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Preface 

This volume contains most of the invited and contributed papers presented at the 
Conference on Robustness of Statistical Methods and Nonparametric Statistics held 
in the castle oj'Schwerin, Mai 29 - June 4 1983. This conference was organized by the 
Mathematical Society of the GDR in cooperation with the Society of Physical and 
Mathematical Biology of the GDR, the GDR-Region of the International Biometric 
Society and the Academy of Agricultural Sciences of the GDR. All papers included 
were thoroughly reviewed by scientist listed under the heading "Editorial Collabora­
tories·'. Some contributions, we are sorry to report, were not recommended for publi­
cation by the rf'vif'wers and do not appear in these proceedings. The editors thank 
the reviewers for their valuable comments and suggestions. 

The conference was organizf'd bv a Programme Committee, its chairman was Prof. 
Dr. Dieter Rasch (Research Centre of Animal Production, Dummerstorf-Rostock). 
The members of the Programme Committee were 

Prof. Dr. ,Johannes Adam (Martin-Luther-University Halle) 
Prof. Dr. Heinz Ahrens (Academy of Sciences of the GDR, Berlin) 
Doz. Dr. Jana Jureckova (Charles University Praha) 
Prof. Dr. Moti Lal Tiku (McMaster University, Hamilton, Ontario) 

The aim of the conference was to discuss several aspects of robustness but mainly to 
present new results regarding the robustness of classical statistical methods especially 
tests, confidence estimations, and selection procedures, and to compare their perfor­
mance with nonparametric procedures. Robustness in this sens~ is understood as 
intensivity against. violation of the normal assumption. Three approaches can be 
found 

analytical approach for continuous distributions 
combinatorial approach for k-point distributions 
simulations in a system of distributions (Pearson system, Fleishmann system) 

The simulation studies were well designed and some papers deal with testing the 
pseudo-random number generators used. Most of the results have not been published 
elsewhere and appear in these proceedings for the first time. Some papers deal with 
the robustness issues on the lines of Huber although the main emphasis of the con­
ference was to study robustness in the Pearson framework. Some papers deal with 
robust experimental designs and some with nonparametric methods (classification, 
estimation, etc.). 

We thank the members of the programme committee, the assistant editor, the revie­
wers and the contributors of papers for their cooperation and assistance in making 
these proceedings possible. 

Dieter Rasch and Moti Lal Tiku 
Rostock and Hamilton 
February 1984 
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Department of Statistics, Charles University, Prague 

Behaviour of L-Estimators of Location from the Point of View of Large Deviations 

JAROMIR ANTOCH 

Abstract 

Let XL, ... , Xn be a random sample from a population 
with density f(x - A) such that f(x) is symetric and 
positive. It is proved that the tails of the logarithmic 
derivative of the density of L-estimators of A converge 
at most n-times faster than the tails of the logarithmic 
derivative of the basic density and, on the other hand, 
lhere are estimators which behave from this point of 
view in the same way as one single observation. It is 
shown that both extreme cases may happen for the 
sample mean. Moreover, behaviour of some typical L-esti­
mators of f) is studied from this point of view. 

1. Introduction 

Let Xl> ... ,Xn be a sequence of iid rv's distributed 
according to an absolutely continuous and symetric den­
sity f(x - A), x E R l , (-1 E R j • For each fixed n let Tn = 
Tn (Xl, .. , Xn) be an equivariant estimator of A based 
on observations Xl, .. , X n . Different measures of per­
formance of Tn have been suggested and investigated. 
Our approach differs from more customary methods of 
investigation of the behaviour of Tn mainly in two 
points: 

I. We consider rather the tail-behaviour than the local 
behaviour of the distribution of Tn: the sample size is 
fixed. 

II. The behaviour of Tn is studied through the logarithmic 
derivative of its denSity rather than through its distri­
bution function or its density itself; this is done due to 
the following reasons: 
As it was pointed out by Hampel (1973) and Field and 
Hampel (1982), q(x- ("J) = f'(x - foJ;) If(x- A) provides 
more basic description of a probability distribution than 
denSity or the cumulative distribution. This function 
describes well the behaviour of the distribution at the 
fixed point and, morover, it is often of a simple form. 
The fact that it is linear for the normal distribution 
reflects the important position of the normal distribution 
among the other distributions; the approximation of 
q(x - (-) locally by a linear function corresponds to the 
approximation by the normal distribution. 
Let us denote density of Tn by means f n (x - (-J) and 
put qn(x - (~J) = f'n(x - f)) / fn(x - A). Some of upper 
arguments can be used when taking qn (x - A) as basic 
description of distribution of Tn' Moreover, the paper of 
Field and Hampel (1982) gives asymptotic approximations 
of qn(x - (~J) very precisely for very small sample sizes 
(n = 3, 4) even in the extreme tails. Methods of this pa­
per can be very effectively used in robust testing the 
hypotheses as was shown by Ronchetti (1982). 

These were the main reasons why we decided to describe 
the behaviour of Tn with the aid of qn(x - (~J) for 
x ~ + 00. More precisely, oUt' criterion is 

Jim (-qn(x - (-))) / ( -q(x - (-J»), 
x- + 00 

(1.1) 

if this limit exists. 

We shall show that the rate of convergence of qn(x - (1) 

cannot be more than n-times faster than that of q (x -f) ) , 
while the rate of qn(x - EJ) can be also as slow as the 
rate of q(x - A). Both extreme cases may happen even 
for the sample mean. The upper bound is attained, e. g., 
for a sample from the normal distribution while the 
lower bound for a sample from the Cauchy distribution. 

If we trimm-off some extreme observations, then the 
rate of convergence cannot attain the upper bound. The 
same result holds for lower bound and samples from 
distributions with exponential tails while, surprisingly, 
this is not the case for lower bound and samples from 
distribution with heavy tails, see Theorem 3.2. 

2. Model 

In this section three basic models will be introduced 
and some properties of them discussed. Before doing it 
we shall give some necessary notions. 
ASSUMPTION A: The random variable X has absolutely 
continuous distribution function F(x), F(x) + F(-x) = 1 
for all x E RI and absolutely continuous density fix), 
fix) > 0 for all x E R j and has finite and positive Fisher 
information. 

Let us denote: 

r(x)=f(x)/(l-F(X)) , 

and 

q(x) = f'(x)/ fix) (2.1) 

B(x)= (f(x)/F(x»)/q(x), A(x)=r(x)/q(x). (2.2) 

Now we can introduce the models we shall be interested 
in. 

M I. Let F(E) be a class of random variables fulfilling 
the assumption A and such that f' (x) < 0, f" (x) exists 
and rex) is increasing for all x ;;::: Kl (f) >0, lim A(x) = 1. 

x ~ +.,-
M II. Let F(P) be a class of random variables fulfilling 
the assumption A and such that f' x) < 0, f" (x) exists 
<lnd rex) is decreasing for all x;;::: K2(f) > O. 

M III. Let F(H) be a class of random variables fulfilling 
the assumption A and such that f'(x) < 0, f"(x) exists 
and rex) is constant for all x;;::: K:1(f) > o. 

Remark 2.1. (i) The class F(E) is usually called that of 
densities of exponential type for large values of x, see 
e. g. Gumbel (1956). This is due to the fact that the tails 
of densities of random variables from F(E) decrease at 
least exponentially fast. On the other hand, not all den­
sities with exponentially decreasing tails belong to F(E). 
This is, e. g., the case of class F(H), family of symetric 
lognormal distribution etc. Nevertheless, F(E) covers most 
commonly used densities of exponential type like normal, 
logistic, symetric Gamma, symetric Weibull distributions 
as well as some classes of Pearson's, Burr's and John­
son's curves etc. 
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(ii) The basic representants of F(P) are random vari­
ables with densities having the tails '" A . xs, for all 
x» 0, s < -1 and A> ° (with Cauchy's distribution 
beeing the most typical representant. Nevertheless, there 
exist families of randOm variables with the tails of expo­
nential type decreasing more slowly than the tails of 
Laplace's distribution, what is the case of the family of 
symetric lognormal distribution etc. Moreover, some clas­
ses of Pearson's, Burr's and Johnson's curves belong to 
F(P), too. 
(iii) If we compare M I., M II. and M III., we can see 
that F(H) create the natural bound between F(P) and 
F(E). To F(H) belong all densities satisfying condition A 
with the tails '" M . exp(-cx) for all x;::::: K:l(f), c > 0, ° < M < +00; with the family of Laplace's densities 
being the most typical representant. 

(iv) Let us denote Fe = F(E) U F(P) U F(H). 

3. Behaviour of L-Estimators 

The following theorem describes the behaviour of order 
statistics. 

The are m 3.1. Let random variables XJ, .. ,Xn be 
independent copies of X E Fe with common density 
f(x - 6), 6 E RL and X(1) < ... < X(n) be their re­
spective order statistics. Let f(k) (x - B) be the density 
of X(k) and 

f(k)(x-6) I f'(x-6) 
U(k)(X-(-))= . 1 ~k~n. 

f(k)(x-6) f(x-(-)) 

It holds: 

(i) if XeF(E) or F(H), then lim U(k)(x-(-))=n-k+1. 
x---.+ro 

1~k~n; 

(ii) if X E F(P) then 

1 ~ lim U(k)(X-(-)) ~ lim U(k)(x-6)~ n-k+1, 
x-+co x-+oo 

1~k~n. 

Proof: Without loss of generality we can put B = 0. 
Using (2.2.) we can rewrite U (k)(x) in the form 

U(k)(X) = 1- (k-1)B(x) + (n - k)A(x) = 

= 1- (k-1)A(x) ((1- F(x)) /F(x)) + (n - k)A(x) . 

Part (i) now follows immediately from M I., resp. lVI III. 
and remark 2.1. (iii), because (1 - F(x)/F(x) -+ ° for 
x -+ +00. It was proved in Barlow and Proschan (1966). 
Theorem 4.1., that for every X E F(P) exists positive 
and finite constant K2(f) such that ° < A(x) < 1 for all 
x;::::: K2(f) and this implies (ii). 

Corolary: Under the assumptions of Theorem 3.1. 

1~ lim U(k)(x-(-))~ lim U(k)(x-(-))~n. 1~k~n. 
X--++OO x-+oo 

qed 

The following theorem gives upper and lower bounds for 
the rate of convergence of the tails of the logaritmic Qeri­
vative of density of L-estimators of location. 

The 0 l' e m 3.2.: Let random variables Xio .. ,Xn be 
independent copies of X E Fe with common density 
f(x - (-), e E Rl and X(1) < ... < X(n) be their re-
spective order statistics. Let ci> ... ,cn be nonnegative 

n 

constants such that L: ck = 1 and Tn be an L-esti­
k=1 

mator of e of the form 

6 

Then 

n 

Tn = E ciX(i). 
i~l 

1 ~ lim Hn(x-(-)) ~ lim Hn(x-(-») ~ n. 
x--++oo x-+oo 

where gn (x - €oj) is the density of Tn and 

(3.0 

Proof: Without loss of generality we can put (-) = 0. The 
existence of qn(x - A) = g'n(x - 61) I gn (x - t:I) was prov­
ed, e. g. in Klaassen (1981). Let f(k)(x) denote the den­
sity of X(k)' 1::;; k ::;; n. Let us show that there exists a 
finite constant L! such that 

We shall show in details only lower inequality in (a.2.) 

for the case c, > 0, cn > 0, n > 2, because in all other 
cases the proof follows analogously. 
Using the well known density of the vector of order 
statistics (X(1)' ... , X(n») and transformations 

n 

Zl=.EciX(i). Y2=X(2) ... ·.Yn=X(n). 
1~1 

resp. 

Z2=X(1). Y2=X(2)' .... Yn=X(n). 

we can g n (z) and f (1) (z) express in the form 

resp. 

where 

and 

n 

f(l)(Z)=n')'" ~ II f(Yi)' f(z)I(Bz ) dY2 ... dYn' 
j~2 

Bz= {Y= (Y2.··· .Yn)1 z<Y2 < ... < Yn}. 

It is easy to show that Az ~ Bz' A,. - B,. =1= 0 and for 
each y E Bz 

From assumptions M I.-M. III. we know that there 
exists a constant K(f), 0< K(f) < +00, such that f(x) j3 

decreasing for all x> K(f), so that for all Z > K(f) and 
all y E Bz 

Lower inequality in (3.2.) now follows immediately be­
couse 



• • n 

gn(z)-f(1)(z)=n! 1···1 llf(Yi)·I(Bz)· 
. . i~2 

+ ~ \ ... \ fI f(Yi) . f (c~l . (z - i CiYi)) . I(Az- Bz) 
c1 • • i~2 1~2 

dY7'" dYn. 

Starting from (3.2.) and regarding that f(x) t 0 as x-+ 
+ JO, there exists finite constant L2 > LI such that 
-In f(x) > 0 for all x :2: L~, hence 

-Inf(n)(x) < -Ingn(x) _< -lnf(l)(x) 
---'--'-- - for all x ~ L2 
-In f(x) -In f(x) - In f(x) 

and 

_ -qn(x) - -Ingn(x) -.- -lnf(l)(x) 
lim ---= lim 5 lim = 

x~+oo -q(x) x~+oo -In f(x) x~+oo -Inf(x) 

according theorem 3.1. 

Analogously 

. - qn (x) - In gn (x) . - In f(n)(x) 
lim ---= lim ~ lim = 

x::-+"oo -q(x) x.+oo -In f(x) x~+oo -Inf(x) 

lim (_ f(n)(X»)/(_ f'(X»)=1 
x~+oo f(n)(x) f(x) . 

qed 
The following theorem shows the effect of trimming off 
some extreme order statistics on the tail behaviour of Tn . 

The 0 l' e m 3.3.: Let random variables XI> ... , Xn be 
independent copies of X E Fe with common density 
f Ix-fJ), (-) E Rj and let Xl) < ... < Xn be their re-
~pective order statistics. Let CI, .... cn be nonnegative 

n 

constants such tha1 1.: ck = 1. Put Co = cn+l = 0 and 
k=1 

assume that C s = 0 for 0 s: s s: i and n - j + 1 s: s s: 
n + 1, 0 ~ i + j < n, CHI > 0 and cn_ j > O. Denote 
gn (x-(oj) density of the statistic 

and put 

It hold: 

n 

Tn= I CjX(i) 
j~J 

hence 

- In f(n_jj(x) < -In gn(x) < -In f(i+I)(x) 

-In f(x) - -In f(x) - -In f(x) 

for all x :2: Lr, > L3 ; that gives the desired conclusions. 
qed 

4. Examples 

Let us illustrate the results on the behaviour of the 
sample mean and sample median. 

The 0 rem 4.1.: Let XI, ... ,Xn be independent co­
pies of random variable X E Fe with the common den­
sity f(x - f)), (;) E Rj . Let gn (x - ('l: denote the density 
of the sample mean 'In and Hn'x - (-), be defined a<; 

above. Then 

15 lim Hn(x-El) 5 lim Hn(x-(-:I) 5 n. 
x~+oo x~+oo 

Proof: Follows immediately from theorem 3.2. 

The example demonstrates that both bounds in 
are attainable. 

(4.1) 

(4.1.) 

Example 4.1.: Let £(X i ) '" N(61. ( 2), 1, ... , n, 

Then e(Tn) -:N«(-:I,u2/n) and 

Hn(x - (-:I) = (n(x '- (-:1)/2) / (x - (-:1)/2) = n for all XE R1 • 

so that the upper bound is attained not only for x -+ +Xl. 
but for all real x. 
(b) Let f(x - ('J) = n-1 . (1 + (x - (oj )2)-1 for all x E R I, 
g E R I . Then 'In is distributed according to the same 
Cauchy distribution and 

Hn (x - (-)) = 1 for all real x, 

so that the lower bound is attained not only for x-+ 
+JO, but for all real x. 

The 0 l' e m 4.2.: Let XI, ... ,Xn be independent co­
pies of random variable X E Fe with common density 
f (x - (-)), (oj E R I . Let gn(x - €-I) denote the density of 
the sample median Tn and H n (x - (-)) be defined as 
above. It holds: 

(i) if X E F(P) then 

15 lim Hn(x - (-:I) 5 lim Hn(x _ (-:I) 5 [n; 2] 
x-->+oo X-++OO 

(4.2) 

(ii) if X E F(E) or F(H) then 

[ n + 1] 5 lim Hn(x _ (-:I) 5 lim Hn(x - (-:I) 5 [n + 2]; (4.3) 

2 x~+oo x~+co 2 

where [.J means the function integral part. 
(i) If X E F(P) then 

15 lim Hn(x-El)5 lim Hn(x-(-:I) 5 n-i; (3.3) Proof: Follows immediately from theorems 3.1. and 3.3. 

x--~ X-++OO 

(ii) if X E F(E) or F(H) then 

j+15 lim Hn(x-(-:I)5 lim Hn(x-(-:I)5n-i, (3.4) 
x~+CX> 

Proof: We can put f) = 0 without loss of generality. It 
follows from the assumptions that 

Proceeding in the same way as in the proof of the theo­
rem 3.2., we can show that exists finite constant L) such 
that 

Remark: If we compare these results with those of Ju­
reekova (1981) we can see that it is the lower bound in 
(4.2.) which is surprising. Nevertheless, it is easy to show 
that it is attainable in such a way that for every E. 

o < e < 1, exists X E F(P) such that 

1 < lim Hn (x - (01) < 1 + E. 
X-++OO 

Actually, let, say, n = 2 k + 1, f) = 0 and 

lex) = K for all x Ixl < A, 
= K ·lxl-s - 1 for all x Ixl ~ A, 
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where 0 < A < +vo and K is normalizing constant. Then 
(4.4.) is true if 

O<s <_E_. 
K-e 
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Simulation in Research on Linear Models 

ANTHONY C. ATKINSON 

Abstract 

Sketches are given of six applications of simulation in 
research on linear models. Fairly full references are given 
to more extended treatments of the topics, as they are 
to recent developments in the gE'neration of pSE'udo­
random numbers and variables. 

I. Introduction 

Although the mathematics of least squares has been 
understood for over 150 years, research into statistical 
methods for the linear model can still yield problems to 
which an analytical solution is not possible. This is 
clearly frequently the case in recent developments, such 
as the generalized linear model (NeIder and Wedderburn, 
1972; McCullagh and Neider, 1983) where, usually, only 
asymptotic results are available. To answer many infe­
rential questions recourse has then to be made to simu­
lation. The purpose of the talk, on which this paper is 
based, was to describe examples of the use of simulation. 
These, it is hoped, both exemplify some recent advances 
in statistical techniques and also illustrate general prin­
ciples in the design and analysis of simulation E'xperi­
ments. 

2. Robust Regression 

The estimating equation for the location parameter of n 
simple sample can be written as 

n 

L (Yi-,U)=O. 
i=l 

(II 

which is the least squares solution yielding the sample 
mean. In robust estimation using M-estimates (1) is re­
placed by 

n 

J; V) !(Yi - jl)/a} = O. 
1=1 

One example is Huber's 'Proposal 2' in which 

-c (Z~-(') 

'I'(z)= Z (-c~Z~l') 

c (z~c) 

(2) 

Details of this and other mcthods of robust estimation are 
given in Huber (1981). 
For least squares regression the analogue of (1) is thl' 
set of p equations 

'1'( /') T X y-X{J =X 1'=0. (1) 

where r is the vector of n least squares residuals. The 
t'obustified version of (3), analogous to (2) is 

(4) 

In which the 'P function acts on the robust scaled resi·· 
duals. See, for example, equation (6.11) of Bock (1982), 
Who also discusses estimation of the scale parameter IT. 

The numerical solution of (4) usually starts from the 
least squares estimates satisfying (3). A difficulty is thal, 
due to their position in X space, some observations have 
small residuals, irrespective of the value of the responsp. 
To see this consider the least squares residuals 

1'= y- xp= 11 - x(xTxf'xTl.\·= (1 - H).,·. ( 5) 

The idempotent matrix II, often called the 'hat' matrix 
(Hoaglin and Welsch, 1978), has diagonal elements hi' 
The variance of Ihe ith residual is given by 

( (,) 

For remote points in X space, so-called 'leverage' points. 
hi ->- 1 and, from (6), var(ri ) ~ 0 as the prediction at Xi 
comes increasingly to depend only on Yi' Thus observa­
tions with large values of hi' which can be caused by 
erroneous values of the carriers xi' will have small resi­
duals and will not be down-weighted by the M-estimate 
(-1). This form of robust regression therefore does not 
protect either against erroneous leverage points, no]' 
l,gainst leverage points with outlying responses. 

Alternative methods of robust regression which are in· 
tended to protect against these departures are described 
uy Huber (1981, Cap. 7), Krasker and Welsch (1982) and 
by Huber (1983). In an investigation by simulation of the 
properties of estimates of location given by (1), Andrews 
et al. (1972) used conditional Monte-Carlo methods which 
reduced the computation involved by factors of powers 
of len. Can such efficient methods be developed to aid 
nul' understanding of robust regression? 

3. Regression Diagnostics 

In diagnostic regression analysis the aim is the identi­
fication of features of the data, often groups of one or 
a few observations, which either have an appreciable 
effect on the fitted model or which indicate ways in 
which the model is systematically inadequate. The aim of 
identification can be contrasted with that of robust ana­
lysis where the aim is accomodation, that is inference 
when a small, but unidentified, set of observations is 
allowpd to come from some other process (Cook and 
Weisberg, 1983). Diagnostic regression analysis is the 
subject of the books by Belsley, Kuh and Welsch (1980), 
Cook and Weisberg (1982) and Atkinson (1985). In all 
three books graphical methods play an important part. 
To detect observations which have an appreciable effect 
on conclusions drawn from the data Cook (1977) suggested 
the mt'asure 

(7) 

where the p elements of Pi: are the least squares esti­
mates of the parameters when observation i is deleted 
and S2 is the residual mean square estimate of a2. The 

A "-

motivation for (7) is inspection of the distance P'i' - P 
relative to the confidence region for p. 
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An expression for (7) which is both computationally 
more convenient and also more revealing is found by 
rewriting D j in terms of the residuals rj' A further 
development (Atkinson, 1981) is the modified Cook statistic 

C·- -- -- r· _(n_p)I/2( hj )1121 *1 
1 pi-hi l' 

(8) 

which is proportional to the square root of (7) when S3 

is replaced by the deletion estimate S~il' . In (8) 

(9) 

is often called a deletion residual. 
If there are no outliers the deletion residuals follow a 
t-distribution. Normal, or half normal, plots of the rj * 
therefore can provide a diagnostic plot for the presence 
of outliers, which will be detected by departure of the 
plot from linearity. But, except for a balanced design 
when all hi are equal, there is no reason why a half 
normal plot of the modified Cook statistics C i should be 
straight. To aid interpretation of such half normal plot~ 
Atkinson (1981) suggests use of a simulation envelope 
found by ordering the values of the C j calculated from 
19 samples. Several examples of the use of these plots 
are given in Chapter 6 of Atkinson (1985). 
The simulation can be made quite straightforward. Be­
cause the r j * are residuals, the parameters of the linear 
model, and also the scale parameter a are not important. 
The deletion residuals are calculated from (9) using 
values from a standard normal sample fitted to the linear 
model with the same m:ltrix of carriers X as that 
observed. Calculation of the residuals is Simple. If n is 
sufficiently small, (5) shows that premultiplication of y 
by the n X n matrix I-H yields the residuals. Alterna­

tively X T Y can be found and premultiplied by the stored 

value of V = (XTX)-' to yield the parameter estimates. 
In neither case is 11 matrix inversion required for each 
sample. 

4. Selection of Regression Models 

In the regression models of Sections 2 and 3 it was 
assumed that the carriers in the matrix X were known. 
Choice of these carriers from a set of explanatory vari-
abIes is usually by a rather ad hoc process of hypothesis 
testing and inspection of residuals. More formal and algo­
rithmic methods for the choice of 11 'best' model include 
several information criteria. 
The residual sum of squares from the least squares para-

meter estimates ji defined in (3) is 

is a minimum. The value of IX is at our disposal. Con­
sistent choice of the true model is found by replacing IX 

by an lX(n), an increasing function of n such that lX(n)/n -+ 

o as n -+ co. The conditions are discussed by Hannan 
and Quinn (1979). 
Understanding the choice of IX for finite samples requires 
simulation. A review and examples are given by Atkin­
son (1980a). Unlike the investigation of regression diag­
nostics in Section 3, the simulation here does not require 
individual observations and their residuals. If the errors 
are assumed to be normally distributed, all that is 
required are the values of the sufficient statistics. When 

the observations are normally distributed, XT y has a 

multivariate normal distribution with mean xTxp and 

variance a2XTX. Independently of X T y, the residual sum 
of squares has a distribution which is 2a 2 times a gamma 
distribution with index (n - p)/2. The residual sums of 
squares for models with less than p parameters are readily 
calculated from these quantities, without the need to 
re-sample for a variety of p values. The speed and effi­
ciency of the calculations are further increaced by 
applying all selection rules to each sample. 

5. Generalized Linear Models 

Many of the techniques of the linear model can be ex­
tended to the anlysis of non-normal sets of data with 
structure in the means by use of the generalized linear 
model (McCullagh and Neider, 1983). The goodness of 
fit of such models is ascertained by the deviance which 
asymptotically has a X~ distribution. But if the number 
of observations is not large relative to the number of 
parameters, the distribution may be far from its asymp­
totic form. The simulation technique of Monte-Carlo 
testing, discussed by Marriott (1979), can be used to give 
an idea of the significance of observed results. 
An example is given by Williams (1982) on 'passive 
smoking', which is the name given to the apparent effect 
on the death rate from cancer of non-smoking wives of 
husbands who smoke. Part of Williams' results are repro­
duced in Table 1, which shows an observed effect with 
a X2 value of 8.7 on 2 degrees of freedom, seemingly 
highly significant. The strange feature of the data is that 
the simple model, which this X2 value rejects. has a 
deviance of 91.7 on 96 degrees of freedom. If this model 
really were inadequate the deviance should be appre­
ciably greater than its expectation, rather than slightly 
less. 
Table 1 also shows the results of 19 simulations when 
the simple model is assumed true. All 19 simulated 
values of the deviance for the simple model are less than 
the observed value. The simple model does not include 

R=rTr=yT(I-H)y. (10) a smoking effect. The 19 X2 values for this estimate ob­
tained from the simulation in the absence of a real effect 

For the jth model let this sum of squares be Rj . As terms 
are added to the model the residual sum of squares will 
decrease. But this desirable progression is offset by an 
increase in the variance of the parameter estimates and 
in the mean squared error of preciictions based on the 
model. These effects can be balanced by use of Mallows' 
Cp (Mallows, 1973) or Akaike's AIC (Akaike, 1973) to 
select the regression equation. For both criteria the model 
is chosen for which R j + 2pj a~ is a minimum, where Pj 
is the number of parameters in the jth model. If the 
value of a2 is not known, a suitable estimate is employed. 
This criterion can be extended to that of finding the 
model for which the generalized information criterion 

(11) 

10 

range from 0.1 to 2.9, well in line with expectation, as 
against 8.7 for the observed effect. Williams' conclusion, 
supported by further simulations of the model with a 
fmoking effect, is that the simple model is unacceptable. 
This powerful procedure is a slightly elaborated version 
of the straightforward Monte-Carlo test. In the basic 
version the observed value of a test statistic is ordered 
amongst values simulated under the null hypothesis. The 
rank, rather than any distributional form, is often used 
to determine significance. 

6. Tests of Transformations 

In the parametric family of power transformations ana­
lysed by Box and Cox (1964), the loglikelihood is shown 



to be proportional to the residual sum of squares of the ratio for the separate models, from which is subtracted 
observations after the normalized transformation the expected value of the ratio under the null hypothesis. 

This corrected ratio is then divided by the square root 
; yA_l 

z().)=~. 
)..v'· 

(12) of the asymptotic variance of the ratio, again calculated 
under the null hypothesis. Calculation of the expectation 

where y is the geometric mean of the observations. To 
test hypotheses about the value of A in (12) requires 
maximization of the likelihood over .l.. An advantage of 
the approximate score test introduced by Atkinson (1973) 
is that maximization is not required. 
The model leading to this test is that, for some A and to 
a suf'ficient degree of approximation, the transformed 
observations satisfy the linear model 

z().) = X~+ E. 

Expansion of this model about the hypothesiszed value 
10 yields the linearized model 

(B) 

Box (1980) calls the derivative w(.l.n) = bz WlbA I A = An 
a constructed variable. Often in diagnostic work An = 1. 
corresponding to the hypothesis of no transformation. 
The test of the significance of regression on wOo) in (13) 
is localy equivalent to testing the null hypothesis A = ).0. 

The expression for this t test is obtained by analogy with 
expressions from the analysis of covariance (Cox and 
McCullagh, 1982). 
Other constructed variables have been suggested leading 
to the exact test of Andrews (1971) and to Tukey's 
celebrated one degree of freedom for non-additivity 
(Tukey, 1949). The relationship between these tests is 
developed by Atkinson (1982). To examine the compara­
tive behaviour of two of the tests and the likelihood ratio 
test, Atkinson (1973) simulated the power of tests for the 
hypothesis of the inverse transformation in the survival 
time data presented by Box and Cox (1964). As with the 
other simulations mentioned in this paper, all tests were 
applied to every simulated set of observations. This is 
equivalent to use of a randomized block design to increase 
efficiency. More importantly, the results were presented 
graphically as a normal plot of the proportion of tests 
which were significant. Not only is the impact of such a 
plot greater than that of the corresponding table, but 
interpretation is facilitated. The power of the tests is 
indicated by the slope of the plots, differences in the 
size of the tests causing a change in intercept. Such plots 
are highly commended for the presentation of simulation 
results. 

7. Tests of Separate Families of Hypotheses 

A test for the choice between a gamma model with log 
link and a log-normal model is an example of a test of 
separate families of hypotheses of the kind introduced 
by Cox (1961, 1962). The test statistic is the log likelihood 

Table 1 

and variance is usually complicated and, as the examples 
in Atkinson (1970) show, the resulting test statistic usually 
has a distribution which is far from the asymptotic limit 
of normality. 
Under such conditions the Monte-Carlo procedure of 
Section 5 provides a comparatively easy way of assessing 
the significance of an observed test statistic. Rather than 
calculate the complete statistic, including expectation and 
variances, it is enough, and much simpler, to simulate the 
distribution of the log-likelihood ratio. For the example of 
the gamma and log-normal distributions Atkinson (1982) 
plotted simulated values of the residual sum of squares 
for the log-normal model against the deviance for the 
gamma model, which are the two components of the ratio. 
The simulations were performed with each distribution 
as the null hypothesis. In addition to the relative simpli­
city of the procedure, an advantage is that the results can 
be simply presented as a plot. 

n. Generation and Testing of Pseudo-Random Numbers 

The simulation methods outlined in this paper rely 
heavily on the availability of a supply of pseudo-random 
numbers which can be converted into pseudo-random 
variables. The most important property in determining 
the quality of pseudo-random numbers from a linear 
congruential generator, is that overlapping or successive 
k-tuples or numbers fall on a k-dimensional latticp. 
Examples or the structure and properties of the gene­
rators are given by Atkinson (1!180b) who also demon­
strates the damage that a poor lattice structure can do 
to a generator of normal variables. A description of tests 
for the lattice structure is given by Knuth (1981, Section 
3.3.4). Recent advances in the theory of lattice tests are 
due to Ripley (1983b). 

9. Computer Generation of Random Variables 

As a result of the continual increase in speed and powel 
of computers, fast algorithms for the generation of pseu-· 
do-random variables are becoming less important. The 
spread of micro-computers, many with inadequate soft­
ware, has directed attention more to the provision of 
portable algorithms which are easy to program. The most 
important recent general algorithm for continuous random 
variables which meets these requirements whilst being 
relatively fast is the ratio of uniforms method (Kinder­
man and Monahan, 1977). An example of the resulting 
algorithm for the normal distribution is given by Knuth 
(1981, Section 3.4.1) and by Ripley (198;~b) who also pro­
vides a survey of recent work in the area. 

Analysis of Deviance Table for Hirayamas' "passive smoking" data, from Williams (1982) 
The Monte-Carlo test clearly shows the signi ficance of the smoking effect, despite the low 
deviance (91.7) for the simple model. 

---- -------

Observed Degrees of Res ults of 19 Comment deviance freedom simulations 
------~.-

Ignore husband's 91.7 96 59 -90 all < observed 
smoking 
Include husband's !J3.0 !l4 57 -89 13 < observed 
smoking 
Smoking effect 8.7 2 0.1- 2.9 all < observed 
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Note About Solutions of Asymptotic Minimax Test Problems for Special Capacities 

TADEUSZ BEDNARSKI 

Abstract 

Explicit formulas for the optimal test statistics are given 
in the case of an asymptotic minimax test problem with 
neighbourhoods generated by a class of special capacities. 

1. Introduction 

The first contribution to local asymptotic robust test pro­
blem for parametric models contaminated in term of 
capacities, was done by Huber-Carol (1970), then gene­
ralized and considerably developed by Rieder (1978). The 
results presented here constitute further extension of these 
papers. 
Let {p v : I HI:<=::: r} be a family of probability measures in­
dexed by real parameters. Let n be the number of inde­
pendent observations with distributions that come either 

from1)onor cP In' It is assumed thatP -,.1 n (1)on·P ,/1 n E~ln 
and the sets~ in are viewed as possible departures from 
the distributions in the parametric family. The statistical 
inference in such situations is formalized as a sequence 

o[ test problems for the product sets :+,,~ nand .).":t:,n. It is 
intuitively clear that an asymptotic minimax sequence of 

tests, sa} {'In} , can be understood as a robust solution 

for the sequence of hypotheses pUJ~ln against P(~71n 
It has been proved by Rieder (1978) that, under suitable 
regularity conditions, when '1\n are E-contamination and 
total variation neighbourhoods of P,/I nand P ,II n respec­
tively, then the optimal solution is given by the sequence 
of statistics 

n 

Tn= (1/Vn) l' IC i , 
1=1 

where IC is a truncation of the logarithmic derivative of 
dP l1 ldPIl at 1) = O. The tests {'/ n} are then indicators of 
{T n > t} for some fixed t depending on the asymptotic 
significance level. 
Riedel' (1980) has further developed his results to some 
estimation problems preserving the same type of conta­
minating neighbourhoods. In Bednarski (198:3) the prob­
lem of asymptotic minim,lx testing is s1udied, howevl'r 
the neighbourhoods are allowed to be gener,ltct\ b~' a 
class of special capacities, see also Bednarski (l08!). The 
object of the study was to determine the dependence 
between the optimal IC and the employed contamination. 
Here we show that under suitable regularity conditions 
one can give an "almost" explicit formula for IC and see 
that in some circumstances it may dilIer considerably from 
a simple truncation of the logarithmic derivative of the 
likehood ratio. 

2. Basic Notions and Assumptions 

Let !J be a polish space with Borel (J'-fieJd l'l and let ~J( 
be the set of all probability measures on Q.). Let ~ be a 
class of concave functions from [0,1] to [0,1] such that for 
every iE ;l'f(1) >0. For ('very fE';\' and PE':1\l we clefine 

a special capacity v f,P as a set function from ''B to [0, IJ 
such that v f,P(O) = 0 ancl for all A =+= 0, A E en 

\'fy(A)= [P(A)+fOP(A)] 1\ 1. 

The symbols 1\ and V will denote minimum and maxi­
mum respectively. Each capacity vf .P generates a set 
~f.P = {HE :1){: H(A):<=:::v f •P (A) for all A E ~}. This set 
can be viewed as a contamination of P. It is convex ancl if 
frO) = 0 and f is continuous in 0, then c:}."f.P is weakly 
compact. For further information about the capacities see 
Bednarski (1981), Buja (1980) and Huber and Strassen 
(1973). 

Let now {P (~E 9)l: ,') ! :<=::: r} be the given parametric family 
and let fo. fl (' J. The sets ')."011 and '1."111 will be here gene­
rated by t.he capacities 

[p -TlVn + (II Vn) roop _'/ y;;-J 1\ 1 

and [p,/y;;-+(II Vn )f,oP
T
/y;;-] 1\ I 

respectively. The following regularity conditions are 
assumed to hold through the paper. Compare Bednarski 
098:3). 

AI: There exists an exponential family {Q('I (, 9)l: (-)i:<=::: T} 

so that Qr'I'" c ((-) exp (f-id) dPo for some random 
variable. I and lim sup nH~(P 1-1 In' Qr'l In) = 0 where 
H stands for the Hellinger n 1(-) ::.: r 

distance. 

A 2. The distribution F of ,I under Po has a density with 
respect to Lebesque measure and the distribution has 
a convex support. 

A 3. There exists A E '1., so (hat 

- 2T.I,j dl'o+ foOPo(A)+f,oPo(N~) < 0 

.'\ 

A 4. The functions fll and fl are differant.iable on (0,1). 

:3. The Result and Examples 

Theorem. Unclel' Conditions 1\ I-A 4 we have that the 
opt imal test statistic IC is equal 

where ,1" = doV IAd l for some uniquely determined con­
stants do, dl and f' denotes the derivative of f. 

Proof. From Bednarski (1983) we have that the optimal IC 
can be constructed as follows: 
The first step is to minimize over z, for each t E R, the 
expression 

g(z.l) = foOPo(Ll > z) + f,OPo(Ll ~ z) - 2T .i JdPo + 

1>1. 

{ 
tPo(L1>z) for t~O 

+ -tPo(L1~z) for t<O. 
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Under Condition A 2 the distribution function F is strictly 
increasing on the support of F, therefore one easily check 
that if inf g (z, t) :c:;: 0, then there is a unique z (t) for which 
the infimum z is attained. Let to < 0 and t[ > 0 be such 
that g (z (to), to) = g (z(t1), t1) = O. Then the function z ( . ) 

is continuous and strictly increasing on [to, td. 
In the second step we define the family {At}t E R of mea­
surable sets by he formula 

A t = (;;:"ll 
S>lo 

[J 

for tz 11 

t E (to' (1) 

t= to 

and finally we put IC (w) 

Therefore we obtain 
(1/2 r) inf {t: Uj EI: At}. 

(
Z(t1) 

IC(,1) = Z-1(,1) 

z(to) 

for ,1 > z(t1) 

,1 E [z(to}, z(t1)] 

,1 < z(to) 

and the problem reduces to finding an explicit formula 
for z-I (,1). Under Conditions A 2 and A 4 we know that 
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Some Remarks on the Comparison of Means In the Case of Correlated Errors 

JORGEN BOCK 

Abstract 

After the discussion of an approximative test for the one­
way anlysis of variance with correlated errors an exact 
method is developed, basing on Hotellings T~. This proce­
dure can be robustified by means of Tilm's MML-esti­
mators. 

1. Introduction 

Box (1954 a, b), Ljung and Box (1980) and Tiku (1982) 

studied the one-way analysis of variance with unequal 
variances and the two-way analysis of variance, assum­
ing that errors within rows constitute a stationary G,ms­
sian process. Ii has been shown in a simulation st.udy by 
Andersen, Jensen and Schou (1981) that the approximations 
given by Box are excellent, and that disregarding corre­
lations may lead to seriously misleading cenci us ions. The 
data have been simulated for AR (1) and MA (1) time 
series models. But the power of the tests is not investi­
gated in the paper of Andersen et al. On the other hand 
it is not clear whether the approximations are sufficient 
good in the case of estimated correlation coeJ:Iicients. 
Finally we do not know anything about the robustness 
against deviations from normality. 
In this paper we can not answer all this questions. We 
will investigate the special case of no row effects (i. e. the 
one way classification) in more detail. Then we propose 
an alternative method which can easily be robustified. 
Let us assume for the observations y tj at equally spaced 
time points the model 

Ylj=i'I+U1j 
(t === J. .... '1') 

(j=l..."n) 
(I) 

where the Utj for fixed j constitute a stationary Gaussian 
process (E(u tj = 0), cov (utj' ut+hk) = (\jk (f (h), and the 
rows are independent replications of the same process. 
We want to test the hypothesis Ho: {J'I = ... = f'T by an 
approximative F-test. The sums of SqU;I1"CS are SSR c_ 

l)' Al), SSB = l)'Bl) with 

l)' = (Ylb YI~"'" Yln' y"l, YZ2,"" Y211"'" Y'1'l' YT2"'" Y'1'n) 

and the idempotent matrices 1\=1'1'09(1, - 1 ene~). 
1 n / 

F>-i 1 ')'1-1-\(1 ') 1'h' ·t'·d t· >-- \ 1'1"- TeTe'1' I:'!5t n cnen · e s at eno es the Kro-

neckerproduct, I the identity matrix and e a vector with 
all components equal to one. 

With the positive definite covariance matrix V =.~ ..[.Jt) Itl 

(

a(o) a(l} ... a ('1' -1») 
LT == (;(~) a(O) a(T~ 2) 

a(T--1) ... "l,a(O) 

one gets A VB = 0, therefore SSR and SSB are uncorre­
lated (see e. g. Rasch (1976». 

Box has approximated the distributions of the sums of 
squares under the null hypothesis Hu: 1'1 = ... = I'T by 
Gamma distributions with the same expectations and 
variances. 
For further discussions we give the expectations and va­
riances for the nonnulldistribution too: 

E(SSR) = tr (A V) = T(n -1) a(O). 

r~ (SSB) = tr (BV) + ,u' B ft = 

l T ] T 
=a(O) T- ~S?;le(t-s) +n~(ftt-Ji)2 

with P'=(Ul·····Pl· {J2.····{J2 .. ···/IT'····ftT) 

T 

/i= ~ L: PI' e(t-s)=a(t-s)/a(O). 
T 1=1 

(2) 

Calculating the moments by the derivatives of the charac­
teristic function one can show, that for a normal distri­
buted vector 

3 ~ N (,,,*, ~\I. the variance of 3'3 is equal to 

V(3'3)=2tr(.E~)+4,u·'.E~ft·. (3) 

Therefore we get from SSR = (A \.»' (A \.» and SSB = (B \.»' 
(B\.» 

T 

V(SSR)=2(n-l)a2(0) L: e2(t-s) 
S.t=1 

l 'I' T ( T )2 
V(SSB)= 2a2(0) stt(t-S)- ~ t;' 6' e(t-s) + 

'1' 

+ ;2 (i e(t_s»)2] 
5,t=1 

+ 4n a2(0) L: (fts - ;U)(ftt - ;U)e(t - s). 
8.t=1 

(4) 

Following Andersen et al (19Bl) the null-distribution of 

~ SSB T(n-1) 
F=cF. F=-- --'----.:.. 

SSR T-1 

is approximated by an F-distribution with 

2E 2(SSB) 2E 2(SSR) 
fB= and f - --'---'-

V(SSB) R - V(SSR) 

degrees of freedom, where 

(T - 1) E(SSRo) 
c=------. 

(n-llT E(SSB) 

Therefore 
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(7) 

T-l 
c = -----1-' ---. 

T- ~ I'e(t-s) 
s.I=1 

(R) 

In practical applikations the autocorrelations in (6), (7), 
(8) have to be replaced by estimates, so we get the test 
statistic F* = cF with an estimated c having perhaps an 
F-distribution approximately. In our case 

family wise risk too. One way to get a multiple procedure 
could be, to construct an approximative Scheffe-procedure 
by means of the Box-Andersen-approximation. 

4. A Robust Test 

As we have seen, it is not possible to generalize the 
classical comparison procedure in such a way, that they 
are entirely independet on correlations, so we look first 
for a test with a risk of first kind independent on corre­
lations. The basic idea is, to seek for a teststatistic, which 
does not change under regular linear transformations. 
Then we can transform to the uncorrelated case. 

(9) 
T-h n SPR(}]) 

u(h) = --=-=-=---­
(T- h)(n-1) 

SPR(h)= I' I' (Ytj-Yt·)(Yt+h j-Yt+h') 
\=1 j=1 

is an unbiased estimator of a(h). (This is not true in the 
two-way classification case.) We use e(h) = a(h)/a(O). 

An approximation to the noncentral distribution of. F, as 
in the central case, would have different degrees of free­
dom for the numerator (see (2), (4». But there is the same 
problem, we do not know the goodness of the approxi­
mation in the case of estimated autocorrelations. Therefore 
we started to investigate the power by a simulation study; 
these results will be given in a following paper. 

2. Paired Observations 

It is very interesting to look at the case T = 2. This is the 
case of paired observations. To test the hypothesis Ho: ftl 

= ft2 one uses generally the t-test with the test statistic 

;1. ,r­
t=-VI1 

Sj 
(10) 

- 1 11 2 1 ~ ( - )2 
with .dj =Ylj- Y2j' lI.=- I'llj. Sj=--'::" .dj-lI. 

n j=1 n-l j=1 

and n-l degrees of freedom. 
The Box-approximation yields (with I.! = '! (1) 

2(n-I) 1 
fJ\=1, f H =--2-' c=--

l+e I-I! 

F=cn(YI.-h)' 
2u(0) 

or, if we replace c by c' 

F*= (YI.-Y2Jn =t2. 
2u(0)[ 1-e(1)] 

( II) 

(12\ 

(U) 

If Hu holds, }<'* = t 2 is exactly F-distributed with 1 and 
n-l d. f. and the approximation fails in the d. f. 
For known correlations one can compute the exact distri­

bution of }<'. 

3. Multiple Comparisons 

The easiest way to get a multiple comparison-procedure, 
which is independent on correlations, seems to construct 
a t-procedure by means of 

t - Yi. - Yk. ( k T) 2 1 ~ ( ~ -)2 
ik - i, = 1.. .. . . sik = --.::.. "'ijk - lIik. 

sik n-l j=1 

lIikj = Yij - Ykj' 

The distribution of each til;: is a central or noncentral 
t-distribution with n-l d. f. Every pairwise comparison 
is independent on correlations. But the multivariate distri­
bution of all t ik depends on the correlation, therefore the 
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The random vectors r j = (Z2j' Z3j"'" ZTj) with Zlj = 
Y Ij - Y Ij (i = 2, ... ,T) are independent and normal distri­
buted with mean vector it.' ~ = (ft2 - fti> ... , ftT - ft I) and 
covariance matrix GVG' where 

(

-110 ... 0 

-d 0 1 0 
G=: : . . 

: 0 

-I 0 ..... 01 

We can deal with our comparisonproblem as a multi­
variate test of the nullhypothesis H*o: p~ = O. This leads to 
Hotellings T2(3) 

n 

T2(~)=nrs-13 .. 3.=~ I' 3j 

j= I 

The distribution of T~ ~b) (n - T + 1)/(n - 1) (T-l) is non­
central F with T - 1 and n - T + 1 d. f. and noncentrality 

parameter n ft~ (GVG)-I ftll (Anderson (1958». The teststa­
tistic does not change under a linear transformation 3 = q* 
(I Ci =1= 0). Choosing C in such a way that C C' = GVG', 
we get the identity matrix as covariance-matrix of 3* = 

C-1a, but T2 (3*) has the same distribution as T~(o). The 
risk of first kind is independent on correlations. while the 
power depends on correlations through the noncentrality 
parameter. Due to Tilm and Singh (1982) one can 1'0-

bustify the test in the following manner: 
Define (j = 1, ... , n) 

" w,1j= zJj - b'2Z.'j 

W4j = Z,lj - b4.1.2 Z3j - b42 ,3 Zlj 

etc. 

where the b's are the partial regression coefficients (see 
Kendall and Stuart, 1973, Chapter 27), and 

T *2 NW""-1A R=mv v 

/, /'\. ,," A 

(16) 

with v' = (v~, ... , "T) and the diagonal matrix W = diag 

Cn':., ' ... '~~'T) The ~>s and";; 's are the MML estimators of 

mean and standard deviation calculated from typ II cen­
sored samples 

W(i,r+l) ..... w(i.n-r) (i=2 ..... T). (17) 



The r smallest and the r largest observations are censored, 
and 

where 

For n ~ 10 the coefficients are obtained from the following 
equations 
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-00 
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Robustness of Multiple Comparisons Against Variance Heterogeneity 

JAN B. DIJKSTRA 

Abstract 

If Ho: III = ... = Pk is rejected for normal populations with 
classical one way analysis of variance, it is usually of 
interest to know where the differences may be. If the 
population variances are equal there are several ap­
proaches one might consider: 

1. Least Significant Difference test (Fisher, 1935) 
2. Multiple Range test for equal sample sizes (Newman, 

1939) 
3. An adaptation for unequal sample sizes (Kramer, 1956) 
4. Multiple F-test (Duncan, 1951) 
5. Multiple Comparisons test (Duncan, 1952). 

For all these methods (including the one way analysis of 
variance) alternatives exist that are robust against va­
riance heterogeneity. A modification of (3) has some un­
attractive properties if the variances and the sample size 
differ greatly. The adaptations for unequal variances of (4) 
and (5) seem better than (1) for cases with many samples. 
Test (2) is rather robust in itself if the variances are not 
too much different. Modifications exist that allow slight 
unequalities in the sample sizes. 

1. Introduction 

In 1981 Werter and the author published a study on tests 
for the equality of several means when the population 
variances are unequal. The problem can be stated as 
follows: 

Xij"" N(,u!, aD for i = 1, ... ,k 

;=1 .... ,n;. 

The conclusion of this study was that the second order 
method of James (1951) gives the user better control over 
the size than some other tests [Welch (1951), Brown and 
Forsythe (1974)], so it is to be preferred since none of the 
tests in the study was uniformly most powerful. 
The test statistic t is defined as: 

Here X2= x2(a) is the percentage point ofax2-distributed 
variate with I' = k - 1 degrees of freedom, having a tail 
probability a. The other basic items in the formula are 
given by: 

X2, = [x2(o<)]\k -1) (k + 1) ... (k+ 28 - 3) 

~-, 1 '\\'j)1 
and Rsl = .:.. ~ (- . where Vj = nj'- 1 

i~1 v; W 

This method is an approximation of order -2 in the Vi 

to an "ideal" method. Brown and Forsythe (1974) consi­
dered the first order method of James (order -1 in the Vi) . 

Their conclusion was that for unequal variances the 
difference between the nominal size and the actual pro­
bability of rejecting the null hypothesis when it is true 
can be quite impressive. Werter and the author found 
that this difference almost vanishes if one takes into ac­
count the second order terms. 
The test as stated gives only the binary result that Ho is 
accepted or rejected. If one prefers the tail probability 
of the test the equation t = h~(a) has to be solved. Because 
h2(a) is monotonous in a this can be done in about ten 
function evaluations with an acceptable precision of 0.001 
in a. In the formula for h2(a) the terms Rst are indepen­
dent of IX, so it is only necessary to recompute the X~s 

for every iteration. This version of the test was used on a 
Burroughs B 7700 computer. The average amount of pru­
cessing time for common cases was about 0.026 sec, so 
the very complicated formula does not yield an expensive 
algorithm. 
If Ho is accepted this usually means the end of the analy­
sis. Otherwise it may be of interest to know where the 
differences lie. For this one has to perform a simultaneous 
test and it would be nice if this could be done in such a 
way that a means "The accepted probability of declaring 
any pair Iii' iii different when in fact they are equal". In 
the following sections some strategies are worked out for 
this kind of simultaneous statistical inference. 

+ t(3X4 + X2) [(8R23 -10R22 +4R2,- 6R~2 + 8R12R,,- 4R~,) + (2R23 - 4R22 + 2R2, - 2R;2 

+ 4R12 R" - 2R;,) (X2 -1) + ~ (- R~2 +4R12R" - 2R12 R,o - 4R~, +4R"R,o - R~o) (3X4 - 2X2 -1)\ 

+ (R23 - 3R22 +3R2,- R20) (5X6 +2X4 + X2) + 1~ (R~2 - 4R23 + 6R22 - 4R2, + R20) (35X8 + 15x6 + 9X4 +5X2) 
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2, Least Significant Difference Test 

The method consists of two stages. First Hu: ,11[ 0= ••• 0= ,Ilk 

is to be tested with classical one way analysis of variance. 
If Hu is rejected a t-test is to be performed for every pair. 
This idea originates from Fisher (l9;~5) and it presupposes 
the variances to be equal. 
Fisher suggested using the same ex for the t-tests as for 
the overall analysis of variance. Of course this is not safe 
in the sense menticned in the introduction. An alternative 

to be considered is the Bonferroni idea p = x/(~) that is 
mentioned in Miller (1966). For this the probability that 
no error is made under H" is limited as followes: 

For unequal variances the one way analysis of variance 
can be replaced by the James second order test. For com­
paring the pairs there are several possibilities. The situa­
tion iscalled the Behrens-Fisher (1929) problem, and one 
of the best approximate solutions is Welch's modified t­
test (1949). This test has been evaluated by Wang (1971) 
and he concluded that it gives the user excellent control 
over the size, whatever the value of the nuisance para­
meter (~) = (j i' (j{ may be. The test statistic is 

and the critical level for some chosen size p is given 
by Students t-distribution with a parameter l' that takes 
the pattern 01 the variances into account: 

In most cases Vij is not an integer, so it has to be replaced 
by the nearest one. Ury and Wiggins (1971) suggested usin~ 
this test with the Bonferroni p. The simultaneous confi­
dence intervals for this approach are given by: 

[ 

'22" 121 _ Ii): Sj Sj 
[/i-'''iE: :-.:j.-:-.:j+I .... ' (-+.~) . 
" ".I I1 j ni J 

There are some alternatives mentioned in the literature. 
Hochberg (1976) suggested using: 

r i.' 2)'/21 . _ Si Sj 
Uj--Yjfc :-':j-:-':j+;'o'--+-

. '\ n· 11· 
L ".1_ 

k k 
'\., \' where )'.,is the solution of' pi ;t,,,. I > ;,1 = ((, 
r=i j~l I' IJ I J 

in which v ij comes from Welch's modified t-test. 
Tamhane (1977) suggested using Banerjee's (1961) approxi­
mate solution of the Behrens-Fisher problem with J' = 1 -

1 

[I - a)k--l. This )' has some history and will also be men­
tioned in the following sections. The confidence intervals 
become: 

2* 

r , 2 2\1/2] _ I '/2 ;' 2 Si 1; 2)' 2 S j \ 
,1'i-',UjElXi-'Xj'+ I(.t,. ) -+It ) --I 

. 'I 1 • ni \ "j "j 

Tamhane also suggested using Welch's test with this i', 

III the literature the author has found nine different ap­
proximate solutions of the Behrens-Fisher problem and 
five ideas concerning the size of the separate tests. Every 
combinaticn can be made, so there is quite a lot of 
methods one can consider for pairwise comparisons. But 
to be really safe, in the sense that the probability of de­
claring any pair different when in fact they are equal 
should be limited by ex, the pairwise size p will become 
very small. For k = 15 and ex = 0.05 the Bonferroni approach 
willi yield p =- 0.0004H, so it becomes almost impossible to 
reject any pairwise comparison. 
Another disadvantage of this approach is the fact that 
the results have to be represented by a matrix containing 
symbols for acceptance and rejection. Working at a ter­
minal, as is usually done in applied statistics nowadays, 
one has to swallow an enormous lot of information in one 
glance if k exceeds the region of very small values. The 
next sections will suggest approaches that are better in 
this respect. 

3. Multiple Range Tests 

In this section a strategy will be pointed out that was 
originated by Newman (1939), Duncan (1951) and Keuls 
(1952). At first it will be necessary for the sample sizes to 
be equal (n i = n for i = 1, ... , k). Also variance hetero­
geneity will not be allowed. Later on these limitations 
will be dropped. 

Let x, I,' ... , X k' be the sample means, sorted in non­
decreasing order. The first hypothesis of interest is HI): ,II, == 
.. , == ilk' where the iii's are renumbered so that their 
ordering becomes the same as the sample means which 
are their estimates. 
Then HI) can be tested with: 

where q is the studentized range distribution, I' = k(n-1) 
and the residual variance is estimated by: 

If HI> is rejected, the next stage is to test ,Ill = . , . = ,/{k-l and 
.',~'~ . , . = ,If k' Proceeding like this until every hypothesis 
is accepted will yield a result that can be represented as 
l'ollowes: 

X,l x~, xa x,4' x 5) x,6' x 7) x'8, 

I I 
I 

\ I I 

The interpretation of this figure is that ,IIi = Pj has to be 
rejected if there is no unbroken line that underscores Xi 

and x j " For instance: 

lIt, = 110 : accepted 
fl'J = /10 : accepted 
III = liD : n~.iectecl, 

If a candidate for the splitting process contains p means 

then q "P is to' be used instead of q" . Newman and Keuls 
P,I' k,., 
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suggested ap = a and Duncan preferred ap= 1- (1-a)p-l. 
Now the equality of the sample sizes will be dropped, 
but for the moment the variances will still have to be 
equal. Miller (1966) suggested using the median of n1 , ... , 

nR . Winer (1962) considered the harmonic mean H 

Kramer (1956) modified the formula of the test to this 
situation: 

k 

where v = N -- k and N = L.: ni 
i~1 

Only in Kramer's case does the studentized range distri­
bution hold. For Miller and Winer the approximation will 
be reasonable if the sample sizes are not too different. 
Kramer's test contains a trap that can be shown in the 
following figure: 

X'l) x 2; x:31 X(4) 

_I~---!I!----_~~I-
I I I 

Suppose n[ and n" are much smaller than n~ and n;l' Then 
.Ill = ... = ,Ilt, can be accepted while P2 and P3 are signifi­
cantly different. But the strategy will make sure that this 
difference will never be found. 
From here on the variances will be allowed to be unequal. 
For equal sample sizes Ramseyer and Tcheng (1973) found 
that the studentized range statistic is remarkably robust 
against variance heterogeneity. So for almost equal sample 
sizes it seems reasonable to use the Winer or Miller 
approach and ignore the differences in the variances. 
Unfortunately, the robustness of Kramer's test is rather 
poor [Games and Howell (1976)], so if the sample sizes 
differ greatly one might be tempted to consider: 

I" -"j + 'I f q;~:'j :1/2(~ + ~)j'" 1 
where only the variances of the extreme samples are taken 
into account. This idea was mentioned by Games and 
Howell (1976) with Welch's ~ij' The studentized range 
distribution does not hold for these separately estimated 
variances, but the approximation seems reasonable though 
a bit conservative. 
The context in which Games and Howell suggested using 
this method was one of pairwise comparisons with other 
parameters for q. But it looks like a good start for the 
construction of a "Generalized Multiple Range test". 
This test, however attractive it may seem, still contains 
the trap that was already mentioned for Kramer's method. 
But there is more: 

Suppose S22 and S2.l are (much) smaller than S21 and S21" 

Then a significant difference between P2 and P;l can easily 
be ignored. 

20 

The author has not found in the literature other ap­
proaches to variance heterogeneity within the strategy of 
multiple range tests. Some other a's have been suggested, 
but since the choice of ap has almost nothing to do with 
robustness against variance heterogeneity, their merits 
will not be discussed in this paper. 
The representation of the results with underscoring lines 
seems very attractive since this simple figure contains 
a lot of information, and also the artificial consistency 
that comes from the ordered means has some appeal. 
However the w'hole idea of a Generalized Multiple Range 
test seems wrong. One simply cannot afford to take only 
the extreme means into account if the sample sizes and 
the variances differ greatly. 

4. Multiple F-Test 

This test was proposed by Duncan (1951). In the original 
version the population variances must be equal. The pro­
cedure is the same as for the Multiple Range test, only 
the q-statistic is replaced by an F, so that the first stage 
becomes classical one way analysis of variance. At first 
Duncan proposed using a p = 1 - (l-a)p-l, but later he 
found a p = 1 - (1-a)(p-I)/(k-l) more suitable [Duncan (1955)]. 
The nature of the F-test allows unequal sample sizes. This 
seems to make this approach more attractive than the 
Multiple Range test, but there is a problem: 

--1---1------+-1 + 
Suppose PI = ... = PI, is rejected. The next two hypothe­
ses to be tested are PI == ... = It;l and 112 = ... = pt,. So ,(([ 
and PI, will always be called different. But if n1 and n" 
are much smaller than n2 and n3 it is possible that a pair­
wise test for pi and PI, would not yield any significance. 
Duncan (1952) saw this problem and suggested using a 
t-test for the pairs that seemed significant as a result 
of the Multiple F-test. This approach he called the Mul­
tiple Comparisons test. Nowadays this term has a more 
general meaning and it seems to cover every classifying 
procedure one might consider after rejecting PI = ... Pk . 
Now the equality of the variances will be dropped. It is 
well known that the F-test is not robust against variance 
heterogeneity [Brown and Forsythe (1974), Ekbohm (1976)]. 
So it seems reasonable to use the non-iterative version of 
the second order method of James, thus making a "Mul­
tiple James test". One could use Duncan'~ uP' but the 
author prefers a p = 1 - (1-a)p/k [Ryan (1960)] as a conse­
quence of some arguments pointed out by Einot and 
Gabriel (1975). This a p was mentioned in another context, 
but the arguments are not much shaken by the unequality 
of the variances. 
This new test contains the same problem as the Multiple 
F-test, but that is not all: 

1-
PI and PI, will always be called different if PI = ... = PI, 
is rejected. Now suppose that S22 and S2;3 are much smal­
ler than S21 and S24. Then the difference between PI and PI, 

may not be significant in a pairwise comparison. Here the 
structural difference between this test and the approach 
mentioned in the previous section comes into the picture: 



If extreme means coincide with big variances and small 
samples, then the Generalized Multiple Range test can 
ignore important differences, while the Multiple James 
test can wrongly declare means to be different. 
One can of course apply Welch's test for the Behrens­
Fisher problem to the pairs that seem significant as a 
consequence of the Multiple James test. This combination 
should be called the "Generalized Multiple Comparisons 
test". A lot of extra work may be asked for, so it is of 
interest to know if this extension can have any serious 
influence on the conclusions. 
Werter and the author have examined this by adding 
another member to the family: the "Leaving One Out 
test". This is a Multiple James test in which after rejection 
of /hI = ... = /hk not only PI = ... = fik-l and /h~ = .. , = flk 

are considered but all the subsets of Iii, ... , /hk where one 
,IIi is left out. The same IXp is used and the acceptance of 
a hypothesis means that the splitting process for this 
subset stops. The Leaving One Out strategy is not limited 
to /hI = ... = Pk but is applied to every subset that be­
comes a candidate. This approach will avoid the classical 
trap of the Multiple F-test and also the specific problem 
that comes from variance heterogeneity. 
The Multiple James test and the Leaving One Out test 
were applied to 7 case studies, containing 277 pairs. Only 
2 different pairwise conclusions were reached, where the 
Leaving One Out test did not confirm the significance 
found by the Multiple James test. But since the Multiple 
Comparisons test is considered a useful extension of the 
Multiple F-test, this may not be representative. 
The Leaving One Out test can be very expensive. In the 
worst case situation where all the means are isolated the 
number of tests will be 2 -(k+l) instead of only 12k(k-l) 
for the Multiple James test and any member of the Least 
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Significant Difference family. For k = 15 this means 32752 

tests instead of only 105. 

For values of k that make the Least Significance Diffe­
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recommended with Ryan's IXp' A terminal ()riented com­
puter program such as BMDP should not only give the 
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significance can be verified by Welch's test for the Beh­
rens-Fisher problem. This should be considered if the 
sample variances involved are relatively big or if the 
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5. Final Remark 

This small study on robustness of multiple comparisons 
against variance heterogeneity only just touches some of 
the major problems. They are dealt with separately in a 
simplified example of four samples. In reality one has to 
deal with them simultaneously which makes the problems 
much more difficult. Also there are some well known 
disturbing effects that are not mentioned in this paper. 

6. Acknowledgements 

Prof. dr. R. Doornbos has been willing to discuss this 
study in two stages of its development. For his comments 
I am very grateful. 
I wish to thank Paul Werter for his simulation study on 
the robustness of the q-statistic as used in the Generalized 
Multiple Range test. And also for comparing the behaviour 
of the robust tests of the last section in seven case studies. 

Further I wish to express my gratitude for the helpfulness 
of Marjan van Rooij who typed this manuscript in a hurry. 

10. URY, H. K. and WIGGINS, A. D. 
Large sample and other multiple comparisons among 
means. 
British Journal of Mathematical and Statistical Psycho­
logy 24 (1971), 174-194. 

11. HOCHBERG, Y. 
A modification of the T-method of multiple comparisons 
for a one-way lay-out with unequal variances. 
Journal of the American Association 71 (1976), 200-203. 

12. TAMHANE, A. C. 
Multiple Comparisons in model-lone way AN OVA with 
unequal variances. 
Comunications in Statistics A 6 (1) (1977), 15-32. 

13. BANERJEE. S. K. 
On confidence intervals for two-means problem based on 
separate estimates of variances and tabulated values of 
t-variable. 
Sankhya, A 23 (1961). 

14. NEWMAN, D. 
The distribution of the range in samples from a normal 
population, expressed in terms of an independent esti­
mate of standard deviation. 
Biometrika 31 (1939), 20-30. 

15. KEULS, M. 
The use of the "studentized range" in connection with an 
analysis of variance. 
Euphytica 1 (1952), 112-122. 

16. WINER, B. J. 
Statistical principles in experimental design. 
New York, McGraw-Hill (1962). 

17. KRAMER, C. Y. 
Extension of multiple range tests to group means with 
unequal numbers of replications. 
Biometrics 12 (1956), 307-310. 

21 



18. RAMSEYER, G. C. and TCHENG, T. 
The robustness of the studentized range statistic to viola­
tions of the normality and homogeneity of variance as­
sumptions. 
American Educational Research Journal 10 (1973). 

19. GAMES, P. A. and HOWELL, J. F. 
Pairwise multiple comparison procedures with unequal 
N's and/or Variances: a Monte Carlo Study. 
Journal of Educational Statistics 1 (1976), 113-125. 

20. DUNCAN, D. B. 
A significance test for differences between ranked treat­
ments in an analysis of variances. 
Virginia Journal of Science 2 (1951). 

21. DUNCAN, D. B. 

22 

Multiple range and Multiple F-tests. 
Biometrics 11 (1955), 1-42. 

22. DUNCAN, D. B. 
On the properties of the multiple comparisons test. 
Virginia Journal of Science 3 (1952). 

23. EKBOHM, G. 
On testing the equality of several means with small 
samples. 
The Agricultural College of Sweden, Uppsala (1976). 

24. RYAN, T. A. 
Significance Tests for multiple comparison of proportions, 
variances and other statistics. 
Psychological Bulletin 57 (1960), 318-328. 

25. EINOT,1. and GABRIEL, K. R. 
A study of the powers of several mE'thods of multiple 
comparisons. 
Journal of the American Statistical Association 70 (1975), 
574-583. 



Institute of Econometrics and Statistics, University of L6dz 

The Power of Run Test Verifying the Hypothesis of Model Linearity 

CZESLAW DOMANSKI 

Abstract 

The paper concerns the studies of empirical power of 
some tests based on the number and length of runs, which 
verify the line.arity hypothesis of a model. The obtained 
results of the power of run tests are compared with the 
Dower of th<> F test. 

1. Introduction 

The paper presents the results of studies on the power 
of tests based on the length of runs and on the number 
of runs, verifying the linearity hypothesis of a model with 
two explanatory variables in the form 

(1) 

Mode.l (1) is considered at usually postulated assumptions 
concerning E ([f" ... , EnlT '" N (0, (121» - cf. e.g. Goldber­
ger (1966). Let a sample consisting of n independent ob­
servations (xli' x2i' Yi) be given for i = 1,2, ... , n. On the 
basis of this sample a hypothesis Ho: E (Y! Xl> X 2) = Cl:o + 
C\:JX J + Cl:2X2 should be verified taking into account the runs 
of' residual signs (d. Domanski (1980» 

(2) 

where. ao, 3j, a2 are the n. l. s. estimates of parameters Cl:o, 
C\:j, C\:2, respectively. While analyzing the model with two 
explanatory variables usually many criteria of ordering 
of ei can be given. Let h be some function of two va­
riables, and w - some permutation ordering the numbers 
hi = h ix li, X2i ), i. e. hw(l) ~ hw 2, ~ ... S;; hW'n)' 
Let us consider such criteria for ordering the residuals e· 1 

for which function h is determined by one of the following 
formulae 

(i) h(Xli,X!i)=alJ+aIXli+a2X2i 

(ii) h(xi i. x2i) = xli' 

(iii) h(Xli. X2i) = x2i' 

(iv) h(Xli' X2i) = Xli + X2i' 

(v) h(XIi. X2i) = x~i + x~i' 

Assume that the explanatory variables are standardized, 
thus making the above mentioned criteria independent of 
linear transformations of these variables. 
Let us note that the four first criteria are special cases 
of the function of the form 

h(XIi' X2i) = Yu + Y1 Xli + Y2 x 2i 

(the coe.fficient in criterion (i) being random), while cri· 
terion (v) is a special case of the function 

h(Xli, X2i) = J'j X1i+ )'2X~i' 
We gave up, however, this type of generalization in the 
present study. 

2. The Range of Study 

The subject of our study is the evaluation of several 
variants of a run test and F test verifying the hypothesis 

of linearity for the model with two explanatory variables. 
Let us note that run tests are based on the tests with 
discrete distribUtions, while the F test has a continuous 
distribution. That is why the randomized run tests based 
both on the number and length of runs have been in­
vestigated. 

Critical values and randomizing probabilities for the tests 
based on numbers of series have been taken from Do­
manski (1979) while those for the te.sts based on the length 
of series - from not published Domanski, Tomaszewicz 
(1980). The F statistic used for verification of hypothesis 
that some of the regression coefficients are equal to zero 
is describe.d in Goldberger (1966). 

To evaluate the power of tests being studied, we used the 
Monte Carlo experiment with the following procedure. For 
determined sample sizes n = 10, 20, 30 the values of xl i 
were generated from the uniform distribution and the 
values X2i from the normal distribution in such a way 
that the correlation coefficient between sequences { xli } 
and {x2i} be equal to the fixed number r. In turn, for each 
sequence. of pairs (Xji, x 2i) treated further on as already 
stated, sequences {Yj } were generated, where 

The variance o~ determines the dispersion of empirical 
points on the area defined by function g. Function g is also 
as follows 

Without a loss of generality it can be assumed that Co = 0 
and C:; = O. It is possible to reach it by isometric transfor­
mation of (Xj, xz) plane. Thus 

(5) 

where v = V C3/C4' In the experiment some variants of 
parameters Uj, uz, v and the following value were con­
sidered: 

where 

2 
2 (J~ 

'P =-2--2 
S&+(J~ 

(6) 

and I is a linear approximation function of g minimiz­
ing S2(~ 
A significant problem in this experiment is the choice of 
alternative distributions of random component ~i' As the 
alternatives of normal distribution, the Pareto and double 
exponential distributions as well as the uniform, log­
normal and exponential distributions were considered (cf. 
Domanski and Tomaszewicz (1983)). 
Densities of these distributions are defined as follows: 
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a) uniform (UNIF) 

f(x)= _1_ for - V3 ~x ~ V3 
Vi2 

b) normal (NORM) 

f(x)= exp (-x2j2)/{i'; 
c) log-normal (LNOR) 

f(x)=exp(-ln(x+(elj2)/~ for x~-Ve 

d) exponential (EXP) 

f(x}= exp (-x -1) for x~-1 

e) double exponential (2EXP) 

f(x) = exp (-Ixl f2) / ¥2' 
f) Pareto (PAR) 

f(x) = a{1 + Ix lf4 j2 

The experiment covered over 70 combinations of parame­
ters 1', Ub U2, v, 'ljJ2. The results of some of them are pre­
sented in Tables 1-4. 

Table 1 

3. Conclusions 

The following main conclusions can be formulated on 
the basis of the experimental results: 

1. With an increase of the correlation coefficient r the 
power of all tests increases, except the run test based 
on ordering criterion (v) for which it decreases. 

2. The shift of (Ui, U2) usually does not affect significantly 
the power of tests being considered. 

3. The F test proved to be the strongest in almost all 
cases. 

4. The F test appeared to be the most robust to non­
normal distributions. 

5. The powers of all tests being considered, are similar 
for symmetrical distributions NORM, UNIF and 2EXP. 
In the case of symmetrical distribution PAR and asym­
metrical distributions LNOR and EXP significant diffe­
rences can be observed in the powers of tests as com­
pared with the normal distribution. 

6. The power of tests based on the length of run is usually 
higher than that of tests based on the number of runs. 

7. The power of tests based both on the number and 
length of runs is usually the highest for variants (ii) 
or (v). 

Empirical power of tests (in °,0) for l' == 0.9, v == 3, 'ljJ2 == 0.5, Ul == U2 == 0, '" = 0.1 
--~-- ---~-- -.-~------

Test based on Distribution 
--- --------

UNIF NORM LNOR EXP 2EXP PAR 

n== n== n== n= n== n== n= n= n== n= n= n= n= n= n= n= n= n= 
10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 

number of runs (i) 6 8 6 9 11 5 6 25 9 14 16 15 4 8 8 4 12 6 
number of runs (ii) 33 41 49 45 46 73 71 64 96 19 26 28 51 60 76 73 73 95 
number of runs (iii) 19 30 20 28 36 57 25 68 41 17 23 20 25 42 25 34 57 43 
number of runs (iv) 39 35 40 47 42 61 70 72 85 19 20 25 53 48 57 70 64 84 
number of runs (v) 29 37 51 38 45 65 59 90 90 19 23 27 42 63 70 57 85 86 
length of runs (i) 15 10 13 16 7 12 9 2 14 28 28 35 13 8 15 11 3 13 
length of runs (ii) 29 42 58 43 57 75 64 83 91 34 46 50 43 61 81 57 81 96 
length of runs (iii) 28 42 32 38 50 51 54 80 67 36 42 43 36 58 47 49 80 67 
length of runs (iv) 32 47 49 47 55 74 65 82 88 35 42 48 43 65 69 57 83 86 
length of runs (v) 46 57 67 49 67 88 67 94 97 37 38 49 59 78 84 71 90 94 
F statistic 51 96 99 54 97 100 83 94 97 18 31 44 56 94 99 73 92 99 

~~~----- ----

Table 2 
Empirical power of tests (in °,'0) for l' = 0.9, v = 3, 'ljJ2 = 0.9, Ul = uJ = 0, '" = 0.1 

Test based on Distribution 
----~ -~.-... -.----~------------- -----

UNIF NORM LNOR EXP 2EXP PAR 

n= n= n= n= n= n= n= n== n== n= n= n= n= n= n= n= n= n= 
10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 

------.-------

number of runs (i) 9 11 9 10 12 8 15 14 17 14 11 9 10 10 9 4 10 8 
number of runs (ii) 15 15 17 14 18 21 31 48 56 49 67 83 22 21 24 31 37 47 
number of runs (iii) 12 15 12 14 12 13 26 32 31 29 54 29 16 19 14 20 26 19 
number of runs (iv) 13 16 11 14 17 19 32 36 45 48 52 67 21 20 22 33 30 38 
number of runs (v) 15 13 15 17 12 17 25 37 46 40 67 78 18 18 23 27 33 45 
length of runs (i) 20 19 19 17 22 19 27 16 51 27 3 13 21 17 18 16 11 15 
length of runs (ii) 26 25 23 21 26 33 51 64 69 48 63 83 28 30 39 32 44 63 
length of runs (iii) 22 23 20 21 27 26 48 54 57 41 61 57 24 26 22 28 40 34 
length of runs (iv) 23 24 19 22 26 36 56 60 67 48 63 79 27 31 29 33 46 47 
length of runs (v) 29 27 25 25 28 36 47 57 68 53 77 86 33 36 38 46 52 64 
F statistic 13 21 30 12 30 42 31 50 61 56 93 99 16 24 30 28 41 53 
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Table 3 

Empirical power of tests (in %) for r = 0.5, v = 1, ,tp2 = 0.5, UI = U2 = 0, rx = 0,1 
---~'- -----,--" ----.------~--

Test based on Distribution 

UNIF NORM LNOR EXP 2EXP 
.---.------~-.. 

n= n= n= n= n= n= n= n= n= n= n= n= n= n= n= 
10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 

--'- , .. _-_._-------

number of runs (i) 13 12 22 15 15 21 8 1:3 28 7 15 30 10 
number of runs (ii) 21 10 32 18 10 40 17 4 65 14 7 48 32 
number of runs (iii) 8 20 28 5 17 29 1 44 34 5 40 35 4 24 28 
number of runs (iv) 22 30 33 26 30 42 49 40 67 35 33 44 31 40 49 
number of runs (v) 9 13 38 10 14 47 6 16 75 6 15 51 8 17 60 
length of runs (i) 22 22 37 29 23 46 44 27 60 34 23 56 22 
length of runs (ii) 25 29 52 28 29 59 52 47 82 41 38 70 37 
length of runs (iii) 13 27 34 17 23 41 13 43 49 22 35 46 11 
length of runs (iv) 26 41 33 31 44 39 59 65 55 45 50 31 35 
length of runs (v) 27 30 53 29 35 62 37 44 83 32 35 66 27 
F statistic 49 97 100 52 94 100 80 91 96 62 92 99 58 94 98 

._._---------- --------- ---------- ---

Table 4 
Empirical power of tests (in °0) for r = 0, v = 1, tp" = 0.5, UI = U2 = 0, rx = 0.1 

---------- -------- ----------

Test based on Distribution 
._-------

UNIF NORM LNOR EXP 2EXP 
---- ----~.------~-----~-

n= n= n= n= n= n= n= n= n= n= n= n= n= n= n= 

10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 
---- ------------------- -

Number of runs (i) 21 42 26 25 32 32 29 80 46 1 54 37 29 
number of runs (ii) 3 5 30 2 6 35 1 1 55 1 2 43 3 
number of runs (iii) 31 35 21 35 35 23 66 65 38 42 46 29 43 47 23 
number of runs (iv) 3 20 28 2 23 41 1 40 58 1 24 40 4 19 44 
number of runs (v) 17 22 37 10 24 48 7 :32 51 13 21 47 13 27 58 
length of runs (i) 19 48 42 30 46 49 55 74 71 3 56 63 35 
length of runs (ii) 4 18 49 7 19 58 1 2 78 3 13 71 4 
length of runs (iii) 26 48 38 37 47 45 62 74 63 46 57 52 41 
length of runs (iv) 4 14 20 4 18 28 1 12 28 2 17 26 6 
length of runs (v) 37 32 56 27 30 68 39 41 77 31 94 72 20 
F statistic 46 94 100 55 95 100 79 92 96 60 90 99 56 93 98 

----~--- --- -------------_. -'-- ------------
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The Robustness of Selection Procedures Investigated by a Combinatorial Method 

HARTMUT DOMROSE 

Abstract 

Bechhofer's indifference-zone-approach in selection with 
selection rules based on the sample mean, the a-trimmed 
mean an the median is investigated. The author investi­
gates the robustness of these selection rules against 
deviation from an assumed distribution by assuming the 
distributions belonging to the populations are threepoint 
distributions. This method yields exact results. The selec­
tion rule based on the sample mean is investigated for 
robustness against deviation from the normal distribution. 

1. Introduction 

We consider the problem of selecting the t "best" from 
a given populationsJT, , ... ,JTa with the means Ilb ... , Ita' 

The "besf' ones are defined as populations with the t 
greatest means. Let 1'(1' :c:;; ... :c:;; Pia) and JT'i) be the 
population with mean I'd)' In our paper we use the 
Bechhofer's indifference-zone-approach, that is 

I min I'ij; - max !I:i I 
j > a - t i <;; a - t ~ d > 0, 

and assume the least favourable case for continuous 
distributions 

ftlll= ... =,ula-ll=,ula-I+II-d= .. , =,ula)-d. (I) 

For every population IIi an estimation of Iii is calcu­
lated from a sample Yi of size n by an estimator h(Yj, n), 
and the populations yielding the t greatest estimations are 
selected. The distributions belonging to III , ... , II a are 
assumed to be threepoint distributions with the same 
variance a2 = 1, the same skewness YI and the same kur­
tosis )'2. Then the cardinality of the set of possible values 
of h(y;, n) is the same limited number N(h, n) for all po­
pulations. The probabilities of these values are easily com­
puted. If {hi' i = 1, ... , N(h, n)} is the set of possible 
values of h(Y(a)' n), the probability of a correct selection 
(CS) can be calculated because of (1) as 

A correct selection is defined as the selection of the 
variates with the t greatest means. We will now denote 
the selection rule described above by SR (h, n, a, t, d). 

2. Description of the Method Used 

In our investigations we consider only equidistant three­

point distributions (XX+!IX+2A). Therefore the difference 
p,p~ p" 

between two possible values dn = h j _I_1 - h j is constant 
for 1:::;: i :::: N (h, n) and N (h, n) is less than or the same 
as in the case of nonequidistance. Let Dn = [d/dn 1 the 
maximal number of possible values of h(Y(a;' n) in an 
interval of length d. Then we have P (h (YI!' n) < h j ) 

P(h (Y a' n) :::: hHDnl i3, 

From the binomial theorem follows 
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(4) 

With (3) and (4) we obtained from (2) 

This formula was used in our computer calculations. We 
now see that we can calculates P(CS) under the above 
conditions if we know the distribution of the best popu­
lat ion. 

3. Special Problems of the Method Used 

The assumed discrete distribution yields a discrete dislri-· 
bution of h(y i' n) for each sample size n. This is why in 
our investigations there exists more than one least fa­
vourable case, in contrast to the continuous distributions, 
and why P(CS) is constant fore the same n but different 
values of d. For example we consider -(- 1:1 0 1 :r) with 

I 6 ~:I 16 
P = 0, a2 = 1, YI 0= Y~ = O. 
For n = 2 the sample mean y can take the five possible 
valuesJ - 1 :1, J:fh 0, \:if:!, I:l} with the difference 
dn = 1:1 I:!. 
For SR(y, 2, 2, 1, d) we obtain preS) = 0.676 if 0 < d< 

l:f /2 and P(CS) = 0.909 if lil/'2 < d < Iii. 
Moreover P(CS) does not increase continuously while n 
increases. We choose the above example and d = 1 and 
consider Table 1. 

Table 1 

SR(y, n, 2, 1, 1) 

a 

2 
2 

2 
2 
2 

1 
1 

1 

n 

2 
3 
4 
5 
6 

1:1/'2 
IT /:1 
pj-l 
I '· /-.l ;, 

I:-I/Ii 

Dn = d/dn P(CS) 

.909 

.860 
2 .939 

.917 

.961 

P(CS) decreases when N(h, n) increases and Dn remains 
constant. Therefore the probability of every possible va­
lue h j decreases and, because of (3), P(h(y,. , n) < hi) 
decreases also. 



4. Robustness Against Deviation From an Assumed 
Distribution 

4.1. Definition of Robustness 

Definition 1: 
SR(h, n, a, t, d) is called E(p)-robust against devia­
tion from an assumed distribution G in a set 'J of 
distributions, if it follows from P(CS/G) = 1 - P 
that min P(CS/F) 2: 1- P - dP). 

FEJ 

Definition 2: 

SR(y, n, a, t, d) is called dP)-robust against devia­
tion from the normal distribution Neu, ( 2) in a set 
J of distributions, if it follows from 
P(CSIN(,u,a2» = 1 - P that min P(CS/F) ~ 1 - P-
r~. ~J 

4.2. The Sample Mean 

In this paper we investigated SR(y, n, a, t, d) with 
a = 2(1)20, t = 1(1) [a/21, n = ~(1)20(5)50(10)100, d = 1 
and 0.5 with the method described in chapter 2 in the 
(}'I> }'2)-points given in Table 2. 

Table 2 

1'1 1'2 PI P2 P1 

0 0 116 2/3 116 
0 -1 114 112 114 
0 6 1113 8/9 1118 
1 0 .6222 .3333 .0444 
2 6 .0099 .9008 .0892 

Because of the problems described in chapter ~ we re­
stricted our attention to sample sizes n planned under 

Table 4 

the normal distribution for P(CS) 2: 0.90, that means 
the computer program printed P(CS) for a configuration 
n, a, t, d only if P(CS) 2: 0.35 by using c(p) as small as 
possihle. Table 3 gives an example. 

Table 3 

SR(y, n, 20, 1, 1) in the point I'J = }'2 = 0 

n 10 11 12 1~ 14 15 
P(CS) .S545 .9170 .S959 .94011 .967(] .95111 
P(CS/N(p, ()"2» .90 .95 
n 16 17 III 19 20 21 
P(CS) .9770 9706 .93~S .9794 .911S7 .9939 
P(CS/N(,u, ( 2» .99 

SR(y, n, 20, 1, 1) is 0.2p-robust against deviation from 
N(,u, ()"2) in the equidistant threepoint distribution with 
t'L = 1'2 = O. Table 4 compares our results with the exact 
values under Neu, ( 2) given for instance in Rasch (1934). 
Rasch et a1. (19711) and Rasch et a1. (1931). We denote by 
nil the minimum sample size with P(CS/N(p, ()"2» :s 1 - p. 
A "-" means that the selection rule is not r(p)-robusl in 
lhe sense of definition 2 for nO.OL, and "+" means that 
the procedure is still robust with an dP) less than that 
considered. Robustness is given in t'L = }'2 = O. We thc-re­
fore conclude that our investigation method is practicable 
for an exact robustness study. 
It seems that the skewness influences the robustness 
more than kurtosis does. With most configurations the 
least favourable distribution was the threepoint distri­
bution with 1'1 = 2 and ;'2 = 6. But nevertheless in most 
cases we obtained dP)-robustness with dP) s;: P in all 
five (I'L, t'2)-points for all n 2 n".IO . 

Sample sizes n where SR(y, n', a, t, d) is dP)-robust against deviation from Neu, ( 2) for all n'2: n. 
n denotes the minimum sample size with P(CS/N(,u, ( 2» 2: 1 - p. 

d 

1 

0.5 

d 

r(Pl :'1 

O.4P 0 0 
o -1 
o Ii 
1 0 
2 (i 

P 2 (l 

0.2p 0 0 
o -1 
o (l 

1 0 
2 6 

0.4{l 1 0 
2 6 

dPl i'l }'~ 

O.4tl 0 0 
0 -1 
0 6 
1 0 
2 6 

{l 1 0 
2 6 

---------

<1=2 a=3 
t=1 t=,1 

4 5 
11 14 

4 6 
4 5 
4 5 
4 (l 

7 14 
4 5 

14 20 
44 53 

14 20 
14 20 
14 20 
14 20 
20 30 
+ + 
14 20 

a=7 a=8 
t=3 t=1 

11 9 
20 18 

11 8 
11 II 
11 8 
11 13 

+ II 
11 II 

--~-----~--

a=4 a=4 a==5 
t=1 t=2 t=1 

6 7 7 
15 16 16 

6 7 7 
II II II 
B 7 7 
(l 7 7 

14 
6 7 7 

25 28 28 
511 62 62 

25 25 30 
25 2;) 30 
25 25 30 
25 25 ~O 

~O :W 50 

+ + + 
25 30 30 

a=8 a=8 a=8 
t=2 t=3 t=4 

11 11 12 
20 21 21 

10 10 11 
10 10 11 
10 10 11 
10 10 11 

+ + + 
10 10 11 

a=5 a=6 a=6 a=6 a=7 a=7 
t=2 t=1 t=2 1=3 \=1 t=2 

9 II 9 10 8 10 nO·1 
17 17 18 19 17 19 n 0.01 

9 8 9 10 II 10 
9 8 9 10 II 10 
9 S n 10 II 10 
9 II !I 10 S 10 

9 8 9 10 8 10 

33 30 36 38 32 39 n"'1 
68 65 72 74 67 75 nO.f)l 

-- ----- -----

30 30 35 40 35 40 
30 30 35 40 35 40 
:~O 30 35 40 35 40 
30 50 50 40 35 40 
50 60 50 40 60 50 

+ 30 35 + + + 
30 30 35 + 35 40 

a=9 a=9 a=9 a=10 a=10 a=10 
t,=1 t=2 t=4 t=1 t=2 t=5 

9 11 12 9 11 13 n., 
18 20 22 18 21 22 n.Il' 

9 11 12 9 11 13 
9 11 12 9 11 13 
9 11 12 9 11 13 

13 11 12 13 11 13 
17 

9 + + 9 + + 
9 11 12 9 11 13 

----- ------- --------- --
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0.5 

d 

1 

d 

0.5 

0.2·fJ 0 0 
o -1 
o 6 
1 0 
2 6 

O.4fJ 1 0 
2 6 

c(fJ) YI Y2 

O.4fJ 0 0 
o -1 
o 6 
1 0 
2 6 

fJ 1 0 
2 6 

E{fJ) Y2 

0.2{J 0 0 
o -1 
o 6 
1 0 
2 6 

O.4fJ 1 0 
2 6 

fi 2 6 

4.3. The a-trimmed Mean 

--- - -- ---.-~- -" ----

42 33 41 44 
78 69 77 81 

40 35 40 45 
40 35 40 45 
40 35 40 45 
40 50 40 45 
40 50 
+ 35 + + 
+ 35 40 45 

-------

a=l1 a'=l1 a=l1 a=12 
t=1 t=3 t=5 t=1 

10 13 14 10 
19 22 24 19 

9 12 14 10 
9 12 14 10 

12 12 14 10 
13 13 14 13 

17 
9 12 + 10 

14 13 14 10 

a=l1 a=l1 a=l1 a=12 
t=1 t=3 t=5 t=1 

37 50 55 38 
74 87 93 75 

35 50 50 35 
35 50 50 35 
35 !'i0 !'i0 40 
3!'i !'i0 50 35 
50 50 50 60 
+ + + + 
35 + + 50 

+ + + 35 

Let Yi = (Yit , ... , Yin) be a sample from [fi with 
n-u 

'\' 
.::.. Y i(j) is 

j=,,+l 
called the IX-trimmed mean of the sample. We investi-

gated SR(Yo.!n' n, a, t, d) with n = 10(1)20(5)50, a = 2(1)20, 

t=I(I) [a/2], d=1 and 0.5, and SR(YO'2 n,n, a, t, d) with 
n = 6(1)20(5)50 and the values of a, t, and d given above 
in the same five distributions as in chapter 4.2. We were 
looking for robustness in the sense of definition 1 when 
the assumed distribution G is the threepoint distribution 
with YI = Y2 = O. Table 5 gives the minimum sample sizes 

required by SR(y", n, a, t, d) to yield P(CS) ;;:;; 1 - fJ for 
some chosen configurations. In the point YI = Y2 = 0 we 
obtained nearly the same values of n as those required 

by y. We found that 1'1 = 0, 1'2 = -1 and 1'[ = 1, )'2 = 0 
are clearly the two least favourable distributions. While 
the O.ln-trimmed mean is still robust against deviation 
from G with E{fJ) :::;; 1.5fJ in all five points in most con­
figurations, the 0.2n-trimmed means has not this property. 
Trimming the mean reduces roubstness in the sense of 
definition 1 in our investigations. Special results veri­
fying this statement can be found in Domrose (1984). 

4.4. The Median 

In this chapter we want to give a short comment re­
garding the selection rule based on the median Y med . 
We investigated this rule for n = 3(2)39 and the same 
values a, t, d in the same five (Yh Y2)-points considered 
in chapter 4.1. In contrast to the sample mean and the 
IX-trimmed means, the median has only three possible 
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45 
82 

45 
45 
45 
45 
50 
+ 
45 

-- --~--- -----

35 43 48 36 44 51 n., 
71 79 85 73 81 88 n'OI 

35 40 50 35 45 50 
35 40 50 35 45 50 
35 40 50 35 45 50 
50 40 50 35 50 50 

50 50 60 50 
35 + + + 45 + 
35 40 + 35 45 + 

a=12 a=14 a=14 a=16 a=20 
t=5 t=1 t=5 t=1 t=1 

------------- -- .----------~--

14 10 15 11 11 n., 
24 20 24 20 21 n.OI 

---- -- .. ----.---~---

14 10 15 11 11 
14 10 15 11 11 
14 10 15 11 11 
14 14 15 13 13 

17 
+ 10 + 11 11 
14 11 15 14 17 

------ ------ -----

a=12 a=14 a=14 a=16 a=20 
t=5 t=1 t=5 t=1 t=1 

----------

55 40 59 41 44 n'l 
93 77 96 79 82 n.OI 

------~--- -- ------

50 40 60 40 45 
50 40 60 40 45 
50 40 60 40 45 
50 40 60 60 50 
50 60 60 60 60 
+ + + 40 45 
+ 50 + 60 50 
+ 40 + 40 45 

Table 5 

Sample sizes required by SR(y", n, a, t, d) to yield 
P(CS) ;;:;; 1- fJ 

IX = 0.1 n IX = 0.2 n 

I-fJ a=10 a=20 a=10 a=20 
YI 1'2 t=1 t=1 t=1 t=1 

-- ------------ - ---_._------- -- - ----

0.9 0 0 10 13 11 11 
0 -1 12 14 13 18 
0 6 10 11 6 8 
1 0 11 15 17 20 
2 6 10 12 9 10 

0.95 0 0 15 16 13 15 
0 -1 15 18 20 25 
0 6 11 11 8 8 
1 0 15 16 19 25 
2 6 12 16 11 11 

0.99 0 0 25 25 20 25 
0 -1 30 30 30 35 
0 6 14 14 11 11 
1 0 20 25 30 35 
2 6 19 20 14 16 

values and therefore the same P(CS) for all d less than 
the difference Ll between the points of the threepoint 
distribution. Table 6 gives P(CS) for a chosen configura­
tion and 0 < d < Ll. A gap means that P(CS) < 0.85 or 
P(CS) > 0.99 respectively. When Yl = Y2 = 0, SR(Ymed' n, 

a, t, d) yields nearly the probabilities of SR(y, n, a, t, 1.05). 
But in the point Yl =1, Y2 = 0 we found no meaningful 
robustness against deviation from the equidistant three­
point distribution in (0,0). 



Table 6 

P(CS) of SR(Ymed' n, 2, 1, d) with 0.( d < J 
. ---. ----

YI= 0 0 0 1 2 
n 0 -1 6 0 6 y~= 

3 .868 .982 .977 
5 .932 .996 .993 
7 .965 
9 .982 .909 

11 .990 .934 
13 .953 . 851 
15 .966 . 862 
17 .975 .872 
19 .982 .882 
21 . 987 .890 
23 .990 .898 
25 . 906 
27 . 912 
29 . 919 
31 . 924 
33 .930 
35 .935 
37 .9:39 
39 . 944 

The least favourable discrete distribution we found is 
the symmetric twopoint distribution. In this case P(CS) 
of SR(y med' n, a, t, d) would be constant for all odd 
sample sizes. Summerising the median cannot be pro-

posed for selection rules for arbitrary distributions since 
it was not robust in the sense of definition 1 in the chosen 
discrete example . 
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Results of Comparisons Between Different Random Number Generators 

FEIGE, K.-D.; GUIARD, V.; HERRENDORFER, G.; HOFFMANN, J.; NEUMANN, P.; PETERS, H.; 

HASCH, D.; VETTERMANN, Th. 

Staff from various research establishments in the GDR 
have investigated generators of equidistributed pseudo­
random numbers in regard of their statistical proper­
ties. The tests were performed on the following com­
puters: 

ES 1040 
BESM-6 
CDC-1604 A 
KRS 4200 

by Ms. Peters (Rostock) 
by Dr. Neumann (Dresden) 
by Mr. VeHermann (Bohlitz-Ehrenberg) 
by Dr. Feige (Dummerstorf-Rostock). 

Apart (rom investigating :;,everal multiplicative generators 
of the type 

x n+1 = (axn ) modM 

and generators of the mixed type 

x n-l-l = (a xn -1- b) mod M 

(fixed point arithmetic in some cases but floating point 
arithmetic others), the group also studies a few special 
techniques for generating random numbers. 
The parameters of the generators are given in table 1. 
In case 4a) the algorithm certainly seems quite compli­
cated, but in fact it represents merely a bit shift gene­
rator: Bits 16 and 32 of a 32-place binary number arc 
combined in such a way that they yield a new bit in­
formation which is then attached to the preceding random 
number. The possible overflow at the beginning of the 
random number is ignored. When programmed in an 
assembler language, generators of this type are usually 
very fast. 
Thumhart's generator consists of four multiplicative 
components that are combined in such a manner that, 
by means of a special transformation, the index for the 
next generator is calculated from the preceding random 
number. 
Following up an idea expressed by McLaren and Prof. 
Marsaglia in 1965, Mr. Teuscher found in 1979 new para­
meter combinations for a random number generator 
which in practical terms consists of two independent, 
hierarchically arranged multiplicative generators. The 
generator works on the principle that 1211 random num­
bers are first calculated with the first generator. The 
second generator is then used to select random numbers 
pseudorandomly from the 128 numbers and to replace 
each selected number by the next one calculated by the 
first generator. 
Most generators were programmed in the assembler 
language of the computer concerned, although FORTRAN 
was used in some cases (only FORTHAN was used for 
the BESM-6). 

With each generator 10000 random numbers (HN) were 
generated, the same 10 starting points (XII) being used in 
each case. The generators were subjected to the following 
tests by using these random numbers: 

G 

R 

30 

- x~-test £01' equi-distribution in 100 equidistant 
classes in (0,1), 

x'-test for the two-dimensional distribution 
of consecutive pairs of numbers (lag 1, 2, 3 
and 4) in lOX 10 classes, 

M 

X2-interval test in respect of omission of a 
certain interval Ii C (0,1), (II: (0, 0.2), I,: 
(0.2, 0.4) , .. 15: (0,8, 1», 

X2-maximum test for evaluating the distri­
bution that might be expected on the as­
sumption of the equidistribution of the ge­
nerator, 

the mean, variance, skewness and kurtosis 
of the RN sequence was put as an additio­
nal, descriptive from of generator evaluation, 

some members of the group ascertained the 
number of ascending or descending sequen­
ces (v!, V2) of RN and the number of RN 
above or below the arithmetic mean (no) of 
a sample of 10000 RN. n[ or n2 are the num­
bers of sequences below or above the arith­
metic mean of the sample. 

The different results are presented in tables 2-5. If you 
find in the tables an A, then initial test shows that the 
properties of this particular generator are bad. 
We propose that the following best generators be used in 
the subroutine versions we have elaborated for the diffe­
rent computers: 

CDC-1604 A 

x"tl=(515 x,,+I) mod 235 

ES 1040 

. - (713 ) d 231 Xntl- xn mo 

and with good results 

x" t 1 = (210 x,,) mod 1049399 

Yntl = (8323.Y,,) mod 228 

KRS 4200 

X"t I = (210 xn) mod 1049399 

Yntl = (832:3Yn) mod 228 

BSM-6 

X"t [ ,= (:3141592221 Xll + 1) mod 235 

~ (2e) 

fi (2f) 

fi (If) 

fi (5h) 

fi (4c) 

~(4c) 

fi (2b) 

Xnt 1 = (511 xn) mod 242 fi (Ie) 
While testing the uniformly distributed random number 
generators, the group at Dummerstorf also analysed the 
properties of transformers which, at least approximately, 
transform the random numbers of a (O,l)-equidistribution 
into a normal distribution. 
We tested the following transformations: 

a) ~r;; l+x" 
u,,= - In ---

8 1- x" 

b) lui = 2.30753 + 0.27061 Zn - Z 
n 2 n 

1 + 0.99229 Zn 



with 

Zn = (=,2 In xn xn < 0.5 

__ VI-21nz 
c) U,-Xl ---

Z 

with 

z=x;-+-x; and O<z<1 

Uz = V -2111 Xl sin 2,~ Xz 

e) 
1 (((zn' P4 -+- P3 )Zn-+-P2)Zn-+-Pl)Zn-+-Po 
lunl = zn -+- -,-----------:----­

(((zn' q4 -+- q3) zn -+- q2)Zn +ql) zn+ qo 

with 

and 

Pu = -0.322232431088 

PI =-1. 
p~ = -0,342242088547 

P:l = -0.0204231210245 
P'I = -0.453642210148 . 10'-" 

fur Xn < 0.5 

(jo = 0.99341l462606 . 10-1 

CJl = 0.58851l1570495 

CJ~ = 0.5:31103462366 

CJI = 0.10353775285 
q\ = 0.:31l5607()()6:141 . 10-:l 

The class limits fur the X:l-test were selected so that thl~ 

same expected frequencies Ei can be assumed for the 
25 classes on the condition of an N(O,l)-normal distri­
bution. In the table 6 we have included a couple of se .. 
lected observed frequences. The X:l-test of fit, finally, also 
permits only the second and fifth transformation to be 
performed on the KRS 4200 and on the ES 1()40 again. 

Table 1 

Generators 

1. Multiplicative Generators 

x n+1 =(axn)modM 

a) 
b) 
c) 
d) 
e) 
f) 
g) 

a 

112027 
2\3+ 6 
5 + 8u 
51;. 

51i 

51J 

655:19 

2. Generators of mixed typ 
x n_p = «a x n ) + b) mod M 
----- ------------------------

a 
---------

a) 210 + 1 
b) :3141592221 
c) 27182811121 
d) 51:1 
e) 515 

£) lOI't ;rr; 

M 

2;1~ 

2':; + 1 

b M 

101 2:1fi 

I 2::;:' 

I 2:).') 

I 2:\'"' 
1 2:13 

lOll J 3 lOll, e 

3. Mixed generators (floating point arithmetic) 

-- ------------. 

a b M 

a l e I :3 10. 

b e O. 1. 

c) e I ;{ 1. 
------- ---------

4. Special techniques 

(( xn Xn )) 
a) xn+ 1= 2x n mod 232 -+- 231 -+- 216 mod 2 + 1 mod 2 

b) Thumhart's generator (Roe (1970» 

4 multiplicative generators with 
al = 252 114903917 
a:l = 8 064 131 757 
a:1 = 282629 
a4 = 4357 
M= 235 

the index In for the next generator is calculated with 

1= 
(a x) mod 238 - (a X) mod 236 In n In n 

n 236 

c) McLaren - Marsaglia (1965) 
(special parameters Teuscher (1979» 

xn + 1 = 2 '" xn mod 1049339 

I -' /221 --b't n+1 -,'n+1 =-- I 1 

5. Additional generators 

(only tested on ES 1040 computer) 

(but other starting points) 

(and then like 4c) - gen.) 

c) xn+l=5xn 

if xn+l>A=Xn+l=Xn -A 

Xn+ 1 > B = Xn+ 1 = xn - B 

Xn+,>C= Xn+I=X,,-C 

(,\SI' xn+l = xn 

with A = 137438953472 
B ~~ 61l 719476736 
C = 34 :359 738 368 

and Xo = 11 919641 73:; 

d) 
e) 
n 
g) 
h) 
i) 
j) 
k) 

a 

r' 
7J:l 
:3 l7 

3 l !l 

10006499 

b 

788675 

M 

100001 
1013 

231 -1 
2:11_1 
2::1-1 

1010 

1010 
2:11-1 
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Table 2 
Results for CDC-1604 A 

----- -----~--- --~---,.------- ~---------,~------~- ------------

Gen. G R M 
-- ----- ,------- - -- --------~-------- ,- ---- - - --- - -- -------

la) 95.5 
1b) 99.7 
1c) 96.1 

1d) 96.5 
Ie) 104.6 
1£) 98.1 

2a) 89.9 
2b) 89.9 
2c) 100.8 

2d) 95.8 
2e) 88.7 
3a) 105.5 

4a) 101.9 (*) 
4b) 102.8 (*) 
4c) 101.4 

-_. - - ----------

theor. 
values 124.3 

Table 2 
(continuation) 

87.7- 105.3 5.5- 7.9 79.8-102.1 (*) 
85.8- 98.4 7.5- 9.9 29.5- 38.6 (") 
85.3- 106.7 6.5-11.8 83.2- 90.8 (*) 

96.3- 110.8 (*) 6.1- 7.5 83.0- 96.9 
97.0- 104.0 (*) 7.9- 9.8 90.6-112.0 (*) 
85.3- 102.5 5.9-11.0 64.4- 95.3 (*) 

92.0- 109.8 7.3- 9.1 86.2- 99.9 (*) 
94.0- 104.1 5.7-10.3 66.3- 88.4 (*) 
94.5- 103.2 7.3-10.7 (*) 60.8- 85.1 

92.8- 102.4 5.3- 9.9 84.3- 87.5 (*) 
86.1- 97.6 5.6- 9.2 66.5- 82.:3 
94.5- 119.9 7.8-11.2 {*) 85.0- 90.0 (*) 

968.9-40045. (*) 1353.0 (*) 500000 (.) 

92.6- 108.0 (*) 6.2- 8.3 70.8- 85.5 
97.8- 108.8 (*) 6.6-10.6 48.9- 94.4 

- ----_.'------ --------".--- ------

124.3 16.9 124.4 
. ~-~--~----.--'" ... 

-----_.-._-- ------,------- ----- - ---- ---- --- - --- --

Gen. u, u:! 
---------- -------

la) 
1b) 
1c) -0.07 

1d) -0.76 
Ie) 0.76 
If) 0.17 

2a) 
2b) 0.24 
2c) 0.18 

2d) -0.21 
2e) 0.31 
3a) -0.08 

4a) 
4b) 
4c) 

-0.25 

-0.22 
0.15 
0.27 

1.05 
0.60 

-0.12 
-0.27 

0.63 

X 

0.5014 

0.4988 
0.4992 
0.5003 

0.4999 
0.4990 

0.4982 
0.500:3 
0.4970 

----- - --------

Table 3 

theor. 
values 

Results for ES 1040 
- ---------------

Gen. 

±1.96 ±1.96 0.5000 
------------

------ ---------------

G R I 

S2 

0.0835 

0.0835 
0.0826 
0.0831 

0.0829 
0.0834 

0.0827 
0.0829 
0.0838 

0.0833 

M 
.. _- --- ------ ---------- ------------- - -

1a) 118.1 131.1 14.3 159.1 
1b) 112.3 144.1 17.6 383.9 
1c) 123.0 116.0 24.9 218.4 
1d) 150.8 127.6 18.3 140.1 
Ie) 116.9 136.5 22.6 2244.1 
If) 115.7 124.6 17.8 108.1 
2a) 128.5 124.2 19.3 129.2 
2b) 155.3 127.8 20.4 149.0 
2c) 144.5 138.0 19.0 170.0 
2d) 108.4 134.4 19.8 246.4 
2e) 114.3 121.4 28.5 642.6 
2f) 133.4 112.3 16.0 119.0 

4c) 102.4 135.0 17.2 130.0 
5a) 115.26 110.9 23.0 126.0 
5b) 112.6 116.8 17.4 257.0 

5c) 122.:3 10121.0 19.7 24540.0 
5d) 115.2 115.7 22.4 183.9 
5e) 112.2 126.0 19.6 117.2 
5£) 114.0 117.6 15.4 171.8 
5g) 123.9 127.5 13.5 415.3 
5h) 128.5 150.5 19.2 113.1 
5i) 127.5 115.6 15.7 127.0 
5k) 130.3 115.8 16.4 179.5 
51) 120.8 144.1 19.8 103.1 

theor. 
values 123.2 123.2 15.5 123.2 

i'[ y:! 
---------

-0.0039 -1.2070 

0.0003 -1.1994 
-0.0004 -1.1905 

0.0003 -1.1962 

0.0044 -1.1981 
0.0044 -1.1981 

0.0099 -1.1923 
0.0002 -1.1975 
0.0120 -1.2065 

0.0 -1.2 

no Vj = V2 

4975-5034 3291-3369 
4974-5050 3282-3351 
4983-5023 3301-3355 
4949-5045 3305-3375 
4975-5031 3300-3350 
4959-5046 3303-3364 
4918-5005 3264-3340 
4922-5021 3281-3364 
4904-5071 3286-3388 
4945-5028 3289-3350 
4978-5032 3306-3385 
4971-5073 3290-3370 
4966-5044 3289-3373 
4947-5050 3294-3353 
4949-5043 3303-3364 
4953-5063 2982-3047 
4960-5063 3309-3362 
4952-5012 3302-3355 
4961-5067 3293-3361 
4951-5028 3293-3369 
4966-5028 3313-3377 
4915-5049 3285-3359 
4963-5045 3302-3381 
4949-5049 3284-3372 

5000 3333 
._--------'--------_._._. __ ._- -----.-



Table 3 
(continuation) 

Gen. nJ ~ n~ x 
.) 

S" ;'J i':! 
--------~----

la) 2454-2535 0.5004 0.0828 -0.0248 -1.211 
Ib) 2427-2540 0.4985 0.0833 0.0277 -1.172 
Ic) 2465-2528 0.4975 0.0835 0.0331 -1.232 
Id) 2450-2551 0.5006 0.0840 -0.0245 -1.217 
Ie 2447-2539 0.4998 0.0831 0.0248 -1.218 
If 2465-2530 0.5005 0.0833 -0.0298 -1.170 
2a) 2447-2528 0.4970 0.0828 0.0443 -1.178 
2b) 2474-2548 0.4987 (1.0838 0.0421 -1.215 
2c) 2454-2539 0.5009 0.0824 0.0409 -1.160 
2d) 2455-2508 0.5003 0.0832 0.0198 -1.171 
2e) 2464-2528 0.5001 0.0837 -0.0230 -1.225 
2f) 2461-2514 0.4992 0.0838 -0.0267 -1.224 
4c) 2469-2531 0.5004 0.0834 -0.0329 -1.181 
5a) 24:38-2533 0.4999 0.0832 -0.0278 -1.230 
5b) 2469-2528 0.4997 0.0833 0.0833 -1.170 
5c) 1973-2080 0.5009 0.0836 -0.0306 -1.232 
5d) 2428-2531 0.5004 0.0829 -0.0325 -1.182 
5e) 2473-2543 0.5000 0.0834 -0.0834 -1.214 
5f) 2444-2523 0.5005 0.0831 -0.0344 -1.176 
5g) 2473-2551 0.4995 0.0828 -0.0189 -1.166 
5h) 2455-2520 0.5008 0.0835 -0.0179 -1.213 
5i) 2475-2527 0.4983 0.0834 0.0372 -1.213 
5k) 2472-2528 0.4995 0.0834 0.0351 -1.229 
51) 2443-2532 0.4999 0.0832 0.0363 -1.174 

- -- -~---- -----------.. _----- ----

theor. 
values 2500 0.5 0.0833 0.0 -1.2 

-- ----_. --- ._- --~--

Table 4 
Results for BESM-6 

Gen. G R M X S2 Y1 Y2 ------

Ie) 122.4 125.6 22.2 299.1 0.4970-0.5049 0.0824-0.0846 -0.0268 -1.23 
1d) 120.6 143.0 15.0 262.1 0.4952-0.5028 0.0821-0.0842 0.0300 -1.17 
Ie 111.2 132.3 14.2 517.5 0.4980-0.5036 0.0826-0.0847 0.0144 -1.18 
If) 122.1 116.1 22.5 227.7 0.4958-0.5049 0.0830-0.0850 -0.0310 -1.23 
2b) 107.1 119.0 16.[/ 174.8 0.4964-0.5046 0.0818-0.0838 -0.0229 -1.18 
2c) 134.6 1:30.2 19.2 118.!! 0.4943-0.5033 0.0823-0.0846 -0.0235 -1.18 
2d) 116.1 144.4 16.8 235.9 0.4943-0.5018 0.0818-0.0834 0.0318 -1.18 
3a) 131.9 142.3 31.8 115.9 0.4933-0.5048 0.081(j-0.0833 -0.0274 -1.17 
------ ------- ---- ---------.. _--- ------ ------._------
theaI'. 
values 123.2 123.2 15.5 123.2 0.5000 0.0833 0.0 -1.2 

-------------

Table 5 
Results for KRS 4200 
-_. __ ._-- ----

--- -------- --

Gen. G R M 
-

S2 X 
--------- - --------------

la) 2064-2346 209.0-294.1 1.96-26.1 160.3-401.6 0.483-0.489 0.083-0.0852 
Ib) 106.3-174.3 101.6-259.4 7.6-16.2 35.7-114.0 0.498-0.503 0.083-0.0835 
lc) 98.1-127.2 79.3-2611.5 9.5-117.1 100.9-546.6 0.498-0.507 0.0822-0.0835 
1d)-lf) A A A A A A 
Ig) 493.1-512.3 1082-35839 A A 0.544-0.557 0.0786-0.082 
2a) 5:3147 25879-50107 2687 :388.4-547.3 0.:340-0.3411 0.1051-0.1061 
2b)-2e) A A A A A A 
3a) 210.8-269.7 23560 225.3-828.1 255-17342.5 A A 
:lb) 246.4-344.3 527-82473 315.1-1014.9 500-193020 0.460-0.474 0.0769-0.0777 
3c) 553.7-728.1 1078-24707 23.9-866.3 259.5-1245.0 0.498-0.503 0.0926-0.0951 
4a) A A A A A A 
4b) :34689 27245-31652 756.4-1761.9 :~039.5-3356.2 0.:308-0.310 0.0986-0.098 
4c) 72.6-109.1 78.8-124.0 4.1-17.1 45.5-94.1 0.496-0.503 0.0823-0.0842 

the or. 
values 123.2 123.2 15.5 123.2 0.5000 0.08333 
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Table 6 
Results of the comparison of N (0, I)-transformations 

transf. intervals 
(-2.054) (2.054,1.751) (1.751,1.555) ... (0.1509,0.107) 

min. max. 
--.~~.--~-

a 7200 4262 3680 3991 
b 4006 3992 3980 4032 
c 4066 4015 3945 4014 
d 3848 3841 3942 3981 
e 3918 4034 3998 4009 

~--- ---------~--- ~------

E\ 4000 4000 4000 4000 

in all cases N = 100 000 

References 

Mac LAREN, M. D., MARSAGLIA, G., BRAY, 1. A. 
A fast procedure generating exponential random variables. 
Communications of the ACM 7 (1964) 5, 298-300. 

34 

(0.107-0.0502) (0.0502-0.) x2-value time 

3997 4000 2900.4 1.00 
4036 4045 2.25 1.95 
3974 4247 18.2 2.20 
4250 4507 80.6 2.85 
4000 3999 2.1 3.15 

_0-- _________ 
- ---------

4000 4000 

TEUSCHER, F. 
Ein hierarchischer Pseudo-Zufallszahlengenerator. 
Unverbffentlichte Praktikumsarbeit, Dummerstorf (1979). 
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Robustness of the Two-sample Sequential t-test 

DIETMAR FRICK 

Abstract 

Hajnal's pooled variance sequential twu-sample and a 
Welch type sequential two-sample t-test proposed by 
Reed and Frantz are compared for different forms of 
violation of the underlying normal assumption. Fur 
Monte-Carlo studies eight alternative distributions of the 
Fleishman System with given values of skewness YI and 
kurtosis Y2 were used. The results show that both tests 
are robust for ~ and fJ when the violation of the normal 
assumption in the X-population and Y -population is of 
(he same nature. The influence of unequal variances is 
also considered. The results show that for small devia­
tions of ox/cry from 1 both tests can be used if we take 
one x- and one y-observation at each stage of the sequen­
tial test, or if we take x- and y-observations with the 
same probability Jrx = Jr y = 1,':> For Jl" x 9= .7y only the 
Welch type test can be used because Hajnal"s test tends 
(0 have uncontrolled type I or type II error in this case. 

1. Introduction 

The model assumptions for Hajnal's (1961) pooled vari­
ance sequential two-sample t-test are that observations 
are taken from two normal populations with unknown 
means fix and fly and with common unknown variance 
o~. Each observation comes from the X- or Y-population 
accordi~g to the constant probabilities Jr x and iry = 1- Jr x' 
respectlvely. The hypothesis tested is HI) : fix = fly and the 
alternative is H A : (p'x - fI y}2 / 0 2 = d2, where d is a fixed 
constant. The sequential probability ratio criterion is 

( d2 ) (f + 1 1 d~ t~ ') 
Q = exp - 2a H . i-" 2' 2a (f':H~) 

where 

x - y 1 1 
t = .. , a~ =. + ... f = n .'+ n - 2 

sa nx n,\,' x Y , 

2 'J 

I _ ( nx - 1) Sx + i, ny - 1) Sy s -" -----...-... ---- .. --
f 

and H is the confluent hypergeometric function. Sampling 
and computation of Q proceeds as long as 

A = fJ,(l -~) < Q < (1 - fJ)/~ = B. If Q < A we accept HI) 
and if Q > B we reject HI). Reed and Frantz (1979) pro­
posed a Welch modification of this test for the case 
"x 9=Oy. 
Now we have to compute 

( 
2 Z ' 

_ (dw ) fw + 1 1 d w tw ) 
Q", - exp- 2a H '. '-2'2" 2a (f~ + t!) , 

where 

tw= 
x-y 

2 2 ' fw 

l 
Sx Sy 

+-nx ny 

3* 

(/lx- p y)2 
and dw = 2 

Ow 

In the latter equation we find a weighted average of the 
2 2 2 

population variances "w = :ly"x + "x"y' 

2. The Simulation Experiment 

Each simulation experiment consisted of 10,000 samples in 
order to satisfy precision requirements for the estima­
tions of the probabilities ~ and fJ. The cases d = dw = 1 

and d = dw = 1.5 were considered for ~ = 0.05 and 
fJ = 0.10 and various forms of sampling. Only the results 
of the case d = dw = 1.5 are presented here. Smaller 
values of d and dw or of ~ and fJ have in general influ­
ence on the ASN-values. Without loss of generality we 
put fix = 0 and 0 2 = Ow ~ = 1 for computer simulations. 
The confluent hypergeometric function was computed by 
a series approximation. 

3. The results 

3.1. Influence of nonnormality 

Both tests are robust if the violation of the normal 
assumption in the X- and Y-population is the same. The 
tests are conservative in ~ when Y~ increases. That means 

~ (Y2 > 0) < ~ (Y:! = O) < ~ (nominal) 

and for )', < 0: 

in general (~denotes the estimation of the type I error ~). 
The values of {J increase when y, increases. An influence 
uf J't does not exist when at each stage of the tests nx'" ny 
holds. 

Some extreme cases of differences between the types of 
violation are presented too. An influence of kurtosis 
exists as described above. (The ~- and ,fJ-values depend 
on the sum of the YTvalues of the populations.) It seems 
that the values of the skewness 

of v = x - y have an important influence on the ~- and 
fJ-values. That means that the differences in skewness of 
the populations and/or differences in sample size at each 
stage (for instance in the case Jr x 1= ir y) are serious. If 
I Y1v(nx' ny} I > 0 on each stage then we can find greater 

A A 

x-values. For Yt v> 0 we can find greater fJ-values in the 
case fly={l x+ d (d > 0) and the oppositE' fnr ;'lv < O. 
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Table 1 

Empirical values of ex and P for nx = ny (pairwise 
sampling) (upper values) and for nx= 0.75, ny = 0.25 

d = d w = 1.5, 1% = 0.05, P = 0.10 

Yl x )'2x )'ly Y2y (lH 
------------_ ... _---_. __ .. 

o 0 

o 1.5 

o 3.75 

o 7 

o -1 

0.5 0 

1 1.5 

1.5 3.75 

2 7 

2 7 

o 0 

2 7 

-2 7 

o 

o 

o 

o 

o 

0.5 

1 

1.5 

2 

o 

2 

-2 

2 

o 0.0339 0.0614 0.0308 0.0552 
0.0386 0.0670 0.0686 0.0615 

1.5 0.0365 0.0650 0.0271 0.0635 
0.0387 0.0704 0.0614 0.0661 

3.75 0.0296 0.0671 0.0232 0.0670 
0.0368 0.0686 0.0499 0.0650 

7 0.0225 0.0696 0.0199 0.0681 
0.0372 0.0700 0.0436 0.0677 

- 1 0.0376 0.0544 0.0347 0.0546 
0.0414 0.0646 0.0905 0.0496 

o 0.0352 0.0583 0.0319 0.0586 
0.0405 0.0619 0.0754 0.0433 

1.5 0.0360 0.0633 0.0264 0.0656 
0.0401 0.0576 0.0704 0.0361 

3.75 0.0321 0.0623 0.0236 0.0708 
0.0405 0.0585 0.0804 0.0354 

7 0.0247 0.0702 0.0188 0.0696 
0.0391 0.0599 0.0771 0.0337 

o 0.0464 0.0911 0.0388 0.0929 
0.0685 0.0913 0.0712 0.0766 

7 0.0429 0.0312 0.0376 0.0313 
0.0329 0.0254 0.0955 0.0165 

7 0.0950 0.1147 0.0850 0.1187 
0.0856 0.1078 0.1223 0.1097 

7 0.0910 0.0041 0.0824 0.0043 
0.0873 0.0058 0.1274 0.0033 

3.2. Influence of unequal variances 

For nx= ny= 0.5 (pairwise sampling or alternative samp­
ling is possible too) both tests are robust for 1/4 < fJ/i 

ax 2 < 4. For extrem deviations in variances Hajnal's test 
has increasing values of 1% but the values of pare stabil 
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(see Lee and Fung (1980)). For nx =l= :ry and fJ X
2 =l= ay~ 

(n x = 0.75 was considered only) Hajnal's test has uncon­
trolled type I and type II errors. Note that Welch type 
test has for n x = 0.75 and for fJ x 2 = fJ Y 2 the value 'iX-;:::j 0.07 
but for unequal variances the test has relativ constant 

error rates (; + P '" const.). If we have informations 
about c = fJ y21fJ x 2 we can also use Hajnal's test in the case 
llX =\= :ry with the following modification: 

t' = t (; ~ ~~~+-tn:~n 12 

where n = nx+ ny, fx= nx-1 and fy = ny-I. The esti­
mations of ex and p of the proposed modification are de-

A A 

noted by exH, and PH" 

Table 2 

Empirical values of ex and P for d = dw = 1.5, ex = 0.05, 
P = 0.10, Jr x = 0.5 

1 
2 
4 
9 

lly 

1/r, 
1/:! 

1 
2 
4 
9 

0.0398 
0.0450 
0.0583 
0.0854 

0.0107 
0.0096 
0.0167 
0.0385 
0.0970 
0.1861 
0.3038 

0.2251 
0.1522 
0.0981 
0.0670 
0.0463 
0.0315 
0.0249 

0.0697 
0.0682 
0.0629 
0.0608 

0.0430 
0.0457 
0.0575 
0.0686 
0.0788 
0.0837 
0.0809 

0.0437 
0.0437 
0.0465 
0.0481 

0.08911 
0.0796 
0.0796 
0.0615 
0.0576 
0.0544 
0.0537 

/'-

flw 

0.0696 
0.0658 
0.0672 
0.0698 

0.0497 
0.0462 
0.0439 
0.0385 
0.0408 
0.0478 
0.0638 

flH' 

0.0917 
0.0818 
0.0732 
0.0670 
0.0655 
0.0625 
0.0589 
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Optimal Designs for Contaminated Linear Regression 

NORBERT GAFFKE 

Abstract 

One notion cf robustness of linear regression designs 
refers to moderate deviations of the regression function 
from the ideal linear regression setup, which may be 
modelled by including additive contamination functions. 
These may be caused for example in polynomial regres­
sion by higher order terms, which have not been included 
in the ideal model. The paper shows how the concepts nf 
optimal design theory for linear regression can be ex­
tended to contaminated linear regression and points out 
the main problems arising in the contaminated case. 

1. Introduction 

Consider a regression problem with a real valued re­
gression function y (x) which is more or less unknown. 
The controlled variable x can be chosen by the experi­
menter within the experimental region :t without random 
error, whereas an observation of the regression function 
y at x is affected by random error. More precisely, let d = 

(XI> ... ,xn) be an exact design of size n with points xi E 'X 
which are not necessarily distinct. The observations under 
d are represented by real valued random variables Y dl 
... , Ydn with 

EYdi=Y(Xi)' VarYdi=a2 , l:5:i:5:n, 

COV(Ydi'Ydj)=O,1:5:i9=j:5:n. 
(1.1 ) 

The variance (J'~ > 0 may be known or unknown and is 
independent of d and i. An important special case is 
given, if Y dl' ... , Ydn are assumed to be independent and 
normally distributed with expectations y(xl), ... ,y(xn) and 
variance (J'2. But we will only be concerned with the theory 
of linear estimation, so the normality assumption will not 
be imposed. A linear regression setup specifies the re­
gression function y to be a member nf a given finite 
dimensional space of real functions, 

(LR) 

where f = (fJ, ... , fk)': :t --+ IRk is given. A' denotes the 
transpose of the vector or the matrix A. In the linear re­
gression setup (LR) least squares estimation under a given 
design d provides best linear unbiased estimators for the 
parameters al> ... , ak and for the whole regression func­
tion y. The theory of optimal linear regression designs, 
mainly initiated by Kiefer, aims at minimizing (w. r. t. the 
design d) the dispersions of these estimators. Of course, 
the resulting optimal designs are heavily based on the 
setup (LR), which is somewhat contrary to the common 
occurrence in practice, that there is often uncertainty 
about the specification of the functions fl> ... , fk. Box and 
Draper (1959) were the first, who tried to take into 
account the possibility of deviations from the ideal model 
(LR). A situation which shows well the relevance of such 
considerations arises, when (LR) is a polynomial regression 
of some specified degree m, which is thought of as a rea­
sonable Taylor approximation of the unknown regression 

function. Here it might occur, that m was chosen too small 
and higher order terms not included in the model are 
present. In fact, Box and Draper and others considered 
these polynomial models, and they gave some attention 
to the simple, but relevant, case of fitting a straight line, 
when the actual regression function is quadratic. Although 
the conclusions of Box and Draper (1959) turned out to 
be generally not acceptable, (cf. Stigler (1971), Galil and 
Kiefer (1977», there seems to be agreement, that it may 
sometimes be favourable, to take into account the possi­
bility of deviations from the ideal linear regression model 
in the design and analysis of the experiment. This is 
indicated by the numerous articles on this subject after 
the Box-Draper paper. 

Generally deviations from the ideal setup (LR) may be 
modelled assuming the presence of a contamination func­
tion y (x) from some specified set r, and the "contami­
nated linear regression setup" is given by 

The set r may be thought of as a neighbourhood of the 
constant zero. r may be a parametric family as in the 
Box-Draper approach, 

rC\b'g:beIRP), e.g. 

r=\b'g:b'b:5:e2). 

where g = (g1, ... ,gp)' ::X --+ IRp and E > 0 are given, or r 
may be nonparametric, e. g. r = {y : '1' --+ IR : I y (x) I ~ 
'F (x), x E'X}, with a given function rp ~ 0 on '1', (cf. Marcus 
and Sacks (1977), Sacks and Ylvisaker (1978), Pesotchinsky 
(1982), Li and Notz (1982». 

In Section 2 we will briefly outline the concept of optimal 
linear regression design, which will be extended in Section 
3 to the contaminated case. There are two major diffe­
rences t0' the linear regression setup (LR): Firstly, the use 
of least squares estimators as obtained from (LR) can 
no longer be justified, and other linear estimators, which 
are unbiased under (LR) , should be taken into considera­
tion. Secondly, 0'ptimal linear estimators in (CLR) and 
alsO' optimal designs for (CLR) will generally depend on 
the variance (J'2, which will mostly be unknown. Although 
in some cases the optimal design and optimal estimator 
are the same for any 112, by the latter fact the theory re­
mains unsatisfactory. For parametric families of conta­
minations there are some alternative approaches, which 
will not be considered here. The all-bias designs of Box 
and Draper (1959) minimizing the integrated bias of the 
regression function estimator from the ideal model, which 
could be improved by Karson, Manson, and Hader (1969) 
by using more suitable estimators. The efficiencies of a 
design under two or more rival linear regression models 
may be combined to yield a global criterion, so that an 
"optimal" design perf0'rms well under any of the p0'ssible 
models. This was done by Stigler (1971), Atkinson (1972), 
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Lauter (1976), Cook and Nachtsheim (1982). Recently 
Studden (1982) obtained further results for polynomial 
regression using Stigler's approach. 

2. Linear Regression Designs 

In the linear regression setup (LR) a least squares esti­
mator ad under a fixed design d provides best linear un­
biased estimators for the parameters ai, ... ,.'ik (or for 
linear functions of these parameters), and hence for the 
regression function y (x). If K is a given (sXk)-matrix, 

and if Ka is estimable (identifyable) under d, then Kad 
is the best linear unbiased estimator for Ka, i.e. it mini­
mizes in the L6wner semiordering the matrix risk (rela­
tive to variance) 

(2.t) 

over the set of all linear unbiased estimators bd for Ka. 
The L6wner semi ordering on the set of all symmetric 
(sXs)-matrices is defined by A ~ B iff B - A is nonnega­
tive definite. 
Of course, the restriction to linear estimators is critical, 
if there are further assumptions on the underlying distri­
butions than those in (1.1.). The requirement of a linear 

A 

estimator bd to be unbiased is supported by the fact, that 
A 

bd is unbiased if its matrix risk (2.1) is bounded, which 
is a consequence from the unbounded parameter set in 
(LR). In fact, if the ratio ala can be restricted to a 
bounded subset of IRk, then least squares estimation may 
be improved using biased linear estimation, cf Hoffmann 
(1977). But we will consider here the simpler case (LR) 
and least squares estimation. The dispersion of the best 

linear unbiased estimator Kad is given by 

-2 f( A ) ( A )'1 1 -( , a E i Kact - Ka Kad - Ka = -;:;- K M d) K . (2,2) 

where 

is the information matrix (per observation) of d = (Xi, ... , 
xn)' and M- (d) denotes a generalized inverse of M (d). 
If x E'I and K = f' (x), then (2.2) reduces to the variance 
(relative to a2) ofYd(x) = act'f(x), the best linear unbiased 
estimator for y (x), 

(2,3) 

The dispersions (2.2) and (2.3) provide a basis for the 
selection of an "optimal" design in the linear regression 
setup (LR): 
Suppose that the experiment aims at the estimation of 
the linear transformation Ka of the parameter vector, 
then d should be chosen to make the dispersion matrix in 
(2.2) "small". Or suppose that the global performance of 
the regression function is to be explored, then d should 
be chosen to make the variance function in (2.3) l/n. 
f'M- (d) f "small". Too measure the "size" of a dispersion 
matrix or a variance function one has to introduce an 
optimality criterion. In the case of parameter estimation 
this is a real function lJI on the set of all positive definite 
(sXs)-matrices, (here the rows of K are assumed to be 
linearly independent), which is increasing in the L6wner 
semiordering, i.e. A s B implies 'II (A) s '1' (B) for any po­
sitive definite matrices A and B. A design d* E ;j (K) is 
called 1J':'optimal for estimating Ka, iff 

'P(n~*1KM-(d·)K') = min IP(n~1KM-(d)K'). (2.4) 
du1(K) 
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where L1 (K) is the set of all designs d E L1 under which 
Ka is estimable, L1 being the set of all designs under con­
sideration, and nct is the size of d. Algebraically L1 (K) is 
characterized by 

LI(K) = (dELI: ~(K') C ~(M(d»)l, (2.5) 

where ~ (A) denotes the range of a matrix A. All the 
commonly used optimality criteria are homogeneous of 
some degree with respect to positive scalar factors, so that 
the factor lind in (2.4) can be omitted, when considering 
designs of fixed size n. Well-known examples of optimality 
criteria are the D-, A-, and E-criteria, 
11''0 (V) = det V, 'lIA (V) = tr V, 'IIE (V) = ;'max (Vi 
(largest eigenvalue of V). In the case of estimating the 
whole regression function y an optimality criterion is a 
function fJ: S)+ -+ IR U {rx} on the set S)+ of all non­
negative real functions h on :t, which is increasing in the 
pointwise semiordering of real functions. i. e. 0 S hi (x) 
:S h2 (x) for all xE:t implies 11 (hi) s I) (h2)· 

Prominent examples are given by 

(100 (h) = sup h(x). 
Xf::'l 

flw(h) = 1 h (x) dw (xl, h ;;:0: 0 
1: 

where w is a given probability measure on 'I. A design 

d* E l1 (f') is called fJ-optimal for estimating y, iff 

rJ(n~.1f'M-(d*)f)= min l'}(n~1f'M-(d)f), (2.6) 
\ elF 111 f') I 

where L1 (f') denotes the set of all dE ;1, under which 1" (x)a 
is estimable for all x E T Clearly, 

LI(f')= idEl:l:f(x)E~(M(d») for all XE'l), (2.7) 

hence, if the components flo"" f k of f are linearly in­
dependent on :t, then ;1 (f') is the set of all designs with 
regular information matrices. Again, the factor l,'nct in 
(2.6) can usually be removed, since 11 is homogeneous of 
some degree and nd = n is fixed. 
Of course, problems (2.4) and (2.6) can formally be com­
prised under the more general problem of minimizing 
'/J (nd M (d» 01"1' (M (d» (for fixed sample size), where 

<P is an (IR U {,,} I-valued function on the set of all non­
negative definite (kXk)-matrices which is decreasing in 
the L6wner semiordering. 
For tackling these complex optimization problems the 
notion of an approximate design has proved to be of 
high importance. An approximate design; is a probability 
measure on :t with finite support, or, if a suitable a-field 
13 over I has been specified, then ; may be an arbitrary 
probability measure on (:t,Q). The exact designs d of size 

n are imbedded in the set L1 of all approximate designs as 

those elements ;nE;1 which have finite support and whose 
weights are integer multiples of l/n. The definition of the 
information matrix (per observation) of a design is ex­
tended by 

l\1W= .1 f(x)f'(x)d;(x), ;ELI. 
~' 

For a fixed sample size n problems (2.4) and (2.6) are 

considered on the larger set L1, 

II'(Kl\C(t)K')= m..!n II'(KM-(E)K'). (2.4.) 
EeA(K) 

l'}(f'M-(E*)f)= m..!n l'}(f'MO-(E)f). (2.6.) 

hAlf') 



where L1 (K) and L1 (f') are defined analogously to (2.5) 
and (2.7). The main advantage of the "approximate theory" 
lies in the tractability of the minimization problems (2.4 a) 
and (2.6 a), which is gained by the convexity of the sets 

11, II (K), 11 (f') and the corresponding sets of information 
matrices. All the commonly used optimality crHerb can 
be written as convex functions of the information matri­
ces, (Le. the functions ,/. as introduced above are convex), 
so that convex programming methods are applicable, such 
as directional derivatives and subgradients, duality and, 
for iterative procedures, steepest descent algorithms. Two 
other appealing features of the approximate theory should 
be mentioned: Firstly, an optimal approximate design ~. 
does not depend on the sample size n. Secondly ~. allows 
an easy interpretation in the exact theory: By some round­
ing-off procedure of the weights of ~* to integer multiples 
of 1 In an exact design ~ri is obtained, which may be ex­
pected to come close to ~* with respect to the criterion 
under consideration, (which behaves continuously). And 
under the standard assumption of compactness of the 
effective experimental region {f (x) : x E X} this is not af­
fected when admitting general probability measures on 

(I,1~), since by Caratheodory's Theorem for any ~ E 1 

there exists a ~'E;J with finite support and M (~') = 

M (~), (actually such a ~' can be found with at most 
k (k + 1)/2 + 1 support points). Of course, a rounding-off 
procedure as above will yield a good exact design ~~ only 
if the number of support points of ~. is small compared 
with n. 

:1. Contaminated Linear Regression 

As in Section 2 we distinguish under (CLR) between 
linear parameter estimation, (estimation of a linear trans­
formation Ka of the parameter vector a), and linear esti­
mation of the regression function y. For parameter esti­
mation the following identi1'yability condition should be 
imposed: 

If a'f + )'1 = b'f + )'~ with a, bi' IRk. i'1,1'/' I'. then 
Ka == Kb. 

If r is convex and such that -I' r= ,. whenever y r=", 
then this condition is equivalent to the following one: 

a'f E r with a E IRk implies Ka = O. 

More specially, if r == {y : X ~ IR: I y (x) I ~ ffJ (x), x E ':I}, 
with ffJ ;?; 0 given, and K == I k, then the parameter vector 
a is identifyable in (CLR) iff I a'f (x) I ~ ffJ (x) for all x t ':I 
forces a = 0, (cf. Sacks and Ylvisaker (1978». For esti­
mation of the regression function .y an identifyability 
cendition is not needed. 
We will first consider the case, that under an exact design 
d = (xt. ... , xn) the ordinary least squares analysis from 
the ideal model (LR) is used. Under (CLR) the estimators 

A 

Kact and y ct (x) == ad f (x), act being a least squares esti-
mator for a (under LR), are biased, and their risks split 
up into a variance term and a bias term: 
For dE L1 (K) (as defined in Section 2) 

a -2E{(Kact - Ka) (Kact - Ka)'} 

= ~ KM-(d)K' +a-2(E(Kact) - Ka) (E(Kact) - Ka)'. 

Since E Y ct = E (Y dl"" ,Y dn)' = X(d)a + y(d). where 

X(d)=(f j (Xi)15i::n.15j51{) is the design matrix of d and 

we have 

EKad=.!. K M-(d) X'(d) [X(d)a + y(d)] 
n 

hence 

= Ka +..!.. K M- (d) X'(d) y(d). 
n 

a -1 E l(Kad - Ka) (Kad - Kay) 

= .!.KM-(d)K' + a -2KM -(d)Y(d)y'(d)IVC(d)K. (3.1) 
n 

where 
n 

y(d) = .!. X'(d) . y(d) = ..!. L Y(Xi) f(xI)' 
n n hl 

Similarly, for d E;J (f') (as defined in Section 2) 

(J -1 E (Yrt\x) - y(x)/ = * f'(x)M- (d) f(x) + a -2 (E(Yd) - y(x)f, 

and 

Eyct = 1. f'(x)M-(d)X'(d)E Yd = f'(x)a + 1. f'(x)M-(d)X'(d)y(d) 
n n 

hence 

a -2 E (5'ct(x) - Y(X»)2 

= 1. f'(x)M- (d)f(x) + a -2 [f'(x) M-(d) red) - y(x)t (3.2) 
n 

Let RK (d, a-Iy) denote the matrix risk in (3.1), "nd 
r (d, a-Iy) (x) the mean squared error function in (3.2), and 
let '/' and 11 be optimality criteria as introduced in Section 2. 
A design d' E LI (K) might be called '['-optimal or 'lj~mini­
max for estimating Ka, iff 

sup ',J (RJ.;:(d*. (J-l y)) = min sup 'I'(RK(d.a-'Y)). 
;"E r dE,1(K) )'EF 

(3 . .1) 

and d* E LI (f') might be called 'Yj-optimal or 11-minimax 
for estimating y, iff 

sup YI(r(cl*.a- ' y)) = min sup l1(r(cl,a -l y )). 
;"d' dE I(f") ;'E f' 

(3.4) 

Of course, these criteria depend on a2, so that in general 
they will lead to the selection of a single optimal design, 
only if the variance (j~ can be specified in advance. It 

might be tempting to consider contaminations relative to 
standard deviation a and to assume in (CLR) that (;-1 y E r 
(instead of y f n, so that in (3.3) and (3.4) the supremum 
can be taken over a-I y E r and a is ruled out. But then 
the problem of an unknown variance a2 is me.rely trans­
fered to the problem of specifying the set r. In the case 
of a parametric family of contaminations 

where g = (gb ... , gp)' : X ~ IRP and B C IRP are given, 
and if gl, ... ,gp are linearly independent on X, then we 
may write 

RK(d.a-'bg)=Rdd.a-'b) and 

r(d,a-'bg)= dd,a-'b). 

Instead of taking the supremum over b E B as in (3.3) 
and (3.4) one may also consider an average with respect 
to some probability measure {3 on B: 

(3.6) 

Criteria (3.3) with K = Ik were considered by Pesotchin­
sky (1982), criterion (3.4) with 'I = I]w' w the uniform mea-
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sure on :I = l- t ' t J was considered by Huber (1975), 

Section 4, and with w the uniform measure on a finite 
region 'I by Welch (1983), who also worked with an 
average criterion (3.6). Actually these authors were con­
cerned rather with approximate designs, and the extension 
of (3.3) - (3.6) to the approximate theory is straight­
forward: 

For ~ E L1 let 

y (~) = ~ y(x)f(x)M(x), 
'X 

and extending (3.1) and (3.2) 

(3.1a) 

RK(n,;,a -'y) = 1. Kl\C(~)K' +u -2KM-(~)YmY' (~)M-(~)K', 
n 

if S E L1 (K), and 

r(n,;,a -'y)(x) = ~ f'(x)M-(~)f(x) 
+a- 2 [f'(x)M-(;)yW - y(x)f, (3.2a) 

if S E L1 (f'). 
Thus optimal approximate designs as defined analogously 
to (3.3) - (3.6) will generally depend on the sample size n, 
(and of course on ()'2), contrary to the uncontaminated case 
(LR). Actually they will depend on nand (12 through (J2,'n, 
since '1" and 11 are usually homogeneous of some degree. 
But there are other good points of the approximate theory 
in (LR) which do not carryover to the contaminated case: 
The objective functions in (3.3) - (3.6) are generally not 
convex functions of ~. 
There may be difficulties in interpreting general probabi­
lity measures S on (1', <:n). For nonparametric contamina­
tions Caratheodory's Theorem is not applicable, which in 
the setup (LR) ensured the existence of a ~' with finite 
support which is equivalent to $. It may even be possible 
that the objective functions in (3.3) - (3.6) behave discon­
tinuously when approximating an optimal design ~* with 
infinite support by designs with finite support. More 
exactly: If :I is a compact metric space, (usually a compact 
subset of IRq), and s* is a Borel probability measure on :I, 
then the objective functions in (3.3) - (3.6) may fail to be 
continuous at s* with respect to the vague topology on 
the set of Borel probability measures. This in fact occurs 
in Huber (1975), Sec. 4, Sec. 5, who considered the example 

f(x)=(1.x)" XE[-t,t], 

with 0 2 > 0 given. The fJ w -mlmmax design s* = ~* «()'2/ 

(ne2», w being the uniform measure on [-1/2, 112], is ab­
solutely continuous with respect to Lebesgue measure. But 
for any design S with finite support 

sup lJw(r(n,;,a -'y)) = 00, 
,'Er 

so that s* does not admit a reasonable interpretation, 
which was observed by Li and Notz (1982), p. 136. The 
same objection pertains to the minimax design for esti­
mating the slope of the regression line given by Huber 
(1975), pp. 295-296. 
So for nonparametric contaminations one should generally 
restrict to approximate designs with finite support. It can 
easily be shown that, if the set r is uniformly bounded 
and {f (x) : x E 'I} is compact, then the objective functions 
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in (3.3) and (3.4) are continuous functions of the weights 
of ~ when the (finite) support of ~ is kept fixed. So when 
rounding off the weights of an optimal approximate design 
~* one may still expect to obtain good exact designs sri, 
(under the above assumptions). For a parametric family 
of contaminations 

general probability measures do usually not cause any 
problems, since RK (n, ~,(J-1b) and l' (n, S' a-Ib) depend on 
; only through the matrices M ($) and J f (x) g' (x) d~ 

(x), and hence Caratheodory's Theorem is applicable, 
if {f (x) : x E st} and {g (x) : x E st} are compact. 
Criteria (3.3) - (3.6) are based on the assumption that 
under any design d the least squares analysis from the 
model (LR) is used. As mentioned in the introduction this 
is net conclusive, and there may be other linear estimators 
whose global performances in (CLR) are better than those 
of the ideal least squares estimators, (cf. Karson, Manson 
and Hader (1969), Marcus and Sacks (1977), Sacks and 
Ylvisaker (1978), Agarwal (1981». These will be considered 
now. 
To ensure that a linear estimator has bounded risk, (ma­
trix risk for parameter estimation, mean squared error 
for regression function estimation), the unbiasedness con­
dition under the ideal model is still imposed. Let d = (Xl' 

. .. ,xn ) be a given exact design, and let (l/n) L Y d be a 
linear estimator for Ka, where K is a given (sXk)-matrix 
and L an (sXn)-matrix of constants, such that (l/n) LY d 

is unbiased for Ka in (LR), i.e. 

n-'LX(d)=K. (U) 

Then under (CLR) 

So, if 1[' is an optimality criterion measuring the "size" 
of a positive definite matrix, then the global performance 
of the estimator in (CLR) may be quantified by 

sup 1f1(R(d,L,u-'y)), 
',of r 

or in the parametric case r = {bg : b E B} by an average 

~ 111(R(d,L,u-'b))d~(b), 
H 

and, clearly, these quantities should be minimized with 
respect to L subject to (3.7). Let £ (K, d) denote the set of 
all matrices L which satisfy (3.7). Then instead of (3.3) 

and (3.5) one may define a design d* E L1 (K) to be'Il-opti­

mal for estimating Ka, iff 

inf sup 1f'(R(d,L,a-'y)) 
LE~(K.d*) YEr 

= min inf sup 'I'(R(d,L,a-'y)), 
rlEA(K) LEC(Kd) )'E r 

(3.'1) 

or in the parametric case 

inf \ 1f1(R(d~L,a-'b))d/i(b) 
LEC(KcI*) B 

= min inf \ 1f1 (R(d,L,a-' b))d/i(b). (3.10) 
nEA(K) LE£(Kd);, 

For estimating the regression function one can pro cede in 
a similar way: Consider linear estimators for y, 



where L is a (k X n)-matrix of constants, such that 

n- 1 f'(x)LX(d) = {'(xl for all xeS"(. (.1.11) 

(3.11) is the unbiased ness condition in (LR), which rewrites 
as n- I L X (d) = Ik , if the components of f are linearly 
independent on ~. The reason for not admitting any linear 
unbiased estimator n- I c'(x) Y d' x E T, where c : T ~ IRn, is 
that the estimated function x ~ n-Ic' (x) Y d will generally 
not be a member of (CLR). The mean squared error func-

A 

tion (relative to ()'2) of Y d.L (x) in (CLR) is given by 

:; -2 F: (~d.dx) - y(x) r 
= n -2 ['(x) LL' fix) + a -2 [n -1 f'(x)Ly(d) - y(x)f 

=r(d.L.a- 1 y) (x). (say). (.1.12) 

Now, for a given criterion 1), an optimal design d * t= 11 (f') 

for estimating the regression function y may be defined 
analogously to (3.4) and n.6) to be a minimizer of 

inf sup 11(1'(d.L.if- 1 )')). 

I.E Plf' .(1) ;'E /' 
(1.11) 

or in the parametric case, 

inf \ l7(r(d.L.a- 1 b))dp(b). 
I.E e(f.d) il 

( J.I~) 

where dEll (f'), and [' (f', d) denotes the set of all matrices 
L satisfying (3.11). 
Criteria (3.9) were applied by Marcus and Sacks (1977) 
and Li and Notz (1982), and a criterion of type (3.14) by 
Agarwal (1981). We will briefly indicate the necessary 
alterations in (3.7) - (3.14) for the approximate theory. 
Firstly, we note, that for a given exact design d = (xI, 
... , x n) one can restrict to estimators n-I L Y d and n- I 

(L Y dl' f (x), respectively, whose matrices L are such that 
the i-th and j-th columns of L are equal whenever Xi = Xj . 
This can be seen as follows: If XI = X2, then replace the 

first two columns llo 12 of L by (II + IN2. The matrix L, 
say, still satisfies (3.7) or (3.11), respectively, since 

n 

I.X(d) = L l;f'(x;) = f:X(d). 
i-I 
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Systems of One-Dimensional Continuous Distributions and their 

Application in Simulation Studies 

VOLKER GUIARD 

Abstract 

One-dimensional continuous distribution systems (Pear­
son, Johnson, Tadikamalla-Johnson, Burr, Grassia, Gram­
Charlier-Edgeworth, generalized Lambda distributions, 
Schmeiser-Deutsch, Fleishman, truncated normal distribu­
tion, double rectangular distribution) are described and 
their suitability for use in simulation studies for inves­
tigating robustness is considered. 

1. Introduction 

Simulation studies using certain alternative distributions 
are a common way of investigating the robustness of 
statistical procedures with respect to violations of the 
assumed normal distribution. 
In such cases the degree of non-normality is usually ex­
pressed by the parameters (In the whole paper the I'k 

(k S;; 4) are assumed to be finite) 

skewness: 

and 

kUl'tosis: 

"'3 y,=~ 

"'2 

where Jlk is the k-th order central moment. 
The parameters Yl and Y2 naturally do not uniquely de­
fine the shape of a distribution. (The upper and lower 
bounds for P(x:-S: xo) in dependence of Xo and the first 
four moments of the distribution of x are given in Simp­
son and Welch (1960).) This is why different distributions 
should be used for each pair y" Y2 in robustness studies. 
The Yt and Y2 must satisfy the following inequality: 

Y2 ~ y; - 2., 

The equality sign applies if, and only if, the distribution 
is a two-point distribution. In some cases only unimodal 
distributions are of interest as alternative distributions. 
The inequality to be satisfied by such distributions is 

where c is given by the equation 

_8y,c=(3- C2 )'1. 

The proof for this inequality and the explicit solution 
of the last equation can be found in Herrendorfer, G. 
(1980). The same inequality was derived by Johnson and 
Rogers (1951). 

Distribution systems are a useful tool for indentifying 
distributions with given values for Yt and Y2. 

By the term "distribution system" we understand 
a class of distributions constructed by means of a 

common rule and covering the whole of the ad­
missible region of the (Yt. Y2)-plane or part of thi~ 
region that is of particular interest. 

This paper will present only systems of one-dimensional 
continuous distributions. A few two-dimensional distri­
bution systems are given, for example, in Mardia (1970). 
Cook and Johnson (l9BI) and Johnson and Tenenbein 
(1981) . Johnson, Ramberg and Wang (1982) apply the 
Johnson system to the multi-dimensional case. Further 
multi-dimensional systems are described by Johnson and 
Kotz (1972), for example, and Johnson and Kotz (1982) 

also discuss discrete distribution systems. 

5 

·2 

Lower bound of the admissible ranges in the (Yt> Y2)-plane 
for all distributions (---) and for unimodal distributions 
(- - -) 

For the sake of clarity, and to simplify practical mani­
pulation, preference is given to systems which as far as 
possible contain not more than one distribution for each 
pair, YI> Y2. The "suprasystem" proposed by Savageau 
(1982), in which a large variety of different distribution 
systems are produced by a common construction rule, is 
unsuitable for use in simulation studies. 
We shall, moreover, ignore distribution systems which 
describe only one line in the (Yh Y2)-plane. Johnson, 
Tietjen and Beckman (1980) , for instance, developed a 
listribution system containing only symmetric distribu­
tions (YI = 0). 
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In describing the different distribution systems, we shall 
discuss the following points: 

D: definition of the system by a construction rule 

S: tYPIcal shapes of the distributions 

G 

region in the (Yb Y2)-plane covered by the dis­
tributions 

connection between the parameters of the dis­
tributions and the values of Yt and Y2 

Generation of random numbers for these distri­
butions 

Random numbers are usually generated by transforma­
tion of uniformly or normally distributed variables. It 
will be assumed that the procedures for generating such 
random variables are known. This subject is reviewed 
in Herrendorfer (1980), Guiard (1981) and Rasch and 
Herrendorfer (1982). 

In some cases the construction rule 1'01' a distribution 
system consists of the instructions for transforming appro­
priate uniformely distributed or normally distributed ran­
dom variables in order to obtain the random variable~ 
required. In this case the point G is contained in point 
D. 

Some distribution systems (for instance the Pearson 01' 

the Johnson and Burr system) have not been constructed 
for simulation purposes but for fitting to empirical dis­
tributions. The generation of random numbers for these 
distribution systems is sometimes quite complicated. 

For the sake of Simplicity, the location and scale para­
meters will not be mentioned when discussing the dish'i­
bution systems. These parameters can, of course, be in­
cluded, but they do not affect the values ,'j and ,'2. 

2. Systems of Distributions 

2.1. The Pearson System 

D: 

The density function, f(x), of a Pearson distribution 
satisfies the two following conditions: 

2. The expression 

lim xh (bo + b1x + b2x2) , f(x) = 0 
x~bound 

holds for the boundary points of the range of definition 
of the distribution (h = 0, 1, 2, 3). 

Pearson's differential equation is usually given in the 
literature with at = L In this case, however, the type XII 
is not a Pearson distribution on account of at = O. There 
is exactly one Pearson distribution for each pair Yb Y2 

(Y2> Y1 2 - 2). 

s: 
There is no functional form that is common to all Pear·· 
son distributions. They are divided into the different 
types presented in the following table, in which the first 
and second kind beta distributions are denoted by Bl 
and B2 respectively. 

B1: f(x)=axo1(1-x)n2 (O<x<1, nj> -1) 

112: f(x)=a(x+O n1 x n2 (x>0.n1>-1.01+02<-5) 
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A normalization constant must be inserted for a. 

The table gives only the distributions with t'! ~ O. The 
distributions with Yl < 0 are obtained by the substitution 
x -e= -x. 

Johnson, Nixon and Amos (1963) give a table of the 
quantiles of all Pearson distributions with E(x) = 0 and 
V(x) = 1 for different Yl and Y2' 

Cp _;': bo = 4Y2 - 3y; + 12 

b1 = Y1(Y2 + 6) 

b2 = 2Y2 -3y; 

a1 = -2(5Y2- 6 y;+6) 

ao = -b1 

The distribution type and the corresponding distribution 
parameters can be derived from these values by the 
methods given in Elderton and Johnson (1969), Herren­
dorfer (1980), Guiard (1981). 

Table ot tbe Pearson types 

~e Bo. Distribut ion Shapu 

I 81, n1 " "2 ' nl t 0 0; \~ /".. 
II 81 , D1 = "2 

:L-}, n ~ 
III r -<ltstl'lbutloD 

~ .r-- I'.. 
IV &(,1+<:2)0 ot arctaa ~ 

~ 
V & r.c .d/r. 

~ 
VI 112, "2 * 0 

f'-- f'.-~ 
VII t-<lio tl'1bUtiOD 

~ 
VIII 81, "1 C:"2 + 0 !L, 

II 81, o = "1'" D2 
j---. ..... ~ 

I er.poneDtlal distr1butioD 
['-. 

II 112, "2=0 (Pareto dl$tributlo,,) I 
t-.. 

i 
III 81, "1" 0 ""2 ... 1 

I ~ 
II Dormal dlst1'1butioD 

~ 

G: 

Cooper, Davis and Dono (1965) describe a universal gene­
rator for all Pearson distributions. Most Pearson distri­
butions can be produced with a generator for beta distri­
butions. Generators for the first kind beta distribution 
are given in Johnk (1964), Ahrens and Dieter (1974) and 
Cheng (1978). Of these generators, the one presented by 
Cheng (1978) is the fastest (Schmeiser and Shalaby (1980)). 
Schmeiser and Babu (1980) constructed a generator which 
is even faster than that constructed by Cheng (197B). 
Further very fast generators are given in Atkinson (1979), 
Atkinson and Pearce (1976) and Atkinson and Whittaker 
(1979). 
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Figure 2 

Pearson-types in the (t'1 2, t'~)-plane 

2.2. The Johnson System 

D: 

5 (, 1 
1'.2 

1 

If z has a standardized normal distribution, it follows 
that 

has a Johnson distribution, whereby specific monotoniL 
functions must be inserted for g(u). Depending on g(u), 
there are three types of Johnson distributions: 

u 
SB: g(u) = l+u 

SI.: g(u) = u 

(bounded, 0 < x < 1) 

(log-normal distribution, 0 < x < .:\.,) 
Su: g(u) = t (u - ~) (unbounded, -N <-- X < x) 

(Johnson (1949), Elderton and Johnson (1969» 
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Type shapes 

tty:-
There exisls exactly one Johnson distribution for each 
pair t'lo t'~. Type SL represents the border between types 
SB and SUo 

"(2 (, 

5 5 v 

" 5 g 
../'-3 /. 

1- 1'---'1 /' 
~ / 

• 
Z J ~ 5 (, "'1 - ., 

Figure 3 
Johnson distributions in the (t'1~' t')-plane 

Cp ;': 

The connection between the distribution parameters /' 
and a~ and the values of t't and t'1 is complex. The fol­
lowing possibilities exist for calculating the parameters 
of the different types: 

SL: For given t'h the expressions(,p = eo' ) 

t'12 = (p - 1) (p + 2)2 

and 

),~ = (p - 1) (1):; + 3p~ + 6p + 6) 
(Vo!. 1, 1958» 

(Kendall Stuart 

yield, after solving the cubic equation in p, 

a~ = In p and Y2 (see above), 

(In this case Il is a scale parameter.) 

SB: Tables: (Johnson and Kitchen (1971 a, b» 
Approximation method: Bowman, Serbin and Shen­
ton (1981) 

Su: Tables: Johnson (1965) 

Approximation methods: Leslie (1953), Bowman and 
Shenton (1980), Shenton and Bowman (1982) 

G: Sec 1) 

2.3. Systems Analogous to the Johnson System 

Other systems analogous to the Johnson system can be 
obtained by applying the same functions g( ) if other 
distributions are assumed for z. If, for instance, a La­
place-distributed random variable is used for z, the types 
S'u' S'L and S'B arc obtained (.Johnson (1954)). 
Tadikamalla and Johnson (l9U2) proposed an additional 
system: 

D: Let z have a logistic distribution 
f(z) = e-Z (1 + e-Z)-2, F(z) = (1 + e-z)-I, 

Then calculate x by applying Johnson'S trans­
formation functions g( ) to z. 
This yields the types Lu, LL and LB in ana­
logy to Su, SL and SB' 
The forms of the distributions are similar to 
those of the Johnson distributions. There is 
exactly one distribution for each pair Yto t'~ 

(t'2 > t'12 - 2), The line of the LL distributions 
ist situated above the Ss line. 
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Tadikamalla and Johnson (1982) mention tables 
in an unpublished North Carolina report for 
finding the distribution parameters. 

G: Generate a random variable u that is (O,l)-uni­
formly distributed and calculate 

( 
1 - ")' 

x=g c:~~r e ,,' 

In other words, simulation is simpler in this 
case because it is unneccessary to generate a 
normally distributed random variable. 

2.4. Burr's Distribution Systems 

Intending to fit a theoretical distribution function F(x) 
to an empirical distribution function, Burr (1942) pro­
posed twelve different types of functions for F(x), which 
were later designated types I to XII. Since these types 
cannot all be derived from the same construction rule~ 

and, moreover, the corresponding regions in the (y" t'~)­

plane sometimes overlap considerably, we shall not speak 
o[ the distribution types belonging to a system but or 
different systems. 
Some of these systems occupy only a line or a point in 
the (j't. Yl)-plane and are therefore of no interest in our 
context. 
System XII, which has proved to be of considerable prac­
tical use, was investigated more thoroughly by Burr (1968, 
1973), Burr and Cislak (1968), Hatke (1949), Hodriguez 
(1977) and Tadikamalla (1980). Tadikamalla stresses the 
importance of system III and states its relationships to 
uther distributions. System III is identical to the three­
parameter Kappa distribution described by Mielke anti 
Johnson (1973). 
Only systems III and XII will be described in the fol­
lowing. 

U: XII: F(x)=l-(l+xC)-k 

f(x) = kc xC-I(l +XCt k- 1 

III: F(x) = (1 + x-Ct k 

f(x) =kcx-C-I(1+x-Crk-1 

Helationship between the two systems: 

x.c,k>O 

c·k>4 

x.k>O, c>4 

If x follows distribution XII with the parameters c anti 
k, then X-I has the distribution III with the same value~ 
of c and k. 

51 III III shape 

c <.1 ck < 1 :"--
c = 1 ck = 1 ~ Pareto distribution 

c > 1 ck > 1 
./"--. 

ill: = 1 k = 1 log-logistic distribution 

For k = 1 and any c, the corresponding distributions of 
the two systems are identical. 
As shown in Fig. 4, system III occupies a much larger 
region of the (t't. t'2)-plane than system XII. 
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H.,: 

-2. 

Figure 4 

Regions in the (Yi' Y2)-plane for 
Burr XII (="', 
Burr III (~ and in addition III) 

XII III 

k l' (k - ~ ) r (: + 1) I k ]' (k + : ). r (1 - : ) 

I'(k+l) I I'(k+1) 

Table 
finding 
k and c 
from YI 
and t'2 

G: 

Burr (1973) 

Generate a (O,l)-uniformly distributed random variable 
u and set 

I II 
I -

-- C 
X= U k-1 

for system XII and 

l J 
I 

I --__ c 
x=u k -l 

[or system III. 

2.5. Grassia's System 

D: 
x = e-Y , let y be r -distributed with the parameters b 
and p 

I(x) = bPxb - 1 (-In x)P-1 / I'(p), 

(Grassia (1977), Tadikamalla (19Bl» 

S: 
Most important types of shape: 

O~x~1 

p. b>O 



t> b shaDe 
7 1 >1 ~ 

> 1 <1 l"--
<1 > 1 ~: 
<1 <. 1 I~I 

I I 
I J 

The shapes of these distributions are discussed in greater 
details by Grassia (1977). 

R .. : 

The region occupied by Peason type [ distributions is 
covered in the (YI , y~) -plane. 

\ t3- / 

r\ It / 
1\ 3 / 
~ I 

r\ / 
r\ Z. / , t\ / 1I 

\ t\ 1 // V 
\ 1\1\ V 

\ 1'..,.... ...,/ II 
-2 

,,~ 
"I V Z. 

1 
V 

l-''v 
' ...... vV ..... ...... 

-2. 
Figure 5 

Hegion of Grassia's distributiolls in the (Yi' y~)-plane 

Tadikamalla (1981) drew up a program for calculating p 
and b from Yi and Y2 . 

G: 
See D. 

Generators for the r -distribution are gi ven by Ahrens 
and Dieter (1974). 

2.(j. Distribution Systems Constructed by Series E,rpansio/t 

Gram-Charlier series or Edgeworth series C<l1l be useJ 
to generate density functions, the coetTicients of the se­
ries being simple functions of the moments and cumu­
lants, respectively, of the distributions concerned. The 
Gram-Charlier series has the following form (Kendall, 
Stuart (1958)): 

00 

f(x) = tp(x) L cl; Hk(x) 
1; = 0 

where !pix) is the density function of the standardized 

i!ktp(~) = (-l)kHk(x)tp(X) 
ax" 

The orthogonality relationship 

~ {O for 140 k 
,I H,,(x)HJ,)tp(x)dx= k' for 1=1, 

-00 

of the Hermite polynomials is used to caJculclle the (:1)­

efficient ck (Kendall, Stuart (1958)). There ist one-to-one 
correspondence between the first k coefficients of the 
series and the first k moments (or cumulants) of the 
distribution. 
The Edgeworth series has following form (Ken(l<Ill, 
Stuart (1958)): 

for k=2 

where xk is the cumulant of order k. In other words, 
the Edgeworth series is calculated by formally applying 
the exponential function 

te l" 
l'XI> (I.) = 1 + t + + I . , . 

2! ;{! 

(u a series uf differential operators. These differential 
operators must subsequently be applied to rp(x). The 
result is a Gram-Charlier series with (in general) an 
infinite number of terms. In other words, an Edgeworth 
series cannot be described exactly by a finite Gram­
Charlier series unless only the first 1 cumulants are given 
and the further cumulants are left unknown. In (his case 
the cumulants can be used to calculate the first 1 mo­
ments, which in turn can be used to calculate directly 
the coefficients of the corresponding Gram-Charlier series. 
One problem of describing the series in this way is that 
the generated function fix) will not in all cases assume 
on ly positive values, i. e, it will not always represent <J 

density function. 
We shall now give a simple example representing thc 
most important application for both of the series. (The 
case given here for an Edgeworth distribution was used, 
1'(11" example, by Subrahamaniam (1968 a, b, 1969) to cal ­
CUlate the distribution of quadratic furms and ordcr 
statistics.} 

Gram-Charlier Edgeworth 

D: With E(x) = 0, V(x) = 1 D: With XI = 0, X~ = 1, 
and ck = 0 for k > 4 being 
given, the series obtained is 
f(x) = !pix) [1 + c3H3(x) + 
ct,H/,(x)] 

X.-, = X,; = o 

Ck = 0 for k > (j being 
given, the series obtained h 
fix) = rp(x) [1 + C3H3(x) + 
ct,H,,(x) + cGHG(x)] 

c = 12 c = 1.::. c =.!.. c2 
3 :3" 4 4" 6 2 3 

normal distribution and Hk (x) is the Hermite polyno- G: 

mial of order k. The author knows of no method for generating random 
\Ve have Ilumbers. 
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Figure 6 
The regions in the (Y1 2, Y2)-plane in which all values of fix) 
are positive (Gram-Charlier: ---, Edgeworth: - - -) and the 
regions in which the corresponding distribution is unimodal 
(Gram-Charlier: -. - , -, Edgeworth: .... ) 
(Barton, Dennis (1952» 

These distribution systems cannot be used fur simulatiun 
purposes until a random generator has been developed. 
The admissible range in the (;'b J't)-plane, moreuver, is 
relatively small, although it can be enlarged by chousing 
suitable coefficients ck for k > 4. 

2.7. The Generalized Lambda Distributions 

D: 

Let u be unifurmly distributed in (0,1). Then construct 

The density function is: 

s: 
Sume examples uf shapes: 

H,,: 

1\ )1 
I '-----"'" I 
1 J 

('" < ~3 ' A,~ < 2 ) 

According to a diagramm of Ramberg et al. (1979) distri­
buliuns exist fur 

Y2 ~ -1.25 + 1.6625 ).;. 

Cp _;' 

Ramberg et al. (1979) give a table shuwing the values AI> 12, 

1:: and 1" for given )'1 and ;·t. 

G: 
See D. 

2.1l. The Schmeiser and Deutsch System 

D: 
Let u be uniformly distributed in (O,l). Then construct 
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f - (,1.4 - U)'3 if u ~)4 
X-

- \ (U -).4)'3 if U> 1. 4 

,13 ~ 0, 0 ~ ,14 ~ 1, - )./3~ X ~ (1- Ai3 

$, 

value of ..t3 shape 

...t3 " 0 -~ I 
- 1 

0 <..t3 < 0. 5 ~ . ./1 
0 

..t3 = 0. 5 1\/1 
0 

0.5 <~ < 1 ry1 
0 

...t 3 = 1 _ LJ 

A,3 ~ 1 )!\ 
0 

II ,, : 

{z. 

-1 ,-- "...::",.: .... . -. 

_21-----

Figure 7 
Distributions of Schmeiser and Deutsch in the (Yi' Y2)-plane 
(--- approximate upper bound for 1:: < 1 (bimodal), 
( .... approximate lower bound for 1:: > 1 (unimodal) 

The regions fur A:l> 1 and 1:: < 1 uverlap. Two distri­
butiuns exist for each pair (;'10 ;.) in the overlapping 
region. 

C p __ ;.: 

Schmeiser and Deutsch (1977) constructed nomograms fur 

finding 1:: and 1" from ;'J and )'~. 

G: 
See D. 

2.9. Fleishman's System 

D: 
Let z have a standardized normal distributiun. Then cal­
culate x = a + bz + cz2 + dz3 = P(z). (This transformation 
is the so called power transformation.) 
s: 

Case 1: c2 < 3 bd (~P(z) has no point of zero) 
('Z 



Case 2: 

Case 3: 

c~ = :3 bel ( P(z) ha exactly one point of zero 
(Z 

c~ > :! bel (,i; P(z) ha ' two points of zero at z" 
cz 

and l:l respeCtiVelY) 

J~L I I I 

1\ dbcussiun of the fo r ll1~ with exal11pl('~ i~ 

Nlirnberg (1!l8:l). 

n .. : 

1;. 8.0 

I 
, 

6.0 1 

, 
, 

I , 
I , 

I 
I 

4.0 
I 

I 

~ 
I , , 

Z.o , , 
/ , , 

0,0 
Z.O 

Figure 8 

Fleishman distributions in (YI' Y2) -plane 

~i ' llll in 

!'1 

.... approximate border between unimodal and bimodal 
distributions 

- - - approximate lower bound of the possible rl'giull in the 

H. .. : 

1 

o 

-1 

Figure 9 

Truncated normal distributions in (YI' Y2)-plane 

The limits of the admissible range are still unknown. 

Cp_;.: 

Rasch and Teuscher (1982) showed how the values of f"1 

and )'~, depend on u and v and also gave a small table. 
With (<[I(U) = distribution. function of the standardized 
normal distrib.) Ll = 4> (v) - (P (u) 
and 

1/ i-I ( i-I ( )] ci = - V rp v) - u rp u . 
,1 

we have 

.k; - 6c~ + 3c2 - 12c;c2 - C 4 - 4c,c3 - 3c; 
'\12= 

(1- c2 - c;/ 
G: 
If z is uniformly distributed in (0,1) construct 

2.11. The Double Rectangular Distribution 

D: 

r 
f(x) = \~: 

if x, ~ X<X2 

if X 2 ~ x ~ X3 

01 henYise 

(YI' Y2) -plane s: 

Cp :. 

Fleishman (1978) gives a table showing the values of 1;. 

c and d (a = -c) fur given ;'1 and )'~. 

G: 
See D. 

2.10. The Truncated Normal Distribution 

D: 
Truncate the standardized normal distribution at the 
points u and v(u < v). 

4 

Example for fIx) 

R: 
( 

, 
---- --

x" 

This distribution system covers the whole range of all 
possible unimorlal distributions (cf. chapter 1). without 
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the distributions with 1'1 = 0 and 1'2 =1= -1,2. An analogous 
distribution system which covers the whole admissible 
range of the (1't, 1'2)-plane would, for example, be the 
system of triple rectangular distributions. The properties 
of these, however, have yet to be investigated. 

Cp _;,: 

Guiard (in Herrendorfer (1980» has shown how the para­
meters of the distribution depend on )'1 and )'2. For given 
values of )'1 and )'2 it is necessary to calculate 

and 

5Y2+ 6 
W=---

1y, 

The values Xi> X2 and X3 are the solutions of the equation 

x3 - wx2 - 3x - v = o. 
In order to solve this equation calculate 

p = -1 _ w2 . q = _ (W )3 _ W + v 
!l 3 2 

(In the region of the ()'1, )'2)-plane being admissible for 
the system D = p3 + q2 < 0 must hold.) 

Setting r= 1!P1 sign q and IX = arccos ~, we obtain 
r 

lX W 
X = -2r cos -+-, 3 3 

x2 = 2 r cos ( 7T ~ lX ) + ; 

X3= 2r cos (7T~lX)+ ;, 

In order to ensure that Xl < X2 < X3, the indices of Xl 

and X2 must be rearranged if r < O. Moreover, we have 

G 

X2+ X3 
c,=-------

(X3 - x,) (x2 - x,) 

-(X,+X2) 
c2=------­

(X3 - x,) (X3 - x2) 

If u is uniformly distributed in (0,1), calculate 

otherwise 

3, Comparison of the Different Distribution Systems 

One or more distribution systems can be selected for 
simulation purposes on the basis, for instance, of the 
following criteria: 

s 

G 

GT 

- similarity with empirical distributions en­
countered in practice; 

- size of the region covered in the ()'\, )'2)-plane 
simplicity with which the distribution para­
meters can be calculated from )'\ and )'2 (in 
the following table the availability of simple 
procedures for these calculations are denoted 
by 1 and the availability of tables by 2); 

- Simplicity with which random numbers can 
be generated; 

- computer time required for generating random 
numbers. 

In the following table the author has awardet subjetice 
"marks" for the different criteria stated above (low 
marks = good system). The column GT shows the com­
puter times in milliseconds reported by Tadikamalla 
(1980 a) for calculating 10 000 random numbers on a DEC 
system 10 computer. In this study the generator Ui+l = 
630360016 u i (mod 231 _ 1) was used for the uniform dis­
tribution and the polar method (Box, Muller (1958), Au­
torenkollektiv (1980» for the normal distribution. These 
generators require a computer time of 18 and 94 micro­
seconds, respectively. 

When investigating robustness, it appears advisable to 
show the robustness of a statistical method also for un­
favourable distributions. There seems' reason to suspect 
that "long-tailed" distributions have unfavourable pm­
perties in respect of robustness. Pearson, Johnson and 
Burr (1979) compared the quanWes of systems of Pear­
son, Johnson, Burr (XII) and of the non-central t-distri­
bution and the non-central X2 distribution for several 
values of 1'1 and 1'2. These comparisons showed that the 
Burr distributions have extremely long tails. 

~-----~ ~- ------ --~ 

S R" Cp _;' G GT 
---.--~--~ - --.,.---~------- .. --~~ 

Pearson 1 1 1 4 
Johnson 1 1 2 2 S : 160; S : 165; S : 196 
Tadik. -J ohnson 1 1 2 1 L : 139; L : 142; L : 162 
Burr XII 1 4 2 1 252 
Burr III 1 3 4 1 
Grassia 2 4 4 3 
Gram-Charlier 5 1 5 
generalized lambda-
distribution 1 2 2 1 245 
Schmeiser-Deutsch 3 1 3 1 140 
Fleishman 2 2 2 2 110 
Truncated normal 
distribution 2 3 3 2 
Double reelangulal' 
distribution 4 2 1 1 

----~~-----
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A Combinatorial Method in Robustness Research and Two Applications 
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Abstract 

After defining robustness for interval estimations and 
tests, the paper presents an exact method for investigat­
ing this property for discrete distributions with finite 
supports. This method is used to investigate the u- and 
t-tests in the case of the single sample problem for robust­
ness in respect of two and three point distributions. 

1. Introduction 

Mathematical statistical procedures can be divided into 
parametric and nonparametric. All statistical procedures 
are based on the following assumptions: 

- (Yh Y2, ... , Y n) is the realization of a random vector 
(YI, Y2,"" Yn ) 

- Yj is Fj(y)-distributed. The moments of Yj that are of 
interest are finite and at least partly unknown. 

F j (y) must satisfy one further condition in the case ot 
pammetric procedures: 
- F j (y) must be known expect for the parameters. 
The known parametric procedures (t-test, u-test, .;:2-test, 
F-test, etc.) have very desirable properties if all of their 
dssumptions are exactly fulfilled. 
The behaviour of these procedures when their assump­
tions regarding distribution are not fulfilled was inves­
tigated as early as the nineteen-twenties (e. g. Rider, 1929). 
TuJcey (1960), Mandelbrot (1962) and Herrendiirfer, G .. (ed.) 
(1980) studied a large number of characters and found 
that the assumptions regarding distribution can be con­
sidered justified in only a few cases. Many characters 
have distributions with "a long tail" or are unilaterally 
truncated. Moreover, it can gene'rally be assumed that 
samples include outliers, which are known to have a 
considerable effect on the properties of parametric pro­
cedures. As a consequence of these studies, investigations 
into robustness proceeded along two lines, which were 
described by Ray (1978), for instance: 

Within what limits can a given procedure be applied 
meaningfully, i. e. how "robust" is a procedure against 
non-fulfillment of the conditions on which it is based? 

- How can a "robust" statistical procedure be cons­
tructed? 

It seems virtually impossible to find a definition of "ro­
bustnes" that is simultaneously clear and comprehensive. 
Bickel (1976) formulated three questions that must be 
answered whenever robustness is investigated: 

- Robustness against what'! What is the supermodel? 
- What has to be robust? Which procedure is being con-

sidered? 
- What sort of robustness? What is the aim of the robust­

ness investigations and which criterion of robustness 
being used? 

The robustness investigations presented here deal with 
known parametric procedures (the u- and t-test statist ics) 

and were performed to find out how they behave if the 
distribution is not the assumed normal distribution. We 
assume that all other conditions are satisfied. Let G1 be 
the class of distributions for which the statistical proce­
dure d being studied was derived and which give d its 
"desirable" properties. The supermodel then consists in 
specifying a larger class, G2 ~ GJ, of distributions. The 
criterion used to decide whether a statistical procedure 
is robust or not must be specified separately for each 
class of decision procedures. 
Let da be an interval estimation. In the class G1 (e. g. 
normal distributions with IlL I < Xl, 0 < (J2 < ':x'), d" .has 
the real confidence coefficient 1 - ct. If d" is applied to 
a sample with a distribution g Ii Gil the real confidence 
coefficient will become a function of g and the experi­
mental design, V N' (in the simplest case it will be a 
function of the sample size, n) 

The measure used for the deviation from the nominal con­
fidence coefficient, 1 - ct, can be 

(1) 

or a function of (I). 
In the case of intervalestimations it can first only be 
demanded that this difference is not too great. In other 
words, the following definition can be used. 

Definition 1: 

An interval estimation, da , for a given nominal 
confidence coefficient, 1- ct, which also has the 
real confidence coefficient 1 - ct for the class G1 

of distributions is (ct, f)-robust in the class G2~ G1 

for the experimental design V N if 

(2) 

hold for the given values of ct and f. 

An analogous definition can also be given for robustness 
of the first kind risk of a test. In the case of the u-test 
and t-test, for the one sample problem (Ho: P = Pl)' 

HA : P =1= Po), this would mean finding such a no for a 
given class, G2, of distributions that the procedure is 
(ct, E}-robust for n ~ no. 
We shall first describe a procedure for calculating dis­
crete distributions with a finite support, r. e. for k-point 
distributions with k < Xl, ctd (ct, n, g). We shall then apply 
this method to investigate the robustness of the u-test and 
t-test in the sense given in Definition 1. 

2. An Exact Method for Investigating Robustness Against 
Discrete Distributions 

The literature dealing with the robustness of the most 
important statistical procedures was discussed in detail 
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by Posten (1979), Tan (1982), Tiku (1975), Ito (1980) and 
by Herrendorfer, G., (ed.) (1980), Guiard, V., (ed.) (1981), 
Rasch, D., and Herrendorfer, G., (ed.) (1982) and will 
therefore no tbe considered here. 

. k 

(y"Y2'''''Yk) '" 0 Let gk = . .::.. Pi = 1. Pi> 
Pl' P2·"" Pk i=l 

(3) 

be a discrete distribution (I Yk I < 00) with k points in 
the support, and let 

t)= (y'.y2 ..... yn)' 

be a random sample whose components Y i are distributed 
according to (3). Then the probability for the realization 

(4) 

(\ ) 

The number of possible different samples can be calcu­
lated from 

M=(n+k-l). 
k-l (6) 

The statistic da can be calculated for each possible 
sample. Let, moreover, gk be known. In this case, 
E(Yi) = It and V (y i) = (72, for instance, are also known 
and it is possible to test whether a correct or false deci­
sion has been, made for a particular sample. 
The M possible samples are ordered in some (fixed) se­
quence. We now arrange the probabilities calculated 
according to (5) in the same order as the samples to obtain 
the vector P. We shall call the corresponding decision 
vector H. A component of H is 0 if a correct decision has 
been made for the corresponding sample; otherwise it 
is 1. For an interval estimation it is easy, for instance. 
to calculate 

'_ S - S) \¥. -t(2;0.975) Y3 ; ¥. + t(2;0.975) Y3 (9) 

is calculated for each sample realized. The results of these 
calculations are shown in table 1. 
This yields 

2 1 
"'d(0.05;3;g3) = 3" = - - 0.01. 

. 6 108 

This interval holds for the class G1 of normal distributions 
and n 2 2. 

3. Results for the u-test and t-test and the Corresponding 
Interval Estimations for fl in the Single Sample Pro­
blem 

3.1. Results for the Distribution g:1 corresponding to (3) 

We consider distributions whose first four moments are 
bounded and denote this class by K (fl ; (72; 1', ; i'~) [)'I -

skewness and )'2 - kurtosis], The g:l given in (8) thus 
lies within the subclass K (0;1;0 ;0), which also contains 
the slandardized normal distribution. 
Since a k-point distribution is defined by 2k - 1 para­
meters, K (0;1;0 ;0) contains an one-parametric family of 
three-point distributions, of which only gJ according to 
(8) will be investigated at first. The results up to n = 43 
are given in Fig. 1, and show a typical behaviour also 
for other k-point distributions. 
If we set f = 0.2 . IX = 0.01, the real values of IX should 
be between 0.04 and 0.06. These results still give no no 
for the u-test, so that for n 2 no the test can be con­
sidered robust for g:I' In respect of the t-test the results 
are different: according to Def. 1 the test can be con­
sidered (0.05 ;0.01) -robust in respect of g1 for n 2 no = 11. 

:~.2. Two-point Distributions 

The inequality 

(IU) 

(7) hold between )'1 and )'2 for a distribution. For two-point 

We shall demonstrate this by estimating a mean as an 
example. A random sample of size n = 3 is given, and 

_ (-Y3 0 Y3) 
g3 - 1 4 1 

- - -
Ii Ii Ii 

(8) 

is used as a k-point distribution. For gJ we have E(y) = 
0; V(y) = 1. The interval estimation 

Table 1 

distri butions, 

),z= l'~- 2 ( 1\) 

always holds, so that these distributions are situated at 
the edge of the permissible region in the (r" )'z)-plane. 
It can be shown that exactly one standardized two-point 
distribution lies at each point of the parabola. The totali­
ty of all two-point ditributions with V(y) ,= 1 can be 
given by 

Calculation of IXd (0.05;3 ;g:l) for the interval estimation (9) 
--.-.---~ ------ - -- -- -~ .. --- .. -- ------- - --- - --
..................... Nr. 
Yj ~-_ 1 2 3 4 5 6 7 8 9 10 

-13 3 2 2 1 1 1 0 0 0 0 
0 0 1 0 2 1 0 3 2 1 0 

Jig 0 0 1 0 1 2 0 1 2 3 
. -----,-------

1 12 3 48 24 3 64 48 12 
P' 

6" 6" 6" G" 6" 6" 6" 6" 6" 6" 
-------

yo -1'3 -1.15 -0.58 -0.58 0 0.58 0 0.58 1.15 13 
S2 0 1 4 1 3 4 0 1 1 0 
IL 13 -3.63 -5.54 -3.06 -4.30 -4.38 0 -1.90 -.133 1 3 

Iu 13 1.33 4.38 1.90 4.30 5.54 0 3.06 3.63 1 3 
-_. __ ._------- .. -~-.--~----

H' 0 0 0 0 0 0 0 0 1 
-.--~---- --
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Figo 1: ~d(OtOSinj93) for the u- and t-tests (2~n~qJ) 
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The class 

The probability of a certain realization of ~ can be calcu­
lated from 

(' ) (n)( Y2 )n,( 1 )n-n, p ~= 1)2(y.Ll.n.n,) = --2 --2 
, n, l+y l+y 

(20) 

The aim is to find the samples for which Hn will be 
(I 3 ! rej ected : 

contains g2(Y, Ll). 
Let a random sample, 1)' = (Yl, 0", Y n)' with Yi '" g2(Y, Ll) 
begiven. Its realization have the form 

~'+Ll), 0::; n,::;n 
n-n, 

141 

with 

(15) 

and 
, 2 

S2=_1_(1+y2) n-n'.n 
n-l ,Y n ' 

(16) 

The hypotheses 
lIo : ,u = 0 (;1 = 0) 

(17) 

Ho\:,u~O (Ll~O) 

are to be tested by means of the normal u-test for nor­
mal distributions of known variance. This is done with 
the aid of the statistic 

U=y Yo (IS) 

and the decision rule 

!r!· Yo ::; UI _ a / 2 -> Ho ) .. 
decIsIOns. 

!r!' V'O<U I _ a /2->HA 

y+Ll---o- >u /Xo-'I 1 + y2 n, I 1 
y n 1-"2 Yo (21 ) 

After some manipulation, this yields the two inequalities 

and 

( Y+Ll-UI IX _1 )vn 
-"2 Yn' * 

n,< 1+y2 = nu 

(Y+Ll+ UI_~ ~) yn 

n,> 2 
l+y 

* =no 

(22) 

(23) 

Denoting the smallest integer larger than A by [A], we 

find that (21) is satisfied for all nl ::;; [n~l = nu and all 
nl ~ [110*] = no. The power function of the u-test is then 
given by 

I-pu[n,g2(y,Ll)]= (1+IY2)n [(:)+G)y2+ ... +(:J y2nu 

(24) 

+ CJlno+Co+Jl(nO+I)+···+C)ln] 

The distribution function of the binomial distribution is 
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~ ('n).( )Jl-i B(n;p;n,)=I-~ . pI I-p 
1=0, 1 

(25) 

With 

(26) 

we have 

1-~u[n.g2(y.L1)1 = B(n.p.nu + 1)+1- B(n.p.nu). 

It is natuially also possible to describe ·the distribution 
function by the F-distribution, and an analogous appraoch 
can also be used with success for the t-test for testing (17). 
For L1 = 0 we obtain in each case a real 0( value for the 
nominal 0( and for the given y and n. The values of no 
are of particular practical interest. These are given in 
tables 2 and 3. The calculations was performed up to 
n = 299 and n = 250. 

Table 2 

Minimum sample size (no) for the u-test for given 0( and 
y in the case f = 0.2 0( 

--._---- -------- -

~ Y . 0.1 0.05 0.Ql )'1 )'.) 

--_._. 

1 95 ll6 186 0 -2 
1.25 64 88 206 0.45 -1.7975 
0.5+ 0.5V5 104 97 1 -1 
2 ll6 131 241 1.5 +0.25 
30 > 299 > 299 > 299 29.97 896 

Table 3 
Minimum sample size (no) for the t-test for given 0( and 
y in the case f = 0.2 0( 

--------------------:. y -

1 
1.25 

0.5 + 0.5,5 
2 
30 

0.1 

95 
86 

102 
125 

> 299 

0.05 

151 
87 
186 

270 
> 299 

0.01 

256 
172 

> 299 
> 299 

)', 

o 
0.45 

1 
1.5 

29.97 

-2 
-1.7975 
-1 
+0.25 
896 

As the tables show, the t-test cannot be considered robust 
in respect of two-point distributions for the selected E 
until n becomes very large. 

3.3. Three-point Distribution 

3.3.1. Results in the Class K(,u;a 2 ;0;0) 

Five parameters are necessary in order to define a three­
point distribution. Since we have only four parame­
ters (p., a2, YI and Y2), K(/t/a2;0;0) contains a one-para­
metric family of three-point distributions. We will con­
sider how these depend on X:l (the right support point). 
The values of a have been calculated for 2 ::::;; n ::::;; 250 for 
the following distributions and are presented in table 4. 

(-4,700230 
0,004073 

(- '{ 0 
4 

6 
( -1,395667 

0,294272 

(-1,269762 
0,357175 

( -1,188165 
. 0,400561 

56 

-0,754315 
0,601730 

11) 
0,443466 
0,658180 
0,647540 
0,629758 

0,771498 
0,596254 

12 . 
0:394197 ) 

2,5 ) 
0,047548 

3,5 ) 
0,013067. 

~,003185 ) 

Table 4 
Dependence of no on x~ for f = 0.20( for the u-test and 
t-test in K(O;l;O;O) 

lI-test t-test 

-~0.1 
X,,": 

0.05 0.01 0.1 0.05 0.01 
-.-------~"'-~.--.- ._----,---- ~----

1.2 80 62 ll5 87 45 77 
3 56 95 164 7 II 24 

2.5 21 27 39 16 41 34 
:~.5 15 41 50 22 29 64 
5 43 39 63 41 56 84 

If, in the above distributions. Xi is replaced by -xi' we 
obtain, after rearrangement, for instance X:l = 4.700230 in 
the first distribution. Due to the special selection of the 
parameters p, a2, )'1 and)'2, this distribution also has tlw 
same parameters and thus also belongs to the same 
family of three-point distributions. It is evident that the 
real O(-values are not affected by this transformation. The 
results shown in table 4 also hold for distributions re­
sulting from the above transformation. In other words. 
it would have been sufficient to conduct these investi­
gations only for x~:?:': 3. This can be immediately gene­
ralized to the corresponding three-point distributions 
with II = 0, a2 = 1 and )'1 = O. Table 4 shows clearly that. 
it is not sufficient to take only one three-point distri­
bution from the one-parametric family as a "represen­
tative". The differences in the real 0( and, consequently, 
in no are substantial. As shown by Rasch, D., and Herren­
dorfer, G., (ed.) (1982), the results yielded by the two-point 
distribution for y = 1 can be regarded as results for a 
three-point distribution with X:l =.:JO. If these results are 
compared with those in table 4, it will be seen that the 
value of nil for the two-point distribution with y'= 1 is 
greater than the no values for the three-point distributions. 
The speculation that the results obtained here for X~ = ,J(\ 

must be considered extreme seems to be justified. In 
other words, for studies on robustness in respect of three­
point distributions belonging to the class K(O;I ;0;0) it is 
sufficient to investigate two-point distributions with y = I. 
The results published in Rasch, D., and Herrendorfer, G .. 
(ed.) (1982) show that the two-point distribution with 
y = 1 can be considered a "borderline distribution" for 
three-point distributions belonging to the class K(O;! ;O;;'~). 
For the following investigations we choose ;'1 = 7 and 
)'~ = -1.9. 

3.3.2. Results in the Classes K(0;1;0;7) and K(0;1;0;-1.9) 

In view of the results obtained in 3.3.1., different X:l 

values were selected in order to include extreme three­
point distributions. The calculations were restricted to 
2 ::::;; n ::::;; 150 in order to keep the calculation effort within 
reasonable limits. In view of this constraint, the investi­
gations into robustness for 0('= 0.01 are no longer suffi­
cient and have therefore been ommitted from the follow­
ing tables. The distributions have also been omitted to 
save space. The two following tables do, however, show 
the two X~ values. 
These results confirm our suspicion. 
So far we have considered only distributions with "I = O. 
We shall now take a look at how skewness affects robust­
ness. 

3.3.3. Results for )'1 = 1 

Since there was reason to believe that the values no are 
increased by skewness, the calculations were performed 



fot' 2;;:;: n ;:;;:; 250. The two following tables contain the 
results for three-point. distributions from the classes 
K (0;1;1 ;0) and K (0;1;1 ;-0.5). 

Comparison of tables 5, 6 and 7 reveals that the effect 

of 1"1 = 1 on no is greater than that of )'2 = 7 or )'~ =-1.9. 
If, moreover, tables 7 and 8 are compared with the results 
for two-point distributions with )'1 = 1 in tables 2 and 3, 
it is evident that the two-point distribution can no longer 
be considered "extreme". 

Table 5 
Dependence of no on X;l for f = 0.2:c in the class 
K(0;1;0;7) 

u-test t-test 

a 0.10 0.05 0.10 0.05 
--- -- -----

x~ X:l 

1.5 1.021041 12 16 9 23 
2 1.017090 31 35 29 33 
:i 1.012657 61 61 52 66 
4 1.010034 72 77 33 34 
6 1.007179 35 42 35 41 

10 1.004558 48 62 4!l 65 
50 1.000931 62 96 64 94 

Table 6 
Dependence of nil on x:; for Ie' = 0.2:c in the class 
K(0;1;0;-1.9) 

u-test i-test 

a 0.10 0.05 0.10 0.05 

x:~ x:~ 

1.5 1.021041 12 16 9 23 
2 1.017090 :H 33 29 33 
:1 1.012657 61 61 52 .66 
4 1.010084 72 77 33 34 
6 1.007179 35 42 35 41 

10 1.004558 48 62 48 65 
50 1.000931 62 96 64 94 
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Analogy of the Linear Regression and the Two-Sample Problem in Robustness Investigations 

MANFRED HORN 

Abstract 

For the linear model Yi == a + b xi + e i with given x­
values the robustness of the t-criterion for testing the 
slope against 0 or of the corresponding confidence interval 
for the slope may be investigated, among others. When 
doing this for the simplest case of only two different 
values of x, the t-test becomes equivalent to the t-test for 
comparing the two means of y at those two positions 
of x. And the confidence interval of the slope is simply 
the interval for the difference of these two means divided 
by the distance between the two x-values. Thus robust­
ness statements for the 2-sample problem may be trans­
ferred to regression. 
For the inverse problem of confidence estimation of some 
x-value corresponding to a given y-value similar conside­
rations are possible. 

I. Introduction 

The investigations are related to the linear model Yi = 

a + b xi + e i (i = 1, ... ,n) with given, nonrandom xi' 
The ei are independent random variables with E ei == 0, 
Var ei =, a2. If we assume the ei to be normal distributed, 
we get by 

(I) 

limits of a (1-a:)-confidence interval of b, 

t=~ VL'(Xi-XY 
a 

(2) 

a t-distributed variable for testing the hypothesis H : b=O, 

a (l-a)-confidence region of an unknown regressor value 
Xo for which the expectation Yo == a + b Xo is given. 
The task is to investigate the robustness of (1), (2), (3) 

against violations of the normality assumption. The most 
convenient case for practical investigations is that one 
with only two different values Xj and X 2 of the regressor 
(X2 > Xj), i.e. 

JX 1 i=1, .... n1 

xi= \ 
\X l i=n1+L .... n1+ n2. 

In this case we write the model in the form 

Yij= a+bXj+eij (i= 1, ... , nj; j= 1.2; n1+ no = n). 

2. Formulas 
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nj 

With 5' j = ~ 1: Yij (j = 1.2) we get 
nj i~1 

A 5'1 - Y1 A X1Y1 - X1Yl b = . a = --''''-'-_-'''.-0-
Xl -X1 X2 -X1 

The estimated line passes trough the points (Xl! y,), 
(X2, Y2)' The estimate of (]2 is 

n1 n 2 

1: (YiI- y,f + 1: (Yi2 - Y2f 
S2 = _i~_I _____ _ 

n -- 2 

Recaus," x = n 1X 1 + n2X 2 

n1 +n2 

i~1 i~1 

n 

d ~( -)1 n1n2 ( )2 an .:::.. Xi-X =--- X 2 -X1 ' 
i~1 n1 +n2 

(1) and (2) can be written as 

and 

t=·V2 -Yl 
s 

3. Analogy to the Two-sample ProbJem 

(2') 

We can consider Ylb ... ,Yn ,l and Yj2""' Yn22 as indepen­
dent samples. The common variance estimate is 

n1 n2 

I' (Yil - YI)2 + 1: (Yi2 - Y2)2 
i~1 i~1 

n1 +n2 -2 

i.e., it is identical with S2. Now we can calculate a con­
fidence interval for the difference EYi2 -EYil' Its limits 
are 

This is identical with (1') apart from the factor 1!(X2-Xj ). 

Consequently, robustness statements for the t-interval of 
the difference of expectations of two independent random 
variables can be transferred to the confidence interval 
given by (1'), 

We can also test the hypothesis H : E Y il == E Yi2 by the 
t-criterion using the quantity 

This quantity is identical with (2'). Because b = (E Yi2-
EYil) ! (X2 - Xi), both hypotheses H : b == 0 and H : E Yil = 
Ey i2 are identical. The power function of a t-test depends 
on H A (by the noncentrality parameter). For the test of 
H : b = 0 the non centrality parameter is 

b V Y" (. -)2 _ EYi2 - EYil 1/ ~ 
-; k Xi - X - a ~ n1 + n2 • 

Thus both tests have the same noncentrality parameter 
and by it identical power functions. Therefore robustness 



statements concerning the power function of the 2-sample 
problem can be transferred to the problem examined 
by (2'). 

The relation (3) holds under normality with probability 
1-~ for any Xo or Yo. We suppose that the probability 
under an alternative distribution will be independent 
from Xo or Yo, too. Thus we restrict to the simple case 
XII = 0 or Yo = a. Then we get the relation 

which reduces to 

(3' ) 

Relation (3') can also be derived with the following arti­
ficial 2-sample problem. We take Xi en, ... , Xl en22 and 
X2 ell> ... , X2 e nIl as two independent samples and ask for 
a confidence interval of E XI e2j - E X 2 eli' Because 

_ 2(X~ X~) 
-G -+-. 

n2 n, 

the limits of a confidence interval of E XJ e2j - E X2 el j 
are given by 

In this way robustness statements with confidence inter­
vals for a difference of two expectations may be trans­
ferred to (3) as well to 0). 
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Rates of Consistency of Classical One-Side Tests 

,lANA JURECKOvA 

Abstract 

One-sided tests of location are considered with the rate 
cf consistency as a measure of performance. It is shown 
that the classical tests are poor for testing location of a 
long-tailed distribution and thus are highly non-robust 
from this point of view. On the ether hand, the test based 
on the sample mean is equally good for every distribution 
with the exponential tails as for the normal distribution. 
The situation is similar with the t-test. 

1. Introduction 

Let Xb ... , Xn be independent random variables, identi­
cally distributed according to the distribution function 
F (x-A), where F belongs to a family ff of continuous di­
stribution functions (d. f.) such that 0 < F (x) < 1 for all 
x E RI. The problem is that of testing the hypothesis 
H: A = Ao against K: f.) > Ao. 

The power-function of a consistent test tends to 1 as 
A-Ao~ 00. The rate of this convergence can be considered 
as a measure of performance of the test. Jureekova (1980) 
showed that the rate at which the tails of the distribution 
F tend to 0 provides a natural upper bound on this con­
vergence. We shall show that this upper bound is attain­
able by the test based on the sample mean and that the 
t-test is near to the upper bound, provided F has expo­
nentially decreasing tails. On the other hand, the beha­
viour of both tests is poor in the case of a long-tailed 
distribution F. It means that these classical tests are 
highly non-robust, if we admit long-tailed distributions, 
with respect to the rate-of-consistency criterion. It was 
shown in Jureckovu (1980, 1982) that the situation is diffe­
rent with the signed-rank tests and with the robust pro­
bability ratio tests, which never attain the upper bound 
but are more robust with respect to the mentioned 
criterion. 

determined so that the test V'n is of size IX with respect to 
some fixed distribution FoEir (0 < IX < 1/2). 
Let us denote 

H(e.li'n: F)= -logEI~(1-Y'nG~)). eo~e<co 
- log F(eo - e) 

(2.4) 

where the expectation F(c) is calculated with respect to 
F (x-f.). The probability of the error of the second kind 
of the test 'I' nshould tend to 0, asB-eo ~ 00, provided the 
test '1'n is consistent for F. The rate of this convergence 
can be considered as a measure of performance of '1'n with 
respect to F. It turns out that the left-hand tail of the 
distribution F provides a natural upper bound on this rate 
01' convergence. This fact is stated in the following 
theorem. 

THEOREM 2.1. Let Xl>'" ,Xn be a sample from the 
distribution F(x-f) (FE \Y>. Let '1'n be the test of H:e = An 
against K', A> An satisfying (2.1) - (2.3). Then 

lim B(e.II'Il:F)~n. (2.5) 
H ·CD 

Proof, The theorem was proved in Jureekova (1980) under 
the assumption of symmetry of F. In fact, the symmetry 
of F is not necessary, because 

E,-I (1- II'nOn) = I't-I(T nOS - eo) < Cn) ~ P1-I(X(n) < eo) 

=(F(eo-eJt (26) 

which' implies (2.5). 
The first question is that of attainability of the upper 
bound in (2.5). We shall show that the uppe.r bound is 
attainable by the test based on the sample mean, provided 
F (x) ~ 0 and 1-F (x) ~ 0 exponentially fast as x ~ - 00 

and x ~ + 00, respectively. 

THEOREM 2.2. Let '1'n be the test of the form 

. 11 if nl/2(Xn-eo)~u" 
'i'Il(~)= 1/2 -10 if n (xn-eo)<u, 

(2.7) 

2. Rate of Consistency of Xn -Test where u" = ,[)-I (1-IX) , 0 < IX < 1/2, <P is the standard nor-

We shall restrict our attention to the tests of the form mal d.f. and 

(

1 If Tn(X1-eo ..... Xn-eo»Cn 

V'n(~) = ;'n If Tn = Cn 

o if Tn < en 
(2.1) Then 

(i) lim R(e. Y'n; F) = n 
(-I· 00 

where T n( x1 - t ..... Xn - t) is non increasing in t (2.2) for every d.f. satisfying 

and 

X(l) ~ ... ~ X n ) are the order statistics corresponding to and 
Xi' ... ,X n . We do not impose other conditions on Cn' ;'n 
in (2.1) but. in special cases of interest, en and Yn are 
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(l,s) 

(2.9) 

(2.\11) 



1'2~I',~I. b,~b,>O. 

(ii) lim B(e.V'n;F):=:;1 
(-) • OJ 

for every d.L F satisfying 

U.II) 

(2.12) 

~il~~J-logF(x)(mIOglxif'l=1 for some m>O. 12.13) 

Proof. (i) Let F satisfy (2.9) - (2.11). Using the Markov 
inequality, we may write for every F , 0 < ,. < 1, and for 
ali sufficiently large (-). 

E(.,(I- 'PnUS)) = po(nl/~ Xn < n 1/2(eo - e) + u,,) ) 

:=:;po(lxnl >e- eo- n- I/2u,,) t 
:=:;Eo(exp1n(l-c)b,lx,,j"'I) j 

. exp 1- n(l-db,(e - eo - n- ' /2u"tl 

12.1·1) 

If we are able to prove 

(2.15) 

then (2.14) implies 

( 2.16) 

~ 'l112 (n(1-L) (e- eo - n- 1/2 u.t (e- eor"') = n(l- c) 
(-) . 00 

for every E,O < E < 1, and this further implies (2.B). Thus, 
it remains to prove (2.15). By Jensen's inequality, 

Eo( exp 1n(l- <lb,IXnlr'l):=:; Eo( exp {b,(1- d ~'IXJ'}) 

=(Eo(exP(b,O-tlIX,lr'l))". (217) 

It follows from (2.9) and (2.10) that there exists K, > 0 
such that 

(.1,1"') 

1- ex p { - (1- t)b,x l ,):=:; F(x):=:; 1- ex p : - (I + I) b2 x"! 

for x> K, and 

l'Xp l- (I + I)b, ixl " ) :=:; F(x):s.; exp {- (1- .&) b l i xll'l) (2,1\') 

for x " - K,. Let LI be the smallest number of [-K, ,OJ 
such that 

ex p I -( 1 - I) b 1 I 1'1 I' I ) = F (r 'I) I c,2l1 1 

and L:! be the largest number of 10, K, I such that 

(2.21 ) 

It is easily seen that such numbers always exist. Consider 
the d.L 

if x<L, 

if L, <x. 

Then G,(x) is continuous and 

F(\) 2' C;,(x) if x ~ 0 

F(.\):=:; C;,(x) if x:=:; 0, 

Hence, integrating by parts and taking (2.11) into account, 
we get 

00 

Eo(exp (b,(I- L) Ix,ll'l):=:; .i exp 1b,(I- d Ixl"l dC;L(x) 
-00 

L, 

=~. eXP(b,(l-cllxl"ldF(X) 

I., 
m 

+r 2b,(I-i).i xll-Iexplb,(!-L)X"-(I-I)b,X'i! dx 

1.2 
I., 

+rlb,(l-t).i 1xI"-'expl-ib,ixl"}dx<.J:. lUll 
-00 

This completes the proof of part (i). 

(ii) Let F satisfy (2.13). Then 

E,.,(I- ','n(~)) = 1'0(Xn <eo- e+ n- l12 u.) 

~l'n(x,<e-eo-n-II··u" .. Xn_l<e-eo-n-I,2u", 

X I1 «211-1) (eo - e+ n- l !2 u"j) 

( . ( I" ) 11-1 = I' e - e - n - . 1I I o ,l· 

so that 

lim B(O"i'n: F):::; lim (m(lug UJ1--1) 
(~) 'co (-) ·00. ' 

The test (2.7) attains the highest possible rate of cun­
sistency for every distribution with exponentially decreas­
ing tails. These distributions cover, among others, the 
normal distribution N (0, (j~) with unknown (J. From this 
point of view, the t-test cannot be better than 'I'n' even 
for N (0, (J2) with unknown (j. On the other hand, the test 
'I'n is poor for long-tailed distributions satisfying (2.13) 
(even if the right-hand tail of F is exponential). 
The following section will be devoted to the tail-behaviour 
of the t-test. 

:3. Rate of Consistency of t-Tcst 

Let us cOllsider the t-test of H: (-:)=(:-)0 against K: (-»1:1" 

in the form 

(1.1) 

where 

11 n (,1 }) 

\; - I \'X si_l \',X X ' 
• 11 - 11 _ i 'n - n ...... I Ji. I - n) 

i I j- 1 

and t (n -111 - 0::) is the upper o::-percentile of t-distribu­
tion with (n - I) degrees of freedom. Jurcekov,i (1980) 

proved that 

lim H(e.'(~:F)2n (1+t(n-lll-,,).(n-lrI/2( (.1..11 
U .m 

61 



provided F is normal, while 

lim B(0"I,;,:F)~1 (1.1) 
f:J ·00 

provided F is a long-tailed distribution satisfying (2.13). 

The question of interest is whether 'I'~ is equally good 
for other distributions with exponential tails as for the 
ncrmal distribution. This is partially answered in the 
following theorem. 

THEOREM 3.1. Let XI>"" Xn be a sample from the 
population with the d.f. F (x - 61) such that F satisfies 

(2.9) and (2.10) with 0 < rl :0:::; r2, 0 < bl :0:::; b2. Let 'I'~ be 
the t-test of (3.1) and (3.2). Then 

lim B(0.v'~;F) Z nI'1/2((n -lr1/2t(n -111-,,)+ Ifl'l 
@-'oo 

(1.5) 

provided 0 < r, < 2, and 

lim B(0. V'~: F) Z n((n-1r 1/2t(n -111- ,,)+ Itl'1 (.1.(,1 

('I~oo 

provided rl ~ 2. 

Proof. We have 

Let first 0 < r, < 2. Then, using the Markov inequality, 
we get 
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(3.8) 

• P:-;p \ - n-l'l/2(I- E) b1 (0 - 00t(1 + (n-1rl/2t(n -11 1-,,)) -I'll 

for every E, 0 < f < 1, and by cr-inequality, 

(3.9) 

The last expression is finite by (2.24); this further implies 
(3.6). 
Analogously, if 2 :0:::; 1", :0:::; r~, 

(
' ( 11 ')1/2 ') 

I'D ,(l+(n-1)-1/2t(n-lI1-"j) ~t-;x~ >0-00 

(:,11I1 

.e:-;p{-n(J-L)b1(0-00)'1(1+(n-I)-1/2 t (n-Il-e,)) Iii 

Regarding that the last expectation is finite by (2.24), 

(3.10) implies (3.6). 
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Asymptotic Robustness of Bayesian Decision Rules in Statistical Decision Theory 

YURIJ S. KHARIN 

Abstract 

We consider the statistical classification problems when 
conditional probability distributions of observations are 
given with distortions. Robust decision rules are derived 
for Tukey's model with contaminating distributions and 
for the model with additive distortions of observations. 
The guaranteed risk values for robust and Bayesian 
decision rules are found and compared by the method uf 
asymptotic expansions. The results are illustrated for the 
case of Gaussian observations. 

1. Introduction 

In statistical decision theory the Bayesian decisiun rule 
(BDR) is widely spread, which minimizes tbe risk (ex­
pected loss) of decision making. For BDR construction in 
statistical classification problems it is necessary to know 
the loss matrix, class prior prubabilities and the condi­
tional probability densities. In practice these characteris­
tics are estimated by real data. That is why the specific 
prior uncertainty appears in applied classification pro­
blems: the values of the mentioned characteristics are 
fixed but with any possible distortions; in uther words, 
the statistical classification model assumes any distortions. 
Ignoring them we receive the BDR, the risk to of which 
is minimal for the distortionless model. However, in thc 
situation with the real data the classification risk r of this 
BDR can be much more than ru. 
In this connection the following tupical problems of rouust 
statistics are considered in the paper: A) to investigate 
BDR's risk in the presence uf distortiuns; B) to construct 
the robust decision rule the guaranteed risk value (sup­
remum) of which is minimal; C) to find this minimal 
guaranteed risk value. 
The review of robust statistics results was given by Rey 
(1978). The problems A, B were considered befure in a 
simple case: the loss matrix (Kadane (1978» and priur 
probabilities (Kadane (1978), Berger (1979» only are sub­
jected to distortions. A problem clused to 13 was cun­
sidered by Randles (1978): the luss matrix and prior 
probabilities are exactly known and conditional densities 
are Gaussian, but their parameters are estimated by a 
sample with outliers. In Huber (1965) it special case of 
problem B with densities disturtions was considered (two 
classes), but for another optimality criterion: to construct 
the test for which the power is maximal and the size is 
equal or less than the significance level. 
In this paper the problems A. 13, C are solved for lhe 
situation with densities distortions by the method of 
asymptotic expansions of risk (Kharin (1981), (1982». 

2. Mathematical Model 

Let observations of L classes !h ... , !JL appear in ~~N 
with prior probabilities JTIo •.. ,:T L (:rl + ... +7L "'-' 1). 

An observation from !.Ii is a random vector Xi E ~N with 
probability density Pi (xl. x I::: c;'l\N. The classification loss 

matrix W = (w ik) is given; wil{:2: 0 is the loss value 
when we classify an observation from !Ji into !Jk 

(i, k = 1, L). The density Pi (.) is given with distortions: 

II) 

where 1\ (f; 1 i) is the family of admissible densities [01' 

!}i ; 0 S c+i < 1 is the distortion level for !.Ii' If f+i = 0, 

then any distortion in fJ i is absent; Pi (0) contains the 

single element Pi (.) = p~ (.): the distortionless density. 
The concrete definitions of the families {Pi (,- i j I} are 
given in the following sections. 
Let d = d(x) be a decision rule (DR) defined by the 

measurable function d(·) : )~N -+ {l, 2, ... , L} . The risk 
for this DR is the mean of the loss: 

L 

f=r(d;(Pi))= 2.'ljfi(d;pj). 
i~1 

where 

the conditional risk of the classification of the observa­
tions. 
By the guaranteed risk value for DR d(·) we mean the 
supremum of the risk on all admissible distributions (I): 

L 

f+(cl)= sup r(d;!p;l)=2 JT jr+Jcl)_ 
!Pj(')EPjll:+jl) j~1 

r+j(d)= sup ri(d:Pi). 
Pil-IEPjIE+il 

We say that the decision rule d = d* (x) is a robust one 
(RDR), if its guaranteed risk value is minimal: 

r. (d*) = inf r f (d). 
r d(.) 

We shall characterize the asymptotic robustness of a 
DR cl(·) by asymptotic expansions of its risk 1';_ (d) on 
the powers of the values {E_f-i}' 

:l. Asymptotic Robustness of DR in the Case of Tukey's 
Model 

Let the model (I) of the distortions be Tukey's model 
with contaminating distributions (Tukey (1960»: 

1';(£+;) = (Pj (.): Pj(x) = (1- Ei) p~(,,) + 'j hj(Xl 

I.-I 

Here hi (.) is a density of the contaminating distribution 
from the family Hi , ci - the coefficient of contamination 
influence for !Ji' Tukey' model (2) has the following in­
terpretation in the statistical classifcation problems. The 
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class [.}i of observations consists of the two subclasses: 

!}i =!J~ U !Jr, !J~ n Dr = 0.!J~ is the well known 

(frequently observable) subclass; ar is the non-studied 
(rarely observable) subclass. A random observation from 

!J~ has the known density p~ (.) and from [J r - an 
unknown denSity hi (.) E Hi' If [.} i is observed, then an 

observation from [.} ~ appears with probability 1 - E i 

and from [.}r - with probability fi' 
At first we investigate the influence of the distortions 
(1), (2) on the BDR, which is constructed for the distor-

tionless model (!l~) . This rule is well known: 

L L 

d = doh) = Y i l\.o(x), l\o(x) = 
~ ilk 

n U(f~,i(x»)' 
1. k' i 

where U(·) is Heaviside unity function; Vr eRN is the 

region where the decision "d = i" is made; 

Iv~ (x) = [1, if x E V~; 0, if x ~ Vn; 

L 

J~'i(x)= f~(x)- rf(x). f~(x)= L>IP~(X)\\'li' 
1=1 

f~i (x) is the Bayesian discriminant function for classes 

[Jr, !J~. 
The BDR's risk 

L 

1'0 = r(d o: (pm = L'i roi' 
i-I 

L . 

roi = L.: Wij \ pf(x)dx, 
j 1 \0 

J 

Let w ij- = max w ij' The following theorem holds. 
J 

Theorem 1. For conditions (1), (2) the guaranteed risk 
value for BDR du(') is 

L 

I'I-(do)= 1'0+ 2: I+i'1i(Wi+- roil, 
i-I 

UI 

By analogy with (3) the infimum of risk can be obtained: 

L 

r.(dol= int' r(do:(pd)=ro-L'1jI+i(rOi-\\'i-)' 
!Pi("EI'i(l+i)! i~1 

where \\'i- = min \\'ij' 
.1 

Corollary. If E+i = f+ is independent of i, then 

r+«(1o)=l'o+ I +("'+-ro),I'_(do)=ro-,+(ro-"'_)' 

L 

where \\ i = 2' 'Ii \\'1:1-' 

i I 

In particular, if Wij = 1 - tlij (tl ij is Kroneker's symbol), 
then the probability of classification error belongs to the 
interval: 

Let 

Theorem 2. For the distortions (1). (2) the robust decision 
rule is given by 

L L 

d=d.(x)=.I'il\,~(x), Iv~(x)= n U(fkJX»), 
i_III k-I.kii 

(4) 
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Corollary. tn the situation with equal contamination 
levels (Eji = E+ ' i = 1, L) the BDR is the robust decision 
rule. 
We derive now the asymptotic expansion for ,+ (d*) and 

coompare it with r+ (do). Let '\] be the gradient on x ERN; 
"T" is the transposition symbol; f + = m\lx E ,j-i' 

1 

Aijdx ) = IV ffj(x) 121V f~j(X) 12 - (V1' fflx) V ~~j(x) V: 
l'ij= IX: f~.i(x)=O) 

is the discriminant surface in 
()o (.0 (. -L')' r' . th- t -- i' -~ j' 1 T J, ij 1 S d 

RN for the two classes 

"part" of the surface J'ij 

which is the border for V~. 

Theorem 3. If (p~ (x») are differentiable and surface 
integrals 

are finite, then the guaranteed risk for HDR d*(·) allows 
the asymptotic expansion 

I j) 

where 

The total proof of this theorem is given in Kharin (19132). 
Note, that in the case with L = 2 classes blmijk = 0 and 
the computation of expansion coefficients in (5) becomes 
easier. 
The practical value of theorems 1, 3 lies in the fact, that 

(3), (5) generate the approximate formula (with the re­

mainder term 0 (F~.)) for RDR's guaranteed risk compu­
tation. 

4. Asymptotic Robustness of DR for Additive Distortions 
of Observations 

Let the observation model have the form: 

(6) 

Here X~ '" HN is the distortionless random vector willi 

known thrice differentiable density p~ (x); Yi E RN is 
the random vector of distortions with unknown density 

hi (.) E Hi; iX~, Yi are independent. Let Hi be the family 
of densities having the moments for third order inclusive, 
the first and second order moments being fixed: 

IIi=(hi('):hi(~');:>O. \hi(y)d~'=l. E(Yd=,llj' 
i{ ;\! 



where Iii E RN is fixed mean and 1.\ is fixed covariance 
matrix. The model (6) has the following interpretation. 

The study of the classes {!J i } (including the estimation 

of [p~ (.) II was conducted for "ideal" conditions (with­
out distortions), but real observations are corrupted by 
random noises {Yi}' the statistical properties of which 
are partly known. 
Because of additivity of the mudel (6) the family of 

densities in (1) takes the furm: 

Pi\c.ti)= \f Pi ('): [Ji(X) = ~'~~(X-'+i'\')h,(~)dY h;!')E IIi \/' 
j{!\ 

By analugy with the sectiun :3 we investigate the asymp­
totic robustness of DR for this model. 
Let 

L 

h - _ Y' \' l)o(X) dx - culumn-\·eelur. 
"'j- .:..:" I' 

.i- I ~p 
.I 

I, 

ri.= '~\\'" \. V)po,(x)dx-(Nx:,\) - malrix. 
fJl *-' 1,1 

.i~ I ~o 
.I 

Theorem 4. For the model (6) of distortions the guar­
anteed risk value allows the asymptotic expansion: 

I, 

,~ (T ( T '. I) tt·(du)=ro+ ~'+i'Ti /'i [';+'+i /'; /;;.II,·llr(2.;/;;))/210(.Jj ) 

1· I 

Theorem 5. With the remainder 0 (,3;.) the RDR fur the 
observations with additive distortions has the furm (4), 

where 
I, 

J'j(x)= f~(xl+ 2: 111\\"I;QI(X)' 
I~ I 

+ tr(2.S2[J~(x»)). 2) 

The asymptotic expansiun fur the guaranteed risk value 
uf this RDR is defined by (5), where the expansion 
cuefficients are evaluated by the formulas: 

T 

5. Robust Classification of Gaussian Observations with 
Distortions 

In statistical classifcation problems the Gaussian model 

is usually used as a distortionsless model for [ Q~ ). For 
this situation we illustrate here the results of the section 
:3. Let us have L = 2 classes and Pi (x) = nN (x I ai' B) is 
the given N-dimensional normal density of an observation 

from !J~; a j E RN - the mean, B - nun-singular co­
variance matrix; w ij = 1- ilij (because of this the risk 
is the unconditional probability of error). It is known 
that the BDR is linear in the described situation: 

( T) -1 d = do(X) = U b x-/'o + 1. b = B (a/ - a,) 

i'o = (a2 + a,)'I' B-' (a/ - a,) /2 + In (71,/11/) 

and the error probability is equal to 

2 

r 0 = 1 - ~ IT; (p( ,1/2 - (- 1); ,1-' In (11,/11/)) . 
; • I 

where </) ( .) is the standard normal distribution function 

and Ll = r(a2--~1)TB""J (a2-aJ) is Mahalanobis distance. 
By theorem 1 

) 

rj(oo)=ro+ ~,:'I;I+;(P(,1/2- (_1)1,1- 'In(l1,!iT 2)). 

; c I 

Using theurems 2, 3 we find RDR and its guaranteed risk: 

In Khadn (1982) the comparative analysis of t: ~ (d*) and 
1'+ (do) is made and the conditions o[ RDR's' essential 
superiority are established. 

l'111l =,"1 ul l1l ,um' 

1,-1 L (( ) ( ) _" " Wlj-WI; \\'mj-Wmi 
u lm -.::;... .::;... -

; I j~j+1 2 

\, 

\ V p~ (x) V T P~l1 (x) I V ff.i(x) I·-I dSN _ 1 

i .~ 
'.I 

+~' ((WI.i - \\Ii)(\\'mj - Wmi) + (WII-; - \\'1;) (\\'mk -- "mj)) 
k c~ J + I 
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Ranks, Standardized Ranks and Standardized Aligned Ranks in 

the Analysis of Friedman's Block Design 

PAUL VAN DER LAAN, JOS DE KROON 

Abstract 

In this paper the use of ranks, standardized ranks and 
standardized aligned ranks in the analysis of Friedman's 
block design is elucidated. Block designs with unequal 
numbers of observations per cell are considered with the 
restriction that the design is orthogonal. 

1. Introduction 

A randomized block design with I blocks and J treatments 
and with mij (> 0) observations per cell is considered. 
A cell is an intersection of a block and a treatment. We 
assume that the observations have continuous cumulative 
distribution functions and that the observations in diffe­
rent blocks are independent. In this paper we restrict 
ourselves to orthogonaL designs, i.e. the number mij (i==l, 
. . . , I and j == 1, ... ,J) of observations in cell (i, j) is equal 
to mi. * m./m .. where mi. = ~'mij ,m.j =~. mij and m 

J 1 

~. 2' mij following the familiar dot notation. 
J J 

In the following figure the foregoing is summarized. 

o 
c 
k 

~ 

mll 

mil 

mIl 

m .1 

l: mil 
i 

Figure 1.1. 

Treatments 

m1j 

mij 

m1j 

m 
.j 

= ~mij 

J 

m1J 

miJ 

mIJ 
--~-

m .J 

= 1: miJ 
1 

m. = L m .• 
1. j lJ 

An orthogonal randomized block design; mij represents the 

number of observations in cell (i, j). 

We want to test the null hypothesis 

Ho: no treatment effect 

against shift alternatives of the form Fij(z) = Fi(x - .1 j) 
where Fij (.) is the continuous distribution function from 
which the observations in the i-th block and under treat­
ment j are drawn (i = 1, ... , I and j = 1, ... , J) and Aj 
is a shift parameter. 

2. The Use of Ranks 
For testing the null hypothesis in the case that the 
number mij of observations per cell is equal to 1 (i = 1, ... , 
I; j = 1, ... , J), the distribution-free test of Friedman 
using ranks can be applied (Conover (1971». The obser-
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vations within a block are ranked in increasing order of 
magnitude and ranks 1,2, ... ,mi = J are allocated (i = 1, 
... ,I). The test statistic Q of Friedman is defined as 
follows 

I 1- 1 " "(- - ).) Q=12,.J(.J+I)! ~ ~ l'j-l' .. 
1 .1 

where r ij (i = 1, ... , I; j = 1, ... , J) is the rank of the 
observation in cell (i, j), the combination of block i and 
treatment j. 

Furthermore r· = I-I 1: 1'" and l~ = (lJ)_1~' 2' 1'" Tables 
'.J i 1J . . i j 1J 

can be found in Owen (1962) and Obeh (1977). The 
test statistic Q has under the null hypothesis of no 
The test statistic Q has under the null hypothesis of no 
treatment effect, asymptotically for I tends to infinity, a 
chi-square distribution with J-l degrees of freedom (Hajek 
and Sidak (1967» . 
In the case of an equal number m of observations per cell 
one can apply the test of Friedman for m observations 
per cell as we call it, with test statistic 

Q m = 12 (mJ(mJ + l)r' 1: L.: 11' ("j - t· .. )2 
1 .1 

where r ijl is the rank of the I-th observation (1 "" 1, 
... ,m) in the i-th block and under treatment j (i == 1, 
... , I; j = 1, ... ,J), ranking each block separately, l;.j. = 

(Im)-I ~'2' 1'''1 and -1' = (IJm)-l 2' 2' 2' 1'''1 (Conover 
i 1 1J . . . iiI 1J 

(1071». It is well-known that Qm has under HI! asympto­
tically, as mI tends to infinity, a chi-square distribution 
with J-l degrees of freedom. In table 2.1 some critical 
and "almost" critical values of Q 111 can be found for the 
levels .001; .01; .05 and .10, respectively. 

Table 2.1. 

Critical and "almost" critical values of Q m for the levels 
.00l; .01; .05 and .10, respectively. 

The left column gives values C and the right column the 
values P = P [Ql1l~ C]. 

-~-~---- --~ -~----------------

J=2, m=2, 1=2 7.68 .007 5.49 .026 
4.80 .056 5.88 .021 4.20 .055 
2.70 .167 4.32 .054 3.09 .107 

3.00 .119 ~ -- ----- --

J==2, m=2, 1=3 J = 2, m == 2, 1 = 8 
7.20 .009 J=2, m=2, 1=6 10.80 .00lO 
5.00 .037 12.10 .0003 9.08 .0029 
3.20 .120 10.00 .0015 7.50 .008 

--.~.---------- 8.10 .005 6.08 .018 
J =2, m=2, 1=4 6.40 .015 4.80 .038 
9.60 .0015 4.90 .037 3.68 .074 
7.35 .008 3.60 .081 2.70 .132 
5.40 .029 2.50 .156 
3.75 .079 J=2. m=2, 1=9 
2.40 .179 J = 2, m = 2, 1 = 7 11.27 .0007 
--.,--~---- -- --- 12.34 .0003 9.60 .0021 
J=2, m=2, 1=5 10.37 .0012 8.07 .005 
12.00 .0003 8.57 .004 6.67 .013 
9.72 .0015 6.94 .011 5.40 .026 



4.27 .051 4.00 .054 J == 3, m ~ 2, I:c. 8 
3.27 .093 2.78 .114 

12.96 .0010 2.40 .156 
12.89 .0011 -----~---

J == 2, m == 4, 1==4 9.00 .009 J=2. m==2. 1=10 
11.76 .000fi 11.02 .0007 11.82 .Oll 

10.08 .0012 6.11 .047 10.14 .0016 
7.52 .006 6.04 .051 7.26 .009 
6.75 .010 4.75 .095 6.00 .018 
4.69 .035 4.61 .101 4.86 . 036 
4.08 .050 3.84 .065 
:3.00 .097 .J == 3, m c= 2, 1==9 2.94 .111 
2.52 .131 

J = 2, m == 3, 1 == 2 12.98 .0009 
12.79 .0011 

7.71 .0050 J '-= 3, m = 2, I=-2 B.86 .010 
6.10 .015 9.14 .0007 B.79 .011 
4.67 . 040 B.14 .0037 6.10 .04B 
3.43 .090 7.43 .011 6.00 .050 
2.38 .170 6.14 .041 4.70 .095 

J =2, m=3, 1=3 
5.57 .056 4.67 .10:1 
5.14 .086 

9.92 .0010 4.43 .116 J ~ 3, m ~c 3, 1 -'. 2 B.40 .0032 
7.00 .009 J == 3, m = 2, 1 == 3 10.98 .0009 
5.73 .020 10.67 .0010 10.48 .0010 
4.59 .041 10.57 .0014 8.40 .009 
3.57 .077 8.67 .009 8.1:3 .011 
2.68 .132 B.OO .012 5.91 .04B 

6.00 .047 5.n .052 
J == 2, m == 3, 1=4 5.81 .056 4.80 .095 
10.71 .0007 4.95 .082 4.5B .103 

9.33 .0020 4.67 .107 
6.86 .010 J = 3, m == 3, I == 3 
5.76 .020 J == 3, m == 2, 1 == 4 

11.94 .0010 4.76 .036 12.07 .0009 
3.86 .062 11.64 .0011 11.85 .0010 
3.05 .102 B.64 .009 8.62 .010 

B.:36 . 011 B.56 .010 
.J .~ 2, nl'= 3, 1 == 5 

5.79 .050 :1.90 .048 
11.67 .0004 5.64 .057 5.81 .052 
10.37 .0011 4.57 .097 4.65 .095 
6.94 .009 4.50 .110 4.62 .100 
5.95 .017 
4.20* .050 .1 ~ 3, m cc. 2, I = 5 J ~ 3, m = 3, I == 4 
3.44 .078 12.40 .0010 12.42 .0010 
2.75 .119 12.06 .0011 12.36 .0010 

J == 2, m = 3, 1 == 6 B.63 .010 8.87 .010 
B.46 .011 8.82 .010 

11.46 . 0006 6.17 J)46 6.02 .048 
10.29 .0012 5.8!) .052 :1.96 .050 
7.14 .008 4.6:3 .096 4.6f) .097 
6.22 .015 4.51 .106 4.62 .101 
4.57 . 039 
3.B4 .060 J == 3, m == 2, 1= 6 J == 3, m c= 3, 1 = 5 
3.17 .090 12.76 .0009 12.B5 .0009 
2.57 .131 12.33 .0011 12.82 .0010 

J = 2, m == 4, 1 == 2 9.00 .009 8.87 .010 
B.71 .010 8.82 .010 10.67 .0004 
6.05 .04fJ 5.fJ7 .04fJ 9.3B .0012 
5.90 .053 5.92 .050 7.04 .007 
4.62 .100 4.76 .095 6.00 .016 
4.43 .109 4.60 .101 5.04 .029 

4.17 .050 J 3,m c 2, T = 7 J, 4, m-·2, T =·2 
:J.3B .082 12.61 .0010 11.25 .0009 2.67 .128 12.53 .0011 11.08 .0013 ---- ----

8.94 .009 9.33 .009 J == 2, m = 4, 1==3 
8.B6 .011 9.2:1 .010 11.11 .0005 
6.04 .047 7.:1:3 .046 10.0:3 .0011 
Ii.OO .052 7.25 .051 7.11 .OOB 4.57 .om, 6.17 .094 6.25 .013 4.53 .106 6.0B .106 4.69 .035 

When the numbers mij of observations PCI' cell are not 
equal, it is possible to apply the test of Benard and Van 
Elteren (1953). This test is suitable for general designs. 
For orthogonal designs the test statistic has the following 
form 

wo=l:m J\1:i m:,(llli,+I)(r'IJ,'Ill,-j'!\1 ,_1. '-'Ill (Ill +1)(1:' 
.J. 2':;- IJ I. ' 

* Critical at the .05 level. 

5* 

The test statistic Qo has under the null hypothesis asymp­
totically, as I tends to infinity, a chi-square distribution 
with J-l degrees of freedom (Benard and Van Elteren 
(1953». If mij =c 1 (i == 1, ... , I; j == 1, ... , J) this test sta­
tistic is equivalent with Friedman's test statistic and if 
m ij ., m it is easy to show that this test statistic is iden­
tical to the test statistic of Friedman's test for m obser­
vations per cell . 

3. The Use of Standardized Ranks 

When the numbers of observations per block are unequal, 
the test of Benard and Van Elteren presents difficulties . 
Namely, the level of the transposed response variable, the 
rank, depends on the number of observations in the cor­
responding block and therefore differs from block to block 
in the case that the numbers of observations per block 
are unequal. This objection can be avoided by using a 
natural generalization of Friedman's rank statistic. For 
this generalization of Friedman's test statistic standardized 

ranks -;ijl (i = 1, ... , I; j = 1, ... , J and I = 1, ... , m ij ) are 
defined as follows 

. ( I I ( I \ _112 
1"1'[= r" I --(1ll +1) -Ill, (111' +1)1 

I, 1.1 2 I. 12 I. I. ! 

Under the null hypothesis these standardized ranks have 
expectation zero and asymptotically, as m i tends to infinity 
for i =- 1, .... I, unit variance. The "standardization fac­
tors" are derived by De Kroon and Van del' Laan (1983 a) . 
They also showed that the test statistic (for orthogonal 
designs) 

for testing against treatment effect, has under the null 
hypothesis asymptotically, as mj tends to infinity for all i, 
a chi-square distribution with J-I degrees of freedom . 
II the numbers of observations per block are equal they 
also showed that the proposed test statistic is equivalent 
with the test statistik of Benard and Van Elteren . 
We shall now give a simple example in which the diffe­
rence of the test procedUre of Benard and Van Elteren 
and the proposed test procedure can be illustrated. The 
results of an experiment with four treatments and ob­
servations in six blocks are given. Ranking the observations 
per block gives the following rank results: 

B 

o 

l: 

k 

s 

Total rank sum 

22 

Treatments 

m2. = 4 

ms. = 4 

m,.= 4 

mo. = 4 

31 33 42 

We find for the test statistic of Benard and Van Elteren 

Qo == 4.27 

and this is below the five percent critical point 7.815. 
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The results of the sixth block neutralize the very con­
cordant results of the first five blocks. For the proposed 
test statistic based on standardized ranks we find 

Q = 11.15. 

This result is significant at the five percent level. The 
example can only be considered as an illustration for the 
difference of both test statistics. To obtain a better based 
judge it is important to make a comparison of the power 
functions of both tests. In table 3.1. the simulation results, 
based on 2000 samples from Normal parent distributions, 
are presented for the following orthogonal design where 
the numbers of observations per cell are indicated: 

Treatments 

B 
1 2 3 

1 1 12 12 12 
0 

c 2 2 2 2 

k 3 1 1 1 
s 

The cases considered are the null hypothesis Ho and the 
alternative P j+ X, where X is the standard Normal variate 
and Pj is the mean of treatment j (j = 1,2,3), with PI = 

1 0, P2 = - and P3 = 1. 
2 

The results for different critical values are dependent 
since the same samples were used to estimate the powers. 
The same can be said for the two cases. To get an efficient 
comparison the same samples were used to estimate the 
powers of both tests. For this design one can conclude 
that the power of the new test based on standardized 
ranks is better than the power of the test of Benard and 
Van Elteren, as may be expected. More Monte Carlo re­
sults can be found in De Kroon and Van del' Laan (198a a). 

Table 3.1. 

4. The Use of standardized Aligned Ranks 

For all these tests there is a separate ranking in each 
block. Thus comparisons of the reponses take place only 
within each block. Blocks can be made comparable by 
subtracting from the observations an estimate of the lo­
cation of the block, for instance the median of the ob­
servations in the block. In this way we get m differences. 
This method of making blocks comparable is denoted by 
the term "aligning". We rank the m differences in in­
creasing order of magnitude with ranks 1, 2, ... , m . The 

ranks are called aligned ranks and denoted by ri~:' Now 
we can determine standardized aligned ranks. 

- '/2 
-* (* -*)J -'''I:(* -*)21 1"'.1= 1"'1-1" \ Ill· .:.... 1"'1-1" I 1.1 1,1 1.. l. 1J I.. 

.i 1 

(i=l ..... I; .J=1. ... ,J and 1=1. ... mjj). 

These ranks have under the null hypothesis of no treat­
ment effect and given ranks in the blocks, expectation 
zero and symptotically, as m tends to infinity for i = 1, 
... , I, unit variance. De Kroon and Van del' Laan (1983 b) 
present a test based on these standardized aligned ranks. 
They also compare the power functions of the various 
tests. These comparisons are based on simulation experi­
ments. 

5 A Concluding Remark 

From the results of the various simulation experiments 
which can be found in the papers of De Kroon and Van 
del' Laan (1983 a and b) one can draw the following ten­
tative conclusion. Standardized ranks and standardized 
aligned ranks may provide an improvement in power, 
compared with ordinary ranks, for the problem considered 
in this paper. Not much gain, if any, seems to be obtained 
by using standardized aligned ranks instead of standar­
dized· ranks. 

Estimated powers of the test of Benard and Van Elteren (BE) and the test based on standardized ranks (SRT) 
-----,., , .. - --.~~---- ------ -------- ------

X P [1.~>xl BE 
Ho 

SRT BE SRT 
------

1.00 .607 .622 .617 .966 .967 
1.40 .497 .508 .505 .941 .955 
1.80 .407 .409 .413 .913 .932 
2.20 .333 .342 .336 .885 .906 
2.60 .273 .280 .269 .853 .885 
3.00 .223 .222 .225 .818 .851 
3.40 .183 .180 .182 .782 .825 
3.80 .150 .152 .149 .748 .793 
4.20 .122 .116 .116 .709 .760 
4.60 .100 .094 .095 .665 .721 
5.00 .082 .078 .078 .634 .689 
5.40 .067 .063 .066 .587 .649 
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X P 11.~> xj BE 
Ho 

SRT BE SRT 
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9.80 .007 .006 .008 ,209 .276 

10.00 .007 .004 .006 .200 .260 
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Chernoff Type Bounds of Errors in Hypothesis Testing of Diffusion Processes 

FRIEDRICH LIESE 

Abstract 

A hypothesis testing problem of discriminating between 
two diffusion processes ~i (t), 0 ~ d~i = ai (t, ~i) dt + 
dW (tl, 0 ~ t ~ T, is considered. The errors of first and 
second kind can be estimated in terms of Hellinger inte­
grals. In the present paper upper bounds for the Hellin­
ger integrals are obtained. 

1. Introduction 

Let [D, WJ be a measurable space, P, Q probability mea­
sures on [D, J] and R a a-finite measure dominating 
P, Q. The functional 

H,(P.Q) = \"(elP)'(elQ )1-'c!R O<s < 1 
, elH c!R, . . 

is called the Hellinger integral of order s. Hs plays an 
important role in probability theory in treating the pro­
blem of absolute continuity Nemetz (1974) and Liese 
(1976), in information theory Gallager (1968) and in 
statistics Chernoff (1952), Evans (1974), Hibey, Snyder, 
van Schuppen (1978) and Osterreicher (1978). In the pre­
sent paper we make use of the relation to the errors of 
first and second kind in hypothesis testing problem if 
both the hypothesis Ho: P and the alternative H j : Q 

are simple. 
There is a measurable partition C\, C2, C:) of Q, Cj E tv, 
Ci n Cj = 0 i + j, C1 U C2 U C~ = D with 
P(C1) = Q(C~) = 0 and P(· n C2) '" Q(. n C2) 

where", denotes the measure theoretical equivalence. Put 

z= dP(·n C2). 
dQ(·n C2) 

Given a level L the likelihood ratio test is defined by the 
critical region 

K = C1 U (C2 n {Z s L}). 

The errors of first and second kind are given by Il =, 

P(K), (3 = Q(K), respectively. Upper bounds for these 
errors in terms of Hellinger integrals are due to Cher­
noff (1952) 

,,:<:; inf L'HI_,(l'.Q). (3:<:; inf L-'lIs (P.Q). II) 
0<,<1 0<,<1 

In this way the estimation of the errors of first and se­
cond kind leads to the estimation of Hs' In the present 
paper we investigate the Hellinger integrals of the distri­
bution laws p,., of diffusion processes 

'1 

Chernoff bounds are investigated by many authors. The 
common method due to Evans (1974) is to introduce a new 
process 1)(t) such that Hs (P~l' P2, ') becomes a functional 

of the type M exp {- } V (1/ISlldS). 

Then a differential equations for this function is det'ived. 
But this differential equation can not be solved in gene­
ral in a closed form. 
In contradiction to this method we aim to estimate 
Hs (P ",' p$) by simpler and closed analytic expressions 
using only the processes ~j and the functionals ai 
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2. Results 

Let [Q,g:, P] be a complete probability space, (\3\)t2:0 
a nondecreasing family of sub-a-algebras completed with 
the zero sets of P. Assume that (W(t), 'Jt ) is a Wiener 
process, i. e. (W(t), tv!) is a continuous martingale with 
W(O) = 0 a. s. and 

M«W(t) - W(s»21'tvs ) = t - s, o ~ s ~ t <Xl. 

Denote by C T the space of all continuous functions x(t.). 

Os t ::::;: T, with x(O) = 0 (if T = (Xl then only 0::::;: t < ,Xl 

is assumed). Denote by £'t the a-algebra of subsets of CT 
generated by the projections up to t, £'t = (x(s), 0 ~ s ::::;: t). 

Given a continuous stochastic process ~(t), 0 ~ t::::;: T on 
[D, }, P] the distribution law which is defined on 
[CT' l'T] is denoted by P, . ~T denotes the r-algebra 
of Borel sets of [0, T]. Assume that aj (t, x), i = 1, 2, 
0::::;: t::::;: T, x E CT , are ~T ':>9 l'T measurable and that 
aj (t,') is l't-adapted, i. e. a i (t,') is l't -measurable for 
every fixed 0 ::::;: t ::::;: T. 

THEOREM Assume that ~ i (t), i = 1, 2, 0::::;: t ::::;: T < oXl 

are J t -adapted stochastic process with 

t 

';i(t)=,\ai(u'~i)dll+W(t). O:<:;t:<:;T 11) 

o 
then 

II) 

where 

Corollary 1 Assume that ~i (t), 0::::;: t < oXl, i'= 1, 2, are 
stochastic processes with (2), (3) for every T < oXl, then (4) 
is valid with Ds (x) from (5), where T = oXl. 

Corollary 2 Assume that ~i are from the theorem or 
from corollary 1 and denote by Il, {3 the errors of first 
and second kind in the likelihood ratio test with given 
level L, then 

Corollary 3 Assume that ~i are choosen as in the pre­
ceding corollary, then 



In order to investigate the quality of the bounds of the 
errors of first and second kind given above we consider 
an example. 
Assume that a(t), 0::;; t < T is a real measurable function 

T 

with \ a2(t)dt < Xl. Put at (t, x) = a(t), a2(t, x) = 0, then 
o 

t 

~t(t),= \ a(u)du+W(t) and ~2(t)=W(t). Furthermore 
o 

P", ,/ / P-" and 

(
'I' T 1 d~", (W) = exp I' a(t)dW(t) _1 r a2(t)dt 

dI "1 . 2 J 
<I () 

holds Lipster, Shiryayev (1978). The random variable 
dP c 

In Z where Z = ", considered on the probability space 
dP c 

" 
[CT , CT - P""1 is a normally distributed one with mean 

T . T T 

- 1/2 \ a2(t)dt and variance \ a2(t)dt. Put A = I a2(t)dt 

" " u and denote by '/' (x) the distribution function of the stan-
dard normal distribution. Given a level L we get 

Denote by M j the exp('ctation with respect to Pc, 
" 

1\1, exp (illnZ) = M2 Z exp (itlnZ) 

=M 2exp((l+it)lnZ) 

then 

Since In Z is normally distributed with mean - 112 A and 
variance A 

l\T 1 ('xp (wlnZ) = exp 1- tAW + t AW2} 

holds for every complex w. Put w = 1 + it then 

M,exp(itlnZ) = exp lit t A - tAP) 

That means that In Z considered on the probability space 
[CT , CT , P -'1] is normally distributed with mean 112 A 
and variance A. Consequently the error of first kind is 
given by 

ilJ 

We now assume that there is no reason to differ between 
the processes ~l and ~2. That means that the error IX is 
not worse than p and conversely. In such a case we choose 

L so that a ,= p. (6) and (7) show that we have to take 
L = 1. Hence 

(\(A)=P(A)=rp( -i VA) (8) 

Let us now compare the exact value of <X with the bound 
appearing in corollary 2. First of all we observe that 

is deterministic. Therefore 

=exp{-t A) 

In order to compare this bound with the exact value 

(P (-112 1 A) we remark that 

1 1 1 {X2} rp(-x)- -'P(x) = - - exp --
x f:2; x 2 

x -+ 00 

and 

(/)( -~ VA)_IIi_l exp{-lA} A-+oo 
2 V;Vi\ 8 

This asymptotic expression shows that the exact values 
for the errors tend more fast to zero than the bound in 
corollary 2 as A ~ Xl. In the following table some values 
of the upper bound and of the exact error probability 
are collected. 

A 

1 
3 
5 

10 
15 
20 
25 
30 
35 
40 

3. Proofs 

0,8825 
0,6873 
0,5353 
0,2865 
0,1534 
0,0825 
0,0439 
0,0235 
0,0126 
0,0067 

0,3085 
0,1932 
0,1318 
0,0569 
0,0264 
0,0127 
0,0062 
0,0031 
0,0016 
0,0008 

First of all we remark that T < Xl and (2) imply 

such that the stochastic differential equations (3) make 
sense. In view of Lipster, Shiryayev (1978) the relation (2) 

implies P-'i '" P w and the Randon-Nikodym derivative 

dP. 
x· (x) = ----=.!. \XI. x F CT considered as a functional of 

1 dPw 
the Wiener process has the form 

( 
T T ) 1 . . 

Xi(W)=C'xp -'2 )a;(tW)dt+.\ai(t.W)dW(t) 

<I 0 
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Hence 

X~(W)x~-s(W) = exp (_1 ((sa:(t, W)+ (1- s)a~(l, W»)dl 
2 • 

Il 1'" 

T ) + J (sa,(t,W)+(1-s)a2(t,W»)dW(l) 

where 

Zs,t(W)=exp f - t ~ (sa,(u,W)+(I-s)a2(u,W»)2 du l (I 

+ .{ (sa,(u. W)+ (1- s)a2(u, W»)dW(U») 
n 

and 

'''.,(W)~ "P (- +'(1-') i (a,(u. W) - a,(u,W»), dU). 
Suppose now 0 < St < S2 < 1. Then in view of (9) 

"', 1--

XS'(W)XI-S'(W)=Ds2 (W)Z~2 .(W)X s'(W) 
, 2 ".T '2.1 2 

Consequently 

( ) \'XS'XI-S'dl~ lIs p" 1', = , 2 \\' 
. 1 '" 1 ~ '1 • 

1111) 

(II) 

Applying now HOlder's inequality with p =~. q = _S_2_ 
SI S2- S, 

we obtain 
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H is known Lipster, Shiryayev (1978) that Zs" t (W) forms 
a supermartingal with M Z8"t (W) ~ 1. Hence" 

H. (1', .1', )~[MDS2~S'(1: )lS2~'1 
S, ", "2 ')2,T 1,.2 ( 12) 

Consequently the theorem is established, 

In order to prove corollary 1 we denote by p~~ the 
" 

restriction of Pe. tO~n '~n forms an increasing sequence 
'I 

of sub-a-algebras generating£? = a (x(t), 0 ~ t < ao). It 
holds Vajda (1972) 

( ) . (In) (n)) 
Hs 1', .1', = lIm Hs 1', .1', 
.. "1 "'2 n -co . ", "2 

for every 0 < s < 1, IJ}) 

Alternatively 

II·') 

ria, (t,1,) - a, (1./,1)' dt) 

Substituting in (12) 1'", P~2 by p~~1 , p~) and using the 
relation (14) we get corollary 1 as n ->- ,Xl, since the limit 

and the expectation can be changed on account of 0:0;: 

Ds, T ~l. 
In order to prove corollary 2 we notice that 

and therefore by (1) 

The second inequality may be proved analogously. 
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Sl = 1/4, S2 = th. 
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Power Simulation with the Same Random Sequences Under the 

Null Hypothesis and the Alternative 

M. A. .J. vnn MONTFORT anci L. R. VERDOOREN 

1. Introduction 

In studies of the power of a test Monte Carlo techniques 
are used where the calculus to be done for getting the 
exact power is too complicated. The simpliest way, called 
crucie Monte Carlo, consists of getting the fraction realized 
test statistics in the critical region at the alternative hy­
pcthesis (K). In that situation simulated power (n) at the 
null hypothesis (H) is an unbiased estimator of the size 
(x) of the test with a positive variance hased on the hi­
nomial expC'riment. 
Rothery (1932) investigates the power of a new statistic in 
the situation where the power curve of an old statistic is 
known completely, and he deals with reduction of the 
variance of the simulated power by simulating both sta­
tistics using the same sequence of pseudo random num­
bers, and compared the result with crude Monte Carlo. 
Also in his procedure the estimated power at H is an 
unbiased estimator of x with a positive variance. 
In the situation where no control statistic is available 
variance reduction could be gained by using the simulated 
critical value instead of using the known critical value, 
see Andrews et al. (1972, p. 55). Here we give an example 
of the reduction of the mean square error (MSE) by esti­
mating the power in the same sample as in which the 
critical value is estimated and dropping the knowledge 
of the exact critical valuE'. 

2. The MSE of the Estimated Power 

Here we simulate the distribution of the test statistic 
under Hand K simultaneously and use the a-point of the 
empirical distribution function at H as the critical value 
in order to estimate the power (n) at K. The here studied 
test statistic x could be the critical level of a test statistic 
with a strictly monotonically increasing cumulative distri­
bution function (cdf). (Random variates are in bold face; 
their realizations are denoted by the same symbol not 
in bold face; a ~ b means that the cdf of a and bare 
equal.) The critical level is the smallest significance level 
at which H is rejected in favour of K; note that the critical 
level has a uniform distribution at H. 
For a test statistic x could hold 

(.} 
xc::u (I) 

where u is uniformly distributed in (0,1), (1 a positive 
parameter with (-) = 1 at Hand f) > 1 at K. This example 
is chosen because of its transparancy. 
Formula (1) is closely related to the Lehmann alternative. 
A size a test for K results in a left sided critical region 
with critical value a. 
For the power one gets (with y = 1/ (.) 

(2) 

Note that formula (1) is equivalent to 

and to 

1 1 2 - og x c:: fJ· - X2 2 

-log(-logx)c:: -logfJ+g 

(1) 

(4) 

where g stands for the standard double exponential distri­
bution (or Gumbel distribution or type I distribution of 
maxima) with 

P(g:";g)=exp(-exp(-g)). -oo<g<+oo. (5) 

In a simulation with n uniforms on (0,1) we get for the 
crude Monte Carlo with known critical value a: 

nn= #of u's with uB :.,;", 

= # of u's with u:.,; ",I/B = ",,' 

(where if stands for frequency). 
A 

(6) 

So n:rc has a binomial distribution with parameters n 

In this situation :re is an unbiased estimator of JT and 

(7) 

A 

An other estimator :re based on ul>"" un could be ob-
tained in the following way. Sorting the uniforms gives 
ul :::::: ... :::::: u,n' The critical value a is estimated by t. 
with 

We restrict ourselves to combinations of n and a with 
nx integer. 

An estimate n for the power n is given by 

_ (1 

n 7T = # of u(i) :.,; t 

= # of u(i):"; tl' 

= n '" + # of u(i) between t and t;·. (9) 

We now derive the MSE of n. 

Note that for f) = 1 we find n ~ a without random 
fluctuations. 
Note also that (u"n,,+1 , ... , u(n) behaves like an ordered 
sample of n - n a = n (I-a) uniforms on the interval (t, 1), 

so the number of u i values between t and t Y has a 

binomial distribution with parameters n (I-a) and (e -t)/ 
(1-t). Given t formula (9) results in 

E (if [t) = '" + (1 - "') . (t" - t) / (1 - t) . (10) 

In order to get E (:re) we have to integrate formula (10) 

over t. Using the well known fact that t = un «) has a beta­
distribution with density 

f(t)= r(p+q) tp-I(l-t)q-I. O<t<l 
['(pi r(q) 

(11 ) 

13 



with integer valued parameters p and q with 

p=na 

q=n+l-na 

rHq=n+1 

=a+(I_a)_I_ {r(n+l)' r(p+y) _ p}. 
q-l r(n+y).r(p) (12) 

For the bias of n we get with formula (12) 

bias (n) = E(n) - 71 = E(n) - (Xl'. 

The derivation of val' (;;) with formula (9) needs 

_ 1 e'-t ( e-t) var(nlt)=-.n(l-(X).--. 1---
n2 I-t I-t 

and results in 
1 

var(n)= ) var(nlt) f(t)dt 

o 

(l-a)r(n) {r(P+Y) r(p+2y) 
= (q-l)(q-2)r(p) r(n-l+y) - r(n-1+2y) 

(1.1) 

(14) 

_ r(p+1) + r(p+l+ Y)} (15) 

r(n) r(n+ y) 

The MSE of 11' follows by inserting formulae (13) and 
(15) in 

MSE(n)= (bias(nW+ var(n). (16) 

If the efficiency of -; with respect to ;; is defined by 

4. References 
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Eff = MSE(n) 
MSE(n) 

we get with formulae (7), (13) and (15) 

Eff= (Xl'(l-aY)/n 

I bias (nW + var (n) . 
A numerical example with IX = 0.05 gives 

(17) 

the following 
values of the efficiency (Eff.); the right-hand column gives 
1 he rank of the uniform used for the critical value. 

f) 1.1 1.4 3.5 5.0 
(IX =c 0.(5) 

-- ----......-----

power =lXljl-l 0.066 0.118 0.425 0.549 nIX 

n= 20 4.61 1.88 1.02 0.94 1 
40 4.30 1.77 1.04 0.98 2 

100 4.11 1.70 1.06 1.02 5 
20() 4.05 1.68 1.07 1.03 10 
500 4.01 1.66 1.07 1.04 25 

1000 4.00 1.66 1.08 1.04 50 
2000 3.99 1.65 1.08 1.04 100 
5000 4.00 1.65 1.08 1.04 250 

10000 3.99 1.65 1.08 1.04 500 

This table shows that for small deviations from the null 
hypothesis H a lot can be gained by using the same 
random sequences at Hand K including a simulated 
critical value. Only far from H for unrealistically small 
simulation sample sizes a small loss is found. 

3. Concluding Remarks 

In power estimation it seems to pay to replace crude 
Monte Carlo by simulating the power in the same sample 
as in which the critical value is simulated. 
If one is interested in a difference in power, say J/' U-12) -

J/' ((-1 1), the above mentioned method stresses attention to 
the number of uniforms between t 1 1-11 and t1 1-12 with 

t = u (n,/' and leads to similar results. 
If some testprocedures have to be compared then the use 
of only one random sequence and its estimated critical 
values compares these tests at the same critical level, 
being the correct critical level without random fluctuation. 

Robust estimates of location: survey and advances. 
Princeton NJ: Princeton University Press, 1972. 
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Robustness of Two-Sample Tests for Variances 

G ERD NORNBERG 

Abstract: 

12 two sample-test for variances are investigated for ro­
bustness against violations of the assumed normal distri­
bution by means of simulation. The degree of non-nor­
mality is discribed by the parameters skewness (1'1) and 

"-
kurtosis (y~). The real risk of first kind O! and the power 
function (at 3 points) of the 12 tests are determined for 
the sample sizes n = 6, 111, 42 and different pairs of ()'b 

)'~)-values. 

1. Introduction 

Let Xi and X2 be independent random variables with 
2 2 

XI'" N (III> a l ) and X 2 ", N (112, a2 ). 

By means of two independent random samples (XJI , ... , 

Xln and X~I"'" X 2n) with Xlj '" N (/11> ail and 

X?i'" N (/12, a~) we want to test the null-hypothesis 

against 
Ho: Hi = o~ 

HA : Hi + (j; 
A number of test statistics is available for testing varian­
ces: o. g. Bartlett (1937), Cochran (1941), Bnx (1953). First 
investigations of the effect of non normality were made by 
Box (1953), Levene (1960), Overall, Woodward (1974), 

Brown, Forsythe (1974) and Geng, Wang, Miller (1979). 

2. Definition of Robustness 

Definition 1: 
A test T" for given nominal risk of first kind O!, which 
has a real risk of first kind O! for the normal distribution 
is called I'-robust in a class G of distribution if 

max 1",(n,g)-lXl:-:;;s 
gEG 

for given values of O!, n and e. 
The real risk of first kind O! (n, g) depends on the sample 
size n and the distribution gE G. 
In this paper the class G is characterized by functions of 
the first four central moments Ilk = E (x - ,u)k (k = 1, ... ,4) 
of the distributions: 

E(x) =,u, V(x) =,u2 = ,,2. }', = ~~2 and }'2 = ,u~ - 3 
/12 ,u2 

and so we can write G == K (fl, a2, 1'1, 1'2) with skewness 1'1 

and kurtosis 1'2' Since all investigated tests are invariant 
tests with respect tn linear transformations of the obser­
vations, we can limit ourself to the class 

G == K (0,1 , )'1, j'!). 

3. Generation of Random Samples with Given 
Distribution gE G 

Because the investigations of robustness (due to Defini­
tion 1) are made by means of simulation it is necessary 

to generate realizations of the two random samples with 
given first four moments. 
The following three steps are carried out. 

1. Generation nf uniformly distributed random numbers 
[see Herrendorfer (1980)] 

2. Transformation of uniformly distributed random num­
bers to normally distributed ones with mean 0 and 
variance 1 [Ode/Evans (1974)] 

2. Using "Power Transformation" for given 1'1- and I'Tva­
lues [Fleishman (19711)]: 

y = a + bx + cx2 + dx:1 with x'" N (0,1). 

The coefficients a, b, c, d depend on given 1'1- and )'T 

values. 
Robustness of tests comparing two variances is investi­
gated for different sample sizes n (n = 6, 1 II, 42) and also 
different values of 1'1 and y~. 
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Figure 2 

Densities of distributions generated by "Power Transfor­
mation": ---
Density of the standardized normal distribution: - --

For choosing (1'" J'2)-values we investigated the sample 
skewness (gl) and sample kurtosis (g2) of practical charac­
teristics from agriculture and medicine. 
The results are presented in Figure 1. 

The selected (j'h Y2)-values are: 

o o 1 o 

o 1.5 1.5 3.75 

1.5 

3.75 

o 

7 

2 

7 

Figure 2 shows the densities of distributions generated by 
"Power Transformation" for the selected (Y1. Y2)-values. 

4. Description of the Tests 

a) Bartlett-test [Bartlett (1937)1 
Test statistic: 

B= - -.(n-l) In- + In-1 f s; s; } 
C \ S2 S2 

n 

with s~=_1-1 . L'(Xjj-XS 
n- j=l 

and 

2 s; + s; 
s=--

2 

, 1 
C=l+-.(--. 

2n-1) 

(.I.n 

(i=1.2). 



In the special case of testing two variances and for 
equal sample size the Bartlett-test corresponds to the 
two-sided F-test! 

b) Modified Bartlett-test [Box (195:3)1 

Test statistic: 

B + = B . (1 + ~; r 1 

with B from (4.1) 
and 

-3. 

Approximate critical values: X2 (1; 1 - a). 

c) Modified x2-lest [Layard (1Bn) I 

i\ = (n -1) t, (In s; - In s~ : In s~) If 2 + (1- ~) . g; J 

with g'2 from (4.2) 

Approximate critical values: X2 (1; 1 - a). 

d) Cochran-test 

Test statistic: 

max Is;) 
G = --,1_-:-_ 

s~ + s~ 
(i = 1.2) 

(4.2) 

In the special case of testing two variances and for 
equal sample size the Cochran-lest corresponds to the 
tWo-sided F-tesl! 

e) F-lest 

Test statistic: 

Critical values: 

F(n-I.n-I.I-i) 
f) Range-test 

Test statistic: 

max IWil 
i R= --'---

min Iw;\ 
i 

(i=1.2) 

with Wi = max (xij ) - min {x ij } .i = I, ... , 11. 
l .I 

Critical values: H (2. n-1; I-x) 
[Table in Pearson,Hartiey (l966) I 

g) Box-SchelIe-test (also known as Box-test or Box-Ken­
dall-test) [Box (195:3), SchelIe (196:3)] 

The samples are randomly divided in c groups. These 
groups contain m ij (i = 1,2; j ~- I, ... , c) observations 

(i' mij = n). 
j=l 

Let Zl.l = In sr] where S~j is an estimator of "i. 
Test statistic: 

2 

2(c -1) c I (Zi. - zj 
F+ = _--,-__ i =_1 ___ _ 

2 c _ 2 

}; }; (Zij- ZL) 
i~1 j=1 

Approximate critical values: F (I, 2 (c-l), i-a) 

In this study c is choosen to 2 and 3. 

h) Box-Andersen-test [Box/Andersen (1955») 

Test statistic: 

Approximate critical values: 

F(n-1)'(1+ ~;rl; (n-l).(I+ ~;r\ l-i} 
with g2 from (-t.2). 

i) Jackknife-tesl [Miller (1968)] 
n 

_ 1 '" Let xj(j) = -- -:::.., xit 
n -I I~I 

(i=1.2; j=1.. ... n) 

IF j 

and Zij = n . In s; - (n - 1) . In s;(j) 

Test statistic: 

2 

2(n -l)n I (Zi. - i,Y 
.J= 

i=1 

2 n 

I I(Zij-ZS 
i=1 j=1 

Approximate critical values: F (1; 2 (n-1), I-a) 

j) Levene-z-test (also known as Pfanzagl-test) 
[Levene (1960)] 

Let Yij= IXij-Xi.1 i=1.2; j=1. .... n 

Test statistic: 

SQR 
with MQA = SQA and MQR = ---

2(n -1) 
2 , 

'Q' I E 2 Y .. S A=-' y.--
n. 1. 2n 

1=1 

Approximale critical values: F (1, 2 (n-l), I-x) 

k) Levene-s-test 

Let Yij = ,xij ' X i · 2 

Then the test is carried out in the same way as the 
Lcvcnc-z-tcst. 

5. Results and Discussion 

10,000 computer runs were carried out to evaluate the 

real risks of first kind x and also the power of the con­
sidered tests for each sample size n (6, 18, 42) and each 
selected pair (Ylo Y2) for nominal risks of first kind a = 
0.01; 0.05; 0.10. The power is evaluated for' three values 
A = 1.44; 1.96; 3.24 with 

The number of 10,000 computer runs is a result of planning 
the simUlation experiment for the estimation of a probabi­
lity in case of robustness with f: = 0.2 . 0( [see Herrendorfer 
(1980)]. 
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For IX = 0.01 and € = 0.2 . IX the number of 10,000 computer 
runs is not large enough therefore the results show only 
the tendencies in the behaviour of the considered tests. 

"'-
The simulation results (0: (n, g» are summarized in table 2. 

For c = 0.2 . 0:, that means 20-o,'u-robustness (e. g. for 0: =.0 

"'-
5 u.'u, 0: can vary between 4 %-6 %), the Range- and F-test 
(and with that, the Bartlett- and Cochran-test in the case 
of comparing two variances and equal sample size) are 

"'-
not robust. The real risk of first kind 0: of these tests 
increases with increasing )12 . For )12 = 7, n = 42 the real 
risk is close to 30 % for a nominal risk 0: = 5 0:,u. The 
skewness )II seems to have only a little influence on the 
real risk. 
The Jackknife-test isn't 20-%-robust too but the real 

nsk ~' is closer to the nominal than that of the F-test. 
Furthermore the skewness )11 seems to have also an in­
lIuence. 
The Box-ScheJ'fe-tests (c = 2 01' 3) are quite robust for 

"'-
all sample sizes n. The real risk 0: is very close to the 
nominal risk 0: and in most cases conservativ. 
The Levene-z-test is robust for n = 42 and )11 = O. If )11 + 0, 
the test isn't 20-% -robust, this fact was pointed out by 
Miller (1968) . The same behaviour we find for the modi­
fied X2-test. The Levene-s-test is quite robust for all in­
vestigated distributions and sample sizes n = 18 and 42. 
A similar behaviour shows the Box-Andersen-test which 
is only in the case n = 6 nonrobust, but in all other cases 
the real risk is close to the nominal. 
The modified Bartlett-test is 20-'%-robust for n = 18 and 
n = 42 for all investigated distributions. 
Summarizing the results we can conclude : 

1. For small sample size n (n = 6) only the Box-Scheffe­
test (c = 2 01' 3) is 20 % robust for all investigated 
distributions. 

2. For n = 18, and 42 the following four test are 201)/" 
robust: 

modified Bartlett-test 
Box -Scheffe-test 
Box -And ersen -test 
Levene-s-test 

/'. 
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Now we investigate the power of these four robust test: 
Figure 3 contains the power of the robust tests in depen­
dence on some ()II. )l2)-values for n = 42 and 0: = 0.05. 
The corresponding simulation results are summarized in 
table 3. 
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2 3 

Power[unctions of the robust tests in dependence on ()II' )12) 

for n = 42 and IX = 0.05 

These figures show that the power of the robust tests 
decrease if )12 increase. The power of the Box-Andersen­
test and the Levene-s-test are nearly the same so that 
only one line is drawn for both power curves. Further­
more we can see that the power of the modified Bartlett­
test is slightly superior in all cases. 
Only the Box-Scheffe-test (c = 3) is less powerful in all 
cases. To get an impression of the loss of power for in­
creasing )12 the power of the F-test under nor mal di­
stribution is considered in these figures too. 



Figure 4 gives an impression of the power of the robust 
tests if the underlying distribution is the normal one. We 
can find that in this case the power of the modified Bart­
lett-test, Box-Andersen-test and Levene-s-test are similar 
to that uf the F-tesl. 
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Powerfunciions of the robust tests under normal distributiun 
for n = 42 and IX = 0.05 

Summarizing the above results we recommend for testing 
equality of two variances if the underlying distributions 
are similar to thuse investigated in this study the 

modified Bartlett-test 
Box -Andersen-test 
Levene-s-test 

6. Planning of Experiments 

The loss of power of the robust tests fur increasing )':, 
can be adjusted if we use greater sample sizes as for the 
F-test under normal distribution. Therefore we derived 

Table 2 

a methud of planning of experiments for the Bux-Ander­
sen-test. This method is investigated by means of simu­
lation. It is well known that for a given risk of first kind 
IX and risk of second kind ~II and a given 

the sample size n' fur the F-test under n u r 111 a I distri­
butiun is a solution of the equation 

( , , 1') (" ) A = F n - 1. n - 1. 1 -"2 ,F n - 1, n - 1. 1 - flo . (h.l) 

Now the sample size n for the 13ox-Andersen-test is 
evaluated from n': 

/l = (n' - J) (I + )~2) + I (('.2 ) 

with n' frum (6.1) for given IX, Ill) and l. 
Table 1 shows the theoretical power (I-flu) and the empi-

/, 

rical power (l-P) for IX = 0.05 and n = 42 using (6.1) and 
(6.2). 

Table 1 

Comparison of the theoretical and empirical power 
(IO,OOO computer runs) of the Box-Andersen-test using 
(6.1) and (6.2) 

)':! 0 

l 1.44 1.96 3.24 

l:}u 0.21 0.57 0.96 

I-fl 0.20 0.54 0.95 

), 1. 44 1.96 3.24 

0.07 0.15 0.39 

0.09 0.21 0.52 

1.44 

0.13 

0.14 

r·, C" 1.5 )'2 '" 3.75 

1.96 3.24 1.44 1.96 3.24 

0.35 0.79 0.09 0.23 0.57 

0.39 0.81 0.11 0.28 0.66 

In practice we don't know the kurtosis )'l of the dish'i­
bution of a characteristic. Therefore we have to use an 
estimate g:, uf )':! in formula (6.2) for planning uf expcri­
mcnt for the Box-Andersen-test. 
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Results of simulation for tests comparing two variances ct (II, g) . 100 in dependence on D,ct and (Ylo Y2) 

n=6 1'1 = U; Y:l = 0 Y1 = 0; YJ = 1.5 1'1 = 1.0; t":l = 1.5 )'1 = 0; Y:, = 3.75 1'1 = 1.5; )':l = 3.75 

-~-~____ IX' 100 10 5 10 5 10 5 10 5 10 5 
Test -~.-. 

mod. Bartlett- 1:3.88 6.66 14.32 6.25 14.62 7.07 15.511 7.59 111.03 9.75 
mod. 

., 16.30 9.11 18.42 10.01 18.14 10.28 21.65 12.86 23.23 13.97 X"-
F- 10.60 5.28 14.85 8.06 14.19 8.03 19.75 12.37 20.60 12.63 
Range- 10.44 5.22 14.96 8.36 13.67 7.64 20.04 12.65 19.62 11.94 
BoxjScheffe 2- 10.42 5.55 9.34 4.52 9.30 4.42 9.78 5.05 9.65 4.68 
Box/Scheffe 3- 9.41 4.58 9.12 4.49 8.61 4.30 9.()4 4.47 9.67 4.59 
Box! Andersen- I:U8 5.72 11.57 4.89 12.31l 6.05 11.67 5.91 15.01 8.07 
Jackknife- 9.03 5.05 9.90 5.35 9.97 5.45 12.43 6.84 12.36 7.10 
Levene-z- 13.60 7.33 13.79 6.85 15.33 8.52 14.81 7.62 19.72 11.61 
Levene-s- 12.15 5.29 11.14 4.18 12.12 5.43 10.61 4.87 14.20 7.00 
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Table 2: continuation 
.. - -------- -----_._------_.-

n = 18 YI =0; Y2=0 YI =0; Y2 = 1.5 YI = 1.0; Y2 = 1.5 YI =0; Y2 = 3.75 {'I = 1.5; Y2 = 3.75 
------- - - ---------------------- ------ ---------------------------- . 

--------------------------Test 
ex . 100 10 5 10 5 10 5 10 5 10 5 
--------- ---

mod. BartleU- 11.56 5.53 11.41 5.37 12.32 5.90 12.53 5.86 13.60 7.01 
mod. 

., 
12.27 6.31 12.74 6.49 13.87 6.99 14.59 7.58 15.42 8.77 X"-

F- 10.39 5.30 18.04 10.94 17.86 10.54 26.12 18.Q7 26.37 17.99 
Box/Scheffe-2- 9.93 4.99 9.35 4.61 9.39 4.80 10.10 4.92 9.66 4.69 
Box/Scheffe-3- 10.23 5.16 9.63 4.87 9.47 4.58 10.71 5.09 9.62 4.67 
Boxj Andersen- 11.07 5.14 10.22 4.77 11.35 5.30 10.95 5.00 12.05 6.30 
Jackknife- 9.86 5.31 11.59 6.36 12.60 6.66 14.12 8.21 14.54 8.54 
Levene-z- 11.45 5.63 11.08 5.51 14.34 7.64 11.94 6.11 17.30 10.23 
Levene-s- 11.13 4.95 10.06 4.34 11.14 5.03 10.34 4.32 11.59 5.66 

-- --- ------- ---- --------------. --'-- - ---- ----- -- -- -------

Table 2: continuation 
---------- -- --- ---,-,--- ._- ---- ,._-------- - --- ------ --- --- ,-------.. --------_. -----

n ccc 42 YI = 0; Y2=0 )'1 = 0; Y2 = 1.5 )'1 = 1.0; {'~ = 1.5 YI =0; Y2 = 3.75 
--- -__ ex· 100 10 5 10 5 10 5 10 5 

Test -------------- ----- ,-------_._----,------- -.- - - --- ... - ------------ .'. --,----------

mod. Bartlett- 10.82 5.48 10.66 5.79 11.77 5.95 10.76 5.23 
mod. X2- 11.15 5.74 11.30 5.36 12.43 6.53 11.60 5.93 
F- 10.21 5.19 19.56 12.52 20.03 12.54 28.89 20.63 
Box/Scheffe 2- 10.44 5.64 9.83 4.88 10.09 5.42 10.13 5.02 
Box/Scheffe 3- 9.85 5.32 9.84 4.87 10.21 4.97 10.16 5.10 
Box/ Andersen- 10.61 5.29 10.78 4.49 11.40 5.68 9.92 4.84 
Jackknife- 10.00 5.39 11.14 5.97 12.17 6.88 12.61 7.27 
Levene-z- 10.83 5.55 10.24 5.06 14.51 8.14 11.06 5.58 
Levene-s- 10.68 5.25 10.10 4.22 11.27 5.49 9.70 4.41 

Table 2: continuation 
-- --------~---.--.---- ._--_._._-, .... 
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n = 42 )'1 = 1.5; Y2 = 3.75 YI = 0; Y2 = 7.0 YI = 2.0; Y~ = 7.0 
------ ------------- ___ " _________ H ___ ". _________________ ------ ----- --------

------------------ ex . 100 10 5 10 5 10 5 
Test ._--_._._. 

mod. Bartlett- 12.73 6.08 10.86 5.03 12.50 5.98 
mod X2- 13.39 6.79 12.12 5.93 13.57 6.89 
F- 30.20 22.23 37.00 28.97 37.94 29.95 
Box/Scheffe 2- 9.75 4.79 9.64 4.42 10.12 4.81 
Box/Scheffe 3- 9.25 4.59 9.53 4.58 10.04 4.98 
Box/Andersen - 11.43 5.58 9.76 4.28 11.32 5.23 
Jackknife 14.35 7.94 13.87 7.82 14.90 8.75 
Levene-z- 17.41 10.32 11.26 5.41 19.70 12.33 
Levene-s- 11.21 5.20 9.17 3.74 10.90 4.75 

------- - -- ____ u.". ________ 

Table 3 
/'... 

Results of simulation for the power function of the robust test (l-fJ (n, g, 1)) . 100 in dependence 
on n), ex, and Yt. Y2 

l 1.44 1.96 :1.24 
-----~-

Test 
ex . 100 10 5 10 5 10 5 

.----~ -----------------------.----------
n = 18; YI = 0, Y2 = 0 
mod. Bartlett- 19.92 10.92 37.99 24.57 74.01 59.02 
Box 'Scheffe-3- 15.01 8.00 26.49 15.65 54.36 37.13 
Box/Andersen- 19.13 10.36 :~6.53 2:U:3 72.21 56.48 
Levene-s- 19.14 10.06 36.48 22.15 71.71 54.30 

n = 18; YI = 0, Y~ = 1.5 
mod. Bartlett- 18.74 !l.98 31.29 llJ.55 62.13 46.29 
Box,Scheffe-3- 14.59 7.74 23.49 13.28 45.23 29.19 
Box/ Andersen- 17.16 !l.00 29.18 17.67 58.82 42.22 
Levene-s- 16.92 8.28 28.54 15.9!l 57.40 38.06 

n=18; YI = 1.0, y~=1.5 
mod. Bartlett- 19.86 11.01 33.31 21.03 64.03 48.73 
Box/Scheffe-3- 14.37 7.67 22.84 13.15 45.81 30.46 
Box.' Andersen- 18.21 10.23 31.24 19.32 60.61 45.08 
Levene-s- 17.97 9.54 30.45 17.73 59.00 41.50 

n=18; y,=O, t'3=3.75 
mod. Bartlett- 16.66 8.47 27.87 16.61 54.08 38.23 
Box Scheffe-3- 12.78 6.72 20.39 11.69 39.49 24.91 
BOx/ Andersen- 14.45 7.23 24.88 14.10 49.17 33.65 
Levene-s- 13.78 6.13 23.79 11.95 46.65 28.86 

- --- -- - -~--------- ----------_._-



Table 3: continuation 
---~----~---

A 1.44 1.96 3.24 

Test 
IX • 100 10 5 10 5 10 5 

----.------- . ---

n = 18; Yl = 1.5, Y~ = 3.75 
mod. Bartlett UJ.:W 10.87 28.95 18.47 55.54 40.85 
BoxjScheffe-3- 12.99 6.70 19.72 10.81 38.44 24.32 
Box/ Andersen- 17.18 9.48 26.13 16.21 51.06 36.67 
Levene-s- 16.44 8.31 24.84 14.42 48.77 31.98 

:1 = 42; y, = 0, Y~ = 0 
mod. Bartlett- :H.:W 20.17 68.19 54.11 97.65 94.54 
Box Bcheffe-3- 24.04 13.44 51.15 34.66 88.56 75.28 
Box/Andersen- 30.84 19.78 67.69 53,46 97.48 94.13 
Levene-s- 30.83 19.58 67.73 52.88 97.46 93.80 

n = 42; Yl = 0, )':! = 1.5 
mod. Bartlett- 24.48 14.70 54.55 40.23 90.31 82.19 
Box/Scheffe-:!- l!l.l!l 10.70 41.26 26.07 77.03 59.73 
Box-Anderse.n- 23.52 13.99 53.26 38.79 89.57 80.77 
Levene-s- 23.32 13.45 52.90 37.52 89.27 79.09 

n = 42; Yl = 1.0, }':! = 1.5 
mod. Bartlett 26.33 16.64 53.82 ;~9.93 89.86 81.64 
Box!Scheffe-3- 19.72 10.55 :~9.25 24.71 76.84 59.75 
Eox-Andersen- 25.37 15.99 52.75 38.46 89.04 80.05 
Levene-s- 25.25 15.40 52.23 37.40 88.68 78.59 

Table 3: continuation 
--.~------ --- ------------'"' ----~~~ 

A 1.44 1.96 3.24 

Test 
IX • 100 10 5 10 5 10 5 

-------------~-

n=42; t"1=O, Y2=3.75 

mod. Bartlett- 2l.29 12.30 43.67 29.99 80.48 38.99 
Box/Scheffe-3- 16.88 8.93 32.90 20.51 65.59 46.75 
Box/ Andersen- 20.32 1l.29 41.76 27.96 78.41 65.56 
Levene-s- 19.66 10.52 41.00 26.16 77.50 62.57 

n = 42; )'1 = 1.5, y:! = 3.75 
mod. Bartlett- 21.91 12.63 43.58 30.08 79.40 67.83 
Box/Scheffe-3- 16.45 8.77 32.05 19.47 64.11 46.01 
Box/Andersen - 20.59 11.66 41.67 28.14 77.08 65.22 
Levene-s- 20.18 10.79 40.88 26.47 76.14 62.17 

n = 42; )'1 = 0, t':! = 7.0 
mod. BartleU- 18.78 10.22 36.94 23.65 70.25 56.26 
BoxjScheffe-3- 15.26 8.08 28.14 16.66 56.11 38.20 
Box/Andersen - 17.08 8.90 34.04 21.20 66.78 52.03 
Levene-s- HD4 7.68 :n72 18.8f) 64.68 47.49 

n = 42; )', = 2.0, )'2 = 7.0 
mod. Bartlett- 19.51 11.19 36.02 23,71 69,43 55.29 
Box/Scheffe-3- 15.16 8.1:3 26.35 15.49 53.37 36.42 
Box/ Andersen- 17.63 10.19 32.92 21.76 65.77 51.09 
Leve.ne-s- 17.06 9.09 31.89 19.64 63.75 47.00 

-~--------
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The Influence of Different Shapes of Distributions with the Same 

First four Moments on Robustness 

GERD NORNBERG and DIETER RASCH 

In robustness research the robustness of a statistical pro­
cedure against non-normality often is investigated for 
distributions with given skewness )'1 and kurtosis )'~. But 
we know that the shape of a density function can vary 
even if the first four moments are fixed. The question 
is whether such variation may have an influence on the 
robustness statements. 

Six distributions with fl = 0, (J~ = 1, )'1 ~ 1.5 and I'~ ~ 3.75 
are considered: 

(i) truncated standard normal (truncation points Uu = 
2.85; uo = 4.71) 

(ii) Power-transformed normal with 
b= 0.865886203523, c = 0.221027621012, 
d = 0.027220699158 

(iii) log-normal (a~ = 0.1786671141) 
(iv) CQ (1, AI) with At = 2.426 
(v) CQ (2, A~) with A~= 1.579 

(vi) CQ (3, A;l) with A;l = 0.5 

These distributions belong to three shape-types. Type I 
((i), (iv), (v)) in figure 1, type II ((ii), (iii)) in figure 2 

and type III «vi)) in figure 3. We investigated the ro­
bustness of the six distributions and found different power 
functions. 

Table 1 shows the values of the empirical power function 
due to p, = 0 (Ho) and I)' '=;= d (H A) for four «(X, p)-combi­
nations and d = 0.6; d = 1.0 and d= 1.6. 

We find that the distributions of type I and II respectively 
show different behaviour in empirical (X- and Ii-values. 

Table 1 

Figure 1 

Densities of distributions of typ I 
(i): -----
(iv): - . -.-.-
(v) : 

Empirical values «(X . 100) of (X(f,) of the sequential t-test (test 1 in the paper of Rasch) 

I II III 
(iv) (v) (i i) (iii) (vi) 

d,= 0.6 5 10 10.38 10.11 9.6 7.67 7.32 9.2 
5 20 10.41 10.06 9.7 7.57 7.43 9.2 

10 20 15.91 15.68 15.1 12.63 11.99 14.6 
10 50 15.94 16.39 16.0 13.70 12.86 15.5 

d= 1.0 5 10 11.06 11.13 10.7 7.93 7.09 10.0 
5 20 11.14 10.99 10.7 8.06 7.09 9.9 

10 20 16.31 16.31 16.1 12.90 11.56 15.1 
10 50 17.94 17.20 17.1 14.69 13.45 16.8 

d = 1.6 5 10 10.76 11.67 10.5 7.73 6.75 9.2 
5 20 11.01 11.72 10.6 8.14 6.97 9.4 

10 20 15.58 16.50 14.8 12.22 11.32 13.6 
10 50 19.55 19.98 18.9 16.06 15.16 17.4 
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0, 1 

Figure 2 

Densities of distributions of typ II 
(ii): -- ---
(iii) : 

The distribution of type III seems to have an intermediate 
behaviour. 
The investigations of tests for comparing two variances 
(see paper by Ntirnberg) for the distributions of type I 
«i), (iv» and type II «ii), (iii» led nearly to the same 
results for these distributions (see table 2) . 

So we conclude that the deviations of moments higher 
than the fourth for some procedures may have an influ­
ence on robustness properties and may have no influence 
for other procedures. 
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Figure 3 

Densities of distribution of typ III 
(vi): ----

Table 2 
/, 

Empirical values (0: • 100) of 0: of the robust two sample 
test of variances for different distributions with f'1 "'" 1.5; 
f'2 "'" 3.75, for n = 42, and 0: ,= 0.05 

~Typel Type II 
test (i) (i v) (ii) (ii i) 

Box-Andersen- 5.94 5.79 5.58 5.25 
mod. Bartlett- 6.49 6.29 6.08 5.71 
Levene-s- 5.51 5.40 5.20 4.90 
Box-Scheffe-3- 5.24 5.12 4.59 5.29 
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Robust Bayes Regression Estimation Under Weak Prior Knowledge 

.rO'RG EN PILZ 

Abstract 

We are concerned with robustifying the linear Bayes 
regression estimator to guard against incorrect specifi­
cation of the error covariance matrix and of the first and 
second moments of the regression parameter. In particular, 
we derive a minimax Bayes estimator in case that the 
prior expected parameter value may vary in some subset 
Q of the parameter space and only upper bounds of the 
covariance matrices of the error and prior distribution 
are known. Moreover, we show that the resulting estima­
tor has a smaller risk than the least squares estimator in 
some region around the centre of Q. 

1. Introduction 

In the present article we deal with Bayes regression 
estimation in case of weak and incomplete prior infor­
mation. Usual conjugate Bayes estimators require exact 
assumptions on the type of the error and prior distribu­
tion. With qradratic loss structure, restricting considera­
tion to linear estimators allows the analysis to be carried 
out in terms of the first two moments of these distribu­
tions. The computation of the linear Bayes estimator but 
still requires exact knowledge of the moments. 
We consider the case that we have only approximate 
prior knowledge of the first and second moments and 
construct a minimax Bayes estimator. This leads to a 
robustification of the Bayes estimator in the sense of a 
minimization of the maximum possible Bayes risk which 
can occur in case of a misspecification of the sampling 
and prior distribution. 
The minimax Bayes compromise criterion was used, 
among others, by Hodges and Lehmann (1952), Bunke 
(1964), Solomon (1972) and in the context of regression 
parameter estimation by Wind (1973), Watson (1974) and 
Pilz (1981). Solomon (1972) constructed a minimax linear 
Bayes estimator for a multivariate location parameter in 
case that its prior expected value is only known to belong 
to a prespecified rectangular solid, the sampling and prior 
covariances were but assumed to be known exactly. 
Chamberlain and Leamer (1976) considered the case of 
an uncertain prior covariance matrix and obtained regions 
where the linear Bayes estimator is constrained to lie 
when the prior covariance matrix may vary in some sub-, 
class of possible covariance matrices. Leamer (1982) con­
structed similar regions for the case that only upper and 
lower bounds for the prior covariance matrix (in the usual 
semiordering sense for positive semidefinite matrices) are 
known. 
Another important direction in the development of robust 
Bayesian alternatives to classical minimax and least 
squares estimators roots in the construction of Bayesian 
Stein-type estimators as considered in Berger (1980), 
(1982) . 
The intent of our analysis is at least three-fold. First, 
we wish to incorporate prior knowledge in a flexible and 
realistic way. Secondly. we havE' to guard against the 

effects of a misspecification of the prior contents needed 
for the analysis. Thirdly, we aim at an improvement in 
efficiency (risk) over the standard least squares estimator 
in some parameter subregion of interest. The minimax 
Bayes estimator developed in the sequel meets these 
requirements satisfactorily. 

2. The Model 

In the following let denote Rr the r-dimensional Eucli­
dean space, ':mnXr the set of real matrices of type n X r, 
em? and:m~ the sets of positive definite and positive 
semidefinite matrices of order 1', respectively. If A, B E 

> > 9J?;:- then by A::S;: B we mean that B - A E :m;:- , A < B 

means that B - A E em? and II x II ~ is shorthand for 

the quadratic form xT Ax with xERr . 
We consider the regression model 

Y =XG+e, Ee=O (1) 

where Y is the n X 1 vector of random observations, 
X (emnxr is the design matrix, A = (Alo ... ,Gr)T is the 
vector of unknown regression parameters and e is the 
n X 1 vector of random errors having expectation zero. 
We will make no further distributional assumptions on 
the error vector e but only assume knowledge of an 

upper bound 1:0 E 9J?? for the covariance matrix, i. e. the 
error distribution may be any member of the class 

(2) 

Suppose that we have prior knowledge about the regres­
sion parameters which can be represented by any prior 
distribution from the class 

'})(-)=\P(-): ,u:=EGeQ. rp:=CovG~rpo) (3) 

where Q is some subset of Rr and <Po is an r X r posi­
tive definite matrix which plays the role of an upper 
bound for the prior covariance matrix of 8. 

Assumption 1: 

Let be Q eRr compact, convex and symmetric about 

some centre point /ho ERr. 
In particular, we will consider the case in which Q is 
either an ellipsoid 

(4) 

. ( )T E R r d "h " with centre pomt /ho = /hOI,.'" /hor an s ape 

matrix L1 E :m~ or in which Q is a rectangular solid 

Q2=(,ueRr: lf1i-f1od~mi; i=1. .... r} (5) 

with edges of prespecified lengths 2mi ~ 0 (i = 1, ... , r). 
The sampling and prior information will be assumed to 
be stochastically independent (which is a standard as­
sumption in Bayesian statistical inference). 
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Assumption 2: 
The joint distribution of (19, e) is given by 

Pe,e= Pe®Pee'P: = 'Pe®'Pe· 

Let D be the class of all estimators of @ . The goodness 
A 

of an estimator @ E D will be evaluated by a quadratic 
loss function 

(6) 

A "-

Then, for 19 = 19 (Y) E D, the Bayes risk is given by 

e(P(,),e; e) = E(-)EYif) lie -e(Y)II~. (7) 

A 

We wish to find an estimator @MB which minimizes the 
maximum possible Bayes risk over all distributions from 

A 

~ = ~ e ® ~e' Any estimator 19MB which attains this 
minimum, i. e. for which it holds 

sup e(p(~,e;eMB)= lnf sup e(P(,),e;e) (S) 

p(,),eE'P f1ED Pe.eE'P 

will be called a minimax Bayes estimator w. r. t. ~. 
If we confine ourselves to the class of linear estimators 

DJ={eeD: e=ZY+z, Ze:JJlrxn ' zeRr} 

then the Bayes risk only depends on the first two moments 
of '~fI and ~ e' the type of these distributions does not 
play any role. If the moments /J. ,= E e, <P = Cov 19 and 
1: = Cove were known exactly then we could use the 
linear Bayes estimator which takes the form 

(9) 

(see e. g. Hartigan (1969». If we have, however, only 
approximate knowledge of these moments as indicated 
by the above classes CPe and ~e t.hen it will be shown 
in section 4 that the minimax Bayes estimator in Dj has 

A 

a similar structure as eB . 

Before proceeding with the general problem, let us con­
sider first the special case in which the prior expectation 
/J. is known precisely to have the value /J.o so that Q 

reduces to Q = {l'D}. 

Theorem 1: 

The estimator e~B = (XT ~f/ X + </'i/)-l (XT .1:'(/ Y + </,;;1,1/0) 
is minimax Bayes in D w. r. t. ~o = {P e,e E ~: E 19 = ,liD}. 

Note that the minimax Bayes optimality of e~B is not 
restricted to the class of linear estimators but holds under 

"-
aU estimators e E D. This result is proved in Pilz (1983, 
section 6.2) for the special case in which the upper bound 

1:0 has the form Eo =(102Jn with some (102 ) 0, for arbi­

trary Eo E Wli; the proof can proceed in the same way. 
The proof essentially makes use of monotony relations 

AO 
between distribution functions and of the fact that (-)MB 
is Bayesian in D with respect to the normal distributions 

P~= N(/J.o, <Po), P~ = N(O, Eo) which are least favour­
able distributions within ~. 
Theorem 1 states that in case of known prior expectation 
the minimax Bayes estimator is simply the linear Bayes 
estimator with the unknown covariance matrices replaced 
by its upper bounds. 

3. Reduction of the Problem 

Now we deal with the search for a minimax Bayes esti­
mator in Dl w. r. t. ~ = 1)1'1 ® 1)e when there is uncer­
tainty about /J. and Q is no longer a single-element sub­
set. 
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Lemma 1: 
"'-

Let be P A,e E1). Then 19 = Zy + z E Dl has Bayes risk 

e(p(,),e; e) = tr U[ZEzT + ZolPzn + I/zo,u - zl/~ 

where Zo=Ir-ZX. 

Proof: 

e(PA.,,;e) = EA.e I/e-Z(Xe+e) -zl/~=EA.e/izoe-(Ze+z)I/~ 

= EA,e{eTzoTuzoe- 2eT Z;U(Ze+z)+ I/Ze +zl/~) 

= tr Z;UZo (IP+ ,u,uT) - 2,t?Z; Uz 

+ tr ZTUZE+zTUz 

= tr UZEZ T + tr UZoIPZ; + I/ Zo,u - zl/~. 

Thus, the search for a minimax Bayes estimator in DJ 
leads us to the problem of minimizing 

II~~.~' {tr u[ ZEZ T + ZolPZ~rl + I/zo,u-zl/~l 
over all Z E Wlrxn and z ERr. 

Lemma 2: 

sup e(P('i,e;ZY +z)= trU[ZEoZT +ZolPoZr] 
Pe,e E 'P 

+ suPl/zo,u-zi/~. 
IIEQ 

This is clear since with E::;: Eo and </'0 ~ </'0 it follows 
that 

tr U[ ZEZT +ZoIPZJ] ~ tr U[Zl'oZT + ZolPoz:r]. 

Lemma 3: 

For every Z E ~(rxn and z E Rr it holds 

sup I/Zo,u - zl/~ ~ sup I/zo,u - Zo,uol/~. 
I'EQ ,uEQ 

Proof: 

Writing z ,= ZO/J.o - g with arbitrary g E Rr it follows 

from the symmetry of Q: = {Ii E Rr:jt = /J. -/J.o, ,u E Q} 
about the origin (due to Assumption 1) that 

~ sup IIZo.ull~ = sup IIZo(,u - ,uo)II~. 
,UEQ ,uEQ 

In view of lemma 3, a minimax Bayes estimator is deter­
mined by a matrix Z which minimizes 

sup e(P(.i.e;e) = sup fz(u) 
PA,eE'P /-IEQ 

where 

fz(,u) = tr u[ ZEoZ T + ZolPoZ;] + IIZo(,u - ,uo)/1~ (10) 

and Zo = Ir - ZX as before. However, we cannot obtain 
an analytical expression for this extremum. To solve the 
problem, we use a minimax theorem known from game 
theory and which, after an additional integration, permits 
us to perform the minimization over Z first. This mini­
mization then can be done analytically. 

Lemma 4: 

Let be Q a compact Hausdorff space, F a class of real­

valued and continuous functions on Q and F the convex 
hull of F. Then it holds 

int sup feu) = sup inf ( f(,u) q(d,tl) 
fEF ,UEQ qEQ* fEF ~ 



where Q* is the set of all probability measures defined 
on the a-algebra of the Borel subsets of Q. 
This result is due to Peck and Dulmage (1957). 

Now, with our set Q C Rf satisfying Assumption 1, we 
define for every probability measure q E Q* the matrix 

Cq = ~. eu - flo) (fl- flo) T q(dfl) . 

Q 

Then, with fz from (10) we obtain 

~. fz(fl)q(d,u) = trUZl'ozT+truZo(lf>o+Cq)Z~ 
Q 

and Lemma 4 reads 

inf sup fz(fl) = sup inf \ fzCu) q(d,u). 
ZE:!Jlrxn ,llEQ qEQ' ZE:!Jlrxn Q 

since F = {fz : Z E ~)?rxn} is convex. 

4. The Optimal Estimator 

(11) 

(12) 

( 13) 

With the preliminary considerations of section 3 we can 
now prove our main result. 

Theorem 2: 

With quadratic loss and Q according to assumption 1, 

where Co = Cqo 

and qo=al'g sup tru(xT..r;'X+(lf>o+cqr'f' 
qEQ' 

is the unique minimax Bayes estimator in DI w. r. t. cpo 
A 

The minimax Bayes risk of AMB is given by 

Proof: 

To minimize the term on the right hand side of (13), write 

Z= [xT..r;;-'X+(lf>o+cqrT'xT..r;;-'+G 

with arbitrary G E 'mf,<:n . Observing that Zo = If - ZX, 
we obtain 

Zl'oZT +Zo(lf>o+Cq)Z~ = [XT l'~'X + (If> 0 + cqtr 
+GX(lf>o+Cq)XTGT +Gl'oGT. 

From this it follows with (12) that 

.1 fz(u)q(d,u) ~ tl' U(XT E';-'X + (If> 0 + Cqrr ' 
Q . 

for any Z E 'mr><n since tr U(GX(tl'o +- Cql XT GT + 
G..roGT l ~ O. Thereby, equality holds if and only if G = 0 
which implies that 

sup, inf I fz(,u)q(d,u} = sup tru(xTE;'X+(lf>o+CqrT~ 
qEQ ZE:!Jlrxn Q qEQ' 

Finally, the existence of a measure qo and thus of a 
matrix Co maximizing the trace functional is guaranteed 
by the fact that this functional is continuous and convex 

over the compact and convex set :n = {Bq E 'm;: : Bq = 

XT EO-IX +('1'0 + Cq)-t, q E Q*} (see Lemma 5). The re­
sult then follows from equations (12) and (13). 

Obviously, AMB coincides with the estimator A~.1B given 
in Theorem 1 if we have no doubts that fl = E A is cor­
rectly specified by flo, i. e. if Q reduces to Q = {IIO}. In 

this case we have Cq == Co = 0 and '(;MB is precisely the 

linear Bayes estimator w. r. t. any prior P A such that 
E e =- flo and Cov (0') = </'0 Otherwise, if we are not sure 
about the correctness of flO and so Q has cardinality 
card Q > 1, then the minimax Bayes estimator is Bayesian 
(in DIl w. r. t. any prior distribution having moments 

E@=,uo and Cov@=lf>o+Co. 

This means that minimax Bayes estimation w. r. t. ,cp is 
equivaltmt to Bayes estimation with an enlarged prior 
covariance matrix, the enlargement Co being due to un­
certainty about the first order moment E e. If our prior 
knowledge becomes more and more diffuse, which means 
increasing size of Q, then (<1>0 + Co)-1 approaches the ma-

trix of 'Zeroes and in the limiting case Q = Rf we have 
A 

coincidence of (-)MB with the least squares estimator 

A~s = (Xl' ~;;-1 X)-lXT~;;-l Y taken according to the lar­

gest possible error covariance matrix Eo. 

5. Appr9ximate and Particular Solutions 

Lemma 4 and Theorem 2 from above accomplish the re­
duction of the problem of finding a minimax Bayes esti­
mator w. r. t. "p to the maximization of the functional 

(14) 

over the set of all matrices Bq generated by the proba­

bility measures q E Q*. In general, this maximization will 

have to proceed numerically, an explicit solution for a 
special case and rough approximations of the optimal 
matrix C) will be given below. 

Lemma 5: 

(i)en,= {Bq : q E Q*} is a compact and convex subset 

of~;:. 
(ii) T(·) is a continuous and convex functional on 'Q3. 

Proof: 

(i) First, observe that the matrices Cq are positive semi­
definite, f(lr it holds aTCq a= JQ (aT fl-a T /10)2 q(dfl) 20 

for any vEctor a E Rf and any q E Q*. From this it is 
clear that the matrices Bq are positive definite since 

XT ~ol X E 'm~ and (1'0 + Cq)-l E 'm;' . The compact­
ness and convexity of en follows from the fact that Q* 

is compact ~md convex. 

(ii) The continuity of T follows immediately from the 
regularity of Bq and the linearity of the trace functional. 
The convexity of T can easily be verified by help of the 
well-known fact that 

(aA + (1 - a)B)-1 S aA-l + (1 - a)B-i 

for any two matrices A, B E'm;: and any real a E (0,1). 
From Lemma 5 and Caratheodory's Theorem we conclude 
that the supremum of T over .:n and thus the optimum 

A 

matrix Co in 8 MB will be attained for some measure qo 
which is concentrated on at most r(r + 1)/2 + 1 extreme 
points of Q. This may substantially reduce the computa­
tional efforts needed in the maximization of T. 

In case that Q is an ellipsoid, the shape matrix yields 
an upper bound for the optimal Co. 

Corollary 1: 

Let be Q = Ql as given by (4). Then it holds: Co ~ LI and 

sup e(P(~.e;eMB)::;; tru(xTl'';-'X + (If>o+L1)-')' -1 
Pr7.e E ')) 
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Proof: 

Let be Ll-Ij2 the symmetric square root of Ll-I and define 
_. - r'-
Q = til E R : fl = Ll--1/2 (fl - flO), /' E Q}. Then it holds 

f(T; S 1 OJ, equivalently, ;111' S Ir from which it follows 
that (fl - Po) (fl - ,u1l)T S Ll for every ,Il E Q. Thus, Cq = 

\Q (/l - ,uo) (fl- ,uo)T q(d,l/) ~;l for all q E Q*. This, in 
turn, implies that 

which yields the desired bound for the maximum Bayes 
risk. 
It is argued that by inserting Ll instead of the optimal 
matrix Co the resulting estimator 

e~1B = (x T l:~lX + (1P0+ L1f1) -1 (x T l:~ly + (I/>O + L1f1/JO) 

is minimax Bayes with respect to an uncertainty ellipsoid 
Qt' which includes the original ellipsoid Qj. 
Next we give an explicit solution for the special case in 
which Q is a rectangular solid and all the relevant ma­
trices are diagonal. 

Corollary 2: 

Let be Q == Q2 as given by (5) and assume the matrices 
U, XT Eo-IX and Po to be diagonal. Then the estimator 

e MB = (XTl:~lX+ (tPo+cofr 1 (xT l:~ly + (IP O+COf1flo) 

with 

is minimax Bayes in D j. 

Proof: 

First it is clear from the matrix inequalities in Theobald 
(1975) that the optimal Co must also be diagonal to achieve 
a maximum value of T. Then it follows that the optimal 
Co must be such that its diagonal elements have maximum 
value. Now, for any q C Q* the diagonal elements c j of 
Cq satisfy 

Ci = I (fli - flOi)2q(dfl) ~ m; 
Q 

and equality is attained for any measure q* giving weight 
Pi > 0 to the corner pDints p'i; of Q (i = 1, ... , s S 2r) 
and zero weight to all the remaining pDints of Q. An 
optimal measure can then be obtained by choosing the 
weights Pi such that the off-diagonal elements of C will 
vanish, i. e. 

s 
~ ((i) ) ( (i) ) ckl = .:::.. Pi ,uk - ,uok ,ul - floi = 0 

i=1 

for k,1 = 1, ... ,1'; k < 1. 

6. Risk Comparisons 

In this section we shall compare the usual risk and the 
A 

minimax Bayes risk of (-)MB with that of the least squares 
estimator. For the sake of simplicity, let us assume that 
the family of possible error distributions is given by 

'l)~=lpe:Ee=o. Cove=(J2V. (J2E(O.(J~ll (15) 

with some given constant 0'02 > 0 and given matrix 

V E 'lll ~, i. e. the error covariance matrix is known up to 
a multiple. Further, let us assume that X is of full rank. 
Then the LSE for (-) and the covariance matrix are given 
by 

88 

e LS = (x1'V-1xr1 XTV- 1y. COy e LS = a2(XTV-1Xf1. 

Let denote Bo = XT Eo-IX + (<I'o+Co)-1 the optimal ma­
trix Bq computed with Cq = CII, I'0=0'02V being the 
upper bound fOol' the error covariance matrix, and define 

B: = a~Bo= xTv-1X+(J~(tPo+Cor1 (16) 

so that the minimax Bayes estimator takes the form 

A 

Clearly, (-)MB is a biased estimator with bias given by 

(17) 

and covariance matrix 

A 2 -1 T -1 -1 
COY e MB = a B X V X B . (18) 

Lemma 6: 

( A) -1 T -1 -1 lie 112 Re,O';eMB =(J2trUB X V XB +1--,1l0l\' 

Proof: 

(i) By direct computation we have B (XT V-I X)-I B = 

XT V-I X + A where A = 20'02 (tPo+ Co)-l + 0'04 [("'0 + Co) 

XT V-I X (po + Co)]-l is positive definite. Thus, it follows 

that 

COY e MB = a2[B(XTV-1x)-lBr1 <a2(XTV-1x)-1 

=coveLS ' 

(ii) R{e.a;6l\1B) = EYI(-)lle-eMB(Y)II~ 

= tl'U(Cov el\lB) + Ilb(e)ll~ 

= a2 trUB-'XTV-'XB-'+ Ile- floll:i' 

The following result demonstrates that there exists a non­
empty subregion in the parameter space for which the 
minimax Bayes estimator has smaller risk than the least 
~quares estimator. 

Theorem a: 
A 

With quadratic loss (6) and a full rank matrix X, (-)MB 

has smaller risk than ALS for all parameters ((-), 112) E 

R r X (0, 11(2) for which it holds 

Proof: 
A A A 

Observing that ALS has risk R(A, I1;ALS) = tr U(Cov ALS) 

we obtain 

R(e.(J;eLS) - R(e.(J;eMB) = trU(Cov eLs - Coy e MB) 

-lie - ,uoll;[ 

This yields the result by virtue of the fact that 

tr u(cov e LS - Coy e MB) = (J2 tru((xTv-1xt1 

- B-1XTV-1XB-1) 

is positive due to the positive definite character of the 

difference COV ALS - Cov eMB . 



Obviously, the subregion of parameter values (-j for which 
A 

AMB leads to an improvement in risk over the LSE is 
an ellipsoid which is centered at the symmetry point 1'0 
or the uncertainty region Q associated with the possible 
values of the prior expectation Jl = EA. The size of this 
ellipsoid and the magnitude of the improvement depend 
on the precision of our prior knowledge expressed by the 
matrix ( '/' + Co)-' and on the quality of the upper bound 
(II? for the variance of observation. 
When comparing the corresponding minimax Bayes risks, 

it turns out that the risk of A~B is bounded from above 
and below, respectively, by that of the LSE and of the 

Ao 

minimax Bayes estimator 19MB in case of Q = (IIO}. 

Corollary 3: 

Let be C}) = 1\~ Q9 'l-~~. Then it holds 

lJ~tru(xTV-1X+lJ~1l~1)-1 S sup e(PI.).e:GMB) 
P I_) ('E'1l 

, 2 (T -1 )-1 
SlJotrUX V X . 
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Distribution of the Maximal Gap in a Sample and its Application 

for Outlier Detection 

RICHARD PINCUS 

Abstract 

Regardless of the underlying distribution the maximal 
gap is asymptotically stochastically larger than a Gum­
bel-distributed variable. An asymptotic expression for 
the distribution of the maximal gap is given and is com­
pared with the outcome of simulation studies for trun­
cated normal distributions. 

1. Introduction 

Given n ;::::: 3 independent observations xI>' .. ,xn the nor­
malized maximal gap in the sample 

X(i)-X(i-I) Mn = max -C..'---__ 

i=2 .. n x(n) - x(I) 

forms a reasonable test statistic for detecting an unknown 
number of possible outliers. 
The distribution of Mn depends on the underlying distri­
bution of XI,.'" xn ' of course, and gets a simple form 
if the observations are uniformly distributed. It will be 
shown that Mn or rather a transformation Zn = nMn -
log n is asymptotically 'stochastically minimal' if the 
underlying distribution is just uniform. 

2. The Distribution of the Maximal Gap Under Uniform 
Distributions 

By invariance it is evident that the distribution of Mn 
does not depend on location and scale. 
In the following (1 - jx) + means max (1 - jx; 0), 0 S 
xs1. 
Proposition 1: 
If xI, ... , xn are uniform distributed, then the distribu­
tion of M n is given by 

Proof: 

Mn has the same distribution as 

M~ = .max xii) - X(i-]) 
1=2 .. n . . 

where x(2i' ... , x(n-1i are independently uniform (0,1)-

distributed and x(t = 0, x(n) = 1. 
Validity of (1) is easy to see for n = 3. Now we have 

I 

( ' ) r (' X) ( ) ,n-2 , P Mn+l::;x = J P Mn::;7 . n-l x dx (2) 

I-x 

Substituting (1) in (2) gives the result. 
The distribution (1) was found by Fisher (1929) as the 
distribution of Y(n) /}.' Yi for the exponential distribu­
tion, see Barnett and Lewis (1977), p. 79. 
For the transformed variable 
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we get from (1), substituting x = (z + log n)/n: 
Proposition 2: 

A non degenerated limit distribution of Zn exists and 
has the form 

-z 
I'(Zn::;z)----+e-C' ,-CXl<Z<CXl 

n 
(3) 

The limit distribution is the so called extreme value 
distribution of first kind, or Gumbel distribution. 
Figure 1 presents the exact distribution function of Zn 
for selected n at the 5-, 10-, 20- and 30-percent points of 
limit distribution, and shows that (3) forms a satisfac­
tory approximation if n ;::::: 20. 

Figure 1 
P(nM - log n ~ z) 

----- -------- --------.-

z 2.97 2.25 1.50 1.03 n 
-- - --------- ~- ------- --

5 .997 .953 .784 .580 
10 .977 .930 .804 .654 
20 .967 .921 .809 .683 
30 .963 .917 .810 .692 
50 .960 .912 .809 .698 
Xl .950 .900 .800 .700 

3. Asymptotic Distribution of the Maximal Gap Under 
Non Uniform Distribution 

Let f be a density with f > 0 on a finite interval, and 
let Xl>.' . ,xn independently distributed according to that 
distribution. 
Without loss of generality we may assume that the 
support is the interval (0,1). 
A rough approximation of the density by a step func-

tion with values fj on ~;" k, j = 1, ... ,K, gives by (
. l' ) 

(3) for the maximal gap in the j-th interval, provided it 
contains nj observations 

-(y-lognj) 
P(njM(j)K::;y}---+e-e ,y>O. 

By the law of large numbers we can further approximate 
n i , by nfi IK, thus getting 

-e - (xf j-lOg(nfj/K)) 
p(nM(j)::;x)---+e (4) 

Since nM s x iff nM(j) s x for all j, (4) gives taking the 
product of all expressions 

E ~e-Xfj 
-n K 

P(nM::; x) ----+ e 
n 

( 5) 

If we know choose K sufficiently large and form the 
limit in the exponent of (5) we get 



Proposition 3: Figures 2 and 3 show results of simulation with standard 

Under the above condition on the boundedness of the normal distributions truncated at ± 1'3. For sample sizes 
distribution we have asymptoticalIy 

-n )e-Xf(I)F(dt) 
P(nM~x) ----+ e , x>O. 

n 
(6) 

n = 30 and n ,= 100, respectively, 1000 repetitions were 
done. As to expect, for truncation pOints ± 1, i. e. for a 
distribution which is 'nearer' to a uniform one, the appro-

ximation is better, while for truncation at ± 1 5 it is 
Remark: Convergence P n 4 Qn is used in this sEction worse. 
in the sense that for any sequence of intervals, An say. 
Qn (An) 4 C implies P n (An) -)0 c. 
An interesting property of the right side of (6) is, that 
it attains it minimum iff f forms a rectangular distri­
bution, i. e. f == l. 
In that case (6) can be written as e_ e(-X--1og nl and is 
equivalent to (3). 

Proposition 4: 

We have 

_ r .-xC(I) F(dl) _l.-(x-logn) 
e n)c ~e x>o, (7) 

with equality iff f(t) == 1 (a. e.), O:s t:s l. 
Proof: 
If we return to (5) then replacing fj IK by Pj, we have 

" 1 d th t " -xKpj > ~. . - Pi = ,an see a ~ Pi e , x - K' IS maxI-

mized subject to 1: Pj= 1, Pj 20, iff PI = ... = PK = ~ . 
This immediately implies the assertion. 
An interpretation of inequality (7) is that the Maximal 
Gap test forms a consistent Goodness-of-Fit test for 
uniform distributions. 
On the other hand the Maximal Gap test indicates outliers 
in the presence of an underlying non-uniform distribu­
tion with a probability larger than ~, even if there are 
not outlier. 
If one has information on the underlying distribution one 
can use (6) to find the asymptotically true significance 
point. 

4. Monte-Carlo Results 

Monte-Carlo studies showed, however, that the approxi­
mation (6) is not very accurate for moderate sample sizes 
like n = . 30 and even n = 100, so that higher order appro­
ximations could be useful. 
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Robustness of the Two-Sample T-Test 

HARRY O. POSTEN 

Abstract 

In the literature, one finds evidence that the two-sample 
t-test is robust with respect to departures from norma­
lity, and departures from homogeneity of variance (at 
least when sample sizes are equal or nearly equal). This 
evidence, presented in various articles, is usually based 
on an approximate approach without error analysis or 
on a simulation approach that is of limited extent. The 
present paper takes a closer and more extensive look at 
the quality of this procedure under departures from the 
primary assumptions of normality and of equal variances. 
The results presented are a synthesis of several previous 
papers by th'e author and colleagues, with particular 
emphasis on the use of a broad Monte Carlo approach to 
the assessment of robustness. 

1. Introduction 

In robustness research, there are two directions one may 
take. One may attempt to quantify or measure the degree 
of robustness inherent in a standard statistical procedure, 
or one may attempt to develop a new alternative pro­
cedure which, in some sense, is more robust than the stan­
dard procedure. In recent years, much of the robustness 
literature has been concerned with the development of 
such new procedures. However, significant contributions 
can still be made in the study of the robustness of stan­
dard procedures since, even for the most familiar proce­
dures, there exists vagueness concerning the conditions 
under which the procedure is robust and under which 
it is nonrobust. For example, one finds general evidence 
in the literature that the two-sample t-test is fairly ro­
bust with respect to departures from normality and also 
with respect to departures from homogeneity of variance 
(at least when sample sizes are equal or nearly equal). 
On the other hand, one can also find evidence that the 
two-sample t-test may not be robust under certain con­
ditions. Bradley (1980) provided results from a simulation 
study (30,000 generated values of the two-sample t-sta­
tistic for samples from several pairs of populations and 
sample sizes) which suggested that dramatically different 
shapes for the two populations could produce significant 
nonrobustness in the Type 1 error probability. Also, stu­
dies by Hyrenius (1950) and Zachrisson (1959) for the one­
sample t-test hint at the possibility of nonrobustness of 
the two-sample t-test under two types of practical con­
ditions: the condition of samples from a compound popu­
lation (occurring when a population is a mixture of two 
or more distinct populations), and the condition of the 
samples being stratified samples from two or more popu­
lations (occurring when conditions change during the 
selection of the sample). Despite this negative evidence, 
there is sufficient support in the literature (see Hatch and 
Posten (1966) for a survey of robustness research for the 
one- and two-sample t-tests) to indicate that under simple 
random sampling from populations which do not differ 
strongly in shape and which are not extreme departures 
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from normality, the two-sample t-test is not very sensi­
tive to nonnormality. Also, the evidence indicates that 
with equal or nearly equal sample sizes this test is robust 
with respect to departures from homogeneity of variance. 

The present paper is concerned with a synthesis of several 
recent studies which in a detailed manner provide an 
assessment of the robustness level of the two-sample 
t-test under common practical conditions. In some cases, 
the results are restricted to the two-tailed test or to equal 
sample sizes, but on the whole they provide answers to 
the question "What level of robustness docs the two­
sample t-test have?" for impor1ant prac1ical cases, 

2. Robustness Under Heterogeneity of Variance 

A recent paper, Posten, Yeh and Owen (1982), studied 
the change in the true significance level <x(,t) of the two­
sample double-tailed t-test when the populations are 
normal but the ratio A = 11,2/1122 varies from the assumed 
value A = 1. The results of this theoretical study indicate 
an extremely strong level of robustness under departures 
from equal variances when the sample sizes are equal. 
This level of robustness is probably stronger than most 
people realize. Table 1 provides these results in terms 
of the concept of "total robustness at a given robustness 
level". Specifically, the t-test is considered to be totally 
robust at level e if, no matter what the value of A, one 
makes no more an error than e in assuming the signi­
ficance level to be <x(l), the value under the condition of 
equal variances. Mathematically, this means that as ..l 
ranges over (0, (0), I <x(,t) - <x (1) I varies only within a 
range bounded bye. For example, from table 1, with 
n,'= n2 = 20 and <x(l) = .05, the maximum error one can 
make in assuming the significance level to be 0.05 is 
0.0072. Thus, the true significance level will be no more 
than 0.0072 from the assumed level of 0.05, no matter how 
much n',2 varies from 1122. Further, an error of a magnitude 
near the value 0.0072 will occur only when n'1~ is very 
much larger or smaller than n'} and table 1 may there­
fore be used to conservatively determine the degree of 
robustness of the equal sample size t-test under viola­
tions of the assumption of equal variances. From table 1, 
it is clear that this test is quite robust when sample 
sizes are equal. 
The question of what happens to the robustness of the 
two-sample t-test when sample sizes are unequal is dis­
cussed in the same paper. The results are given in table 2 
in terms of maximal regions of robustness. A "maximal 
region of robustness" of level e is the region of A-values 
over which the true significance level, <X(,t)' deviates from 
the assumed value, <x(l), by no more than e. If this range 
of ..l is wide in a practical sense, then the t-test is robust 
at this level E. The maximal regions of robustness are 
given in table 2 for equal sample sizes and for sample 
sizes that vary 10 % and 20 % from equality. Table 2 
indicates that the sizes of maximal regions of robustness 
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Table 1 

Minimum value of c for which the t-test is totally robust 
at level c (nl = n2 = n) 
nominal value u = (1(1) nominal value It = u(l) 

u= 0.05 u= (J.Ol u=(J.05 u=O.OI 
n E f 11 E f 

2 .0954 .0539 15 .0098 .0052 
3 .0589 .0341 20 .0072 .0038 
4 .0419 .0241 25 .0057 .003U 
5 .0324 .0184 3U .0048 .0025 
6 .0263 .0148 50 .0028 .O(J15 
7 .(J222 .0124 lUO .0014 .OU07 
8 .0191 .0106 5UO .0003 .0001 
!J .0168 .0093 1000 .0001 .0001 

10 .0150 .0082 JO .0000 .0000 

Table 2 
Maximal regions of robustness of level f for 
(nominal significance level uO) = 0'(l5) 

f = 0.03 

Zqual Sample 10 % Sample 
Sizes Size Change 

n1 n~ A-range 11, 11-, 

5 5 0.02-85.63 
10 10 O.OU-JQ !J 11 
15 15 O.OO-JQ 14 16' 
20 20 O.OO-JO 18 22 
25 25 O.OO-JQ 2:l 27* 
30 30 0.00- x) 27 :l3 
40 40 o.on-x' :36 44 
50 50 O.UU- '-, 4!i 55 

E = 0.02 

nl n~ A-range n, n·, 

5 5 0.09-12.33 
10 10 0.00-00 U 11 
15 15 O.UO-:x; 14 16' 
20 20 O.OO-.lV 18 22 
25 2!i O.OO-x: 2:~ 27' 
:30 :30 O.OO-,X) 27 :3:3 
4U 40 O.OO--;:)() 36 44 
50 5U 0.00-00 45 55 
------ ---------------

spect to the Type 1 error probability, even when sample 
sizes are somewhat unequal, as long as the smaller sample 
is taken from the population having the smaller variance. 
The original paper also contains results for ~O) = .01 with 
similar results. 

:~. Robustness Under Nonnormality 

To precisely determine the degree of robustness of thE' 
two-sample t-test over a wide range of practical nOIl­
normal distributions is a difficult problem. An exact 
theoretical approach is impractical because of its mathe­
matical intractability, an approximate approach would 
lack accuracy assurances, and a simulation approach re­
quires an exhorbitant amount of computer time to achieve 

the two tailed t-test 

20 II,'U Sample 
Size Change 

l-range III n~ ,i-range 

4 (j O.OO-2.1l9 
(J.OU- 8.33 Il 12 0.OO-3.0(j 
0.00- 00 12 18 0.00-3.17 
0.00- 17.58 16 24 0.00-3.25 
0.00- (Xl 20 30 0.02-3.30 
0.00-- :~6.f)5 24 :3(j 0.0:3-3.3:l 
0.OU-104.22 32 48 0.06-:UIl 
0.00- :.JO 40 60 . 0,()!i-:l.42 

l-range n1 Il~ A-range 

4 6 0.00-2.14 
0.00-4.02 Il 12 0.21-2.17 
0.00-9.31 12 18 0.26-2.20 
0.00-4.95 16 24 0.28-2.21 
O.OO-:tUO 2() 3U 0.29--2.22 
0.00-5.55 24 :~6 0.30-2.2:3 
0.00-5.96 32 41l 0.31-2.24 
0.00-6.26 40 60 0.31-2.25 

----- --

*= sample size change nearest to 10 % change from equality but not greater 

reduce dramatically as sample sizes vary significantly 
from equality. Thus, the t-test tends to lose its strong 
degree of robustness rapidl.v as the sample sizes become 
unequal. When each sample size varies by IO "" from a 
condition of equal sample sizes, the t-test still has a 
respectable amount of robustness with respect tu the 
Type 1 error probability. However, when the sample 
sizes reach a 20 "." difference from equality. Olll' might 
wish to be more cautious with the usc of the t-test. To 
an important degree, the loss of robustness when sam pic 
sizes are unequal is in the range where l > 1, that is, 
when the larger variance is associated with the smaller 
~ample size. The level of robustness for the unequal 
sample size test can, therefore, be significantly improved 
if one knows beforehand which population has this 
smaller variance. In this case, the smaller sample size may 
be assigned to the population with the smaller variance. 
The range of A is the restricted to (0, 1] and table 2 can bo 
used with the righthand entries all replaced by 1. The re­
sult is that the t-test becomes somewhat robust with re-

respectable preCISIOn over all extensive practical range 
of distributiuns. A simulation approach, however, can be 
macle practical by using a computer artifice to speed up 
sample generation and by using low priority computer 
time to reduce computer costs. 
Such a simulation study was provided by Posten (1978). 
The intent of thai stud~' was to accurall'ly quantify the 
(kgree of robustness of the two-sample I-test for a range 
of sample sizes over a wiele range of practical distribu­
tions. The Pearson family of distributions was chosen 
because it appeared to have best withstood the test of 
time, in terms of representing practical data. The range 
of coverage was for both negative and positive skewness 
over O:S:; PI :0;: 2.0 and 1.4::;; P2:O;: 7.8, where p, = p/lafl 

and P2 = ft"la". This seems to be a wide range of coverage 
for practical distributions if one judges by the range of 
reported values of p, and P~ in, for example, ScheHe (1959) 
and Pearson and Please (1975). The decision on the fine­
ness of the grid covering this region was conservatively 
made and the final coverage was for Pl= 0 (0.4) 2.0 and 
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IJ~ = 1.4 (0.4) 7.8, excluding the impossible distributions in 
this range. The study was constructed over sample sizes 
nl = n2 = n with n = 5 (5) 30. 

The basic strategy of the study was to generate a suffi­
ciently large number of observations for each of the 87 

Pearson distributions to provide very good accuracy in 
the significance level and power evaluations for each 
sample size. The key to bringing the simulation study 
within a practical range was a computer artifice used for 
producing a large enough number of generated values 
[rom each of these distributions, to provide 100,000 values 
of t for each sample size n = 5 (5) 25. For practical pro­
gramming reasons, it was decided to settle for 83,000 

generated t-values in the case n = 30. 

Random variable generation on a computer is usually 
performed by using a linear congruential method to ge­
nerate uniformly distributed random values and then 
transforming these to values that follow the required 
distribution. This transformation can be rapidly effected 
by use of the inverse distribution function. In the case 
of the Pearson distributions, these inverse functions are 
not available. Therefore, the transformations for the 
Pearson distributions were accomplished by numerically 
tabulating the distribution function within the computer 
and obtaining the transformed values by interpolation 
from this interval table. The numerical tabulation was 
over many values (2000-6000 values, depending on the 
distribution) of the argument. This approach ordinarily 
would provide a relatively slow transformation method, 
because for each generated uniform value it is necessary 
to search for the tabulated interval which includes it 
before performing the transformation by interpolation. 
Since searching is a relatively slow computer process, a 
significant reduction of generation time can be achieved 
if the search is eliminated. To accomplish this, uniform 
numbers were first generated in blocks of 10,000. Each 
block was ordered and stored on tape in ascending order. 
This strategy allowed each uniform value to be trans 
formed without searching for the proper interval which 
included it, since each succeeding uniform value is very 
close to the preceding value. The transformed values are 
then no longer random but may easily be restored to the 
random order of the original uniform values by storing 
each transformed value in a storage position correspond­
ing to the original occurrence position of the uniform va­
lues. The tape, then, has a block of 10,000 uniform values 
ordered in ascending order followed by a block of 10,000 
integers which identify the original order position for 
each of the 10,000 uniform values. Five hundred such pairs 
o[ blocks were ordered on tape, enough to provide at 
least 100,000 double-samples for each value of n = 5(5)25. 
These ordered uniform values were then used t.o effi­
ciently generate the five million observations required for 
each Pearson distribution in the study. 

Each stage of the Monte Carlo study was conducted with 
extreme care in order to provide quality assurances on the 
accuracy of the results. Since the study was identical in 
form for all Pearson distributions, with the only pro­
gramming variation being in the actual numerical eva­
luation of each Pearson distribution, the overall quality of 
this study can be judged by viewing the results for the 
normal distribution member of the Pearson family. For 
the normal distribution, the results (36 results in all) can 
be compared with known correct probabilities for this 
distribution. The latter are given in table 3, where each 
entry is the evaluated probability using 100,000 generated 
t-values (except for n = 30, as previously indicated). Since 
these values are actually the Monte Carlo evaluations of 
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0.05 for the first two columns, 0.50 for the next two co­
lumns and 0.95 for the last two columns, table 3 provides 
strong quality assurances for this study. To two decimal 
places, all round off exactly to the correct probability. 

The original paper provides results for both one- and 
two-tailed tests. However, only the two-tailed results will 
be presented here (the one-tailed results are similar). 
Table 4 provides the results for the significance level. 
Rounding off to two decimals, it is evident from the table 
that for all sample sizes and Pearson distributions studied, 
the significance level is in the range 0.03 to 0.06. Further, 
for only a few extreme distributions, when n = 5, does 
the significance level round off to 0.03, 0.04 or 0.06. All 
other significance levels round off to 0.05. Thus, there 
is extremely little variation in the significance level over 
this extensive range of distributions. This means that one 
of the arguments favoring the choice of a nonparametric 
procedure for this problem, that the significance level of 
a nonparametric procedure is always exactly the nominal 
level, is of little consequence since for the equal sample 
t-test (over the range of distributions studied), the signi­
ficance level is very near the nominal level. Arguments 
favoring a non parametric approach for this problem 
should therefore be based only on power considerations. 
Results for the power evaluated at noncentrality para­
meter values corresponding to powers of 0.50 and 0.95 
under normal conditions are provided in tables 5 and 6. 
A review of these tables shows that for all sample sizes 
and all distributions studied, the range of the power levels 
is only 0.444 to 0.566 for the 50 %. normal power level 
and 0.934 to 0.983 for the 95 % normal power level. In 
each of these cases, the more extreme probabilities occur 
with the more extreme distributions and, as sample size 
increases, the robustness level improves further. If n is at 
least 15, the two power levels to two decimals are in the 
range 0.48-0.53 and 0.94-0.96. The latter result along 
with the results for the significance level indicate a very 
strong level of robustness for the equal sample t-test, 
probably stronger than most users realize. 

4. Comparisons with the Wilcoxon Test 

The foregoing suggests that, at least for the equal sample 
case, the two-sample t-test shOUld be quite useful as a 
solution to the two-sample location problem. However, 
considerable theoretical support, particularly asymptotic 
efficiency levels, recommends the Wilcoxon test as a 
viable general alternative to the t-test. The prominent 
nonparametricist G. E. Noether, in fact, recommends its 
use most of the lime in lieu of the t-test. 

Unfortunately, there are comparatively few studies in the 
literature on the small sample power of the Wilcoxon test 
and the existing papers are, for the most part, concerned 
with Wilcoxon power for normal parent populations. A 
recent paper by the author, Posten (1982), however, using 
the broad simulation approach discussed above, provides 
an evaluation of Wilcoxon power over the same sample 
sizes and Pearson distributions discussed in the previous 
section. Again, the objective was an accurate assessment 
of power with the two noncentrality values used being 
the exact values required to produce 50 u/u and 95 0 u 
power for the t-test under normality. These values of 
the shift parameter are the values used in the foregoing 
t-test study. Thus, this Wilcoxon study is identical in 
form to the t-test study, thereby allowing direct com­
parisons of power for the two procedures. However, be­
cause the length of computer time required for the 



Table 3 
Monte Carlo probabilities for the two-sample two-tailed 
t-test (normal case, significance level = 0.05) 

._---_ .. --~ _._- -------

Significance level 50 o;'u Power 95 I~II Power 

Upper Double Upper 
n Tail Tail Tail 

Test Test Test 
-. - _ .. -----

5 0.0503 0.0510 0.4999 
10 0.0497 0.0495 0.4984 
15 0.0507 0.0486 0.4999 
20 0.0511 0.0495 0.5012 
25 0.0507 0.0495 0.4991 
30 0.0483 0.0491 0.4989 

Monte Carlo evaluation of Wilcoxon power is significantly 
greater than for the t-test, only two million values were 
generated for each of the 87 Pearson distributions in­
volved. This still provided 40,000 generated values of the 
Wilcoxon statistic, U, for each sample size n = 5(5)25. For 
n = 30, 33,200 values of U were generated each time. 

The original paper provides results for both one- and 
two-tailed tests but for the present purpose only the two­
tailed results will be discussed (the one-tailed results are 
not very different). As it turns out, the power of the 
Wilcoxon test for a fixed shift value is more variable 
over the Pearson family than the power of the t-test. In 
many cases, particularly for the 50 1111 (normal t-test 
power) shift value, this variability is favorable to the 
Wilcoxon test since it results in higher power for this 
test. Tables 7 and 8 provide the Wilcoxon Monte Carlo 
results. For purposes of comparing Wilcoxon and t-test 
power, these tables provide the difference in power of 
the t-test and the Wilcoxon test (t-test power minus Wil­
coxon test power). 

It is evident from the large number of negative entries 
in tables 7 and 8 that, except for sample size n = 5, these 
results support, to a large degree, the recommendations 
of some nonparametricists that the Wilcoxon test be used 
generally rather than the t-test. For n = 5, the tables in­
dicate that the power function of the t-test is dominant 
over that of the Wilcoxon test over essentially the entire 
range of the Pearson family presented. Other than this, 
the Wilcoxon function is dominant over a substantial 
part of the Pearson family if one is concerned with the 
50 UfO (normal) shift value of the power curve. The region 
of dominance is considerably reduced if one considers the 
power curve region around the 95 "" (norma\) shift value. 
In fact, the situation often changes, with the t-test power 
increasing (around the 95 U I) shift value) tu being nearly 
equal or superior to the Wilcoxon power. The general 
pattern of the Wilcoxon power curve, if one stays away 
from a modest sized region of the Pearson family near 
the normal distribution, seems to be approximately the 
following: the power curve of the Wilcoxon test starts 
off (near the null value) more sharply than the t-test and 
is superior to the t-test power curve until the shift para­
meter reaches values associated with higher probabilities, 
at which point the t-test power may be nearly equal or 
superior to the Wilcoxon power. This is not a perfect 
picture since it depends upon the region of the Pearson 
system involved. The reader may review the pattern of the 
tables for particulars. 

As previously indicated, the results of this study, to a 
large degree, would appear to support the nonparame­
tric recommendation to use the Wilcoxon test as a general 

Double Upper Double 
Tail Tail Tail 
Test Test Test 
--.-~-- - ---- ---

0.4997 0.9499 0.9501 
0.4986 0.9507 0.9507 
0.5005 0.9511 0.9512 
0.5012 0.9510 0.9511 
0.4986 0.9508 0.9506 
0.4987 0.9495 0.9495 
--------

solution to the two-sample location problem. A note of 
caution, however, is probably justified. The range of 
distributional coverage provided by the Pearson distri­
butions of this study is extensive. It is conceivable that 
in many application areas the range of distributions one 
is likely to meet are of considerably less extent. Conse­
quently, depending upon the area of application, one may 
wish to consider a more restricted region of the Pearson 
family. In particular, it seems reasonable to at least eli­
minate distributions near the left boundary and lower 
extreme left boundary of the Pearson plane, where the 
U-shape and J-shape distributions reside. The latter 
distributions seem more likely to announce their presence 
in the sample data. Despite the support provided by this 
study for the Wilcoxon test, the rEsults could also provide 
to some degree an argument for general use of the t-test, 
particularly if U- and J-shaped distributions are dis­
regarded. Suppose one asks what is the region in the 
Pearson system where the power of the t-test at the 501),1) 
value of the shift parameter is not less than 0.05 of the 
Wilcoxon power and for the 95 lI/U value of the shift para­
meter is not less than 0.03 of the Wilcoxon power? This 
would be a region in which the power function of the 
t-test is either superior of "not bad at all" compared to 
the Wilcoxon power. An inspection of tables 7 and 8 
shows that this region varies with the sample sizes but 
in general is a fairly substantial region. A similar argu­
ment could also be applied to the Wilcoxon test since 
the truth of the matter is that over a substantial part 
of the Pearson plane the power of the two tests does 
not differ dramatically. 

5. Conclusions 

It would seem that despite the informativeness of the 
foregoing studies, these results do not definitely make a 
choice between the equal sample t-test and Wilcoxon 
test for the general two-sample location problem. The 
results tend to at least partially support a Wilcoxon 
choice in a situation when the population differ only by a 
shift parameter. However, several authors, Boneau (1962), 
Van del' Vaart (1960) and Glazer (1963), have indicated 
that for normal populations and equal sample sizes, the 
t-test is superior to the Wilcoxon test in robustners for 
departures from the assumption of equal variances. It 
would seem, therefore, that further studies of the effects 
of variance heterogeneity on the two tests would be 
needed over an extensive practical family of nonnormal 
distributions before a single procedure might be specified 
as a somewhat general choice for the two-sample location 
problem. 
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Monte Carlo Results for Significance Level (Two-Sample t-Test, Double Tail Test, ex = .05) 

/3[ fJ2 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8 

0.0 .0563 .0555 .0540 .0523 .0510 .0498 .0491 .0484 .0479 .0474 .0471 .0468 .0466 .0464 .0463 .0461 .0460 
0.4 .0514 .0520 .0514 .0509 .0500 .0493 .0488 .0482 .0478 .0475 .0473 .0470 .0468 .0465 .0464 .0463 
0.8 .0454 .0480 .0488 .0489 .0488 .0486 .0483 .0481 .0477 .0474 .0471 .0469 .0466 .0466 .0465 
1.2 .0404 .0438 .0459 .0467 .0472 .0472 .0473 .0473 .0472 .0471 .0469 .0466 .0465 .0463 
1.6 n= 5 .0348 .0398 .0427 .0445 .0455 .0460 .0463 .0463 .0464 .0465 .0465 .0465 .0464 
2.0 .0307 .0353 .0393 .0416 .0434 .0445 .0451 .0454 .0456 .0458 .0459 .0460 

0.0 .0515 .0509 .0501 .0498 .0495 .0489 .0485 .0481 .0478 .0474 .0472 .0469 .0468 .0466 .0465 .0463 .0463 
0.4 .0516 .0507 .0497 .0492 .0486 .0482 .0480 .0477 .0475 .0474 .0472 .0470 .0470 .0468 .0466 .0465 
0.3 .0508 .0502 .0492 .0484 .0476 .0476 .0474 .0472 .0470 .0469 .0468 .0467 .0466 .0466 .0465 
1.2 .0497 .0495 .0486 .0476 .0471 .0463 .0463 .0466 .0465 .0466 .0464 .0463 .0463 .0463 
1.6 n= 10 .0477 .0430 .0473 .0472 .0465 .0463 .0459 .0460 .0460 .0460 .0459 '()459 .0460 
2.0 .0450 .0463 .0469 .0464 .0462 .0458 .0457 .0455 .0455 .0454 .0455 .0456 

0.0 .0509 .0494 .0492 .0491 .0486 .0484 .0482 .0479 .0477 .0476 .0475 .0473 .0472 .0471 .0470 .0469 .0468 
0.4 .0505 .0501 .0492 .0487 .0483 .0481 .0477 .0477 .0474 .0473 .0472 .0470 .0470 .0470 .0468 .0467 
0.3 .0508 .0501 .0490 .0486 .0481 .0477 .0474 .0472 .0471 .0470 .0470 .0468 .0467 .0467 .0466 
1.2 .0507 .0500 .0487 .0430 .0479 .0475 .0472 .0468 .0468 .0468 .0469 .0468 .0466 .0467 
1.6 n= 15 .0503 .0497 .0486 .0481 .0472 .0471 .0467 .0463 .0466 .0464 .0466 .0465 .0464 
2.0 .0494 .0491 .0482 .0477 .0472 .0467 .0464 .0462 .0462 .0462 .0461 .0460 

0.0 .0510 .0504 .0499 .0498 .0495 .0492 .0491 .0490 .0489 .0487 .0486 .0485 .0484 .0483 .0483 .0481 .0480 
0.4 .0509 .0504 .0499 .0496 .0494 .0492 .0489 .0487 .0486 .0484 .0482 .0481 .0481 .0481 .0480 .0480 
0.8 .0500 .0502 .0499 .0494 .0492 .0492 .0491 .0487 .0486 .0484 .0482 .0481 .0479 .0478 .0477 
1 .) .w .0499 .0500 .04fJ8 .0493 .0491 .0487 .0437 .0485 .0486 .0484 .0482 .0481 .0480 .0479 
1.6 n=20 .0494 .0495 .049:3 .0490 .0487 .0436 .0485 .0484 .043:l .0481 .0481 .0481 .0479 
2.0 .0494 .0487 .0488 .0486 .0485 .0482 .0482 .0483 .0432 .0480 .0478 .0478 

0.0 .0505 .0503 .0503 .0499 .0495 .0496 .0494 .0493 .0491 .0483 .0487 .0486 .0485 .0484 .0483 .0484 .048:3 
0.4 .0502 .0496 .0491 .0492 .0494 .0493 .0493 .0491 .0491 .0490 .0489 .0486 .0485 .0483 .0482 .0482 
0.8 .0500 .0497 .0490 .0490 .0487 .0488 .0487 .0486 .0485 .0484 .0485 .0485 .0485 .0483 .0483 
1.2 .0493 .0493 .0494 .0490 .0488 .0486 .0485 .0485 .0485 .0482 .0481 .0482 .0482 .0482 
1.6 n=25 .0494 .0490 .0491 .0489 .0489 .0487 .0483 .0480 .0480 .0482 .0482 .0480 .047fJ 
2.0 .0495 .0488 .0489 .0487 .0486 .0484 .0483 .0481 .0478 .0477 .0478 .0479 

0.0 .0496 .0494 .0495 .0494 .0491 .0491 .0492 .0490 .0490 .0488 .0488 .0487 .0487 .0486 .0486 .0485 .0484 
0.4 .0498 .0495 .0495 .0493 .0494 .0494 .0491 .0491 .0489 .0487 .0487 .0485 .0484 .0483 .0482 .0481 
0.3 .0495 .0492 .0493 .0492 .0488 .0489 .0490 .0488 .0487 .0488 .0487 .0487 .0484 .0483 .0482 
1.2 .0492 .0492 .0492 .0489 .0486 .0488 .0485 .0487 .0486 .0434 .0484 .0485 .0484 .0485 

1.6 n= 30 .0490 .0490 .0489 .0485 .0486 .0482 .0481 .0481 .0480 .0480 .0481 .0483 .0481 
2.0 .0490 .0492 ,0484 .0480 .0480 .0480 .0478 .0476 .0478 .0479 .0477 .0477 

-------_.--- - --- -- ---~- -----
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Table 5 

Monte Carlo Results lor .50 Normal Power N.C.P. (Two-Sample t-Test, Double Tail Test, ~ = .05) 

PI P2 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8 

0.0 .4444 .4599 .4756 .4881 .4997 .5099 .5182 .5256 .5306 .5352 .5393 .:)426 .5454 .5480 .5500 .5521 .5538 
V.4 .4582 .4764 .4909 .5014 .5112 .;j181 .5247 .5304 .5350 .5391 .::i4~5 .5453 .5480 .5503 .5525 .5543 
U.t! .4660 .4887 .5040 .5146 .5222 .5281 .5326 .5369 .5407 .5440 .5467 .5490 .5510 .5533 .5550 
1.2 .4721 .5001 .5161 .5~::i7 .5322 .5377 .5412 .5447 .5471 .5495 .5519 .5540 .5557 .5576 
1.0 n= 5 .4789 .5100 .5268 .5364 .5423 .5466 .5494 .5525 .5545 .5565 .5580 .5594 .5609 
:::.U .4870 .5202 .5371 .5463 .5515 .5561 .5588 .5603 .5619 .5636 .5645 .5659 
(J.O .4714 .4791 .4862 .4929 .4986 .5C44 .5095 .5137 .5172 .5202 .5229 .5:;51 .5274 .5292 .5308 .5323 .5337 
u.4 .4809 .4863 .4930 .4988 .;)()~;) .5UIlU .~Ji25 .51tH .5196 .5:l~4 .::>~;)lJ .5271 .5291 .5310 .5327 .5342 
0.8 .4876 .4933 .4994 .50JU .5091 .5136 .5171 .5201 .5227 .::>:451 .5214 .5295 .5312 .5331 .5346 
1.2 .4953 .5007 .5()j4 .5111 .5151 .5188 .5218 .5247 .b:l71 .5z9:l .5311 .5331 .5346 .5359 
1.0 n = 10 .5009 .5059 .5119 .5171 .5211 .5249 .5275 .::>:l95 .5313 .5333 .5352 .5366 .5378 
~.O .5069 .5109 .5173 .5227 .5268 .5304 .5332 .5352 .5366 .5377 .5388 .5407 
0.0 .4835 .4882 .4938 .4969 .5005 .5044 .5080 .5112 .5138 .5164 .5188 .5206 .5225 .5240 .5254 .5266 .5277 
U.4 .4882 .4922 .4973 .5019 .505J .5087 .5118 .5140 .5162 .5186 .52U4 .5224 .5235 .5249 .5262 .5273 
(J.8 .4928 .4970 .5023 .5ubJ .5098 .5125 .5153 .5181 .5198 .::>21'{ .5234 .5246 .5261 .5272 .5284 
1.2 .4973 .5014 .5060 .5109 .5145 .5172 .5192 .5213 .523J .5248 .5259 .5273 .5288 .5302 
1.6 11= 15 .5020 .:)u67 .5098 .5141 .5179 .5210 .5233 .bz4<J .5261 .5219 .5292 .5304 .5313 
2.0 .;)()bil .5106 .5139 .5173 .5209 .5242 ,52 iO .5286 .5300 .5309 .5321 .5332 
0.0 .4884 .4922 .4955 .4987 .5012 .5041 .5068 .5089 .5110 .5133 .5151 .5162 .5174 .5187 .5197 .5206 .5215 
0.4 .4923 .4955 .4985 .5015 .5041 .5065 .5092 .5114 .5135 .5155 .5171 .5184 .5198 .5210 .5219 .5226 
0.8 .4958 .4988 .5011 .5lJ43 .5070 .5089 .5114 .5135 .5158 .5178 .5195 .5206 .5222 .5232 .5239 
1.2 .4996 .5025 .5050 .5074 .5099 .5122 .5144 .5159 .5UlO .5196 .5210 .5224 .5234 .5242 
1.6 11=20 .5034 .;)U53 .5084 .5111 .5135 .5155 .5171 .5190 .5208 .5220 .5232 .5244 .5257 
2.0 .5038 .5087 .5116 .5138 .5170 .5187 .5206 .5222 .5235 .5248 .5259 .5267 
0.0 .4912 .4926 .4943 .4967 .4986 .5010 .5032 .5055 .5075 .5090 .5106 .0120 .5131 .5143 .5153 .5163 .5171 
0.4 .4927 .4945 .4981 .5006 .5030 .5048 .5065 .5083 .5099 .5111 .5124 .5136 .5147 .5155 .5163 .5171 
0.8 .4947 .4958 .4997 .5021 .5044 .5072 .5089 .5101 .5117 .5127 .5139 .5153 .5162 .5174 .5186 
1.2 .4978 .4987 .5015 .5041 .5064 .5091 .5109 .5130 .5139 .5153 .5163 .5174 .5184 .5192 
1.6 n = 25 .5001 .5018 .5037 .5065 .5089 .5112 .5133 .5147 .5160 .5175 .5182 .5191 .5199 
2.0 .5025 .5046 .5061 .5091 .5113 .5135 .5147 .5163 .5177 .5193 .5204 .5210 
0.0 .4910 .4938 .4957 .4976 .4987 .5011 .5027 .5035 .5049 .5065 .5076 .5087 .5096 .5106 .5117 .5125 .5134 
0.4 .4941 .4953 .4975 .4994 .5009 .5031 .5047 .5064 .5076 .5085 .5098 .5108 .5119 .5129 .5135 .5143 
0.8 .4961 .4971 .4997 .5010 .5026 .5048 .5068 .5079 .5087 .5101 .5114 .5126 .5135 .5141 .5149 
1.2 .4981 .4990 .5013 .5028 .5043 .5068 .5084 .5094 .5105 .5114 .5129 .5141 .5150 .5161 
1.6 n=30 .5003 .5018 .5040 .5050 .5064 .5087 .5103 .5115 .5122 .5135 .5149 .5157 .5164 
2.0 .5026 .5042 .5066 .5072 .5086 .5108 .5127 .5134 .5147 .5158 .5167 .5180 

Table 6 

Monle Carlo Hesults for .95 Normal Puwer N.C.f'. (Two-Sample t-Test, Double Tail Test, a: = .(5) 
- ~-- ----- -------

PI P2 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8 -------

0.0 .9828 .9713 .9631 .9560 .9501 .9453 .9425 .9407 .9391 .9333 .9378 .9370 .9364 .9361 .9358 .9356 .9356 0.4 .9740 .9636 .9555 .9495 .9461 .9440 .9422 .9408 .9399 .9392 .9386 .9380 .9377 .9374 .9370 .9367 0.8 .9657 .9562 .9491 .9441 .9416 .9403 .9395 .9392 .9388 .9385 .9383 .9379 .9375 .9372 .9369 1.2 .9578 .9493 .9430 .9386 .9372 .9364 .9362 .9363 .9368 .9369 .9368 .9368 .9366 .9365 1.6 n= 5 .9491 .9434 .9372 .9332 .9322 .9327 .9334 .9340 .9344 .9349 .9351 .9355 .9356 2.0 9407 .9382 .9323 .9283 .9282 .9290 .9302 .9311 .9318 .9325 .9332 .9336 0.0 .9636 .9601 .9568 .9536 .9507 .9480 .9459 .9443 .9433 .9425 .9418 .9411 .9406 .9401 .9398 .9395 .9394 0.4 .9595 .9564 .9536 .9506 .9481 .9463 .9449 .9440 .9427 .9421 .9414 .9408 .9403 .9398 .9396 .9393 0.8 .9559 .9526 .9499 .9474 .9451 .9439 .9428 .9422 .9417 .9410 .9406 .9401 .9399 .9397 .9397 1.2 .9524 .9498 .9469 .9444 .9426 .9413 .9406 .9400 .9398 .9398 .9396 .9395 .9394 .9392 1.6 n= 10 .9495 .9467 .9437 .9417 .9399 .9387 .9386 .9385 .9382 .9382 .9384 .9385 .9383 2.0 .9464 .9439 .9411 .9393 .9379 .9365 .9365 .9366 .9367 .9367 .9370 .9369 n.O .9594 .9575 .9549 .9531 .9512 .9494 .9482 .9471 .9464 .9455 .9447 .9441 .9436 .9431 .9427 .9423 .9422 0.4 .9574 .9554 .9531 .9511 .9494 .9478 .9467 .9457 .9450 .9444 .9440 .9435 .9431 .9427 .9425 .9425 0.8 .9550 .9532 .9512 .9491 .9475 .946U .9450 .9447 .9436 .9432 .9428 .9425 .9425 .9422 .9420 1.2 .9533 .9510 .D488 .9474 .9457 .9441 .9435 .9431 .9427 .9425 .9422 .9420 .9416 .9415 1.6 n = 15 .9508 .!J488 .9472 .9453 .9440 .9427 .9421 .9415 .9412 .9411 .9409 .9405 .9405 2.0 .9488 .9471 .9452 .9435 .9425 .9413 .9406 .9402 .9399 .9397 .9395 .9395 n.O .9571 .9555 .9538 .9523 .9511 .9493 .9482 .9471 .9460 .9452 .9446 .9442 .9439 .9435 .9432 .9430 .9426 0.4 .9553 .9534 .9517 .9506 .!J494 .9483 .9472 .9463 .9458 .9449 .9446 .9441 .9436 .9433 .9428 .9427 0.8 .9539 .9518 .9503 .9491 .9481 .9471 .9461 .9453 .9447 .9441 .9438 .9436 .9433 .9431 .9429 
1.2 .9522 .9503 .9492 .9476 .9467 .9459 .9451 .9443 .9439 .9435 .9433 .9430 .9427 .9426 1.6 11= 20 .9506 .9491 .9475 .9464 .9454 .9447 .9437 .9434 .9429 .9425 .9424 .9424 .9421 :l.0 .9490 .9476 .9461 .9450 .9442 .9435 .9425 .9421 .9418 .9415 .9415 .9413 0.0 .9555 .9546 .9536 .9522 .9506 .9496 .9484 .9474 .9465 .9460 .9453 .9450 .9447 .9443 .9440 .9438 .9437 0.4 .9538 .9529 .9521 .9508 .9500 .9490 .9482 .9473 .9465 .9462 .9455 .9449 .9444 .9441 .9440 .9437 
0.8 .9525 .9519 .9505 .9499 .9486 .9480 .9473 .9466 .9459 .D454 .9450 .9447 .9444 .9443 .9440 1.2 .9515 .9502 .9492 .9487 .9478 .9469 .9462 .9458 ,9451 .9446 .9443 .9442 .9441 .9440 
1.6 n = 25 .9502 .9489 .9481 .9472 .9460 .9455 .9452 .9446 .9442 .9441 .9438 .9436 .9434 2.0 .9486 .9471 .9466 .9457 .9448 .9444 .9440 .9434 .9431 .9430 .9429 .9428 0.0 .!J539 .9530 .9519 .9509 .9495 .9487 .9478 .9471 .9463 .9453 .9448 .9445 .9441 .9438 .9434 .9431 .9430 
0.4 .9531 .9520 .9504 .9492 .!J485 .9472 .9462 .9456 .9454 .9451 .9448 .9444 .9441 .9436 .9432 .9429 
0.8 .9522 .9503 .9493 .9486 .9472 .9464 .9457 .9451 .9447 .9446 .9441 .9439 .9435 .9432 .9431 
1.2 .9512 .9498 .9486 .9475 .9466 .9455 .9448 .9445 .9437 .9433 .9431 .9430 .9430 .9428 
1.6 n = 30 .9503 .9493 .9475 .9467 .9455 .9449 .9440 .9434 .9430 .9427 .9425 .9420 .9417 
2.0 .9494 .9483 .9466 .9455 .9447 .9438 .9433 .9428 .9423 .9420 .9416 .9417 
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Robustness of Three Sequential One-Sample Tests Against Non-Normality 

DIETER RASCH 

Abstract 

By simulation it was shown that only one of three se­
quential tests of the hypothesis Hu: f.1, = /-tu against HA : 

(p. - f.1,O)2 = (J2 d2 is robust with respect to the first kind 
risk IX but not with respect to the second kind risk fJ. An­
other test is robust with respect to fJ but not with respect 
to IX. 

1. The Test Statistics 

The sequence { y!, y~, ... ,} with identically and indepen­
dently distributed components with mean f.1, and variance 
(JJ (0 < (J2 < (0) was used to test the hypothesis 

Ho: f.1, = f.1,u 
against 

HA:(f.1,-f.1,o)2=(J~d2 (d>O). 

We consider three tests developed for normally distributed 
Yi following Wald (Tl (n), 1947), Bartlett (T2 (n), 1946) and 
Mann (T3 (n), 1980) respectively. The test statistics T j (n) 
(j = 1, 2, 3) are 

In (1) to (3) we used 

t 2 _ n (- )2 
n- 2 Yn-/-'o . 

sn 

n 

- 1 '" Yn=;:;-..:;..,Yj. 
i~l 

and the confluent hypergeometric function H (a; b; c). 
Usually the decision rule used for the sequential test is; 

Accept HII if Tj(n):S; b = In B (j=1.2) 

or if T3(1l):S; D. 

Reject Ho if Tin) ~a= InA (j = 1.2) 

orif T3(n)~A. 

Take a further observation Y n+! , if 

b<Tj(n)<a (j=1.2) 

or if B<T3(n)<A 

with A= I-fl and B= _fl_ 
O< 1-0< 

100 

i3) 

Using this rule, test Tl has approximately the strength 
(IX, fJ). 

2. The Simulation Experiment 

The simulation experiment consists of two parts. Without 
loss of generality we put f.1,o = 0 and ()'~ = 1. 

Part I 

We investigated the behaviour of the three tests under 
the normal assumption and for truncated normal distri­
butions. 10000 samples were generated for the normal 
distribution and one truncated distribution for each of 
the 264 possible combinations of 

(IX, fJ) = (0.05; 0.10), (0.05; 0.20), (0.10; 0.20) (0.10; 0.50) 
d = 0.6; 1.0; 1.6 
T (n) = T[ (n), T~ (n); T;) (n) 
II = 0 (0.2) d + 0.2 

and for the other truncated distributions and the distri­
butions of part II only for f.1, = 0 and f.1, = d (72 combina­
tions per distribution). (See Table 1) Pseudo-random num­
bers (p. r. n) from N (f.1" 1) are generated by the combina­
tion ZZGD/NV01 (Feige et. al. 1984). 

Part II 

P.r.n. from N(f.1" 1) were generated for the 72 parameter 
combinations mentioned in part I. These p.r.n. were trans­
formed into p.r.n. with given skewness Yt and kurtosis Y2 
by the power transformation z = - c + by + cy2 + dy3 

(Fleishman 1978). For both parts we calculated for each 
fl-value the relative frequency of the 10000 samples in 
which Ho was accepted and used this for f.1, = 0 as an esti­
mate of IX and for f.1, = d as an estimate of I-fJ. Further, 
we calculated the average n of the sizes of the 10000 

samples and the variance of these sample sizes s~. We used 
n as an estimate of E(n). We also determined n min and 
n max and the frequency distribution of the sample sizes. 

3. Results 

(i) With four exceptions the empirical IX-values are, under 
normal conditions lower than the nominal ones. 
Under normal conditions the empirical (l-fJ)-values 
are with the exception of T3 ; (IX, fJ) = (0.05,0.10) higher 
than the nominal ones, so that all tests are in most 
cases conservative, as could be expected from theory 
in the case of test 1. 

(ii) With respect to IX test 2 is robust for all investigated 
alternative distributions (it is worst in the normal 
case), tests 1 and 3 are non-robust for small d if Yl 

and Y2 both differ greatly from zero. 

(iii) With respect to fJ test 1 is always robust, test 2 is 
robust only if the values of d are not to small and 
test 3 is robust only for d = 1.6. 

(iv) The ASN is low for test 2 if d is small and is also 
good for test 1 if d is large. Test 3 always needs 



larger average sample sizes than either test 1 or test 2. 
For median d-values, the sample sizes do not differ 
too much between the three tests. 

in the second kind risk non-robust. We therefore propose 
the following test statistic 

T= 
4. Proposal 

{

Tl' if u< t 
T 2 • if u~l 

2 

Lim and Fung (1982) investigated sequential t-test based 
on M-estimators under three non-normal (long-tailed) dis­
tributions. All simulated tests where either in the first or 

where u is an in (0,1) uniformely distributed pseudorandom 
number. The properties of this test T will be investigated 
for some more d-values. 

Table 1 
Distributions used in the simulation experiment and their parameters 
(u, v standarized truncation points, b, c, d parameters of the power 
transformation) 

No of 
distribution 

Truncation points 
u v Y2 

----------- - ------------- --------------------
1 
2 
:3 
4 

5 
(i 

7 
8 

Table 2 

Percentage 

d 102(% 

0.6 5 

10 

1.0 5 

10 

1.6 5 

10 

Table 3 

- '-
0.5 

-1.5 
2.85 

-x' 
3.0 
3.0 
4.71 
-------------

o 
1.0057 
0.3480 
1.505 

Parameters of power transformation 
b c 

0.748020807992 
0.63044672784 
0.953076897706 
0.865886203523 

o 
o 

0.163194276264 
0.221027621012 

d 

0.077872716101 
0.11069674204 
0.006597369744 
0.027220699158 

102 f" of false rejection of Ho for 8 distributions and 
--.-~- ------~-.- ---------

Number of distribution in table 1 

102p 1 2 3 4 5 6 

o 
0.5915 

- 0.3488 
3.75 

YI 

o 
o 

1.00 
1.50 

test 1 

7 8 

3.75 
7.00 
1.50 
3.75 

---.------.. ~ ---------

10 4.19 7.52 4.74 10.38 3.16 2.64 6.12 7.67 
20 4.34 7.44 4.93 10.41 3.23 2.95 6.17 7.57 
20 8.85 12.99 9.33 15.91 6.94 6.46 10.52 12.63 
50 9.94 13.79 10.27 15.94 8.30 8.06 11.65 13.70 

10 3.90 8.49 4.47 11.06 2.76 2.13 6.40 7.93 
20 4.15 8.67 4.70 11.14 3.03 2.42 6.36 8.06 
20 7.90 13.33 9.00 16.31 6.60 5.79 10.65 12.90 
50 10.39 14.64 11.20 17.94 8.78 7.77 12.60 14.69 

10 3.87 7.77 4.26 10.76 2.32 2.24 6.04 7.73 
20 4.27 8.01 4.58 11.01 2.60 2.43 6.43 8.14 
20 7.68 12.47 8.5'1 15.58 5.58 5.13 10.51 12.22 
50 11.82 16.33 12.72 19.55 9.70 8.55 14.35 16.06 

Percentage 102 f li of false acception of Ho for 8 distributions and test 1 
-----------

Number of distribution in table 1 

d 102(% 102p 1 2 3 4 5 6 7 8 

0.6 5 10 7.54 3.26 6.09 1.68 8.00 7.86 4.14 2.37 
20 15.54 8.95 13.78 5.05 14.64 14.76 10.46 7.24 

10 20 15.72 9.43 14.20 5.45 14.34 14.15 10.85 7.66 
50 39.90 34.30 40.79 27.91 34.35 31.97 36.22 30.56 

1.0 5 10 5.95 0.35 3.42 0 7.16 7.22 1.22 0.34 
20 11.77 1.52 8.01 0.06 11.90 11.73 3.73 1.27 

10 20 11.58 1.68 8.30 0.07 11.52 11.09 3.94 1.36 
50 30.13 13.13 28.59 0.21 24.25 22.50 18.93 11.23 

1.6 5 10 4.30 0 0.61 0 6.83 6.42 0.02 0.01 
20 7.59 0 1.78 0 9.53 9.27 0.12 0.04 

10 20 7.60 0 2.01 0 9.38 8.87 0.13 0.04 
50 15.01 0.17 10.58 0.08 13.98 12.64 2.37 0.44 

------------------------- ------ ----------
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Table 4 

Percentage 102 f" of false rejection of Ho for 8 distributions and test 2 
----~-----

Number of distribution in table 1 
d 1020: 102p 1 2 3 4 5 6 7 8 

0.6 5 10 4.25 1.75 3.44 0.98 3.26 2.51 1.62 1.17 
20 4.64 1.69 3.59 1.11 3.33 2.68 1.78 1.36 

10 20 8.92 3.95 7.11 2.62 6.78 5.94 4.25 3.26 
50 11.15 5.46 9.32 3.96 9.06 8.03 6.26 4.41 

1.0 5 10 2.61 1.14 2.00 0.61 1.26 0.77 1.14 0.80 
20 2.65 1.20 2.28 0.61 1.39 0.84 1.31 0.88 

10 20 5.21 2.73 4.92 1.91 3.01 2.12 3.14 1.94 
50 7.21 4.20 7.00 3.18 4.36 3.34 4.50 2.99 

1.6 5 10 0.51 0.42 0.67 0.25 0.21 0.18 0.37 0.28 
20 0.58 0.45 0.71 0.26 0.25 0.19 0.42 0.29 

10 20 1.37 1.08 1.42 0.58 0.78 0.42 1.01 0.77 
50 2.37 2.00 2.50 1.29 1.31 0.88 1.84 1.36 

Table 5 
Percentage 102 fp of false acception of Ho for 8 distributions and test 2 

Number of distribution in table 1 
d 1020: 102p 1 2 3 4 5 6 7 8 

0.6 5 10 8.37 19.18 11.48 22.85 6.85 5.71 15.48 18.38 
20 15.46 27.80 19.45 31.30 13.15 11.53 24.01 27.01 

10 20 15.51 28.15 19.64 31.58 13.11 11.46 24.10 27.30 
50 32.27 44.53 36.28 46.32 28.56 26.52 39.93 42.27 

1.0 5 10 4.45 10.37 6.66 9.55 2.78 1.93 8.07 8.07 
20 8.90 16.70 11.56 14.13 5.96 4.85 13.60 12.90 

10 20 9.17 17.11 11.97 14.55 6.10 4.97 13.94 13.29 
50 20.55 26.81 22.86 24.94 16.04 14.44 24.18 24.32 

1.6 5 10 11.19 0.19 1.60 0.01 0.54 0.35 0.76 0.13 
20 12.55 0.85 3.21 0.04 1.31 1.03 1.58 0.53 

10 20 12.65 0.94 3.36 0.06 1.33 1.06 1.67 0.61 
50 8.09 5.34 8.77 1.46 5.75 5.03 6.04 3.77 

Table 6 
Percentage 102f" of false rejection of Ho for 8 distributions and test 3 

Number of distribution in table 1 
d 1020: 102p 1 2 3 4 5 6 7 8 

0.6 5 10 4.80 8.80 5.26 12.60 3.27 2.41 7.03 6.73 
20 4,90 9.18 5.41 12.54 3.33 3.53 7.15 7.02 

10 20 9.17 14.47 9.32 18.17 6.60 5.43 11.70 12.01 
50 10.77 15.82 11.68 19.10 8.60 7.03 13.30 13:15 

1.0 5 10 2.61 5.43 3.46 4.41 1.05 0.58 3.22 4.01 
20 2.80 5.74 3.70 4.63 1.12 0.65 3.54 3.23 

10 20 5.50 8.51 6.53 7.69 2.37 1.69 6.11 5.78 
50 7.23 10.28 8.45 9.42 3.64 2.64 8.40 7.89 

1.6 5 10 0.43 0.09 0.66 0.11 0.13 0.06 0.34 0.45 
20 0.48 0.11 0.69 0.16 0.18 0.08 0.39 0.63 

10 20 1.12 0.48 1.47 0.39 0.43 0.23 0.73 0.78 
50 1.80 0.93 2.33 0.66 0.79 0.49 1.22 1.02 

Table 7 
Percentage 102 fp of false acception of Ho for 8 distributions and test 3 

Number of distribution in table 1 
d 1020: 102p 1 2 3 4 5 6 7 8 

0.6 5 10 10.36 19.47 12.60 25.36 9.81 8.86 17.46 16.79 
20 18.90 29.87 21.68 34.84 17.74 16.80 27.21 22.75 

10 20 18.91 30.09 21.74 35.35 17.67 16.57 27.20 27.15 
50 40.44 49.59 43.46 53.64 37.96 36.37 47.72 45.12 

1.0 5 10 6.56 12.72 8.72 12.36 3.77 3.02 9.80 10.25 
20 12.44 19.85 14.88 18.69 8.70 7.28 16.19 15.80 

10 20 12.77 20.34 15.31 19.25 8.86 7.36 16.58 16.03 
50 27.84 34.33 30.88 33.71 23.04 21.12 31.45 29.50 

1.6 5 10 1.75 0.59 2.14 0.04 0.82 0.61 0.94 0.99 
20 4.19 2.01 4.76 0.34 2.30 1.82 2.48 2.12 

10 20 4.47 2.17 5.05 0.36 2.48 1.95 2.78 2.55 
50 14.01 10.99 13.71 6.58 10.71 9.29 11.74 10.79 

---"--------_. 
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A Test for Exponential Regression and its Robustness 

DIETER RASCH AND ERHARD SCHIMKE 

Abstract 

We consider the regression model Yi = IX + P exp (y xi ) 
+ ei (y < 0) with i. i. d. error variables ei with E(ei) = 0, 
V(ei ) = a2• By simulation experiments we investigate the 
possibility of using the elements of the sequence V A (n) 

(n = 4, ... ) as approximations of the variance V(D) of the 

least squares estimator-D' of /J' = (J:, p, r) = (N" .1", Hal. 
Here VA (n) is equal to " 

v A(n)= [t g'(Xj.tt)g(Xj.tt)f with 

g(Xj.tt)= (g,(Xj.tI). g2(Xj.tt). g3(Xj.tt)). 

gj(Xj.H)= 3~. f(xj.tt) and f(xj,O)=a+,Bexp(yxJ 
J 

We find that approximations for the estimation problem 
are already good for n = 4 and very good from n = 6 on. 
Tests and confidence intervals in respect of r can easily 
be constructed with sufficient accuracy from n = 4 on. 
We also investigate the robustness of the proposed test 
against non-normality. 

1. Introduction 

We consider the exponential regression model of the 
form 

We use the following abbreviations 

n n n n 

A= J; eYXj , B= J;xje"Xj. C= J;e2YXj . D= J;xje 2)'Xi. 
j~1 j~1 j~1 i~1 

If we replace )' by its least squares estimate c we write 
A /'. /, 

A, B, ... ,G. 
~ 

It is well known that 1} is consistent (Malinvaud (1970» 
and that 

is asymptotically N [0;1, ()'2n V A(n)l 
where 

A 

C v A(n)= (~ 
,BB ,BD 

,BB )_1 
,BD 

,B2E 

CE-D2 

1 BD-AE 
LJ 

t(AD-BC) 

(Jennrich 1969), 

BD-AE 

nE-B2 

1 -(AB-nD) 
,B 

( 5) 

1 -(AD-BC) 
,B 

1 -(AB-nD) 
,8 

1 
-(nC-Al) 
,82 

(I) with LJ = n (CE - D2) + 2ABD - AlE - B2C. 

and limit ourselves to the parameters P < 0, )' < 0 (Q = 
R' X R- X R-), a case which often arises in describing 
growth or production functions. The e j may be i. i. d. 
random variables, in the main part of the work we con­
sider the normal case. It is well known that the reali-

~ ~ 

sation 1}' = (a, b, c) of the least squares estimatior 1} = 
(a, b, c) is obtained by first computing c iteratively from 

h(c)= (F- yA) (6- ~AB) - (c- 1 A2) (c- yB) =0 
, n 

and then calculating a and b from 

and 

respectively. 
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_ b /', 
a=y--A . n 

G-vB b= . 
D-!AB 

n 

(2) 

(3) 

(4) 

It is the aim of this paper to find by simulation experi­
ments a lower bound no for n such that, for n > no, 

The problem of testing hypothesis and constructing con­
fidence intervals with respect to r was discussed by Bates 
and Watts (1981), Beale (1960), Bismarck et a1. (1974), 
Brandt (1973), Broemling and Hartley (1968), Gallant 
(1975 a, b), Halperin (1963), Halperin and Mantel (1963), 
Hartley (1964), Maritz (1962), Milliken and Graybill (1970), 
Milliken (1978), Schmidt (1979, 1980, 1982, 1983), Sunda­
rary (1978), Williams (1962) and in most cases solved 
approximately or asymptotically. 
Exact methods for constructing confidence intervals (also 
used to obtain tests) are often difficult or lead to difficult 
interpretations. 
From theorems of Gallant (1975 b) and Schmidt (1980) 
we find that 

Z= (C-YO)2LJ,82 
(nC-N)s2 (7) 



is asymptotically ([or y = }'o central) chi-square distributed 

with one d. f. if 

n 

s2=_I_I'(Yi_a_beCXi)2 (n::::4) (8) 

n-3 i~1 

is used as an estimator of 112. 

So with 1)' = (Yj, ••• , Yn ) 

{
L if z> x2(U - ,,') 

k(l)) = 
O. otherwise 

will be an asymptotical IX*-test for the null hypothesis 

(9) 

(10) 

Furthermore we know from Gallant (1975 b) that. for a 
normal error distribution. 

z=F+ e, 

so that F under Ho is F-distributed with one and n - 3 
d. f. and e converges in probability to zero. In section 3 
we investigate the small sample properties of a modifi­
cation of (7) which, we conjectured, has an approximate 
t-distribution (central under Ho and non central otherwise). 
The conjecture was based on the asymptotic properties 
of (7) and on the results of section 2. In section 4 we 
discuss the robustness of the test based on the statistic 
of section 3. 
In the simulation experiments we used the program 
ZZGD to generate pseudo-random numbers from a uni­
form distribution in (0; 1) and transformed them by the 
program NV01 into normally distributed random num­
bers (see Feige et a!. (1984) on page 30 n. for details). 

2. Small Sample Distribuf.ion of a, b, c and S2 

The simulation experiment was based on a parameter 
configuration of a real growth process. Rasch (1970) fitted 
an exponential regression function to growth data of 
cattle. For the wither height for instance the following 
estimates for 0 ~ xi ~ 60 month were found: a = 133, 
b = -56, c = -0.068, S2 = 1.04. Without loss of generality 
we used c:c =0 to save computing time and we put (12 = 1. 
The simulation experiment for this section was done in 
two parts. In part I we considered 48 (P, y)-combinations 
of y = -0.10(0.01)-0.03 and P = -80(10)-30, n = 14 
and equidistant points xi E (0; 65). This part led to the 
conclusion that the influence of (P, r) is not so great as 
expected, and therefore we used only 12 combinations 
(P, y) for further investigations. Part I was realized with 
N = 1000 samples for the 48 parameter combinations. 
Part II was realized with N = 5000 samples for the 12 
parameter combinations of ?' = -0.09(0.02)-0.03 and P = 
-70(20)-30 fore n = 4 and n = 6 equidistant xi E (0; 0.65) 
respectively. For both parts in each of the N samples we 
added a N(O; 1) pseudorandom number to each of the 
n values 

;'Xi . 
{Je (1=1. .... 11) 

and estimated IX = 0, p, y and (12 = 1 by (3), (4), (2) and 
(8) respectively. For the N samples we calculated the 
mean, variance, skewness and kurtosis of the empirical 
distribution of a, b, c and S2, and we also calculated the 
correlation coefficient r S,c between the residual standard 
deviation s and the estimate c of y. Furthermore we com­
puted the empirical covariances of the vector (a, b, c) and 
the determinant of the empirical covariance matrix of 
this vector. 
Tables 1, 2 and 3 contain the means and variances of 
the estimates of IX, p and y from N = 5000 samples for 

n = 4 and 6 and from N = 1000 samples for n = 14 for 
the (P, y)-values used in part II of the experiment. More 
information for n = 14 and results concerning the co­
variances and the determinant can be found in Rasch 
and Schimke (1932). 

We see that a and b are a little biased especially for 
y = -0.03, but th~ relative bias (for instance for c:c = 130) 
is small. The bias of c is negligible and decreases with 
increasing n. We can thus state that c is nearly unbiased 
for n ~ 10. Empirical and asymptotic variances of a, b 
and c are also in good agreement for n = 4; agreement 
is worst for a and best for c. The correlation coefficients 
between c- and s-values (s square root of 82 in (8») lie 
between -0.013 and 0.026 for n = 4 and between -0.016 
and 0.044 for n = 6 so it seems that sand care uncorre­
lated and also independent. 
Goodness of fit tests were performed to test the hypo­
thesis Ho" that c is normally distributed and Ho/ that 
n-Ris2 .' • 
--- IS chi-square distributed with n - 3 d. f. 

(J2 

The results are contained in table 4. The null hypothesis 
HOn2 was at the 5 %-level in no case rejected. In table 4 

(fj _qj)21 . 
we have X·=-----wlth empirical. (fj) and theoretical 

J 'I'j I 
(rp j) absolute frequency in class j. The empirical skew­
ness and kurtosis values are in good agreement with the 
acceptance of the corresponding distributional hypothesis. 
as can be seen from table 5 taking into account that a 
random variable z with chi-square distribution with v d. f. 

2 
has mean v, variance 2 v, skewness )'1 = 21 vand kurtosis 

'h= I -

12 
v 

Summarizing it seems that most of the assumptions 
needed for a statistic 

( II) 

A (AA A) A AA A A A A 

with A=n CE-D2 +2ABD-A2E-B2 C 

to have a Student distribution with n - 3 d. f. also for 
finite n if y = Yo are fulfilled. But we do not know whether 

A 

c is independent of C and A, and other difficulties may 
arise from estimating V A (c), so we had to investigate 
the properties of a test based on (11). 
3. Properties of Testing Ho: y = yo by the Statistic (11) 
The null hypothesiS 

Ho : y = yo 

wes tested against 

HA : y =1= yo 

in N = 10 000 samples in a simulation experiment per­
formed in an analogous manner to that dealt with in 
chapter 2 for the twelve (P,y)-combinations of part II, 
with n = 10 and for four (~, y)-combinations and n = 4 
after we found that n = 4 is acceptable in the normal 
case (table 14). For n = 9 we also performed a simula­
tion with (j2> 1 and found that the restriction on (j2 = 1 
is without loss of generality (table 15). 
Tables 6 to 10 give the relative frequencies of rejection 
of Ho under the null hypothesis and for some values of 
the noncentrality parameter for first kind risks a* = 0.01, 
a* = 0.05 and a* = 0.10. The results are easy to interpret. 
The test based on the statistic (11) can be used if n ~ 4. 
The properties of the test of Ho by (11) with the per­
centiles of Students distribution with n - 3 d. f. are nearly 
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independent of (P, y). For nz 4 this test is approximately 
an a*-test if a* z 0.05, and it seems that it as also almost 
uniformly most powerful unbiased (in this connection 
see figure 1). 

So we found that the test 

k(t)=(l, if t>t(n-3J- ~*) 
0, otherwise 

is approximately a uniformly most powerful unbiased 
a·-test (a* = 0.05). The properties for a* = 0.01 are also 
not bad. Therefore, and because c is nearly unbiased 
for y, 

are the limits of an approximate (1 - a*) confidence 
interval for y. 

4. Robustness of the Test Investigated in Chapter 3 

The t-test based on test statistic (11) seems to be fairly 
acceptable from n larger than or equal to 4. To investi­
gate the behaviour of the test for non-normal distributions 
we generated six distributions by Fleishman's power 
transformation as described in detail by Guiard (1984) 
with the same sample size n = 4. We characterized the 
non-normal distributions by their skewness yl and kur­
tosis y2' and simulated 10000 runs of t-tests for each of 
the four extreme combinations of P = -30 and P = -70 
with Y = -0.03 and y = -0.09 to save computing time 
and for each of the distributions characterized by (Yh Y2) 

as follows 

Yl 0 0 0 1,5 2 

Y2 1,5 4 7 1,5 4 7 

Table 11 contains the percentages of rejecting Ho if it is 
true for three values of a*. The behaviour of the empi­
rical power function can be seen in tables 12 and 13 for 
two (P, y)-pairs. We find that with only few exceptions 
the t-test based on (11) is e-robust with e = 0.2 a* and 
that the empirical power function is nearly the same for 
all distributions, including the normal one. 

5. Definition of the Robustness of a. Test and Planning 
the Sample Size of a Simulation Study 

Following Rasch and Herrendorfer (1981) we define the 
robustness of a test as follows 

Definition: 

Let <p(t» be a test for the hypothesis 1} = 170 based on a 
sample t) and let <p(t» be an a*-test if the distribution g 
of the components of t) is a element of G. Then <p(t» is 
called c{a*)-robust in the class H:,) G of distributions if 

Max 1",* -""l~S;d"'*) 
hEH 

where ah is the size of the test for a given element of H. 
In an analogue way robustness with respect to the whole 
power function can be defined. 
We usually use c{a* = 0.2 a* (20 %-robustness). 
To determine the size of a simulation experiment we 
need a precision requirement. We will estimate a proba­
bility P by a confidence interval with coefficient 1- ac 
in such a way that the half expected width of this inter­
val is not larger than £5 that is E(d) :'0: £5, Then with the 
normal fractile the sample size needed is given by 
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u2 "c P (1-P) 
1--

N = ___ 2-:-__ _ 

62 

We will estimate by simulation the first kind risk a* 
of a test (a* < 1i2). The sample size increases if a* in­
creases to 112. So we propose to use for P in the above 
formula the conservative value P = a* + e(a*) = a* + e 
and we are on the safe side. If we choose a* = 0.05 we 
obtain the following sample sizes 

0.001 0.003 0.004 0.005 0.007 0.010 

0.005 199668 22186 12480 7987 5547 1997 

0.010 216667 24075 13542 8667 6019 2167 

For e(a*) = Ii = 0.2 a* = 0.01 (a* = 0.05) we found N = 
10000 runs as a reasonable choice and so 10000 runs 
were performed in each paper of the research group of 
Dummerstorf -Rostock. 
Concl usions: 

The test statistic t = ) z is a 20 %-robust (approximately) 
a*-test of Ho: y = yo (against Ho: y + yo) in the Fleish­
man-system (1 ~ (12 ~ 16 if 0 ~ x ~ 65). 
Acknowledgement: 
The authors thank Mr. Rieman (Computing Center of 
the Wilhelm-Pieck-Universitt) Rostock) for helping to 
perform the simulations on an ES 1040. 

0 ,9 

0 , 8 

0 ,7 

0 ,6 

0 , 5 

0 ,4 

0 , 3 

0 ,2 

0 ,1 

- --~, --- - ------ -~-
" " , \ 

'\ \ . 
\ \ 

\ '. 

- .... . - ~. 0 ,1 0 

\ 
\ \ 

\ " 
\ \ 

\ \, 
\ 

\ . 
\ 

\ \ IR • 0 ,0104 

f R • 0 , 0509 

I II • 0 ,1002 

~+--+~--+-~-+~r-~-+~--+-~~--- ~ 
- .0G8 -.065'_.062-.0$9_.05& - .OS3 -.0~1 -.Ol~ -.CIH_. OJ8 -.035_. 032 

t=-·os 

Figure 1 
Relative number of rejections for 10000 tests (n = 10, normal 
case) 
Relative rejections for 1000 tests 

Table 1 

Means, empirical and asymptotic variances of the estimates 
of a from N samples of size n = 4 (N = 5000), n = 6 (N = 
5000) and n = 14 (N = 1000) 
--------------, ... _.-----'-----_. - ------------_.-- --

AA A 

-p -102)' n 10:1 a 1O's2 a 
1O,CE - DO 

A 

/1 
- - ------"-,,---- ----------_._- -----------

30 3 4 520 104309 80077 
6 644 98099 61368 

14 263 39213 33850 
fj 4 147 19734 18716 

6 125 13575 12998 
14 128 7283 6552 

7 4 55 10502 9899 
6 52 6740 6330 

14 27 3087 2929 
9 4 35 7197 7308 

6 2 4458 4415 
14 -12 1820 1921 

---------



Table 1 continued 

50 

5 

7 

9 

70 3 

4 
6 

14 

4 
6 

14 

4 
6 

14 

4 
6 

14 

10" a 

310 
279 
210 

70 
77 
25 

30 
45 

100 

23 
20 
1 

93815 
68084 
37041 

19159 
13069 

6371 

9699 
6442 
2755 

6829 
4437 
1963 

Table 2 continued 

,',/ 

10ICE-De -~ _10ly n 

80077 
61368 
33050 

18716 
12998 

6552 

9899 
6330 
2929 

7308 
4415 
1921 

1 

70 3 

5 

7 

9 

Table 3 

4 
6 

14 

4 
6 

14 

4 
6 

14 

4 
6 

14 

-b 

70.297 
70.125 
70.173 

70.081 
70.154 
70.061 

70.054 
70.014 
70.027 

70.018 
70.020 
70.038 

85366 
55038 
25661 

26924 
18477 

8424 

18955 
14379 

8627 

17216 
13641 

8382 

, A 

nE-Bl 
10' --A--

78040 
54754 
26131 

26069 
18251 

8984 

19102 
14455 

8541 

17031 
13557 

9079 

n 11 

4 
6 

14 

4 
6 

14 

301 
124 
21 

75 
54 
22 

87822 
62070 
33320 

19257 
12948 

80077 
61368 
33850 

18716 
12998 

Means, empirical and asymptotic variances of the estimates 
of v from N samples of size n = 4 (N = 5000), n = 6 (N = 
ROOO) and n = 14 (N = 1000) 

7 

Table 2 

4 
6 

14 

4 
6 

14 

27 
20 
38 

20 
26 
29 

6227 

100:35 
6330 
2781 

7254 
4426 
1784 

6552 

9899 
6330 
2929 

7308 
4415 
1921 

Means, empirical and asymptotic variances of the estimates 
of {3 from N samples of size n = 4 (N = 5000), n = 6 (N = 
5000) and n = 14 (N = 1000) 

-{3 -102)' n 

30 3 

5 

7 

9 

50 3 

5 

7 

9 

4 
6 

14 

4 
6 

14 

4 
6 

14 

4 
6 

14 

4 
6 

14 

4 
6 

14 

4 
6 

14 

4 
6 

14 

-- b 

30.252 
30.625 
30.287 

30.135 
30.142 
30.166 

30.059 
30.048 
30.035 

30.035 
30.019 
29.987 

50.323 
50.307 
50.190 

50.041 
50.090 
50.042 

50.048 
50.033 
50.032 

50.039 
50.023 
50.021 

Table 4 

10' s~ 

99455 
60817 
31097 

26630 
18877 
10384 

19764 
14715 

8241 

17000 
13501 

9167 

89294 
61103 
29000 

26746 
17873 

9095 

18550 
14599 

7676 

16981 
13757 

9207 

/, .A-

10' nE--=-~ 

78040 
54754 
26131 

26069 
18251 

8984 

19102 
14455 

8541 

17031 
13557 

9079 

78040 
54754 
26131 

26069 
18251 

8984 

19102 
14455 

8541 

17031 
13557 

9079 

" n1 

30 3 

5 

7 

9 

50 3 

5 

7 

9 

70 3 

5 

7 

9 

4 
6 

14 

4 
6 

14 

4 
6 

14 

4 
6 

14 

4 
6 

14 

4 
6 

14 

4 
6 

14 

4 
6 

14 

4 
6 

14 
4 
6 

14 

4 
6 

14 

4 
6 

14 

- 102 C 

3.0419 
3.0131 
3.0003 

5.0441 
5.0096 
4.9830 

7.1139 
7.0338 
7.0120 

9.2821 
9.0685 
9.0320 

3.0117 
3.0048 
2.9942 

5.0236 
5.0050 
5.0035 

7.0358 
7.0011 
7.0122 

9.0888 
9.0182 
8.9923 

3.0015 
3.0054 
2.9894 

5.0079 
5.0000 
5.0044 

7.0194 
7.0043 
6.9992 

9.0462 
9.0071 
8.9940 

42825 
31315 
17485 

57989 
36954 
19003 

117038 
57809 
28176 

281944 
94522 
42822 

15535 
11273 

6571 

20416 
12792 

6762 

38258 
20216 
10343 

80225 
32718 
14700 

7751 
5519 
3060 

10475 
6538 
3672 

19887 
10319 

4777 

41813 
17001 

7160 

Results. of (A accepted, R rejected) chi-square tests for comparing the distribution 
of C wIth a normal one and the distribution of (n - :3)S2 with a chi-square distribu­
tion wlth n - :3 d . f. 

-{3 

30 3 4 
6 

14 

Ie 

17 
20 
21 

distribution of C 

k 
)' x 2 

...... J 
j=l 

120.8 
20.9 
13.4 

R 
A 
A 

--------

distribution of (n - 3)S2 

Ie 

17 
19 
Hi 

22.9 
16.9 
16.6 

A 
A 
A 

40897 
31024 
17600 

55525 
36577 
19723 

102754 
55664 
27958 

214550 
91272 
41707 

14723 
11169 

6336 

19989 
13168 

7100 

36991 
20039 
10065 

77238 
32858 
15015 

7512 
5698 
3233 

10198 
6718 
3623 

18873 
10224 

5135 

39407 
16764 

7660 
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distribution of c distribution of (n - 3)S2 
-~-,.--.--- -_ .. -_._- ---_. 

k k 

-fl -1(,2 ,. n k 2: 2 Xi HOi' k 2: 2 xi HOff2 
i=l j=l 

5 4 18 110.6 R 17 20.7 A 
6 18 66.2 R 19 15.6 A 

14 20 27.2 A 16 15.3 A 

7 4 24 351.7 R 17 9.7 A 
6 20 82.7 R 19 15.3 A 

14 23 15.0 A 16 10.1 A 

9 4 26 484.0 R 17 18.7 A 
6 22 57.9 R 19 11.6 A 

14 17 13.5 A 16 5.8 A 

50 3 4 12 23.9 R 17 8.9 A 
6 12 8.1 A 19 14.6 A 

14 6 2.3 A 16 13.9 A 

5 4 13 78.8 R 17 7.9 A 
6 12 31.9 R 19 13.6 A 

14 14 8.4 A 16 89.2 R 
7 4 17 154.2 R 17 13.4 A 

6 14 35.4 R 19 21.3 A 
14 17 22.8 A 16 12.3 A 

9 4 21 257.2 R 17 13.4 A 
6 16 38.3 R 19 16.7 A 

14 20 10.0 A 16 20.4 A 

70 3 4 9 11.0 A 17 16.2 A 
6 11 9.2 A 19 24.4 A 

14 18 15.6 A 16 13.3 A 

!'i 4 10 27.2 R 17 14.2 A 
6 12 13.9 A 19 24.7 A 

14 20 21.4 A 16 15.9 A 

7 4 12 48.9 R 17 10.5 A 
6 13 23.5 R 19 21.3 A 

14 21 21.0 A ](i 12.5 A 

9 4 17 164.4 R 17 7.4 A 
6 14 51.0 R 19 15.5 A 

14 14 17.1 A ]6 8.8 A 
----~------~-

-~--- ._---------

Table 5 

Parameters of the empirical distribution of c and S2 resp9ctively from N samples (N = 5000 for n = 4, 6; N = 1000 
f0r n = 14) 

distribution of c distribution of s'2 
------- - ------ - -----_.,--- --~---------------- ----- --- ----

-fl -102v n gl g" Mean Variance g, g2 
--~-----

,---------- -~ ~ --_._-------

30 3 4 -0.2954 0.1246 0.9893 1.9026 2.8011 12.0003 
6 -0.0957 0.4051 0.9776 0.6160 1.4768 2.7721 

14 -0.0883 0.0519 0.9932 0.1799 0.8918 1.1473 

5 4 -0.4558 1.0219 1.0272 2.1822 2.8333 11.5235 
6 -0.2493 0.0971 0.9846 0.6570 1.6870 4.8592 

14 -0.0499 -0.3466 1.0196 0.1866 0.6398 0.2735 

7 4 -0.6351 1.0472 1.0086 2.0349 2.7842 11.0562 
6 -0.2426 0.1404 0.9943 0.6490 1.5658 3.2821 

14 -0.0945 0.1060 0.9994 0.1673 0.7754 0.8410 

9 4 -1.4675 5.0798 1.0102 2.0862 2.6872 9.5870 
6 -0.3088 0.1625 0.9906 0.6241 1.6669 4.5617 

14 -0.1564 -0.0600 0.9999 0.1800 0.8390 0.8368 

50 3 4 -0.0918 0.0153 0.9643 1.8377 2.8475 12.4419 
6 -0.0085 -0.0699 1.0010 0.6568 1.5592 3.3761 

14 0.0886 0.0451 0.9910 0.1777 0.9095 1.1234 

5 4 -0.2569 0.0905 0.9870 1.9614 2.6927 10.0983 
6 -0.1432 0.1361 1.0091 0.6908 1.7057 4.3269 

14 0.0055 -0.1713 1.0268 0.1925 0.9765 1.8374 

7 4 -0.3518 0.2509 1.0232 2.1501 2.8586 11.3022 
6 -0.1815 0.0141 0.9966 0.6859 1.6741 4.1981 

14 -0.1349 -0.0559 0.9863 0.1747 0.7730 0.7504 

9 4 -0.5945 0.6436 0.9654 1.8487 2.8936 12.9046 

6 -0.1884 -0.0734 0.9894 0.6624 1.6542 3.8212 
14 -0.0703 -0.0732 0.9713 0.1751 0.8741 1.0290 

--~-,-----.-
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_ .. -~------ .. --~. -~ .. -

dbtribution of c distribution of S2 
--------- -.--~------ ------------------

-I) -102), n gl g2 Mean Variance gl g, 
------- - ------------ - -- -------~------~-- ------------- -

70 3 4 -0.0576 0.0072 0.9904 1.9733 2.6857 9.6423 
6 -0.0130 0.0675 1.0120 0.6926 1.5665 3.2508 

14 -0.0012 -0.1426 0.9950 0.1713 0.7858 1.0694 
5 4 -0.1764 0.1338 0.9785 1.8452 2.7524 11.7852 

6 -0.0746 -0.0458 1.0004 0.6653 1.6502 3.9828 
14 0.0845 0.1715 0.9886 0.1848 0.9558 1.9057 

7 4 -0.2854 0.3534 0.9825 1.9450 3.0306 14.8935 
6 -0.1119 0.0279 1.0045 0.6342 1.5309 3.5318 

14 -0.1994 0.1685 1.0024 0.1976 0.8870 0.8054 
!I 4 -0.3523 0.1894 1.0074 2.0231 2.6581 9.6403 

6 -0.1895 0.0479 1.0100 0.6845 1.6362 4.0455 
14 -0.0976 -0.1617 1.0055 0.1772 0.6417 0.2281 

---------
------~- -----~-~- ----

Table 6 Table 7 

Percentages of acceptance in 10,000 simulations of testing Percentages of acceptance in 10,000 simulations of testing 
Ho : I' = Yo against HA : ;' =1= Yo for {J = -30 (n = 10) Ho : I' = 1"0 against H A:;' =1= Yo for {J = -50 (n = 10) 

IX* = 0.01 IX* = 0.05 IX* = 0.10 
-102yo 

IX' = 0.01 IX' = 0.05 IX' = 0.10 
-10~yo -102y NA NA NA -102y NA NA !iA 
3 1.2 36.54 8.52 3.00 3 1.2 1.24 0.06 0 

1.5 55.62 20.98 10.07 1."5 7.27 0.43 0.13 
1.8 74.02 40.74 24.80 1.8 25.39 4.16 1.21 
2.1 87.29 62.54 46.84 2.1 55.59 21.51 10.52 
2.4 95.04 81.13 69.06 2.4 82.74 55.61 69.76 
2.7 98.30 92.19 84.84 2.7 95.86 85.14 75.26 
3.0 99.07 95.01 90.213 3.0 98.92 95.14 89.78 
3.3 97.84 91.02 84.18 3.3 95.49 84.19 74.27 
3.6 93.69 79.54 68.48 3.6 81.18 54.52 39.43 
3.9 85.31 62.23 47.53 3.9 54.72 22.57 11.47 
4.2 72.45 41.89 28.43 4.2 26.12 5.50 2.08 
4.5 55.51 24.!J2 14.04 4.5 8.28 0.80 0.22 
·1.11 38.65 12.67 5.7B 4.U 1.98 0.09 0.01 

5 3.2 42.76 11.09 4.37 5 3.2 2.21 0.01 0 
3.5 61.66 25.56 13.06 3.5 10.62 0.67 0.10 
3.U 78.03 45.50 29.84 3.U 31.40 6.12 2.03 
4.1 89.21 67.06 51.61 4.1 61.29 26.25 13.52 
4.4 95.71 83.28 71.84 4.4 U5.34 59.72 43.95 
4.7 98.61 92.82 86.10 4.7 96.71 86.72 77.10 
5.0 98.92 95.15 90.01 5.0 98.96 94.92 89.98 
5.3 97.78 90.87 83.52 5.3 95.83 84.79 75.26 
5.6 93.133 79.513 613.65 5.6 83.07 59.07 44.08 
5.9 135.913 64.06 49.99 5.9 60.17 27.86 16.24 
6.2 73.59 45.19 30.91 6.2 32.77 8.58 3.45 
6.5 59.07 28.15 16.82 6.5 13.23 1.63 0.36 
6.8 42.43 15.39 7.70 6.13 3.76 0.17 0.06 

7 5.2 62.01 24.47 12.01 7 5.2 10.39 0.51 0.013 
5.5 76.18 41.63 24.84 5.5 26.34 4.42 1.13 
5.13 87.18 60.01 43.213 5.8 51.03 17.37 7.87 
6.1 93.57 76.77 62.26 6.1 75.20 42.13 26.43 
6.4 97.12 138.04 78.39 6.4 90.99 70.49 55.55 
6.7 98.81 93.77 87.80 6.7 97.67 89.66 81.08 
7.0 99.07 95.20 90.11 7.0 99.08 94.89 89.96 
7.3 98.09 92.03 86.00 7.3 96.77 88.11 79.7B 
7.6 95.41 B4.75 75.67 7.6 88.68 68.62 55.26 
7.9 90.47 73.33 61.39 7.9 72.61 43.31 28.79 
8.2 82.97 59.63 44.85 8.2 50.83 20.25 10.90 
B.5 72.48 43.80 29.47 B.5 29.68 7.54 3.13 
B.U 60.2U 29.67 18.09 U.8 13.90 2.13 0.53 

9 7.2 78.24 43.75 26.B2 7.2 28.31 4.77 1.28 
7.5 87.06 59.68 41.81 7.5 48.83 15.01 6.22 
7.8 92.75 73.26 57.57 7.8 69.87 34.24 19.47 
ILl 96.09 B4.07 72.31 8.1 85.23 58.73 41.91 

8.4 97.84 91.32 83.07 8.4 94.30 79.60 66.78 
B.7 98.80 94.44 89.11 3.7 98.12 91.55 84.50 
!I.O 99.06 94.B1 90.21 9.0 98.93 95.18 89.59 
9.3 98.16 92.56 86.58 9.3 97.47 90.09 83.03 
9.6 96.26 87.78 79.74 9.6 92.44 77.15 65.52 
9.9 93.22 79.89 69.23 9.9 82.16 57.57 43.29 

10.2 88.30 69.59 56.70 10.2 67.25 36.71 23.37 
10.5 81.81 57.61 44.03 10.5 49.27 19.61 10.24 
10.8 73.53 45.51 31.43 10.8 31.93 8.56 3.58 

.. _------------
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Tabie Ii 

Percentages or acceptance in 10,000 simulations of testin:j 
Ho : Y = Yo against H A : ; =1= )'0 for {3 = -70 (n = 10) 

3 

5 

7 

Table 9 

1.2 
1.5 
1.8 
2.1 
2.4 
2.7 
3.0 
3.3 
3.6 
3.9 
4.2 
4.5 
4.8 

3.2 
3.5 
3.8 
4.1 
4.4 
4.7 
5.0 
5.3 
5.6 
5.9 
6.2 
6.5 
6.8 

5.2 
5.5 
5.8 
6.1 
6.4 
6.7 
7.0 
7.3 
7.6 
7.9 
8.2 
8.5 
8.8 

7.2 
7.5 
7.8 
8.1 
8.4 
8.7 
9.0 
9.3 
9.6 
9.9 

10.2 
10.5 
10.8 

0.01 
0.21 
2.70 

21.31 
61.91 
92.50 
99.06 
91.97 
62.10 
22.75 

3.77 
0.31 
0.02 

o 
0.22 
4.60 

26.37 
67.86 
93.41 
99.10 
92.51 
65.44 
27.61 

6.63 
0.83 
0.04 

0.31 
3.09 

16.30 
46.66 
79.10 
95.46 
99.09 
94.34 
76.80 
45.76 
18.21 

4.73 
0.88 

3.46 
13.84 
36.69 

6.04 
87.80 
96.94 
98.89 
96.06 
84.87 
64.81 
38.70 
18.33 

6.23 

o 
o 
0.10 
2.80 

28.00 
75.65 
94.97 
74.86 
29.36 
4.13 
0.19 
0.01 
o 

o 
o 
0.02 
1.00 

15.20 
61.94 
89.80 
62.63 
16.39 
1.39 
0.04 
0,01 
o 

o 0 
o 0 
0.10 0 
4.52 1.35 

32.47 18.45 
78.61 66.22 
94.99 89.86 
76.65 63.90 
33.08 20.19 

6.49 2.58 
0.46 0.08 
0.02 0 
o 0 

0.01 0.01 
0.05 0.01 
1.69 0.36 

14.20 5.92 
48.46 32.54 
83.71 72.61 
94.80 89.75 
81.74 71.43 
47.56 32.91 
16.42 7.83 

2.96 1.06 
0.35 0.11 
0.06 0.01 

0.07 0.01 
1.09 0.14 
8.27 2.83 

30.16 16.43 
63.70 47.09 
88.26 79.19 
94.77 89.64 
85.81 77.14 
62.41 47.43 
33.09 20.34 
12.37 5.14 

2.89 0.89 
0.50 0.09 

Percentages of acceptance of Ho : )'0 = -0.05 for different 
values y under the alternative hypothesis for n = 4 

3.2 
3.8 
4.4 
5.0 
5.6 
6.2 
6.8 

110 

95.07 
96.75 
98.42 
99.12 
98.23 
96.52 
94.46 

ex' = 0.05 
NA 

75.36 
84.28 
91.27 
95.08 
90.81 
83.26 
74.33 

53.25 
67.79 
82.89 
89.79 
82.26 
66.64 
52.32 

Table 10 
Percentages of acceptance of Ho : Yo = -0.05 for different 
values y under the alternative hypothesis for n = 9 

3.2 
3.5 
3.8 
4.1 
4.4 
4.7 
5.0 
5.3 
5.6 
5.9 
6.2 
6.5 
6.8 

Table 11 

3.52 
13.77 
35.77 
62.99 
85.46 
96.31 
98.77 
95.47 
83.31 
61.79 
39.:27 
16.89 
5.70 

0.11 
1.28 
8.07 

29.56 
61.64 
86.64 
94.20 
84.70 
60.10 
31.03 
11.02 

2.58 
0.42 

IX' = 0.10 
NA 

o 
0.20 
2.82 

15.99 
46.13 
77.73 
89.25 
75.94 
45.66 
18.94 
4.85 
0.83 
0.12 

Percentage of rejection of HI): r =)'0 if Ho is true from 
10000 runs for each of 24 (r[, Y2, {3, r)-combinations (n = 9) 

)'1 Y2 -{3 -10:ly ex' = 0.011X* = 0.05 IX' = 0.10 

o 1.5 30 
30 
70 
70 

o 4 30 
30 
30 
70 

o 7 30 
30 
70 
70 

1.5 30 
30 
70 
70 

2 7 30 
30 
70 
70 

1.5 4 30 

Table 12 

30 
70 
70 

3 
9 
3 
9 
3 
9 
3 
9 
3 
9 
3 
9 
3 
9 
3 
9 
3 
9 
3 
9 
3 
9 
3 
9 

1.12 
1.19 
1.43 
1.31 
1.22 
1.25 
1.42 
1.30 
1.15 
1.34 
1.49 
1.35 
1.17 
1.31 
1.54 
1.41 
1.12 
1.50 
1.66 
1.58 
1.16 
1.38 
1.57 
1.43 

5.32 
4.84 
5.72 
5.95 
5.30 
4.95 
5.68 
5.92 
5.41 
5.36 
5.69 
6.01 
5.57 
5.26 
5.87 
6.04 
5.55 
5.88 
6.01 
6.24 
5.54 
5.52 
5.89 
6.22 

10,34 
10.09 
11.05 
10.83 
10.42 
10.18 
11.17 
11.12 
10.58 
10.55 
11.25 
11.11 
11.00 
1D.42 
10.92 
11.03 
10.92 
11.25 
11.07 
11.34 
10.94 
10.67 
11.04 
11.13 

Power function 102(1 - fJ) of the t-test in the exponential 
regression of the hypothesis )' = -0.03 for different distri­
butions, {3 = -70, and IX* = 0.05 (n= 9) 

-10"y 

48 
42 
36 
30 
24 
18 
12 

Table 13 

)'[- and )'Tvalue of the distribution 
o 0 0 1.5 0 4 0 7 1 1.5 1.5 4 2 7 

100.0 99.9 
99.8 99.0 
70.6 71.1 

5.0 5.7 
72.0 71.3 
99.9 99.4 

100.0 99.9 

99.9 99.8 
98.3 98.0 
73.0 74.7 

5.7 5.7 
73.4 74.6 
98.7 97.7 
99.9 99.8 

100.0 
98.8 
70.0 

5.9 
72.1 
99.4 

100.0 

99.9 
98.0 
71.6 

5.9 
74.4 
98.8 
99.9 

99.7 
97.2 
73.2 

6.0 
76.1 
98.4 
99.9 

Power function 102(1 - fJ) of the t-test in the exponential 
regression of the hypothesis Y = -0.09 for different distri­
bUtions, fJ = -30, and a* = 0.05 (n= 9) 

_102y 

108 
102 
96 
90 
84 
78 
72 

;'1- and )'Tvalue of the distribution 
o 0 0 1.5 0 4 0 7 1 1.5 1.5 4 

54.5 54.7 
30.4 31.6 
12.2 13.2 

5.2 4.8 
8.7 10.2 

26.7 28.0 
56.2 55.5 

58.4 62.2 
35.0 37.3 
14.4 16.1 

4.9 5.4 
11.3 12.3 
31.6 35.6 
58.9 61.7 

55.1 
32.9 
13.9 

5.3 
10.1 
27.0 
55.1 

58.6 
36.0 
15.0 
5.5 

11.2 
30.7 
59.3 

2 7 

62.2 
39.5 
16.6 

5.9 
12.6 
35.2 
62.2 



Table 14 
Empirical first kind risks in percent (10,000 runs) of ~he t-test Hoi' : Y'= Yo = -0.05 and of analougous tests 

H" : a = ao = 0 and Hp : P ,= Po = -50 for n = 4 (1) 10 and half widths d,H' d ll and d" of the corresponding 
confidence intervals on a, {3 and y for the three nominal a'-levels 

------ ------ --- -- ----- -~-- - -~ .. _---

a* n=4 n=5 n=6 n=7 n=8 n=9 n = 10 
------ - ------

Ho" 1.01 0.84 1.37 0.99 1.04 0.91 1.03 
0.01 Hop 1.01 0.99 1.18 1.04 0.83 0.89 1.05 

HoI' 0.88 0.95 1.28 0.96 1.03 1.08 1.06 

HOa 5.01 5.03 5,03 4.63 4.49 5.23 4.87 
0.05 HOi! 4.82 4.92 5.10 4.77 4.61 4.98 4.77 

Eo;. 4.92 5.01 5.02 4.64 5.00 5.30 4.83 

Bo" 10.09 9.92 9.70 9.72 9.43 10.66 9.59 
0.10 HOI! 10.08 9.96 10.24 9.77 9.35 10.07 9.44 

Ell;' 10.21 9.82 D.68 tl.76 !J.93 10.64 9.58 

d" 69.90 10.94 5.79 4.70 3.94 3.48 3.16 
0.01 dl! 32.18 12.95 6.84 5.55 4.63 4,08 3.70 

dl' 0.2267 0.0:-147 0.0183 0.014D 0.0125 0.0111 0.0102 
d H 13.95 4.74 3.36 2.84 2.51 2.30 2.13 

0.05 dl! 16.40 5.61 3.97 :3.34 2.95 2.69 2.50 

d l' 0.0453 0.0151 0.0106 0.0090 0.0080 0.0073 0.0069 

dc< 6.93 3.22 2.49 2.18 1.97 1.82 1.71 
0.10 djl 8.15 3.81 2.94 2.57 2.31 2.14 2.01 

dl' 0.0225 0.0102 0.0079 0.0069 0.0063 0.0058 0.0055 

Table 15 
Relative frequencies of rejections (f), fu) and acceptions Ho : Y = Yo against 
H A : Y2 =l= Yo (values in percent) n= 9 and different a~-values 

-------- ------ -------

a* = 0.01 x* = 0.05 x* = 0.10 
,,2 f) fu f A f I 

1 0.5 0.5 99.0 2.4 
4 0.4 0.8 98.8 2.3 
9 0.3 0.7 98.9 1.8 

16 0.4 0.8 98.8 1.8 
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Comparison of Break Points of Estimators 

MANFRED RIEDEL 

Abstract 

The purpose of this note is the generalization of the con­
cept of the break point, the comparison of four break 
points and finally the illustration of these results for M­
and generalized L-estimators. 

I. Introduction 

The concept of the break point was introduced by Hampel 
(1968, 1971). The break point is a simple characteristic of 
nlbustness of a sequence (Tn: n = 1,2, ... ) of estimators. 
H is a measure for the smallest fraction in the departure 
from the parametric model which can carry the estimated 
value beyond all bounds. Maronna (1976), Maronna at al. 
(1979) and Huber (1981) used a modified version of the 
break point which is easier to handle. Recently, Rieder 
(1982) extends the concept to robust tests. Hampel (1975, 
1976, 1980) discussed a series of pratical aspects of the 
break point. The purpose of this note is the generalization 
of the concept of the break point, the comparison of four 
versions of the break point and the illustration of these 
results for M- and generalized L-estimators. 

2. Some Definitions 

Let (tJ, 'U) be a measurable space and M denotes the fa­
mily of distributions defined on (Q, 'U). We consider a 
parametric family cp = {P,j EM: ii E (-)} on fl and suppose 
that the parametric space (-) is a topologic space with 
a-·algebra Q3 generated by the topology. In robustness 
theory, the parametric model is not supposed to be ex­
actly true. For Q E M a departure from it is determined 
by the" E-neighbourhood" H f (Q) C M. Then a deviation 
of Q is defined by the class {H,.(Q): F f [O,l)} provided 
that (i) Ho (Q) = {Q} and (ii) for E1 < £2, H" 'Q C HF , '.Q. 

If we have a deviation {H (P ') I} for every ii E (-) so we 
1-, 1/ 

may define a deviation {H,} of 1) by setting 

H, = U HE' Pi' " . 
/IEN 

Obviously, an observation X with values in a space 1: 
endowed with a a-algebra ~ generates a parametric fa­
mily '0' = {Fil :F,7 = ,:P,1)X} on 'I and a deviation {G, :G, 
= (H,ix} of J, Here we have denoted the distribution 
for an observation X by (P)x' On the other side, if the 
observations Xl, X 2 ... are independent and identically 
distributed a prametric family 'J determines a parametric 
family cp, Moreover, a deviation of \Y may be extended to 
a deviation of 1) in which observations are independent 
and identically distributed. Hence, so far as we have 
dealt with independent und identically distributed obser­
vations there is an equivalence between the parametric 
families 1-~ and 'J as well as between their deviations, 
respectively. 
Let Tn E G be an estimator based on the observations Xli 

X 2, ' . " X n, As usually in the robustness theory, we are 
interested in the behaviour of a sequence (T n)of estimators 
in a deviation of a parametric family. A simple robustness 

characteristic is the break point of a sequence of estimators 
in a deviation of a parametric family, This characteristic 
is useful in practice by telling us, loosely speaking, "how 
far" the robustness of an estimator extends, Now, we in­
troduce the break points bH , bHg, be and bT , 

The break point bH • an enlargement of the break point 
used by Hampel (1968, 1971) is defined as follows: 

bH : = sup [,.: 't:/ ii E B 3 a compact set C iJ C€<) such that for 

every Q E H, (P ,j ) lim Q (Tn E CN) = 1)_ 
n+oo 

Originally, Hampel (1968, 1971) restricted himself to a 
deviation determined by the Prohorov metric. 
Let g: (-) -+ R be a measurable function, then (g 0 Tn) is a 
sequence of estimators. Denote its break point by bHg . 

Obviously, if g maps compact sets in compact sets then 
it is true that bH ~ bHg. On the other hand side, if for 
any numbers a,b ER. a<b, the set U: g~ii}E~a,b;} is 
compact then it follows that bHg ~ bH . It is convenient to 
say that (Tn) is consistent for Toe (Q) under Q if (Tn) 
converges in probability to the asymptotic value Too (Q), 

Then the break point be is defined as 

be: = sup I ,: V ,') E B 3 a compact set C,~ C B such that for 

every Q E": HE (Po) (Tn) is consistent under Q and 

Too (Q) 1:0 C,1j. 

Huber (1981) considered a special case of this break point 
and used a contamination deviation. 
Before we give the definition of the break point bT we 
recall the concept of estimators generated by a functional. 
First of all, denote the set of all distributions on :( by 
Mz . Let:DZ be the smallest a-algebra of subsets from 
M" determined by the property that any A E l..' the map 
M" E G ~ G(A) is measurable. For a point xn : = (xi> x~. 

... , xn) E: 'In the empirical distribution can be written as 

1 n 
F '=2:,5 

Xn" n i=l Xi 

where '\ stands for the distribution concentrated at x E 'I. 

It is now easy to see that the map 9:n 3 xn ' > F xn EM;, is 

measurable with respect to the a-algebra I~J1 and the pro­

duct a-algebra on 'In, 
Consider a functional T defined on D (T) C M;, with va­
lues in B which is measurable. The sequence (Tn) of esti­
mators is induced by the functional T if Tn = T (F xn) = 
T (F,x,. X, ... ,xn ,) for every natural number n. The as­
sumption about the functional T guarantees that Tn is 
really an estimator. Many of the most common estimators 
are determined by functionals. 
For the functional T we introduce the break point bT of a 
deviation {G,} of a parametric family 10' on 'I as follows: 

bT : = sup l': V ii E f) 3 a compact set Co C f) such that for 

every FE G, (F,j)' T (F) E Col-
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We remark that Maronna at al. (1979) considered this 
break pOint for a contamination deviation. This break 
point is essentially asymptotic and is often easier to cal­
culate than other break points. 
The break points behaviour is monotone in respect to the 

deviations. Let two different deviations {H,} and {H,} be 
given for a sequence (Tn) of estimators and a parametric 
family. Moreover, assume that for every 0 there exists a 

number -; E [0, oj such that H,eH?" i.e. the deviation {H,} 
is embedded in the deviation {H,}. Then we get for an 

arbitrary break point b ( {HE}) ~ b( {li,};' This inequality 
enables us to build up bounds for break points. 

3. Main Results 

As before, we consider a sequence (Tn) of estimators and 
a deviation {H,} of a parametric family cpo We begin 
with the comparison of the break points bH and be' 
Theorem 1. Let e be metric and locally compact. Then 

the break points bH and be satisfy 

(3.1) 

Proof. Let II E EJ and 0 < be' By the definition of be there 
exists a compact set CD C 6 such that for all QE H, (P,'l) 
the sequence (Q)Tn) converges weakly to r5Too (Q) E C ll · 

Choose now a neighbourhood U of C IJ for which the clo­

sure U is compact. Furthermore, we choose a neighbour­
hood C (Q) of Toe (Q) so that C (Q) C U. By a well known 
theorem (see Huber 1981, lemma 2.2, p.22) we get 

limsup Q (Tn eC(Q)C) ~ OT",(Q) (C(Q)C) = 0 
n .... '" 

(where ce denotes the compliment of C); hence it follows 

lim Q(TneC(Q»)=l. 
n .... '" 

(3.2) 

Since 

U C(Q)C U 
QED,(P,?) 

and (2) it follows that 

lim Q(TneU)=1. 
n~co 

As U is compact we obtain the assertion (1), since 0 < be 
and {) E e were arbitrary. 
We now give a sufficient condition for the equality in (1). 

Theorem 2. Let e be metric and locally compact. Suppose 
that for any 0 < bH md for any Q E H, the sequence (Tn) 
is consistent to Too (Q), Then we have be '" bHo 

Proof. It remain to show that bH ~ be' Lei ii E EJ and 
E < bH . Then there exists a compact set C,~ C e such that 
for every Q E H, (P,j.)' 

lim Q(TnECa) = 1. 
n~CD 

(3.3) 

Proving indirectly, we assume that for some Q E H, (P,?) , 
Toe (Q) Et CIJ' Thus there is a neighbaurhood C (Q) of Too(Q) 

such that C (Q) is compact and C (Q) n C,j = 0 because 
EJ is a Tickinov space. As in proof of theorem 1 we con­
clude that (2) is valid; but this relation contradicts (3). In 
this way we have established that for any Q E H, (P,~) 

we have Too (Q) E C,~; i.e. 0 ~ be' Consequently, we infer 
be ~ bH , since 0 was arbitrary. 
Finally, we investigate relations between the break points 
be and b T. In this case we suppose that (Tn) is induced 
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by a functional T and the deviation is determined by a 
deviation {G f } of a parametric family '(Y. The functional 
T is called regular if for any Q E M for which (Tn) is 
consistent we have Toe(Q) = T «Q)x). The next result fol­
lows directly from the definition of the break points be 
and bT. 

Theorem 3. If the functional T is regular then be '" bT. 

4. Applications 

Consider now the location model on R which is given by 
the parametric family It = {F,j: Fa (x) == F (x- iI), 11 E R} 
where F is a fixed distribution function on R. As a 
deviation {G,} we use the gross error deviation of Ham­
pel (1968, 1974) which is given by 

with H E MJ : = MR' 
Let 'I' be the set of all bounded functions tp : R --;. R which 
possess right and left-hand limits everywhere and satisfy 

Putting 

tp( (»): = lim tp(x) > 0 , 
x-+oo 

tp( - (»): = lim tp( - x) < 0, 

'v'x~O, O~'P(x)<'P«(»)' 

'v'x~O, 'P(-(»)<'P(x)~O, 

) 'P(x)F(dx)=O. 
R 

AY'(t,H): = ~ 'P(x-t)H(dx), 
R 

for tp E if'" and HEM) we may define two functionals 

and 

i\,(H): = inf (t:'v'u> t, AY'(u,H) <o}. 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

Obviously, we have - 00 <1"" (H) ~ T,I' (H) < N. Next 
we give the definition of M-estimators: The sequence (Tn) 
of estimators is called a sequence of M-estimators if for 
any natural number n the function Tn is measurable and 

Tn E [2:", (Fxnl 1\" (Fxnll It is not hard to see that 

!~, (F xn) and 1\" (F xn) are measurable. Further we want 
to show 

Theorem 4. For 'P E 'If we have 

(4.6) 

Proof. Because of analogy we only derive the break point 
of ! 'I"' We may set iI == 0 since the functional 1:, 'I' is 
translation invariant. Further, without loss of generality 
we suppose that tp(OO)-tp(-N)=1 andl/'(')~-l!,(-X). 
It is convenient to put t,(x):=!",«l-c)F+ofJx )' 

Using the definition of the functional .1:'1' we see that for 
any t < t, (x) 

(l-E)..l",(t,F)+ E'P(X- t) > 0 (4.7) 

and 



it is sufficient to show that neither the relation 

(4.9) 

nor 

(4.10) 

is true. 
In the case (9) we choose E, bT < E < 1j! (00) and see that 

_'ii' 

there exists a sequence (1, ,xn,') which is unbounded. 
We consider first the case where t, (xn) ~,' and 
xn - t,(xn) -+ r for some r. Applying now (7) to x: = xn . 
t: = t, (xn)-1/n we get 

In view of (3) and (4) we conclude that 

hence E ~ -1j! (- (0). The latter inequality contradicts (9). 

The case where t" xn ) -+ -00 is satisfied can be treated in 
a similar manner. 
In the case (10) we choose E, Vi (00) < r< bT and see 

--/1' 

again from the definition of b T that the sequence (t, (x n») 
,",,1/' 

is bounded for any sequence (xn). Assuming that for some 
sequence xn -+ - 00 we have t, \xn', > l' ~ 0 the inequality 
(7) implies 

(1- E) Av,(r =+= O,F) + E1j!( -(0) ~ O. 

Analogously as above, taking (3) and (4) into account we 
get e S 1j! (00); this relation contradicts apparently with 
(10). The case where xn -+ 00 is treated analogously. In 
this way the proof of (6) is completed. 
The following inequalities are useful to establish the con­
sistence of M-estimators. 

Lemma. For nondecreasing ~' E 'I', H Eo MJ and any se­
quence (Tn) of M-estimators, 

1:,/,(H) ~ liminf Tn ~ limsup Tn ~T,/,(H) a.s. 
n-+oo n-+co 

h 

(with respect to the distribution HEM for which XI> 

X2, .•• are independent and (H)X i = H for i = 1,2, ... ). 

Proof. Let t> T1j! (H). The strong law of large numbers 
applied to Xl-t, X2-t, ... gives 

a.s. 

case, in view of the lemma, the sequence of M-estimators 

considered is consistent and the functional T'l' = 2:,'1' = Tv­

is regular. Then theorem 3 and (13) imply bH = be' 
We remark that Huber (1981) restricted himself to mono­
tone increasing functions 1j! and considered a deviation 
determined by the Levy metric. 
Finally, we turn to L-estimators and start with their de­
finition. We endow 'lf with the supremum metric and 
introduce the a-algebra generated by the topology. If fl 

is a distribution on '[' then two functionals I,ll and T" are 
defined as follows: 

I,u(H): = ~·1:,/,(H).u(dlp). 
'f' 

t,u(H): = ~ Tv,(H),u(d'P). 
'{I 

provided that both integrals exist. Therefore, in analogy 
to M-estimators, a sequence (Tn) is called a sequence of 

L-estimators if Tn is measurable and Tn E [I fl (T x n), 

T ,II (FxnJl 
Assume that for non-decreasing 1j! there exists a unique 
solution a (1j!, c) of the equation A'I' (a(t!', c), F) = c for any 
c E (1j! (- (0), 1j! ("' )). It is convenient to put a ("', c) = -ex; 

for c ~ Vi (- (0) and a (1j!, c) = '" for c ~ li' (''''). Under this 

restriction we can derive the break point of 1:-,11 and Til' 

Theorem 5. Let fl be a distribution concentrated on non­
decreasing. 
Then 

bI >; = bTl' = sup Ie: 11 a(lp, -11'( -OO)e/(1- e)),u(d1/') I < (Xl, 

Il a( •. - ,(00),/(1- ,»)p(d.) 1< 00 j. 
Proof. Because of analogy we only derive the break 
point of ,I,ll' For increasing 1j! the function tF (*) also is 
increasing. Therefore, the lower and upper bound v and 
w for T (H) in GF satisfies, for c < bT , the equation 

----'I! ~II' 

(1- E))'I'(v, F) +eV'( - (Xl) = 0 

and 
For almost all wE Q there exists a natural number fl(J (w) (l-e);.,/,(W,F)+elp(OO) =0, 

such that A'I' (t, F xn) < 0 provided that n ~ no (w). Conse- respectively; i. e. 

quently, we get T'I' (.F xn) ~ t and tending with n -+ 00 we ( ) 
v=a 1/',-1p(-OO)e/(1-e) . w=a(lp.-lp(oo)e/(I-e)). 

obtain 

limsup Tv,(Fx ) ~ t 
n ........ oo n a.s. 

Since t was arbitrary we infer, finally, 

limsup Tn~1\,(H) 
n ~ 00 

a.s. (4.11) 

Analogously, we get the inequality 

liminf Tn ~ 1:,/,(H) 
n~OO 

a.s. (4.12) 

Both inequalities (11) and (12) show the assertion of the 
lemma. 
In view of theorem 4 and the lemma it is easy to see that 

for ~y sequence of M-estimators. If the functionals I-", 
and T '/' coincide then we get equality in (13). In this latter 

3* 

These relations also are true for all c because the func­
tion a (1j!,') is monotone decreasing for non-decreasing !p. 

Since the lower and upper bound of 1." (H) in G E is ex­
pressed by 

i a('P' - 'P( - 00 )e/ (1- e) ),u(dlp) 
'{I 

and 

I a(lp'-'P(OO)E/(I-e)),u(d1/'), 
'1' 

respectively the assertion of theorem 5 is shown. 
Note that Huber (1981, p.58) considered the a-quantile 
mean functional 

1-0< 

1 ~-1 T(H)=-- H (s)ds 
1-2", 

0< 
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which is a special case of 1.". In this case fl is concen­
trated on {11'p: p E [a, 1 - ((]} where 

~";:()()= ( ~ ~! :~~ 
- (1- p) if x < 0 

and the generated measure on [IX, I-IX] is the Lebesgue 
measure normed by 1 - 2 IX. Further, we see that 
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The Robustness of some Statistical Test. The Multivariate Case 

ALFREDO RIZZI 

L Introduction 

In this work some results will be shown, that were ob­
tained by means of Monte Carlo experiments and that 
concern the robustness of the following statistical para­
meters: 

Quadratic form of the mean; 
Determinant of the variance and covariance matrix I S I ; 
Hotelling T2; 
Correlation coefficient; 
Covariance; 

for bidimensional statistical variables. 
A set of 9 distributions is taken into consideration - be­
sides the normal one -, six of which are symmetric; they 
are described in paragraph 2. 
The sample size varies from 5 to lOO; the repetitions of 
the experiments are 3000. 
Studies about robustness - and we refer also to those of 
Monte Carlo type - more frequently concern the uni­
variate case; when the bidimensional case is taken into 
conSideration, the analytical problems that arise are such 
that the work becomes very difficult. 
In general, our results show that the analyzed parameters 
are not much robust. This happens, in particular, when 
the distributions from which the samples are drawn are 
not symmetric. 
Besides, we noticed that the robustness of the parameters 
does not change with a significant importance when the 
sample size changes. 
The results concerning the normal distribution, compared 
with the well-known theoretical ones, show that differen­
ces - due to the simulating procedure - are found at the 
most on the third decimal digit. 

2. The Distributions 

The bivariates that were taken into consideration in this 
work are the following: 

1) Normal distribution; 
2) U-shaped distribution with definition set over an 

ellipse; 
3) U-shaped distribution with definition set over a rec­

tangle; 
4) Uniform distribution with definition set over an 

ellipse; 
5) Uniform distribution with definition set over a rec­

tangle; 
6) X2 distribution; 
7) Hat-shaped distribution with definition set over an 

ellipse; 
8) Hat-shaped distribution with definition set over a 

rectangle; 
9) Pareto distribution; 

10) Gumbell distribution. 

3. The Parameters 

3.1. Taking into consideration the set of the 10 previously 
described distributions, for each one of the parameters 
described in paragraph 1 we computed the quantiles of 
the sampling distribution of such parameters at the levels 
1 II,,, 5°,'", 10 II II, 20 "/0, 50 "", 30 %, 90 °,/0, 95 % , 99 %, as well 
as the mean, the standard error, the indexes of asymme­
try and kurtosis. 

:u. Distribution of the quadratic form z'z 

It is well-known that if C is a sample of size n drawn 
from a population x -+ N(!l, E) 

then the distribution of the variable x usually has mean 
It and variance 1.'/n. Besides, if the original population is 
not normal, then the distribution of the sample is no 
longer normal, but is asymptotically normal. 
The quadratic form 

n(x - fl)' 1.'-1 (x - fl) = Fq. (1) 

is distributed like a X2 with m degrees of freedom. In the 
case we are studying - i.e. in the case of the standardized 
bivariate - the quadratic form is reduced to: 

nz' z = Fq. (2) 

that is distributed like a X2 with two degrees of freedom 
if the population is binormal; otherwise it is distributed 
like a X22 asymptotically. 
As far as the mean and the variance of (2) are concerned, 
we obtain: 

E(Fq.) = 2 
Var(Fq.) = 4 

"FQ. = 2 

The last two formulas hold in the normal case. 
In the tables we printed mean, variance, indexes of asym­
metry and kurtosis, quantiles of the distributions de­
scribed in paragraph 2 for the various parameters (the 
quadratic form is found in tables 2.1-2.3). In table 1. the 
minimum and the maximum values of the quantiles can be 
read for some values of n, with reference to 8 out of the 
10 distributions taken into consideration - Pareto and 
Gumbell distributions were excluded, since the behaviour 
of the parameters is absolutely anomalous in correspon­
dence with such distributions -. 
In particular, distributions 6a, 6b, 6c and 6d correspond 

2 2 2 2 .. . 
to 7.2,3' 7.3,1' 7.4, ;j' 7.5, Ii , while III the last row we pnnted 
the values of the parameters and of the quantiles of the 
theoretical normal distribution, so that it is possible to 
appraise the reliability of our simulating procedure. 
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As far as the quadratic form is concerned, the analysis of 
the tables shows that: 

The quantiles of the distributions are not much far 
from each other. 80, e.g., the range of the 95th quantile, 
for n = 100, is equal to the interval 5.70-6.40; for 
n = 10, it shrinks to 5.70-6.31. Among the four parame­
ters taken into consideration, the quadric form can be 
considered as the most robust one, both when the 
distributions change and when n changes. This also 
holds when the original population is strongly asym-

. 2 
metnc (e.g. X2,3' Pareto and Gumbell distributions). 
The values corresponding to the normal distribution 
are found on the centre of the range. 
In correspondence with all the distributions the distri­
bution of the quadratic form is highly sk~wed to the 
right; this is also verified when n = 100 and does not 
changes perceptibly when the starting distribution 
changes. 
The shape of the sampling distribution of the quadric 
form is far from normal. The indexes of kurtosis for 
n = 100, are all greater than four; when n incr;ases, 
they do not tend to decrease. The highest values of 
such index are found in correspondence with Pareto 
and Gumbell distributions. 
The width of the range within which the quantiles 
vary (when the distribution of the population from 
which they are drawn changes) is rather small. In fact 
the relative width 1), e.g., of the 95th quantile is appro­
ximately equal to 11 % when n = 100; such a value 
does not change perceptibly when n changes, so that 
the robustness of the quadratic form is confirmed. 

3.3. Distribution Of the determinant of 8 

The matrix of variances and covariances corresponds, in 
the multivariate case, to the univariate case. In the multi­
variate case we notice that the scalar I E I - which is 
called generalized variance - can be associated to an 
index of multiple variability. 
By the same token, the generalized variance of a sample 
C is given by: 

If the population x is N(ft, E), when the sample C chan­
ges 181 is distributed like the product of X2 with decreas­
ing degrees of freedom, i.e.: 

IHI = (n-l)'''ISI 
lEI 

where the density function of IBI is: 

f(IBI) = X~' X~_I' .... Xv-m-I 

Therefore we can compute the moments of 181; in the 
standardized case we obtain: 

E(ISI)= n-2 
n-l 

Var(ISI)= (2n-l)(2n-4) 
(n _1)3 

Taking into consideration the tables we note that: 
- The sampling distribution of the determinant I sl of 

the variance and covariance matrix drawn from a 

1) Taking into consideration the interval aJ-a2 we define 
absolute width: a2-a l , and relative width: 2 a2-~J 

a2+a l 
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population with hat-shaped density function is, among 
the considered distributions, the one that is more simi­
lar to the distribution obtained under the hypothesis 
that the population from which the sample are drawn 

is normal. The less similar one is A.:I (we neglect Pa­
reto and Gumbell distributions). 
The indexes of kurtosis show that, as far as the sym­
metric distributions are concerned, the distribution of 
181 is similar to a normal distribution; they are smal­
ler than the index of kurtosis of the sampling distri­
bution of 181 under the hypothesis that the popula­
tion is normally distributed. 
The standard error of the distribution of 181, when the 
distributions are symmetric, is smaller than the one of 
the distribution of 181 under the hypothesis that the 
population is normally distributed. 
Important differences are not found in the behaviours 
of the sampling distribution of 181 in the case of sym­
metric populations over elliptic or rectangular defini­
tion sets. 
The distribution of 181, in all the cases taken into 
consideration, is slightly skewed to the right. 
The width of the range within which the quantiles of 
181 vary is not very large; let us consider, e.g., the 
95th quantile: for n = 100 it lies in the interval 1.11-
1.74. Besides, when n increases, we notic that the rela­
tive width shrinks sharply: it starts from 70 % when 
n = 10 and reaches 44 % when n = 100. We should 
verify whether or not such a trend also holds when 
n reaches very high values; the obtained results, any­
way, let us confirm that 181 is rather robust as regards 
the various distributions taken into consideration. This 
holds for values of n higher than those found for the 
quadratic form. 

3.4. Hotelling T2 distribution 

Let us consider the usual sample C drawn from a normal 
population x -+ N (ft, E) and compute the scalar: 

( 3) 

where: 

and: 
n 

S-I= n~ll:'(Xi-X)(Xi-X)' 
1=1 

When the sample C changes, the scalar t2 is distributed 
according the T2 variable - studied by Hotelling - with 
n -1 degrees of freedom, whose density function is: 

( 
r(~) (1+T2 )n/2 '.:2- 1 

f(T2)= (n_l)m/2r(~)r(n-m) n-l (T2) 2 

2 2 fot'T2>0 

o for T2 ~O 

(4) 

It is possible to show that the following T2 transform: 

F= n-m T2 
(n-l)m (5) 

is distributed like the Fisher-8nedecor F with m and 
n - m degrees of freedom. 
On the basis of (5) it was. possible to compute mean and 
standard error of T2 that can be used when resorting to 
Bienaime-Tschebyeff theorem. 
Recalling the mean value and the variance of Fisher F 
variable, we obtain on the basis of (5) : 



E(T2)=2(n-l)E(F _) 
n-l 2,n 2 

2(n-l) n-2 2(n-2) 
=-----=---

n-2 n-4 n-4 

4(n -1)2 
Var(T2)= 2 Var(F2 n-2) 

(n-2) , 

4(n _1)2 2(n - 2)2(n - 2) 

(n - 2)2 2(n - 4)(n - 6) 

4(n-1)2(n-2} 
(n - 4)2(n - 6) 

In this case the interval of T2 is [0; ItT2 + K (iT'] where, 
for K = 12, we find at least 99,31 % of the samples, 
In the experiment, the remaining 0,69 % was recorded in 
a vector in increasing order. 
In table from 4.1 to 4,3 we printed the values of the para­
meters of the T2 distribution for some values of n and for 
the distributions described in paragraph 2, 
By analyzing such tables we remark that: 

The highest differences with respect to the sampling 
distribution of T2 for samples drawn from a normal 

population are found in correspondence with x~. :1' 

The width of the range within which the quantiles of 
T2 may vary is very small; for n = 100, for instance, 
the 95th quantile varies within the interval 6,09-6,79. 
The standard error of the sampling distributions of 
T2 for samples drawn from symmetric distributions is 
very close to the one of the distribution deriving from 
normal populations. For n = 100, the maximum diffe­
rence is 0.15. 
In all the studied cases the sampling distribution shows 
indexes of kurtosis whose values are very far from 
zero; for n = 100 the kurtosis of the normal distribu­
tion is 4.8, while the kurtosis of all the other distribu­
tions is greater than 6.7. 
The sampling distribution of T2 is always strongly 
skewed to the right. 
The sampling distribution of T2, when the samples are 
drawn from the Gumbell distribution, shows a be-

haviour which is similar to the one of xtB' 
As far as the normal distribution is concerned, the 
quantiles are found within the left half of the com­
puted range. 
The T2 test is rather robust when the distributions 
vary; if we consider the 95th quantile, we see that the 
relative width of the range within which such a quan­
tile may very is equal to 62 % when n = 10 and shrinks 
to 11 % when n = 100. 

3.5. Correlation coefficient 

Let us consider x = (Xi' x2, ••• , Xn) as a size n sample 
drawn from a bidimensional normal population: 

The maximum likelihood estimate of e is the following: 

Besides, it is well-known that if x is normal and e = 0 
then the variable 

w=Yn-2.r/Vl-r 2 

is distributed like a Student t with n - 2 degrees of free­

dom. 

Since dw/dr = (1 - r)-::/2, the density function of r is the 
following: 

(7) 

This holds under the hypothesis that x is normal, with 
independently drawn samples and e = O. 
From (7) we see that the function is symmetric with 
respect to the origin, while for n > 4 its mode is found in 
correspondence with r = 0 and the contact order with the 
r axis in ± 1 is of (n - 5)/2 when n is an odd digit and 
of (n - 3)/2 when n is an even digit. 
Besides, as the density function is symmetric, the odd 
order moments are equal to zero - in particular the mean 
is equal to zero -. The even order moments obtained 
through the integrating procedure are equal to: 

By using this formula we find the mean and the variance: 
E(r2) = 0; Var(r2) = (n - 1)-1 = v-I 

As far as our experiment is concerned, since r E [-1,1], 
it is not necessary to resort to the Bienaime-Tchebycheff 
theorem; our procedure was to divide the range of 
r E [-1, 1] into 1000 parts and to find, on such a basis, 
the sampling distribution of r2 under the various hypothe­
ses. 
I n the tables from 5.1 to 5.3 we printed the parameters 
and the quantiles of the variable R in correspondence 
with the ten distributions and with some values of n. We 
remark that: 

If we take into consideration the symmetric distribu­
tions, the computed quantiles are not very far from 
those of the normal distribution; the differences are 
smaller than 0.09 for n = 40, 50, 75, 100 and slightly 
greater for the other values of n. 
The distribution of r deriving from symmetric distri­
butions over a rectangular definition set (Le. the third, 
the fifth and the eight distributions) are more similar 
to those deriving from a normal distribution than the 
distributions over an elliptic definition set. So, e.g., for 
n = 75 and n = 100 and at the three levels of 90 %, 
95 % and 99 %, the differences between the distribu­
tions over a rectangular definition set and the normal 
distribution are not greater than 0.01. 
The highest differences with respect to the r distribu­
tion deriving from a normal distribution are found in 

correspondence with X'~ 3; such differences tend to 
decrease when the degr~es "of freedom of X2 increase. 
Taking into consideration the symmetric distributions, 
the smallest range of the distribution of the correlation 
coefficient is found when the samples are drawn from 
a population with U-shaped density function over an 
elliptic definition set (distribution 2). 
The standard error of the distributions over an elliptic 
definition set (distributions 2, 4, 7) is smaller than the 

one of the distributions over a rectangular definition 
set. 
The kurtosis indexes of the symmetric distributions 
reach values very close to zero. 
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When the samples are drawn from the Gumbell distri­

bution (distribution 10), the distribution of the corre-

lation coefficient is similar to the one of Xi.3· 
The width of the interval within which the quantiles 
of r may vary is not negligible even when the sample 
size is large (n = 75, n = 100). Besides when n in­
creases, the absolute width of the interval decreases, 
while the relative width increases, at least for n up 
to 100. As a matter of fact, taking into consideration 
the 95th quantile, we see that the absolute width 
shrinks from 0.29 (0.46-0.75) for n = 10 to 0.16 (0.13-
0.29) for n = 100, while the relative one increases from 
48 % for n = 10 up to 76 % for n = 100. 

As far as the covariance variable is converned, the same 

remarks hold, that were made about the correlation coeffi­
cient. Besides, when n increases, the distributions of r 

and of SXIX , tend to coincide; as it is logical. 

4. Distributions 

1) Normal distribution (Monte Carlo) 
2) U-shaped distribution with definition set over an 

ellipse 
3) U-shaped distribution with definition set over a rec­

tangle 
4) Uniform distribution with definition set over an 

ellipse 

As far as the normal distribution is concerned, the 
quantiles are found within the left half of the com­
puted range. 

5) Uniform distribution with definition set over a rec-
tangle 

6a) X2 distribution with Vt = 2 V2 = 3 
6b ) X2 distribution with vJ = 3 V2 = 4 
6e) X2 distribution with Vj = 4 V2 = 5 
6d) X2 distribution with VI = 5 V2 = 6 

In tables from 6.1 to 6.3, at last, we printed the parameters 
and the quantiles of the covariance variable 

7) Hat-shaped distribution over an elliptic definition set 
11 

SX1X2 = 1: (Xli - XI) (X2i - X2) 
i=1 

8) Hat-shaped distribution over a rectangular definition 
set 

9) Pareto distribution 
in correspondence with the ten distributions and with 10) Bidimensional Gumbell exponential distribution 
some values of n. N*) Normal distribution 

Table 1 
Minimum and maximum values with reference to distributions 2 -7- 8 pag. 23 Between brackets the simulated values 
of normal bivariate 

----------- ------ - -- ------- ---------

Hotelling T2 

n Min 1 0 1 
'0 Max Min 5% Max Min 10% Max Min 90% Max Min 95 % Max Min 99 % Max 

---

10 0.02 (0.02) 0.03 0.08 (0.14) 0.14 0.19 (0.24) 0.25 7.11 (7.23) 11.6110.71 (10.82) 20.46 19.91 (19.91) 53.89 
15 0.02 (0.02) 0.02 0.09 (0.09) 0.14 0.21 (0.22) 0.26 5.75 (6.02) 8.50 8.07 (8.22) 12.98 13.84 (13.84) 33.45 
20 0.02 (0.02) 0.02 0.08 (0.09) 0.13 0.19 (0.22) 0.26 5.39 (5.49) 6.85 7.17 (7.61) 11.08 12.12 (12.61) 27.42 
30 0.02 (0.02) 0.02 0.10 (0.11) 0.11 0.20 (0.23) 0.24 4.86 (5.13) 6.21 6.35 (6.80) 8.80 9.95 (11.54) 16.65 
50 0.02 (0.02) 0.02 0.10 (0.10) 0.10 0.19 (0.19) 0.24 4.77 (5.09) 5.32 6.30 (6.70) 7.63 9.81 (10.47) 14.40 
75 0.Q1 (0.01) 0.02 0.09 (0.09) 0.10 0.21 (0.21) 0.23 4.60 (4.83) 5.18 6.10 (6.66) 7.39 7.75 (10.22) 12.55 

100 0.01 (0.01) 0.02 0.08 (0.09) 0.09 0.20 (0.20) 0.23 4.55 (4.79) 5.16 6.09 (6.35) 6.79 9.17 (9.52) 11.82 

lsi 
10 0.04 (0.11) 0.22 0.07 (0.20) 0.39 0.11 (0.27) 0.50 1.29 (1.74) 1.99 1.41 (2.21) 2.97 1.63 (3.14) 6.16 
15 0.06 (0.18) 0.41 0.13 (0.30) 0.56 0.18 (0.37) 0.55 1.23 (1.63) 1.97 1.30 (1.97) 2.58 1.48 (2.59) 4.35 
20 0.10 (0.25) 0.52 0.18 (0.36) 0.65 0.30 (0.46) 0.68 1.18 (1.52) 1.93 1.25 (1.78) 2.39 1.39 (2.37) 4.11 
30 0.18 (0.34) 0.65 0.32 (0.47) 0.73 0.34 (0.55) 0.77 1.16 (1.45) 1.84 1.21 (1.69) 2.30 1.32 (2.11) 3.68 
50 0.25 (0.46) 0.74 0.37 (0.56) 0.81 0.45 (0.64) 0.85 112 (1.35) 1.64 1.16 (1.52) 2.00 1.23 (1.82) 2.66 
75 0.34 (0.53) 0.79 0.49 (0.64) 0.85 0.52 (0.71) 0.88 1.10 (1.31) 1.56 1.13 (1.43) 1.83 1.20 (1.65) 2.54 

100 0.40 (0.59) 0.83 0.52 (0.69) 0.88 0.58 (0.74) 0.90 1.09 (1.26) 1.48 1.11 (1.35) 1.74 1.16 (1.54) 2.22 

Quadratic form 
10 0.01 (0.02) 0.02 0.09 (0.10) 0.12 0.19 (0.20) 0.24 4.33 (4.53) 4.67 5.70 (5.93) 6.31 8.47 (9.57) 10.98 
15 0.02 (0.02) 0.02 0.09 (0.10) 0.12 0.19 (0.20) 0.24 4.36 (4.53) 4.70 5.70 (5.94) 6.31 8.50 (9.55) 10.90 
20 0.02 (0.02) 0.02 0.09 (0.10) 0.12 0.20 (0.20) 0.24 4.37 (4.60) 4.70 5.70 (5.94) 6.33 8.51 (9.33) 10.27 
30 0.02 (0.02) 0.02 0.09 (0.10) 0.12 0.20 (0.20) 0.24 4.44 (4.49) 4.70 5.70 (5.94) 6.34 8.84 (9.33) 10.27 
50 0.02 (0.02) 0.02 0.09 (0.10) 0.12 0.20 (0.20) 0.24 4.44 (4.61) 4.70 5.70 (5.95) 6.34 8.84 (9.33) 10.28 
75 0.02 (0.02) 0.02 0.09 (0.10) 0.12 0.20 (0.20) 0.24 4.40 (4.62) 4.70 5.70 (6.10) 6.47 8.84 (9.32) 10.28 

100 0.02 (0.02) 0.02 0.09 (0.09) 0.10 0.20 (0.20) 0.24 4.40 (4.66) 4.74 5.70 (6.10) 6.40 8.98 (9.23) 10.31 

r 
10 - 0.87 (- 0.72) - 0.63 - 0.73 (- 0.55) - 0.44 - 0.58 (- 0.44) - 0.35 0.36 (0.45) 0.60 0.46 (0.56) 0.75 0.62 (0.72) 0.89 
15 - 0.78 (- 0.43) - 0.47 - 0.63 (- 0.43) - 0.35 - 0.51 (- 0.35) - 0.27 0.27 (0.33) 0.50 0.35 (0.43) 0.66 0.48 (0.60) 0.80 
20 - 0.74 (- 0.51) - 0.41 - 0.56 (- 0.38) - 0.29- 0.47 (- 0.30) - 0.24 0.23 (0.30) 0.47 0.29 (0.38) 0.57 0.41 (0.53) 0.77 
30 - 0.65 (- 0.43) - 0.33 - 0.49 (- 0.31) - 0.23- 0.39 (- 0.24) - 0.19 0.18 (0.24) 0.51 0.24 (0.30) 0.51 0.33 (0.43) 0.66 
50 - 0.49 (- 0 32) - 0.26 - 0.37 (- 0.24) - 0.18- 0.30 (- 0.19) - 0.14 0.14 (0.19) 0.33 0.18 (0.24) 0.35 0.25 (0.33) 0.50 
75 - 0.42 (- 0.27) - 0.21 - 0.33 (- 0.19) - 0.14- 0.25 (- 0.15) - 0.11 0.11 (0.15) 0.25 0.14 (0.19) 0.32 0.20 (0.27) 0.44 

100 - 0.40 (- 0.24) - 0.17 - 0.29 (- 0.16) - 0.13- 0.22 (- 0.13) - 0.10 0.10 (0.13) 0.23 0.13 (0.16) 0.29 0.18 (0.23) 0.41 

°xy 

10 - 1.14 (- 0.83) - 0.58 - 0.97 (- 0.56) - 0.42- 0.65 (- 0.42) - 0.33 0.33 (0.42) 0.58 0.44 (0.57) 0.84 0.59 (0.85) 1.43 
15 - 1.28 (- 0.64) - 0.47 - 0.75 (- 0.45) - 0.34- 0.53 (- 0.33) - 0.27 0.25 (0.31) 0.53 0.33 (0.42) 0.72 0.46 (0.64) 1.18 
20 - 0.98 (- 0.54) - 0.40 - 0.59 (- 0.38) - 0.29- 0.48 (- 0.29) - 0.23 0.23 (0.30) 0.49 0.29 (0.39) 0.61 0.41 (0.58) 1.05 
30 - 0.96 (- 0.45) - 0.32 - 0.56 (- 0.31) - 0.23- 0.41 (- 0.24) - 0.19 0.18 (0.23) 0.42 0.24 (0.30) 0.54 0.34 (0.47) 0.83 
50 - 0.60 (- 0.31) - 0.26 - 0.39 (- 0.40) - 0.18- 0.29 (- 0.19) - 0.14 0.14 (0.18) 0.31 0.18 (0.23) 0.40 0.24 (0.34) 0.63 
75 - 0.53 (- 0.28) - 0.20 - 0.35 (- 0.19) - 0.14- 0.26 (- 0.15) - 0.11 0.11 (0.15) 0.25 0.14 (0.19) 0.32 0.20 (0.28) 0.49 

100 - 0.50 (- 0.24) - 0.18 - 0.32 (- 0.16) - 0.13- 0.23 (- 0.13) - 0.10 0.10 (0.13) 0.22 0.13 (0.16) 0.29 0.18 (0.23) 0.44 
-----"------ - ------- -- -- "--------
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Table 2.1. 
Quadratic form N = 10 

Dist M (]' Asym Curt 1 0/ 0 5 01 
I) 10 0 '0 20 0/ 0 50 0/ 0 80 0,'1) 90 (jio 95 0•10 99 °,0 

------"-- ----- -- -- ~----- -- - -"- ----. -------- - --- - --

I 1.98 1.90 2.20 3.45 0.02 0.10 0.20 0.43 1.41 3.18 4.53 5.93 9.57 
2 1.99 1.90 1.67 3.40 0.02 0.10 0.22 0.45 1.38 3.21 4.61 5.93 8.47 
3 2.02 1.91 1.67 3.57 0.02 0.12 0.23 0.48 1.43 3.35 4.56 5.84 8.84 
4 2.03 1.93 1.80 3.60 0.03 0.12 0.22 0.45 1.36 3.14 4.49 5.70 8.61 
5 2.01 1.92 1.85 3.52 0.01 0.09 0.19 0.44 1.38 3.27 4.65 5.87 9.06 
6a 1.98 2.27 3.43 20.78 0.02 0.10 0.22 0.44 1.31 :3.03 4.36 6.01 10.87 
6b 2.03 2.20 2.50 19.32 0.03 0.10 0.20 0.41 1.38 :UO 4.64 6.04 10.8:3 
6c 2.11 2.35 3.65 28.37 0.02 0.11 0.24 0.47 1.43 3.22 4.67 6.31 10.98 
6d 1.96 2.01 2.80 15.22 0,02 0.09 0.20 0.42 1.36 3.07 4.33 5.75 9.50 
7 1.95 1.90 1.84 4.52 0.02 0.11 0.22 0.45 1.45 3.14 4.49 5.73 8.84 
8 2.02 1.94 1.75 4.22 0.02 0.12 0.23 0.46 1.41 3.31 4.63 5.89 8.78 
9 1.91 6.08 11.59 170.37 0.01 0.06 0.13 0.27 0.76 1.77 3.23 6.16 13.99 

10 1.99 2.34 4.05 33.8 0.01 0.09 0.21 0.42 1.32 2.95 4.36 6.14 11.08 
N* 2.0 2.0 0.02 0.10 0.21 1.39 4.61 5.99 9.21 

Table 2.2. 

Quadratic form N = 50 
---- ---,-- -- - ----

Dist M (]' Asym Curt 1 0;'0 5 11/ 0 10 °,'0 20% 50 0,10 80% 90 11 '0 95 0 0 99 II (I 

1 2.00 2.08 2.17 7.04 0.02 0.10 0.20 0.45 1.41 3.17 4.51 5.95 9.33 
2 1.97 1.96 1.93 5.30 0.02 0.10 0.20 0.43 U8 3.20 4.57 5.82 9.06 
:3 2.00 1.95 1.79 4.24 0.02 0.09 0.22 0.44 1.37 :3.27 4.61 5.94 8.94 
4 1.99 1.91 1.81 4.48 0.02 0.12 0.22 0.48 1.39 3.19 4.56 5.79 8.98 
5 1.96 1.93 1.82 4.64 0.02 0.09 0.20 0.43 1.39 3.25 4.40 5.83 8.84 
6a 1.98 1.98 1.99 5.68 0.02 0.10 0.24 0.45 1.36 3.17 4.57 6.34 10.28 
6b 2.00 1.99 2.05 6.76 0.02 (l.09 0.20 0.43 1.41 3.23 4.58 6.04 9.04 
6c 1.99 2.03 2.:32 B.65 0.02 0.10 0.22 O.4:l 1.3B 3.16 4.51 5.90 B.29 
6d 1.96 1.94 1.87 4.88 0.02 0.10 0.20 0.41 1.39 3.14 4.44 5.90 9.80 
7 1.97 1.95 1.89 5.08 0.02 0.09 0.20 0.41 1.39 3.24 4.52 5.70 8.99 
8 2.01 1.94 1.75 4.03 0.02 0.12 0.22 0.45 1.42 3.24 4.70 5.91 8.84 
9 1.90 4.08 15.31 384.01 0.02 0.08 0.16 0.34 1.05 2.47 :3.88 5.97 13.99 

10 1.92 1.91 2.07 6.57 0.02 0.10 0.22 0.43 1.38 :3.04 4.29 5.79 8.92 
N* 2.0 2.0 0.02 0.10 0.21 1.39 4.61 5.99 9.21 

Table 2.3. 

Quadratic form N = 100 
------ -- -- --- --

---- - -_._- -- ------ _.-------------- -"-----

Dist M (]' Asym Curt 1 0,10 5 01 10% 20% 50 °,0 80 0/ 0 90% 95% 99% 10 
- - - -- ----- - ----- - -- - -'- ---

1 2.02 2.01 1.86 4.53 0.02 0.09 0.20 0.47 1.38 3.25 4.66 6.10 9.23 
2 2.03 2.11 2.25 7.59 0.02 0.10 0.22 0.45 1.38 3.21 4.64 6.14 10.28 
:3 2.03 2.10 2.19 6.92 0.02 0.10 0.21 0.42 1.39 3.20 4.64 6.17 10.16 
4 2.04 2.11 2.20 7.03 0.02 0.09 0.22 0.44 1.42 3.18 4.60 6.17 10.34 
5 1.94 1.88 1.97 5.75 0.02 0.10 0.22 0.47 1.39 3.11 4.40 5.70 8.38 
6a 2.01 2.05 2.18 7.69 0.02 0.09 0.20 0.44 1.39 3.24 4.58 6.01 9.34 
6b 2.06 2.05 1.88 4.55 0.02 0.10 0.24 0.47 1.42 3.27 4.74 6.40 9.15 
6c 1.95 1.94 1.89 4.67 0.02 0.10 0.21 0.46 1.34 3.12 4.57 5.93 8.84 
6d 2.02 1.96 1.90 4.58 0.02 0.10 0.20 0.45 1.35 3.20 4.60 6.01 8.99 
7 2.05 2.11 2.17 6.70 0.02 0.10 0.22 0.44 1.41 3.20 4.67 6.19 10.31 
8 1.97 1.95 2.04 6.40 0.02 0.10 0.22 0.44 1.:39 3.10 4.46 5.87 8.98 
9 1.94 3.18 9.82 18.1 0.02 0.09 0.19 0.38 1.15 2.70 4.00 5.95 13.5 

10 1.98 1.98 2.30 10.40 0.02 0.10 0.22 0.44 1.38 3.16 4.53 5.87 9.16 
N* 2.0 2.0 0.02 0.10 0.21 1.:39 4.61 5.99 9.21 

Table 3.1. 
Determinant of S N = 10 

-------.- - ------

Dist M (]' Asym Curt 1 0/0 5% 
- ---- -- --- - -

10 010 20 0in 50 II;, 80 0 '0 90% 95 0 0 99% 
-- --~ 

1 0.91 0.67 2.10 0.15 0.11 0.20 0.27 0.39 0.73 1.32 1.74 2.21 3.14 
2 0.90 0.30 0.10 - 0.21 0.22 0.39 0.50 0.63 0.89 1.16 1.29 1.41 1.63 
:3 0.90 0.34 0.44 0.28 0.20 0.37 0.47 0.60 0.87 1.16 1.34 1.51 1.78 
4 0.90 0.41 0.73 0.54 0.19 0.33 0.42 0.54 0.83 1.22 1.45 1.66 2.03 
5 0.90 0.45 0.94 1.32 0.18 0.29 0.39 0.52 0.83 1.24 1.50 1.72 2.20 
6a 0.90 1.33 6.43 89.12 0.04 0,07 0.11 0.19 0.50 1.24 1.99 2.97 6.16 
6b 0.88 1.06 3.89 25.06 0.05 0.11 0.14 0.23 0.55 1.27 1.96 2.68 5.28 
6e 0.88 0.95 3.40 20.70 0.06 0.11 0.16 0.24 0.58 1.26 1.91 2.69 4.62 
6d 0.90 0.95 3.94 28.7 0.06 0.13 0.19 0.27 0.61 1.34 1.86 2.51 4.54 
7 0.90 0.48 1.07 1.62 0.16 0.28 0.38 0.49 0.81 1.26 1.53 1.83 2.41 
8 0.89 0.47 1.06 1.87 0.15 0.26 0.36 0.49 0.81 1.24 1.53 1.78 2.30 
9 0.62 3.12 18.43 501.2 0.00 0.00 0.00 0.01 0.08 0.39 1.03 2.39 8.63 

10 0.85 1.28 4.8B 38.9 0.02 0.05 0.09 0.16 0.43 1.18 1.97 3.01 6.44 
N* 0.89 0.65 
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Table 4.1. 
Hotelling T~ N = 10 

-~ ----- -- - ~ - -------------- ------- -- ~-~ ~-~-

Dist M a Asym Curt 1 % 5 0/ ,0 10 % 20% 50 0 0 80% 90% 95 % 99 °;0 
--~--.--- --- --_.- -- . 

1 3 4.05 3.8 23.9 0.02 0.14 0.24 0.52 1.70 4.35 7.23 10.82 19.91 
2 3.23 5.80 6.68 68.7 0.02 0.08 0.23 0.46 1.59 4.50 7.51 10.98 23.36 
3 3.30 5.84 6.93 77.90 0.02 0.13 0.24 0.51 1.66 4.55 7.48 11.34 27.80 
4 3.09 5.05 7.2 105.5 0.02 0.14 0.24 0.52 1.54 4.35 7.11 11.30 22.81 
5 3.07 4.61 5.10 45.3 0.02 0.08 0.19 0.47 1.65 4.51 7.29 10.71 21.49 
6a 5.21 12.23 9.19 140.83 0.02 0.13 0.24 0.56 1.91 6.07 11.61 20.46 53.89 
6b 4.46 8.98 5.14 35.13 0.02 0.13 0.24 0.52 1.86 5.79 10.38 16.75 41.97 
6e 4.23 7.65 6.08 57.3 0.03 0.13 0.24 0.56 1.92 5.48 9.73 16.09 35.41 
6d 0.75 7.72 11.09 204.11 0.03 0.13 0.24 0.51 1.76 4.93 8.54 12.70 30.86 
7 2.99 4.53 5.79 67.5 0.02 0.13 0.25 0.46 1.58 4.23 6.76 10.86 20.72 
8 3.11 4.32 3.71 21.0 0.02 0.13 0.24 0.51 1.65 4.66 7.42 10.96 21.0 
9 11.21 29.27 8.85 116.30 0.03 0.19 0.34 0.73 2.83 12.75 27.15 47.95 53.88 

10 5.8 14.1 9.6 143.4 0.03 0.13 0.24 0.56 2.02 6.8 12.8 21.9 53.9 
N* 3 4.24 7.00 10,04 19.46 

--- ----"--------,--- - ------_.- ----- --~-------- -----'_.-, --- --_.--------

Table 4.2. 
Hotelling T2 N = 50 
------"-.----.~ --- -- ---------'---- ----

Dist M a Asym Curt 1010 5 0:'0 10% 20% 50 °/11 80% 90% 95% 99 °/11 
-- --- -----~--------------

1 2.13 2.25 0.80 1.04 0.02 0.10 0.19 0.44 1.37 3.39 5.09 6.70 10.47 
2 2.09 2.21 2.34 8.83 0.02 0.10 0.19 0.42 1.40 3.36 4.83 6.30 10.50 
3 2.12 2.11 2.17 7.24 0.02 0.10 0.21 0.45 1.43 3.42 4.95 6.54 10.60 
4 2.09 2.14 2.24 8.00 0.02 0.10 0.21 0.47 1.42 3.30 4.83 6.32 9.90 
5 2.09 2.15 2.20 8.00 0.02 0.10 0.19 0.42 1.42 3.45 4.77 6.32 9.81 
6a 2.38 2.87 3.10 14.23 0.02 0.10 0.24 0.48 1.49 3.62 5.32 7.63 14.40 
6b 2.33 2.79 3.99 8.75 0.02 0.10 0.21 0.45 1.51 3.61 5.31 7.34 13.97 
6e 2.27 2.73 2.97 1.75 0.02 0.10 0.22 0.45 1.46 3.48 5.24 7.17 13.08 
6d 2.18 2.39 2.73 13.23 0.02 0.10 0.22 0.45 1.43 3.45 5.15 6.65 11.14 
7 1.09 2.17 2.25 8.36 0.02 0.10 0.22 0.42 1.43 3.42 4.77 6.30 10.14 
8 2.13 2.18 2.12 6.90 0.02 0.10 0.22 0.45 1.45 3.39 4.97 6.39 10.17 
9 3.76 6.22 5.20 43.2 0.02 0.13 0.26 0.56 1.80 5.12 8.75 13.83 28.81 

10 2.42 3.25 4.54 37.07 0.02 0.10 0.22 0.45 1.43 3.62 5.49 7.77 15.85 
N* 2.13 2.23 4.94 6.53 10.41 

-- - - -- --- --------,--._,-- --_.---- - --_.--- -----------------------~----- -._.- ----,----- - --'---"'--_._--,---

Table 4.3. 
Hotelling T2 N = 100 

--------- --~~-----------

Dist M (f Asym Curt 1% 5% 10 (Jlo 20% 50 0/ 0 80% 90% 95 % 99% 

1 2.07 2.10 1.93 4.80 0.01 0.09 0.20 0.48 1.41 3.29 4.79 6.35 9.52 
2 2.10 2.25 2.43 8.92 0.01 0.09 0.20 0.45 1.41 3.32 4.79 6.38 11.02 
3 2.09 2.23 2.38 8.36 0.01 0.09 0.20 0.42 1.41 3.27 4.77 6.51 10.51 
4 2.10 2.25 2.39 8.49 0.01 0.09 0.20 0.45 1.44 3.27 4.80 6.38 11.03 
5 2.00 1.98 2.10 6.72 0.01 0.09 0.23 0.48 1.41 3.13 4.55 5.86 9.20 
6a 2.22 2.57 3.42 21.32 0.02 0.08 0.20 0.44 1.43 3.43 5.16 6.79 11.82 
6b 2.22 2.38 2.46 9.58 0.01 0.09 0.23 0.48 1.46 3.45 5.13 6.81 10.83 
6e 2.12 2.31 2.61 10.82 0.01 0.09 0.23 0.48 1.38 3.29 4.79 6.68 10.92 
6d 2.10 2.20 2.35 13.25 0.02 0.09 0.22 0.48 1.41 3.30 4.80 6.41 10.03 
7 2.11 2.25 2.36 8.14 0.01 0.09 0.20 0.45 1.43 3.29 4.85 6.41 11.14 
8 2.02 2.05 2.24 8.42 0.02 0.09 0.23 0.45 1.41 3.16 4.66 6.09 9.17 
9 3.16 4.26 3.51 18.9 0.03 0.14 0.28 0.56 1.76 4.55 7.78 11.41 20.43 

10 2.23 2.58 3.23 18.89 0.02 0.09 0.20 0.45 1.44 3.43 5.01 7.00 12.01 
N* 2.06 2.11 4.77 6.26 9.82 

--- --- ----- - --_._-- - - -----------~~ ------

Table 5.1. 
Correlation Coefficient N = 10 

Dist M a Asym Curt 1% 5% 10% 20% 50% 80% 90% 95% 99% 
----.~-------- ---------_.-----------_.----- -

1 - 0.01 0.34 0.00 -0.56 -0.72 -0.55 -0.44 -0.30 0.00 0.31 0.45 0.56 0.72 
2 0.00 0.27 0.02 -0.20 -0.63 - 0.44 -0.35 -0.23 0.00 0.22 0.36 0.46 0.62 
3 0.00 0.32 0.03 -0.48 -0.70 -0.53 - 0.43 -0.28 0.00 0.28 0.43 0.55 0.70 
4 0.00 0.29 0.05 -0.39 -0.66 -0.48 - 0.38 - 0.24 - 0.01 0.24 0.39 0.49 0.63 
5 0.00 0.33 0.02 -0.53 -0.69 - 0.54 -0.44 0.30 0.00 0.32 0.44 0.56 0.72 
6a 0.02 0.46 - 0.01 -0.99 -0.87 -0.73 - 0.61 - 0.44 0.02 0.47 0.60 0.75 0.89 
6b 0.01 0.43 -0.07 -0.88 -0.85 -0.70 -0.58 - 0.40 0.00 0.42 0.61 0.71 0.85 
6e 0.00 0.41 -0.05 -0.80 -0.83 -0.65 - 0.52 -0.36 0.02 0.41 0.56 0.67 0.83 
6d 0.00 0.40 - 0.01 -0.75 -0.80 -0.64 - 0.53 -0.36 - 0.01 0.38 0.55 0.66 0.80 
7 0.02 0.30 -0.05 - 0.44 -0.66 -0.49 - 0.40 -0.27 -0.02 0.26 0.40 0.52 0.65 
8 0.01 0.33 -0.04 -0.51 -0.71 -0.55 - 0.44 -0.30 -0.01 0.29 0.55 0.66 0.80 
9 0.02 0.30 0.05 - 0.44 -0.98 - 0.49 - 0.81 -0.62 0.03 0.62 0.80 0.90 0.97 

10 0.00 0.49 0.02 -1.06 -0,98 -0.77 - 0.67 - 0.48 - 0.01 0.49 0.67 0.77 0.99 
N* 0.00 0.33 0.52 0.69 

---------,--------------------
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Table 5.2. 

Correlution CoelTicicnt N = 50 

Dist M (j Asym Curt 1 0/ ,0 5° 0 10 1lJi ) 20 (I/o 50 0 '0 80 % 90 0/0 95% 99 % 
- ------- --- --- --- - - ------ --- -----

1 0.00 0.14 0.04 - 0.15 -0.32 -0.24 - 0.19 - 0.12 - 0.00 0.12 0.19 0.24 0.33 
2 0.00 0.11 -0.02 - 0.02 - 0.26 - 0.18 - 0.14 - 0.09 0.00 0.09 0.14 0.18 0.25 
3 0.00 0.14 0.00 - 0.19 - 0.32 - 0.23 - 0.19 - 0.12 0.00 0.12 0.18 0.23 0.31 
4 0.00 0.11 - 0.02 + 0.06 - 0.29 - 0.19 - 0.14 - 0.10 - 0.01 0.10 0.14 0.18 0.27 
5 0.00 0.14 - 0.04 - 0.05 -0.33 - 0.23 - 0.18 - 0.12 0.00 0.12 0.18 0.23 0.32 
6a 0.01 0.24 - 0.01 - 0.37 -0.52 - 0.37 - 0.30 - 0.19 0.01 0.22 0.33 0.40 0.52 
6b 0.01 0.22 - 0.03 - 0.19 - 0.49 - 0.35 - 0.28 - 0.18 0.01 0.19 0.28 0.35 0.50 
6e 0.01 0.20 0.06 -0.28 -0.44 - 0.32 - 0.25 - 0.17 0.01 0.18 0.28 0.35 0.47 
6d 0.00 0.19 0.09 - 0.17 - 0.43 - 0.32 - 0.25 - 0.17 0.00 0.16 0.25 0.32 0.45 
7 0.00 0.12 - 0.03 - 0.02 - 0.29 - 0.20 - 0.16 - 0.11 0.00 0.10 0.16 0.20 0.28 
8 0.00 0.14 - 0.01 - 0.23 - 0.31 - 0.23 - 0.111 - 0.12 0.00 0.12 0.18 0.23 0.31 
9 0.01 0.44 0.01 -0.77 -0.90 - 0.73 - 0.60 - 0.43 0.00 0.40 0.59 0.71 0.89 

10 0.00 0.25 0.02 - 0.34 - 0.56 - 0.42 -0.34 - 0.22 - 0.01 0.22 0.33 0.42 0.55 
N* 0.00 0.14 0.23 0.32 

Table 5.3. 
Correlation Coefficient N = 100 

~------ - ---. ------ ------------ ------ --------- - ---, ---- --------- - -------

Dist M (j Asym Curt 1% 5% 10 °,'0 20 % 50% 80 % 90% 95% 99 °:0 
--- - ------ ----- -- --- ---- ----------- ---- - - -- - ----- --- - -- -------

1 0.00 0.10 0.00 -0.02 -0.24 - 0.16 - 0.13 -0.08 0.00 0.08 0.12 0.16 0.23 
2 0.00 0.08 0.76 0.02 - 0.17 - 0.13 - 0.10 - 0.07 0.00 0.06 0.10 0.13 0.18 
:3 0.00 0.10 0.08 0.00 -0.22 - 0.16 - 0.13 -0.08 0.00 0.08 0.12 0.16 0.22 
4 0.00 0.08 0.09 0.00 - 0.19 - 0.13 - 0.11 - 0.07 0.00 0.07 0.11 0.14 0.19 
5 0.00 0.10 0.01 -0.04 - 0.24 - 0.16 - 0.12 -0.08 0.00 0.08 0.13 0.16 0.24 
6a 0.00 0.18 - 0.01 -0.29 - 0.40 -0.29 - 0.22 - 0.15 0.00 0.15 0.23 0.29 0.41 
6b 0.00 0.15 - 0.02 -0.24 -0.35 -0.26 - 0.19 - 0.13 0.00 0.14 0.20 0.26 0.35 
6e 0.00 0.15 - 0.01 -0.37 -0.34 - 0.25 - 0.19 - 0.13 0.00 0.13 0.19 0.25 0.33 
6d 0.00 0.13 - 0.03 - 0.06 - 0.32 -0.23 - 0.18 - 0.11 0.00 0.11 0.18 0.23 0.32 
7 0.00 0.09 0.08 - 0.01 - 0.20 - 0.14 - 0.11 - 0.08 0.00 0.07 0.11 0.15 0.20 
8 0.00 0.10 0.05 - 0.03 -0.22 - 0.16 - 0.13 - 0.09 - 0.01 0.08 0.12 0.16 0.22 
9 0.00 0.38 0,04 - 0.49 -0.84 - 0.63 - 0.51 -0.34 0.00 0.33 0.52 0.65 0.85 

10 0.00 0.19 0.05 - 0.29 -0.42 - 0.30 - 0.23 - 0.16 0.00 0.18 0.26 0.32 0.44 
N' 0.00 0.10 0.16 0.23 

-- --------,--

Table 6.1. 
Covariance N = 10 
---.---~---- -- -- -- ----- -- -- -- - ---- -- - -- ---------------------- ------- - ------- -- ---- - ------------

Dist M (j Asym Curt 1 (I/o 5% 10% 20% 50% 80% 90% 95% 99% 
---- ----- ---- - - -- --, -- -- ------ - ---- - -- -- ----------.- --- ------- ,-

I 0.00 0.34 0.05 0.72 -0.83 -0.56 - 0.42 - 0.27 0 0.27 0.42 0.57 0.85 
2 0.00 0.26 0.05 0.16 - 0.58 -0.42 -0.33 - 0.22 0 0.21 0.33 0.44 0.59 
3 0.00 0.32 0.02 - 0.21 -0.72 -0.54 -0.42 0.29 0 0.27 0.41 0.53 0.71 
4 - 0.01 0.28 0.09 - 0.12 -0.65 - 0.45 - 0.37 - 0.25 - 0.01 0.23 0.37 0.46 0.65 
5 0 0.33 0.02 0.53 -0.80 - 0.54 - 0.42 - 0.29 0 0.28 0.43 0.54 0.79 
6a - 0.01 0.59 -1.14 8.73 -1,74 -0.97 -0.65 -0.36 0.01 0.36 0.58 0.84 1.43 
6b - 0.01 0.53 -0.41 5.97 -1.60 - 0.85 -0.59 - 0.32 0.01 0.33 0.55 0.78 1.50 
6e 0.01 0.49 -0.52 6.19 -1.39 -0.76 - 0.49 - 0.30 0.02 0.33 0.54 0.76 1.36 
6d 0.01 0.45 0.02 3.39 -1.19 -0.72 -0.52 - 0.31 0.01 0.33 0.52 0.71 1.18 
7 -0.01 0.29 0.07 - 0.01 -0.68 -0.48 - 0.38 - 0.25 -0.02 0.24 0.37 0.49 0.68 
8 0.00 0.32 0.03 -0.03 - 0.78 -0.53 - 0.41 - 0.28 - 0.01 0.27 0.42 0.53 0.73 
9 + 0.02 2.79 + 6.27 262.24 -2.14 - 0.92 - 0.48 -0.20 0.01 0.26 0.65 1.43 3.33 

10 0.00 0.64 0.28 8.05 -1.77 -1.00 -0.65 - 0.36 - 0.01 0.37 0.65 1.02 1.82 
N* 0.00 0.33 

- - - ------ ---_.---._----

Table 6.2. 
Covariance N = 50 

- . ---------- --. --- --- -- ------- - - ,,-- ---- -------. ------- --. --- ---------- -~-- --- -- ----

Dist M (j Asym Curt 1% 5% 10% 20% 50% 80% 90% 95% 99% 
------------ -- - ---- ------

I 0 0.14 0.03 0.12 - 0.31 -0.24 - 0.19 - 0.12 0 0.12 0.18 0.23 0.34 
2 0.00 0.11 -0.02 - 0.02 - 0.26 - 0.18 - 0.14 -0.09 0 0.09 0.14 0.18 0.24 
3 0.00 0.14 0.00 - 0.14 - 0.31 -0.23 - 0.19 - 0.12 0 0.12 0.17 0.22 0.31 
4 0.00 0.11 - 0.31 0.07 - 0.28 - 0.19 - 0.14 - 0.10 - 0.01 0.09 0.14 0.18 0.27 
5 0.00 0.14 -0.04 0.03 - 0.34 -0.23 - 0.18 - 0.12 0.00 0.12 0.18 0.23 0.32 
6a 0.01 0.25 -0.22 1.33 - 0.67 - 0.41 - 0.31 - 0.19 0.01 0.20 0.31 0.40 0.63 
6b 0.00 0.23 -0.05 1.30 -0.60 -0.39 - 0.29 - 0.18 0.01 0.18 0.27 0.36 0.57 
6e 0.01 0.21 0.12 0.81 0.50 - 0.33 - 0.25 - 0.17 0.01 0.17 0.27 0.36 0.55 
6d 0.00 0.20 0.02 0.74 - 0.49 - 0.33 - 0.25 - 0.17 0.00 0.15 0.24 0.32 0.48 
7 0.00 0.12 0.02 0.03 -0.20 - 0.16 - 0.10 - 0.10 0.00 0.10 0.15 0.20 0.27 
8 0.00 0.14 -0.00 0.14 -0.32 - 0.23 - 0.18 - 0.12 0.00 0.12 0.18 0.22 0.32 
9 - 0.05 1.53 -17.10 559.73 -1.19 -0.65 - 0.43 - 0.23 0.02 0.27 0.67 1.43 1.43 

10 0.00 0.28 - 0.16 2.9B - 0.75 - 0.45 - 0.34 - 0.21 - 0.01 0.20 0.32 0.45 0.69 
N* 0.00 0.14 
--------------- ----------- - ----------- ------ --- -- .. _- - ---- - -- - -- ----------------
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Table 6.3. 

Covariance N = 100 
-~--.----- ---- ~--~ - ------.. 

Dist M (J Asym Curt 1% 5% 10% 20% 50% 80% 90% 95% 99% 
-------- -~ ------ - - --- -- ---- ----------

1 0.00 0.10 0.01 0.13 -0.24 -0.16 - 0.13 -0.08 0.00 0.08 0.13 0.16 0.23 
2 0.00 0.08 0.06 0.02 - 0.18 - 0.13 - 0.10 - 0.07 0.00 0.06 0.10 0.13 0.18 
3 0.00 0.10 0.06 0.02 -0.22 - 0.16 - 0.12 -0.08 0.00 0.08 0.12 0.16 0.22 
4 0.00 0.08 0.07 0.00 - 0.19 - 0.13 - 0.10 - 0.07 0.00 0.07 0.11 0.14 0.19 
5 0.00 0.10 0.01 0.02 -0.23 - 0.16 - 0.12 - 0.08 0.00 0.08 0.13 0.16 0.24 
6a 0.00 + 0.19 - 0.21 0.94 -0.50 -0.32 -0.23 - 0.15 0.00 0.14 0.22 0.29 0.44 
6b 0.00 0.16 -0.06 0.37 - 0.40 - 0.27 - 0.20 - 0.13 0.00 0.13 0.20 0.26 0.38 
6e 0.00 0.15 -0.06 0.18 - 0.37 -0.26 - 0.19 - 0.13 0.00 0.13 0.19 0.25 0.35 
6d 0.00 0.14 -0.07 0.15 - 0.35 -0.23 - 0.18 - 0.11 0.00 0.11 0.19 0.23 0.34 
7 0.00 0.09 0.05 0.00 -0.20 - 0.14 - 0.11 - 0.07 0.00 0.08 0.11 0.14 0.20 
B 0.00 0.10 0.06 0.03 -0.22 - 0.16 - 0.12 - 0.09 - 0.01 0.08 0.12 0.16 0.22 
D 0.00 1.18 -11.36 358 - 0.88 - 0.52 - 0.34 - 0.19 0.02 0.27 0.65 1.00 1.00 

10 0.00 0.20 0.10 0.45 -0.46 - 0.31 - 0.24 - 0.15 0.00 0.17 0.26 0.33 0.50 
N' 0.00 0.10 

- -- --,-- - ---- -- --~ ----~~ 
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Tests for Independence in the Family of Continuous Bivariate 

Distributions with Finite Contingency 

EGMAR ROEDEL 

Abstract 

For testing the hypothesis of independence in the family 
of continuous bivariate distributions with finite contin­
gency it is found under some regularity conditions, that 
always exists a locally most powerful rank test and that 
this test is fully efficient in the sense of Pitman. A simple 
formula is given for the calculation of asymptotic relative 
efficiencies. 

1. Introduction 

We consider the family cp = {Hi. (x, y) : 0 :S: A :S: 1} of bi­
variate distribution functions with the following pro­
perties: 

1 The extension Pi. of each Hi. (x, y) is absolutely con­
tinuous with respect to the Lebesgue measure and 
possessses the density hi. (x, y). 

2. The mean-square-contingency of each Hi. (x, y) is finite, 
that means 

where f (x) and g (y) are the marginal densities of h 
3. ho.(x, y) = f (x) , g (y). 

It is known, that under these conditions the following 
unique series expansion holds (H. O. Lancaster (1958» 

h" (x,y): = h""2'" (x,y) = {1 + t Ai'l'i(X)'Pi(~')} fix) g(y), (I) 

1 ~ A, ~ A2 ~ ... ~O, l'I'i(X)):, l'Pj(y»): 

are complete orthonormal systems, 
with respect to the weight functions f (x) resp. g (y). 
For testing Ho :A1 = 0 against H1 : Al > 0 it is assumed, that 

(A) Ai=ti(A,), i=2,3, ... ; 

tj [i.1! is continuously differentiable (i = 2,3, ... ), 

00 

(C) E t;(A,)'I'i(X)'Pi(y) 
i~2 

converges uniformly over 
the interval 0 :S: Al :S: Ao < 1 for some iu and 
for each fixed pair of values (x, y) 'C R~, 

(D) 

~ II a In h, (x,y) I 
= lim ' h,,(x,y)dxdy 

" ~o a A, , 
R2 

<00 

Let (~. I) be a bivariate random variable, (~[, III), ... , (~n' 

'In)a sample with 

1'" (~i < x. 'li <y) = H.,(x,y) E 'l) (i = 1,2, .... n). 

and In,,!, Rill)' ... , (R'n' R,/nlthe corresponding rank sta­

tistic. 
Shirahata (1975) has shown that under the assumptions 
1., :3. and (D) the rank test 

where 

n 

Zn = E an (R§i' R'/i) , 
i~l 

+00 

a n (i.j)=n2 (n-1)(n-1) r r alnh,,(x.y)I . (F(x»)i-I X 
i - 1 j - 1 J J a A, " ~o 

-00 

X (1- F(X)r- i (G(y)t l (l-G(y)r- j f(x)g(y) dxdy. 

O<Po(IZnl ~ za) = ",<1. F(x) = P(~<x),G(y) = P(ry< y), 

is a locally most powerful rank test (lmprt) for testing 
Ho: A\ = 0 against H1 : A1 > 0 to the level of significance ce. 
Applying this result to the family cp of two-dimensional 
distributions defined by the conditions 1.-3. and (A)-(D), 
we get the lmprt .7 nO with the test statistic 

where 

and 

n 

Zn= ~Un(R§i)vn(R~i)' 
i~l 

(2) 

2. Asymptotic Normality of the LMPRT for Independence 

In this chapter we use the known results of Ruymgaart 
(1972) at al. about the asymptotic normality of rank tests 
for independence. 
We assume that the functions 'P1 (x) and 11'1 (y) in the series 
expansion (1) are strictly increasing. Analogous results we 
would get also in the cases, that both functions are strictly 
decreasing or that the one is decreasing and the other is 
increasing. It is easy to see, that the following indentities 
are true. 

Un(i)=E(J (U1)/R ul =i), 

vn(i)=E(L (U1)/Ru1 =i), 
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where UI, ... , Un is a sample from the uniform distribu­
tion over [0,1] and the functions J (u), L (u), 0::;: u ::;:1. 
are defined by the relations 

and 

J(u) = 9', (F-I(u)) 

L(u) =1p, (G-1(u)). 

Theorem: If Zn = n-I Zn' the functions J (u) and L (u) are 
twice differentiable on the interval (0,1), 

and 

IJ(k)(u)l~ D(U(l- u)ta- k, IL(k)(u)1 ~ D(u(l-u)rb - k 

k=O,l,2; 

D>O, a=(lj2-C\)po. b=(lj2-ii)qo' 

-I -I 
0<ii<lj2, Po>!' qo>l, Po +qo =1 

lim nE(Zn-,\,)2=a2>0, 
n~oo 

then holds 

( 

- Z x2 
Zn-'\, 12 --

lim P" Yn --<Z)=(211)- / \ e 2 ds 
n-+oo a '"' 

-00 

and this convergence is uniformly in the family of con­
tinuous distributions with finite contingency. 

The proof follows from theorem 2.1. an the remark 2.2. of 
Ruymgaart at al. (1972). 

3. Asymptotic Relative Efficiencies of Rank Tests for 
Independence 

The common distribution function H i' l (x, y) of the random 

variables ~ and 1'} may satisfy the conditions 1.-3. and 
(A)-(D). We assume further, that all conditions for the 
existence of the Maximum-Likelihood-Estimation (MLE) 
~ A 
;. l,n of ,\ are fulfilled and that J'l,n is asymptotically un-
biased, asymptotically efficient and asymptotically normal. 
That means 

lim E,,11.n = )',. 
n- 00 

where 

14) 

and 
n 2 n 2 

l>~k) (i)=l>~k) (i)=L k=1.2. 
i~1 i~1 

It was shown by Roedel (1982), that the relation 

holds, where 

k=1,2. 

The ARE of a rank test Jln with respect to the test 
A 

based on the MLE J'l,n is given by 

(0) 
Jln 

where the scores an (i) and bn (i) are assumed to satisfy 
the standardizations (4). Further it is easy to prove the 
equations 

( (0») ARE llno,lln = 1, 

where "nO is the earlier constructed lmprt, and 

ARE (llno,lln(l'rp,'P)) = ARE(ll~O)'lln(r<p,!p)) = L 

where ;Tn (r 'f, 'I') is the test determined by 

(3) and r'l ,'1' is the sample correlation of the transformed 

sample {'ll (~d, 1/11 (lli)}r=I' U, - a!2 denotes the (1- a/2 
-quantile of the standardized normal distribution (Roedel 
(1982». 

. (,~ ):1 n -),') -1/2 ~~ - ~ lim P" rn ' <z = (211) e 2 dx. 
n-oo a(,\,) 

-00 

Using the orthonormality properties of the functions 'Pi (x) 
and lJ!i (y) (i = 0,1,2, ... 'Po (x) == lJ!o (y) == 1) in the series 
expansion (1) we get 

To compare the power of tests for independence the 
asymptotic relative efficiency (ARE) in the sense of Pitman 
will be calculated with the help of a known theorem of 
Noether (1955). We give now the general formula of the 

ARE of two rank tests Jl~k) (k = 1, 2) for independence 
based on the tests statistics 

126 

4. Examples 

Let "n (1'8)' "~i, "n (1') and "nO be the tests for indepen­
dence based on the statistics r 8 (Spearman's rank corre-

/'> 

lation), ..IJ,n (MLE of ..11), r (sample correlation coefficient) 
resp, Zn (lmprt), 

4.1. The bivariate normal distribution 
.A. 

In this case we have (~, 1/) ~ N (0,2'), 21,n = ir. = i I',r,'!' i' 
n 

Z = )' EV(R~;) EV(R'I;) where V(l) < V(2) < < V(n 
n i=t n n n n .. ' n 

is a ordered sample of a standardized normal population 
and 



Zn is the known Fisher-Yates-statistic. It holds 

ARE (JTn( 1',), JT~O)) = ARE (JTn (1',). JTno) = 9'1 -2. 

4.2. The Gumbel-distributions 

The following familiy of distributions was introduced by 
Gumbel (1960) 
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Robustness of Many-One Statistics 

EBERHARD RUDOLPH 

Abstract 

Computer simulation techniques were used to investigate 
the Type I and Type II error rates of one parametric 
(DUNNETT) and three nonparametric multiple compa­
rison procedures for comparing treatments with a control. 
It was found that DUNNETT's procedure is robust with 
respect to violations of the normality assumption. Power 
comparisons show that for small sample sizes DUNNETT's 
procedure is superior to the non parametric procedures 
also in nonnormal cases, but for larger sample sizes the 
multiple analogue to WILCOXON and KRUSKAL-WAL­
LIS rank statistics are superior to DUNNETT's procedure 
in all considered nonnormal cases. 

1. Introduction 

A problem frequently encountered in applied statistics is 
the comparison of treatment means with a control mean. 
Consider k + 1 sampels of size ni from populations hav­
ing unknown means fli and variances (Ji2 , i =. 0, ... , k. 
The treatment means are denoted by fl1>"" flk and the 
control mean by flo. 

The null hypothesis to be tested is 

Ho: flo = fli' i= 1, ... , k 

against the alternatives 

i = 1, ... , k. 

If the data satisfy the usual ANOVA assumptions (inde­
pendence, homogeneity of variance and normality) DUN­
NETT's procedure, DUNNETT (1955, 1964), is applicable. 
There are also nonparametric procedures for comparing 
treatments with a control (STEEL (1959), NEMENYI (1963), 
DUNN (1964), GABRIEL and SEN (1968), PERITZ (1971), 
PURl and SEN (1971». The aim of this paper is the in­
vestigation of the behaviour of DUNNETT's procedure 
and some nonparametric procedures based on WIL­
COXON, KRUSKAL-WALLIS and FRIEDMAN rank sta­
tistics by a simulation experiment for k = 2 if the under­
lying distribution is not normal. 

We limited the investigation to the case of homogeneity 
of variance (Ji2 = (J2 and equal sample sizes ni = n, 
i = 0, ... ,k and tWo-sided alternatives. Therefore we get 
robustness properties for DUNNETT's procedure in the 
sense of s-robustness (HERRENDORFER (1980), GUIARD 
(1981» and because the assumptions of the nonparametric 
procedures we considered are fullfilled we compare the 
behaviour of these procedures with that of DUNNETT's 
procedure in terms of comparison-wise power. 

The nonnormality of the underlying distribution is cha­
racterized by given values of skewness and kurtosis of a 
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continuous distribution which is generated from a normal 
one using a power transformation, see FLEISHMAN 
(1978). 

2. Description of the Procedures 

We present a short description of the procedures only 
for the considered case (homogeneity of variance, inde­
pendence, equal sample sizes, two-sided alternatives). For 
further explanations see also MILLER (1966). 
Yij , i = 0, ... , k; j = 1, ... ,n denote the samples of size n 
and Yij their realizations. 
The test statistics of DUNNETT's procedure (PI) are the 
usual t-sta tistics 

T(i) = Yo. - Yi. 
PI /2 

S L ~ 
V n 

i=l, ... ,k 

with the variance estimator 

S2=~ L'(Yij-YS, i=O, .. .,k; v=(k+1)(n-1). 
i.i 

Then for an experiment-wise error rate IX the control 
and i-th population are declared significantly different if 

(i) ( . Tp]>d k,v,l-cx). 

DUNNETT (1955, 1964) presented tables of the critical 
values d (k, P, 1 - IX) for IX = 0.01, 0.05 and several values 
of k and v. 

The first simultaneous technique based on ranking the 
observations was introduced by STEEL (1959). The test 
statistics of this procedure (P2) are 

(i) ( ,). k Tp2 =max ROi,Roi , 1=1. ... , . 

RUi denotes the WILCOXON two-sample rank statistic 
for sample pair (0, i) and R'Ui is the conjugate of ROi ' 
The test statistics are compared with the critical values 
l' (k, n, 1 - IX) and the populations are declared signifi­
cantly different if 

i=l, ... ,k. 

For approximations of the critical values I' (k, n, 1 - IX) 

see STEEL (1959). 
The next investigated nonparametric procedure (P3) based 
on the KRUSKAL-WALLIS rank statistic was proposed 
and analyzed by NEMENYI (1963). DUNN (1964) pre­
sented a similar procedure using the BONFERRONI in­
equality. 



The test statistics are 

(i) 1- - 1 Tp3 = Ri. - Ro. ' i=1. ... ,k where 

n 

R· = 1. "R-. 
I. n ~ IJ' 

j=1 

i=O ..... k 

denote the rank means and Rij , i= 0, ... , k; .i = 1, ... , n, 
are the ranks if all k + 1 samples are combined and the 
individual observations ranked from smallest to largest. 

Approximations of the critical values used in procedure 
P3 are 

[
N (N + 1) JI/2 ( 2 )1/2 

d(k. CXl.l- <>:) -
12 n 

with 

N = n (k + 1) and d (k, 00, 1 -~) from DUNNETT's pro­
cedure, see MILLER (1966). 

The last considered procedure (P4) based on the FRIED­
MAN rank statistic was proposed by NEMENYI (1963). 
This procedure requires that the observations do occur 
in blocks. Nevertheless we were interested in the beha­
viour of this procedure with respect to the described 
multiple test problem. 
R'ij denote the ranks of Yij relative to the ordered ob­
servations Y(l,j < ... < y'k+l j in block j, j = 1, ... , n. 
Then procedure P4 uses the test statistics 

(i) 1-' -, 1 TP4= Ri.-Ro. ' 

with the rank means 

n 
-, 1", 
Ri.= - ~ R ij • 

n j=1 

i=l, .... k 

i=O .... ,k. 

As in procedure P3 we get under using the critical val­
ues of DUNNETT's procedure with v = 00 approximations 
of the critical values for procedure P4 in the form 

(MILLER (1966)). 

:3. Empirical Evaluation of Error Rates 

In the null hypothesis case two kinds of error rates are 
considered: experiment-wise and comparison-wise. The 
experiment-wise error rate is the proportion of experi­
ments with at least one pair erroneously declared sig­
nificant, while the comparison-wise error rate is the 
proportion of pairwise comparisons erroneously declared 
significan t. 

A simulation study was performed using an ESER 1040 
computer for k= 2 and n = 6 or n = 21 observations per 
sample. 

The simulation made use of the subroutine ZZGD which 
generates uniformly distributed random numbers in (0,1] 
and the subroutine NVOI which transforms uniformly 
distributed random numbers to normally distributed ones 
with mean 0 and variance 1. The subroutines ZZGD and 
NVOl are described by HERRENDORFER, G., (ed.) (1980) 
For characterizing the non normality random numbers 
with mean 0, variance 1 and given values of skewness )"1 

and kurtosis Y" were generated from normal ones under 
using a power transformation presented by FLEISHMAN 

(1978). The shapes of distributions generated in such a 
way are described by NURNBERG (1982). We evaluated 
experiment-wise and comparison-wise error rates in the 
null hypothesis case and comparison-wise power for some 
specific nonnull configurations for nominal IX = 0.01 and 
;x = 0.05 and the following (rio ;'2)-combinations: 

o o o 1.5 o 2 
;'2: 0 1.5 1.5 3.75 3.75 7 7. 
The non-null cases were described by the parameters 

10,000 iterated experiments were carried out for each of 
the experimental conditions and common samples with 
11, = 0 and a2 = 1 were used across all procedures. The 
number of 10,000 iterations is a result of planning the 
simulation experiment for the estimation of a probability 
in case of [-robustness with £ equals 20 % of the nominal 
~ = 0.05, see HERRENDGRFER, G., (ed.) (1980). 

4. Results and Discussion 

The simulation results are summarized in tables 1-4. 
Because for the nominal IX= 0.01 the number of 10,000 
iterations is not large enough in the case of E-robustness 
with E equals 20 % these results show only tendencies in 
the behaviour of the considered procedures. 

For ~ = 0.05 DUNNETT's procedure is E-robust with re­
spect to the experiment-wise error rate IX (E equals 20 %)' 

In the case of 6 observations per sample the power of 
DUNNETT's procedure is greater then the power of the 
nonparametric procedures for nearly all ()'J, J'2)-combi­
nations, but for n = 21 the nearly same power of the 
procedures P2 and P3 is greater then that of DUNNETT's 
procedure in all nonnormal cases. 

The differences in comparison-wise power between the 
procedures P2 and P3 are not great, but the differences 
in the power between PI and P2 and between PI and P3 
are quite considerable. Procedure P4 has the smallest 
power. The figures 1-4 show this behaviour of the four 
procedures for some representative (rio )'~)-combinations. 

From figures 5-6 we get an impression of the behaviour 
of the power in some non-nUll cases if the (rl, )'2)-values 
are varied. The power of DUNNETT's procedure seems 
to be relatively constant if we increase the degree of non­
normality, but the power of the non parametric proce­
dures increase rapidly. 

Already MILLER (1966) remarked that the comparison 
of the procedures Pi and P2 paralleled the comparison 
of the i-test and the WILCOXON -test. The results found 
in the present study for DUNNETT's procedure and 
STEEL's procedure agree with those found for the t-test 
and WILCOXON-test by POSTEN (1982). 
Summarizing the results we can say that for small sample 
sizes DUNNETT's procedure is superior to the nonpara­
metric procedures also in non normal cases. For larger 
sample sizes the procedures P2 and P3 are superior to 
DUNNETT's procedure. 
Finally, for reasonable recommendations to the experi­
mentors we must also know the behaviour of the proce­
dures in case of unequal variances and unequal sample 
sizes. 
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Table 1 Table 2 

Simulated significance levels X 100 for the procedures Simulated significance levels X 100 for the procedures 
PI, P2, P3, P4 based on samples of 6 observations drawn PI, P2, P3, P4 based on samples of 21 observations drawn 
from distribution with mean fJ, ,= 0, variance (12 = 1, from distri bu tion with mean fJ, ,= 0, variance (1~ = 1, 
skewness Yt and kurtosis 1'2 skewness )'l and kurtosis )'2 

------------~-- - -----~- ~~---.~~~--~----~.--- ---~~--.-----~---

)'t/Y2 
Nominal a = 0.01 Nominal a = 0.05 

1'1/'12 
Nominal a = 0.01 Nominal a = 0.05 

a1 a2 a a1 a2 a a1 a2 a (1;1 a2 1% 
---.. --.-- --------------- - -- - ----------- -

0/0 PI 0.49 0.58 0.98 2.76 2.68 4.90 0/0 PI 0.54 0.52 0.91 2.76 2.57 4.80 
P2 0.13 0.15 0.27 2.61 2.64 4.85 P2 0.51 0.38 0.79 2.56 2.70 4.82 
P3 0.18 0.28 0.46 2.46 2.60 4.72 P3 0.56 0.46 0.91 2.53 2.53 4.64 
P4 0.28 0.27 0.55 2.45 2.46 4.69 P4 0.39 0.35 0.70 2.55 2.70 4.80 

0}1.5 PI 0.44 0.50 0.87 2.47 2.13 4.16 0,1.5 PI 0.32 0.49 0.80 2.60 2.95 5.13 
P2 0.23 0.22 0.44 2.36 2.17 4.27 P2 0.31 0.33 0.63 2.78 2.13 5.34 
P3 0.30 0.27 0.57 2.36 2.13 4.31 P3 0.41 0.39 0.79 2.69 2.96 5.32 
P4 0.34 0.34 0.68 2.36 2.43 4.59 P4 0.37 0.39 0.73 2.49 2.83 4.92 

111.5 PI 0.48 0.64 1.01 2.63 2.64 4.75 1/1.5 PI 0.50 0.36 0.83 2.70 2.51 4.90 
P2 0.22 0.20 0.40 2.70 7.72 5.01 P2 0.38 0.37 0.74 2.64 2.61 4.95 
P3 0.31 0.35 0.66 2.44 2.63 4.75 P3 0.46 0.42 0.87 2.57 2.40 4.72 
P4 0.28 0.41 0.69 2.61 2.72 5.16 P4 0.33 0.30 0.62 2.22 2.27 4.22 

0/3.75 PI 0.35 0.37 0.70 2.37 2.37 4,26 0.3,75 PI 0.42 0.49 0.81 2.65 2.58 4.74 
P2 0.21 0.26 0.47 2.53 2.67 4.89 P2 0.51 0.38 0.79 2.56 2.70 4.82 
P3 0.22 0.27 0.49 2.47 2.41 4.61 P3 0.56 0.46 0.91 2.53 2.53 4.64 
P4 0.30 0.24 0.54 2.59 2.42 4.81 P4 0.39 0.35 0.70 2.55 2.70 4.80 

1.5/3.75 PI 0.42 0.42 0.77 2.32 2.32 4.23 1.5/3.75 PI 0.39 0.52 0.85 2.67 2.70 4.97 
P2 0.19 0.25 0.44 2.66 2.36 4.71 P2 0.37 0.44 0.80 2.71 2.78 5.09 
P3 0.27 0.25 0.52 2.31 2.22 4.30 P3 0.42 0.48 0.88 2.62 2.75 4.98 
P4 0.35 0.33 0.68 2.58 2.55 4.98 P4 0.38 0.34 0.67 2.75 2.47 4.87 

017 PI 0.37 0.38 0.68 1.95 2.42 3.98 017 PI 0.28 0.47 0.74 2.47 2.71 4.82 
P2 0.24 0.21 0.42 2.42 2.65 4.74 P2 0.31 0.33 0.63 2.78 2.93 5.34 
P3 0.28 0.26 0.52 2.21 2.58 4.55 P3 0.41 0.39 0.79 2.69 2.96 5.32 
P4 0.36 0.35 0.71 2.34 2.66 4.77 P4 0.37 0.39 0.73 2.49 2.83 4.92 

2/7 PI 0.38 0.43 0.75 2.27 2.37 4.17 2/7 PI 0.54 0.47 0.94 2.31 2.37 4.30 
R2 0.17 0.22 0.39 2.50 2.92 5.08 P2 0.41 0.30 0.70 2.75 2.65 5.10 
P3 0.26 0.33 0.59 2.50 2.48 4.73 P3 0.52 0.35 0.85 2.65 2.64 5.01 
P4 0.31 0.25 0.56 2.68 2.69 4.13 P4 0.41 0.28 0.67 2.43 2.13 4.33 

--- --------- --- ---_ .. - ---- - . -------- --------- _._----- ---.- -----

Table 3 
Simulated comparison-wise power X 100 for theoretical (I; = 0.05 for the procedures PI, P2, P3, P4 based on samples 
of 6 observations drawn from distribution with variance (12 = 1, skewness Yb kurtosis Y2 in the non-nun-case with 
III and 62 

----------~~---------~-.~-------

61 1.73 1.73 3.46 3.46 4.85 4.85 
)'t / )'2 62 0 1.73 0 3.46 0 4.85 

(I-Ph (I-Ph (l-P)l (I-Ph (l-P) 1 (I-Ph (l-P) 1 (I-Ph (l-P) 1 (I-Ph (l-P)l (I-Ph 
-.--.~----------

0/0 PI 27.61 2.33 27.04 27.40 83.57 2.65 83.64 83.33 98.64 2.85 98.77 98.91 
P2 23.74 2.28 22.73 23.44 76.40 2.62 76.08 75.78 96.42 2.56 96.43 96.69 
P3 23.69 1.16 22.85 22.97 71.99 0.33 71.40 71.57 92.05 0.06 92.04 92.30 
P4 18.53 1.48 17.78 19.07 57.72 0.53 56.80 56.91 78.50 0.04 78.28 78.38 

0/1.5 PI 28.92 2.90 29.33 28.96 83.83 2.56 83.34 83.33 98.12 2.41 97.85 97.85 
P2 26.85 2.86 26.49 27.73 76.62 2.70 76.25 76.41 94.08 2.24 94.42 94.14 
P3 26.02 1.64 25.73 25.71 73.37 0.21 73.11 73.00 90.86 0.01 90.98 90.88 
P4 20.63 1.73 20.87 20.45 58.37 0.27 59.14 58.64 76.93 0.05 77.12 76.87 

111.5 PI 28.59 2.48 28.23 28.65 82.75 2.73 83.35 83.71 97.74 2.82 97.99 97.85 
P2 26.73 2.50 26.11 26.43 75.75 2.86 75.90 76.27 93.21 2.80 93.59 93.30 
P3 25.23 1.90 26.67 26.89 72.83 0.34 72.07 72.07 90.64 0.06 90.55 90.16 
P4 20.44 1.84 21.47 20.66 57.17 0.52 58.25 59.36 76.85 0.12 77.63 76.89 

0/3.75 PI 31.38 2.46 30.75 31.12 83.69 2.50 84.06 83.67 97.23 2.55 97.09 97.20 
P2 30.05 2.65 29.86 30.03 77.16 2.79 77.37 77.20 92.83 2.57 91.91 92.40 
P3 29.38 1.17 29.70 29.93 74.00 0.25 75.06 74.90 90.23 0.06 89.80 90.39 
P4 22.85 1.34 22.71 23.18 59.78 0.24 61.39 60.55 76.80 0.08 76.48 77.46 

1.5/3.75 PI 31.56 2.33 31.61 31.49 83.80 2.50 83.55 83.47 97.19 2.72 97.27 97.07 
P2 31.72 2.48 31.62 31.39 76.40 2.57 75.86 76.06 91.57 2.69 91.10 91.39 
P3 30.26 1.72 31.85 32.10 74.83 0.50 73.17 73.35 90.00 0.12 88.55 88.67 
P4 23.87 1.83 25.06 25.19 59.38 0,49 59.98 59.85 76.36 0.13 76.67 75.85 

0/7 PI 34.04 2.18 33.88 34.74 84.07 2.11 84.19 83.90 96.46 2.14 96.49 96.63 
P2 34.24 2.53 33.07 35.07 76.58 2.55 76.94 77.17 90.86 2.53 90.55 90.85 
F3 34.39 0.89 33.76 34.64 75.71 0.12 76.04 76.27 89.50 0.04 89.38 89.44 
P4 26.36 1.08 26.07 26.52 61.92 0.23 61.80 62.17 76.30 0.07 76.90 77.24 

217 PI 34.32 1.97 34.45 33.93 84.08 2.28 83.69 83.56 96.22 2.34 96.19 96.52 
P2 36.23 2.46 36.07 36.00 76.29 2.53 76.98 76.61 89.49 2.62 89.66 89.52 
P3 35.24 1.58 36.82 36.82 75.63 0.40 75.66 74.85 B9.0B 0.10 88.26 8B.15 
P4 26.83 1.81 28.67 28.58 61.03 0.40 63.02 61.82 76.09 0.10 76.29 76.58 
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Table 4 
Simulated comparison-wise power X 100 for theoretical a = 0.05 for the procedures PI, P2, P3, P4 based on samples 
(0[' 21 observations drawn from distribution with variance I]'~ = 1, skewness Yl, kurtosis Y~ in the non-null-case with 
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Testing Hypotheses in Nonlinear Regression for Nonnormal Distributions 

WOLFGANG H. SCHMIDT, SILVELYN ZWANZIG 

Abstract 

The general nonlinear regression model is considered, 
where the error distribution can be nonnormal. In this 
paper we present tests, confidence intervals and estima­
tors for both the regression coefficients and the variance 
of the observations which perform well in the sense of 
second order asymptotic theory. In particular, robustness 
results for deviations from the normal distribution are 
given including distributions with either known or un­
known skewness and kurtosis. 

1. Introduction 

Recently the authors derived in Schmidt, Zwanzig (1983) 
second order asymptotically efficient tests, confidence 
regions and estimators for both the regression coefficients 
and the variance in the normal nonlinear regression model 

Yt=g(xt,~)+aut, t=l, ... ,n .... 

Here ut constitutes a sequence of independently N(O,l) 
distributed random variables, g is a known regression 
function depending on known regressors x E Rk. The un­
known parameters to make inference upon are; ESc RP 

and 0 < 0'2 < 00. 

Popular estimators for ; and 0'2 are the least-squares 
A 

estimator (LSE) ~n and the residual sum of squares 
"2 (" ) " an = Q ;n where; is a solution of 

with 
n 2 

Q(;):=~ ~(Yt-g(Xt';)) 
t~l 

These estimators are widely used because of its justifica­
tion from the heuristical point of view even if the under-

lying distribution is non normal. Notice that ~ and ~~ are 
maximum-likelihood estimators (MLE) if Ul rv N(O, 1). Even 
if there exist some objections to the normal distribution 
assumption usually the practician cannot specify an alter­
native fixed distribution. It may happen, however, that 
he is quite sure that the error distribution is not sym­
metric or that other global properties fulfilled by the 
nOl1mal distribution are not satisfied. 

In such situations natural questions are: 

i. Is it possible to construct statistical procedures based 

on ~ and;~ which perform well if there are intro­
duced additional parameters like skewness, kurtosis 
or other characteristics of the error distribution? 

ii. What is the asymptotic deficiency of such procedures? 
iii. Do there exist examples with asymptotic deficiency 

zero, i. e. are the procedures asymptotically robust 
against deviations from the normal distribution? In 
particular contaminated families of distributions are of 
interest. 
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In the present paper we collect several results giving 
answers to questions i., ii. and iii. Here we abstain from 
giving the proofs and all the regularity conditions needed. 
As in (1983) several smoothness conditions on the re­
gression function and the design of local Lipschitzian type 
as well as Cramer type conditions on the error distribu­
tion are used. For instance, the regularity conditions on 
the regression function g(x,~) are fulfilled, if g(. ~) is a 
continuous function defined on a compact set 'X, and if 
g(x, .), defined on a compact set E, is identificable and 
three times continuously partially differentiable. Full 
proofs and a complete list of the regularity assumptions 
will be published elsewhere. 

2. Some General Definitions and Results 

Let us recall some general definitions first. 
We consider a statistical framework of independent not 
necessarily identically distributed random variables 

i= 1,2,." ,n,." 

with {}EBcRs 

It is assumed that {pw : t? E e} is dominated by some 
a-finite measure '" and Pi (y, J?) denotes a ",-density 
of PW ' 

Let {}=(~) with y={},ER' 

We are interested in testing the composite one-sided 
hypothesis 

H : I' ~ 1'0 against K : J' > J'o 

for a given 1'0 E Ri. Let ~ c A an arbitrary compact sub­
set of A. 

Definition 1 (Pfanzagl (1973b)) 

Let P > 0 be fixed. A sequence {'I'n} of critical functions 
'I'n = 1J!n (Yj , ••. , Y n' {}) is called to be asymptotically si­
milar to the level IX + o(n-I') with 0 < IX < 1 if uniformly 
for ,7 compact subsets ~ c (90 = {.? E G I ;' = i'o}, 

lEU 'I'n - IX I = 0 (n - P) 

The set of all such sequences will be denoted by the 
symbol (l'~"ji 

Definition 2 (Pfanzagl (1973) b) 

A sequence I 'I'~) E '['",P is asymptotically efficient of 
order 2p + 1 if uniformly for .? from compact subsets 
~ c Ao 

and 



with 

for all {Ijln} E Ijla,{J holds. D 
Definition 3 

Let {Ijln}. (vl~) E 'l'~,fI be two sequences of critical func­

tions and let : IP~ 1 be asymptotically efficient of order 

2p + 1. Further it is assumed that 

and 

both holding uniformly in I? E ~ c (-)0 

Cia, h), B(a, h) and B*(a, h) are assumed to be bounded 
in nand I?E ~ 

Then the quantity 

L1 2p + I «x, h): = B*«X, h) - B(a, h) 

is the deficiency of order 2p + 1 of {'jln}· 0 
Notice that only functions 'Pn being independent of 0 are 
reasonable tests. 

We shall mainly discuss the case p =~, i. e. the second 
2 

order asymptotic efficiency. Very often asymptotically 
similar tests to the level a + o(n -'.',) are of the form 

{1 'f Yn(Yn-Yo»u _n- 1/ 2 M(U"&) 
, 1 - l-tX lX' n 

'Pn= N(~n) 

0, else 

(I) 

where '?n is an estimator of ,1, u" is the a-fractile of 
N (0, 1) and M (u, 0) = mo ({) + m1 (0) u2 is a bounded 
function in 19 E~ c 0 0 

Converting the acceptance region one gets the upper 
confidence interval 

which possesses the asymptotic confidence level 

1 - a + o(n _1(2) uniformly for ,') E ~ c (~)o. 
If, moreover, 'P n of the form (1) is second order asymp­
totically efficient then (2) has minimal coverage proba­
bility for false parameters 

y_n- 1/ 2 h, h>O 

up to terms of order o(n- 'I,). 

uniformly for /) E ~ C (..) (second order asymptotic me­
dian unbiasedness). 

And for every other sequence of estimators )' n with (4) 
and (5) it holds 

p~(Y - n -1 12 h::;Yn::; Y +n _1/ 2 ii.} 

::;;P8(y- n-1hh::;Y~::; Y +n -1/2i1} + 0(n- 112) 

uniformly in 0 E ~ C 0 for every h, h > O. 

Thus it suffices to derive second order asymptotically 
efficient tests. Second order asymptotically efficient con­
fidence regions and second order asymptotically efficient 
estimators are then obtained by (2) and (3) automatically. 

3. The Asymptotic Envelope Power Function of any Se­
quence{ lJln } E 'l)~,12 

A similar argument as in Pfanzagl (1973)a yields for 

p = 1 
2 

E,'ln 'I'~ = rp (ua + 11;,1/2 h) + rp (ua + 11;' 1/2h) n-112 H*(u", h) 

+0(n- 112) 
uniformly in 19 E ~ C (-)n 

with 

- 1. ;1-2 h L(·)(.j(·) 
6 11 u 

(6) 

(7) 

Here and in the sequel we use the following denotations: 

I(~): = (~~E~(l(i)(Yt'~)l(j)(Yt, ~)) )i,j~l'''.,S 
is the average Fisher information matrix, where 

. ,s 
= I(~)-I 

For a = l (u = 0) the lower confidence limit results in a 
2 " LU)(.) 

second order asymptotically efficient estimator for )" 
namely 

if (1) is second order asymptotically efficient. 
It has the properties 

and 

P'9IY~::;; y) ~ t + o(n- 1
/ 2) 

(3) 

(4) 

(5) 

Further 'P denotes the density of N (0, 1) and '/' its distri­
bution function. The formulae (6) and (7) have been given 
by J. Pfanzagl (1973)a for the independent and identically 
distributed case. 
Usually the asymptotic envelope power function (6) is 

attained by the sequence of tests (1) based on an MLE '?n' 
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4. Asymptotically Similar sequences of Tests to the Level 
Cl in the Nonlinear Regression Model 

We shall give sequences {ll'n} E 'j'~,li2 both for y = f}l where 
t'lT = ($T, ( 2), and y = a2, where {IT .= (a 2, 2T ), and shall 
discuss their deficiencies. Two cases are distinguished, 
namely 

i. some moments of <l'= aUl are known, e. g. /-l:1 = EEI 3, 

/-l" = EE14 or /1" = EE1G 

ii. the density p(u) of Ul is unknown. 

4.1. Tests on y = $1 

4.1.1. /1:1 = E <1 3 known 

First we introduce some further denotations: 
IqJ ( {j) denotes the average Fisher information matrix 
under p(u) = lP(u) and I" (ti) its inverse: 

u -2( ~ ~ l')(xt,~) g(i2)(Xt,~) \'i2=1.'" ,p 

o 

6 
............................................................................................................ 

~ 1 
0 .......................................................................................... 0~-4 

: 2u 

n 

n(i,)(i2)(i3): =!J 1: g(i')(Xt,~) l2)(Xt,~) l3)(Xt,~) 
t=1 

Mp1 (u, if) = mo(if, 113) + m, (if, 113) u2 

m (if, ) = _1_ /1_3/ 2 n(·)(.)(·) __ 1_ /1_3/2 n(')(") 
o 1-'3 6 u6 1-'3 'Pll 2 u2 'Pll 

+_1_/1-'/2 ~ n(·)(i,i2)A 
2u2 'P" . ~ 'Pi1i2 

11. 12=1 

belongs to 'j';" '2 

(9) 

(10) 

(11) 

Especially it holds for symmetric error distributions 
(/1:)= 0) 

and 

Under p(u) = II' (u) the sequence of tests (8) is second 
order asymptotically efficient (see W. Schmidt, S. Zwan-

zig (1983». Notice that lin is an MLE under p(u) = lP(u). 

4.1.2. /13 unknown 

A natural estimator of It:) = E 013 is 

Let us introduce the test 

'Pn = (
1. if 

and 

n(')(')(')= 

n(")(') 
p 

1: 

n(·)(·I) 

n(·)(·)(I) = 

0, else 

with MI13 (u,17) defined by (9), (10) and (11). 
Then it holds 

and its power function under local alternatives or local 
hypothesis t9 n equals 

uniformly for if Eft c 8 0 
(13) 

with 

H(Uh)= __ I- /I-l n(.)hu+_1_ /I-2 n (·)(·)(.\u 
, 2,,4 1-'3 'Pll 3 u6 1-'3 'Pll 

(14) 

The sequence of tests Thus one might compute the second order deficiency 

(
1, if 

'Pn= 
0, else 
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. ~ ~n (~ ) wIth 1'tn = a~ 

(8) L12 (a. h) = B*(a, h) - B{a, h) 

using (14) and (7). 
It may happen that L1 2(Cl, h) = 0 even if the underlying 
distribution is nonnormal. This is demonstrated by the 
following example: 
Let {Zt} be a sequence of independent and identically 
distributed random variables with Lebesgue-density 

( 12) 



z>O 

else 
and let 

ut = Zt - 1 

Then all the model assumption are fulfilled. 
We shall consider the case a2 > 0 known only. 
It turns out 

Lll (a, h) == 0 
i. e. the sequence of tests {lI'n} defined by (12) is firs\ 

order asymptotically efficient. 
The second order asymptotic deficiency equals 

LI ( h) - ((! ;1-' n(') - ~ ;1-3 n(')(' )(. I)' I 
2 IX, - a 11 6 a3 11 HI, 

+(_1_;1-3/2 n(·)(·)(11 _ _ 2_...1- 5/2 n(·J(·)(·I)1 2) ( + ...1-'/2 h) 
2 a 3 " 3 a3 11 1 rp U. " 

For the linear model 
T 

Yt=X t ~+a(Zt-l), t=L2,,, .. n .. ,, 

with Zt as discribed above the second order asymptotic 
deficiency Ll 2(a, h) would vanish if 

n n * I: Xli, = * I: Xli, Xli, xli3 = 0 
t=1 t=1 

( 15) 

for all triples, it, i2, i~·= 1, ... , p. 
Condition (15) refers to the design only. (15) is fulfilled 
e. g. for a special D-optimal design over the cube 

{x E R P i [Xi [ ::;: 1, i = 1, ... , p} if the asymptotics are 
considered for the sequence n =, m2 P , m·= 1, 2, ... 
Let us introduce the commonly used 2P xp matrix 

Xo= 

Then the design matrix 

fulfils (15). 

-f 1 
-1 

--I -I II 
--1 

-I 11 
-I 

+1 
-1 

+1 
--I 

-1 

Xo occurs m-times 

Another commonly used approach to robustness is to 
analyse the asymptotic behaviour of the test (12) for 
contaminated families of distributions. 
Let us consider a b-contaminated distribution around the 
normal distribution for uj, namely 

(1- b)rp(u)+ b q(u) 

for b = o(n) E (0,1) 

where q is a fixed density fulfilling certain regularity 
conditions. 
A natural assumption is 

what entails first order asymptotic efficiency of the test 
(12). In what follows we give the second order asymptotic 
deficiency. 
Let 

be the density of y t under q 
and 

A(~): = (Ai/~))' '=1 +1 '.J " . P 

( 1 ~ ((i)( )( (j)( ) (j)( )\ := nt:Ert l,p Yt,~ lq Yt,f} -I,!, Y('~) 

(j)( )( (i)( ') (ii, )))) + 1'1' y(,~ lq Yt,iJ -I,? \YI'f} i.j 

(Erj denotes the expectation computed under the density r 

for Yt; l'f' lq denote the log-likelihoods under rp and q 
respectively.) 
Finally we introduce 

Then for ij = O(n-1 2) the second order asymptotic defi­
ciency is given by 

If b = o(n-I ~) we obtain .d 2(a, h) = 0(1) such that "Pn 
defined by (12) is second order asymptotically efficient. 
Summerizing, 'Pn from (12) is first order asymptotically 
robust if ij= 0(1) and is second order asymptotically ro­
bust if b = o(n-I 2). 

4.2. Tests on )' = a2 

Obviously, we assume 0 = ( 0:) from now on in order to 
. , 

be consistent with our denotations. The testing problem 
under consideration is 

4.2.1. ."i = E,-, ",i known for i = 3, 4, 6 

The test 

(16) 

{
l. 

1f'n = 

0, else 

with 

M(u. fJ) = mo(fJ) + m,(fJ)u2 , 

-312 (1 2 P (. (' 
m (fJ)=(1-' _a 4) _~_1-'3 ".1 .. n")n lz ) 

o 4 6 a2 • 4-' '{ 1,'2 
'1"2=1 

+ (I-'~ _ a4)a2 p). 

~n= (~) 
defines a sequence {'I'n} belonging to "'".12 . 

If Ut possesses the density 

Cc 2c-l -cu' 
Pc(u)=--Iul e forsomec>O 

ric) 
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we have 

1 ,1.: 1 
M(U,,~)= - + P rC - - u2 

3Yc 3VC 
and 

Lh(lX, h) == 0 (see W. H. Schmidt, S. Zwanzig (1983». 

Notice that ;;2n is an MLE under PI ~ (u)·= q:>(u) only. 
Thus {'iln} is second order asymptotically robust under 
all densities Pc (u) with c > o. 

4.2.2. Il~, Ill, or 116 unknown 

Again useful estimators for Ili are 

n . 

,uin=~ ~(Yt-g(Xt}n)r, i=2, ... ,6 
1=1 

and a sequence {11'n } E '1'",12 is defined by 

(
1, 

1pn= 
0, else 

with 

M(u)=ma+m,u2 

rna = (P4,n - ucif3h( t~ +u~P(,u4,n -u~) 

_ A7 ~ n(i,) d i2 ) u -2 1 .' .. ) 
fI n L.. a " tpl,l2 

,.i2=1 
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The asymptotic power of this test results in 

with 

From (18) and (7) several conclusions concerning the 
asymptotic deficiencies could be drawn. 
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The Bootstrap in Nonlinear Regression 

PIOTR STANIEWSKI 

Abstract 

Nonlinear regression models are considered. It is shown 
that under general assumptions the bootstrap approxi­
mation to the distribution of the least squares estimates 
is asymptotically valid. Both cases of finite and infinite 
error variances are investigated. 

1. Introduction 

This paper will develop some asymptotic theory for appli­
cation of the Efron (1979) bootstrap to nonlinear regres­
sion. It was shown that under standard conditions the 
bootstrap approximation to least squares estimates is 
valid. These results are a generalization of those of Freed­
man (1981), who considered only linear models. 
A question arises as to which conditions imposed on non­
linear models should be regarded as standard ones. In 
this paper the conditions of Jennrich (1969) are adopted, 
which are not very restrictive, if we adopt the assump­
tions of Malinvaud (1970), Bierens (1981) or Wu (1981), 
the validity of the bootstrap might be proven along the 
same lines. 
In section 2 the assumptions for nonlinear regression 
asymptotic are briefly presented. Section 3 gives the 
bootstrap algorithm for nonlinear regression models. Sec­
tion 4 deals with consistency and Section 5 with asymp­
totic normality of the bootstrap approximation to least 
squares estimates for the cases of both finite and infinite 
error variances. 

2. Nonlinear Regression Models 

The following models will be considered. 

Yi = g(Xi'~o)+ ei i = 1,2,3, ... (2.1) 

where (x i) is a sequence of k X 1 data vectors, the ei' s 
are random errors, Yi's are real-valued responses, ilo is 
a p X 1 parameter vector and g(x, il) is a given function 

on Rk x RP. 
/'-

Any vector On which minimizes 
n 

Qn(~)= n -, 2: (Yj - g(Xj' &)f 
j~l 

(2.2) 

will be called a least squares estimate of I~O based on the 
first n values of Y i and Xi . 

/"0 

To obtain the consistency of the sequence (On) we im-
pose the following conditions on the model (2.1): 

AI: The function g(x, I~) is continuous on Rk X H, where 

H is a compact subset of RP 

B1: The errors ei, i = 1, 2, . .. are independent, identi­
cally distributed random variables with zero mean and 
finite variance 0'2 > o. 
C1: For any given data sequence (xn ) of k X 1 vectors, 
the sequence of functions on H X H 

(2.3) 

has a limit and its convergence is uniform in 0', 1~2. 
D1: The function 

n 

Q(&)=lim n-'2:[g(Xj,~)-g(Xj,~o)y (2.4) 
n~oo j~l 

is equal to 0 only at /1 = il o. 

Jennrich (1969) has proven that under assumptions AI, 

Bl, C1 and Dl, ;'I~ and ~~e = Qn (On) are strongly con­
sistent estimators of 110 and (]'2 respectively. 
To ensure the asymptotic normality stronger assumptions 
are required. The assumptions Al and Cl should be re­
placed by: 

A2: The function g(x, 0) belongs to C2 (RP X H), where 

H is a convex, compact subset of RP 

C2: For any given data sequence (xn ), the sequence of 
functions on H X H: 

(n -, t f(xj,~')h(xj,~2) t~1.2 .... (2.5) 

has a limit and its convergence is uniform. In the for­
mula (2.5) 

f,h = g,H(ag/a~k)' (a / a~k) . (a / a{J\) g; k,l = 1.2, .. ., p 

Moreover, the following assumptions should be added: 

El: Oo~is an interior point of H. 
Fl: The matrix A = lim An is nonsingular. An ele­

n-,"oo 

ment anij :,~; of the matrix An is given by the formula: 
n 

anij(~) = n -, 6 [ag(Xk'~) /a~i][ ag(Xk' ~)/a~jJ. (2.6) 

Jennrich (1969) has shown that when the assumptions A2, 
B1, C2, Dl, EI and FI are satisfied, the distribution of 

A 

n l2 (I?n-/lo) tends to a 

Np (0,0'2A(t'lo)-I) and An 
estimator of A( 00 ). 

p-variate normal distribution 
/'-

(I~n) is a strongly consistent 

We will also consider the case when the assumption Bl is 
weakened. We take 
B2: The errors e i i = 1, 2, ... are independent, identi­
cally distributed random variables, with zero mean. 
For proving weak consistency under B2 observe that the 
least squares estimator can also be obtained from 

where 
n 

Q~(~)= Qn(O) - n -, I' ej 
. j~l 

For this case we will need some lemma. 

Lemma 2.1. 

Let (xn ) be a sequence of real numbers. Let 
n 

(2.7) 

(2.8) 

lim sup n-t 2: x j 2 < 00. Let (Yjn) be a doubly 
n~oo j=1 

indexed sequence of real numbers that the expression 
nYjn IXi tends to zero if only Xj In tends to zero. Then 
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n 

lim II(1+Yjn)=1. 
n-oo j=1 

Proof: 

From lemma's assumption and the inequality 

n 

) ' it follows that there exists scnne lJ '> 0 that"-' (~ i Xj I 

j=! 

< n. For arbitrary 0 < E < 1 put ,It = E lJ. Consider the 
sequence 

n 

n (1 + IlI Xj I/n)n=I.2 .... 
j=1 

Straightforward computations show that the limit of this 

sequence is majorized by the sum J.: .,.i = (1- o)-j. 
j=o 

It is clear that xJ In tends to 0 as j, n tend to 00. From 
lemma's assumption it follows that for large nand j, say 
n, j > s, we have I Yjnl < !1 I Xj I In. Thus 

n n n 

IT (1- IlI Xjl/n) ~ II (1+ yjn) ~ II (1+ Ill x jl/n). 
. . j=1 j=1 

We will consider only the right inequality. The left in­
equality may be treated analoguously. Let n, j > s 

n s+n 

II(1+Yjn)= II(l+Yjn) II (1+Yin)~ 
j=1 j=1 j=5+1 

s s+n s 

~II(1+Yjn) II (1+lllxjl/n)~(1-Er'II(1+Yjn) 
j=1 j=s+1 j=1 

As the f is arbitrary and s is finite, the last term on the 
right may be made arbitrarily close to one. The thesis 
of the lemma follows immediately. 

Lemma 2.2. 

Let (xn)be a sequence of real numbers as in Lemma 2.1. 

Let the assumption B2 be satisfied. Then n-1 

tends to 0 in probability as n tends to 00. 

Proof. 

n 

)' 
"--' j=1 

As the errors e j have zero mean, the characteristic func­
n 

tion of n-1 .2: ej Xj may be represented as (I'n (t) = 
j=1 

n 

= TI [1 + o(xjt/n)]. It follows from Lemma 2.1 that 
j=1 

for any given t ifJn (t) tend to one, i. e. to the charac­
teristic function of the random variable with a one-point 
distribution concentrated in O. The lemma follows. 

Lemma 2.3. 

When the assumptions Al and C1 are satisfied, then the 

(n- 1 )n-, sup sequences _ 
j=1 (-IER 

g2 (x j , I~)) _. and 
n-1. 2 .... 

(n-I jt ~~k g2 (xj, (0)) n=1. 2, ... are bounded. 

Proof. 

From Al it follows that g(x, t9) is uniformly continuous 

on compact subsets of R k X H. Thus for every 0 and 
/1* E H we may choose a neighbourhood Q of t'i*, that 
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for each j we have [sup g2 (xj, I~) - g~ (x j , I~*) 1 :::;; f 

l'lE!1 

From this it follows that 

so, the sequence (n-I i ~up, g2 (Xj' /Il) is bound-
j=1 ,)E.. n=I,2, ... 

ed. 
We may choose for every 0 such set of I~* 's that their 
neighbourhoods cover H. Then we may choose a finite 
collection of such neighbourhoods, say Q I, ... , Q M' For 
each neighbourhood Q i we have 

n 

have lim sup n- I )' sup g~ (x j, 0) < '-. Thus 
n~~>DO j7::t dEl! 

n 

lim sup n-'I' sup g2(Xj'&)~ 
n-oo j=1 OER 

M n 

~limsup I'n-'I' supg2(Xj,&)<oo 
n-oo i=1 . j=l l1e .Qi 

From Lemmas 2.3, 2.2 and the three sequences theorem 
we have the following lemma. 

Lemma 2.4. 
LEt AI, B2 and C1 be satisfied. We have 

n 

p lim n l 2.: ej g (Xi' /1) 0 
n~~DO j=1 

and the convergence is uniform in I~. 

Taking into consideration Lemma 2.4 and applying rea­
soning like in the proof of Theorem 6 of Jennrich (1969), 
we obtain the following theorem: 

Theorem 2.1. 

Let the model (2.1) with AI, B2, C1 and Dl be given. Then 
/'., 

p lim I?n = /1 0. 
n --)-cxc 

Bierens (1981) investigated symmetric stable distributions, 
with characteristic functions of the type 

<I' (t)= exp (-a I ti"), a> 0, IX E (1,2). 
Similarly to this Theorem 3.1.6, page 68, we may derive: 

Theorem 2.2. 

Let the model (2.1) with A2, B2, C2, Dl, El and Fl be 
given. If in addition the error distribution is symmetric 
stable with characteristic exponent IX E (0, 1) and scaling 

> h i-I " (~) ? ) . d' parameter a 0, t en n I n - I 0 converges 111 IS-

tribution to certain nonnormal limit distribution. 

3. Bootstrapping 

The bootstrap algorithm is the following. After computing 

lin' the observable n-vector of residuals e is given by 

;i = Yi - g (Xi' On) i = 1, 2, ... ,n, Let us denote 
n 

sn = n -1 ~ ";j. Let F n be the empirical distribution of e, 
j=1 

/'., /'., 

centered at the mean, so F n puts mass lin at e i = e i - sn 

and jXdF n = O. Given Yio"" Yn' let wIn"" ,wmn be 
A 

conditionally independent with common distribution F n' 
Let 

Yin=g(Xi}n)+Win i=1.2, ... ,m. (3.1) 

Errors w in are obtained by resampling the centered re­
siduals. New responses Yin"'" Ymn are generated from 



/ 

the data using the regression model with iln as the vector 

of parameters and F n as the distribution of the disturb­
ance terms win"'" W mn' The bootstrap least squares 

estimate "I~mn minimizes the function: 

m m . 

= m -1 L wJn+m -1 L [g(Xj,;q -g(Xj,o)r + 
j=1 j=i 

m 

- 2m-' L Wjn [g(Xj' ~n) -:- g(Xj,lf) J 
j=l 

(3.2) 

It follows immediately from Lemma 2 of Jennrich (1969) 

that '(y' can be chosen a random variable. mn 
Now, when the error variance is infinite, we obtain the 

bootstrap least squares estimate i'mn minimizing the 
function 

m 

= m -1 L [gh'~n) - g(Xj'lf)f + 
j=1 

m 

- 2m- 1 L Wjn[ g(Xj'~n) - g(Xj'If)]. (3.3) 
j=i 

The bootstrap principle is that the distribution of 

n I 2 I ~;Imn - 11 n), which can be computed directly from 
1 'J /"- , 

the data, approximates the distribution of n -( /'n - ilui 
This approximation, as is shown in section 5, is likely to 
be good. 

4. Consistency 

Using Mallows metric technique (ef. Bickel and Freed­
man (1981), Freedman (1981)) the following theorems 
may be proven. 

Theorem 4.1. 

Let the model (2.1) with AI, B1, C1 and D1 be given. 

Let (Omn) be a sequence of bootstrap least squares esti­
mators. Along almost all sample sequences, given Yh ... , 

Yn' as m and n tend to co, '/~nn and a~n = IL (/Imn) i 
tend in conditional probability to I?O and a2 respectively. 
And for the infinite variance case: 

Theorem 4.2. 

Let the model 2.1 with AI, B2, C1 and D1 be given. Let /, 
I?mn be a sequence of bootstrap least squares estimators. 

Along almost all sample sequences, given Yh"" Yn as m 
/', 

and n tend to co, /Imn tend in conditional probability 
.. " 

to {Io. 
The exact proofs of these theorem may be found in 
Staniewski (1983). 

5. Asymptotic Normality 

In lemmas of section 5 we will use the concept of "con­
vergence in conditional probability" or "convergence of 
conditional distribution" of a doubly indexed sequence 
of certain random vectors. In all these lemmas the "con­
vergence along almost all sample sequences, given Ylo' .. 
Yn' as m and n tend to CO" is meant. 

We will use the Taylor expansion of the vector of first 
derivatives of the objective function 

where to 1111 is some mean value satisfying 

IIf:nn -ifni < I~mn - ~nl (5.2) 

By! iJ / 0 /1; f i/I)we denote the vector of partial derivates 

of f( /1) and by «(l (i il) (l (; ,'iT) f iii the matrix 
. (d (J il i ((I (I il j. f UI);. 

From Lemma 3 of Jennrich (1969) it follows that under 

assumption A2, /1~1n is a random vector. 

While considering the asymptotic normality of m 1 2(/imn-

lin) the following lemmas will be useful. 

Lemma 5.1. 

Assume AI, B1, C1, D1 and F1 for, the model (2.1). Let 

(zn) be a sequence in R P. Denote zn = (Zn 1 , ... , ZnP), 
n 

Assume that for each i, j = 1, 2, ... , P bij = lim n-1 2.: z~zk 
n ~= k=1 

exists. Then the conditional distribution of the random 
m 

vector m1 ~ 2.: Wj Zj converges weakly to the p-variate 
j=i 

normal distribution N p (0, a2B) where B = (bij ). 

Lemma 5.2. 

Assume A2, B1, C1, D1 and F1 for the model (2.1). For 
all real doubly indexed sequences (bmn ), the random 

vector bmn . a! a ,?;Lmn (limn) converges in conditional 
probability to zero. 

Lemma 5.3. 

Assume A2, B1, C2 and D1 for the model (2.1). The matrix 

(a . (; /i) (8 8 {IT) Lmn I {<11n) converges in conditional 
probability to the nonrandom matrix 2A( il o ), where the 
matrix A( 11 ) is defined as in assumption F1. 
The proofs of these lemmas may be found in Staniewski 
(1983) . 

Lemma 5.4. 

Assume A2, Bl, C2, D1 and F1 for the model (2.1). The 
distribution of the random vector 

m 

O,5m 1/2 (0/0&) Lmn(~n) = m -1/2 L Wjn(%&) g(Xj' ~n) (5.4) 

j=1 

converges weakly to the p-variate normal distribution 
Np (0, a2A(I?o)) where matrix A is defined as in assump­
tion Fl. 

Proof. 

From assumptions B1 01' B2 and Tchebyshev inequality it 
follows that for almost every sequence (Yn), the sequence 
(e n) is bounded. From Lemma 5.1 it follows that distri-

m 
12 )' butioll of the vector m __ Wjn . rI (I ii, g Xj' t'lo)tends 

j=1 

to Np (0, a2A('?o)) as m and n tend to co. Consider arbi­
trary, say 1-th coordinate of this vector and the vector 
(5.4) and denote 

(5.5) 
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It suffices to prove that 
m 

-'/2 ~ m .:::... Wjnqjn (5.6) 
j=1 

converges to a one-point distribution, concentrated in O. 
Conditional characteristic function of (5.6) is equal to: 

m n 

From above lemmas, formula 5.1 and Theorem 4.1 follows 
easily the 

Theorem 5.1. 
Assume A2, Bl, C2, Dl, El and Fl for the model (2.1). 
Along almost all sample sequences, given Yl,.··, Yn' as 
m and n tend to ()Q: 

a) the conditional distribution uf m l 2 (limn - ~'i'n) con-
<t>mn(t) = n n-'/2 ~ exp(m-'/2qjn€kit) 

J=1 k=1 
(5.7) verges weakly to a normal one with mean 0 and vari­

ance - convergence matrix a~A 
Let to be arbitrary and consider an arbitrary convergent 
subsequence <limjl n :j) (to) . It follows from the bounded-

ness of (; k) that for every m(j) we have 

lir:n <lim(j)n(j)(to) = 1. Thus 
n(J)~ co 

lim film(j)n(j)(to) = 
m(j)n(j)~co 

= lim lim <t>m(j)n(j)(to) = 1 
m(j) ~ 00 n(j) ~ co 

Because to and the limit point were arbitrary, it follows 
that the limit function of 'llmn (t) exists and is equal to 
one for every t. Such limit corresponds to the one point 
distribution concentrated in O. 
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b) the matrix 

Lmn(~mn) [(a/al?) (a/al?T) Lmn(~mn) r 
converges in conditional probability to a2A( t'io)-l. 

When we deal with the infinite variance case we have 
the full owing theorem. 

Theorem 5.2. 

Let the assumptions of the Theorem 2.1 be given. The 

limiting conditional distribution of ml-I'a (Omn-On)is 

the same as the limiting distribution of n1- 1;"(On - l'i o). 
This theorem may be easily proven by the technique 
used in the proof of Lemma 5.4. 
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Sharp Inequalities for Error Probabilities of Tests under Moment Conditions 

REINHARD STRtrBY 

Abstract 

We discuss the method of moment spaces to calculate the 
extreme values of integrals. The maximization (minimi~ 
zation) is done with respect to measures restricted by some 
moment conditions. Inequalities for error probabilities will 
give some knowledge on robustness properties of tests. 

1. Introduction 

We want to consider a simple parameter hypothesis and 
a test one would prefer in this situation. For example let 
Xj, ... ,X,.+l : be independently distributed random va­
riables. Assuming identical distributions 

PXl __ p xn+1_N({}I) 
{} - ... - {} - , 

the u-test is a most powerful a:-test for testing H : 11 = 

00=0 against K :,1=,1], 111 > /1 0 . 

If we want to obtain some knowledge on the power of 
this test in nonnormal situations we have to ask for sharp 
inequalities for the error probability. Especially, one is 
interested to derive such inequalities if the probability 
distribution of some or all variables has to satisfy some 
moment conditions. As a consequence of some funda­
mental theorems due to Markov such inequalities may be 
obtained with the help of the calculus of extrema in a 
general moment space. 

2. One Nonnormal Distribution 

Let a(· p::,n+l) the error probability of the u-test for 
No 

Xl . xn , xn +l 
P,~ '= ... = Po = N( 11, 1), but p,) nonnormal with 
expectation il. If H is true, it holds 

+00 
~(p~n+l):;; ~ (1_!p(n-1/2((n+l/hu~_x)))p~n+l(dX), 

-to 

where <P is the standard normal distribution function and 
u" is the a:-fractile of 'f'. 

Calculating sup a: ( p~n+l) over the class of all probability 

measures with a given power moment vector we obtain 
a problem of general moment spaces. Because we have 
to consider integrals over infinite intervals the problem 
is not to handle with the purely classical method of mo­
ment spaces. 

3. The Method 

Let X be a random variable with the induced Borel 
a-algebra 'Q)i. Continuous and linear independent func­
tions uj : Rl --+ Rt, i = 0, 1, ... , k, are given. 

We assume that the probability measure pX of X is an 
element of the set cP r of all probability measures P with 
generalized moments 

y=Ep UeRk+1, U=(uo ..... Uk)T, 

Epuj= ~ uj(x)dP(x). i=O,l, ... ,k. 
Rl 

One is interested in bounds for 

under P E 'P;,. 

~f(X)dP(X), f:R'-+R'. 

R' 

In order to consider integrals on a closed interval we use 
a continuous I-I-transformation 

h : (-1, +1) --+ Ri. 

Further more it is assumed that there exists a positive 
and continuous function 

(() : (-1, +1) --+ Ri 

so that for 

it holds 

lim tW)=lim Uj(t)=O. i=O.l, .... k-l, 
\--1 \-+1 

lim uk(t) = lim Uk(t) = 1. 
1--1 1-+1 

Similarly 

_ f(h(t)) 
f(t)=--, te(-1.+1). 

w (t) 

and it is assumed that 

- rfJ < lim [(t) = lim f(t) < + rfJ. 
1,-1 \-+1 

After continuously extending the functions Uj' i = 0, 1, ... , 

k, and f to the boundary of the interval (-1, +1) we get 
the equivalent problem 

sup ~ f(t) dP(t), 
P~'Jl)' [-l,+Il 

Epuj = \ uj(t)dP(t), i=O,l, ... ,k, 

[-I: +JJ 

~ T 
U = (UO, .... Uk) , 

C1.\ - the set of all measures with Ep U ,= y. 
The extension can be interpreted as a periodic one to Ri. 
So we can solve the problem with the help of theorems in 
periodic moment spaces. 
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Let TI be the set of generalized polynomials in ~, ~, ... , 
~k and TI+ c TI the set of nonnegative polynomials. 

We define 

1!(f)= (ITE flin(t) :::;f(t). t e[ -1. + IJ}. 

n(f) = (ITE n in(t);~ f(t). tel -1. + IJ}. 

Definition. 

For y E R k+1 let cy be defined 

a E Rkll, then c:' (n) = aT y. 

Definition. 

T~ 

by: If n = a U, 

y is strictly positive, if c1, (:1) > 0 for all .-r E TI +, .-r =1= O. 

Assumptions. 

Al. The functions un, UI, ... ,uI{ are continuous and li­
near independent. 

A2. f is continuous and nonnegative. 

A3. TI contains a polynomial nj_ and nt (t) > 0, 
tE [-1,+1]. 

A4. y is strictly positive. 

Then the following theorem holds (Krein, Nudel'man 
(1977), Karlin, Studden (1966». 

Theorem. 

Let AI, ... , A4 fulfilled. 
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1. min ~ f(t) dP(t) = max cy(n). 
PE<l)y [-1. +11 nElla) 

~a! i [(t) dP(t) = min _ c).(n). 
PEep), [-1.+11 7TEllU) 

2. The integral attains its minimum (maximum) for 

Po E '15)' (1\ E '15) if and only if there exist a;To E II (7) 
(.-rl E 11 (7) and 

r = no ['l'\-1.+lJ' pol 
(r = n, ['l'\_I. +1]' p,]). 

4. Calculation of Extrema 

For k ,= 4, )' essentially built by the skewness and kur­
tosis, we have to calculate the maximum (minimum) of 

c" (n) for polynomials interpolating f at three points of 
[':"-1, +1]. The choice of these points is made with regard 
to the fundamental properties of canonical distributions 
in moment spaces (Krein, Nudel'man (1977». 
The calculation is possible by optimization methods as 
discribed in Tichatschke (1981). 
Kemperman (1968) has considered the method of moment 
spaces in a very general way and has given a geometrical 
insight into the method. 
Skibinsky (1976) has calculated the bounds for the pro­
bability of subintervals of a finite interval when 3 mo­
ments are given. 

SKIBINSKY, M. 
Sharp upper bounds for probability on an interval when 
the first three moments are known. 
Ann. Statist. 4 (1976), 187-213. 

TICHATSCHKE, R. 
Lineare semi-infinite Optimierungsaufgaben und ihre An­
wendungen in del' Approximationstheorie. 
Wissenschaftliche Schriftenreihe del' TH Karl-Marx-Stadt, 
1981. 
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Simulation Studies on Robustness of the t- and u-Test against 

Truncation of the Normal Distribution 

FRIEDRICH TEUSCHER 

1. Introduction 

The aim of this simulation-study was to determine the 
influence of the truncation of a normal-distributed ran­
dom variable (in practice occuring e. g. by selection) on 
the power functions of three tests, the t-test, the u-test 
and a modified Johnson-test. Particularly we were inter­
ested in finding sample sizes ensuring a good behaviour 
of the tests. More precisely, we looked for an n* so that 
a test is He-robust" for n > n* (Herrendorfer, G., (ed.) 
(1980». 
The density function of a truncated normal distributed 
random variable is given by 

( 

0 

f x _ 'P(x) 
s()- CP(v)~CP(U) 

x<u 

v<x (see fig. I). 

Seven truncated normal distributions were generated (see 
table 1). You can see their skewness and kurtosis in fig. 2. 

Description of the Tests 

The null hypothesis is Ho: flo =, floo and the alternative 
hypotheses H A are 

-J j ,/1 '"*" 1'0 

b) It > Ito 

c) It < floo 

In this paper we regard the t-test, the u-test and a mo­
difed Johnson-test (named the trtest) (see N. J. John-

)'1 was estimated by 

Ho is rejected in case a) 

in case b) 

if t.»t(n-l; 1-,,) 

and in case c) 

if t J <-t(n-l;I-,,). 

The u-test corresponds to the t-test for a known variance, 
i. e. Ho will be rejected, say, in case a) if 

Some Results 

The empirical first kind risks are written down in table 2. 
The marked empirical 0(' 100 show e-robustness with 
E = 0( • 20 % where 0( is the nominal first kind risk). 
We can find approximate values of n*, so that the tests 
,"re f;-tobLSl for n > n*: 

distr. n* 
test num. HA : a) HA : b) HA : c) 

1,2,3 5 5 5 
son (1978». Johnson's test was modified because un- u 
published results have revealed that it's asymptotic beha­
viour is worse then that of the t-test if we deal with a 
truncated normal distribution. We can show, that the 
original Johnson-test as well as the modified Johnson-test 

4,5,6 
7 

1,2 
3 
4,6 
5 

5 
5 
5 

10 
10 
20 

10 10 
50 50 
5 5 
5 5 

50 50 
50 50 

are tests, having first kind risks equal 1 in the cases b) 
and c), but nevertheless they may have a certain useful­
ness for a reasonable floo. 
The t-test is formulated as follows: 
Hn is rejected in case a) if 

m case b) if 

and in case c) if 

X-flo m>t(n-l; I-IX) 
s 

x - flo lC ( -- rn<-t n-l; 1-,,) 
s 

The test statistic for the tJ -test is 

t ( - gl + gl (- )2) Yo 
.J = x - Po + -.2- --;;--lC x - Po --:- . 

68 n 38n s 

10 

7 50 50 50 
1,2 10 5 5 
3 50 50 30 
4 30 50 30 
5,6 50 30 50 
7 50 50 50 

------------ - -- ----------- ---- ----- ---

We see that the u-test is very robust, the t-test not so 
much. The trtest can compete with the t-test only in the 
cases 4, 5 and 6 i. e. if the kurtosis is small, which is not 
generally known in practice, and even then only for the 
alternative hypotheses b) and c). 
The figures 3, 5, 6 and 10 show the most interesting 
power functions. 
In view of the power and the above said it seems advis­
able to give the t-test preverence, and not the tJ -test, ii 
the variance isn't known. If the variance is known one 
can use the u-test, but one must keep in mind, that a 
good accuracy is achievable only by chosing n > n*. 
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Table 1 
The simulated distributions 

§ 
~ ~ 
Q) ;:s 
.oQ):9 
S.c:b ;:s..., rIl v Zt:;o u ------ --- -. ------ - ---

1 -6 6 0 
2 -2.2551 2.2551 0 
3 -1.183 1.183 0 
4 -1 6 0.2876 
5 -0.29 2.743 0.6108 
6 -0.7041 2.2778 0.3764 
7 1 6 1.52513 

- - -- - . ----

Fig. 1 The truncated normal 
distribution 

~0.002 1 
-0.0014 0.855 
-0.001 0.3857 

0.286 0.6297 
0.6093 0.4037 
0.375 0.4744 
1.5238 0.1991 

den ity oC the normal 

Table 2 

plJI) distribution 

(/ 
density r the truncal cI 

,,' -', distribution with 
/ u = - 1 nnd v = 2 

\ 
\ , 

121 

The empirical -a. 100 of the simulated tests 
- - - - - - - - - - _.- - ~ 

Q) c: test~ t-test .c:o ..., .-...., 
altern. hypotheses a) b) c) .... ;:s 

0.0 .'- nominal IX • 100 5 Eb 
;:s.~ 7'1 7'2 n s::'O --- -- -

5 5.3 5.5 5.1 
0 0 10 5.2 4.8 5.l 

30 4.8 5.0 5.0 
50 5.2 5.0 5.0 

5 5.5 5.6 5.3 
2 0 ~0.5 10 5.4 4.8 5.1 

30 4.9 4.7 5.0 
50 5.4 5.0 4.9 

5 6.3 5.8 5.5 
3 0 -1 10 5.6 4.8 5.1 

30 4.8 4.5 4.9 
50 5.:~ 4.9 4.9 

5 6.2 3.5 8.0 
4 0.6 0 10 5.7 3.3 7.0 

30 5.2 3.6 6.2 
50 5.3 4.3 5.6 

5 7.3 2.7 9.6 
5 0.75 0 10 6.2 2.9 8.0 

30 5.6 3.4 6.6 
50 5.2 4.0 6.1 
5 6.6 3.6 8.3 

6 0.5 -0.5 10 5.8 3.5 7.0 
30 5.0 3.8 6.1 
50 5.3 4.4 5.6 
5 9.3 1.7 12.9 

7 1.3 2.0 10 7.5 1.9 10.6 
30 6.3 2.8 8.0 
50 5.6 3.4 7.0 

-.-~-----------
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., 
s- Yi gl 7'2 g2 

------ ----- -- --~--. ---

0.999 
0.854 
0.3849 
0.6276 
0.4027 
0.4732 
0.199 

t -test 

a) 

73 
4.9 
4.9 
5.2 
7.7 
4.8 
4.8 
5.2 

11.4 
3.4 
3.6 
4.5 
~.4 

3.9 
4.3 
4.9 

13.9 
4.7 
2.8 
4.2 

11.1 
3.7 
3.7 
4.6 

29.2 
16.3 
4.7 
3.6 

- - - - - ---

0 -0.0068 -0.06 
0 -0.0027 -0.5 -0.5221 
0 -0.0002 -1.0013 -1.0683 
0.5918 0.5903 0.0014 -0.0531 
0.75 0.751 0 -0.1033 
0.5 0.502 -0.5 -0.5i5 
1.3159 1.2564 1.998 no result 

Fig. 2 The simulated distributions 
in the (YI, y:)-plane 

- 2 

- ----- - - ---

u-test 

b) c) a) b) c) 

5 10 2.5 2.5 

-- - -- - - --- .. . _ . . ..• _ --- - -

5.5 5.5 10.1 2.48 2.76 
4.8 4.8 10.1 2.46 2.63 
4.6 4.9 £.9 2.38 2.69 
5.0 4.9 10.3 2.78 2.68 
5.5 5.6 lC.3 2.52 2.68 
4.7 4.7 10.3 2.45 2.54 
4.6 4.9 9.8 2.46 2.71 
5.0 4.9 10.3 2.69 2.72 
7.0 7.3 10.4 2.53 2.47 
;30 2.9 10.1 2.4 2.66 
3.7 4.2 9.5 2.34 2.66 
4.5 4.5 10.1 2.63 2.71 
6.0 6.4 !;.8 3.05 1.64 
3.8 3.8 99 2.85 2.05 
3.8 5.2 9.8 2.53 223 
4.5 5 1 98 2.9 2.47 
9.4 7.2 9.5 3.28 1.3 
5.1 2.2 9.9 3.0 1.92 
4.1 2.9 10.0 2.56 2.03 
4.7 4.2 9.6 2.95 2.45 
7.4 6.7 9.9 3.0 1.64 
4.1 2.6 10.0 2.82 2.09 
4.0 4.3 98 2.5 2.33 
4.6 4.6 9.8 2.83 2.5 

23.5 10.2 8.6 3.7 045 
18.8 2.1 9.5 3.36 126 

8.5 0.1 9.9 2.87 1 71 
6.8 0.02 9.6 3.03 2.05 
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~ig.5 Power functions for n-10 if HA:b) 
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Fig.7 Power functions of the u-tsst for n-5 if HA: a) 
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Fig.9 Power functione of the u-teet for naS if HA: c) 
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Robust Location-Tests and Classification Procedures 

M. L. TIKU 

Abstract 

Two sample problems and classifcation procedures are 
discussed. It is shown that adaptation of the MML esti­
mators leads to tests which have Type I robustness and 
have remarkably high power. 

1. Introduction 

To test assumed values of location parameters (means), 
the classical procedures have been based on the assump­
tion of normality in which case the sample mean 

n 

X = 2: xi In is the minimum variance unbiased esti-
i=1 

mator of the population mean. In practice, however, the 
underlying distribution will hardly ever be normal ex­
actly; in fact, the underlying distribution will hardly 
ever be known exactly. It is therefore imperative to as­
sume that the underlying distribution is one of a reason­
ably wide class of distributions, which one exactly is not 
known. Let f( ... ) denote a family of distributions which 
consists of the normal distribution and plausible alter­
natives to the normal. Let P and IT denote the location 
parameter (mean) and scale parameter (standard devia­
tion) of a distribution belonging to the family f( ... ). An 
unbiased estimator Ii of P will be called more efficient 
overall (Tiku, 1983) than x if 

(1: Var(jJ.) ~ 1: Var(x)} 
f , 'E1( ... l 

(1.1) 

and Val' I;;) never greater than VarOn by more 
than c for any f belonging to f( ... ). 

In case of bias, the variance is replaced by the mean 
square error. 

2. MML Estimators of Location and Scale 

Let 
(2.1) 

be the censored sample obtained by arranging a random 
sample xi> X2, ... , xn in ascending order of magnitude and 
censoring (giving zero weights to) the r smallest and 
largest observations. The MML (modified maximum likeli­
hood) estimators of P and IT are given by (Tiku, 1967, 1980) 

and 

n-r 

C= 1: x~i)+r~Hr+l)+X(n_r)}-mp2 
i=r+l 
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(2.3) 

For n:::: 10, the constants IX and p are obtained from the 
equations (Tiku, 1967, 1970) 

,B=-f(tJ/t-f(t)/q)/q and cx=lf(t)/q)-,Bt, (2.4) 

t 

where q=r/n, F(t)= r f(z)dz=l-g and f(z)= {If I (2n)} 

exp(-".Z2). For n < 10, . IX and p are obtained from a 
slightly different set of equations and are given by Tiku 
(1967, Table 1). 

Note that for I' = 0, Ii and ~ reduce to the sample mean 
and variance x and S2, respectively. 
For the normal distribution and plausible alternatives to 
the normal, e. g., long- and short-tailed symmetric distri­
butions with finite mean and variance, (ii) distributions 
with moderate amount of skewness, and (iii) small pro­
portion (10 % or less) of outliers in a sample, the pre­
ferred value of r is the integer value r = [1/. + O.ln] ;see 
Tiku (1980), Spjotvell and Aastveit (1980) and Stigler 
(1977). 

Under the assumption of normality, Ii and ~2 have for 
large A·= n(1 - 2q), q = r/n fixed, exactly the same dis­
tributional properties as x and 52 (Tiku, 1982a, pp. 626, 
627). 

3. Two-Sample Problem 

Let Xii' x i 2."" xini' (i = 1, 2), be two independent ran­

dom samples from populations (lilT) f «x - Pi )/IT). We do 
not know the functional form f exactly but it belongs 
to f( ... ). The classical estimator of d = PI - P2 and /T2 

are given by 

where Xl and X2 are the sample means and 51 2 and S~1 
are the sample variances. 
The corresponding MML estimators are given by 

/'> /'-

The estimators d and IT are considerably more efficient 

overall than d and s; see Tiku (1980). 
A common practical problem is to test the null hypothesis 
Hn : d = O. The classical test is based on the statistic 

(1 1) -+-
n 1 n,. 

( 1.3) 



Large values of t lead to the rejection of Hu in favour 

of H[ : d > o. 
Under the assumption of normality, the null distribution 
of t is Student's t with nl + n:! - 2 degrees of freedom. 
For large samples, the power-function of t is given by 
(nj = n:! = n, say) 

for any underlying distribution f belonging to f( ... ); Z is 
a standard normal variate and Z,) is its 100( 1 - 0) % 
point. It is clear that the Type I error (the value of 1 - P* 
at d =0) and the power 1 - fl* of the above t-test are 
not sensitive to underlying distributions. In other words, 
the Type I error and the power of the classical t-test are 
robust; see also Tan (1982) and Rasch (1983). Similar re­
sults hold for small samples (Tan, 1982; Tiku, 1975; 
Rasch, 1984). 

Although robustness of Type I error is a desirable pro­
perty of a test but not the robustness of its power 1 - fl*. 
One would prefer a test which has robustness of Type I 
error but has a power-function which is sensitive to 
underlying distributions and has considerably higher 
power overall than the above t-test; see Sprott (19B2), Tan 
(1982, p. 2505) and Tiku (1980), for example. One such 
test is accomplished by using the above MML estimators 
leading to the statistic (Tiku, 1980) 

(.1.5) 

Large values of T lead to the rejection of HI) in favour 
of H[. The null distribution of T is approximately Stu­
dent's t with Al + A2 - 2 degrees of freedom (Tiku, 1980, 
1982a). 

For large samples, the power-function of T is given by 
nl'= n2 =n) 

see Tiku (19BO, 19B2a) for details. Since E Co') and hence 
LI*, assumes different values for different distributions 
(Tiku, 1980), the power of the T-test is sensitive to under­
lying distributions. Moreover, 0.983a/E(a) is greater than 1 
for most non-normal distributions and, therefore, the 
T-test is more powerful than the classical t-test for such 
distributions. For the normal E(a) = a (for large samples) 
and hence the T-test is only slightly less powerful than 
the t-test (Tiku, 1982a, p. 621). 

The small sample power of the T-test is reported by Tiku 
(19B2a, Table 2) and it is clear from these values that T 
is more powerful overall than the nonparametric (Wil­
coxon, normal-score and Smirnov-Kolmogorov-Massey) 
tests. For symmetric distributions with finite mean and 
variance, the T-test is more powerful overall than the 
analogous tests based on some of the most eJIicient esti­
mators considered in the Princeton study; see: Dunnett 
(19B2) who studies these estimators in the context of 
multiple comparisons. Realize: that most of the estimators 
considered in the Princeton study (Andrews et aI., 1972) 
are not to be used for skew distributions. One commonly 
suggested remedy would be a transformation to symmetry, 
perhaps using the power transformation of Box and Cox 
(1964). However, the results of Bickel and Doksum (19Bl) 
indicate that Box and Cox transformation methods based 
on normal-theory likelihood have suspect statistical pro­
perties; this paper should however be read in conjunction 
with Box and Cox (1982). 

To test Ho : d =0, when the underlying distributions have 
unequal varianCES, the appropriate statistic is the Welch­
type statistic (Tiku, 1982a). 

1 J. 7) 

The null distribution of T* is approximately Student's t 
with degrees of freedom h determined by the equation 

h 

c2 (1- c)' ---+---, 
(A, - 1) (A 2 -1) 

c= 
(a;/m,) + (a;jm2) 

IU) 

The T*-test has robustness of Type I error and is re­
markably powerful (Tiku, 19B2, pp. 620,621). 
The T'-test can easily be generalized to test a linear 

k k 

contrast \ 1 1. 1/ .•. ~ II. 
~ 1'1 

V ~ _ 1j = II. the variances n j -, 

i=l i=l, 

(i = 1, 2, ... , k), not 
statistic is given by 

necessarily eq ual. The generalized 

The null distribution of T** is approximately Student's 
with degrees of freedom h* determined by the equation 

1 Cj k { 2 } 

h*= ~ (Aj-I) , 
13.10) 

Ai = nj - 2r j • The statistic T** has remarkable robust­
ness and efficiency properties (Tiku, 1982a). 
For an application of the statistic T**, see Tiku (19B2a, 
p. 623). 
There are situations (rare though) when one encounters 
symmetric distributions with infinite mean or variance 
or extremely skew distributions. Such distributions hardly 
constitute plausible alternatives to normality, but should 
be considered on their own right. For distributions of the 
former type, the MML estimator of d based on samples 
with l' = [I:! + 0.3n] smallest and largest observations cen­
sored has remarkably high efficiencies (Tiku, 1980, Table 
6). For distributions of the latter type, the MML estimator 
of d based on samples with r = ['2 + 0.2n] observations 
censored only on one side (in the direction of the long 
tail) of the sample has remarkably high efficiencies (Tiku, 
19B2b, p. 2548). The corresponding T- and T'-statistics 
have robustness of Type I error and are remarkably 
powerful as compared to numerous other tests including 
the Smirnov-Kolmogorov-Massey tEst which is particularly 
powerful for extremely skew distributions. 
For testing the equality of two population variances, 
Tiku (1982b) gives a test (based on MML estimators) 
which has reasonable Type I robustness and has satis­
factory power properties. This is motivated by the fac'; 
that if x has mean p, and variance a2, then (x - p,)2 has 
mean a2. The problem of testing equality of two variances 
is thus reduced to testing the equality of means of two 
extremely skew distributions; the nuisance parameter '" 

is replaced by the sample mean x; see Tiku (1982b). 

4. Robust Classification Procedures 

Let xli' i = 1, 2, ... , nl, and X~j, i = 1,2, ... , n2, be inde­
pendent random samples from populations 7r1 and 7r2, 

respectively. Assume that 7r1 and 7r2 are identical (other 
than a location shift) and have finite means and a com­
mon finite variance. On the basis of these samples, one 
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wants to classify a new independent observation Xu in 
JTI or JT2. Let el and e2 be the errors of misclassification; 
e, is the probability of classifying Xu in JT2 when in fact 
it has come from JT] and e2 is the probability of classi­
fying Xu in JT, when in fact it has come from JT2' An 
optimal classification procedure has maximum 1 - e2 for 
a fixed el; 1 - e2 is the probability of correctly classi­
fying Xu in JT2. 

Under the assumption of normality, the classical classifi­
cation procedure is based on the statistic (Anderson, 1951) 

v = {xo- t (x, + x2)} (x,- X2)js2 (4.1) 

xI and ),;2 are the sample means and S2 is the pooled 
sample variance. The observation Xu is classified in JTI 

or JT2 according as (see Balakrishnan et aI., 1985, for 
details). 

V~C, (4.2) 

where (el ~ 0.05) 

c= tb'-1.64 Vb; (4.3) 

J = ((n, + n2 - 4)j(n, +n2 - 2))(X,- x2rjs2. (4.4) 

However, this classification procedure is not robust to 
departures from normality. 
A robust classification procedure is obtained by replacing 
the sample means and variances by the corresponding 
MML estimators. This robust procedure is based on the 
statistic 

(4.5) 

Normal 

.051 .042 

Outlier model 

1- e~ 
V VR 

.918 .915 

(n -l)N(O, 1) & 1N(0, 10) 

l-eJ 
V VR 

.378 .894 

Logistic 

I-e. 
V V 

.046 .052 .916 .924 

Mixture model 
0.90N(0, 1) + 0.10N(0, 4) 

I-e. 
V VR 

.653 .794 

In fact, the V R-procedure has smaller error rates 

1 (el + e2) than the V-procedure almost always (Bala­
~ 

krishnan et aI., 1985). 
Numerous nonparametric or distribution-free class if cation 
procedures are available; see Balakrishnan en aI., 1985. 
However, these procedures are very difficult to compute 
and have arso larger error rates than the VR -procedure 
(Balakrishnan et aI., 1985). 

Example: 

Consider the following data which represent the values 
of (x - 2.0)/(0.1), X being the pollution levels (measure­
ments of lead in water samples from two lakes); 

Sample from JTI: -1.48, 1.25, -0.51, 0.46, 0.60, -4.27, 0.63, 
-0.14, -0.38, 1.28, 0.93, 0.51, 1.11, -0.17, 
-0.79, -1.02, -0.91, 0.10, 0.41, 1.11 

Sample from JT2: 1.32, 1.81, -0.54, 2.70, 2.27, 2.70, 0.78, 
-4.62, 1.88, 0.86, 2.86, 0.47, -0.42, 0.16, 
0.69, 0.78, 1.72, 1.57, 2.14, 1.62 

The observation Xu is classified in JTI or :72 according as Observation to be classified is 0.60 (this has in fact come 

(4.6) 

where (et "'" 0.05) 

(4.7) 

(A,= n,- 2r,. A2= n2 - 21'2)' 

Under the assumption of normality, the V- and VR-pro­
cedures have exactly the same 1 - e1 (for a common el) 
for large samples; see Balakrishnan et aI., 1985, for a 
proof. 
For most non-normal populations, the V R -procedure has 
reasonably stable el-values (robustness of Type I error) 
and has remarkably high values of 1 - e2 (power). For 
() = (I'-I - 1'-2)2//12 = 3.0, the standardized distance between 
the two populations, and nl = n2'= n = 20, for example, 
we have the following simulated (based on 1000 Monte 
Carlo runs) values of el (supposed to be 0.05) and 1- e2: 
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from JTI)' 

Here, one wants to adopt a classification procedure which 
does not fix beforehand any of the errors of misclassi­
fication e] or e2' The relevant classical procedure is to 
classify XII in JT, or JT2 according as 

V~O (4.8) 

The corresponding robust procedure is to classify XI) in 
JT 1 or JT 2 according as 

(4.9) 

For the above data, 
X-I = -0.063, X2= 1.036; V = (0.60 - 0.486) (-.063 - 1.036) = 

-0.125; 
fit = 0.110, ~~ = 1.247; VR = (0.60 - 0.678) (.110 - 1.247) = 

0.089. 
The V R -procedure correctly classifies 0.60 in JT 1 but not 
the classical V -procedure. The failure of the V -procedure 
might be due to a few potential outliers in the two sam­
ples (observations -4.27 and -4.62, for example). 
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Minimax-Linear Estimation under Incorrect Prior Information 

HELGE TOUTENBURG 

Abstract 

If nonlinear prior information on the parameter fJ of the 
familiar linear regression model is available such that fJ 
may be assumed to be in a convex set (a concentration 
ellipsoid), then this information is used optimally by a 
minimax estimator (MILE). The MILE is of ridge type 
and is of smaller minimax risk compared with the BLUE 
so far the prior information is true. The MILE is said to 
be insensitive against misspecifications of the prior region 
if its risk stays smaller than the risk of the BLUE. There 
are given necessary and sufficient conditions for the in­
sensitivity of MILE in typical situations of incorrect prior 
information. 

1. Introduction 

Assume the familiar linear model 

y=XII+u. u-(0.a2 I). rank X=K. (1) 

Then the BLUE of fJ is 

b= (X'X)-'X'y=S-'X'y, say (2) 

with V(b)=a2S-'. 

Assume further to have prior knowledge on fJ such that 
fi lies in a convex set, especially in an ellipsoid centered 
in fJo: 

(3) 

\,\, hEI2 the matflx T is p.:l and k > (l a scalar 
As an example of practical relevance we mention the 
following special type of prior information on fJ. If 'I 

('omponent-cy-component restriction on (J of the type 

ai~lIi~bi(i=1. .. "K) (4) 

with known interval limits ai' bi is given, then the 
cl!boid defined by the inequalities (4) may be enclosed in 
an ellipsoid centered in the cuboid's centre (Jo = 1/2 (al + 
bl , .... a K + bK ), also. Choosing T = diag (t" ...• tK ) with 
ti = 4K-i(b i - ai)-~ and k = 1 gives the ellipsoid which 
has min;mal volume in the set of ellipsoids which con­
lain the cornel points of the cuboid and which are cen­
tered in tlo. 
Another example to construct a prior ellipsoid is as fol­
low. Let an upper bound of the expected value of th2 
response surface be known: Ey ~ k. This leads to 

(Ey)' (Ey) = II' X' XII ~ k2. (5) 

Such a condition is typical for laws Df restricted growth 

2. Tltl' Prl'sentation of MILE 

Using the familiar quadratic risk 

(6) 

tc·! a tmear estimator fJ of p. then b* is said to be a 
MILE 'l\' fi if 
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min sup R(~.A) = sup R(b*.A) 
P flEB flEB 

(7) 

holds. If we confine ourselves to a loss matrix A of rank 
one, i. e. A = aa', we get the MILE with respect to B from 
(3) when flo = 0 as 

* (-I 2 )-1, -lX' b = kaT + S X y = D y. say. (8) 

(For the proof the reader is referred to Kuks and Olman 
(1971), Lauter (1975), Toutenburg (1976)). 
This estimator has 

bias b*=_k-l a2D- i • 

the dispersion matrix 

V(b*) = a2D- lSD- l 

and the minimax risk 

sup R(b*, aa') = a2 a' D-' a. 
fI'T{J~k 

(9) 

(10) 

(11) 

Note: The estimator b* contains the unknown {]2. To make 
b* practicable, {]2 has to be estimated or replaced by a 
prior value. We shall discuss this problem in Section 5. 

If the ellipsoid is not centered in the origin but in (Jo =!= () 
then it holds (Toutenburg (1982)). 

Theorem. Under constraint (fJ - (Jo)'T«(J - (Jo) ~ k the 
MILE of fJ is 

b*(lIn) = 110 + D- l X' (y - X!1o). (12) 

ThiS estimator has 

hias b*(lIo)= -k-'a2D-lT(II-~o). (13) 

vrb*(~o)l=V(b*) (as given in (10)), (14) 

and 

sup R[ b*(lIo). aa'] = a2a' D-' a. (15) 
({J-{Jo)'T({J-flo)~k 

If follows that the change of the centre of the concentra­
tion ellipsoid has influence on the estimator and its bias 
whereas the disperSion and the minimax risk are not 
influenced by fio. 

~ Connection of MILE with GLSE 

If there is no restriction, or in other words, if B = EK 
or equivalently k= ()() holds in (3), we have lim D = S 

k-()() 
and therefore 

Jim b*=b=S-'X'y. (16) 
k-co 

Thus, the SLUE b may be understood as an unrestricted 
MILE. 
Gain in efficiency. To check the gain in efficiency in 
estimating P by the MILE b* which uses the prior infor­
mation fJ E B, we first compare the minimax risks of b' 
and the unrestricted GLSE b. 



This gives 

LlK(b,b*) = sup n(b,aa')-sup R(b*,aa') (17) 

'TP~k 'TP~k 

=aa S -D a~ 2 '( -, -') 0 

because the matrix in brackets is n. n. d. 
If we now compare the MILE b* and b with respect to 
the unconstrained risk (6) with A = aa' we get (see (9) 
and (10) 

R(b,aa') - R(b*,aa') = a2a'D-'CD-' a with 

C = k -2 a4T (s-' + 2k a -2 T-' -- a -2,8,8') T (18) 

'., =k-2a4TS'/2 {I -a-2S-'/2,8,8'S-'/2}S'h T 
where S = S-' + 2k a -2 T-' . 

Using the familiar theorem (see Yancey et aI., 1974) 

1- gg':2: 0 iff g'g s 1 

we may conclude that the MILE b* is superior to the 
unrestricted Aitken estimator b with respect to the un­

A 

restricted risk R{,B, aa') if and only if 

(19) 

Note: As a sufficient condition for C n. n. d. we have 
from (18) 

(20) 

which gives for T = I, that 

(21) 

This corresponds of the sufficient condition for superi­
ority of the ridge estimator over ordinary least squares 
(Theobald (1974)). 

4. Minimax Estimation Under Incorrect Prior Information 

The aim of the minimax estimator is to decrease the 
mean square error risk (or its supremum) compared with 
that of b and therefore to overcome the restrained use­
fulness of b. This intention is successful so far the used 
prior information ,B E B with B from (3) is correctly 
chosen. In other words, the superiority of b* over b 
fully depends on the correctness of the prior region B. 
But it is clear from practice that a misidentification of 
prior restrictions may happen. Thus the influence of incor­
rect chosen prior regions has to be investigated. The ge­
neral situation may be as follows. 
The regression model y = X,B + u is such that ,B is con­
tained in the ellipsoid 

trT~ :S: k (correct prior infurmatiun). 

Now in practice, the mudel builder may choose an in­
correct ellipsuid 

(fJ - fJu)'R{fJ - fJo) ~ r (incorrect priur infurmatiun). ,23 

This means we have mistakenly used the estimator (see 
(12» 

b~ (,80) = ,80 + D~' X· (y - X,8o) (24) 

where DR = (r-'a2 R+S). 

As (22) was the correct prior information, we have to 

calculate the minimax risk of b~ (fJo) with respect to th<! 
correct region (22). This gives {see Toutenburg (1982, 
p.93» 

11 

= sup (a'(p- PoW = (Yka'a + la'PoW 
p'TP~k 

(25) 

where a = a' a2r-'D~'RT- '/2, ~~= T'/2 ,80' ~= T'/2,8. 

Inserting this gives 

As b* (8) is the best estimator with respect to the correct 

prior region (22), the mistakenly used estimator b;{fJu) is 
less efficient compared with b*. The question arises 

Whether the estimator b ~ (fJlI) is better than the G LSE b. 
This is just the problem of insensitivity of the minimax 
estimator. That is, we have to investigate whether 

a -2 Llk(b, b~(,Bo)) ~ a'D~'UD~'a ~ 0 

where the matrix U is 

U = a2r -'R(a2 r-'s-' + 2R-' - r-' fJofJ~ 

- r -'Ik +2Yk(fJ~ TfJi /2 )T-') R. 

(27) 

(28) 

That is, U n. n. d. is sufficient to fulfil (27). Now it is 
very difficult to draw specific conclusions from this 
general matrix U. In order to give explicity a condition 
for U n. n. d. we shall confine ourselves to the case R = T, 
i. e. where incorrectness is caused by translation of the 
ellipsoid's centre as well as by symmetrical distortion, 
i. e. changing the length of the axes by the same factor 

I r/k. This case seems to be of practical relevance. 
Using R = T, the matrix U (28) becomes 

U = a2r- 2T'/2 UT'/2. (29) 

Now, U n. n. d. implies that its eigenvalues are nonnega­
tive: 

).j(U) = a2 Aj(T'hs-'T'/2 - a -2 T'/2 fJo,8~ T'h) 

+ (2r - k - 2 Yk,8~T,Bo) ~O. 

This is true iff 

r ~ 1/2 (k + 2 Vk.8~ T .80 - a2 Amin (T'/2 (S-' - o2/1o,8~) T'/2}). (30) 

Conclusions 
(i) If Po = 0 (i. e. the correct and the incorrect prior 
region have the same centre), then (30) becomes 

(31) 

Moreuver, this condition (31) is necessary and sufficient 

to ensure Ll 1{ (b, b ~ (0» ~ 0 in the case R ,= T. Clearly, 
the condition r ~ k is sufficient to fulfil (31). This means, 
that in the case 

fJ'TfJ S k (correct regiun), ,B'TfJ s r (incorrect region) 

the 'radius' of the incorrect ellipsoid must be greater 
than the correct 'radius'. 
In other words, if there is some uncertainty on the length 
of prior intervals as in (4), a 'blowing up' strategy en­
sures that the resulting MILE stays better than b. 
(ii) If fJu =+= 0, i. e. if the incorrectness of the prior infor­
mation is caused by translation of the ellipsoid's centre 
also, then l' ~ k is not sufficient to guarantee the insen-

sitivity of the mistakenly used MILE b~ (Po). 
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5. Substitution of a2 

The various minimax estimators from above contain the 
unknown parameter a2 and therefore they are not prac­
ticable. A way to overcome this is to replace a~ by a non­
stochastic value c ;s;: 0 which gives the estimator 

(32) 

which has 

(35) 

Thus 

(36) 

is sufficient to fulfil (35). To realize (35) or (36), which 
are just the conditions for the superiority of b* over b, 
we need prior knowledge of the type 

(37) 

As sup R(b* ,aa') is monotonically decreasing for c < a2, 

( * ,) 2' -1 ( -1 2 -2 ) -1 sup R bc,aa =u a Dc S+k cuT Dc a. 
fi'TP::;k 

(33) {l'T {l ;;;;; k 

we may conclude that c = 2a12 is the optimal choice of c 
As the substitution of a2 by c may be interpreted as an in the sense 
incorrect chosen prior ellipsoid, namely 

, k 2 -1 {3 '1' {3 S; r with r = u c (34) 

we may use the results from above to investigate whether 

ilk (b, b*) ;s;: O. Replacing r in (31) by r from (34) gives 
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The Robustness of Some Procedures for the Two-Sample Location 

Problem - a Simulation Study (Concept) 

ARMIN TUCHSCHERER 

Abstract 

A comprehensive simulation experiment is to be per­
formed on the most important parametric and nonpara­
metric procedures in order to gain some idea of the 
robustness of such procedures for comparing two means 
in respect of violation of the assumptions regarding distri­
bution and (in)homogeneity of variance. The purpose of 
the study is to find out which of the tests investigated are 
"robust" and can therefore be recommended for practi­
cal application. 

1. Introduction 

For the purpose of these studies, "robustness" will be 
understood in the sense of the definition given in Herren­
darfer, G. (ed.) (1980), Guiard, V. (ed.) (1981), Rasch, D. 
and Herrendarfer, G. (ed.) (1982). 

Let ~p be the set of parametric procedures and ~NP the 
set of nonparametric procedures that are to be investi­
gated. 

Hp: = {T~/T~ E~p: 1<x(n"n2 ,g) --,,1:5£; \igEG2) 

is the set of E-robust tests in \t:p. with IX being the nomi­
nal and lX(nl, n2, g) the actual first kind risk for a distri­
bution g belonging to the class G2 of distributions to be 

investigated. The best E-robust test T~ from ~p then 
" satisfies the condition 

HT* (n"n 2,g,b);:::HT (n,.n2 ,g,o) 
Pa Pa 

V T Po< E Rp, V g E G2 and va> 0, whereby Jl T ( .) is the 

power function of the test T, The best nonparametric 

test T ~p will then, by analogy, satisfy the condition 

HT* (n"n2,g,0);:::nT (n,.n2 ,g,b), 
NP", NP", 

\iTNpETNp' \igEG2 and \1'0>0, 

The best of the two tests T*p and T*NP will be recom­
mended for application, 
Let G2 = k(O, 02,1'1,1'2) be a class of distributions with the 
mean 0, variance a2, skewness )'1 and kurtosis I't. For the 
simulation studies, Yl and )12 values of several characters 
of importance in agriculture, industry and medicine which 
where based on estimations (gj, g2) of (Yj, Y2) and satisfy 
the inequality Yz ~Y12 - 2 were chosen for Y1 and Yz (cf. 
Table 3.3). 

2. Description of the tests to be investigated 

Let Xl and Xt be independent random variables whose 
first four moments exist, and let 

Xj-F j with F jEk(.uj,ai'Y"Y2); i=1.2. 

Two independent random samples xiI, .. ,Xjnj 

11* 

are to be used to check the hypothesis 

Ho : III = Ilz 

against the alternatives 

(I) 
HA :.u, >.u2 

(2) 
H/\ :.u, <.u2 

(3) 
HA :.u, + .u2 

by means of the parametric procedures described in the 
following. The subsequent nonparametric tests will be 
used to test the hypothesis 

Ho: FI = Fz 

against the alternatives 

(1) 
HA : F, > F2 

(2) 
HA : F, < F2 

(3) -I- (2 2) HA :F,TF2 a,=a2 • 

Let (XiI' ... , Xin;) = : 'Ii (i = 1,2) denote a realization of the 

mathematical random sample xil'" xin., and let xp)be 
1 

the element situated at the j-th place among the elements 
of the sample 'I j : i = 1, 2, j = 1, ... , nj) which are ordered 

according to size and xij) be the j-th element in the 
common sample '11 U'I2 (j = 1, ... , nl + n2), which is also 
ordered according to size. 
Moreover, let 

{
1. if x1j)eX, 

Zj= . 
0, if xlJ ) E X 2 

The critical regions belonging to the alternative hypothe­

sis H~i will be denoted K!e) (e = 1,2,3). 

2.1. Parametric Procedures 

- The t-test: 

P "'-"2 test statistic: T, = J===~=====;~ 
Y(n,-l) s;+(n2 -1') s:~ 

with 

nj 

n,n2(n, + n2 - 2) 
n, +n2 

sf= _1_ L (Xjj - "j)2 
nj-1 j~1 

(i = 1.2) 

cri tical regions: 

K(1)={t, tER: t>t(n,+n2 -2; 1-,,)} 

K(2)={t, tER: t<-t(n,+n2 -2; 1-,,)} 

K(3)= it, tE R: I tl > t(n, +n2 - 2; 1- "/2)) 
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- The Welch test 
test statistic: 

critical regions: 

X,-X2 

s~ s~ -+-n, 112 

K(t)={t, teR: t>t(n*, I-ex)} 

K(2)={t, teR: t<-t(n*, I-ex)} 

K(3)={t, teR:ltl>t(n*, I-ex/2)} 

with 

* ( s; s; ) I (S~ s~) n = -+- 2 +-::-2--'--
n, n2 n, (n, -1) n2(n2 -1) 

-The (I-I)-trimmed t-test (Tf) and the (1-1)-Win­

sorised t-test (Tf) 
test statistic: 

11, + n2 - 6 

n, +n2 - 2 

2 1 [(( (2) _ )2 (n j '--!) _ )2) 
SiW(1,t)= nj-3 2 Xj -Xjw(l,l) + Xj -XjW(l,l) + 

(") 2 nj-2 1 
+ ~ (X/ - XjW(l,l)) 

(i= l,2). 

critical regions: (are the same for the trimmed and Win­
sorised t-test) 

K(1)={t, teR: t>t(n,+n2-6; 1-<x)} 

K(2)={t, teR: t<-t(n,+n2-6; 1-<x)} 

K(3)= it, teR: Itl>t(n,+n2-6; 1-<X/2)} 

- The (1, 1)-trimmed Welch test (Tf) and the (1 - 1)­

Winsorised Welch test (T~) 
the test statistics: 

p 
T = 6 

VSiW(1.1) + S~w(!.1) 
n,-2 n2-2 

critical regions: (are the same for the trimmed and Win­
sorised Welch test) 
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K(J)=(t. teR: t>t(n*; I-ex)} 

K(2)={t. teR: t<-t(n*; 1-<x)} 

K(3)={t. teR:ltl>t(n*; 1-<X/2)} 

with 

1 c2 (l-c)2 *=--+---, 
S~W(l,J)/(n, - 2) 

c= 2 / 2 / n n,-3 n2-3 slw(1.1) (n,-2)+s2W(1,1) (n2-2) 

, P) - The onesided trimmed t-test (,T, and the onesided 

Winsorised Welch test (Tr) 
test statistics: 

p Xtt(l) - X2t(1) n, + n2 - 4 
T = --;:=.==:::;=======:::::;;::::=---;====--1 2 2 / . _n_, +--n-2 --2 

(n,-2)sIW(t)+(n2-2)s2W(t) I ~+~ 
n, + n2 - 2 ~ n, n2 

T: = ---:;::===;::=X:::l W=(I::)= -X=2~W=(=l)=-_-;===:­
(n,-2)siW(1)+(n2-2)s~w(1) VJ..+ 1 

n, + n2 - 2 n, n2 

wilh (i = 1,2) 

1 (I) -I 1 (nil -I (x",''", if Xi - Xi > Xi - Xi 
Xit(1) 

= Xit(O,I)' 1 (I) 1 1 (ni) - 1 if Xi - Xi < Xi - Xi ' 

1 (I) 1 1 (ni) 1 
_ (X'WI'", if Xi - Xi > Xi - Xi 
Xiw(l)= 

1 (I) 1 1 (ni) -I Xiw(O,1) , if Xi - Xi < Xi - Xi ' 

and 

, (,~w,,", if 1 (I) -I 1 (ni) -I Xi - Xi > Xi - Xi 
siw(l) = 2 

1 (I) -I 1 (ni) -I siw(O,I)' if Xi - Xi < Xi - Xi ' 

with 
11' ni-1 

_ 1 I (j) _ 1" (j) 
Xit(I,O)= -- L: Xi ' Xit(O,l)= --1'::'" Xi ' 

n,-l j =2 n,- j=1 

aml 

critical regions: (for T~ and 1 r) 
K(1)= it, teR: t>t(n,+n2-4; I-a)} 

K(2)={t, teR: t<-t(n,+n2-4; I-a)} 

K(3)= {t, teR: Itl>t(n,+n2-4; l- a l2)} 

(i = 1,2) 



c*= 

- The one sided trimmed Welch test iT,;) and the one-, . 
sided Winsorised Welch test (T~)) 

test statistic: 

p xlt(I) - X21(I) 

T 9 = --:=;====;:=~ 
/ 2 2 1/ _51_,,_1 _II + _52_\\_1_1) 

~ n, -1 n,-1 

critical regions: (for T~ and Tft,) 

K(1)=(t, teR: t>t(n*; 1-",)) 

K(2)=(t, teR: t<-t(n*; 1-",)} 

K(3)= It, te R: Itl> t(n*; 1- "'/2)) 

with 

- Use of a preliminary test of variance homogeneity 
test statistic: 

Tp _ IT;, if FE$K* 
11- T;, if FeK* 

with the "robust" Box-Andersen test (Nilrnberg (1982» 

max 18~, 8~) 
F=--' --, 

. 1 2 2) mm 181,82 

where 

{t, teR: t> F((n1 -1) (1+ ~; r1
, h- 1)(I- ~; f: 1-"(/2)' 

if s~ > s; 

{t.teR: t > F(h -1)(1+ ~2 f1.(n1 -1)(I- ~; r: 1-"(12), 
if s~ < s~ . 

-3 

critical regions: 

F E! K * -+ critical regions of the t-test 
FE K* -+ critical regions of the Welch-test 

- Tiku's T-test 
test statistic: 

TP= /11-fl 2 
12 a(l/m1 + 11m 2) 1/2 

(i = 1,2) 

with Tiku's (1980) modified maximum likelihod (MML) 
e~timators 

with 

Bi+ V(B~+4AiCi) 

2 V Ai (Ai -1) 

([g) denotes the integer part of g) 

C i = n'::['i (x:j)r+ri~i((x~l"j+1T+(x~ni-ri)n-mi,u: 
j~r.i+l . 

The constants :x i and {J i are obtained from the following 
eC] uations 

p\=-f(ti)(ti-f(ti)/qi)/qi; qi=ri/ni 

"'i = (f(ti)/qi) - ~i Ii 
ti is determined by the equation Q (ti) = C'i where 

Ii 

Q(li) = 1- ~. f(z) dz, 
-00 

1 f(z)= -- exp (- z2/2), - CIJ ~z ~ C1J. 

(2; 
For several values of n i table 2.1 contains the values of :Xi 

and {Ji : 

Table 2.1 

SClme values of :Xi and {J i 

5 

10 
20 
40 

critical regions: 

0.7410 
0.6737 
0.6873 
0.6896 

0.7851 
0.8611 
0.8395 
0.8313 

K(1 )=(t, teR: t>t(A1 +A2-2; 1-",)) 

KI21=(L teR: t<-t(A1 +A2 -2; 1-",)) 

K1J)=it, teR:l t l>t(A1 +A2 -2; 1-"'12)) 

- Tiku's T c -test 
test statistic: 

critical regions: 

K(1)=(t, teR: t>t(n*; 1-",)) 

K(2)=\t, teR:t<-t(n*;I-",)) 

K(3)=(t, teR:t>t(n*;I-"'/2)) 
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with 

- The test of Lord (for small ni) 

p X,-Xz 
test statistic: T,.= --­

w,+wz 

(i= 1,2) 

critical regions: 

K(l)={t, teR: t>,(n"n 2 ;1-",)} 

K(2)={t, teR: t<-,(n"n 2 ;1-",)} 

K(3)={t, teR:/t/>,(n"n2 ;1-"'/2)) 

, (FG, p) denotes the critical values of this test. 
- The test of Bartlett and Scheffe 
Let n :::;: n~. 

test statistic: 

with 

critical regions: 

K(l)={t, teR: t>t(n,-l; 1-",)} 

K(2)={t, teR: t<-t(n,-l; 1-",)} 

K(3)={t, teR: Itl>t(n,-l; 1-"'12)} 

- The approximative test of Chochran (1964) 

test statistic: 

critical regions: 

X,-X2 

82 8 2 
.....!..+-.1. 
n, n2 

K(l)={t, teR: t>t'(n,+n2 -2; 1-",)) 

K(2)={t, teR: t<-t'(n,+n2 -2; 1-",)) 

K(3)={t, teR: Itl>t'(n,+n2-2; 1-"'/2)} 

Whith the approximative critical values 

where (i=1,2) 

- The approximatiVe BM-test of Banerjee (1960) and 
McCullough, Gurland and Rosenberg (1960) 

test statistic: 
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P 
Tn= 

X,-X2 

8 2 S2 
......!..+-2 
n 1 n 2 

critical regions: 

K(l)={t. teR: t>t"(n1+n2 -2; 1-",)} 

K(2)=(t, teR: t<-t"(n,+n2-2; 1-",)) 

K(3)={t, teR:ltl>t"(n1+nz-2; 1-"'12)) 

with the approximative critical values 

2.2. Nonparametric procedures 

- The X-test of van der Waerden 

test statistic: 

T~P = l' 'P( r(xlj) ) 
j=l n,+n2 +1 

r (Xij) denotes the rank of Xlj in the common sample 
':Xi U ':X~, which is ordered according to size, 'IjJ ( .) = <p _i ( .) 
and ,j' (.) is the N (O,l)-distribution function 
critical regions: 

K(l)={t, teR: t>tX (n"n2 ; "')} 

K(2)={t, teR: t<-tx(n"nz; "')} 

K(3)={t, teR: Itl>tx(n"nz; 1-"'/2)} 

tx (nt. n2; p) denotes the critical values of the X-test. 
For ni -+ 00 we get the asymptotically critical regions: 

(I) {I .1 ~ ( )} Kas = t t e R. t > V --;;--n- Qn u 1- '" 

K~~ = {t I t e R: t < - Y n~nz Qn u (1- "')} 

K~3;={tlteR:ltl> yn~nz Qn U (1-"'/2)} 

where Qn= 1. t 'P2 (-j--), n=n2 +n2 ,u(p) 
n j=1 n+1 

p-quantile of the N (O,I)-distribution. 
- The U-test (Wilcoxon or Mann-Whitney test) 
Let 

{
I if Xlj>x2j' j =1. ... ,n" 

Ujj'= 0', else j' = 1, ... ,n2 

in the common sample 'Il U 'I2. 

test statistic: (one sided test): 

n1 n 2 

T~P = 1: 1: Uji' 
j=1 i'=l 

Remark: 'Trp is easier to compute by 

NP ~ ( ) n,(n,+l) 
T 2 = ~ r Xlj - --'---'-

j=1 2 

where r (XI j) is the rank of Xlj in the ordered common 
sample. 



For the one-sided test one can also make use of the test 
statistic 

NP fTNP NP'l In the two sided case T2 "= min \ 2 ,T2 J 

is to be used, 

critical regions: 

tu (nj, n2; a) and tJn" n2, a) denote the critical values of 
the U-test with 

tu (nb n2; a) = tu (nt, n2; 2a), 

For n i -+ ()() we get the asymtotical critical regions: 

(1) { n, n2 ( ) 1 } Kas = t, leR: t<-- - u 1-", - n, n2 (n, + n2 + 1) 
2 12 

(2) { n, n2 ( ) ~n,n2(n,+n2+1) } Kas= 1, teR: l>--+u 1-", 
2 12 

. (3) { 
Kas= t,leR: n, n2 ( "') t<--u 1- 12 

2 

- A quick test of Tukey 
test statistic: 

1~ n,n2(n,+n2+1)} 

I 0, if ZI = Zn,+n, = 1 V Z, = Zn,+n, = 0 

l Sum of the lengths of the first and last runs, 

one being of O's and the other of l's. 

critical region: 

3. Simulation experiment 

According to Ntirnberg (1983) and Rasch et a1. (1978), the 
sample size necessary for the simulation is given by 

u 2 (1- ",*/2)(", + s) (1- '" - s) 
Ns:=:::- d*2 

where s= ",/5 

d*= !.. 
2 

",*= 0.05 

and u (P) is the P-quantile of the N (0, I)-normal distri­
bution. Table 3.1 contains the necessary numbers Ns of the 
simulations for a few values of a. For reasons of economy 
we take Ns = 10000 (caution when interpreting the re­
sults) . 

Table 3.1 

Necessary numbers N s of the simulations 
-----------

a Ns 

0.005 114552 
0.010 45546 
0.025 17904 
0.050 8667 
0.100 4057 

Since the sample sizes nj and n:! play a major role in 
studies on the robustness of tests used for comparing two 
means, rather extensive simulation studies using both 
equal and unequal sample sizes should be performed. 

Table 3.2 

Sample sizes 

5 
5 

5 
10 

5 
20 

10 
20 

10 
40 

20 
20 

40 
40 

The pseudorandom numbers which are distributed with a 
given skewness Yt and kurtosis Y2 (c.f. table 3.3) 

Table 3.3 

Values of Yi (skewness) and Y2 (kurtosis) for the 
simulations 

Yt 0 

Y2 0 

o 
1.5 

o 
3.75 

o 
7.0 

1.0 
1.5 

1.5 
3.75 

2.0 
7.0 

required for simulation studies on robustness should be 
generated in accordance with the following scheme: 

Step 1: 

Step 2: 

Step 3: 

Generation of (0, I)-uniformly distributed pseudo­
random numbers by means of the generator ZZGD 

Transformation of the (0, I)-uniformly distri­
buted random rumbers (Ode/Evans (1974» into 
N (0, 1) random numbers 

Application to traisform the N (0, 1) random 
numbers into random numbers with a specified 
skewness and kurtosis. 

For several distributions in the YrYTplane that cannot 
be reached by the polynomial transformation, pseudoran­
dom numbers should be generated by the system of trun­
cated normal distributions (Rasch, Teuscher (1982». 
To be able to perform corresponding robustness studies, it 
is necessary to estimate the first kind risks, a (ni, n2, g). 
and second kind risks, 1 - P (nt, n2, g, b) 

where 0 = (2 2 )'/2 a, a2 -+-n, n2 

The parameter b is required to ensure that the power 
functions of the tests being investigated are comparable. 
Apart for the estimation at b = 0 (the first kind risk is 
estimated in this case), the power function should be esti­
mated at three further points. 
In order to choose three suitable b-points, we first con­
sider the power function of the t-test under the normal 

distribution for Gt 2 = G22 = 1, ex = 0.025 for H~). 

Table 3.4 

a-values for given power of the t-test for nl = n2 = n 

1-p 

0.10 
0.50 
0.90 

n=5 

0.910 
2.306 
3.703 

n=20 

0.699 
2.021 
3.351 

n=40 

0.698 
1.990 
3.282 

The following values of b are thus suitable for the simu­
lation experiment: 
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bl =0 

b2 = 0.7 
~:l=2.0 
151,= 3.5. 

For each experimental design (nl. n2), each quotient 

::: E H, 1, 2} 

and each point (Yb Y2) in the (Yi' Y2)-plane to be investi­
gated, we obtain, after 10000 simulations, the estimation 
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On the Measurement of the Tests Robustness 

ZBIG NIEW W ASILEWSK I 

Abstract 

In the paper some possible evaluation criteria of robust­
ness of statistical tests are presented, The criteria have 
been used in evaluating robustness of the test for signi­
ficance of the parameters of linear regression model in 
the case of outliers existence. 

1. Introduction 

Great interest in robustness as an approach to make ad­
vances in statistics was evoked by the observed fact that 
we never have exact information on the true form of 
distribution generating the real data, and that the be­
haviour of some classical statistical procedures (tests, 
estimators) is very sensitive with respect to even small 
changes in the form of distribution generating the data. 
The essence of robustness consists in protection against 
the influence of some possible departures from the as­
sumed statistical model (likely to occur in practice) on 
the properties of statistics derived under this model. The 
concept of robustness has been introduced to statistics 
by Box and Anderson (1955) and concerned the robustness 
of statistical test. They postulated that the tests should be: 
(i) sensitive to the changes of verified quantities, 
(ii) non-sensitive (robust) to the changes of non-verified 

quantities that play the role of external factors in 
the verified hypothesis. 

The new concept was not, however, defined from the 
start formally enough which led to many different 
attempts to define it more precisely. To get an idea of 
diversity of interpretations of robustness it is enough to 
look into paper of Huber (1964, 1972), Hampel (1971), 
Bickel (1976), Dutter (1979), Bartoszynski-Pleszczynska 
(1980), Zielinski (1980, 1981). In the case of general statis­
tical decision problems we can state that a given solution 
method derived under ':mo changes a little if we replace 
'0J?0 by its approximation. The approximation error in­
fluences of course both the robust methods as well as 
non-robust ones. In the case of robust methods this in­
fluence is however, small. In order to characterize this 
"smallness" it is necessary to define natural extensions 
(neighbourhoods) of the standard model:mo, and then 
to formulate criteria (measures) of evaluation of robust­
ness of a given statistic "T" with respect to some of the 
properties (such as bias, variance, mean square error, 
power function of the test etc.) which we are specially 
interested in. Some interesting ideas on a formal descrip­
tion of this problem were given by Zielinski (1981). 

In this paper we restrict our attention to the problem of 
the evaluation criteria of robustness of statistical tests. 
We propose some measures of the robustness of the tests' 
power function and use them to analyze the robustness 
of the t-Student test for significance of parameters of the 
linear regression model when some of the non-verified 
assumptions taken into account by the construction of the 
test are broken. 

2. Evaluation Criteria of Robustness of Significance Tests 

Let '~ be a standard stat,istical model describing a real 
system. We can distinguish stochastic and non-stochastic 
elements of this structure. The only tested elements are 
stochastic structure' elements. We shall call them para­
meters of stochastic structure of the model ':u'(Q. By a 
model'S parameter we understand both a probability 
measure on the sample space (a distribution function of 
this measure) as well as traditionally understood para­
meters of a probability distribution (e. g. location and 
scale parameters of a given probability function). By 
values of these parameters we mean a concrete functional 
shape of distribution function (e. g. normal distribution 
function) in the first case, and concrete numerical values 
of the probability function parameters (e. g. mean of uni­
variate distribution function is equal 2). Within the sta­
tistical decision problem '1' concerning stochastic structure 
of the model ':mo its parameters would be (in accordance 
to Box-Anderson postulates) separated into two groups: 
a) verified by a given test, 
b) non-verified, external factors in the verified hypothesis. 
More formally, let ,3, Zj , j ,= 0, ... ,I denote the set of 
the non-verified (in '1'l) parameters of '0J?0 and the j-th 
possible set of the externally (to ''1'l) assumed values of 
these parameters, respectively. 'Ql3, Wi' i =,0, ... ,m de­
note respectively the set of tested (in'1'l) parameters of 
:mo and the i-th verified set of their values. The choice 
of the (i, j)-form of the model0J?o = ':mO(Wi, Tj) is 
equivalent to the assumed (i, j) stochastic structure of the 
analyzed system. 
For the model ~ we can define two groups of statistical 
hypotheses concerning their parameters. These are: 

Hoo: (em = w.o) 1(3 = Zo) 
Hio : (QB=Wj * Wo) I (3= Zo) i=1. .... m 

and 

II HOj: (QB=Wo)! (3= Zj *,Zo) j = 1, .... 1 

Hjj :(em=wi*,Wo)!(3=Zj*'Zo) i=1, ... ,m, 

where 

Hoo, HOj - denote given "z_ero" hypotheses and Hjo, H jj 

- alternative (to Hoo. Hoj ) hypotheses concerning the 
form of 1Ql3 

Wo - denotes the set of verified parameters values within 

Hooand H Oj 
"I" - denotes "under condition" 
Zo - the set of non-verified parameters' values, which 

are fixed externally to ~ 

Wi; i = 1, m - denotes the i-th (alternative to Wo) set 
of tested parameters' values for the model ~)10 

Zj + Zo; j = 1, I - denotes the j-th alternative to Zo set 
of non-tested values of parameters for the model :moo 

Group I of hypotheses matches the classical testing sit­
uation when S is fixed externally. its form does not change 
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and the testifiable parameters set is 1(\. In this situation 
we evaluate test performance by analyzing the power of a 
given test under the significance point equal to IX. 

Group II of hypotheses has been distinguished with respect 

to the change of form of set S. Thus the hypothesis Hij 
is an alternative for both <m = Wo and S·= Zoo In this 
situation we evaluate test performance by analyzing a 
given significance test. 
Using the above notation we can formulate 

Definition 1 

A significance level of test T will be called robust with 
respect to changes of values of non-verified (by the use 
of the significance test T) model '~no parameters iff 

'v'E>O 30>0 'v'ZjE3VWoElID: 

£'z(zo. Zj) < 0 = £'s( (p [val (T) E q.>1 Hoo]). 

(p[val (T) E q.> 1 HOj])) < E, 

where: 

Z - a measurable space of external parameter values, 
S - a probability space (e. g. S = (H"tr, P),H - the set 

of elementary events, tr is the a-borel field of H 
subsets, P - a probability measure defined on tr. 

cp - is the critical region of T, T - a test statistic, 
'!z, '.Is - are some metrics in space Z and S. 

Definition 2 

Power function of a significance level IX of test T will be 
called robust with respect to changes of values of non­
verified (by the use of T) parameters of model ~ni iff 

'v'E>O 30(t»0 'v'ZjE3 'v'WiElID: 

£'z(Zo' Zj) < 0 = £'s((p [val (T) E q.> I HiO]}' 

{p[ val(T) E q.> I Hij])) < E. 

Due to lack of appropriate numerical methods of calcu­
lating the distances between probability distributions a 
direct study of robustness behaviour on the ground of 
Definition 1 and 2 is very difficult. There is, however, a 
possibility to formulate and use indirect criteria of test 
robustness evaluation when the level IX is fixed. Some of 
these criteria are as follows: 
Cl: Test's conventional power as a function of para­
meters belonging to 113: 

n,(ex) = P [val(T)e CPa I Hio], 

where 'P" is such that cP [val (T) E rr a I Hoo] = 0/, IX is 
fixed; 
C2: Relative change of a given test's significance level IX 

corresponding to the change of S = Zo into .s = Zj p= 1,i 
as a function of Zj . It measures the stability of IX with 
respect to changes from Zo into Zj and has the form 

7l2(Zj) = 712 (Zj.ex) = (p [val (T) E q.>a 1 HOj] - ex) / IX; 

C3: Test's guaranteed significance level 

113 (z~ax) = 713 (z~ax. ex) = max (p [val (T) e CPa I HOj]); 
Zj 
j=i} 

C4: Relative ch.ange of a given test's power corresponding 
to the change from Zo into Zj , j = 1, I as a function of 
Zj . The criterion function measures the stability of test's 
power with respect to the changes of non-verified para-

meters' values Zj' j = 0, I, i. e. 
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C5: Test's guaranteed power for the joint alternative 

hypothesis Hi = Hit, Hi2 ... Hi!, i. e. 

Criteria 7l2, n" enable us to carry out robustness evalua­
tion of test size and power on changes from Zo into Zi ' 

j = 1, 1. 
Criteria 713 and n5 enable us to determine the extreme 
values of test size and power for the specified Zj , j= 1, 1. 
They are, in some sense, the criteria of choice of the most 
robust test. Zielinski (1980) proposes two other robustness 
measures for the given extension of ~o. '1I3e use this 
proposition in the case of the distinguished set family Zj , 

j = O,l, taking a difference between sup and inf values of 
test significance levels and powers over the sets Zj' 

.i = 0, 1. 
The successive two criteria for evaluation of test robust­
ness are 

C6: Range of significance levels on the neighbourhoods 
of Hoo : 

-inf (P[val(T)eq.>aIHojUHooJ) 
Zj.zo 
j=O,l 

C7: Range of powers on the neighbourhoods of HiO : 

j=i} 

- inf (p[ val (T) E q.>a I Hio U Hii])' 
Zj.zo 
j=f.1 

Small values of n6, n7 indicate great robustness of test 

on values changes of non-verified parameter Zj , j ,= 0, 1. 
All the presented criteria of robustness evaluation have 
been chosen having in mind their direct usefulness in 
Monte Carlo studies of tests robustness. An illustration 
how to use some of the measures n" ... , 717 will be given 
in the next section. 

3. Some Results of Measuring the Robustness of Chosen 
Tests 

The measures of robustness proposed above have been 
used in evaluating the robustness of t-Student test for 
significance of parameters in a linear regression model. 
We have considered the linear regression model with con­
tamination: 

:!no: = (RnXk,S,Y=XP+E+ i; ftiji' ko=k, no=n, 
j=l 

PE"'9lECu,Q), ,u=O, Q=a2I) 

where RnXk - set of (n x k) real matrices 
S = (H, 'tr, P) - where U denotes the sample space, <J is 

a borel a-field of U subsets,P is a measure satisfying 
the condition P(U) = 1; 



ko =)k, no = n denote ranks of matrices X and [J respec­
ticely 

P ~ '" N ~ (fl, il) denotes that the probability distribution 
function of E belongs to the class of normal distri­
bution functions with expected value (r(E) = fl and 
variance-covariance matrix \D(E) = il. 

iii - denotes the contamination constant added to the 
i-th component of vector Y, and 

ji - denotes (nxl) vector for which i-component is equal 
to 1 and others are equal to O. 

For model 9)(0 we have formulated two groups of hypo­
theses concerning the verification of the significance of 
the parameter ~I by means of t-Student test. 

Hoo: (em = Wo = \~I = 0)) I (3 = Zo= \P~-m.:(ft,Q), 

ft = 0, .f) = (J21, 'Vi: ~i = 0)) 

Hio : (<m = Wi = \~I = ail) I (3 = Zo) i = 1. ... ,7 

II HOj :(em=Wo)!(3=Zj =\P.:-m~(ft.Q). 

i=1, .. ,,7 

In the case of the first group of hypotheses the test sta­
tistic t·= b l IS(b), where b l is the I-component of the 

leastsquares(l-s)estimator,b= (XTX)-I XTy, S(b i ) = 

ETE 
n-k 
diagonal element of matrix (XT X)-I, has by zero hypo­
thesis, t-Student distribution with n - k degrees of free­
dom. In the case of the second group of hypotheses, how­
ever, (which assume the existence of outliers in the model) 
we do not know this distribution. It is because of the 
biasedness of the estimate bl 

and the non-centrality of the 0'2X~_k distribution of 
residual sum of squares. The value of the parameter of 

non-centrality is equal I ,;TM ,; where 
2 ' , 

n 
T -I T 0 ~~ 

M ,= (I - X (X X) X) and fl = L. i; ji 
i=1 

and the same as biasedness of bl depends on the values of 
i;i' Similar difficulty arises when we use different than 
1- s method of estimation of the vector ~, for instance, the 
method of minimization of absolute values of residuals 
(msae). To answer the question to what degree such factors 
as the above mentioned ones, influenced the power function 
of the t-Student test, a Monte Carlo experiment has been 
carried out. We limited our attention to the standardized 
form of the model ':mo, generating sample data with un­
correlated explanatory variables from standardized normal 
distribution and val' (Y) = 1. By these assumptions the 
parameters of the model defined the value of the corre-

lation bexween the explained variable Y and respective 
explanatory variables (i. e. ~i = corr(Y, Xi) i = 1, ... , k). 
The multiple correlation coefficient was given by e = 

k 

E (ii~ and equal 0.07, and var (E) = a = 0.174. The 
i=1 

values of sample size and number of parameters were equal 
n = 20 and k = 3, respectively. The power of the test was 
calculated for 8 different from zero values of ~2 equal 
-0.3, -0.1, -0.05, 0.05, 0.1, 0.15, 0.2, 0.3, respectively, and 
7 versions of contamination of the first and last compo­
nent of the vector Y. Each combination of the ~ value 
and values of outliers charakterized one of the hypotheses 

Hij (i=l.B, j = 1.7). 

Table 1. 

Values of contaminated constants given as the multipli­
cation of the standard deviation of the error term in the 
model 

0 2 

level of 
contami-
nation 

fll 0 o 0 
fl 20 0 50' lOa 

3 

50' 
50' 

4 5 6 7 

100' -50' -50' -50' 
lOa 0 50' lOa 

For each form of sets1\') and S 500 samples were gene­
rated and the values of the estimate of power of the test 
were computed. The critical values of test were fixed 
for the significance level equal 0.1. This was done both 
in the case when parameters of the model were estimated 
by 1 - s method and by minimization of the sum of absolut 
errors (msae). Then the measures of the robustness of 
the test were evaluated. Below in Tables 2 and 3 some 
of the results are given. 

Figure 1 

The shape of the power function fo hI test in the case of 
1 - sand msae estimation 
P[val(t) E '10.1 [ Hij) i = 0.9 .i = 0.7 

L-----------~~~------------------2 
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Table 2 
Values of the power function of the test in the case of I - s estimates 
-----_. -----------

Variant of contamination 
----- ------ ------ ----- --- ----

Value of 
para- j=O 1 2 3 4 5 6 7 
meter 

-------

-0.3 1.0 1.0 0.980 1.0 0.910 1.0 1.0 0.85 
2 -0.1 0.717 0.333 0.0 0.167 0.0 0.25 0.083 0.0 
3 -0.05 0.350 0.033 0.0 0.067 0.0 0.05 0.0 0.0 
0 0.0 0.1 0.017 0.0 0.017 0.0 0.017 0.01 0.0 
4 0.05 0.283 0.167 0.0 0.0 0.0 0.133 0.067 0.0 
5 0.1 0.617 0.450 0.017 0.1 0.0 0.417 0.15 0.0 
6 0.15 0.933 0.733 0.183 0.317 0.17 0.867 0.7 0.185 
7 0.2 0.983 0.967 0.567 0.633 0.083 1.0 
8 0.3 1.0 1.0 0.940 0.990 0.510 1.0 

Table 3 

Values of 
(p [val (t) E CPo.II Hij]- P [val (t) E CPO. I I HiO]) 

714 (Zj' Wi) = --------"-----'-------=--

P[val(t) E cpo. I I HiO] 

for j = 0.7 and estimates given by least squares and mini­
mization of sum of absolute errors 

1- s estimates 
-------- --- -------

Value Variants of contamination 
of fl2 j= 0 1 2 3 4 5 

-0.3 0.0 0.0 0.0 -0.02 -0.09 0.0 
-0.1 0.0 -0.534 -1.0 -0.767 -1.00 -0.651 
-0.05 0.0 -0.906 -1.0 -0.809 -1.00 -0.857 

0.0 0.0 -0.83 -1.0 -0.83 -1.00 -0.83 
0.05 0.0 -0.413 -1.0 -1.0 -1.00 -0.565 
0.1 0.0 -0.27 -0.97 -0.838 -1.00 -0.324 
0.15 0.0 -0.214 -0.804 -0.661 -0.983 -0.072 
0.2 0.0 -0.Q17 -0.424 -0.350 -0.916 -0.017 
0.3 0.0 0.0 0.0 -0.06 -0.49 0.0 

msae estimates 
-----------------------------

Value Variants of contamination 
of fl2 j =0 1 2 3 4 5 

-0.3 0.0 0.0 -0.06 -0.0 -0.28 0.0 
--0.1 -0.046 -0.512 -0.907 -0.604 -1.00 -0.488 
--0.05 -0.143 -0.714 -1.00 -0.666 -1.00 -0.571 

0.0 -0.33 -0.50 -1.0 -0.83 -1.0 -0.5 
0.05 -0.177 -0.53 -1.0 -0.943 -1.0 --0.53 
0.1 -0.134 -0.297 -0.919 -0.753 -0.972 -0.514 
0.15 -0.089 -0.268 -0.804 -0.482 -0.987 -0.146 
0.2 -0.05 -0.05 -0.458 -0.237 -0.88 -0.017 
0.3 0.0 -0.01 -0.13 -0.02 -0.43 0.0 

----_._-------- - ------- -- --------

Table 4 
Sensitivity of the power of the test measured by criterion 717 

1- s estimates 

0.85 0.35 
1.0 0.99 

6 7 

0.0 -0.15 
-0.882 -1.0 
-1.0 -1.0 
-1.0 -1.0 
-0.767 -1.0 
-0.757 -1.0 
-0.250 -0.801 
-0.135 -0.644 

0.0 0.01 
-------

- ----- -------

6 7 

-0.01 -0.16 
-0.697 -1.0 
-1.00 -1.0 
-1.0 -1.0 
-0.803 -1.0 
-0.730 -0.972 
-0.429 -0.911 
-0.186 -0.712 
-0.02 -0.13 

------------------------- -------------

P2 -0.3 -0.1 -0.05 0.05 0.1 0.15 0.2 0.3 
717 0.15 0.717 0.350 0.283 0.617 0.817 0.9 0.490 

-- ------- ------------

msae estimates 

11:7 0.280 0.683 0.367 0.267 0.6 0.817 0.866 0.430 
---------- ----_0._. 

From Tables 2 and 3 it can be easily seen that within 

the alternative hypothesis Hij (i = 1, 7) the power of the 
t-Student test rapidly decreases with the increase of the 
contamination of the sample, and the guaranteed level 
of power is greater than 0.9 just for I fl I ~ 0.3. In our 
experiments the values of parameters define the level 
of correlation between Y and explanatory variables, so 
we can state that the existence of outliers in a sample 
makes it difficult to test the significance of parameters 
when a suitable explanatory variable is low correlated 
with the explained variable (corr (Y, X ) < 0.3). 

In the case of msae estimates the values of P[val (t) E 
'1'0.1 I HiO 1 were taken for 1- s estimates. 

The use of the t-Student test for testing significance of 
parameters in the case when they were obtained by mini­
mization of absolute sum of residuals instead of squared 
residuals seems to be quite reasonable in spite of the 
fact that the real distribution of the test's statistics is 
unknown. In the case of lack of contamination in a sample 
the power characteristics of the test are only a bit worse 
for small values of parameter, and the existence of out­
liers makes these characteristics even better than in the 
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case of the least squares. It is connected with smaller 
values of biasedness of msae estimates in the case of out­
liers existence. The guaranteed level of the test signifi­
cance was nearly all the time equal to its assumed value 
0.1 or even less than this value. 
The comparison of values of the sensitivity of the power 
of the test shows its high sensitivity to outliers existence, 
their level and number in a sample. 

4. Final Remarks 

The presented analysis seems to confirm the necessity 
of a careful examination of test roubstness. Despite the 
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A Robust Estimate of Variance in a Linear Model 

RYSZARD ZIELINSKI WOJCIECH ZIELINSKI 

Inst. Muth. Polish Acad. Sci. Warsaw Dept. Statistics, Univ. of Agriculture SGGW-AR, Warsaw 

(Summary) 

Let us consider a standard linear model y = X~ + E, 

where E = (fl, ... , fn)T, Ei being iid random variables such 
that EE i = 0, Val' Ei= (J~ and kurtosis Y2 of fi equals a 
fixed number y"li. Suppose that the model is violated in 
such a way, that Y2 runs over an interval (Y",Y")· 

Lat '2l be the class of matrices A such that y T Ay is the 
unbiased and shift-invariant estimate of the variance (J". 

We are looking for an estimate of variance the variance 
of which depends on kurtosis as little as possible, i.e. for 
a matrix A E '2l which minimizes 

T '1' sup;" Vary Ay - inf;., Vary Ay. 

It appears that in many practical situations there 
exist infinitely many such matrices A. From among 
them we choose that with minimal variance; such an 
estimate is uniquely determined. It is interesting that if 

X = (1, ... , I?, i.e. if y is a vector of iid observations 
then the robust estimate with minimal variance coincides 
with the standard one. 
The full text of this paper will appear in "Matematyka 
Stosowana" (in Polish). 
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Minimax Versus Robust Experimental Design: Two Simple Examples 

RYSZARD ZIELINSKI 

Abstract 

There exist many approaches to assessing robustness of 
statistical procedures. We discuss two of them: one con­
nected with stability of the performance of a given sta­
tistic when passing to a supermodel, and the second con­
nected with constructing the procedure which is minimax 
in the supermooel. Both approaches are compared in 
simple practical situations. 

1. Introduction 

Consider a given statistical model Mu = (~, m, 9)1) where 
cr, m) is a sample space and 9)oCCP is a family of distri­
butions on (~, Q), 9) being the family of all distribution8 
on the sample space. Usually, the adapted statistical mo­
del Mo describes a real situation under consideration only 
approximately so that the statistician should take into 
account a supermodel Ml = (~, m, CPl), CPo C epiCCP. There 
are many ways of doing this (see e.g. Pearson 1931, Hoeff­
ding 1955, Box and Andersen 1955, Huber 1981, Hampel 
1971, Zielinski 1977, Zolotariev 1977) but in the problems 
which we consider below there are apparently only two 
competitive approaches: one in the spirit of the minimax, 
as in Chapter 9 of the well known Huber's book (1981), 
and the. other in the spirit of stability of the solution 
when passing from Mo to Mb as in Zielinski (1977). The 
former can be described as a minimax solution for the 
statistical model Mi' To explain the idea of the latter, 
consider a'statistical procedure T (for example a test or 
an estimate) and a property e(for example the size or the 
bias). Any nontrivial property of the procedure T depends 
on the distribution P of the observations so we write 
e = eT (P). The procedure T is robust if i>T (P) does not 
change significantly when P leaves CPo and runs through 

CPl' 

2. A Regression Problem: Estimation 

Consider the simple linear model y = ax + f, 0 S X S 1, 
E f = 0, Var f = (12, with an unknown a. Suppose 
that we are interested in estimating a so that we could 
be able to predict y at a given point t E (0,1], and that to 
this end we are allowed to perform only one experiment 
consisting in observation of y at a freely chosen point 
x E (0,1]. The standard estimate of a is then ax = y/x and 
the standard prediction of y at t is ax' t. How to choose x? 
The mean square error of the prediction E (axt - at)2 = 
= (1~t2/x2 and hence the answer is: whatever t, take x = 1. 

Now suppose that, due to measurement errors or due to 
some other extraneous factors, a small quadratic term 
may appear, and consider the supermodel y = ax + flu + 
fl2X~ + E with x, a and f as before and with flo and fl~ 

such that floz + fl22 S rJ2 for a given small positive number 
rJ. How should we choose x now? 
For the mean square error of prediction of y at t, when 
the observation of y is taken at x, we have 
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The minimax solution xminmax is that which minimizes 

sup MSE(9(t);x,po,Pz)= 
p;+p; s ,I' 

= ~z[(~ -It +(x -tfV] + (!Ya2. (1) 

The robust solution xrob is that for which MSE (;; (t); x, flo, 
flz) is stable. and changes as little as possible when (flo, fJz) 
runs over the set {(flo, fl2) : fll? + fJ22 S 1l2}. That means 
that x rob minimizes 

The obvious solution is xrob =t. 
To compare the both solutions numerically suppose that 

t= ~ 2 ' 1) = (1 = 1. Then xminmax = 0.875, x rob = 0.5, 

and (1), (2) and 

i;~+\~fs ,,,MSE (~(t); X,PO,P2) = ( ! r 0 2 (3) 

are as in Fig. 1. 

'2.. 

.~ ," .5' • {, ;f I g 1.0 )( 

Figure 1 

The minimax solution seems better in that its maximal 
MSE of the prediction is smaller for every regression 
function in the supermodel. We may also expect a shorter 
confidence interval although the construction of that inter­
val might be some.what troublesome (e.g. if f is normally 
distributed, the confidence interval is based on noncen­
tral t). On the other hand, the robust solution seems better 
in that its MSE of prediction is constant over the super-

model; the underlying estimate 9 (t) of y (t) is unbiased 



so that MSE equals to the variance ; and the confidence 
interval, possibly longer, does not depend on the regres­
sion function. 
The following more general situation was considered by 
Huber (1981, Chapter 9). Suppose we want to estimate the 
parameters a and b of the standard linear model Mil: 

1 1 ~ ~ 
Ey (x) = a + bx, - 2 :s:: x :s:: 2' Var y (x) = a2, by a and b, 

respectively, so to minimize the integrated mean square 
error of prediction 

1/2 

E\·[(a+bx)-(a+bx)f dx . 
-i /2 

Given a continous experimental design ~ (a probability 

measure on 1- ~,-}]} the well known least squares esti­

mates are 

1/ 2 

;(= \ ~ · (x)~(clx) . 
-1/2 

1/ 2 

b=1 \. x'~·(x)~(dx). 
)' . 

-1 / 2 
1/ 2 

\\here )' = \ x2~(dx). 
-1'/2 

Now suppose that the original model Mil is violated in 
such a way that Ey (x) = f (x), f being an " almost linear " 
function which means that f E 5='1 with 

1/2 1/2 

and hence the most robust experimental design ~rob ' 
which minimizes this quantity, is the uniform experimen-

tal design with the density mrob ix l := 1 for - ~ S x S ~ 
Some numerical results for certain 1111 such that 'I = '1 002/n, 
are presented in Fig. 2. 

1\ 
\ 

IS' 
I 

I 

2. 
~ ~ 
~ 
~ 

1 "- , t' __ 

"Z o 

o .5' 2·0 

1) n2 inf Q(f.~minmax); 2) n2 sup Q(f.~minmax) 
a f a f 

3) ~ inC Q(f, ~I'Ob); 4) n ." ~ ( ) 2' sup Q f, ~rob 
a f a f 

where af = \ f(x)dx , bf = \ X· f(x)dx/12 . so that ar + bfx 
-i/2 -i/2 Figure 2 

is the best linear approximation of f. The symbol II · II 
states for the norm in the space L2 of all square integ-

rable functions on [- 4· 4 Jand 'f/ is a small positive con­

stant. 
If "true" regression function is f E 5='1' then the mean 
square error of prediction equals 

The minimax experimental design ' minmaxis that mini­
mizing 

and the robust experimental design ' rob minimizes the 
variation of Q (f,~) over the supermodel: 

sup Q(f , ~) - inf Q(f,~) . 
fE<itn fE~ ' 1 

The Huber's solution is the density mminmax minimizing 

sup Q(U) = '7(1+ lim-lin + (1+ -121 ) a
2 

feljn Y n 

where m is the density of the experimental design ~ (so 
that ~ (dx) = m (x) dx) and n is the number of adopted 
experimental points. The density mminmax has a rather 
complicated form so we do not give it here (see Huber 
(1981), p. 246). It is easy to observe that 

inf Q(f,~) = (1 + _1_) ~ 
rEIj'1 12y n 

which is attained by any linear function f. It follows that 

The minimax solution seems more acceptable than the 
robust one, especially for small violations of the linear 
model (for small values of 'f/II) although the ratio of the 
variation of Q (f, ~minmax) in the supermodel to that of 
Q (f, ~rob) tends to infinity when 110 tends to zero. 

3. A Regression Problem: Hypotheses Testing 

Consider the linear model Mo: y = ax + Ii, O:S:: x :s:: 1, 
~here Ii is a random variable distributed as N (0, 1), and 
suppose that the problem is to verify the hypothesis H : 
a = ° against K: a> 0, at a given significance level 
(( E (0, 1). To this end we are allowed to perform a series 
of experiments which consist in observing y at n:;:::-: 1 
freely chosen points Xl, x~, . . . , xn E [0,1]; the choice of 
these points should intend to achieve as powerful test as 
possible. The observed values of y will be denoted by 
y" Y2, " " Yn and X = {XI , X~"'" xn} will be refered to as 
an experimental design. 
Suppose that the linear model under consideration is 
slightly violated and consider the supermodel MJ : 

y = ax + g (x) + Ii, where g (x) and X are linearly inde­
pendent 

I 

.\ x g(x)dx = 0 
o 

and g (x) represents a "small violation" 

sup Ig(x)I~11 
os x S I 

(4) 

( 5) 

for a fixed small positive number 11. The class of func­
tions g satisfying (4) and (5) will be denoted by Gil' 
The well known minimax (the more adequate term here 
is "maximin") procedure is as follows: from among all 
tests satisfying 
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sup P (rejecting H when y = g(x) + 1:) ~ IX (6) 
geGn 

choose that maximazing (uniformly in a> 0, if possible) 

inf P I rejecting H when y = ax + g(x) + c). (7) 
geGn 

In our case, for every experimental design X we can 
construct the uniformly most powerful a:-test ';x (y" Y1, 

... , y n) and then choose the experimental design X so to 
maximize (7). Given X, the test ;x (Yb y~, ... , Yn) has the 
form 

'l'X(Yl'Y2"" .Yn ) = 
( 

n 

1. if .I' xiYi ~ K, 
i=1 

0, otherwise, 

(8) 

where K = IP-'(l-IX)' (t x: f2+ t7. ~ lXii, IP being the 

cumulative distribution function of the standard normal 
variable N (0, 1). 
Denote by :JRx (a) the probability of rejecting H when 
Ey = ax + g(x) and the test ';x is applied. When g runs 

over G'I' we have 

~1-1>(1)-'(I-IX)-all:'x~) 
so that the minImax design X is that maximazing the 
left-hand side of this inequality. 

Now consider the robust design. Given X, the uniformly 
most powerful a:-test ';x (Ylo Y2, ... , Yn) in the original model 
Mo has the form (8) with 

K = IP-1 (1- IX) • (i:x:)'/2 
1=1 

If g runs over G'I then the power function changes in the 
interval 
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To construct the test with the power function which is 
as stable as possible under the violation g E G'I we have 
to choose X for which the above interval is as short as 

possible. This amounts to minimizing l:'Xi/ I 2,'xf . 
but now 

The results are presented in Fig. 3. An advantage of the 
minimax solution is that the size of the test never exceeds 
the adapted level a: but the price is a loss in power of the 
test in the original model Mo (see the dotted line in Fig. 3). 
On the other hand, the robust solution gives us the better 
power function (the best one in the original model) but 
the price in an augmentation of the size of the test under 
violations of the original model. 

Fig. '3 

4. A Final Remark 

The aim of my talk was not to advocate the robust me­
thods versus minimax ones or vice versa, but to visualize 
some differencies and some consequences of using ones 
instead of others. In my opinion, in robustness the em­
phasis lays rather on stability than on efficiency and in 
the minimax approach the main problem is efficiency in 
an adequate super model. 
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