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PREFACE

Volume 14 of Advances in Planar Lipid Bilayers and Liposomes continues with
the tradition of the past volumes and includes the invited chapters on the
broad range of topics that are not limited to the planar lipid bilayers and
liposomes only and in this way reflects the intensive development in the
field of physics, biology, and chemistry of biological membranes and their
micro- and nanostructures. This volume is dedicated to the statistical
thermodynamics of adhesion points in supported membranes, the study of
stability of exocytotic fusion pore, membrane instability of a planar lipid
bilayer in an electric field, possible mechanisms of raft formation in cell
membranes, computer simulations of multicomponent lipid bilayers and
liposomes using coarse-grained models, thermal fluctuations of lipid
vesicles, and interactions of biologically important molecules with lipid
molecules. I would like to express my gratitude to the following authors
contributing their chapters: Drs. P. Pieranski, R. Zorec, J. Jorgačevski,
F. Ziebert, D. Lacoste, R. Reigada, K. Lindenberg, O. Farago,
M. Wahab, H.J. Mogel, P. Schiller, M. Laradji, P.B. Sunil Kumar,
F. Mravec, M. Klučáková, M. Pekar, V. Vitkova, C. Misbah, A.V. Popova,
A.S. Andreeva, and their coauthors. Special thanks go to the member of
Editorial Board of APLBL Prof. Sylvio May. I wish to express my gratitude
and thanks to Ben Davie from Elsevier Office in London together with his
coworkers from Elsevier’s Chennai Office in India, Paul Prasad Chandra-
mohan, Sunita Sundararajan, and Vijayaraj Purush. I am deeply grateful to
my wife Veronika Kralj-Iglič for her constant support and help.

Aleš Iglič
Editor

ix



CONTRIBUTORS

Atanaska S. Andreeva
Department of Condensed Matter Physics, Faculty of Physics, Sofia University,

Sofia, Bulgaria

Oded Farago
Department of Biomedical Engineering and Ilse Katz Institute for Nanoscale

Science and Technology, Ben-Gurion University of the Negev, Be’er Sheva, Israel

Ajda Flašker
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Abstract

The denomination “soft crystals” has been coined by Nozières et al. with the

purpose to mark out a special class of liquid crystalline phases—thermotropic

and lyotropic cubic mesophases. Their structure, being periodic in three dimen-

sions, is crystalline. At the same time, it is also liquid because contents of huge

unit cells are partially liquid. Due to such “liquid crystalline” structures, cubic

mesophases have special physical properties such as the “soft elasticity.” Here,

we are dealing with another salient property of soft crystals—faceting of their

interfaces. We focus on several topics such as (1) special methods allowing

observation of faceted shapes, (2) description and classification of characteris-

tic shapes seen as fingerprints of space group symmetries, (3) new phenomena

occurring in faceted mesophases.

1. Introduction

1.1. Textures of Liquid Crystals

After the discovery of the phenomenon of “double melting” in esters of
cholesterol by Friedrich Reinitzer [1], Otto Lehmann [2] used a polarizing
microscope equipped with a heating stage for systematic observations of
enigmatic textures occurring in many other substances. Puzzled by flows
occurring in birefringent samples, he coined the oxymoron liquid crystals
because in that time, the birefringence was considered as a fingerprint of
crystalline structures. George Friedel [3] used the same optical technique
and from his own observations of a few very characteristic textures he
concluded that the Lehmann’s liquid crystals are in fact new states of
matter—mesophases—having molecular structures intermediate between
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solid crystals and isotropic liquids. Friedel identified and named three such
mesophases: nematic, smectic, and cholesteric.

Since this pioneer epoch, the Lehmann’s technique was and still is
widely used. Conjugated with X-ray crystallography and calorimetry, it
was helpful for the discovery of dozens of other mesophases. In many cases,
textures observed in a polarizing microscope are so specific that they are
sufficient for identification of corresponding mesophases. For this purpose,
textbooks on liquid crystal textures [4,5] containing their photographs,
description, and explanation are very useful.

1.2. Cubic Mesophases: “True Liquid Crystals” or
Soft Crystals

Among dozens of mesophases known today, cubic thermotropic and lyo-
tropic mesophases are those for which the oxymoron “liquid crystals” seems
to be the most adequate. Indeed, in special conditions, these cubic meso-
phases can show faceted shapes (see Figs. 1C and 2) similar to those of
faceted minerals (or crystals in a common language) that are exposed in
public or private collections. Our aim here will be:

A B

C D

Figure 1 Textures of mesophases: (A) so-called schlieren texture of a nematic thin
layer (6CB), (B) texture of a cholesteric mesophase in the Cano wedge, (C) monocristal
of the Im3m lyotropic cubic phase (quaternary system Phytantriol/DSPG/Ethanol/
water). (D) Inclusions of the inverted micellar phase in a free standing film of the
lamellar phase (binary system C12EO6/water).

Faceting of Soft Crystals 3



1. Describe methods tailored for observations of faceted shapes of cubic
mesophases

2. Describe and classify observed shapes
3. Outline new phenomena occurring in faceted mesophases

Before that, let us consider faceting of mesophases from a more general
point of view of fundamental concepts in physics.

1.3. Concepts Related to Symmetry and Topology

Among fundamental concepts related to symmetry and topology [7], those
of long range order, order parameter, and topological defects are central in
condensed matter physics dealing with solid crystals, superfluids, supracon-
ductors, or liquid crystals [8]. Within this framework of fundamental con-
cepts, cubic mesophases are similar to solid crystals because they share with
them symmetries described by space groups such as:

� I4132 and P4232 for thermotropic Blue Phases [9]
� Ia3d for a thermotropic cubic phase [6,10–12]
� Ia3d, Im3m, Pn3m, or Pm3n for lyotropic cubic phases [13–16]

Essentially for this symmetry reason, Blue Phases and lyotropic cubic
phases are elastic [17–19], can contain mobile dislocations [20] or grain
boundaries and their interfaces with isotropic phases can be faceted like
interfaces of solid crystals with vapor or liquid phases. In order to emphasize
this similarity with solid crystals, Nozières, Balibar, and Pistolesi
who worked on the theory of faceting [21] called faceted mesophases
soft crystals.

A B

Figure 2 Thermotropic soft crystals: (A) monocrystals of the Blue Phase I surrounded
by the isotropic phase observed in a reflecting microscope, (B) Ia3d-in-air monocrystal
observed in an optical microscope in transmitted light (from Ref. [6]).
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1.4. Crystallography without X-rays

Let us remind that this was the astonishing geometrical perfection of faceted
shapes of solid crystals such as naturally occurring minerals or snow flakes that
lead Haüy to considerations about periodic stackings of hypothetical ulti-
mately small pieces of matter called atoms or molecules (Fig. 3). Subsequently,
all possible types of such crystalline structures were classified with help of
mathematicians in the framework of symmetry groups—14 Bravais lattices, 32
point groups and 230 space groups. This classification, initiated by observa-
tions of shapes of facets and measurements of angles between facets occurring
on crystal shapes, was achieved prior to experiments of Bragg and von Laue
that gave an experimental evidence for periodic structures of crystals and
opened the door to the modern X-ray crystallography. One can find a very
detailed discussion of space group and of corresponding crystal shapes in
another generic writing of Georges Friedel—his “Leçons de cristallographie”
[22]—as well as in a more recent book of F.C. Phillips [23].

1.5. Facets and Bragg Spots

The occurrence of facets on crystal shapes and of Bragg spots on diffraction
diagrams are intimately related in the reciprocal space. Indeed, Bragg spots
and facets are both indexed by Miller indices (hkl)—coordinates of nods of
the reciprocal lattice:

q ¼ ha� þ kb� þ lc�; ð1Þ

which are nothing else but wave vectors of components of Fourier series

r rð Þ ¼
X

rqe
iq�r ð2Þ

Figure 3 Ha€uy-like model of a faceted cubic crystal.
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into which any scalar function r(r) can be decomposed. In the context of
X-ray diffraction, r(r) represents the electronic density. In the theory of
faceting, r(r) would correspond to the pinning potential involved in for-
mation of facets [24]. When a Fourier component rq is nonzero, then, on
one hand, there is a stationary electronic density wave with wavevector q
which gives rise to a specific Bragg reflection (Fig. 4B). On the other hand,
the component rq of the pinning potential leads to the formation of a facet
perpendicular to q (Fig. 4A). Inversely, when the amplitude rq of some
Fourier components vanishes for some symmetry reasons, then the
corresponding (hkl ) Bragg reflections and facets are forbidden. In such a
case, it can happen that the “next” Fourier component with indices
(2h,2k,2l) can be allowed. On the diffraction diagram, it is identified as a
specific (2h,2k,2l ) Bragg spot, however the corresponding (2h,2k,2l ) facet
has exactly the same orientation on the crystal surface as it would have the
forbidden (h,k,l) facet. In order to index correctly such a facet, the height of
steps occurring on it is helpful because it is given by the interplanar distance

dhkl ¼ 2p
jqj : ð3Þ

When it is impossible to measure this height, the knowledge of the facets
size is helpful because it decreases with dhkl. We will return to this so-called
Donnay–Harker rule later.

1.6. Structures of Solid and Soft Crystals

The superposition of all nonzero density waves (i.e., components) in the
Fourier series [Eq. (2)] leads to structures that share two common features:

1. They are all made of identical elementary unit cells which are parallele-
pipeds spanned on three base vectors a, b, and c

qhkl

qhkl

dhkl

ξ

0

0

A B

Figure 4 Selection rules for Bragg reflections and facets: (A) elementary step of height
dhkl on the (hkl ) facet, (B) (hkl ) node in the reciprocal lattice.
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2. These unit cells are repeated by translations in three dimensions accord-
ingly to the Bravais lattice which is defined as a set of translation vectors
given by

r ¼ laþ mbþ nc; ð4Þ

where a, b, and c are base vectors and l, m, n are integers.

Now, the contents of unit cells is different is classical solid crystals and in soft
crystals (Fig. 5).

1.6.1. Solid Crystals
In solid crystals, unit cells are relatively small and contain always fixed
numbers of atoms or molecules whose (x,y,z) positions (and generally orienta-
tions) inside unit cells are fixed too. This means that in classical solid crystals
there is a long range order of positions of atoms or molecules; when positions of
atoms or molecules in the unit cell located at origin O are known then
position of all other equivalent atoms or molecules are knownwith accuracy
better than dimensions of unit cells no matter how far from the origin they
are. Among other properties, the elasticity of solid crystals is a consequence
of this long range order.

1.6.2. Soft Crystals
In soft crystals, unit cells are much larger and their contents is much more
fuzzy:

1. They contain a large and variable number of molecules.
2. These swarms of molecules are organized into partially liquid patterns

which are characterized, beside their symmetry, also by topological features.

liquid

bilayer

A B

Figure 5 Solid and soft crystals: (A) bcc structure of iron, (B) Pn3m structure of the
inverted cubic lyotropic phase Im3m.
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2. Experimental Methods

2.1. Variety of Cubic/Isotropic Interfaces in Lyotropic Systems

In lyotropic systems, the variety of phases occurring as a function of
temperature and composition in at least binary mixtures is plethoric
[13,14]. Moreover, from the Gibbs phase rule results that coexistence of
two phases in lyotropic systems is ubiquitous. In cases when at least one of
the two coexisting phases is not isotropic, the interfacial tension is aniso-
tropic. Theoretically, the equilibrium shapes of such an anisotropic interface
given by the Wulff construction should be not spherical [24]. Here, we
focus on the subset of cubic/isotropic interfaces which is wide on its own
because several cubic lyotropic phases of different symmetries and/or
topologies can coexist with at least four isotropic phases: the direct and
inverted micellar phases L1 and L2, the sponge phase L3, and the water
vapor (see Fig. 6). As we will see below, experiments have shown that only
cubic/vapor and cubic/L1 interfaces are faceted.

The discovery of faceting in lyotropic systems was serendipitous, that is,
made in experiments which were not tailored for this purpose. To our
knowledge, first observation of faceting of a cubic/L1 interface has been
made by Winsor [25]. Later, Sotta [26] observed faceted air bubbles
included in the bulk Ia3d phase of C12EO6/water system. Our own interest
for faceting of soft crystals began with studies of thermotropic Blue Phases
[9] (see Fig. 2A). Later, when working with free-standing films (surrounded
by a humid atmosphere) of the lamellar phase of the C12EO6/water system,
we have discovered accidentally the devil’s staircase-type faceting of the
Ia3d/vapor interface [27]. Subsequently, we have developed new setups
specially tailored for experiments on faceting in lyotropic system.
We describe them below.

2.2. Hygroscopic Methods for Studies of Cubic/Vapor
Interfaces

The setup depicted schematically in Fig. 7 can be qualified as a hygroscope
of third generation. In the very first system used for studies the devil’s
staircase faceting of Ia3d/vapor interface [27,28], humidity control was
achieved by mixing dry and 100% humid gas fluxes. Subsequent experi-
ments with C12EO6, monoolein, phytantriol, DTACl, and DDMAS have
shown however that cubic phases occur generally in the humidity range
between 95% and 100% where this system of humidity control is not the
most accurate. For this reason, the principle of humidity control was
changed in the second version of the hygroscopic setup [29]: the sample
was enclosed in an almost tight metallic cell containing a small reservoir of

8 P. Pieranski



water and the relative humidity at the sample level was a function of
the temperature difference between water, in good thermal contact with
the cell, and the sample whose temperature was regulated independently.
The same principle is used in the third generation hygroscopic system
shown here in Fig. 7. It consists of three parts:

1. Large aluminum base of thickness 1.5 cm. Its temperature Tb is regulated
by a circulation from a water bath.

isotropic
L1

phase

cubic
Pn3m
phase

cubic
Ia3d

phase

air
bubble

isotropic
L1

inclusion

H2O vapour

cubic
phase

cubic
Pn3m
phase

A

C D

B

Figure 6 Conditions for observation of the faceting in lyotropic system: (A) air bubble
in a cubic phase [26], (B) cubic phase surrounded by water vapor, (C) cubic phase
surrounded by L1 phase in systems with solubility gap, (D) L1 inclusions in a cubic
phase.

glass window

condenser
for

phase
contrast

objective
for

phase
contrast

Tr

Tb Tb

glass window

coppercopper

crystal

plexi cover

(xz)-section (yz)-section

Al
base

Tr Tr

water vapor

Peltier R Peltier S

Ts

Figure 7 Experimental setup developed for hygroscopic studies of cubic/vapor inter-
faces. (Reproduced from Ref. [20] with kind permission of J. Phys. Condens. Matter.)
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2. Reservoir of water made of copper. The (xz)-section shows that it is
supported by two Peltier elements that regulate its temperature Tr.

3. Sample holder made of copper. The (yz)-section shows that it is
supported by a second pair of Peltier elements that regulate its
temperature Ts.

In practice, temperatures Tr and Ts are regulated with accuracy better
than 0.01 �C. As explained in Ref. [29], the relative humidity H at sample
level is given by the formula

H Ts;Tresð Þ ¼ ps Trð Þ
ps Tsð Þ � 100%; ð5Þ

where ps(T) expresses dependence of the saturated vapor pressure at tem-
perature T. Knowing the accuracy dT ¼ �0.01 �C of temperature regula-
tion, the corresponding accuracy of the humidity control is about
dH ¼ �0.05%. Let us note that the sample holder has a smaller thermal
inertia than the water reservoir. For this reason, in order to change the
humidity, it is more convenient to keep the temperature Tr of the water
reservoir constant and to vary the temperature Ts ¼ Tr þ DT of the sample
holder. As a consequence, the T-vs.-H phase diagram is explored along
slightly oblique paths such as those indicated by dashed lines in Fig. 8. For
each path two parameters are pertinent: Tr ¼ const and DT ¼ Ts � Tr.
The second major improvement in this new hygroscopic setup consisted in
using the phase contrast optical set: a matched condenser–objective pair
from a biological microscope. As the light beam from the condenser passes
through the layer of water, the capillarity-induced curvature of the water
surface can perturb the condenser–objective matching. For this reason, the
diameter of the water reservoir was made large enough (	3 cm) to keep
water surface flat. Images have been taken with a CCD camera.

2.3. The Isoplethal Method for Studies of Cubic/L1 Interfaces

For studies of faceting at cubic/L1 interfaces, we developed the experimen-
tal setup shown in Fig. 9 [31,32]. Here, the sample—Pn3m or Im3m crystals
surrounded by the L1 phase—is located in a flat glass capillary of section
5 � 0.2 mm. The capillary is supported by two Peltier elements and by this
means its temperature is regulated with accuracy of 0.01 �C. Ends of the
capillary are connected to flexible tubes which are immersed in reservoirs A
and B containing, for example, water or water/ethanol mixture. The
reservoir A can be lifted or lowered with respect to B by means of a
micrometer translation stage. By principle of communicating vessels, the
composition of the L1 phase surrounding Pn3m or Im3m crystals can be
changed. In the last version of this setup, this composition is regulated more

10 P. Pieranski



accurately by mixing fluxes from two motorized syringes containing water/
ethanol mixtures of different concentrations.

Like in the hygroscopic setup, observation are made by means of a
microscope objective forming the image of the sample directly on the
CCD sensor of a digital camera. The preparation of samples has been
described in details in Refs. [31–33]).

3. Faceting of Cubic/Vapor Interfaces

3.1. Direct Ia3d Cubic Phase (C12EO6)

3.1.1. Structure
The structure of the direct Ia3d cubic phase is represented schematically in
Fig. 10. It consists of two distinct but entangled scaffoldings made of
surfactant and immersed in water. These scaffoldings are made of cylinders
connected three by three as shown in the insert of Fig. 10. One can say that
this structure is intermediate between structures of the lamellar and hexag-
onal phases because, on one hand, it is made of rods like the hexagonal phase

80

70

60

50

40

30

20

10

Te
m

pe
ra

tu
re

 (
o C

)

Te
m

pe
ra

tu
re

 (
o C

)

1009080706050

Humidity (%)

L2
TP

Tres=30oC

Tres=56.6oC

Ia
3d

La

Lα

0

0

crystal MO + Pn3m

Pn3m + water

L2 + water

crystal MO + water
  crystal MO + ice

H

Ia3d

P
n3m

L2

40

80

120

10 20 30

Concentration of  water (w%)
40 50

TP

La

A B

Figure 8 Principle of the hygroscopic method illustrated on the example of the
monoolein/water system. (A) Classical Temperature vs. Concentration phase diagram
from Qiu and Caffrey [30]. (B) Temperature vs. humidity phase diagram obtained by
the hygroscopic method [29]. Dashed lines correspond to trajectories followed when
the temperature Tr of the water reservoir is kept fixed and the temperature of the
sample is varied. Nuclation of Ia3d monocrystals from L2 droplets occurs when L2 !
Ia3d transition is crossed along an isothermal path a few degrees above triple point TP.
(Reproduced from Ref. [20] with kind permission of J. Phys. Condens. Matter.
Collaboration with J. Grenier.)
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H1, and, on the other hand, each junction of three rods can be seen as a
small patch of the lamellar phase La. Therefore in the phase sequence of, for
example, C12EO6/water system [see Eq. (6)] Ia3d phase is intermediate
between H1 and La phases. Such a structure corresponds perfectly to the
definition of soft (or fuzzy) crystals given in Section 1.6.2; it is a periodic
stack of cubic unit cells whose contents is partially liquid. Indeed, molecules
of surfactant can diffuse freely inside each of the two scaffolding while water
molecules can also diffuse freely in the space between the two scaffoldings.

3.1.2. Devil’s Staircase-Type Faceting
It was surprising to find that such fuzzy crystals display the so-called devil’s
staircase faceting [27,28] expected for solid crystals at low temperatures [24].
As an example we show in Fig. 11A an image of a small monocrystal of the

 thermalised metallic base
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a water bath

Peltier Peltier

flat capillary

objective

d

condenser

Pt Pt

B
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H2O
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Figure 9 Experimental setup for studies of cubic/L1 interfaces. (Collaboration with
M. Bouchih, N. Ginestet, and S. Popa-Nita.)
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Ia3d direct cubic phase in C12EO6/water system. We will see below that
such a rich faceting occurs also in other lyotropic systems.

In Fig. 11A, the crystal has the global shape of a spherical cup whose
diameter and contact angle at the base are D 	 1 mm and y 	 30�, respec-
tively (see Fig. 6B). It was obtained by humidity processing (see below) of a
small droplet of the nonionic surfactant C12EO6 deposited on a glass
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Figure 11 Devil’s staircase-type faceting of the Ia3d/vapor interface in the C12EO6
system: (A) Image of a small Ia3dmonocrystal located on a glass substrate, (B) indexing
of facets on the elementary triangular patch, (C) surface of spherical Ia3d crystal
covered by triangular patches.

Figure 10 Structure of the Ia3d direct cubic phase.
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substrate. When submitted to an atmosphere of increasing humidity at
room temperature, the droplet undergoes the following sequence phase
transitions.

L2� 85%� La� 95%� Ia3d � 98%�H1� 100%� L1: ð6Þ

The transition from the initial L2 (inverted micellar) phase to the La
(lamellar) phase takes place at H 	 85% without any metastability, since
the lamellar phase wets the micellar phase. After this transition into the
lamellar phase, the initial spherical shape of the droplet changes: it acquires
one facet on its top. Orientation of this facet unveils the texture of the drop:
a stack of bilayers parallel the glass substrate.

The next transition from the lameller to the cubic phase Ia3d is signifi-
cantly metastable and occurs upon a sufficient supersaturation DH 	 1%.
Immediately after this phase transition La ! Ia3d, the surface of the drop
becomes very irregular and one or two days of annealing are necessary to
obtain the faceting shown in Fig. 11A.

Only a small patch of the whole crystal surface is visible here (other
images can be found in Ref. [27,28]). The most striking feature of this
photograph is an astonishing variety of facets with different Miller indices.
All these facets form a highly symmetric pattern very similar to Laue
diagrams. For indexing of facets, the simulation of faceting based on the
Donnay–Harker rule shown in Fig. 11B is helpful. It shows one of the 48
identical elementary patches, related by the Oh point symmetry, covering
the surface of a spherical crystal (see Fig. 11C). In this heuristic diagram, the
diameters of circles have been set proportional to dhkl ¼ a=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ k2 þ l2

p
since the occurrence and relative extension of facets is directly related to the
interplanar distances dhkl according to the elementary Donnay–Harker
rule [23]. For the same reason, the general crystallographic selection rules
for the Ia3d symmetry were applied, so that only those facets were drawn for
which the four following relations are satisfied: (1) h þ k þ l ¼ 2n, (2) hk0:
h,k ¼ 2n, (3) hhl: 2h þ l ¼ 4n, (4) h00: h ¼ 4n. Using this method of
indexing, about 60 facets with different Miller indices have been identified.

3.1.3. Fingerprints
In conclusion of this section devoted to the faceting of Ia3d direct crystals,
three fingerprint-like features can be emphasized:

� In agreement with the Donnay–Harker rule, the most prominent facets at
the Ia3d/vapor interface are of (211) and (220) type.

� In most cases, these facets are located on the top of crystals which means
that Ia3d crystals are oriented with (211) or (220) reticular planes parallel
to the glass or mica substrate.
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� During a slow growth shown in Fig. 12, the orientation (220)/bilayers is
inherited from the lamellar phase.

3.2. Inverted Ia3d Cubic Phase (Monoolein and Phytantriol)

3.2.1. Structure
The phase diagram temperature versus water concentration of the mono-
olein/water system [30] is shown in Fig. 8A. Due to a relatively small
hydrophilic head of the monoolein molecule, the cubic phases Ia3d and
Pn3m present here are inverted. In both phases, surfactant molecules are
assembled into a continuous bilayer having shapes of infinite periodic
minimal surfaces—G of symmetry Ia3d and D of symmetry Pn3m. In the
Ia3d phase, the G surface divides the space into two entangled labyrinths
having the topology of two scaffoldings made of surfactant in the direct Ia3d
phase (see Fig. 10). Roughly speaking, water/surfactant patterns in Ia3d
phases of monoolein/water and C12EO6/water systems are inverted.

3.2.2. Facet by Facet Surface Melting at the Ia3d/Vapor Interface
The phase diagram of monoolein is very interesting from the fundamental
point of view of faceting’s theory. In particular, it allows to shed new light
on the problem of the anisotropic melting of crystal surfaces discussed by
Nozières in Ref. [34]. Indeed, upon decreasing humidity, the Ia3d phase
can be melted into the isotropic L2 phase. It is therefore possible to see how
the devil’s staircase type faceting is modified when the Ia3d ! L2 transition

mica

561

220

A B

C D

100 mm

La

Figure 12 Slow growth of a Ia3d crystal from the lamellar phase.

Faceting of Soft Crystals 15



is approached. Hygroscopic studies described in Ref. [29] have shown that
the number of different facets types present at the Ia3d/vapor interface is
decreasing as a function of the distance from the Ia3d ! L2 transition. As
an example we show in Fig. 13 a series of pictures taken at different values
of the temperature difference DT ¼ Ts � Tr between the sample and the
water reservoir.

The same behavior has also been observed in the phytantriol/water
system whose phase diagram is very similar to that of monoolein. It is
illustrated by two pictures in Fig. 14A and C taken at different distances
from the Ia3d ! L2 transition. Simulations of faceting based on the Don-
nay–Harker rule shown in Fig. 14B and D allow indexing of facets visible
on the surface of the Ia3d crystal.

3.3. Micellar Pm3n Cubic Phase (DTACl)

The devil’s staircase-type faceting has also been observed by hygroscopy at
the Pm3n/vapor interface in the DTACl/water system whose phase dia-
gram has been established by Balmbra et al. [36].

3.3.1. Structure
The contents of the unit cell of the Pm3n micellar phase is shown in
Fig. 15A. It is similar to the structure of Cr3Si crystals in which atoms of
silicon are located at vertices and in the center of the unit cell while those of
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the distance in terms of humidity from the Ia3d/L2 transition decreases. As a conse-
quence, (hkl) sets of facets disappear progressively. (Reproduced from [35] with kind
permission of J. Phys. Condens. Matter. Collaboration with J. Grenier.)
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Figure 14 Indexing of facets at the Ia3d/vapor interface in the phytantriol/water
system. (Collaboration with P. Faye and R. Sheska.)

X

X

A B

C

Y

Y

Z

Z

X

Y

Z

Figure 15 Structures having the Pm3n symmetry: (A) and (B) positions of micels
(respectively Cr and Si atoms) in the unit cell of the Pm3n cubic lyotropic phase
(respectively Cr3Si crystal), (C) A15 minimal foam structure obtained from (B) by
inflation of micels [37].
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chrome are located two by two on faces of the unit cell. In the cubic
micellar phase, micels occupy positions of Cr and Si atoms. As we will see
later, it is important to note that the so-called A15 minimal froth invented
by Weaire and Phelan (Fig. 15C) has also this Pm3n symmetry.

3.3.2. Faceting
As expected, hygroscopic experiments have shown that the faceting of the
Pm3n/vapor interface is very rich. The obvious fourfold symmetry of the
constellations of facets in Fig. 16A leads immediately to the conclusion that
Miller indices of the central facet are (200). Indexing of other facets seems
more difficult. Fortunately, simulation of faceting in Fig. 16B based on
selection rules for the Pm3n symmetry (hkl: l ¼ 2n, h00: h ¼ 2n) and on
the Donnay–Harker rule is helpful. Indexing of the central facet in Fig. 16A
is less obvious but the simulation in Fig. 16B leads to conclusion that Miller
indices of this facet are (211).

A

C D

B

Figure 16 Devil’s staircase-type faceting at Pm3n/vapor interface of the DTACl/
water system (for the phase diagram see Fig. 17). (A) The photograph shows a Pm3n
crystal obtained from a droplet of the L2 micellar phase at T ¼ 70 �C. The crystal is
obviously oriented with its fourfold [100] axis orthogonal to the mica substrate. (B)
Simulation of faceting of a spherical Pm3n crystal; only small part of the crystal surface is
visible in A. (C) Pm3n crystal oriented with (211) planes parallel to the mica substrate.
(D) Corresponding simulation of faceting.
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3.4. RHCP Micellar Phase

3.4.1. Experimental Surprise: An Ephemeral Phase
Hygroscopic experiments with the DTACl/water system lead to the
discovery of a new phase [35]. On the basis of the phase diagram established
by Balmbra et al. [36]) the Pm3n phase should be obtained from the micellar
phase L1 upon decreasing humidity by a direct phase transition.
Hygroscopic experiments have shown, however, that below 70 �C, the
transition from the L1 to the Pm3n phase is not direct. Indeed, in Fig. 17,
pictures A and D correspond, as expected, to the L1 and Pm3n phases but
the texture of the sample in picture B is abnormal and clearly proves the
existence of a new phase. This new phase has been called ephemeral for three
reasons:

1. Its humidity range is very narrow.
2. It does not appear on the way back from Pm3n to L1.
3. It disappears completely in the presence of impurities.

micellar
L1

ephemeral hexagonal
H1

0

0

a

Concentration of  DTACl (%w)

20 40 60 80 100

Te
m

pe
ra

tu
re

 (
o C

)

40

80

120

160

200

cubic
Pm3n

La
b

c d

A B C D

Figure 17 Experimental evidence for the ephemeral phase. The phase diagram of the
DTACl/water mixture, established by Balmbra et al. [36] has been completed here by
the addition of the ephemeral phase. The series of photographs (A)–(D) shows indeed
that at T ¼ 60 �C, the transition from the micellar L1 phase to the cubic Pm3n phase is
mediated by another unknown phase. (Reproduced from Ref. [35] with kind permis-
sion of J. Phys. Condens. Matter.)
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What can be inferred about this new phase from the shape of its interface
with the surrounding humid atmosphere? The polycrystalline initial texture
of this new phase in Fig. 17B is useless. However, after a long enough
annealing illustrated by the series of four images in Fig. 18 an enigmatic
constellation of facets finally shows up (see Fig. 18D). This constellation has
three remarkable features:

1. It has a sixfold symmetry.
2. Facets are distributed exclusively in six ranges surrounding the central

facet.
3. Everywhere else, the crystal surface is rough.

Such an inhomogeneous distribution of facets suggests that the distribu-
tion of Bragg spots in the reciprocal space of the ephemeral phase should be
very inhomogeneous as well. This feature is reminiscent of X-ray diffraction
experiments with the so-called random hexagonal close packed (rhcp)
structure in colloidal systems [38] where 2D hexagonal crystal planes form
a random stack. Due to the disorder, two-third of the hcp Bragg spots are
smeared out into diffuse rods while the other Bragg spots are preserved.
In the DTACl/water system, the L1 and Pm3n phases are micellar.

B

D

A

C

Figure 18 Faceting of the ephemeral phase in the DTACl/water system: (A) begin-
ning of the L1 ! rhcp phase transition, (B) mosaic polycrystalline structure, (C)
beginning of the annealing, (D) faceting after annealing.
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The intermediate ephemeral phase should, therefore, be micellar as well.
By analogy with colloidal crystals, the order of micelles could be rhcp.

This hypothesis is reinforced by the theoretical predictions of Ziherl and
Kamien [39] concerning the phase sequence in a system of soft spheres such
as polymer or surfactant micelles. Following this theory, when the density
increases, the phase sequence can be: liquid ! close packed(fcc, hcp, or
rhcp) ! bcc ! Pm3n.

4. Faceting of Cubic/L1 Interfaces

4.1. Rich and Poor Faceting of Soft Crystals

Following to Nozières et al. [21], the rich faceting of cubic/vapor interfaces
is due to the conjunction of a large size of unit cells (	10 nm) with a
relatively large tension at the cubic/vapor interface (	25 dyn/cm). The
lyotropic systems provide us with an opportunity to test this theory because
the cubic/isotropic interfacial tension can be varied in a large extent.
Indeed, as emphasized already in Section 2.1, cubic phases can coexist also
with isotropic liquid phases L1, L2, or L3 and in such cases the interfacial
tension is expected to be much smaller.

4.2. Pn3m/L1 Interface

4.2.1. Discovery of Faceting
The discovery of faceting at the Pn3m/L1 interface was made by Lynch et al.
[40] who established the phase diagram of the binary system C12EO2 (see
Fig. 19A). Here, the inverted Pn3m phase can coexist with all three phases
L1, L2, and L3. Lynch et al. observed that upon a rapid heating of the Pn3m
phase, faceted inclusions of the L1 phase were growing in it. This reaction
Pn3m ! Pn3m þ L1 is indicated in Fig. 19 as the trajectory a ! b.

4.2.2. Pn3m-in-L1 Crystals (C12EO2)
With the aim to test predictions of Nozières et al. the special-purpose
isoplethal setup (Fig. 7) was used subsequently for more detailed studies of
the Pn3m/L1 interface in two complementary geometries: Pn3m-in-L1
crystals and L1-in-Pn3m inclusions [32]. The conclusion of experiments
with the C12EO2/water system is that, in this system, only (111)-type
facets coexisting with rough surfaces are present at the Pn3m/L1 interface.
This feature is illustrated in Fig. 19B by a typical image of a Pn3m-in-L1
crystal located at the capillary glass wall. In the light of experiments on the
facet-by-facet surface melting (see Section 3.2.2) such an extremely poor
faceting is obviously due to the very narrow temperature range of the
Pn3m/L1 coexistence domain in the phase diagram of C12EO2: below
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the peritectic triple point PP3, the Pn3m phase melts into the sponge phase,
while above the peritectic triple point PPPn3m it melts into the L2 phase.

4.2.3. Anisotropic Surface Melting at the Pn3m-in-L1 Interface
(C12EO2)

The two other images C and D of this series illustrate the phenomenon of
the anisotropic surface melting considered theoretically by Nozières [34].
Here, upon cooling (trajectory c ! d in Fig. 19A), a layer of the L3 phase
of a macroscopic thickness is growing exclusively on rough parts of the
Pn3m/L1 interface while the (111)-type facets remain intact although their
size decreases. In order to visualize better geometry of this three-phase
coexistence, we show in Fig. 20 its perspective view. Here, edges of facets
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Figure 19 (A) Phase diagram of the binary system C12EO2/water established by
Lynch et al. [40]. (B) Typical image of a Pn3m-in-L1 crystal located on the capillary
wall. It is oriented with its threefold [111] axis orthogonal to the substrate. (C) Upon
cooling (c ! d trajectory) rough parts of the Pn3m/L1 “melt” into a layer of the sponge
phase. Facets remain unmelted but their size decreases. (D) Upon heating (d ! c
trajectory) the sponge layer “recrystallizes”. (Reproduced from Ref. [35] with kind
permission of J. Phys. Condens. Matter.)
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are triple lines of contact of three interfaces: Pn3m/L1, Pn3m/L3, and
L3/L1. The L3/L1 interface is obviously isotropic so that its mean curva-
ture must be constant. In a good approximation, it is spherical. The Pn3m/
L3 interface is almost isotropic so that its mean curvature is approximately
constant too. Finally, the Pn3m/L1 facets are flat. Following Nozières’
theory, such an equilibrium configuration of three phases is possible
below the peritectic point PP3 if and only if above the peritectic point the
junction between rough parts of the Pn3m/L1 interface and facets is angular.
From the presence of a bright ring surrounding the central facet in Fig. 19B,
one can infer that this is the case.

4.3. L1-in-Pn3m Inclusions (C12EO2)

The isoplethal setup has also been used for studies of L1-in-Pn3m inclusions
in the C12EO2/water system. When such inclusion are nucleated at capil-
lary walls, their triangular shapes shown in Fig. 21 are similar to those of
Pn3m-in-L1 crystals. Shapes of inclusions nucleated and grown in bulk (see
Fig. 21A–D) reveal the cubic symmetry of the surrounding Pn3m crystal:
regular octahedra limited by eight (111)-type facets.

4.4. Pn3m ! Fd3m Symmetry Breaking

The Donnay–Harker selection rule [23] applied to Pn3m crystals predicts
the prominence of twelve (110)-type facets (see Fig. 22B) which alone
would form a dodecahedral shape. Obviously, this theoretical dodecahedral
shape does not agree with real shapes of Pn3m-in-L1 crystals prepared with
C12EO2/water mixtures [33] where, as shown in Fig. 22A, eight (111)-
type facets are prominent and present in all temperature range of the Pn3m/
L1 coexistence (see Fig. 19). Six small (200)-type facets occur only in the

Figure 20 Anisotropic melting at the Pn3m/L1 interface supress (Povray simulation).
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middle of the Pn3m/L1 coexistence range. Moreover, no (110)-type facets
were visible in any conditions. To explain this flagrant disagreement with
the Donnay–Harker rules, we argued in Ref. [33] that Pn3m ! Fd3m
symmetry breakdown was induced by the requirement of the bilayer
continuity at the Pn3m/water interface. We will come back to this problem
in the next section.

A B

DC

L1

L1 Pn3m

Figure 21 Faceted L1-in-Pn3m inclusions. In the image on the left, two inclusions
were nucleated and grown at the capillary wall inside a large, pancake-shaped Pn3m
crystal. The series of four images (A)–(D) shows the growth of a bulk inclusion. The
final completely faceted shape of the inclusion is that of a regular octahedron limited by
(111)-type facets. (Reproduced from Ref. [33] with kind permission from Springer
ScienceþBusiness Media.)
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(200)

Figure 22 Shapes of Pn3m-in-L1 crystals: (A) observed in experiments with C12EO2/
water system [33], (B) predicted by the Donnay–Harker rules of faceting [23].
The observed predominance of (111)-type facets and the absence of (110)-type do
not agree with the theoretical shape made of (110)-, (111)-, and (100)-type facets.
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5. Faceting in the Ternary and Quaternary

Mixtures

5.1. On the Choice of Phytantriol/Water/Ethanol and
Monoolein/Water/Ethanol Systems

As we have seen above, one of characteristics of the C12EO2/water binary
system is that the Pn3mþL1 coexistence domain has here a narrow, 2 �C
temperature range (see Fig. 19A). On cooling below the Pn3m/L1/L3
triple point, Pn3m crystals are melting into the sponge L3 phase. Similarly,
on heating above the Pn3m/L1/L2 triple point, Pn3m crystals melt into the
inverted micellar L2 phase. The surface melting of Pn3m crystals into the
sponge phase is an advantage because it allows to prepare Pn3m-in-L1
crystals of a globally spherical shape. Unfortunately, due to the narrow
Pn3m/L1 coexistence range, the shape of the Pn3m-in-L1 crystals is domi-
nated by the anisotropic surface premelting as discussed extensively in Ref.
[32]: for this reason, the (200)-type facets are hardly visible and all other
types of facets are missing.

With the aim to enlarge the temperature range of the Pn3m/L1 coexis-
tence domain, we selected surfactants that are used for production of
cubosomes [41,42]: monoolein (glycerol monooleate) and phytantriol
(3,7,11,15-tetramethyl-1,2, 3-hexadecanetriol). Their binary phase dia-
grams (temperature vs concentration of water) have identical geometrical
structures and differ only by numerical values of characteristic concentra-
tions and temperatures. As an example, we show here, in Fig. 23, the phase
diagram of the phytantriol/water system, established by Barauskas and
Landh [43]. It displays the Pn3m/L1 coexistence domain of wide tempera-
ture range, limited from above by the Pn3m/L1/H triple point at
T ¼ 40 �C. In experiments presented here, we used a sample of phytantriol
from a different source [44] and have found that temperatures of all triple
points were higher by several degree Celsius. In particular, we have found
the Pn3m/L1/H triple point at TP1H ¼ 56 �C. In the case of the mono-
olein/water system, the temperature of the Pn3m/L1/H triple point is even
higher: TP1H ¼ 90 �C [30]. If the binary phytantriol/water and monoo-
lein/water systems have the suitable wide Pn3mþL1 coexistence range,
they have also one drawback: upon heating, Pn3m crystals can be melted
into the hexagonal phase but this process does not generate suitable globally
spherical shapes. Stimulated by the method of Spicer and Hayden of
preparation of cubosomes [41,45–47], we decided to check whether
Pn3m-in-L1 crystals could be melted into an isotropic phase when ethanol
is added to the L1 phase. Our experiments with phytantriol(or monooelin)/
water/ethanol ternary mixtures proved that this is effectively the case. The
Pn3m/L2 transition can be driven in two ways (see Fig. 24):

Faceting of Soft Crystals 25



0 5 10 15 20
20

30

40

50

60

Pn3m+L1

H2+L1

L3+L1

La+L1

Concentration of EtOH in L1 (%w)
Chemical potential of EtOH 

T
em

pe
ra

tu
re

 (
�C

)

L2+L1

Pn3m +L1

H2 + L1

L3 + L1

La+L1

L2 + L1
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Figure 23 Phase diagram of the phytantriol/water mixture established by Barauskas
and Landh [43]. In our experiments performed with a sample of phytantriol from
another source [44], temperatures of all triple points were higher by several degree
Celsius. At point P, Pn3m crystals are surrounded by the L1 phase which is composed of
almost pure water. When 3% of ethyl alcohol is added to water, the hexagonal phase is
suppressed and Pn3m-in-L1 crystals melt directly into the L2 phase at 55.5 �C.
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1. Either at constant temperature, by adding ethanol to the L1 phase
surrounding Pn3m crystals

2. Or by increasing the temperature at a constant adequate concentration of
ethanol in L1

5.2. Facet-by-Facet Melting at the Pn3m/L1 Interface

The series of pictures shown in Fig. 25 was taken at a fixed concentration
(4%) of ethanol in L1 phase. On the initial shape of the crystal (47.0 �C),
several types of facets having different sizes coexist with rough surfaces.

47.0 °C

49.0 °C 51.0 °C 52.5 °C

55.5 °C55.0 °C54.5 °C

47.5 °C 48.5 °C

Figure 25 Facet-by-facet anistropic melting of the Pn3m/L1 interface. A droplet of the
L2 phase is transformed into a spherical Pn3m crystal and cooled down to 47 �C: five
types of facets are present. Subsequently, the temperature is raised by increments of
0.5 �C. At 48.5 �C, (511)-type facets disappear. (311)-type facets disappear at 52.5 �C,
(400) at 55.0�C, (220) at 55.5 �C and at 55.6 �C (111)-facets are wet by the L2 phase.
(Collaboration with J. Grenier and J. Okal.)
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Upon heating from 47.0 to 51.0 �C, facets grow at the expense of rough
surfaces which are completely eliminated at 51.0 �C. This phenomenon will
be discussed later in Section 7.1. Upon further heating from 51.0 to
55.5 �C, the facet-by-facet surface melting occurs.

5.3. Indexing of Facets at the Pn3m/L1 Interface

Further description of crystal shapes observed in experiments requires the
knowledge of facets’ indices. For indexing of facets, it is convenient to
consider a completely faceted shapes such as those in Fig. 26A and C. Here,
the crystal in picture (A) has the shape similar to the one labeled “51.0 �C”
in Fig. 25. With the hypothesis of the Pn3m ! Fd3m symmetry break-
down in mind, Pn3m (Fig. 26B) and Fd3m (Fig. 26C) shapes expected
theoretically from the Donnay–Harker selection rules have been generated.

experiment

A B

(101)

Pn3m 

(200)

(111)

(112)

(002)

D

experiment

(115)

(111)
(202) (022)

(113)

(004)

Fd3m

C

Figure 26 Indexing of facets on experimentally observed crystal shapes in terms of
Pn3m and Fd3m symmetries: (A) completely faceted Pn3m-in-L1 crystal of phytantriol.
(B) shape of Pn3m crystals expected from Donnay–Harker rules, (C) shape of Fd3m
crystals expected from Donnay–Harker rules, (D) vicinity of the [001] axis. (Collabo-
ration with P. Faye and R. Sheska.)
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In terms of these rules, the corresponding series of facets, in order of their
prominence (based on interplanar distances) are:

� Pn3m, D-H: (110), (111), (200), (211), (221), (310)
� Fd3m, D-H: (111), (220), (311), (400), (331), (511)
� Experiment: (111), (220), (400), (311)

Clearly, the Fd3m theoretical shape in Fig. 26C (limited to four types of
facets) matches the experimental one better than the Pn3m one in Fig. 26B.
This discussion will be resumed in Section 6.

5.4. Im3m-in-L1 Crystals in Phytantriol/DSPG/Water/Ethanol
system

To complete our study of faceting of bicontinuous cubic phases, we had to
find a system in which the Im3m phase would coexist with the L1 phase. To
our knowledge, there are no binary systems having this property however it
has been pointed our recently by Wadsten-Hindrichsen et al. [42] that the
Pn3m phase is replaced by the Im3m one when a small amount of DSPG
(distearoylphospatidylglycerol) is added to the phytantriol. We have found
that at the concentration of 1.8 w% of DSPG in phytantriol, the phase
diagram of the ternary mixture phytantriol/water/ethanol (see Fig. 24) is
slightly modified: the Im3m phase appears inside the domain of the Pn3m
phase for concentrations of ethanol larger than 8 w%.

5.5. Indexing of Facets at the Im3m/L1 Interface

The series of nine images in Fig. 27 shows the evolution of a Im3m-in-L1
crystal upon a slow lowering of the ethanol concentration in the surround-
ing L1 phase. Indexing of facets is at the Im3m/L1 interface is very easy.
From the fourfold symmetry of the crystal shape, one can conclude that the
central facet is (100). The (111) facet is also easy to identify because its shape
becomes triangular in Fig. 27I. The facet situated halfway between (100)
and (010) must be (110). Finally, the small facet intermediate between (100)
and (111) can be (211). Let us compare this series of facets with predictions
of the Donnay–Harker rule for the Im3m and the Pm3m symmetry resulting
from the “outside-inside” symmetry breaking:

� Experiment: (100), (111), (110), (211)
� D-H, Im3m: (110), (200), (211), (310), (222)
� D-H, Pm3m: (100), (110), (111), (210), (211)

The conclusion is that the experimental results fit much better with the
lower Pm3m symmetry.
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6. Faceting and Topology

Experiments on faceting of bicontinuous inverted cubic phases are
summarized in the lower row of Fig. 28 where typical fingerprint-like
shapes of Ia3d-in-vapor, Pn3m-in-L1, and Im3m-in-L1 crystals are shown.
The upper row of this figure displays spherical sections of so-called “level
surfaces approximation” of IPMS having the Ia3d, Pn3m, and Im3m
symmetries.

6.1. Symmetry Breakdown in Balanced Bicontinuous
Structures

To start the discussion of the topological symmetry breakdown at the
Pn3m/L1 interface, it seems useful to remind some general facts about
symmetries of the bicontinuous lyotropic phases.

(100)

A

D

G

B

E

H

C

F

I

(111)
(110)

(211)

Figure 27 Faceting of a Im3m-in-L1 crystal. This series of pictures shows how the
shape of the Im3m/L1 interface varies when the concentration of ethanol in L1 phase is
lowered from 13% to 8%. (Collaboration with L. Latypova.)
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In the bulk of a perfect bicontinuous lyotropic cubic phase, surfactant
molecules are self-assembled into a continuous non-selfintersecting bilayer
separating two labyrinths filled with water. In drawings, different colors can
be attributed to these two labyrinths or to the two monolayers forming the
bilayer. In Fig. 29, we use Bright and Dark tones of gray (or Blue and
Daffodil colors) so that we will call them B and D.

Triply Periodic Minimal Surfaces (TPMS) or Level Surfaces (LS) of
suitable symmetry can be used for analytical approximations of the bilayer’s
shape. The TPMS representation which appears naturally in the framework
of the Ginzburg–Landau model [15] has a better physical legitimacy but
here, in the context of arguments involving exclusively symmetry and
topology, the LS representation [49] is more convenient for drawings.

Following Schwarz and Gompper [15], a LS (or TPMS) surface is called
balanced if there exists an Euclidean transformation a which maps the B
labyrinth onto the D one and vice versa. Translation bM

�!
in Fig. 29 is an

example of such an operation in the case of the Pn3m bicontinuous
structure.

Therefore, the bicontinuous structures are characterized by two space
groups: if the bi-tone structure has space group H, the mono-tone structure

Ia3d Ia3d Ia3d

Ia3d Pn3m Im3m

Pn3m Im3m

Figure 28 Bicontinuous cubic lyotropic phases. Pictures of level surfaces in the upper
row illustrate shapes of the surfactant bilayer. Pictures in the lower row are images of
real crystals observed in a transmission optical microscope: a Ia3d-in-vapor monocrystal
grown by the hygroscopic techniquemonoolein/water system, a Pn3m-in-L1 mono-
crystal grown by the isoplethal technique in the phytantriol/water system and a Im3m-
in-L1 monocrystal in the phytantriol/DSPG/water/ethanol mixture.
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has space group G ¼ {H, aH}. In terms of group theory, one can say more
precisely that the group G is composed of two cosets with respect to its
subgroup H. All symmetry operation from the first coset H map B and D
labyrinths on themselves, while those from the second coset aHmap B on D
and vice versa.

The names Ia3d, Pn3m, and Im3m of cubic lyotropic phases correspond
to symmetriesG of mono-tone structures; the two labyrinths are assumed to
be equivalent in the bulk of perfect crystals. The corresponding subgroups
H of bi-tone structures are then: H ¼ I4132, Fd3m, and Pm3m. We will
argue below, that for topological reasons, in Pn3m crystals surrounded by
the L1 phase the two water labyrinths cannot be strictly equivalent. This
difference between the two labyrinths, no matter how large it is, breaks the
symmetry Pn3m to Fd3m. The same arguments applied to Ia3d and Im3m
phases, would lead respectively to Ia3d/I4132 and Im3m/Pm3m symmetry
breakdowns.

6.2. Topological Constraints, Prohibited Bilayer’s Edges

In order to understand topological constraints imposed on the structure by
the Pn3m/L1 interface, let us imagine that the interface has been created by
a three-step geometrical process:

1. The bicontinuous phase is first divided into two parts by some secant
surface.

2. One of the two parts is replaced by the L1 phase composed of almost
pure water.

3. The interface created in this way is reconstructed.

Obviously, after the first two steps, the surfactant bilayer is necessarily
intersected and the energetically prohibited edges are created. First, we will

a

bM

bT

Figure 29 Illustration of the relationship between Bravais lattices of the Pn3m and
Fd3m space groups. The shortest vectors of sc and fcc Bravais lattices are shown.

32 P. Pieranski



find shapes and topology of these edges as a function of the orientation and
position of the secant surface and after that we will reconstruct the interface
with the aim to suppress bilayer’s edges. In the case of the cubic bicontin-
uous phase Pn3m, the bilayer’s edges are easy to find using the Level Surface
[49] given by the equation:

D x; y; zð Þ ¼ cos xð Þ cos yð Þ cos zð Þ � sin xð Þ sin yð Þ sin zð Þ ¼ 0: ð7Þ

In Fig. 30B, these prohibited free edges are well visible. One can stitch
them up so that the integrity of the bilayer is recovered. This can be done in
two ways because one of the B or D colors can be chosen for the outer side
of the closed surface. Results of these surgeries are shown in Fig. 30A
and C. Clearly, these two finite closed surfaces are slightly different.
One can say that a surface-induced topological Pn3m/Fd3m symmetry
breakdown occurred here.

6.3. Disorientations

So far, we were dealing with surfaces and facets of perfect single crystals.
However, real crystals can contain dislocations. In solid crystals, dislocations
emerging on facets give rise to steps which can be detected with, for
example, SEM or AFM methods. As already mentioned in Section 1.3,
dislocations have also been detected in soft crystals [9,20] by means of
observation of steps at interfaces.

From the fundamental point of view, dislocations are characterized by
Burgers vectors which, by definition, are translations belonging to Bravais
lattices. Two such Burgers vectors belonging to the simple cubic Bravais
lattice of the Pn3m space group are shown in Fig. 29. We called them b

!
T

A B C

Figure 30 The Level Surface Pn3m in a has two different colors on its two sides.
The spherical section produces prohibited free edges. One can stitch them up so that
the surface becomes closed. This can be done in two ways because one or the other
color for the outer side can be chosen. In both cases, the topological Pn3m ! Fd3m
symmetry breakdown occurs.
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and b
!
M with the aim to emphasize that they give respectively Trivial and

Möbius dislocations. A detailed explanation of this terminology can be found
in Ref. [50]. Here, in Fig. 31, we show that when a Pn3m crystal contains a
Möbius dislocation, the bilayer becomes nonorientable exactly as it is the
Möbius strip. From the point of the surface reconstruction discussed in the
previous section, the Möbius dislocation introduces a vary drastic perturba-
tion because the integrity of the bilayer cannot be restored by stitching up
free edges of the bilayer.

7. Phenomena Out of Equilibrium

Theories of crystal shapes are usually focused on the concept of the
equilibrium shape corresponding to the unique absolute minimum of the
total surface energy of a crystal at a constant volume. In such theories, the
minimum is taken with respect to variations in crystal shapes, which are
supposed implicitly to be free which means that there are no energy barriers
to overcome when matter is transferred from one portion of the crystal
surface to another one.

In solid crystals, as emphasized by Nozières in Ref. [21], “This should be
kept in mind: facets size do not reflect equilibrium unless great care is taken to
allow their vertical growth”. It is so because “. . . a facet is often trapped at a
given height z. While it can enlarge easily by adjusting the surrounding
curved parts, it cannot nucleate new terraces; the facet is then metastable”.

A B

Figure 31 Disorientation: a new topological defect. (A) Spherical domain of the Im3m
level surface. Free edges of the bilayer visible here can stitched up exactly in the same
manner as in the case of the Pn3m surface in Fig. 30. (B) In the presence of a
disorientation, the surface becomes nonorientable (see the color discontinuity) and
the free edge connected to the disorientation can not be stitched up.
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This thermodynamic property remains true also in the case of soft
crystals interfaces and has several unexpected consequences.

7.1. Growth by Redistribution

The phenomenon of growth-by-redistribution is one of such conse-
quences. It occurs, for example, in following conditions:

1. The temperature T is risen in C12EO2/water, MO/water and
Phytantriol/water systems.

2. The chemical potential of water mH2O
(H) is lowered in C12EO6/water

system.
3. The chemical potential of ethanol mEtOH (concentration of ethanol in

the L1 phase) is lowered in phytantriol/water/ethanol system.

In all these cases, for small enough variations of the intensive parameters
T, mH2O

(H), or mEtOH, facets existing already at interfaces extend their sizes
while the rough parts of interfaces are shrinking. Here, this phenomenon
has already been mentioned in Section 5.2 (see Fig. 25).

This phenomenon has no counterpart in usual crystal/melt(solution)
systems because it occurs at a constant number Ns of surfactant molecules
in Pn3m, Ia3d, or Im3m crystals. Called “pseudo-growth” or “growth-
by-redistribution,” it is characteristic of soft crystals in which the number of
surfactant (orwater)molecules per unit cell can vary continuously as a function
of T, mH2O

(H), or mEtOH. If for instance the number of surfactant molecules
per unit cell nuc decreases upon the above-mentioned changes then,
at constant Ns, new unit cells have to be created as if crystals were growing.

Now, in the case when facets are metastable, that is, when nucleation is
prohibited on facets, the growth (in terms of the total number of unit cells
Nuc ¼ Ns/nuc) takes place only on rough parts of crystal surfaces and as a
consequence, facets extend their sizes (see Fig. 32).

lyotropic cubic crystal 

new unit cells 

larger facet 

smaller volume 

L1 phase T 

A B

T +DT

Figure 32 Growth-by-redistribution of soft crystals. (A) Flat facets coexists with
rough surfaces made of steps. (B) The excess surfactant is used for construction of
new unit cells on rough surfaces.
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7.2. Ratchet Effect

Experiments have shown that the growth-by-redistribution phenomenon is
in general not perfectly reversible; when the initial values of the intensive
parameters are restored too rapidly, facets generally do not recover their
initial sizes but remain larger. Therefore, one can expect that upon such
back-and-forth saw tooth-like cycling of intensive parameters, facets may
grow in size until elimination of rough surfaces is complete. In Ref. [31],
this phenomenon called ratchet effect is discussed in all details. Here, it is
illustrated in Fig. 33 showing variations of the shape of a Im3m-in-L1 crystal
in the quaternary phytantriol/DSPG/water/ethanol system submitted to
temperature cycling.

7.3. Thermal Permeation

In 1982, P.G. de Gennes wrote two articles on two apparently disjoined
subjects: (1) Ludwig–Soret effect in porous media filled with pure liquids
[51] and (2) bicontinuous structures in microemulsions [52]. In the study of
bicontinuous cubic lytropic crystals submitted to temperature gradients
[53], these two subjects are intimately related. Experiments reported in
Ref. [53] consisted in observation, by means of an optical microscope, of
crystal shapes in three types of phase coexistence: Ia3d-in-vapor, Pn3m-in-
L1, and Im3m-in-L1. Here, we show in Fig. 34A a series of six pictures

A

C

B

D

Figure 33 Ratchet effect: variations of the shape of a Im3m-in-L1 crystal in the
quaternary phytantriol/DSPG/water/ethanol system submitted to temperature cycling.
(Collaboration with T. Plötzing and L. Latypova.)
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illustrating the evolution of a Pn3m-in-L1 crystal submitted to a horizontal
temperature gradient of 2.4 K/mm. It is evident here that the colder part of
the crystal is growing and the warmer is simultaneously deconstructed.
Quantitative features of this behavior can be obtained from the spatiotem-
poral cross-section shown in Fig. 34B. It has been extracted from a video by
the reslice command (ImageJ freeware) along the axis r defined in Fig. 34A.
In particular, it is obvious that:

1. The velocity of the cold extremity of the crystal increases monotonically
and suddenly falls to zero at time tc ¼ 60,000 s.

2. This transition takes place when the faceting of the cold extremity is
achieved, that is, when the mobile rough part of the crystal surface
located between facets disappears.

3. The velocity of the warmer extremity of the crystal decreases progres-
sively and tends to zero at the same time tc.

It is obvious that these growth and deconstruction processes involve
transport of the surfactant from warm to cold extremities of crystals. In the
case of Ia3d-in-vapor crystals, this transport cannot occur through the vapor
phase because C12EO6 surfactant is not volatile, that is, its vapor pressure at
room temperatures is extremely low. In the case of Pn3m-in-L1 and Im3m-
in-L1 crystals, the transport of surfactant can neither occur through the L1
phase because the concentration of surfactants (C12EO2 or phytantriol) in it
is negligible. We know that from the fact that the volume of Pn3m and
Im3m crystals does not decrease on the time scale of weeks in spite of the fact
that fresh water or fresh water/ethanol solution is permanently flowing
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Figure 34 Deformation of Pn3m-in-L1 crystal submitted to a temperature gradient in
the phytantriol/water/ethanol ternary system. The concentration of ethanol in the L1
phase is 4%. The temperature gradient is 2.4 K/mm. (A) Series of six images selected
from a video. (B) Spatiotemporal section along the axis r defined in the picture labeled
“40000 sec”, extracted from a video taken at the rate of 1 image per 400 s. (Reproduced
from Ref. [53] with kind permission of Liquid Crystals. Collaboration with
S. Popa-Nita, J. Rizzi, and G. Saquet.)
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around them. Moreover, if the surrounding solvent (L1 phase) was involved
in the transport of surfactant, the observed changes in crystal shapes would
be affected by flow of the solvent which is not the case.

Therefore, we are left with the unique possibility of the transport of the
surfactant through the crystal. We should even say—transport of the surfactant
through the lattice made of the unique bilayer—because the crystal lattice is at rest
with respect to capillary walls; we know that from the fact that cold facets
are at rest. This important conclusion is illustrated in Fig. 35 by four
drawings of the Pn3m level surface inside the crystal changing its shape (to
be compared with Fig. 34). This kind of transport is similar to the perme-
ation of molecules through smectic layers or through cholesteric helix.
Therefore, our final conclusion is that temperature gradients drive the transport
of surfactant by permeation, along triply periodic bilayers, from warm toward cold
sides of crystals.

8. Exploring Facets of Soft Crystals with AFM

8.1. Vicinal Facets as Systems of Ordered Steps

The devil’s staircase faceting mentioned in Section 3.1.2 is, strictly speaking,
a purely theoretical concept valid at T ¼ 0 K for crystals of infinite size.
It involves the Haüy-like representation of facets with arbitrarily highMiller

A B

C D

Figure 35 Simulation of the Soret effect in the Pn3m phase (see Fig. 34). (Reproduced
from Ref. [53] with kind permission of Liquid Crystals. Collaboration with S. Popa-
Nita, J. Rizzi and G. Saquet.)
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indices as ordered systems of steps and kinks belonging to principal facets.
The principle of this so-called FSK (facets, steps, and kinks) model has
already been represented in Fig. 3 where, for example, the (103) facet,
intermediate between (100) and (001) facets, is obviously made of regularly
spaced steps belonging to the (001) facet. In general, any (m0n) facets can be
represented as an ordered systems of such steps.

One can ask whether such ordered systems of steps really exist on facets
with high Miller indices in experiments with soft crystals where the devil’s
staircase-like faceting was reported to occurs.

The optical phase contrast used in experiments with the Monooelin/
water system reported in Ref. [20] allows to detect isolated steps on (112) or
(202) facets. Unfortunately, the diffraction limited lateral resolution of this
technique (of the order of 1 mm) is too low for imaging ordered systems of
steps on vicinal facets of relatively small crystals.

In terms of the vertical and lateral resolution, the Atomic Force Micros-
copy is perfectly adapted for this purpose but it is difficult to use in the
humidity range close to 100% required for the existence of Ia3d-in-vapor
crystals. We are thus left with the last alternative choice—the thermotropic
cubic mesophases—where, on the contrary, the atmosphere surrounding
crystals should preferentially be dry.

8.2. Cubic Thermotropic Mesophase

In experiments reported in Ref. [6], a series of 40-alkoxy-30-nitrobiphenyl-
carboxylic acids (ANBC) derivatives were used [6,10–12]. For the n ¼ 9
compound, the cubic Ia3d mesophase occurs between 95.8 and 145.6 �C
(respectively between 92.6 and 149.8 �C for the n ¼ 10 one). Upon cool-
ing, the cubic mesophase appears at 135.7 �C for n ¼ 9 (respectively,
142 �C for n ¼ 10) and remains metastable till room temperature. More-
over, in the case of small droplets, the metastable cubic mesophase can be
kept at room temperature during several weeks after which it recrystallizes
slowly. It is precisely this metastability of the cubic mesophase that allowed
to study droplets of this phase with the AFM at room temperature.

8.3. AFM Images of Vicinal Facets

In Fig. 36, two AFM images of small portions of the free surface of an Ia3d
monocrystal are shown. The global shape of the crystal has been determined
from optical observations (see, e.g., Fig. 2B) and from other low-resolution
AFM images reported in Ref. [6]. It is a spherical cup with the base of
10 mm in diameter and the contact angle of about 30�. Using the same
low-resolution images indexing of 15 facets covering this crystal has been
performed.
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Figure 36A shows the topography of a square area 15 � 15 mm in size
located on the top of the crystal. Isolated steps on the (121) facet are well
visible here but vicinal facets have still a smooth aspect. A small 1 � 1 mm
square area surrounded by the dotted line in Fig. 36A has been enlarged in
Fig. 36B. This image confirms the validity of the FSK theoretical model
proposed for explanation of the devil’s staircase-type faceting.

9. Conclusions

Facetted shapes of cubic thermotropic and lyotropic mesophases are
beautiful and intriguing. On many images shown in this review, constella-
tions of facets at cubic/isotropic interfaces appear as highly symmetric and
allow to identify immediately fourfold, threefold, and twofold axes. Simul-
taneous occurrence of these three point symmetries is a finger-print of cubic
space groups: Ia3d, Pn3m, Im3m, and Pm3n. Discrimination between these
groups is possible after indexing of an appropriate number facets. In con-
clusion, shapes of monocrystals of cubic mesophases are like characteristic
textures of other mesophases: they allow to identify symmetries without the
help of X-ray diffraction.

Let us stress that production of monocrystals of cubic lyotropic meso-
phases requires special methods tailored for this purpose. The hygroscopic
method described in Section 2.2 is adapted for studies of cubic/vapor inter-
faces in surfactant/water binary systems. The isoplethal method described in
Section 2.3 has been developed for studies of cubic/L1 interfaces in binary
or ternary systems with the solubility gap.

In the hygroscopic method, the chemical potential of water mwater is
controlled through regulation of the water vapor pressure. By this means,
T-vs.-mwater diagrams can be explored much more precisely than the
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Figure 36 Systems of ordered steps detected by AFM on vicinal facets. (Reproduced
from Ref. [6] with kind permission of Springer ScienceþBusiness Media.)
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corresponding T-vs.-cwater classical diagrams build tediously from a large set
of samples with different concentrations. Thanks to this feature, the RHCP
ephemeral phase has been discovered in DTACl/water system.

Another unexpected outcome of hygroscopic studies was the generic
discovery of the devil’s staircase-type faceting at Ia3d/vapor interface. In the
light of this result, lyotropic systems appeared as a model system for studies
of the faceting phenomena considered from the fundamental point of view.
In particular, the so-called anisotropic melting of crystal surfaces analyzed theo-
retically by Nozières [34] has been found to occur at cubic/vapor interface.
In the case of binary surfactant/water systems, the anisotropic melting at the
cubic/vapor interface occurs when the cubic ! L2(L3) transition is
approached. More precisely, different (hkl)-type of facets melt one after
another as a function of the decreasing distance from the cubic ! L2(L3)
transition.

From theoretical considerations of Nozières et al. [21] results that the
richness of faceting in soft crystals depends on the interfacial tension. At the
cubic/L2(L3) interface this tension is so low that the whole interface is
rough. In systems with the solubility gap, the cubic/L1 coexistence shows
up and the corresponding interfacial tension is larger. Experiments have
shown that as expected, faceting occurs in this case even if it is less
“exuberant” then at cubic/vapor interfaces.

Studies of faceting in lyotropic systems lead also to discoveries of several
other effects that have no equivalence in solid crystals. The growth by
redistribution, the ratchet effect, and the thermopermeation are three of them.
Let us stress that this last out-of-equilibrium effect is connected to former
work P.G. de Gennes from whom the author learned so much.
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[10] M. Impéror-Clerc, P. Sotta, Liq. Cryst. 27 (2000) 1001.
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Abstract

In multicellular organisms, signaling is a necessity and an important mode of

communication between cells is mediated by neurotransmitters, hormones, and

other chemical messengers that are stored in secretory vesicles. In stimulated

conditions secretory vesicles, which are trafficked to be docked at the plasma

membrane, enter exocytosis, characterized by vesicle and plasma membrane

merger. Due to repulsive forces of negatively charged membrane surfaces, it

was long believed that the fusion pore is merely a short lived intermediate state

leading irreversibly to a complete merger of both membranes. However, recent

results show that the fusion pore is a rather stable structure, which can

reversibly reopen to subnanometer diameters; dimensions too narrow to permit

the exit of the cargo into the extracellular space. The aim of this chapter is to

first review how can such a structure attain stability and compare two models

in which membrane constituents are either isotropic or anisotropic in nature.

Then we address the molecular nature of such a stable, release-unproductive

fusion pore. We conclude that membrane constituents of the stable fusion pore

membrane, being made of proteins and/or lipids, very likely consist of architec-

tural elements that exhibit anisotropicity. The dynamics of fusion pore diameter

is then determined by the density and architectural properties of these mem-

brane constituents at fusion pore locales.

1. Introduction

When eukaryotic cells evolved from a prokaryotic precursor 1000 to
2000 million years ago, this was associated with a significant cell volume
increase. This prompted a new structural organization to evolve, since
diffusion-based signaling, efficient at nanometer distances, is inadequate to
support the function of single nucleated cells, and consequently all multicel-
lular organisms, which emerged once nucleated cells evolved. Besides the
nucleus and other membrane-bound organelles, a key structural invention of
eukaryotic cells is the secretory vesicle. This subcellular organelle has a
complicated structure; its membrane consists of lipids and proteins. It is
playing an essential role in the function of animals, including humans,
where chemical signals, such as neurotransmitters and hormones, are stored.
The highly concentrated chemical signals in the secretory vesicle are released
into the extracellular medium following a stimulus delivery, which is
thought to mediate the fusion of the secretory vesicle membrane with the
plasma membrane. This latter event is part of the process of exocytosis.

Exocytosis involves the formation of the fusion pore-an aqueous
channel between the vesicle and the plasma membranes. Despite intense
investigation of the regulatory mechanisms of exocytosis in the last decades,
the nature of the fusion pore remains obscure [1]. The main obstacle has
been an inability to directly monitor the cargo release through single fusion
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pores. Over the past decade, methodologies have been developed to moni-
tor neurotransmitter release during single exocytotic events by detecting the
amperometric oxidation current of the released transmitter [2–4]. However,
neurotransmitter release proceeds in at least two main stages [5]. First, the
vesicle establishes a stable fusion pore and then the pore suddenly enlarges
(Fig. 1). In support of this view, amperometric spike-like currents are
preceded by a small pedestal, called the “foot” of the spike [2]. Combined
patch-clamp and amperometric studies have indicated that the foot repre-
sents neurotransmitter release through the initially formed fusion pore [6],
although recent results have failed to confirm this [7]. On the other hand,
the neurotransmitter released during the foot and during the main spike is
the same [3], demonstrating the existence of a dynamic fusion pore. How-
ever, from the amperometric approach one can not conclude about the
nature of dynamism of the fusion pore directly. In particular, it is not clear
whether the relatively small release of transmitter during the initially formed
fusion pore is due to a narrow fusion pore diameter and/or due to restrained
kinetics-short effective fusion pore dwell-time. Moreover, the rather small
signal associated with the foot versus the spike-like current and the transient
and short-lived nature of the fusion pore preclude a detailed experimental
investigation of the early fusion pore stages, which may not necessarily lead
to the subsequent increased neurotransmitter/hormone flux rate. Further-
more, to learn more about the nature of the fusion pore in its initial stages, it
would be ideal to have a preparation in which the initial fusion pore exhibits
robust appearance and rarely proceeds to the full fusion stage (Fig. 1), thus
permitting the study of the fusion pore properties more directly by electro-
physiological means. A preparation that meets these criteria is the pituitary
peptidergic vesicle [8].

The mechanism(s), by which the initial fusion pore attains stability, is
poorly understood. Once formed, the fusion pore either fully widens,
leading to the complete merger of vesicle membrane with the plasma

Hemifusion Full fusion

1 2 3

Fluctuations of
a narrow fusion pore

Figure 1 Stages a secretory vesicle has to undergo in exocytosis. Stages a secretory
vesicle has to undergo to attain vesicle membrane merger with the plasma membrane
via the hemifusion stage (1), the fusion pore formation (2), which exhibits stability and
the fusion pore diameter may fluctuate to a wider stage (3) before full fusion, that is, full
integration of the vesicle membrane into the plasma membrane. The integrated vesicle
membrane may return to the cytosol via the process of endocytosis as depicted by the
last stage on the right in the scheme.

Release-unproductive Exocytotic Fusion Pore 47



membrane (full fusion exocytosis; [9]) or can reversibly close (kiss-and-run
exocytosis; [10]). The patch-clamp membrane capacitance measurements
[11] revealed that the fusion pore can also fluctuate between an open and a
closed state in the subsecond time domain before full fusion [12] or can retain
the transient nature of opening and closing for several tens of minutes
[8,13,14]. Reopening of the same fusion pore indicates a remarkable stabil-
ity, a property not observed previously. This and the fact that single exocy-
totic events can be observed with fluorescence microscopy in real time with
styryl dyes [15], and by electrophysiological methods [16] render pituitary
cells convenient preparations to study elementary properties of fusion events.
Therefore, these cells were used to develop a mathematical model describing
the observed energetic stability of the transient fusion pore [17].

2. Narrow Fusion Pores Are Stable Due to the

Accumulation of Anisotropically Shaped

Molecules in the Highly Curved Membrane

Regions

One can consider that highly curved membrane domains consist of
specially shaped membrane constituents. These can be classified as isotropic
and anisotropic as is defined in Fig. 2 [see 18–20]. The appropriate ordering
of such specially shaped membrane constituents in the highly curved mem-
brane regions can likely increase the stability of the membrane region.
Therefore, the model describing the fusion pore stability of peptidergic
vesicles [17] sources on these considerations, and is based on the elasticity of
the membrane layers which includes orientational ordering of membrane
constituents that are anisotropic with respect to the axis perpendicular to the
membrane [21]. Membrane constituents can be single molecules or small
complexes of molecules, which have high negative intrinsic (spontaneous)
curvatures [22]. Figure 3 summarizes the results of the model (taken with
permission from [17]), showing that the correct ordering of membrane
constituents result in the stable fusion pore. Figure 3A captures three states
of a vesicle connected to the plasma membrane with fusion pores of
different diameters. Top three diagrams show that the relative area density
of anisotropic membrane constituents is increased in the membrane region
of the fusion pore, which connects the vesicle with the plasma membrane.
Note that the relative density of anisotropic membrane constituents in the
pore region is increased as the fusion pore diameter is narrowed. Figure 3B
reports the calculated membrane free energy (DF) as a function of the fusion
pore diameter, for different inner diameters of the fusion pore D. It can be
observed in Fig. 3B that for highly anisotropic membrane constituents a
minimum of DF at certain D is predicted, as if the fusion pore can attain
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distinct stable fusion pore diameters. Experimental evidence in support of
discrete diameter states of a stable fusion pore was provided recently by
studying the role of Munc18-1 proteins in fusion pore physiology [24].
A similar, although indirect, conclusion was reported previously [25].
Figure 3C shows that the stable equilibrium fusion pore diameter is nar-
rower, if the membrane constituents have higher anisotropy. Moreover,
Fig. 3D depicts the narrowness of such stable fusion pores in relation to the
membrane thickness. Furthermore, it is important to note that such a model
includes properties related to the observed relationship between the vesicle
size and fusion pore properties [4,17].

3. Isotropic Membrane Constituents Are

Unable to Generate Narrow Stable Fusion

Pores?

A logical question is whether isotropic constituents (as defined in
Fig. 2, with C1m ¼ C2m < 0) can replace the anisotropic ones? The results
on Fig. 4 show that this is not the case. Isotropic membrane constituents

Isotropic constituents

90�

90�

90�

90�

90�

90�

C1m= C2m

C1m¹C2m

C1m¹C2m

C1m¹C2m

C1m= C2m > 0

C1m= C2m < 0

C1m= C2m = 0

C1m> 0, C2m = 0

C1m> 0, C2m < 0

C1m= 0, C2m < 0

C1m= C2m

C1m= C2m

Anisotropic constituents

Figure 2 Isotropic and anisotropic shapes of membrane in highly curved membrane
locales. Different possible intrinsic shapes (isotropic and anisotropic) of small mem-
brane constituents in relation to intrinsic principal curvatures C1m and C2m [18–20].
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Figure 3 Stable configuration of the fusion pore (vesicle fused to the plasmamembrane)
as a function of the fusion pore diameter and intrinsic anisotropy of the membrane
constituents. (A) The sum of the relative area densities of the anisotropic (type 2)
membrane constituents (m2 ¼ m2,1 þ m2,2) in both membrane monolayers, shown for
three different vesicle shapes (see panel below) of 300 nm in diameter, fused to the inner
membrane surface. Anisotropic membrane constituents have C1m,2 � 0 and
C2m,2 ¼ �1/3 nm�1 which corresponds to Hm,2 ¼ � Dm,2 ¼ � 1/6 nm� 1. (B) Free
energy of the two component bilayer membrane (DF) as a function of the fusion
pore diameter (D) calculated for different values of the intrinsic curvature deviator
of the anisotropic (type 2) membrane constituents in the membrane bilayer
Hm,2 ¼ � Dm,2: �1/5.75 nm�1 (a), �1/6 nm�1 (b), �1/6.2 nm�1 (c), �1/6.5 nm�1

(d). Arrows show the values of D(nm) corresponding to the shapes presented in panel A.
(C) The calculated equilibrium fusion / pore diameter (Deq), corresponding to the mini-
mum of DF (see panel B) as a function of the anisotropy Dm,2 ¼ jHm,2j (see Appendix A
and Materials and Methods in [17]). Note that on the left side of the vertical dotted line,
the local minimum of DF does not exist (see curve (d) in panel B). Values of the model
parameters are: Hm,1 ¼ Dm,1 ¼ 0, K1 ¼ 10 kT nm2 [21,23], K2 ¼ 100 kT nm,
K2 ¼ �70 kT nm2, w ¼ � 0.25, z2 ¼ 6, �m2;in ¼ �m2;out ¼ 0:02, m0 ¼ 1.67 nm� 2 and
R0 ¼ 1000 nm, taken with permission from [17]. (D) Schematic representation of the
fusion pore with anisotropic constituents in both membrane layers and a fusion pore
diameter (D) of �0.6 nm. The thickness of the membrane layer containing glycolipids
(�4 nm) is larger than the thickness of the membrane layer without them (�2.5 nm).
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only weakly accumulate in the inner and outer membrane layers in the
vicinity of the saddle-like fusion pore and only form less stable fusion pores
with diameters that are at least two orders of magnitude wider than those
obtained by the anisotropic membrane constituents (with C2m < 0 at
C1m � 0, compare the ordinates and abscissas with Fig. 3B). While the
effects of isotropic inverted conical constituents on the membrane elasticity
due to the mismatch of the intrinsic mean curvatures and the actual mean
curvature of both layers in the twomembrane layers partly cancel each other
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Figure 4 Membrane free energy as a function of the stable pore diameter with
isotropic membrane constituents. Isotropic membrane constituents have intrinsic cur-
vatures as marked in the figure. Values of other model parameters are given in the
caption to Fig. 3.
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due to opposing signs of the principal curvature in the two membrane
layers, the effect of the average orientational ordering of the anisotropic
constituents from both layers is summed up (since the average orientation of
the anisotropic membrane constituents is different in both membrane layers
of the fusion pore). This is one of the main reasons for the most striking
difference between the effect of anisotropic membrane constituents and the
isotropic inverted conical membrane constituents. Namely, the anisotropic
membrane constituents (with C2m < 0 at C1m � 0) can stabilize the fusion
pore geometry (as shown in Fig. 3B), while isotropic membrane constitu-
ents (with C1m ¼ C2m < 0) cannot.

Thus, the answer is that a narrow stable fusion pore is likely made of
anisotropic, rather than by isotropic membrane constituents. The nature of
these, however, is not clear yet.

4. Protein and Lipids Affect Exocytosis and

Fusion Pore Properties

Figure 3D shows the cross section of the fusion porewith a stable narrow
diameter. It is remarkable that fusion pores with a diameter of about one-tenth
of the membrane thickness can be formed. The question is, how and with
which molecules such a structure can be built. It is clear that such a narrow
pore is physiologically release unproductive (unable to release the vesicle
cargo-neurotransmitters and hormones), since the pore is narrower than the
size of even the smallest chemical messengers such as glutamate and acetylcho-
line [14,17,26]. Once such narrow pores are formed, they can enter into a
release competent mode by stimulation [8,14,26], that is, the pore diameter
widens or even generates the full fusion vesicle state (see Fig. 1).

In the next section, we discuss some of the key candidate molecules that
may regulate the fusion pore formation and properties (Fig. 5). Although
physiological results are still incomplete of how proteins and lipids affect the
stages of exocytosis defined in Fig. 1, mainly biochemical and genetic
studies (reviewed in [27]) place the SNARE proteins as prominent players
in these processes, as it is shown in Fig. 5.

5. SNARE Zippering and SM-Proteins

The formation of the fusion pore may be driven by a conformational
change of the SNARE complex (N-ethylmaleimide-sensitive fusion
(NSF)-attachment protein receptor) [28]. Together with other interacting
proteins (i.e., SM-proteins, for Sec1/Munc-18 like proteins), this complex
is considered important in membrane merger [1], that is, in the overcoming
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the repulsive electrostatic forces between phospholipid bilayers of the
apposing membranes.

According to the “zipper hypothesis” [29], assembly is initiated at the
N-terminal ends of the SNARE motifs and then progresses downhill an
energy gradient toward the C-terminal membrane anchors, thus pulling the
membranes together and initiating fusion. However, it is still contested as to
how exactly SNARE zippering contributes to the membrane merger and in
particular how these proteins relate to the fusion pore stability and the
postfusion stages of exocytosis (Fig. 1).

For example, the trigger for secretions, an elevation of cytosolic [Ca2þ]
is thought to be translated into dynamic fusion pore changes via the
interaction of synaptotagmin-1, a Ca2þ-binding protein, with the
SNARE complex [23]. Moreover, the SM family of proteins play a role
in SNARE-mediated events, though their exact role(s) remains enigmatic.
Neuronal isoform of mammalian Munc18, Munc18-1, was originally found
to bind with high affinity to syntaxin-1, a SNARE member protein [30],
which appears to have a role in determining fusion pore structure [31].
However, whether alterations in fusion pore dynamics involve specifically

Figure 5 Interactions between lipids and proteins affecting exocytosis and fusion pore
properties. Lipids and lipid derivatives are depicted in light gray, proteins are depicted in
dark grey. Taken with permission from [27].
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changes in fusion pore conductance or/and fusion pore kinetics is
unknown. The interpretation of fusion pore dynamics by SNARE
mediated mechanisms is further complicated by the discovery that changing
vesicle size affects its fusion pore [4,17]. In addition to proteins, negatively
charged lipid molecules strongly affect the probability of exocytosis [22].
Thus, to understand how these complex mechanisms affect the dynamics of
the fusion pore, one needs to consider a mechanism that can describe the
stability of the fusion pore forming initially [17], and also predicts how
interacting molecules (proteins and/or lipids) mediate changes in pore
stability leading to fusion pore diameter enlargement. Which are the lipids
that affect exocytosis and fusion pore properties? Do they modulate exocy-
tosis indirectly (signaling) or directly?

6. Cytosolic Plasma Membrane PIP2 Organizes

Exocytotic Machinery

Phosphatidylinositol 4,5-biphosphate (PIP2) is a member of mem-
brane phospholipids of eukaryotic cells. Its inositol headgroup can be
phosphorylated at single or multiple sites to give rise to a variety of
phosphoinositides [32]. In addition to phosphorylation, hydrolysis of
PIP2 by PI-phospholipase C (PI-PLC) yields soluble inositol 1,4,5-
tris-phosphate (IP3) and membrane-resident diacylglycerol (DAG), both
second messengers, playing multiple signaling roles [33]. PIP2 is mainly
located on the cytoplasmic leaflet of the plasma membrane and is known
to be engaged in a series of regulated processes, including endocytic and
exocytic membrane trafficking [34]. It is a necessary prerequisite for Ca2þ-
dependent exocytosis [35]. Following activation of membrane fusion,
plasma membrane PIP2 becomes transiently depleted by phospholipase C
activity downstream of Ca2þ signaling. Using PC12 cells, two enzymes
(phosphatidylinositol transfer protein and phosphatidylinositol-4-phos-
phate-5-kinase) involved in metabolism of PIP2, were identified to be
required for vesicle priming [36]. Recently, it was shown that increase or
decrease of plasmalemmal PIP2 levels results in increase or decrease of
primed vesicle pool [37] and that siRNA knockdown of previously men-
tioned enzymes results in impaired exocytosis of insulin [38]. PIP2 self-
organizes in lipid microdomains and colocalizes well with syntaxin clusters,
which appears to be essential for Ca2þ-dependent exocytosis [39,40].
Interestingly, a substantial fraction of PIP2 microdomains also colocalizes
with calcium activated protein for secretion (CAPS) protein [40], which
indicates that PIP2 signals the recruitment of proteins required for exocyto-
sis to sites necessary for vesicle docking and membrane merger.

54 J. Jorgačevski et al.



Concentration of PIP2 in lipid microdomains is estimated to be relatively
high in comparison to the surrounding regions [41], which inhibits
SNARE-dependent fusion in the absence of CAPS, most likely due to its
inverted cone shape and positive curvature, which antagonizes highly
negative curvature stalk models needed for transition to full fusion
[41,42]. However, positively charged juxtamembrane regions of SNAREs
may sequester PIP2 from membrane regions that undergo high curvature
transition during fusion, thus SNAREs themselves may help promote the
curvature needed for completion of SNARE complex formation and
transition to full fusion [43]. James et al. [41] suggest two mechanisms by
which PIP2 helps to regulate membrane fusion. First, inhibition is due to
intrinsic positive curvature of PIP2. Second, PIP2 strongly facilitates rates of
membrane fusion by PIP2-binding proteins such as CAPS, synaptotagmin,
or rabphilin which possess additional properties that promote SNARE
function in fusion [41]. Thus, if one would regulate enzymes, that control
PIP2, then one could influence exocytosis. Indeed, the rolling blackout (rbo)
gene encodes lipases, which are putative integral plasma membrane lipolytic
enzymes that have an essential role in phospholipase C-dependent PIP2/
DAG signaling [44]. In rbots (temperature-sensitive) Drosophila mutants,
exocytosis appears to be blocked shortly before fusion step with accumula-
tion of docked vesicles at presynaptic active zones, indicating a role for
RBO protein downstream of vesicle docking [45], for example, through
stabilization of the fusion pore in its narrow configuration which does not
permit neurotransmitter release [17]. It is believed that RBO protein may
be important for the local production of DAG and for the local regulation of
PIP2. Thus, if RBO protein is blocked, elevated concentrations of PIP2 may
negatively regulate Ca2þ channels thereby blocking Ca2þ influx and arrest-
ing docked synaptic vesicle fusion [45].

7. Polyunsaturated Fatty Acids Modulate

Exocytosis via SNARE Proteins

Polyunsaturated fatty acid (PUFA) and phospholipases, which release
them, have been known to play an important role in exocytosis [46].
Especially two types of PUFAs, omega-6 (arachidonic) and omega-3 (doc-
osahexaeonic) variants, are essential in membrane fusion [47]. Besides ion
channel modulation and cytoskeleton functions, PUFAs act on proteins that
are pivotal in vesicle fusion—syntaxins. PUFAs are also major building
blocks of cellular membranes [48] and possess favorable biophysical proper-
ties such as flexibility and solubility, which promote membrane fluidity [46].
It is known that a mutation of PUFA-related enzymes as well as PUFA
deficient diet causes mental retardation [49] and deficient brain function
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[50]. However, until recently not much has been known about mechanism
of PUFAs actions. It was proposed [47] that omega-3 and omega-6 fatty
acids act on syntaxin by changing its conformation thus allowing formation
of Munc18-syntaxin-SNAP25 tripartite complex and promoting comple-
tion of SNARE complex formation [47,51].

8. Lipid Rafts, Ceramide, Sphingosine, and

Cholesterol

Ceramide, a membrane sphingolipid, is unable to spontaneously trans-
fer between lipid bilayers and has a tendency to self-aggregate into micro-
domains (lipid rafts) in association with other sphingolipids and cholesterol
[52,53]. It was thought that ceramide acted as a secondary messenger.
However, it is more likely that it acts by modifying interactions within
lipid rafts, with consequences for raft coalescence, membrane curvature, and
signaling emanating from these domains [54]. Additionally, with its small
hydroxy headgroup and a cone shape, ceramide facilitates membrane fusion
and fission by inducing negative membrane curvature [54].

Sphingosine is the backbone molecule of sphingolipids [55]. After being
cleaved by ceramidase from ceramide, sphingosine is involved in many
cellular functions, some of those being inhibition of voltage-operated
calcium channels [56], modulation of excitability and/or transmitter release
in the nervous system [57], control of apoptosis [58], and more. Recently, it
was also discovered that sphingosine facilitates SNARE complex assembly
by acting on synaptobrevin-2 [59] (Fig. 5) and that it regulates syntaxin-1
interaction with Munc18-1 [60], thus making it one of the most important
lipids in regulation of exocytosis.

Cholesterol is a major lipid component of cellular membranes and is
known to aggregate with saturated phospholipids and sphingolipids in lipid
microdomains or rafts [61], where it plays a key organizing role in enhanc-
ing the tendency of saturated phospholipids and sphingolipids to segregate
from unsaturated phospholipids [62]. Rafts themselves are considered to
serve as sites for specific protein–lipid interactions [63] and several proteins
necessary for the exocytotic process have been shown to associate with these
cholesterol-rich domains, including SNAREs [64]. Thus, it is very likely
that lipid rafts or specialized membrane sites serve as sites at or near which
membrane fusion occurs [65,66].

There are several mechanisms by which cholesterol is capable of con-
tributing to membrane fusion [67,68]. First, as a component of lipid rafts,
cholesterol can organize essential proteins and lipids at the fusion site [67].
Removal of cholesterol from plasma/vesicle membrane breaks the structure
of lipid microdomains causing dispersal of critical proteinaceous and lipidic
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fusion machinery, thus interfering with efficient exocytosis. It was shown
that removal of cholesterol by using methyl-b-cyclodextrin (MbCD) causes
dose-dependent inhibition of the extent of triggered fusion and progressive
shift to a higher [Ca2þ] [69]. Interestingly, the effect can be rescued by
exogenous delivery of cholesterol or other molecules with similar or greater
negative intrinsic curvature (a-tocoferol and dioleoylphosphatidyl-ethanol-
amine [DOPE]). However, only cholesterol can recover both the efficiency
of fusion and the fundamental ability of vesicles to fuse [69,70]. Second
important role of cholesterol in membrane fusion is its modulation of
physical properties of the membrane, such as fluidity and/or curvature
[71], the latter being extremely high in the fusion pore area [17]. Finally,
as a functional ligand or cofactor, cholesterol can directly modulate the
activity of proteins essential to the fusion process [67], for instance, synap-
tophysin/synaptobrevin interaction, which is necessary for efficient exocy-
tosis, seems to critically depend on the cholesterol content at the fusion site
[72]. At this site, cholesterol may participate in the relatively high density of
anisotropic membrane components [17].

Cholesterol also appears to play an important role in fusion pore dynam-
ics. It is believed that cholesterol regulates the persistence of the semi-stable
fusion pore as shown electrophysiologically in single vesicle studies of pitui-
tary peptidergic vesicles [17]. It is interesting to note that it is the cholesterol
located in the cytosolic leaflet that may stabilize the fusion pore and not the
one in the extracellular leaflet [73]. Wang et al. [73] indicate that all three
previously depicted properties of cholesterol: viscosity of membrane,
stiffness of lipid monolayer, negative intrinsic molecular curvature, and
modulation of fusion proteins may contribute to this effect. These mechan-
isms may generate an anisotropically rich environment that is required for
highly curved membrane structures [17]. Together, these properties make it
energetically favorable to form and maintain the narrow waistline of the
fusion pore. Thus, cholesterol removal on the cytoplasmic leaflet of the
fusion pore lowers the overall probability for successful fusion [73].

9. Conclusions

We here discussed the fusion pore, a membranous intermediate that is
formed upon the merger of vesicle and plasma membranes. Initially, it is an
energetically stable, but release unproductive structure, if its diameter is in
the subnanometer domain. The subsequent steps may lead to fusion pore
dilation or even into full fusion stage, where the vesicle membrane collapses
into the plasma membrane. The later stages are characterized by an enlarged
pore diameter and are release productive. The stable and narrow fusion pore
is likely established by accumulation of anisotropic membrane constituents
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within the neck of the fusion pore. Which molecules exactly contribute to
the anisotropic nature of the fusion pore is presently unknown; however,
we here discussed some key proteins and lipids that play significant role.
Future studies will focus in delineating the exact role of classes of molecules
relevant for stabilizing the pore and also address the questions of narrow
pore widening upon a physiological trigger.
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facilitates the native mechanism of Ca2þ-triggered membrane fusion, J. Cell Sci.
118 (2005) 4833–4848.

[70] M.A. Churchward, T. Rogasevskaia, D. Brandman, H. Khosravani, P. Nava,
J. Atkinson, J. Coorssen, Specific lipids supply critical negative spontaneous curvature:
an essential component of native Ca2þ-triggered membrane fusion, Biophys. J.
94 (2008) 3976–3986.

[71] E.J. Dufourc, Sterols and membrane dynamics, J. Chem. Biol. 1 (2008) 63–77.
[72] D. Mitter, C. Reisinger, B. Hinz, S. Hollmann, S.V. Yelamanchili, S. Treiber-Held,

T.G. Ohm, A. Herrmann, G. Ahnert-Hilger, The synaptophysin/synaptobrevin inter-
action critically depends on the cholesterol content, J. Neurochem. 84 (2003) 35–42.

[73] N. Wang, C. Kwan, X. Gong, E.P. de Chaves, A. Tse, F.W. Tse, Influence of
cholesterol on catecholamine release from the fusion pore of large dense core chromaf-
fin granules, J. Neurosci. 30 (2010) 3904–3911.

Release-unproductive Exocytotic Fusion Pore 61



C H A P T E R T H R E E

A Planar Lipid Bilayer in an Electric
Field: Membrane Instability, Flow
Field, and Electrical Impedance

F. Ziebert1,2,3 and D. Lacoste1,*

Contents

1. Introduction 64

1.1. Membranes in Externally Applied Electric Fields 64

1.2. Membranes in Self-generated Electric Fields 65

2. A Quasi-Planar Membrane in a DC Electric Field 66

2.1. Model Equations: Electrostatics 67

2.2. Model Equations: Hydrodynamics and Force Balance at

the Membrane 70

2.3. Growth Rate and Renormalized Elastic Moduli 71

2.4. Flow Fields Near a Driven Membrane 73

2.5. Applications to Specific Experiments 75

3. Impedance of a Planar Membrane in an AC Electric Field 76

3.1. Time-dependent Electric Fields 77

3.2. Equations for Time-periodic Perturbations of an Equilibrium

Base State 78

3.3. Impedance for an Ideally Blocking Non-conductive Membrane 79

3.4. Non-conductive Membrane: Effect of Unequal

Diffusion Coefficients 84

3.5. Impedance for an Ideally Non-blocking Conductive Membrane 88

4. Conclusion 91

Acknowledgments 92

References 93

Advances in Planar Lipid Bilayers and Liposomes, Volume 14 # 2011 Elsevier Inc.

ISSN 1554-4516, DOI: 10.1016/B978-0-12-387720-8.00003-0 All rights reserved.
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Abstract

For many biotechnological applications it would be useful to better understand

the effects produced by electric fields on lipid membranes. This review dis-

cusses several aspects of the electrostatic properties of a planar lipid mem-

brane with its surrounding electrolyte in a normal DC or AC electric field.

In the planar geometry, the analysis of electrokinetic equations can be carried

out quite far, allowing to characterize analytically the steady state and the

dynamics of the charge accumulation in the Debye layers, which results from

the application of the electric field. For a conductive membrane in an applied DC

electric field, we characterize the corrections to the elastic moduli, the appear-

ance of a membrane undulation instability and the associated flows which are

built up near the membrane. For a membrane in an applied AC electric field, we

analytically derive the impedance from the underlying electrokinetic equations.

We discuss different relevant effects due to the membrane conductivity or due

to the bulk diffusion coefficients of the ions. Of particular interest is the case

where the membrane has selective conductivity for only one type of ion. These

results, and future extensions thereof, should be useful for the interpretation of

impedance spectroscopy data used to characterize, for example, ion channels

embedded in planar bilayers.

1. Introduction

Bilayer membranes formed from phospholipid molecules are an essen-
tial component of the membranes of cells. The mechanical properties of
equilibrium membranes are characterized by two elastic moduli, the surface
tension and the curvature modulus [1], which typically depend on the
electrostatic properties of the membranes and its surroundings [2]. Under-
standing how these properties are modified when the membrane is driven
out of equilibrium is a problem of considerable importance to the physics of
living cells. A membrane can be driven out of equilibrium in many ways, for
instance by ion concentration gradients or by electric fields.

Quite generally one can distinguish between systems in which the
electric field is applied externally and systems which are able to self-generate
electric fields.

1.1. Membranes in Externally Applied Electric Fields

The external application of electric fields on lipid films is used to produce
artificial vesicles (electroformation), as well as to create holes in the mem-
brane (electroporation) [3]. Both processes are important for biotechnolog-
ical applications and they are widely used experimentally. However, they
are still not well understood theoretically. The research on electroformation
is motivated by the hope to produce artificial lipid vesicles in a controlled
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and simple way, which will be key to many biotechnological applications.
Cell electroporation is a popular technology and biomedical applications of
in vivo cell electropermeabilization [4] are gaining momentum for drug and
nucleic acids electrotransfer and for the destruction of tumor cells for cancer
treatment [5].

In view of the importance of these applications, many research efforts
have been devoted to study and understand deformations of giant unila-
mellar vesicles (GUVs) due to the application of electric fields. In the
presence of an AC electric field, GUVs show a rich panel of possible
behaviors and morphological transitions depending on experimental con-
ditions—electric field frequency, conductivities of the medium and of the
membrane, salt concentration, etc., [6,7]. A theoretical framework involv-
ing hydrodynamics and a continuum mechanics description of the mem-
brane has been developed, which accounts quantitatively for the observed
equilibrium and nonequilibrium shapes taken by the vesicles in the presence
of an AC electric field [8,9]. For a clear and self-contained presentation of
this theoretical framework, we recommend the chapter “Non-equilibrium
dynamics of lipid membranes: deformation and stability in electric fields” by
P. Vlahovska [53].

The application of external fields is also interesting as a means to move
fluids via electro-osmosis [10,11] and to self-assemble colloidal particles, for
various technological applications. Moreover, the ability to move fluids and
nanoparticles at small scales is used in many biological systems. For instance,
membrane-bound ion pumps and channels are able to transport water (for
instance in aquaporin channels) and ions (in ionic pumps and channels) in a
particularly selective and efficient way, which one would like to reproduce
in artificial or biomimetic microfluidic devices.

1.2. Membranes in Self-generated Electric Fields

In some cases of biological relevance, membranes are able to self-generate
an electric field, due to embedded ion channels or pumps. This can be
achieved because the channels are able to transport ions from one side of the
membrane to the other in a selective way, either down their concentration
gradient in passive transport or against it in active transport, for example,
coupled to the hydrolysis of Adenosine triphosphate or activated by light.
Probably the best known example is the opening and closing of ion channels
in nerve cells allowing the transmission of an electric signal via action
potentials [12]. For all these reasons, ion channels and pumps play an
essential role in many biological functions of a cell [13].

In order to better understand how nerve cells operate in vivo, it would be
helpful to construct an in vitro biomimetic equivalent which would have
some key features of the in vivo system, such as the ability to generate an
action potential, but without the complexity of a real nerve cell. Active
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membranes, which are GUVs containing ion pumps such as bacteriorho-
dopsin [14–16] are a promising system to achieve this goal.

The main purpose of this review is to propose and analyze a simple
model to foster the understanding of various effects resulting from electric
fields acting on a planar lipid membrane. Although we are mostly interested
in applications to biological or biomimetic systems composed of lipid
membranes, we would like to point out that the theoretical framework
presented here is very general. It can be easily adapted to analyze the
electrical properties of artificial membranes which can have very different
properties from biological membranes (as far as, e.g., ionic conductivities or
the bending stiffness are concerned).

This review is organized as follows: in Section 2 we present the model
for a planar lipid membrane and its surrounding fluid in an applied electric
field. In this section, we will restrict ourselves to the case of a DC field.
In particular we will focus on (i) the electrostatic and electrokinetic steady-
state corrections to the elastic moduli of the membrane due to the applica-
tion of the electric field, see Section 2.3; (ii) the flow fields which can be
predicted from such an approach, at steady state and in the case that the
membrane is ion-conductive, see Section 2.4. In Section 2.5 we will
compare the model predictions to two relevant experiments. More details
on this theoretical framework, as well as an extension to the nonlinear
electrostatic regime using the Poisson–Boltzmann (PB) equation, can
be found in Refs. [17–20]. Finally, in Section 3 we present an analysis of
the model in the presence of time-dependent AC electric fields. We provide
derivations for the impedance of the system from the underlying electroki-
netic equations, for situations where the membrane is either blocking or
selectively conductive for ions.

2. A Quasi-Planar Membrane in a DC
Electric Field

The mechanical properties of membranes at equilibrium are charac-
terized by two elastic moduli, the surface tension and the bending modulus.
These moduli typically depend on electrostatic properties, and their mod-
ifications in the case of charged membranes or surfaces in an electrolyte have
been examined theoretically in various situations: in the linearized Debye–
Hückel approximation as well as in the nonlinear PB regime, for lipid
monolayers and symmetric bilayers [2,21–23]. More recently, charged
asymmetric bilayers with unequal Debye lengths on both sides of the
membrane [24] and an uncharged membrane in a DC field [25] have
been investigated.
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In all the works mentioned above, a free energy approach has been used.
Note that while this method works well for equilibrium membranes, it is
not applicable to situations in which the membrane fluctuations have a
nonequilibrium origin, as in the case of active membranes containing ion
channels [14,15,26,27] or in the case of a membrane in a time-dependent
electric field. In our recent work [17–20], we thus have studied this problem
using an electrokinetic approach, which does not have the limitations of a
free energy formulation. In this framework we allow for a finite conductiv-
ity of the membrane due to, for example, ion channels or pumps, and the
ion transport is described using a Poisson–Nernst-Planck (PNP) approach
[28–30]. The electrostatic corrections to the elastic moduli and the fluid
flows in the electrolyte are then obtained by imposing the overall force
balance at the membrane.

Two additional points are worth emphasizing: first, our approach is able
to correctly describe the capacitive effects of the membrane and of the
Debye layers while keeping the simplicity of the “zero-thickness approxi-
mation” on which most of the literature on lipid membranes is based. This is
accomplished by the use of an effective Robin-type boundary condition
(BC) at the membrane. Second, as the method is based on a calculation of
the general force balance at the membrane, additional nonequilibrium
processes could be included into the model rather easily. For simplicity
we investigate here only the effects of ionic currents flowing through the
membrane, which in turn affect the fluid flow near the membrane. Other
nonequilibrium effects that could be included as well are for instance ion
channel stochasticity or active pumping.

2.1. Model Equations: Electrostatics

Figure 1 shows a sketch of the planar geometry that is studied: we consider a
steady current driven by a DC voltage drop V across two electrodes
separated by a fixed distance L. The membrane is quasi-planar and located
at z ¼ 0. It is embedded in an electrolyte of monovalent ions with number
densities nþ and n�. It contains channels for both ion species but is itself
neutral, that is, does not carry fixed charges. The channels or pumps are
assumed to be homogeneously distributed in the membrane and enter only
in the effective conductance G, as introduced below. A point in the
membrane is characterized in the Monge representation by the height
function h(r?), where r? is a two-dimensional in-plane vector. The base
state of this problem is a flat membrane. Hence the electric field, assumed to
be perfectly aligned in z-direction, is perpendicular to it. We assume a
quasi-static approach [18,25] in which membrane fluctuations are much
slower than the characteristic diffusion time t ¼ 1/Dk2 for the ions to
diffuse a Debye length.
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In the electrolyte, the electric potential f obeys Poisson’s equation

r2f ¼ � 1

e
enþ � en�ð Þ ¼ � 2

e
r: ð1Þ

Here e is the elementary charge, e is the dielectric constant of the electrolyte
and we have introduced half of the charge density,

r ¼ e
nþ � n�

2
: ð2Þ

For the sake of simplicity, we assumed a symmetric 1:1 electrolyte, thus far
away from the membrane nþ ¼ n� ¼ n*, and the total system is electrically
neutral. The densities of the ion species obey the PNP equations

@tn
� þr � j� ¼ 0; j� ¼ D �rn� � n�

e

kBΤ
rf

� �
; ð3Þ

where j� are the particle current densities of the ions and kBT is the thermal
energy. We will assume here that both ion types have the same diffusion
coefficient D. Note that we will discuss the effects of differing diffusion
coefficients for an applied AC voltage in Section 3.4.
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Figure 1 Sketch of a quasi-planar membrane embedded in a symmetric electrolyte.
The initially flat bilayer membrane is represented by the plane z ¼ 0. The membrane
fluctuations around this base state have not been represented. A voltage�V/2 is applied
on each electrode, which are separated by a distance L. The membrane carries ion
channels which give rise to a conductance G.

68 F. Ziebert and D. Lacoste



Since we are primarily interested in the behavior close to the membrane,
for the BCs far away from the membrane we assume

f z ¼ �L=2ð Þ ¼ �V=2; ð4Þ
r z ¼ �L=2ð Þ ¼ 0: ð5Þ

Equation (4) states that the potential at the electrodes is held fixed exter-
nally. This BC is quite oversimplified for real electrodes, but captures the
main effects of the electric field, see the discussion in Ref. [19]. We have
also assumed that the distance between the electrodes is much larger than
the Debye length, L � lD ¼ k�1, where

k ¼
ffiffiffiffiffiffiffiffiffiffiffi
2e2n�

ekBT

s
¼ l�1

D : ð6Þ

Hence, as already mentioned above, the bulk electrolyte is quasi-neutral
with negligible charge density (compared to the total salt concentration) and
far from the membrane Eq. (5) holds.

The BC at the membrane is crucial to correctly account for capacitive
effects. We use the Robin-type BC (see Appendix for a derivation)

lm n�rð Þfjz¼ hþ ¼ lm n�rð Þfjz¼h� ¼ f hþð Þ � f h�ð Þ; ð7Þ

where n is the unit vector normal to the membrane and

lm ¼ e
em

d: ð8Þ

lm is a length scale containing the membrane thickness d and the ratio of the
dielectric constants e/em of the electrolyte and the membrane. Note that in
Eq. (7), the membrane plays a similar role as the Stern layer in the descrip-
tion of Debye layers near a charged interface. This BC was rederived for
electrodes sustaining Faradaic current [31,32] or charging capacitively [33],
and was applied for membranes in Refs. [18,19,30]. There it was shown to
properly account for the jump in the charge distribution which occurs near
the membrane as a result of the dielectric mismatch between the membrane
and the surrounding electrolyte.

In addition to Eq. (7), we impose the continuity of the bulk current
jjz ¼ 0
r at the membrane. This BC involves the ohmic law

j
r
jz¼ 0

¼ �G

e
mr½ �z¼ 0 ; ð9Þ
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where G denotes the membrane conductance per area and mr the electro-
chemical potential. The electrostatic potential and the ion densities can now
be obtained by solving Eqs. (1, 2) in the linear Debye–Hückel approxima-
tion and one obtains [19]:

(i) the jump of the charge density at the membrane, rm,
(ii) the current through the membrane, jm, and
(iii) the electric field inside the membrane, E0

m:

rm ¼ ek2=2ð ÞV � jm=Dð Þ L þ lmð Þ
2þ klm

; ð10Þ

jm ¼ �jr ¼ GV

1þ 2=ek2Dð ÞGL
; ð11Þ

Em
0 ¼ � 1

d

2

ek2
� jmL

D
� 2rm

� �
þ V

� �
: ð12Þ

For simplicity, in the derivation of Eqs. (10)–(12) we assumed equal ion
conductivities (Gþ ¼ G� ¼ G) and a symmetric electrolyte on both sides
of the membrane (k>0 ¼ k<0 ¼ k). Note that the method presented in this
section can be easily extended to cover more general cases. In addition, the
nonlinear electrostatic problem (keeping the PB equation) can be still solved
analytically in the non-conductive case. The nonlinear generalizations of
Eqs. (10)–(12) can be found in Ref. [20].

2.2. Model Equations: Hydrodynamics and Force Balance at
the Membrane

The hydrodynamics of the electrolyte is described by the incompressible
Stokes equation, �rp þ �r2v þ f ¼ 0 with r � v ¼ 0, where v is the
velocity field of the electrolyte, � its viscosity, p the hydrostatic pressure and
f ¼ �2rrf the electric driving force. From the solution of the electro-
static and the hydrodynamic problem, one obtains the total stress tensor

tij ¼ �pdij þ � @ivj þ @jvj
� �þ e EiEj � 1

2
dijE2

� �
; ð13Þ

which contains the pressure, the viscous stresses in the fluid and the
Maxwell stresses.

The lipid bilayer membrane, on the other hand, behaves as a two-
dimensional fluid which can store elastic energy in bending deformations.
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More precisely, its elastic properties can be described by the standard
Helfrich free energy

FH ¼ 1

2

ð
d2r? S0 rhð Þ2 þ K0 r2h

� �2h i
; ð14Þ

where S0 is the bare surface tension andK0 the bare bending modulus of the
membrane.

All forces present in the system, the electrostatic, viscous, and elastic
ones, have to fulfill the force balance equation. The latter states that the
discontinuity of the normal–normal component of the stress tensor, as
defined in Eq. (13) and evaluated at the membrane position, must equal
the restoring force due to membrane elasticity, hence

� tz z;1jz¼hþ � tzz;1jz¼h�
� � ¼ � @FH

@h r?ð Þ ¼ �S0k
2
? � K0k

4
?

� �
h k?ð Þ� ð15Þ

Here the index 1 in the stress tensor refers to the order of an expansion with
respect to the membrane height field h(r?). Note that at zeroth order, the
membrane is flat and thus only electric forces and osmotic pressure balance.
By expanding to linear order in the height field h(r?), and using

h / h0e
ik?�r?þs k?ð Þt; ð16Þ

Equation (15) yields the growth rate s(k?) of membrane fluctuations.
Details of the derivation of s(k?) can be found in Refs. [17–19]. We
would like to emphasize that the force localized at the membrane surface
is a priori unknown in this problem. Thus it must be determined
self-consistently from the BCs for the velocity and the stress.

2.3. Growth Rate and Renormalized Elastic Moduli

The force balance Eq. (15) determines the growth rate s(k?) entering the
normal stress difference,

�k?s k?ð Þ ¼ � 1

4
S0 þ DSð Þk2? � Gkk

3
? � 1

4
K0 þ DKð Þk4?� ð17Þ

The electrostatic corrections to the surface tension, DS ¼ DSk þ DSm,
and to the bending modulus, DK ¼ DKk þ DKm can be decomposed into:

(i) an outside contribution due to the charges accumulated in the Debye
layers and denoted with the index k;
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(ii) an inside contribution due to the voltage drop at the membrane and
denoted with an index m. They are given by

DSk ¼ �4
r2m
ek3

� 16
rmjm
ek4D

; DKk ¼ 3r2m
ek5

ð18Þ

for the contribution due to the Debye layers and by

DSm ¼ �em Em
0

� �2
d; DKm ¼ em Em

0

� �2 d3

12
� rm
Em
0

d

ek3

� �
ð19Þ

for the contribution due to the field inside the membrane.
Note that in Eq. (17), one also obtains a purely nonequilibrium correc-

tion Gk ¼ (4rmjm)/(ek
5D). It would correspond to a term proportional to

k?
3 in an “effective membrane free energy” incorporating the Maxwell
stresses. At equilibrium such a term is forbidden by symmetry, but in a
nonequilibrium situation, where the membrane sustains a current jm 6¼ 0, it
is allowed. For realistic parameters, however, this term is very small, see
Ref. [18] for a detailed discussion.

The inside contribution to the membrane surface tension is always
negative, see Eq. (19). The same is typically true for the outside contribu-
tion, see Eq. (18) and note that rm, jm > 0. Hence these contributions can
overcome the bare surface tension S0. If this is the case, an instability
towards membrane undulations sets in. Such an instability had already
been described for the high salt limit in Ref. [34]. Note that the linearized
theory developed here describes only the early stages of the instability, but it
is more general than previous works since it is not limited to the high salt
limit and in addition accounts for hydrodynamic effects. The linear growth
rate of the membrane fluctuations given by Eq. (17) is shown in Fig. 2 in
rescaled units. We scaled the wave vector by k, hence k0 ¼ k?/k and the
time by the typical time for ions to diffuse a Debye length, t ¼ 1/Dk2. The
control parameter of the instability is the external voltage V. Figure 2 shows
the growth rate for three different levels of the voltage: the dashed line is for
V ¼ 0.7 V, which lies below the threshold of the instability, all wave
numbers are damped and the membrane is stable. The solid and the dash-
dotted line correspond to V ¼ 0.75 and 0.8 V. These values are above
threshold and the growth rate is positive for a finite wave number window.

For a more detailed discussion of the dependence of the corrections to
the elastic moduli, the instability threshold and the characteristic wave
number as a function of salt concentration and membrane conductivity,
we refer the reader to Refs. [18,19].
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2.4. Flow Fields Near a Driven Membrane

We now summarize the main features of the fluid flows which arise near the
membrane when it is driven by ionic currents [18]. Figure 3 was generated
by selecting the fastest growing wave number and using the corresponding
maximum growth rate. The shape of the membrane undulation is repre-
sented with the black solid curves. Figure 3C shows the flow field for a high
membrane conductance and low salt, in the regime where the membrane is
unstable due to the electrostatic correction to the surface tension and thus
starts to undulate. The resulting flow is a superposition of two distinct flows:
first, the typical flow associated to a membrane bending mode [35] as shown
in Fig. 3A. Second, the flow which results from the ion transport across the
membrane. The latter flow has the typical counter-rotating vortices of an
ICEO flow [36], as shown in Fig. 3B. Clearly, the superposition of these
two flow contributions, Fig. 3C, results in a parallel flow close to the
membrane, in contrast to the usual bending mode flow given by Fig. 3A.
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Figure 2 The renormalized growth rate or dispersion relation, ts, as a function of the
rescaled wave number k0 ¼ k?/k for three voltages: V ¼ 0.7 V (dashed line),
V ¼ 0.75 V (solid line), and V ¼ 0.8 V (dash-dotted line).We have used the following
parameters: dielectric constants e ¼ 80e0 and em ¼ 2e0; membrane thickness d ¼ 5 nm
leading to lm ¼ (e/em)d ¼ 200 nm; diffusion coefficient of ions D ¼ 10�9m2s�1; vis-
cosity � ¼ 10�3 Pas; inverse Debye length k ¼ 2 	 107 m�1; bare surface tension
S0 ¼ 1 mN m�1; bare bending modulus K0 ¼ 10 kBT. Here we assumed a non-
conductive membrane, G ¼ 0.
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For most realistic parameters—modest conductivities, not too low salt—
the flow generated by membrane bending is usually dominating and hides
the small ICEO contribution. To be able to observe the flows of Fig. 3, a
high membrane conductance G and low salt are needed. Also, since for
macroscopic electrode distances L (e.g., of the order of millimeters), the
voltage needed to induce the instability is very high, we have assumed a
microscopic electrode distance of L ¼ 10 mm. While it might still be
possible to observe flows for higher salt and macroscopic electrode

−5

0

5

10

15

z

−15 −10 −5 0 5 10 15
x

−5

0

5

10

15

z

−5

0

5

10

15

z

B

C

A

Figure 3 Representation of the flows around the membrane beyond the instability
threshold. The orientation of the electric field is toward negative values of z. (A) shows
the flow generated by the membrane bending mode. (B) shows the ICEO flow. Finally,
(C) shows the actual flow, which is the superposition of the former two and results in a
strong flow near the membrane, oriented parallel to the surface. Both axes are scaled by
the Debye length k�1. Parameters are as in Fig. 2 except V ¼ 3.165 V, k ¼ 107 m�1,
G ¼ 10 Sm�2 and L ¼ 10 mm.
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separations, such situations cannot be analyzed within the Debye–Hückel
approximation used here.

Note that somewhat similar looking flow patterns have been recently
observed experimentally in vesicles subject to AC electric fields in Ref. [6].
On closer inspection, however, it appears that these flows most probably
have a different origin from the ICEO flows, since they are more likely to
result from electrophoresis of charged lipids within the membrane.

2.5. Applications to Specific Experiments

Here we will briefly discuss how the framework presented above can be
applied to recent experiments: the first experiment studied supported
membranes subject to an electric field [37], while the second one investi-
gated active membranes [14–16].

Lecuyer et al. [37] recently performed neutron reflectivity measurements
on a system consisting of two nearby membrane bilayers in an external AC
electric field. One of the bilayers was close to the bottom electrode and used
to protect the second one from interacting with the wall. The bare values of
the elastic moduli were known from X-ray off-specular experiments for a
similar system [38], yielding S0 ’ 0.5 mN m�1 and K0 ’ 15 kBT. The
experiments were performed in an AC electric field at several frequencies.
For the lowest frequency (10 Hz) and for a voltage of V ¼ 5 V, the
electrostatic corrections to the surface tension and bending modulus were
found to be DS ’ �1 � 0.15 mN m�1 and DK ’ 185 � 15 kBT.

Assuming that the membrane is non-conductive, G ¼ 0, and using an
inverse Debye length of k ¼ 2 	 107 m�1 (milli-Q water) and the experi-
mental electrode distance of L ¼ 1 mm, our model yields
DS ’ �2 mN m�1 and DK ’ 190 kBT. Thus the model successfully
accounts for the order of magnitude of the electrostatic corrections observed
in this experiment. Note, however, that the linearized Debye–Hückel
approach is not a good approximation in this case, as applied voltages
are rather high. For this reason, we recently extended our work to the
PB regime [20].

The second experiments we would like to discuss concerns active
membranes, which are artificial lipid vesicles containing bacteriorhodopsin
ionic pumps [14–16]. These pumps are able to transfer protons unidirec-
tionally across the membrane by undergoing light-activated conformational
changes. The transport of protons across the membrane eventually builds up
a transmembrane potential. In Refs. [15,26,27], a hydrodynamic theory has
been developed to describe the nonequilibrium fluctuations of the mem-
brane induced by the activity of the pumps. This work triggered substantial
theoretical interest in the problem, mainly focusing on the proper descrip-
tion for these nonequilibrium effects associated with protein conformational
changes [39–43].
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In these models for active membranes, the electrostatic effects associated
with the ion transport were not explicitly described. The framework pre-
sented in this review provides a more detailed description of the ion
transport, which could be useful to understand some aspects of active
membrane experiments. From a contour analysis of giant active vesicles,
the fluctuation spectrum of the membrane was measured in Ref. [16], and a
lowering of the membrane tension produced by the activity of the pumps
was reported. Only the correction to the surface tension has been accurately
measured in this experiment and many aspects of the transport of ions are
still unknown. However, for simplicity we can assume that the passive state
corresponds to a non-conductive membrane,G ¼ 0, and the active state to
a membrane with conductance G ¼ 10 Sm�2. If we also assume a typical
transmembrane potential of the order of 50 mV, we can use the results for
the corrections to the surface tension obtained above. Accounting for the
rather high amount of salt using k ’ 5 	 108 m�1, we find a reasonable
estimate for the observed tension lowering, DS ’ 3 	 10�7 Nm�1. We
also find that there is no measurable difference for the bending modulus
between the active and passive state, in agreement with the experiments.
The model further predicts a current density of jm ’ 1 Am�2 when the
pumps are active, which corresponds to an overall current of 1 pA on a
vesicle of size 1 mm.

This accord in orders of magnitude for the electrostatic corrections is
quite promising. For a more detailed comparison between experiments and
the presented model, it would be necessary to do experiments in varying
conditions (ionic strength, conductance of the membrane, or orientation of
the pumps in the membrane for instance). Combined measurements of the
membrane current and the transmembrane potential in the same experi-
ment, using, for example, patch-clamp techniques, would also be desirable.

3. Impedance of a Planar Membrane in an
AC Electric Field

Impedance spectroscopy [44] is an effective tool to obtain a character-
ization of the electric properties of lipid bilayer membranes. The method
has been used in particular for supported lipid bilayers, which are a
promising experimental system to characterize membrane proteins, chan-
nels or inclusions and more generally constitute the basis of highly sensitive
detection technologies, that is, biosensors [45]. In the recent work [46], for
instance, impedance spectroscopy has been used to characterize gramicidin
D channels in pore suspending membranes. Nowadays, many biotechnol-
ogy companies develop systems to measure the impedance of whole cells for
screening or drug delivery.

76 F. Ziebert and D. Lacoste



In many cases, the interpretation of the data obtained by impedance
spectroscopy is not that straightforward. Typically one uses equivalent
circuits, which are sometimes controversial, since different models can be
used for fitting the data. Moreover, there is often a lack of knowledge
concerning the conditions of validity of these equivalent circuits to describe
the diffuse charging in electric Debye layers. To answer these questions, one
possibility is to start with an electrokinetic description based on the PNP
equations. With such an approach, the dynamics of diffuse charging [33]
and the current–voltage relation in electrochemical thin films have been
successfully analyzed [32]. This approach is also useful for relating imped-
ance measurements to the properties of the diffuse layers near charge
selective interfaces such as electrodes or ion-exchange membranes [47].

In the following, we extend the model studied in the previous sections
to the case of an applied AC electric field. For simplicity the membrane will
be assumed to be strictly planar and non-fluctuating.We use the PNP equations
to evaluate the impedance of this system, which can be then compared to
simple equivalent circuits. We will first present the generic time-dependent
equations for the perturbation induced by the applied AC field. Then we
proceed to calculate the impedance for the following cases: (i) an ideally
blocking membrane with equal diffusion coefficients for the two ion spe-
cies, (ii) the same system but with unequal ion diffusion coefficients and
finally (iii) an ideally non-blocking membrane which conducts selectively
only one type of ion.

3.1. Time-dependent Electric Fields

The PNP equations for an electrolyte have already been given in
Section 2.1. Taking the time derivative of the Poisson equation, Eq. (1),
one obtains

�e@tr2f ¼ e @tn
þ � @tn

�ð Þ ¼ �e r � jþ � r � j�ð Þ; ð20Þ

where in the last equation, the conservation of ion densities, Eq. (3), has
been used. Through integration over space (assuming a one-dimensional
geometry), and using the definition of the electric field, E ¼ �rf, it
follows that [48,49]

I ¼ e@tEþ eJ; ð21Þ

where the constant in of integration, I, is the total electric current density.
The first term on the R.H.S in Eq. (21) is the displacement current. The
second term, J ¼ jþ � j� ¼ 2jr, is the particle current density. The dis-
placement current was absent in the previous section because we assumed a
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stationary state, but for the time-dependent case it is crucial to obtain the
response to an externally applied AC electric potential. We note that by
virtue of the Poisson equation, Eq. (1), the total current density is diver-
gence-free, r � I ¼ 0, at all times. Further note that the experimentally
measurable quantity is given by the total electric current. For this reason, it
is the relevant quantity to calculate the impedance as shown below.

3.2. Equations for Time-periodic Perturbations of an
Equilibrium Base State

Let us assume an established equilibrium solution c0
þ(z), c0

�(z) and f0(z) for
the electrolyte in the absence of the AC field, which could be caused by an
additional DC field or a Nernst potential. For convenience we consider
here the charge densities c�. Note that c� ¼ en� and k2 ¼ 2ec0/(ekBT). The
equations for the electrostatic problem, see Eqs. (1) and (3) above, read

e@2
zf ¼ c� � cþ; ð22Þ
@tc

� ¼ �@zj
�; ð23Þ

j� ¼ �D� @zc
� � c�

e

kBΤ
@zf

� �
: ð24Þ

Linearization around the base state like

cþ ¼ cþ0 þ �Cþ; c� ¼ c�0 þ �C�; f ¼ f0 þ �F;

where � is a small book-keeping parameter, leads at order O(�0) to

c�0 ¼ c0e
�ef0 zð Þ

kBT ; withf0 solution of e@2
zf0 ¼ c0 ef0 � e�f0

� �
:

This restates that the equilibrium solution has to fulfill the classical PB
equation. At order O(�1) in the perturbations, we get

e@2
zF ¼ C� � Cþ; ð25Þ

@tC
� ¼ D�@z @zC

� � c�0
e

kBΤ
@zF� C� e

kBΤ
@zf0

� �
� ð26Þ

As already discussed in the general case above, taking the time derivative
of Eq. (25), insertion of the linearized PNP equations, Eq. (26), and
integration in z yields
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e
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þDþ @zC
þ þ cþ0

e

kBT
@zFþ Cþ e

kBΤ
@zf0

 !
¼ I tð Þ:

The integration constant I(t) is the total electric current density. As we
are interested in the response to an AC external voltage, V(t) ¼ V0e

iot,
introducing I(t) ¼ I0e

iot and F / eiot, we arrive at

ioeþ e

kBΤ
Dþcþ0 þD�c�0
� � !

@zF

þDþ@zCþ �D�@zC� þ DþCþ þD�C�ð Þ e

kBΤ
@zf0 ¼ I0:

ð27Þ

The first term on the L.H.S is the displacement current. The remaining
terms are currents due to concentration gradients and a current induced by
the equilibrium potential at the membrane. All these contributions taken
together yield the total current I0 in response to the external AC field.

We are left with the problem to solve Eqs. (26) and (27) with the
external voltage entering via the BC, just like in Section 2.

3.3. Impedance for an Ideally Blocking Non-conductive
Membrane

The equations derived in the last section are general as they describe the first
order perturbation in an electrolyte induced by an AC voltage externally
imposed at some boundaries. Let us now apply them to the planar mem-
brane geometry as sketched in Fig. 1. The membrane is assumed to be flat
and located at z ¼ 0. The AC voltage will be externally applied at the
electrodes at z ¼ �L/2. For simplicity, we assume that there is no addi-
tional DC electric field or Nernst potential, that is, that the equilibrium
solution is given by the homogeneous solution f0 ¼ 0, c0

þ ¼ c0.
First we will treat the simplest case of an ideally blocking, non-conduc-

tive membrane, j�(0) ¼ 0. We also assume equal diffusion coefficients for
the positive and negative ions, Dþ ¼ D� ¼ D. Then the above Eqs. (26)
and (27) for the perturbations reduce to

ioC� ¼ D@z @zC
� � c0

e

kBT
@zF

� �
; ð28Þ
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ioeþ 2Dc0
e

kBΤ

� �
@zFþD @zC

þ � @zC
�ð Þ ¼ I0: ð29Þ

Due to the symmetry of our system, one has

F z; tð Þ ¼ �F �z; tð Þ; r z; tð Þ ¼ �r �z; tð Þ; c z; tð Þ ¼ c �z; tð Þ: ð30Þ

Hence it is enough to solve the problem in z 2 [�L/2,0]. The BCs in the
chosen geometry read

Cþ �L=2ð Þ ¼ 0; ð31Þ
C� �L=2ð Þ ¼ 0; ð32Þ

F �L=2ð Þ ¼ �V0=2; ð33Þ
@zC

þ 0ð Þ þ c0
e

kBΤ
@zF 0ð Þ ¼ 0 ¼ jþ 0ð Þ=D; ð34Þ

@zC
� 0ð Þ � c0

e

kBΤ
@zF 0ð Þ ¼ 0 ¼ j� 0ð Þ=D; ð35Þ

lm@zF 0ð Þ ¼ F 0þð Þ � F 0�ð Þ: ð36Þ

Equations (31)–(33) fix the densities and the potential at the electrodes, as
has already been discussed in Section 2.1. The next two Eqs. (34) and (35)
state that the membrane is non-conductive for both ion types. Finally the
last equation, Eq. (36), is again the Robin-type BC describing the capacitive
behavior of the membrane with the effective length scale lm ¼ (e/em)d. We
will use the first five BCs to fix the five integration constants of Eqs. (28) and
(29). Then imposing the last condition will yield the current–voltage
relation and finally the impedance.

Extracting an equation forCs ¼ Cþ þ C� by adding the two cases� in
Eq. (28) yields ioCs ¼ D@z

2Cs. From the BCs @zCs(0) ¼ 0 ¼ Cs(�1/2) it
follows Cs(z) ¼ 0, that is, the total density of particles (positively and
negatively charged) remains homogeneous. Introducing r ¼ Cþ � C�

and subtracting Eq. (28) yields

ior ¼ D@2
zrþDek2@2

zF; ð37Þ
ioeþDek2
� �

@zFþD@zr ¼ I0; ð38Þ

where we have used c0e/kBT ¼ ek2/2. Eq. (38) can be integrated, yielding

F zð Þ ¼ c1 þ I0z�Dr zð Þ
Dek2 þ ioe

:
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The BCs r(�L/2) ¼ 0, F(�L/2) ¼ �V0/2 fix the constant of
integration to

c1 ¼ �V0

2
þ I0L=2

Dek2 þ ioe
:

Insertion of the obtained potential into Eq. (37) for r yields

Dk2 þ io
D

r ¼ @2
zr: ð39Þ

Using again the obtained potential transforms theBC@zr(0) þ ek2 @zF(0)
¼ 0 into the simpler form @zr(0) ¼ i(I0k

2/o). Together with r(�L/2) ¼ 0,
the solution of Eq. (39) can be given as

r zð Þ ¼ i
I0k2

bo cosh bL=2ð Þ sinh b zþ L=2ð Þ½ � ð40Þ

with the (complex) inverse length scale

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ io=D:

p
ð41Þ

The remaining BC, Eq. (36), is a jump condition at the membrane.
What we have calculated above are the solutions F<0, r<0 on z 2 [�L/2,
0]. Using the symmetry of our problem, Eq. (30), one directly obtains F>0,
r>0 on z 2 [0, L/2]. Imposing Eq. (36), lm@zF(0) ¼ F>0(0) � F<0(0),
then yields

lm
I0 �D@zr 0ð Þ
Dek2 þ ioe

¼ c>0
1 þ �Dr>0 0ð Þ

Dek2 þ ioe
� c<0

1 þ �Dr<0 0ð Þ
Dek2 þ ioe

" #

¼ �2c<0
1 � 2

�Dr<0 0ð Þ
Dek2 þ ioe

:

Solving for the external voltage V0—note that it enters in the integration
constant c1 of the electric potential—one gets

V0 ¼ I0L

Dek2 þ ioe
� 2

Dr 0ð Þ
Dek2 þ ioe

þ lm
I0 �D@zr 0ð Þ
Dek2 þ ioe

:

This is the current–voltage relation. The impedance is defined as
Z(o) ¼ V(o)/AI(o) ¼ V0/(AI0), with A the membrane area normal to
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the z-direction. Using the expression for the density, Eq. (40), one arrives at
the following expression for the impedance of a non-conductive membrane

Z ¼ L=A

Dek2þ ioe
� i

L=Að Þ Dk2=oð Þ
Dek2þ ioe

tanh b L=2ð Þ½ �
bL=2

þ lm=Að Þ 1� i Dk2=oð Þð Þ
Dek2 þ ioe

:

ð42Þ

Let us discuss the obtained result. The first term is the contribution of the
electrolyte. This can be seen by rewriting it as

ZB ¼ 1

R�1
B þ ioCB

ð43Þ

and identifying the capacitance of the bulk,CB ¼ eA/L, which is in parallel
with the resistance of the bulk RB ¼ (1/Dek2)(L/A) ¼ LkBT/2Dc0eA.
A similar interpretation holds for the term (lm/A)/Dek2ioe in Eq. (42),
which can be written as

ZS ¼ 1

R�1
S þ ioCS

: ð44Þ

This is again a RC-circuit with the capacitance CS ¼ eA/lm ¼ emA/d of
the membrane and a resistance RS ¼ (1/Dek2)(lm/A). It arises from the
Robin-BC which involves the effective length scale lm defined in Eq. (8).
One can thus recast Eq. (42) into the form

Z ¼ ZB þ ZS � i

o
Dk2

R�1
B þ ioCB

tanh b L=2ð Þ½ �
bL=2

þ lm
L

� �
: ð45Þ

The last term in this equation, let us call it ZC, is due to charging of the
double layer and the membrane. This can be best seen in the limit lD/L
¼ 1/(kL) 
 1, that is, when the Debye length is small compared to the
system size. Then tanh[b(L/2)]/(bL/2) ’ 2/(kL) and in the prefactor, the
resistance RB

� 1 dominates over the capacitance. One gets

ZC ’ 1

ioCeff

; ð46Þ

with the effective capacitance Ceff ¼ e[A/(2lD þ lm)]. Note that the
thickness of the corresponding planar capacitor is the sum of the two
Debye layers thicknesses (2lD) and the effective length lm describing the
capacitive effects of the membrane.
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As shown in Fig. 4, for the blocking non-conductive membrane one
effectively has an association in series of the RC-circuit of the bulk, the
RC-circuit of the membrane and the effective capacitance of the charging
membrane

Z ¼ ZB þ ZS þ ZC ¼ 1

R�1
B þ ioCB

þ 1

R�1
S þ ioCS

þ 1

ioCeff

; ð47Þ

as long as lD/L 
 1 holds. As lm ’ 200 nm, the impedance contribution
ZS is usually small compared to the bulk resistance and can be neglected for
L � lm. However, the contribution described by lm to the charging
impedance ZC can be of similar order as the one from the Debye layers
and might even dominate the charging.

The best way to visually present the impedance is by a so-called Nyquist
plot [44]. There one traces the negative imaginary part, �Im[Z(o)], of the
impedance as a function of its real part, Re[Z(o)], for varying frequency o.
Nyquist plots for the full impedance, Eq. (45), and for the limit lD/L 
 1,
Eq. (47), are shown in Fig. 5. Panel (A) shows the case of a macroscopic
system size, L ¼ 1 mm. One clearly notices the RC-semi-circle terminat-
ing for high frequencies at the origin. For the given parameters one enters
this semi-circle at o ’ 50 Hz; the maximum is achieved for
oRC ¼ Dk2 ¼ 1 kHz. The low frequency branch is dominated by the
membrane charging capacitively at R ’ RB þ RS, thus for low frequencies
one has a divergence like (ioCeff)

�1. As lD/L ’ 10�3, the effective circuit
and the full calculation agree well.

Figure 5B shows the case of a microscopic system size, L ¼ 10 mm. Here
the bulk RC-signal is much less pronounced and charging dominates
entirely. The full calculation (solid curve) yields a lower resistance for the
charging process at low frequencies than the effective circuit obtained by
the small-Debye layer approximation (dashed curve).

RB

CB CS

Ceff

RS

Figure 4 Effective circuit for the ideally blocking non-conductive membrane,
Eq. (47): Two RC-circuits, one for the bulk and one for the membrane are in series
with the effective charging capacitance of the membrane.
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3.4. Non-conductive Membrane: Effect of Unequal
Diffusion Coefficients

In this section we investigate the effect of differing diffusion coefficients for
the two ion species, Dþ 6¼ D�, on the impedance of a blocking non-
conductive membrane. Except for this assumption, the calculation is analo-
gous to the one of the previous section. Equations (26) and (27) for the
perturbations now read

0.0

Re (Z) [W]

0.0

6.0 × 1014

2.0 × 1014

1.5 × 10151.0 × 10155.0 × 1014

4.0 × 1014

8.0 × 1014
–I

m
 (

Z
) 

[W
]

A

Re (Z) [W]

0.0

1.0 × 1014

1.0 × 1013 1.5 × 10135.0 × 1012

5.0 × 1013

–I
m

 (
Z

) 
[W

]

B

Figure 5 (A) Shows a Nyquist plot for a macroscopic system size, L ¼ 1 mm. At low
frequency the behavior is governed by the charging of the membrane. The semi-circle
is governed by the bulk-RC-circuit. As lD/L ’ 10�3, the effective circuit and the full
calculation agree well. (B) shows a Nyquist plot for a microscopic system, L ¼ 10 mm.
As L decreases, the bulk becomes less important and the RC-semi-circle less pro-
nounced. The full calculation (solid curve) yields a lower resistance for the charging
process at low frequencies than the effective circuit (dashed curve). Parameters as in
Fig. 2 except for k ¼ 10�6 m�1 (pure water); membrane area A ¼ 1 mm2.
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ioC� ¼ D�@z @zC
� � ek2

2
@zF

� �
; ð48Þ

ioeþ Dþ þD�ð Þ ek
2

2

� �
@zFþDþ@zCþ �D�@zC� ¼ I0: ð49Þ

The BCs are still given by Eqs. (31)–(36). Since the equations for the charge
densities do not decouple as before, it is useful to introduce C ¼ Cþ þ C�

and r ¼ Cþ � C� again, yielding

ioC ¼ @2
z
�DC þ drþ 2d�cF½ �;

ior ¼ @2
z dC þ �Drþ 2 �D�cF½ �;

ioeþ 2 �D�cð Þ@zFþ d@zC þ �D@zr ¼ I0:

Here we introduced the abbreviation �c ¼ c0 e=kBT as well as the average
and the difference of the two diffusion coefficients

�D ¼ Dþ þD�ð Þ=2; d ¼ Dþ �D�ð Þ=2: ð50Þ

Integration of the equation for the potential F yields

F zð Þ ¼ c1 þ I0z� dC zð Þ þ �Dr zð Þð Þ
�Dek2 þ ioe

with c1 ¼ �V0

2
þ I0L=2

�Dek2 þ ioe
:

Insertion into the equations for C and r yields a matrix equation

io� �D� d2ek2=N
	 


@2
z � dioe=N½ �@2

z

� dioe=N½ �@2
z io � �Dioe=N½ �@2

z

� �
� C

r

� �
¼ 0; ð51Þ

where we have introduced N ¼ �Dek2 þ ioe. Assuming solutions of the
formC, r / ebz, Eq. (51) yields four solutions for the decay length b. In the
case of equal diffusion coefficients studied previously, d ¼ 0 and the equa-
tions are decoupled. In that case �D ¼ D and one simply gets b1

2 ¼ io/D
associated to the relaxation of the total particle density C and b2

2 ¼ N/
De ¼ (Dk2 þ io)/D associated to the relaxation of r, see Eq. (39). In the
case of unequal diffusion coefficients, the equations are coupled and the
general solutions are

b21;2 ¼
io �Dþ �D2 � d2

� �
k2=2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=2ð Þ2 �D2 � d2

� �2 � d2o2

r
�D2 � d2

� � : ð52Þ
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Here the minus sign applies to b1 and the plus sign to b2. Consequently,
Eq. (51) is solved by the ansatz

C

r

� �
¼
X
i¼1;2

Ai
Ei

1

� �
sinh bi zþ L=2ð Þ½ � þ Bi

Ei

1

� �
cosh bi zþ L=2ð Þ½ �

� �

with the eigenvectors given by

Ei ¼ dioe=N½ �b2i
io� �D� d2ek2=N

	 

b2i

:

The effective BCs read: @zC(0) ¼ 0 and @zr 0ð Þ ¼ i 2�cI0=oeð Þ at z ¼ 0; C
(�L/2) ¼ 0 and r(�L/2) at z ¼ �L/2. The last two BCs yield E1B1 þ
E2B2 ¼ 0 and B1 þ B2 ¼ 0. As E1 6¼ E2 this implies B1 ¼ 0 ¼ B2, that is,
the cosh-contributions in the solution vanish. After some algebra one
obtains

r ¼ i
I0k2

o
E1E2

E2 � E1

sinh b1 zþ L=2ð Þ½ �
E1b1 cosh b1L=2ð Þ �

sinh b2 zþ L=2ð Þ½ �
E2b2 cosh b2L=2ð Þ

" #
;

C ¼ i
I0k2

o
E1E2

E2 � E1

sinh b1 zþ L=2ð Þ½ �
b1 cosh b1L=2ð Þ � sinh b2 zþ L=2ð Þ½ �

b2 cosh b2L=2ð Þ

" #
:

Using the Robin-type BC, Eq. (36), and once again the symmetry of the
problem one gets

lm
I0 � d@zC 0ð Þ þ �D@zr 0ð Þð Þ

2 �D�c þ ioe
¼ �2c<0

1 � 2
� dC<0 0ð Þ þ �Dr<0 0ð Þð Þ

2 �D�c þ ioe
:

Solving for V0, insertion of the obtained solutions for C and r and applying
Z ¼ V0/(I0A) one obtains the impedance

Z ¼ L=A
�Dek2 þ ioe

þ lm=Að Þ 1� �Di k2=oð Þð Þ
�Dek2 þ ioe

� i
2k2=A

�Dk2 þ ioð Þoe
E1E2

E2 � E1

dþ �D

E1

 !
tanh b1L=2½ �

b1

þ i
2k2=A

�Dk2 þ ioð Þoe
E1E2

E2 � E1

dþ �D

E2

 !
tanh b2L=2½ �

b2
:

ð53Þ
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The first two contributions are already familiar to us, they stem from the
bulk and the Stern-like description of the membrane. Note that �D enters
instead of D.Let us discuss the newly arising terms. As an expansion in
lD/L 
 1 is a bit tedious, let us consider only the simpler limit k ! 1.
Equation (52) for b1

2 has a minus sign in front of the square root, the two
k-terms cancel and

b21 ¼
io �D

�D2 � d2
� �! b1 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
io=Deff

p
ð54Þ

with Deff ¼ ð �D2 � d2Þ= �D. For b2
2 one has the plus sign in front of

the square root, the terms in k2 dominate and one simply gets b2 ¼ �k.

For the eigenvectors to leading order one has E1 ¼ ð �D2 � d2Þk2=dio,
E2 ¼ � (1/E1) and E1E2=E2 � E1ð Þ dþ �D=E1ð Þð Þ ¼ iod2=k2ð �D2 � d2Þ,
E1E2=E2 � E1ð Þ dþ �D=E2ð Þð Þ ¼ � �D.
Consequently, the last term in Eq. (53) exactly reduces to the Debye-

layer part of the charging contribution. Finally one obtains at leading order
in lD

Z ¼ �ZB þ �ZS þ ZC þ ZW ð55Þ

with

ZW ¼ 2l2D
�DeA=L

d2

�D2 � d2
� � tanh b1L=2½ �

b1L
: ð56Þ

The first two terms are the RC-contributions of the bulk and the mem-
brane (note that �D ¼ Dþ þD�ð Þ=2 enters instead of D). The charging
capacitanceZC of the membrane is unchanged. The last term is the so-called
Warburg impedance, with b1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
io=Deff

p
andDeff ¼ ð �D2 � d2Þ= �D.Note

that this contribution is only present for unequal diffusion coefficients
d ¼ (Dþ � D–)/2 6¼ 0. It is proportional to lD

2 at leading order.1

The effective circuit corresponding to the obtained impedance is shown
in Fig. 6. The contribution ZW has been first described by Warburg [50,51]
for electrochemical systems; in a nutshell, it arises from damped concentration
oscillations close to an interface, here the membrane. We note however, that
with typical differences in diffusion coefficientsDþ/D� ¼ 0.1–10, a Nyquist

1 For simplicity, we used the limit k ! 1 to derive this term. Taking this limit strictly, the contribution
would vanish—as then both charge types diffuse infinitely rapidly across the zero-thickness Debye-layer. In
real systems, however, k remains always finite and thus one should include the leading order contribution,
ZW, in the impedance.
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plot of Eq. (55) is indistinguishable from Fig. 5 obtained for equal diffusion
coefficients. This is due to the fact that in the geometry under investigation,
the charging of the membrane is highly dominating the low-frequency
behavior as it is proportional to o�1.Nevertheless, experiments often display
a Warburg-like impedance at low frequencies, see, for example, Ref. [46]. In
the next section we will investigate the case of a slightly conductive ion-
selective membrane and will find that in this case one indeed obtains a
Warburg impedance. We thus postpone a discussion of ZW to the next
section.

3.5. Impedance for an Ideally Non-blocking
Conductive Membrane

For many applications it is interesting to account for a small but nonzero
membrane conductivity. This is important for instance in the context of the
characterization of ion channel proteins or pumps embedded in a lipid
membrane using impedance spectroscopy. In contrast to Section 2.1,
where we discussed the effects of a DC voltage on a conductive membrane
that lets pass both types of charged ions (Gþ ¼ G� ¼ G), here we will treat
the case of a selective membrane, which lets pass only the positive ions. Thus,
we assume a linearized relation jþ ¼ GþDmþ where Gþ is the effective
conductance per unit area. The negative ions are not allowed to pass the
membrane, hence j� ¼ 0 or effectively G� ¼ 0. This situation is relevant
for biomembranes, where ion channels allow the passage of positively
charged ions like Naþ or Kþ, but not of negatively charged ions like Cl�

which are typically larger.
To simplify the analysis, we will not describe the structure of the Debye

layers as explicitly as in the previous sections. Instead we rely on two known
approximations used in the study of electrochemical systems:

RB

Ceff

RS

CSCB

ZW

Figure 6 Effective circuit for the ideally blocking non-conductive membrane with
differing diffusion coefficients, Eq. (55): Two RC-circuits, one for the bulk and one for
the membrane are in series with the effective charging capacitance and a Warburg
resistance.
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(i)the bulk is to a good approximation locally electroneutral. More pre-
cisely, deviations from electroneutrality occur only in the third order in
an expansion of lD/L, which is very small for usual system sizes. This
result can be obtained using a matched asymptotic expansion [33].
Consequently, we will assume for all z, r(z) ¼ 0, or C(z) ¼ Cþ(z) ¼
C�(z) for the perturbation of the charge densities.

(ii)Although we do not treat the Debye layers explicitly, we still impose
effective BC for the electrochemical potential at the membrane. Thus,
we implicitly assume that the electrochemical potential is continuous
across the Debye layers.

We keep the geometry as before, that is, a flat membrane located at
z ¼ 0 with given AC voltage V0 at the electrodes located at z ¼ �L/2.
We again assume that there is no additional DC field or Nernst potential,
and equal diffusion coefficients2 for positive and negative ions. Using the
above-discussed approximations, we obtain

ioC ¼ D@2
zC; ð57Þ

ioeþDek2
� �

@zF ¼ I0: ð58Þ

Equation (58) is again easily integrated for z 2 [�L/2, 0] and together with
the BC F(�L/2) ¼ �V0/2 one gets

F zð Þ ¼ I0 zþ L=2ð Þ
ioeþDek2

� V0=2:

In addition we need three more BCs, namely

C �L=2ð Þ ¼ 0; ð59Þ
D @zC 0ð Þ � �c@zF 0ð Þð Þ ¼ j� ¼ 0; ð60Þ

D @zC 0ð Þ þ �c@zF 0ð Þð Þ ¼ jþ ¼ Gþ

e

kBT
c0

C½ �0 þ e F½ �0
� �

; ð61Þ

where [C]0 ¼ C(0þ) � C(0–) and analogously for [F]0. The second con-
dition is the no-flux condition for the anions. The third condition states that
the bulk current of cations equals the current through the membrane, and is
assumed to follow Ohm’s law. From Eqs. (57), (59), and (60), we obtain the
following frequency dependent ion density distribution

2 Note that in case of unequal diffusion coefficients, one gets a contribution like @zC in Eq. (58).
The subsequent calculations can still be performed in a completely analogous way.
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C zð Þ ¼ ek2I0
2a ioeþDek2ð Þ cosh aL=2ð Þ sinh a zþ L=2ð Þð Þ;

where a ¼ ffiffiffiffiffiffiffiffiffiffiffi
io=D

p
is of Warburg-type, cf. Eq. (54). Note that here the

Warburg impedance arises from breaking the cation/anion symmetry, due
to differences in membrane conductivities rather than due to differences in
their diffusion coefficients as in the previous section. Also note that
although the membrane is non-conductive for the anions, this is a collective
effect in which both types of moving charges participate.

Finally, we use the BC for the cationic current, Eq. (61), to solve for the
voltage V0 and obtain the impedance via Z ¼ V0/(I0A) as before

Z ¼ ZB þDk2= GþAð Þ
Dk2 þ io

þ kBΤk2= ec0Að Þ
ioþDk2

tanh aL=2ð Þ
a

� ð62Þ

Here we already have identified the bulk circuit, it is present as in the
previous cases. The second term is the membrane contribution. It can be
written as

ZM ¼ 1

R�1
M þ ioCM

; ð63Þ

with the membrane’s resistance, RM ¼ 1/(GþA), and capacitance, CM ¼
GþA/Dk2. The third term is the Warburg impedance, reading

ZW ’ 2l2D
DeA=L

tanhð ffiffiffiffiffiffiffiffiffiffiffi
io=D

p
L=2Þffiffiffiffiffiffiffiffiffiffiffi

io=D
p

L
ð64Þ

for small o.Note that it is of the same form as Eq. (56) obtained for unequal
diffusion coefficients, except for that in the latter appears an additional factor
containing the diffusion coefficients.

We can conclude that as a result of the ionic membrane selectivity, a
Warburg impedance arises. Figure 7 shows the effective circuit. A Nyquist
plot is given in Fig. 8. One can identify the typical shape of a Warburg
impedance for low frequencies: namely, for decreasing frequencies, on
leaving the RC-signal of the bulk � Im[Z(o)]/Re[Z(o)] acquires a slope
of 45�. Finally, due to the finite system size Im[Z(o)] vanishes for o ! 0.

As already stated above, the calculation in this Section 3.5 is over-
simplified. By assuming that the electrochemical potential is continuous
across the Debye layers, there is no explicit contribution from the charging
of the Debye layers to the impedance. Hence lm, which is important for the
charging, does not enter—indeed we did not even use the Robin-type
condition. As the membrane is conductive, at least for the cations, charging
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of the Debye layers is of minor importance for the overall impedance. With
a proper treatment of the charging of the Debye layers, using a matched
asymptotic calculation, the Robin-type condition will reoccur to match the
two solutions and will reintroduce the length scale lm into the problem.

4. Conclusion

The study and theoretical description of the effects induced by electric
fields on lipid membranes in an electrolyte is a vast, challenging, and far
from fully explored problem, which is of relevance for many applications in
biotechnology.

RB RM

CMCB

ZW

Figure 7 Effective circuit for the ideally blocking and selectively conductive mem-
brane, Eq. (62): Two RC-circuits, one for the bulk and one for the membrane are in
series with a Warburg resistance, caused by the ion selectivity of the membrane.
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Figure 8 Nyquist plot for a selectively conducting membrane. At high frequencies
one has an RC-semi-circle, which is either dominated by the bulk or by the membrane,
depending on the membrane conductance and the dimensions of the system. The low-
frequency behavior is governed by the Warburg impedance. Parameters as for Fig. 2
except for: L ¼ 1 mm; k ¼ 10�6 m�1 (pure water); A ¼ 1 mm2.
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In this review, we have presented a theoretical framework to understand
some of these effects in the simple case of a planar geometry. We have seen
the importance of capacitive effects, occurring as a result of charge accumu-
lation in the vicinity of the membrane, leading to renormalized elastic
moduli and to membrane instabilities. We also have analyzed the flow fields
which can be induced by currents due to small membrane conductivities.
We discussed these effects only for time-independent (DC) electric fields,
that is, in the steady-state regime.

Clearly, time-dependent electric fields lead to capacitive charging of the
membrane and to time-dependent membrane dynamics. The capacitive
charging can be described in two ways: the first approach is based on the
leaky dielectric model developed by Taylor [52]. This approach is explained
and illustrated in the contribution of P. Vlahovska [53]. One advantage of
such an approach is that it captures the main physical effects associated with
capacitive charging without the complexity of models which deal explicitly
with the ion concentration fields. For this reason, it is useful to describe for
instance the complex shape changes occurring in closed lipid vesicles [8].

The second approach, which we used in this work, is based on the
electrokinetic PNP equations. This more refined level of description
includes ion concentration fields, and therefore it is useful to describe
specific effects associated for instance with the ion transport in ion channels
or for effects occurring in low salt conditions. It is also needed to describe
more precisely the capacitive charging, which as we have shown here
includes several contributions coming from the bulk, the membrane imped-
ance and the Debye layers themselves. In this review, we have tried to
illustrate the strength of this approach for quantifying the impedance of a
membrane-electrolyte system. In particular, we have shown how effective
circuits used to interpret experimental data can be directly derived by this
method. The membrane selectivity with respect to ion species is crucial to
understand the conduction properties of membranes with embedded ion
channels. We hope that our work will motivate further experimental and
theoretical investigations in this field.
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Appendix. Robin-type BC

In brief, this BC can be motivated for a flat membrane as follows: since
the membrane is assumed to bear no fixed charges, the normal components
of the electric displacement are continuous at the two interfaces between
the membrane and the electrolyte,

e@zf z ¼ �d=2ð Þ ¼ em@zfm z ¼ �d=2ð Þ; ðA:1Þ
where fm is the electric potential inside the membrane. Since the electric
field Em ¼ �@zfm is constant (to leading order) inside the membrane, the
integral of the inside field can be written in the following way

Emd ¼
ðd=2
�d=2

Emdz ¼ � fm d=2ð Þ½ � � fm �d=2ð Þ� ¼ � f d=2ð Þ � f �d=2ð Þ½ �;

where in the last step we used the continuity of the potential at the
membrane surface. Together with Eq. (A.1) this yields

lm@zf z ¼ �d=2ð Þ ¼ f d=2ð Þ � f �d=2ð Þ: ðA:2Þ
If we take the limit d ! 0 while keeping lm ¼ (e/em)d constant, one
obtains Eq. (7) in the particular case of h ¼ 0 and n ¼ ẑ. The same
derivation holds for the case of a slightly perturbed membrane surface
h(r?), where r? is the in-plane vector.
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[11] A. González, A. Ramos, N.G. Green, A. Castellanos, H. Morgan, Fluid flow induced by
nonuniformAC electric fields in electrolytes onmicro-electrodes. ii. a linear double-layer
analysis, Phys. Rev. E 61 (2000) 4019–4028.

[12] B. Hille, Ion Channels of Excitable Membranes, Sinauer Press, Sunder-land, 2001.
[13] B. Alberts, Molecular Biology of the Cell, Garland, New York, 2002.
[14] J.B. Manneville, P. Bassereau, D. Lévy, J. Prost, Activity of transmembrane proteins

induces magnification of shape fluctuations of lipid membranes, Phys. Rev. Lett.
82 (1999) 4356.

[15] J.B. Manneville, P. Bassereau, S. Ramaswamy, J. Prost, Active membrane fluctuations
studied by micropipet aspiration, Phys. Rev. E 64 (2001) 021908.
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Abstract

Spatial and temporal lipid organization in the plasmatic cell membrane is

believed to be fundamental for the understanding of many cellular functions.

The concept of lipid rafts as submicrometric cholesterol-rich lateral domains

has been used to characterize the basic organizing principle of the cell

membrane. Since such organization occurs at very small spatial scales, its

experimental verification remains elusive. As a result, the raft hypothesis itself
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remains controversial. Meanwhile, different theoretical models are being pro-

posed to fill this gap. Here, we survey our recent approaches to the theoretical

study of the spatiotemporal organization of lipid bilayers perturbed in different

ways. Transverse lipid transport and/or insertion of proteins results in domain

organization that covers a wide range of submicrometric sizes and different

levels of stability, suggesting plausible mechanisms for the control of nanoscale

lipid organization in cell membranes. The relevance of our proposals to the

understanding of lateral organization phenomena in biological cell membranes

is also discussed.

1. Introduction

Contrary to the idea of the “fluid mosaic model” proposed more than
three decades ago [1], there is increasing evidence that the cell membrane is
a laterally heterogeneous medium with a complex nanoscale lipid organiza-
tion [2]. To provide an accurate description, Simons and Ikonen [3]
proposed the concept of the lipid raft to refer to lateral domains rich in
saturated lipids and cholesterol, dispersed throughout a phase rich in unsat-
urated lipids. It has been suggested that these domains are crucial for
targeting certain proteins in many signal transduction, cell polarization,
adhesion, migration, and other cellular phenomena [4,5].

Despite the theoretical utility of the raft concept as a basic organizing
principle of the plasma membrane, its verification is rather complicated
since rafts develop at very small scales, within a range of tens to a few
hundreds of nanometers [6]. Research in this field is now at a technical
impasse because the experimental methods to study biomembranes at the
characteristic raft length and timescales are only now being developed. For
this reason, the raft hypothesis has been a matter of debate and vigorous
controversy during the past decade. However, in view of recent progress in
the understanding of the connection between structure and function in
biomembranes, the raft issue is only controversial when it is viewed too
simplistically. The simplistic hypothesis that stable and freely diffusing lipid
rafts exist in plasma membranes is being replaced by a hierarchical picture of
active lipid organization at different length scales that are exploited for
distinct functions [7,8]. On the one hand, the existence of small, transient,
and ordered lipid domains may induce short-lifetime protein interactions
necessary to facilitate specific biochemical reactions in the membrane. On
the other hand, larger stabilized rafts, resulting from the coalescence of small
temporary domains, may be required for protein trafficking, endocytosis,
and signaling. Such a picture opens new and challenging perspectives that
update the raft hypothesis to take into account the dynamic nature of lipid
assemblies at the surface of living cells [7,8].
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Theoretical approaches have become a powerful tool to examine plau-
sible membrane models to explain lipid heterogeneity in the cell membrane.
Most of these approaches are based on the patterning abilities of simple
model bilayers made of a few lipid components. Domain formation in
multicomponent systems is commonly associated with differential affinities
between their components. Bilayer mixtures of lipids with different melting
temperatures such as unsaturated and saturated lipid species may eventually
form ordered and disordered aggregates or phases rich in saturated and
unsaturated lipids, respectively. Even more evident is the strong differential
interaction of cholesterol with common membrane lipids. Cholesterol has a
greater affinity for saturated lipids so that together they assemble into a more
ordered, but still liquid, phase. This is experimentally observed in model
bilayers [9] that promote liquid-ordered (lo) and liquid-disordered (ld)
phases in giant vesicle membranes [10,11].

The general consensus up to this point is that the thermodynamics of lo
and ld phases alone underlies raft formation and lipid heterogeneity in cell
membranes so that lipid rafts may correspond to the liquid-ordered phase.
However, this point of view immediately creates problems. In phase-
separating model bilayers, initially nucleated ordered domains would pro-
gressively coalesce into macroscopic domains, in contrast to lipid rafts that
remain small in the plasma membrane. Conversely, if the membrane lipid
mixture is instead thought of as being in the one-phase region (miscible, no
phase separation), only tiny ephemeral composition fluctuations would
occur. In both cases, it is clear that thermodynamics alone cannot explain
the hierarchical picture of rafts as dynamic and scale-dependent structures
whose size and stability may dynamically change under specific signals or
stimuli, contributing to the diversification of cellular responses. Theoretical
approaches must therefore venture beyond the purely thermodynamic
viewpoint to consider additional factors that alter or modify the phase
stability of the lipid mixture and provide plausible mechanisms for the
control of the nanoscale lipid organization.

In this chapter, some of these options are investigated by combining
different model approaches. Depending on the phase state of the lipid
mixture, two different scenarios are explored (see Fig. 1), and a third
study of the mixture behavior when crossing the phase separation boundary
is also reviewed. First, we take the lipid system to be located in the two-
phase region of the phase diagram, that is, where the lipid mixture separates
into two phases. In this situation, segregated domains are generated and
coarsening continues even as the domains reach macroscopic sizes, unless
some externally induced kinetic process hinders phase separation beyond
some size. A number of possible halting factors have been proposed includ-
ing, for example, the effect of in-plane line tension reduction [12], the
action of active cellular processes [13], and lipid exchange with the
membrane medium [14–17]. In Section 2, we inspect this scenario for a

Raft Formation in Cell Membranes 99



phase-separating ternary mixture consisting of cholesterol, saturated lipids,
and unsaturated lipids, subjected to cholesterol recycling [16,17]. Choles-
terol is dynamically added and removed from the membrane, and this
continuous transport process causes the phase separation process to be halted
at some point, leading to stationary finite-size segregated domains. Both
thermodynamics and transport contribute to the determination of the size,
shape, and stability of these actively maintained lipid aggregates. This study
is performed by means of a continuum model that describes the thermody-
namics of the lipid mixture in terms of local compositional fields and derives
the corresponding kinetic equations supplemented with a cholesterol recy-
cling term. Numerical simulations and linear stability analysis are performed
on the resulting equations.

Alternatively, other mechanisms for raft formation may not necessarily
invoke phase separation. In the one-phase region of a phase diagram, the
entropic contribution dominates: small lipid clusters (“composition fluctua-
tions” in “critical phenomena” terminology) of like species are formed, but
thermal noise rapidly disintegrates them. For example, donor quenching
Fluorescence Resonance Energy Transfer (FRET) analysis detects nano-
scale domains (from 10 to 40 nm) in lipid bilayers in regions of the phase

Stabilization
of

fluctuations

Halt
coarsening

Two-phase region

One-phase region

Figure 1 Schematic representation of a lipid mixture phase diagram to illustrate the
raft formation mechanisms reported in this chapter. If the lipid mixture is in the two-
phase region, an external factor must be invoked to explain why lo domains do not
coarsen until complete macroscopic segregation. Under miscible conditions (one-phase
region), composition fluctuations must be stabilized.
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diagram in which confocal microscopy indicates the presence of a single
homogeneous phase [18]. Similar observations are inferred from NMR
measurements in apparently homogeneous giant vesicles containing choles-
terol [19]. However, these ephemeral lipid aggregates can be stabilized and
even promoted to larger sizes by the action of other membrane compo-
nents. For example, transmembrane proteins may act as surfactants for lipid
fluctuations, increasing their disintegration time and stabilizing them [20].
In Section 3, this possibility is analyzed for a simple binary lipid bilayer
mixture into which either neutral or interacting proteins are inserted. We
report two different stabilization mechanisms of lipid nanoclusters depend-
ing on the interactions between the membrane proteins and the lipid
components [21]. In this scenario, since we are interested in small length
and short timescales, both lipid and protein components are treated as
discrete interacting particles on a lattice. A combination of Monte Carlo
algorithms is then used to study the phase stability of the lipid/protein
mixture and its spatial organization.

Finally, in Section 4, a third approach is presented for the particular case
of a lipid mixture close to the phase separation boundary. This scenario is
particularly interesting since any slight perturbation of the system’s condi-
tions is able to strongly modify the spatiotemporal organization of the lipid
mixture. In this situation, the combination of the two previous modifica-
tions (cholesterol content variation and protein insertion) leads to the
formation of lipid structures covering a wide range of submicrometric
sizes and different levels of stability, thus providing a robust cooperative
mechanism for the control of nanoscale lipid organization in cell mem-
branes. In this study, the spatial and temporal scales involved again require
the use of a discrete approach for both lipid and protein components treated
as single particles. Here, following an approach different from that of
Section 3, a lipid membrane explicitly containing cholesterol is modeled.
To do so, we propose a combination of two complementary lattices, one for
the saturated/unsaturated lipid mixture and the other for the cholesterol
component. This double lattice system is dynamically evolved by an
appropriate Monte Carlo algorithm.

2. Lipid Membranes with Cholesterol Recycling

Cell membranes are continuously subjected to intra- and extracellular
fluxes involving energy and mass transport. Among many others, recent
experiments [22,23] have revealed that raft organization is extremely sensi-
tive to cholesterol homeostasis. Here, we illustrate how cholesterol recy-
cling may regulate the size, shape, and stability of rafts in cell membranes
under biological conditions.
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2.1. The Model

Our approach is based on analytical and numerical treatments of a simple
nonequilibrium model for a ternary membrane composed of saturated lipids
(A), unsaturated lipids (B), and cholesterol (C), subjected to a continuous
cholesterol recycling process. The energetic description of the system
follows a Ginzburg–Landau approach based on two space- and time-depen-
dent compositional variables, f r!; tð Þ and c r!; tð Þ. f corresponds to the
differential composition of two lipid components (f > 0 indicating pre-
dominance of saturated lipid), whereas c stands for the fraction of cholesterol
with respect to a maximum allowed unit concentration. The free-energy
functional per molecule can be written as a typical Landau expansion in f2,
f4, c2, and c4, plus the simplest (linear) coupling contribution [16,17,24]

f f; c½ �
kBT

¼ 1

2
� J

� �
f2 þ 1

12
f4 �Gfc þ 4 c � 1

2

� �2

þ 8

3
c � 1

2

� �4

; ð1Þ

where T is the temperature and kB stands for the Boltzmann constant. The
parameter J corresponds to the differential interaction between the two lipid
components, whereas G stands for the differential interaction between the
two lipids with cholesterol (G > 0 corresponds to a preferential affinity
between cholesterol and saturated lipids). These parameters can be obtained
from experiments with different lipid systems [25,26]; a reasonable estima-
tion for our model leads to J 2 (0.1,0.35) andG 2 (1.5,3), both in kBT units
[17]. The free-energy functional of the entire system can be expressed as

F f; c½ � ¼ N0

ð
S

f f; c½ � þ g
2
j r
!
fj2

� �
dS; ð2Þ

where the integration is performed over the membrane area S and N0 is the
number of molecules per unit area. The line tension g between phases can
be estimated from Cahn–Hilliard theory [27] as g � Jd0

2, where J is the
typical lipid interaction energy and d0 is the characteristic interfacial width.

The kinetic evolution of the compositional fields is obtained by applying
the constitutive relations from linear nonequilibrium thermodynamics
leading to the dimensionless kinetic equations [17]:

@f
@t

¼ r2 1� 2Jð Þfþ 1

3
f3 �Gc � gr2f

� �
þ ffiffiffiffi2p

fnf; ð3Þ

@c

@t
¼Dr2 �Gfþ 8 c� 1

2

� �
þ 32

3
c� 1

2

� �3
" #
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p
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which obey the conservation laws S�1
Ð
S
f r!; tð Þds¼ �f and

S�1
Ð
S
c r!; tð Þds¼�c. For the average membrane composition, we have chosen

values plausible for cell membranes, �f¼�0:2 and �c ¼ 0:214 [28]. The
second term of the kinetic Eq. (4) accounts for a generic nonequilibrium
exchange process of cholesterol, the parameter r being the recycling fre-
quency (in units of inverse time). This nonequilibrium term can be inter-
preted as a continuous and homogeneous intake flux of cholesterol and its
continuous release at a rate dependent on its local concentration [16]. The
proposed term is the simplest way to introduce a unique timescale, r�1, for
the recycling process in such a way as to keep a constant total amount of
cholesterol �c in the system. Finally, the last contributions to the kinetic
Eqs. (3) and (4) correspond to Gaussian white noise terms representing
thermal fluctuations taken to have zero mean, zero correlations, and noise
intensities 2f ¼ 2/N0 and 2c ¼ 2D/N0, respectively.

The equations, variables, and model parameters are represented in their
dimensionless form: energy is expressed in units of kBT, length is scaled
according to x ! x=

ffiffiffiffiffiffiffi
g=J

p
, and time units are scaled as t ! tJDj/g. The

diffusion coefficient Dc for cholesterol is expressed in units of the diffusion
coefficient of the lipids Dj, that is, Dc is rescaled to D ¼ Dc/Dj. These
rescalings are equivalent to setting kBT, d0 ¼

ffiffiffiffiffiffiffi
g=J

p
and Dj equal to unity.

2.2. Linear Stability Analysis

Some qualitative results can be advanced by means of a linear stability
analysis of the kinetic equations. We test the linear stability of the stationary
homogeneous solution f r!ð Þ ¼ �f; c r!ð Þ ¼ �c

� �
by introducing small wave

perturbations dfexp w qð Þt þ i q!� r!½ � and dc exp w qð Þt þ i q!� r!½ � and line-
arizing Eqs. (3) and (4). The growth rate w(q) of the perturbations is
calculated as the largest eigenvalue of the Jacobian resulting from the
linearization matrix [17].

In the absence of the recycling process (r¼ 0), the system evolves to two
possible equilibrium states depending on the values of the interaction
parameters. For weak interaction parameters, the system remains stable to
small perturbations and no phase separation is predicted (w(q) < 0 8 q > 0;
see Fig. 2). When the interaction parameters are above their critical values,
long wavelength modes become unstable, promoting complete phase sepa-
ration (see Fig. 2). In the absence of component C, phase separation is
predicted if J > Jc;eq;AB ¼ �f

0
=2, where �f

0 ¼ 1þ �f2 . If component C is
added to the system, equilibrium phase separation occurs for J < Jc,eq,AB
when G > Gc;eq ¼ 4 2 Jc;eq;AB � J

� �
�c0

	 
1=2
, where �c0 ¼ 1þ 2�c �c � 1ð Þ. The

scenario studied in this section corresponds to a miscible binary lipid
mixture ( J < Jc,eq,AB) that undergoes phase separation due to the inclusion
of cholesterol (G > Gc,eq).
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Under nonequilibrium conditions and moderate recycling rates, a range
of unstable modes, w(q) > 0, appears at intermediate wavenumbers q 2 (q�,
qþ) (see Fig. 2). This means that the phase separation process evolves until
segregating domains reach a maximum size, L, determined by the smallest
unstable wavenumber, L � p/q�. This result reflects the competition
between thermodynamic ordering due to the preferential affinity between
cholesterol and saturated lipids and nonequilibrium mixing actions caused
by cholesterol recycling. The transport across the bilayer thus introduces a
long-range mixing effect that eventually prevents complete phase separa-
tion. As a result, actively maintained finite-size segregation domains appear,
their properties being regulated by the balance between thermodynamic
and transport conditions.

The analytical determination of q� provides an upper limit for the size of the
stationary domains and its dependence on themodel parameters. The analytical
expression for q� can easily be found in the limit q� � 1 and reads [17]

q2� �
r �f

0 � 2J
� �

D G2 � 16 �f
0 � 2J

� �
�c0

� � ¼ 2r Jc;eq;AB � J
� �

D G2 �G2
c;eq

� � : ð5Þ
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Figure 2 Growth rate w(q) for different parameter values. For all curves, J ¼ 0.25,
g ¼ 0.25,D¼ 1, �f ¼�0.2, and �c ¼ 0.214. The miscibility regime corresponds to r ¼ 0
andG¼ 0<Gc,eq¼ 2.394.WhenG is increased above its critical value (G¼ 2.5>Gc,eq,
r ¼ 0), equilibrium phase separation is predicted. When a moderate recycling rate is
applied (G¼ 2.5, r¼ 0.01), unstable modes appear at q 2 (q�, qþ), leading to finite-size
domains. Faster recycling increases the value of the minimum unstable mode q� so that
smaller domains are expected. If r> rc ¼ 0.045, unstable modes become stable and the
miscibility of themixture is recovered. A larger interaction parameterG (compare curves
forG¼ 2.5 andG¼ 2.55) decreases the value of q� so that larger domains are expected.
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According to Eq. (5), a faster recycling rate leads to a smaller maximum
size for lipid domains, whereas a deeper quench mixture (larger J and/or
G interaction parameters) leads to a prediction of larger domain sizes.

When the recycling rate is higher than a critical value rc, all positive
wavenumber modes are stable, w(q > 0) < 0, meaning that the recycling
process is so fast that the system is kinetically kept miscible. The critical
value rc can be obtained from the equality q� ¼ qþ (see Fig. 2), leading to
rc ¼ D(Gc,eq � G)2

2.3. Numerical Results

The kinetic differential Eqs. (3) and (4) are solved numerically for the
compositional fields f and c on a two-dimensional (2D) square lattice of
N � N sites. Periodic boundary conditions are applied. The discretization
mesh size is chosen to be of the order of the characteristic interfacial width
d0 and set to Dx ¼ 1, and the time step is set to Dt ¼ 0.001. Both choices
assure good numerical convergence. Simulations are started from a homo-
geneous distribution f r!; 0ð Þ ¼ �f; c r!; 0ð Þ ¼ �c

	 

slightly perturbed with

local variations of 	1%.
The numerical simulation results are found to follow the predictions of

the linear stability analysis. First, the effect of the parameter r is examined in
a set of simulations varying the recycling frequency. The resulting temporal
evolutions are presented in Fig. 3. Observe, as a general behavior, how the
system is segregated into coarsening lo domains, and how the coarsening
process is halted at smaller structures as the recycling frequency is increased.
A more detailed characterization of the stationary domains is provided by
the quantification of domain size histograms and roughness. We have
defined segregated domains as all interconnected lattice sites with a compo-
sition variable three times larger than the average thermal fluctuations. Once
the domains have been delimited, domain area distribution histograms are
computed. Another feature that can be analyzed with this procedure is the
roughness of the emerging domains. Specifically, the roughness index Oi of
a domain i is computed as the square of the ratio between the perimeter Pi of
the domain to the perimeter of the circle with the same area Ai, that is,
Oi ¼ Pi

2/4pAi. A circular domain has a roughness index O ¼ 1, whereas
more irregular structures are characterized by O 
 1.

The domain area distributions have been computed for the last snapshots
(stationary states) of each simulation and have been plotted in Fig. 4A. It is
observed that the average domain area diminishes, as does its dispersion, when
the exchange process is speeded up. The stationary mean domain size Lst
corresponds to the square root of the mean domain area computed for each
area distribution, and its value depends, as expected, on the applied exchange
rate. A plot of 1/Lst as a function of r

1/2 is presented in Fig. 5, showing good
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agreement with the prediction q� � r1/2 in Eq. (5). As to the domain
roughness, increasing r results in rougher domains (see the inset in Fig. 4A).

The stability of the generated domains is analyzed by means of the
normalized temporal correlation functions for the f field

T tð Þ ¼ f r!; tð Þf r!; t þ tð Þh i � f r!; tð Þh i2
f2 r!; tð Þ
 �� f r!; tð Þh i2

; ð6Þ

where the brackets stand for an average over positions r! and time t. These
functions are plotted in Fig. 4B for simulations with different values of r. It
is clear that faster recycling leads to less stable domains.

The effects of modifying the thermodynamic conditions (i.e., changes in
the distance to the phase boundary of the mixture) are analyzed by varying
the interaction energy G while keeping the remaining parameters fixed.
This analysis can be performed by comparing the data for G ¼ 2.5 and 3 in
Fig. 5 at equal values of r. An increase of the interaction energy G (namely,

r = 0

r = 0.001

r = 0.005

r = 0.01

t = 2´104 t = 5´104 t = 8´104 t = 11´104

Figure 3 Temporal evolution of the simulation patterns in a 256 � 256 system
for different recycling rates. The other parameters are �f ¼ �0:2;�c ¼ 0:214;
D ¼ 1;g ¼ 0:25; J ¼ 0:25;andG ¼ 2:5. Each snapshot corresponds to a grayscale rep-
resentation of the parameter f. Darker regions correspond to higher values of this
variable. The snapshots for c follow the same distribution (not shown). Only the last
snapshots for the nonequilibrium cases (r 6¼ 0) are practically stationary.
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a deeper mixture quench) results in larger and also more circular and stable
domains. Conversely, when the separating mixture is closer to the phase
boundary (smaller value of G, but still larger than Gc,eq), the mixing effect
due to the exchange process leads to smaller, more irregular less stable
domains.
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Figure 4 (A) Domain area distributions and mean roughness coefficient (inset). (B)
Decay of time correlation functions for different values of r. In both panels, the other
parameters are �f ¼ �0:2; �c ¼ 0:214; r ¼ 0:02;D ¼ 1; g ¼ 0:25;G ¼ 2:5; and J ¼ 0:25.
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The proposed model and its results may be of interest in the study of the
control of lipid heterogeneity and raft formation in plasmatic cell mem-
branes. We have observed that, for a given set of parameters, the effect of
increasing the recycling frequency favors the generation of monodisperse
small, irregular, and unstable lo domains, whereas slow recycling leads to
polydisperse, large, rounded, and stable structures. Taking the mixture
closer to its phase boundary has the same effect as an increase of the
recycling frequency. However, some caution must be exercised when
comparing the spatial and temporal scales of the numerical examples
provided in this section. For instance, the simulation with G ¼ 2.5 in
Fig. 5 leads to stationary domains of linear size �62.5 nm for r ¼ 40 s�1

and �38.5 nm for r ¼ 400 s�1. Both size values are in good agreement
with typical raft characteristic lengths, but the estimated values for the
recycling frequencies are much larger than biological values (of order s�1)
[29]. However, we have ameliorated this discrepancy by showing that
similar small domain sizes can be attained for smaller recycling frequencies
if the mixture is placed closer to the phase boundary, and this in fact
corresponds to the accepted situation for lipid mixtures in cell membranes
[22,23]. Therefore, the proposal presented in this section may fit raft
formation phenomena in the limit of close proximity to the lipid mixture
phase boundary.

0 0.1 0.2 0.3 0.4

r1/2
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0.2
1/

L s
t

Figure 5 Inverse of the stationary domain linear size 1/Lst as a function of r1/2 for
G ¼ 2.5 (circles) and G ¼ 3 (squares). The other parameters are
�f ¼ �0:2; �c ¼ 0:214; D ¼ 1; g ¼ 0:25; and J ¼ 0:25. The linear dependence q� � Lst

� 1

� r1/2 predicted in Eq. (5) is captured.
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3. Protein-Induced Nanodomain Stabilization

in Lipid Membranes

Alternative proposals that do not invoke phase separation of the lipid
mixture are based on the effect of other cell membrane components such as
proteins. Actually, plasma cell membranes are highly crowded systems with
a percentage of protein mass as high as 30–50%, which in some membrane
regions could lead to surface coverages greater than 20%. It thus seems clear
that the study of the lateral organization of biomembranes should also
incorporate the effect of these nonlipid components. In particular, the effect
of proteins on lipid phase stability has to be accounted for. A valuable
example is provided in Ref. [20], which suggests that integral proteins
that anchor the cytoskeleton to the membrane may prevent complete
lipid phase separation. In this section, this scenario is analyzed in consider-
able detail by studying the influence on the lipid mixture phase stability of
the protein size, protein coverage, and of its interactions with membrane
lipids. Depending on the interplay of proteins and lipids, two molecular
mechanisms for the stabilization of small domains are characterized,
mechanisms that may be relevant in the cell membrane context [21].

3.1. The Model

The cell membrane is here described as a 2D square lattice of N � N sites
and periodic boundary conditions. The lattice is occupied by either lipids
or proteins. We consider only two types of lipids: the ones corresponding
to the liquid-ordered phase (generally, saturated lipids and cholesterol)
and those forming the liquid-disordered phase (mainly unsaturated lipids).
Each lattice site i can be occupied by a liquid-ordered lipid (spin variable
Si ¼ þ1), by a liquid-disordered lipid (Si ¼ �1), or by protein (Si ¼ 0).
Each lipid molecule occupies a single site, whereas proteins are allowed to
occupy more than one site, depending on their size. Common membrane
lipids in a fluid phase occupy an area per molecule of about 0.6–0.8 nm2, so
that the linear size for each lattice site can be fixed at Dx ¼ 0.8 nm. The
variable f is defined as the fraction of lattice sites occupied by proteins. For
the remaining sites, w corresponds to the fraction occupied by liquid-
ordered (saturated) lipids.

We concentrate on modeling integral membrane proteins. The function
of many of them is to attach the cytoskeleton network to the membrane in
order to provide mechanical support and cell shape. Therefore, unless
otherwise stated, we consider these proteins to be statically inserted in the
lipid mixture. Protein particles are initially placed randomly on the lattice
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system. Protein size is determined by its cross-sectional radius r, given in
lattice units. The most common transmembrane proteins are integrins and
glycophorins that display a cross-sectional radius from 2 to 20 times the
typical linear size of a lipid in the fluid phase [30].

The energetics of the membrane mixture follows the typical Ising
Hamiltonian,

H ¼ �J0
X
ijh i

SiSj þ l
X
i2O

Si; ð7Þ

where J0 is a positive parameter that accounts for the differential interaction
energy between lipid species,O is the set of lipid sites which are neighboring
a protein site, and l corresponds to the lipid–protein interaction. Note that
l > 0 implies a preferential affinity of the proteins to be surrounded by
unsaturated lipids, while l < 0 lowers the energy of the system when
proteins are surrounded by saturated lipids. A first estimation for J0 can be
extracted as follows. First, the application of the Hamiltonian in Eq. (7) on a
square lattice leads to a critical value for the interaction parameter of 0.440
in units of kBT, for a spin phase transition to occur in the absence of
proteins. Second, a lo/ld phase transition occurs in giant vesicles at 40 �C
[11]. Combining these pieces of information, the interaction parameter can
be taken to be of order J0 ¼ 0.274 kcal/mol [20]. This value is consistent
with the lipid interaction energy J used for the continuum approach in
Section 3. The connection between interaction parameters in continuum
and discrete models can be found in Ref. [24].

3.2. Effect of Proteins on Phase Stability

The study of the effects of neutral (l ¼ 0) proteins on the phase stability of
the lipid mixture is performed using a nonconserved Monte Carlo spin
dynamics based on the Swendsen–Wang algorithm [31,32]. For a given
temperature, the Swendsen–Wang algorithm samples all lipid compositions
with appropriate statistical weights [31], so that it can be used to construct
the phase diagram of the mixture (see Refs. [20,21] for more details).
During the simulation, protein sites act as static neutral obstacles and their
spins are never changed.

The analysis of the simulations shows that the presence of neutral
proteins leads to a significant shift of the coexistence curve to smaller
temperatures, that is, to a reduction of the two-phase region of the phase
diagram. The effect is more pronounced when the protein area fraction
increases, but even at low values of f, the effect is rather important; see, for
example, the case with f ¼ 0.1 and r ¼ 1 in Fig. 6A. The reduction of the
two-phase region is due to the protein surfactant action: neutral proteins
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Figure 6 (A) (T, w)-phase diagram for a lipid mixture with neutral (l ¼ 0) proteins.
The top solid line corresponds to the protein-free mixture (f ¼ 0), whereas the dashed
curves stand for mixtures with 10% of the area occupied by neutral proteins of different
sizes (f ¼ 0.1). (B) (T, w)-phase diagrams for different lipid mixtures The reference
case corresponds to r ¼ 4, f ¼ 0.1, and l ¼ 0.2 kcal/mol, which is compared to its
analogue with neutral proteins (l ¼ 0) in the figure. The legends indicate the model
parameters that are varied with respect to the reference case. Coexistence curves for
variations of protein size (r ¼ 2), protein coverage (f ¼ 0.2), and protein–lipid
interaction (l ¼ 0.4) are plotted. In both panels, the lines connecting points are simply
a guide to the eye. The two-phase regions are contained below each coexistence curve,
and the lipid mixture has been simulated on a 300 � 300 lattice.
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reduce the line tension between different lipid phases, stabilizing small lo
domains that may be identified as nanometric lipid rafts [20,21].

Simulations with a protein area coverage of 10% have been run for
different protein radii r. The corresponding phase diagrams are presented in
Fig. 6A. A clear reduction of the protein effect reported above is observed
when the size of the proteins is increased. Specifically, for a given protein
coverage, an increase of protein size brings the coexistence curve closer to
that of the protein-free situation. The reason for this behavior is simple. For
given protein coverage, larger proteins lead to a smaller number of lipid–
protein contacts, and therefore, the surfactant action of the proteins is
diminished [21].

We now consider the fact that transmembrane proteins also interact with
surrounding lipids via short-range interactions. These interactions may be
due to different causes. Coulombic interactions with charged lipids or
between charged groups of proteins and lipids may occur [33]. A more
general effect can be caused by lateral packing preferences [7]. Another
effect arises from the hydrophobic mismatch due to the fact that the
hydrophobic span of the inserted protein and that of the lipid membrane
do not coincide [34,35].

In order to estimate the value of the parameter l, we could consider, for
example, that transmembrane proteins may prefer to be surrounded by
unsaturated lipids forming the liquid-disordered phase since they are more
flexible and can be bent and stretched more easily to minimize the hydro-
phobic energy penalty. The exposure of a hydrophobic part of the protein
or lipid to a polar environment implies an energy penalty proportional to
the thickness mismatch, l ¼ Kjdp � dlj, with an energy constant K that is
experimentally quantified to be of the order of 0.25 � 10–13 erg/nm per
lipid molecule [34,35]. Liquid-ordered and liquid-disordered phases display
a difference in membrane thickness that, as an example, is of the order of
0.8 nm for the case of DOPC/SM/Chol mixtures [36]. Considering the
lipid–protein hydrophobic mismatch to be of the order of this length, an
interaction energy A of the order of several hundreds of cal/mol is found.

The straightforward implementation of the Hamiltonian in Eq. (7) for
l 6¼ 0 in the Swendsen–Wang algorithm has a major drawback. The lipid–
protein interaction can be interpreted as the inclusion of an external field
applied only to the lipid sites surrounding the proteins, and the Swendsen–
Wang algorithm is extremely inefficient when external fields are applied to
the system. Here, we have used the so-called two-replica algorithm, which
has been used in other contexts [37] and has been shown to overcome this
limitation (see details in Ref. [21]).

The (T, w) coexistence curve for a lipid mixture with proteins of size
r¼ 4 and l¼ 0.2 kcal/mol covering 10% of the membrane area is plotted in
Fig. 6B and is compared to its analogue with neutral proteins. Protein
affinity for one of the lipid components causes a downward shift of the
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coexistence curves along with a narrowing of the included two-phase
region with respect to the case of noninteracting proteins. Moreover, as
expected, the interaction breaks the symmetry of the phase diagram, shifting
the maximum of the coexistence curve to higher concentrations of the
favorable lipid component (changing l ! �l leads to the same phase
diagram if w ! –w). Therefore, the general effect of protein–lipid interac-
tions for a given r and f is to decrease the transition temperature at any
given composition, favoring the miscibility of the mixture.

Starting from the case discussed above (r ¼ 4, f ¼ 0.1, and l ¼ 0.2) as a
reference state, we analyze the effect of protein size, protein coverage,
and protein–lipid interaction by constructing the phase diagrams for
r ¼ 2, f ¼ 0.05, and l ¼ 0.4, respectively. The coexistence curves for
these three cases are plotted in Fig. 6B. The comparison of these curves with
the reference case reveals that the shift to lower transition temperatures and
the narrowing of the two-phase region are more pronounced for smaller
proteins, larger coverages, and stronger protein–lipid interactions.

From the results reported so far, it seems clear that the presence of
protein static obstacles favors lipid miscibility by stabilizing small lipid
aggregates and that this effect is greatly enhanced if proteins interact with
their surrounding lipids. These consequences on the lipid phase stability are
reduced if the size of the protein obstacles is large (larger than the lipid cross
section). However, the latter effect is not particularly dramatic for interact-
ing proteins, and even relatively large proteins may lead to a significant
reduction of the transition temperature. The narrowing of the coexistence
curves in Fig. 6B also plays in favor of this observation.

3.3. Two Mechanisms for Nanodomain Stabilization

So far we have focused on the changes in the phase diagram of membrane
lipid mixtures due to the inclusion of static proteins. As a main result, we
have shown that lipid mixtures that should be segregated into two different
phases remain mixed when proteins are added to the membrane. Beyond
this formal phase-stability study, the applicability of our results in the
biological context relies on the structural mechanisms that stabilize nano-
metric lipid fluctuations, preventing complete phase separation. Two dif-
ferent mechanisms for nanodomain stabilization have been distinguished
[21]. On the one hand, neutral proteins surround the incipient phase
segregating lipid domains, therefore relaxing the energy between liquid-
ordered and liquid-disordered domains and preventing coarsening. In this
case, proteins mimic the action of a surfactant and reduce interdomain line
tension (see Fig. 7A). On the other hand, interacting proteins nucleate
aggregates of compatible lipids around them. In the case of static proteins,
these nanoscale aggregates become pinned (see Fig. 7B) and are prevented
from coarsening and forming a macroscopic separated phase domain. Such
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Figure 7 First row: schematic description of the two mechanisms for nanodomain
stabilization. (A) Neutral proteins relax the line tension between lipid domains. (B)
Interacting proteins nucleate domains of compatible lipids that are not allowed to
coarsen. Second row: Monte Carlo simulations capturing the two stabilization mechan-
isms. (C) Corresponds to inert proteins and displays a protein–lipid organization similar
to the one in (A), whereas in (D), the configuration for interacting proteins resembles
(B). Third row: simulations showing the effect of mobile interacting proteins. (E)
Proteins move at random, mixing the lipid matrix. (F) Proteins move seeking the
free-energy minimum of the system, promoting phase separation. All the snapshots
are representative of equilibrium or stationary states. In all cases, N ¼ 256, w ¼ 0.25,
f¼ 0.1, r¼ 4, l¼�0.2 (except (C), in which l¼ 0) andT¼ 35 �C. Ordered lipids are
depicted in white, disordered lipids in gray, and proteins in black.
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an effect has also recently been found in continuum mean-field models of
lipid–protein membrane mixtures [38].

The two mechanisms for nanodomain stabilization schematically
described in Fig. 7A and B can also be captured by means of a simple
Monte Carlo algorithm. We start with a fixed lipid composition of w¼ 0.25
and a coverage of proteins of f ¼ 0.1 and a radius r ¼ 4. We then apply a
nonkinetic conserved Monte Carlo algorithm based on a completely rough
dynamics of attempted moves whereby (any) two lipid spins may exchange
places according to a Metropolis rule. Although this method does not
reproduce the realistic kinetics of the system since diffusion in a real system
occurs by exchange of nearest-neighbor particles, it is a mean-field approach
that ensures the fastest equilibration. Representative snapshots of equilib-
rium systems with neutral (l ¼ 0) and interacting (l ¼ �0.2) proteins are
plotted in Fig. 7C and D, respectively, showing good agreement with
schematic Fig. 7A and B. Based on these simulations, a quantitative charac-
terization of the two reported mechanisms has been performed in the
following two steps. First, the spatial correlation function for the lipid spin
variable is averaged over a large number of simulation configurations for the
cases in Fig. 7C and D. The distance L at which the correlation is lost (i.e.,
the correlation function first crosses zero) provides a characteristic length of
the lipid domains. For both cases, we obtain L � 40 nm, whereas for the
case without proteins, L is expected to continuously grow with time since
macroscopic phase separation takes place (not shown). Second, we have
computed the fraction wp of lipids of each kind occupying the sites in
contact with proteins. For the simulations with neutral proteins in
Fig. 7C, we get wp � 0.4. This fraction is larger than the overall lipid
fraction w ¼ 0.25 used in the simulation and approaches 50% of each kind
of lipid, thus verifying the surfactant action of inert proteins. For the case
of interacting proteins in Fig. 7D, we obtain wp � 0.8, much larger than
w ¼ 0.25, confirming the nucleating role of the interacting inclusions.

Although both protein-induced nanodomain stabilization mechanisms
reported so far correspond to the case of static proteins, some final com-
ments on a more general scenario with mobile inclusions can be anticipated.
For interacting proteins, two different situations have to be considered:
completely random mobility due to external forces (nonequilibrium, for
instance, due to proteins anchored to actin filaments growing and pushing
the membrane), and protein diffusion seeking the free-energy minimum of
the system (equilibrium). In the former case, the mobility of the interacting
proteins has a “mixing” effect and acts against phase separation, so that the
stabilization of the mixed phase in the phase diagram reported here for static
inclusions is expected to be even further enhanced. Additionally, the
nanodomain stabilization mechanism presented in Figs. 7B and D for
interacting proteins still applies (see Fig. 7E for a representative snapshot),
although the size and lifetime of the lipid aggregates that nucleate around

Raft Formation in Cell Membranes 115



proteins would probably decrease, particularly for high protein mobilities.
In the equilibrium scenario, the effect is completely different since mobile
interacting proteins promote complete phase separation and increase the
transition temperature from that of a protein-free system. Proteins nucleate
compatible lipids around them, and protein mobility helps the coarsening
process (see Fig. 7F for a representative snapshot).

4. Tuning Membrane Lipid Heterogeneity Near

the Phase Boundary

While miscible systems are macroscopically homogeneous, tiny and
unstable composition fluctuations are continuously formed and destroyed.
For lipid bilayer mixtures, these fluctuations can even be experimentally
detected when the system is near a phase boundary [18,19]. Close to a phase
separation boundary, the spatiotemporal behavior of the system becomes
extremely sensitive to external perturbations, and we next inspect the
possibility of raft formation in this scenario.

A lipid membrane mixture that consists of saturated lipids, unsaturated
lipids, and cholesterol is investigated by means of a Monte Carlo model. We
address the spatiotemporal characterization of compositional heterogene-
ities when the lipid mixture approaches a phase boundary as a result of
changes in its cholesterol content. The properties of such domains are
shown to be determined by the balance of the affinities between constituent
species and by their molecular fractions. We first analyze the size and
lifetime of these transient aggregates when the phase boundary is
approached by increasing the amount of cholesterol in the membrane.
The size and stability of compositional fluctuations are found to abruptly
change in the pretransition region, thus providing a switch-like mechanism
that controls the generation of either small and transient domains or large
and stable lipid structures [39].

Second, as suggested in the previous section, the inclusion of certain
proteins in the membrane plays an active role in lipid organization by
stabilizing small lipid assemblies. In this case, the characteristics of fluctuations
vary more smoothly when approaching the phase boundary, providing a
tuning mechanism that modulates the size and lifetime of lipid domains [39].

4.1. The Model and Spatiotemporal Characterization

OurMonte Carlo approach is based on a lattice system for the description of
lipid/cholesterol membranes. Two kinds of generic lipids, saturated (A) and
unsaturated (B), fully occupy a 2D triangular lattice with N2 sites, f being
the molar fraction of saturated lipid on the lattice. Cholesterol (C)
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molecules are intercalated on a complementary honeycomb lattice of 2N2

sites (see Fig. 8), c being its occupancy fraction. The membrane molar
fractions Xi for i ¼ A, B, and C components are f

1þ2c
; 1�f
1þ2c

and 2c
1þ2c

,
respectively. A triangular lattice has been used in computer simulations to
model lipids in membranes [16,40], and the combination with a super-
imposed hexagonal lattice has been also used to study the effect of choles-
terol on lipid mixtures [24,41]. Moreover, this choice agrees with the
experimental values for the area per molecule for each species. Common
membrane lipids occupy about 0.6–0.8 nm2/molecule (as noted earlier in
Section 3.1), whereas cholesterol molecules fill up about 0.35–0.4 nm2/
molecule. The combination of the two proposed lattices follows the
observed 2/1 ratio for the lipid/cholesterol area per molecule. The choice
of 0.64 nm2/lipid molecule fixes the linear site-to-site distance of the
triangular lattice at 0.8 nm.

The description of the energetics of the system is performed in terms of
two sets of spin variables, namely, spins {Si} which are fixed on the N2 sites
{i} of the triangular lattice, and spins {Ŝa} on the 2N2 sites {a} of the
hexagonal lattice. The spins Si take on the values þ1 or �1 denoting the
presence of an A or B particle at site i, respectively. The spin Ŝa is equal to 1
if a C particle occupies the site a, and 0 otherwise. According to these spin
variables, our Ising Hamiltonian has the form

H
kBT

¼ �J0
X
ijh i

SiSj �G0

X
iah i

SiŜa; ð8Þ

Figure 8 Lattices of our model. Saturated and unsaturated lipids fully occupy the
triangular lattice of circular nodes. Cholesterols are intercalated between the lipids and
occupy some of the cross nodes forming the honeycomb lattice. Gray sites correspond
to a protein particle residing on the lipid/cholesterol lattices.
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where only nearest-neighbor interactions are considered in the AB lattice
(denoted by hiji) and between the two lattices (denoted by hiai). J0 again
corresponds to the strength of the exchange interaction between A and B,
and G0 accounts for the interaction with the lattice containing C. G0 > 0
corresponds to a preferential affinity between A and C components. In this
section, the interaction parameters are again given in units of kBT. The
connection between interaction parameters in continuum ( J, G) and dis-
crete ( J0, G0) models can be found in Ref. [24].

Kawasaki spin dynamics [42] is chosen to evolve the system toward the
equilibrium associated with Eq. (8). The selected spin dynamics and an
appropriate choice for the Monte Carlo time step in our simulations lead to
the reproduction of a realistic kinetics of the system (see Ref. [39] for more
details). We refer to this algorithm as kinetic Monte Carlo simulations. All
our kinetic simulations are performed on lattices of size N ¼ 500
(0.4 mm � 0.4 mm) and a number of steps between 5 � 1010 and 1012,
depending on the lifetimes of the resulting domains (see below). The
longest simulations allow the calculation of lifetimes up to 0.05 s, the
upper limit of our kinetic simulations. The lattice size also fixes a limit of
150 nm for the length of emerging domains (domain sizes larger than this
value are taken to correspond to complete phase separation). Periodic
boundary conditions are applied to both lattices. The disordered initial config-
uration is obtained by randomly placingNA andNB particles on the triangular
lattice and NC particles on the hexagonal lattice, with NA þ NB ¼ N2,
f ¼ NA/N

2, and c ¼ NC/2N
2. The size and lifetime results are averaged

after an equilibration period of 50% of the simulation time.
Kinetic Monte Carlo simulations become increasingly long and may lead

to misleading conclusions about the phase stability of the mixture when
close to the phase boundary. We again follow our earlier procedure of
circumventing this problem by using a nonkinetic algorithm based on a
completely rough dynamics of attempted moves whereby (any) two spins of
a given lattice may exchange places. This algorithm does not reproduce the
realistic kinetics of the system but ensures the fastest equilibration and allows
us to check the phase stability of the system. For each kinetic simulation, the
corresponding nonkinetic simulation is run in larger systems
(1000 � 1000), to confirm the phase stability of the system.

The spatiotemporal behavior of the lipid mixture is studied from two
perspectives: the size of the domains and their mean lifetime. Although the
phenomenon is dynamic (clusters are continuously created and annihilated),
fluctuations can be characterized by an equilibrium size-distribution func-
tion. Here, domain sizes are analyzed by the domain size distribution p(n) of
interconnected lipid A molecules. From this distribution, we compute the
probability that a lipid A is at any given moment forming a cluster with n
interconnected A lipids, P(n) ¼ np(n)/

Ð
np(n)dn, and, from here, the mean

linear domain size,
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L ¼ 0:8

ð
nP nð Þdn

� �1=2
nm; ð9Þ

where, as stated earlier, each lipid molecule is taken to occupy an area of
0.8 nm � 0.8 nm. A domain lifetime t1/2 is estimated as the time needed for
a given domain to lose half of its lipid components. The stability of a domain
depends on its size (generally, for a given simulation, larger domains are
more stable), so that the computation of t1/2 is performed for different
domain sizes. The characteristic lifetime is then taken to be the lifetime
associated with the mean linear size, t1/2(L). The estimation of the simula-
tion time units, s.t.u., is as follows. We consider the mean square displace-
ment of a freely diffusing A particle to be l ¼ ffiffiffiffiffiffiffiffiffiffiffi

2DDt
p � 0:8nm, where the

membrane lipid diffusivity D � 10 mm2/s [28] and Dt is the time interval
between particle jumps. Since the diffusing lipid molecule can jump
freely to six different neighboring sites, one has Dt ¼ s.t.u./6, and therefore
s.t.u. � 2 � 10�7 s.

4.2. Crossing the Phase Boundary in the Absence of Proteins

The strategy of the simulations in this section consists in approaching the
phase boundary by performing simulations at different values of a given
control parameter. Temperature is a fairly unvarying system variable in
living cells, so that it cannot be appealed to explain changes in the mem-
brane lipid organization in vivo. Changes in the phase stability of the
membrane are more likely to originate from variations in the composition
of the mixture. In this context, membrane cholesterol levels are known to
be precisely controlled by numerous cellular processes [43], and these levels
are believed to play a fundamental role in regulating the structural and
dynamical properties of cell membranes [22]. We explore this premise by
performing numerical simulations with different amounts of cholesterol.

The values for the model parameters and simulation conditions are
chosen as follows. The system is chosen to have a 2:1 ratio of unsaturated:
saturated lipids (f ¼ 0.333) as a reasonable lipidic proportion in cell
membranes [28]. Calorimetry experiments in lipid systems with cholesterol
and different saturated and unsaturated lipids [25,26] lead to a reasonable
estimation J0 2 (0.07–0.25) andG0 2 (0.5–1) [39], both in kBT energy units
(consistent with values quoted in Sections 2 and 3). Here, intermediate
values J0 ¼ 0.12 and G0 ¼ 0.75 have been chosen for all simulations. The
following set of simulations is performed. The first simulation corresponds
to a system with a very small cholesterol fraction XC that places the mixture
in the one-phase region far from the phase separation boundary. The kinetic
Monte Carlo protocol explained above is applied, and the average size L and
lifetime t1/2 of the equilibrium fluctuations are computed. This process is
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successively repeated for increasing values of XC, until immiscibility is
detected by the nonkinetic simulations in 1000 � 1000 systems. This
procedure is schematically represented in the inset of Fig. 9C.

The results of this set of simulations are presented in Fig. 9. Low
cholesterol fractions place the mixture in the one-phase region far from
the phase boundary, and the system only displays very small A/C clusters
that break up quickly. When the cholesterol amount is increased, larger and
more stable A/C (raft-like, liquid-ordered) domains appear in the system:
domain size distributions P(n) are shifted to larger sizes and domain lifetimes
t1/2 increase (see (A) and (B) of Fig. 9, respectively). A range of cholesterol
compositions is found before crossing the transition value that displays
biologically realistic domain sizes and lifetimes [7]. For example, the
case with low cholesterol fraction, c ¼ 0.1 (XC ¼ 0.167), leads to a
small mean linear domain size of L ¼ 8.2 nm and a very short lifetime
of t1/2 ¼ 0.038 ms. Increasing the amount of cholesterol up to c ¼ 0.16
(XC ¼ 0.242) results in L ¼ 20.95 nm and t1/2 ¼ 1.19 ms. Going further,
up to c ¼ 0.18 (XC ¼ 0.265), simulations yield L ¼ 56.48 nm and
t1/2 ¼ 4.69 ms. The closer one gets to the phase boundary, the larger and
more stable are the domains. A larger amount of cholesterol, c ¼ 0.19
(XC ¼ 0.275), still corresponds to the one-phase state and leads to larger
mean domain sizes, L¼ 131.28 nm, although in this case, the mean lifetime
exceeds the maximum that can be evaluated with our kinetic simulations.
Beyond this value (XC > 0.275), the phase separation boundary is crossed
and a single stable A/C domain is observed. Domain size and lifetime are no
longer computed in these situations since both quantities formally diverge in
the immiscibility region.

The results presented here have shown how changes in the cholesterol
amount may be used by the cell to regulate the size and stability of the
membrane lipid fluctuations within the same length and timescales as those
found experimentally for rafts [7]. Note, however, that the increase of L and
t1/2 in the pretransition region is rather sharp, that is, a narrow range of XC

leads to intermediate domain sizes and lifetimes. The characteristics of
fluctuations are then extremely sensitive to cholesterol variations when
the miscibility boundary is approached, and this can be understood as a
switch-like mechanism that regulates the formation of either very small
short-lived raft-like structures or large stable lipid platforms.

4.3. Crossing the Phase Boundary in the Presence of Proteins

A higher level of description for the cell membrane beyond its lipid
composition is needed to take into account the effect of membrane proteins.
We noted earlier (cf. Section 3.1) that at a first level of complexity, proteins
are considered to be statically inserted in the membrane, thus acting as
neutral obstacles. This picture addresses, for example, the transmembrane
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proteins bound to the cytoskeleton and anchored to the membrane as
“pickets.” In this section, for simplicity, such proteins are considered to
not energetically interact with the lipid mixture (i.e., we consider the case of
no preferential affinity to any of the three lipid components), but they may
modify the phase stability of the mixture [20,21].

In the proposed lattice model, each protein is assumed to occupy a unit
of seven neighboring lipid sites and the surrounding 12C lattice nodes,
covering a membrane area �4 nm2 (see Fig. 8). The insertion of proteins
does not alter the form of the Hamiltonian in Eq. (8). Since the simulated
proteins are considered neutral, all protein site spins are set to zero in both
lattices and the Hamiltonian can be retained as given. The spin dynamics,
however, is modified to simulate proteins. Since the proteins are considered
to be static, all events involving the exchange of a lipid or cholesterol
particle on a protein site are ignored in the Monte Carlo algorithm. The
simulations are run for different fractions of membrane area occupied by
proteins, that is, for a particular number of proteins initially distributed
randomly in the membrane. For a given amount of protein, averages are
computed for 10 different initial configurations of randomly placed
proteins. Molar fractions of lipid species stated in this section do not
consider the area occupied by proteins; instead, they are only fractions of
the mixture of lipid components. Protein concentration is given in percent
of coverage area.

As a general outcome, the simulations show that the presence of proteins
changes lipid organization in a drastic manner. Even for a small area fraction
of protein, domains of a larger mean linear size than in protein-free systems
are observed, even though the lipid mixture is eventually prevented from
complete phase separation. The analysis of the temporal stability reveals that
the generated transient domains, regardless of their size, are in general much
more stable if proteins are present, with lifetimes up to several tens of
milliseconds or even longer. Visual inspection of simulation snapshots
unveils the mechanism that stabilizes such raft-like domains. When placed
at the interface of generated domains, proteins relax nonfavorable interac-
tions between unlike species at the domain boundaries, acting as surfactants.
Such a mechanism was already reported in the previous section of this
chapter for neutral proteins in binary lipid mixtures [21]. Here, a new
insight has been gained, with a quantitative study of the domain size and
stability.

(A) lipids. The gray region corresponds to the two-phase region. Right-bottom panel:
representative snapshots for small 100 � 100 systems with cholesterol composition c
(XC) ¼ 0.14(0.219) (top) and c(XC)¼ 0.18(0.265) (bottom). The lipid lattice is shown in
the first row (black for saturated lipids A, white for unsaturated lipids B); the second
row shows the cholesterol lattice (black for cholesterol molecules C).
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A new set of simulations addresses the behavior as a function of choles-
terol concentration when proteins are present. In Fig. 10, the mean linear
domain sizes and lifetimes are plotted as a function of cholesterol concen-
tration for different protein coverages. Following the trend presented
above, protein insertion shifts the cholesterol amount needed to promote
phase separation to larger values and strongly increases the stability of
fluctuations. More significantly, the steep behavior of L and t1/2 when
approaching phase separation (by means of cholesterol addition) is made
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Figure 10 Mean linear domain size L (A) and the corresponding domain lifetimes
t1/2(L) (B) as a function of cholesterol composition at different protein area fractions.
The other simulation parameters are f ¼ 0.333, J0 ¼ 0.12, and G0 ¼ 0.75, the same as
those used in Fig. 9.
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more gradual when proteins are inserted in the membrane [39]. The main
conclusion is that the inclusion of proteins smooths the behavior of the
characteristics of fluctuations in the pretransition region, thus providing a
reasonably flexible and adaptable cooperative tuning mechanism to
modulate the size and stability of rafts in cell membranes.

The quantification of the equilibrium spatial and temporal characteristics
of composition fluctuations in a lipid mixture when approaching the phase
boundary by addition of cholesterol is one of the important results reported
in this section. The other important outcome is the identification of two
different mechanisms for raft regulation in the latter context: a switch-like
mechanism that leads to either small and unstable structures or large lipid
platforms, and a more gradual tuning mechanism that modulates the size and
stability of raft-like domains. The latter mechanism involves the presence of
inert and static proteins that strongly stabilize nanometric domains up to
lifetimes of the order of tens of milliseconds or more. The general outcome
of our study is also consistent with a dynamic picture of the raft phenome-
nology: small and transient rafts exist in the cell membrane, and their size
and stability can be dynamically modified by simply adding or removing
small amounts of any of its components. Formation of macroscopic and
stable raft platforms as a result of the coalescence of small ones can be
explained in this picture as the displacement of the lipid mixture into
the immiscibility region of the phase diagram caused by a particular signal
or stimulus.

5. Conclusions

We have reviewed several mechanisms that may explain raft phenom-
enology in cell membranes. First, we have considered the case of a lipid
mixture in the two-phase region of its phase diagram and have shown that a
cholesterol exchange process counteracts the phase separation process,
leading to the formation of finite-size lipid aggregates. Second, we have
shown how the insertion of transmembrane proteins in a miscible lipid
mixture stabilizes lipid fluctuations. Finally, the combination of the varia-
tion of cholesterol membrane contents and the insertion of proteins has
been shown to provide a robust cooperative mechanism for the control of
nanoscale lipid organization in cell membranes. The applicability of the
results of these proposals in a biological context has been discussed.

Due to the complexity of the cell membrane, the real mechanisms that
control its lipid organization are also complex. Actually, there is no single
button that can be pushed to control lipid organization in the cell membrane.
More likely, multiple factors act cooperatively to control such organization.
Here, we have explored the effects of some of these possible contributions.
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Abstract

Supported lipid membranes are useful and important model systems for study-

ing cell membrane properties and membrane-mediated processes. One attrac-

tive application of supported membranes is the design of phantom cells

exhibiting well-defined adhesive properties and receptor densities. Adhesion

of membranes may be achieved by specific and nonspecific interactions and

typically requires the clustering of many adhesion bonds into “adhesion

domains.” One potential mediator of the early stages of the aggregation pro-

cess is the Casimir-type forces between adhesion sites induced by the mem-

brane thermal fluctuations. In this review, I will present a theoretical analysis of

fluctuation-induced aggregation of adhesion sites in supported membranes.

I will first discuss the influence of a single attachment point on the spectrum of
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membrane thermal fluctuations, from which the free energy cost of the attach-

ment point will be deduced. I will then analyze the problem of a supported

membrane with two adhesion points. Using scaling arguments and Monte Carlo

simulations, I will demonstrate that two adhesion points attract each other via

an infinitely long range effective potential that grows logarithmically with the

pair distance. Finally, I will discuss the many-body nature of the fluctuation-

induced interactions. I will show that while these interactions alone are not

sufficient to allow the formation of aggregation clusters, they greatly reduce the

strength of the residual interactions required to facilitate cluster formation.

Specifically, for adhesion molecules interacting via a short-range attractive

potential, the strength of the direct interactions required for aggregation is

reduced by about a factor of two to below the thermal energy kBT.

1. Introduction

Fatty acids and other lipids are essential to every living organism.
Because of their amphiphilic nature, they spontaneously self-assemble into
bilayer membranes that define the limits of cells and serve as permeability
barrier to prevent proteins, ions, and metabolites from leaking out of the cell
and unwanted toxins leaking in [1]. In eukaryotic cells, membranes also
surround the organelles allowing for organization of biological processes
through compartmentalization. In addition, biological membranes host
numerous proteins that are crucial for the mechanical stability of the cell,
and which carry out a variety of functions such as energy and signal
transduction, communication, and cellular homeostasis [2].

An important aspect of biological membranes is that they are typically not
free but rather confined by other surrounding membranes, adhere to other
membranes, and attach to elastic networks like the cytoskeleton and the
extracellular matrix. Several model systems with reduced compositional
complexity have been designed to mimic biological membranes. These
biomimetic systems include phospholipid bilayers deposited onto solid
substrates (solid-supported membranes) [3], or on ultrathin polymer supports
(polymer-supported membranes) [4]. Placing a membrane on a flat substrate
allows for the application of several different surface sensitive techniques,
including atomic force microscopy, X-ray and neutron diffraction,
ellipsometry, nuclear magnetic resonance, and others [5]. With the aid of
biochemical tools and generic engineering, supported membranes can be
functionalized with various membrane-associated proteins [6]. Synthetic
supported membranes with reconstituted proteins are increasingly used as
controlled idealized models for studying key properties of cellular membranes
[7]. They provide a natural environment for the immobilization of proteins
under nondenaturating conditions and in well-defined orientations [8].
Another attractive application of supported membranes is the design of
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phantom cells exhibiting well-defined adhesive properties and receptor
densities [9]. Using advanced imaging techniques, detailed information can
be obtained about the structure of the adhesion zone between the receptor-
functionalized supported membrane and ligand-containing vesicles that can
bind to the supported membrane [10,11]. These studies provide insight into
the dynamics of adhesion processes and the molecular interactions involved
in cell adhesion [12,13]. Understanding these interactions is crucial for the
development of drug delivery systems that depend on efficient adhesion
between a liposome and the plasma membrane of the target cell.

Adhesion between two membranes or between a membrane and
another surface can, in principle, be facilitated by nonspecific attractive
interactions (e.g., Coulomb and van der Waals interactions) [14–17]. Cell
adhesion, however, is usually caused by highly specific receptor molecules
located at the outside of the plasma membrane of the cell that can bind to
specific ligands on the opposite surface [18,19]. Typically, the area density
of the receptor molecules located at the outside of the plasma membrane is
rather low which does not lead to efficient adhesion. However, when facing
a surface with enough ligands, the receptors may cluster into highly con-
centrated adhesion domains to establish much stronger binding [20,21].
Formation of adhesion clusters occurs in many biological processes [22],
including the binding of white blood cells to pathogens [23], cadherin-
mediated adhesion of neighboring cells [24], and focal adhesion of cells to
the extracellular matrix [25]. Many biophysical aspects of specific adhesion
processes, ranging from the cooperativity in adhesion cluster formation to
the influence of stochastic processes such as the ligand–receptor reaction
kinetics, have been and continue to be studied theoretically using various
models [26–37].

Adhesion-induced domain formation requires some attractive intermo-
lecular interactions between the receptor–ligand pairs. These interactions
include both direct and membrane-mediated contributions. The former are
typically described by pairwise potentials which are infinitely repulsive at
very small molecular separations and attractive at somewhat longer (but still
finite) distances [38]. Their effect can, therefore, be studied in the frame-
work of the thoroughly researched lattice-gas model [39]. In contrast, much
less is known about the membrane-mediated mechanism, which has been
proposed by Braun et al. to explain the formation of gap junctional plaque at
cell–cell interfaces [40], and whose origin can be understood as follows:
Consider two adhesion bonds between two membranes or between a
membrane and a surface (Fig. 1A). The adhesion points restrict the thermal
height fluctuations of the membrane in their vicinity. This entropy loss can
be minimized if the two adhesion bonds are brought to the same place
(Fig. 1B), in which case the membrane becomes pinned at only one place
rather than two. The membrane fluctuations, thus, induce an attractive
potential of mean force between the adhesion bonds. This effect is often
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named after Casimir who predicted the existence of an attractive force
between two conducting plates, due to quantum fluctuations of the elec-
tromagnetic field in the intervening space [41]. Later, Fisher and de Gennes
generalized this concept to classical interactions induced by thermal fluctua-
tions in soft matter systems [42]. For bilayer membranes, there is a great
body of theoretical work on the Casimir effect between transmembrane
proteins (see review in Ref. [43], and references therein). Just like adhesion
bonds, membrane inclusions represent a “constraint” on the shape of the
membrane, and therefore, one should expect that they also interact with
each other through Casimir-like interactions. In addition to the fluctuation-
induced forces, the inclusions also experience other membrane-mediated
interactions which arise from the membrane curvature elasticity and from
the packing of the lipids near the inclusions’ surfaces (see review in Ref.
[44], and references therein). These other types of membrane-mediated
interactions are also expected to exist between membrane adhesion bonds.

The fundamental difficulty in attempting to provide a statistical–
mechanical analysis of the aggregation behavior of the adhesion bonds is
the need to integrate out the membrane degrees of freedom and write down
the potential of mean force as a function of the coordinates of the adhesion
sites f r!1; r

!
2; r
!
3; . . . ; r

!
Nð Þ. This is a nontrivial problem since the mem-

brane-mediated potential f r!1; r!2; r!3; . . . ; r
!
Nð Þ is a many-body potential

which cannot be expressed as the sum of two-body terms. The many-body
nature of f r!1; r!2; r

!
3; . . . ; r!Nð Þ is best illustrated by the following exam-

ple: Consider the configuration shown in Fig. 2A with two adhesion bonds
at located at r!1 and r!2 and, in comparison, the one shown in Fig. 2B with a
single bond at r!1 and a cluster of three bonds around r!2. Clearly, the
spectrum of membrane thermal fluctuations in both cases is quite the same,
and therefore, the adhesion bond located at r!1 is attracted to the three-point
cluster in 2(B) by the same force to which it is attracted to the single
adhesion point in 2(A). If f r!1; r

!
2; r!3; . . . ; r

!
Nð Þ was the sum of pair

interactions, the force in Fig. 2B would be three times larger than the
force in 2(A).

BA

Figure 1 (A) Schematic of a membrane attached by two distant adhesion bonds to an
underlying surface. There is an entropy penalty associated with each adhesion bonds
due to the restrictions imposed on the membrane thermal fluctuations in their vicinity.
(B) The entropy cost can be minimized by bringing the adhesion bonds close to each
other, in which case the thermal fluctuations become limited at only one location. The
increase in the entropy in (B) compared to (A) is the origin of the attractive fluctuation-
induced interactions between the adhesion bonds.
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2. Lattice-Gas Model for Adhesion Bonds in

Supported Membranes

What is the difference between the aggregation of adhesion bonds in
supported membranes and the traditional process of gas to liquid condensa-
tion? Condensation phase transitions are usually associated with a competi-
tion between the mixing entropy S which is higher in the dilute gas phase
and the interaction energy U which is lower in the condensed liquid state.
The equilibrium phase corresponds to the minimum of the free energy
F ¼ U � TS, where T is the temperature of the system. At high T, the free
energy F is “entropy-dominated” and equilibrium is attained in the gas
phase. Conversely, at low T, the free energy is “energy-dominated,” and
therefore, the condensed phase becomes thermodynamically more favor-
able. The liquid–gas phase transition can be analyzed in the framework of an
Ising-like model of identical particles that populate a lattice. Excluded
volume interactions between the particles are represented by the fact that
each lattice site can be occupied by no more than one particle. When two
particles occupy nearest-neighbor sites, they interact in a pairwise fashion
with an attractive energy� e. Denoting the occupancy of a lattice site by si,
with si ¼ 0 for an empty site and si ¼ 1 for an occupied site, the Hamilto-
nian of the lattice-gas model is given by

HLG ¼ �e
X
ij

sisj; ð1Þ

where the sum runs over all the pairs of lattice nearest-neighbor sites. The
phase diagram of the lattice-gas model is well known. There exists a
critical value ac such that if the interaction energy e < ackBT, the particles
will be distributed uniformly within the lattice. Above this critical value,
e > ackBT, a uniform distribution of the particles is observed only at low
concentrations of particles (gas phase), but upon increasing the concentra-
tion of particles, the system undergoes a first-order phase transition and a

BA

r1r1 r2r2

Figure 2 (A) Schematic of a supported membrane with two adhesion located at r!1 and
r!2. (B) Similar to (A), but with a three-bond cluster instead of a single adhesion bond in
r!2. The adhesion bond in r!1 is equally attracted (by a Casimir-like force) to the
adhesion bond located in r!2 in (A) and to the cluster of three adhesion bonds shown
in (B).
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second coexisting phase appears with a considerably larger concentration
(condensed phase).

As discussed in the previous section, the aggregation process of adhesion
domains involves an additional attractive potential of mean force resulting
from the membrane thermal fluctuations. A lattice model where each lattice
particle represents an adhesion bond in a supported membrane can, there-
fore, be introduced by supplementing Eq. (1) with an energy term
corresponding to the fluctuation-induced interactions. Since the functional
form of this many-body potential is yet unknown, we would, at this
moment, introduce it via a general potential function f that depends on
the coordinates of the lattice particles:

H ¼ �e
X
ij

sisj þ f sif gð Þ: ð2Þ

Our first task must be to derive an expression for f({si}). Once this is
accomplished, one can attempt to analyze the statistical mechanical proper-
ties of the model and address the question appearing at the beginning of
Section 2. One particular issue that we would like to address is whether the
fluctuation-induced attractive potential (which is of entropic origin) can
win the competition against the repulsive force originating from the mixing
entropy? In other words, can adhesion clusters form for purely entropic
grounds, that is, for e ¼ 0 in Eq. (2)? Gas to liquid condensation transitions
are generally believed to involve energy versus entropy competition [45],
but purely entropic phase transitions from a fluid (disordered) phase into a
crystalline (ordered) phase are known to exist. Hard sphere systems, for
instance, undergo a first-order phase transition from a low-density fluid
phase into a high-density solid phase [46]. This transition results from the
competition between two entropies—the configurational mixing entropy
which is higher in the disordered phase and the entropy associated with the
free volume available for each sphere, which is higher in the ordered crystal.

3. Statistical Mechanics of a Membrane with

One Adhesion Point

We start our analysis by considering the system shown schematically in
Fig. 3, consisting of a membrane with bending rigidity K that fluctuates
above a flat impenetrable surface [47]. Let h r!ð Þ � 0 be the height of the
membrane with respect to the surface, and assume that the membrane is
pinned to the surface at one fixed point located at r!0 h r!0ð Þ ¼ 0ð Þ. The
elastic curvature energy of the membrane is given by the Helfrich effective
Hamiltonian [48]
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Hhel ¼
ð

k
2

r2h
� �2h i

F hð Þd h r!0ð Þ½ �d2 r!; ð3Þ

where F represents the hard wall constraint due to the surface (F ¼ 1 for
h � 0, and F ¼ þ1 for h < 0), d is the Dirac delta-function, and the
integration is taken over the cross-sectional (projected) area of the mem-
branes of size L2.One can calculate the partition function Z corresponding
to Hamiltonian (3), by considering the Helfrich effective Hamiltonian of a
freely fluctuating membrane

H0
hel ¼

ð
k
2

r2h
� �2h i

d2 r!: ð4Þ

In this case, the associated partition function Zfree is readily calculated by
introducing the Fourier transformation of h r!ð Þ : hq ¼ 1=L2ð Þ Ð h r!ð Þ
exp i q!� r!ð Þ, which decompose Hamiltonian (4) into the sum of indepen-
dent harmonic oscillators

H0
hel ¼

l4

L2

X
q!

k
2
q4jhqj2; ð5Þ

where l is a microscopic length scale of the order of the bilayer thickness.
Hamiltonian (3) which also includes the functions F and d cannot be
diagonalized in the same manner. However, one can relate the partition
function Z of Hamiltonian (3) with the partition Zfree of the free membrane
Hamiltonian (4), by using the following simple argument. The energy of a
freely fluctuating membrane is invariant with respect to rigid-body trans-
formations such as a vertical translation h r!ð Þ ! h r!ð Þ � h0ð Þ of the mem-
brane’s center of mass. Therefore, one can draw a flat surface and translate
the free membrane such that the global minimum of its height function
coincides with the surface (see Fig. 4A). The vertically translated free
membrane looks very similar to the pinned membrane shown in Fig. 3A.
The only difference between them is that the former can also glide over the
surface (see Fig. 4B), while the latter is pinned at a fixed position on the

h

r0

Figure 3 (A) Schematic picture of the model system consisting of a membrane that
fluctuates above a flat impenetrable surface to which it is pinned at a single point.

Statistical Thermodynamics of Adhesion Points in Supported Membranes 135



surface. This suggests that the pinning point effectively eliminates the
membrane horizontal translational degree of freedom. In a statistical
mechanical language, the configurational phase space of the pinned mem-
branes is smaller than, yet similar to, the phase space of a free membrane.
Each subspace of identical free membrane configurations, like the ones
shown in Fig. 4B, includes one pinned membrane configuration—the
configuration where the minimum of h r!ð Þ is at the pinning point r!0 (or,
more precisely, within a microscopic area of size l2 around the pinning
point, where l is the spatial resolution of the continuum model). This
pinned membrane configuration occupies a fraction (l/L)2 of the
corresponding larger free membrane configurational subspace, which
implies that the partition functions of the two systems are related by
Z ¼ (l/L)2Zfree. The free energy is obtained from

F ¼ �kBT ln Zð Þ ¼ �kBT ln Zfreeð Þ þ 2kBT ln
L

l

� �
ð6Þ

The first term on the right hand side is the free energy of the free membrane
whose elastic energy is given by Helfrich Hamiltonian (3). The second
term,

Fattachment;1 ¼ 2kBT ln
L

l

� �
; ð7Þ

is the free energy cost of attaching the membrane to the surface at one point.
Following the above argument leads to a very interesting conclusion.

Because of the similarity mapping that exists between the configurational

A B

r0

Figure 4 (A) A freely fluctuating membrane can be always translated vertically such
that the point at which its height function h r!ð Þ attains its global minimum is on a flat
surface and the rest of the membrane is above the surface. (B) A freely fluctuating
membrane can be also translated horizontally. All the membrane configurations gen-
erated in this way are similar to each other, and the one for which the point of absolute
minimum is at r!0 (represented by the solid line) is identical to the pinned membrane
configuration shown in Fig. 3.
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phase spaces of the two problems, the statistical properties of the pinned and
the free membrane must be identical to each other. This surprising result
can be demonstrated by using an implicit-solvent coarse-grained (ISCG)
bilayer model which enables molecular simulations of mesoscopically large
bilayer membranes over relatively large time-scales [49–51]. Toward this
end, we ran two independent Monte Carlo (MC) simulations—one of a
free membrane (without a surface) and one of a membrane supported by a
flat impenetrable surface. A snapshot from the supported membrane simula-
tions is shown in Fig. 5. Each lipid molecule is represented in the model by a
short string of three spherical beads, where one of the beads (depicted as a
dark gray sphere in Fig. 5) represents the hydrophilic head group and two
beads (light gray spheres in Fig. 5) represent the hydrophobic tail of the
lipid. In the supported membrane simulations, the head bead of one of the
lipids (appearing in the corner at the front of the figure and indicated by an
arrow) was fixed to a flat surface which the lipids were not allowed to cross.
We measured the Fourier spectrum of the membrane height function. For
the free membrane, the application of the equipartition theorem to the
Fourier-space representation of the Helfrich Hamiltonian (5) yields the
following relationship between the mean squared amplitude of the Fourier
modes (spectral intensity) and the wave-vector q:

jhqj2
� � ¼ kBTL

2

kl4q4
: ð8Þ

Figure 6 depicts the results of our MC simulations for the spectral
intensity versus the wavenumber n ¼ qL/(2p). The figure shows that, in

Figure 5 Equilibrium configuration of a membrane consisting of 2000 lipids. Each
lipid is represented by a trimer of one “hydrophilic” bead (dark gray sphere) and two
“hydrophobic” beads (light gray spheres). The membrane is fluctuating above a plane
surface (frame indicated by a thick black line), while one of the hydrophilic beads (the
black sphere appearing at the front of the figure and indicated by an arrow) is held on
the surface at a fixed position.
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agreement with our predictions, (i) the free (open circles) and pinned (solid
circles) membranes exhibit the same statistics of thermal height fluctuations
and (ii) the spectral intensities of both membranes follow the n–4 power-law
dependence anticipated by Eq. (8) (dashed line).

One can reverse the argument and derive Eq. (7) starting from the
assumption that the spectral intensity of the supported membrane is identical
to that of a free membrane and, therefore, can be described by Eq. (8). The
derivation proceeds as follows: First, from Eq. (8), one can straightforwardly
show that the typical height at which the membrane undulates above the
surface at a distance r away from the pinning point scales linearly with r
[47,52] (see Fig. 7):

u rð Þ � h rð Þh i � r

ffiffiffiffiffiffiffiffiffi
kBT

k

r
: ð9Þ

There is a repulsive force acting between the fluctuating membrane and the
underlying surface, caused by their mutual steric hindrance. Helfrich [53]
showed that the associated repulsive interaction free energy density (per unit
area) has the following scaling behavior V(r) � (kBT)

2/ku(r)2 which,
together with Eq. (9), yields

V rð Þ � kBT

r2
: ð10Þ

101

n2
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2

free membrane
supported membrane

~ n–4

Figure 6 The mean square amplitude of the thermal height fluctuations as a function
of the wavenumber n. The results from the supported membrane simulations are shown
by small solid circles. These results are essentially identical to those obtained from
simulations of a free membrane which are represented by larger open circles. The
dashed line indicates the asymptotic hjhqj2i � n�4 power law for small n (adapted from
Ref. [47]).
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By integrating this energy density over the projected area of the membrane,
one derives Eq. (7) up to a numerical prefactor

Fattachment;1 ¼
ð
V rð Þd2 r! �

ðL
l

2pr
kBT

r2
dr ¼ CkBT ln

L

l

� �
: ð11Þ

To setC ¼ 2, as in Eq. (7), one needs to replace the scaling relation Eq. (10)
with the equality

V rð Þ ¼ 1

p
kBT

r2
: ð12Þ

4. Fluctuation-Induced Attraction Between Two

Adhesion Points

As noted by Helfrich [53], the free energy density Eq. (12) due to the
steric hindrance between the two surfaces (i.e., the fluctuating membrane
and the underlying supporting surface) is directly related to the rate of
collisions between them. In other words, the probability density that the
membrane hits the supporting surface at a distance r from the pinning point
exhibit the same dependence on r as V(r):

p h r!ð Þ ¼ 0½ � � 1

r2
: ð13Þ

This relationship provides the information needed for calculating the fluc-
tuation-induced attractive potential between two adhesion points. This is
done by regarding the point of collision between the membrane and the
surface as a second pinning point which can diffuse across the surface. In this
context, the probability density p h r!ð Þ ¼ 0½ � is identified with the pair
correlation function between the adhesion points which, therefore, also
follows the scaling form

r

h( r ) r
kBT

k

Figure 7 The fact that the statistics of thermal height fluctuations is not affected by the
single pinning point implies that the typical height of the fluctuations scales linearly with
the distance from the pinning site.
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g r!ð Þ � 1

r2
: ð14Þ

By definition, the pair potential of mean force is given by

f r!ð Þ � �kBT ln g r!ð Þ½ � ¼ 2kBT ln rð Þ; ð15Þ

which is an infinitely long range attractive potential that does not depend of
the bending rigidity of the membrane, k. The validity of Eq. (14) can be
tested by using MC simulations of the ISCG model shown in Fig. 5 with
two lipid heads attached to surface—one fixed at the origin and the other
allowed to diffuse on the flat surface. The pair correlation function is then
directly computed by sampling the position of the mobile adhesion point.
Our results [54], which are shown in Fig. 8, agree very well with Eq. (14).
The slope of the straight line on the log–log plot is equal to �2. The
deviations from the power-law behavior g r!ð Þ � 1=r2 at small values of
r (r/L < 0.05) are related to the breakdown of the continuum description of
the Helfrich Hamiltonian at small spatial scales. At small separations, the
molecular nature of the lipids becomes important and the radial pair distri-
bution function is dominated by the depletion shells around the lipids.

What if, in addition to the excluded volume repulsion, the membrane
and the surface also interact via an attractive potential of somewhat longer
range? Let us consider, for instance, the case when a harmonic confining
potential is added to the Helfrich Hamiltonian:

10.01 0.1

r/L

0.1

1

10

L2 g
( 

r 
)

Figure 8 The pair correlation function, g r!ð Þ, of a nonstressed membrane versus the
pair distance r. The slope of the dashed straight line is �2 (adapted from Ref. [54]).

140 O. Farago



H ¼
ð

k
2

r2h
� �2 þ g

2
h2

h i
d2 r!: ð16Þ

For the harmonically confined membrane, one can define the length scale
xg � (k/g)1/4 which marks the transition between two scaling regimes. For
r � xg, the thermal fluctuations are governed by the bending rigidity term
in Hamiltonian (16), while for r 	 xg the harmonic confinement term
becomes dominant. The latter term is a local one, which implies that the
influence of the adhesion point becomes screened at large distances. In the
case of a single adhesion point, the height of the fluctuations is now given by
(compare with Eq. (9))

h rð Þh i �
r

ffiffiffiffiffiffiffiffiffi
kBT

k

s
for r � xg

xg

ffiffiffiffiffiffiffiffiffi
kBT

k

s
for r 	 xg

;

8>>>><
>>>>:

ð17Þ

as illustrated schematically in Fig. 9A. The correlation function of a pair of
adhesion points is given by (compare with Eq. (14))

g r!ð Þ � r�2 for r � xg
r0 for r 	 xg

:

	
ð18Þ

The results of MC simulations of an ISCG molecular model of a harmoni-
cally confined membrane verify this crossover between the two scaling
regimes of g r!ð Þ (see Fig. 9B).

The energy of a membrane subjected to lateral surface tension s > 0 is
given by the following Hamiltonian

H ¼
ð

k
2

r2h
� �2 þ s

2
r!h


 �2
� 


d2 r!: ð19Þ

Scaling arguments [54] show that, in this case, the pair correlation function
exhibits behavior intermediate between Eqs. (14) and (18):

g r!ð Þ � r�2 for r � xs
r�1 for r 	 xs

;

	
ð20Þ

where the crossover length xs � (k/s)1/2. This scaling form is also con-
firmed by MC simulations (see Fig. 10).
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Figure 9 (A) The typical height of the fluctuations of a supported membrane experi-
encing a harmonic confining surface potential grows linearly close to the pinning point
and saturates at large distances. (B) The pair correlation function, g r!ð Þ, of such a
membrane versus the pair distance r. The slopes of the solid and dashed straight lines are
�2 and 0, respectively. ((B) is adapted from Ref. [54].)
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Figure 10 The pair correlation function, g r!ð Þ, of a supported membrane under
tension versus the pair distance r. The slopes of the solid and dashed straight lines are
�2 and �1, respectively. (adapted from Ref. [54])
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5. The Strength of the Fluctuation-Induced

Attraction

One of the main questions we aim to explore is whether the fluctua-
tion-induced interactions are sufficiently strong to allow the formation of
adhesion clusters. In the case of two adhesion points, the answer is no.
Despite of the attractive force between the adhesion points, they remain
unbound and their mean pair separation grows linearly with the system
size L. More generally, if the pair correlation function decays algebraically at
large distance, g r!ð Þ � r�c, the mean pair separation is given by

rh i �
Ð L
l
r2g r!ð ÞdrÐ L

l
rg r!ð Þdr �

L for c < 2

L= lnL for c ¼ 2

L3�c for 2 < c < 3

lnL for c ¼ 3

l for c > 3

:

8>>>><
>>>>:

ð21Þ

The physically relevant cases in Eq. (21) are c ¼ 2,1, and 0 which,
respectively, correspond to pinned, pinned-stressed, and pinned-confined
membranes. In all of these cases, hri grows with the size of the system.

Another quantity of interest is the mean number hCi of contacts
between the surface and a membrane with one adhesion point. As discussed
in Section 4, the probability density that membrane comes into contact with
the surface at a distance r from the pinning point has the same scaling form as
the pair correlation function g r!ð Þ. Thus,

Ch i �
ðL
l

g r!ð Þrdr �
L=xg
� �2

for c ¼ 0

L=xs for c ¼ 1

ln L=lð Þ for c ¼ 2

:

8<
: ð22Þ

We can use this last result to generalize and recalculate the attachment free
energy of one adhesion point, Eq. (7). Our original derivation of Eq. (7) was
based on the argument that the configuration phase space of a pinned
membrane comprises a small subspace within the configuration phase
space of a free membrane. More precisely, we argued that this subspace
includes the free membrane configurations in which the global minimum of
the height function occurs at the pinning point of the corresponding
supported membrane. We further argued that the relative size of the
subspace is (l/L)2, which was based on the assumption that typically there
is only one contact point with the surface, and therefore, this contact point
must be the adhesion site. However, as we see from Eq. (22), a typical
configuration makes hCi contacts with the surface. Therefore, the partition
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functions of the two problems (free vs. pinned membranes) are actually
related by Z ¼ [hCi (l/L)2] Zfree. The attachment free energy is given by

Fattachment;1 ¼ �kBT ln
Ch il2
L2

� �

¼
2kBT ln xg=l

� �
for c ¼ 0

kBT ln L=lð Þ þ kBT ln xs=lð Þ for c ¼ 1

2kBT ln L=lð Þ � kBT ln ln L=lð Þ½ � for c ¼ 2

:

8<
: ð23Þ

Notice that for sufficiently large L, Fattachment,1(c ¼ 2) > Fattachment,1(c ¼ 1)
> Fattachment,1(c ¼ 0). Indeed, the attachment of a free membrane to a
surface is likely to be more costly than the attachment of stressed and
harmonically confined membranes that exhibit reduced fluctuations and,
thus, remain close to the surface anyway.

6. The Many-Body Problem

Let us look back at Fig. 8 which shows the pair correlation function
between two adhesion points. The figure demonstrates that the scaling form
Eq. (14) holds over almost the entire range of pair separations considered
l < r < L=

ffiffiffi
2

p� �
. The deviations from the power law at small pair distances

arising from the short-range depletion forces between lipids have already
been discussed in Section 4. What is quite surprising, though, is the pretty
good agreement between the MC results and Eq. (14) at large pair distances.
Equation (14) has been derived for two adhesion points in a very large
membrane, neglecting boundary effects. In the simulations, the conditions
are different—the membrane has a finite size and periodic boundary con-
ditions are employed to reduce the finite size effects. Thus, each adhesion
point interacts not only with the other adhesion point but also with its
infinite array of periodic images. Nevertheless, the existence of periodic
images seems to have a very small impact on the results. This observation is
particularly unexpected for r > L/2 corresponding to situations where one
of the adhesion points is equally close to two images of the other adhesion
point. The only possible way to explain this surprising observation is to
assume that the periodic images of the adhesion points are largely screened.
This assumption is consistent with the following physical picture: The
membrane-mediated interactions originate from the entropic cost due to
the suppression of the membrane thermal undulations. Thus, the presence
of each adhesion point is felt only in the region where it affects the
fluctuations and cause their reduction, while outside of this region, the
adhesion point is effectively screened. In this perspective, the idea that distant
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adhesion points are screened seems logical. The fluctuations vanish at
each adhesion point, irrespective of the distribution of the others.Moreover,
in the immediate vicinity of each adhesion point, one expects the amplitude
of the fluctuations to depend only on the distance from that adhesion point.
If the membrane is neither stressed nor experiencing a confining surface
potential, the amplitude of the fluctuations in this region grows linearly with
the distance r from the adhesion point, as given by Eq. (9). We now wish to
introduce a more general expression that holds over the entire area of the
membrane and coincides with Eq. (9) close to every adhesion point. Our
suggestion is as follows [55]: In each unit area of the membrane, the mean
height of the membrane above the surface is given by (compare with Eq. (9))

h rð Þh i � dmin

ffiffiffiffiffiffiffiffiffi
kBT

k

r
; ð24Þ

where dmin is the distance of the unit area from the nearest adhesion point.
We also replace r with dmin in Eq. (12) for the attachment free energy
density, which now reads

V rð Þ ¼ 1

p
kBT

d2min
: ð25Þ

The total attachment free energy of a given distribution of adhesion points is
obtained by integrating the attachment free energy density Eq. (25) over the
entire membrane area. This calculation is done by constructing the Voronoi
diagram of the distribution of adhesion points, integrating the free energy
density with each cell (where in each cell the distance is measured from the
adhesion point located in the cell, and a small region of microscopic size l
around the point is excluded from the integral), and summing the contribu-
tions of the different cells:

Fattachment ¼
XNcell

i¼1

ð
kBT

pr2
d2 r!: ð26Þ

In a lattice-gas model, the discrete analog of this expression applies

Fattachment ¼
X
i

kBT

p
l

dmin

� �2

1� sið Þ; ð27Þ

where the sum run over all the empty lattice sites (si ¼ 0) and l2 is the area
per lattice site.

As discussed in Section 2, our main goal is to develop and use a lattice-
gas model for the aggregation problem of adhesion points. In the model,
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each lattice point represents an adhesion point between the membrane and
surface. The energy of a given configuration of lattice points is given by
Eq. (2), where the first term represents the short-range attraction between
adhesion points and the second term is a many-body fluctuation-induced
potential f({si}). Our journey to derive an expression for f({si}) started in
Section 3, and has finally reached the end. f({si}) is a potential of mean force
which, for a given distribution of adhesion points, is determined by tracing
over all the relevant membrane configurations and calculating the free
energy penalty associated with the reduced thermal fluctuations. Equa-
tion (27) provides this expression by assigning a free energy cost with
each empty lattice site that represents a fluctuating unit area of the supported
membrane. Introducing Eq. (27) into Eq. (2), yields the energy function of
our lattice model of adhesion points

H ¼ �e
X
ij

sisj þ
X
i

kBT

p
l

dmin

� �2

1� sið Þ: ð28Þ

6.1. The Two-Body Problem Revisited

Let us see how one can rederive Eq. (15) for the pair potential of mean force
by calculating the attachment free energy Eq. (26). Toward this end,
consider the membrane shown schematically in Fig. 11 with two adhesion
points, each of which located a distance r/2 from the center of the mem-
brane. The dashed line shows the border between the Voronoi cells of the
adhesion points, where each cell extends over half of the area of the
membrane. For the configuration shown in Fig. 11, the attachment free
energy Eq. (26) reads:

Fattachment;2 ¼ 4

ðL=2
0

dy

ð r�lð Þ=2

0

dx
kBT

p y2 þ x� r=2ð Þ2� �
"

þ
ðL=2

rþlð Þ=2
dx

kBT

p y2 þ x� r=2ð Þ2� �
#
:

ð29Þ

Integrating over y yields,

Fattachment;2 ¼ 4kBT

p

ð r�lð Þ=2

0

dx

j x� r=2 j tan�1 L

2 j x� r=2 j
� �"

þ
ðL=2

rþlð Þ=2

dx

j x� r=2 j tan�1 L

2 j x� r=2 j
� �#

:

ð30Þ
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Assuming that l < r � L, the inverse tangent function in Eq. (30) can be
approximated by the constant value of p/2 over most of the integration
range. With this approximation, one gets

Fattachment;2 r;Lð Þ ’ 2kBT ln
L

l

� �
þ 2kBT ln

r

l


 �
¼ Fattachment;1 Lð Þ þ f rð Þ:

ð31Þ

The first term in Eq. (31) is the free energy cost of a single adhesion site
(Eq. (7)), which is the expected value when the two adhesion points
coincide (r ’ l) to form a single cluster. The second term, which represents
the additional free energy cost associated with the separation of the adhesion
points, is identified as the fluctuation-induced pair potential, in agreement
with Eq. (15).

6.2. Mean Field Theory

We now come back to the many-body problem and start with a mean field
analysis of our lattice model Hamiltonian (28). Let us consider a lattice ofNs

sites of which N 
 Ns sites are occupied by adhesion points. Let us further
assume that the adhesion points form Nc 
 N adhesion clusters. The free
energy of system includes three contributions: (i) the mixing entropy of the
adhesion clusters, Fmix; (ii) the lattice-gas energy, ELG, of the direct inter-
actions between the adhesion points [first term in Eq. (28)]; and (iii) the
attachment free energy, FN [second term in Eq. (28)]. The first free energy
contribution is given by

r

L

Figure 11 Schematic of a square membrane of linear size L with two adhesion points
located at (x, y) ¼ (� r/2, 0). The dashed line shows the border between the Voronoi
cells of the adhesion points.
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Fmix

kBT
¼ Nc ln

Nc

Ns

� �
� 1

� 

þ 1

2
c

N2
c

Ns

� �
; ð32Þ

where c is the second virial coefficient. On average, each cluster consists of
(N/Nc) adhesion points; and if we assume that it has a roughly circular shape
than c ’ 4(N/Nc). Denoting the number densities of the adhesion points by
r ¼ N/Ns, and of the clusters by r� ¼ Nc/Ns 
 r, the free energy of
mixing per lattice site is given by

Fmix

NskBT
¼ r� ln r�ð Þ � 1½ � þ 2rr�: ð33Þ

The second contribution to the free energy is due to the direct interactions
between the adhesion points. The ground state of the interaction energy ELG

is achieved when a single circular adhesion domain with minimal surface is
formed. If we set the ground state as the reference energy, the energy of an
ensemble of clusters can be estimated as being proportional to the total
length of the domain boundaries. For Nc circular clusters of size (N/Nc) we
have

ELG

NskBT
¼ l

Nc

Ns

ffiffiffiffiffiffi
N

Nc

r
¼ l

ffiffiffiffiffiffiffiffi
rr�

p
; ð34Þ

where l, the associated dimensionless line tension, is proportional to the
interaction energy e

l ¼ 2
ffiffiffi
p

p
Be; ð35Þ

and B is the mean number of nearest-neighbor vacant sites per occupied site
on the boundary of a cluster (B ! 1 for very large clusters). The sum of free
energy contributions (33) and (34) constitutes the total free energy density
(per lattice site) of a 2D lattice gas of clusters:

FLG

NskBT
¼ r� ln r�ð Þ � r� þ 2rr� þ l

ffiffiffiffiffiffiffiffi
rr�

p
: ð36Þ

The third contribution to the attachment free energy can be estimated as
follows. The clusters form Nc Voronoi cells, each of which has on
average an area of Avor ¼ (Ns/Nc)l

2. The attachment free energy of
each Voronoi cell is given by an equation similar to Eq. (7) for the
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attachment free energy of one adhesion point, but with Avor instead of
the total membrane area L2. Thus

FN ¼ Nc kBT ln
Ns

Nc

� �� 

; ð37Þ

and the attachment free energy density is given by

FN

NskBT
¼ �r� ln r�ð Þ; ð38Þ

which eliminates the first term in the lattice-gas free energy density
(Eq. (36)), yielding

F

NskBT
¼ FLG

NskBT
þ FN

NskBT
¼ �r� þ 2rr� þ l

ffiffiffiffiffiffiffiffi
rr�

p
: ð39Þ

We consider a low density of adhesion sites r � 1, which also implies a low
number density of adhesion clusters since r� 
 r. By minimizing the free
energy density, we obtain the equilibrium value of the r� for the standard
lattice-gas model (Eq. (36)) and for the adhesion points of a fluctuating
supported membrane (Eq. (39)). In both cases, the system undergoes a first-
order phase transition at l1(r) from the gas phase (r� ¼ r) to a condensed
phase consisting of only a few clusters (r� � 0). Also, in both cases, the free
energy reaches a maximum at intermediate densities (0 < r� < r).
This free energy barrier for condensation disappears at the spinodal point
l2(r) > l1(r). For the lattice-gas problem, we find

lLG1 ¼ 1� 2r� ln rð Þ
lLG2 ¼ �4r� 2 ln rð Þ; ð40Þ

while for the adhesion points of fluctuating membranes, we have

l1 ¼ 1� 2r
l2 ¼ 2� 4r ¼ 2l1:

ð41Þ

The results of Eqs. (40) and (41) are summarized in Fig. 12A and B,
respectively. The important points in the results are that (i) l1 > 0, which
means that the fluctuation-induced interactions alone are not sufficient to
induce aggregation of adhesion domains, but (ii) they greatly reduce the
strength of the direct interactions required to facilitate cluster formation
since l1 < l1

LG (and also l2 < l2
LG). Below, we support these conclusions

with MC simulations and show that for adhesion points of fluctuating

Statistical Thermodynamics of Adhesion Points in Supported Membranes 149



membranes, the site–site cohesive energy e for the onset of aggregation
falls below the thermal energy kBT.

6.3. Monte Carlo Simulation

To further investigate the aggregation behavior in supported membranes,
we performed MC simulations of both our lattice model of adhesion points
and of the standard 2D lattice-gas model [55]. We simulated the system at
two different densities r ¼ N/Ns ¼ 0.05 and r ¼ 0.1, and for various
values of e ranging from 0 to 3 kBT. Snapshots taken from simulations for
e ¼ 1kBT and r ¼ 0.1 are shown in Fig. 13. Figure 13A shows the initial
configuration where the points are randomly distributed on the lattice.
Figure 13B and C shows, respectively, typical equilibrium configurations
of the standard lattice-gas model and of our model of adhesion points. One
clearly sees that for the same strength of the interaction energy e ¼ 1kBT,
the standard lattice-gas model remains in the gas phase, while the adhesion
points (that, in addition to the direct interactions, also attract each other via
the fluctuation-induced mechanism) condense into a large cluster contain-
ing almost all the adhesion points.

In order to determine the onset of the gas to liquid transition, we
measured the average number of clusters in the system (where a cluster is
defined as a set of neighboring occupied sites), and the mean value of the
energy of direct interactions between sites, hELGi [first term in Eq. (28)].
Our results are summarized in Fig. 14A (for r ¼ 0.05) and 14B (for
r ¼ 0.1). For each r, we measured these quantities both for the standard
lattice-gas model (open symbols and dash-dotted lines in Fig. 14) and for
the adhesion points model (solid symbols and solid lines in Fig. 14).
The number of clusters is denoted by squares (values on the right y-axis of
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Figure 12 The phase diagram of the adhesion sites calculated within the mean field
approximation. (A) Equation (40) for the standard 2D lattice-gas model. (B) Equa-
tion (41) for adhesion points of fluctuating membranes. l1 and l2 represent the first-
order transition and spinodal lines, respectively. (adapted from Ref. [55])
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the figures), while hELGi is represented by circles (values on the left y-axis).
The gas phase is characterized by a large number of small clusters, some of
which may be of the size of a single site. Furthermore, since each occupied
site has a relatively small number of neighboring occupied sites, the mean

A

CB

Figure 13 (A) Initial configurations of the simulations in which the points are randomly
distributed on the lattice. (B) Representative equilibrium configurations of the standard
lattice-gas model for r ¼ 0.1 and e ¼ 1kBT. (C) Representative equilibrium configura-
tions of our lattice model of adhesion points for the same values of r and e as in (B).
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Figure 14 Left y-axis: The energy of direct interactions between sites, hELGi, as a
function of e, for f ¼ 0.05 (A) and f ¼ 0.1 (B). Solid circles: results for our model for
adhesion points. Open circles: results for the standard lattice-gas model. Right y-axis:
The number of clusters as a function of e, for f ¼ 0.05 (A) and f ¼ 0.1 (B). Solid
squares: results for our model for adhesion points. Open squares: results for the standard
lattice-gas model. (adapted from Ref. [55])
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configurational energy h�ELGi is relatively low. Conversely, when the sites
form large clusters in the condensed phase, h�ELGi is high, and the total
number of clusters decreases (and in many cases, especially for large values of
e, we simply observe only a single cluster in our system). Figure 14 exhibits
an abrupt, clearly first-order, transition from a gas phase with a large number
of clusters and small h�ELGi to a condensed state with a small number of
clusters and large h�ELGi. The estimated values of e at the transition are (see
vertical lines in Fig. 14): et ’ 0.7kBT (r ¼ 0.05) and et ’ 0.65kBT (r ¼ 0.1).
In comparison (see also Fig. 14), for the standard lattice-gas model, the
transition values are roughly twice larger than these values: et

LG ’ 1.45kBT
(r ¼ 0.05) and et

LG � 1.3kBT(r ¼ 0.1).
Our computational results which show that the fluctuation-mediated

interactions reduce the strength of et, are in a qualitative agreement with the
mean field theory prediction. To make a quantitative comparison between
the theory and the simulations, one needs to estimate the parameter B
appearing in Eq. (35). Several reasons make such an estimation difficult
and inaccurate: First, our nonstandard mean field theory is based on the
assumption that the clusters are circular and roughly have the same size,
which is quite a crude approximation. Second, tracing the precise location
of et in Fig. 14 is largely inaccurate because of the finite size of the system
that makes the transitions look like crossovers. To reduce the large uncer-
tainties associated with the determination of et, one can look at the differ-
ence between the value of this quantity in our model of adhesion points and
for the standard lattice-gas model. Using

lLG1 � l1 ¼ 2
ffiffiffi
p

p
B eLGt � et
� �

; ð42Þ

for r ¼ 0.1, we find B ’ 1, as indeed expected for large clusters.

7. Conclusions

In this review, we presented a statistical thermodynamics analysis of
the aggregation behavior of adhesion points between a fluctuating mem-
brane and a supporting surface. Our analysis focused on the contribution of
the membrane thermal fluctuations to this process, via the attractive inter-
actions that they mediate between the adhesion points. The origin of the
fluctuation-induced (Casimir-like) interactions are the restrictions imposed
on the membrane thermal fluctuations by the adhesion points, and the
associated free energy cost which is minimized when the adhesion points
localize in a cluster. We investigated both the two- and many-body fluctu-
ation-induced interactions. For the two-body problem, our analysis reveals
that the fluctuation-induced pair potential is infinitely long range with a
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logarithmic dependence on the pair distance. If, in addition to the excluded
volume interactions, the membrane and the surface also interact via an
attractive confining potential, the fluctuation-induced pair potential
becomes screened at large distances. The screening of the pair potential is
due to the fact that far away from each adhesion point, the amplitude of the
fluctuations is governed by the strength of the external potential rather than
by the presence of the other adhesion point.

In the many-body problem, the fluctuation-induced interactions are
self-screened. The amplitude of the thermal fluctuations at each unit area
of the membrane is governed by the distance to the closest adhesion points,
which implies that each point interacts only with a few nearby points. This
justifies our mapping of the problem into the 2D lattice-gas model with an
effectively larger (renormalized) interaction energy. Depending on the
strength of the renormalized interactions, the system may be either in a
“gas” (uniform distribution) or a “condensed” (adhesion cluster) phase. The
interesting question which arises is whether the fluctuation-induced contri-
bution to the attraction is sufficiently strong to allow cluster formation. Our
analysis finds that the answer to this question is no. The fluctuation-induced
interactions alone are too weak to induce the condensation transition. They
do, however, greatly reduce (to below the thermal energy kBT) the strength
of the direct interactions at which the transition takes place.
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Abstract

Monte Carlo simulations provide some insight into self-assembled aggregates

of amphiphiles in aqueous environment. A rather simple solvent-free model,

where a molecule is formed by a hydrophilic head segment and some hydro-

phobic chain segments, is suitable for describing the formation of micelles,

stable membranes, and spherical vesicles. Characteristic features of the self-

assembled aggregates, such as the elastic properties of bilayers, can be
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obtained from simulated data. The capability of this simple approach was

demonstrated for a surfactant model with three spherical segments. Analyzing

vesicle fluctuations by Monte Carlo simulations, the surface tension and the

curvature elastic constant of bilayers that form vesicles can be evaluated. If the

vesicles contain hydrophilic solute molecules, thermal fluctuations of spherical

vesicles depend on their osmotic pressure. Already at relatively low solute

concentrations, the appearance of an osmotic pressure leads to a strong

depression of vesicle fluctuations.

The adsorption of colloidal particles on surfaces of soft materials causes elastic

distortions. Biological membranes contain a large amount of embedded and

adsorbed macromolecules, especially transmembrane and peripheral proteins

consisting of large polypeptide chains folded in compact particles. Membrane

distortions spread around each protein can superimpose and produce indirect

forces between them. Similar effects are based on concentration fluctuations of

the lipid components forming themembrane. Proteins as well as smaller peptides

disturb the homogeneous distribution of the lipid mixture, facilitating a phase

separation of the lipid components. Disturbances of the spatial lipid distribution

can also be accompanied by an enhanced adsorption of water soluble peptides.

This effect is amplified for nonideal mixtures, when the correlation length of

concentration fluctuations is enlarged. Concentration fluctuations also produce

forces between membrane proteins, which can enforce the aggregation of mem-

brane bound proteins. Monte Carlo simulations are suitable for testing general

concepts and theories on protein-membrane interactions.

1. Introduction

Amphiphilic molecules are capable of self-assembling in aqueous
environment, forming micelles, bilayers, or even more complex liquid
crystalline phases in dependence on their molecular structure [1]. Because
of their biological relevance, lipid bilayer membranes are of special interest.
According to the well-established model of Singer and Nicolson [2],
biological membranes consist of a lipid bilayer with embedded and adsorbed
amphiphatic macromolecules such as proteins and smaller peptides. The
lipid molecules and many of the proteins can move freely in the membrane
plane. Most lipid molecules in a biological membrane consist of a hydro-
philic headgroup and two hydrocarbon chains, but also single-chain lipids
and lipids with more than two chains exist. A native membrane contains a
large variety of lipid components, which differ in their hydrophilic heads
and hydrophobic tails. The very complex interactions of lipids and intrinsic
or associated membrane proteins is a topic of intense biological research
[3–6]. After establishing the generally accepted membrane model, biologists
have elucidated a large number of phenomena that are based on the
interplay of lipids and proteins associated with the bilayer. Subtle and
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specific biological effects cannot be described by common physical methods
such as molecular simulations and statistical mechanics. However, there are
also some general basic properties which may be suitable for the application
of statistical mechanics. Some interesting membrane processes are believed
to have a simple physical origin, resulting from membrane elasticity, fluid-
ity, and nonideal mixing of membrane lipids [7,8].

In these cases, where collective effects take place in lipid bilayers, Monte
Carlo (MC) simulations [9] provide a theoretical framework suitable to
elucidate a variety of physical properties. Apart from Monte Carlo simula-
tions, there are also other simulation techniques which can be used to
investigate systems with many degrees of freedom. A large number of
studies on amphiphiles have been done by using molecular dynamics [10],
Brownian dynamics [11], and dissipative particle dynamics simulations
[12,13]. These techniques have the advantage that they account for true
physical processes, whereas the pathway of successive states in Monte Carlo
simulations usually does not reflect the system evolution. Monte Carlo
simulations are suitable for studying final states, where the thermodynamic
equilibrium appears, but not the detailed kinetic process from an equilib-
rium state to another one after changing external conditions. Unfortunately,
many interesting problems concerning the pathway of specific processes, for
example, self-assembly of bilayers, membrane fusion [14], endocytosis, and
exocytosis [15], can hardly be elucidated by standard MC simulations. A
remedy could be kinetic MC [16], but in most cases other methods are
favored to simulate the evolution of thermodynamic systems.

On the other side, MC simulations have the advantage that nonphysical
MC moves frequently drive a system faster toward the equilibrium state
than physical moves of other simulation methods. If equilibrium properties
are studied, MC simulations are suitable to gain insight into thermodynami-
cal and mechanical equilibrium properties of bilayers. A classical problem is
to find out how macroscopic membrane properties emerge from micro-
scopic interactions between amphiphilic molecules. It has been demon-
strated that bilayers possessing the essential experimentally observed
properties are formed by simulating systems that contain very simple
model molecules [11,17,18]. Analyzing self-assembled model bilayers may
also help to formulate macroscopic theories more precisely. Several slightly
different versions of the macroscopic elasticity theory for bilayer deforma-
tions are known, which have been used to predict a large variety of possible
vesicle shapes [19].

MC and other simulation techniques can help to decide which version
of the elasticity theory is the most realistic one for a reliable macroscopic
description of bilayer membranes. Another problem under debate is the
disturbance of the lipid bilayer by peripheral and transmembrane proteins
[3,6,20–22]. Lipid–protein interactions are accompanied by redistributions
of lipid mixture constituents and elastic deformations. In this chapter, we
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discuss the application of Monte Carlo simulations to some problems arising
in membrane physics:

� Fluctuations and elastic properties of self-assembled vesicles
� Peptide adsorption enhanced by demixing and concentration fluctuations
of membrane lipids

� Membrane-mediated interactions between peripheral and transmembrane
proteins due to concentration fluctuations and elastic deformations

� Short-range membrane-mediated elastic interactions between adsorbate
particles on supported membranes

It will be demonstrated that simulations of ensembles with very simple
molecular models are capable of reproducing characteristic physical proper-
ties of membranes. This approach is not appropriate for investigating special
properties of lipid compounds or peptides, but it can yield some insight into
several collective properties of bilayers. When simple coarse-grained molec-
ular models are used, it is more promising to draw general conclusions on
the strength and importance of membrane-mediated effects [23]. In partic-
ular, Monte Carlo simulations are useful to test concepts and recent ideas
concerning the mechanisms of indirect interactions between membrane-
associated proteins.

MC simulations may also be helpful to tackle more specific problems
related to liposomes. In these cases, it would be necessary to introduce more
detailed molecular models mapping more features of the real architecture of
lipids. As an example, we consider the solubilization of a liposome by bile
salts, which is an important step of the digestion of lipids [24]. If only small
displacements and rotations of molecular segments between successive
system configurations are generated, the system evolution is similar to a
Brownian motion. This approach works well for describing disordered
systems. Thus, the kinetic MC method is supposed to provide a fairly
good representation of possible intermediate structures arising when a
system transforms into an equilibrium state. We have used kinetic MC for
elucidating the transformation of a liposome into micelles. In a similar way,
adding more characteristic features to molecular models, MC procedures
may offer appropriate tools to simulate equilibrium states of specific bilayer
membranes, or even the evolution of a strongly fluctuating system from a
nonequilibrium toward an equilibrium state.

2. Self-assembled Vesicles

The amphiphilic character of surfactants leads to the formation of
various aggregates in water. Surfactant molecules consist of a polar head
group and one or more hydrocarbon chains. The polar heads promote
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dissolution in water, whereas hydrocarbon chains are hydrophobic and thus
nearly insoluble. The insolubility is based on unfavorable orientations of
water molecules, which are highly ordered in the vicinity of hydrocarbon
chains [25].

Already at low or moderate concentrations, surfactant molecules orga-
nize themselves into aggregated structures to shield their hydrocarbon
chains from water. In contrast, solvent-mediated attraction forces between
polar groups should be small, since water is a good solvent for the heads of
amphiphilic molecules. Hence, the aggregation of amphiphilic molecules is
driven by a strong effective attraction between chain segments, which tends
to minimize the unfavorable contacts between polar solvent and apolar parts
of solute molecules (hydrocarbon chains). This indirect force, usually denoted
as hydrophobic interaction, is known to be several times stronger than the
familiar van der Waals force between hydrocarbon chains [26]. Changing the
number of water-like and oil-like segments in surfactant molecules leads to a
strong alteration of the effective interaction. In many cases, the amphiphilic
molecules aggregate into spherical micelles. But there exist various different
aggregated structures, for example, disk-like or cylindrical micelles. At higher
surfactant concentrations, the hexagonal phase, membranes, cubic phases, or
even more complex morphologies can appear [1].

Lipid vesicles made of flexible bilayers of amphiphilic molecules in
aqueous solutions have various different shapes [27]. They may serve as
carriers for biomolecules into (endocytosis) and out of cells (exocytosis)
[15]. In pharmaceutical applications, filled vesicles are useful for drug
delivery [28]. Very large vesicles with radii in the micrometer range, called
giant vesicles, have found much attention both from experimental and
theoretical point of view [29]. In dependence on constraints, such as bilayer
area and enclosed volume, a large variety of vesicle shapes has been pre-
dicted [30]. An important material parameter is the curvature elastic modu-
lus. A conventional method to determine this modulus is based on the
thermal shape fluctuations of spherical vesicles [31,32]. Giant vesicles are
very fragile elastic objects, their strong thermal fluctuations can be observed
under an optical microscope. Analyzing many snapshots of these fluctua-
tions yields the curvature elastic modulus. Although small vesicles are
invisible by optical microscopy, the investigation of their physical properties
can lead to relevant biological results, for example, for elucidating endocy-
tosis and exocytosis.

2.1. Simple Model for Monte Carlo Simulations of Self-
assembled Amphiphilic Aggregates

Apart from Monte Carlo simulations for lattice models [33,34], most current
investigations are focused on off-lattice systems [35,36] utilizing the consider-
able progress in computing performance. If atomic resolution is used for
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off-lattice molecular simulations, the complete configuration space of a surfac-
tant-water system, even when small systems of surfactant molecules are con-
sidered, comprises a vast number of coordinates. A detailed model may be
utilized to simulate small systems, for example, single micelles or bilayer
membrane patches. For describing the self-assembly of larger systems, how-
ever,much simpler concepts are needed to avoid exceptionally long simulation
times. Simplified coarse-grainedmodels are not suitable to allow formolecular
details, but they can help to understand the underlying physics of self-assembly
processes in surfactant systems. For this purpose, themolecules are divided into
segments, each of them contains some atoms or functional groups.

A further essential reduction of computational effort is possible by using
solvent-free effective interaction models. In a formal way, the effective inter-
action potential is generated by an integration of the complete many-particle
distribution function over the complete set of solvent coordinates. The result-
ing reduced distribution function depends only on the solute coordinates and
its logarithm is related to the effective potential [37]. Furthermore, neglecting
many-body contributions, it is usually assumed that the effective potential can
be expressed as a sum of effective pair potentials for the interaction between
molecular segments. For surfactant molecules at least two segment types,
namely hydrophilic and hydrophobic segments, have to be considered. We
use the simplest model capable of accounting for the combined hydrophilic
and hydrophobic character of flexible surfactant molecules [18].

Water can be chosen as a reference for introducing the interaction
energies between different molecular segments. Thus, we distinguish
between water-like heads and oil-like (hydrocarbon) chain segments. Self-
assembled surfactant structures such as micelles or membranes are not fixed
aggregates, but they change size and shape as a consequence of very strong
thermal fluctuations. In this case, predictions of simulations by coarse-
grained models depend on the interaction range, but they are not very
sensitive to details of the chosen pair potential [17]. All segments are
considered as hard spheres with the same diameter, which defines the
range of the excluded volume interaction.

The first segment, the hydrophilic head, comprises the surfactant head
group atoms with tightly bound water, while further segments represent the
hydrocarbon chains. A few CH2-segments are joined to form an oil-like
chain segment similar to chain models in polymer physics. Except for the
restrictions resulting from the excluded volume interaction, the angle
enclosed by adjacent bonds between spherical segments can vary arbitrarily.
Let us consider a model with amphiphilic molecules consisting of a head and
two oil-like chain segments (Fig. 1). Neglecting other attractive forces, we
only consider the hydrophobic interaction as the main attractive force
between surfactant molecules. Defining central forces between the spherical
segments, the effective interaction may be expressed as a square-well
potential
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u rð Þ ¼
1 for r � s;
�e fors < r � sþ d;
0 for r > sþ d;

8<
: ð1Þ

where r is the distance between the centers of interacting spheres, s is their
diameter, and d is the width of the well. For head–head and head–tail
interactions the interaction parameter e is assumed to be equal to zero, for
the tail–tail interaction the hydrophobic attraction e is larger than zero. This
choice of the effective pair potential implies the generally accepted realiza-
tion that the hydrophobic interaction should be much stronger than other
attractive forces between surfactant segments.

It should be noted that other studies [17,35,38,39] have used a similar
simple water-free effective interaction model with a lipid model consisting
of three beads for simulating bilayer membranes. In comparison to our
version [18], these models introduce an intramolecular potential, which
prefers the beads to lie on a straight line. The simulations of Farago et al.
[38,39] are focused on thermal undulation fluctuations of planar preassem-
bled bilayer membranes.

As starting point for our Monte Carlo simulations, N0 ¼ 2000 or more
surfactant molecules were randomly placed in a cubic box with edge length
L ¼ 48s. Periodic boundary conditions were applied to minimize finite
size effects. Using the Metropolis algorithm, at least 5 � 106 attempted
Monte Carlo steps were carried out to achieve thermodynamic equilibrium.
In some cases, the model molecules have formed spherical vesicles. For
studying vesicle fluctuations, further 108 Monte Carlo steps have been
accumulated to analyze deviations from the spherical shape.

TAIL

TAIL

HEAD

Figure 1 Model of an amphiphilic molecule consisting of a water-like head segment
and two oil-like tail segments.
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2.2. Phase Diagram of the Three-Segment Model

The model containing particles composed of a few beads is very simple.
Distances can be scaled by the bead diameter s and energies should be
expressed in terms of the mean thermal energy kT. Hence, there are only
two essential parameters which are needed to scale physical results for this
simple model, namely the reduced well depth e/kT characterizing the
strength of the hydrophobic interaction between two tail beads and the
reduced range of this interaction d/s. Quantitative results could be
expressed in terms of theses two parameters. Both parameters are useful to
construct a phase diagram for the observed aggregates. Micelles, curved
bilayer membranes, and system configurations without aggregation have
been found.

Snapshots of some aggregates are depicted in Fig. 2. Plotting e/kT versus
d/s, Fig. 3 shows a phase diagram of the self-assembled structures for the
three-segment model [18]. As the interaction range of the hydrophobic

A

C D

B

Figure 2 Snapshots obtained from Monte Carlo simulations illustrate the shapes of
surfactant aggregates. (A) Spherical micelle; (B) cylindrical micelle; (C) cross-section of
curved membranes; (D) cross-section of a vesicle. (adapted from Ref. [18])
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effect is generally supposed to be relatively large, d/s is varied in the limits
between 0.1 and 1. The diagram refers to N0 ¼ 2000 surfactant molecules
distributed in a cubic simulation box with edge length L ¼ 48s. Due to the
hard core potentials and the sequential single-molecule moves in the Monte
Carlo simulations, the ordered chain packing of gel phases is not easily
accessible. The chain insertion probability in dense aggregates is prohibi-
tively low, leading to inadequate configuration statistics. Therefore, only
fluid phase regions can be simulated. These regions are shown in the phase
diagram (Fig. 3).

Completely stable and self-assembled curved bilayers can be observed if
the reduced interaction range d/s is relatively large, exceeding a certain
value (d/s > 0.5). It should be mentioned, however, that membranes can
occur also outside the phase boundaries shown in Fig. 3, because bilayers
may remain stable after preassembling the surfactant molecules by appropri-
ately adjusting the start configuration for the simulation.

Thus, the simple surfactant model is suitable for simulations of bilayer
membranes even if the parameters d/s and e/kT are located outside the
bilayer region indicated in the phase diagram. However, we have consid-
ered only structures which are self-assembled from random initial config-
urations. Cooke et al. [17] localized the bilayer membrane existence region
at large values of d/s quite similar to our results. Their surfactant model has
the same topology as that used in this chapter, although the chosen interac-
tion potential is more complicated and supplemented with an angle depen-
dent bending potential for the three-segment molecules.

4

3

2

1

0
0.0

e/
K

T

0.2 0.4

d/s
0.6 0.8 1.0

Figure 3 Stability regions for self-assembled aggregates with particles consisting of
three segments. In the gray region of the diagram an unambiguous allocation of stable
structures was not possible, because the simulation time required to achieve the final
state of system evolution was too large. �, Surfactant solution without large clusters; D,
micellar aggregates; □, curved membranes. (adapted from Ref. [18])
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In most cases, our membranes consist of randomly curved patches
(Fig. 2C). However, a spherical vesicle was occasionally formed after starting
the simulation from a random initial configuration. Clearly, the self-assembly
of a closed vesicle from random initial configurations is considerably less
probable than the formation of a randomly curved surface. Nevertheless,
accidentally formed spherical vesicles remain stable, although strong shape
fluctuations may occur. For example, the fluctuating vesicle shown in
Fig. 2D did not decay, even after 108 Monte Carlo steps. It can be
speculated that these small vesicles are metastable and their free energy has
a local minimum, whereas the more frequently observed randomly curved
bilayers are absolutely stable.

2.3. Curvature Elasticity and Vesicle Fluctuations

Bilayer membranes fluctuate strongly, because their surface tension and
bending energies are rather low. It is interesting to compare MC simulation
data for vesicles with typical experimental results. Analyzing the shape
fluctuations of spherical vesicles, it is possible to determine both the inter-
face tension g and the bending rigidity k of the membrane. The macro-
scopic approach to study vesicle shapes is based on the free energy [32]

F ¼ gAþ 2k
ð
A

dAH2 ð2Þ

where A is the vesicle surface area and H ¼ (R1
� 1 þ R2

� 1)/2 is the mean
curvature of the vesicle surface (R1, R2—main curvature radii). Fluctuations
produce deviations from a perfect sphere with radius r0. Using such a
reference sphere, a spherical coordinate system with polar angle y and
azimuthal angle f is introduced. The position of the deformed almost
spherical membrane surface can be expressed as

r ¼ r0 1þ u y;fð Þ½ �er y;fð Þ; ð3Þ

where er(y,f) is the sphere normal and u(y,f) characterizes the small deforma-
tions. Expansion of the field u(y, f) in terms of spherical harmonics yields

u y;fð Þ ¼
X
n;m

unmY
m
n y;fð Þ: ð4Þ

The coefficients in expansion (4) are evaluated by

unm ¼
ð
O
u y;fð ÞYm�

n y;fð ÞdO; ð5Þ
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where O symbolizes the unit sphere. The integral [Eq. (5)] should be
replaced by a sum for using the discrete data fromMonte Carlo simulations.
We assume that the heads of the amphiphiles in the outer shell of the vesicle
membrane form a randomly distributed net, the coordinates of which define
the position of the vesicle surface. Let r0 be the radius of the reference sphere
[40]. The field u(y, f) is replaced by u(yj, fj) ¼ (rj � r0)/r0, where rj is the
distance between a single head j(j ¼ 1, 2, . . ., M) and the gravity center of
the surface net formed by all surfactant heads in the outer vesicle shell. Thus,
the integral [Eq. (5)] is replaced by a sum

unm ¼ 4p
M

XM
j¼1

rj � r0

r0

� �
Ym�
n yj;fj

� �
: ð6Þ

The zenith axis of the spherical coordinate system (z-axis) can be parallel to
any space direction. We have obtained almost identical results for different
choices of the z-axis. Fluctuations of the quasispherical vesicle surface can
be analyzed by considering a suitable statistical ensemble of vesicles. Milner
and Safran [31] found that the mean squares of the fluctuation amplitudes
are

unmj j2� � ¼ kT

k

� �
1

nþ 2ð Þ n� 1ð Þ n nþ 1ð Þ þ L½ � ; ð7Þ

where kT is the mean thermal energy and L ¼ gr0
2/k. Using Eq. (7), the

bending constant k and the interface tension g can be evaluated. Figure 4
shows the decrease of the mean square of the fluctuation amplitude hjun0j2i
with increasing values of n for e ¼ 0.7kT. The curve in Fig. 4 results from
fitting k and L in Eq. (7). In the case of small vesicles, the finite bilayer
thickness can produce deviations from the fluctuation amplitudes evaluated
by the curvature model. Figure 4 indicates that errors, which may result
from limitations in simulation time and the use of a macroscopic bilayer
elasticity model for a small vesicle, are relatively low. If d/s ¼ 0.99 and e/
kT ¼ 0.7, the value of the bending coefficient k ¼ 0.74kT is very small,
because we have chosen rather short particles consisting of three segments.
The interface tension g can be evaluated additionally. For r0 ¼ 5.3 nm, we
obtain g ’ 1.87 � 10�3 N/m if e/kT ¼ 0.7. This value of g is approxi-
mately 40 times smaller than the surface tension of the air–water interface,
but has a nonzero value. Probably, a remarkable nonzero tension of the
bilayer membrane is caused by the large curvature of small vesicles. Giant
vesicles are supposed to have a lower tension (effective surface tension),
because the hydrophobic parts of the flat membrane are more densely
packed, and thus they have a better protection against water. At somewhat
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lower temperature, if T ¼ 1.14e/k or e/kT ¼ 0.875, the value k ¼ 8.3kT
was found for a vesicle consisting ofN0 ¼ 2500 molecules [40]. Obviously,
the bending modulus k increases with decreasing temperature. It can also be
checked if an osmotic pressure, generated by hydrophobic spherical parti-
cles placed into the vesicle, quenches the fluctuations (Fig. 5). In this case,
the free energy Eq. (2) is supplemented with a term that accounts for the
work resulting from vesicle volume changes. Thus, denoting the osmotic
pressure by P, the free energy is [27]

F ¼ gAþ 2k
ð
A

dAH2 �PDV ; ð8Þ

where DV is the change of the vesicle volume due to a fluctuation. If DV
changes, water must be exchanged between the interior of the vesicle and
the region outside. It is usually assumed that fluctuations of very large (giant)
vesicles with sizes in the micrometer range do not change the surface area.
Furthermore, the enclosed vesicle volume is assumed to be constant,
because the hydrophobic part of the bilayer hinders permeation of water
and solute molecules. Thus, if the observation time is sufficiently short, both
the vesicle surface area and the enclosed volume have fixed values. How-
ever, in the case of small vesicles, which can have diameters smaller than
20 nm [41], the water permeability of the bilayer shell can lead to a change
of the vesicle volume within a short observation time, since the area to
volume ratio for such small vesicles is much larger than for giant vesicles.
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Figure 4 Amplitudes hjun0j2i of vesicle fluctuations for n ¼ 2, 3, 4, 5, and 6. (adapted
from Ref. [18]).
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Fluctuations of small vesicles should strongly be influenced by the osmotic
pressure. Water can permeate through the membrane in a time scale
beneath the observation time of vesicle fluctuations, whereas the amphi-
philic bilayer is impermeable for large solute molecules.

For a nonzero osmotic pressure, free energy Eq. (8) leads to the same
relation as Eq. (7), except for a different meaning of parameter L. This
parameter is found to be L ¼ Pr0

3/(2k), where r0 denotes the vesicle radius.
The osmotic pressure can be evaluated by van’t Hoff’s equation of state
PVi ¼ NkT, where Vi is the volume of the interior of the vesicle. Equa-
tion (7) with relationL ¼ Pr0

3/(2k) has been tested for different numbersN
of particles put in the vesicle. Figure 6 depicts the comparison between the
caseN ¼ 0 (i.e.,P ¼ 0) andN ¼ 300. Obviously, an osmotic pressure can
considerably quench vesicle fluctuations. However, if the added particles
are placed outside the vesicle, the osmotic pressure difference P is negative
and shape fluctuations are amplified, which is accompanied by a destabili-
zation of the spherical vesicle shape. There is a transcritical bifurcation at the
critical particle density ct ¼ 12k/(r0

3kT), above which the spherical vesicle
shape changes. If c > ct, an oblate or a prolate vesicle can evolve from the
spherical shape. The free energies for both routes do not differ much [42], so
that the observed evolution of an originally spherical vesicle depends on
small initial fluctuations. For the case e/kT ¼ 0.875, we obtain the bifurca-
tion threshold ct ¼ 3.9 � 10�2s�3 for k ¼ 8.3kT and r0 ¼ 13.7s. Actu-
ally, for c > ct the simulations have indicated that a shape transformation
away from the initial spherical shape occurs [40].

Figure 5 Snapshot of a vesicle (cross section) containing N ¼ 100 hydrophilic solute
molecules. (adapted from Ref. [40]).
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2.4. Conclusions

In accord with the reasoning of Israelachvili [26], amphiphiles with almost
equal cross-sectional area of head group and tail region are prone to the
formation of membranes instead of strongly curved aggregates such as
micelles. The phase diagram (Fig. 3) suggests that a relatively long range
hydrophobic interaction is a further prerequisite for the stability of bilayer
membranes. Actually, experimental investigations suggest that the range of
this interaction is relatively large [26], its decay length is estimated to be
about 1 nm. The very simple pair potentials for the hydrophobic and
hydrophilic beads of the model are sufficient to account for the essential
driving forces that lead to the formation of membranes and vesicles.

The macroscopic elastic bend modulus of self-assembled bilayer mem-
branes can be adjusted to experimental data by a proper choice of the ratio
e/kT, where e is defined by Eq. (1). Apart from shape fluctuations, the coarse-
grainedmodel should also be suitable to studymore subtle topics of membrane

0.005

0.004

0.003

0.002

0.001

0.000
2 3 4 5 6

N = 0

n

<l
u n

0l
2 >

0.005

0.004

0.003

0.002

0.001

0.000
2 3 4 5 6

N = 300

n

<l
u n

0l
2 >

Figure 6 Fluctuation amplitudes hjun0j2i for n ¼ 2, 3, 4, 5, and 6. The simulated data
are fitted by using Eq. (25). The only fit parameter is k, which is chosen as k ¼ 8.3kT
for both depicted diagrams with different numbers of solute molecules (N ¼ 0 and 300)
inside the vesicle. (adapted from Ref. [40])
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physics, as long as specificmaterial properties of lipid species can be disregarded.
The beadmodel with only two essential physical parameters should be reason-
able to elucidate some general properties of bilayer membranes accompanied
by cooperative phenomena. Examples for such phenomena are demixing in
mixed membranes, fluctuations, long range elastic interactions, and budding.

3. Particular Physical Effects Resulting from

Fluidity, Elasticity, and Concentration

Fluctuations of Mixed Membranes

Compared to solid substrates, there are many possibilities for bilayer
membranes to respond to external disturbances. For example, the lipids may
easily be rearranged in the membrane plane as in a two-dimensional liquid.
On the other hand, the membrane behaves as an elastic sheet if forces bend
the bilayer midplane. Furthermore, although membranes withstand com-
pression forces to some extend, the effective compression modulus of the
soft bilayer is not very high, and thus adsorbed or embedded proteins can
locally change the bilayer thickness. It is generally appreciated that lipid
membranes have a distinct effect on the interaction and arrangement of
membrane associated peptides and proteins [8].

Various models for membrane-mediated interactions have been proposed.
In particular, there are many basically simple physical theories that account for
mechanisms of membrane-mediated attractive or repulsive forces between
embedded and transmembrane proteins. However, most analytically solvable
models are restricted to linearized equations, which do not allow reliable
conclusions on the strength and importance of membrane-mediated effects.
Additional difficulties appear, if reasonable boundary conditions of higher
order differential equations, which are typically for the elasticity theory of
membranes, cannot be imposed unambiguously. Nevertheless, solvable mod-
els based on linearized equations are necessary to outline the essential physics.
In this case, Monte Carlo simulations can help to estimate whether basic
physical concepts are justified. Unfortunately, there are only a few simulations
which are suitable for testing analytical theories describing membrane-
mediated interactions. In this section, we display some theoretical approaches
and compare them with simulations provided that they are available.

3.1. Enhanced Adsorption of Peptides and
Membrane-Mediated Force

Adsorption of proteins and peptides onto lipid membranes is an ubiquitous
phenomenon in cell biology. Usually, native bilayers contain a large variety
of anionic, neutral, and zwitterionic lipids. Apart from other interaction
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forces, peripheral polypeptides and proteins are often bound to lipid mem-
branes by screened electrostatic attraction forces [43]. In many cases,
adsorption equilibria, for example, when peptides such as antimicrobials
adsorb on bacteria cells, have biological relevance [44]. There is experimen-
tal evidence that the adsorption of peptides causes redistributions of lipid
compounds in mixed membranes [3,45,46]. Compounds which lower
peptide-lipid interaction energy migrate toward the region where the pep-
tides touch the membrane surface, whereas other compounds move away
from this region (Fig. 7).

Although this migration increases somewhat the mixing entropy, the
change of adsorption energy is more relevant. Thus, the redistribution of
the lipid compounds reduces the total free energy of the combined system
consisting of the bilayer and adsorbed peptides. Consequently, the adsorbate
density is higher than the adsorbate density for a frozen membrane without
lipid migration. If the lipid mixture is nonideal, the domains of the favored
lipids may be even considerably larger than the cross-sectional areas of
peptides. In this case, a halo of preferred lipids is stable around each adsorbed
peptide. A sufficiently dense adsorbate may even cause a macroscopic

A

B

C

x

Figure 7 Rearrangements of the lipid molecules take place if the polypeptides have
different affinities to the lipid components (after Fig. 1 in [45]). (A) Lipid mixture with
spontaneous thermal concentration fluctuations characterized by a correlation length x.
Adsorbed polypeptides (B) and inclusions (C) can enforce a partial demixing into
domains with different lipid composition and substrate densities. (adapted from Ref.
[47]).
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demixing, which leads to rather large lipid domains. Domain formation is
also facilitated by membrane-mediated attraction forces acting between
adsorbed peptides. A peculiar membrane-mediated attraction force, which
results from lipid redistributions, adds to the direct peptide–peptide inter-
action. If the halos or domains with enlarged concentration of preferred
lipids around two adjacent peptides or proteins overlap, the free energy is
smaller than the sum of the free energies of two separate domains [47,48].
This free energy reduction is accompanied by a membrane-mediated attrac-
tive force between adsorbate molecules, which supports the aggregation of
peptides.

In lipid mixtures imperfect behavior is frequently observed, especially if
mixtures contain cholesterol [7,8]. Imperfect mixing of lipids may result
from differences in the interaction strength of lipid head groups or from an
incompatibility due to different lengths of the hydrocarbon chains. In most
cases, a decay into macroscopic lipid domains with different composition of
lipid compounds is not observed. However, concentration fluctuations
amplified by imperfect mixing are associated with the permanent formation
and decay of small temporary domains. The size of these temporary domains
can be estimated by a coherence length x for concentration fluctuations. For
an ideal mixture, the length x is not larger than a cross-sectional radius of a
lipid molecule, whereas in the nonideal case x can be rather large or even
diverge close to the spinodal or the critical demixing point. In classical
thermodynamics, imperfect mixtures are frequently described by the regular
solution model [49]. The free energy of a homogeneous regular solution is
written as

Fm ¼ MkT XA ln XAð Þ þ XB ln XBð Þ½ � � 1

2
MwzXAXB; ð9Þ

where XA ¼ MA/M and XB ¼ MB/M are the particle number fractions of a
binary mixture consisting ofM ¼ MA þ MB lipids, z ¼ 6 is the number of
the nearest neighbors of a lipid molecule, and energy parameter w accounts
for nonideal mixing. In simple molecular statistical lattice models for mix-
tures, w is evaluated by w ¼ eAA þ eBB � 2eAB, where eij denotes the mean
interaction energy between lipid species i and j (i, j ¼ A, B). Spatial
concentration fluctuations are taken into account by introducing local
particle number densities rA(x) and rB(x), which may depend on
the coordinates x defined for the membrane plane. For a homogeneous
membrane, these number densities can be expressed as rA

0 ¼ MA/S and
rB
0 ¼ MB/S, where S denotes the membrane area. If fluctuations of the total

lipid density r ¼ rA(x) þ rB(x) are neglected, the concentration field c(x)
¼ rB(x) � rB

0 ¼ rA(x) � rA
0 characterizes local deviations from the

equilibrium surface density. Fluctuations should rise the free energy of the
membrane. According to the linearized version of the Cahn–Hilliard

Monte Carlo Simulations of Lipid Bilayers and Liposomes Using Coarse-Grained Models 173



theory, the increase of the free energy due to concentration fluctuations is
expressed as [50]

Ĥm c½ � ¼ 1

2

ð
S

A rc xð Þð Þ2 þ Bc2 xð Þ� 	
d2x; ð10Þ

where the coefficients A > 0 and B > 0 do not depend on the coordinate
x, and the integration region S is extended over the whole membrane plane.
Particle number preservation leads to the conditionð

S

c xð Þd2x ¼ 0: ð11Þ

Coefficient B is obtained from an expansion of Eq. (9):

B ¼ 1

XAXB

� wz

kT

� �
kT

r
ð12Þ

It can easily be shown that the relation x ¼ ffiffiffiffiffiffiffiffiffi
A=B

p
defines the correlation

length of spontaneous thermal concentration fluctuations. In the vicinity of
the spinodal or the critical point of demixing, coefficient B tends to zero.
Then the correlation length x diverges, whereas coefficient A remains
regular. Hence, as a reasonable approximation, the product Bx2 ¼ A can
be considered as constant. Sufficiently far away from the spinodal, the lipid
mixture should be nearly ideal, the correlation length is short ranged, and
coefficient B is approximated by its value for an ideal mixture Bid ¼ kT/
(rXAXB). Hence, coefficient A can be estimated as A ¼ x0

2kT/(rXAXB),
where the correlation length x0 for an ideal mixture should be comparable
with the cross-sectional radius of a lipid molecule (x0 ’ 0.3 nm). Apart
from spontaneous thermal fluctuations, the homogeneity of the membrane
mixture is disturbed by adsorbed polypeptides. Let eA and eB be the adsorp-
tion energies which refer to a protein bound to membranes consisting of the
pure lipid components A and B, respectively. Assuming short-range inter-
actions between molecules, the protein–lipid coupling is restricted to the
lipids which are in direct contact with the adsorbed peptide. Each adsorbed
protein is assumed to cover a circular membrane region with area sp ¼ pR2

(R, protein radius) which contains n ¼ rsp lipid molecules.Thus, the free
energy, supplemented with a lipid–protein coupling term, can be written as
[47,51]

Ĥmp c½ � ¼ Ĥm c½ � þNeX þ eB � eA
n

XN
i¼1

ð
sp ið Þ

c xð Þd2x; ð13Þ
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where eX ¼ XAeA þ XBeB < 0 defines the mean adsorption energy of a
protein for a bilayer with randomly distributed lipid compounds. The last
term in Eq. (13) accounts for local fluctuations of the concentration pro-
duced by the proteins. sp(i) is the area of the membrane surface patch, where
the interaction energy between peptide i (i ¼ 1, 2, . . ., N) and the mem-
brane lipids is nonzero. This region can be identified with the cross-
sectional area of a peptide. However, it should be taken into account that
the number of lipid molecules is fixed for each mixture component. This
restriction leads to a Lagrange multiplier l associated to condition (11).
Hence, the corresponding modified Hamiltonian may be expressed as

Ĥ c½ � ¼ Ĥmp c½ � � l
ð
S

c xð Þd2x: ð14Þ

Finally, the change of the free energy of the combined substrate–adsorbate
system due to lipid redistribution is expressed in terms of the canonical
partition function

F � F0 ¼ �kT ln

ð
Dc exp � Ĥ c½ �

kT

� �
: ð15Þ

The functional integration can be done in a simple way, since Ĥ c½ �
contains only linear and quadratic terms of c [52]. The neglect of cubic and
higher order terms in the expansion of Ĥ c½ � is a disadvantage of the
theoretical approach, since large amplitude fluctuations cannot be
described. This disadvantage is avoided in recent papers [48,53], which
use the complete nonlinear mixing entropy. However, the free energy
contributions of domain walls that are formed in the vicinity of adsorbed
peptides have been introduced rather intuitively, so that a comparison with
simulated data seems to be impossible.

3.1.1. Frozen membranes
From a general point of view, it is interesting to elucidate how the adsorp-
tion on a membrane surface is amplified due to the mobility of the lipid
compounds. For this purpose, we first consider the adsorption on a mem-
brane with immobile lipids (c(x) ¼ 0), for example, if the temperature of
the bilayer is well below the main transition temperature. Furthermore, let
us first consider the Henry regime, where the adsorbate density is low and
the interaction between adsorbate molecules is negligibly small. In this case,
the surface density of adsorbed peptides G ¼ N/S is proportional to the
concentration c of the peptides in the aqueous solution and we obtain the
Boltzmann distribution [51]
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G
G0 Tð Þ ¼

c

c0 Tð Þ exp � eX
kT

� �
; ð16Þ

where G0 (T) and c0 (T) are temperature functions.

3.1.2. Adsorption on liquid bilayers consisting of an ideal mixture:
Redistribution of lipid components

In the next step, the redistribution of the lipid mixture is considered
additionally. For an ideal mixture, both the correlation length x of concen-
tration fluctuations and the coefficient A are small (A ! 0, x ! 0 with
B ¼ Ax�2), and coefficient B is defined by the relation B ¼ (XAXBp)

� l kT.
In the Henry regime of adsorption, the spatial nonhomogenous concentra-
tion distribution, which is taken into account by free energy Eq. (15), leads
to a modification of Eq. (16). The lipid redistribution due to the lipid–
protein interaction produces an amplification of the adsorption, and
Eq. (16) is replaced by

G
G0 Tð Þ ¼

c

c0 Tð Þ ga exp � eX
kT

� �
; ð17Þ

where the amplification factor ga has the representation

ga ¼ exp
nXaXb

2 kTð Þ2
eB � eA

n

� �2

" #
: ð18Þ

If the adsorption energy per lipid–protein contact (eB � eA)/n is about
kT and if XA ¼ XB ¼ 0.5, the amplification factor for adsorption turns out
to be remarkably large, for example, ga ’ 6.5 for n ’ 15 and ga ’ 12 for
n ’ 20. At large peptide concentrations, beyond the Henry regime, the
bilayer membrane does not contain enough lipids of the components which
are attracted from the adsorbed peptides. Furthermore, the excluded vol-
ume interaction between adsorbate molecules restricts their surface density.
This interaction may be taken into account by assuming that the adsorbed
peptides form a hard disk fluid on the bilayer surface. The relation y ¼
GpR2 defines a surface density that corresponds to the fraction of the bilayer
membrane surface covered with peptides. The free energy F0 in Eq. (15) is
equal to the free energy of the substrate without considering membrane-
mediated interactions. For simplicity, the adsorbate can be modeled as hard
disk fluid. In this case, an appropriate expression for F0 ¼ NfP (T, y) can be
derived from scaled particle theory [51]. Then Eq. (15) yields

F ¼ NeX �N 1� yð Þ lnga þNfP T ; yð Þ ð19Þ
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for the free energy of the combined system that comprises the bilayer
membrane and the adsorbate. Obviously, an amplification of adsorption
due to concentration fluctuations disappears if the membrane surface is
completely covered with peptides (y ¼ 1), since preferred places toward
that lipids can migrate are lacking. The equilibrium between the peptides
solved in water and peptides adsorbed on the bilayer surface is evaluated by
equating the corresponding chemical potentials mp

w ¼ kT ln(c/c0(T)) and
mp
a ¼ @F/@N. Figure 8 depicts the resulting adsorption isotherm for a

relatively low adsorption energy [51]. Even in this case, there is a substantial
increase of the adsorbate density in comparison to a frozen membrane
without lipid migration.

3.1.3. Nonideal mixtures of membrane lipids: Concentration
fluctuations, enhanced adsorption, and membrane-mediated
interaction

For the general case of a nonideal lipid mixture, only a few theoretical
results are known. Membranes containing cholesterol frequently behave
like a nonideal mixture with a tendency toward demixing. If the mixture of
the lipid bilayer is nonideal, spatial correlations of concentration fluctuations
can further enhance the adsorption of peptides. An increased coherence
length x produces small regions or temporary islands where lipid concen-
trations may considerably deviate from average values. Peptides can easier

0.6

0.4

q

0.2

0.0
0.0 0.2 0.4

XB

0.6 0.8 1.0

Figure 8 Plot of the polypeptide surface density y versus the particle number fraction
XB of the lipid mixture. The continuous curve is evaluated for a fluid substrate assuming
that eA ¼ 0, eB ¼ �nkT, n ¼ 15 (n ¼ rpR2) [51]. For a frozen substrate with fixed
lipid molecules the surface density (dashed curve) is lower. (adapted from Ref. [51]).
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adsorb on those islands which contain favored lipids that cause the largest
free energy reduction of the lipid–peptide system. Hence, spontaneous
concentration fluctuations facilitate the migration and accumulation of
favored lipid components in small domains around the peptides. In the
Henry regime of adsorption, where enough favored lipids for a migration
are available, the amplification factor ga should be larger than the value
obtained from Eq. (18) for an ideal mixture. Utilizing free energy Eq. (15), a
straightforward evaluation leads to

ga ¼ exp
1

AkT

eB � eA
n

� �2

x4J R=xð Þ
� �

: ð20Þ

where

J R=xð Þ ¼ 2p
ðR=x
0

K1 xð Þx� K1

R

x

� �
R

x

� �
I0 xð Þxdx

is expressed in terms of the modified Bessel functions I0(x) and K1(x) [54].
Equation (20) implies that the amplification factor ga strongly increases with
increasing coherence length x. Taking into account the relation n ¼ rpR2,
ga [Eq. (20)] is expressed as a function of the reduced correlation length x/R:

ga x=Rð Þ ¼ exp
eB � eAð Þ2
p2Ar2kT

x
R

� �4

J R=xð Þ
" #

: ð21Þ

Figure 9 illustrates the dependence of ga on the ratio x/R [55]. There is a
considerable amplification of adsorption, even if the adsorption energies per
lipid–protein contact (eB � eA)/n have moderate values. If the condition
for the Henry regime (y 	 1) is violated, the amplification should be less
effective.

On the other hand, when the mean distances between adsorbed peptides
become shorter at higher adsorbate densities, another effect that influences
adsorption isotherms appears. The halos with enlarged concentration of
preferred lipid components around adsorbed peptides overlap and cause a
membrane-mediated attraction force. The potential of this force can be
written as

u r12ð Þ ¼ �2p
eB � eA

n

� �2 x2R2

A
I1

R

x

� �� �2

K0

r12

x

� �
; ð22Þ

where r12 is the distance between the gravity centre of two peptides with
circular cross-sections, and I1(R/x), K0(r12/x) are modified Bessel functions
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[54]. Except for the prefactor, Eq. (22) is formally equivalent to a pair
potential derived for elastic membrane-mediated interactions [56]. In the
special case, when the peptide radius R is distinctly larger than the interac-
tion range (R 
 x), an expansion of Eq. (22) yields

u Hð Þ ¼ � 1

2

eB � eA
n

� �2 x4

A

ffiffiffiffiffiffiffi
pR
x

r
exp �H

x

� �
; ð23Þ

whereH ¼ r12 � 2R is the gap between two adjacent peptides. This simple
result can also be obtained by using Derjaguin’s approximation [47,51]. Let
us evaluate the interaction energy for two peptides in contact (H ¼ 0). If
we assume jeB � eAj/n ¼ 0.5kT, x ¼ 1 nm, R ¼ 3 nm and
A ¼ 0.74 � 10� l2 N nm5 (Table 1), the value of ju(H ¼ 0)j is approxi-
mately equal to 2kT. However, the pair potentials Eq. (22) and Eq. (23)
strongly increase with increasing coherence length x, and thus the strength
of the interaction could be substantially larger.

Recently, Reynwar and Deserno [57] studied composition-mediated
interactions between proteins adsorbed onto a two-component liquid
bilayer using molecular dynamics (MD) simulations. Lipids have been
built up of three-segment molecules with one hydrophilic bead and two
hydrophobic beads [17]. The nonideal behavior of the lipid mixture results

25

g a

x/R
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Figure 9 Amplification factor ga for the adsorption versus reduced correlation length
x/R of spontaneous concentration fluctuations for (A) jeA � eBj/n ¼ 0.2kT, (B) jeA �
eBj/n ¼ 0.25kT, (C) jeA � eBj/n ¼ 0.3kT, n ¼ 20, r ¼ 2 nm�2 and XA � XB ¼ 0.5.
(adapted from Ref. [55]).
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from choosing different interaction ranges for the hydrophobic beads of
the components. The plate-like proteins were assumed to adsorb onto
the membrane by binding preferentially to one of the two lipid species of
the binary membrane mixture. In accordance with Eq. (22), the membrane-
mediated interaction energy between two proteins increases with increasing
coherence length x. In a region not far away from the critical demixing
point, the minimum value of this attractive pair potential has been found to
be �4kT. A shallow minimum of the pair potential, which may result from
the depletion force between the protein models, was detected even for an
ideal mixture [57].

3.2. Attraction Force Between Transmembrane Proteins
in Mixed Membranes

A simple intuitive model of membrane spanning proteins (inclusions) con-
sists of a hydrophobic cylinder which is terminated by two hydrophilic caps
on both cylinder faces. If the length of the hydrophobic part matches with
the hydrophobic region of the bilayer membrane, the proteins span the
whole bilayer membrane. The hydrophilic end caps of transmembrane

Table 1 Parameter values for estimations of membrane-mediated interactions

Symbol Meaning Values for estimations

R Cross-sectional radius of a

polypeptide

1 � 5 nm

r Surface density of the lipids

in a membrane

2 nm�2

B Coefficient in Eq. (10) for

XA ¼ XB ¼ 0.5

(0.0 � 4) r�1 kT

x Correlation length of

concentration fluctuations

0.3 – 10 nm (x ¼ (A/B)1/2)

A Coefficient in Eq. (10) for

XA ¼ XB ¼ 0.5

A ¼ Bidx0
2 ’ 0.74 � 10� 12 Nn m5

n Number of protein–lipid

contact sites

n ¼ rsP with sP ¼ pR2

eB � eA Difference between

adsorption energies

jeB � eAj ’ (0.2 � 2) � n � kT

kT Thermal energy (for

T ’ 300 K)

4.1 � 10� l2 N nm

K Splay-distortion modulus 2 � 10�10 N nm

Bm Compression modulus 3 � 10�11 N nm�3

xm Length scale for elastic

deformations

1 � 4 nm [xm ¼ (K/Bm)
1/4]
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proteins may have different affinities to the components of the lipid mix-
ture. In a way similar to the case of peripheral proteins, the resulting
redistribution of the lipid mixture may cause a membrane-mediated attrac-
tion force. This attraction can be estimated by minimizing free energy
Eq. (10). For simplicity, let us neglect the balance Eq. (11), which would
be important if the proteins were densely distributed in the bilayer mem-
brane. Thus, we arrive at the Helmholtz equation ADc � Bc ¼ 0 with
the boundary condition c(R) ¼ c0 on the circular rim of a protein. Even in
the simple case of two proteins with fixed distance r12, an exact analytical
formula for the pair interaction potential does not exist. However, in some
cases simple approximations are possible. If the coherence length x of
concentration fluctuations is large (x 
 r12, R) close to the critical demix-
ing point or the spinodal, the pair potential of the protein–protein attraction
is [58]

u r12ð Þ ¼ � 2pΑ2
r DXð Þ2

ln R=xð Þ½ �2
ffiffiffiffiffiffiffiffi
px
2r12

s
exp �r12=xð Þ; ð24Þ

where DX ¼ c0/r denotes the difference between the particle number
fractions at the rim and far away from a protein. If the coherence length x is
shorter than the protein radius R, Derjaguin’s approximation leads to [58]

u Hð Þ ¼ �4Ar2 DXð Þ2
ffiffiffiffi
R

x

r ð1
0

dq
exp �Hx�1 � q2


 �
1þ exp �Hx�1 � q2


 � ; ð25Þ

where H again denotes the gap between adjacent proteins. If they are in
touch (H ¼ 0), Eq. (25) can be simplified to

u H ¼ 0ð Þ ’ �2Ar2 DXð Þ2
ffiffiffiffiffiffiffiffiffi
R=x

p
: ð26Þ

Equation (25) predicts a roughly exponential decay of the interaction
potential with a decay length somewhat different from x. Assuming
(DX)2 ¼ 0.1 and using data listed in Table 1, we arrive at
u H ¼ 0ð Þ=kT ’ � ffiffiffiffiffiffiffiffiffi

R=x
p

for two inclusions in contact. If R ¼ 4 nm and
x ¼ 1 nm, the interaction energy ju(H ¼ 0)j ¼ 2kT results.

Using MC simulations, Wahab et al. [58] studied the interaction
between inclusions embedded in a bilayer membrane consisting of an 1:1
mixture. Figure 10 illustrates the models for the liquid components and the
proteins. In Fig. 11, a start and an equilibrium configuration of the amphi-
philes in the simulation box are shown. The redistribution of the lipid
components in bilayer membranes is caused by different interaction energies
between the lipid heads and the hydrophilic protein caps. Concentration
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profiles for several distances H between the inclusions are illustrated in
Fig. 12. In a surprisingly large membrane region around the inclusion,
remarkable disturbances of the concentration distribution have been
found. This effect is accompanied by an attraction force between the
inclusions. We suggest that the protein–protein attraction is further
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Figure 10 Structure of the lipid species and front view of the protein model. The
symbol w refers to an unoccupied lattice site which is considered as a water molecule.
(adapted from Ref. [58]).

A B C

Figure 11 View into the simulation box. (A) Two protein models, which are fixed in
each simulation run, are inserted into the lattice. (B) Disordered start configuration. (C)
After 107 Monte Carlo steps the equilibrium configuration is a bilayer arranged around
the protein models. (adapted from Ref. [58]).
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Figure 12 Concentration distribution (XA) of a lipid component in the simulation box
for different gaps between the proteins. (adapted from Ref. [58]).
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enhanced by elastic membrane-mediated forces, since a thickness difference
between the hydrophobic bilayer region and the hydrophobic part of the
inclusions produces elastic distortions.

A direct comparison of analytical expressions for the pair potential of
inclusions and simulated data was not possible, as the simulation of the
lattice model did not allow to evaluate the entropic contribution to
membrane-mediated interactions [58]. Energy differences between config-
urations with different protein–protein distance were found to be relatively
large (�15kT). However, due to the entropic contribution, the variation of
the effective pair potential should be considerably smaller than 15kT.

3.3. Elastic Deformations and Membrane-Mediated
Interactions

Apart from lipid sorting, elastic deformations are also supposed to contribute
to the interaction of membrane associated particles. Adsorbed peripheral
proteins can produce a curvature of an originally flat bilayer membrane. The
same effect is caused by membrane spanning proteins if they have not a
cylindrical but a conical shape. Since there is no length scale for bending
deformations, the corresponding indirect forces between membrane asso-
ciated particles are long range [22,59]. A theoretical description of this
interaction and other membrane induced forces has been reviewed by
Goulian [21].

The bending mode of membrane deformations is suppressed, when the
membrane rests on a plane solid support. Furthermore, if adsorbed mole-
cules locally reduce or increase the bilayer thickness, resulting elastic dis-
tortions heal out over distances not longer than a few nanometers. In these
cases, the decay length of elastic deformations is approximately equal to the
bilayer thickness. For example, small adsorbed amphiphatic peptides, which
are known as antimicrobials, can locally reduce the membrane thickness
[44,60]. If the distance between two adsorbed molecules is comparable to or
smaller than the bilayer thickness, a membrane-mediated force arises
between both particles. This relatively strong short-range force influences
the lateral organization and can cause a phase transition from a low-density to
an aggregated state, of the adsorbate. In the aggregated state, the biological
activity of peptides could be enhanced. For example, aggregation of many
antimicrobials promotes the formation of ion channels which kill bacteria
[44]. Transmembrane proteins can also locally change the membrane thick-
ness. A reasonable theoretical concept is based on the hydrophobicmismatch
[20,61,62]. If the length of the hydrophobic protein part and the thickness of
the alkyl chain region in the lipid bilayer are different, elastic deformations
around the proteins are produced.
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3.3.1. Membrane-mediated interactions based on curvature effects
If the bilayer midplane of a membrane becomes curved, the resulting
increase of free energy can be evaluated by Eq. (2). Small deviations u
from a flat membrane configuration are usually expressed in the Monge
representation [63] of surfaces. In this case, the Eulerian equation related to
the free energy Eq. (2), DDu ¼ 0 for a tensionless membrane (g ¼ 0), has no
intrinsic length scale. Hence, in this case membrane-mediated interactions
should be long range. Goulian et al. [21,22] considered conical membrane
inclusions. If the surface normals of two cones and the bilayer midplanes
enclose a fixed contact angle a, where a is assumed to be small (a << 1), the
pair potential u(r12) ¼ 8pka2R4/r12

4 results for r12 
 R (R, cone radius at
the membrane midplane). This potential is related to a repulsion force
between inclusions. The theory has been extended by Weikl et al. [59] for
describing membranes with a nonzero tension (g 6¼ 0). In this case, the
Eulerian equation can be written as DDu ¼ xg

� 2Du, where xg ¼
ffiffiffiffiffiffiffiffi
k=g

p
is a

decay length for elastic deformations. If xg 6¼ 0, the interaction energy u(r12)
/ exp(� r12/xg) decays roughly exponentially. The force between two
inclusions depends on their mutual orientation. For parallel cones the
force is repulsive, whereas cones with opposite orientations repel each
other at short distances and attract at long distances. Averaged energies for
the attractive forces have values not larger than kT. Hence, mechanisms
associated with a bending of the bilayer midplane seem to be insufficient to
explain aggregations of membrane bound proteins, at least for the initial
stage, where the distances between proteins are long.

When the surface tension g is nonzero, peripheral proteins should
behave similarly as transmembrane proteins [56]. In the tensionless state
g ¼ 0, the repulsion vanishes completely. However, in a special case, if two
adjacent proteins touch each other, a nonzero attractive contact force
appears between them. If g 6¼ 0, a weak repulsion force between peripheral
proteins appears. The range xg ¼

ffiffiffiffiffiffiffiffi
k=g

p
of the repulsion force is relatively

large compared to direct protein–protein interactions. Short-range direct
protein–protein attractive forces compete with the weak relatively long
range membrane-mediated repulsion force. As a consequence of this com-
petition, membrane bending peripheral proteins can aggregate into a stripe-
like pattern at concentrations above a critical value [56,64]. Such periodic
arrays of proteins have been observed experimentally on the cytoplasmic
side of the caveolae membrane [65].

Although in most cases theoretical models predict a membrane-
mediated repulsion, aggregation of proteins is an ubiquitous phenomenon.
It is possible that qualitative theoretical results, which have been obtained
from the analytical theory for small elastic deformations, are not valid for
large membrane curvatures. Simulations could be helpful to clarify this
point. Using a three-bead model for the lipids and the ESPResSo package
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(MD), Reynwar et al. [66] have performed a simulation of a bilayer mem-
brane decorated with many adhered peripheral proteins. They have found a
transformation of the planar tensionless membrane into highly curved
structures with pockets that contain clusters of the protein models. Further-
more, simulated data suggest that there exists an attractive force between
adhered strong membrane deformers.

3.3.2. Forces resulting from bilayer thickness alterations
3.3.2.1. Adsorbed molecules Apart from a curvature of the bilayer mid-
plane, membranes can also deform by changing their thickness (Fig. 13).
This deformation is associated with relatively strong short-range forces.
Local deviations from the equilibrium thickness heal out over distances
comparable with the bilayer thickness. In supported bilayers, such elastic
deformations may be relevant, since a plane support suppresses a curvature
of the bilayer midplane. An adsorbed particle affects the bilayer membrane
by imposing a force in the region where this particle touches the bilayer
surface. Adsorbed peptides on bilayer membranes, which are not supported
from below, can also locally change the membrane thickness [44,60]. When
the elasticity theory is applied, such a local thickness change can be modeled
as the response to a force that compresses or dilates the bilayer in a small
region just below the adsorbed peptide. Hence, from a formal point of view,
the theoretical descriptions of adsorbates on supported bilayer membranes
and peptides which locally change the membrane thickness are quite similar.

For simplicity, we consider a fluid bilayer membrane which is supported
from below by a firm solid plane. This geometry is often used in atomic
force microscopy investigations [67]. Adsorbed small peptides such as anti-
biotics or antimicrobials have an effective radius comparable to or smaller
than the membrane thickness. Experimental observations [44] revealed that
these amphipathic peptides produce a local thickness reduction of lipid
bilayers (Fig. 13A). In a small region around the adsorption region, the
membrane is supposed to be a few tenth of a nanometer thinner than the
average membrane thickness. In the framework of a theoretical model, this
local thickness reduction can be produced by a normal force Q(x) exerted
onto the membrane in the region where the polypeptide touches the
membrane interface. Then the deformation free energy reads [68]

F ¼ 1

2

ð
S

K r2u

 �2 þ Bmu

2 �Q xð Þu
h i

d2x; ð27Þ

where u denotes the local thickness change of the membrane, Bm is the
compressibility modulus andK is the splay-distortion modulus of the bilayer
membrane. Some bilayer models [60] suggest a simple relation between the
splay-distortion modulus K in Eq. (27) and the bending modulus k defined
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by the Helfrich free energy [Eq. (8)]. From a macroscopic point of view,
such a relation is not obvious, since a curvature of the bilayer midplane and
the change of the bilayer thickness are completely different membrane
deformations.

The relation xm ¼ (K/Bm)
1/4 defines a length scale, which is approxi-

mately equal to the decay length of elastic deformations. The value of xm is
comparable to the bilayer thickness, that is, a few nanometers. It should be
mentioned that the more general case, where the surface tension is not
negligible small and a term �g (ru)2 arises in free energy Eq. (27), has also
been considered [69]. Let the normal stress Q(x) be exerted by two

A

B

C

Figure 13 A polypeptide adsorbed on the membrane surface produces a depression if
the adsorption force q0 is nonzero (A). Otherwise, if q0 ¼ 0, the interface moulds
around the particle without changing the average membrane thickness (B). Inclusions
can produce elastic deformations if there is a mismatch between the hydrophobic
protein region and alkyl chain region (C) of the lipid bilayers. (adapted from Ref. [47]).
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circularly symmetric peptides with centers of gravity localized at the points
x1 and x2. This stress can be written as Q(x) ¼ q(x � x1) þ q(x � x2),
where q(x � xi) is zero if the distance jx � xij markedly exceeds the
polypeptide radius R. Variation of the free energy [Eq. (27)] leads to the
Eulerian equation KDDu þ Bmu ¼ Q(x). The Green’s function related to
this equation is obtained from KDDG x� �xð Þ þ BmG x� �xð Þ ¼ d x� �xð Þ
(d(x), Dirac’s function) with the boundary conditions G x� �xð Þ ! 0 and
@xG x� �xð Þ ! 0 for x� �xj j ! 1. A straightforward evaluation yields
[69,70]

G x� �xð Þ ¼ K0 k2 x� �xj jð Þ � K0 k1 x� �xj jð Þ
2pK k22 � k1

2
� � ; ð28Þ

where k1 ¼ 1þ ið Þ=ð ffiffiffi
2

p
xmÞ and k2 ¼ 1� ið Þ=ð ffiffiffi

2
p

xmÞ. The Green’s func-
tion allows us to express the interaction potential attributed to the force
between two adsorbed particles:

w x1; x2ð Þ ¼ �
ð ð

q x� x1ð ÞG x� �xð Þq �x� x2ð Þd2xd2�x: ð29Þ

Assuming that the distance between the peptides jx1 � x2j ¼ r12 is not too
short, a multipole expansion can be applied to Eq. (29). If the adsorption
force q0 ¼

Ð
q(s) d2s is nonzero, the leading term of the multipole expan-

sion is [70]

w r12ð Þ ¼ q20

2pBmx
2
m

ImK0

br12
xm

� �
; ð30Þ

where b ¼ 1þ ið Þ= ffiffiffi
2

p
. Except for long distances r12 > 4x, potential

[Eq. (30)] is attributed to an attraction force. For q0 6¼ 0, the membrane
interface has a depression around each adsorbed molecule. Assuming that
the small particle exerts the normal stress Q(x) ¼ �q0d(x) onto the mem-
brane-water interface, the maximal bilayer thickness alteration just below an
adsorbed convex particle can be expressed as u(0) ¼ �q0G(0) [69]. This
equation allows us to estimate the effective adsorption force q0 from mea-
surements of the membrane thickness. X-ray measurements revealed that
small antimicrobial peptides reduce the membrane thickness by a few tenth
of a nanometer [44,60]. The value �u (0) ’ 0.2 nm is consistent with the
published experimental data for the average thickness reduction. Combin-
ing this value with reasonable values for the elastic material constants
K ¼ 2 � l0� l0 N nm and Bm ¼ 3 � 10�10 N nm�3 [69], the relations
Eq. (28) and u(0) ¼ �q0G(0) yield the effective adsorption force
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q0 ¼ 10�10 N. Inserting this value for q0 into Eq. (30) and assuming that
r12 ¼ xm, we obtain the interaction energy 3kT. From a theoretical point of
view, it is possible that q0 ¼ 0 and q2 ¼

Ð
s2q(s) d2s 6¼ 0, if adsorbate

particles mold around the membrane surface without changing the average
thickness (Fig. 13B). Then a multipole expansion for the pair potential starts
with [70]

w r12ð Þ ¼ � q22

32pBmx
6
m

ImK0

br12
xm

� �
ð31Þ

This pair potential is attributed to a repulsion force. However, the
repulsion is expected to be rather weak for reasonable values of the second
moment q2 of the adsorption force. Apart from analytical approaches,
simulations concerning the interaction between adsorbates on supported
bilayer membranes or multilayer stacks of them do not seem to be available
yet.

3.3.2.2. Inclusions Inclusions such as transmembrane proteins can
strongly deform bilayer membranes (Fig. 13C). There are many theoretical
studies focused on deformations which are accompanied by a thickness
alteration of the membrane and the related membrane-mediated interac-
tions between the inclusions [20,61,71,72]. Forces are applied to the bilayer,
if the length of the hydrophobic part of a protein does not coincide with the
thickness of the alkyl chain region of the membrane. Such a thickness
mismatch produces a dilatation or a compression of the bilayer in a vicinity
of the lipid–protein interface. The perturbation of the bilayer is described by
the homogeneous differential equation KDDu þ Bmu ¼ 0 with appropri-
ate boundary conditions for the protein–lipid boundary. This equation may
be supplemented with a surface tension term �gDu, if g is not negligibly
small. Boundary conditions for a circularly symmetric inclusion with radius
R can be formulated as u(R) ¼ u0 and (@u/@r)R ¼ 0, but there are many
other possibilities [71]. Furthermore, a spontaneous curvature term in the
free energy can strongly modify the results [20,72]. In this case, unambigu-
ous predictions on membrane-mediated interactions between inclusions are
more difficult. Frequently, reasonable boundary conditions lead to an
attraction force between inclusions. The short-range attraction or repulsion
forces decay exponentially with a decay length xm ¼ (K/Bm)

1/4, which is
roughly a few nanometers. The magnitude of the interaction energy for two
proteins in contact can exceed the mean thermal energy kT [20]. However,
the ambiguity due to the unknown boundary conditions makes it difficult
to draw final conclusions on the sign and the strength of the interaction
potential. Computer simulations can be very helpful to select the appropri-
ate variant of the elasticity theory. Brannigan and Brown [73,74] have
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favored a model with two separate leaflets that form the bilayer membrane.
Using this model, they evaluated membrane deformations produced around
a single cylindrical protein with hydrophobic mismatch. The evaluated
analytical result fitted well to MD simulation data for a coarse-grained
model. However, the analytical approach was less successful to evaluate
the pair potential for two inclusions. In this case, West et al. [75] found
deviations between the analytical approach based on the model of Branni-
gan et al. [74] andMC simulation data for a coarse-grained model with lipids
consisting of a sequence of beads. Further simulations are needed to clarify
this point.

4. Models for Simulating More Complex

Problems

Monte Carlo simulations can also be used to get some insight into
particular aspects of more complex biologically relevant phenomena. As an
example let us consider the digestion of lipids in vertebrates. An important
step in the digestion mechanism is the transition of dietary membrane
material into micelles in the gastrointestinal tract. This step is required for
transferring the lipids into a phase state which is appropriate for further
enzymatic degradation of lipid molecules during the metabolism [76]. The
solubilization process is induced by particular detergents called bile salts
which are able to solubilize membrane lipids including cholesterol and to
form mixed bile-lipid micelles ready for further digestion [77]. Aside from
their role in digestion, bile salts are used to modify the stability and resistance
of vesicles used as drug carriers [78]. A huge amount of experimental data
characterizing the interaction between liposomes and bile salts has been
published. The solubilization mechanism can be divided into the following
steps:

1. Adhesion of bile salts on the outer surface of the liposomes
2. Insertion of bile salts into the lipid membrane
3. Partition of bile salts in the membrane
4. Formation of mixed micelles

Physicochemical studies revealed the considerable role of kinetics in
solubilization processes of model vesicles by bile salts [79]. After insertion
of bile salts into the membrane, equilibrium states are reached relatively
slowly. Depending on the rate of bile salt addition to the vesicle solution,
different diffusion controlled thermodynamic and structural states can be
obtained. In particular, inserted bile salts reduce the main transition tem-
perature and, in this way, the lateral lipid diffusion is increased. For this
reason, computer simulations of thermodynamic equilibrium structures as
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well as kinetic relaxation effects for different steps involved in membrane
solubilization are of special interest.

Based on experimental data for model systems, for example, isothermal
titration calorimetry [80], turbidity measurement [79], dynamic light scat-
tering [81,82], and cryo-transmission electron microscopy [83], a schematic
phase diagram for the system lipid-bile salt (Fig. 14) has been proposed [24].
It is remarkable that several steps leading to vesicle solubilization are
initiated at bile salt concentrations below the critical micelle concentration.
The insertion of bile salts into the vesicle membrane and the formation of
pure bile salt micelles are found to be competitive processes. For allowing
both processes to happen, the chosen system size for computer simulation
needs to be sufficiently large. For performing kinetic Monte Carlo simula-
tions of the vesicle solubilization by bile salts the coarse-grained lipid model
described in Section 2.1 must be extended [84]. The molecular topology of
the lipid model has been refined for a better representation of double-chain
lipids such as DPPC [85] (Fig. 15A) and an additional segment type
(NEUT) [86] has been introduced as a linker between the head group and
the hydrophobic chains in order to obtain a more realistic bilayer structure
in our solvent-free model (Fig. 2B).

Furthermore, based on the cholesterol model from [87] (Fig. 15B), we
have developed models for the bile salts sodium cholate and sodium deox-
ycholate (Fig. 15C and D). These models account for the typical structure of
facial amphiphiles such as bile salts, which have a predominantly hydrophilic
and a hydrophobic face instead of the head–tail-structure of double-chain
lipids. The difference in the hydrophilicity of cholate and deoxycholate is
taken into account by a different size of the hydrophilic segments connected
to the steroid skeleton. The interaction potentials have the same form as
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Figure 14 Schematic isothermal phase diagram of bile salt concentration versus lipid
concentration. (adapted from Ref. [24]).
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described in Section 2.1. However, the chain flexibility is slightly restricted.
The cubic simulation box has an edge length of 225s, where s is the
diameter of one lipid tail segment.

In order to study the solubilization of liposomes, we used a preequilibrated
vesicle containing 3650 DPPCmolecules. The lipid concentration is roughly
5 mmol/l. After equilibration, sodium cholate molecules have been
distributed randomly in the box outside the vesicle. The simulation steps
only comprise physically possible movements such as small randommolecular
displacements, angle changes and cluster displacements. In this way, the
number of Monte Carlo moves (MCS) corresponds to an arbitrary time scale.

During the first step, bile salt molecules adhere on the vesicle surface.
The rate of this process increases with increasing bile salt concentration.
This corresponds to the first nearly linear part of the curves in Fig. 16. The
adhesion is followed by incorporation of cholate into the lipid membrane.
The inserted cholate molecules induce restructuring of the membrane
lipids. This process is indicated by the horizontal part of the graphs
(Fig. 16). The structural change of the membrane culminates in pore
formation which is accompanied by a further uptake of bile salts into the
vesicle membrane. This uptake takes place predominantly at the rim of the
pores. The formation of worm-like mixed micelles which contain cholate
and DPPC already starts during the restructuring of the vesicle membrane at
bile salt concentrations above the CMC. The mixed micelles detach from
the vesicle which leads to a reduced DPPC content in the vesicle (Fig. 17).
A snapshot of a vesicle with mixed worm-like micelles still connected with
the vesicle is shown in Fig. 18. After complete detachment of worm-like

Figure 15 Coarse-grained models for (A) DPPC, (B) cholesterol, (C) sodium cholate,
and (D) sodium deoxycholate.
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mixed micelles, the vesicle with decreased DPPC content crumbles up and
eventually collapses completely as it is shown in Fig. 19. In case of liposomes
containing cholesterol, the solubilization requires a higher bile salt concen-
tration, and the process occurs at considerably lower rate. Simulations
confirm the experimental observation of cholesterol stabilizing the lipo-
somes against solubilization by bile salts.
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Figure 16 Number of membrane-bound bile salt molecules versus time in Monte
Carlo Steps (MCS) at several bile salt (NaC) to lipid concentration ratios R.
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Figure 17 Number of DPPC molecules in the vesicle membrane versus time in Monte
Carlo Steps (MCS) at several bile salt to lipid (DPPC) concentration ratios R.
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Figure 18 Snapshot of a DPPC vesicle containing sodium cholate with separating
worm-like mixed micelles.

80 ´ 106 MCS 100 ´ 106 MCS 120 ´ 106 MCS

180 ´ 106 MCS160 ´ 106 MCS140 ´ 106 MCS

Figure 19 Shape fluctuations and crumbling of a DPPC vesicle during its solubiliza-
tion by sodium cholate between 80 � 106 and 180 � 106 Monte Carlo steps (MCS). In
the case of sodium deoxycholate the same mechanism is observed, although the
solubilization process is faster as deoxycholate has a higher hydrophobicity than sodium
cholate.
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5. Summary and Outlook

Monte Carlo simulations of appropriate coarse-grained models are
useful tools to gain some insight into basic properties of membranes and
membrane-mediated interactions. There are several feasible ways to apply
MC simulations to complex lipid bilayers that form in an aqueous solution.
Dispensing with the explicit use of solvent models, a simple effective
interaction model for mimicking the hydrophobic interaction can already
be suitable for simulating important membrane properties. Unknown para-
meters entering into effective pair interactions for lipid molecules could be
adjusted in such a way that phase diagrams as well as essential thermody-
namic and elastic properties of experimental systems can be reproduced by
the model. Such a simple approach is useful to study important physical
problems of membrane physics such as fluctuations, vesicle stability and
their shape transformations, membrane adhesion, lipid redistributions,
adsorption, budding, exo- and endocytosis etc., which are also interesting
in a biological context.

On a physical level, a topic of special interest is the interaction between
the lipid matrix and membrane associated proteins. In many cases, it seems
to be hardly possible to estimate the strength and importance of forces
associated with the peptide-membrane interaction. For example, no satisfy-
ing theory exists which includes all important aspects accompanied by the
adsorption of water soluble macromolecules on fluid membrane surfaces. In
comparison to common substrates, a lipid bilayer responds to adsorbed
molecules in various ways. The fluidity of bilayer membranes allows a
local redistribution of lipid components, which influences the adsorption
equilibrium. Furthermore, both the lipid redistribution of nonideal lipid
mixtures and the particular elasticity of the bilayer membrane are the origin
of membrane-mediated interactions, which should have an effect on the
adsorption equilibrium and the arrangement of adsorbate molecules. Many
recent experimental and theoretical studies are focused on indirect
membrane-mediated interactions between peripheral and transmembrane
proteins. MC simulations and other simulation techniques are very helpful
to test theoretical concepts and to predict proper boundary conditions for
differential equations needed for a macroscopic or mesoscopic description
of bilayers and their interactions with membrane bound macromolecules.

Refining molecular models, MC simulations can also be useful to
elucidate even more special problems related to lipid bilayers and other
aggregates consisting of amphiphilic molecules. These simulations can help
to estimate the validity of theoretical models and hypotheses on various self-
assembled structures studied in the physical chemistry of amphiphiles.
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Abstract

Based on indirect observations, there currently exists a consensus that the

plasma membrane of mammalian cells exhibits nontrivial lateral heterogene-

ities in the form of nanoscale lipid domains known as lipid rafts which are rich in

cholesterol and sphingolipids. Lipid rafts have been implicated in a range of

biological functions, including signal transduction, endocytosis, trafficking,

virus uptake, and regulation of the membrane tension. The elucidation of the

finite size of lipid rafts in the plasma membrane has been a challenging problem

since multicomponent lipid vesicles composed of saturated lipid, an
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unsaturated lipid, and cholesterol also exhibit domains, but these are much

larger than the lipid rafts in the plasma membrane. Many computational studies

have recently been performed to address the phase separation in multicompo-

nent membranes and potential mechanisms leading to nanoscale phase sepa-

ration in the plasma membrane. This chapter provides an overview of major

computational studies of multicomponent lipid membranes with a particular

focus on time-dependent Ginzburg–Landau models, dynamic triangulation

Monte Carlo models, coarse-grained molecular dynamics, and dissipative parti-

cle dynamics.

1. Introduction

The plasma membrane provides structural integrity to the cell and acts
as a functional interface between its cytoplasm and its outer environment,
through the support of a variety of transmembrane and anchored proteins
that are involved in various physiological processes including transmembra-
nous transport, signaling and act as linkers with the subjacent cytoskeleton
[1]. It is now widely accepted that many physiological functions of the
plasma membrane including signaling, trafficking, endocytosis, cytokinesis,
and apoptosis, require in-plane compositional heterogeneities of the plasma
membrane [1–3]. This view has challenged the fluid mosaic model of Singer
and Nicholson [4], which considers the plasma membrane as a two-dimen-
sional fluid where the self-assembled lipid bilayer acts as a homogeneous
solvent to membrane proteins. By 1982, Karnovsky et al. [5] had shown that
the plasma membrane may exhibit heterogeneous lipid domains. This
concept formed the basis of the lipid raft hypothesis by Simons and van
Meer [6]. Since then, it became widely accepted that the plasma membrane
of eukaryotic cells exhibits distinct lateral heterogeneities in the form of
nanoscale domains called lipid rafts [3]. Although there remains some
confusion regarding the definition of lipid rafts and the biological roles
that they play [7], there was a consensus at the 2006 Keytstone Symposium
on Lipid Rafts and Cell Function in defining lipid rafts as small structures (10–
200 nm), heterogeneous, highly dynamic, with time scales ranging between
10�3 and 102 s [8,9], and enriched in cholesterol and sphingolipids [10].
Although lacking translational order, the sphingolipid tail groups in lipid
rafts are ordered, implying that lipid rafts are in the liquid-ordered state (Lo),
in contrast to the surrounding regions which, due to the fact that they are
rich in unsaturated lipids, are in the liquid-disordered state (Ld) [11].

Lipid rafts have been implicated in many biological functions including
signaling [12,13], trafficking [12], caveolin-mediated endocytosis [14,15],
virus uptake [16], and tension-regulation of the plasma membrane [17,18].
Due to their small scale, below the spatial resolution of light microscopy, the
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existence of lipid rafts in the plasma membrane has been mainly based on the
observation that detergent-resistant membranes obtained by extraction of
mammalian cells using nonionic surfactants, such as Triton X-100, mainly
contain cholesterol, sphingolipids and GPI-anchored proteins [19,20].
More recently, in vitro studies of the organization of GPI-anchored proteins,
using Foster’s resonance energy transfer (FRET), have revealed more details
on the structure of lipid rafts [21].

Due to the vast complexity of the plasma membrane, as a result of the
presence of a large number of components and protein-mediated active
processes, studies of the lateral organization of the plasma membrane in vivo
conditions have been very challenging. As a result, the majority of experi-
mental and computational studies of this problem have been carried out
during the last few years on simple multicomponent membranes as models
of the much more complex plasma membrane. Experimental studies of the
lateral organization in multicomponent membranes are based on supported
bilayers and giant unilamellar vesicles (GUVs) composed of a saturated lipid,
an unsaturated lipid and cholesterol [11]. In these experiments, micron-scale
phase separated Lo regions rich in cholesterol and the saturated lipid, coex-
isting with Ld regions, rich in the unsaturated lipids, are observed, thus
suggesting that the plasmamembrane should exhibit similar behavior [22–32].

Spinodal decomposition, which refers to the kinetics of phase separation,
is a generic phenomenon observed in multicomponent liquids and solids
and proceeds when a multicomponent system is rapidly quenched from
a disordered homogeneous state to a two-phase region of the phase dia-
gram [33]. Right after the quench, small-amplitude long-wavelength
compositional fluctuations of the initial homogeneous structure become
unstable [33]. This instability leads to the development of small domains and
their growth in order to minimize the excess energy due to the presence of
interfaces between them. The domain structure is interconnected (laby-
rinth-like) in the case of a critical quenches and globular in the case of off-
critical quenches [33]. Many details of domain growth during spinodal
decomposition tend to be generic and depend on few aspects of the system
such as spatial dimension, presence or absence of hydrodynamic interactions
and, in some cases, the topology of the domain structure [33,34]. An
interesting feature of spinodal decomposition, that up to date has attracted
a lot of attention, is that the average domain size scales with time as a power
law, R � ta, where the exponent a is a signature of the physical mechanism
driving the phase separation process.

Spinodal decomposition in multicomponent lipid membranes differs
from that in other multicomponent systems, in that lipid membranes are
two-dimensional fluids embedded in a three-dimensional fluid. Lipid mem-
branes are prone to curvature fluctuations which are controlled by a bend-
ing modulus, k � 10 to 100 kBT, where kB and T are the Boltzmann’s
constant and absolute temperature, respectively. The interplay between the
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local composition, the local membrane curvature, and the hydrodynamic
interactions mediated by momentum transport through the embedding
fluid and the fluid membrane itself produce kinetics of phase separation in
multicomponent membranes that is far richer than that of Euclidean
systems, and morphologies marked by coupling between the membrane
morphology and the lateral compositional organization of the membrane.
The main factors that control domain growth and morphology of phase
separating lipid membranes are (1) line tension between the coexisting
regions, (2) composition of the coexisting phases, (3) lateral tension on
the membrane or equivalently area-to-volume ratio in the case of closed
vesicle, and (4) the hydrodynamic interactions mediated by the surrounding
fluid and the fluid membrane itself.

In order to gain some insight into the interplay between line tension and
membrane curvature [35], consider a circular domain of a B-phase with area
a coexisting with an A-phase, as shown schematically in Fig. 1. Let c be the
absolute value of the domain’s curvature assumed to be almost uniform. The
excess energy of the membrane is therefore dominated by the line energy
due to the interface and the domain’s curvature,

e ¼ 2kac2 þ ll; ð1Þ

where the perimeter of the interface is given by

l ¼ 2pr ¼ 2p
a

p

� �1=2

1� ac2

4p

� �1=2

: ð2Þ

The free energy can then be rewritten as

e ¼ 8pk ec2 þ l
2kc2max

1�ec2� �1=2� 	
þ ll; ð3Þ

A B

r r

1/c

Figure 1 Three-dimensional rendering of (A) a flat lipid domain of radius r and area a,
and (B) a curved spherically shaped (budded) lipid domain with same area as in (A) of
radius 1/c and interfacial length l ¼ 2pr. The shape of its lipid domain is determined by
a competition between its line energy, 2prl, and its curvature energy, 2kac2. In the case
of a tensionless membrane, the budded domain adopts a limit-shape with an infinitesi-
mally small neck (i.e., a neck determined by the thickness of the lipid bilayer).

204 M. Laradji and P.B. Sunil Kumar



where a ¼ 4p/cmax
2 and ec ¼ c=cmax. The free energy in Eq. (3) has a

minimum at c ¼ 0. This minimum is absolute if the area of the domain is
smaller than a0 ¼ 4p(k/l)2. Otherwise, the free energy is lower for c > 0,
with a specific value depending on the lateral tension on the membrane. In
the case of a tensionless membrane, the domain has a shape of a complete
bud, with the curvature c ¼ ffiffiffiffiffiffiffiffiffiffi

4p=a
p

. These calculations imply that for a
given k/l, the onset of domain capping occurs when its average radius
exceeds R0 ¼ 2k/l. These simple arguments imply that the interplay
between line tension and curvature energy leads to an early time dynamics
dominated by flat domains. At later times, when the average domain size
exceeds k/l, the domains cap. The line tension between the coexisting
liquid-ordered and liquid-disordered phase close to the critical point is
typically of order l � 1 pN [28], and the bending rigidity is of order
10�19 J [36], implying that the onset of capping occurs at R0 � 100 nm
which is interestingly about the size of a lipid raft. In multicomponent
membranes, phase separation proceeds until the domain size becomes
comparable in size to the vesicle itself.

Many experiments on multicomponent GUVs undergoing phase sepa-
ration have revealed the existence of large (micron-scale) domains, seem-
ingly limited in size only by the finite size of the vesicle itself, implying that
multicomponent GUVs do achieve thermodynamic phase separation [28].
Therefore, there is a notable difference between the sizes of lipid domains in
model membranes and lipid rafts in the plasma membrane. As a result, one
of the challenging questions regards the mechanisms that maintain the
nanoscale size of lipid rafts. It is important to note that there are important
differences between model multicomponent membranes and the plasma
membrane. Chief among these are (1) a symmetric transbilayer lipid distri-
bution in model membranes, whereas the transbilayer lipid distribution in
the plasma membrane is highly asymmetric with the saturated lipid (mainly
sphingolipids) mostly located on the exoplasmic leaflet; (2) absence of lipid
trafficking in model membranes; (3) the presence of transmembrane pro-
teins which partition preferably in the Ld domains; (4) the presence of a
subjacent actin–myosin cytoskeleton in the plasma membrane which may
lead to the confinement of some transmembrane proteins; and (5) activity of
most of the proteins that are bound to the plasma membrane, making the
plasma membrane a driven nonequilibrium system.

Several mechanisms have been put forward to explain the finite nanoscale
size of lipid rafts in the plasma membrane. Mayor and Rao hypothesized that
lipid rafts are equilibrium compositional fluctuations due to the closeness of
the multicomponent system to its critical point [37]. Veatch et al.’s recent
investigations of vesicles reconstructed from plasma membranes suggest that
the physiological temperature of plasma membranes is higher than the critical
point, thus implying that lipid rafts might simply be critical fluctuations
[38,39]. The stability of nanoscale lipid rafts has also been attributed to the
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presence of transmembrane proteins confined by the cortical cytoskeleton,
which act as quenched impurities [9,40–42]. The finite size of lipid rafts has
also been linked to the lipid recycling as well as trafficking [43,44]. The
authors of this chapter also suggested that the finite size of lipid rafts is the
result of asymmetry in the transbilayer lipid distribution in the plasma mem-
brane [45]. This asymmetric lipid distribution leads to a spontaneous curva-
ture of the domains and an effective repulsive interaction between curved
domains [45,46]. It is plausible that the finite size of lipid rafts is due to a
combination of the effects above. The understanding of phase separation in
multicomponent membranes and the finite size of lipid rafts has thus been the
subject of an increasing amount of computational studies during the last few
years. These have been carried through phenomenological time-dependent
Ginzburg–Landau models on Euclidean [42–44] and non-Euclidian surfaces
[47–50], dynamic triangulation Monte Carlo (DTMC) [51–54], atomistic
molecular dynamics (AMD) [55,56], coarse-grained molecular dynamics of
implicit-solvent models [57,58] and explicit-solvent models such as that based
on the MARTINI force field [59], and dissipative particle dynamics (DPD)
[35,45,60,61]. The aim of this chapter is to present an overview of the recent
computational studies of multicomponent membranes.

2. Time-Dependent Ginzburg–Landau

Simulations

The earliest study of the phase separation kinetics in multicomponent
lipid membranes using a time-dependent Ginzburg–Landau (TDGL) model
was due to Taniguchi [47]. In this model, a free-energy functional of the
local composition, f(r), and local curvature, c(r), of the multicomponent
lipid bilayer on a vesicle, S, parameterized by curvilinear coordinates (u1,
u2) is given by

ℱ ff g; cf gð Þ ¼
ðSð Þ ffiffi

g
p

d2u
a

2
f2 þ b

4
f4 þ 1

2
x2gab

@f
@ua

@f
@ub

" #

þ k
2

ðSð Þ ffiffi
g

p
d2u c � c0ð Þ2 þ L

ðSð Þ ffiffi
g

p
d2u c fþ VDP;

ð4Þ

where
ffiffi
g

p
d2u is the element of area, gab, with a, b ¼ 1 or 2, is the contra-

variant metric tensor, c0 is the spontaneous curvature, V is the enclosed
volume, and DP is the pressure difference across the vesicle. The first
integral in Eq. (4) is the usual Ginzburg–Landau free energy functional on
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a generalized non-Euclidian surface. The second integral in Eq. (4) is the
usual Helfrich Hamiltonain without the Gaussian term. The third integral in
Eq. (4) describes the simplest bilinear coupling between the lipid composition
and the local curvature. Langevin equations, without noise, describing the
kinetics of both the local composition and local curvature are then derived
and iterated numerically on closed surfaces with spherical initial shape.

In Fig. 2, late times snapshots in the case of a bilinear coupling coeffi-
cient L ¼ 0.5 are shown for different values of the average composition �f.
In snapshots (B) to (D) of Fig. 2, the curvature of the domains is due to the
finite value of L. Figure 2(E) and (F) show that in the case where the
curvature and composition fields are decoupled and shape fluctuations are
suppressed (rigid spheres), domain growth is not affected by the vesicle’s
shape, R � ta, with the growth exponent a ¼ 1/3 for both critical and off-
critical quenches. This growth law is identical to that of Euclidean systems
undergoing spinodal decomposition where domain growth is mediated by

log(t)
100

A B C D

E

–1/3
2000

4000

lo
g(

N
D

B
)

300
log(t)

100

F

–1/3
2000

4000
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g(

N
D

B
)

300

Figure 2 Configurations of vesicles as obtained from TDGL simulations of Taniguchi
[47] in the case ofL ¼ 0.5. (A) corresponds to the initial configuration, (B) corresponds
to a configuration at late times for a critical quench, �f ¼ 0, (C) corresponds to a late-
times configuration of an off-critical quench with �f ¼ 0:3, and (D) corresponds to a
late-times configuration for an off-critical configuration with �f ¼ �0:3. Dark regions
in (A)–(D) corresponds to f rð Þ < �f. (E) shows a log–log plot of the interfacial length
versus time for the case of critical quenches with different values of the bilinear
coupling L between the composition and curvature. Graphs from top to bottom in
(E) correspond to L ¼ 0.8, 0.5, and 0, respectively. (F) Same as (E), but for off-critical
quenches, �f ¼ �0:3. Graphs from top to bottom correspond to L ¼ 0.8, 0.5, and 0,
respectively. The bottom graphs of both (E) and (F) are obtained in the context of rigid
spheres. Reprinted with permission from [47]. Copyright 1996, American Physical
Society.
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the long-range evaporation–condensation mechanism [62]. When L > 0
and when curvature fluctuations are allowed, domain growth becomes
significantly slower as shown by Fig. 2. This slowing down is probably
due to the fact that the equilibrium state in these cases can be that of
microphase-separated structures as has been shown by several mean field
calculations of related models [63–67].

A two-dimensional version of the model above, with the membrane
fluctuations described by theMonge representation was later investigated by
Wallace et al. [68] and Thronton et al. [69,70]. A similar TDGL model
coupled to a fluctuating elastic membrane model was later developed by
McWhirter et al. [48–50]. It is worth noting that the bilinear coupling
between the composition and curvature, often incorporated in TDGL
models of multicomponent lipid membranes, implicitly assumes that the
lipid composition of the two apposing leaflets is locally asymmetric. This
assumption contradicts the experimental observation that domains in the
two leaflets are in register [27,29].

In order to understand the finite-size of lipid rafts in the plasmamembrane,
Foret [44] proposed a two-dimensional TDGL model which neglects curva-
ture fluctuations and where the lipid bilayer is coupled to a lipid reservoir in
the cytoplasm that mimics the effect of lipids recycling. The model was later
improved byFan et al. [42,43] to account for the effect of immobilized proteins
aswell as critical fluctuations, twomechanismswhich have also been associated
with the arrest of domain growth in the plasma membrane [9,37]. The free
energy functional of the system is given by the first integral of Eq. (4), but on a
Euclidian nonfluctuating surface, g ¼ 1 and c ¼ 0. A Langevin equation
describing the kinetics of the composition is derived with an additional term
describing lipid exchange with the cytoplasm,

@

@t
f r; tð Þ ¼ � 1

tr
f r; tð Þ � �f
� �þMr2 dℱ

df
þ � r; tð Þ; ð5Þ

where M is the mobility of the composition field and tr is the relaxation
time for the composition due to exchange with the lipid reservoir. � is a
stochastic noise with zero mean and correlation

� r; tð Þ� r0; t0ð Þh i ¼ �H2

2p
r2K0

jr� r0j
l

� �
d t � t0ð Þ; ð6Þ

where H is either proportional to temperature or related to the rate of lipid
exchange between the reservoir and the lipid membrane, and l defines the
length scale over which spatial distribution of lipids takes place. K0 is the
modified Bessel function of the second kind and zeroth order. In this model,
the free energy functional of the multicomponent lipid membrane is given by
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ðSð Þ

d2x
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2
f2 þ b

4
f4 þ 1

2
x2 1� ar rð Þ½ � rfð Þ2


 �
: ð7Þ

In the free energy functional, Eq. (7), r(r) describes a local density of
immobile transmembrane proteins, which act as quenched impurities for
the lipid composition. These immobilized proteins may correspond, for
example, to the protein complexes that link the actomyosin cytoskeleton to
the lipid bilayer [9]. It is worth noting that, in Eq. (5), the term describing
lipid exchange between the reservoir and the lipid bilayer, can be derived by
adding to the free energy functional a bilinear long-range interaction, (1/
Mtr)

Ð
dr

Ð
r0f(r, t)G(r, r0)f(r0, t), where G is the Green’s function

satisfying r2G(r, r0) ¼ �d(r � r0) [71]. The resulting free-energy
functional is that of an effective diblock copolymer melt close to the
order–disorder transition known to lead to various microphase-separated
structures [72]. The model above was used to investigate four possible
scenarios that have been associated with the stabilization of nanoscale lipid
domains (rafts) in the plasma membrane: (1) the effects of critical fluctua-
tions controlled by the coefficient a (<0 in the two-phase region and>0 in
the one-phase region); (2) the effect of quenched proteins through the
function r(r); (3) the effect of lipids exchange between the reservoir and
the lipid bilayer, which is controlled by the time scale tr; and (4) the effect of
lipid recycling through the length scale l (an l ¼ 0 implies no recycling). In
Ref. [73], Fan et al. also investigated the effect of membrane compartmen-
talization (induced by cytoskeleton, for example) on domain growth. Typ-
ical late-time configurations obtained from this model are shown in Fig. 3.

Through the analysis of the correlation function of the composition, Fan
et al. [43] determined a qualitative effect of each of the possible scenarios
listed above on the correlation function of the composition scattering
function. These analyses can, in principle, be mapped onto future experi-
mental studies of lipid rafts in order to determine the mechanism(s) leading
to finite size of lipid rafts. It is noted, however, that since the effects that may
be involved in the stability of nanoscale lipid domains are nonequilibrium
ones, the account for hydrodynamics may be very important. The coupling
of the solvent velocity field to multicomponent membranes was recently
investigated by Fan et al. [42] and Camley and Brown [74] using model H
[75] in the low Reynolds number regime, where the inertia term in the
Navier–Stokes equation can be neglected. In their analyses [42], Fan et al.
found different regimes depending on the ratio, R(t)/lh, where R(t) is the
domain size and lh ¼ �s/�m is the hydrodynamic length with �s and �m are
the viscosities of the solvent and membrane, respectively. Note that in their
calculations, Fan et al. considered the membrane as a flat object without
curvature deformations. The formulation of the problem while allowing for

Coarse-Grained Computer Simulations of Multicomponent Lipid Membranes 209



membrane deformation is a difficult task and has not yet been performed in
the context of multicomponent membranes [76].

3. Dynamic Triangulation Monte Carlo

In the DTMC approach [77], the lipid membrane is approximated by
a randomly triangulated sheet, with the vertex positions of the triangles
specified by three-dimensional vectors. The vertices can move in three
dimensions to allow for shape changes, with the topology of the membrane
preserved by connecting the vertices with tethers, with a length a ¼ lmin <
l < lmax ¼

ffiffiffi
3

p
a. The fluidity of the membrane is maintained by dynamic

breaking and reconnecting of tethers. In the case of multicomponent
membranes, an additional Kawasaki exchange move was introduced to
facilitate phase separation [51,52]. The Monte Carlo moves are summarized
in Fig. 4. The vertex moves and bond flips, leading to fluctuations in the
shape of the membrane, are accepted using the Metropolis scheme and the
conserved dynamics of the concentration field is ensured using Kawasaki
exchange moves. In all cases, the configuration of the membrane is
weighted by the discrete version of the Helfrich Hamiltonian,

ℋ ¼ 2k
X
D

HD � C0 1þ fDð Þ=2AD½ �2=AD �
X
ij

Jfifj; ð8Þ

where HD ¼ 1=4ð ÞPij lijXij, is the contribution of every triangle to the total
mean curvature integrated over the area of the vesicle and AD is the area of a
triangle [54]. lij is the length of the edge and Xij is the angle between the

A B C D E F

Figure 3 Late time configurations obtained from TDGL simulations of the model
proposed by Fan et al. [43]. (A) corresponds to a system dominated by critical fluctua-
tions (right below the critical point) without lipids recycling or immobilized proteins.
(B) corresponds to a system in the two phase region (well below the critical point)
without recycling and with immobilized proteins. (C) corresponds to a system in the
one-phase region with recycling. (D) corresponds to a system in the two phase-region
with recycling. (E) corresponds to a system with coupling to a lipid reservoir and in the
two phase region. (F) corresponds to a system with cytoskeleton-induced compartmen-
talization. Reprinted with permission from [43,73]. Copyright 2010, the American
Physical Society.
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normals of the triangles sharing the edge (i, j). The relative lipid concentra-
tion f is discretized by assigning fD ¼ �1 to every triangle. J is the
interaction parameter between neighboring patches. C0 is the preferred
mean curvature arising from the effective shape asymmetry of the two
lipid components.

The early simulations performed on multicomponent membranes [53]
used a slightly different form with discrete values for the mean curvature and
concentration field assigned to the vertices of the triangles. The results
obtained from these two discrete versions agree well with each other.
Snapshot series of a membrane with its edges fixed to a hexagonal frame
with C0 > 0, and undergoing phase separation after a critical quench, are
shown in Fig. 5, This figure indicates that during early times, the domain
morphology is that of a labyrinth, typical to spinodal decomposition in two-
dimensional Euclidian systems. The domain structure eventually breaks up
into budded domains, leading to an increased tension of the membrane. This
frame-induced tension prevents motion and coalescence of buds, eventually
leading to a marked slowing down of the kinetics of phase separation [51].

The model was later used by Sunil Kumar et al. [54] to investigate the
kinetics of phase separation of a closed multicomponent vesicle. Two
particular cases corresponding to a spontaneous curvature (a) C0 ¼ 0 and
(b) C0 > 0 were investigated in detail. When the local composition and
curvature are not coupled, that is,. when C0 ¼ 0, the kinetics proceeds

A

B

C

Figure 4 Schematic plot illustrating the moves used in the dynamic triangulation
Monte Carlo approach to simulate a two-component fluid membrane. The two com-
ponents are represented by crossed and solid spheres. (A) corresponds to a bead move,
(B) corresponds to a bond flip, and (C) corresponds to a Kawasaki exchange move
between the different types of particles.
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through two main regimes, as shown in Fig. 6. The first regime is char-
acterized by the typical labyrinth domain structure observed in spinodal
decomposition in Euclidian space. At later times, when the characteristic
domain size exceeds k/l, the domain energy becomes dominated by its line
energy leading the transformation of the domain structure into isolated buds
connected to the main vesicle by narrow necks. The buds attain a limit
shape configuration due to the absence of volume constraint in the DTMC
approach, implying that the vesicles are in tensionless states (see arguments
presented in the Introduction). Domain growth then proceeds via coales-
cence of these buds. The length scale L(t) in these two regimes shows
different dependence on time as can be seen in Fig. 7. After an initial
transient, the length of the interface between domains scales with time as,
L(t) � t�a, with the growth exponent a � 1/3, typical to phase separating
binary mixtures in Euclidean two- or three-dimensional systems without
hydrodynamics [34,62]. This growth law could arise from the evaporation–
condensation mechanism [62] or from capping of circular patches during
the early stages. As quantitatively shown by Fig. 7, the duration of first
regime is shorter for smaller k. This is expected since the crossover domain
size between the two regimes scales as k/l. At later times, as can be seen in
Fig. 7, there is a clear crossover to the budding regime where the interfaces
of the patches rapidly collapse into narrow necks due to absence of volume
constraint. The crossover time at which domain growth changes to the
budding regime increases as k is increased, while the line tension is kept
unchanged.

Situations wherein the two patches have different preferred mean
curvatures are simulated by making C0 6¼ 0. Snapshots of the simulations
with C0 > 0, shown in Fig. 8, demonstrate a clear deviation of the
kinetics from the path followed when C0 ¼ 0. When C0 6¼ 0, the
interconnected patches do form as well during early stages, but they
break up much earlier to form buds than in the case of zero spontaneous

Figure 5 Three snapshots of a two-component membrane with its edges fixed on a
hexagonal frame. Note the labyrinth domain morphology at early times, typical
to spinodal decomposition. The labyrinth structure breaks up at late times. Reprinted
with permission from [53]. Copyright 1998, the American Physical Society.
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curvature. Fig. 9 shows that the crossover time to the budding regime
increases with decreasing C0. The budding regime is identified by the
sharp bend in L(t) as a function of time. It is also noted that the critical
patch size for budding increases with decreasing C0, when all other
parameters are held fixed.

Figure 6 Two snapshots of a phase-separating two-component vesicle from a DTMC
simulation following a critical quench, and with both components having no spontane-
ous curvature. The left snapshot is at early times during which the domains are flat and
form a typical labyrinth morphology. The right snapshot is at later times and shows
isolated budded domains. Reprinted with permission from [78]. Copyright 2009, The
Physical Society of Japan.
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Figure 7 The net interfacial length, L(t), versus time, t, for the case of zero spontane-
ous curvature. The upper curve corresponds to a membrane with a bending modulus
eight times that of the lower curve. Reprinted with permission from [78]. Copyright
2009, The Physical Society of Japan.
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The late time coarsening of the domains, once the buds are fully formed,
is mediated by the Brownian diffusion of the buds and their coalescence on
the surface of the vesicle. In this regime, all buds have a neck size of three
triangles and thus the number of buds and the length L(t) scale similarly.
Diffusion-mediated coalescence of blebs is further substantiated by the
correlation between L(t) and the number of buds during late times [54]
and the fact that the number of buds scales algebraically with time as
N(t) � t�1/2, agreeing with the bud coalescence model [54].

4. Coarse-Grained Molecular Dynamics

There have been few AMD simulations of three-component lipid
membranes [55,56]. A typical AMD simulation will involve few thousands
of lipids, and thus the linear system size is about 10 nm, smaller than a typical

A B

C D

Figure 8 Time sequence of snapshots of a two-component vesicle from a DTMC
simulation with C0 ¼ 0.25, k ¼ 1.0 and J ¼ 2.0. (A), (B), (C), and (D) corresponds to
t ¼ 1000 MCS, 4.5 � 104 MCS, 1 � 105 MCS and 2 � 105 MCS, respectively. Rep-
rinted with permission from [78]. Copyright 2009, The Physical Society of Japan.
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lipid raft. Furthermore, typical AMD simulation of lipid bilayers are run over
few hundred nanoseconds. Thus, AMD only allows for short time-scale
rearrangements of the lipid molecules. Therefore, as of now, there is no
AMD study of lipid raft formation. An early molecular dynamics simulation
based on Lenard–Jones interactions of a coarse-grained model for lipid
membranes was performed by Goetz et al. [79,80] to investigate the mechan-
ical properties of one-component lipid membranes. Goetz et al.’s model
[79,80] is an effective molecular dynamics model in that a lipid molecule is
coarse-grained into a short amphiphilic linear chain of beads composed of one
hydrophilic particle and four hydrophobic particles. This model is generic,
and has not been used for studying phase separation in multicomponent lipid
membranes. More recently, Marrink et al. [81,82] proposed a more specific
coarse-grained model, known as the MARTINI model, based on a four-to-
one coarse-graining of heavy (carbon, oxygen, nitrogen, or phosphorous)
atoms. For example, a dipalmitoylphosphatidylcholine (DPPC) molecule is
coarse-grained into 12 beads, consisting of two hydrocarbon flexible chains,
each composed of four hydrophobic beads, and a hydrophilic head group
composed of four hydrophilic beads. Same mapping is used for water mole-
cules, and a slightly different mapping is used for the ring structures present in
cholesterol. A trial and error procedure was used to optimize the parameters
of the MARTINI model in order to reproduce experimental densities of
water and some alkanes at room temperature. An extensive force field library
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Figure 9 The total interfacial length, L(t), as a function of time, t. The three sets of
data are for different values of the spontaneous curvature C0 of the patches. The slope
of the straight line is�1/3. Reprinted with permission from [54]. Copyright 2001, The
American Physical Society.
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of the MARTINI model has been developed, and is continuously being
improved, for various types of lipids and amino acids [83].

Four main types of particles are used in the MARTINI model. These
correspond to: polar (P), nonpolar (N), apolar (C), charged (Q), and apolar
ring structure (SC). Each of the four beads, P, Q, N, or P, has between four
and five subtypes. The time step in the MARTINI approach is typically
around 20 fs, and is therefore about one order of magnitude higher than that
of AMD [55]. The MARTINI approach has had an appreciable success
during the last few years due to its ability to model specific systems, while
being more coarse-grained than AMD, and thus allowing to investigate
specific three-component mixtures over few microseconds The MARTINI
model was recently used by Risselada and Marrink [59] to study domain
formation in a ternary mixture of DPPC, dilinoleylphosphatidylcholine
(DUPC) and cholesterol. Snapshots obtained from these simulations are
shown in Fig. 10. In agreement with experiments, simulations based on the
MARTINI force field [59] have shown that cholesterol has indeed an
affinity for the saturated DPPC molecules. Furthermore, they also found
that domains in the two leaflets do indeed exhibit a high degree of registra-
tion, again in agreement with experiments. Despite its successes, coarse-
grained molecular dynamics with the MARTINI force field is still too slow
to be used to investigate the kinetics of spinodal decomposition in large
multicomponent membranes.

5. Dissipative Particle Dynamics

Due to its stochastic nature, the DTMC simulations of multicomponent
lipid membranes cannot account for hydrodynamic interactions. Although
Navier–Stokes equations can be coupled to the time-dependent Ginzburg–
Landau equations in order to account for hydrodynamic interactions, these
equations tend to be cumbersome, particularly in the case where out-of-plane
deformations of the lipid membrane are allowed, and have thus far only been
solved for the case of flat membranes without out-of-plane deformations
[19,42]. Furthermore, the account for the constraint of area-to-volume ratio
and topological changes of the membrane cannot readily be accounted for by
either the TDGL approach or the DTMC approach. The effect of hydrody-
namic interactions are inherently accounted for in molecular models such as
atomistic and coarse-grained molecular dynamics, including molecular
dynamics with the MARTINI force field, and the DPD. Although very
promising, due to computer limitations, coarse-grained molecular dynamics
with theMARTINI force field cannot yet beused to study the kinetics of phase
separation in multicomponent membrane over long time scales.
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The relatively novel approach known as DPD, developed by Hooger-
brugge and Koelman [84] and then cast in its present form by Español and
Warren [85] about 15 years ago, has proven to be extremely useful for
investigations of soft materials, which are usually characterized by slow
kinetics [86]. These include spinodal decomposition [87], transport of poly-
mer solutions [88], microphase separation in diblock copolymers [89], nano-
composites [90–92], externally driven flow of polymeric systems [93–95], and
living polymers [96]. DPD is reminiscent of molecular dynamics in that it is
an explicit particle-based approach. Its essence lies in the fact that it uses soft
conservative forces, and pairwise dissipative and random forces. The pairwise
dissipative and random forces collectively act as a thermostat while locally
conserving momentum. DPD thus implicitly and correctly describes the
long-range hydrodynamic interactions in fluids [97]. The use of soft interac-
tions in DPD allows for timesteps that are several orders of magnitude larger

0 ms 1 ms 3 ms 10 ms 20 ms

B

CA

D

diC16-PC diC18:2-PC chol 0 ms 4 ms

E

Figure 10 Domains in ternary lipid mixtures. (A) Color coding of the lipid compo-
nents. Green is used for the DPPC lipids, and red is used for the DUPC lipids.
Cholesterol is depicted in gray with a white hydroxyl group. (B) Time-resolved
phase segregation of a planar membrane viewed from above, starting from a random
mixture, ending with the Lo/Ld coexistence (t ¼ 20 ms). (C) Phase segregation for the
same lipid mixture in a liposome with 20 nm in diameter starting with a uniform
mixture and ending at t ¼ 4 ms. Both top view and cut through the middle are shown
at late times. (D and E) Multiple periodic images (2 � 2) of the phase-separated DPPC/
DUPC/cholesterol systems show striped pattern formation in the 0.42:0.28:0.3 system
(D) and circular domains in the 0.28:0.42:0.3 system (E). (Scale bar: 5 nm.) Reprinted
with permission from [59]. Copyright 2008, National Academy of Sciences, USA.
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than in coarse-grained molecular dynamics. Indeed the time step in DPD
simulations of lipid membranes is typically of order 1 ps [56] and thus DPD is
about two orders of magnitude faster than coarse-grained molecular dynamics
with the MARTINI force field [56]. The success of DPD when compared to
other methods used for studies of multicomponent membranes stems from
the account of (1) hydrodynamic interactions mediated by both the lipid
bilayer and ambient solvent, (2) area-to-volume constraint, and (3) topologi-
cal changes of the lipid membrane.

There are several presentations of lipids in DPD simulations. These range
from two-tailed models [98] to single tailed-lipids [60]. While some of the
membrane physical constants like its bending modulus are not sensitive to the
structure of the lipid, quantities such as the pressure profile, gel-fluid transi-
tion, and the structure of the gel phase, are sensitive to the lipid model. Since
the phase separation of lipid membranes into coexisting Lo and Ld phases has
been observed in many systems [11], with the main requirement being
that the three components are a saturated lipids, an unsaturated lipid and
cholesterol, keeping a simplified description of lipid particles is justified.

In the model of lipid membranes presented below [35,45,61,99], each
lipid particle is represented by a hydrophilic head particle (h) connected to a
linear strand of three hydrophobic tail particles (t). A multicomponent lipid
membrane in the two-phase Lo–Ld coexistence is modeled within the DPD
approach with two immiscible components, A and B, with their hydro-
philic heads denoted by hA and hB, respectively, and their tail particles by tA
and tB, respectively. The solvent also contains simple solvent particles
denoted by w. A DPD particle, i, experiences the following net force
from other particles,

Fi ¼
X
j 6¼i

F
Cð Þ
ij þ F

Dð Þ
ij þ F

Rð Þ
ij

� �
; ð9Þ

where the conservative forces is given by

F
Cð Þ
ij ¼ aijo rij

� �
r̂ij; ð10Þ

with rij ¼ rj � ri, and r̂ij ¼ rij=rij. The weight function o is given by,

o rð Þ ¼ 1� r=rc for r � rc;
0 for r > rc;



ð11Þ

where rc is a cutoff distance. The conservative forces between particles
are therefore all repulsive. In this simple model, the hydrophobic and
hydrophilic interactions are thus the result of the relative interaction
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strengths aij. aij for w–w interaction is chosen such that water’s compressibil-
ity at room temperature is reproduced [86]. Results presented below are
obtained from the following set of interaction strengths

aij ¼ e
rc

hA tA w hB tB
hA 25 200 25 aAB 200

tA 200 25 200 200 aAB
w 25 200 25 25 200

hB aAB 200 25 25 200

tB 200 aAB 200 200 25

0BBBBBB@

1CCCCCCA: ð12Þ

The dissipative and random forces are respectively given by

F
Dð Þ
ij ¼ gijo

2 rij
� �

r̂ij	vij
� �

r̂ij; ð13Þ
F

Rð Þ
ij ¼ sij Dtð Þ1=2o rij

� �
zijr̂ij; ð14Þ

where vij ¼ vj � vi and Dt is the time step. zij is a symmetric random
variable with zero mean and unit variance, uncorrelated for different pairs
of particles and different times, that is,

zij tð Þ
� � ¼ 0; ð15Þ

zij tð Þzkl t0ð Þ� � ¼ dikdjl þ dildjk
� �

d t � t0ð Þ; ð16Þ

with i 6¼ j and k 6¼ l. The dissipative and random forces are related to each
other through the fluctuation–dissipation theorem, leading to

gij ¼ s2ij=2kBT : ð17Þ

The integrity of a lipid particle is ensured by an additional harmonic
interaction given by

F
Sð Þ
i;iþ1 ¼ �k 1� ri;iþ1

b

� �
r̂i;iþ1; ð18Þ

where k is some spring constant and b is some preferred bond length. In
Eq. (18), k ¼ 100e and rc ¼ 0.45rc are used. The results presented here
[45,61] were obtained from simulations performed at s ¼ 3.0(e3m/rc

2)1/4,
a fluid number density rc ¼ 3.0rc

� 3, and a temperature kBT ¼ e. The
velocity-Verlet algorithm was used with an integration time step
dt ¼ 0.05 t with the time scale t ¼ (mrc

2/e)1/2. The simulations are per-
formed in cubic boxes of size (80 � 80 � 80) rc

3 corresponding to
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1,536,000 dpd particles. The number of lipid molecules is fixed at 16,000.
The parameters of these DPD simulations [45,61] are such that solvent
particles cannot translocate through the lipid bilayer, thus constraining the
core volume of lipid vesicles. This corresponds to a typical experimental
situation. In the simulations, vesicles are prepared by placing lipids on both
inner and outer sides of a sphere with a pore at the pole. This pore
eventually closes once the lipid surface densities on both leaflets are equili-
brated. This process allows the vesicle to achieve a tensionless state with its
equilibrium area-to-volume ratio and area between the two leaflets. After
some equilibration time, lipids are randomly assigned types A and B on both
leaflets with the desired composition, f. In the presentation of the DPD
results, a variety of systems will be discussed. The labels of these systems
with their parameters are given in Table 1.

5.1. Domain Growth in Membranes with Equal Compositions

In Fig. 11, snapshots of systems C 100ð Þ
1 , C 100ð Þ

2 , and C 50ð Þ
2 (see Table 1 for a

description of the labels) are shown, corresponding to the case of equal lipid
compositions of the two lipids with two different area-to-volume ratios.
This figure clearly shows the labyrinth-like domain structure during early
times, typical to spinodal decomposition after a critical quench. At later
times, however, the domain structure breaks up into more compact domains
(see, e.g., system C 100ð Þ

2 at t > 100 t). In system C 100ð Þ
2 , which is characterized

by high area-to-volume ratio and high tension, buckling of the compact

Table 1 Labels of the binary lipid systems simulated through DPD in Refs. [35,45]. n
corresponds to the area-to-volume ratio parameter, defined as the total number of
lipid particles over the number of solvent particles inside the vesicle. aAB is the
interaction strength between A and B lipids. fB

(out) and fB
(in) are the volume fraction

of the B lipid in the outer and inner leaflet, respectively

System n aAB fB
(out) fB

(in)

A 100ð Þ
1 0.462 100 0.3 0.3

A 100ð Þ
2 0.567 100 0.3 0.3

A 68ð Þ
2 0.567 68 0.3 0.3

A 50ð Þ
2 0.567 50 0.3 0.3

C 100ð Þ
1 0.462 100 0.5 0.5

C 100ð Þ
2 0.567 100 0.5 0.5

C 50ð Þ
2 0.567 50 0.5 0.5

ℛ1
(50) 0.462 50 0.4 0.2

ℛ2
(50) 0.567 50 0.4 0.2

ℛ3
(50) 0.885 50 0.4 0.2
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domains is clearly observed at t 
 100 t. This domain buckling is due to
the fact that the line energy overcomes the bending energy of domains once
they exceed a critical diameter Dc � k/l. This critical diameter is larger for
the case of system C 50ð Þ

2 , and thus buckling is not observed for this system
even at late times. The interfacial length of the domains, shown as a function
of time in Fig. 11, scales with time as L(t) � t�1/2, which is in contrast
with the t�1/3 growth observed in the DTMC simulations presented in
Section 3 and TDGL simulations presented in Section 2. The t�1/2 was
also found in open membranes [45] following a critical quench, an
indication that this growth law is independent of the membrane topology.
Furthermore, as shown in Fig. 11, the t�1/2 growth law in critical quenches
of multicomponent membranes is robust and independent of the area-
to-volume ratio (i.e., tension on the membrane). Recently, Ramachandran
et al. [100], performed DPD simulations of a two-dimensional monolayer
of simple particles embedded in a three dimensional fluid. The monolayer
is kept in place through the action of an external potential. They found
a domains’ growth law, R � 1/L(t) � t1/3, at late times for both critical
and off-critical quenches. This growth law is different from that of binary
lipid membranes after a critical quench. It must be emphasized, however,
that the action of an external potential to constraint the monolayer
in Ramachandran et al.’s simulations [100] leads to the breakdown
of momentum conservation in vicinity of the monolayer. Therefore, the
two systems are fundamentally different. The t�1/2 growth law observed in
the DPD simulation of a multicomponent membrane after a critical
quench was independently confirmed by more recent TDGL simulations
of model H in the viscous regime by Fan et al. [42] and Camley and
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Figure 11 Snapshot sequences of closed vesicles with FA ¼ FB ¼ 0.5. Kinetics in
systems C 100ð Þ

1 , C 100ð Þ
2 , and C 50ð Þ

2 are shown. Columns (A) to (D) correspond to times
t ¼ 100 t, 200 t, 400 t, and 700 t, respectively. The graph to the right depicts the total
interfacial length as a function of time. The top and bottom solid lines correspond to
C 100ð Þ
2 and C 50ð Þ

2 , respectively. The slope of the dotted line is �1/2. Reprinted with
permission from [35]. Copyright 2005, American Institute of Physics.
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Brown [74]. Unfortunately, up to date, there is no detailed experimental
study of phase separation kinetics in multicomponent membranes at critical
quenches.

5.2. Effect of Area-to-Volume Ratio on Domain Growth in
Multicomponent Membranes

As stated above, in the case of critical quenches, that is, for fB ¼ fA ¼ 0.5,
the kinetics of phase separation is independent of area-to-volume ratio.
However, the situation is different in the case of off-critical quenches. In
Fig. 12, snapshots of systems A 100ð Þ

1 and A 100ð Þ
2 are shown. This figure

indicates that the area-to-volume ratio has very little effect on the kinetics
during the early times of the phase separation. Namely, the domains are
circular during early times, with their curvature equal to that of the vesicle.
During later times, however, one observes a noticeable qualitative difference
between domain growths in the two systems: The domains remain mostly
flat in the case of low area-to-volume ratio, A 100ð Þ

1 , while becoming
curved in the case of high area-to-volume ratio, A 100ð Þ

2 . The buckling of
the domains in the high area-to-volume ratio case is accompanied by a
global reshaping of the vesicle into an almost spherical geometry, as demon-
strated by the left graph of Fig. 12. During later times, many of the buckled
domains reach the limit shape and detach from the vesicle, leading to a
further reduction of the area-to-volume ratio. Once the vesicle becomes
spherical in shape, no further domain vesiculation is observed [35,61]. The
interfacial length is shown as a function of time in the right graph of Fig. 12.
This figure substantiates the findings that during early times, the area-to-
volume ratio has no effect on the dynamics. During this stage, the average
domain size R(t) � 1/L(t) � t1/3. To explain this growth law, monitored
kinetics of the domains showed that the growth is the result of thermally
induced Brownian motion of the domains and their coalescence. Two
domains coalesce if they traveled a distance l(t) determined by the average
area on the membrane that is occupied by a domain, which is given by
l2(t) ¼ Aves/N(t), where Aves is the area of the vesicle and N(t) is the
number of domains. Now, for a Brownian motion of the domains, l2(t) �
DRt, where DR is the domain diffusion coefficient, which for the case of a
domain experiencing drag from the fluid above and below the domain is
given by the well-known Stokes–Einstein relation, DR � 1/R. This yield a
domain radius, R(t) � t1/3 and a number of domains N(t) � t�2/3, in
excellent agreement with the DPD findings in Refs. [35,61].

At intermediate times, the rapid decay in the interfacial length for the
high area-to-volume ratio case, A 100ð Þ

2 , is due to budding of domains with
diameters exceeding k/l and the vesiculation of some of these domains
[35,61]. At even later times, once the vesicle in the high area-to-volume
ratio case reaches a spherical shape, the interfacial length decays as L(t) �
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t�a, with a � 4/9, markedly faster than in the case of low area-to-volume
ratio, A 100ð Þ

2 , as shown in Fig. 12. The faster growth law in the case of low
area-to-volume ratio, A 100ð Þ

1 , is due to the coalescence of well formed cap-
shaped domains. In order to explain this growth regime, it is noted that the
curvature of a cap is determined by a balance between its line energy and
curvature energy. The average interfacial (neck) length of a single cap is
therefore given by
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Figure 12 Snapshot sequences of closed vesicles showing the effect of area-to-volume
ratio on domain growth. Systems correspond to fA ¼ 0.7, fB ¼ 0.3. The top and
bottom row corresponds to A 100ð Þ

1 and A 100ð Þ
2 . (A), (B), (C), and (D) correspond to

t ¼ 100 t, 500 t, 1000 t, and 3000 t, respectively. The graph of the bottom left depicts
the mean square of the distance of the majority (A) lipids from the vesicle’s center of
mass of the vesicle. The bottom and top curve corresponds to A 100ð Þ

2 and A 100ð Þ
1 ,

respectively. The bottom right graph depicts the interfacial length for the same two
systems. The top curve and bottom correspond to A 100ð Þ

1 and A 100ð Þ
2 , respectively.

The inset in the bottom left graph depicts R(t) � 1/L(t) versus time in the low area-
to-volume ratio case, A 100ð Þ

1 . The inset shows clearly that the average domain size R
(t) � t1/3 in the low area-to-volume ratio case. Reprinted with permission from [35].
Copyright 2005, American Institute of Physics.
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lcap � kacap
l

� �1=3

: ð19Þ

As for the case of flat domains, the mean-square distance travelled by a
capped domain is l2(t) � Dt, where the diffusion coefficient, D � acap

�1/2

and l2(t) � Aves/N(t). During late times, once there is no more fission of
buds, N(t)acup � const. Thus one obtains that the number of domains

N tð Þ � t�2=3; ð20Þ

and the net interfacial length

L tð Þ ¼ N tð Þlcap � t�4=9; ð21Þ

in agreement with the computational findings presented above [35,61]. The
decay of the number of domains as t�2/3 was confirmed by Li et al. [31] in a
study of a multicomponent tubular vesicles (very high area-to-volume ratio)
composed of DPPC, DOPC and cholesterol. However, experimental mea-
surements of the decay interfacial length during the phase separation process
has not yet been done.

5.3. Effect of Line Tension on Domain Growth in
Multicomponent Membranes

In this section, the effect of line tension on the phase separation kinetics is
discussed. In Fig. 13, snapshot series for three systems, A 100ð Þ

2 , A 68ð Þ
2 , and

A 50ð Þ
2 with decreasing values of the line tension are shown for comparison. All

three systems have same compositions of the two components, corresponding
to fB ¼ 0.3 and high area-to-volume ratio. The net interfacial lengths versus
time of the three systems are also shown in Fig. 13. This figure clearly
demonstrates that line tension has an important effect on domain growth in
multicomponent membranes. In particular, Fig. 13 shows that the onset of
domain budding is delayed to later times as the line tension is decreased. This
is understood by recalling that a domain buds when its linear size, R � k/l.
Figure 13 also shows that in the case of high line tension, A 100ð Þ

2 , budding is
followed by fission of many domains. In contrast, fission does not occur in the
two other systems with lower line tension. This is quantitatively substantiated
by the absence of a fast decay in the net interfacial length at intermediate times
in systemsA 68ð Þ

2 , andA 50ð Þ
2 . Figure 13 also shows that the net interfacial length

exhibits two distinct regime with growth laws L(t) � t�0.3 during early
times, corresponding to the growth of flat domains, followed by a faster
regime, L(t) � t�4/9, during late times, which as discussed in Section 5.2 is
due to the coalescence of capped domains.
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5.4. Effect of Transbilayer Asymmetry in the Lipid
Composition on Domain Growth in Multicomponent
Membranes

In the previous subsections, DPD simulations of multicomponent mem-
branes were performed for the case of a symmetric transbilayer composition
of the lipids. However, the lipid distribution in the two leaflets of the plasma
membrane of eukaryotic cells is asymmetric. Indeed, most of phosphatidyl-
serine and phosphatidylethanolamine are located in the cytoplasmic leaflet
of the plasma lipid bilayer. In contrast, sphingomyelin and phosphatidyl-
choline are predominately present in the outer leaflet [101]. This asymmetry
is actively maintained by the cell and is essential to many biological func-
tions. Since lipid rafts are rich in sphingomyelin and cholesterol, it is often
assumed that lipid rafts are only on the outer leaflet of the plasma membrane.
The absence of non- or partially overlapping domains in fluorescence
micrographs of multicomponent giant vesicles, implies that lipid domains
on both leaflets of the plasma membrane must be in register [11]. Since there
exist, a small amount of sphingomyelin in the cytoplasmic leaflet, smaller
lipid rafts are also expected on this leaflet, and a colocalization of these rafts
with the larger ones on the outer leaflet is expected [45]. In order to
minimize the interfacial energy between the Lo and Ld domains, the area
difference between the inner and outer domains lead to their buckling, as
shown schematically in Fig. 14. The induced spontaneous curvature is
determined by the ratios of the compositions of the two leaflets,

A2
(50)

A2
(68)

A2
(100)

A B C D

104

103

101 102

t [t]

L(
t)

[r
c]

103

a = 4/9

a = 4/9

104

Figure 13 Snapshot sequences of closed vesicles showing the effect of line tension on
domain growth for the case of fA ¼ 0.7, fB ¼ 0.3. Rows from top to bottom corre-
spond to A 100ð Þ

2 , A 68ð Þ
2 , and A 50ð Þ

2 , respectively. (A), (B), (C), and (D) correspond to
t ¼ 100 t, 1000 t, 2000 t, and 4000 t, respectively. The graph at the bottom depicts the
interfacial length for the three systems shown. Curves from bottom to top correspond
to A 100ð Þ

2 , A 68ð Þ
2 , and A 50ð Þ

2 , respectively. Reprinted with permission from [35]. Copy-
right 2005, American Institute of Physics.
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c0 ¼ 2

e

� � f outð Þ
B =f inð Þ

B

� �1=2

� 1

f outð Þ
B =f inð Þ

B

� �1=2

þ 1

264
375; ð22Þ

where, e is the membrane thickness.
Motivated by the arguments above, DPD simulations of the effect of this

transbilayer asymmetry in lipid composition was performed on vesicles with
different values of the area-to-volume ratio [45]. Snapshots corresponding
to systems, R1

(50), R2
(50), and R3

(50) with increasing values of the area-to-
volume ratio are shown in Fig. 15. These systems correspond to fB

(out)

¼ 0.4 and fB
(in) ¼ 0.2. Figure 15 demonstrates that the transbilayer asym-

metry in the lipid distribution induces a spontaneous curvature since very
early times, provided the vesicle has enough excess area to accommodate for
this. Since the system,R1

(50), has a low area-to-volume ratio, capping of the
domains is not possible despite the fact that the domains have a finite
intrinsic spontaneous curvature given by Eq. (22). Figure 15 also shows
that the curvature of the domains in the case of system R2

(50) is lower than
that of system R3

(50). This is due to the higher excess area in the latter.
A comparison between the interfacial length of system R2

(50) and its
counterpart with same parameters but with symmetric transbilayer lipid
distribution, A 50ð Þ

2 is shown in Fig. 15. This figure clearly demonstrates
that the asymmetry in the lipid distribution leads to a dramatic difference in
the kinetics of the two systems. In particular, domain growth at late times
in system R2

(50) is markedly slower than in system A 50ð Þ
2 . The weak

growth law, L(t) � t�0.14 is an indication that during late times, an asym-
metric transbilayer lipid distribution may lead to a microphase separation.
For the highest excess area, corresponding to system A 50ð Þ

3 , growth of
domain is again fast, with L(t) � t�1/3. This implies that microphase sepa-
ration is only observed at intermediate membrane tension. These results are
in fair agreement with recent mean field calculations by Harden et al. [67].
The microphase separation observed at intermediate tension and in the
presence of asymmetry in lipid distribution could be the result of an
effective repulsive interaction between domains. Interestingly, arrest in
domain growth was recently observed by Yanagisawa et al. in a study of a

c = 0 R = 1/c

Figure 14 Domain configuration that minimizes the interaction energy between lipids
for the case where the domains in the two leaflets have same area (left) and different
areas (right).
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ternary mixture composed of DPPC, DOPC, and cholesterol [32]. These
results thus indicate that the finite size of lipid rafts might as well be the
result of asymmetry in the transbilayer lipid distribution in the plasma
membrane.

6. Conclusion

In this chapter, a review of coarse-grained computational studies of
the phase separation of multicomponent membranes is presented. Four main
coarse-grained approaches have been used to study the kinetics of
phase separation in multicomponent membranes in recent years. These corre-
spond to time-dependent Ginzburg–Landau (TDGL) models, DTMC,
coarse-grained molecular dynamics, and DPD. Coarse-grained molecular
dynamics based on the MARTINI force field [59] are very promising since
this approach allows for the investigation of the phase separation in specific
ternary mixtures. However, due to computer limitations, as of now the
MARTINI approach cannot probe large systems and during late times,
where the dynamics is most interesting. The DTMC approach is fully dissipa-
tive and, therefore, cannot account for hydrodynamic interactions.
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Figure 15 Snapshot sequences of closed vesicles showing the effect of transbilayer
lipid distribution. Rows from top to bottom correspond to systems x, y, and z,
respectively. (A), (B), (C), and (D) correspond to t ¼ 100 t, 1000 t, 2000 t, and
5000 t, respectively. The graph at the bottom left depicts the interfacial length for a
symmetric transbilayer lipid distribution (bottom curve at t ¼ 2000 t) and asymmetric
lipid distribution (top curve at t ¼ 2000 t). The graph at the bottom left depicts the
interfacial length for the three systems. Reprinted with permission from [45]. Copy-
right 2006, American Physical Society.
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Hydrodynamic interactions can be incorporated in the TDGL simulations.
However, due to the complex nature of these simulations, the effect of
hydrodynamics on the phase separation in TDGL models have thus far been
accounted for in the context of flat membranes only. Due to the relatively low
bending modulus of lipid membranes (k � 10 kBT), membranes can easily
deform, and these curvature deformations can play an important role on the
kinetics. Furthermore, the constraint of inner volume, in the case of closed
vesicles, cannot easily be accounted for in both the DTMC and TDGL
simulations.Moreover, topological changes of the membrane cannot be easily
accounted for in both TDGL andDTMCapproaches. DPD is a particle-based
model that inherently accounts for hydrodynamics, area-to-volume ratio, and
topological changes of the membrane. This makes DPD a very promising
approach to investigate the complex kinetics of the phase separation in
multicomponent lipid membranes. DPD simulations, thus far performed,
have shown complex kinetics that depend strongly on the area-to-volume
ratio, line tension, and composition of the components. TheDPD simulations
have also shown that in the case where the transbilayer lipid distribution is not
symmetric, a slowing down in the kinetics is observed, an indication that the
system may approach a microphase separation. The transbilayer asymmetry in
the lipid distribution has recently been proposed as a possible mechanism in
maintaining the nanoscale size of lipid domain (i.e., lipid rafts) in the plasma
membrane [45]. Other mechanisms have recently been proposed as an alter-
native for the finite size lipid rafts [43,44]. These include lipid recycling and the
presence of transmembrane proteins that are pinned by the cortical cytoskele-
ton. These effects have recently been investigated through the TDGL model
[43]. An investigation of these effects on the phase separation of multicompo-
nent lipid membranes through DPD would, therefore, be very useful in
providing a better understanding of the nanoscale size of lipid rafts.
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Abstract

Capability of phospholipids with positive charge to form complexes with hyalur-

onan in aqueous solutions, in a similar way as traditional cationic surfactants,

was investigated by fluorescence probes. DPPC and lecithin aggregate in aque-

ous solution to form micelle-like structures capable to solubilize hydrophobic

molecules. Changes in aggregation behavior after adding hyaluronan were

observed only in the case of lecithin. Further, nonionic biocompatible surfactant

was used as additional dispersion environment in phospholipid–hyaluronan

system with phospholipid molecules acting as a physical linker bonding

micelles and biopolymer.
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1. Introduction

Polysaccharides and their derivatives have become major components
in the development of biocompatible and biodegradable materials with
many areas of applications especially in beauty and health care (e.g., cos-
metics, tissue engineering, or drug delivery). Phospholipids are another class
of biomolecules with specific function particularly in forming cellular
structures. Also, phospholipids have found practical applications in cosmetic
and medical products, mainly in the form of liposomes.

Among polysaccharides, hyaluronan (HA) can be viewed as a rather
unique macromolecule which has very simple chemical structure (repeating
unit) but several and different physiological functions. Hyaluronan is a
common name for hyaluronic acid or, more precisely, its sodium salt.
Hyaluronan is a naturally occurring linear high molecular polysaccharide
composed of repeating b-(1!4)-D-glucuronic acid b-(1!3)-N-acetyl-
D-glucosamine disaccharide units [1–3] (see Fig. 1).

Hyaluronan is a polymer with a wide range of naturally occurring
molecular masses from several hundred to 10 million g mol�1 [1,3] posses-
sing one carboxylate group per disaccharide repeating unit, and is therefore
a polyelectrolyte bearing a negative charge. Hyaluronan can be found
primarily in the extracellular matrix [1–3] of all higher organisms, especially
in connective tissues, synovial fluid, and eye vitreous and is produced by
certain strains of bacteria. The biological functions of hyaluronan include
maintenance of elastoviscosity of liquid connective tissues such as joint
synovial fluid and eye vitreous, control of tissues hydration and water
transport due to its immense ability to retain water [4,5]. Hyaluronan
participates in supramolecular assembly of proteoglycans in the extracellular
matrix and in numerous receptor-mediated roles in cell detachment, mito-
sis, migration, tumor development, metastasis, and inflammation [2,4,6].
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Figure 1 Structural unit of hyaluronan.
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For these functions, multivalent interactions of HA with specific cell surface
receptors such as CD44 and RHAMM are important [1,3,4,6]. Various
tumors overexpress hyaluronan-binding receptors and consequently these
tumor cells show enhanced binding and internalization of HA. Thus, HA
coupled with, for instance, cytotoxic agents represents a nontoxic prodrug
[6] and such conjugate is internalized into tumor cells through receptor-
mediated endocytosis, followed by a release of active drugs, thus restoring
their original toxicity.

Hyaluronan has, therefore, found important applications in drug
delivery and surgery, and has been found to enhance absorption of drugs
and proteins through mucus tissues [1,3,7]. It is used as an adjuvant for
ophthalmic drug delivery [1,3] as a viscosity enhancing polymer for eye
drops [1,8]. Hyaluronan has found important applications in the field of
visco-surgery, visco-supplementation, and wound healing, furthermore as a
supplementation of the synovial fluid in patients with osteoarthritis [3,7].
Hyaluronan is increasingly used in cosmetics, mainly as a moisturizing,
epidermal renewal, and antiaging agent.

Phospholipids and phosphatidylcholine, in particular, are found as the
most important constituents of many biological membranes. In cells, they
work not only as a semipermeable barrier separating and protecting the cell
from its environment and enabling transfer of ions but participate also in
various cellular events. When used in cosmetic products, phospholipids show
conditioning, softening, nourishing, and refattening effects. Conveniently,
they are applied in liposomal form which is perhaps the most natural form of
these molecules. However, just this form is not really substantial for turning
out the desirable functions of phospholipids and their effectiveness is more a
matter of the chemical composition of the cosmetic product than of the
liposomal structure. Liposomes also have limited bearing capacity especially
for lipophilic cosmetic ingredients and are not very suitable for lipid-rich
cosmetic products. Different colloids or even nanosystems like nanoemul-
sions are, therefore, sought to extend applicability of phospholipids [8].

From the colloid chemistry point of view, phospholipids can be consid-
ered as a special type of surfactants. Hyaluronan, because of its negative
charge, is known to interact with cationic surfactants, in particular, forming
hyaluronan-surfactant complexes at concentrations well below the critical
micellar concentration of pure surfactant. In this work, positively charged
phospholipids were viewed and used as “common surfactants” and tested
for their interactions with hyaluronan.

Study of hyaluronan–surfactant interactions is not a completely new field
but the interest has been focused preferably on interactions between hya-
luronan and liposomes.

The interactions of high molecular weight hyaluronan with di-palmitoyl
phosphatidylcholine (DPPC) liposomes in aqueous buffer were investigated
byCrescenzi et al. [9]. The superstructures resulting fromco-incubation in vitro
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were observed by means of negative staining and rotary shadowing electron
microscopy. The existence of supramolecular complex between hyaluronan
andDPPCwas demonstrated. The complex would exist in vivo in the synovial
fluid and should be responsible for the unique physiological properties.

Gómez-Gaete et al. [10] described the supramolecular organization of
hybrid microparticles encapsulating dexamethasone (DXM) prepared by
spray drying DPPC and hyaluronic acid. The effect of DXM concentration
on size distribution and encapsulation efficacy was evaluated as a function of
concentration of hyaluronic acid. In vitro release studies showed that
hyaluronic acid does not influence DXM release kinetics. In the dry
microparticles, DXM is probably mostly in amorphous domains within
the DPPC–hyaluronic matrix. Upon hydration, the majority of the drug
is released and only a small amount of DXM interacts with DPPC.

The chain flexibility of solutions of hyaluronan of different molecular
weights in the absence and presence of the DPPC by 1H-NMR spectros-
copy, gel permeation chromatography, and multi-angle laser-light-scatter-
ing photometry were studied in [11] and [12]. Authors demonstrated that
the sonication of high or low molecular weight hyaluronan with DPPC for
periods markedly increased the chain flexibility of hyaluronan. They pro-
posed that DPPC competes for the hydrophobic centers along the hyalur-
onan chain which are normally responsible for the inter and intra chain
interactions and which confer stiffness to the molecule of hyaluronan.

Japan authors in [13] examined the effects of DPPC on the flexor tendon
and its protective effect against postoperative adhesion. The friction coeffi-
cient was significantly lower with the mixture of DPCC and hyaluronan
than with saline solution of hyaluronan. They concluded that the decreased
friction coefficient indicates that DPPC could complement the boundary-
lubricating ability of the tendon.

The lubrication systems in many sites in the body were reviewed in [14].
The systems consist of fluid adjacent to surfaces coated with an oligolamellar
lining of surface-active phospholipid (SAPL) acting as a back-up boundary
lubricant wherever the fluid film fails to support the load—a likely event at
physiological velocities. It was explained how proteoglycans and hyaluronic
acid could have carrier functions for the highly insoluble SAPL, while
hyaluronic acid has good wetting properties needed to promote hydrody-
namic lubrication of a very hydrophobic articular surface by an aqueous
fluid wherever the load permits.

A standard (four-ball) test were used to study the anti-wear capabilities of
ovine synovial fluid, the phospholipid extracted from it, a synthetic synovial
fluid, and the phospholipid removed from the articular surface by a lipid
solvent. The results were discussed as consistent with the hypothesis that the
joints are lubricated by oligolamellar phospholipid as a lamellated solid
(graphite-like) lubricant adsorbed onto the articular surface or otherwise
deposited from synovial fluid [15].
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Kawano et al. [16] examined in vivo the effects of a mixture of high
molecular weight hyaluronic acid plus L-d-dipalmitoyl phosphatidylcholine
liposomes on joint lubrication and articular cartilage degeneration.
Experimental osteoarthritis of the right knee was induced by anterior
cruciate and medial collateral ligament in rabbits. The injected knees had
a tendency to demonstrate less damage to the articular cartilage compared
with control group.

The lubricating abilities of hyaluronic acid and the DPPC and mixture
of both hyaluronic acid and DPPC were assessed in an in vitro model.
Lubrication was found not to be concentration dependant for hyaluronic
acid, but concentration was key for DPPC lubrication. Penetration of
hyaluronic acid into bovine cartilage by up to 300 mm from the surface
was observed over a 48-h period. It was observed that hyaluronic acid
specifically targeted the chondrocytes as it was primarily found within the
lacunae surrounding the cells [17].

Pasquali-Ronchetti et al. [18] studied in vitro interactions between
hyaluronan of different molecular weights and phospholipids (DPPC and
egg lecithin) in the form of either unilamellar particles or multilamellar
vesicles. Both phospholipids changed their organization in the presence of
hyaluronan, giving rise to the formation of huge perforated membrane-like
structures lying on the substrate or thick cylinders with a tendency to
aggregate and to form sheets. These structures were seen only in the
presence of high-molecular weight hyaluronan, whereas low-molecular-
weight one induced fragmentation of liposomes and formation of a few
short rollers. They proposed that such interactions may not be as efficient in
arthritic joints, where hyaluronan is degraded to low-molecular-weight
fragments.

Steffan et al. [19] studied interactions of various polyanionic polysac-
charides, including hyaluronic acid, with multilamellar dimyristoyl phos-
phatidylcholine liposomes. They concluded that the interactions of anionic
polysaccharides with phospholipid membranes is due to the presence of
divalent cations which require a certain electron configuration and ionic
radius. They depend (among others) on chain length and on the kind of
involved phospholipid. The observed temperature shift of the lipid phase
transition is caused by a strong dehydration of the membrane surface, which
can be inhibited by high concentrations of NaCl.

Taglienti et al. [20] utilized diffusional NMR techniques for investiga-
tion of the interactions between hyaluronan and phospholipids (DPPC and
1,2-Dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt). They
showed that they are dependent both on charge and hydrophobicity factors.

The complex of hyaluronic acid and egg lecithin (named Haplex) was
prepared by film dispersion and sonication in [21]. The physico-chemical
properties, studied by IR spectrometry and differential scanning calorime-
try, of Haplex were different from hyaluronic acid or lecithin or their
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mixture. After Haplex was administered to rats orally, the serum concentra-
tion of hyaluronic acid increased when compared with the mixture or
control groups.

The role of hyaluronic acid in protecting SAPLs from lysis by exogenous
phospholipase A2 (PLA2) was studied in [22]. It was found that hyaluronic
acid adhered to the phospholipid membrane (liposomes), inhibited their
lysis by PLA2. However, in its degraded form, hyaluronic acid not only
failed to inhibit PLA2-lysing activity, but accelerated it. They concluded
that when the rate of degradation of hyaluronic acid exceeds that of
synthesis, there will be insufficient replacement of hyaluronic acid and/or
SAPLs, resulting in denudation of the articular surfaces. These are then
exposed to increasing friction, and hence increased danger of degenerative
joint changes.

An active cosmetic solution based on hyaluronic acid and phospholipids
in combination with other active substance (e.g., ceramide-6, chitosan
derivative, vitamin C) was tested in order to improve health of very dry
skin (xerosis). The obtained results were compared with simultaneously
used placebo consisting phospholipids as vehicle for the active components.
It was found that the improvement starts to be evident after 4 weeks of daily
treatment, even if remarkable differences between the skin surface treated
with vehicle and the active cream were not so strong. Probably that is due to
the specific activity of the phospholipids which surely improve the skin
appearance for their hydrating and restructuring properties [23].

Here, we investigate capability of phospholipids with positive charge to
form complexes with hyaluronan in aqueous solutions in a similar simple
way as traditional single- or double-alkyl chain cationic surfactants do. In
particular, we were interested in solubilization properties of formed colloids
towards hydrophobic molecules. For this purpose, fluorescence probe
method is a suitable technique giving information both on complexation
(aggregation) and solubilization behavior.

2. Fluorescence Probe Techniques

Determination of aggregation properties of phospholipid systems was
based on fluorescence spectroscopy, a fluorescence probe method. Pyrene is
a hydrophobic polyaromatic hydrocarbon with low solubility in water
(�10�7 mol L�1). Excitation and emission spectra of pyrene can be used
to determine aggregation behavior of colloids. From these spectra, two
polarity indexes are obtained—the emission polarity index (EmPI) and the
excitation polarity index (ExPI). Photophysical origin of these two indexes
is slightly different. The ExPI is based on the fact that in ground state the
maximum absorption band is shifted bathochromically in nonpolar
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environment. Because of extremely narrow interval of wavelengths, from
�333 nm to �338 nm, it is difficult to precisely determine a maximum of
excitation, consequently, the ExPI as a ratio of fluorescence intensity at two
wavelengths is used.

The emission spectrum of pyrene presents a fine vibrational structure
(Fig. 2) where the relative peak intensities are highly influenced by the
polarity of the solvent molecules by which this probe is surrounded. The
ratio of the fluorescence intensity of the highest energy vibrational band to
that of the third highest energy band correlates with the solvent polarity and
is denoted as EmPI. This unique property is based on the fact that the dipole
moment of pyrene (3.24 � 0.1 D) predicts in situations when some apolar
domain exists in an aqueous solution that the pyrene is situated in less polar
area and indicates local environment by changes in the value of EmPI. Both
of these indexes, ExPI and EmPI, brought fully comparable results in our
case.

In a system where the aggregation occurs, both indexes show the
sigmoid decrease with increasing concentration of the aggregating mole-
cules which form apolar domains within the aggregates (e.g., surfactants
aggregating into micelles). The sigmoidal plots can adequately described by
a decreasing Boltzmann curve, which is given by

EmPI; ExPI ¼ max� min

1þ e x�x0=Dxð Þ þ min;
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Figure 2 Fluorescence properties of pyrene in environments of different polarity.
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where the independent variable x is the total surfactant concentration, max
and min are the upper and lower limits of the sigmoid curve, x0 is the center
of the sigmoid (inflection point), and Dx is directly related to the indepen-
dent variable range where abrupt change of dependent variable occurs.
In this case, as aggregation concentration the x0 point was taken.

In case of determination of surfactant binding on hyaluronan, a different
type of fluorescence probe is appropriate. Acridine orange (AO), as a
hydrochloride, has a positive charge located at the central nitrogen atom.
Structure and fluorescence spectra and of AO are shown in Fig. 3. This type
of dye forms in solution at high concentration the H-type of dye aggregate,
an AO dimer. The AO dimers have the blue-shifted absorption band, from
492 nm to 465 nm and the fluorescence is forbidden (weak emission band at
650 nm). The monomer emission band has its maximum localized
around 530 nm. In DNA, structure of AO dimer is sterically stabilized
and probability of radiative transition in dimer strongly increases—e.g.,
DNA–AO associates show the red fluorescence instead of RNA–AO
aggregates, which exhibits the green fluorescence.

The formation of nonfluorescent AO dimers in solution of polyanions is
dependent on the number of dye molecules (D) and of polymer binding
sites (P)—in our case, the number of negatively charged groups. This is
described by the P/D ratio. In an ideal situation, when all negative groups
are associated to AO dimers, the P/D value is 0.5.

Forming or breaking up of AO dimer can be observed in two different
ways. Because of forbidden radiative transition from excited state of dimer,
fluorescence intensity is inversely proportional to the dimer formation.
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Figure 3 Fluorescence properties of acridine orange in aqueous environment.
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As second parameter, a relative absorbance of dimer is used, expressed
as ratio of absorbance at 465 nm (AO dimer) to absorbance at 492 nm
(AO monomer) and denoted as “D:M.”

As stated in introduction, our goal was an investigation of interactions
between phospholipids and sodium salt of hyaluronic acid when the
phospholipids play role of common surfactants.

The interaction between quaternary nitrogen and negatively charged
carboxylic group can lead to the formation of electrostatically stabilized
complex. This complex may result in the physically grafted copolymer,
hydrophobically modified hyaluronan. The partially water-insoluble poly-
mer can form aggregates with hydrophobic core and hydrophilic shell. This
aggregate can solubilize amphiphilic and hydrophobic matters, for example,
biologically active substances.

As was reported in introduction, phospholipids are mainly used in
vesicular form. Phospholipid vesicles, liposomes, are initial colloidal
particles in aqueous mixtures above the specific concentration, critical
aggregation concentration. This fact is due to their packing parameter.

3. Materials and Methods

Selected phospholipids, DPPC (1,2-Dipalmitoyl-sn-glycero-3-phos-
phocholine, CAS # 63-89-8) and lecithin (1,2-diacyl-sn-glycero-3-fosfo-
cholin, type XVI-E, CAS 8002 43 5) were purchased from Sigma-Aldrich.
n-Dodecyl b-D-maltoside (C12maltoside, CAS # 69227-93-6) was also
purchased from Sigma-Aldrich company. Hyaluronan in different molecu-
lar weights were purchased from CPN Ltd., Czech Republic. All fluores-
cence probes, pyrene, and AO were of fluorescence grade and were
purchased from Sigma-Aldrich. Solvents in this study were in spectropho-
tometric grade, and water was triple distilled.

Fluorescence spectra were recorded on AMINCO-Bowman Series
2 luminiscence spectrometer (ThermoSpectronics, Inc.) and absorption
spectra were collected on Cary 50 (Varian, Inc.).

Stock solution of hyaluronan was prepared in triple distilled water and
was stirred during 48 h at room temperature. Stock solutions of the phos-
pholipids were prepared in chloroform. Pyrene’s stock solution was
prepared in acetone; on the other hand, stock solution of AO was prepared
in triple distilled water.

In samples with lecithin or DPPC, phospholipid stock solution in
chloroform was introduced into a vial and chloroform was evaporated.
After evaporation stock solution of hyaluronan and/or dodecyl-maltoside
was added.
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Samples containing pyrene. Pyrene stock solution was introduced into a
vial and acetone was evaporated. Final concentration of the pyrene in
samples was �10�6 mol L�1.The stock solution of the studied system
was introduced into a flask with evaporating probe, was diluted to the
desirable concentration, and the resulting solution was sonicated during
4 h and stored during next 20 h.

Samples containing acridine orange. AO stock solution was introduced into
a vial. Final concentration of AO in samples was held to 5 � 10�6 mol L�1.
The stock solution of the studied system was introduced into a flask with
probe solution.

4. Phospholipid Aggregation

As reported elsewhere [24], even phospholipids have their critical
micelle concentrations. Above this concentration, only micelles or
micelle-like aggregates are present in solution.

Concentration dependency of the aggregates formation process in solu-
tions looks to be smooth. In a wide region of concentration, vesicles and
micelles are coexisting in equilibrium. This can be one of the explanations
of dependency of the ExPI on concentration of the phospholipid DPPC
(see Fig. 4). From the Boltzman S-type curve the values of three indepen-
dent variables, concentrations, which determine start and end of
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Figure 4 Dependency of the excitation polarity index (ExPI) on concentration of
DPPC. Data were fitted by Boltzman sigmoidal curve and fitted parameters were used
to characterize aggregation process, see Table 1.
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the aggregation and the inflex point, were directly evaluated as the fit
parameters.

The obtained fitted values of data from Fig. 4 are listed in Table 1
including fit parameters and goodness-of-fit statistics. As the data show,
there is a wide range of concentrations between “start” and “end” point.
The difference between these two points is nearby two orders of magnitude.
As follows from the Boltzman equation, the parameter Dx is directly
connected to the intensity of function decreasing.

This very slow decrease of polarity parameter can be explained in two
different ways. At first, the resulting spectrum of fluorescence probes from
each sample is a superposition of different signals coming from different
probe’s localizations. The solubility of pyrene probe in aqueous environ-
ment is sufficient to interfere with the signal of probe from nonpolar cores,
especially in case when the system contains a small amount of these cores.
Due to a low quantum yield of pyrene in aqueous environment, this effect
takes a place only at extremely low micellar concentrations, or when a high
amount of fluorescence probe is present in the sample. At second, when the
concentration of phospholipid is increasing, the whole amount of added
molecules is not used to form aggregates with nonpolar cores, or to form
domains that are able to solubilize this type of probe. It is possible that added
molecules are incorporated in existing aggregates and they are increasing the
aggregation number of these aggregates. The enlargement of these aggre-
gates leads to the phase transition of formed colloidal particles from micellar
to vesicular type.

The other studied phospholipid, lecithin, showed similar aggregation
behavior in aqueous solution like DPPC (see Fig. 5). Lecithin is 1,2-diacyl-
sn-glycero-3-fosfocholin (type XVI-E, Sigma Aldrich, � 99%, CAS 8002-
43-5). Lecithin is composed of different types of fatty acids—approx. 33%
16:0 (palmitic acid), 13% 18:0 (stearic acid), 31% 18:1(oleic acid), 15% 18:2
(linoleic acid), and minor residues. Compared to DPPC, the lecithin
samples were transparent even at high phospholipid concentrations. Mea-
surements performed with lecithin did not need to be corrected for the

Table 1 Fitted values from the Boltzmann fit of the dependency of ExPI on DPPC
concentration (error given as the standard deviation)

Value

Concentration

(g L�1)

Error

(g L�1)

start 0.004 0.002 R-Sq 0.9998 w2/DoFa 10�4

inflex 0.016 0.005

end 0.072 0.004

a Goodness-of-fit—reduced chi-square is obtained by dividing the residual sum of squares by the
degrees of freedom.
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inner filter effect. Aggregation concentration of lecithin was determined
from the dependency of the EmPI on PL concentration and obtained data
are summarized in Table 2.

5. Presence of Hyaluronan

If we focus on aggregation behavior, expressed as a concentration
dependency of some proper physical quantity, we should be able to prove
interaction between phospholipid and hyaluronan. The phospholipid
aggregation can be influenced by condensation of monomeric form of PL
in solution on hyaluronan’s chain. This condensation leads to formation of
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Figure 5 Dependency of the emission polarity index (EmPI) on concentration of
lecithin. Data were fitted by Boltzman sigmoidal curve and fitted parameters were
used to characterize aggregation process of lecithin, see Table 2.

Table 2 Fitted values from the Boltzmann fit of the dependency of EmPI on lecithin
concentration (error given as the standard deviation)

Value

Concentration

(g L�1)

Error

(g L�1)

start 0.007 0.001 R-Sq 0.9925 w2/DoFa 10�4

inflex 0.021 0.003

end 0.059 0.003

a Goodness-of-fit—reduced chi-square is obtained by dividing the residual sum of squares by the
degrees of freedom.
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some kind of different aggregates directly connected to the polymeric chain.
This type of aggregate can form nonpolar cores, which are able to solubilize
nonpolar species, one, two, or even more orders of magnitude below the
critical aggregation concentration of phospholipid in pure aqueous solution.
Formation of these aggregates is manifested as an “earlier” decrease of
polarity index on the concentration axis. This decrease does not need to
be intensive, but always should be marked. The intensity of this decrease is
related to the fraction of pyrene molecule solubilized in these aggregates
relatively to the amount of pyrene remaining in water. This fact must be
taken into account especially in cases, when values of the polarity indexes
are assigning to the polarity (relative permittivity, Df function, etc.) of
environment.

The aggregation behavior of lecithin, in the presence of native hyalur-
onan, is shown in Fig. 6. It is obvious that dependencies of the EmPI in the
presence of hyaluronan are slightly shifted to the lower values comparing to
the case when no hyaluronan is present in the solution. Numerical evalua-
tion of this shift based on inflection points shows that aggregation in the
presence of hyaluronan occurs at �3.8 mg L�1 compared with 5.6 mg L�1

in solution without biopolymer.
One can take into account that the added biopolymer is in fact a salt.

With the biopolymer chain an equivalent amount of counter ions are added.
These lead to increasing ionic strength, which can be responsible for slight
shift of the aggregation dependencies. On the other hand, in case of absolute
dissociation of sodium cation from hyaluronan backbone, the ionic strength
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increases only for 0.0025 mol L�1. In addition, showed dependencies for
significantly different hyaluronan concentrations (1 g L�1 and 15 mg L�1)
seem to be independent on hyaluronan concentration.

The slight decrease of aggregation concentration can be directly
connected to the interaction with hyaluronan chain (Fig. 7). This interac-
tion is not strong but is present. This resulted in slightly “earlier” formation
of the phospholipid aggregates. In this place, it can be noted that fluorescence
spectroscopy refers only to cores which are able to solubilize hydrophobic
species. These cores are in the center of interest, because they are potentially
binding sites for drugs. This also means that in solution the phospholipid/
biopolymer aggregates exist without a stable hydrophobic core.

Further experiments brought interesting information. Lecithin mole-
cules were mixed with hyaluronans with higher molecular weight, viz.
300 kg mol�1 and 1460 kg mol�1. Individual dependencies, together
with the obtained aggregation concentration, clearly show that aggregation
and the value of aggregation concentration are completely independent not
only on the hyaluronan concentration but also on its molecular weight (see
Table 3). Note that hyaluronan concentration spanned a broad region from
15 mg to 1 g per liter, which means that the concentration of biopolymer
chains rapidly decreased in comparison with the first experiments described
above but the number of monomers remained the same.

Figure 7 Illustration of supposed interaction between phospholipid and hyaluronan
anion.
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Another information extractable from the fluorescence experiments can be
described as a “core quality.” The final value of polarity index can be taken as
its descriptor. From this point of view, formed aggregates are equal and there is
no difference between free-formed aggregates and hyaluronan-complexed
ones. Values of polarity indexes can be hardly assigned to a proper value of
polarity, but can act as a good criterion for comparison of samples.

On the other hand, our experiments with DPPC in the presence of
hyaluronan gave different results. Aggregation of free DPPC and in solution
with biopolymer showed no difference. The obtained aggregation concen-
tration values and other parameters of fit remained unchanged on the
specified level of confidence.

Obtained results are summarized in Table 3. As can be seen, results for
the DPPC only fluctuate around the mean value of 1 g L�1. There is no
obvious trend for this phospholipid.

Differences between aggregation behavior of lecithin and DPPC are
quite interesting. This fact can be explained if we take into account what the
name “lecithin” exactly covers. Lecithin used in this study consisted of 33%
of DPPC the rest being various saturated and unsaturated analogues. The
heterogeneity of this mixture allows the system to aggregate easily and to
form smaller particles, which resulted in a clear solution even at higher
concentrations in comparison with opalescent DPPC samples. This fact is
inspiring for next work, which include combination of phospholipid and
suitable surfactant. Another attempt was realized to prove interactions
between DPPC and HA. Possible polymer binding sites were marked by
AO dimers. These dimers showed no fluorescence when condensed on
hyaluronan chain. If there is a stronger interaction between phospholipid
and hyaluronan, than between AO and HA, AO dimers break-down and
free monomers increase the fluorescence intensity from the sample.
Of course, changes in absorption spectra, related to the absorbance of
dimer, were also expected.

Table 3 Summary of hyaluronan effect on phospholipids aggregation concentration

HA MW (kg mol�1) HA conc. (g L�1)

Aggregation concentration

(mg L�1)

Lecithin DPPC

Without HA 5.6 � 0.1 0.8 � 0.1

73 1 3.8 � 0.3 0.9 � 0.1

0.015 3.3 � 0.5 1.0 � 0.1

300 1 3.8 � 0.1 0.8 � 0.1

0.015 3.5 � 0.3 1.4 � 0.1

1460 1 3.9 � 0.1 0.8 � 0.1

0.015 3.8 � 0.1 0.9 � 0.1
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From Fig. 8, it is obvious that increasing concentration of DDPC caused
slightly increasing fluorescence intensity. The increasing intensity is accom-
panied by small increase of D:M ratio. These two opposite dependencies
mean that there are no notable changes in this system and from the
fluorescence-point-of-view there is no interaction between DPPC and
native hyaluronan in aqueous solution.

6. Mixed System

Results obtained for DPPC failed to prove interactions of this
phospholipid with hyaluronan but in the same time inspired additional
experimentation. DPPCwas further used only as an “interaction mediator.”
Main solubilization responsibility was transferred to suitable nonionic
biocompatible surfactant and phospholipid should act as a linker to
the hyaluronan macromolecule. In fact, formation of mixed surfactant-
phospholipid micelles was supposed.

As surfactant for the experiments with mixed micelles, n-dodecyl
b-D-maltoside (C12maltoside, CAS #69227-93-6), a nonionic sugar-based
amphiphile, was selected. The main idea was to use the nonionic surfactant
as a medium for phospholipid dispergation and also as a solubilizing
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environment. Phospholipid can act as a linking agent that bonds micelles
and biopolymer together and also can act as an active nutritive component.

First, aggregation of nonionic surfactant in the presence of DPPC was
investigated. Aggregation behavior as demonstrated by the dependency of
the EmPI on surfactant concentration in the presence and absence of DPPC
is shown on Fig. 8. Concentration of DPPC was set to 5 mg L�1. From
Fig. 9, it is evident that aggregation of C12maltoside is quite simple, repre-
sented as simple sigmoidal curve, on contrary to the case when DPPC is
present. Dependency of C12maltoside aggregation in the presence of phos-
pholipid showed local minimum nearby 0.05 mM. This concentration
belongs to the induced aggregates of DPPC and maltoside. This fact is
taken as a confirmation of interaction between DDPC and C12maltoside
surfactant. DPPC is directly solubilized into the sugar micelles and act as co-
surfactant (Fig. 10).

These aggregates were used to interact with the AO labeled hyaluronan.
From the previous measurements with DDPC, it was found out that the
proper value of the dye amount on hyaluronan chain is nearby 0.3 mol of
dye per mol of theoretical carboxylic groups. Complex of phospholipid and
maltoside surfactant was prepared in the ratio of components PL:C12Mal
1:98. Value 98 came from aggregation number of maltoside surfactant in
aqueous solution in region above its CMC, as were reported by producer
[25]. In other words 1 mol of PL was present in the solution per 1 mol of
theoretical C12maltoside micelle.
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The presence of the third component changes initial condition (besides
the changed environment). Phospholipid was now only a minor part of the
system from the “mass-point-of-view,” but still remained the most impor-
tant component. Phospholipid was used below its aggregation concentra-
tion and its presence could induce formation of nonionic surfactant micelles
at lower concentration. All this made the experimental design a little bit
problematic. A lot of parameters should be covered, for example, the ratio
between PL and surfactant. Another problem was how to prove interactions
between the amphiphiles complex and the biopolymer. One possible way
was to mark the binding sites by the AO dimer, as reported above in the case
of interaction of DPPC with hyaluronan.

Figure 11 displays dependencies of the fluorescence intensity of AO and
D:M ratio on the concentration of the PL-surfactant complex. Addition of
the complex increased fluorescence intensity that is related to the AO dimer
breakdown. This was confirmed by the D:M dependency which showed
that the amount of dimer in the system decreased. D:M ratio, as observable
parameter, looked to be more sensitive to the changes in this complex
solution. With respect to the error bars, there are three plateaus in this
dependency. The plateaus indicate that complex should interact with non-
labeled parts of biopolymer. These parts can be primarily nonlabeled, due to
interaction with complex these part are coming accessible for interaction, or
they are firstly bonded aggregates and coming complexes only increase their
aggregation number.

Fluorescence intensity slightly increased up to concentration around
5 mg L�1. After this concentration, the fluorescence intensity increased
rapidly. With respect to the D:M dependency, this increase can be
explained as dimer breaking.

zone of  interaction

DPPC
zone of

solubilization

non-ionic surfactant

Figure 10 Illustration of supposed phospholipid–C12maltoside complex.
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7. Conclusion

Fluorescence probes showed that phospholipids, DPPC and lecithin,
aggregate in aqueous solution to form micelle-like structures capable to
solubilize hydrophobic molecules. Only in the case of lecithin, changes in
its aggregation behavior were observable after adding hyaluronan. Presence
of hyaluronan shifted aggregation concentration of the lecithin to the lower
values. On the other hand, experiments with DPPC did not bring any
evidence of interaction.

As a novel approach of this work in forming hyaluronan–phospholipid
complexes, nonionic biocompatible surfactant was used as a dispersion
environment for phospholipid molecules. Phospholipid than could act as a
physical linker which bonds micelles and biopolymer together by physical
forces and could also serve as an active nourishing agent. This new type
complex can be used as a part of cosmetic formulation combining hydrating
and nourishing effects or in pharmaceutics for the delivery of water insolu-
ble active molecules.
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Abstract

Deformability is a key feature of the lipid membrane, being of importance for

numerous processes taking place in biological cells, as well as for the flow

behavior of cells in blood circulation. In the first part of the chapter, the

potentials of investigating the dynamics of membrane fluctuations as an exper-

imental tool for probing the membrane material properties are presented and

discussed. By analysing the dynamics of thermally induced shape fluctuations

of nearly spherical lipid vesicles, important mechanical constants of the bilayer

are possible to be extracted, namely bending elasticity modules at free and

blocked exchange of molecules between the two monolayers, comprising the

lipid membrane, and the intermonolayer friction coefficient of the bilayer.
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The second part of this contribution is dedicated to the dynamics of unconfined

lipid vesicles in linear hydrodynamic fields. The current state of theory and

experiment of single vesicle dynamics in simple shear flows is reviewed. Special

attention is given to the relation between the overall rheological properties of

vesicle suspensions and the individual vesicle dynamics in the flow.

1. Introduction

Representing the fundamental structural unit of every living organism,
the biological cell is a natural object of investigation for biologists,
biochemists, and biophysicists, who try to reveal and describe the various
properties, mechanisms and processes making cells well functioning entities,
properly communicating with their dynamical environment [1]. The basic
common feature of biological cells despite their strong differentiation is that
the cellular integrity is assured by a plasma membrane and numerous
intracellular structures (organelles) are formed by internal membranes of
different types and functions. Biological membranes play also the major role
in many cellular processes such as cellular division, endo-, and exocytosis,
where membrane deformations are important and are controlled by the
membrane mechanical properties [2]. The permeability of biomembranes
for various molecules and ions governs their barrier function, which is one
of the basic functions of biological membranes and realizes the connection
between the interior of the cell and the exterior environment. All biological
membranes, including the plasma membrane and the internal membranes of
eukaryotic cells, have a common general structure: they are assemblies of
lipid and protein molecules, held together mainly by noncovalent
interactions. The mass ratio between both constituents varies as a function
of the membrane type [3]. Cell membranes are highly dynamic, fluid
structures, which are made functional by lipid–lipid, lipid–protein, and
protein–protein interactions. Most of their lipid and protein molecules are
able to migrate in the membrane. The first insight into the general structural
organisation of biological membranes was proposed in the early 1970s [4].
In its initial form, the celebrated Singer–Nicolson fluid mosaic model
considers the cell membrane as a two-dimensional sea of lipid molecules
with integral proteins, floating in it. Ever since the initial concept of the
fluid mosaic model significantly evolved. It is now admitted that the
membrane constituents do not diffuse freely in the two-dimensional lipid
matrix, but are structured in 2D domains [5,6]. These small (10–200 nm)
domains are called rafts [6–8] and are heterogeneous, sterol- and sphingo-
lipid-enriched, highly dynamic, and compartmentalize cellular processes. It
has been observed that small rafts can sometimes be stabilized to form larger
platforms through protein–protein and protein–lipid interactions [9].
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Conceived as part of a mechanism for the intracellular trafficking of lipids
and lipid-anchored proteins, the raft hypothesis has been enriched and
developed during the last decade [8]. Concerning the important role of
the lipid bilayer in functional aspect, recent experimental observations have
proven the bending-mediated force transduction and molecular organiza-
tion in lipid membranes [10].

The investigation of the dynamics of the membrane organization is a
challenging task for biophysicist. Following the so-called “bottom-up”
approach, it is useful to introduce a simple model system with controlled
experimental physicochemical parameters in order to be able to distinguish the
contribution of every component to the studied membrane property,
morphology and stability. The simplest physical model of biological
membranes is the lipid bilayer [11]. Giant unilamellar vesicles (GUVs) with
diameters at the micrometer scale are exploited successfully in the biophysical
research for modeling basic physical properties of biomembranes [12,13].
Besides having characteristic diameters in the same range as the typical cell
sizes (5–100 mm), GUVs allow controlling numerous parameters asmembrane
composition, viscosity, and concentrations of solutes in the aqueous
environment, and thus, give the opportunity for direct visualization of
particular membrane-related phenomena at the level of single vesicles [14].

With respect to biological cells, the well-known asymmetry of the
bilayer and the proteins spanning the membrane add additional barriers to
reconstituting membrane organization and function in vitro. In addition, most
saturated lipids that are thought to underlie raft formation reside in the
exoplasmic leaflet of the membrane, and the principles of raft organization in
the cytosolic leaflet remain unknown [15]. Despite these fundamental
difficulties, there is significant progress in reconstitution of natural membrane
structure in artificial GUVs. Recent developments of the conventional
methods for vesicle formation made possible the preparation of GUVs from
native membranes or organic lipid mixtures in physiological conditions (high
ionic strengths) [16]. Another important step toward better modeling of
structural particularities of cell membranes is the successful reconstitution of
membrane proteins into GUVs [17]. By means of fluorescence techniques, it
has been proven that in artificial GUVs composed of native membranes, the
membrane proteins and glycosphingolipids preserve their natural orientation
after electroformation [18]. Such methodical achievements open new
horizons to experimental studies of biologically important physical properties
of inhomogeneous membrane systems in simplified laboratory conditions.

Another important application of lipid vesicles that gives special priority
to the investigation of their physical properties, dynamics, and stability is
their usage as drug and gene carriers [19].

The present contribution is focused on two different aspects of vesicle
dynamics, both closely related to the unique material properties of the lipid
bilayer. The first of the problems considered here is the dynamics of the
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thermally induced shape fluctuations (TISF) of quasispherical lipid vesicles.
Through a detailed review of the current state of theory and experiment in
Section 2, it is shown how the analysis of the dynamics of the lipid
membrane bending fluctuations can give information about important
membrane properties such as the bilayer bending elasticity at blocked
intermonolayer exchange of molecules (otherwise, immeasurable), the
intermonolayer friction coefficient [20,21], and the lateral diffusion coeffi-
cient of a guest molecule in the bilayer [22]. Our experimental data are
presented for the membrane bending elasticity at free and blocked exchange
of molecules between the two monolayers composing a single-component
synthetic bilayer and for the coefficient of its intermonolayer friction
deduced from fluctuation analysis.

The dynamics of deflated lipid vesicles in linear flows is the subject of
Section 3. The theoretical background of the problem [23–32] and the
experimental work performed so far [33–39] are reviewed and discussed.
In Section 4, it is shown how the overall rheology of dilute suspensions of
lipid vesicles is related to the single vesicle dynamics in flow [40–42]. Similar
measurements for red blood cell (RBC) suspensions in the dilute limit are
presented. The micro–macro link experimentally detected [42] is discussed
in the light of potential clinical applications as complementary diagnostic
tools of blood pathologies and disorders.

2. Dynamics of Thermally Induced Membrane

Fluctuations of Quasispherical Lipid Vesicles

2.1. Background

Lipid membranes in their liquid-crystalline state possess unique mechanical
properties, combining area incompressibility and very low resistance to
bending. The grounds of the elastic theory of lipid membranes were
developed by Helfrich in the 1970s [43,44]. Typical thickness of lipid
bilayers is of the order of nanometers, which is about thousand times smaller
than the mean radius of GUVs and membranes are considered as sheets, thus
every change of their shape being decomposed into three elementary
deformations—shear, stretching, and bending (Fig. 1) [45]. If a lipid
bilayer is discussed only in its liquid crystal state, it can be considered as a
two-dimensional liquid. Consequently, the mechanical properties of such
an object are characterized by its stretching and bending elastic moduli. This
is exactly the case of phospholipid membranes in liquid crystal phase La [46],
when lipid molecules can freely slide one to another and the shear elastic
modulus is equal to zero. Evidently, in the case of natural membranes,
containing a cytoskeleton, shear deformations cannot be neglected.
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The expression for the surface density of stretching elastic energy reads
[43]:

gs ¼ 1

2
ks

DS
S0

� �2

; ð1Þ

where S0 is the area of a flat tension-free membrane (Fig. 1), DS/S0 is the
relative area change of the bilayer and ks is the stretching elastic modulus
(with dimension J/m2 or N/m). Helfrich defines the membrane tension as

s ¼ ks
DS
S0

: ð2Þ

If a tension-free membrane is bent, its shape can locally be characterized by
its principal curvatures:

c1 ¼ 1
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; c2 ¼ 1
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Figure 1 Elementary deformations of an infinitely thinmembrane element. In the case of
bending deformation, there are two possibilities: R1.R2 > 0 (left) andR1.R2 < 0 (right).
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where R1 and R2 are respectively, the largest and the smallest radii of
curvature in two mutually orthogonal directions (Fig. 1).

In the expression for the free bending energy for a bilayer in its liquid
crystal state, the total curvature c1 þ c2 and the Gaussian curvature c1c2
participate. To the second order the density of the bending energy is
given by [43]:

gc ¼ 1

2
kc c1 þ c2 � c0ð Þ2 þ �kc c1c2; ð3Þ

where kc and �kc are elastic moduli of the curvature and the saddle curvature
(with dimension of energy) and c0 is the so-called spontaneous curvature.
For symmetrical bilayers bathed by identical solvents, the condition c0 � 0
is fulfilled.

In fact, two different bending elastic moduli exist: kc
fr, when the

exchange of lipid molecules between the monolayers of the bilayer is
allowed, and kc

bl, when it is blocked [44]. When the exchange is
forbidden, the number of the molecules in each monolayer of the bilayer
is constant. At free exchange, the bending elasticity energy is
lower because it has been minimized with respect to the difference
between the number of the molecules in each monolayer and conse-
quently, kc

fr < kc
bl. In all phenomena, related to the out-of-plane fluctua-

tions of membranes, the relevant quantity is kc
fr [21,47,48]. These

phenomena include the thermal fluctuations of quasispherical vesicles
[49,50], as well as the vesicle suction in micropipettes at very low
suction pressures [51].

The energy, required to bend an initially flat membrane element with
area 100 mm2 to a cylinder with radius Rc equal to 10 mm, can be estimated
by taking for kc the value of 10

�19 J [49] and is obtained to be

Wc ¼ kc

2

S0

R2
c

� 10�20 � 10�19 J: ð4Þ

These energies are of the order of thermal excitations energy kBT. Therefore,
the thermal excitation energy is sufficient to provoke curvature changes.
Brochard and Lennon [52] used this argument to give a theoretical interpre-
tation of the flicker phenomenon in erythrocytes. The shape fluctuations of
giant liposomes are also explained by the same arguments. Membrane undu-
lations are due to local pressure differences, resulting from the thermal
(Brownian) motion of water molecules in the bilayer surroundings.

The second term in Eq. (3) depends on the Gaussian curvature c1c2.
The integral of the Gaussian curvature over a closed surface depends only
on its topology. Consequently, this term is neglected when the
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elastic properties of closed membranes are discussed. When the membrane
continuity is not disrupted by cuts or contours [43] it is fulfilled that:

r
S
c1c2ds ¼ 2pw; ð5Þ

where the integral is over the whole surface S and w is an integer called the
Euler characteristic of the surface (related to the genus p of the surface by
w ¼ 2(1 � p) for a closed surface). The Euler characteristic decreases with
increasing number of holes (e.g., for a sphere (no holes) p ¼ 0 and w ¼ 2,
for a torus (one hole) p ¼ 1 and w ¼ 0).

For stability reasons, it is easily understandable that the elastic modulus kc
has to be positive (kc > 0). A simple variation calculus [53] also demon-
strates that in the framework of the quadratic approximation a free deform-
able piece of monolayer possesses a stable configuration only if the following
condition is fulfilled:

�2kc < �kc < 0: ð6Þ

Therefore, the equilibrium is characterized by spherical curvature c1 ¼
c2 ¼ ceq, where:

ceq ¼ kc

2kc þ �kc
c0: ð7Þ

If �kc < �2kc, the quadratic approximation predicts the layers to “sphere
up” without limits for all values of c0 (higher order terms will then limit the
deformation, cf. Mitov [54]). For �kc > 0, elastic energy can be released,
independently of kc, by saddle-like deformations, for example, of the type
c1 þ c2 ¼ c0, c1 > 0, c2 < 0 (cf. Fig. 1). Harbich et al. [55] gave some early
examples of this type.

After the first study of Brochard and Lennon [52], Schneider et al. [56]
proposed a method for measurement of the bending elastic modulus of quasi-
spherical vesicles by analysis of their TISFs. They employed fluorescence
microscopy of labeled lipid bilayers and analyzed the fluctuations of vesicle
diameter in two mutually perpendicular directions. This work was the first
theoretical model for the dynamics of the shape fluctuations of quasispherical
lipid vesicles. In their experiments, the time correlation function of the
difference of two perpendicular diameters of the fluctuating circumference,
representing the equatorial cross-section of the lipid vesicle, was calculated and
analyzed. For the analysis, only the contribution of the secondmodewas taken
into account. Their original theory contained some errors, as pointed out
thereafter by Helfrich [57] and Milner and Safran [58], who introduced some
corrections, and built a precise model of the dynamics of fluctuation of a giant
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vesicle. The group of Sackmann worked on the same problem [2,59] and
proposed a method based on Fourier decomposition of the shape fluctuations
of quasispherical vesicles. The theoretical and experimental requirements of
the method were defined by Faucon et al. [49], who elaborated the experi-
mental approach of bending elasticmodulus determination by thermal fluctua-
tions analysis.Méléard et al. [60] considered the statics and dynamics of thermal
membrane fluctuations with respect to the membrane curvature elasticity.

If the radius-vector of a point at the surface of the vesicle in the direction
determined by its spherical coordinates (y, f) is considered as depicted in
Fig. 2, its small deviation (or its fluctuation) in spherical coordinates at the
moment t can be written in the following way:

r y;f; tð Þ ¼ R0 1þ u y;f; tð Þ½ �: ð8Þ

Here, R0 denotes the radius of a sphere with the same volume as the volume
of the vesicle and u(y, f, t) is the normalized function, describing the shape
fluctuations. The fluctuations can be decomposed in a series of spherical
functions [61]:

u y;f; tð Þ ¼
Xnmax

n¼2

Xn
j¼�n

U
j
i tð ÞYj

i y;fð Þ: ð9Þ

x

y

Ro

DR

z

q

j

Figure 2 Schematic presentation of a piece of the fluctuating membrane of a quasi-
spherical vesicle with radius R0. The origin of the laboratory frame coincides with the
vesicle’s centre.
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The mean square value of the fluctuations depends on the number n only,
and is given by Milner and Safran [58] considering all modes as independent
and applying the equipartition theorem:

Um
n tð Þ�� ��2D E

¼ kBT

kc
Q�1 �s; nð Þ; ð10Þ

where, kB is the Boltzmann constant, T is the absolute temperature,
Q �s; nð Þ ¼ n� 1ð Þ nþ 2ð Þ �sþ n nþ 1ð Þ½ � and �s ¼ sR=kcð Þ is the dimen-
sionless membrane tension.

From Eq. (10), it follows that the product:

Um
n tð Þ�� ��2D E

�Q �s; nð Þ ¼ kBT

kc
; ð11Þ

does not depend on n and �s and this fact can be used for the determination
of the (very small and otherwise immeasurable) membrane tension �s, by
treating it as an adjustable parameter. Such a possibility was not systemati-
cally exploited in the Fourier static analysis of shape changes in the contour
[62], in contrast to the other variant of the method—Legendre analysis of
the autocorrelation function of the vesicle contour [47,61].

What is observed experimentally is an equatorial cross-section of the
vesicle with the focal plane of the microscope (Fig. 3). In this case it is
fulfilled that y ¼ p/2 (Fig. 2) and Eq. (8) reads

r f; tð Þ ¼ R0 1þ u
p
2
;f; t

� �h i
: ð12Þ

For the static fluctuation analysis, the calculation of the normalized angular
autocorrelation function x(g, t) of the vesicle radius at a given moment of
time, has been proposed by Bivas et al. [47]:

Figure 3 Phase-contrast images of a fluctuating DOPC vesicle as observed by phase-
contrast microscopy. The bar corresponds to 10 mm. Time lapse between two adjacent
images is 1 s.
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x g; tð Þ ¼ 1

R0
2

ð2p
0

r fþ g; tð Þr� f; tð Þdf� r2 tð Þ
2
4

3
5* +

: ð13Þ

It has been shown [47,61] that the angular autocorrelation function, x(g),
can be represented as a series of Legendre polynomials, Pn(cos g), with
coefficients Bn �s; kcð Þ:

Bn �s; kcð Þ ¼ kBT

4pkc

2nþ 1ð Þ
Q �s; nð Þ ; n � 2: ð14Þ

The comparison with Eq. (10) gives the direct relation between the
amplitudes of the vesicle fluctuations hjUn

m(t)j2i, and the vesicle radius
r(f, t), which is experimentally measurable through its autocorrelation
function x(g):

Bn �s; kcð Þ ¼ 2nþ 1ð Þ
4p

Um
n tð Þ�� ��2D E

:o ð15Þ

In the dynamic analysis of the thermally induced fluctuations in the shape of
a quasispherical vesicle, a space–time autocorrelation function x(g, t) of its
radius is introduced [61,63]:

x g; tð Þ ¼ 1

2pR0
2

ð2p
0

r fþ g; t þ tð Þr� f; tð Þdf� r t þ tð Þr� tð Þ
2
4

3
5* +

:

ð16Þ

Milner and Safran, following Schneider et al. [56], studied theoretically the
hydrodynamic behavior of fluctuating vesicles. In their considerations, the
inertial and convective terms in the Navier–Stokes equations were
neglected and from the balance of forces on the vesicle surface the following
expression for the time autocorrelation function of the amplitudes Un

m was
derived [58]:

Um
n tð ÞUm0

n0
� 0ð Þ

D E
¼ dnn0dmm0 Um

n tð Þ�� ��2D E
exp � t

tn

� �
; ð17Þ

where tn is the correlation time of the n-th mode of fluctuations, given by
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tn ¼ �R0
3

kc

2nþ 1ð Þ
Q �s; nð Þ

2n2 þ 2n� 1ð Þ
n nþ 1ð Þ : ð18Þ

Mitov et al. [61,63] showed that the autocorrelation function (Eq. (16)) can
be decomposed in series of Legendre polynomials with coefficients,
related to the autocorrelation time of each fluctuation mode via the
expression:

bn tð Þ ¼ kBT

4pkc

2nþ 1ð Þ
Q �s; nð Þ exp � t

tn

� �
: ð19Þ

Thus, the relaxation of a fluctuating membrane was predicted to be influ-
enced solely by the viscosity of the surrounding medium, the bilayer
bending elasticity and the vesicle excess area (the difference between the
vesicle’s area and the surface area of a sphere with the same volume as the
volume of the vesicle).

Later on, a theoretical revision of the dynamics of the shape fluctuations
of quasispherical giant vesicles was made [21,48,64], taking into account the
bilayer structure of the lipid membrane, and the friction between the
monolayers of the bilayer of the vesicle membrane was predicted to influ-
ence the dynamics of membrane fluctuations. Using the measurements of
the interlayer friction coefficient bs [65], the second dissipative mechanism
was predicted to be considerable or negligible for the dynamics, depending
on the fluctuation wavelength [20,21,48]. According to the theoretical
predictions of Yeung and Evans [48] and Bivas et al. [21], the interlayer
coupling affects the membrane fluctuations’ dynamics and another relaxa-
tion process is involved, thus leading to a two-exponential decay of the
normalized amplitudes in the decomposition of the autocorrelation func-
tion (Eq. (16)) in Legendre polynomials:

bn tð Þ
bn 0ð Þ ¼ cn exp �ontð Þ þ 1� cnð Þ exp �Ontð Þ; ð20Þ

where on < On and cn ¼ f(on, On) [21,22,48].
If an additive molecule is present in the bilayer, an additional relaxation

process has been predicted to affect the dynamics of the shape fluctuations
[22]. When the vesicle changes its shape due to the TISF of its membrane, a
re-distribution of the additive molecules will occur in each of the mono-
layers by means of their lateral displacement to the vesicle poles at the outer
monolayer and – to its equator in the inner leaflet (Fig. 4). Thus, the lateral
diffusion coefficient of the additive molecule will influence the dynamics of
the vesicle shape fluctuations. It has been shown theoretically that this
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autocorrelation function for a membrane, containing an additive with molar
concentration C, is given by the expression [21,22]:

bn tð Þ
bn 0ð Þ ¼ cn exp �ontð Þ þ 1� cnð Þ exp �Ontð Þ

þcadd
n Cð Þ exp �D

n nþ 1ð Þ
R0ð Þ2 t

" #
;

ð21Þ

where D is the two-dimensional diffusion coefficient of the additive and
the pre-exponential factor before the third exponent cn

add(C ) is expressed
by [22]:

cadd
n Cð Þ � � 1

kfrc

@ kfrc cð Þ� �
@C j

C¼0

C: ð22Þ

These theoretical results of Bivas and Méléard [22] reveal that the analysis of
the TISF of lipid vesicles containing inclusions in their membranes, is an
appropriate tool for the determination of the diffusion coefficient of the
guest molecules in the lipid matrix.

Very recently, another dissipative mechanism of the mechanical energy
stored in the thermally induced membrane fluctuations has been considered
theoretically by taking into account the viscous friction of the flow in the

quasi spherical lipid
vesicle with a guest

molecule in the membrane

shape fluctuation

Figure 4 Sketch of the equatorial cross-section of a fluctuating vesicle with a guest
molecule (depicted as triangles) in its membrane: qualitative demonstration of
the impact of the diffusion of an inclusion to the dynamics of the shape fluctuations
(see text).
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liquid around the vesicle caused by this displacement [66]. The time
correlation functions of the vesicle’s fluctuation modes have been calculated
as a function of the mechanical and rheological properties of the system,
namely, the tension of the vesicle bilayer, its bending elasticity at free and
blocked intermonolayer exchange of molecules, the viscosities of the liquids
in contact with the bilayer, the friction coefficient between the two mono-
layers, as well as the vesicle’s radius and its bilayer thickness.

To summarize, by investigation and analysis of the TISFs of giant lipid
vesicles and the dynamics of these fluctuations, one is able to determine in a
completely noninvasive way the following membrane characteristics: (i) the
membrane bending moduli at free, kc

fr, and blocked, kc
bl, exchange of

molecules between the two monolayers of the vesicle’s membrane; (ii) the
intermonolayer friction coefficient, bs, of the membrane; (iii) the coefficient
of diffusion, D, of an inclusion in the bilayer.

The latter three constants are essentially new element from experimental
point of view.

2.2. Experimental Determination of the Intermonolayer
Friction Coefficient and the Bending Elasticity of
Lipid Bilayers at Blocked Exchange of Molecules
Between the Two Monolayers

It is important to recall that the analysis of the TISF of quasispherical lipid
vesicles gives the value of the membrane bending modulus at free exchange
of molecules between the two monolayers. This follows from the fact that
the relative slipping of the monolayers is equivalent to the exchange of
molecules between them in the limit of small enough fluctuations, com-
pared to the radius of the vesicle.

The first experimental study of the dynamics of the TISF of GUVs has
been performed by Schneider et al. [56] who measured the time correlation
function of the difference between two perpendicular diameters of the
fluctuating vesicle’s contour observed microscopically. Later on, Duwe
et al. [67] experimentally determined the time correlation functions of
Fourier amplitudes for the second and the third mode. The first detailed
dynamic study of TISF of quasispherical vesicles was published by Méléard
et al. [60] who confirmed the mono-exponential character of the time
correlation function using short time video image sequences of fluctuating
GUVs.

As discussed in Section 2.1, when taking into account the double layer
structure of the lipid membrane, the theory [20,21] predicts that the
attenuation of the bending fluctuations of a pure lipid membrane will
obey a double exponential-decay law. The typical accuracy of the experi-
mental determination of the mean square amplitudes of vesicle’s radius
fluctuations is 	10% for continuous illumination [49,61] and 	5% when
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applying stroboscopic illumination [68]. It has been estimated that in the
former case the effect of the mutual displacement of the monolayers on
the membrane fluctuation dynamics is not measurable for the highest wave
numbers (n � 16) [21]. The first experimental study proving the presence
of a second relaxation mechanism in the dynamics of TISF of GUVs has
given a relation between the intermonolayer friction coefficient and the
bilayer bending elasticity, obtained experimentally by analysis of the mem-
brane fluctuation dynamics [69]. More recently, the value of the friction
coefficient between the two monolayer leaflets of the membrane,bs, and the
bending elasticity modulus kc

bl, were estimated from our stroboscopic illu-
mination study of the dynamics of fluctuating vesicles, prepared from two
types of single-component synthetic bilayers and this result, to the best of
our knowledge, represents the only experimental data published so far for
this otherwise immeasurable quantity [70].

Here, an example will be given for an experimental study of the statics
and dynamics of TISF of GUVs composed of the synthetic lipid dioleoyl
phosphatidylcholine (DOPC, Avanti Polar Lipids Inc., AL, USA). The
electroformation method [71] was applied to prepare vesicles. Our electro-
formation chamber consisted of two (indium-tin oxide) ITO-coated plates,
separated by a silicone spacer (polydimethylsiloxane—PDMS, Sylgard 184
silicone elastomer kit, Dow Corning GmbH, Germany), previously soaked
in double-distilled water as indicated in [72]. The latter is necessary to wash
away all no cured rests in the elastomer and thus to avoid any undesirable
ion contamination of the aqueous phase of the electroformed vesicle sus-
pension. For the same reason, the metal contacts between the conductive
plates and the electrical wires were situated outside the cell. Lipid deposi-
tions were made by the careful and uniform spreading of 	100 mL of
DOPC solution with concentration of 1 g/L in chloroform-methanol
(Fluka Inc., Germany) mixture (9:1 volume parts) on the ITO-side of
each ITO-coated glass plate. In our experiments freshly prepared organic
solution of the lipid (previously lyophilized and kept under vacuum at
�20 
C) was used. After the complete drying of the lipid for at least 2 h
under vacuum, the electroformation chamber was assembled in a way to
completely fill the internal volume (	5 ml) with double-distilled water,
previously obtained in a quartz distiller without ion-exchange filter at the
outlet and equilibrated in air (pH 5.5). Then, AC electric field (	10 Hz)
was applied to the chamber, successively increased up to Epp¼ 0.3 V/mm
(where Epp denotes the peak-to-peak amplitude of the electric field
applied). In several hours, a high yield of unilamellar vesicles without
microscopically observable defects and with radii (	5–20 mm), appropriate
for fluctuation analysis, was obtained.

For sample observation and registration an inverted Axiovert 100 (Zeiss,
Germany) microscope in phase contrast was used with a water-immersed
63� (NA 0.75, Ph3) objective. The video signal from the CCD camera
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control unit (C2400-60, Hamamatsu, Japan) was fed to a frame grabber
board (DT3155, Datatranslation, USA) mounted in a computer for proper
digitization (768 � 576 8-bit pixels). Images were acquired in real time (25
frames per seconds), and recorded on the PC to obtain a long (7–10 min
total duration of the record, or more than 104 frames) image sequence of the
equatorial cross-section of the fluctuating vesicle with the focal plane of the
objective (see Fig. 3). A stroboscopic illumination was applied in order to
overcome the smearing effect of the camera integration time on the highest
fluctuation modes and thus, to improve the precision of the fluctuation
analysis [68].

First, the bending modulus at free exchange of molecules between the
monolayers, comprising the bilayer, kc

fr, was measured independently. To
this aim, every 25-th frame from a given image sequence was taken in order
to extract a succession of images of the vesicle contour fluctuations, cap-
tured every second. The substitution of typical experimental values for the
vesicle radius, the bending elasticity modulus, the membrane tension and
viscosity of the suspending medium (n ¼ 2, kc

fr � 10� 19 J, �s � 0:01,
� � 10� 3 Pa s, R0 ¼ 10 mm) in Eq. (18) permits to estimate the correla-
tion time of the slowest fluctuations as t2 � 0.5 s. In this way, taking one
frame per second, it was assured to deal only with independent fluctuations
for every captured contour. For each registered image of the fluctuating
vesicle (Fig. 3), the contour representing the equatorial cross-section of the
vesicle membrane was extracted as explained in details in [61]. All the “out-
of-focus contours” were disregarded and not taken into account in the
following analysis. The next step was to determine the exact position of the
vesicle contour in every frame, the centre of mass and the instantaneous
radius-vectors at 128 angularly equidistant points of the vesicle contour.
The instantaneous value Bn

0(t) of the quantity Bn from Eq. (14) was calcu-
lated for each of the extracted contours of the fluctuating vesicle as the
amplitude of the n-th mode of the development in Legendre polynomials of
the instantaneous angular autocorrelation function x(g, t) from Eq. (13).
Evidently, Bn ¼ hBn

0(t)i. The root mean square:

DB0
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B0

n tð Þð Þ2
 �� B0
n tð Þh ið Þ2

q
ð23Þ

was also calculated.
For each studied vesicle, the function w2 kfrc ; �s

� 

, defined in a standard

way, was used

w2 kfrc ; �s
� 
 ¼ XNmax

n¼2

B0
n tð Þh i � Bn kfrc ; �s

� 
� �2
DB0

nð Þ2 ; ð24Þ
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where Nmax was the highest number of the index n used for the fitting. The
values of kc

fr and �s minimizing the function w2 kfrc ; �s
� 


were determined
numerically, as well as their confidence intervals. While �s can vary from
vesicle to vesicle, kc

fr is expected to be the same for all studied vesicles. The
condition requiring the goodness of fit for each selected vesicle to be more
than 0.1 was imposed. The second criterion for selecting a vesicle was its
volume to be constant. If the vesicle’s volume is constant in time, its excess
area will be constant too and the amplitudes Bn for a given mode, n, will not
increase or decrease during the measurement. Since the second (elliptical)
fluctuation mode is the most sensitive in the case of any change of the
vesicle’s volume, B2 will change the most. Therefore, in order to quantify
any undesirable trend, the squares of the amplitudes of the second mode of
fluctuations (B2)

2 from Eq. (14) were plotted as a function of time for every
analyzed vesicle (Fig. 5). The best linear fit of the experimental data with a
function of the type y ¼ C þ D � x (with x 2 [0, N]) gave the values of
the coefficients and their errors C � DC and D � DD. For an ensemble of
N experimental measurements of the quantity yi, the following relation
between the dispersion, ay, of the data and the dispersion, a�y, of the mean
value �y ¼ SN

i¼1yi
� 


=N exists

ay ¼ a�y
ffiffiffiffiffi
N

p
: ð25Þ

A vesicle can be considered as good for analysis, if the slope of the linear
regression of the second mode amplitudes, B2, is negligible compared to the
dispersion of the data, namely:

Dj j 
 a�y
N

ffiffiffiffiffi
N

p ; where a�y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

yi � �yð Þ2

N N � 1ð Þ

vuuut
: ð26Þ

The fulfillment of the above condition was imposed as a criterion for the
stationarity of vesicles. Under this criterion of selection, only stationary
vesicles were processed further and their membrane bending elastic modu-
lus, kc

fr, and tension, �s, were deduced from the static analysis of their
fluctuations as discussed in the previous section and described in details in
[49,61].

Further, dynamic analysis of the vesicle’s TISF was performed. To this
aim, the vesicle contours were extracted from the continuous (25 frames per
second) image sequence and the experimental Legendre amplitudes bn of the
space–time autocorrelation function x(g, t) of the fluctuations, defined in
Eq. (16), were calculated for 2 � n � 11 [61]. For those vesicles, for which
the amplitudes of the spherical harmonics can be determined with high
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enough precision, a double-exponential fit of the data for the long-wave
modes of fluctuations can be performed [21]. The pre-exponential factors
and the exponential indexes for the two exponents in Eq. (20) were
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Figure 5 Time dependency of the squares of the second mode amplitudes in the
decomposition of the autocorrelation function in a series of Legendre polynomials
(points) for two quasispherical DOPC vesicles with linear fits of the data (solid lines):
(A) example of a vesicle not satisfying the condition (26); (B) stationary vesicle, good
for analysis.
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determined for eachmode of fluctuations up to the sixthmode. In the analysis
of the acquired experimental data for the dynamics of the TISF of DOPC
vesicles, the theoretical description by Bivas et al. [21] was used. The experi-
mental results for the second mode of the spherical harmonics for a DOPC
vesicle with radius R0 ¼ 8.4 mm and �s ¼ �5:2 are presented in Fig. 6.

The experimental data for the second and the third modes of fluctuations
were analyzed. The bending elasticity coefficient at blocked intermonolayer
exchange of molecules was calculated independently using the relation
between the experimentally determined frequency in the first exponent in
Eq. (20) on ¼ f(�, kc

fr, kc
bl, R0, s) and the two bending coefficients [21]:

on¼ kblc

� R0ð Þ3�
an

Z nð Þ ; whereZ nð Þ¼ 2nþ1ð Þ 2n2þ2nþ1ð Þ
n nþ1ð Þ and

an¼ n�1ð Þ nþ2ð Þ n nþ1ð Þþs R0ð Þ2
kblc

� 1

8p
kblc
Dkc

c00
� 
2" #

þ1

p
Dkc
kblc

c00
� 
 ð27Þ

where �, kc
fr, R0, and s are known, Dkc ¼ kc

bl � kc
fr and c0

0 has the meaning
of induced spontaneous curvature that was found to be important for the
dynamics of the second fluctuation mode when dealing with vesicles with
molecular density difference of its two monolayers, close to its equilibrium
value. For vesicles far from equilibrium, it has been obtained that the
influence of c0

0 can spread over higher fluctuation modes also and therefore,
c0
0 has to be one of the adjustable parameters in the analysis of the TISF of
vesicles [21].

It was experimentally obtained that for DOPC bilayers, kc
bl/kc

fr ¼ 1.73
(see Table 1), and consequently, it is fulfilled that Dkc � kc

fr. Our result is an
experimental confirmation of the theoretical estimations of Bivas and
Méléard [22] and is in accordance with the evaluation Dkc � kBT, experi-
mentally obtained by Pott and Méléard [69] for SOPC bilayers.

The theoretically derived relation between the measured quantity and the
bending elasticities at free and blocked intermonolayer exchange ofmolecules,
the vesicle radius and the distance between the neutral surfaces of the two
monolayers, permitted us to calculate the intermonolayer friction coefficient:

Table 1 Mechanical properties of DOPC membrane: experimental values deduced
from the static and dynamic analysis of the thermally induced shape fluctuations of
quasispherical GUVs (results for a vesicle with R0 ¼ 8.4 mm and �s ¼ �5:2)

kc
fr [10�1 J] kc

bl/kc
fr (kc

bl � kc
fr)/[bs(d0)

2] (10�12 m2/s) bs (10
9 N s/m3)

0.86 � 0.09 1.73 � 0.3 4.71 2.6
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On ¼ kblc � kfrc

bs d0R0ð Þ2 n nþ 1ð Þ: ð28Þ

The results from the analysis of the experimental data permitted to determine
the value of the combination (kc

bl � kc
fr)/[bs(d0)

2] ¼ 4.71 � 10�12m2/s,
where d0 stands for the distance between the neutral surfaces of the mono-
layers comprising the bilayer.1 The value for d0, obtained from the best fit of
our data, is close to the value, reported for the hydrophobic thickness of
DOPC bilayers d0 � 26 _A

� 

[73]. Our estimation of the membrane bending

coefficient at blocked lipid exchange between the monolayers, kc
bl, permitted

us to calculate the intermonolayer friction coefficient, bs, for DOPC bilayers
(cf. Table 1). The intermonolayer friction coefficient, obtained here, is in
good agreement with the value, calculated on the basis of the theoretical
estimations of the quantities, participating in the above combination [21,69],
as well as with the results of Merkel et al. [65] for the same quantity, measured
in the case of bilayers deposited on glass substrates, and with our previous
results for bs of DOPC membranes [70].

In conclusion, the analysis of the TISFs of quasispherical vesicles repre-
sents a powerful tool to study membrane mechanical properties. Static and
dynamic fluctuation analysis, performed together, allows deducing impor-
tant material constants of the bilayer, such as the bending rigidity coeffi-
cients at free and blocked intermonolayer lipid exchange, the friction
coefficient of the mutual displacement of the two monolayers comprising
the membrane, as well as the diffusion coefficient of an inclusion in the
bilayer. An important advantage of the discussed method is the fact that it is
completely nondestructive, and one can obtain information about impor-
tant physical properties of the membrane in a noninvasive way.

3. Dynamics of Vesicles in Unconfined Shear

Flows: Overview of Theory and Experiments

The investigation of the lipid vesicle dynamics in hydrodynamic fields
is a step forward to the better understanding of the behavior and the stability
of these objects in flow. Recently, an important progress in this direction
was made. Considerable knowledge about the individual dynamics of
vesicles in different types of flow has been accumulated thanks to the
intensive theoretical [23–27,29–32,74] and experimental [33–39,75] inves-
tigations performed so far. The key experimental observations and advances
in theoretical description of vesicle and RBC dynamics in various

1 Neutral surfaces are these surfaces at which the surface area per molecule is kept constant when the bilayer is
cylindrically bent at allowed intermonolayer exchange of molecules.
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unconfined flows as well as in capillary flows, relevant to the microcircula-
tion, have been reviewed recently by Vlahovska et al. [32].

Here, we focus on the theoretical and experimental aspects of vesicle
dynamics in linear hydrodynamic fields. A simple shear flow can be decom-
posed in an elongation component (pure deformation of extension) and a
rotational part (rigid body rotation) as depicted in Fig. 7A. Deformable
objects such as lipid vesicles become ellipsoids in shear flows (Fig. 7B). To
assume this shape, a vesicle must possess some excess area, D, compared
to the surface area of a sphere with the same volume (equivalent sphere),
V [76]:

D ¼ S

R0

� 4p; where R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3V=4p3

p
; ð29Þ

and S is the vesicle surface area.
Another quantity often used to quantify the vesicle deformability in

hydrodynamic flows, is the so-called “‘reduced volume”, u, representing
the ratio between the vesicle volume and the equivalent sphere volume
[77]:

u ¼ 3
ffiffiffiffiffi
4p

p
V

S3=2
and D ¼ 4p u�2=3 � 1

� �
: ð30Þ

For a spherical object u ¼ 1 and D ¼ 0. For a normal (not pathological)
RBC (erythrocyte) the same quantities are u � 0.6 and D � 5.

flow direction

shear

0 s 1.6 s

20 m

2.2 s 2.5 s 3.9 s 5.1 s 7 s 7.8 s

A

B y

x

elongation rotation

Figure 7 (A) Schematic presentation of the velocity field in a linear flow (equal to
superposition of extension and rotation). (B) Experimental picture of a tumbling vesicle
in simple shear flow.
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Another important parameter when considering vesicle and RBC
dynamics in linear hydrodynamic fields is the ratio between the viscosity
of the fluid, enclosed by the lipid bilayer (for vesicles) and plasma membrane
(for RBCs), �in, and the viscosity of the surrounding medium, �out:

l ¼ �in=�out: ð31Þ

At physiological temperatures (37 
C) erythrocytes are characterized by
l � 7� 13ð Þ for young and old cells, respectively [78]. For vesicles, this
parameter is easily tunable thanks to the advanced experimental protocols
for GUV formation, permitting good control of the physicochemical prop-
erties of the internal and external aqueous phases [13].

One more parameter, which is relevant to the dynamics of vesicles in
shear flows, is the dimensionless capillary number, Ca ¼ �out _gR

3
0=kc,

depending on the shear rate of the flow, _g, the viscosity of the suspending
medium, �out, as well as on the vesicle radius, R0, and the bending coeffi-
cient of its membrane, kc.

It has been reported that in shear flows, vesicles and RBCs show various
dynamical behaviors. For vesicles the following types of motion in linear
hydrodynamic fields have been observed: (i) tank-treading (TT ): the vesicle
orients its long axis at a fixed angle with respect to the flow directionwhile its
(fluid) membrane undergoes a tank-treading like motion [23,33,79], (ii)
tumbling (TB) (or flipping) of the vesicle [35], (iii) vacillating-breathing
(VB) (called also “trembling” [36,39] or “swinging” [80]) for vesicles (oscil-
lation of the long axis about the flow direction, accompanied with breathing
of the shape) or swinging, forRBC (nearly shape preserving oscillation about
a nonzero angle) [81], (iv) spinning [30] or kayaking [82], where themain axis
describes a cone about the perpendicular to the plane of the shear flow. As a
consequence of the richer mechanical properties of RBC’s membrane,
namely the elasticity of the spectrin network, other more complex dynamics
of RBCs have been predicted (under the assumption that the shape is fixed)
[83] and observed [84]. New features of the RBC’s dynamics compared to
vesicles is that for small viscosity ratios, l, and depending on the applied shear
rate, _g, erythrocytes can exhibit various types of motion. At low shear rates
RBCs tumble, while at intermediate shear rates they perform swinging
motion and finally, at high shear rates RBCs behave similarly to vesicles
and show pure tank-treading [38,81]. A new theory [85], including the
deformation of the RBC shape has been recently presented. This theory
shows that the intermittent regime (tumbling interrupted by few cycles of
swinging) reported in [83] disappears. In other words the intermittent regime
seems to be an artifact of the shape preserving assumption.

In the limit of nearly spherical shapes (D 
 1) an analytical theory with an
arbitrary viscosity contrast between the interior and the exterior of the vesicle
has been developed in [28]. The vesicle shape evolution has been described by
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the angle of inclination of the major axis of the ellipsoid, c, and its length, R
(Fig. 7B). Neglecting the membrane thermal fluctuations, the following evo-
lution equations of the vesicle shape have been obtained at leading order [28]:

@c
@t

¼ � 1

2
þ h

2R tð Þ cos 2c tð Þ½ �; ð32Þ

and

@R

@t
¼ h 1� 4

R2 tð Þ
D

� �
sin 2c tð Þ½ �; ð33Þ

where h ¼ 4
ffiffiffiffiffiffiffiffi
30p

p
= 32þ 23lð Þ.

It has been shown also that the TT–TB transition occurs at a critical
viscosity ratio, given by [28]:

lc ¼ � 32

23
þ 120

23

ffiffiffiffiffiffiffiffi
2p
15D

r
: ð34Þ

Unlike capsules and droplets, vesicle dynamics does not depend on the
mechanical properties of the interface (vesicle membrane), which follows
from the fact that the above equations do not contain Ca but only D. This
particularity reflects the condition of constant surface area of the vesicle
membrane (membrane incompressibility) and accounts for the effect of the
membrane tension on the vesicle dynamics. Another interesting point is that
the evolution equations for vesicles are nonlinear, while at leading order
capsules [86] and droplets [87] respond linearly to external flows.

If instead of a vesicle, a nondeformable ellipsoid in shear flow is consid-
ered, then R(t) ¼ 0 and the analytical result (32) reduces to the Keller and
Skalak’s expression for the rotation of a rigid tank-treading ellipsoid with
fixed shape [88], thus only TT and TB exist. The new type of motion of VB
has been discovered by allowing the vesicle shape to freely evolve [28].
Initially coexistence of VB and TB modes has been obtained theoretically
[28,29]. Experimentally, VB has been observed at intermediate Ca, respec-
tively at intermediate l [36]. A major consequence of increasing the capil-
lary number on vesicles in TB regime is the decrease of the tumbling
frequency with approaching the transition to VB [27,35]. The phase dia-
gram, representing the three types of vesicle dynamics in linear flows, has
the general form given in Fig. 8. Recently, Deschamps et al. [35] performed
an extensive experimental study and explored in details the influence of all
parameters on the vesicle dynamics in shear flow. Their experimental phase
diagram is in good qualitative agreement with the theoretical results
obtained previously for nearly spherical vesicles [30,41,90] (cf. Fig. 9).
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According to the theoretical results of Lebedev et al. [30,90], the parameters
determining the dynamical regime of a vesicle in simple shear flow, are two,
defined as S ¼ 7p _g�outR

3
0=3

ffiffiffi
3

p
kcD and L ¼ 4 1þ 23l=32ð Þ ffiffiffiffi

D
p

=
ffiffiffiffiffiffiffiffi
30p

p
.
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Figure 9 Phase diagram of the vesicle dynamical states in a shear flow: ■ [0–0.55], □
[0.55–0.8],d [0.8–1.05],○ [1.05–1.25],. [1.25–2]. Black points correspond to the TT
regime; dark grey points – to the VB regime; and light grey points stand for TB vesicles.
Grey bands are guides for the eye. Dashed, dotted, and dash-dotted black lines are the
theoretical boundaries between TT and VB; VB and TB; TT and TB, respectively
(theory from [30]) (Graphics reproduced from [39] with permission; Copyright (2009)
by the American Physical Society).
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The experimental data of Fig. 9 (reproduced from [39]), are mixed with
respect to D, since the authors assume that only S and L are relevant as
reported in [30]. The perturbation theory developed by Danker et al. [41]
has shown that the independent parameters, which are important for
the dynamics of a vesicle in linear flow, are three, namely Ca, l, and D.
The pertinence of these parameters has been extensively discussed by Kaoui
et al. [89]. It has been shown that when S and L are constant, the variation
of the third parameter D, shifts significantly the boundaries of the
phase diagram (Fig. 8B). Other quantities also, such as the amplitude of
oscillation of the vesicle’s long axis in VB mode, have been obtained to be
extremely sensitive to the third parameter D at constant S and L [89].
A more recent analytical calculation [91] has revealed the necessity of
including higher order harmonics (fourth order harmonics, albeit a linear
shear flow predominantly excites second harmonics) even though the shape
is arbitrarily close to a sphere. This study was motivated by a full 3D
numerical simulation [82] that showed that even in the quasispherical
limit the previous theories including only second order harmonics had a
significant quantitative gap with the full numerics. The recent analysis [91]
is a very good agreement with the full numerical solutions. Both the full
numerical solution and the new analytical theory confirmed the relevance of
three control parameters, in accord with Danker et al. [41] and Kaoui et al.
[89]. A critical comparison between experiments and theory is provided in
[82] and in [91].

An interesting question is whether the thermal fluctuations affect vesicle
dynamics in shear flow. Experiments at very low shear rates have shown
their significant influence on the vesicle shape and orientation in shear flow
[24,36]. The important effect of membrane thermal fluctuations on the
vesicle orientation has been registered in the TT regime [33] and also, on
the vesicle shape in the VB mode [35,36,39] especially in the contraction
phase, when the membrane is strongly fluctuating. Nevertheless it has been
shown, that the average behavior is well described by the traditional models
not taking into account the thermal noise [33]. It has been observed that
oscillatory shear reduces membrane fluctuations [37], possibly as a conse-
quence of increase in the membrane tension [92]. The same study of the
effects of time-dependent external flows on the vesicle dynamics, reported
the appearance of transient membrane wrinkles upon reversal of the flow
direction [37]. The observed membrane undulations have been attributed
to the appearance of negative tension [31].

The signature of the membrane bending elasticity on vesicle dynamics in
shear flows is possible to be captured by higher-order theory. The pertur-
bation analysis has been extended by including thermal fluctuations [24,93]
and membrane bending elasticity [30,41]. It has been obtained that thermal
fluctuations induce intermittent tumbling and alter the TT-to-TB transition
[93,94]. It has to be pointed out that the analytical theories developed so far
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for vesicle dynamics in shear flow [30,41] obtain the same qualitative shape
of the phase diagram (Fig. 8), but compared to experiments, these models
predict significantly lower transition values of viscosity ratios l (or L as in
[30]) (cf. Fig. 9). This quantitative discrepancy has been overcome in recent
analytical [91] and numerical [82] studies by taking into account higher
order spherical harmonics in the vesicle shape equation, while previous
studies accounted only for the second mode of the shape decomposition in
spherical harmonics. The latest analytical results of Farutin et al. [91]
revealed that higher order terms and harmonics (even if they are not directly
excited by the shear flow) is necessary to be included when the vesicle
dynamics in shear flow is being analyzed. Furthermore, as a result of the
excitation of the four-order harmonic in the shape evolution equations of a
vesicle in a linear flow, a qualitatively new feature of the phase diagram has
been obtained, namely an important widening of the VB regime band over
a critical shear rate of the flow [91].

4. Microscopic Signature on the Rheology of

Vesicle and Red Blood Cell Suspensions

The rich phase diagram of the vesicle dynamics in shear flows draws
the attention to the possible impact of the microscopic dynamics (TT, VB,
and TB) of these deformable particles and the transitions between the
various dynamic states on the rheology of vesicular suspensions. Here, an
example will be given for an experimental study of the rheology of dilute
suspensions of vesicles and RBCs. By focusing simultaneously on GUV and
RBC suspensions, information can be drawn regarding rheology, about
similarities and differences of the two systems. As discussed in details in
Section 1, besides constituting a relatively simple system, easily reproducible
in laboratory conditions, vesicles are believed to capture some features of
erythrocytes. In rheological studies, the parallel experiments with suspen-
sions of vesicles and such of erythrocytes give the possibility to reveal and
quantify the contribution of the cytoskeleton to the studied properties.

In order to answer the naturally arisen question about the signature of
the vesicle or erythrocyte dynamics on the macroscopic level of rheology,
viscosities of diluted suspensions were measured as a function of the viscos-
ity ratio l between the inner and outer fluids (relative to the vesicle or
erythrocyte membrane). Rheology of dilute RBC suspensions was studied
experimentally for the case, where the intercellular adhesion is absent.
Hydrodynamic interactions between cells were weak and rouleaux forma-
tion was inhibited by removal of plasma proteins.

Vesicle suspensions were obtained from the synthetic lipid dioleoyl-
phosphatidylcholine via electroformation [71] in the desired internal
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solution containing sugars (sucrose or glucose) and/or dextran. All chemical
substances used for preparation of suspensions in the present study, were
purchased from Sigma-Aldrich (France). After dilution in the relevant
external solution, which was chosen in a way to assure the necessary l,
suspensions were centrifuged and supernatants and sediments were collected
separately. Viscosity measurements of the internal solution, the supernatant
and the sediment, give respectively �in, �out and the effective viscosity of the
suspension, �eff. The microscopic characterization permits to calculate the
volume fraction of vesicles in each suspension [42].

Whole blood from healthy donors was provided by the French National
Centre of Blood (Etablissement Français du Sang—EFS, Grenoble) and the
University Hospital (CHU) in Grenoble. Blood washing in PBS (Phos-
phate-buffered saline) buffer solution by gentle centrifugation permitted to
remove plasma proteins and the other cellular fractions thus obtaining only
erythrocyte concentrate in buffer solution. After the subsequent dilution in
the desired external solution (containing dextran and/or PBS), the mea-
surement of the suspension viscosity, �eff, was performed. The experimental
determination of the outer viscosity was carried out on the supernatant after
the centrifugation of RBC suspensions till the complete cell sedimentation.
All experimental procedures are described in detail in [42].

In the dilute limit, the variations of suspension viscosities compared to
the viscosity of the suspending medium are proportional to the volume
fraction. The intrinsic viscosity is defined as [42]:

�½ � ¼ �eff � �out
j��out

; ð35Þ

where f is the volume fraction of particles.
All viscosity measurements were performed at the constant temperature

of 22 
C with different instruments whose choice depended on the
expected value of the measured viscosity: for low viscosities a Schott
capillary viscometer or a LS30 low-shear rheometer (Contraves, Switzer-
land) with cylinder-Couette geometry were used, otherwise we applied a
stress-controlled Bohlin Gemini 150 rheometer (Malvern Instruments,
Germany) with a cone-plate geometry.

Viscosity measurements were carried out in a large range of shear rates in
order to detect possible viscoelastic or aggregation effects and determine the
range of shear rates where measurements are accurate and correspond to the
dilute suspension limit (Fig. 10). For RBCs in PBS buffer, measurements
were made at different hematocrit values in order to check the applicability
of dilute suspension theories and the appearance of hydrodynamic interac-
tions [42]. It has been derived that for a suspension of vesicles in the TT
branch of the phase diagram, the intrinsic viscosity reads [28]:
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�½ �TT ¼ 5

2
� D

23lþ 32

16p
: ð36Þ

If spherical particles are considered (i.e., D ¼ 0), the above expression
reduces to the classical result of Einstein for the intrinsic viscosity of a dilute
suspension of rigid spheres.

In the small excess area limit, the following expression has been obtained
analytically for the intrinsic viscosity of a dilute suspension of tumbling
vesicles [40]:

�½ �TB ¼ 5

2
þ

ffiffiffiffiffi
30

p

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� 4h2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dþ 4h2

p þ ffiffiffiffi
D

p � h

" #
; ð37Þ

where h ¼ 60
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2p=15

p
= 23lþ 32ð Þ with TB corresponding to D > 4h2,

and TT—to the opposite condition.
In their experimental study, Kantsler et al. [95] found that at low l the

effective viscosity [�] of vesicular suspensions increases with viscosity ratio
l. Our experimental results are shown in Fig. 11. The measured values of
the intrinsic viscosities [�] (35) are traced as a function of the viscosity ratio l
for vesicular suspensions with 0.03 � f � 0.12. Our findings are consis-
tent with recent theoretical studies on vesicle suspensions [40]. For every
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Figure 10 Experimental data for the relative viscosities of RBC suspensions vs. the
volume fraction of the cells; parabolic fit (dashed line) of the data: y ¼ A þ B � x þ
C � x2 with A ¼ 1, B ¼ 0, C ¼ 23.95 � 2.9. Limits of dilute approximation for RBC
suspensions: for small volume fractions, f, of RBCs, relative viscosity increases linearly
with f (the solid line represents linear fit for f � 0.1: y ¼ C þ D � x with
C ¼ 1, D ¼ 2.75 � 0.12).
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suspension it has been also checked if vesicles exhibit TB or TT. Vesicle
samples are usually much more polydisperse in size than RBCs [42]. Despite
their polydispersity, the viscosity of vesicle suspensions follows the general
trend of a slow decrease in the tank-treading regime and a rapid increase
after the transition to tumbling. Qualitatively, the pronounced decrease of
the intrinsic viscosity [�] in the vicinity of the TT-to-TB transition can be
explained with the smaller viscous dissipation, resulting from the alignment
with the flow of the particle’s long axis, when approaching the transition to
TB. In the TB regime already, larger fluid volume is disturbed by the
flipping particle, thus leading to an increase of the viscosity.

With regards to erythrocytes, it is noteworthy that even if their bicon-
cave cellular shape being far from that of a sphere, the rheology of RBC
dilute suspensions has been obtained experimentally [42] to be in qualitative
agreement with the theoretical results for vesicles [40]. Thus, the rheologi-
cal constitutive law for dilute vesicular suspensions should serve as a first step
from microscopic considerations toward blood rheology. Remarkably, the
intrinsic viscosity decreases until the viscosity ratio reaches the range (2–3),
and then sharply increases. This change of regime corresponds to the
transition from tank-treading to tumbling that is observed at high shear
rates when the relative viscosity is increased. The experimental results for
RBC suspensions suggest that, as long as the viscosity is concerned, no
qualitative effect of the cytoskeleton can be concluded. Quantitative effects
are, however, quite significant. The intrinsic viscosity of dilute RBC
suspensions exhibits a pronounced minimum, when the viscosity of the
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Figure 11 The intrinsic viscosity (Eq. (35)) of vesicular suspensions (0.03 � j � 0.12)
as a function of the viscosity ratio. The solid line represents the analytical results
(Eqs. (36) and (37)) for vesicles with D ¼ 0.5 (Reprinted from [42]; Copyright
(2008), with permission from Elsevier).
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ambient medium is close to the value at which the transition from TT to TB
occurs. It was found [42] that the intrinsic viscosity of the suspension
changes by about a factor four in the explored parameter range even at
low volume fraction of erythrocytes (j � 0.1).

A major result reported here is the fact that the experimental rheology of
RBC suspensions shows the same general trend as the theory for vesicles: the
effective viscosity exhibits a minimum around the TT–TB transition. This
reveals a qualitative change due to the link between microscopic and macro-
scopic dynamics. This finding may be used to detect blood flow disorders
linked to pathologies that affect erythrocyte’s shape and mechanical proper-
ties and opens future perspectives on setting up new diagnostic tools, with
high efficiency even at very low RBC concentration in the sample.

An important task for future research is to elucidate how pathological
cells impact on rheology. This should open a new way toward setting up
further diagnostic tools based on rheological measurements. Some patho-
logical cells, for example, elliptocytes or spherocytes (see for ex. [96]) have
larger reduced volume n, which can fall in the range from 0.7 up to 0.9 (to
recall that for normocytes n � 0.6). Since the tumbling bifurcation signifi-
cantly depends on the reduced volume n (or the excess area D) [26,89], the
value of the viscosity ratio l, at which the minimum of the intrinsic viscosity
is found, should be shifted by a noticeable amount both in the horizontal
and vertical directions. In addition, it is known that not only the shape but
also the membrane mechanical properties could be altered due to a disorder
of the cytoskeleton. A systematic investigation of the dynamics and rheol-
ogy, and the link between micro and macro scales in pathological samples
would therefore be relevant.

5. Concluding Remarks

The active research in the field of membrane biophysics, so far, led to a
better understanding of the structural and functional membrane features
playing major role in various processes with physiological relevance. The
crucial interplay between the intrinsic bilayer properties and the physical
phenomena, taking place in the membrane surroundings, has drawn the
attention of theorists and experimentalists during the last decades.

In this chapter, we tried to present the potential of the shape fluctuation
analysis of giant lipid vesicles as a powerful tool for the noninvasive deter-
mination of important membrane properties, such as its bending rigidity (at
allowed and blocked intermonolayer exchange of molecules), the friction
coefficient between the two monolayers, comprising the bilayer or the
diffusion coefficient of a guest molecule in the lipid matrix. Modeling
some basic characteristics of RBCs, giant lipid vesicles were shown to
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recover qualitatively the basic rheological properties of RBC suspensions.
Effective viscosity of suspensions exhibits minimum around the tank-tread-
ing-to-tumbling transition, thus making evident the relation between the
structural dynamics at microscopic scale and the macroscopic properties of
the suspension. These findings could be exploited in the conception of
novel diagnostic tools for complementary detection of pathologies affecting
the shape and/or rigidity of RBCs.

Despite the important progress achieved till now, numerous challenging
questions remain to be answered from theoretical, as well as from experimental
point of view. An example of them is the experimental investigation and the
theoretical description of the behavior in hydrodynamic flows of vesicles with
multicomponent membranes. The possible flow-induced lipid redistribution
has to be taken into account as well as the new features in the vesicle shape
dynamics, which would result from the complex membrane structure.
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Abstract

Carotenoids perform light harvesting, photoprotection, electron transfer, and

structural role in photosynthetic membranes. To unravel the b-carotene contri-

bution to the stability of membranes, liposomes with different lipid composition

(resembling the photosynthetic membranes, containing mainly galactolipids

with a high degree of unsaturation, and egg phosphatidylcholine) were used.

The aim was to gain insight into the mechanism of b-carotene–lipid interactions

with a special focus on the fluidity of the bilayer. Data from absorption, pyrene

fluorescence, and resonance Raman spectroscopy revealed that the degree of

lipids’ unsaturation regulates the penetration of b-carotene molecules into the

membrane, thus modifying the lipid–pigment interactions.
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1. Introduction

Carotenoids are wide spread natural molecules, with over 600 struc-
turally related compounds, both in plant and animal kingdom, which play
multiple important physiological functions. From the spectroscopic and
structural point of view the most typical feature of naturally occurring
carotenoids is the long polyene chain with conjugated double bonds [1]
that are responsible for the pigment properties of carotenoids, to absorb the
electromagnetic radiation from the visual region. The double bond system
constitutes a rod-like skeleton of the molecule that seems to play a key
stabilization function of carotenoids, both in respect to lipid membranes and
proteins [2].

In photosynthetic membranes, carotenoids perform different important
functions as light harvesting, electron transfer, photoprotection, and struc-
tural role, stabilizing the membrane three-dimensional integrity [3–6]. They
cover a spectral window lacking chlorophyll absorption (ca. 500 nm) [2,3]
and play a protection role against high-light stress and reactive oxygen
species, via quenching of electronic excited states of chlorophyll amolecules
[5]. Carotenoids contribute also to the stability of the lipid molecules and
preserve the three-dimensional integrity of bacterial and plant antenna
complexes and the assembly of functional photosystem II under normal
and potentially harmful environmental conditions [4,6].

The presence of carotenoids in the membrane influences, directly or
indirectly, a vast range of physical and physiological processes. For inves-
tigation of the effects of various carotenoids on the membrane thermody-
namic and mechanical properties, different model systems are used [7–10].
Carotenoids, being hydrophobic molecules, are predicted to be located
within the hydrophobic core of the lipid bilayer. Their orientation within
the membrane is dependent on the structure of the particular carotenoid
and on the lipid composition of the host membrane. The orientational
ordering of b-carotene, embedded in lamellar model lipid membranes and
its effect on the membrane structural and dynamic properties have been
investigated by variety of experimental methods: angle-resolved resonance
Raman scattering, EPR, NMR, X-ray diffraction measurements, and
computer simulation of molecular dynamics [7,9,11–13]. Localization of
b-carotene, lacking polar groups in its molecule, in the lipid membrane
environment is governed by van der Waals interactions with the hydro-
carbon fatty chains of the lipids. The alterations in the angle-resolved
Raman data have been used to monitor the phospholipid phase behavior
in dipalmitoylphosphatidylcholine (DPPC) and distearoylphosphatidyl-
choline, one-component systems and binary mixtures [7]. The found
orientational distribution functions have shown that b-carotene is oriented
parallel to the bilayer plane (dioleoyl lecithin) or perpendicular to it
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(soybean lecithin). For dimyristoyl lecithin, egg-lecithin, and digalactosyl-
diacylglycerol, two maxima have been found in the orientational distribu-
tion: one parallel and one perpendicular to the bilayer surface. In contrast,
it has been shown that in carotenoid-egg phosphatidylcholine liposomes,
b-carotene is randomly distributed in the hydrocarbon interior of the
bilayer, without any preferred, well defined orientation and retains a
substantial degree of mobility increasing motional freedom of both lipid
headgroup and alkyl chains in liquid crystalline state [9]. EPR investiga-
tions have shown that b-carotene tends to fluidize the interior of phos-
phatidylcholine membranes and to decrease the penetration barrier to
small molecules to the headgroup region [2,11]. X-ray diffraction mea-
surements have confirmed that b-carotene disordered the packing of
phospholipid acyl chains in a manner that correlated with its pro-oxidant
actions [12]. The results obtained by a molecular dynamics simulation of
the fully hydrated bilayer made of palmitoyl oleoyl phosphatidylcholine
(POPC) and containing b-carotene molecules indicated that the b-caro-
tene rings were located in the region occupied by the carbonyl groups of
the lipids [13]. These results suggest two pools of the preferential orienta-
tion of b-carotene: a slightly bent structure corresponding to a small chain
tilt angle and a rather stretched structure that corresponds to a higher chain
tilt. All these data, contradictory to a certain extent, revealed that the
orientation and conformation of b-carotene molecules in model mem-
branes are strongly dependent on its lipid content.

Majority of investigations reporting on the effect of b-carotene on
physical properties of model lipid membranes have been performed on
phospholipid bilayers [2,7–11]. As b-carotene represents an important
pigment component of the photosynthetic thylakoid membranes, where
the photosynthetic processes take place, it was interesting to investigate its
role on model membranes, resembling the lipid composition of photosyn-
thetic membranes.

Thylakoid membranes of photosynthetic organisms contain various lipid
species, the main being galactolipids, such as monogalactosyldiacylglycerol
(MGDG), digalactosyldiacylglycerol (DGDG) and sulfoquinovosyldiacyl-
glycerol (SQDG) [14,15]. MGDG comprises about half of the total thyla-
koid membrane lipid, the second most abundant lipid is DGDG which
accounts to about 30% of the thylakoid lipids and SQDG that is found in a
lower amount. The only phospholipid in the thylakoid membranes is
phosphatidylglycerol (PG). MGDG and DGDG are neutral lipid molecules
with a high degree of unsaturation of the fatty chains (predominantly 18:2
and 18:3). MGDG is a non-bilayer lipid forming hexagonal structures in
aqueous medium. It has been shown that in native thylakoid membranes the
non-bilayer lipids are arranged in a bilayer [16]. The other two compo-
nents—PG and SQPG—are anionic lipids, providing negative charges to
the thylakoid membrane [14,15].
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The aim of the present work was to gain some insight into the mecha-
nism of b-carotene–lipid interactions in liposomes with a special focus on
the degree of unsaturation of the fatty chains. To investigate this effect, we
used liposomes with lipid composition resembling that of photosynthetic
thylakoid membranes, containing mainly galactolipids with a high degree of
unsaturation of the fatty chains, and egg phosphatidylcholine liposomes.
Absorption, pyrene fluorescence, and resonance Raman spectroscopy were
applied to study the effect of b-carotene incorporation into the liposomes.
The observed changes in b-carotene absorption and Raman spectra may be
regarded as a result of the lipid–pigment interactions leading to a polyene
geometry distortion, different in distinct lipid environment.

2. Materials and Methods

2.1. Materials

b-carotene, Tris-hydroxymethylaminomethane (TRIS), POPG, and pyr-
ene were obtained from Sigma, EPC—from Avanti Polar Lipids. The
chloroplast glycolipids SQDG, MGDG, and DGDG were purchased from
Lipid Products (Redhill, Surrey, UK) and used as obtained.

2.2. Liposome Formation

The pigment was added to the lipids, before formation of liposomes, from a
stock solution in chloroform to obtain following concentrations: 0.05, 1, 2,
3, 4, and 5 mol%. Concentrations of applied b-carotene were calculated as
mol% in respect to the lipid concentration. Lipids equivalent to 1 mM
(0.75 mg/ml) dissolved in chloroform, pure or mixed with different mol%
b-carotene (1 mM in chloroform), were dried from the solvent under a
gentle steam of N2 to obtain a thin lipid layer on the bottom of a glass test
tube. Thylakoid mix (TM) lipids were prepared as described in [17], 40%
MGDG, 30% DGDG, 15% SQDG, and 15% POPG, on a weight base.
Final traces of solvent were removed form the lipid film under deep vacuum
over night followed by hydration with 50 mM TRIS buffer (pH 7.4). Small
liposomes were formed by sonication for 40 s using ultrasound generator
system. The residual, not integrated into liposomes b-carotene, was
removed by two steps centrifugation at 15,000�g. Supernatant contained
the b-carotene-doped TM or EPC liposomes and used for all experiments.

2.3. Determination of b-Carotene Concentration

The amount of b-carotene integrated into liposomes was determined by
extraction of the pigment from the vesicles by ethanol and absorbance
spectra were recorded on Specord 210 Plus in the spectral region
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350–600 nm. Concentration of incorporated b-carotene was evaluated
using molar extinction coefficient of b-carotene in ethanol at 453 nm,
141 � 103 M�1 cm�1 [18]. The results were used to determine the b-
carotene incorporation yield (IY) as the ratio between the concentrations of
integrated and applied b-carotene [19].

2.4. Steady-State Fluorescence Measurements

The fluorescent probe pyrene was added to TM and EPC liposomes,
without and doped with different concentrations of b-carotene, at concen-
tration 4 mol% in respect to lipids from a stock ethanol solution [19]. Care
was taken the amount of added ethanol not to exceed 0.5%. Liposome–
pyrene mixture was incubated at room temperature for 30 min and pyrene
fluorescence was recorded with a Jobin-Ivon spectrofluorimeter. Fluores-
cence was excited at 332 nm and registered in the region 350–550 nm. Slit
widths were 4 nm. After subtraction of the dark level, total fluorescence
intensity (I) was determined as the total fluorescence area under the fluores-
cent contour. Pyrene, being apolar molecule, is completely buried within
the hydrophobic region of the membrane [20]. Pyrene forms excimers (E)
from monomers (M) by a diffusion-controlled process in fluid membranes
that is directly related to membrane fluidity. In a monomeric form, pyrene
gives a rise to a fluorescent peak at 393 nm (F393) and a broad one at
470 nm, emitted by the excimers (F470) [20].

2.5. Resonance Raman Spectra Measurements

Room temperature resonance Raman (RR) spectra were measured using a
microRaman spectrometer (Jobin-Ivon, HR 800) with a grating 1800 g/mm.
The excitation was provided by an argon ion laser (Innova 307,
Coherent) at 514.5 nm. The laser intensity was 4 mW; the spectral resolution
was 0.5 cm�1.

All experiments were performed at room temperature, well above the
phase transition of lipids.

3. Results

In Fig. 1, the chemical structures of the predominant lipid class of EPC
(64% POPC)[A], of thylakoid mix lipids (MGDG) [B], and of b-carotene [C]
are presented. DGDG and SQDG contain in the headgroup two or one
galactose residue, respectively. Both galactolipids, MGDG and DGDG, con-
tain highly unsaturated fatty chains, three double bonds per chain, which
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determines the high degree of fluidity of the hydrophobic interior of the
membrane [14]. The relative length of presented molecules is comparable.

Small liposomes were formed by sonication [17] without or in the
presence of different concentrations of b-carotene. In Fig. 2A, the
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calculated concentrations of integrated b-carotene in both types of lipo-
somes as dependent on the concentration of applied pigment are presented.
As expected, more b-carotene was integrated into liposomes with increase
of concentration of applied pigment. For EPC liposomes, this dependence
was nearly linear. For TM liposomes, integration of b-carotene at higher
concentrations of applied pigment was higher than in EPC liposomes. The
values of integrated and applied b-carotene concentrations were used to
calculate the integration yield of the pigment (IY) (Fig. 2B). The obtained
data for EPC liposomes were in a good agreement with the values obtained
for IY of b-carotene in DPPC liposomes [21].

In Fig. 3, the absorbance spectra of b-carotene, extracted from EPC
liposomes by ethanol, and the spectra of both investigated liposomes, dis-
solved in buffer and containing the highest concentration of integrated b-
carotene, are shown. The spectra of ethanol extracts show a typical carotene
contour, with two maxima, at 453 and 476 nm and a shoulder at 430 nm
(Fig. 3, spectrum 1). The three spectra were normalized at 453 nm (0–1
transition).

In the spectra of EPC and TM liposomes, dissolved in buffer, three peaks
were resolved, at 453, 480, and 518 nm. The shoulder at 430 nm (0–2
transition) was less expressed than in the ethanol extract of b-carotene. The
peak at 480 nm (0–0 transition) in EPC and TM liposomes was higher than
in the ethanol extract and its height was comparable with that at 453 nm.
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Figure 3 Absorbance spectra of b-carotene, extracted from liposomes by ethanol (1)
and integrated into liposomes (EPC—2, TM—3), dissolved in TRIS buffer. Spectra are
normalized to the intensity at 453 nm.
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The most interesting difference in the spectra of ethanol extract and of
liposomes, containing b-carotene, was the additional absorbance peak at
518 nm. Nevertheless that b-carotene was integrated into different lipo-
somes and with different efficiency the resulting spectra were very similar.
Here, we present only the spectra of liposomes with the highest concentra-
tion of integrated b-carotene because for the lower concentrations the
shapes of the spectra were identical in respect to height and position of
the peaks (data not shown).

The fluorescent probe pyrene is often used for determining membrane
fluidity. Pyrene is an apolar molecule, composed of four fused benzol rings,
completely buried into the hydrophobic interior of lipid membranes and
forms excimers from monomers in fluid membranes by a diffusion con-
trolled process [20]. The excimer formation is determined by the ratio of the
excimer to monomer fluorescence quantum yield (E/M). In Fig. 4, the
fluorescent spectra of EPC and TM liposomes, without and containing
different concentrations of b-carotene, are presented. With increase of
concentration of integrated b-carotene, the overall pyrene fluorescence
for both types of liposomes was quenched. In Fig. 5, the total areas under
the pyrene fluorescent spectra of EPC and TM liposomes containing
increasing concentrations of b-carotene as a measure of the degree of
quenching are presented. The observed decrease supposed that the pyrene
fluorescence was quenched by b-carotene, due to an effective energy
transfer from pyrene excimers to b-carotene since the excimer fluorescence

A B

1

2

3

4

350 400 450 500 350 400

Wavelength (nm)

A
bs

or
ba

nc
e 

(r
el

. u
.)

450 500 550

1

2

3

4

Figure 4 Fluorescence spectra of pyrene, integrated into EPC (A) or TM (B) lipo-
somes, pure (1) and doped with different concentrations of b-carotene; concentration
of applied b-carotene 3 mM (2), 9 mM (3) and 35 mM (4). Fluorescence was excited at
332 nm, slits—4 nm.
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spectrum overlaps the carotene absorption. The quenching of pyrene fluo-
rescence indicated that the pigment molecules were localized in the hydro-
phobic environment of the bilayer, in the vicinity of pyrene molecules, and
the distance between them is estimated to be not higher than 7 Å in order
the supposed energy transfer to take place. The more effective quenching
for TM liposomes could be due to the higher motional freedom of the fatty
chains of lipids that allows deeper penetration of b-carotene in the lipid
bilayer and closer contact with the hydrophobic molecule of pyrene.

In an attempt to get more detailed information about b-carotene–lipid
interactions in EPC and TM liposomes, we compared their RR spectra,
excited at 514.5 nm, to the spectrum of b-carotene dissolved in pyridine.
The comparison is presented in Fig. 6. Pyridine was chosen as a solvent as its
refractive index (n ¼ 1.5092) is close to that of membrane lipids. The
excitation wavelength was near to the observed additional absorbance
peak of b-carotene integrated into both types of liposomes (Fig. 3). The
RR spectra manifest the characteristic for carotenoids’ four main frequency
bands in Raman spectrum (called from n1 to n4). The main bands have been
assigned as follows: n1 to in-phase stretching vibrations of the C¼C bonds,
n2 to C–C stretching coupled to C15–H in-plane (ip) bending, n3 to methyl
CH3 ip rocking vibrations, and n4 (around 960 cm�1) have been attributed
either to the out-of-plane wagging motions of the C–H groups of the
carotenoid molecules and/or to the C–CH3 stretching [22–25]. Differences
are mainly observed in the region of n4 and n2 bands.
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Figure 5 Area under the fluorescent spectra of pyrene in EPC (-○-) or TM (-d-)
liposomes, without and containing different concentrations of b-carotene, in respect to
concentration of integrated pigment. Area under the fluorescent spectra of pyrene in
pure liposomes was taken as 1.
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In the region of n2 band (Fig. 6), we observed characteristic frequencies
at 1175, 1190, and 1210 cm�1. Their structure in the liposomes differed
from that one in solution (pyridine). The 1175 cm�1 line could be assigned
to methyl rocking at C18. The other two lines have been attributed to
localized stretching modes: 1190 cm�1 at C8–C9 and 1210 cm�1 at
C12–C13, combined with C15¼C15’, according to the recently published
theoretical results for b-carotene Raman-active modes [26]. The relative
intensity of the band at around 1210 cm�1 increased in both kinds of
liposomes correlating with the changes in n4 band.

Structured n4 bands, indicative of out-of-plane distortions of conjugated
backbone of the b-carotene molecule, were observed in both EPC and TM
liposomes with incorporated b-carotene. They exhibited two transitions at
954 and 965 cm�1 becoming particularly clear from Fig. 7, where the bands
were normalized to the intensity of the band at 965 cm�1 and compared to the
unstructured band of b-carotene, dissolved in pyridine. Based on the normal
coordinate analysis made for b-carotene by Saito and Tasumi [27], the mode
around 950 cm�1 has been assigned to the torsion at C7¼C8, whereas the
mode at 965 cm�1 to the torsion at C11¼C120. These Raman-active modes
have been recently predicted also byTschirner et al. [26], at 974 and 982 cm�1

with low intensities, arising from methyl rocking C160 and CH out-of-plane
wagging around C11¼C12, but observed at 957 and 967 cm

�1 [26].
The intensity of the band located at 954 cm�1 changed weakly with the

pigment concentration in EPC liposomes (Fig. 7A), remaining lower than
that at 965 cm�1. In contrast, in TM liposomes, the 954 cm�1 intensity
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increased gradually with the pigment concentration and became twice
higher than that at 965 cm�1 at concentration 38 mM (Fig. 7B) indicating
that the polyene geometry at C7¼C8 was distorted stronger in TM lipo-
somes with integrated higher concentration of the pigment. Thus, based on
the observed different concentration, dependences of the intensity of these
two modes in both EPC and TM liposomes, we can suppose that the out-
of-plane distortions of conjugated backbones of the b-carotene molecules
were different in respect to the type of liposomes.

4. Discussion

In order to study the b-carotene–lipid interactions in photosynthetic
thylakoid membranes, we used liposomes, composed of lipids mimicking
the lipid composition of plant chloroplast membranes, which are character-
ized with a high degree of unsaturation of their fatty chains. The alterations
in absorption, pyrene fluorescence, and resonance Raman spectra, induced
by b-carotene incorporation into TM and EPC liposomes, were compared
to determine the role of lipid unsaturation for these interactions. When
integrated into model membranes b-carotene can adopt various orienta-
tions, depending on the type of host lipids [7,9,11–13].

In majority of published data on the effect of carotenoids on the
physicochemical properties of model membranes, only the concentration
of the applied carotenoids is taken into account. It is uncertain howmuch of
b-carotene molecules added to the sample during preparation can be
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dissolved in the lipid bilayer in the form of monomers. Because of these
solubility problems and uncertainties, the carotenoid concentration is dis-
cussed as the amount added to the sample during preparation of liposomes
and not as the amount dissolved in the lipid bilayer [9,11–13,28]. To the
best of our knowledge, there are only two reports on degree of incorpora-
tion of various carotenoids in different model membranes, phosphatidyl-
choline vesicles, finding high incorporation rate for xanthophylls and low
incorporation for b-carotene [21,29]. In this study, we estimate the amount
of integrated b-carotene into two different types of liposomes, composed of
egg phosphatidylcholine and of lipids, found in photosynthetic thylakoid
membranes. The results indicated that the integration rate of b-carotene was
dependent on the fluidity of the hydrophobic interior of the bilayer. As
expected, the amount of b-carotene integrated into TM liposomes was
higher than in EPC ones, especially for high concentration of applied
pigment (Fig. 2) due to the higher fluidity of the hydrophobic interior of
TM liposomes. All presented results were given as a function of the real
concentration of b-carotene, integrated into liposomes.

The higher degree of motional freedom of the hydrophobic interior of
TM liposomes determined not only the higher concentration of integrated
b-carotene but probably the molecules of the pigment were inserted deeper
in the bilayer as evidenced by the accelerated quenching of pyrene fluores-
cence (Fig. 5). This quenching was realized by an effective energy transfer
from the pyrene excimers to b-carotene molecules, situated in a close
proximity, as the maxima of excimers’ fluorescence emission and the
b-carotene absorption overlap (see Figs. 3 and 4).

In the absorbance spectra of the two types of liposomes, containing
b-carotene, we observed an additional peak at higher wavelengths, 518 nm
(Fig. 3). We consider that this peak should be rather due to lipid/pigment
interactions than to a possible formation of J-aggregates, characterized by a
new absorption band at 530 nm [30,31]. The arguments in favor of this
conclusion were the following. One of the key factors controlling the forma-
tion of interval J-aggregates has been shown tobe the high initial concentration
(100 mM), allowing the excitonic interactions between carotenoid molecules
[30]. All used concentrations in this work were well below these values to
induce aggregation. Another argument was the inverse correlation between
the position of the absorption maximum of the aggregation band with the
catotenoid’s polarity, found by Ruban et al. [31]. Since the polar molecules of
zeaxanthin had an aggregationmaximum at 534 nm, the expected aggregation
band for apolar b-carotene should be at higher wavelengths. The observed
position of the additional absorption band in liposomes at 518 nm shows
that the assignment of this peak to the formation of b-carotene aggregates
is not feasible. So, we can attribute this band to lipid/pigment interactions.

Resonance Raman spectroscopy is a nondestructive method providing
precise information on the type and conformation of carotenoid molecules
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[22–25]. All presented resonance Raman spectra, excited by a narrow laser
line coinciding with a new carotenoid absorption band, 514.5 nm, we
assigned to the all-trans b-carotene. The following two reasons support
this assignment. Firstly, we did not observe an upshift of the n1 band
induced generally by cis isomerization [24,25,32]. Secondly, our experi-
mental data (Fig. 6) showed a relatively very weak intensity around
1134 cm�1 in the so-called cis-isomerization fingerprint region n2 (1100–
1300 cm�1) [24,32]. It led us to the conclusion that the presence of other
geometrical conformers in liposomes is not likely.

The structured n4 bands [22,25,27], observed in both types of liposomes
containing b-carotene, indicated that the pigment incorporation led to out-
of-plane distortions of conjugated backbone of the b-carotene molecules.
Moreover, the degree of lipids’ unsaturation exhibited pronounced differ-
ence in their effect on the molecular planar structure of all-trans b-carotene
molecules during their integration. Induced stronger deformation of the
carotenoid molecular geometry in the fluid environment of TM liposomes
can be due to the deeper and easier insertion of pigment molecules between
TM lipids as compared to the EPC ones. The more effective quenching of
pyrene fluorescence in TM liposomes supported this notion. The deeper
insertion should lead to the exhibited stronger distortion of carbon backbone
of pigmentmolecules at C7¼C8 in TM liposomes. The different penetration
deepness of b-carotene molecules in liposomes suggested that the molecule
orientation could be in different directions: parallel or perpendicular to the
bilayer surface as it was concluded for dimyristoyl lecithin, egg-lecithin, and
digalactosyldiacylglycerol liposomes [7]. The two different orientations into
the bilayer could impose the distinct extent of the deviation from the
planarity of b-carotene molecules at two different places in the conjugated
backbone generating the two Raman-active modes at 954 and 965 cm�1

(Fig. 7). The perpendicularly orientated molecules to the membrane surface
(being parallel to the lipid alkyl chains) are subjected to a slighter deformation
than those, oriented parallel to the surface in the interior of the bilayer. These
considerations are in accordance with the suggested two distinct deforma-
tions of b-carotene molecules, resulted from a molecular dynamics simula-
tion of the fully hydrated bilayer composed of POPC [13].

In conclusion, our data imply that the degree of lipids’ unsaturation
regulate the penetration deepness of b-carotene molecules in liposomes thus
modifying the lipid–pigment interactions leading to the polyene geometry
distortion, different in distinct lipid environment.
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