 2012). In
early development factors that shape the bacterial landscape include mode of
delivery, feeding regime, environment, gestational age, host genetics, exposure
to infections (both maternal and infant), and antibiotic usage (Cryan & Dinan,
2015). Moreover, stress, especially that in early life and prenatally, can have
marked effects on microbiota composition. Shaping of the microbiota occurs
in parallel with neurodevelopment and they have similar critical develop-
mental windows (Borre, O’Keefte, et al., 2014). Hosts also benefit from several
other properties of the intestinal microbiota: vitamin K synthesis, trophic
effects on intestinal epithelial cells, energy salvaging from unabsorbed food
by short-chain fatty acids (SCFAs) production, growth inhibition of pathogens,
maintenance of the intestinal barrier integrity and mucosal immune homeosta-
sis and participation in the xenobiotic metabolism system (Backhed, Ley,
Sonnenburg, Peterson, & Gordon, 2005; Patterson et al., 2014). The micro-
biota critically supports host metabolism and yields a source of metabolites,
many of which would otherwise not be available to host cells.

It has been suggested that the human gut microbiota may fall into
different compositional categories or enterotypes, characterized by
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differences in the abundance of signature taxa, (Arumugam et al., 2011) but
this concept has been challenged more recently (Knights et al., 2014). What
is clear is the enrichment of specific bacterial communities in our GI tract
appears to be directly linked to their function in degrading the type of
food we are consuming (Lakshminarayanan, Stanton, O’Toole, & Ross,
2014; Power, O’Toole, Stanton, Ross, & Fitzgerald, 2014).

There is a rapidly increasing amount of evidence implicating host—
microbe interactions at virtually all levels of complexity, ranging from direct
cell-to-cell communication to extensive systemic signaling, and involving
various organs and organ systems, including the CNS (Stilling, Bordenstein,
Dinan, & Cryan, 2014). Thus, the sole presence of microorganisms as well as
the specific composition of this microbiota has multiple, critical conse-
quences for host physiological and metabolic processes ranging from post-
natal development and immunomodulation to, perhaps most surprisingly,
behavior and cognition (Sommer & Backhed, 2013; Stilling, Dinan, et al.,
2014). In this chapter, we highlight our current understanding on the under-
lying mechanisms of microbiota—gut—brain interactions and associated
behavioral alterations.

g 2. PATHWAYS OF MICROBIOTA—GUT—BRAIN
COMMUNICATION

The bidirectional signaling between the GI tract and the brain is vital
for maintaining homeostasis and is regulated at the neural (both central and
enteric nervous systems (ENSs)), hormonal, and immunological levels. In-
terest in the potential involvement of gut microbiota in brain function
emerged, in part, due to the well-described pathways of communication be-
tween the brain and the GI tract (brain—gut axis) which has been heavily
studied in the area of food intake, satiety, and the regulation of the digestive
tract (Cryan & O’Mahony, 2011; Davey et al., 2011; Sam, Troke, Tan, &
Bewick, 2012; Schellekens, Finger, Dinan, & Cryan, 2012). The brain—
gut axis plays an important role in maintaining homeostasis and its dysfunc-
tion has been linked to various psychiatric and nonpsychiatric disorders
(Cryan & O’Mahony, 2011; Grenham et al., 2011; O’Mahony, Hyland,
Dinan, & Cryan, 2011). Moreover, modulation of the brain—gut axis is
also linked to the stress response and altered behavior with the microbiome
being an important factor in the brain—gut axis communication network
(Bercik, Denou, et al., 2011; Clarke et al., 2013; Dinan & Cryan, 2012).
Recently, the microbiota—gut—brain axis is becoming recognized in
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biomedical research, creating multidisciplinary approach in the fields of
neuroscience, psychiatry, gastroenterology, immunology, and microbiology
(Collins, Surette, & Bercik, 2012; Cryan & Dinan, 2012; Rhee et al., 2009).

This complex network of communication between the gut microbiota
and the brain comprises the CNS, and both the sympathetic and parasym-
pathetic branches of the autonomic nervous system (ANS) and the enteric
nervous system in addition to the neuroendocrine and neuroimmune sys-
tems (Grenham et al., 2011; Moloney, Desbonnet, Clarke, Dinan, & Cryan,
2014). However, the exact mechanism of the microbiota role is not deter-
mined as not much is known of the microbial composition and the vast
quantity, diversity, and the functional capabilities all these gut microorgan-
isms (Moloney et al., 2014).

2.1 Neural Pathways

The neuronal control of the brain—gut axis transits between the CNS and
the ENS via the ANS and peripheral nervous system (Jones, Wessinger, &
Crowell, 2006; Rhee et al., 2009). Afterent signals of sensation, nociception,
proprioception, or satiety, transmit from the GI tract to the brain, notably
via vagal (vagus nerve), spinal (dorsal ganglia root), and somatosensory affer-
ents (Grundy et al., 2006; O’Mahony et al., 2011). These signals reach relay
structures such as the brain stem and periaqueductal gray, that further syn-
apse into regulative, emotional, associative, motor, or sensory brain areas,
such as the hypothalamus, thalamic nuclei, the limbic system (hippocampus,
amygdala), somatosensory cortex (Grundy et al., 2006). Efferent responses or
control messages are sent back to the ENS via spinal (ventral motor root) or
vagal efferent. The ENS constitutes a secondary sensory, interneuronal, and
motoneuronal network working on its own, allowing to be referred to as
the “brain of the gut” or the “second brain” (Galligan, 2002). The ENS is
important for good coordination of gut functions and maintaining the gen-
eral homeostatic state of the organism (control of colon motility, the GI
blood flow, and interaction with intraluminal and epithelial gut cells
signaling) in order to maintain the optimal performance even in situations
of threat (Galligan, 2002; Holzer, 2007). This continuous communication
with the brain is facilitated by neurotransmitters, such as acetylcholine,
noradrenaline, adrenaline, gamma-amino butyric acid (GABA), neuropep-
tides, such as substance P, neuropeptide Y, and opioids (Grundy et al.,
2006; Mertz, 2002). The ENS is divided into two neuronal networks or
plexus. The myenteric plexus, embedded into two layers of circular and lon-
gitudinal muscles, controls colon motility, whereas the submucous plexus,
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lying on the submucosa layer of the digestive tube, directly controls GI
blood flow and interacts with intraluminal and epithelial gut cells signaling
(Goyal & Hirano, 1996; Wood et al., 1999). Electrophysiological studies in
the area of microbiota reveal its role in ENS functioning. Previous work
demonstrated that the probiotic, Lactobacillus reuteri targets an ion channel
in enteric sensory nerves which may be mediating its effects on gut motility
and pain perception (Kunze et al., 2009). Interestingly, it has been shown
that electrophysiological properties of myenteric neurons are altered in
germ-free mice specifically; decreased excitability in myenteric sensory neu-
rons was found in the absence of intestinal microbiota. Upon colonization of
germ-free mice with normal gut microbiota, excitability of after-hyperpo-
larization sensory neurons in germ-free mice was increased (McVey Neu-
feld, Mao, Bienenstock, Foster, & Kunze, 2013). A more recent study has
shown that the gut contains intrinsic primary afferent neurons that relay
or gate signals originating from the lumen to the vagal sensory ganglia via
an intramural nicotinic sensory relay synapse (Perez-Burgos, Mao, Bienen-
stock, & Kunze, 2014).

The vagus nerve is the major nerve of the parasympathetic division of the
ANS and has been shown to be an important pathway for bidirectional
communication between the gut microbes and the brain (Bercik, Park,
et al., 2011; Perez-Burgos et al., 2013). For example, introduction of Lacto-
bacillus rhammnosus (JB-1) in the jejunal lumen of mice resulted in vagal affer-
ents being activated and that this activation was recorded as an increase in the
spontaneous frequency (Perez-Burgos et al., 2013). Moreover, chronic
treatment with L. rhamnosus induced region-dependent alterations in
GABA receptor expression in the brain and reduced stress-induced cortico-
sterone and anxiety- and depression-like symptoms via vagus nerve signaling
in mice (Bravo et al., 2011). In the same line, the anxiolytic effect of Bifido-
bacterium longum was observed only in nonvagotomized mice in an animal
model of colitis (Bercik, Park, et al., 2011). Therefore, the brain—gut axis
not only constitutes a purely mechanistic axis, but is a dynamic system in
permanent interaction and adjustment with both internal and external
milieu and factors, such as physical, physiological, and psychological events
(Enck, Martens, & Klosterhalfen, 2007).

2.2 Serotonin and Tryptophan Metabolism

Serotonin [5-hydroxytryptamine] is a biogenic amine that functions as a
neurotransmitter in the body, both in the CNS and the gut. Approximately,
95% of serotonin in the body is contained within the gut, specifically, in the
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enterochromattin cells of the mucosa and in the nerve terminals of the ENS
neurons. Peripheral serotonin is involved in the regulation of GI secretion,
gut motility, and pain perception (Costedio, Hyman, & Mawe, 2007;
McLean, Borman, & Lee, 2007) and it plays an important role in maintaining
mood and cognition (Cryan & Leonard, 2000). Alterations in serotonin trans-
mission may underlie the pathological symptoms of both GI and some psychi-
atric disorders, and may explain their high comorbidity (O’Mahony, Clarke,
Borre, Dinan, & Cryan, 2015). Actually, selective serotonin reuptake inhib-
itors and tricyclic antidepressants modulating serotonergic neurotransmission,
have been shown to be effective in the treatment of both aftective and GI dis-
orders such as irritable bowel syndrome (IBS) (Chua, Keating, Hamilton,
Keeling, & Dinan, 1992; Tack et al., 2006; Weilburg, 2004).

Serotonin synthesis in the brain depends on the availability of its precur-
sor, tryptophan which is an essential amino acid and must be supplied in suf-
ficient quantities in the diet (Le Floc’h, Otten, & Merlot, 2011). The
evidence of a relationship between the microbiota and tryptophan meta-
bolism has emerged from germ-free mice studies, whereby the absence of
the microbiota in early life resulted in increased plasma tryptophan concen-
trations, reduced kynurenine:tryptophan ratio, and induced increases in hip-
pocampal serotonin levels in adulthood. Moreover, these effects were
restored following the introduction of bacteria in germ-free mice post-
weaning (Clarke et al., 2013). Furthermore, inhibition of the enzyme that
initiates the first and rate-limiting step of tryptophan breakdown along the
kynurenine pathway indoleamine-(2,3)-deoxygenase, in rats resulted
decreased concentrations of serotonin in brain and associated change in anx-
iety behavior in the elevated plus maze, demonstrating that peripheral tryp-
tophan can influence brain activity and, more importantly, behavior
(Naslund, Studer, Nilsson, Westberg, & Eriksson, 2013). The enzymes
indoleamine-(2,3)-deoxygenase and tryptophan 2,3-dioxygenase are regu-
lated by inflammatory mediators like proinflammatory cytokine IFN-c
and corticosteroids, respectively (Ruddick et al., 2006; Taylor & Feng,
1991). Excessive immune-mediated tryptophan degradation may induce
depressive symptoms when the availability of tryptophan is insufficient for
normal serotonin synthesis. Moreover, depressive illness has been associated
with reduced plasma tryptophan concentrations and enhanced enzymatic
activity, as reflected by an increase in the kynurenine:tryptophan ratio
(Myint et al., 2013). Interestingly, there is evidence to suggest that the pro-
biotic Bifidobacterium infantis affects tryptophan metabolism (Desbonnet,
Garrett, Clarke, Bienenstock, & Dinan, 2008). Moreover, ingestion of
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Lactobacillus helveticus, for the treatment of hyperammonemia, in rats signifi-
cantly reduced the level of inflammatory markers, decreased serotonin meta-
bolism and restored cognitive function and improved anxiety-like behavior
(Luo et al., 2014).

The specific mechanisms underlying this putative modulatory interac-
tion remain unknown and much work has yet to be done to elucidate the
processes involved in this potentially important pathway of communication
between the gut microbiota and the CNS (See Figure 1).

2.3 Immune System

The maturation of the immune and neurological systems, as well as the mi-
crobial colonization, initiated within the fetal period, are dynamic in their
character and are expanding in time through the first months and even years
of human’s life (Li, Wang, & Donovan, 2014). Naturally, the immune sys-
tem plays an important intermediary role in the dynamic equilibrium that
exists between the brain and the gut (Bengmark, 2013). The gut itself is
an important immune organ forming a crucial defensive barrier between
externally derived pathogens and the internal biological environment.
The gut-associated lymphoid tissues, together, form the largest immune or-
gan of the human body (Qiao, Thornton, & Shevach, 2007). In animals, in-
fectious microorganisms have been well documented to affect behavioral
measures through activation of the central immune response. For example,
the pathogenic bacteria, Campylobacter jejuni, when administered to mice at
subclinical doses, resulted in anxiety-like behavior (Lyte, Varcoe, & Bailey,
1998). In addition, peripheral administration of proinflammatory cytokines
in rodents induces depressive-like behaviors, disturbances of sleep, reduced
appetite and fatigue, symptoms collectively referred to as sickness behaviors
(Bilbo & Schwarz, 2012). More recently, specific effects of the intestinal
microbiota on the local and distal immune systems have been uncovered
with important consequences for health and disease. Indeed, alterations in
intestinal microbial composition have been associated with various disease
states (Lei, Nair, & Alegre, 2014). The immunoregulatory effects of probi-
otic microorganisms may occur through the generation of T regulatory cell
populations and the synthesis and secretion of the anti-inflammatory cyto-
kine, IL-10 (Amar et al.,, 2011). In healthy individuals, the microbiota
may constantly calibrate and arm the immune system to be ready to fight
potential infections. For example, the microbiota has been shown to confer
protection against Escherichia coli-induced sepsis, where antibiotic-induced
dysbiosis resulted in reduced production of IL-17, granulocyte-colony
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Figure 1 Pathways involved in bidirectional communication between the gut micro-
biota and the brain. There are many potential direct and indirect pathways through
which the gut microbiota can modulate the gut—brain axis. They include endocrine
(cortisol), immune (cytokines), and neural (vagus and enteric nervous system) path-
ways. The gut microbiota and probiotic agents can alter the levels of circulating cyto-
kines, and this can have a marked effect on brain function. Both the vagus nerve and
modulation of systemic tryptophan levels are strongly implicated in relaying the influ-
ence of the gut microbiota to the brain. Stress at the level of the CNS can also impact on
gut function and lead to perturbations of the microbiota. In addition, short-chain fatty
acids (SCFAs) are neuroactive bacterial metabolites of dietary fibers that can also modu-
late brain and behavior. Harnessing such pathways may provide a novel approach to
treat various brain disorders. Neurotransmitters: serotonin, dopamine, norepinephrine,
GABA. Adapted from Cryan and Dinan (2015).
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stimulating factor (Deshmukh et al., 2014). Additionally, in a model of
influenza-induced lung infection, antibiotic-treated mice exhibited a reduc-
tion in influenza-specific CD4" and CD8™ T cells, resulting in increased pul-
monary viral titers (Ichinohe et al., 2011). This was associated with decreased
migration of dendritic cells after viral infection, an IL-1B-inflammasome-
dependent event, suggesting that the microbiota may participate in priming
the distal immune system (Ichinohe et al., 2011; Lei et al., 2014). Moreover,
oral consumption of B. infantis 35624 in humans is associated with enhanced
IL-10 expression in human peripheral blood (Konieczna, Akdis, Quigley,
Shanahan, & O’Mahony, 2012; Konieczna, Groeger, et al., 2012). Indeed,
mononuclear phagocytes in germ-free mice were less capable of producing
type I and type II interferons (IFN), which resulted in defects in antiviral im-
munity, implicating microbiota signals in making the distal immune system
competent (Abt et al., 2012; Ganal et al., 2012).

In immunocompromised patients, intestinal dysbiosis may occur as a
result of antibiotic therapy and perhaps reduced immune function, such
that opportunistic pathogenic bacteria may rise and possibly translocate
and provoke systemic infections (Taur & Pamer, 2013). Correction of mi-
crobial imbalances may help prevent outgrowth of pathogens and infectious
complications (Lei et al., 2014). Therefore, it is likely that the intestinal mi-
crobial balance closely regulates inflammatory responses in the host, and dis-
turbances to this microbial balance, particularly in early life (O’Mahony
et al., 2009), may result in a chronic inflammatory state that can lead to mal-
adaptive changes in mood and behavior (See Figure 1).

2.4 Gut Hormonal Response

The gut can also communicate with the brain via hormonal signaling path-
ways that involve the release of gut peptides from enteroendocrine cells,
which can act directly on the brain (Forsythe & Kunze, 2013). Gut peptides,
such as ghrelin, gastrin, orexin, galanin, pancreatic polypeptide, cholecysto-
kinin, and leptin, modulate feeding behavior, energy homeostasis, circadian
rhythm, sexual behavior, arousal, and anxiety (Cameron & Doucet, 2007;
Kirchgessner, 2002; Wren & Bloom, 2007). For example, galanin is sug-
gested to modulate the hypothalamic—pituitary—adrenal axis (HPA)
response to stress and may act as a link between stress, anxiety, and memory
given the established adverse effects of galanin on cognitive function (Rustay
et al., 2005; Wrenn et al., 2006). Similarly, ghrelin may be involved in the
modulation of the HPA response to stress or changes in metabolic status
(Finger, Dinan, & Cryan, 2011; Giordano et al., 2006). Indeed, ghrelin
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which is released from the upper GI tract under conditions of hunger, re-
duces both anxiety-like and depression-related behavior (Lutter et al.,
2008; Schellekens et al., 2012). The subsequent identification of orexins
and their receptors in the ENS (including the myenteric and the submucosal
plexuses) as well as in mucosa and smooth muscles has suggested that these
neuropeptides may also exhibit local action (Baccari, 2010). In summary,
ghrelin may contribute to the stress-induced rise in glucocorticoids, acti-
vating the negative feedback loop in an attempt to prevent HPA axis over-
stimulation (Schellekens, Dinan, & Cryan, 2013). Leptin receptors can be
found in limbic structures, and chronic leptin treatment reverses stress-
induced behavioral deficits (Lu, Kim, Frazer, & Zhang, 2006), suggesting
a potential role for this hormone in emotional processes (Finger, Dinan, &
Cryan, 2010). The idea that changes in enteric microbiota composition
can alter gut hormone release is supported by probiotic studies (D1 Gianca-
millo et al., 2008; Lesniewska et al., 2006). Furthermore, germ-free studies
suggest that the gut microbiota mediates and regulates the release of gut pep-
tides (Schele et al., 2013), yet little is known about the underlying mecha-
nism of the hormonal aspect of the microbiota—gut—brain communication.
NPY is another target thought to be involved in microbiome—brain inter-
actions as it is sensitive to microbiota manipulations and functions both as a
neural and endocrine messenger (Holzer, Reichmann, & Farzi, 2012). NPY
is present at numerous locations throughout the microbiota—gut—brain axis
and have a broad array of functions such as regulation of mood, stress resil-
ience, and GI motility (Holzer et al., 2012).

Not only do bacteria in the gut produce hormone-like substances and
regulate hormonal output, they can also potentially respond to the hormon-
al secretions of the host (Lyte, 2013). Elevations in noradrenaline concentra-
tions after acute stress can, for example, stimulate the growth of
nonpathogenic commensal E. coli as well as other gram-negative bacteria
(Freestone et al., 2002). NPY has been found to exhibit a direct antimicro-
bial effect against various gut bacteria including E. coli, Enterococcus faecalis,
and Lactobacillus acidophilus (E1 Karim, Linden, Orr, & Lundy, 2008). The
role of the gut hormonal response in the microbiota—gut—brain cross talk
is clearly an area of research that demands more attention and may offer
novel therapeutic targets for the brain—gut axis disorders.

2.5 Bacterial Metabolites: Short-Chain Fatty Acids

Under the anaerobic conditions of the large intestine, undigested carbohy-
drates are fermented mainly to SCFAs (such as butyrate and acetate) and gases
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(hydrogen, carbon dioxide, methane, and hydrogen sulphide). SCFAs have
multiple effects on the host, as the major anions in the colon and as energy
sources for the host, with butyrate being consumed mainly by the colonic
epithelium and acetate becoming available systemically (Pomare, Branch,
& Cummings, 1985). It has also been recognized that SCFAs signal to the
gut receptors such as free fatty acid receptor 2 (FFAR2, formerly known
as GPR43) and free fatty acid receptor 3 (FFAR3, formerly known as
GPR41). These receptors are involved in controlling anorectic hor-
mones—including peptide Y'Y and glucagon-like peptide 1—that have roles
in appetite control, thus providing a potential link between microbial SCFA
formation and food intake (Sleeth, Thompson, Ford, Zac-Varghese, & Frost,
2010). Moreover SCFAs may modulate enteroendocrine serotonin secretion
(Evans, Morris, & Marchesi, 2013). Other reported influences include anti-
cancer effects (especially for butyrate), anti-inflammatory properties (Hamer
et al., 2008), and changes in gut motility and energy expenditure (Gao et al.,
2009; Lewis & Heaton, 1997). Circulating SCFAs, such as butyrate and pro-
pionate, travel to sites far removed from their site of production and can be
carried by monocarboxylate transporters, which are abundantly expressed at
the blood—brain barrier (Maurer, Canis, Kuschinsky, & Duelli, 2004). This
provides a plausible mechanism through which they can cross the blood—
brain barrier and enter the CNS. Once available in the CNS, they can be
taken up via these same monocarboxylate transporters on glia and neurons
(Pellerin, 2005; Pierre & Pellerin, 2005), and they are thought to comprise
a major energy source in cellular metabolism, particularly during early brain
development (Rafiki, Boulland, Halestrap, Ottersen, & Bergersen, 2003).
Interestingly, intraventricular administration of propionic acid in rats induces
a variety of behavioral alterations relevant to autism, although it is unclear
whether this occurs via similar mechanisms as seen in the periphery (Macfabe,
2012). It is worth noting that FFAR3, a receptor activated by propionic acid,
is highly expressed in rat brain tissue (Bonini, Anderson, & Steiner, 1997).
SCFA interaction with FFAR2 can profoundly affect inflammatory responses
(Maslowski et al., 2009). Sodium butyrate, injected systemically induced a
shortlasting transient acetylation of histones in frontal cortex and hippocam-
pus in conjunction with dynamic changes in expression of the brain-derived
neurotropic factor (BDNF), thereby resulting in an antidepressant-like
behavioral response in mice (Schroeder, Lin, Crusio, & Akbarian, 2007).
Therefore, changes in the relative production rates of the major SCFAs by
the colonic microbiota are likely to have important physiological conse-
quences (Clarke, Stilling, et al., 2014) (See Figure 1).
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There is some evidence that microbes via SCFAs do have a significant
impact on epigenetic regulation in the host’s gut epithelium and immune
system. The effects were reported to be largely mediated by butyrate and
related to altered activity of histone deacetylases (Chang, Hao, Oftermanns,
& Medzhitov, 2014; Smith et al., 2013). Propionate and other SCFAs, as
well as lactate and pyruvate, have activity histone deacetylase inhibitory
functions as well, but to a much lesser degree compared to butyrate (Latham
et al,, 2012; Waldecker, Kautenburger, Daumann, Busch, & Schrenk,
2008). Inhibition of histone deacetylases leads to increased histone acetyla-
tion and thereby promotes stimulus-driven transcription in active neurons.
This has been shown to facilitate long-term memory consolidation and neu-
roprotection/-regeneration in animal models of learning and memory and
neurodegenerative diseases (Govindarajan, Agis-Balboa, Walter, Sananbe-
nesi, & Fischer, 2011; Graft & Tsai, 2013; Peleg et al., 2010). Though the
effect of SCFAs that reach the CNS may be rather subtle, cumulative
chronic delivery of SCFAs by the gut microbiota may result in longlasting,
stable effects on gene expression (Stilling, Dinan, et al., 2014). Indeed, intra-
cerebroventricular administration of relatively high doses of the SCFA pro-
pionic acid results in some autistic-like behaviors in rats (MacFabe, Cain,
Boon, Ossenkopp, & Cain, 2011; Thomas et al., 2012). Moreover, it has
been proposed that the microbiota may even be viewed as an epigenetic en-
tity itself as it exhibits similar features in its interaction with the host as
compared to classical epigenetic mechanisms such as histone modifications
and DNA methylation (Stlling, Dinan, et al., 2014). Thus, the fields of
(neuro)epigenetics and microbiology have the potential to converge at
many levels and more interdisciplinary studies are necessary to unravel the
full range of this interaction.

2.6 Host Genetics

The gut microbiome is environmentally acquired from birth (Costello,
Stagaman, Dethlefsen, Bohannan, & Relman, 2012), therefore, it may func-
tion as an environmental factor that interacts with host genetics to shape
phenotype, as well as a genetically determined attribute that is shaped by,
and interacts with, the host (Bevins & Salzman, 2011; Spor, Koren, &
Ley, 2011). Importantly, the human microbiota has been extensively inves-
tigated in recent years using the advances in next-generation sequencing and
related omics technologies (Clarke, O’Toole, Cryan, & Dinan, 2014;
Cotter, Stanton, Ross, & Hill, 2012). These have provided essential infor-
mation not only on the microbial composition in health and disease, but
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also on its impact on host metabolism and physiology (Cotter et al., 2012;
Fouhy, Guinane, et al., 2012; Kim, Jeon, & Chun, 2013). Although gut
microbiota can differ markedly in diversity across adults (Goodrich et al.,
2014; Huttenhower et al., 2012; Qin et al., 2010), family members are often
observed to have more similar microbiota profiles than unrelated individuals
(Lee, Sung, Lee, & Ko, 2011; Tims et al., 2013; Yatsunenko et al., 2012).
Familial similarities are usually attributed to shared environmental influ-
ences, such as dietary preference, a powerful shaper of microbiota composi-
tion (David et al., 2014; Wu et al., 2011; Zhao et al., 2014). Support for a
host genetic effect on the microbiota comes mostly from studies taking a tar-
geted approach. For instance, the concordance rate for carriage of the
methanogen Methanobrevibacter smithii is higher for monozygotic than dizy-
gotic twin pairs (Hansen et al., 2011), and studies comparing microbiota fin-
gerprints between human subjects differing at specific genetic loci have
shown gene—microbiota interactions (Frank et al., 2011; Khachatryan
et al., 2008; Rausch et al., 2011; Rehman et al., 2011; Wacklin et al.,
2011). A more general approach to this question has linked genetic loci
with abundances of gut bacteria in mice (Benson et al., 2010; McKnite
etal., 2012). In humans, the heritability of the gut microbiome was assessed
in a well-powered twin study, by comparisons made between monozygotic
and dizygotic twin pairs. This allowed identification of the most heritable
taxon, the family Christensenellaceae, that also formed a cooccurrence
network with other heritable bacteria and with methanogenic Archaea
(Goodrich et al., 2014). A notable component of this network was the
archaeal family Methanobacteriaceae. Furthermore, Christensenellaceae
and its partners were enriched in individuals with low body mass index
(Goodrich et al., 2014). The host alleles underlying the heritability of gut
microbes, once identified, should allow to understand the nature of the
association with these health-associated bacteria and eventually to exploit
them to promote health.

g 3. MICROBIOTA REGULATION

Although a stable core microbiome is shared among individuals,
certain gut microbial populations fluctuate over time, depending on several
factors, such as mode of delivery, feeding regime, maternal diet/weight, pro-
biotic and prebiotic use, and antibiotic exposure pre-, peri-, and postnatally
(Fouhy, Ross, Fitzgerald, Stanton, & Cotter, 2012).
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3.1 Germ-Free Studies
Germ-free animals are important for examining the relationship of the gut
microbiota and brain function (Grover & Kashyap, 2014; Kirk, 2012).
The use of germ-free animals enables the direct assessment of the role of
the microbiota on all aspects of physiology (Cryan & Dinan, 2012).
Germ-free animals are maintained in a sterile environment in gnotobiotic
units, eliminating the chance of the postnatal colonization of their GI tract,
thus, being a microbiota-free control group for the conventionally colo-
nized gut of their counterparts. In adult germ-free mice, exposure to a
mild restraint stress induced an exaggerated release of adrenocorticotropic
hormone and corticosterone compared with control mice with a normal
composition of microbiota. The stress response in germ-free mice could
be partially reversed by colonization with fecal matter from control animals
and was fully reversed by B. infantis (Sudo et al., 2004). Despite, exaggerated
neuroendocrine responses to stress as demonstrated by increased basal levels
of plasma corticosterone (Neufeld, Kang, Bienenstock, & Foster, 2011;
Sudo et al., 2004), several independent laboratories have demonstrated
consistent decreases in anxiety-like behavior in germ-free mice when
exposed to novel and aversive environments (elevated plus maze, light/
dark box, open field) (Clarke et al., 2013; Diaz Heijtz et al., 2011; Neufeld
et al., 2011). Decreased anxiety in germ-free mice is normalized following
postweaning bacterial colonization (Clarke et al., 2013). Moreover, germ-
free mice also show social deficits characterized by reduced sociability
with a novel stimulus mouse, in the three compartment arena compared
with their conventional counterparts. Furthermore, germ-free mice
exhibited repetitive grooming behavior and social cognitive deficits
(Desbonnet, Clarke, Shanahan, Dinan, & Cryan, 2014), suggesting that
the gut microbiota plays a role in socially driven behaviors which may be
of relevance to certain psychiatric and/or neurodevelopmental disorders
(see Section 4.5). Additionally, germ-free mice demonstrate impairments
in nonspatial and working memory tasks (novel object recognition and
spontaneous alternation assessed in the T-maze) in contrast to convention-
ally reared, control mice with an intact intestinal microbiota (Gareau et al.,
2011). A recent study in rats has demonstrated that germ-free rats have
enhanced anxiety-like behavior and neuroendocrine response to acute stress
(Crumeyrolle-Arias et al., 2014).

The behavioral findings in germ-free mice correlate with molecular
changes, as it has been found that germ-free mice have reduced levels of
N-methyl-D-aspartate (NMDA) receptors, specifically the NR1 and
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NR2A subunits, in the hippocampus (Sudo et al., 2004), or NR2B subunits
in the amygdala (Neufeld et al., 2011). These molecular targets have been
shown to play a key role in neuropsychiatric disorders (Lakhan, Caro, &
Hadzimichalis, 2013). Interestingly, a decrease in hippocampal BDNF
mRINA expression was observed in male germ-free animals, a qualitative
increase in BDNF mRNA expression was present in female germ-free
mice, suggesting that BDNF expression differences are related to sex
(Clarke et al., 2013). More recently an increase in adult hippocampal neu-
rogenesis has been shown in germ-free mice (Ogbonnaya et al., 2015).
Adult neurogenesis has been shown to be an important factor in cognitive
and emotional responses (O’Leary & Cryan, 2014) and understanding how
the microbiota regulates it will be an important direction for future
research. Using the germ-free animal authors have shown that the integrity
of the blood—brain barrier is also dependent on the microbiota and espe-
cially microbial produced SCFAs (Braniste et al., 2014). In summary,
germ-free studies demonstrate utility in teasing apart the mechanisms un-
derlying the microbiota—gut—brain axis communication relevant to brain
function. Further behavioral studies in germ-free animals, including the
use of other species, such as rats (Crumeyrolle-Arias et al., 2014), will
greatly expand our knowledge of the role of microbiota in stress-related
disorders.

3.2 Prebiotics

Prebiotics are nondigestible food ingredients that selectively stimulate the
growth of probiotic bacteria such as Lactobacilli and Bifidobacteria in the gut
(Saulnier et al., 2013). Increasing the proportion of these bacteria with pre-
biotics such as galactooligosaccharides or fructooligosaccharides has many
beneficial effects on the gut, the immune system, and on brain function, spe-
cifically, increased BDNF expression and NMDA receptor signaling,
providing initial support for further investigations of the utility of
prebiotics in mental health and potential treatment of psychiatric disorders
(Drakoularakou, Tzortzis, Rastall, & Gibson, 2010; Savignac et al., 2013;
van Vlies et al., 2012; Vulevic, Drakoularakou, Yaqoob, Tzortzis, & Gibson,
2008). Recently, a human study has shown that subjects supplemented with
galactooligosaccharides displayed a suppression of the neuroendocrine stress
response and an increase in the processing of positive versus negative atten-
tional vigilance, showing an early anxiolytic-like profile (Schmidt et al.,
2014). Inulin-type fructans and lactulose modulate gut transit, decrease pu-
trefactive activity within the gut lumen, prevent GI infections, and mitigate
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inflammatory responses (Casellas et al., 2007; Lewis, Burmeister, & Brazier,
2005; de Preter et al., 2008).

3.3 Probiotics

Probiotic bacteria are living organisms that can inhabit the gut and
contribute to the health of the host (Bravo et al., 2011). In the last decade
in particular, there has been an abundance of studies investigating the impact
of probiotics on behaviors (Bravo et al., 2011; Desbonnet et al., 2010; Diop,
Guillou, & Durand, 2008; McKernan, Fitzgerald, Dinan, & Cryan, 2010;
Messaoudi, Violle, et al., 2011; Savignac, Kiely, Dinan, & Cryan, 2014).
Work in animal models has assessed a range of probiotics, however, not
all bacterial populations show efficacy in modulating behavior. The two
most promising types of probiotics are from the bifidobacteria and Lactoba-
cillus and are the main genera thus far investigated for beneficial eftects on
health. However, it is also pertinent to note that, not all probiotics even
within bacterial genera, will produce positive effects. Moreover, the status
of the host itself is critical for the efficacy of probiotics in that some probi-
otics will only exhibit beneficial effects in disease states such as IBS and may
show no positive eftects in healthy individuals. This area of research is an
exciting and rapidly growing field with numerous probiotics now widely
available on the market.

There is an ever-increasing number of studies in animal models assessing
the impact of probiotics on behavior. Specifically, in a model of early life
stress, the maternal separation model, chronic treatment with B. infantis in
adulthood-attenuated immune system abnormalities and depressive-like be-
haviors in the forced swim test to a similar extent as the antidepressant cit-
alopram (Desbonnet et al., 2010). Moreover, L. helveticus ROO52 has also
been shown to reduce anxiety-like behavior and alleviate memory dysfunc-
tion in the Barnes maze in both naive and western diet fed mice (Ohland
et al., 2013). Work from our lab and collaborators has shown that L. rham-
nosus reduced anxiety- and depression-related behaviors in the elevated plus
maze and forced swim test respectively (Bravo et al., 2011). Similarly,
another study has demonstrated reduced anxiety and improved performance
on a complex maze task following treatment with live Mycobacterium vaccae
prior to and during the test (Matthews & Jenks, 2013). Bifidobacterium longum
has been shown to normalize anxiety-like behavior in the dextran sodium
sulfate-induced colitis model (Bercik, Park, et al., 2011). Furthermore B.
longum, but not L. rhamnosus normalizes anxiety-like behavior in Trichuris
muris infection (Bercik et al., 2010). Memory dysfunction occurs as a result
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of Citrobacter rodentium infection in C57BL/6 mice exposed to acute stress.
This was prevented by daily treatment of infected mice with probiotics
(L. thamnosus (ROO11) + L. helveticus (R0052)) (Gareau et al., 2011). Probi-
otic treatment has also proved efficacious in alleviating visceral pain re-
sponses (Johnson, Greenwood-Van Meerveld, & McRorie, 2011;
McKernan et al., 2010; Rousseaux et al., 2007; Verdu et al., 2006).

There are some studies showing effects of probiotics on brain function in
healthy humans. For example, women who had taken a fermented milk
product containing four probiotics (Bifidobacterium animalis subsp. lactis, Strep-
tococcus thermophiles, Lactobacillus bulgaricus, and Lactococcus lactis subsp. lactis)
showed reductions in brain responses to an emotional task, particularly in
sensory and interoceptive regions that were measured with functional mag-
netic resonance imaging (Tillisch et al., 2013). Moreover, in another study,
global psychological distress and anxiety symptoms, as measured by the Hos-
pital Anxiety and Depression Scale, were improved in the group taking a
Lactobacillus and Bifidobacterium-containing probiotic compared with those
taking a matched control product (Messaoudi, Lalonde, et al., 2011). Impor-
tantly, probiotic supplementation of the mother during and after pregnancy
has been shown to alter the infant’s microbiota (Lahtinen et al., 2009;
Mueller, Bakacs, Combellick, Grigoryan, & Dominguez-Bello, 2014).
There 1s a need for future trials focusing on the best combinations of probi-
otic strains, the timing of administration, and whether these probiotics are
more efficacious in conjunction with prebiotics (Mueller et al., 2014).
Also the mechanisms of action of probiotics are understudied and further
investigating why certain bacterial strains have positive effects on brain
health will be an important area into the future.

3.4 Antibiotics

Modern society has seen a massive increase in the prescription and use of an-
tibiotics, however, emerging research has found that chronic antibiotic use
can be both detrimental and beneficial to the host depending on the context.
Rifaximin, a nonabsorbable antibiotic, has been shown to infer positive ef-
fects in IBS patients (Saadi & McCallum, 2013). However, chronic exposure
to other antibiotics can have serious effects on the host while also contrib-
uting to the growing concern of antibiotic resistance and the emergence
of “superbugs” (Davies & Davies, 2010). The role of antibiotics and their
impact of behavior has been demonstrated in animal models. It was
found that antibiotic-treated mice showed more exploratory and less appre-
hensive behavior which was reversible after a 2 week washout period
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(Bercik, Denou, et al., 2011). However, the strain of mouse used in these
studies was BALB/c, an innately anxious and stress-sensitive strain, which
may impact on outcome measures. When germ-free mice were treated
with antibiotic, no alteration in anxiety and exploratory behavior was
observed, further emphasizing the role of the host microbiota. Increased
visceral hypersensitivity has also been shown in antibiotic-treated animals,
however, this effect was reversed by administration of Lactobacillus paracasei
(Verdu et al., 2006). Indeed, data from our own group show that the early
postnatal period was important for the development of antibiotic-induced
visceral hypersensitivity (O’Mahony et al., 2014). Moreover, this effect
was sex specific with the phenotype only being observed in male animals.
Interestingly, all other behaviors assessed were unchanged by antibiotic
exposure (O’Mahony et al., 2014). On the other hand, animals treated
with antibiotics in adulthood display an attenuation of visceral pain-related
responses elicited by intraperitoneal acetic acid or intracolonic capsaicin
(Aguilera, Cerda-Cuellar, & Martinez, 2014).

3.5 Bacterial Infection

Investigating the impact of infections caused by enteric pathogens on brain
and behavior has been an important strategy to interrogate the function of
the microbiota—gut—brain axis. Indeed, the link between infection and
psychiatric illness has long been known, mainly through the observation
that syphilis and Lyme disease are often accompanied by neurological def-
icits (van Eijk et al., 1987; Steere, Pachner, & Malawista, 1983). Recently,
it has been shown that mice infected with T. muris (close to human parasite
Trichuris trichiura) increase anxiety-like behavior, decrease hippocampal
levels of BDNF mRNA, and increase plasma kynurenine:tryptophan ratio
(which is indicative of alterations in tryptophan metabolism (Section 2.2)),
and increase plasma levels of the proinflammatory cytokines tumor necro-
sis factor-ot and IFN-vy (Bercik et al., 2010). Vagotomized animals infected
with T. muris did not prevent anxiety-like behavior induced by infection,
indicating that the vagus nerve does not mediate the behavioral effects of
the infection. Treatment with anti-inflammatory agents normalized
behavior, reduced circulating cytokine levels, and increased tryptophan
metabolism, but did not alter T. muris-induced changes in hippocampal
BDNF mRNA expression (Bercik et al., 2010). Administration of the pro-
biotic B. longum also normalized behavior. In addition, it restored hippo-
campal BDNF mRNA levels, but did not affect plasma cytokine or
kynurenine levels (Bercik et al., 2010). Clearly, the mechanism of action
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of these pharmacological and probiotic interventions differ, nevertheless,
all three reversed infection-induced behavioral changes, indicating that
the gut microbiota may signal to the brain through multiple routes. Citro-
bacter rodentium is another common infectious agent to investigate gut—
brain axis function. Although infection with this bacterium does not affect
baseline behavior in mice nor have long-term consequences (Gareau et al.,
2011), it does, however, induce an increase in anxiety-like behavior short
term (Lyte, Li, Opitz, Gaykema, & Goehler, 2000). In addition, a pretreat-
ment regime with a combination of probiotics initiated 7 days before
infection reduced the increase in serum corticosterone levels and pre-
vented cognitive dysfunction (similar cognitive deficits were observed in
germ-free mice). Alterations in hippocampal BDNF and central c-Fos
expression (a marker for neural activity) induced by C. rodentium infection
were also reversed by probiotic treatment (Gareau et al., 2011). All of this
data suggest that the effects of infection and stress can converge and syn-
ergize to alter CNS function, behavior, and cognitive function (Cryan
& Dinan, 2012). Indeed, there is a growing appreciation of the effect of
gut—brain signaling on cognitive function in both animals and patients
with functional GI disorders such as IBS (Kennedy et al., 2012). Similarly,
there is a growing body of research aimed at increasing our understanding,
at a molecular, cellular and in vivo level, of the relationship between dys-
regulated stress responses and immune system alterations (either individu-
ally or in combination) in the etiology of IBS (O’Malley, Quigley, Dinan,
& Cryan, 2011). Other bacteria apart from infectious C. rodentium that also
use the vagus nerve for gut-to-brain signaling is C. jejuni, a foodborne
pathogen. It has been shown in mice to increase c-Fos levels in visceral
sensory nuclei in the brain stem and stress response centers such as the para-
ventricular nucleus of the hypothalamus (Gaykema, Goehler, & Lyte,
2004; Lyte et al., 2006). In addition, the animals showed increased
anxiety-like behavior in the holeboard test, and the level of anxiety was
correlated with neuronal activation as assessed by the number of c-Fos-
expressing cells in the amygdala, a key region in fear response processing
(Goehler, Park, Opitz, Lyte, & Gaykema, 2008). Moreover, it has been
demonstrated by vagotomy studies that Salmonella enterica subsp. enterica
serovar Typhimurium also uses the vagus nerve for the transmission of signals
from the GI tract to the CNS (Wang et al., 2002). In related studies, epide-
miological evidence suggests that an association exists between prenatal
maternal infection and the increased risk of neurodevelopmental brain dis-
orders in rat and mouse pups (Meyer, Feldon, & Fatemi, 2009). Maternal
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infection of pregnant rats with E. coli is associated with altered cognitive
development in the offspring, and is associated with increased hippocam-
pal neuronal apoptosis (Jiang et al., 2013). Although such studies with
pathogens do not directly address the ability of the microbiota per se to
signal to the brain, they offer key insights in elucidating the pathways
through which microorganisms can signal to the brain and aftect behavior
(Cryan & Dinan, 2012).

3.6 Genetically Modified Bacteria

One potential strategy to beneficially alter the gut microbiota is to incorpo-
rate bacteria that have been genetically modified to express therapeutic fac-
tors. This strategy could also be used to sustainably deliver other therapeutic
molecules beneficial in the treatment of many microbiota—gut—brain dis-
orders or indeed in conditions where therapeutics cannot be readily deliv-
ered by other routes. This innovatory approach was recently demonstrated
by incorporating genetically modified bacteria, that biosynthesize N-acyl-
phosphatidylethanolamines (the immediate precursors of N-acylethanola-
mides, a family of the potent anorexigenic lipids), into the gut of mice
which resulted in lasting attenuation of high-fat diet-induced obesity
(Chen et al., 2014). Moreover, administration of N-acyl-phosphatidyleth-
anolamines expressing bacteria to TallyHo mice, a polygenic mouse model
of obesity, inhibited weight gain (Chen et al., 2014). Another application of
genetically modified bacteria is to act as sensors and reporters of local gut
environment (Kotula et al., 2014). This approach was demonstrated in an
elegant study, where E. coli was engineered with a synthetic memory sys-
tem based on the phage lambda cI/Cro genetic switch, that allowed
the ability to sense and record antibiotic exposure during passage through
the mouse gut (Kotula et al., 2014). This work lays the foundation for
the use of synthetic genetic circuits in living diagnostics. One clear advan-
tage of using genetically modified gut microbiota rather than wild-type
probiotics is the ability to choose both an appropriate carrier bacteria that
can colonize the gut of the diseased individual and an appropriate therapeu-
tic compound, whereas most probiotic bacteria are poor colonizers and the
actual bioactive metabolites that confer their benefit are poorly character-
ized (Chen et al., 2014). Without appropriate characterization of the bioac-
tive metabolites, quality control during production and continuous culture
of these probiotics may be very difficult. Another final possible advantage of
genetically modified gut bacteria is that they could be engineered to be
responsive to temporal cues such as food intake by use of appropriate
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promoters. Such food-dependent biosynthesis would mimic physiological
regulation of many metabolic responses, potentially improving efficacy
(Kotula et al., 2014).

3.7 Fecal Microbiota Transplantation

Fecal transplantation can be seen as the most extreme intervention of gut
microbiota. However, its use has proved lifesaving in the context of patients
with Clostridium difficile infection (van Nood et al., 2013). The aim of fecal
transplantation is to replace or replenish the intestinal microbiota of a sick
individual by transplanting the microbiota from a healthy donor. One of
the most intriguing and direct ways of studying the impact of microbiota
on behavior is via fecal transplantation to germ-free mice (Dinan & Cryan,
2013). For example, it has been showed that colonization of germ-free
BALB/c mice (anxious strain) with microbiota from NIH Swiss mice
(normal anxiety levels), increased exploratory behavior and hippocampal
levels of BDNF, whereas colonization of germ-free NIH Swiss mice
with BALB/c microbiota reduced exploratory behavior (Bercik, Denou,
et al., 2011). More recently, it has been shown that fecal transplantation
from obese mice to mice whose microbiota is abrogated with antibiotics
had significant and selective disruptions in exploratory, cognitive, and
stereotypical behavior compared with mice with control diet microbiota
in the absence of significant differences in body weight (Bruce-Keller
et al., 2014).

From the literature it is clear that the majority of human studies to date
have been performed in the context of C. difficile infection (Aroniadis &
Brandt, 2013; Udayappan, Hartstra, Dallinga-Thie, & Nieuwdorp, 2014).
A pilot study assessed the effects of fecal microbiota transplantation from
lean healthy donors to individuals with metabolic syndrome (Vrieze et al.,
2012). Regarding other potential treatable conditions, evidence for fecal
microbiota transplantation at present is lacking. There are isolated case re-
ports of fecal microbiota transplantation in relation to multiple sclerosis
(MS) (Smits, Bouter, de Vos, Borody, & Nieuwdorp, 2013).

Many unanswered questions remain, including fecal microbiota trans-
plantation methodology—for example, optimal route of administration,
what makes a “good donor,” safety issues, and long-term effects of fecal
microbiota transplantation (Borody, Paramsothy, & Agrawal, 2013). The
development of novel technologies such as artificial microbiota stool and
novel delivery devices will help advance this field (Petrof et al., 2013;
Youngster et al., 2014).
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g 4. DISORDERS OF THE MICROBIOTA—GUT—BRAIN
AXIS

4.1 Metabolic Disorders: Obesity, Metabolic Syndrome,
Diabetes
During the past ~ 160 million years, mammals have coevolved with a
vast and diverse microbial community that colonizes our cutaneous and
mucosal surfaces. Most of these microorganisms reside within our GI tract,
and their constituency is determined by host phylogeny and diet (Ley et al.,
2008). Obesity is now classically characterized by a cluster of several metabolic
disorders and by a low grade inflammation (Rastmanesh, 2011). Abnormal or
pathological changes in gut microbiota promote gut permeability, increase
metabolic endotoxemia, and increase the risk to develop metabolic disorders
such as obesity (Cani & Delzenne, 2009). Individuals with type 2 diabetes
mellitus and/or obesity often display a chronic low grade inflammation
in the gut combined with an altered composition of the gut microbiota
(Delzenne, Neyrinck, Backhed, & Cani, 2011). The gut microbiota influ-
ences whole-body metabolism by affecting energy balance and metabolic
inflammation associated with obesity and related disorders (Tremaroli &
Backhed, 2012). Moreover, the intestinal microbiota is altered in humans
and animal models of obesity (de Vos & de Vos, 2012). The mechanisms
by which gut microbiota contribute to the pathophysiology of obesity have
been investigated in many mouse studies and, thanks to their results, we
can now draw a clearer picture of the impact of gut microbiota on maintaining
energy balance of the host (Nguyen, Vieira-Silva, Liston, & Raes, 2015). The
intestinal (cecum-derived) microbiota of ob/ob mice has a 50% reduction in
levels of Bacteroidetes and an increased proportion of Firmicutes compared
with wild-type mice (Ley et al., 2005). The composition of the fecal micro-
biota of obese human subjects is similarly affected but changes with weight loss
(Ley, Turmbaugh, Klein, & Gordon, 2006). Studies in germ-free mice provide
insights into the effects of the intestinal microbiota on host metabolism.
Germ-free mice fed high-fat, high-sugar diets did not have the same meta-
bolic disturbances as their conventional littermates (Backhed et al., 2004).
Transfer of intestinal microbiota from obese mice resulted in significantly
greater adiposity in recipients than transfer of microbiota from lean donors
(Backhed, Manchester, Semenkovich, & Gordon, 2007).
One way in which intestinal microbes might affect host metabolism is by
extracting calories from otherwise indigestible carbohydrates which are fer-
mented by intestinal microbes to produce SCFAs (Gao et al., 2009; Tilg,
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2010). SCFAs may act as an energy substrate as they are absorbed by the in-
testinal epithelium and metabolized in the liver (Turnbaugh et al., 2006).
Mouse models of obesity and human obese subjects have increased intestinal
(cecal) levels of SCFAs and decreased energy content in their feces
(Schwiertz et al., 2010).

Studies have associated changes in proportions of Bacteroidetes and Firmi-
cutes with obesity and metabolic syndrome. Metagenome-wide association
studies in Europe and in China reported metagenomic differences between
a cohort of patients with type 2 diabetes mellitus and a group of healthy sub-
jects (Karlsson et al., 2013; Qin et al., 2012). Clusters of genomic sequences
were used as signatures for specific groups of bacteria, and each study found
independently that the microbiota of subjects with type 2 diabetes mellitus
had a lower proportion of butyrate-producing Clostridiales (Roseburia and
Faecalibacterium prausnitzii), and greater proportions of Clostridiales that do
not produce butyrate, as well as pathogens such as Clostridium clostridioforme.
These studies raise interest in the association between type 2 diabetes mellitus
and reduced production of butyrate because diets supplemented with buty-
rate were previously shown to prevent and reverse insulin resistance in
mice that became obese on high-calorie diets and increase energy expenditure
(Gao et al., 2009). Combined results from human and animal studies of
obesity suggest that reduced butyrate production by the microbiota contrib-
utes to the development of insulin resistance (Nieuwdorp, Gilijamse, Pai, &
Kaplan, 2014). Individuals with type 2 diabetes mellitus and/or obesity often
display a chronic low grade inflammation in the gut combined with an altered
composition of the gut microbiota (Delzenne et al., 2011). Moreover, in a rat
model of type 1 diabetes, it was found that intestinal microbiota composition
and microbial diversity were altered over time (Patterson et al., 2015).
Furthermore, conventionalization of adult germ-free C57BL/6 mice with a
normal microbiota harvested from conventionally raised animals has shown
to increase the body fat content and insulin resistance within 14 days despite
reduced food intake (Backhed et al., 2004). Taken together, modulation of
the gut microbiota may be promising nutritional and pharmacological target
in the management of obesity and obesity-related disorders (Torres-Fuentes,
Schellekens, Dinan, & Cryan, 2014) (See Figure 2).

4.2 Functional Gl Disorders
4.2.1 Irritable Bowel Syndrome
IBS is a common functional GI disorder with an estimated prevalence of
10—20% in the general population (Longstreth et al., 2000). Symptoms
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Figure 2 Disorders of the microbiota—gut—brain axis. The microbiota—gut—Dbrain axis
plays an important role in maintaining homeostasis and its dysfunction has been linked
to various psychiatric and nonpsychiatric disorders.

include abdominal pain, altered bowel habit, and bloating. Moreover, IBS
patients in a recent study displayed a subtle but significant deficit on a hip-
pocampal-mediated test of visuospatial episodic memory, which was
related to morning cortisol levels and independent of psychiatric comor-
bidity (Kennedy et al., 2014, 2012). Although the pathophysiology of
IBS is not fully understood, it is best regarded as a disorder caused by dys-
regulation of the complex interactions along the microbiota—gut—brain
axis. The role of the gut microbiota in IBS has been reviewed by many
(Collins, 2014; Dupont, 2014; Grenham et al., 2011; Major & Spiller,
2014; Mayer, Savidge, & Shulman, 2014; Moloney et al., 2014; Ohman
& Simren, 2013) and the utility of microbiota-based therapies for this
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disorder is now an area of intense research (Clarke, Cryan, Dinan, &
Quigley, 2012).

The most striking evidence for the role of the gut microbiota in the onset
of IBS symptoms is in the case of postinfectious IBS, whereby symptoms
emerge after a bout of gastroenteritis or the occurrence of enteric infection
(Spiller & Garsed, 2009). Indeed, fecal microbiota composition of postinfec-
tious IBS patients was significantly different from both general IBS patients
and healthy controls (Sundin et al., 2014). It has also been demonstrated that
subgroups of IBS patients may have an altered microbiota composition rela-
tive to healthy individuals, mainly based on the analysis of fecal microbiota
(Salonen, de Vos, & Palva, 2010; Tana et al., 2010). In a recent study, fecal
communities were monitored over 6—8 weeks from diarrhea-predominant
IBS patients and compared with that of their healthy spouse. It was found
that a higher temporal instability in the fraction of active microbiota, related
to the IBS condition and fluctuations in symptoms, than that seen in healthy
spouses (Durban et al., 2013). This highlights that the composition of the gut
microbiota in IBS patients is unstable temporally and may explain the find-
ings described below. Both increases (Rajilic-Stojanovic, Smidt, & de Vos,
2007) and decreases (Codling, O’Mahony, Shanahan, Quigley, & Marchest,
2010) in the diversity of the microbiota have been reported in IBS patients
(Jettery et al., 2012). Independent of the change in direction, this abnormal
variation likely reflects a loss of homeostasis within the gut, thus altering the
environment of the bacterial community leading to altered composition.

Although the specific mechanisms by which changes in the gut micro-
biota lead to IBS symptoms remain unclear, it is hypothesized that higher
numbers of microbes such as Lactobacilli and Veillonella spp. in IBS patients
result in a high level of organic acids such as acetic and propionic acid, which
in turn may contribute to abdominal pain, bloating, anxiety and poor quality
of life (Tana et al., 2010).

In light of these findings examining gut microbiota composition and di-
versity in IBS, it is not surprising that many are now investigating the poten-
tial of microbial-based therapeutics (both nonabsorbable antibiotics
and probiotics) in IBS (Clarke et al., 2012; Moayyedi et al., 2010; Parkes,
Sanderson, & Whelan, 2010; Saulnier et al., 2013). These approaches
have recently been reviewed by (Shanahan & Quigley, 2014).

The most promising findings have been in the application of probiotics
in IBS (Clarke et al., 2012; Dai, Zheng, Jiang, Ma, & Jiang, 2013; Ford et al.,
2014; Theodorou, Ait Belgnaoui, Agostini, & Eutamene, 2014). Multispe-
cies probiotics are effective in IBS patients and induce positive alterations in
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the composition of intestinal microbiota (Yoon et al., 2014). However, in-
consistencies in trial design including dosage, probiotic strain selection, and
sample size need to be addressed in future clinical studies so that a true eval-
uation of probiotics for the treatment of IBS can be made.

Moreover, the proposal that fecal transplantation may be an effective
treatment strategy in IBS has recently been appreciated but warrants further
investigation (Borody, Brandt, & Paramsothy, 2014; Pinn, Aroniadis, &
Brandt, 2014; Smits et al., 2013).

4.3 Stress, Anxiety, and Depression

Despite the well-established association between stress and psychiatric disor-
ders, the struggle to understand the complex processes by which stress me-
diates pathological changes that increase vulnerability to disease is on-going
(Hornig, 2013). Severe, chronic, and uncontrollable stressors can trigger
maladaptive changes in brain structure and function that can have long-
term consequences on one’s physical and mental wellbeing (Burokas
et al., 2014; Lupien, McEwen, Gunnar, & Heim, 2009; Moloney et al.,
2014; Nutt & Malizia, 2004). Moreover, it is clear that stress at different pe-
riods in life can have different physiological consequeces (Cryan & Dinan,
2013; Hyland et al., 2015; Lupien et al., 2009; O’Connor & Cryan, 2014;
Prenderville, Kennedy, Dinan, & Cryan, 2015).

Microbiota—gut—brain axis dysregulation in stress-related CNS disor-
ders recently has received increasing recognition in the studies of GI disor-
ders (Bested, Logan, & Selhub, 2013; Bravo et al., 2012; Cryan & Dinan,
2012; Cryan & O’Mahony, 2011; Foster & McVey Neufeld, 2013;
Sherman, Zaghouani, & Niklas, 2014). The stress response is generated
by the complex integration of a series of interconnected brain regions,
most notably the amygdala, the hippocampus, and the paraventricular nu-
cleus of the hypothalamus, which also receive modulatory inputs from
higher cortical regions such as the prefrontal cortex (Moloney et al.,
2014, 2012). The major output of the central stress circuitry consists of
the neuroendocrine HPA axis, and the ANS. The association between
microbiota and stress response is further supported by experiments with
germ-free mice and rodents treated with probiotics and/or antibiotics. It
has been demonstrated an enhanced HPA axis activity in germ-free mice
following an acute psychological stress, providing first convincing evidence
of the essential role played by microbiota in programming of the stress
response (Sudo et al., 2004). Another study has shown that treatment
with a probiotic strain, Lactobacillus farciminis attenuates intestinal
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permeability and the HPA axis response to an acute stress in rats (Ait-Belg-
naoui et al., 2012).

Depression and general anxiety are disorders with well-established etio-
logical links to the traumatic life events, particularly when experienced in
early life and during periods of chronic stress in both humans and animals
(Burokas et al., 2014; Caspi et al., 2003; Kendler, Thornton, & Gardner,
2000). Animal studies suggest that microbiota may play a major role in life-
time stress, anxiety, and mood regulation (Fond et al., 2014). It has been
demonstrated that the experimental administration of the endotoxin lipo-
polysaccharide in healthy humans can be associated with increased rates of
anxiety and depression, in turn associated with increased salivary cortisol,
plasma norepinephrine, and proinflammatory cytokines (Grigoleit et al.,
2011). Low-gastric acid secretion has been reported in patients with severe
depressive disorders and has been associated with reversible small intestinal
bacterial overgrowth, increased intestinal barrier permeability, malabsorp-
tion syndrome, diarrhea, abdominal pain, and constipation (Addolorato
et al., 2008). In a clinical study focused on further exploration of the link
between microbiota composition and depression, researchers observed a
general underrepresentation of the Bacteroidetes phylum in depressed pa-
tients and an association of the Lachnospiraceae family with the depression
group, and interestingly, even with a decrease in Bacteroidetes, specific
operational taxonomic units identified as members of the Bacteroidetes
phylum correlated with depression (Naseribafrouei et al., 2014).

Indeed, probiotic treatment in animal studies during the postnatal stress
period in maternally separated rat offspring has been shown to normalize
basal corticosterone levels (Gareau, Jury, MacQueen, Sherman, & Perdue,
2007). When administered to mice, L. rhamnosus reduced stress-induced
corticosterone, which was paralleled by region-dependent alterations in
GABA receptor gene expression levels in the brain (Bravo et al., 2011).
Moreover, the neurochemical effects were not found in vagotomized
mice, identifying the vagus nerve as a major modulatory communication
pathway between the bacteria exposed to the gut and the brain (Bravo
et al., 2011). Bifidobacterium infantis altered peripheral cytokine levels and
concentrations of the serotonin precursor, tryptophan, which may allude
to the development of possible protective mechanisms prior to stress expo-
sure (Desbonnet et al., 2008). The therapeutic potential of probiotics in psy-
chiatric conditions has been the topic of intense discussion and additional
investigations are required to fully elucidate the role of probiotics in brain
function (Clarke et al., 2012; Davis et al., 2008; Mayer, Knight, et al., 2014).
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Despite the lack of clinical data to support the idea to utilize probiotics in the
treatment of mood disorders, there are sufficient preclinical data to support this
view. One of the principal mechanisms proposed to underlie stress-induced al-
terations is the “leaky gut” phenomenon, which has been described by in major
depression (Maes, Kubera, & Leunis, 2008). Thus, increased intestinal perme-
ability and the consequent translocation of gram-negative bacteria across the
mucosal lining to sites where direct interaction with immune cells and the
ENS can occur (Gareau, Silva, & Perdue, 2008). This may lead to activation
of an immune response characterized by increased production of inflammatory
mediators. Indeed, it has been shown that patients with major depression had
higher serum concentrations of IgM and IgA against lipopolysaccharide of
enterobacteria than healthy controls (Maes et al., 2008). Potential psychobi-
otics are delivery vehicles for neuroactive compounds, and have a capacity
to reduce inflammatory response and reduce HPA activity, a much broader
profile than of existing antidepressant treatment options (Dinan, Stanton, &
Cryan, 2013). As not all probiotics are equal in their effects and may not
have psychobiotic potential, a careful examination of their efficacy is war-
ranted. There is no doubt that many patients, particularly those with milder
symptom profiles, would value the rise of nonconventional antidepressants
in the form of psychobiotics (Borre, Moloney, Clarke, Dinan, & Cryan, 2014).

Taken together, the enteric microbiota has a significant impact on the
behavioral, neurochemical, and immunological measures relevant to the
brain—gut axis disorders with psychobiotics as a promising emerging treat-
ment (Dinan et al., 2013) (See Figure 2).

4.4 Neurodegenerative Disorders

4.4.1 Alzheimer’s

Alzheimer’s disease (AD) is the leading cause of dementia in the elderly. The
most common early symptom is difficulty in remembering recent events
(short-term memory loss) (Querfurth & LaFerla, 2010). As the disease ad-
vances, symptoms can include: problems with language, disorientation
(including easily getting lost), mood swings, loss of motivation, not managing
self-care, and behavioral issues (Burns & Iliffe, 2009) There is strong epide-
miological and clinical evidence that abnormality in inflammatory signals in
the brain contributes to the slow degeneration of neurons, deposition of am-
yloid protein, and early dysfunction in the brains of AD patients (Huang &
Mucke, 2012). Meanwhile, accumulating evidence has led to the realization
that the mediators of neurodegeneration behind cognitive decline and mem-
ory loss could also derive from the periphery (Perry & Holmes, 2014).
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Interestingly, induction of AD in mice could increase inflammatory re-
sponses both in the brain and blood, suggesting that inflammatory events
in the peripheral system are closely associated with AD pathogenesis (Aso,
Sanchez-Pla, Vegas-Lozano, Maldonado, & Ferrer, 2015; Jiang et al.,
2009). Dysregulation of serotonergic and kynurenine routes of tryptophan
metabolism influences the CNS pathological conditions of dementia, Hun-
tington’s disease, and AD (Ruddick et al., 2006). Recent studies propose as-
sociation of the gut microbiome with development of obesity and metabolic
syndromes, such as type 2 diabetes mellitus where the vascular effects of
obesity play a role in the development of AD (Alam, Alam, Kamal, Abuze-
nadah, & Haque, 2014; Naseer et al., 2014; Noble et al., 2014). It is generally
believed that gut microbiota control obesity that is the cause of type 2 dia-
betes mellitus, which consequently may cause AD (Nascer et al., 2014).
Studies are providing the solid evidence that expression and phosphorylation
of tau protein (AD is also characterized by intracellular tangles containing
hyperphosphorylated tau protein) are regulated by insulin and insulin growth
factor signaling cascades and the critical aspects of AD can be explained on
the basis of impaired insulin signaling (de la Monte & Wands, 2008).

4.4.2 Multiple Sclerosis

MS is a devastating autoimmune disease that is characterized by the progres-
sive deterioration of neurological function. This damage disrupts the ability
of parts of the nervous system to communicate, resulting in a wide range of
signs and symptoms, including physical, mental, and sometimes psychiatric
problems (Compston & Coles, 2008). It has been suggested that the gut
microbiota may have a role in MS (Berer et al., 2011). Indeed, it has been
shown that the induction of experimental autoimmune encephalomyelitis
(EAE), by myelin oligodendrocyte glycoprotein (MOG) peptide, an animal
model of MS, was greatly attenuated in germ-free mice (Lee, Menezes,
Umesaki, & Mazmanian, 2011). This relative resistance is probably due to
the reduced immune responses to MOG in the germ-free animals (Lee,
Menezes, et al., 2011), further exemplifying the extent of the effects of
the gut microbiota on CNS function via the immune system.

Similar effects were shown in another study (Berer et al., 2011), in which
mice that were genetically predisposed to spontaneously develop EAE were
housed under germ-free or specific-pathogen-free conditions and, as a
result, remained fully protected from EAE throughout their life. This pro-
tection dissipated upon colonization with conventional microbiota in adult-
hood. These data illustrate a key role for the gut microbiota in



Microbiota Regulation of the Mammalian Gut—Brain Axis 31

immunomodulatory mechanisms underlying MS, and further studies should
also investigate whether other aspects of MS pathophysiology, especially at
the spinal cord level, are affected by the gut microbiota.

4.4.3 Parkinson’s Disease

The motor symptoms of Parkinson’s disease (PD) result from the death of
dopamine-generating cells in the substantia nigra, a region of the midbrain
(Dickson et al., 2009). Extranigral pathology is related to a broad spectrum
of nonmotor symptoms that have been increasingly recognized as an impor-
tant feature of PD (Muller, Assmus, Herlofson, Larsen, & Tysnes, 2013). GI
dysfunction, in particular constipation, affects almost 80% of PD patients and
may precede the onset of motor symptoms by years (Cersosimo & Benar-
roch, 2012). In a recent study, the intestinal microbiota has been shown
to be altered in PD and related to motor phenotype (Scheperjans et al.,
2014). Another study suggests that variation in genes encoding peptido-
glycan recognition proteins which modulates the immune response to ad-
vantageous and harmful gut bacteria and plays a major role in the
development and maintenance of a healthy commensal microbiota (Royet,
Gupta, & Dziarski, 2011) aftects the risk of PD (Goldman et al., 2014). The
gut is a site of early involvement in PD and peptidoglycan recognition pro-
teins influence the host immune response to gut bacteria and the makeup of
the gut microbiota, they could play a role in PD cause and pathogenesis
(Goldman et al., 2014). Further characterization of these mechanisms may
lead to novel early approaches to delay or prevent onset of PD.

4.5 Neurodevelopmental Disorders

The microbiota modulates a range of neurotrophins and proteins, such as
BDNEF, synaptophysin, and PSD-95 all previously shown to be involved
in brain development and plasticity (Diaz Heijtz et al., 2011; Douglas-Esco-
bar, Elliott, & Neu, 2013). A decrease in BDNF and NR2a receptor expres-
sion was found in the cortex and hippocampus of germ-free animals
compared with controls (Sudo et al., 2004). BDNF is a neurotrophin growth
factor associated with neurogenesis and brain plasticity, and NMDA recep-
tors are a group of ionotropic glutamate receptors involved in the control of
synaptic plasticity in memory function (See Figure 2).

4.5.1 Autism
Autism is a neurodevelopmental disorder characterized by impaired social
interaction, verbal and nonverbal communication, and restricted and
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repetitive behavior (Caronna, Milunsky, & Tager-Flusberg, 2008). Autism
affects information processing in the brain by altering how nerve cells and
their synapses connect and organize; how this occurs is not well understood
(Levy, Mandell, & Schultz, 2009). The appellation “autism spectrum disor-
der” (ASD) refers to a group of heterogeneous neurodevelopmental disor-
ders with multiple causes and courses, a significant range in severity of
symptoms, and several associated comorbid disorders, including anxiety
and GI symptoms (Mayer, Padua, & Tillisch, 2014). Microbiota dysbiosis
has mostly been studied in ASD, a collective term used for a diverse group
of neurodevelopmental conditions, characterized by impaired social inter-
actions and communication, restricted and repetitive behavior, and
frequently accompanied by digestive disorders (Fond et al., 2014; Kushak,
Lauwers, Winter, & Buie, 2011; de Magistris et al., 2010; Rogers, Viding,
Blair, Frith, & Happe, 2006; Torrente et al., 2002; Williams, Hornig,
Parekh, & Lipkin, 2012). While genetics play a major role in the etiology
of ASD, recent years have seen an emerging interest in the potential role
of environmental factors in this disorder (Grabrucker, 2012). Among the
associated environmental risk factors, GI abnormalities and altered micro-
biota composition have been identified in a number of small-scale studies
on children with ASD (Finegold et al., 2010; Williams et al., 2011) that
directly correlate with symptom severity (Adams, Audhya, et al., 2011;
Adams, Johansen, Powell, Quig, & Rubin, 2011). Several teams have stud-
ied the intestinal microbiota of the autistic population and found a different
composition of various microbial species in comparison to healthy controls.
Compared to healthy children, children with autism have been found to
have increased Clostridium, Bacteroidetes, and Desulfovibrio, and decreased
Firmicutes and Bifidobacterium species (Y. Song, Liu, & Finegold, 2004).
However, there is much controversy in the field and varying results have
emerged. Whereas increases in Bacteroidetes and decreases in Firmicutes
have been reported in autistic children presenting with GI symptomology
(Finegold et al., 2010), examination of the fecal flora in a similar cohort
revealed no differences in microbiota composition relative to neurotypical
sibling measures (Gondalia et al., 2012).

Intestinal permeability disorders have also been described in autism
(Fond et al., 2014; Torrente et al., 2002). For example, it has shown the
increased levels of lipopolysaccharide in the blood of individuals with
ASD, a finding that corresponded to increased peripheral IL-6 levels, a neu-
romodulating cytokine (Emanuele et al., 2010). Some studies found
increased intestinal permeability in autistic subjects and in their first-degree
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relatives, suggesting that these changes may be involved in the pathogenesis
of the disease rather than in the consequences of autistic behaviors (Finegold
et al., 2010; Yap et al., 2010). However, the existence of a GI pathology
specific to ASD subjects remains a controversial topic. Interpretation of re-
sults from these studies is complicated by the knowledge that individuals
suffering from ASD have high rates of antibiotic usage and consume diets
which often differ from those of healthy populations and may account
for reported microbial changes (Cryan & Dinan, 2012). For example, a
parent survey indicating that children who are not breast-fed are at higher
risk of developing ASD, suggests that diet-related factors with the capacity
to alter gut microbiota composition at a very early age are more likely to
play a direct causative role in ASD (Schultz et al., 2006). An additional fac-
tor such as mode of delivery, which is known to alter gut microbiota
composition (Curran et al., 2014) may also impact on the development
of ASD.

When tested, antibiotic treatment of ASD children did not only lead to
GI improvements, but also to improvements in cognitive skills (Sandler
et al.,, 2000). Additionally, altered fecal concentrations of SCFAs, which
are neuroactive microbial fermentation products, have also been reported
in ASD (Wang et al., 2012).

To date, this area of research had not been extensively explored in the
preclinical field. Nevertheless, a recent study conducted in germ-free mice
demonstrated robust and reproducible social deficits characterized by social
avoidance and deficits in social cognition in addition to increases in repet-
itive grooming behaviors in these microbiota-depleted mice when
compared to mice with conventional bacterial colonization (Desbonnet
et al.,, 2014). Interestingly, reconstitution of microbiota from weaning
onward normalized social interest in germ-free mice but had no effect on
social cognition in the three-chambered social test, indicating that the
adolescent period is particularly important in the programming of specific
aspects of normal social behavior (Desbonnet et al., 2014; Moloney et al.,
2014).

In summary, these studies provide promising evidence indicating a more
direct role for the microbiota—gut—brain axis in the pathogenesis of ASD
than previously considered. This is an area of research that has received
greater attention in the field of autism in recent years and will without doubt
generate more interest and fruitful results in the coming years that may
impact on treatment strategies in ASD (Fond et al., 2014; Louis, 2012;
Mulle, Sharp, & Cubells, 2013; de Theije et al., 2011).
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4.5.2 Schizophrenia

Schizophrenia has been recognized as a devastating neuropsychiatric disor-
der for over a century, but the mechanism of the disease remains elusive.
Common symptoms include false beliefs, unclear or confused thinking,
auditory hallucinations, reduced social engagement and emotional expres-
sion, and inactivity (Picchioni & Murray, 2007). Schizophrenia is often
described in terms of positive and negative (or deficit) symptoms. Positive
symptoms are delusions, disordered thoughts and speech, and tactile, audi-
tory, visual, olfactory and gustatory hallucinations, typically regarded as
manifestations of psychosis and generally respond well to medication (Jensen
et al., 2008; Picchioni & Murray, 2007). Negative symptoms are deficits of
normal emotional responses or of other thought processes, and respond less
well to medication (Brunet-Gouet & Decety, 2006). Recent genome-wide
association studies have shown that thousands of small single nucleotide
polymorphisms carry weak-effect associations but cumulatively could
explain approximately 30% of the underlying genetic risk (Singh, Kumar,
Agarwal, Phadke, & Jaiswal, 2014). The strongest findings in genome-
wide association studies thus far have been from immune-related
genes (Schizophrenia Working Group of the Psychiatric Genomics, 2014;
Stefansson et al., 2009). The findings from clinical studies demonstrate an
upregulated immune and inflammatory status in patients with schizophrenia
(Song et al., 2013) and a correlation between the level of inflammatory
markers and severity of clinical symptoms (Hope et al., 2013). It has been
suggested that the uncontrolled neuroinflammation by proinflammatory
cytokines is involved in the pathogenesis of schizophrenia (Dennison,
McKernan, Cryan, & Dinan, 2012; Nemani, Hosseini Ghomi, McCormick,
& Fan, 2014). Chronic macrophage activation and secretion of interleukin-2
and interleukin-2 receptors has been proposed as the basic biological mech-
anism of schizophrenia in eatlier papers (Smith, 1991, 1992). For example,
the protozoa Toxoplasma gondii is known to cause major perturbation to the
gut microbiota and is a recognized environmental risk factor for schizo-
phrenia (Bhadra, Cobb, Weiss, & Khan, 2013; Molloy et al., 2013). More
recently a chlorovirus (family Phycodnaviridae) has been identified in
humans that affects cognitive function relevant to schizophrenia in animal
models (Yolken et al., 2014).

NMDA receptor hypofunction is believed to be central to the patho-
physiology of schizophrenia, as NMDA receptor antagonists produce
schizophrenia-like symptoms while agents that enhance NMDA receptor
function reduce negative symptoms and improve cognition (Coyle, 2012).
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Variation in BDNF expression is believed to play a role in the molecular
mechanism underlying cognitive dysfunction in schizophrenia (Nieto,
Kukuljan, & Silva, 2013). Given that normal development of the microbiota
is necessary to stimulate brain plasticity through the appropriate expression
of BDNF and NMDA receptors, it is possible that altered microbiota may
contribute to the NMDA receptor dysfunction seen in schizophrenia
(Dinan, Borre, & Cryan, 2014; Nemani, Hosseini Ghomi, McCormick, &
Fan, 2015). In animal model of schizophrenia (chronic NMDA antagonist
treatment), it has been shown that the gut microbiota profile correlated to
memory performance, suggesting an influence of the microbiota on cogni-
tion in the model, which was supported by restoration of cognition through
oral ampicillin administration (Pyndt Jorgensen et al., 2014).

Evidence showing possible microbiota alteration in schizophrenia in-
cludes structural damage to the GI tract, a heightened immune response
to infectious pathogens and food antigens, and known differences in the
microbiome in other neuropsychiatric disorders (Nemani et al., 2014).
Further investigation into the microbiota and how the gut—brain axis
may mediate the link between neuropsychiatric disease and the immune
system 1s needed.

It is also worth noting that one of the most important side effects of treat-
ments for schizophrenia is weight gain and metabolic syndrome. We have
recently shown that the microbiota plays a critical role in olanzapine-induced
weight gain in rats (Davey, Cotter, et al., 2013; Davey, O’Mahony, et al.,
2012) which has been confirmed in germ-free mice study (Morgan et al.,
2014).

4.6 Addiction

4.6.1 Alcohol Dependence

Alcohol dependence is a substance-related disorder in which an individual is
physically or psychologically dependent upon drinking alcohol. Studies sug-
gest a role for inflammation in the development of several psychiatric diseases
(Felger & Lotrich, 2013; Grenham et al., 2011), including alcohol depen-
dence (Kelley & Dantzer, 2011), a disorder that affects 5—7% of the popu-
lation in developed countries (Anderson & Baumberg, 2007). Preclinical
studies have shown that chronic ethanol administration induces microbial
dysbiosis in rats (Mutlu et al., 2009) and mice, with a decrease in the level
of Ruminococcaceae (Bull-Otterson et al., 2013), or a decrease in the level of
Firmicutes and an increase in Bacteroidetes (Yan et al., 2011). In humans,
a decrease in Bifidobacterium and Lactobacillus was observed in the stool cultures
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of alcohol-dependent subjects compared with those of healthy controls (Kir-
pich etal., 2008). Inflammation in alcohol dependence has been attributed to
a local proinflammatory effect of ethanol, either in the brain or in the liver
(Kelley & Dantzer, 2011). However, heavy chronic alcohol consumption in-
duces gut mucosal damage, increases intestinal permeability (Keshavarzian
et al., 2009; Leclercq et al., 2012), induces changes in the composition of
the gut microbiota (Kirpich et al., 2008; Mutlu et al., 2009), and induces bac-
terial overgrowth in the small intestine (Yan et al., 2011). The view is that
systemic inflammation plays a role in alcohol dependence and be induced
by increased intestinal permeability and permeation of lipopolysaccharide is
supported by more recent data in humans (Leclercq et al., 2012). Chronic
alcohol consumption activated the mitogen-activated protein kinase/acti-
vator protein 1 pathway, together with the inflammasome complex. This ac-
tivity resulted in increased messenger RINA and plasma levels of IL-8, IL-1,
and IL-18 (Leclercq, De Saeger, Delzenne, de Timary, & Starkel, 2014).
Activated proinflammatory pathways, in particular, IL-8 and IL-1B, were
positively correlated with alcohol consumption and alcohol-craving scores
(Leclercq, De Saeger, etal., 2014). Moreover, short-term alcohol withdrawal
was associated with the recovery of lipopolysaccharide-dependent receptors
(Leclercq, De Saeger, et al., 2014). Despite a relationship between the gut
microbiota, depression and anxiety, it also frequently develops in actively
drinking alcohol-dependent subjects and plays an important role in the nega-
tive reinforcement of drinking tendency (Koob & Le Moal, 2005). These
factors are strongly related to the urge to drink, an important predictor of
relapse after detoxification (de Timary et al., 2013). Thus, the gut microbiota
seems to be a previously unidentified target in the management of alcohol
dependence (Leclercq, Matamoros, et al., 2014).

g 5. IMPLICATIONS AND FUTURE PERSPECTIVES

5.1 Therapeutic Manipulation of the Microbiota—A
New Hope?

There is considerable commercial interest in the gut microbiota as
indexed by the expanding markets for probiotics, some of which have
shown significant benefits in the setting of clinical trials of GI disorders
(Aziz, Dore, Emmanuel, Guarner, & Quigley, 2013; Farmer, Randall, &
Aziz, 2014). Recently, psychobiotics (live organisms that, when ingested
in adequate amounts, produces a health benefit in patients suffering from
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psychiatric illness) have received a lot of attention as a promising emerging
treatment (Dinan et al., 2013).

We have showed that chronic administration of L. rhamnosus in mice
induces region-dependent alterations in GABA receptor expression in the
CNS, which has been implicated in the pathogenesis of anxiety and depres-
sion (Bravo et al., 2011). Similarly, it has been shown that probiotics may
prevent the development of changes in brain activity in mice in response
to chronic stress (Ait-Belgnaoui et al., 2014). In humans, the consumption
of fermented milk product with probiotic, affected activity of brain regions
that control central processing of emotion and sensation using functional
brain imaging (Tillisch et al., 2013). These data suggest that certain organ-
isms may prove to be useful therapeutic adjuncts in stress-related disorders,
although well-designed controlled human trials are needed to further eval-
uate this interesting concept (Cryan & Dinan, 2012; Saulnier et al., 2013).
When accounting for the potential of proinflammatory cytokines to affect
aspects of central functioning such as depression and cognitive function,
and the fact that the gut microbiota are key regulators of immune function
and inflammatory responses (Shanahan, 2012), it is likely that a change in
composition of the intestinal microbiota during aging plays a major role
in the manifestation of immunosenescence and consequently inflammageing
(Prenderville et al., 2015). As such, delineation of the nature of this link
could identify novel therapies to treat cognitive decline and psychiatric dis-
orders during old age (Prenderville et al., 2015).

Overall, it is becoming increasingly apparent that behavior, neurophys-
iology, and neurochemistry can be affected in many ways through modula-
tion of the gut microbiota. Whether this translates to microbial-based CNS
therapeutics remains a tempting possibility and one that is worthy of much
further investigation (Borre, Moloney, et al., 2014; Cryan & Dinan, 2012).
While rodent models suggest that the microbiota plays a fundamental role in
the genesis of the HPA axis, the serotoninergic system, the immunoinflam-
matory system, and that the microbiota can affect the CNS through multiple
pathways, few studies have been carried out on humans. Considering the
gut’s multifaceted capacity to communicate with the CNS, it is plausible
that the gut and its components are playing a crucial role in resultant
mood and behaviors. Some therapeutic opportunities targeting potential
microbiota dysbiosis have already been explored such as probiotic adminis-
tration, fecal transplantation, or diet modifications, with inconsistent results.
Exciting evidence from animal studies has provided the rationale to warrant
turther exploration in humans, both in health and disease. Future research
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should focus on delineating the relative contributions of immune, neural,
and endocrine pathways through which the gut microbiota communicates
with the brain. A better understanding of these pathways will improve
our knowledge about the role of gut microbiota play in a range of neuro-
logical disorders, including neuropsychiatric diseases such as depression, anx-
iety, autism, as well as AD. Future work should focus on gut microbiota
manipulations for treating metabolic diseases and neurological diseases.
Further work is also needed to better understand the mechanism by which
different bacterial groups can differentially affect CNS functioning.
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Abstract

The biological conversion of plant lignocellulose plays an essential role not only in car-
bon cycling in terrestrial ecosystems but also is an important part of the production of
second generation biofuels and biochemicals. The presence of the recalcitrant aromatic
polymer lignin is one of the major obstacles in the biofuel/biochemical production pro-
cess and therefore microbial degradation of lignin is receiving a great deal of attention.
Fungi are the main degraders of plant biomass, and in particular the basidiomycete
white rot fungi are of major importance in converting plant aromatics due to their abil-
ity to degrade lignin. However, the aromatic monomers that are released from lignin
and other aromatic compounds of plant biomass are toxic for most fungi already at
low levels, and therefore conversion of these compounds to less toxic metabolites is
essential for fungi. Although the release of aromatic compounds from plant biomass
by fungi has been studied extensively, relatively little attention has been given to
the metabolic pathways that convert the resulting aromatic monomers. In this review
we provide an overview of the aromatic components of plant biomass, and their
release and conversion by fungi. Finally, we will summarize the applications of fungal
systems related to plant aromatics.



Aromatic Metabolism of Filamentous Fungi 65

g 1. INTRODUCTION

The biological conversion of plant lignocellulose plays an essential role
not only in carbon cycling in terrestrial ecosystems but also is an important
part of the production of second generation biofuels (Naik, Goud, Rout, &
Dalai, 2010). Lignocellulosic biomass as a renewable resource from forestry
and agriculture has been estimated to provide about 25% of global energy
requirements (Briens, Piskorz, & Berruti, 2008). In addition, biomass can
potentially be converted into different high value products including
value-added fine chemicals (Asgher, Ahmad, & Igbal, 2013; Isroi et al.,
2011). Fungi are the main degraders of lignocellulosic biomass. Most species
mainly focus on the polysaccharide fractions of the biomass, which releases
only small amounts of aromatic compounds, but the basidiomycete white-
rot fungi also degrade lignin, releasing substantial amounts of aromatic com-
pounds (Makela, Hildén, & de Vries, 2014).

Lignocellulosic biomass is a complex matrix of three main types of car-
bon-based polymers—cellulose, hemicelluloses, and lignin—together with
proteins and a small amount of extractives (McCann et al., 2001). Forty
to fifty percent of plant biomass consists of cellulose, which is the most abun-
dant organic compound on Earth. Cellulose is a polymer of glucose,
composed of linear chains of several hundred to over ten thousand B-1,4
linked D-glucose units. These chains are noncovalently organized into
packed microfibrils, which contain highly ordered crystalline regions and
more amorphous regions. Hemicelluloses are heterogeneous polysaccharides
of various sizes, and can be divided into xylans, galactomannans, and xylo-
glucans. They are named after their main-chain components (xylose,
mannose, and glucose, respectively) and are decorated with monomeric or
small oligomeric side-chains consisting of a variety of sugars, and uronic,
acetyl, and aromatic acids. Hemicelluloses are closely associated with cellu-
lose microfibrils and chemically linked with lignin via ester linkages through
ferulic acid or (4-O-methyl-)glucuronic acid. Hemicelluloses comprise 20—
40% of the plant biomass. Depending on its origin, xylan can contain various
aromatic residues linked to arabinose side-chains, such as ferulic acid, p-cou-
maric acid, and caffeic acid. Pectin is a heteropolysaccharide with four
defined substructures: homogalacturonan (HG), xylogalacturonan (XG),
and rhamnogalacturonan (RG) I and II. RG I has a backbone of alternating
galacturonic acid and rhamnose residues, whereas the other three substruc-
tures have a galacturonic acid backbone. Side chains of RG I consist of
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arabinose (arabinan) or galactose (galactan) or both (arabinogalactan) and
these can contain terminal ferulic acid and coumaric acid residues. Lignin
is a complex, aromatic heteropolymer, composed of phenylpropanoid units
which are linked together via a variety of ether and C—C bonds (more de-
tails below). Lignin gives strength and rigidity to a plant and constitutes 15—
30% of the dry matter of woody plants (Sjostrom, 1993). All cell wall com-
ponents interact with each other forming the intricate structure that provides
strength and rigidity to the plant cell, as well as defense against pathogens. In
addition to the aromatic components of plant polysaccharides and the aro-
matic polymer lignin, other aromatic compounds are present in plant
biomass such as flavonoids and monoterpenoids.

§ 2. PLANT BIOMASS DEGRADING FUNGI

Fungi are highly efficient degraders of plant biomass. They degrade
plant biomass mainly by enzymatic attack, although nonenzymatic ap-
proaches such as Fenton chemistry (Hatakka & Hammel, 2010; Wood,
1994) also participate in the overall decay process. Fungi produce a wide
range of enzymes that enables them to attack the various linkages that are
present in plant biomass (de Vries & Visser, 2001; Makela et al., 2014;
Rytioja et al., 2014). Genomic studies of fungi have revealed large differ-
ences in their sets of plant biomass active enzymes that can to some extent
be related to their biotope, their preferred substrate or their life style.
Most of the studies into the plant biomass degrading strategies of fungi
have addressed ascomycete and basidiomycete fungi, whereas relatively little
attention has been given to fungi earlier classified the zygomycetes and other
early lineages of fungi. Significant difterences exist between basidiomycetes
and ascomycetes, but they also share many features of this process. A more
detailed description of basidiomycete and ascomycete approaches to plant
biomass degradation is described below.

2.1 Basidiomycetes

2.1.1 Wood-Decaying Fungi

Wood-decaying basidiomycetes have been traditionally classified into
white-rot and brown-rot fungi according to the visually distinguishable
type of decay they cause. In addition, white- and brown-rot fungi typically
possess different enzyme sets for lignocellulose depolymerization. However,
a more nuanced classification of wood-rotting fungi was recently suggested
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due to the more diverse mechanisms of wood decay revealed by the basid-
iomycete genomes (Riley et al., 2014).

White-rot fungi (e.g., Phanerochaete chrysosporium, Phlebia radiata, Dichomi-
tus squalens, Trametes versicolor) are the best studied wood-rotting organisms
because of their ability to degrade all the major components of plant cell
wall including cellulose, hemicelluloses, and lignin, leaving cellulose-
enriched white material (Hatakka & Hammel, 2010). The characteristic
feature of the white-rot fungi which differentiates them from other wood-
decaying fungi is the production of an array of lignin-modifying peroxidases
(see Section 5.1.2) together with various HyOp-generating enzymes (Makela
etal., 2014). Compared to white-rot fungi, brown-rot fungi (e.g., Gloeophyl-
lum trabeum, Postia placenta, Piptoporus betulinus) exhibit a different strategy of
wood decay. They can degrade most of the cellulose and hemicellulose, leav-
ing behind demethoxylated lignin (Dey, Maiti, & Bhattacharyya, 1994). In
contrast to white-rot fungi, brown-rot fungi initiate cellulose depolymeriza-
tion nonenzymatically using highly reactive hydroxyl radicals generated by
Fenton reaction (Fe’™ + H,O, — Fe*T + OH' + OH™) (Kerem & Ham-
mel, 1999; Wood, 1994). In wood-rotting basidiomycete fungi, the meta-
bolism of aromatic compounds has been mainly studied in the connection
of lignin modification and degradation (Ander, Hatakka, & Eriksson, 1980;
Eriksson, Blanchette, & Ander, 1990).

2.1.2 Litter-Decomposing Basidiomycete Fungi

Basidiomycete litter-decomposing fungi are saprobes that colonize grasslands
and grand litter layers of soil and participate in the decomposition of organic
material to CO; and humus (Dix & Webster, 1995). The plant biomass
decomposing enzymatic machinery of litter-decomposing fungi resembles
that of white-rot fungi enabling them to decompose plant-derived lignin-
rich polymers (Hatakka & Hammel, 2010; Steften, Hofrichter, & Hatakka,
2000). Although litter-decomposing and wood-rotting species are physiolog-
ically closely related, litter-decomposing fungi difter from wood-rotters with
respect to their growth substrate, forest litter and soil, that is characterized by a
higher C:N ratio and microbiological activity (Baldrian & Snajdr, 2006).

2.1.3 Plant Pathogens

Plant pathogenic fungi are heterotrophic organisms that secrete a complex
array of enzymes for the digestion of plant host tissues during infection.
Recently, the genome sequence of Ammillaria mellea revealed a rich reservoir
of nine putative lignin-modifying peroxidases and six sensu stricto laccases
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(Collins et al., 2013). Ustilago maydis, another basidiomycete plant pathogen
causing corn smut disease, produces laccase (Desentis-Mendoza et al.,
2006). Basidiomycete yeast Cryptococcus neoformans, a plant and animal path-
ogen, also produced a laccase (Williamson, 1994) capable of oxidizing phe-
nols and aminophenols, but not tyrosine (De Jesus, Nicola, Rodrigues,
Janbon, & Casadevall, 2009), which also contributes to the resistance to fun-
gicides (Ikeda, Sugita, Jacobson, & Shinoda, 2003). The most severe tree
pathogen in boreal forests, Heterobasidion irregulare (syn. Heterobasidion annosum)
has full capacity to grow saprotrophically and degrade lignin with its eight
manganese peroxidases and five laccase gene models (Olson et al., 2012).

2.2 Ascomycetes

Ascomyecete fungi mainly degrade nonwoody biomass and are not known for
a general ability to degrade lignin. They participate in wood decay through a
life style called soft-rot decay that is not as well understood as white-rot and
brown-rot (Blanchette, Held, & Farrell, 2002). Soft-rot fungi show prefer-
ence for cellulose and hemicellulose, and they do not appear to degrade
lignin within the middle lamella of plant cell wall. For instance, soft-rot fungi
are incapable of advancing to the heartwood in dead tree trunks but may
decompose cellulose and hemicelluloses of wounded or cut wood surfaces
and timber (Lundell, Makela, de Vries, & Hildén, 2014). Soft-rot fungi typi-
cally degrade wood in wet environments and also cause characteristic decay
patterns. Type I attack produces cavities within the secondary walls of the
wood cells following the microfibrillar orientation of cellulose. In the type
IT attack, the secondary cell wall is completely eroded and the middle lamella
is left intact (Blanchette, 2003; Eriksson et al., 1990). Ligninolytic ability has
been described for some ascomycete fungi (e.g., Xylaria spp. and Coccomyces
spp.), which results in selective delignification, but relatively little is known
about their enzymatic system (Koide, Osono, & Takeda, 2005; Liers,
Bobeth, Pecyna, Ullrich, & Hofrichter, 2010; Osono & Takeda, 2001).
Another group of ascomycete fungi that colonize wood are the blue or
sap stain fungi. This group of fungi contains several genera (e.g., Ophiostoma
and Grosmannia) and is named after their ability to produce dark-colored
melanins on their ascocarps (peritechia) and their hyphal cell walls that pro-
tect them, for example, against light and drought. Blue stain fungi grow in
phloem or ray parenchyma cells or in resin ducts of conifers where they
degrade wood resins and waxes without decomposing the main lignocellu-
lose components (Ballard, Walsh, & Cole, 1984; DiGuistini et al., 2011).
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During the decay of nonwoody plant biomass ascomycetes also encounter
aromatic compounds, such as lignin (e.g., in wheat straw), and aromatic com-
ponents of plant polysaccharides, such as ferulic acid attached to xylan and
pectin. However, the enzyme systems of most ascomycetes do not contain
the typical lignin-modifying enzymes, with the exception of laccases, sug-
gesting that they leave lignin largely intact. However, they produce feruloyl
esterases that remove ferulic acid and other cinnamic acids from the polysac-
charides (see Section 5.2.1) (Benoit, Danchin, Bleichrodt, & de Vries, 2008),
indicating that they are exposed to monomeric aromatic compounds.

2.3 Ectomycorrhizal Fungi

An ectomycorrhiza is a mutualistic symbiosis between a fungus and a plant,
which is primarily formed by the species of the class agaricomycetes.
Numerous other examples exist within ascomycetes (Rinaldi, Comandini,
& Kuyper, 2008; Tedersoo, May, & Smith, 2010). As root symbionts, ecto-
mycorrhizal (ECM) fungi have limited ability to degrade plant cell wall
polymers (Martin et al., 2008; Nagendran, Hallen-Adams, Paper, Aslam,
& Walton, 2009). Phylogenetic reconstructions show that the capacity to
form ectomycorrhizas has appeared independently several times in the
course of evolution from saprobic ancestor (Hibbett, Gilbert, & Donoghue,
2000). Although the genome of basidiomycete ECM Laccaria bicolor lacks
lignin-modifying peroxidases (Martin et al., 2008), the occurrence of gene
sequences with similarity to fungal class II peroxidases has been reported
from ECM species (Bodeker, Nygren, Taylor, Olson, & Lindahl, 2009;
Bodeker et al., 2014). In addition, Paxillus involutus was shown to be able
to significantly modify organic matter using a free-radical-based mechanism,
similar to brown-rot fungi (Rineau et al., 2012). Additionally, chemical
modifications of organic matter occurring in the presence of glucose were
correlated with the expression of a laccase, cytochrome P450 monooxyge-
nase, and unspecific peroxygenase (Lundell, Makela, & Hildén, 2010).
Furthermore, laccases were upregulated in ECM root tips of both L. bicolor
and ascomycete species Tuber melanosporum, suggesting that laccases may
facilitate root colonization (Veneault-Fourrey, Plett, & Martin, 2013).

S 3. AROMATIC COMPOUNDS IN PLANT BIOMASS

Various types of aromatic compounds are found in plants, but the
most common ones are bound phenolics that are present in various forms,
such as those that are linked to lignin (see Section 3.1) or polysaccharides
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(see Section 3.2), and soluble aromatic compounds (Kaisoon, Siriamornpun,
Weerapreeyakul, & Meeso, 2011). However, other aromatic compounds
are also present (see Section 3.3). These aromatic compounds result in
different monomers that can be converted through the various aromatic
pathways in fungal cells (see Section 7). Several studies have been performed
to analyze the aromatic profile of plants, resulting in a wide variation of
compounds. A study using six herbs and spices resulted in the identification
of 51 aromatic compounds (Vallverdu-Queralt et al., 2014), whereas several
free aromatic acids and flavonoids were also detected in 12 edible flowers
(Kaisoon et al., 2011). Studies involving larger sets of plants confirm this va-
riety of aromatic compounds covering both bound and soluble aromatic
compounds as well as flavonoids, volatile oils, and other compounds (Cai,
Luo, Sun, & Corke, 2004; Cai, Sun, Xing, & Corke, 2004; Surveswaran,
Cai, Corke, & Sun, 2007; Wojdylo, Oszmianski, & Czemerys, 2007).

3.1 Lignin
After cellulose, lignin is the second most abundant renewable biopolymer on
Earth. This complex aromatic heteropolymer accounts typically for 26—32%
and 20—25% of dry weight in softwoods and hardwoods, respectively
(Sjostrom, 1993). The content of lignin in gramineous plants varies substan-
tially and depends on the plant species. For example, corn stover and wheat
straw, which are the two most abundant agricultural residues, comprise of
15—21% and 5—17% of lignin as dry weight, respectively (Buranov & Mazza,
2008). Evolutionarily, lignin was introduced to the cell walls when plants
colonized land. Lignin is tightly cross-linked with other cell wall components,
covalently bound to hemicellulose but not to cellulose, and thus can be
considered “cellular glue” providing strength to plant tissues and fibers and
stiffness to cell walls (Rubin, 2008). It aids in water transportation by physi-
cally attaching the xylem cells together and protects the more easily degrad-
able cellulose and hemicellulose polymers from microbial attack (Moura,
Bonine, de Oliveira Fernandes Viana, Dornelas, & Mazzafera, 2010).
Lignin consists of three phenylpropane monomer units (monolignols),
namely sinapyl, coniferyl, and p-coumaryl alcohol (Argyropoulos & Menac-
hem, 1997; Kuhad, Singh, & Eriksson, 1997; Sjostrom, 1993). Monolignols
are synthesized by the general phenylpropanoid pathway where aromatic
amino acid phenylalanine is converted to cinnamic acids such as p-coumaric,
cafteic, ferulic, 5-hydroxyferulic, and sinapic acid, and further to p-coumaryl
CoA. The formation of monolignols requires enzyme-mediated reactions
including the hydroxylation of the aromatic ring, methylation of hydroxyl
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groups, and the stepwise reduction of monolignol side chains from carbox-
ylic acids to alcohols (Boerjan, Ralph, & Baucher, 2003). The monomeric
lignin precursors (Figure 1(a)) are translocated to the plant cell wall and
oxidized to monolignol radicals, which are polymerized to p-hydroxy-
phenyl (H), guaiacyl (G), and syringyl (S) type of phenylpropanoid units
(Boerjan et al., 2003; Campbell & Sederoft, 1996; Chakar & Ragauskas,
2004; Freudenberg & Neish, 1968; Higuchi, 2006; Ralph et al., 2004).
Oxidative enzymes such as class III plant peroxidases, and laccases and other
phenol oxidases have been proposed to catalyze the polymerization of the
lignin monomers by the random radical coupling of hydroxycinnamyl sub-
units resulting with a complex branched polymer (Fagerstedt, Kukkola,
Koistinen, Takahashi, & Marjamaa, 2010). The biosynthesis of lignin results
in an almost random occurrence of the different linkage types, and therefore,
the lignin polymer has no single repeating bond between these subunits,
which makes the polymeric structure amorphic (Figure 1(b)).

The nonhydrolyzable intermonomeric linkages account for the rigidity of
lignin. This is in contrast with other native polymers which are generally fully
hydrolyzed to monomeric units (Higuchi, 2006). Lignin comprises many
kinds of C—C and C—O bonds with B-O-4 aryl ether linkage being the
most abundant type accounting for 30—40% of total linkages in softwood
and 40—50% in hardwood lignin (Brunow & Lundquist, 2010). Other
abundant bonding patterns in native lignin include -5 phenyl coumaran,
B-B’ pinoresinol, 5-5" biphenyl, B-1 diaryl propane, and 4-O-5" diaryl ether
type linkages, as well as dibenzodioxocin structures (DBDO; 5-5"-a, B-O-
4"). Both the DBDO and 4-O-5" motif could constitute branching points in
the lignin polymer (Boerjan et al., 2003; Brunow & Lundquist, 2010).
Although lignin is traditionally seen as highly complex cross-linked,
branched polymer, newer findings on milled wood lignin suggest that lignin
exists as 6—12 phenolic units long linear oligomers, which strongly interact
in such a manner that traditional analyses of the molecular mass are biased
and thus suggest higher molecular mass polymeric units (Crestini, Melone,
Sette, & Saladino, 2011). The functional groups such as methoxyl, phenolic
and aliphatic hydroxyl, benzyl alcohol, noncyclic benzyl ether, and carbonyl
groups have major influence on the reactivity of lignin. Moreover, the
compact structure that is insoluble in water and other common solvents as
well as already mentioned abundance of different linkages make lignin
biodegradation a challenge. Thus biological lignin degradation, caused by
oxidative enzymes and/or small molecular weight mediators or factors
such as radicals, is unspecific (Hatakka & Hammel, 2010).
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The precise chemical composition of lignin is difficult to determine due
to its complex nature and lignin—polysaccharide—protein structures
(Amthor, 2003). The knowledge of the chemical structure of diverse plant
lignins is still incomplete, although several lignin models have been pre-
sented. Recently, a novel unusual lignin polymer consisting of caffeyl
alcohol was identified in seed coats of both monocots and dicots (Chen,
Tobimatsu, Havkin-Frenkel, Dixon, & Ralph, 2012). The amount and
composition of lignin vary among taxa, cell types, location in secondary
wall of individual cells, and between walls of different cells in the same tissue
and organs of the same plant (Agarwal & Atalla, 1986; Campbell & Sederoft,
1996). Softwoods have higher contents of lignin than hardwoods and grasses
(Sjostrom, 1993). Softwood lignin mainly contains guaiacyl units with low
levels of p-hydroxyphenyl units, whereas hardwood lignin predominantly
consists of guaiacyl and syringyl units with traces of p-hydroxyphenyl units.
Lignin from hardwood, therefore, contains higher methoxyl content than
softwood (Brunow, 2006). Lignin from grasses incorporate comparable
amounts of all three units (Billa & Monties, 1995; Obst, 1982; Vanholme,
Demedts, Morreel, Ralph, & Boerjan, 2010).

3.2 Aromatic Components of Plant Polysaccharides

Several plant polysaccharides can contain aromatic residues attached to their
side chains. Ferulic acid and p-coumaric acid can be ester linked to the C(O)5
residue of L-arabinose in xylan, and ferulic acid has also been detected ester
linked to the C(O)6 residue of D-galactose and the C(O)2 or C(O)3 residue
of L-arabinose in pectin (Fry, 1982; Fry, 1983; Ishii, 1994; Ishii, 1997; Ishii &
Hiroi, 1990a,b; Ishii, Hiroi, & Thomas, 1990; Ishii & Tabita, 1993; Kato &
Nevin, 1985; Rombouts & Thibault, 1986; Saulnier, Vigouroux, & Thi-
bault, 1995; Schooneveld-Bergmans, Hopman, Beldman, & Voragen,
1998; Smith & Harris, 2001). In addition, ferulic acid can be ester-linked
to the C(O)4 residue of p-xylose side chains of xyloglucan (Ishii et al.,
1990). The linkages vary depending on the polysaccharide (Thibault
et al., 1998) (Figure 2). The most commonly isolated oligosaccharides con-
taining aromatic acids are water soluble O-[5-O-(trans-p-coumaroyl)-o-1-
arabinofuranosyl]-1,3-O-B-p-xylopyranosyl-1,4-D-xylopyranose (PAXX)
and  O-[5-O-(trans-feruloyl)-a-L-arabinofuranosyl]-1,3- O-B-p-xylopyra-
nosyl-1,4-p-xylopyranose (FAXX) (Akin, 2008; Romero, Ferreira,
Martinez, & Martinez, 2009). Ferulic acid and p-coumaric acid have also
been identified as being linked to cutins and suberins, indicating their com-
mon presence in a variety of plant polysaccharides (Micard, Grabber, Ralph,
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Renard, & Thibault, 1997). The release of these acids from the polysaccha-
rides will result in the monomeric aromatic compounds that enter fungal
aromatic metabolism.

Ferulic acid can form dimers that enable the linkage of lignin to plant cell
wall polysaccharides and polysaccharides to each other (Figure 3), and these
dimers can be released by feruloyl esterases (see Section 5.2.1) (Faulds, Sancho,
& Bartolome, 2002; Faulds, Mandalari, LoCurto, Bisignano, Waldron, 2004;
Ishii, 1991; Kroon, Garcia-Conesa, Fillingham, Hazlewood, & Williamson,
1999). Different types of diferulic acid linkages have been identified (Eraso
& Hartley, 1990; Fry, 1986; Ishii, 1991; Kato & Nevin, 1985; Micard et al.,
1997; Ralph, Grabber, & Hatfield, 1995; Shibuya & Nakane, 1984) demon-
strating the diversity of ferulic acid dimerization in plant cell walls (Figure 4).

3.3 Other Aromatic Plant Compounds

Plants can also contain free or nonesterified aromatic compounds, such as
ferulic acid, p-coumaric acid, vanillic acid, and p-hydroxybenzoic acid in
water extracts of alfalfa (Newby, Sablon, Synge, Casteele, & van Sumere,
1980), and ferulic acid, p-coumaric acid, and caffeic acid in various grasses
and legumes (Cherney, Anliker, Albrecht, & Wood, 1989) (Figure 5). In
addition, B-glucosides of o-coumaric acid, coumarinic acid and melilotic
acid have been identified in plants as well as their metabolic product,
coumarin (Kosuge & Conn, 1959; Kosuge & Conn, 1961) (Figure 5).
Another class of aromatic compounds are the flavonoids, which contain a
structure that consists of two aromatic rings connected by three carbon atoms
(Figure 6) (Dykes & Rooney, 2007). Several main groups of flavonoids can
be recognized (Figure 6) and each group consists of a variety of compounds
that differ in the groups (e.g., OH, OCH3) attached to the aromatic rings
(Corradini et al., 2011; Dykes & Rooney, 2007; Kumar & Pandey, 2013).
Tannins are widespread in the plant kingdom and they form the second
most abundant group of plant phenolics after lignin (McLeod, 1974). Tan-
nins are found in leaves, roots, bark, and wood and can accumulate in large
amounts in particular organs or tissues of the plant (Haslam, 2007). Tannins
are polymeric compounds that are formed mainly of gallic acid. Tannins can
reduce the digestibility of other plant components, such as carbohydrates
and proteins, by binding to them, and also provide a specific odor and taste
to these plants, making them nonpreferred by insects and birds (Dykes &
Rooney, 2007). Their antioxidant activity is higher than that of monomeric
aromatic compounds (Hagerman et al., 1998) and have been shown to have
various beneficial eftects on human health (Dykes & Rooney, 2007; Prior &
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Figure 5 Free aromatic acids and related compounds extracted from plants.

Gu, 2005). The structure of tannins varies depending on the plant species
(Bentley & Payne, 2013; Dykes & Rooney, 2007) and two main groups
are recognized: flavonoid-based condensed tannins (syn. proanthocyanidins
together with phloroglucinol) and hydrolyzable tannins consisting of esters
of gallic acid with a central polyol (Gross, 2008) (Figure 7). The degradation
of these structures results in flavonoids (see above) or gallic acid that can be
further metabolized (see Section 7.5).

Finally, plants also contain stilbenoids, which are compounds containing
two aromatic rings and a variety of side chains (Figure 8) (Pawlus et al., 2013;
Ververidis et al., 2007). A separate side branch of the flavonoid biosynthetic
pathway forms these compounds and they are of major importance to plant
disease resistance, for instance in Vitis (Pawlus et al., 2013). Flavonoids
possess diverse biological activities and potential as new drugs with, e.g.,
antitumor, antimicrobial, and antioxidant effects and have therefore major
economic importance.

4. SENSITIVITY OF FUNGI TO AROMATIC COMPOUNDS

During the growth of fungi on plant biomass (some of) the aromatic
compounds are released and fungi are therefore exposed to them. Free (non-
polymeric) aromatic compounds are toxic for most fungi at relatively low
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Figure 8 Schematic presentation of the stilbenoid backbone. R,—R,4 can be a variety of
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(2007).

concentrations. This poses various challenges to the fungi which are exposed
to these compounds while using the plant biomass (mainly polysaccharides)
as a carbon source. Wood-rotting fungi cannot grow on aromatic com-
pounds as the sole carbon source, and some of them, e.g., vanillin is toxic
to them in higher concentrations (Ander et al., 1980). Several studies into
the effects of the presence of aromatic compounds have been performed
which are summarized here. The presence of cinnamic acid, ferulic acid,
and cinnamic aldehyde inhibited the growth of Neurospora crassa at
250 pg/mL, but did not affect morphology, whereas cafteic acid and p-cou-
maric acid changed the morphology of the fungus without inhibiting
growth (Mendonca Neves, Kawano, & Said, 2005). A larger set of lignin-
related aromatic compounds and their unsubstituted and 4-O-methylated
derivatives and 4-hydroxyl substituted benzaldehydes was tested for their in-
hibition of growth of eight white-rot fungi. The significant reduction of
growth was observed at 10 mM concentrations for most compounds,
whereas some reduced fungal growth already at 5 and 1 mM concentrations
(Buswell & Eriksson, 1994). Similarly, 50% or more of the growth of the
white-rot fungus Phanerochaete chrysosporium was inhibited by phenethyl
alcohol and several other phenolic compounds at 10 mM or lower concen-
trations (Hage, Schoemaker, Wever, Zennaro, & Heipieper, 2001).

A larger set of fungi (88) was analyzed for their sensitivity to eight
lignin-related phenolic compounds (Guiraud, Steiman, Seigle-Murandi,
& Benoit-Guyod, 1995). This revealed strong differences between the spe-
cies and for most groups no common features could be observed with
respect to pigment formation or growth inhibition. However, three groups
of fungi, that were previously classified as groups of the fungi imperfecti,
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Zygomycetes, Hypocreales, and Melanconiales, were highly resistant to
phenolic compounds.

The growth of two white-rot fungi, Lentinus edodes and Pleurotus sajor-caju,
was enhanced by several phenols up to 5 mM concentrations, whereas vanillic
acid, p-coumaric acid, caffeic acid, and vanillin had the same effect on
L. edodes, but not on P. sajor-caju (Cai, Buswell, & Chang, 1993). The growth
of straw decomposing species Volvariella volvacea was only stimulated by low
concentrations of vanillic acid and caffeic acid. In contrast, other compounds,
such as 4-hydroxybenzoic acid, syringic acid, and 4-hydroxybenzaldehyde,
reduced growth of these fungi (Cai et al., 1993). The most toxic aromatic
compounds for white-rot species Ceriporiopsis subvermispora and the dung-
dwelling basidiomycete Cyathus stercoreus are benzaldehyde derivatives
(Sethuraman, Akin, Eisele, & Eriksson, 1998). The growth was enhanced
up to 5 mM after which it was either retarded or stopped. Lignin-modifying
enzymes of white-rot fungi were required for the detoxification of exogenous
derivatives of benzoic acid, cinnamic acid, and benzaldehyde. It has been pro-
posed that a higher degree of methoxylation produces less toxic derivatives
(Gupta, Hamp, Buswell, & Eriksson, 1981; Li, Xu, & Eriksson, 1999).

These data demonstrate that fungi that grow in biotopes where mono-
meric aromatic compounds are released need to develop methods to reduce
the concentrations of these compounds. Many fungi are capable of aromatic
conversions that ultimately result in nonaromatic compounds that are less or
nontoxic to the fungi. The current knowledge on the release and conversion
of aromatic compounds by fungi is described below.

S 5. ENZYMATIC RELEASE OF AROMATICS COMPOUNDS
FROM PLANT BIOMASS BY FUNGI

Fungi produce a variety of extracellular enzymes involved in the con-
version and degradation of aromatic compounds in plant biomass. These en-
zymes are required to degrade large aromatic compounds to smaller subunits
which can then be metabolized in fungal cells. Although fungal manganese
peroxidases are able to mineralize polymeric lignin to carbon dioxide in vitro
((Hatakka, 2001; Kapich, Hofrichter, Vares, & Hatakka, 1999) and references
therein), it is likely that at least part of aromatic degradation products are
taken inside the fungal cell and metabolized by intracellular enzymes. How-
ever, almost nothing is known about the transport of aromatic compounds
from the growth medium to fungal cell (Shary et al., 2008). The best
characterized of these enzymes are oxidoreductases such as class II
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heme-containing peroxidases from the CAZy family AA2 and laccases
(CAZy family AA1_1) (Martinez, Ruiz-Duenas, Guillen, & Martinez,
1996; Mester et al., 2001; Youn, Hah, & Kang, 1995). These enzymes are
responsible for generating highly reactive free radicals that attack lignin bonds
unspecifically. In addition, with a growing number of sequenced basidiomy-
cete genomes, new superfamilies of fungal secretory peroxidases have been
designated, i.e., dye-decolorizing peroxidases (DyPs) and heme-thiolate per-
oxidases (HTPs). In addition to oxidative enzymes, hydrolytic enzymes such
as feruloyl esterases are involved in the release of plant aromatic compounds.

5.1 Oxidoreductases

5.1.1 Laccase

Laccases classified to CAZy family AA1_1 (EC 1.10.3.2, p-diphenol:oxygen
oxidoreductases) are metalloenzymes that belong to the diverse superfamily
of multicopper oxidases (Baldrian, 2006; Levasseur, Drula, Lombard,
Coutinho, & Henrissat, 2013; Thurston, 1994). They are widely distributed
in nature and in addition to fungi, similar types of multicopper oxidases exist
in plants, insects, bacteria, and archaea (Alexandre & Zhulin, 2000; Claus,
2004; Martins et al., 2002; Mayer & Staples, 2002; Uthandi, Saad, Humbard,
& Maupin-Furlow, 2010). Fungal laccases have been suggested to participate
in the detoxification of byproducts of lignin degradation and also in
morphogenesis, fungal plant pathogen interaction, and stress defense
(reviewed by Baldrian (2006), Thurston (1994)).

Laccases catalyze the oxidation of a variety of phenolic compounds, such
as o- and p-diphenols, methoxy-substituted phenols, polyphenols, aromatic
amines, benzenethiols, hydroxindols, 1-naphthol, and syringaldazine, with
the subsequent reduction of molecular oxygen to water (Call & Mucke,
1997; Thurston, 1994). In the presence of small molecular weight charge
transfer mediator molecules, laccases are also able to oxidize nonphenolic
compounds, and some phenolic lignin precursors and degradation products
have been proposed to act as laccase mediators in nature (Camarero, Ibarra,
Martinez, & Martinez, 2005).

5.1.2 Class Il Lignin-Modifying Peroxidases

CAZy family AA2 includes class II lignin-modifying peroxidases (Levasseur
et al., 2013), namely manganese peroxidases (MnPs), lignin peroxidases
(LiPs), and versatile peroxidases (VPs), which have been only found in the
white-rot and litter-decomposing basidiomycete genomes (Floudas et al.,
2012; Riley et al., 2014). They are extracellular heme-containing enzymes
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that use hydrogen peroxide or organic peroxides as electron acceptors to
catalyze a number of oxidative reactions (Hofrichter, Ullrich, Pecyna, Liers,
& Lundell, 2010). Two electrons derived from substrate molecules reduce
the enzyme followed by a concomitant release of two water molecules.

MnPs (EC 1.11.1.13) catalyze the specific oxidation of Mn(II) to Mn(III) in
the presence of HyO, (Hammel & Cullen, 2008; Lundell et al., 2010). These
highly reactive Mn(IIl) ions are chelated into a stable form by fungal secreted
organic acids, such as oxalate, malonate, and fumarate. Chelated Mn(III) ions
act as diffusible oxidants which are suggested to be capable of penetrating
small molecular pores between cellulose microfibrils in plant cell wall and
attack phenolic lignin substructures (Blanchette, Krueger, Haight, Akhtar,
& Akin, 1997). As a result unstable free radicals are formed which disintegrate
spontaneously (Hofrichter, 2002). Although, nonphenolic lignin substruc-
tures, which comprise approximately 90% of lignin subunits in wood, are
not normally oxidized by MnPs, they have been shown to be slowly co-
oxidized by MnP-mediated lipid peroxidation reactions (Jensen, Bao, Kawai,
Srebotnik, & Hammel, 1996; Kapich et al., 1999). In addition, straw lignin
and synthetic lignin, humic substances, dyes, and xenobiotic compounds
are converted and even mineralized to carbon dioxide by MnP (Hofrichter
& Fritsche, 1997; Hofrichter, Scheibner, Schneegal3, & Fritsche, 1998;
Kawai, Umezawa, Shimada, & Higuchi, 1988).

LiP (EC 1.11.1.14) is the first enzyme which was connected to the
oxidative breakdown of lignin. In a HyO;-dependent reaction, LiP catalyzes
the initial one-electron oxidation of both phenolic and nonphenolic aro-
matic compounds, including the substructures of lignin, and several other
substrates like veratryl alcohol (Hammel et al., 1993; Tien & Kirk, 1983).
LiP possesses the aromatic substrate-binding tryptophan residue (Trp-171
in Phanerochaete chrysosporium LiP H8), which is exposed on the enzyme sur-
face. This catalytically active tryptophan is thought to participate in the so-
called long-range electron transfer from bulky aromatic substrates that
cannot directly contact the oxidized heme in the active centre of LiP (Doyle,
Blodig, Veitch, Piontek, & Smith, 1998). LiP oxidizes nonphenolic 8-O-4
and diarylpropane lignin model compounds (see Section 6) followed by
side-chain cleavage, demethylation, intramolecular addition, and rearrange-
ments (Baciocchi, Bietti, Gerini, Lanzalunga, & Mancinelli, 2001; Hammel,
Tien, Kalyanaraman, & Kirk, 1985; Miki, Renganathan, & Gold, 1986;
Miki, Renganathan, Mayfield, Gold, 1987; Umezawa & Higuchi, 1989).
Phenolic substrates are converted to phenoxy radicals and in the presence
of oxygen these phenoxy radicals can form ring-cleavage products or lead
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to coupling and polymerization (Harvey, Gilardi, Goble, & Palmer, 1993;
Schoemaker, Harvey, Bowen, & Palmer, 1985).

The third type of class II lignin-modifying peroxidases is VP (EC
1.11.1.16.), which comprises both LiP and MnP activities (Martinez, 2002;
Ruiz-Duenas et al., 2009). Therefore, VP is capable of degrading a wider
range of substrates than nonhybrid enzymes (Hammel et al., 1993). Similarly
to MnP, VP has shown to efficiently oxidize Mn(II) (Ruiz-Duenas et al.,
2009). In addition, VP performs long-range electron transfer from aromatic
donors, thus resembling LiP and consequently enables the enzyme to oxidize
nonphenolic structures in the absence of Mn ions (Perez-Boada et al., 2005).

5.1.3 Dye-Decolorizing Peroxidases

Dye-decolorizing peroxidases (DyP-type peroxidases; EC 1.11.1.19) are
named after their ability to oxidize a wide range of dye compounds, in
particular, anthraquinone dyes, which are poorly oxidized by other perox-
idases (Kim & Shoda, 1999; Passardi, Cosio, Penel, & Dunand, 2005;
Sugano, 2009). It has been suggested that DyPs have oxygenase or hydrolase
activities as well as peroxidase catalytic activities. Typical peroxidase sub-
strates degraded by DyPs are, for example, 2,2'-azinobis-(3-ethylbenzthia-
zoline-6-sulphonate and phenolic compounds. DyPs have also been
reported to cleave B-carotene and other carotenoids as well as to oxidize
methoxylated aromatics such as veratryl alcohol and nonphenolic -O-4
lignin model compounds (Liers et al., 2010; van Bloois et al., 2009; Zelena,
Hardebusch, Hulsdau, Berger, & Zorn, 2009). However, their physiological
function still remains unclear.

5.1.4 Heme-Thiolate Peroxidases

Heme-thiolate peroxidases (HTPs) are one superfamily of peroxidases
including unspecific peroxygenases (UPOs; formerly aromatic peroxyge-
nases) and chloroperoxidases, which can incorporate oxygen into their
substrate molecules. UPOs (EC 1.11.2.1) catalyze a wide range of reac-
tions including oxidations of different aliphatic and aromatic compounds
(Gutiérrez et al., 2011; Ullrich & Hofrichter, 2005). Depending on the
particular substrate and reaction conditions, UPOs catalyze various reac-
tions, such as N-oxidations, aromatic oxygenations, alkyl hydroxylations,
and epoxidation (Hofrichter & Ullrich, 2014). Thus, UPOs combine
unique features of cytochrome P450s (oxygen transfer) and peroxidases
(phenol oxidation, halide oxidation). The physiological function of
UPOs is still unclear, but their extracellular location and the catalytic
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diversity suggest that they have a role in the conversion and detoxification
of organic compounds in fungal natural habitats. It has been reported that
UPOs are able to cleave nonphenolic B-O-4 lignin model dimers, which
refers to the involvement of peroxygenases in the degradation of methoxy-
lated compounds derived from lignin and other aromatic compounds in
plants (Kinne et al., 2011).

5.2 Hydrolases

5.2.1 Feruloyl Esterases

Feruloyl esterases (EC 3.1.1.73), also known as ferulic acid esterases,
together with p-coumaroyl esterases and cinnamoyl esterases remove
hydroxycinnamic acids from plant cell wall polysaccharides. They also hy-
drolyze the linkages between uronic acid moieties of xylan and the lignin
polymer (Li & Helm, 1995). Feruloyl esterases form a heterogeneous group
of enzymes and the distribution of the different feruloyl esterase subgroups
in the fungal kingdom varies strongly (Benoit et al., 2008). The difference in
the enzymatic properties of the subgroups is exemplified for the two char-
acterized feruloyl esterases from Aspergillus niger, FaeA and FaeB (de Vries
et al., 2002). Although both enzymes act on xylan and pectin, the activity
of FaeA is highest on xylan, and the activity of FaeB is highest on pectin
(de Vries et al., 2002). They also differ with respect to the residue from
which they can release ferulic acid. FaeB releases ferulic acid only from 1~
arabinose in xylan and pectin and FaeA releases ferulic acid from C(O)s5 of
L-arabinose in xylan and from C(O)¢ of b-galactose in pectin (Ralet, Faulds,
Williamson, & Thibault, 1994). Using methyl esters of aromatic acids, it was
shown that the presence of methoxy group on the aromatic ring favors the
activity of FaeA, whereas the presence of hydroxyl groups favors the activity
of FaeB (Kroon, Faulds, Brezillon, & Williamson, 1997). Interestingly, the
induction of the corresponding genes by a set of aromatic acids mirrored
the substrate specificity with respect to the substitutions on the aromatic
ring (de Vries et al., 2002; de Vries and Visser, 1999). A subset of the feruloyl
esterases is also able to release diferulic acid from plant biomass. The 5,5
dimer of ferulic acid (Figure 4) was released by several feruloyl esterases (Bar-
tolome et al., 1997; Crepin, Faulds, & Connerton, 2004a; Crepin, Faulds, &
Connerton, 2004b; Faulds et al., 2002; Faulds et al., 2003; Kroon et al.,
1999; Topakas, Christakopoulos, & Faulds, 2005), whereas only two en-
zymes were shown to release the 8-O-4'-dimer (Kroon et al., 1999) and
only an Aspergillus oryzae tannase efficiently releases the 8,5" dimer (Gar-
cia-Conesa, Ostergaard, Kauppinen, & Williamson, 2001).
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5.2.2 Tannase

Tannase (tannin acyl hydrolase, EC 3.1.1.20) catalyzes the hydrolysis of ester
bonds from gallotannins, which are also called complex or hydrolysable tan-
nins (see Figure 7), producing gallic acid and glucose (Aguilar et al., 2007).
Fungal tannases have been mainly produced and studied from the species of
the genus Aspergillus and Penicillium that tolerate even up to 20% tannin (de
Paiva et al.,, 2013; Murray et al., 2008; Suseela & Nandy, 1983; van
Diepeningen et al., 2004). The production of tannase can be induced by
phenolic compounds (e.g., gallic acid, tannic acid, pyrogallol, methyl gallate)
(Mori et al., 1999). However, gallic acid has also been reported to repress the
production of tannase (Aguilar, Augur, Favela-Torres, & Viniegra-Gonza-
lez, 2001; Bradoo, Gupta, & Saxena, 1997).

S 6. CONVERSION OF LIGNIN MODEL COMPOUNDS

Monomeric aromatic compounds are sometimes considered as lignin
model compounds, but so-called dimeric aromatic compounds are the most
commonly used compounds for this. Lignin model compounds are an
important tool in testing the activity of enzymes involved in lignin degrada-
tion. Although the structure of natural lignin is not fully known, several of
the linkages in lignin have been identified (see Section 3.1) and model com-
pounds for these linkages have been synthesized. It should be noted though
that the degradation of polymeric lignin and simple aromatic compounds
may require totally different decay mechanisms. Polymeric high molecular
weight lignins are large and cannot be taken into the fungal cell and thus
they must be oxidized outside the cell, while the metabolism of small mo-
lecular weight aromatic compounds mostly occurs intracellularly (Hatakka,
2001), even though the role of extracellular enzymes in the initial cleavage
of dimeric model compounds has been clearly described (see below).

These model compounds also provide an indication as to which mono-
meric aromatics could be the result of lignin degradation by fungi and which
would likely be starting compounds of intracellular aromatic metabolism.
Here we provide an overview of the enzymatic conversion of lignin model
compounds and indicate the monomeric aromatic compounds that are dis-
cussed in the next section on fungal aromatic metabolism.

6.1 Arylglycerol-B-Aryl Ether Substructures

Arylglycerol-B-aryl ether (6-O-4) linkages account for approximately 35—
60% and 50—70% of linkages in softwood and hardwood lignins,
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respectively (Adler, 1977; Henriksson, 2009). For that reason its cleavage has
been considered as the most important process in lignin degradation. A large
variety of model compounds containing this linkage have been synthesized
and these have been used to study the ability of lignin-modifying enzymes,
such as MnP, LiP, DyP (Liers et al., 2010), UPO (Kinne et al., 2011) and
laccases to cleave this linkage. In the latter case most of the products are
not monomeric aromatic compounds that could enter the metabolic path-
ways described in this review (Kawai, Nakagawa, & Ohashi, 2002; Kawai
et al., 2004; Srebotnik & Hammel, 2000). For MnP and LiP some examples
of the monomeric aromatic compounds that could enter fungal aromatic
metabolism are given below.

6.1.1 Action of Lignin Peroxidase

Studies using LiP from P. chrysosporium and P. radiata using a range of (8-O-
4) model compounds revealed the variety of products that can be obtained
after the action of this enzyme (Figures 9, 10) (Lundell et al., 1993; Miki
et al.,, 1986; Srebotnik, Jensen, & Hammel, 1994; Umezawa, Shimada,
Higuchi, & Kusai, 1986), which are then likely imported into the cell and
converted further, if not repolymerized by laccase which is produced by
most white-rot fungi (Hatakka, 1985). The oxidative cleavage of a dimeric
B-O-4 lignin model compound, 1-(3,4-dimethoxypheny1)-2-phenyletha-
nediol (dimethoxyhydrobenzoin) by LiP of P. chrysosporium resulted in the
production of benzaldehyde, propylphenol, phenylglycerol, and catechol
(Hammel et al., 1985). Benzaldehyde and propylphenol arise through
Cy—Cp oxidative cleavage of this dimer via a pathway similar to that found
for the oxidation of diarylpropanes by LiP (Renganathan, Miki, & Gold,
1986; Schoemaker et al., 1985). Phenylglycerol is formed through §-O-4
ether bond hydrolysis (Enoki, Goldsby, & Gold, 1981) whereas catechol
is formed through demethoxylation of 8-O-4 dimers (Miki et al., 1986).

6.1.2 Action of Manganese Peroxidase

Several (3-O-4) model compounds were also used to examine the action of
manganese peroxidase (MnP) of P. chrysosporium and Ceriporiopsis subvermis-
pora resulting in a range of monomeric aromatic compounds (Figure 11)
(Bao, Fukushima, Jensen, Moen, & Hammel, 1994; Hofrichter, 2002;
Jensen et al., 1996; Tuor, Wartishi, Schoemaker, & Gold, 1992). The oxida-
tion of phenolic B-aryl ether structures involves the formation of reactive
phenoxy radical intermediates which undergo C,—Cp oxidative cleavage,
alkyl phenyl cleavage, and C, oxidation, yielding methoxylated
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benzoquinone, phenoxylated hydroxypropane, and methoxylated catechol
(Tuor et al., 1992). The cleavage of nonphenolic 3-O-4 substrates by
MnP under lipid peroxidation conditions with linoleic acid involves
hydrogen abstraction from the benzylic carbon (C,) followed by O,
addition to form a peroxy radical, and subsequent oxidative cleavage
and nonenzymatic degradation (Kapich, Steften, Hofrichter, & Hatakka,
2005).

6.2 Conversion of Biphenyl Compounds

The biphenyl (5-5) type of lignin substructures are one of the main linkage
motifs in lignin, commonly occurring between two guaiacyl units and
comprising 5—10% of the total linkages depending on the wood type
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(Henriksson, 2009). However, studies involving biphenyl lignin model com-
pounds are scarce. The breakdown of biphenyl lignin model compounds was
shown to be enzymatically catalyzed by laccases of the white-rot fungus T.
versicolor (Figure 12) (Katayama, Nishida, Morohoshi, & Kuroda, 1989).
This reaction results in ring fission but the exact mechanism and intermediates
are still elusive. However, when the model compound contained benzylic
hydrogens, the formation of only benzylic oxidation products and tertrameric
products such as dibenzodioxepin-type structures were reported (Crestini &
Argyropoulos, 1998; Lahtinen, Kruus, Heinonen, & Sipila, 2009).
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Figure 12 Conversion of a biphenyl (5-5) lignin model compound by T. versicolor.
Redrawn based on Katayama et al. (1989) with permission of John Wiley & Sons, Inc.
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6.3 Conversion of Diarylpropane Compounds

Diarylpropane (8-1) linkages comprise 1—2% of total phenylpropane link-
ages in wood lignin (Henriksson, 2009). The degradation of diarylpropane
lignin model compounds in which the C,—Cgp linkage gets cleaved has
been well studied and proceeds through an aryl cation radical intermediate
(Figure 13(a) and (b)) (Hammel et al., 1985; Renganathan et al., 1986). This
reaction results in the aromatic aldehyde products anisyl aldehyde and
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Figure 13 Conversion of C,—Cg bond in diarylpropane (B-1) lignin model structures.
The conversion depends on the structure of the dimer, in particular the presence of
an OH (a) or CH,OH (b) group at the link between the aromatic rings. Based on Enoki
and Gold (1982), Hammel et al. (1985), Renganathan et al. (1986).
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veratryl aldehyde (Enoki & Gold, 1982; Hammel et al., 1985). A different
version of this model compound (other groups attached to the aromatic
rings) can be converted to vanillin, using a similar reaction (Kirk & Farrell,
1987). The cleavage of C,—Cp linkages by LiP was also observed for
trimeric lignin model compounds (Mester et al., 2001) and a tetrameric
lignin model compound (Hilden et al., 2000).

6.4 Conversion of Phenylcoumarane Compounds

Lignins contain 4—12% phenylcoumarane (6-5) linkages depending on the
wood type (Henriksson, 2009). The metabolism of phenylcoumarane sub-
structure has been investigated using a nonphenolic lignin model compound
diarylpropane methyl dehydrodiconiferyl alcohol in the cultures of P. chrys-
osporium (Nakatsubo, Kirk, Shimada, & Higuchi, 1981). The degradation of
this nonphenolic alkylated phenylcoumarane is initialized by oxidation in its
side chain via a glycerol intermediate yielding phenylcoumarane-o/'-alde-
hyde. The aldehyde is then oxidized to a phenylcoumarone and converted
to a benzoic acid derivate (Figure 14(a)) (Nakatsubo et al., 1981). In contrast,
in laccase-catalyzed degradation of phenolic model compound, the phenyl-
coumarane-o'-aldehyde was first hydroxylated or dehydrogenated in its
coumarane ring to give the propiosyringone derivative and two coumarones
(Figure 14(b)) (Umezawa, Nakatsubo, & Higuchi, 1982). This propiosyrin-
gone derivate was further converted to corresponding benzoquinone, syrin-
gic acid, and carboxyvanillic acid.

6.5 Conversion of Resinol Compounds

Resinol (3-8)-linked structures form only 2—4% of different lignins (Hen-
riksson, 2009), and very little is known about their degradation pathway.
Breakdown of a 3-8 linked lignin model compound by an unidentified
phenol oxidizing enzyme was reported for the plant pathogenic ascomycete
Fusarium solani M-13-1 (Kamaya, Nakatsubo, Higuchi, & Iwahara, 1981).
The model compound was first oxidized at the a-position of the side chain
to give a hemiketal, an a-hydroxylated compound, which was then trans-
formed to ketoalcohol (Figure 15). Subsequent aryl—alkyl oxidation yielded
a carboxylic acid product and the corresponding lactone. When pinoresinol
structures were degraded by the white-rot fungus P. chrysosporium under lig-
ninolytic conditions, i.e., under low nutrient nitrogen with glucose as car-
bon source, the alkyl—aryl cleavage was also in this case the major
reaction (Kamaya & Higuchi, 1984a).
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6.6 Conversion of a Lignin-Polysaccharide Model
Compound by LiP

Although most lignin model compounds consist only of phenolic or
nonphenolic structures related to lignin, in nature lignin is linked to hemi-
cellulose. The synthesis of veratrylchitosan by covalently attaching 3(3,4-
dimethoxybenzyloxy)propionic acid to chitosan provided a substrate to
study the oxidizing abilities of LiP on a polysaccharide-linked lignin model
compound. The analysis of the reaction demonstrated that LiP of P. chryso-

sporium was able to oxidize this substrate in a radical-mediated reaction
(Figure 16) (Srebotnik et al., 1994).

S 7. AROMATIC METABOLISM IN FUNGI

Fungal aromatic metabolism has been studied mainly in the 1940s to
1990s, but has received little attention in recent years. Many of these studies
focused on the analysis of the compounds that were formed by fungi from
commonly found aromatic compounds such as ferulic acid and cinnamic
acid. Wood-rotting basidiomycetes also produce de novo aromatic com-
pounds from glucose such as veratryl alcohol (Harper, Buswell, Kennedy,
& Hamilton, 1990; Lundquist & Kirk, 1978) and also other aromatic com-
pounds (Hatakka, Lundell, Tervila-Wilo, & Brunow, 1991; Rogalski,
Niemenmaa, Uusi-Rauva, & Hatakka, 1996). Actually wood-rotting basid-
iomycetes have a great capacity to synthesize and produce different, often
volatile aromatics such as vanillin, benzaldehyde, phenylacetaldehyde,
1-phenylethanone, and methyl benzoate and terpenoids. All these com-
pounds have potential as flavoring compounds (Lomascolo et al., 1999).
Although these studies were often focused on a specific part of aromatic
metabolism and performed using a variety of fungi, together they enable
the construction of a putative map for the main conversions of fungal aro-
matic metabolism (Figure 17). This scheme is initially based on a study of
Milstein et al. with the ascomycete Aspergillus japonicus (Milstein et al.,
1983). In this study metabolic conversions were depicted with a range of
aromatic compounds providing the most first comprehensive aromatic
metabolic map in fungi. This map has been combined with data from other
fungi to result in the scheme presented in Figure 17. The evidence for the
different conversions is shown in Figure 17 as well as some alternative/addi-
tional pathways are described in some detail below.
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7.1 Ferulic Acid, Vanillic Acid and Vanillin and Their
Conversion Products

Ferulic acid can reversibly be reduced to coniferyl aldehyde in the basidio-
mycete Pycnoporus cinnabarinus, which can be further converted into coni-
feryl alcohol (Figure 18) (Falconnier et al., 1994). This pathway was also
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Figure 18 Fungal conversion of ferulic acid. Combined from the references mentioned in
the text of Section 7.1.

observed in another basidiomycete, Trametes sp., in which coniferyl alcohol
was further converted into vanillic acid, vanillyl alcohol, and methoxyhy-
droquinone (Nishida & Fukuzumi, 1978). In addition, the propenoic side
chain of ferulic acid can be oxidized to form vanillic acid in P. cinnabarinus,
which is then converted to vanillin (see below) (Falconnier et al., 1994).
Both pathways were later confirmed by following the conversion of
5-’H-labeled compounds (Krings, Pilawa, Theobald, & Berger, 2001).
The conversion of ferulic acid into vanillic acid was also observed for the
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ascomycete fungi A. niger (Lesage-Meessen et al., 1996) and Botrytis, Ceph-
alosporium, Penicillium, Trichoderma, and Verticillium species (Henderson &
Farmer, 1955), indicating that this metabolic step is present in both fungal
phyla. An alternative pathway in which ferulic acid was decarboxylated
into 4-vinyl guaiacol, followed by oxidation of this compound to vanillin
and vanillic acid, was described in the basidiomycete Schizophyllum commune
(Ghosh, Sachan, & Mitra, 2005; Tsujiyama & Ueno, 2008) and the ascomy-
cetes Paecilomyces variotii (Rahouti, Seigle-Murandi, Steiman, & Eriksson,
1989) and F. solani (Nazareth & Mavinkurve, 1986). This pathway was
also described for the ascomycete Sporotrichum thermophile (Myceliophthora
thermophila), although it was suggested to convert 4-vinyl guaiacol into
vanillic acid (Topakas, Kalogeris, Kekos, Macris, & Christakopoulos,
2003). In the ascomycete yeast Debaromyces hansenii the pathway from ferulic
acid via 4-vinyl guaiacol to vanillin was also described, involving the enzyme
ferulic acid decarboxylase for the first step and an oxidative two carbon frag-
mentation for the second step (Mathew, Abraham, & Sudheesh, 2007). This
study also suggested a second metabolic pathway from ferulic acid to vanillin
in this yeast, with feruloyl SCoA as an intermediate. In contrast, only trace
amounts of vanillic acid were found for the white-rot basidiomycete Sporo-
trichum pulverulentum, an anamorph of P. chrysosporium, in the presence of
ferulic acid (Gupta et al., 1981). The dominant pathway in this fungus ap-
pears to be toward coniferyl alcohol, whereas a demethylation pathway of
ferulic acid to caffeic acid was described for a Penicillium species (Tillett &
Walker, 1990).

Finally two difterent pathways for ferulic acid conversion were described
for the edible white-rot fungus L. edodes (Crestini & Sermani, 1994). In these
pathways, the hydroxylation of the aromatic ring occurred followed by ring
cleavage, without the modification of the aliphatic side chain (Figure 18).

Vanillic acid is a naturally occurring aromatic acid, which is widely re-
ported to be present in the extracts of wood that has undergone a various de-
gree of microbial degradation (Ishikawa, Schubert, & Nord, 1963). It is found
to be a major intermediate of hardwood lignin degradation (Chen & Chang,
1985). Vanillic acid is a common product when spruce lignin preparations are
chemically oxidized (Adler, 1977). It was believed to be an intermediate in
lignin degradation by fungi and bacteria (Ander et al., 1980), but it is possible
that at least part of the lignin can be mineralized by ligninolytic peroxidases to
carbon dioxide and water outside the fungal cell (Hatakka, 2001). Catabolism
of vanillic acid may proceed via several routes: (1) demethylation of vanillic
acid to protocatechuate which is followed by aromatic ring cleavage
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(Cartwright & Buswell, 1967; Milstein et al., 1983), (2) nonoxidative decar-
boxylation to guaiacol (Crawford & Perkins Olson, 1978), (3) oxidative
decarboxylation to methoxy-p-hydroquinone (MHQ) (Buswell, Ander,
Pettersson, & Eriksson, 1979; Yajima, Enoki, Mayfield, & Gold, 1979),
and (4) reduction to vanillin and vanillyl alcohol (Ander et al., 1980).

The demethylation of vanillic acid to protocatechuate has been detected
in A. japonicus (Milstein et al., 1983). Nonoxidative decarboxylation to
guaiacol has also been reported in ascomycetes, such as S. thermophile (Topa-
kas et al., 2003), P. variotii (Rahouti et al., 1989), and some Aspergilli (Guir-
aud, Steiman, Seigle-Murandi, & Benoit-Guyod, 1992; Huang, Dostal, &
Rosazza, 1993). As a result of nonoxidative decarboxylation, guaiacol is con-
verted to catechol and pyrogallol before ring cleavage takes place (Figure 19).
However, this appears to be a rarer pathway because so far it has only been
reported in few ascomycetes species. In contrast, vanillic acid catabolism via
MHQ seems to be widely distributed among white- and brown-rot fungi.
Oxidative decarboxylation by the concomitant hydroxylation of vanillic
acid is catalyzed by intracellular enzyme vanillate hydroxylase which has
been described from the white-rot fungus P. chrysosporium and the activity
has been detected in many white- and brown-rot species (Buswell &
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—
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Figure 19 Conversion of vanillin and related compounds. Based on references in the text
above.
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Eriksson, 1988; Buswell, Eriksson, Gupta, Hamp, & Nordh, 1982; Yajima
et al., 1979). However, in S. pulverulentum (P. chrysosporium) it was shown
that MHQ needs to be hydroxylated before ring cleavage will take place,
whereas demethoxylation is less important (Ander et al., 1980). Most of
the studied white- and brown-rot fungi also had a dioxygenase activity
that catalyzed the ring cleavage of hydroxyquinol (1,2,4-trihydroxyben-
zene) to maleylacetate (Buswell et al., 1982). When the production of
CO; from '*C-labeled methoxyl labeled vanillic acid or from a nonphe-
nolic lignin model, B-O-4 dimer, [O'*CHj3]-labeled at position 4 in the A
ring, was followed by white-rot (P. radiata) and brown-rot fungi (Gloeophyl-
lum trabeum and Poria (Postia) placenta), it was tound that P. radiata and G. tra-
beum readily mineralized the methoxyl group but P. placenta demethylated
the dimer only poorly (Niemenmaa, Uusi-Rauva, & Hatakka, 2006; Nie-
menmaa, Uusi-Rauva, & Hatakka, 2008).

Vanillate hydroxylase has a wide substrate specificity including phenolic
acids, such as 4-hydroxybenzoate, protocatechuate, and vanillate. Vanillic
acid can also be decarboxylated to methoxy-p-quinone by the action of
some other enzymes such as laccases and peroxidases. The product can
turther be reduced to MHQ either by intracellular NAD(P)H:quinone ox-
idoreductases (Buswell et al., 1979) or extracellularly by cellobiose:quinone
oxidoreductase (Westermark & Eriksson, 1974). The latter enzyme is now
referred to as cellobiose dehydrogenase (EC 1.1.99.18), which is classified
in CAZy database to Auxiliary Activities family 3 and 8 (AA3_1, AAS).

No vanillate hydroxylase or hydroxyquinol 1,2-dioxygenase activity was
detected for the a set of soft-rot (ascomycete) species, whereas protocatech-
uate 3,4-dioxygenase was detected, suggesting that vanillic acid conversion
in these fungi occurs through the demethylation of the aromatic ring
(Figure 19) (Buswell et al., 1982). The conversion of vanillic acid to proto-
catechuic acid has also been observed in other ascomycetes (Henderson,
1961) as well as some basidiomycetes, such as S. commune (Tsujiyama &
Ueno, 2008). However, another study demonstrated the presence of
MHQ as a product of vanillic acid in several ascomycetes, indicating that
at least part of this phylum also possesses a vanillate decarboxylase (vanillate
hydroxylase) (Guiraud et al., 1992). This was confirmed by a study with P.
variotii (Rahouti et al., 1989), suggesting that the conversion to both MHQ
and protocatechuic acid existed in the ancestral fungus before the ascomy-
cetes and basidiomycetes split into two different phyla. After the split
most fungi apparently maintained both pathways, whereas some species
lost one or both of them (Haider & Trojanowski, 1975).
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In some species, vanillin was described as an intermediate in the conver-
sion of ferulic acid to vanillic acid, such as in basidiomycete S. commune
(Ghosh & Nanda, 1994; Tsujiyama & Ueno, 2008), ascomycete P. variotii
(Rahouti et al., 1989), and yeast Debaromyces hansenii (Mathew et al.,
2007). In contrast, in other fungi the direct conversion of ferulic acid into
vanillic acid and vanillin into vanillic acid have been described (Henderson
& Farmer, 1955), as well as vanillic acid as an intermediate in the production
of vanillin (Falconnier et al., 1994; Krings et al., 2001; Thibault et al., 1998;
Tilay, Bule, & Annapure, 2010). Because this was usually based on the rela-
tive amounts of the two compounds and their conversion is reversible, it is
difficult to say what the most common pathway is in fungi for vanillic acid
and vanillin.

Veratric acid and related compounds became interesting when it was
shown that veratryl alcohol was synthesized by the lignin-degrading
white-rot fungus P. chrysosporium (Lundquist & Kirk, 1978), and it was sug-
gested that veratryl alcohol may act as radical mediator in reactions catalyzed
by LiP. Its significance in lignin degradation by other fungi producing LiP is
not clear because they do not produce veratryl alcohol or the amounts are
very low (Hatakka, 2001; Hatakka et al., 1991). However, veratric acid is
both reduced to veratraldehyde and veratryl alcohol and demethoxylated
to vanillic acid and further to vanillin and vanillyl alcohol by P. cinnabarinus
(Hatakka, 1985). The whole genome of this fungus was recently sequenced
which may elucidate the participating enzymes (Levasseur et al., 2014). The
conversion of veratric acid in A. japonicus was suggested to go directly to
protocatechuic acid and subsequent ring cleavage (Figure 17) (Milstein
et al., 1983). However, in another study using Penicillium and two other as-
comycetes, veratric acid was converted to vanillic acid (Figure 19) (Hender-
son, 1957), suggesting that in these fungi the vanillic acid pathway is also
required for metabolizing veratric acid, similar to what was described for
P. cinnabarinus (Hatakka, 1985). It is likely that veratric acid can also be con-
verted to veratraldehyde and then to veratryl alcohol. In P. chrysosporium an
alternative aromatic ring-cleavage pathway was reported for veratryl alcohol
resulting in two isomeric products (Figure 20) (Leisola, Schmidt, Thanei-
Wyss, & Fiechter, 1985).

7.2 Conversion of p-Coumaryl Alcohol and p-Coumaric Acid

p-Coumaryl alcohol is one of the components of lignin and can converted in
two steps to form p-coumaric acid through p-coumaric aldehyde in Asper-
gillus flavus (Iyayi & Dart, 1982). p-Coumaric acid is subsequently in three
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Figure 20 Alternative aromatic ring cleavage through veratryl alcohol. Redrawn based
on Leisola et al. (1985) with permission from Elsevier.

steps converted to p-hydroxybenzoic acid with B-hydroxy-(p-hydroxy-
phenyl)-propionic acid and (p-hydroxybenzyl)acetic acid as intermediates
(Figure 21).

An alternative pathway was reported for P. variotii, in which p-coumaric
acid was converted in two steps into p-hydroxybenzaldehyde, which was
subsequently converted into p-hydroxybenzoic acid and then to protocate-
chuic acid (Sachan, Ghosh, & Mitra, 2006). This pathway was also reported
for the ascomycete F. solani in which the initial reaction product of p-cou-
maric acid was identified as p-vinyl-phenol (Nazareth & Mavinkurve, 1986).

In the basidiomycete P. cinnabarinus a more diverse set of metabolites
were identified when p-coumaric acid was added to the growth medium,
suggesting a different metabolism than in the ascomycetes described above
(Estrada Alvarado et al., 2001). The oxidative degradation of the p-coumaric
acid side-chain resulted in p-hydroxybenzoic acid. This compound was then
either reduced to p-hydroxybenzaldehyde and p-hydroxybenzoic alcohol or
alternatively hydroxylated and reduced to the protochatechuic acid deriva-
tives. The formation of p-hydroxybenzoic acid from p-coumaric acid in S.
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Figure 21 Fungal conversion of p-coumaric acid and related aromatic compounds.
Based on references of Section 7.2.

commune (Sachan, Ghosh, & Mitra, 2010) and Polyporus (Inonotus) hispidus
(French, Vance, & Towers, 1976) suggests at least a partly similar pathway
for this basidiomycete as for P. cinnabarinus.

Two alternative pathways were reported for p-coumaric acid conversion
in P. cinnabarinus. One is a second reductive pathway resulting in 3-(p-
hydroxyphenyl)-propanol (Estrada Alvarado et al., 2001), whereas the other
is a hydroxylation to form cafteic acid (Estrada-Alvarado, Navarro, Record,
Asther, & Asther, 2003). The later pathway was also described for the asco-
mycete Gliocladium deliquescens (Torres & Rosazza, 2001).

The dimerization of p-coumaric acid was observed by the ascomycete
fungus Curvularia lunata and a mechanism for the formation of this com-
pound was suggested (Figure 21) (Torres & Rosazza, 2001). The presence
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of laccase and peroxidase activities in this fungus led the authors to suggest a
radical-based coupling process.

7.3 Conversion of Cinnamic Acid and its Methoxylated
Derivatives

In A. niger cinnamic acid is converted to styrene (Cliftord, Faulkner, Walker,
& Woodcock, 1969; Plumridge, Stratford, Lowe, & Archer, 2008)
(Figure 22). This conversion was also reported for A. japonicus, but two other
pathways were also suggested in this fungus, one to benzoic acid and one to
cinnamic aldehyde, which was then converted to cinnamyl alcohol (Milstein
et al., 1983).

Difterent pathways have been described for the conversion of methoxy-
lated cinnamic acids. In Lentinula edodes 3,4-dimethoxycinnamic acid is

X

styrene
o OH o
X CH,OH
X X X
— —

cinnamic acid cinnamic aldehyde cinnamyl alcohol

\\Oé OH
benzoic acid

Figure 22 Fungal conversion of cinnamic acid. Based on Clifford et al. (1969), Milstein
et al. (1983), Plumridge et al. (2008).
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converted into ferulic acid or 3,4-dimethoxycinnamic aldehyde, whereas p-
hydroxycinnamic acid is also converted into ferulic acid (Crestini & Sermani,
1994). The pathway through 3,4-dimethoxycinnamic aldehyde was also
described for P. radiata (Cho et al., 2009) and Coriolus versicolor (Kamaya &
Higuchi, 1984b), which then proceeds through 3,4-dimethoxycinnamyl
alcohol, followed by the removal of the aliphatic chain and further reduction
to 3,4-dimethoxy-benzyl alcohol, followed by ring cleavage (Figure 23). In
addition, a second pathway for 3,4-dimethoxycinnamic acid conversion was
described in this study, consisting of modification of the aliphatic chain, fol-
lowed by the simultaneous demethoxylation and hydroxylation and
removal of the aliphatic chain resulting in 2-methoxy phenol, after which
ring cleavage takes place.

The hypothetical pathway for the degradation of substituted cinnamic
acids in white-rot fungus P. radiata occurs via 3,4-dimethoxystyrene or 3-
methoxy,4-hydroxystyrene to vanillate (Cho et al., 2009) which further
goes through decarboxylation, aliphatic chain cleavage, demethylation in
position 4, followed by the demethylation in the position 3, and final step
of ring cleavage (Rogalski, 2003). C. versicolor growing in the cultures
with low nitrogen and high oxygen, oxidized 3,4-dimethoxycinnamic
alcohol to veratrylglycerol, which was converted by the C,—Cp cleavage
of the side chain to the veratrylaldehyde, and subsequently reduced to
veratryl alcohol (Kamaya & Higuchi, 1984a).

7.4 Conversion of Benzoic Acid and Related Compounds

In most fungi benzoic acid is hydroxylated to p-hydroxybenzoic acid, which
is then also hydroxylated to protochatechuic acid, resulting in ring cleavage
and the B-ketoadipate pathway (Figure 24) (Wright, 1993). The first step of
this pathway is catalyzed by benzoate-para-hydroxylase (BphA) in A. niger
(van Gorcom et al., 1990), and cytochrome P450 monooxygenases (see Sec-
tion 7.7.1) in Cochliobolus lunatus (Korosec et al., 2013), P. chrysosporium
(Matsuzaki & Wariishi, 2005) and Rhodotorula minuta (Fukuda, Nakamura,
Sukita, Ogawa, & Fujii, 1996). P. chrysosporium enzyme (PcCYP1{) also cat-
alyzes the conversion of 3-hydroxybenzoic acid into protocatechuate. A.
niger BphA differs from the other enzymes being tetrahydropteridine depen-
dent. It acts together with a cytochrome P450 reductase (CprA) (van den
Brink, van den Hondel, & van Gorcom, 1996) and both bphA and ¢prA
are induced by benzoate (van den Brink, Punt, van Gorcom, & van den
Hondel, 2000). The analysis of the expression of bphA in the presence of
a range of aromatic compounds (de Vries et al., 2002) demonstrated that
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it was specifically expressed in the presence of compounds that were all sug-
gested to be metabolized through p-hydroxy benzoic acid in A. japonicus
(Milstein et al., 1983), a close relative of A. niger.

Additional pathways for the conversion of benzoic acid related com-
pounds have also been described and were reviewed by Wright (Wright,
1993) (Figure 24). These additional conversions included enzymes of the
catechol pathway (Cain, Bilton, & Darrah, 1968), but also other metabolic
activities. The conversion of p-hydroxybenzoate to 3,4-dihydrooxyben-
zoate was described for A. niger, several Penicillia, and Schizophyllum
commune (Halsall, Darrah, & Cain, 1969), and this pathway was also reported
in several other fungi as were conversions of other hydroxylated benzoic
acid compounds (Wright, 1993). Also unspecific peroxygenases (UPO;
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EC 1.11.2.1) are able to hydroxylate benzene and toluene to respective hy-
droxylated compounds (Hofrichter & Ullrich, 2014).

7.5 Conversion of Sinapic Acid and Syringic Acid and
Related Compounds

The conversion of syringic acid has been studied in detail in the white-rot
basidiomycete Sporotrichum pulverulentum (an anamorph of P. chrysosporium)
(Eriksson, Gupta, Nishida, & Rao, 1984). This pathway involves the reduc-
tion of the carboxyl group, simultaneous decarboxylation and hydroxyl-
ation, and demethylation and methylation (Figure 25). These conversions
were also investigated in two (ascomycete) soft-rot fungi and two brown-
rot fungi, demonstrating significant differences in metabolic ability (Eriksson
et al., 1984). The two soft-rot fungi were able to methylate the p-hydroxyl
group, but this was not observed for the two brown-rot fungi, who overall
poorly metabolized syringic acid.

The conversion of sinapic acid to syringic acid was reported for P. variotii
(Mukherjee, Sachan, Ghosh, & Mitra, 2000). In this pathway, sinapic acid
was first converted to syringic aldehyde, which was oxidized to syringic
acid (Figure 25). The accumulation of syringic acid suggests that this fungus
is not capable of converting syringic acid further as was described above for
S. pulverulentum. The conversion of syringic aldehyde to syringic acid appears
to be a common pathway for many ascomycete soil fungi, as they commonly
accumulate syringic acid in the presence of the aldehyde (Henderson &
Farmer, 1955).

Recently, it was reported that A. oryzae can convert gallic acid to pro-
gallin A, pyrogallic acid, and methyl gallate (Guo et al., 2014). Progallin
A and methyl gallate were also suggested to be converted to pyrogallic
acid and all three metabolites could result in ring cleavage through the B-
oxidation pathway.

7.6 Ring Cleavage of Aromatic Compounds

Most fungal aromatic pathways end either in protocatechuic acid or catechol.
These compounds can undergo ring cleavage and conversion through the
well-studied B-ketoadipate pathway (Figure 26) (Cain et al., 1968; Fuchs,
Boll, & Heider, 2011; Gross, Gafford, & Tatum, 1956; Harwood & Parales,
1996; Henderson, 1963). Catechol is converted in four steps to B-ketoadi-
pate through the sequential action of catechol-1,2-dioxgenase, cis,cis-muco-
nate lactonizing enzyme, muconolactone isomerase, and enol-lactone
hydrolase. The conversion of protocatechuate to B-ketoadipate occurs in
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three steps mediated by protocatechuate-3,4-dioxygenase (Wojtas-Wasi-
lewska & Trojanowski, 1980), B-carboxy-cis,cis,-muconate lactonizing
enzyme, and ‘y-carboxymucanolactone decarboxylase. B-Ketoadipate is
then converted to P-ketoadipyl-CoA by P-ketoadipate:succinyl-CoA
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transferase, which is subsequently converted to succinyl-CoA and acetyl-
CoA by B-ketoadipyl-CoA thiolase.

7.7 Candidate Enzymes Involved in Aromatic Metabolism

So far, very few enzymes and genes involved in aromatic metabolism in
fungi have been characterized. Some have been mentioned above (e.g.,
vanillate hydroxylase, benzoate-para-hydroxylase) and here some additional
enzymes that have been implicated in aromatic metabolism are mentioned.

7.7.1 Cytochrome P450 Enzymes

Cytochrome P450 monooxygenases (P450s) are intracellular enzymes that
are involved in aromatic conversions (Matsuzaki & Wariishi, 2004). They
belong to the superfamily of heme-thiolate proteins and are able to catalyze
various enzymatic reactions including the metabolism of aliphatic, alicyclic,
and aromatic molecules in reactions resulting in hydroxylation, epoxidation,
dealkylation, sulfoxydation, deamination, desulphuration, dehalogenation,
and N-oxide reduction (Sono, Roach, Coulter, & Dawson, 1996). P450s
are ubiquitous enzymes found in all life forms. Although, the highest num-
ber of individual P450 enzymes so far has been observed in plants (Mao, See-
beck, Schrenker, & Yu, 2013), putative P450 enzyme-encoding genes are
also abundantly present in the wood-decaying basidiomycetes (Chen
et al., 2014; Doddapaneni, Chakraborty, & Yadav, 2005; Eastwood et al.,
2011; Ide, Ichinose, & Wariishi, 2012; Martinez et al., 2004; Martinez
et al., 2009). For instance, the 149 putative P450 monooxygenases-encod-
ing genes comprise about 1% of the coding genome of the white-rot fungus
P. chrysosporium (Doddapaneni et al., 2005; Martinez et al., 2004). It is
assumed that the high number of P450 isoforms found in wood-decaying
fungi could reflect the ability of these fungi to metabolize and mineralize ar-
omatic compounds resulting from the extracellular oxidation of wood. The
whole-genome-based observations imply the involvement of multiple P450
monooxygenases in lignin-degrading process, with the hypothesis that these
intracellular or membrane-bound monooxygenases catalyze the subsequent
oxidation of the peroxidase-depolymerized lignin derivatives leading to the
complete mineralization of lignin to CO; (Subramanian & Yadav, 2008).

7.7.2 Glutathione S-Transferases

Similarly to cytochrome P450 monooxygenases, glutathione S-transferases
(GSTs, EC 2.5.1.18) are intracellular enzymes suggested to be involved in
different detoxification processes in fungal cells. GSTs are also involved in
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stress responses and defense systems, and some bacterial GST's are known to
have B-etherase activity (i.e., catalyze the cleavage of $-O-4 linkages)
(Morel, Ngadin, Droux, Jacquot, & Gelhaye, 2009). In fungi, multiple
groups of GSTs have been identified and the group of etherase-like GSTs
is named fungal specific GST class A (GSTFuA) (Mathieu et al., 2012). In
proteomic studies of white-rot fungus P. chrysosporium, the upregulation
of GSTFu-encoding gene has been detected in response to vanillin. As
vanillin is one of the key intermediate products found during lignin degra-
dation, GSTFus may have a role in fungal cleavage of 8-O-4 linkages
(Shimizu, Yuda, Nakamura, Tanaka, & Wariishi, 2005). Wood-degrading
fungi harbor from 4 up to 20 GSTFu-encoding genes (Morel, Meux,
Mathieu, Thuillier, Chibani, Harvengt et al.,, 2013). Interestingly, also
ectomycorrhizal fungi possess GSTFu isoforms (from 3 to 10). However,
the ability of GSTFus to cleave 3-O-4 linkages has not been studied.

7.7.3 Alcohol Oxidases

Alcohol oxidases have been implicated in aromatic metabolism in fungi. Extra-
cellular aryl-alcohol oxidases (AAO; EC 1.1.3.7) from CAZy family AA3_2
generate HyO5 in collaboration with intracellular aryl-alcohol dehydrogenases
in redox cycling of aromatic fungal metabolites, including lignin-derived
compounds p-anisaldehyde such as phenolic aromatic aldehydes and acids
(Ferreira et al., 2005; Guillén, Martinez, Martinez, & Evans, 1994; Gutierrez,
Caramelo, Prieto, Martinez, & Martinez, 1994; Hernandez-Ortega, Ferreira,
& Martinez, 2012; Kirk & Farrell, 1987; Shimada & Higuchi, 1991).

AAO is a FAD dependent enzyme, which has been identified in several
white-rot fungal species and ascomycetes, such as Amauroderma boleticeum,
Bjerkandera adusta, P. chrysosporium and Pleurotus species, Fusarium spp. and
Geotrichum candidum (Asada, Watanabe, Ohtsu, & Kuwahara, 1995; Farmer,
Henderson, & Russell, 1960; Muheim, Waldner, Leisola, & Fiechter, 1990;
Rosazza, Huang, Dostal, Volm, & Rousseau, 1995; Saparrat, Guillen,
Arambarri, Martinez, & Martinez, 2002).

Intracellular vanillyl-alcohol oxidases (VAO; EC 1.1.3.38) catalyze the
oxidation of p-hydroxybenzyl alcohols to the corresponding aldehydes,
such as vanillyl alcohol into vanillin (Furukawa, Wieser, Morita, Sugio, &
Nagasawa, 1999; Pannala, Razaq, Halliwell, Singh, & Rice-Evans, 1998).
In addition, it also can perform the deamination of 4-hydroxybenzylamines
and the oxidative demethylation of 4-(methoxymethyl) phenols. A gene
encoding this enzyme was first described in Penicillium simplicissimum (Benen
etal., 1998). Interestingly, a novel oxidase has been described from B. adusta
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that combines the catalytic properties of VAO and AAO by converting both
phenolic and nonphenolic benzyl alcohols (Romero et al., 2009).

7.7.4 O-Methyl Transferase

O-methyl transferase is an intracellular enzyme that converts methyl-p-cou-
marate to methyl-p-methoxycinnamate and that was first reported for the
basidiomycete Lentinus lepideus (Shimazono, 1959). It is specific for
methyl-esters of hydroxycinnamic acids and cannot convert free cinnamic
acids, or free benzoic acids or methyl-esters. It only converts the OH group
linked to the aromatic ring at the para position, and its activity reduces when
additional OH groups are present at other positions of the aromatic ring
(Wat & Towers, 1975). Wood-rotting fungi synthesize methylated aromatic
compounds, e.g., veratryl alcohol de novo from glucose, but it was found that
the white-rot fungi P. chrysosporium, P. radiata, and Coriolus versicolor use
chloromethane (CH3Cl) as methyl donor in these reactions (Harper et al.,
1990). Two types of O-methyl transferases utilizing S-adenosyl methionine
were purified from mycelial extracts of P. chrysosporium, an enzyme methyl-
ating phenolic compounds in para (Jeffers, McRoberts, & Harper, 1997) or
and another enzyme in meta position (Coulter, Kennedy, McRoberts, &
Harper, 1993).

S 8. APPLICATIONS OF PLANT-BASED AROMATIC
COMPOUNDS

Despite the large annual worldwide production of plant biomass
only small quantities of chemicals are derived from renewable resources
(Lucia, Argyropoulos, Adamopoulos, & Gaspar, 2006). The commercial
use of the polysaccharide fraction of plant biomass is well established,
but the aromatic components (e.g., lignin) are less well used. However,
lignin is a versatile raw material with many (potential) applications. It
can be used (1) as carbon source for energy production or is converted
in energy carriers such as syngas and syngas products (methanol, ethanol,
mixed alcohols); (2) in high molecular mass applications such as carbon fi-
bers, wood adhesives (binders), and pharmaceuticals; (3) for production of
polymer building blocks and low molecular weight chemicals such as ben-
zene, toluene, xylene, phenol, guaiacol, vanillic acid, and vanillin
(Gandini, 2011; Sampaio, 1995). The latter two groups are considered
to be value-added lignin applications. Lignin is especially interesting
from the industrial point of view because it is, up till now the only
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renewable resource available in sufficient quantities for the production of
aromatics. This is an attractive but also a very challenging goal to achieve.
The recalcitrance of lignin is one of the major obstacles in biofuel produc-
tion process and therefore the microbial degradation of lignin is receiving a
great deal of attention. Plant-based aromatic compounds are receiving
increasing attention in several applications in industry, in particular, in
the pharmaceutical industry. The best-studied role of plant-based phenolic
compounds is as natural antioxidants (Cai et al., 2004a; Surveswaran et al.,
2007; Wojdylo et al., 2007). Ferulic acid is one of the best studied aromatic
compounds for this purpose, due to its abundance in nature (Graf, 1992;
Kanski, Aksenova, Stoyanova, & Butterfield, 2002; Pannala et al., 1998;
Schroeter, Williams, Matin, Iversen, & Rice-Evans, 2000). However,
other beneficial effect of plant-based aromatic compounds have also
been reported, such as a role as antimicrobial, anti-inflammatory, hepato-
protective, antidiabetic, anticholesterolemic, neuroprotective, anticarci-
nogenic, ultraviolet (UV) protective, and radioprotective agents (de
Paiva et al., 2013). For instance, flavonoids have been shown to have anti-
oxidant, anticancer, antiallergic, anti-inflammatory, anticarcinogenic, and
gastroprotective properties (Yao et al., 2004), whereas ferulic acid
inhibited the growth of colon cancer cells (Hudson, Dinh, Kokubun,
Simmonds, & Gescher, 2000; Mori et al., 1999). The skin-protection ef-
fect of ferulic acid is also considered desirable from a cosmetic affect, as the
UV-protective effect of ferulic acid is applied in sunscreens and whitening
agents (Murray et al., 2008).

Modified versions of natural phenolics can have even better properties
than their natural starting compound. A modified form of ferulic acid has
better properties with respect to the suppression of inflammatory responses
and skin tumor promotion (Murakami et al., 2002), whereas ferulic acid and
gallic acid based polyphenols inhibit Epstein—Barr virus activation (Nomura
et al., 2002). As an alternative to chemical synthesis, the heterologous pro-
duction of phenolic-based pharmaceuticals has already been performed in
yeast (Huang et al., 2008).

The role of ferulic acid as an antioxidant also has applications in the food
industry, such as in the prevention of discoloration of Red Sea bream
(Maoka et al., 2008), but in this sector it is best known as a precursor for fla-
vor compounds, such as vanillin (Lesage-Meessen et al., 2002). However,
ferulic acid and other monomeric plant-based aromatics can be starting com-
pounds for the production of a range of valuable molecules such as styrenes,
polymers, alkylbenzenes, and catechols (Rosazza et al., 1995).
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9. CONCLUDING REMARKS

The high potential of plant-based aromatics for applications in the
pharmaceutical, chemical, and food industry has resulted in an increasing in-
terest in the microbial (in particular fungal) release of these compounds from
plant biomass. We have a reasonable understanding of the release of aromatic
compounds from common plant-based polymers, such as the role of various
peroxidases in lignin degradation and feruloyl esterases in releasing aromatic
compounds from plant cell wall polysaccharides, which is further enhanced
by the availability of a rapidly increasing number of fungal genomes. In
contrast, relatively little is known about the fungal enzymes and genes
involved in the conversion of monomeric aromatics and many of the indus-
trial conversions are still based on chemical processes.

The push to a biobased economy and society is stimulating the develop-
ment of microbial conversions as alternatives for existing chemical processes.
To also apply this to the field of aromatic conversion, significant effort
should be devoted to the identification of the genes involved in fungal ar-
omatic pathways, their regulation and the variety of compounds that can
be made by them.
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Abstract

Only few Candida species, e.g., Candida albicans, Candida glabrata, Candida dubliniensis,
and Candida parapsilosis, are successful colonizers of a human host. Under certain cir-
cumstances these species can cause infections ranging from superficial to life-threat-
ening disseminated candidiasis. The success of C. albicans, the most prevalent and
best studied Candida species, as both commensal and human pathogen depends
on its genetic, biochemical, and morphological flexibility which facilitates adaptation
to a wide range of host niches. In addition, formation of biofilms provides additional
protection from adverse environmental conditions. Furthermore, in many host niches
Candida cells coexist with members of the human microbiome. The resulting fungal—
bacterial interactions have a major influence on the success of C. albicans as
commensal and also influence disease development and outcome. In this chapter,
we review the current knowledge of important survival strategies of Candida spp.,
focusing on fundamental fitness and virulence traits of C. albicans.

1. INTRODUCTION

Candida albicans is a polymorphic fungus that is a member of the
endogenous human microbiota colonizing the oropharynx, genital, and
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gastrointestinal (GI) mucosa of 30—70% of healthy individuals (Kauffman,
2006; Odds, 1987; Pappas, 2006; Pfaller & Diekema, 2007). On the other
hand, Candida spp. are also common causes of fungal infections. Candida in-
fections range from superficial mucosal manifestations, e.g., vulvovaginal
candidiasis and oropharyngeal candidiasis (OPC), to serious and life-threat-
ening systemic infections such as disseminated candidiasis and fungemia
(Calderone, 2002; Perlroth, Choi, & Spellberg, 2007; Yapar, 2014). Candida
species are the fourth-most common hospital-acquired bloodstream infec-
tions in the US and systemic candidiasis is still associated with high mortality
rates of up to 50% (Perlroth et al., 2007). Common risk factors for the devel-
opment of candidemia include extended treatment in intensive care units,
central venous catheters, GI surgery, polytrauma, extremes of age, severe
immunosuppression, neutropenia, solid tumors, and hematological malig-
nancies (Brown, Denning, et al., 2012; Koh, Kohler, Coggshall, Van
Rooijen, & Pier, 2008; Spellberg et al., 2012; Yapar, 2014). Challenges in
early diagnosis of candidemia, the present lack of antifungal vaccines and
the limited number of antimycotic substances available contribute to the dif-
ficulties in treating systemic candidiasis (Brown, Denning, et al., 2012;
Spellberg et al., 2012; Yapar, 2014). Longitudinal molecular typing studies
revealed that most Candida infections arise from one patients’ own
commensal strains rather than by vertical or longitudinal transter (Nucci &
Anaissie, 2001; Odds et al., 2006). Therefore, the understanding of survival
and virulence mechanisms of this human pathogenic yeast is of major impor-
tance to develop better treatment prospects.

Of the approximately 200 Candida species that have been described so far
only 15 have been isolated from infections in humans (Moran, Coleman, &
Sullivan, 2012; Yapar, 2014). Furthermore, the vast majority of Candida in-
fections are caused by only five species, C. albicans, Candida glabrata, Candida
parapsilosis, Candida tropicalis, and Candida krusei (Bassetti et al., 2013;
Diekema, Arbefeville, Boyken, Kroeger, & Pfaller, 2012; Lewis, 2009;
Maubon, Garnaud, Calandra, Sanglard, & Cornet, 2014; Pappas, 2006;
Pfaller & Diekema, 2007), which suggests that these species in particular
are well adjusted for life within the human host. In the last decades, the inci-
dence of C. albicans infections, the leading pathogenic Candida species so far,
has declined while non-albicans Candida have increased (Maubon et al.,
2014; Perlroth et al., 2007; Yapar, 2014). In Northern countries, especially
C. glabrata 1s more frequently found which might be attributed to
the increased use of fluconazole in treating Candida infections, for which
C. glabrata is intrinsically resistant (Guinea, 2014; Maubon et al., 2014;
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Ostrosky-Zeichner et al., 2003; Pfaller et al., 2004; Tortorano et al., 2006;
Yapar, 2014). Some Candida spp. have been associated with certain risk
groups suggesting that differences in their colonization and survival strategies
promote infections only under distinct preliminary circumstances. For
example, C. glabrata and C. tropicalis are more commonly seen in patients
with hematological or solid organ malignancies and neutropenia; and C. kru-
sei infections occur especially in patients that have undergone hematopoietic
stem cell transplantation (Yapar, 2014). Candida parapsilosis is associated with
infections in neonates, rather than adults, and is a common pathogen of
catheter-related infections (Yapar, 2014), probably due to its role as member
of the skin microbiota (van Asbeck, Clemons, & Stevens, 2009; Trofa,
Gacser, & Nosanchuk, 2008). However, regardless of the Candida species
and the colonized or infected host niche, Candida spp. have to cope with
mechanical (e.g., epithelial) barriers, biochemical, chemical, and physical an-
tagonists (e.g., bile, mucus, pH, and antimicrobial peptides (AMPs)), micro-
bial competition (normal human microbiota), and the innate and adaptive
immune system of the human host (see Figure 1). Especially for those
Candida species that are only found in association with warm-blooded hosts,
such as C. albicans and C. glabrata, maintenance in its chosen host niche,
ideally without causing damage to the host, is essential for survival. There-
fore, different Candida species have evolved different strategies (recently
reviewed in Brunke & Hube, 2013). As C. albicans is the most common
cause of candidiasis and best investigated model organism of a human path-
ogenic yeast, the following chapter will focus on C. albicans. The most
intriguing skill of C. albicans is its versatility: During its long coevolution
with the human host C. albicans gained the ability to strive in host niches
that differ dramatically in their environmental conditions, e.g., in regard
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Figure 1 In vivo challenges for Candida albicans in the human host.
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to pH, nutrient availability, O, and CO; levels, and the presence of immune
cells (Calderone, 2002). In the following sections, we will outline the
importance of different C. albicans virulence and fitness traits for survival
and describe how different phenotypes and the morphological switch be-
tween budding yeast and the filamentous hyphal growth form contribute
to survival. We will provide examples that show that C. albicans on the
one hand is very flexible, and has the ability to rapidly respond and adapt
to changing environmental conditions, but on the other hand can specialize
to certain microniches to use the full capacity of the available resources
(Hube, 2009). A summary of important survival mechanisms can be found
in Figure 2. Furthermore, because of the emergence of medical device asso-
ciated and polymicrobial infections in recent years (Bonhomme & d’Enfert,
2013; Bouza et al., 2013; Harriott & Noverr, 2011; Klotz, Chasin, Powell,
Gaur, & Lipke, 2007; Morales & Hogan, 2010; Pulimood, Ganesan, Alan-
gaden, & Chandrasekar, 2002; Ramage, Mowat, Jones, Williams, & Lopez-
Ribot, 2009; Shirtliff, Peters, & Jabra-Rizk, 2009), part of this chapter will
focus on biofilms as multicellular communities and their role as “ safe haven”
for the yeast. We will review the importance of intercellular and interspecies
signaling mechanisms for C. albicans in order to build and maintain these
multicellular structures. In this context, we will moreover address the inter-
action of C. albicans with members of the human microbiome and bacterial
human opportunistic pathogens. These interactions can be beneficial or
detrimental for the fungus, and thereby have a tremendous impact on C.
albicans survival within the host.

S 2. THE ROLE OF YEAST-TO-HYPHAE TRANSITION AND
OTHER PHENOTYPIC CHANGES FOR C. ALBICANS
SURVIVAL

2.1 Morphogenesis and the Road to Infection

Candida albicans is a polymorphic fungus which can grow in diverse
morphological forms, such as round budding yeast cells, pseudohyphae
which are ellipsoid cells that are constricted at their septa, or parallel-walled
cells with no visible constrictions, so-called true hyphae (Berman &
Sudbery, 2002; Odds, 1988; Sudbery, Gow, & Berman, 2004). It was
long believed that the formation of filamentous growth forms, morphogen-
esis, was essential for C. albicans virulence, since C. albicans mutant strains that
are locked in either morphological form were attenuated in their virulence
in murine infection models (Braun, Head, Wang, & Johnson, 2000;
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Figure 2 Candida albicans survival strategies. (1) morphological flexibility; (2) white-to-
opaque switching and mating; (3) contact-induced filamentation; (4) hypha-associated
expression of adhesins; invasion into host cells by induced endocytosis (5) or active
penetration (6); (7) release of hydrolytic enzymes (e.g., secreted aspartic proteases
(Saps)) that support penetration and the breakdown of tissue material; (8) acquisition
of nutrients and micronutrients from host cells, e.g., zinc and iron uptake systems; (9)
stress response pathways facilitating resistance to adverse environmental conditions,
e.g., reactive oxygen species (ROS), reactive nitrogen species (RNS), low pH, and starva-
tion; (10) active modification of the phagosome to promote hyphal growth, facilitating
macrophage damage and escape.

Braun, Kadosh, & Johnson, 2001; Lo etal., 1997; Murad et al., 2001). How-
ever, recent research suggests that this hypothesis is oversimplified as some
strains that are defective for morphogenesis are still virulent in a systemic
mouse model (Banerjee et al., 2008; Noble, French, Kohn, Chen, &
Johnson, 2010; Saville, Lazzell, Chaturvedi, Monteagudo, & Lopez-Ribot,
2008; Spiering et al., 2010); furthermore, hypha formation is coregulated
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with several virulence-associated factors, rendering it difficult to determine
to which extend the formation of hyphae per se contributes to virulence
(Kumamoto & Vinces, 2005b). Therefore, the current model integrates
both, yeast and hyphae, as important players during C. albicans infection
with distinct roles of the different morphologies during different steps of
infection (Gow, Brown, & Odds, 2002; Kumamoto & Vinces, 2005b;
Saville, Lazzell, Monteagudo, & Lopez-Ribot, 2003). Both growth forms
can be found during systemic infections; yeast forms have been proposed
to be important for dissemination via the bloodstream while hyphae forma-
tion appears to be associated with invasion of tissue (Jacobsen et al., 2012;
Martin, Wachtler, Schaller, Wilson, & Hube, 2011; Zhu & Filler, 2010).
The morphology might furthermore reflect niche-specific fungal responses
(Jacobsen et al., 2012).

While the role of filamentation for virulence has been studied in detail,
comparatively little is known about morphology during commensal growth.
In contrast to infection, where invasive growth and host damage are intrin-
sically linked, commensalism is a balanced state that allows fungal growth
without inflicting host damage (Gow & Hube, 2012). Although yeast cells
are thought to be the dominant morphology during GI tract colonization,
genetic analysis revealed that colonization is associated with high levels of
hypha-associated gene (HAG) expression, such as upregulation of EFH1,
ECE1, RBT4, and RBT1 in yeast cells (Doedt et al., 2004; d’Enfert,
2009; Rosenbach, Dignard, Pierce, Whiteway, & Kumamoto, 2010; White
et al., 2007). This might promote the maintenance of the yeast cells in the GI
tract and is independent of morphogenesis. Efgl, a major regulator of fila-
mentation, was also shown to be important for the regulation of GI tract
colonization (d’Enfert, 2009; Kumamoto & Vinces, 2005b; Pierce, Dignard,
Whiteway, & Kumamoto, 2013; Pierce & Kumamoto, 2012; Stoldt,
Sonneborn, Leuker, & Ernst, 1997). EFG1 expression in the GI tract can
either be high, promoting immune evasion, or rather low, supporting
commensal growth. Based on these observations, Pierce et al. hypothesized
that variations in Efgl levels in the GI tract lead to subpopulations of cells
with different characteristics, enabling host-dependent shaping and diversity
of the colonizing population (Pierce et al., 2013).

2.1.1 Regulation of Morphogenesis

Many virulence-associated traits of pathogenic Candida species have possibly
evolved to facilitate survival as a commensal, e.g., in the fluctuating environ-
ment of the gut and in competition with commensal bacteria. Mechanisms
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acquired by the fungus to deal with adverse conditions as a commensal can
also promote virulence, since they provide the fungus with the necessary
weaponry to overcome host barriers (Hube, 2009; Pierce et al., 2013).
Indeed, hypha formation is triggered by environmental signals that resemble
unfavorable growth conditions or indicate a putatively hostile environment.
Such factors include the presence of serum, elevated temperature, neutral
pH, presence of certain nutrients, starvation signals, matrix embedding,
CO; and O levels, cell density, and contact to physical surfaces (Inglis &
Sherlock, 2013; Sudbery, 2011). It is intriguing how many of these factors
resemble growth conditions the fungus might encounter in the human
host (Cottier & Muhlschlegel, 2009; Sudbery, 2011). In each niche or
microniche, C. albicans will be affected by a unique combination of biolog-
ical and chemical factors, which either promote or inhibit morphogenesis
(Cottier & Mubhlschlegel, 2009). It has recently been proposed that a distinct
combination of these environmental conditions might be necessary for the
shift from a commensal to pathogenic lifestyle in C. albicans (Kadosh &
Lopez-Ribot, 2013; Lu, Su, Solis, Filler, & Liu, 2013).

Morphogenesis generally requires two steps, hyphal initiation and hyphal
maintenance (Lu, Su, Wang, & Liu, 2011; Martin, Moran, et al., 2011;
Sudbery, 2011). Hyphal initiation in response to elevated temperature re-
quires the removal of the filamentation repressor Nrgl from the promoter
regions of HAGs (Lu et al., 2011). In the second step, the absence of
Nrgl allows binding of Brgl, a GATA-transcription factor, to the HAG
promoter that recruits the histone deacetylase Hdal. Hdal in turn leads to
chromatin remodeling and the establishment of a filamentous chromatin
state promoting hyphal maintenance and the expression of HAGs
(Lu et al., 2011; Lu, Su, & Liu, 2012; Su, Lu, & Liu, 2013). However,
combinatorial environmental signals have been shown to bypass the require-
ment for Brgl and Hdal by a newly identified O, sensor and an uncharac-
terized CO; sensor (Lu et al., 2013).

The yeast-to-hyphae induction is furthermore influenced by a range of
small molecules, e.g., cell cycle inhibitors, quorum sensing molecules
(QSMs; e.g., farnesol, tyrosol, homoserine lactone (HSL)), fatty acids (e.g.,
butyric, capric, palmitoleic, linoleic, and arachidonic acid), eicosanoids, pep-
tides and proteins, rapamycin, geldanamycin, and histone deacetylase inhibi-
tors (Shareck & Belhumeur, 2011). Some of these molecules are produced
by the fungus itself in order to autoregulate hyphal formation in the presence
of environmental stimuli (e.g., QSM, eicosanoids), others may be produced
by the host or the host microbiome to manipulate C. albicans morphogenesis
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(e.g., QSM, fatty acids, peptides, proteins) (Albuquerque & Casadevall, 2012;
Hogan, 2006; Nickerson, Atkin, & Hornby, 2006; Shareck & Belhumeur,
2011; Sudbery, 2011). Only recently it was described that a glucanase,
secreted by C. albicans, has the ability to induce filamentation, which may
be an adaptive response to cell wall damaging enzymes (Xu, Nobile, &
Dongari-Bagtzoglou, 2013). A range of additional signaling pathways, acti-
vated by various environmental signals, stimulate morphogenesis and expres-
sion of HAGs. These pathways include the inhibition of heat shock protein 90
(Hsp90) by elevated temperatures and subsequent activation of Rasl, the
cAMP/PKA-signaling pathway via direct or indirect activation of the
adenylyl cyclase Cyrl, mitogen activated protein kinase (MAPK) signaling
via Ras1/Hst7 and Cekl, activation of the Rim101 pathway by neutral to
alkaline pH, Czf1 activation under embedded conditions via Racl, hypox-
ia-induced Efgl/Efh1 activation, and reactive oxygen species (ROS)
signaling induced by genotoxic stress (Gow, van de Veerdonk, Brown, &
Netea, 2012; Huang, 2012; Inglis & Sherlock, 2013; Shapiro & Cowen,
2012; Shapiro, Robbins, & Cowen, 2011; Sudbery, 2011). Nrgl, Tupl,
and Rfgl, as well as the stress-activated Hogl pathway are important
negative regulators of morphogenesis (Inglis & Sherlock, 2013; Shapiro
etal., 2011; Sudbery, 2011). Especially Ras1 and Cyr1 play a crucial role since
they integrate a wide range of environmental signals, and in case of Ras1 may
even activate a variety of cell signaling cascades (Hogan & Muhlschlegel,
2011; Inglis & Sherlock, 2013). This leads to simultaneous integration of
diverse signals to regulate morphogenesis, and allows the coregulation of
morphogenesis with a wide variety of other fitness/virulence attributes.
Consequently, most pathways do not regulate filamentation discretely but
are part of a complex regulatory network that is yet not fully understood.
More detailed information on the involved pathways can be found in several
recent reviews (Gow et al., 2012; Hogan & Muhlschlegel, 2011; Huang,
2012; Inglis & Sherlock, 2013; Shapiro et al., 2011; Sudbery, 2011). Finally,
the different signaling pathways lead to activation or inhibition of key tran-
scriptional regulators, e.g., Efgl, Czfl, Cphl, Tecl, Flo8, and Nrgl, that con-
trol expression of genes necessary for hypha formation and hypha-associated
genes (Brown, Giusani, Chen, & Kumamoto, 1999; Cao, Lane, Raniga, Lu,
Zhou, Ramon, et al., 2006; Giusani, Vinces, & Kumamoto, 2002; Huang,
2012; Kumamoto & Vinces, 2005b; Leberer, Harcus, Broadbent, Clark,
Dignard, Ziegelbauer, et al.,, 1996; Liu, Kohler, & Fink, 1994; Murad
et al.,, 2001; Schweizer, Rupp, Taylor, Rollinghoff, & Schroppel, 2000;
Shapiro et al., 2011; Stoldt et al., 1997; Vinces, Haas, & Kumamoto, 2006).



148 Melanie Polke et al.

UMEG6, HGC1, and EED1 are key players in hypha formation (Kuma-
moto & Vinces, 2005b). Ume6 is an important transcription factor that con-
trols the expression of many HAGs and biofilm formation (Banerjee et al.,
2008, 2013; Carlisle et al., 2009; Carlisle & Kadosh, 2010; Zeidler et al.,
2009). It has been shown that the ectopic expression of UME6 can induce
hypha formation independent of Efgl and Cphl, while native UME6
expression depends on some hyphal regulators (Banerjee et al., 2008; Carlisle
et al., 2009; Carlisle & Kadosh, 2010; Zeidler et al., 2009). Only recently it
was shown that UME6 expression is not only regulated on transcriptional,
but also on posttranscriptional level via an exceptional long 5 UTR region
that controls the stability of the UMEG6 transcript, which underlines the
importance of this gene during morphogenesis (Childers, Mundodi, Bane-
rjee, & Kadosh, 2014). Hgcl is the cyclin partner of Cdk1, a kinase with
multiple functions during polarized growth and the inhibition of cell sepa-
ration (Zheng, Wang, & Wang, 2004). The maintenance of HGC1 expres-
sion depends on Ume6 and, in turn, UME6 expression depends on EED1
(Epithelial Escape and Dissemination 1) (Carlisle & Kadosh, 2010; Martin,
Moran, et al., 2011). The cellular function of Eed1 is still unknown, but
it was shown that this protein is essential for the maintenance of hyphal
growth, since mutants lacking EEDT1 are still able to initiate filamentous
growth, but are unable to maintain polarized growth and switch back to
yeast growth (Martin, Moran, et al., 2011; Zakikhany et al., 2007).

Hypha formation is a form of hyperpolarized growth, and the cell
biology of hyphal growth, i.e., cell cycle and cell division, is substantially
different to yeast cell growth. Mechanisms of hyphal growth have been
reviewed in detail elsewhere (Arkowitz & Bassilana, 2011; Steinberg,
2007; Sudbery, 2011; Virag & Harris, 2006) and describing the mechanism
of this hyperpolarized growth is beyond the aim of this chapter.

2.1.2 Tropisms—To Know Where to Go

Filamentation can be seen as an escape mechanism or an alternative to
movement. As such, the growth has to be directed, for example, toward a
signal (tropism) or through barriers toward a new environment. For C. albi-
cans, tropism includes the fungal ability to reorientate the growth direction
of the hyphal tip in response to environmental cues (Brand & Gow, 2009).
Thigmotropism, the orientation of hyphal growth depending on the surface
configuration, is the best studied form of tropism in C. albicans. This tropism
1s facilitated by mechanosensors in the hyphal membrane e.g., Figl/Midl,
which activate the influx of extracellular calcium via Ca®"-channels (e.g.,
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Cchl) (Brand & Gow, 2009; Brand, Lee, Veses, & Gow, 2009; Kumamoto,
2008a; Yang et al., 2011; Yu et al., 2012). The resulting localized Ca*" gra-
dients then direct the reorientation of growth (Brand & Gow, 2009). Gal-
vanotropism (orientation within an electric field), aerotropism (orientation
via oxygen levels) and chemotropism (orientation by chemicals, e.g., pher-
omones, chemokines) have also been described for C. albicans (Aoki, Ito-
Kuwa, Nakamura, Vidotto, & Takeo, 1998; Brand et al., 2007; Crombie,
Gow, & Gooday, 1990; Daniels, Srikantha, Lockhart, Pujol, & Soll, 2006;
Gooday & Adams, 1993). Tropisms of C. albicans may play an important
role for epithelial and tissue penetration and damage, as mutants that fail
to reorient hyphal growth were shown to be attenuated in their ability to
penetrate and damage epithelial cells (Brand & Gow, 2009; Brand, Vachar-
aksa, et al., 2008; Davies, Stacey, & Gilligan, 1999). Chemotropism along a
pheromone gradient plays a key role for mating (see below).

2.1.3 Contribution of Hypha Formation and Hypha-Associated
Genes to C. albicans Survival and Pathogenesis

The complex regulatory network of morphogenesis described above facilitates
the concomitant expression of factors that do not directly affect morphogenesis,
termed HAGs. Some HAGs are important virulence factors that contribute to
the role of filamentation in pathogenesis. As the complex contribution of
HAG:s to survival and pathogenesis of C. albicans has been reviewed in detail
elsewhere (Kumamoto & Vinces, 2005b), we will only provide a summary
of the role of selected HAGs for virulence. HAGs can encode intracellular,
cell wall, or secreted components, with a range of functions. Some of these
genes are involved in initiation and maintenance of hypha formation itself.
Upon induction of environmental signaling the corresponding proteins are
activated and promote the formation of hyperpolarized growth, e.g., Efgl,
Cphl, Rasl, Tecl, Hgcl, Ume6, and Eed1 (Banerjee et al., 2008; Feng,
Summers, Guo, & Fink, 1999; Leberer et al., 1996; Liu et al., 1994; Martin,
Moran, Jacobsen, Heyken, Domey, Sullivan, et al., 2011; Schweizer et al,,
2000; Stoldt et al., 1997; Zakikhany et al., 2007; Zeidler et al., 2009; Zheng
et al.,, 2004). Hyphae-associated cell wall proteins and secreted proteins
include Als3, Hwp1, Rbt1, and Rbt4, that promote tight adhesion as the first
step for invasive growth (see section From Attachment to Disease: Adhesion, In-
vasion, and Damage) (Braun & Johnson, 1997; Kumamoto & Vinces, 2005b;
Staab, Bradway, Fidel, & Sundstrom, 1999; Staab, Datta, & Rhee, 2013;
Sundstrom, Balish, & Allen, 2002; Zhao et al., 2004). Als3 is furthermore
required for iron acquisition from host cells (Almeida et al., 2008; Almeida,
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Wilson, & Hube, 2009). Hypha-associated hydrolytic enzymes (encoded by
SAP4, SAP5, or SAP6) promote penetration and destruction of surrounding
tissue, thereby liberating nutrients from host cells (Felk et al., 2002;
Kumamoto & Vinces, 2005b; Naglik, Challacombe, & Hube, 2003). Many
of the survival mechanisms described in the following sections, e.g., adhesion,
invasion, biofilm formation, are tightly interlinked with morphogenesis and
either depend upon the formation of filamentous growth forms itself, or indi-
rectly require the expression of HAGs.

In summary, morphogenesis is indeed beneficial for C. albicans survival.
Important HAGs help to deal with unfavorable or toxic growth conditions
and stress. Furthermore, the formation of hyphae per se will give the fungus
the opportunity to gain access to different host niches, to more easily gather
nutrients and/or avoid competition for adhesion sites and nutrition by other
microbes (Hube, 2004; Kumamoto, 2008b; Romani, Bistoni, & Puccett,
2003). While yeast cells are able to proliferate in the tissue, hyphae are consid-
ered to be the motility form of C. albicans growth (Brand & Gow, 2009;
Hube, 2009). They promote tissue dissemination, drive invasion by mechan-
ical forces and HAG expression, and enable the fungus to escape from host
cells (Gow, 2009; Kumamoto & Vinces, 2005a,b; Lorenz, Bender, & Fink,
2004; Whiteway & Oberholzer, 2004). In addition, hyphae are differentially
recognized by major players of the human immune system leading to a rather
anti-inflammatory response after recognition (Gow, 2013). However, the
dissemination of C. albicans may lead to bloodstream infection associated
with high mortality rates, which could ultimately lead to the elimination of
the host and thereby also the fungus, for which no terrestrial life cycle exists
(Gow, 2013; Romani et al., 2003). Since, from the evolutionary point of
view, it cannot be the aim of the fungus to destroy its host, systemic infection
might rather be an accident of C. albicans foraging or the search for shelter
(Bliska & Casadevall, 2009; Casadevall, 2008; Hube, 2009; Romani et al.,
2003). Indeed it is thought that C. albicans might in first line be a commensal
of humans, the pathogenic and invasive form more the exception that occurs
under certain incidents (d’Enfert, 2009). The high numbers of asymptomatic
healthy carriers of C. albicans, as well as the severe risk factors that have to be
met to develop disseminated candidiasis strongly support this hypothesis.

2.2 Phenotypic Switching—Sex, Commensalism and the
Adaptation to the Host

In addition to the prominent transition between yeast and filamentous
growth, C. albicans can undergo a range of other phenotypic transitions



Candida Survival Strategies 151

(Soll, 2014). The term “phenotypic switching” has been introduced in 1985
as the ability of C. albicans to undergo spontaneous, reversible transition be-
tween a number of colony morphologies (Soll, 1992, 2014). The best studied
phenotypic transition is the white-to-opaque switch, which is necessary for
mating in C. albicans (Huang, 2012; Lohse & Johnson, 2009; Miller & John-
son, 2002; Morschhauser, 2010; Slutsky et al., 1987; Soll, 2014).

2.2.1 The White-to-Opaque Switch and Mating in C. albicans

Mating and sexual reproduction in natural C. albicans strains was first
described in 2002 (Miller & Johnson, 2002). The default state of C. albicans
is white cell growth, characterized by round to oval cells growing as smooth
colonies on an agar surface. These diploid C. albicans cells are usually hetero-
zygous at the mating type locus (MTL) in an a/a state (Lockhart et al., 2002;
Soll, 2014). In order to become mating competent C. albicans cells have to
undergo two major changes: First they have to become MTL homozygous
(a/a or a/a) (Lockhart et al., 2002; Miller & Johnson, 2002). This is
achieved by genetic changes on the chromosomal level, i.e., gene conver-
sion, crossing-over events or loss of one copy of chromosome 5, that harbors
the MTL, and subsequent duplication of the remaining copy (Soll, 2014;
Wu, Lockhart, Pujol, Srikantha, & Soll, 2007; Wu, Pujol, Lockhart, &
Soll, 2005). In the second step, the MTL homozygous white cells have
to switch to the opaque cell phenotype to become mating competent
(Lockhart, Zhao, Daniels, & Soll, 2003; Lockhart, Daniels, Zhao, Wessels,
& Soll, 2003). This process is regulated by a complex network at different
levels of regulation which have been reviewed in detail elsewhere (Bennett,
2009; Huang, 2012; Morschhauser, 2010; Soll, 2014). Important environ-
mental cues that promote switching and thereby mating are elevated CO,
levels, certain sugar sources, temperature, genotoxic and oxidative stress,
and white blood cell metabolites (Soll, 2014). It is striking that many of these
signals are considered unfavorable for C. albicans growth, supporting the idea
that increased genetic heterogeneity by mating promotes the emergence of
C. albicans subpopulations that might be better adapted to unfavorable con-
ditions, thereby supporting C. albicans survival in the host. The master regu-
lator of switching is Worl, a transcription factor that binds to WOPR-boxes
in its target genes and induces switching to mating competent opaque cells
(Huang et al., 2006; Lohse et al., 2013; Srikantha et al., 2006; Tuch et al.,
2010; Zordan, Galgoczy, & Johnson, 2006). Worl itself is regulated via
Efgl, Cztl, and Wor2, as well as Ahrl and Wor3 (Hernday et al., 2013;
Huang, 2012; Zordan, Miller, Galgoczy, Tuch, & Johnson, 2007).
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Furthermore the Rasl/cAMP/PKA pathway has been shown to be
involved in white-opaque-switch regulation, probably by regulating tran-
scription factors that in turn regulate WORT1 expression (Inglis & Sherlock,
2013). During C. albicans mating, mating competent cells secrete phero-
mones (a-pheromones from a/a cells and a-pheromones from o/a cells),
which stimulate cells of the opposite mating type, respectively, to form elon-
gated evaginations along a pheromone gradient which ultimately fuse to
form so-called conjugation tubes (schematically shown in Figure 2)
(Bennett, Uhl, Miller, & Johnson, 2003; Lockhart, Zhao, et al., 2003;
Panwar, Legrand, Dignard, Whiteway, & Magee, 2003; Soll, 2014). The
nuclei of both mating cells subsequently migrate into the tube and fuse to
form a tetraploid daughter cell at the fusion site (Bennett, Miller, Chua,
Maxon, & Johnson, 2005; Lockhart, Zhao, et al., 2003). The tetraploid
cell returns to a diploid state by random loss of chromosomes and recombi-
nation events (Bennett & Johnson, 2003; Forche et al., 2008).

White and opaque cells differ in their cellular morphology, mating
competence, and gene expression, especially in genes for metabolism (Lan
et al., 2002; Soll, 2014). Both white and opaque cells are able to filament,
but use different regulatory pathways (Guan et al., 2013; Si, Hernday,
Hirakawa, Johnson, & Bennett, 2013). Interestingly, opaque cells have lost
their ability to secrete important chemoattractants for polymorphonuclear
neutrophils (PMNs) and are therefore invisible to these immune cells under
certain conditions (Geiger, Wessels, Lockhart, & Soll, 2004; Sasse, Hasenberg,
Weyler, Gunzer, & Morschhauser, 2013). Furthermore, white cells are more
virulent during systemic murine infection, whereas opaque cells are better
colonizers in a murine skin model (Geiger et al., 2004; Kvaal et al., 1999;
Kvaal, Srikantha, & Soll, 1997; Sasse et al., 2013). Thus, white—opaque
switching can affect C. albicans survival in the host via mating, thereby pro-
moting cell diversity, and by influencing immune recognition and virulence.

2.2.2 Gastrointestinally Induced Transition Cells, Gray Cells, and
Other Phenotypic Variants—Diversity in Controlling
Commensalism and Host Adaptation

Only recently new phenotypic variants of C. albicans have been discovered

that might have a major impact on C. albicans survival within the host. In

2013, Pande et al. described a new cell type that emerged from a murine

model of stable gastrointestinal (GI) colonization (Pande, Chen, & Noble,

2013). Propagation of the MTL-heterozygous strain within the mammalian

GI tract induced overexpression of WORT in a subpopulation of cells. This
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was surprising since W/OR1 expression in vitro is restricted to MTL homo-
zygous opaque cells. Although these GUT cells (for Gastrointestinally
Induced Transition) shared some phenotypic characteristics with opaque
cells, the two cell types were distinct. The major characteristic of the
GUT cells was the enhanced fitness within the GI tract over wild type C.
albicans cells, which was also reflected by a reorientation of their metabolism
toward the nutrients available within the distal mammalian GI tract. There-
fore, cues from the GI tract trigger the expression of WORT1 in a subset of
initially colonizing cells that become GUT cells, which subsequently pro-
mote colonization via metabolic adaptation.

In 2014, Tao et al. discovered a “gray” phenotype that is distinct from
white and opaque cells in several cell biological aspects (Tao et al., 2014):
Gray cells were induced by growth on yeast-peptone-dextrose (YPD) me-
dium and showed an elongated, small cellular phenotype, high secreted
aspartic protease (Sap) activity in bovine serum albumine (BSA)-containing
media and substantial changes in global gene expression. Gray cell expression
did neither require Efgl nor Worl, but deletion of both important regula-
tors of white—opaque switching lead to constant gray cell phenotype. Gray
cells, similar to opaque cells, had a decreased ability to form filaments and
were less virulent in a systemic murine candidiasis model. In contrast, viru-
lence in ex vivo tongue infection and in vivo skin infection models was
increased, possibly due to increased Sap-activity.

A major difference between the recently described phenotypes, GUT
and gray cells, is their stability under in vitro conditions. GUT cells were
only formed during in vivo GI colonization and were not stable in vitro,
whereas gray cells were discovered in vitro and were stable under a variety
of culture conditions (Pande et al., 2013; Tao et al., 2014). The discovery of
these cell types suggests that phenotypic switching may be a general feature
of natural C. albicans strains. It is possible, that more yet unidentified pheno-
typic variants of C. albicans exist in certain host niches, representing special-
ized growth forms under environmental pressures. The high frequency and
diversity of phenotypic and morphologic switching therefore likely promote
survival of C. albicans within the human host (Soll, 2002).

S 3. HOW TO DEAL WITH STRESS—LESSONS FROM
C. ALBICANS

In order to survive in the host, C. albicans has to adapt to changing
conditions and host-derived stresses and the aptitude to cope with a wide
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range of stresses is a prerequisite for life in the human host. Stress-responsive
pathways and their downstream targets were shown to be necessary for colo-
nization but also for virulence of C. albicans (Alonso-Monge et al., 1999;
Csank et al., 1998; Diez-Orejas et al., 1997; Prieto, Roman, Correia, &
Pla, 2014). Important adaptation mechanisms and recent insights in survival
strategies under various stress conditions have recently been reviewed
(Brown, Budge, et al.,2014; Brown, Haynes, Gow, & Quinn, 2012; Brown,
Haynes, & Quinn, 2009). This section summarizes common stresses the fun-
gus has to deal with and highlights the most important survival mechanisms.

3.1 The Heat Shock Response and Fungal Morphogenesis

Although C. albicans colonizes a thermally comparatively stable niche, func-
tional heat shock responses have been retained in the fungus (Nicholls, Leach,
Priest, & Brown, 2009). These responses include conserved reactions induced
by diverse stressful conditions, which can cause protein-misfolding and
nonspecific protein aggregation ultimately leading to cell death. Heat shock
proteins (Hsps) thereby act as molecular chaperones that prevent misfolding
and aggregation by binding and stabilizing their target proteins. In C. albicans,
many cues that induce morphogenesis in vitro, e.g., high CO; levels and
serum, also require a concomitant temperature shift to 37 °C to induce
true hypha formation. A central regulator of this response is the chaperone
Hsp90 (Shapiro & Cowen, 2012; Shapiro et al., 2009). Hsp90 is integrated
in a complex regulatory network, interacting with a considerable proportion
of the C. albicans proteome (Diezmann, Michaut, Shapiro, Bader, & Cowen,
2012). Below 37 °C, Hsp90 inhibits filamentation; elevating the temperature
leads to an increase in protein-misfolding and Hsp90-mediated release of
repression of morphogenesis (Diezmann et al., 2012; Shapiro & Cowen,
2012). Hsp90 furthermore impacts other signaling pathways and affects
phenotypic switching, drug resistance, and biofilm formation in response to
temperature shifts (Diezmann et al., 2012; Leach, Budge, et al., 2012; Leach,
Klipp, Cowen, &, Brown, 2012; Leach, Tyc, Brown, & Klipp, 2012; Shapiro
& Cowen, 2012). Further major Hsps with diverse biological roles in C. albi-
cans include Hsp104, Hsp78, Ssal, Ssa2, and Hsp60 (Mayer, Wilson, & Hube,
2013a). The expression of these Hsps is mainly controlled by the transcription
factor Hsf1 (Sorger & Pelham, 1987, 1988). In addition, six small heat shock
proteins (sHsps), that have to form multimeres to bind their client proteins,
have been predicted in C. albicans (Mayer et al., 2013a). These include
Hsp12 and Hsp21, which are both upregulated under a variety of stress con-
ditions (Fu, De Sordi, & Mubhlschlegel, 2012; Mayer, Wilson, & Hube,
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2013b; Mayer, Wilson, Jacobsen, Miramon, Slesiona, et al., 2012). In addi-
tion, thermal and oxidative stress lead to the intracellular accumulation of
trehalose, which can function as a “chemical chaperone” by stabilizing protein
folding (Brown, Budge, et al., 2014). Hsp21 is crucial for regulating intracel-
lular trehalose levels and enhances antifungal drug resistance (Mayer, Wilson,
Jacobsen, Miramon, Slesiona, et al., 2012; Mayer et al., 2013b).

3.2 Hog1 and the Adaptation to Osmotic and Cationic
Stresses

Responses to osmotic, oxidative, nitrosative, and cell wall stresses are regulated
by a range of different MAPK pathways (Brown, Budge, et al., 2014; Brown,
Haynes, et al., 2012; Monge, Roman, Nombela, & Pla, 2006). Environ-
mental signals induce cascades of kinases that ultimately lead to the activation
of downstream transcription factors that regulate the adaptive stress response
(Monge et al., 2006). Hogl (High-osmolarity glycerol 1), a kinase which is
activated in response to osmotic, oxidative, thermal, heavy metal, and cell
wall stresses, has key functions in the core stress response of C. albicans (Smith,
Morgan, & Quinn, 2010; Smith, Nicholls, Morgan, Brown, & Quinn, 2004).
Activation of Hog1 can be mediated via a two-component signaling pathway
involving Sln1, and via signal input from the morphogenetic Cek1-MAPK
pathway by Stell (Brown, Budge, et al., 2014; Monge et al., 2006). Hog1
also negatively regulates Cek1, thereby affecting morphogenesis, and conse-
quently hog1A mutants are hyperfilamentous (Alonso-Monge et al., 1999;
Eisman et al., 2006). Concurrent lack of Hogl and Cek1 activation leads
to a synthetic lethal phenotype upon osmotic stress, underlining the impor-
tance of both signaling pathways under this stress condition (Herrero-de-
Dios, Alonso-Monge, & Pla, 2014). The adaptation to osmotic stress is
specifically important in certain host niches. For example, NaCl concentra-
tions can be extremely high in the kidneys and urine, and C. albicans has to
deal with K" -fluxes during phagocytosis (Brown, Budge, et al., 2014). Not
surprisingly, mutants lacking Hogl are strongly attenuated in a systemic
mouse model of infection (Alonso-Monge et al., 1999).

3.3 A Toxic Weaponry—How to Deal with Oxidative and
Nitrosative Stress

Oxidative stress mediated by ROS is a common byproduct of respiration.

Furthermore ROS are produced by host immune cells as defense mecha-

nisms, causing damage to DNA, proteins, and lipids (Bogdan, Rollinghoft,

& Diefenbach, 2000; Brown et al., 2009). In order to overcome the toxic
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effects of intracellular or extracellular ROS, C. albicans has developed a wide
range of defense and detoxifying mechanisms (reviewed in Alonso-Monge,
Roman, Arana, Pla, & Nombela, 2009; Bogdan et al., 2000; Brown, Budge,
et al., 2014; Brown et al., 2009; Miramon, Kasper, & Hube, 2013): C. albi-
cans encodes several superoxide dismutases (Sods) localized intracellulary
(e.g., Sodl), mitochondrially (Sod2), or on the cell surface (Sod4 on yeast
cells, Sod5 on hyphae) (Fradin et al., 2005; Frohner, Bourgeois, Yatsyk,
Majer, & Kuchler, 2009; Gleason, Galaleldeen, et al., 2014; Gleason, Li,
Odeh, & Culotta, 2014; Heilmann et al., 2011; Hwang, Baek, Yim, &
Kang, 2003; Hwang et al., 1999, 2002; Lamarre, LeMay, Deslauriers, &
Bourbonnais, 2001; Martchenko, Alarco, Harcus, & Whiteway, 2004;
Rhie et al., 1999). Sods are responsible for the breakdown of superoxide
radicals and are particularly important for dealing with phagocyte-derived
oxidative stress (Chaves, Bates, Maccallum, & Odds, 2007; Fradin et al.,
2005; Frohner et al., 2009; Hwang et al., 2002; Miramon et al., 2012). Su-
peroxide detoxification ultimately leads to the production of hydrogen
peroxide, that is detoxified via catalase (Catl), or glutathione peroxidases
(Gpx’s) (Fradin et al., 2005; Lorenz et al., 2004; Nakagawa, Kanbe, & Miz-
uguchi, 2003; Wysong, Christin, Sugar, Robbins, & Diamond, 1998). The
oxidized glutathione (GSH) is then recycled by at least two glutathione re-
ductases, Grx2 and Grll (Miramon et al., 2013). Thioredoxins also play a
role in peroxide detoxification in C. albicans, e.g., while facing neutrophils,
but their role is not clear yet (Enjalbert, MacCallum, Odds, & Brown, 2007;
Miramon et al., 2012; da Silva Dantas et al., 2010; Urban et al., 2005).
Another important antioxidant mechanism involves the intracellular accu-
mulation of trehalose (Martinez-Esparza et al., 2007; Mayer, Wilson, Jacob-
sen, Miramon, Slesiona, et al., 2012). This broad repertoire of ROS
detoxifying mechanisms make C. albicans relatively resistant to oxidative
stress, tolerating up to 20-mmol/L H,O, (Brown, Budge, et al., 2014).
The oxidative stress response in C. albicans is mainly regulated by the tran-
scription factor Capl (Alarco & Raymond, 1999). Hogl, as core stress regu-
lator, also contributes to the oxidative stress response although it only plays a
minor role in the transcriptional response to ROS in C. albicans (Enjalbert
et al., 2006; Smith et al., 2004, 2010). Immune cells also produce reactive
nitrogen species (RNS) to combat pathogens. A nitrosative stress response
is especially important for the survival of C. albicans in the interaction
with neutrophils and is primarily regulated by the transcription factor
Cta4 (Chiranand et al., 2008). The key detoxifying mechanisms for RNS
rely on a flavohemoglobin Yhb1, a nitric oxide dioxygenase which converts
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nitric oxide to ammonia (Hromatka, Noble, & Johnson, 2005; Miramon
et al., 2013; Ullmann et al., 2004).

Global responses to ROS and RNS are upregulated in C. albicans after
phagocytosis by neutrophils or macrophages, and following exposure to hu-
man blood or mucosal tissue, suggesting that C. albicans is exposed to oxida-
tive and nitrosative stress during infection (Enjalbert et al., 2007; Fradin
et al., 2005; Lorenz et al., 2004; Zakikhany et al., 2007). However, during
tissue infection, e.g., in the kidneys, these responses were not as vital as ex-
pected, as shown by diagnostic green fluorescent protein (GFP)-fusions in a
mouse model of disseminated infection (Enjalbert et al., 2007; Thewes et al.,
2007; Walker et al., 2009; Wilson et al., 2009). Therefore, Brown et al. hy-
pothesized that adaptation to oxidative stress might be crucial for the early
stages of infection, but less important after establishment of systemic infec-
tion (Brown, Budge, et al., 2014; Brown et al., 2009).

3.4 Adaptation to Cell Wall Stresses

A variety of environmental conditions, including osmotic, oxidative, thermal,
and cationic stresses, as well as exposure to certain antifungals ultimately affect
stability, structure, and integrity of the cell wall. Attachment to a surface and
induction of hyperpolarized growth require constant rearrangement of the cell
wall structure, thereby presenting another form of cell wall stress (Klis, de
Koster, & Brul, 2014). Not surprisingly, several signaling pathways are thus
involved in the response to cell wall stress, including the three MAPK path-
ways with their key factors Hogl, Cek1, and Mkcl (Brown, Budge, et al.,
2014; Brown et al., 2009; Monge et al., 2006). Hog1 is a core stress regulator
(see above). The Cek1 cascade, involving Cst20, Ste11, and Hst7, is primarily
involved in morphogenesis but also cell wall integrity (Monge et al., 2006).
The Cekl pathway is regulated by growth signals and quorum sensing
(Roman, Nombela, & Pla, 2005; Sato, Watanabe, Mikami, & Matsumoto,
2004), and the cascade involving Cekl and Cek2 has been shown to be
important for mating (Chen, Chen, Lane, & Liu, 2002; Chen, Wang, &
Chen, 2000; Magee, Legrand, Alarco, Raymond, & Magee, 2002). The
other important cell integrity pathway involves Mkcl (Brown, Budge,
et al., 2014; Monge et al., 2006). Mkc1 signaling is important under a broad
range of stresses for maintaining the cell wall integrity and biogenesis, for
invasive growth under embedded conditions and biofilm formation (Brown,
Budge, et al., 2014; Monge et al., 2006). As cell wall stress is usually coupled
with other forms of stressors, it is difficult to assess the relative contribution of
resistance to cell wall stress to survival of C. albicans in the host; however, it
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appears plausible that maintenance of a stable, intact cell wall is essential for
replication of the fungus in vivo.

3.5 pH Adaptation in C. albicans

The pH in the human host differs dramatically according to the anatomical
site. While the pH in the blood and tissues is rather neutral (pH 7.4 & 0.1),
the human vaginal cavity is acidic (pH ~4) and the pH along the digestive
tract differs significantly, ranging from pH 2 to 8 (Davis, 2009). In contrast to
bacteria, fungi prefer a slightly acidic pH for their growth. Why is the pH
important for C. albicans? Nutrient uptake is driven to a large extend by pro-
ton gradients, which will not work at alkaline pH (Davis, 2009). Further-
more some essential micronutrients, e.g., iron are only soluble and
available for the fungus at acidic pH (Davis, 2009). Furthermore, protein sta-
bility and enzyme function are affected by the pH. Alkaline pH might nega-
tively affect the function of important fungal proteins and thus represents
stress for C. albicans (Davis, 2009; Sosinska et al., 2011). In order to appro-
priately respond to environmental pH, signaling pathways that sense changes
in the environmental pH and drive appropriate downstream responses have
evolved. In C. albicans, the Rim101 signal transduction pathway is of major
importance for the response to alkaline pH (Davis, 2009). Changes in pH are
sensed by the plasma membrane receptors Dfgl6 and Rim21, which in turn
activate a cascade leading to the activation of the transcription factor
Rim101 (Barwell, Boysen, Xu, & Mitchell, 2005; Castrejon, Gomez,
Sanz, Duran, & Roncero, 2006; Rothfels et al., 2005; Thewes et al.,
2007). Rim101 has been shown to be important for immune evasion,
iron acquisition and full virulence in vivo (Bensen, Martin, Li, Berman, &
Davis, 2004; Davis, Edwards, Mitchell, & Ibrahim, 2000; Davis, Wilson,
& Mitchell, 2000; Nobile, Solis, et al., 2008). pH adaptation furthermore re-
quires two functionally redundant cell wall B-glycosidases, PHR 1, expressed
at neutral/alkaline pH, and PHR2, expressed at acidic pH (Fonzi, 1999;
Muhlschlegel & Fonzi, 1997). Phrl supports filamentous growth of C. albi-
cans and systemic infection, Phr2 and the Rim101 pathway yeast growth and
vaginal infection (De Bernardis, Muhlschlegel, Cassone, & Fonzi, 1998;
Fonzi, 1999). Other pH sensing pathways in C. albicans involve Mds3 and
calcineurin, that are both required for full virulence (Davis, Bruno,
Loza, Filler, & Mitchell, 2002; Kullas, Martin, & Davis, 2007; Zacchi,
Gomez-Raja, & Davis, 2010). Candida albicans has furthermore developed
mechanisms to actively change the pH of its environment (see Nutrient
and Micronutrient Acquisition and the Role of Metabolism for Candida Survival).
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3.6 How to Breathe—Adaptation to Hypoxia and
Hypercapnia

Oxygen plays a central role in metabolism, but levels vary significantly in
different host niches (Grahl, Shepardson, Chung, & Cramer, 2012). Espe-
cially regions of the human GI tract are considered to be hypoxic to anaer-
obic, and hypoxic conditions are also found in infected tissue (He et al.,
1999; Karhausen et al., 2004). Therefore, C. albicans adaptation to hypoxia
is important for both, successful colonization of the GI tract and infection.
Low oxygen levels are often directly coupled with increased levels of
carbon dioxide (hypercapnia), and both conditions trigger filamentation in
C. albicans (Dubin & Estenssoro, 2008; Ernst & Tielker, 2009; Inglis &
Sherlock, 2013; Klengel et al., 2005; Lu et al., 2013). Candida albicans
can grow at very low oxygen conditions by fermenting glucose to ethanol
(Rozpedowska et al., 2011). Hypoxia furthermore induces alterations of
metabolism toward fatty acid metabolism and glycolysis, major changes in
iron metabolism, ergosterol synthesis, and alterations of cell wall and mem-
brane structure (Grahl et al., 2012). Molecules that require oxygen for their
biosynthesis are indirect sensors for oxygen levels and stimulate changes in
the overall fungal metabolism; ROS and RINS may play important roles
as signaling molecules during hypoxic conditions (Cap, Vachova, & Palkova,
2012; Grahl et al., 2012). A major regulator of the hypoxic response is Efg1,
however, Efh1, Tye7, and Ace?2 are also involved (Bonhomme et al., 2011;
Doedt et al., 2004; Mulhern, Logue, & Butler, 2006; Sellam et al., 2014;
Setiadi, Doedt, Cottier, Noftz, & Ernst, 2006). Under hypoxic conditions
Efgl negatively regulates hypha formation, but induces genes associated
with biofilm formation (Setiadi et al., 2006; Stichternoth & Ernst, 2009).
Since Efgl is an important regulator of GI tract colonization, a mostly hyp-
oxic environment, Grahl et al. speculate that adaptation of hypoxia under

these growth conditions may be important for colonization (Grahl et al.,
2012).

3.7 Sequential and Combinatory Stresses, and the Situation

In vivo
In a certain host niche, C. albicans most likely will not just be exposed to one
but to multiple stresses, imposed sequentially or simultaneously. The adap-
tation to such sequential or “combinatorial” stresses has recently been
reviewed comprehensively in Brown, Budge, et al. (2014). Exposure of
C. albicans to nonlethal stresses can protect yeast cells against subsequent
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exposure to the same (hormesis) or different stresses (stress cross-protection)
(Brown, Budge, et al., 2014). Examples include thermotolerance, osmotol-
erance, and acquired tolerance to oxidative stress, as well as the cross-protec-
tion of thermal stress to subsequent oxidative stress (Arguelles, 1997;
Enjalbert et al., 2007; Jamieson, Stephen, & Terriere, 1996; Leach, Klipp,
et al., 2012; Leach, Tyc, et al., 2012; You et al., 2012). These responses
rely on the initiation of molecular responses to the initial signal/stress, which
leads to the activation and accumulation of key proteins and regulators that
mediate not only adaptation to this specific signal/stress, but also activate a
core transcriptional program, that subsequently mediates protection against
other stresses (Brown, Budge, et al., 2014; Leach, Tyc, et al., 2012). From an
evolutionary point of view, this may represent the adaptation of C. albicans
to relatively predictable niches, where one stress is often followed by a sec-
ond type of stress, called “adaptive prediction” (Brown, Budge, et al., 2014;
Brunke, & Hube, 2014; Mitchell et al., 2009). One intriguing example is the
activation of oxidative stress genes following the exposure to glucose, which
could represent the situation in vivo, when C. albicans enters the blood-
stream (which is relatively high in glucose levels compared to the surround-
ing tissues) where the fungus will likely face ROS produced by phagocytic
cells (Brown, Budge, et al., 2014; Rodaki et al., 2009). Combinatorial
stresses presumably more accurately describe the in vivo situation, where
C. albicans has to cope with several simultaneous stresses, e.g., ROS,
RNS, cationic fluxes, pH changes, and nutrient starvation in the phagolyso-
some (schematically illustrated in Figure 2) (Brown, Budge, et al., 2014;
Miramon et al., 2013). The combination of several stressors enhances the
likelihood of the host to overwhelm the adaptiveness of C. albicans and clear
the fungus (Brown, Budge, et al., 2014; Kaloriti et al., 2014).

g 4. GENETIC FLEXIBILITY—ADAPTATION ON GENOMIC,
TRANSCRIPTIONAL, AND TRANSLATIONAL LEVEL

4.1 Genomic Adaptation and Chromosome Instability
in C. albicans

The preceding sections about morphological and phenotypic adapta-
tions, and the ability to cope with a wide range of stress conditions already
imply the tremendous ability of C. albicans to change its morphology and
global transcriptional profile in response to unfavorable growth conditions.
This phenotypic diversity is enhanced by the high variability of C. albicans on
the genomic level. The genome of the naturally diploid yeast is notoriously
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unstable (Barton & Scherer, 1994; Odds, Brown, & Gow, 2004; Rust-
chenko, 2007). Some laboratory strains were found to be aneuploids, e.g.,
WO-2 (Magee & Magee, 1997; Rustchenko-Bulgac, 1991), and the forma-
tion of random chromosome alterations also occurs in vivo (Chen, Magee,
Dawson, Magee, & Kumamoto, 2004; Rustad, Stevens, Pfaller, & White,
2002). Aneuploidies and gene duplications can have immediate effects on
adaptation by provoking gene dosage effects (Fischer, Hube, & Brunke,
2014). Candida albicans forms tetraploid cells during mating, and subsequent
extensive chromosome loss will return the cell to a diploid state (Bennett &
Johnson, 2005; Hull, Raisner, & Johnson, 2000; Johnson, 2003; Magee &
Magee, 2000, 2004; Soll, 2004). This occurs in some cells more efficiently
than in others, leading to a range of intermediate states between a diploid
and tetraploid state within a population (Rustchenko, 2007). In addition,
it has recently been shown that C. albicans can furthermore form viable
haploid cells in vitro and in vivo (Hickman et al., 2013). These cells can un-
dergo mating and phenotype changes similar to their diploid counterparts
(Hickman et al., 2013). Altered karyotypes often come with a fitness cost,
since they might interfere with important cellular functions (Rustchenko,
2007). However, it was shown by Rustchenko et al. that chromosome insta-
bility in C. albicans also changes the expression of catabolic pathways, which
could favor the adaptation to changing nutrient availability (Rustchenko,
Howard, & Sherman, 1997). In environments that are potentially lethal,
C. albicans survives due to a rapid adaptation largely based on a reversible
change in copy number of specific chromosomes (Harrison et al., 2014; Per-
epnikhatka et al., 1999; Rustchenko, 2007; Selmecki, Dulmage, Cowen,
Anderson, & Berman, 2009; Selmecki, Forche, & Berman, 2006). A quite
common phenomenon is monosomy of chromosome 5 which alters the
compositions of the C. albicans cell wall and confers increased resistance to
several stresses, e.g., L-sorbose, fluconazole, and amphotericin B (Janbon,
Sherman, & Rustchenko, 1998; Kabir, Ahmad, Greenberg, Wang, & Rust-
chenko, 2005; Yang, Kravets, Bethlendy, Welle, & Rustchenko, 2013).
Chromosome 5 copy number loss is also important during mating as a major
mechanism to create MTL homozygous strains (Wu et al., 2005).
Mutations are the driving force in evolution and again, C. albicans rapidly
accumulates mutations. The genome of C. albicans laboratory strain SC5314
harbors approximately 60,000 single nucleotide polymorphisms, and loss of
heterozygosity (LOH) rates are high with ~107° to 10~ events/cell divi-
sion under nonstress conditions (Forche et al., 2011; Jones et al., 2004). The
capability of establishing chromosomal and genetic changes may be one of
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the most important prerequisites for the adaptation of C. albicans to its hu-
man host and adaptation to different host niches (recently reviewed in
Fischer et al., 2014). Indeed, persistence of C. albicans in patients and during
colonization of mucosal surfaces is associated with genomic microvariations,
e.g., genome rearrangements, extensive LOH, chromosome length poly-
morphisms, or chromosome copy number variations (Bougnoux et al.,
2006; Fischer et al., 2014; Odds & Jacobsen, 2008; Sampaio et al., 2005;
Schroppel, Rotman, Galask, Mac, & Soll, 1994). Candida albicans exhibits
chromosomal features that are so-called “hot spots” for mutations, e.g.,
the repetitive sequences of minisatellites, telomeric regions, and tRINA
genes (Fischer et al., 2014). These “hot spots” also include genes whose
alteration confers resistance to antifungal drugs. For example, a “hot spot”
for development of echinocandin resistance is the FKS1 gene encoding a
beta-1,3-glucan synthase, the direct target of echinocandins (Ben-Ami
et al., 2011; Cowen, Kohn, & Anderson, 2001). Such mutations are rare
and come with initial fitness costs if not balanced by compensatory muta-
tions (Fischer et al., 2014). Resistance emergence in such “hot spots” has
also been described for azoles (e.g., in ERG genes, CDR 1, MDR 1 multidrug
transporters) and polyenes (especially ERG-gene mutations) (Coste et al.,
2006, 2007; Morio, Loge, Besse, Hennequin, & Le Pape, 2010; Morsch-
hauser et al., 2007; Shapiro et al., 2011; Vandeputte et al., 2008). Hsp90
stress can induce aneuploidy by enhanced chromosome instability, since
important Hsp90 clients will no longer be stabilized. Such stresses are string
inducers of LOH events in C. albicans, coupling low fitness to increased evo-
lution rates (Fischer et al., 2014).

Furthermore, a range of mobile elements were found in the C. albicans
chromosome (Jiang et al., 2014; Zhang et al., 2014). Retrotransposons, re-
mainders of viral genetic elements, are capable of transposition within the
genome via RNA intermediates, which is normally repressed by defense
mechanisms, such as DNA methylation and histone modifications, prevent-
ing deleterious insertions (Arkhipova, 2005; Hua-Van, Le Rouzic, Maison-
haute, & Capy, 2005; Jiang et al., 2014; Johnson, 2007). By translocation
these mobile elements provide dispersed sites of sequence similarity at which
recombination might occur (Pickeral, Makalowski, Boguski, & Boeke,
2000). Thereby retrotransposons can cause mutations and promote genomic
rearrangements (Jiang et al., 2014). Important examples include several non-
long terminal repeat (LTR) retrotransposons, e.g., Zorro elements. These
mobile elements are affected by population density and ecological aspects,
e.g., stress (Arkhipova, 2005; Johnson, 2007). For example, the non-LTR
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retro-transposon Zorro?2 is activated by miconazole treatment (Zhu et al.,
2014). Activation of these transposons leads to additional copies in the C.
albicans genome. Although the exact role of these additional copies remains
to be elucidated, Zhu et al. hypothesized that these retro-transposons can
patch together broken chromosome ends and provide dispersed regions of
homology that facilitate chromosomal rearrangements (Dunham et al.,
2002; Umezu, Hiraoka, Mori, & Maki, 2002; Zhu et al., 2014). This pro-
motes the repair of ROS-induced DNA damage and chromosomal loss,
which are consequences of miconazole treatment (Zhu et al., 2014).

4.2 The CUG Codon and the Establishment of Proteome
Diversity

An important mechanism for diversity on a postgenomic level, is the
described mistranslation of the CUG codon in C. albicans. In several Candida
spp., this codon is largely translated into serine instead of leucine, as it would
be in most other organisms (Gomes et al., 2007; Santos, Gomes, Santos,
Carreto, & Moura, 2011). However, CUG translation is ambiguous, and
partial reversion from serine to leucine identity is possible (Gomes et al.,
2007), thereby leading to an exponential expansion of the C. albicans prote-
ome. This in turn increases phenotypic variation—one of the most impor-
tant survival skills of C. albicans (Gomes et al., 2007; Miranda et al., 2013).
An important example is the varability in cell surface molecules, which is
created by CUG mistranslation and which might have a major impact on
the fungus—host interaction (Miranda et al., 2013).

Taken together, short- and long-term reactions/adaptations to stress or
other environmental conditions are regulated by chromosomal changes. A
C. albicans population at any given time point in its host is composed of indi-
vidually unique cells. Each single cell might vary significantly from its
neighbor on genomic, transcriptome, and proteome levels. This is the basis
for all further virulence and fitness attributes the fungus sustains, and it en-
ables C. albicans to survive successfully in a constantly changing environment
of the human host.

S 5. METABOLIC ADAPTATION—NUTRIENT AND
MICRONUTRIENT ACQUISITION IN THE HUMAN HOST

Nutrition 1s fundamental for life and metabolic adaptation is an essen-
tial process for C. albicans survival. In order to live and proliferate in certain
host niches the fungus has to gain access to nutrients and micronutrients.



164 Melanie Polke et al.

The availability of nutrients differs dramatically between various host niches
the fungus might encounter during infection. In healthy individuals, C. albi-
cans 1s predominantly found as part of the GI microbiome, a niche which is
considered to be exceptionally high in nutrients. Still the fungus has to
compete with other members of the microbiota for nutrients and specific
types of carbon and nitrogen sources might be scarce in intestinal micro-
niches (Perez & Johnson, 2013). Nutrients within the host tissue clearly
differ from those on mucosal surfaces and free availability is often limited.
Furthermore, micronutrients, such as iron, are available only in very low
amounts within the host. Thus, C. albicans needs to be able to adapt to avail-
able nutrients and to actively recruit micronutrients during infection.

Sugars, especially glucose, are carbon sources efficiently used by C. albi-
cans and common laboratory media supply glucose to promote C. albicans
growth. In comparison to standard in vitro growth media, glucose levels
in the bloodstream are much lower (0.06—0.1%) (Barelle et al., 2006). After
phagocytosis, C. albicans encounters even lower sugar concentrations in the
phagolysosome. Adaptation responses that reflect the nutritional conditions
during infection include the induction of the glycolytic, tricarboxylic acid
cycle, and fatty acid B-oxidation genes during mucosal invasion (Barelle
et al., 2006; Owen & Katz, 1999); following ingestion by macrophages or
neutrophils C. albicans switches from glycolysis to gluconeogenesis, activates
fatty acid B-oxidation and the glyoxylate cycle as a starvation response within
the phagolysosome (Fradin et al., 2005; Lorenz et al., 2004; Rubin-Bejerano,
Fraser, Grisafi, & Fink, 2003). In addition to the reprogramming of meta-
bolism in response to starvation, C. albicans possesses various transport mech-
anisms for peptides, amino acids, etc. that can be upregulated to acquire
nutrients from degraded complex host molecules (Dunkel et al., 2013;
Kraidlova, Van Zeebroeck, Van Dijck, & Sychrova, 2011; Ramachandra
et al.,, 2014). The impact of metabolism upon Candida pathogenicity has
recently been reviewed in detail (Brown, Budge, et al., 2014; Ene & Brown,
2014); thus we will only shortly summarize the current knowledge.

First, C. albicans secretes a range of hydrolases (e.g., Saps) that provide the
fungus with effective tools to liberate nutrients such as oligopeptides and
amino acids from the digested tissue (Brunke & Hube, 2013; Naglik,
Albrecht, Bader, & Hube, 2004; Naglik et al., 2003). In turn, the expression
of SAP genes is regulated by the available carbon and nitrogen sources
(Hube, Monod, Schofield, Brown, & Gow, 1994). Candida albicans can
metabolize a wide range of different sugars and amino acids and thus is
able to use the liberated nutrients efficiently (Brunke & Hube, 2013).
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Second, efficient nutrient acquisition is essential for production of
effector and signaling molecules and energy (Brown, Brown, Netea, &
Gow, 2014). Thereby metabolic adaptation contributes to a variety of viru-
lence and fitness attributes of C. albicans e.g., stress resistance, cell wall
remodeling, and interaction with the host immune system (Brown, Brown,
etal., 2014; Lee, Morrow, & Fraser, 2013). Not surprisingly, mutations that
disrupt key metabolic functions have an impact on C. albicans survival and
virulence (Barelle et al., 2006; Martinez & Ljungdahl, 2005; Nobile et al.,
2012; Noble et al., 2010). Furthermore, the presence of glucose is a trigger
for morphogenesis, and glucose induces C. albicans genes involved in oxida-
tive stress resistance (Brown, Brown, et al., 2014; Brown, Budge, et al.,
2014). Likewise ammonium, the preferred nitrogen source of C. albicans, in-
fluences morphogenesis (Dunkel et al., 2014; Holmes & Shepherd, 1988).
Different carbon sources substantially affect C. albicans adhesion and biofilm
formation (Critchley & Douglas, 1985; Jin, Samaranayake, Samaranayake, &
Yip, 2004; Samaranayake & MacFarlane, 1982). Also, the adaptation to
different carbon sources influences cell wall architecture and functionality,
and subsequently influences stress responses and antifungal resistance
(Brown, Haynes, et al., 2012; Brown, Brown, et al., 2014; Ene, Adya,
et al., 2012; Ene, Heilmann, et al., 2012; Mandal et al., 2014). The gener-
ation of molecules such as the osmolyte glycerol, antioxidants e.g., gluta-
thione, and the stress protectant trehalose by metabolic pathways may
furthermore contribute to the regulation of stress resistance (Brown, Brown,
etal., 2014). It is not surprising that changes in the cell wall organization also
influence the interaction of C. albicans with immune effector mechanisms.
Cell wall components are major microbe-associated molecular patterns
(MAMPs), which are recognized by a range of pattern recognition receptors
(PRRs) on host cells triggering antimicrobial mechanisms and the release of
cytokines/chemokines that modulate the resulting immune response (Lewis
et al., 2012; Lowman et al., 2014; Netea et al., 2006). Alteration of the cell
wall architecture will therefore ultimately lead to altered recognition re-
sponses, and indeed it has been shown that, for example, the growth of
C. albicans on lactate stimulates the production of an anti-inflammatory
IL-10 rather than proinflammatory IL-17 response by human peripheral
blood mononuclear cells (PBMCs) (Ene, Cheng, Netea, & Brown, 2013).
Metabolic adaptation is controlled by complex transcriptional networks in
C. albicans, and a tight coregulation of metabolism and certain fitness or viru-
lence attributes of C albicans during host colonization, commensalism, and
pathogenicity has been described (Brown, Brown, et al., 2014; Brown,
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Odds, & Gow, 2007; Gow & Hube, 2012; Sabina & Brown, 2009; Whit-
tington, Gow, & Hube, 2014). Thereby nutrient availability shapes the
behavior of C. albicans and provides an environmental clue that might trigger
invasion and infection. Candida albicans turthermore has the ability to use
metabolic adaptation to actively change its surrounding environment in
favor of its own survival. In the absence of glucose, C. albicans has the ability
to use amino acids or polyamine as a carbon source which will ultimately
lead to the production and excretion of nitrogen in the form of ammonia.
This, in turn, raises the surrounding extracellular pH, supplying a strong
trigger for morphogenesis (Mayer, Wilson, Jacobsen, Miramon, Grosse,
etal., 2012; Vylkova et al., 2011). This mechanism is thought to contribute
to the escape of C. albicans from the phagosome of macrophages (Vylkova &
Lorenz, 2014).

Third, during its long coevolution with the mammalian host C. albicans
has gained the ability to effectively acquire micronutrients i.e., iron, zinc,
copper, and manganese from the human host by a wide range of mecha-
nisms. These trace metals are essential cofactors of many proteins and en-
zymes and thus indispensable for fungal growth. The availability of these
micronutrients in the human host is tightly regulated to avoid toxicity and
to limit availability for microorganisms as part of “nutritional immunity”
(Johnson & Wessling-Resnick, 2012; Radisky & Kaplan, 1999). In turn mi-
croorganisms have developed multiple strategies to acquire these micronu-
trients from host molecules. Candida albicans has developed several iron
acquisition strategies, including a reductive system, a siderophore-uptake
system and a heme-iron uptake system and is thereby able to use nearly
all sources of iron within the human host (Brunke & Hube, 2013; Mayer
et al., 2013a). The reductive system enables the fungus to gather iron
from host ferritin, transferrin, or free iron from the environment (Mayer
et al., 2013a). Als3 has been shown to be the receptor for ferritin binding
(Almeida et al., 2008). Candida albicans does not produce siderophores but
possesses the siderophore transporter system Sit1/Arn1 that can utilize side-
rophores from other microorganisms (Heymann et al., 2002). Furthermore
C. albicans can express hemolysins that lyse red blood cells, thereby liberating
hemoglobin and other heme-proteins (Watanabe et al., 1999). The heme-
receptor gene family members RBT5, RBT51, CSA1, CSA2, and PGA7
may then gather iron from these molecules (Almeida, Wilson, & Hube,
2009; Weissman & Kornitzer, 2004; Weissman, Shemer, Conibear, &
Kornitzer, 2008). Iron uptake and utilization mechanisms are controlled
by three major transcription factors, namely SFU1, SEF1, and HAP43
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(Chen, Pande, French, Tuch, & Noble, 2011). Interestingly C. albicans uses
these iron-responsive regulators to alternate between programs needed for
virulence or commensal lifestyle. While Sefl activates iron uptake genes
and promotes virulence in a bloodstream infection model, Sful represses
iron uptake and promotes colonization of the GI tract (Chen et al., 2011).
Another interesting link is the coregulation of iron uptake and biofilm
development via Als3 and Rbt5, that are involved in both iron acquisition
and biofilm formation (Chaffin, 2008; Finkel & Mitchell, 2011; Perez
et al., 2006, 2011). Iron is furthermore important for the expression of
many adhesion genes, thereby affecting the initial step of biofilm formation
(Puri, Lai, Rizzo, Buck, & Edgerton, 2014). Finally, Kronstad et al. speculate
that biofilm-associated traits such as the production of an extracellular matrix
might help fungal cells to sequester iron and other limited nutrients
(Kronstad, Cadieux, & Jung, 2013).

The second most abundant metal in the human host is zinc (Hood &
Skaar, 2012). Zinc acquisition in C. albicans is mediated by Pral, a zinc-bind-
ing protein, which is thought to deliver Zinc from the environment to trans-
porters in the C. albicans cell wall, i.e., Zrtl (Citiulo et al., 2012; Wilson,
Citiulo, & Hube, 2012). Other uptake mechanisms have been described
for copper and manganese (Hodgkinson & Petris, 2012; Kehl-Fie & Skaar,
2010).

In summary, C. albicans is able to use a broad range of general nutrients
and nearly all sources of natural iron and other trace metals available in the
human host. This likely eases the adaptation of the fungus to a broad range of
host niches and provides one explanation for the flexibility of C. albicans.
Furthermore, the variations in the metabolic environment and fungal adap-
tation contributing to the heterogeneity of C. albicans (e.g., cell wall alter-
ations) will positively promote fungal survival by influencing the efficacy
or failure of local immune surveillance mechanisms and antifungal therapy
(Brown, Brown, et al., 2014).

g 6. FROM ATTACHMENT TO DISEASE: ADHESION,
INVASION, AND DAMAGE

Of the five major human pathogenic Candida species, C. albicans, C.
glabrata, C. krusei, and C. parapsilosis (but not C. tropicalis) are normally
commensals of human mucosal surfaces, including the oral and vaginal cav-
ity, and the GI tract, which is the main reservoir for these fungi and the
main source of systemic Candida infections (Nucci & Anaissie, 2001).
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Under certain circumstances, the fungus can alter its commensal lifestyle
and turn into a pathogen. The trigger for this transition is not clearly
defined, but can be supported by the removal of the bacterial microbiota
via antibiotic treatment, by T-cell defects (as in the case of HIV infections
and AIDS), or due to even mild changes, such as hormonal alterations
(Sobel, 2007). The transition from commensalism to pathogenicity would
include three major steps: adhesion, invasion, and damage. It is not clear
whether the fungus has the tendency to initiate these steps all the time
or whether this transition is a regulated process (Hube, 2004). Only
recently, a commensal transcriptional program of C. albicans was discovered
(Pande et al., 2013), indicating that the fungus may in fact regulate its own
lifestyle.

The processes from attachment to invasion and damage are dynamic pro-
cesses with a smooth transition, however, it is possible to identify genes
which are responsible for the distinct stages adhesion, invasion, and damage
(Wachtler, Wilson, Haedicke, Dalle, & Hube, 2011).

6.1 Attachment to Epithelial Cell Surfaces

Attachment to epithelial cells is a strong trigger for hyphal formation, at least
in vitro, which in turn accelerates adhesion. Yeast cells also attach to epithe-
lial surfaces via yeast cell-expressed adhesins and are thought to build the first
layer of biofilms (de Groot, Bader, de Boer, Weig, & Chauhan, 2013).
However, the most powerful adhesins seem to be hypha-associated and
include the major adhesins Als3 and Hwpl. This is supported by the fact
that mutants unable to form hyphae on epithelial cells (e.g., ras1A) are virtu-
ally nonadhesive and mutants lacking either Als3 or Hwpl are approxi-
mately 70% reduced in adhesion (Wachtler, Wilson, Haedicke, et al., 2011).

The hypha-associated protein Als3 is a member of a large protein family
originally discovered by Hoyer and colleagues (Hoyer, Green, Oh, & Zhao,
2008) with a prototypic structure similar to many other microbial adhesins: a
glycosylphosphatidylinositol-anchor, a stalk-like region, rich in threonine
and serine, and a tandem repeat region, followed by the N-terminal end
which is responsible for the adhesive properties (Liu & Filler, 2011). These
adhesins bind to a wide variety of proteins, peptides, and host molecules
(Klotz et al., 2004; Liu & Filler, 2011; Nobbs, Vickerman, & Jenkinson,
2010). Adhesion through members of the Als family can be dramatically
increased by amyloid nanodomain formation (Alsteens, Garcia, Lipke, &
Dufrene, 2010; Lipke et al,, 2012; Otoo, Lee, Qiu, & Lipke, 2008;
Ramsook et al., 2010).
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Hwpl, also predominantly expressed in the hyphal form, has a unique
feature, as the protein is a substrate for (a) mammalian transglutaminase(s),
which leads to a covalent link between the fungus and the host cells (Staab
et al., 1999). However, Hwp1 must have adhesion properties independent
from the covalent binding since Hwp1 is also involved in cell—cell aggrega-
tion and biofilm formation on artificial material/surfaces (Nobile, Schneider,
et al., 2008). Multiple further Candida adhesins have been described
(reviewed in de Groot et al., 2013).

The fact that C. albicans provides so many different adhesins may be one
of the fundamental reasons, why the fungus is such a flexible pathogen. The
arsenal of adhesins is likely required during commensal growth, at the
different stages of infection and for contact with different cell types (other
fungal cells, bacteria, epithelial cells, endothelial cells, etc.), thus promoting
attachment at multiple niches within the host.

6.2 Invasion into Epithelial Cells

Although a few studies have reported that yeast cells of C. albicans can invade
epithelial cells to some extent (“cavitation”) (Ray & Payne, 1988), invasion
usually is an attribute of hyphae. Attached hyphae can grow along surfaces
guided by “contact sensing” (thigmotropism, see above) (Brand et al.,
2007). This may allow the fungus to search for weak points in the epithelial
barrier, for example, damaged epithelial cells and ruptured layers, or guide
the hyphae to cell—cell contacts to facilitate invasion between cells. How-
ever, most in vitro data suggest that invasion of hyphae occurs directly
into cells by two different routes (Zakikhany et al., 2007): induced endocy-
tosis and active penetration (schematically illustrated in Figure 2).

6.2.1 Induced Endocytosis versus Active Penetration

Induced endocytosis of C. albicans hyphae was first discovered by the Filler
Laboratory (Phan et al., 2007). This route is entirely host driven and no
fungal activity is required, even killed hyphae are engulfed. However, the
uptake of fungal elements needs a distinct trigger, initiated by a fungal sur-
face protein (the “invasin”) and recognized by a receptor on the host cell
surface, similar to the processes during bacterial invasion. Phan et al. identi-
fied the adhesin Als3 as the main C. albicans invasin and host cell—cell con-
tact proteins, the cadherins (E-cadherin on oral epithelial cells and
N-cadherin on endothelial cells), as the main receptors on host cells (Phan
et al., 2007). The hypha-associated expression of Als3 explains why almost
exclusively hyphae are endocytosed, but not yeast cells. However,
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endocytosis of yeast cells, even yeast cells from Saccharomyces cerevisiae or C.
glabrata is induced when Als3 is artificially expressed after genetic manipula-
tion (Fu et al., 2013; Phan et al., 2007). Considering that Als3 is also
involved in iron acquisition via Als3-mediated binding of the iron-storage
protein ferritin, this protein can truly be described as a multifunctional sur-
face protein (Almeida et al., 2008; Liu & Filler, 2011). A second invasin, the
Hsp Ssal, and further host receptors, including the EGF receptor and human
epidermal growth factor receptor 2 (HER?2), which cooperatively induce
endocytosis of C. albicans hyphae, have been identified (Sun et al., 2010;
Zhu et al., 2012). Our own data suggest that induced endocytosis occurs
during the early stages of invasion and contributes to approximately 25%
of the total invasion activity in vitro. Of note, induced endocytosis is not
observed for all host cell types. For example, intestinal cells (Caco-2) are
not invaded via induced endocytosis (Dalle et al., 2010). However, it seems
possible that invasion of C. albicans via induced endocytosis in the gut occurs,
similar to enteropathogenic bacteria, via distinct cell types, such as M cells.

In contrast to induced endocytosis, the second route of C. albicans inva-
sion, active penetration is entirely fungal driven and even inactivated or dead
host cells are invaded via this route (Wachtler et al., 2012). All cell types
investigated, including intestinal cells, are invaded via active penetration,
which seems to be the major route of invasion (Wachtler et al., 2012).
Like it is the case for induced endocytosis, only hyphae are able to invade
via active penetration. Consequently, C. albicans mutant cells with reduced
ability to form hyphae are incapable to invade via both routes (Wachtler,
Wilson, Haedicke, et al., 2011). The mechanisms of active penetration are
not clear. It seems that a mixture of physical forces, probably based on turgor
pressure, and hydrolytic activity is required. While the contribution of spe-
cific members of the Saps family for epithelial invasion is controversially dis-
cussed (Naglik et al., 2003, 2008), invasion is clearly inhibited by the aspartic
protease inhibitor pepstatin A suggesting a significant contribution of Saps at
some stage (Dalle et al., 2010). Although invasion seems to be a true path-
ogenic behavior, it may also occur in the commensal stage, potentially
contributing to attachment of a constantly proliferating epithelial layer. Of
note, initial invasion does neither cause damage nor inflammation or attrac-
tion of immune cells such as neutrophils (Wachtler, Wilson, & Hube, 2011;
Wilson et al., 2013). Therefore, such a scenario is in agreement with a
commensal phase.

Naturally, one would expect that invasion into host cells causes damage,
which can, for example, be measured via the release of host lactate
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dehydrogenase activity. However, uptake of killed hyphae via induced
endocytosis does not induce any damage at all and even invasion by viable
hyphae does not cause significant damage within the first hours of contact
with epithelial cells. In fact, the host membrane is not disrupted after initial
invasion and hyphae are surrounded by a host membrane (Wachtler et al.,
2012; Zakikhany et al., 2007). Similar to plant pathogenic fungi, where a
defined extracellular space between the invading fungus and the host mem-
brane is observed, C. albicans also forms such a “pocket” and this membrane
can cover the fungus even when the hyphae have fully penetrated through
the host cell and have already invaded into a neighboring cell, a phenome-
non which we have described as interepithelial dissemination (Wachtler
et al., 2012; Wachtler, Wilson, Haedicke, et al., 2011; Zakikhany et al.,
2007). Finally, this membrane will be ruptured by physical forces and intra-
cellular components are released.

Although adhesion, invasion, and damage are processes which are linked,
we identified mutants which show normal adhesion and invasion, but which
caused significantly reduced damage. These are mutants lacking either Eed1,
Dur31, Hsp21, or Ecel.

Eed1 was the first protein discovered, which can be described as a dam-
age factor (Zakikhany et al., 2007). Mutants lacking the EED1 gene are able
to form short hyphae on epithelial cells, which are sufficient to adhere and
invade at similar rates as the wild type. However, once invaded into the
epithelial host cell, the eed 1A mutant cells switch to yeast cell growth.
Consequently, these cells are trapped, unable to escape from their host
cell and disseminate further within the epithelial tissue. The reason for
this is the general inability of this mutant to maintain hyphal elongation after
initiation of hyphal formation (see above) (Martin, Moran, et al., 2011).

Another mutant with normal adhesion and invasion attributes, but
reduced damage is a mutant lacking Dur31 (Mayer, Wilson, Jacobsen,
Miramon, Grosse, et al., 2012). DUR31 is not only involved in oral epithe-
lial damage, but also in multiple stages of candidiasis, including surviving
attack by human neutrophils, endothelial damage, and virulence in vivo.
The DUR31 gene encodes a sodium/substrate symporter which transports
the polyamine spermidine into the fungal cell. By doing so, Dur31 contrib-
utes to the extracellular alkalinization hyphae autoinduction pathway and,
consequently, is required for pH-induced hyphae formation. Therefore,
the reduced hyphae formation is the cause of reduced damage. Of note,
Dur31 also transports histatin 5, a highly cytotoxic AMP, into the fungal
cell, thereby committing a suicide-like process (Mayer, Wilson, Jacobsen,
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Miramon, Grosse, et al., 2012). Thus, Dur31 is both a virulence and aviru-
lence factor.

The third mutant with unaltered potential for adhesion and invasion, but
reduced damage is a mutant lacking the small heat shock protein Hsp21
(Mayer, Wilson, Jacobsen, Miramon, Slesiona, et al., 2012). Again, this
mutant formed significantly shorter filaments compared to the wild type un-
der various filament-inducing conditions, although sufficient hyphae were
produced upon contact with epithelial cells to allow wild type levels of
adhesion and invasion. Measurements of intracellular levels of stress protec-
tive molecules demonstrated that Hsp21 is involved in glycerol and
glycogen regulation and plays a major role in trehalose homeostasis. Mutants
defective in trehalose and, to a lesser extent, glycerol synthesis phenocopied
HSP21 deletion and had strongly impaired capacity to damage epithelial
cells.

All these examples confirm the relevance of elongated hypha formation
for damage, while short hyphae are sufficient for adhesion and invasion.
Finally, we found one mutant, which had normal adhesion and invasion
properties, but which also produced normal elongated hyphae. This mutant
lacked the hypha-associated gene ECE1, one of the first genes identified as
being hypha-associated and a member of the C. albicans hyphae core-
response genes (Birse, Irwin, Fonzi, & Sypherd, 1993; Martin et al.,
2013). Our own preliminary data show that this protein is the first C. albicans
toxin, which directly causes damage of host cells (unpublished data). A
detailed investigation of this damaging process is currently in progress.

Taken together, the existence of large adhesin gene families, their high
variability and both overlapping and specific functions provide C. albicans
with an important toolbox to adhere and invade various tissues and organs.
This enables the fungus to drive infection when it changes from commensal
to the pathogenic state.

S 7. INTERACTION WITH THE IMMUNE SYSTEM—
EVADING ELIMINATION

One important function of the immune system is the detection and
elimination of microorganisms that invade host tissue. Thus, development
and outcome of Candida infections depend on the efficacy of immune de-
fense mechanisms. Candidiasis usually only develops when the immune sys-
tem is impaired and/or is overwhelmed by Candida outgrowth on mucosal
surfaces, for example, after antibiotic treatment. While it appears obvious
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that successful establishment and progression of infection involves interac-
tion of Candida with the host immune system, it should be noted that im-
mune responses extend beyond mucosal surface barriers and also occur as
reaction to microbiota. In turn, mucosal immunity is influenced by the
composition of the microbiome and responses toward a mucosal pathogen
might affect other members of the mucosal community. Therefore interac-
tion of Candida with the immune system is not limited to infections but
also occurs during colonization and likely shapes mucosal host responses
(Kumamoto, 2011; Kumamoto & Pierce, 2011).

The immune system consists of humoral and cellular components and can
be divided into innate and acquired immunity. Cross-talk via cytokines and
chemokines connects innate and acquired immunity and several humoral
(soluble) and cellular immune components contribute to both. Consequently,
the immune response to infection, including candidiasis, is the result of a com-
plex network of interactions that not only include professional immune cells
but also epithelial cells. In the following section, we will only briefly discuss a
few selected aspects of the interaction of C. albicans with the immune system,
referring to recent reviews for more comprehensive information.

7.1 Humoral Defenses: Antimicrobial Peptides and
Complement

The complement system and AMPs are evolutionary old systems that pre-

sent two of the first lines of defense against invading microbes. Both can

exhibit direct antimicrobial functions; additionally, the complement system

is important for opsonization of pathogens and directing phagocytic cells to

the site of infection.

Activation of the complement system is triggered by binding of anti-
bodies to fungal surfaces (classical pathway), binding of mannan-binding lec-
tin on mannosylated C. albicans surface proteins (lectin pathway) and the
deposition of C3 by the alternative pathway. All three pathways lead to
the deposition of complement fragments on the surface that activates down-
stream parts of the complement cascade, mediating opsonization and assem-
bly of the membrane attack complex. Due to the relatively robust fungal cell
wall it appears unlikely that the membrane attack complex affects Candida
viability; however, complement-mediated opsonization enhances phagocy-
tosis of fungal cells and killing by macrophages and neutrophils (reviewed in
Rambach & Speth, 2009). The relevance of complement for the anti-
Candida response has been clearly demonstrated in mice, where strains
with complement defects show a higher susceptibility to systemic candidiasis
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(Ashman et al., 2003; Mullick et al., 2004; Peltz et al., 2011; Tsoni et al.,
2009). Like many bacterial pathogens, C. albicans has developed several
mechanisms to interfere with complement activation (recently reviewed
in Cheng, Joosten, Kullberg, & Netea, 2012; Luo, Skerka, Kurzai, & Zipfel,
2013). These include degradation of C3b by Saps and binding of different
regulatory host proteins that inhibit complement activation (Gropp et al.,
2009). The latter is mediated by a variety of fungal proteins, including
Pral, Gpm1, Hgtl, and Gpd2 (Luo et al., 2011; Luo, Hoffmann, Skerka,
& Zipfel, 2013; Luo, Poltermann, Kunert, Rupp, & Zipfel, 2009; Luo,
Skerka, et al., 2013; Meri et al., 2002; Poltermann et al., 2007).

AMPs are produced not only by immune cells but also by epithelial cells,
especially on mucosal surfaces. In addition to exerting direct antifungal activ-
ity by pore formation or interference with cellular ATP metabolism, several
AMPs also act as chemoattractants promoting the influx of phagocytic im-
mune cells and T cells, thereby modulating the immune response (Swidergall
& Ermnst, 2014). Several human AMPs, the cathelicidin LL-37, histatin 5, and
B-defensins can kill C. albicans in vitro (Chang et al., 2012; den Hertog et al.,
2005; Vylkova, Nayyar, Li, & Edgerton, 2007). While the extent to which
AMPs contribute to antifungal protection in vivo remains unknown, it ap-
pears plausible that AMPs are involved both in host—fungal homeostasis on
mucosal surfaces during colonization and in the response to infection. In
this context, it was recently proposed that the reduced levels of histatin 5
in the saliva of HIV" patients contribute to the increased susceptibility to
oral candidiasis (Khan et al., 2013). Given the ubiquitous presence of
AMPs on mucosal surfaces, it is not surprising that many bacteria have devel-
oped AMP resistance mechanisms, likely as a consequence of coevolution
with the host (Peschel & Sahl, 2006). The necessity to tolerate basal levels
of AMPs on mucosal surfaces during colonization probably also led to the
development of AMP resistance mechanisms in C. albicans (recently reviewed
in Swidergall & Emst, 2014): C. albicans inactivates AMPs through proteolytic
cleavage by Sap9 and Sap10 (Meiller et al., 2009). Saps might also be involved
in the generation of the secreted glycodomain of Msb2, that inactivates a
wide range of AMPs extracellularly (Puri, Kumar, Chadha, Tati, Conti,
Hube, et al., 2012; Swidergall, Emnst, & Ernst, 2013; Szafranski-Schneider
et al., 2012). Efflux transporters can extrude AMPs that reach the cytoplasm
of C. albicans, as it has been shown for the MDR transporter Flul which
mediates eflux of histatin 5 in C. albicans (Li, Kumar, Tati, Puri, & Edgerton,
2013). Less specifically, the HOGT stress response pathway involving Pbs2
contributes to tolerance to basal AMP levels by inducing compensatory
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responses (Argimon, Fanning, Blankenship, & Mitchell, 2011). Similarly,
Ssd1 and Berl, enhance AMP resistance by maintaining mitochondrial integ-
rity in the presence of AMPs (Jung et al., 2013).

7.2 Facing the Foe: Neutrophils and Macrophages

As professional phagocytic cells that are either present in the tissue (tissue mac-
rophages) or rapidly recruited to sites of infection (neutrophils and monocytes
differentiating into macrophages), neutrophils and macrophages are the most
important constituents of the first line of cellular defense against C. albicans.
Neutrophils are recruited in large numbers to the site of infection in murine
models of candidiasis and the importance of these cells for the host defense has
been established in various animal experiments: direct depletion of neutro-
phils, indirect depletion and interference with neutrophil recruitment by
deletion of Interleukin 6 (IL-6) or other cytokines render mice hypersuscep-
tible to systemic infection (Basu, Quilici, Zhang, Grail, & Dunn, 2008; van
Enckevort et al., 1999; Han & Cutler, 1997; Kullberg, Netea, Vonk, &
van der Meer, 1999; Netea et al., 1999; Romani et al., 1996; van 't Wout,
Linde, Lejjh, & van Furth, 1988). Recently, mathematical modeling based
on mouse experiments suggested that neutrophils can mediate a logarithmic
decline of fungal burden in vivo (Hope et al., 2007). Consistently, neutrope-
nia is a risk factor for disseminated candidiasis in human patients (Perlroth
et al., 2007). The contribution of macrophages and monocytes to the anti-
Candida response is less clear; splenic macrophages were found to contribute
to resistance in a murine systemic infection model in one study, while another
study found no difference between immunocompetent and monocytopenic
mice (Qian, Jutila, Van Rooijen, & Cutler, 1994; van 't Wout et al., 1988). It
should however be noted that monocytes, macrophages, and their subpopu-
lations have distinct functions, including recruitment of other immune cells.
Consistently, a subpopulation of renal resident macrophages has recently been
identified that is important for early fungal control and outcome of systemic
candidiasis (Lionakis et al., 2013). The following examples will describe some
of the interactions between C. albicans and neutrophils/macrophages; for
more comprehensive information we refer to recent reviews (Cheng et al.,
2012; Miramon et al., 2013).

In order to exhibit antifungal functions, phagocytes have to recognize
Candida. This recognition is mediated by a multitude of pattern recognition
receptors (PRRs) on the immune cell surface that can bind different micro-
bial components, so-called MAMPs, which are mainly constituents of the
fungal cell wall. These complex interactions have been reviewed
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comprehensively by Netea et al. (Netea, Brown, Kullberg, & Gow, 2008).
Here, we would like to highlight that the exposure of some MAMPs by
C. albicans can change during infection. B-glucan on the fungal surface is,
among others, recognized by the PRR dectin-1 and this interaction is
important for the initiation of phagocytosis and other antifungal activities.
While B-glucan exposure of C. albicans grown in vitro is relatively low, it in-
creases during systemic infection of mice and after exposure to caspofungin
(Wheeler & Fink, 2006; Wheeler, Kombe, Agarwala, & Fink, 2008). How-
ever, the host protective effect of dectin-1 is masked by high levels of chitin
in the C. albicans cell wall. In vivo, the role of dectin-1 in systemic infection
of mice differs depending on the C. albicans strain used. Marakalala et al.
could demonstrate that the dectin-1 dependency correlated with the chitin
levels of the cell wall. Importantly, these differences only became obvious
during in vivo infection but not in in vitro experiments (Marakalala et al.,
2013). Chitin furthermore exhibits anti-inflammatory effects via NOD?2,
Toll-like receptor 9 (TLRY), and the mannose receptor, suggesting that
chitin contents also directly influence the immune response (Wagener
et al., 2014). These examples demonstrate that dramatic changes in the cell
wall proteome can occur in vivo in response to growth conditions and envi-
ronmental signals without obvious changes in gross morphology. Thus
recognition by the immune system and subsequent anti-Candida responses
might differ depending on the anatomical site (Gow, 2013). It should also
be noted that C. albicans recognition is influenced by the morphology and
we refer to a recent review for more details (Gow & Hube, 2012).
Phagocytosis of pathogens serves two aims: Inactivation of the pathogen
by intracellular killing and, in the case of antigen-presenting cells, stimula-
tion and coordination of the adaptive immune response. Intracellular killing
is mediated by release of AMPs, ROS, RNS, reduction of the phagolysoso-
mal pH, and nutrient starvation. Thus, the stress resistance mechanisms and
metabolic flexibility of C. albicans discussed in detail above counteract intra-
cellular killing to a certain extend. In addition, phagocytosed C. albicans cells
are able to escape from macrophage phagolysosomes, a process which can
furthermore results in macrophage death (see illustrated in Figure 2). Escape
is associated with the formation of hyphae and requires modulation of the
phagosomal pH (Ghosh et al., 2009; McKenzie et al., 2010; Vylkova &
Lorenz, 2014). While it was generally believed that hyphae physically
rupture macrophages, recent research strongly suggests that C. albicans also
triggers pyroptosis (Uwamahoro et al., 2014; Wellington, Koselny,
Sutterwala, & Krysan, 2014). Pyroptosis is a host-cell programmed death
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pathway that leads to macrophage death and C. albicans escape, associated
with inflammasome activation and release of proinflammatory cytokines.
To which extend this and other kinds of programmed cell death contribute
to Candida survival within the host, still remains to be elucidated.

7.3 Dendritic and Natural Killer Cells: Cross-Talk Matters

Dendritic cells (DCs) are professional antigen-presenting cells, that are strate-
gically located at the primary entry sites of C. albicans, mucosal surfaces (Roy &
Klein, 2012). They are responsible for the sampling and processing of antigens
from the environment, and the subsequent shaping of T-cell responses by the
secretion of cytokines and the presentation of antigen-fragments on their sur-
face (Ramirez-Ortiz & Means, 2012; Roy & Klein, 2012). Both C. albicans
yeast and hyphae are efficiently phagocytosed by DCs, but DCs kill C. albicans
less efficiently than monocytes and macrophages. It has therefore been sug-
gested that the main role of DCs is antigen presentation and coordination
of subsequent immune responses (Netea et al., 2004; Ramirez-Ortiz & Means,
2012). DCs are able to differentiate between the different morphological
growth forms of C. albicans resulting in differential cytokine patterns and
T-cell responses (Kurzai, Schmitt, Brocker, Frosch, & Kolb-Maurer, 2005;
d’Ostiani et al., 2000; Romani, Bistoni, & Puccetti, 2002; Romani et al.,
2004). Interestingly, fungal factors like cell wall components have been shown
to influence DC maturation (Kikuchi, Ohno, & Ohno, 2002; Nisini et al.,
2007; Ramirez-Ortiz & Means, 2012; Roy & Klein, 2012; Torosantucci
et al., 2004), and thereby C. albicans may modulate the subsequent immune
reaction. Interaction with DCs not only occurs during infection but also dur-
ing colonization of the gut, where they probably play an important role in the
in vivo tolerance of C. albicans (Bonifazi et al., 2009). Similarly, natural killer
(NK) cells can kill C. albicans but the dominant role is likely their influence on
other parts of the immune system via production of cytokines (Voigt et al.,
2014). This hypothesis is supported by the observation that the role of NK
cells in C. albicans infection depends on the overall immune status of the
host (Quintin et al., 2014). Thus, NK cells and DCs likely modulate the im-
mune response toward Candida both during infection and commensalism by
coordinating complex responses and by providing a connection between
innate and adaptive immunity (Ramirez-Ortiz & Means, 2012).

7.4 Epithelial Cells and Mucosal Immunity

Mucosal responses to microbes are not only important during infection but
also for homeostasis between the host and its microbiota (Bevins & Salzman,
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2011). The interactions on mucosal surfaces are complex and differ between
anatomical sites: T-cell responses, for example, significantly contribute to in-
teractions on the oral mucosa, as exemplified by the high susceptibility of
AIDS patients to OPC (Cassone & Cauda, 2012; Fidel, 2011). In contrast,
AIDS does not predispose patients for vaginal or systemic Candida infections
(Perlroth et al., 2007). Epithelial cells play a crucial role during commen-
salism and mucosal candidiasis, as their response stimulates recruitment of
professional immune cells (Li, Chen, Tang, Shen, & Liu, 2011; Naglik,
Moyes, Wachtler, & Hube, 2011; Weindl, Wagener, & Schaller, 2010,
2011). Thus, we will briefly summarize how oral epithelial cells respond
immunologically to C. albicans.

Epithelial cells recognize C. albicans cell wall components, thereby
triggering activation of NF-kB and the first MAPK phase, including c-Jun
activation. This initial activation is independent of morphology and does
not result in the production of cytokines. Cytokine production depends on
the presence of hyphae and fungal load, which activate c-MKP1 and c-Fos
signaling, and might constitute a “danger response” pathway (Moyes et al.,
2010, 2011, 2012, 2014; Moyes & Naglik, 2011). The “danger response”
results in the secretion of immune-stimulatory chemokines and cytokines,
e.g., granulocyte-macrophage colony stimulating factor (GM-CSF), which
modulate the subsequent immune response and mediate cross-talk with
neutrophils (Weindl et al., 2007). Neutrophil signaling, likely via Tumor
necrosis factor o (TNNF-a), in turn induces epithelial responses that include
the upregulation of TLR4 and production of antimicrobial molecules
(Li et al., 2011; Lopez-Garcia, Lee, Yamasaki, & Gallo, 2005; Moyes et al.,
2010, 2012; Netea & Kullberg, 2010; Vylkova et al., 2007; Wagener et al.,
2013; Weindl et al., 2007). Together with the recruitment of immune cells,
the epithelial response thus enhances the antifungal resistance of the mucosal
barrier. With regard of the survival of C. albicans in the host the mechanisms
described above nicely demonstrate that C. albicans is tolerated as long as it
behaves as a “benign” commensal— the epithelial cells sense the presence
of Candida but only react if fungal load and invasion-associated filamentation
indicate that the commensal has turned to a pathogenic lifestyle.

g 8. LIVING WITHIN A COMMUNITY

The sections above describe how single C. albicans cells sense and react
to diverse environmental stimuli. However, in the recent years it became
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more and more evident that planktonic growth in vivo is rather the excep-
tion than the rule, which makes the discussion of survival mechanisms of C.
albicans on single cell level insufficient. It has been estimated that up to 80%
of all microorganisms grow as sessile communities attached to a surface
rather than as planktonic cells and a significant portion of all human micro-
bial infections arise from pathogenic biofilms (Bonhomme & d’Enfert, 2013;
Douglas, 2003; Ramage et al., 2009; Shirtliff, Peters, et al., 2009). Medical
devices routinely used in clinical settings such as central venous or urinary
catheters, artificial heart valves, prosthetic joints or dentures, provide an ideal
point for biofilm formation and subsequent infection (Fanning & Mitchell,
2012; Kojic & Darouiche, 2004).

Furthermore, under most in vivo situations C. albicans will encounter
other members of the natural human microbiota and/or might get in contact
with coinfecting pathogens. Therefore, C. albicans must not only cope with
host defense mechanisms, but also compete with other microorganisms for
host niches, adhesion sites, and nutrients and must deal with toxins and
metabolic byproducts of its neighbors in order to successfully colonize and
survive within the human host.

Therefore, the following section will summarize the recent insights into
multicellular behavior, highlighting the importance of biofilm formation for
Candida survival and pathogenicity and discuss the ability of intra- and interspe-
cies communication and its role in C. albicans survival within the human host.

8.1 Biofilms—A Strong Community Facing the Host

Biofilms are three-dimensional structures formed by microbes on abiotic and
biotic surfaces wherein single cells might differentiate to gain specialized
properties or functions (Costerton, Montanaro, & Arciola, 2005; Douglas,
2003; Lynch & Robertson, 2008). Mediated by cell—cell contacts and the
secretion of a variety of signaling molecules single cells adapt their behavior
acting as a multicellular community (Williams, 2007). Fungal biofilms are
problematic in the clinical context because of their intrinsic tolerance to
many commonly used antifungals and their increased resistance to physical
forces, diverse stresses and host immune defense mechanisms (Chandra
et al., 2001; Hall-Stoodley & Stoodley, 2009; Ning et al., 2013). The ability
of clinical isolates to form biofilms has furthermore been associated with
increased pathogenicity and higher mortality rates in patients with candide-
mia (Sherry et al., 2014; Tumbarello et al., 2007; Wenzel, 1995). Candida
albicans, the leading pathogen among the Candida clade, forms the most
robust biofilms on abiotic and biotic surfaces, but other Candida spp. have
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also been associated with biofilm formation in human infections, i.e.,
Candida dubliniensis, C. glabrata, C. tropicalis, and C. parapsilosis (Bonhomme
& d’Enfert, 2013; Dongari-Bagtzoglou, Kashleva, Dwivedi, Diaz, &
Vasilakos, 2009; Douglas, 2002, 2003; Kojic & Darouiche, 2004; Silva,
Henriques, Oliveira, Williams, & Azeredo, 2010).

8.1.1 Candida albicans Biofilm Formation is a Sequential Process
The efficiency of biofilm formation of C. albicans on a surface depends on
the texture of the surface (e.g., roughness, hydrophobicity), the environ-
mental conditions (e.g., nutrient availability, shear forces, O, availability,
pH, and CO; levels), the intrinsic ability of the fungus to form biofilms
and the presence and activity of host immune cells (Chandra et al., 2001;
de Vasconcellos, Goncalves, Del Bel Cury, & da Silva, 2014; Finkel &
Mitchell, 2011). Candida biofilm formation is a multistep process which
starts with the settlement and adhesion of single cells to a surface (adherence
step) (Blankenship & Mitchell, 2006; Chandra et al., 2001; Finkel &
Mitchell, 2011). This initial contact is mediated by cell surface adhesins
that have already been described in context of adhesion to host tissues,
e.g., Als3 and Hwp1 (Liu & Filler, 2011; Nobile, Nett, Andes, & Mitchell,
2006). Adhesion in biofilms involves cell—substrate, as well as cell—cell
adherence during biofilm growth. The attached cells will start to proliferate
to a thin layer of cells that provides the basis for further biofilm development
(initiation step) (Chandra et al., 2001; Finkel & Mitchell, 2011). Subse-
quently the biofilm grows and matures, which is associated with the forma-
tion of pseudohyphae and hyphae, and the secretion of extracellular matrix
(ECM) components by biofilm-associated cells (maturation step) (Baillie &
Douglas, 1999; Finkel & Mitchell, 2011). The surface of the mature biofilm
provides then the basis for dispersal and dissemination by releasing cells, pref-
erably yeast, into the environment (dispersal step) (Finkel & Mitchell, 2011;
Uppuluri, Chaturvedi, et al., 2010).

The mature biofilm is a very complex structure including microniches
with particular properties, wherein cells will adopt specialized features to
survive. Cells growing in deeper biofilm layers, for example, face decreased
oxygen levels (Bonhomme & d’Enfert, 2013). Consequently, cells in
different parts of the biofilm show different gene expression profiles
regarding starvation and oxidative stress, e.g., upregulation of glycolysis,
fatty acid metabolism, and ergosterol synthesis (Bonhomme et al., 2011;
Bonhomme & d’Enfert, 2013; Garcia-Sanchez et al., 2004). Different cell
types within a biofilm were furthermore shown to be subject to genetic
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and epigenetic changes (Bonhomme & d’Enfert, 2013; Finkel & Mitchell,
2011; Stewart & Franklin, 2008).

8.1.2 Regulation of Biofilm Formation and Dispersal

Many of the genes that are involved in biofilm formation also have a role
during morphogenesis. However, the initial adhesion step is independent
of the morphological growth form of C. albicans (Finkel & Mitchell,
2011). Eap1 and Als1, both surface proteins present on yeast and hyphal cells
are therefore thought to mediate the initial contact with the surface (Finkel
& Mitchell, 2011; Hoyer, 2001; Li & Palecek, 2003). Upon surface contact
C. albicans activates MAPK signaling responses associated with hypha forma-
tion (Mkcl and Cekl pathways) to initiate adherence to the
surface (Kumamoto, 2005; Kumamoto & Vinces, 2005a; Zucchi, Davis,
& Kumamoto, 2010). Components of the cAMP/PKA-signaling pathway
were also shown to affect biofilm formation (Giacometti, Kronberg, Biondi,
& Passeron, 2011; Yi et al., 2011). The primal surface contact is a strong
trigger for filamentation and expression of hypha-associated adhesins, i.e.,
Als3 and Hwpl. These will further promote cell-surface adherence and
cell—cell attachment (Chaffin, 2008; Finkel & Mitchell, 2011; Liu & Filler,
2011; Nobile et al., 2006; Nobile, Schneider, et al., 2008).

In 2012, Nobile and colleagues identified the transcriptional network that
orchestrates C. albicans biofilm development: Six master regulators, namely
Berl, Tecl, Efgl, Ndt80, Rob1, and Brgl, are arranged in a complex circuit,
directly or indirectly regulating each other and the expression of approxi-
mately 1000 target genes (Fox & Nobile, 2012; Nobile et al., 2012). The
expression of most master regulators is regulated by the Set3 histone deacety-
lase complex, which was recently shown to promote biofilm cell dispersal and
drug resistance (Nobile et al., 2014). The complexity and partial redundancy
of the network enables the fungus to sense and respond to multiple environ-
mental inputs and to fine-tune its gene expression according to these stimuli
(Fox & Nobile, 2012). Important target genes include adhesins (e.g., ALS1,
ALS3, HWP1), nutrient transporters (e.g., CANZ2, encoding an amino acid
permease), genes involved in hyphal growth and virulence (e.g., TEC1,
UMEG6), zinc uptake genes and genes involved in biofilm matrix regulation
(e.g., ZAP1, FUS1, XOG1) (Fox & Nobile, 2012; Nobile et al., 2012).

Dispersed cells from biofilms have the potential to initiate infection in
other body sites. The mechanisms leading to dispersal are however only
poorly understood. One key factor controlling dispersion seems to be the
morphogenic regulator Hsp90, which also regulates matrix glucan level
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and resistance to antifungals (Robbins et al., 2011; Singh et al., 2009).
Dispersion requires the downregulation of important filament-associated
genes, e.g., UMEG6, as well as the upregulation of the yeast growth promot-
ing genes NRG1 and PES1 (Finkel & Mitchell, 2011; Uppuluri, Chatur-
vedi, et al., 2010; Uppuluri, Pierce, et al., 2010). Nrgl protein, but not
transcriptional levels are regulated by the QSM farnesol (Lu et al., 2011;
Lu, Su, Unoje, & Liu, 2014). Farnesol appears to regulate both, biofilm
adhesion (negatively) and dispersal (positively) (Deveau & Hogan, 2011).
This is likely mediated by the inhibitory effects of farnesol on hyphae forma-
tion and by promoting the switch back to yeast growth (Hornby et al., 2001;
Lindsay, Deveau, Piispanen, & Hogan, 2012). Interestingly, dispersed cells
show enhanced filamentation, adhesion, biofilm formation, and virulence
properties compared to their planktonic counterparts (Uppuluri, Chatur-
vedi, et al., 2010). These changes might be mediated by long-term epige-
netic alterations that are retained upon dispersal of yeast cells from the
biofilm.

8.1.3 Biofilm Resistance Mechanisms and Their Relevance during
Infection

Candida albicans biofilms are intrinsically resistant to a wide variety of stresses,
including several antifungal drugs, mechanical stresses, and immune defense
mechanisms. The mechanisms of biofilm resistance to antifungal drugs have
recently been reviewed in detail (Bonhomme & d’Enfert, 2013; Mathe &
Van Dijck, 2013; Taff, Mitchell, Edward, & Andes, 2013). Briefly, the com-
plex architecture of the biofilm itself, the trapping of passing molecules or
cells by components of the ECM, the upregulation of efflux pumps and
stress defense mechanisms, as well as the phenotypic and metabolic plasticity
of biofilms contribute to their resistance (for illustration see Figure 3):

1. The biofilm environment promotes the formation of phenotypic variants
that are specialized for a specific niche within a biofilm. Such adaptation
responses may include epigenetic changes or transient aneuploidy that
confers increased resistance (persister cells) or adaptation to the host
(Selmecki, Forche, & Berman, 2010). Persister cells define a small frac-
tion of phenotypic variants that have gained the intrinsic ability to
survive antifungal concentrations well above the normal minimal inhib-
itory concentrations (MICs) (Bonhomme & d’Enfert, 2013; LaFleur,
Kumamoto, & Lewis, 2006; Lafleur, Qi, & Lewis, 2010; Lewis, 2010,
2012; Tatt et al., 2013). These cells comprise about 1% of all biofilm cells
and lie deep within the structure (Mathe & Van Dijck, 2013). Although
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mononuclear cells.

not much is known about their origin, there is evidence that ROS

signaling may play a role in persister cell formation and that the forma-
tion is species- and strain-specific (Al-Dhaheri & Douglas, 2008; Bink
et al., 2011; Lafleur et al., 2010; Vandenbosch, Braeckmans, Nelis, &
Coenye, 2010). During treatment with antifungals these cells can pro-

vide a population that survives and recolonizes the host.

Cells within a biofilm are embedded within a matrix (ECM) that primar-

ily consists of cell wall carbohydrates, proteins, lipids, hexosamine, phos-
phorus, uranic acid, and extracellular DNA (eDNA) (Al-Fattani &
Douglas, 2006; Costerton, 1995; Lal, Sharma, Pruthi, & Pruthi, 2010;
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Martins et al., 2010; Mathe & Van Dijck, 2013; Zarnowski et al., 2014).
The eDNA contributes to the structure and stability of the mature bio-
film, promotes hyphal growth and increases drug resistance (Martins,
Henriques, Lopez-Ribot, & Oliveira, 2012; Martins et al., 2010; Sapaar
et al., 2014). The matrix material is also thought to contribute to the
retention of water, nutrients, and enzymes (Taff et al., 2013). The impor-
tance of the ECM for resistance mechanisms is supported by the obser-
vation that biofilm resistance directly correlates with the amount of
matrix material present (Al-Fattani & Douglas, 2006). What makes the
ECM such a good “shield” against potential threats? First, it was shown
that diffusion of antifungals is slower within biofilms, but without a dra-
matic difference in overall diffusion rates (Al-Fattani & Douglas, 2004).
Second, a higher amount of B-1,3-glucan is produced and shed by bio-
film-associated cells (Nett et al., 2007; Nett, Sanchez, Cain, & Andes,
2010). B-1,3-glucan has the ability to bind fluconazole, which reduces
the potential of the drug to reach and control biofilm-associated cells
(Nett et al., 2007; Nett, Sanchez, Cain, & Andes, 2010). Similar resis-
tance mechanisms have also been described for other antifungal drugs
(Nett, Crawford, Marchillo, & Andes, 2010; Vediyappan, Rossignol,
& d’Enfert, 2010) and non-albicans Candida species (Mitchell et al.,
2013). Very recently, a unique branched-mannan-f-1,6-glucan conju-
gate was discovered as the major carbohydrate matrix component, while
B-1,3-glucan was more prominent in the cell wall (Zarnowski et al.,
2014). The matrix therefore appears to be a specialized structure
rather than a simple agglomeration of released cell wall components
(Zarnowski et al., 2014). Not surprisingly, ECM production is controlled
by different regulators that target cell wall carbohydrate synthesis and
excretion. Zapl, a zinc-responsive transcription factor, is a major nega-
tive regulator of B-1,3-glucan synthesis, whereas the glucoamylases
Gcal and Gea2, the glucan transferases Bgl2 and Phr2, and the exoglu-
canase Xog1 have a positive effect on B-1,3-glucan excretion and biofilm
matrix formation (Bonhomme & d’Enfert, 2013; Mathe & Van Dijck,
2013; Tatt et al., 2012, 2013). Upstream elements of genes regulating
the cell wall B-1,3-glucan content and matrix production include genes
encoding members of the protein kinase C cell wall integrity pathways,
ie., SMI1 and RLM1 (Mathe & Van Dijck, 2013; Nett, Sanchez, Cain,
Ross, & Andes, 2011). Matrix formation in MTL-heterozygous cells is
furthermore Ras1/cAMP-dependent and requires Efgl, Tecl, and
Brgl activation (Lassak et al., 2011; Nobile & Mitchell, 2005; Ramage,
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VandeWalle, Lopez-Ribot, & Wickes, 2002; Stichternoth & Ernst,
2009). Interestingly, a recent analysis of the matrix composition of C.
albicans biofilms in vitro and in vivo by Zarnowski et al. found proteins
as a major component of the biofilm matrix (Zarnowski et al., 2014).
This did not include cell wall-associated proteins, but rather factors
involved in carbohydrate and amino acid metabolism, suggesting that
the biofilm matrix might also function as an external digestive system
which breaks down extracellular molecules as energy source for the bio-
film-associated cells.

3. Cells within a biofilm show altered gene expression in comparison to their
planktonic counterparts. Differentially regulated genes include genes
encoding antifungal targets or genes involved in ergosterol or cell wall
biosynthesis (e.g., ERG genes mediating ergosterol synthesis, SKN7 and
FKS1 and KRE genes mediating B-1,3-glucan synthesis) (Borecka-
Melkusova, Moran, Sullivan, Kucharikova, Chorvat, & Bujdakova,
2009; Garcia-Sanchez et al., 2004; Khot, Suci, Miller, Nelson, & Tyler,
2006; Mathe & Van Dijck, 2013; Murillo, Newport, Lan, Habelitz,
Dungan & Agabian, 2005; Nailis, Vandenbosch, Deforce, Nelis, &
Coenye, 2010; Nett, Crawford, et al., 2010; Nett, Lepak, Marchillo, &
Andes, 2009; White, 1997). The upregulation of ergosterol synthesis
genes may contribute to resistance of biofilm-associated cells to flucona-
zole and polyenes (Mathe & Van Dijck, 2013). In contrast, the
ergosterol content of cells during late biofilm growth is reduced,
thereby potentially limiting the efficacy of ergosterol-targeting drugs
(Mukherjee, Chandra, Kuhn, & Ghannoum, 2003). Furthermore during
early biofilm formation an increased expression of drug eflux pump genes
including CDR1, CDR2, MDR1, and FLU1 has been described, which
seems to play a role in fluconazole resistance (Mukherjee et al., 2003;
Nett et al., 2009; Ramage, VandeWalle, Bachmann, Wickes, & Lopez-
Ribot, 2002; Sanglard, 2002; White, 1997). However, the presence of
those transporters is not essential for drug resistance in mature and aging
biofilms where these genes are again downregulated (Mathe & Van Dijck,
2013). In addition, expression of several C. albicans genes driving resistance
against oxidative stress (e.g., CAT1T), cell wall stress (e.g., MKC1), and
general stress responses (e.g., HSP90, HSP104, CNB1, CRZ1) is increased
in biofilms (Mathe & Van Dijck, 2013; Taff et al., 2013).

Taken together, life in a biofilm renders C. albicans extremely resistant
to antifungals and host defenses, thereby presenting a “safe haven” for the fun-
gus. The complexity of the biofilm promotes escape from the immune system
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as phagocytes and PBMC:s are not able to phagocytose biofilm-associated cells
(Chandra, McCormick, Imamura, Mukherjee, & Ghannoum, 2007,
Katragkou et al., 2010). Furthermore, the presence of PBMCs and the proin-
flammatory cytokine IL-17A within a biofilm enhance biofilm formation and
mass (Chandra et al., 2007; Zelante et al., 2012). Components of the matrix in
mature C. albicans biofilms furthermore interfere with ROS production by
neutrophils (Xie et al., 2012). Last but not least, the “inherited” increased
virulence potential of dispersed biofilm cells furthers colonization and estab-
lishment of biofilms on new sites of infection, thereby promoting the popu-
lating of new host niches (Uppuluri, Chaturvedi, et al., 2010).

8.2 Quorum Sensing and Beyond—Talking in Molecules

Quorum sensing is a mechanism of microbial communication wherein mi-
croorganisms synchronize their behavior depending on the population den-
sity (Miller & Bassler, 2001). The mediating factors are so-called
autoinducers or QSMs that are released by the cells. QSMs trigger intracel-
lular responses once a critical threshold is reached (Bassler, 2002; Williams,
2007). The existence of cooperative behavioral patterns has first been
described for Streptococcus pneumoniae and the marine luminescent bacterium
Vibrio fischeri (Bassler & Losick, 2006). In 2001, the first QSM in a eukaryotic
organism was described: farnesol in C. albicans (Homby et al., 2001). Since
then, a range of other (putative) QSMs have been identified in C. albicans
(Albuquerque & Casadevall, 2012; De Sordi & Mubhlschlegel, 2009; Kruppa,
2009). Quorum sensing plays a pivotal role during biofilm development by
providing the communication necessary to build, maintain, and regulate
such a complex multicellular structure (Molloy, 2010; Nadell, Xavier,
Levin, & Foster, 2008; Peleg, Hogan, & Mylonakis, 2010).

8.2.1 The Quorum Sensing Molecule Farnesol and Cellular Signaling
Pathways

Farnesol is an isoprenoid alcohol which is produced as a byproduct of the
ergosterol biosynthesis pathway (Hornby et al., 2001; Homby & Nickerson,
2004; Nickerson et al., 2006). Within the Candida clade, C. albicans produces
the highest amounts of farnesol, with levels reaching up to 55 UM in dense
C. albicans cultures (Weber, Schulz, & Ruhnke, 2010; Weber, Sohr, Schulz,
Fleischhacker, & Ruhnke, 2008). Farnesol has several effects on C. albicans.
Probably the most prominent action is the inhibition of the yeast-to-hyphae
transition (Hornby et al., 2001; Mosel, Dumitru, Hornby, Atkin, &
Nickerson, 2005; Oh, Miyazawa, Naito, & Matsuoka, 2001). Very recently
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Lindsay et al. discovered that farnesol also triggers the switch back from fila-
mentous to budding yeast cell growth (Lindsay et al., 2012), which makes
farnesol an important candidate for regulation of yeast cell dispersal from
the surface of mature biofilms. Furthermore farnesol is a potent inhibitor
of the initial adhesion step of biofilm formation (Alem, Oteef, Flowers, &
Douglas, 2006; Cao et al., 2005; Deveau & Hogan, 2011; Martins et al.,
2007; Nickerson et al., 2006; Ramage, Saville, Wickes, & Lopez-Ribot,
2002). In contrast, farnesol has no effect on biofilm maturation, only cells
in mature biofilms become sensitive to farnesol again (Ramage, Saville,
et al., 2002). Besides its effect on yeast-to-hyphae and hyphae-to-yeast tran-
sition, farnesol affects genes involved in drug resistance, cell wall mainte-
nance, phagocytic response, surface hydrophobicity, iron transport, and a
range of Hsps (Cao et al., 2005; Cho et al., 2007; Enjalbert & Whiteway,
2005; Uppuluri, Mekala, & Chattin, 2007).

Considering the diverse modes of action, it is not surprising that farnesol
affects several signaling pathways, including the Ras1/Cyr1/cAMP cascade
(Davis-Hanna, Piispanen, Stateva, & Hogan, 2008; Lindsay et al., 2012).
Farnesol exerts a direct effect on Cyrl adenylyl cyclase function by binding
to the cyclase domain, thereby reducing intracellular cAMP levels (Hall
et al., 2011). Furthermore, farnesol promotes the cleavage of Rasl, resulting
in a soluble Rasl form that has a reduced ability to activate Cyrl, thereby
supporting the formation of yeast cells (Piispanen, Grahl, Hollomon, &
Hogan, 2013). The inhibition of cAMP signaling by farnesol has been
shown to mediate a protective effect against oxidative stress by promoting
the activation of the general stress MAPK Hogl (Brown, Budge, et al.,
2014; Deveau, Piispanen, Jackson, & Hogan, 2010; Smith et al., 2004). Far-
nesol also influences other signaling pathways, e.g., the morphogenic
MAPK signaling pathway via Ceklp, two-component signaling via
Chklp and important regulators of morphogenesis (Kruppa et al., 2004;
Roman et al., 2009; Sato et al., 2004): Tupl, a major negative regulator
of filamentation; as well as Czfl and Efgl, both important regulators of
filamentation in C. albicans under different growth conditions (Braun &
Johnson, 1997; Kebaara et al., 2008; Langford et al., 2013), have been impli-
cated in farnesol signaling. NRG1 expression is affected indirectly via cAMP
signaling but farnesol also exerts an effect on Nrgl protein levels (Braun,
Kadosh, & Johnson, 2001; Lu et al., 2011, 2014). The latter is mediated
via inhibition of the E3 ubiquitin ligase Ubrl, which in turn stabilizes the
Cup9 transcriptional repressor of SOK1 (Lu et al., 2014). Subsequently
SOKT1 expression, a kinase required for Nrg1 degradation, is downregulated,
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the Nrgl protein becomes stabilized and finally inhibits hyphal initiation (Lu
et al., 2014). It is also possible that farnesol has indirect effects on the cells by
interacting with the cell membrane, since it is a highly hydrophobic mole-
cule. This could lead to pleiotropic signals throughout the cell (Langford,
Atkin, & Nickerson, 2009).

8.2.2 Differences in Farnesol Sensitivity May Account for
Diversification in Certain Host Niches

The farnesol effects described above occur in white cells, the major pheno-
typic form of C. albicans in vitro. Opaque cells, in contrast, are adversely
affected by farnesol. Under aerobic conditions opaque cells are killed by far-
nesol concentrations that are sublethal to white cells (Dumitru et al., 2007).
Under anaerobic concentrations, when white cells become unresponsive to
farnesol, opaque cells stay unharmed (Dumitru et al., 2007; Dumitru,
Hornby, & Nickerson, 2004). Thereby farnesol may reduce mating efficiency
in certain human body niches and restrict mating to anaerobic sites in the
host, e.g., the GI tract (Dumitru et al., 2007). Under normal growth condi-
tions the MIC of farnesol is >250 pM for white cells, a concentration which
easily inhibits or kills other cell types or species (Albuquerque & Casadevall,
2012; Jabra-Rizk, Meiller, James, & Shirtliff, 2006; Langford et al., 2009).
How C. albicans white cells withstand these high farnesol concentrations is
largely unknown, but it appears to be an energy- and growth-phase depen-
dent process as log-phase cells are more susceptible to killing than stationary
phase cells (Langford et al., 2009; Shirtliff, Krom, et al., 2009; Uppuluri et al.,
2007). Similarly, the exact mechanisms by which farnesol induces apoptotic
and necrotic cell death are poorly understood (Dumitru et al., 2007; Shirtliff,
Krom, et al., 2009). Farnesol might exert inhibitory effects on the mitochon-
drial function leading to perturbations in respiration and ROS production,
which are either tolerated (white cells) or induce cell death (opaque cells)
(Langford et al., 2009). Furthermore, the lipophilic nature of farnesol may
disrupt membrane function leading to nonspecific necrosis (Langford et al.,
2009). As the overall reactivity of cells to farnesol is very diverse and dose-
dependent, Hogan and Muhlschlegel suggested that farnesol may allow
diversification of cells within a population (Hogan & Mubhlschlegel, 2011).

8.2.3 Other Important Signaling Molecules Involved in Intraspecies
Communication

Another important QSM of C. albicans is tyrosol (Chen, Fujita, Feng,
Clardy, & Fink, 2004). In contrast to farnesol, tyrosol stimulates
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filamentation and biofilm formation by decreasing the lag-phase of cell
growth under environmental conditions that favor filamentation (Alem
etal., 2006; Chen, Fujita, et al., 2004). In biofilms, the production of tyrosol
is exceptionally high and tyrosol can overcome the inhibitory effect of far-
nesol to a certain extent (Alem et al., 2006). In vitro, tyrosol also elicits
inhibitory effects on neutrophils by interfering with the oxidative burst
(Cremer, Vatou, & Braveny, 1999). However, it is still unknown if tyrosol
is in fact produced during infection in the human host (Albuquerque &
Casadevall, 2012).

More molecules have been proposed to be quorum sensing or likewise
signaling molecules in C. albicans (Albuquerque & Casadevall, 2012; Shareck
& Belhumeur, 2011). Many of them are aromatic alcohols, e.g., tryptophol
and phenylethanol (Chen & Fink, 2006; Ghosh, Kebaara, Atkin, & Nicker-
son, 2008). The production of these molecules depends on the environ-
mental conditions and is supported by anaerobic growth, alkaline pH, and
amino acid availability (Ghosh et al., 2008). Fusel alcohols also exert a
morphogenic autoregulatory function, but are only active at very high con-
centrations (Albuquerque & Casadevall, 2012). Although they do not play a
major role as QSM under most in vitro conditions, they may play a role un-
der certain in vivo conditions (Albuquerque & Casadevall, 2012; Chen &
Fink, 2006). Dodecanol inhibits hypha formation via the transcription factor
Sfl1, independent of the cAMP/PKA pathway (Hall et al., 2011). A farnesol
related molecule, farnesoic acid, also inhibits the yeast-to-hyphae transition,
although at much higher concentrations than farnesol (Kruppa, 2009).

In addition, C. albicans might utilize arachidonic acid released by infected
host cell membranes to synthesize extracellular prostaglandins during infec-
tion. Prostaglandins, e.g., PGE,, play an important role for the induction of
hypha formation and as potent local messenger molecules during biofilm
formation (Erb-Downward & Noverr, 2007; Noverr & Huftnagle, 2004;
Zarnowski et al., 2014). ROS have also been implicated in signaling, espe-
cially in biofilms (Cap et al., 2012). Low doses of ROS, e.g., induced by far-
nesol signaling, can have a beneficial effect by provoking hormesis (see
chapter How to deal with stress— Lessons from Candida albicans) (Deveau
et al., 2010; Pan, 2011; Ristow & Schmeisser, 2011; Westwater, Balish, &
Schofield, 2005).

8.2.4 Effects of Quorum Sensing during Infection
Because of its hyphae-inhibitory function farnesol was thought to have a
protective effect against Candida infection (Nickerson et al., 2006).
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However, studies using systemic infections of mice suggest that it rather
functions as an important virulence factor (Navarathna, Hornby, et al.,
2007; Navarathna, Nickerson, Duhamel, Jerrels, & Petro, 2007). Farnesol
modulates the immune response toward a nonprotective Th2 response
rather than a protective Th1 response, inducing IL-5 rather than Interferon
gamma (IFNYy) and IL-12 (Navarathna et al., 2007). It furthermore inhibits
IL-6 cytokine production in murine macrophages, a key cytokine in
mucosal and systemic C. albicans infections, and induces apoptosis of macro-
phages (Abe et al., 2009; Conti et al., 2009; Ghosh et al., 2010). In contrast
to its function as a virulence factor in a systemic model, exogenously added
farnesol exerted a protective effect on cells in a reconstituted human epithe-
lial (RHE) model and in a mouse model of oral candidiasis (Hisajima et al.,
2008; Saidi, Luitaud, & Rouabhia, 2006). Here, farnesol increased TLR2
expression levels, promoted IL-6 secretion and increased the production
of the AMP B-defensin 2 (Decanis, Savignac, & Rouabhia, 2009). This
highlights that the effects of farnesol on C. albicans survival in the host
may be niche-dependent. As farnesol is not produced, nor are cells farne-
sol-responsive, under anaerobic growth conditions, it appears unlikely that
farnesol affects colonization of the GI tract (Dumitru et al., 2004; Kuma-
moto & Vinces, 2005a). Other QSMs, such as tyrosol, phenylethanol, or
pentanol, which are favorably produced under anaerobic growth, may be
relevant in anaerobic niches (Albuquerque & Casadevall, 2012; Ghosh
et al., 2008). Moreover, it is still unknown what effect farnesol has on bio-
films growing on central venous catheters, where cells get in contact with
human blood components and serum. Usage of 10% fetal calf serum
(FCS) in vitro has been shown to reduce farnesol production about 18-
fold (Mosel et al., 2005; Weber et al., 2008). Therefore, one may speculate
that host systems can counteract the farnesol effect of biofilm dispersal under
certain in vivo circumstances.

8.3 Are You Friend or Foe?—Interkingdom Communication
between C. albicans, Microbiota, and Opportunistic
Bacterial Pathogens

As a commensal, C. albicans colonizes niches that are co-colonized by a wide
range of other microbes forming the natural microbiome of the human host.
Therefore, interactions between C. albicans and commensal bacteria have
evolved during coevolution in the human host (De Sordi & Muhlschlegel,
2009; Harriott & Noverr, 2011; Mallick & Bennett, 2013; Morales &
Hogan, 2010; Peleg et al., 2010; Shirtliff, Peters, et al., 2009; Wang,
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2013; Wargo & Hogan, 2006). Such interactions can be mutualistic or
competitive, and can occur via direct contact of cells, the secretion of
signaling molecules or toxins, competition for nutrients/metabolites, or sim-
ply via alteration of the environment in a beneficial or detrimental way for
one or all interaction partners (Lynch & Robertson, 2008; Peleg et al., 2010;
Wargo & Hogan, 2006). In fact, it becomes more and more clear that the
most common situation in nature are polymicrobial multispecies commu-
nities rather than planktonic or single-species growth (Harriott & Noverr,
2011). In addition, coinfections are not uncommon: 4—8% of all Candida-
associated bloodstream infections involve more than one Candida spp. and
it was estimated that >20% of C. albicans bloodstream infections also involve
bacteria (Bouza et al., 2013; Klotz, Chasin, et al., 2007; Nace, Horn, &
Neofytos, 2009; Pulimood et al., 2002). The most often coisolated species
are Staphylococcus epidermidis, Enterococcus spp. and Staphylococcus aureus (Klotz,
Chasin, et al., 2007; Shirtliff, Peters, et al., 2009). In order to survive bacte-
rial attacks or gain beneficial effects from these coinfections, C. albicans has to
sense and communicate with its neighbors. Some important fungal—bacte-
rial interactions are illustrated in Figure 4.

8.3.1 Interkingdom Signaling

Interkingdom signaling allows the communication across the borders of spe-
cies and even genera. Farnesol, which is important for the coordinated
behavior of single-species C. albicans biofilms, probably also plays a major
role in interkingdom signaling. Farnesol has strong antifungal and antibacte-
rial activities against a range of different organisms, partly by inducing high
levels of ROS production (Albuquerque & Casadevall, 2012; Langford
et al., 2009; Machida & Tanaka, 1999). It induces apoptosis in several spe-
cies, inhibits cell growth and germination, and inhibits S. aureus biofilm for-
mation (Albuquerque & Casadevall, 2012; Jabra-Rizk et al., 2006). In turn,
bacteria have been shown to inhibit C. albicans filamentation by producing
small signaling molecules, e.g., dodecanol and 3-oxo-C12-HSL from Pseu-
domonas aeruginosa, butyric acid from Lactobacillus rhamnosus, capric acid from
Saccharomyces boulardii, cis-2-dodecenoic acid from Burkholderia cenocepacia,
diftusible signal factor (DSF) from Xanthomonas campestris, and QSMs from
Acinetobacter baumannii, Salmonella enterica Serovar Typhimurium, and Strep-
tococcus mutans (Boon et al., 2008; Krasowska, Murzyn, Dyjankiewicz,
Lukaszewicz, & Dziadkowiec, 2009; Murzyn, Krasowska, Stefanowicz,
Dziadkowiec, & Lukaszewicz, 2010; Noverr & Huftnagle, 2004; Peleg
et al.,, 2008; Tampakakis, Peleg, & Mylonakis, 2009; Wang et al., 2004).
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Figure 4 Quorum sensing and fungal—bacterial interactions. (a) Mechanisms and con-
sequences of fungal—bacterial interactions. (1) Induction of Candida albicans filamen-
tation by bacterial cell wall components (muramyl dipeptides, MDPs); (2) Inhibition
of the yeast-to-hyphae transition by fungal and bacterial quorum sensing molecules
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Lactobacillus spp., the most prevalent bacterial group in the female reproduc-
tive tract, as well as Enterococcus faecalis, 2 member of the Gl-tract microbiota
and an opportunistic pathogen, produce signaling molecules as metabolic
byproducts (e.g., lactic acid, butyric acid), HyO; or organic acids that inter-
fere with fungal adhesion, growth, adaptation or might influence the host
immune response in an unfavorable way for C. albicans (Boris & Barbes,
2000; Braun, Hector, Kamark, Hart, & Cihlar, 1987; Cruz, Graham,
Gagliano, Lorenz, & Garsin, 2013; Harriott & Noverr, 2011; Hoberg,
Cihlar, & Calderone, 1983; Morales & Hogan, 2010; Noverr & Huffnagle,
2004; Shirtliff, Peters, et al., 2009; Strus et al., 2005; Wargo & Hogan,
2006). The necessary adaptations of C. albicans to these conditions are re-
flected in substantial changes in gene expression profiles when C. albicans
is co-cultured with certain bacteria. These include genes involved in adhe-
sion, cell wall composition, cell cycle progression, enzymatic activity,
signaling, transcription, and substance transport (Fox, Shelton, & Kruppa,
2013).

Nevertheless, fungal—bacterial interactions can also be beneficial for C.
albicans. Candida albicans can directly react to lipopolysaccharide (LPS) mol-
ecules from bacterial cell membranes, which is an important modulator of C.
albicans virulence contributing to coinfection of C. albicans and Escherichia
coli (Akagawa, Abe, & Yamaguchi, 1995; Bandara, Yau, Watt, Jin, &
Samaranayake, 2009; Rogers, Williams, Feng, Lewis, & Wei, 2013).

<
(QSM); (3) influence of bacterial metabolites on C. albicans filamentation; (4) inhibition
of Pseudomonas aeruginosa virulence factors and toxin production by the C. albicans
QSM farnesol; (5) binding of P. aeruginosa to C. albicans hyphae and induction of cell
death, countered by farnesol-promoted yeast growth (2); (6) inhibition of bacterial
growth by farnesol via induction of reactive oxygen species (ROS); (7) regulation of bio-
film formation by C. albicans QSM; (8) adhesion of co-colonizing bacteria to hyphae pro-
moting mixed-species biofilm formation; (9) increased drug resistance in co-species
biofilms and altered virulence; (10) inhibition of C. albicans adhesion and colonization
by commensal bacteria; (11) promotion of C. albicans urinary bladder colonization by
Escherichia coli. (b) Fungal—bacterial interactions in the oral cavity. (1) Species-depen-
dent promotion or inhibition of C. albicans filamentation by streptococci, e.g., H,O, pro-
duction promotes hyphal growth; (2) lactate secreted by streptococci is used by C.
albicans as alternative carbon source while reduction of local oxygen tension by C. albi-
cans promotes bacterial growth; (3) adhesion of C. albicans to salivary molecules pro-
motes niche colonization; (4) adhesion of streptococci to C. albicans hyphae leading
to co-species biofilms; (5) adherence of C. albicans to pre-adhered bacteria supports
fungal colonization; (6) epithelial damage by C. albicans promotes bacterial invasion.
LPS, lipopolysaccharides; DSF, diffusible signal factor; BDSF, cis-2-dodecenoic acid;
HSL, homoserine lactone.
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Escherichia coli infection in the urinary tract furthermore enhances C. albicans
adherence to the bladder mucosa enabling C. albicans to colonize and infect
this niche (Levison & Pitsakis, 1987). Candida albicans also recognizes mur-
amyl dipeptides (MDPs), subunits of peptidoglycan that directly stimulate
yeast-to-hyphae formation (Xu et al., 2008). MDPs are found in high
amounts in human serum, likely derived from the cell walls of the human
microbiome (O’Hara & Shanahan, 2006; Xu et al., 2008). These molecules
directly interact with the leucine-rich repeat domain of the adenylyl cyclase
Cyrl promoting cAMP production (Xu et al., 2008). Candida albicans is
commonly in contact with masses of MDPs from the normal flora in certain
niches e.g., the GI tract. Under healthy conditions, filamentation is probably
inhibited via further mechanisms, whereas the use of broad-spectrum anti-
biotics depletes the bacterial flora, leading to an increase in MDPs, but failure
to control fungal outgrowth and filamentation, thereby increasing the risk of
systemic infection (Wang, 2013).

In the following, some more complex interactions between C. albicans
and the clinically relevant bacteria, P. aeruginosa, Streptococcus spp., and S.
aureus, will be described in more detail (see Figure 4).

8.3.2 Interactions between P. aeruginosa and C. albicans

Both C. albicans and P. aeruginosa are commonly found in mixed opportu-
nistic infections in lung isolates of cystic fibrosis (CF) patients, in burn
wounds, or on catheter-related biofilms (De Sordi & Muhlschlegel, 2009;
Pierce, 2005; Williams & Camara, 2009). Both microbes can also be found
in joined mucosal niches and this is the likely site where the mechanisms of
interaction between these two species have evolved (Hogan & Kolter, 2002;
Shirtliff, Peters, et al., 2009; Williams & Camara, 2009). Pseudomonas aerugi-
nosa is able to form biofilms in the presence of C. albicans, adheres to and kills
specifically C. albicans hyphae whereas yeast cells remain unharmed (Brand,
Barnes, Mackenzie, Odds, & Gow, 2008; Hogan & Kolter, 2002). In turn,
C. albicans has gained several mechanisms to survive killing by P. aeruginosa.
Candida albicans controls yeast-to-hyphae transition in response to the P. aer-
uginosa QSM 3-oxo-C12-HSL (Hogan, Vik, & Kolter, 2004; McAlester,
O’Gara, & Morrissey, 2008). HSL is able to inhibit C. albicans filamentation
via the same route as farnesol by directly inhibiting the activity of Cyrl (Hall
etal., 2011). LPS from P. aeruginosa also inhibits filamentation of C. albicans,
probably by targeting glycolysis-associated mechanisms during filamental
growth (Bandara, K Cheung, Watt, Jin, & Samaranayake, 2013; Hogan
et al., 2004; Pires et al., 2013). Thereby the presence of P. aeruginosa favors
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yeast growth of C. albicans under conditions that normally promote hyphal
formation (Shirtliff, Peters, et al., 2009). On the other hand, farnesol inhibits
the production of P. aeruginosa quinolone signaling which is necessary for the
induction of pyocyanin, an important virulence factor and toxin against
other microbes (Cugini et al., 2007). Other important virulence factors of
P. aeruginosa that are suppressed by farnesol include the hemolytic phospho-
lipase C, phenazines, GacA, LasR, RhIR, and RpoN, which in turn limit C.
albicans growth, biofilm formation, and virulence (Hogan & Kolter, 2002;
Kerr et al., 1999; McAlester et al., 2008; Park, Han, Park, Choi, & Lee,
2014). Furthermore farnesol inhibits the swarming activity of P. aeruginosa
(Cugini et al., 2007; McAlester et al., 2008; Williams & Camara, 2009). A
recent comparison of the proteome of both species in mixed-species biofilms
revealed that the coexistence of both species leads to enhanced production
of virulence factors and increased mutability in both species, potentially
altering host—pathogen interactions (Trejo-Hernandez, Andrade-Domi-
nguez, Hernandez, & Encarnacion, 2014). Although the relationship be-
tween P. aeruginosa and C. albicans is generally antagonistic, P. aeruginosa
can also promote C. albicans virulence under distinct conditions, e.g., in pa-
tients with severe burn wounds (Branski et al., 2009; Sun et al., 2012). Un-
der these conditions, the virulence factor LasB, a pseudolysine, from
P. aeruginosa probably generates an amino acid signal that increases biofilm
formation of C. albicans (Mallick & Bennett, 2013; Roux et al., 2009).
Taken together the complex interactions that occur between the fungus
and the opportunistic bacterial pathogen P. aeruginosa very likely have clin-
ical implications, especially for CF-patients (Kerr, 1994).

8.3.3 Biofilm Interaction of C. albicans with Microbes in the Oral
Cavity

Oral infections are often polymicrobial, since the oral cavity harbors a wide
range of commensal bacteria and opportunistic pathogens. Important inter-
actions between C. albicans and bacteria in the oral cavity are schematically
depicted in Figure 4(b). Streptococci are major components of the oral
microbiome and C. albicans forms aggregates with different oral Streptococcus
spp.- such as Streptococcus gordonii, Streptococcus oralis, Streptococcus sanguinis, and
S. mutans (Bagg & Silverwood, 1986; Harriott & Noverr, 2011; Holmes,
McNab, & Jenkinson, 1996; Jenkinson, Lala, & Shepherd, 1990; Metwalli,
Khan, Krom, & Jabra-Rizk, 2013; Shirtliff, Peters, et al., 2009). The under-
lying mechanisms include interaction of the streptococcal Agl/II adhesins
SspA and SspB with fungal adhesins such as Als3, Eap1, and Hwp1 (Bamford
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etal., 2009; Brady et al., 2010; El-Sabaeny, Demuth, Park, & Lamont, 2000;
Holmes et al., 1996; Klotz, Gaur, et al., 2007; Silverman, Nobbs, Vicker-
man, Barbour, & Jenkinson, 2010; Wright et al., 2013). For S. gordonii sta-
bilization of fungal adhesins, such as Als3, by O-mannosylation furthermore
seems to be essential to mediate protrusion of the N-terminal domain of the
fungal adhesin from the cell surface (Dutton et al., 2014). These domains are
subsequently recognized by bacterial adhesins, allowing clustering and nano-
domain formation and ultimately leading to localized attachment, accumu-
lation, and microcolony formation of S. gordonii on C. albicans cells (Dutton
et al., 2014). Furthermore, indirect binding and promotion of filamentation
is mediated by saliva components that bind to both streptococci and C. albi-
cans (Holmes, Cannon, & Jenkinson, 1995; O’Sullivan, Jenkinson, &
Cannon, 2000). Soluble glucans produced by streptococcal glucosyltrans-
ferases and C. albicans turther promote production of biofilm matrix and
intergeneric adhesive interactions (Falsetta et al., 2014; Ricker, Vickerman,
& Dongari-Bagtzoglou, 2014). These interactions are crucial for C. albicans
colonization and persistence in the oral cavity, since they promote establish-
ment on the oral mucosa even when C. albicans cell numbers or the affinity
for the mucosal surface are too low (Cannon & Chaffin, 2001; Shirtliff,
Peters, et al., 2009). Interestingly, interactions between Streptococcus spp.
and C. albicans can either promote or inhibit filamentation in the fungus.
While S. mutans inhibits hypha formation via the QSM frans-2-decenoic
acid, S. gordonii stimulates filamentation and promotes dual biofilm forma-
tion by secretion of autoinducer 2 (Al-2) (Bamford et al., 2009; Vilchez
et al., 2010). AI-2 may function by inducing low levels of HoO, (Bamford
et al., 2009). Nontoxic levels of H,O» can in turn induce hypha formation
by activating Cek1 (Nasution et al., 2008; Srinivasa, Kim, Yee, Kim, &
Choi, 2012). HyO, at low levels is also produced by other bacteria and
might promote C. albicans growth and filamentation while inhibiting and
killing other competing bacterial species (Holmberg & Hallander, 1973;
Kreth, Merritt, Shi, & Qi, 2005). Mixed Streptococcus spp.-Candida biofilms
are likely beneficial for both species as the formed ECM is more viscous and
highly impenetrable to drugs such as fluconazole (Bamford et al., 2009;
Dongari-Bagtzoglou et al., 2009). In these biofilms, lactate produced by
the bacteria can be used as an alternative carbon source by C. albicans
(Holmes, van der Wielen, Cannon, Ruske, & Dawes, 2006; Jenkinson
et al., 1990; Ramsey, Rumbaugh, & Whiteley, 2011). In turn, C. albicans
reduces the oxygen tension by respiration in its surrounding which is a stim-
ulatory factor for streptococcal growth (Shirtlift, Peters, et al., 2009).
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Interestingly, S. oralis alone is not able to form biofilms on the oral mucosa
but the quorum sensing system is activated by the presence of C. albicans hy-
phae which increases multispecies biofilm formation (Whitmore & Lamont,
2011; Xu, Jenkinson, & Dongari-Bagtzoglou, 2014). Candida albicans fila-
mentation furthermore provides adhesion sites for the bacteria, damages
the oral mucosa releasing nutrients for bacterial growth and clears the way
for disseminated infection for both species. Coinfections with Streptococcus
spp. and C. albicans during OPC show pathogenic synergy wherein the bac-
terla act as “accessory” pathogens (Baena-Monroy et al., 2005; Ramsey
et al., 2011; Whitmore & Lamont, 2011; Xu, Jenkinson, et al., 2014; Xu,
Sobue, et al., 2014). In summary, C. albicans synergistic interactions with
oral bacteria not only promote colonization but can also enhance severity
of oral diseases.

8.3.4 Staphylococcus aureus and C. albicans Interactions

Candida albicans and S. aureus are two leading causes of bloodstream infec-
tions in hospitalized patients and coinfections with both pathogens can occur
(Klotz, Chasin, et al., 2007; Perlroth et al., 2007; Shirtlift, Peters, et al.,
2009). In a mouse model of intra-abdominal infection coinfection with
both species lead to mortality, while mono infections were avirulent (Carl-
son, 1982, 1983a,b; Nash, Peters, Palmer, Fidel, & Noverr, 2014). This ef-
fect was independent of the morphological growth form of C. albicans, but
probably due to increased local and systemic induction of proinflammatory
cytokines (Nash et al., 2014). Furthermore, bacteria penetrated the sur-
rounding organs more easily in the presence of C. albicans, probably driven
by filamentation induced damage promoted by C. albicans (Shirtliff, Peters,
et al., 2009). Candida albicans and S. aureus are also commonly found
together in oral infections (Baena-Monroy et al., 2005). Both organisms
seem to interact physically in mixed biofilms leading to increased biofilm
mass and resistance rates to drugs (Baena-Monroy et al., 2005; Harriott &
Noverr, 2011; Shirtlift, Peters, et al., 2009). Staphylococcus aureus normally
adheres very poorly to abiotic surfaces, but attaches to hyphae, leading to
co-species biofilm formation (Baena-Monroy et al., 2005; Cassat, Lee, &
Smeltzer, 2007; Harriott & Noverr, 2011; Shirtliff, Peters, et al., 2009).
However, the interaction is not solely mutualistic as under certain conditions
C. albicans inhibits S. aureus biofilm formation and lipase activity, and farne-
sol interferes with S. aureus viability and antibiotic susceptibility (Jabra-Rizk
et al., 2006; Kuroda, Nagasaki, Ito, & Ohta, 2007). Thus, although the
coexistence of both organisms seems to be beneficial for both, C. albicans
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has developed mechanisms to control bacterial growth (Shirtliff, Peters,
et al., 2009).

In conclusion, the interaction of C. albicans with members of the human
microbiome and bacterial pathogens affect Candida survival, colonization,
and infection in the human host. Bacteria—fungal interactions can lead to
enhanced virulence of one or both microbes, but bacteria may also limit
the growth, survival, and colonization abilities of C. albicans in certain
host niches. Therefore, disturbance of the microbial community will influ-
ence C. albicans lifestyle and signaling under almost all in vivo conditions,
with important clinical implications: In fact, antibiotic treatment is one of
the most prominent risk factors for candidiasis and the possibility of coinfec-
tions or increased resistance of mixed-species biofilms should be considered
in the selection of antimicrobial therapy (Harriott & Noverr, 2011; Samonis
et al., 1994; Shirtlift, Peters, et al., 2009; Yan, Yang, & Tang, 2013).

9. CONCLUSION

Fungal infections are a major health problem worldwide and C. albicans
is one of the leading fungal pathogens (Brown, Denning, et al., 2012). Espe-
cially mucosal infections are extremely common; in fact, 50—70% of women
in the childbearing ages suffer from at least one episode of vulvovaginal candi-
diasis, and 5—8% will undergo reoccurring clinical infection (Sobel, 2007).
The genetic, phenotypic, and physiologic plasticity described in this chapter
enables C. albicans to rapidly adapt to the changing environments in the hu-
man host and allow the colonization and infection of a wide variety of organs.
The redundancy in many signaling pathways involved in infection, such as
the induction of morphogenesis, adhesion, and antifungal resistance mecha-
nisms, probably supports rapid adaptation. Even though most research focuses
on the role of C. albicans as a pathogen, it should be noted that C. albicans is
nearly exclusively found in association with a warm-blooded host. Further-
more, host-to-host transmission is rare and most individuals will likely only
be colonized by C. albicans strains that they acquired early in life. Together
with the absence of an environmental reservoir, survival of C. albicans popu-
lations thus relies on long-term persistence in the host. Clinical infections,
especially life-threatening disseminated disease, would be detrimental rather
than beneficial and might be an accidental side eftect of the traits that C. albi-
cans acquired to successfully compete and survive as a commensal. This hy-
pothesis is supported by the observations that regulators of virulence also
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mediate commensalism, and the circuits that regulate either lifestyle are
tightly interknit (Perez & Johnson, 2013; Perez, Kumamoto, & Johnson,
2013; Pierce et al., 2013; Pierce & Kumamoto, 2012). This highlights
once again the fine line that separates the roles of C. albicans as harmless colo-
nizer and harmful pathogen.

In addition, Candida spp. coexist with numerous microbial species on the
host mucosa. The interactions between bacteria and Candida are complex
and only poorly understood; future research will hopefully shed some light
on the role of microbial interactions during colonization, disease, and
dissemination to aid our ability to effectively prevent and treat both candi-
diasis and polymicrobial infections. Another issue to be addressed is the lack
of data on non-albicans Candida spp. Most studies so far concentrated on
C. albicans; however, considering the rising incidence of infections caused
by other Candida species, increased efforts to understand the species-specific
differences in physiology and interaction with the host are warranted. In
closing, a better understanding of the mechanisms that allow Candida spp.
to survive, persist, and cause disease within the human host will likely be
crucial for the development of novel antifungal strategies which are desper-
ately needed to reduce the unacceptably high mortality rates of systemic
candidiasis.
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Abstract

Streptomycetes are prolific producers of a plethora of medically useful metabolites.
These compounds are made by complex secondary (specialized) metabolic pathways,
which utilize primary metabolic intermediates as building blocks. In this review we
discuss the evolution of specialized metabolites and how expansion of gene families
in primary metabolism has lead to the evolution of diversity in these specialized meta-
bolic pathways and how developing a better understanding of expanded primary
metabolic pathways can help enhance synthetic biology approaches to industrial
pathway engineering.

You can know the name of a bird in all the languages of the world, but when
you're finished, you'll know absolutely nothing whatever about the bird... So
let’s look at the bird and see what it's doing—that’s what counts.

Richard P. Feynman

1. INTRODUCTION

The widespread use of antibiotics is a relatively new addition to human

health care that emerged from the discovery of penicillin in 1928 by Alexander

Fleming and its subsequent development to industrial scale production by
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Howard Florey and coworkers. This discovery of bioactive metabolites pro-
duced by microorganisms and useful in human health, prompted the so-called
golden era of antibiotics. Between the 1950s and 1970s the search for new
metabolites resulted in the delivery of many chemical classes of antibiotic, anti-
fungal, antihelminthics, anticancer agents, and immunosuppressive drugs to
market (Davies & Davies, 2010). During this intensive period of research
the actinobacteria came to the fore as prolific producers of bioactive metab-
olites, particularly antibiotics from the genera Streptomyces and Micromonospora
(Davies & Davies, 2010; Hoskisson, Hobbs, & Sharples, 2000). This initiated
the widespread public perception that antibiotics were “wonder-drugs” that
signaled the end of life-threatening bacterial infections, yet this was prema-
ture. Rapidly after the introduction of these drugs to the clinic, antibiotic
resistance was observed (Abraham & Chain, 1940; Davies & Davies, 2010).
This began a race to discover and bring to the clinic new antibiotics to
help combat the emergence of resistance. Yet with the introduction of
each new drug, rapid resistance was observed. This inevitable resistance,
coupled to the rising costs of development, tightening of regulatory rules,
diminishing discovery rates (and rediscovery of known compounds), and
the lack of financial returns due to short-treatment durations resulted in
the withdrawal of large pharmaceutical companies from large-scale antibiotic
discovery in the 1990s (Projan, 2003). These problems coupled with profli-
gate use of antibiotics in medicine and agriculture lead to the emergence of
extensive antibiotic resistance on a global scale. In 2009, the World Health
Organization raised concerns that the rise of antibiotic resistance was
becoming one of the major threats to human health and that researchers, cli-
nicians, industry, and policy makers needed to work together to address this
multifactorial problem. These concerns lead to the release of a global action
plan on antimicrobial resistance (http://www.who.int/drugresistance/en/).
Synthetic biology is a new methodology that can enable development of’
novel, clinically useful antibiotics. Recent advances in the technology of
DNA synthesis, the ability to assemble longer tracts of DNA and at much
reduced cost, provide the opportunity to design and improve biosynthetic
gene clusters. Moreover this synthetic biology revolution has great potential
to transform the more traditional disciplines of metabolic engineering, through
creation of novel heterologous hosts with engineered precursor supply or dele-
tion of native biosynthetic clusters to reduce wastage of precursors (Gomez-
Escribano & Bibb, 2011, 2012) that may help overcome metabolic limitations.
In this review we will focus on primary metabolism in streptomycetes
and how a genome-level understanding of the evolution of metabolic nodes
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can aid the rational development of metabolic engineering targets for
improved metabolite production.

S 2. INTERPLAY OF PRIMARY AND SECONDARY
METABOLISM IN STREPTOMYCETES

The distinction of primary and secondary metabolism probably arose
through the studies of Albrecht Kossel, who proposed that plants show two
different metabolisms: “primary” and “secondary.” Primary metabolism is
common among all organisms and is composed of all essential reactions,
whereas secondary metabolism is thought to be specialized, distinct, and
comprised of species-specific pathways (Firn & Jones, 2009; Hartmann,
2008). This view has been widely adopted and adapted through many fields
of biology and while the designations imply secondary metabolism is less
important than primary metabolism, this view has been modified over the
years, and it is implicit that secondary metabolism is dependent on supply
of precursors from primary metabolism.

Disconnecting primary and secondary metabolism was challenged by
Firn and Jones (2009) as misleading. This accords with the term “specialized
metabolites” which may be a more useful term to replace the bias implied by
the term ‘“secondary”’—indicating that this aspect has less importance
(Davies, 2013; van Keulen & Dyson, 2014).

S 3. STREPTOMYCETES AS SPECIALIZED METABOLITE
PRODUCERS

The actinobacterial phylum represents a large lineage of physiologi-
cally and morphologically diverse bacteria that includes the industrially, agri-
culturally, and medically important genera Bifidobacterium, Corynebacterium,
Moycobacterium, Nocardia, Leifsonia, Frankia, and Streptomyces (Ventura et al.,
2007). The most speciate genus is Streptomyces which are sporulating soil bac-
teria with a filamentous growth habit, characterized by large (>7 Mbp) high
G + C-content, linear genomes. The streptomycete life cycle begins when a
unigenomic spore germinates and grows through apical extension to form a
mat of vegetative mycelia that, in response to nutrient-limitation produce
aerial hyphae, which subsequently form septa and eventually form mature
spores (Flardh & Buttner, 2009). Specialized metabolites are produced at
the onset of the developmental process and molecular studies have identified
common regulators of both processes (Chandra & Chater, 2013). The
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plethora of specialized metabolites produced by this group of organisms have
a high degree of chemical diversity including classes such as polyketides, ter-
penes, lactams, aminoglycosides, and nonribosomal peptides with many spe-
cies able to produce multiple examples of the same class of specialized
metabolite (Bérdy, 2005). To emphasize this diversity, readers are directed
to the StreptomeDB database (Lucas et al., 2013; http://www.
pharmaceutical-bioinformatics.de/streptomedb/), where the structures of
more than 2400 compounds from more than 1900 species are held. These
estimates are increasing and will continue to increase exponentially along
with the expansion of whole genome sequencing projects and specialized
metabolite predictions software such as antiSMASH (Medema et al.,
2011) and EvoMining (Cruz-Morales & Barona-Gomez Personal Commu-
nication). In addition, the sequences of about 7758 actinobacteria genomes
are currently available in the Genomes Online Database (GOLD; Reddy
et al.,, 2015) with the number continually increasing. This represents a
vast resource for identification of biotechnologically useful genes and gene
clusters. One particularly revealing actinobacterial genome feature that the
next-generation sequencing revolution has opened our eyes to is the vast
array of antibiotic (and other specialized metabolite) biosynthetic gene clus-
ters present in the genomes of actinobacterial strains. This was first observed
in well-studied species such as Streptomyces coelicolor for which, prior to the
availability of the whole genome sequences, we knew of only four bioactive
metabolites produced by the strain, yet the whole genome sequence
revealed more than 20 specialized metabolite gene clusters in its repertoire,
that are often referred to as cryptic or silent biosynthetic clusters (Bentley
etal., 2002). This trend has continued with the release of each streptomycete
genome. Significantly, the biosynthetic clusters that are cryptic or poorly
expressed in their natural hosts offer great potential for the discovery of
novel, clinically useful compounds. Moreover these gene clusters represent
a significant resource of genes for synthetic biology to create novel metab-
olites through synthetic biology or semisynthesis, where existing com-
pounds may be biosynthesized as a chemical backbone and then modified
turther through synthetic chemistry. Great advances have been made in
this area in recent years (Wu, 2000). However semisynthetic derivatives of
natural products are often limited by availability of starting material. Semi-
synthetic derivatives of erythromycin such as azithromycin require
increasing amounts of the starter molecule yet the natural producing strains
have been difficult to engineer to high production levels when compared to
related species (Wu et al., 2011). Given that specialized metabolites, such as
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antibiotics, are derived from primary metabolic starter units, a deeper under-
standing of how these precursors are synthesized and channeled into the
biosynthesis of these specialized metabolites offers great potential in meta-
bolic engineering and manipulation through synthetic biology approaches
for the development of novel compounds. Many specialized metabolites
have acetyl-CoA, malonyl-CoA (Olano, Méndez, & Salas, 2010), or amino
acids as direct precursors (Stirrett, Denoya, & Westpheling, 2009). Compe-
tition for the same precursors between central metabolism and specialized
metabolism may represent key conflicts in supply of precursors such as in
fatty acid metabolism and polyketide synthesis (Rodriguez, Navone, Casati,
& Gramajo, 2012). Given these issues, a better understanding of precursor
supply may enable increased production of the poorly understood
cryptic/silent biosynthetic clusters.

Therefore there are several challenges facing researchers in this field, such
as how to awaken or enhance production of the array of cryptic gene clusters
emerging from whole genome sequencing projects and how we can under-
stand better the links between primary and secondary metabolism so that we
can increase metabolite flow to maximize industrial yield of new and exist-
ing medically useful compounds.

g 4. EVOLUTION OF PRIMARY AND SPECIALIZED
METABOLISM

Primary metabolism refers to the core pathways of central metabolism
that provides building blocks for all the cellular macromolecules including
DNA, RNA, proteins, lipids/fatty acids, etc., and also provides the precur-
sors for specialized metabolites. Surprisingly many primary metabolic genes
are nonessential for survival due to genetic redundancy providing isoen-
zymes or alternative reactions that allow the cell to adapt to changing envi-
ronmental conditions providing an adaptive robustness to metabolism (Kim
& Copley, 2007). The use of the term “redundancy” may be misleading as it
suggests nonessentially. However, there may be multiple routes to a meta-
bolic intermediate under a given set of environmental conditions. Therefore
“contingency,” “metabolic flexibility,” or “enzyme expansion” may be
more suitable terms to reflect this phenomenon (Challis & Hopwood,
2003; Noda-Garcia & Barona-Goémez, 2013; Treangen & Rocha, 2011).
Such terms would also account for the so-called “moonlighting” enzyme
functions and catalytic promiscuity where the main catalytic function is sup-
plemented by the catalysis of additional reactions (Copley, 2003, 2012,



242 Jana K. Hiltner et al.

2014, 2015). The main reason for these promiscuous activities is that evolu-
tion of the “perfect” catalytic site is difficult and natural selection acts upon
those that provide a “good enough” functionality (Copley, 2015). This in-
dicates that such accidental catalysis may shift fitness effects to other cellular
functions and can aid in the generation of new pathways and chemistry
within cells, such as specialized metabolism.

An interesting feature of streptomycete genomes is that multiple genes
are often annotated to code for the same biochemical function in central car-
bon metabolism (Bentley et al., 2002; Hiltner & Hoskisson, unpublished;
Figure 1). Understanding the relationship between function and evolution
is a key to elucidating metabolic plasticity and exploiting these traits in
biotechnology. In metabolic models these homologous functions are often
combined into one flux pathway, yet this does not reflect the nuances of
regulation and allostery for each gene product. However, knowledge of
regulation and allostery is necessary to understand the roles of these gene ex-
pansions to fully appreciate functionality at the biochemical level. These
redundant functions are hypothesized to allow cellular flexibility and adap-
tation in dynamic environments. Interestingly, given that streptomycetes
exhibit so many of these gene expansions it may also, in part, reflect their
ability to produce such a vast variety of specialized metabolites, as these path-
ways are usually connected to core metabolism and use common interme-
diates. There are well-studied examples of such gene family expansions in
streptomycete developmental genes and DNA-binding protein families
(Clark & Hoskisson, 2011; Girard et al., 2013). However, little attention
has been paid to central metabolism. An example of gene expansion and
evolution relating to specialized metabolites is that of polyketide biosynthesis
for which the multimodular and iterative polyketide synthases that perform
the stepwise condensation of activated carboxylic acid subunits provide the
carbon backbones for the polyketides. It appears that these pathways have
evolved from fatty acid synthases (Jenke-Kodama, 2005). This premise is
based on the presence of highly conserved modules such as the ketoacyl syn-
thase domains and acyl carrier proteins which through duplications, dele-
tion, and horizontal gene transfer (HGT) have lead to the diverse
chemistry array of polyketide chemistry observed today (Jenke-Kodama,
2005; Ridley, Lee, & Khosla, 2008).

The nature of these gene expansions needs to be carefully considered as it
is generally assumed that these expansions arise through gene duplications.
However, little consideration has been paid to the role of HGT in metabolic
gene expansion (Noda-Garcia & Barona-Gomez, 2013; Noda-Garcia et al.,
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Figure 1 Schematic overview with main metabolites of the central carbon metabolism
grouped according to pathway. Numbers indicate number of genes predicted in the
genome of Streptomyces coelicolor. Glc, glucose; G6P, glucose-6-phosphate; 6-PGLU,
6-phosphogluconate; Ru5P, ribulose-5-phosphate; X5P, xylose-5-phosphate; KDPG,
2-keto-3-deoxy-6-phosphogluconate; F6P, fructose-6-phosphate; FBP, fructose 1,6-
bisphosphate; DHAP, dihydroxyacetone phosphate; Ri5P, ribose-5-phosphate; S7P,
seduheptulose-7-phosphate; E4P, erythrose-4-phosphate; GAP, glyceraldehyd-3-phos-
phate; 1.3BGP, 1.3-bisphosphoglycerate; 3 PG, 3-phosphoglycerate; 2 PG, 2-phospho-
glycerate; PEP, phosphoenolpyruvate; PYR, pyruvate; ACoA, acetyl-CoA; Cit, citrate;
cAco cisAconitate; ICit, isocitrate; A-KG, alpha-ketoglutarate (2-oxoglutarate); SucCoA,
succinyl-CoA; Suc, succinate; Fum, fumarate; Mal, malate; OAA, oxaloacetate.

2013). This reflects the idea that gene duplication is an important source of
biological innovation, where orthologous genes exhibit conserved function-
ality, and paralogs tend toward diverged function. However, integrating the
role of HGT in this process requires sophisticated tools to identify HGT
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events in metabolic genes, coupled with thorough studies of enzyme func-
tion to tease out detailed mechanisms. Recently, Noda-Garcia (Noda-
Garcia et al., 2013) showed that horizontally acquired metabolic genes could
drive evolution of existing metabolic function through altered substrate
specificity, and this may reflect a common, but under appreciated mecha-
nism for enzyme expansion in prokaryotic genomes.

This is a developing area of interest that requires integration of a range of
techniques (genomics, molecular genetics, biochemistry, X-ray crystallog-
raphy, molecular dynamics simulations, and evolutionary modeling), but offers
great potential for deep understanding of evolution of enzyme function and
how this has contributed to metabolic plasticity. Ultimately studies such as these
can be valuable to inform metabolic engineering for biotechnology.

S 5. THE PEP-PYR-OAA NODE AS TARGET FOR
METABOLIC ENGINEERING

The phosphoenolpyruvate-pyruvate-oxaloacetate node is a major
branch point within central carbon metabolism of all organisms that acts
as a connection point for glycolysis, gluconeogenesis, and the TCA cycle
(Figure 2). Many key precursors for specialized metabolites are derived
from the node or pathways are limited by flux through it. Yet it is surpris-
ingly diverse among bacteria. Sauer and Eikmanns (2005) examined this
node in Escherichia coli, Corynebacterium glutamicum, and Bacillus subtilis in their
roles as major workhorses for the industrial production of bulk chemicals
such as amino acids, organic acids, or proteins. These authors concluded
that this node of metabolism is a key target for metabolic engineering in
bacteria.

This node represents a major flux distribution point for carbon skeletons
in the cell with the key metabolites being phosphoenolpyruvate (PEP), py-
ruvate (PYR), and oxaloacetate (OAA). The reactions that interconvert
each of these substrates are listed in Table 1. Pyruvate can be metabolized
further into either OAA or acetyl-CoA, the former being a precursor for
amino acids such as aspartate, lysine, methionine, threonine, and isoleucine
and the latter for fatty acids and or polyketides. Across a range of species the
architecture of this node can be highly variable and likely reflects the ecol-
ogy of individual organisms. Here we will focus mainly on Streptomyces and
the related actinobacterium, Corynebacterium, which with only one copy of
each gene per reaction has a much reduced gene expansion at this node
when compared to Streptomyces (Table 2).
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Figure 2 General overview of the reactions that form the phosphoenolpyruvate-pyru-
vate-oxaloacetate node of central carbon metabolism including the EC numbers of the
enzyme responsible for each reaction.

[tis also known that manipulating primary metabolic pathways in the PEP-
PYR-OAA node can lead to higher product yields in a range of bacterial spe-
cies. In C. glutamicum, a well-studied amino acid producing organism, it is
well established that this node is crucial for amino acid production. Much
can be learned from studying the PEP-PYR-OAA node in this organism
in terms of how the basal node functions. PEP carboxylase (PEPC) is not
essential for lysine production and has no effect on the growth rate when
deleted. However, a mutant lacking both PEPC and pyruvate kinase (Pyk)
has decreased growth rates as well as reduced rates of lysine production rates
(Koftas & Stephanopoulos, 2005). Moreover, inducing low expression levels
of aceE (E1 subunit of the pyruvate dehydrogenase complex (PDHC))
through promoter exchange and deletion of pgo (pyruvate:quinone oxidore-
ductase) and ppc (PEP carboxylase) leads to an increase in 1-valine production
(Buchholz et al., 2013). It was also shown that 1-lysine production could be
increased by reducing PDHC levels indicating that this enzyme activity levels
has an important influence on the carbon flux and can increase pyruvate-
derived molecules (Blombach, Arndt, Auchter, & Eikmanns, 2009; Buchholz
et al, 2013; Eikmanns & Blombach, 2014). The PEPCk gene in



Table 1 Reactions of the PEP-PYR-OAA node including their name, abbreviations in the text, EC numbers, and the reactions they catalyze

Part of minimal

Enzyme Code EC number Reaction catalyzed set of genes
PEP carboxylase PEPCx 4.1.1.31 H,O + PEP + CO, <-> PO;~ + OAA No
PEP carboxykinase PEPCk 4.1.1.32 GTP + OAA <-> GDP + PEP + CO, Yes
Malic enzyme ME 1.1.1.38 (S)-MAL + NAD" <-> PYR + CO, + NADH + H" Yes
OAA <-> PYR + CO,
Malate dehydrogenase ~ MQO 1.1.5.4 (S)-MAL + a quinone <-> OAA + reduced quinone No
(quinone)
Malate dehydrogenase =~ MDH 1.1.1.37 (S)-MAL + NAD" <-> OAA + NADH + H”" Yes
Pyruvate carboxylase PYC 6.4.1.1 ATP + PYR + HCO’~ <-> ADP + PO3~ + OAA No
Pyruvate kinase (pyk) PYK 2.7.1.40 ADP + PEP <-> PYR + ATP Yes
Pyruvate phosphate PPDK 2.7.91 ATP 4+ PYR + P <-> AMP + PEP + diP No
dikinase (PPDK)
PEP synthase (PPS) PPS 2.79.2 ATP 4+ PYR + P + H,O <-> AMP + PEP + diP No
Pyruvate dehydrogenase PDH 1.25.1 PYR + ubiquinone + H,O <-> ACE + ubiquinol + CO, No
Pyruvate dehydrogenase PDHC E1 1.2.4.1 PYR + ThdP <-> HeThdP + CO, Yes
complex HeThdP + lipoamide-E <-> S-acetyldihydrolipoamide-E
+ ThdP
Pyruvate dehydrogenase PDHC E2 2.3.1.12 CoA + S-acetyldihydrolipoamide-E <-> acetyl-CoA +
complex lipoamide-E
Pyruvate dehydrogenase PDHC E3 1.8.1.4 PYR + CoA + NAD" <-> acetyl-CoA + CO, +

complex

NADH + H*

ACE, acetate; ADP, adenosine diphosphate; AMP, adenosine monophosphate; ATP, adenosine triphosphate; GDP, guanosine diphosphate; GTP, guanosine
triphosphate; HeThdP, 2-(alpha-hydroxyethyl)thiamine diphosphate; MAL, malate; NAD, nicotinamide adenine dinucleotide; NADH, reduced nicotinamide
adenine dinucleotide; OAA, oxaloacetate; PEP, phosphoenolpyruvate; PYR, pyruvate; ThdP, thiamin diphosphate.

144

|2 18 JaUlIH Y euer



Table 2 Comparison of PEP-PYR-OAA node expansion in a range of bacteria, indicating the number of homologues indicating the level of
gene expansion at each point. The nucleotide cofactor is indicated where appropriate

Streptomyces  Streptomyces  Saccharopolyspora  Streptomyces  Corynebacterium  Escherichia Bacillus
coelicolor rimosus erythraea tsukubaensis glutamicum coli subtilis
Pyk 2 2 1 2 1 2 1
PEPCx 1 1 0 1 1 1 0
PEPCk 1 GTP 1 GTP 1 GTP 1 GTP 1 GTP 1 ATP 1 ATP
Pyc 1 0 1 0 1 0 0
ME 2 1 2 2 1 1 4
mdh 1 1 1 1 1 1 1
mqo 0 0 1 0 1 1 0
PEP 1 1 3 0 1 1 2
synthase
PPDK 2 2 0 1 1 0 0
PDH 2 1 2 1 1 1 0
PDHC >6 E1l >3 E1l >6 E1 >3 E1 1 1 4

Mdh, malate dehydrogenase; ME, malic enzyme; Mqo, malate dehydrogenase (quinone); PDH, pyruvate dehydrogenase; PDHC, pyruvate dehydrogenase complex;
PEPCk, PEP carboxykinase; PEPCx, PEP carboxylase; PPDK, pyruvate phosphate dikinase; Pyc, pyruvate carboxylase; Pyk, pyruvate kinase.
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C. glutamicum also influences the production of glutamate and lysine; inacti-
vation leads to an increase in production whereas overexpression decreases
production (Riedel et al., 2001). This indicates that blocking certain routes
within metabolism can increase flux in diverse pathways. Disrupting these
processes can also be mediated through mutating the transcriptional regula-
tors. For example, deletion of pckR (Cg0196), a negative repressor of PEPCk
during growth on glucose results in cellular PEPCk activity even in the pres-
ence of glucose (Hyeon, Kang, Kim, You, & Han, 2012).

Opverexpression of pyruvate carboxylase (pyc) in C. glutamicum results in
increased PCx activity and glutamate production in an optimized lysine-
producing strain. However, inactivation of pyc resulted in no PCx activity
and lower levels of glutamate production levels (Peters-Wendisch et al.,
1998). A similar eftect was observed for threonine production and its precur-
sor homoserine, pointing toward the importance of Pyc and PCx in amino
acid metabolism and industrial production (Peters-Wendisch et al., 2001). In
a lysine overproducing strain, deletion of pyruvate kinase (pyk) resulted in
similar growth rates but higher rates of overflow metabolites such as dihy-
droxyacetone and glycerol as well as a shift from pyruvate carboxylase to
phosphoenolpyruvate carboxylase flux during glucose utilization (Becker,
Klopprogge, & Wittmann, 2008) which enabled a metabolic bypass via ma-
lic enzyme to account for deletion of pyk. This highlights the level of meta-
bolic flexibility that this node provides in central carbon metabolism.

The Gram-negative bacterium E. coli has two genes encoding pyruvate
kinase; pykA and pykE (Munoz & Ponce, 2003). Disruption of a single py-
ruvate kinase (pykA) in a phenylalanine overproducing strain in combination
with inactivation of a Phosphotransferase system (PTS) sugar transporter,
leads to redistribution of cellular carbon flux when glucose was the substrate.
Inactivation of PTS and PykA (which is allosterically regulated by AMP)
resulted in decreased PCx, PEPCk, and TCA cycle activities. Inactivation
of PTS and PykF (which is allosterically regulated by fructose 1,6 biphos-
phate) resulted in increased OAA formation from PEP and flux through
the TCA cycle. Interestingly, both strains showed increased production of
phenylalanine compared to the parental strain (Meza, Becker, Bolivar, Gos-
set, & Wittmann, 2012). The enlargement of this part of the PEP-PYR-
OAA node in E. coli compared to C. glutamicum and the results reported
by Meza (Meza et al.,, 2012) indicate that dissection of these aspects of
enzyme expansion in metabolism is difficult. In the streptomycetes, this is
especially true when up to six copies of some enzymes within the PEP-
PYR-OAA node are present (Figure 2 and Table 2).
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The PEP-PYR-OAA node is poorly understood in streptomycetes.
However, some primary metabolic enzymes that have undergone gene
expansion in Streptomyces have been studied in more detail. One
such example is the presence of three copies of the glycolytic enzyme
phosphofructokinase  (SCO1214—pfkA3; SCO2119—pfkAl; and
SCO5426—PfkA2) catalyzing the addition of a second phosphate to fruc-
tose-6-phosphate at the C1 position. Deletion of pfkA2 leads to an increase
of undecylprodigiosin and actinorhodin production on certain media,
whereas deletion of either pfkAl or pfkA3 does not show the same
phenotype. The pfkA2 mutant also had higher intracellular pools of
glucose-6-phosphate and fructose-6-phosphate and radiolabeling experi-
ments indicated increased flux through the pentose phosphate pathway
(PPP) and concomitant increased levels of reduced nicotinamide adenine
dinucleotide phosphate (NADPH) showing that despite having three genes
encoding the same function they have different physiological roles
(Borodina et al., 2008). These data also correlate with higher production
of methylenomycin and increased PPP flux during slow growth (Obanye,
Hobbs, Gardner, & Oliver, 1996). In Streptomyces clavuligerus, two glyceral-
dehyde-3-phosphate dehydrogenase (GAPDH) genes are present in the
genome, gapl and gap2. Disruption of gap1 leads to an increase in clavulanic
acid production, but not when gap2 is deleted. Since clavulanic acid
biosynthesis starts with the condensation of rL-arginine and glyceralde-
hyde-3-phosphate (G3P), this downstream block of gap1 appears to redi-
rect flux toward clavulanic acid biosynthesis rather than glycolysis.
Furthermore it demonstrates the different physiological roles played by
the different isoforms of GAPDH (Li & Townsend, 2006). In the model
streptomycete S. coelicolor disruption of either of the genes encoding the
two isoforms of glucose-6-phosphate dehydrogenase zwfl (SCO6661)
and zwf2 (SCO1937) leads to changes in the production of the polyketide
actinorhodin. Again, two genes encoding for the same function seem to
play different roles. It appears that zwf2 plays a more important role than
zwfl for directing the flux toward actinorhodin production (Butler et al.,
2002; Ryu, Butler, Chater, & Lee, 2006). Similarly it has also been shown
that disruption of zwf in Streptomyces lividans, which also has two copies
results in higher production of actinorhodin and undecylprodigiosin pro-
duction (Butler et al., 2002). Further studies in chemostat culture of S. liv-
idans indicate that the flux of carbon was dependent on growth rate and the
carbon source (Avignone Rossa et al., 2002). When gluconate was utilized
as carbon source a higher flux through PPP was observed than on glucose
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and a decline in secondary metabolite production resulted when growth
rate was increased (Avignone Rossa et al., 2002).

Within the PEP-PYR-OAA node of Streptomyces only two genes have
been studied in detail —PEPCx and the malic enzymes from Streptomyces
coelicolor. The activity of this enzyme increased during biosynthesis of actino-
rhodin and overexpression of PEPCx in Streptomyces lividans reduced the
growth rate of the strain, delaying actinorhodin biosynthesis (Bramwell,
Nimmo, Hunter, & Coggins, 1993). The study of the two malic enzymes
SCO2951 and SCO5261 revealed that the mutant in SCO2951 and the
double mutant show decreased actinorhodin production, due to a decrease
of expression of octIIORF4 and the double mutant also has decreased triacyl-
glycerol storage levels during exponential growth (Rodriguez et al., 2012).
These data indicate the importance of this node to specialized metabolite
production, especially polyketides, and highlight the potential for further
investigation.

Recent global metabolomics studies in Streptomyces have also revealed
key findings about the metabolic flexibility at the PEP-PYR-OAA node
at onset of specialized metabolite production. Studies conducted during
phosphate and r-glutamate depletion indicate that most changes in the
global metabolite pool (metabolome) were in amino acid and organic
acid levels (Wentzel, Sletta, Consortium, Ellingsen, & Bruheim, 2012).
During phosphate depletion the amino acid pools of histidine, phenylala-
nine, tyrosine, alanine, valine, leucine, glycine, proline, isoleucine, and
lysine were increased in addition to the intracellular pools of succinate
and ornithine pools. Intracellular pools of glutamate and aspartate were
both reduced as was pyruvate, citrate, 2-oxoglutarate, fumarate, and malate.
Under glutamate depletion the pools of histidine, phenylalanine, tyrosine,
alanine, valine, leucine, glycine, proline, and lysine decreased initially
before recovering at around 40 h. This was also observed for citrate and suc-
cinate. Pyruvate, 2-oxoglutarate, fumarate, malate, and ornithine were all
reduced in addition to the amino acids glutamate, glutamine, and aspartate
(Wentzel et al., 2012). These data confirm the central role for pyruvate in
balancing central carbon metabolism during growth and reinforces our un-
derstanding of key branch points in specialized metabolite production. An
additional study by this group to develop cultivation media for studying
metabolic shifts tested a wide range of carbon sources (arabinose, alanine,
aspartate, glucose/glutamate, glucose, glutamate, proline, Tween 20,
Tween 40, Tween 60, Tween 80, and xylose) and examined expression
of the PDHC genes. Only one of the genes (SCO2183) showed decreased
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expression on Tween and alanine. SCO2181, SCO2180, and SCO4919
had increased expression, yet under all other conditions no expression dif-
ferences were observed, which may suggest that the gene products of the
PDHC may act as a metabolic bottleneck during glucose growth (Wentzel
et al., 2012). Furthermore, studies of carbon preferences using '*C-glucose
to label metabolites during culture on glucose and glutamate as a mixed car-
bon source, indicate that during rapid growth glycolysis and PPP are
enriched for ’C compounds, but upon cessation of growth *C-labeled
PPP intermediates decreased. The TCA cycle is generally low in
’C-labeled intermediates indicating that glutamate is a preferred carbon
source, being catabolized via 2-oxoglutarate following deamination and
release of ammonium ions. Interestingly 2-oxoglutarate can be decarboxy-
lated in the TCA cycle to form malate and further decarboxylated to pyru-
vate which can be converted to acetyl-CoA by PDHC. Acetyl-CoA is an
important precursor for fatty acids and polyketides. Clearly glutamate is
the preferred carbon source providing the main cellular carbon and with
glucose playing an ancillary role (Wentzel et al., 2012). Interestingly, it is
known that Streptomyces secrete pyruvate and 2-oxoglutarate during growth
under certain conditions, prior to specialized metabolite production (Hobbs
et al., 1992), which may reflect the inefficiency of formation of acetyl-CoA
from pyruvate under some physiological conditions. PDHC expansion in
streptomycetes may be an evolutionary solution to this phenomenon.
These natural examples may provide a framework for metabolic engineer-
ing strategies.

S 6. CONCLUDING REMARKS

Detailed insight into the evolution, regulation, and biochemistry of
primary metabolism and how this feeds into specialized metabolism will
help us understand better complex biological systems and will allow tar-
geting key points in metabolism for metabolic engineering. While global
“omics” studies and modeling can help with general phenomena, a full
understanding of gene function in a classical reductionist manner is the
only way to gain true biological insight. These approaches guide synthetic
biology strategies for strain and pathway construction and increased pro-
duction of medically useful metabolites. There are key points within cen-
tral metabolism that represent excellent metabolic engineering targets,
such as the PEP-PYR-OAA node, which are particularly well suited
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for engineering metabolite production and will make it more efficient and
easier to enhance industrial production processes.
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metabolic adaptation, 164—168
with microbes in oral cavity, 196-197
pH adaptation, 158-159
phenotypic switching, 151
gray cells, and phenotypic variants,
153-154
GUT cells, 153—154
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survival strategies, 144f
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Cell wall components, 165-166
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Cellular glue, 70
Cellular signaling pathways, 187-188
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Central carbon metabolism, 243f
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Central nervous system (CNS), 2
CF. See Cystic fibrosis
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Chloromethane (CH;Cl), 117
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DBDO. See Dibenzodioxocin
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DC, 177-178
epithelial cells and mucosal immunity,
178-179
humoral defenses, 173—-175
neutrophils and macrophages,
175-177
NK cells, 177-178
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probiotics, 17-18
pathways, 4-5, of
gut hormonal response, 10-11
host genetics, 13-14
immune system, 8—10
neural, 5-6
serotonin and tryptophan metabolism,
7-8
short-chain fatty acids, 12-13
Micromonospora, 237238
Minimal inhibitory concentration (MIC),
183-184
Mitogen activated protein kinase (MAPK),
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p-coumaric acid, 73-75, 74t

conversion, 105-108, 107f

p-coumaryl alcohol conversion, 105-108

p-hydroxybenzaldehyde, 106
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