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Preface

This volume contains most of the invited and contributed papers presented at the
Conference on Robustness of Statistical Methods and Nonparametric Statistics held
in the castle of Schwerin, Mai 29 — June 4 1983. This conference was organized by the
Mathematical Society of the GDR in cooperation with the Society of Physical and
Mathematical Biology of the GDR, the GDR-Region of the International Biometric
Society and the Academy of Agricultural Sciences of the GDR. All papers included
were thoroughly reviewed by scientist listed under the heading “Editorial Collabora-
tories”. Some contributions, we are sorry to report, were not recommended for publi-
cation by the reviewers and do nol appear in these proceedings. The editors thank
the reviewers for their valuable comments and suggestions.

The conference was organized by a Programme Committee, its chairman was Prof.
Dr. Dieter Rasch (Research Centre of Animal Production, Dummerstorf-Rostock).
The members of the Programme Committee were

Prof. Dr. Johannes Adam (Martin-Luther-University Halle)

Prof. Dr. Heinz Ahrens (Academy of Sciences of the GDR, Berlin)
Doz. Dr. Jana Jure¢kova (Charles University Praha)

Prof. Dr. Moti Lal Tiku (McMaster University, Hamilton, Ontario)

The aim of the conference was to discuss several aspects of robustness but mainly to
present new results regarding the robustness of classical statistical methods especially
tests, confidence estimations, and selection procedures, and to compare their perfor-
mance with nonparametric procedures. Robustness in this sensg is understood as
intensivity against violation of the normal assumption. Three approaches can be
found

— analytical approach for continuous distributions

— combinatorial approach for k-point distributions

— simulations in a system of distributions (Pearson system, Fleishmann system)

The simulation studies were well designed and some papers deal with testing the
pseudo-random number generators used. Most of the results have not been published
elsewhere and appear in these proceedings for the first time. Some papers deal with
the robustness issues on the lines of Huber although the main emphasis of the con-
ference was to study robustness in the Pearson framework. Some papers deal with
robust experimental designs and some with nonparametric methods (classification,
estimation, etc.).

We thank the members of the programme committee, the assistant editor, the revie-
wers and the contributors of papers for their cooperation and assistance in making
these proceedings possible.

Dieter Rasch and Moti Lal Tiku
Rostock and Hamilton
February 1984
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Department of Statistics, Charles University, Prague

Behaviour of L-Estimators of Location from the Point of View of Large Deviations

JAROMIR ANTOCH

Abstract

Let X, . .., X, be a random sample from a population
with density f(x—@) such that f(x) is symetric and
positive. It is proved that the tails of the logarithmic
derivative of the density of L-estimators of @ converge
at most n-times faster than the tails of the logarithmic
derivative of the basic density and, on the other hand,
there are estimators which behave from this point of
view in the same way as one single observation. It is
shown that both extreme cases may happen for the
sample mean. Moreover, behaviour of some typical L-esti-
mators of O is studied from this point of view.

1. Introduction

Let Xy, ..., X, be a sequence of iid rv’s distributed
according to an absolutely continuous and symetric den-
sity f(x- 60), x € Ry, @€ R,. For each fixed n let T, =
T, Xy, .., X,) be an equivariant estimator of @ based
on observations X, .., X,. Different measures of per-
formance of T, have been suggested and investigated.
Our approach differs from more customary methods of
investigation of the behaviour of T, mainly in two
points:

I. We consider rather the tail-behaviour than the local
behaviour of the distribution of T, ; the sample size is
fixed.

IL. The behaviour of T, is studied through the logarithmic
derivative of its density rather than through its distri-
bution function or its density itself; this is done due to
the following reasons:
As it was pointed out by Hampel (1973) and Field and
Hampel (1982), q(x—0)={(x—#6;) /f(x~0O) provides
more basic description of a probability distribution than
density or the cumulative distribution. This function
describes well the behaviour of the distribution at the
fixed point and, morover, it is often of a simple form.
The fact that it is linear for the normal distribution
reflects the important position of the normal distribution
among the other distributions; the approximation of
q(x—0) locally by a linear function corresponds to the
approximation by the normal distribution.
Let us denote density of T,, by means f, (x—&) and
put q,(x—60) =t (x—060)/f (x—0). Some of upper
arguments can be used when taking q, (x — @) as basic
description of distribution of T,. Moreover, the paper of
Field and Hampel (1982) gives asymptotic approximations
of q,(x— 0) very precisely for very small sample sizes
(n=3, 4) even in the extreme tails. Methods of this pa-
per can be very effectively used in robust testing the
hypotheses as was shown by Ronchetti (1982).
These were the main reasons why we decided to describe
the behaviour of T, with the aid of g,(x — @) for
X = - . More precisely, our criterion is
lim (—aqn(x—0))/(—a(x—a)),
X—+

if this limit exists.

(1.1)

We shall show that the rate of convergence of q,(x — 0)
cannot be more than n-times faster than that of q(x -0 ),
while the rate of q,(x — 6) can be also as slow as the
rate of q(x— 0). Both extreme cases may happen even
for the sample mean. The upper bound is attained, e.g.,
for a sample from the normal distribution while the
lower bound for a sample from the Cauchy distribution.

If we trimm-off some extreme observations, then the
rate of convergence cannot attain the upper bound. The
same result holds for lower bound and samples from
distributions with exponential tails while, surprisingly,
this is not the case for lower bound and samples from
distribution with heavy tails, see Theorem 3.2.

2. Model

In this section three basic models will be introduced
and some properties of them discussed. Before doing it
we shall give some necessary notions.

ASSUMPTION A: The random variable X has absolutely
continuous distribution function F(x), F(x) + F(—x) =1
for all x € Ry and absolutely continuous density £(x),
f(x) > 0 for all x € R; and has finite and positive Fisher
information.

Let us denote: ,
rx)=1(x)/(1-F(x)).  a(x)="£{x)/x)

and
B(x) = (£(x)/F(x) /a(x) . AX)=r(x)/a(x).

(2.1)

(2.2)

Now we can introduce the models we shall be interested
in.

M I. Let F(E) be a class of random variables fulfilling

the assumption A and such that f'(x) <0, f”(x) exists

and r(x) is increasing for all x = K;(f) >0, lim A(x) =1.
X > 4o

M II. Let F(P) be a class of random variables fulfilling

the assumption A and such that f' x) <0, £”(x) exists

and r(x) is decreasing for all x = K,(f) > 0.

M III. Let F(H) be a class of random variables fulfilling
the assumption A and such that f(x) <0, £/(x) exists
and r(x) is constant for all x = K,(f) > 0.

Remark 2.1. (i) The class F(E) is usually called that of
densities of exponential type for large values of x, see
e. g. Gumbel (1956). This is due to the fact that the tails
of densities of random variables from F(E) decrease at
least exponentially fast. On the other hand, not all den-
sities with exponentially decreasing tails belong to F(E).
This is, e. g, the case of class F(H), family of symetric
lognormal distribution etc. Nevertheless, F(E) covers most
commonly used densities of exponential type like normal,
logistic, symetric Gamma, symetric Weibull distributions
as well as some classes of Pearson’s, Burr’s and John-
son’s curves etc.



(i) The basic representants of F(P) are random vari-
ables with densities having the tails ~ A - xs, for all
x>0, s<—1 and A>0 (with Cauchy’s distribution
beeing the most typical representant. Nevertheless, there
exist families of random variables with the tails of expo-
nential type decreasing more slowly than the tails of
Laplace’s distribution, what is the case of the family of
symetric lognormal distribution etc. Moreover, some clas-
ses of Pearson’s, Burr’s and Johnson’s curves belong to
F(P), too.

(iii) If we compare M I, M II. and M IIL, we can see
that F(H) create the natural bound between F(P) and
F(E). To F(H) belong all densities satisfying condition A
with the tails ~ M - exp(—cx) for all x=K;{), ¢>0,
0 <M< +o; with the family of Laplace’s densities
being the most typical representant.

(iv) Let us denote F, = F(E) UF@®@) UFH).

3. Behaviour of L-Estimators
The following theorem describes the behaviour of order
statistics.

Theorem 3.1
independent copies of X € F,

Let random variables X;, .., X, be
with common density

f(x-0), O€R, and X < ...<ZXq be their re-
spective order statistics. Let f(k) (x—0) be the density
of X ) and
fék)(x—(-))/f'(x—o)
U (x—0) = . 1<k<n.
(o f1o(x—0) | f(x—0)
It holds:

(i) if XeF(E) or F(H), then llm U(k (x—0)=n—k+1,
1<k<n;

(ii) if XeF(P) then

1< lim Ugy(x—0) < lim Ugy(x—O)<n—k+1,
X= 4w Xote 1<k<n

Proof: Without loss of generality we can put O =0.
Using (2.2.) we can rewrite U(k)(x) in the form
Ug)(x)=1—(k— l)B(\)—Hn k)A(x) =
=1— (k—D)A®X) (1-FX)/F) + 0—K)AX) .
Part (i) now follows immediately from M I., resp. M III,

and remark 2.1. (iii), because (1—F(x))/F(x) >0 for
x = 42, It was proved in Barlow and Proschan (1966),
Theorem 4.1, that for every X € F(P) exists positive
and finite constant Ks(f) such that 0 << A(x) <1 for all
x = K,o(f) and this implies (ii).

qed

Corolary: Under the assumptions of Theorem 3.1.

1< lim Ugy)(x—O)< 1im Ugyy(x—@)<n, 1<k<n,

X-+0 X—~+®

The following theorem gives upper and lower bounds for
the rate of convergence of the tails of the logaritmic deri-
vative of density of L-estimators of location.

Let random variables Xi, .., X, be
with common density

<X(n) be their re-

Theorem 3.2.:
independent copies of X € F,
fx— 0),0€ Ry and X < ...

spective order statistics. Let ¢, . . ., ¢, be nonnegative
1'1‘1
constants such that Z c¢,=1 and T, be an L-esti-

k=1
mator of 6 of the form

Then
n
Th= 2; CiX(i) .
j=

1< lim Hy(x—0) < llmH(x 0)<n,

X—+ o

(3.1

X—+ 0o

where g, (x — 60) is the density of T\, and

gn(x—0) [ f'(x—0)

gn(x—0)/ f(x—0)

Proof: Without loss of generality we can put @ = 0. The
existence of q,(x— @) = g’ (x—60) / g, (x— ) was prov-
ed, e.g. in Klaassen (1981). Let f,(x) denote the den-
sity of X), 1=k =n. Let us show that there exists a
finite constant L, such that

H,(x—0) =

f)(x) = gn(x) < f(n)(x) for all x>L,. (3.2)

We shall show in details only lower inequality in (3.2)
for the case ¢; >0, ¢, >0, n>2, because in all other
cases the proof follows analogously.

Using the well known density of the vector of order
statistics (X, . . ., X)) and transformations

n
Z‘I:.Z;Cix(i)' Y2=X(2)‘ ,Yn=x(n) .
i=
resp.
ZZ=X(1). Y2=X(2)’ veen Yn=X(n) N

we can g,(z) and f;, (2) express in the form

n
n Z—Z CiYi
i=2 -
n(2) —-n's gl]j[zf Sl R COR
dyy...dyy
resp.
n
to@=n{...] TTt6)- @)1(B,)dr, .. dvn
i=2
where
n
Z_Zciyl
Az=(y=(yz+..-> Yn) 1:2 <y, <...<Yyq
1

and
Bz={y=(y2ﬂ-.-'yn)]Z<y2<--~<yn}-

It is easy to show that A, DB, A, — B, & @ and for

eachy € B,
n
z>c7' [z— 3 civi).
i=2

From assumptions M I.—-M. III. we know that there
exists a constant K(f), 0 < K(f) <+, such that f(x) is
decreasing for all x > K(f), so that for all z > K(f) and
ally € B,

f(Z)<f(C1_1 . (7‘2? ciYi)) <ci' f(c?‘ . (Z_i‘ CiYi)) )
i iz

Lower inequality in (3.2.) now follows immediately be-
couse



=

+ 2_: g g Hf(yi) * f<c1—1 : (Z_‘é‘zciyi)) * I(AZ_BZ)

Ti=2
dy,...dy,.
Starting from (3.2) and regarding that f(x); 0 as x =

+ %, there exists finite constant L, > L, such that
—In{(x) > 0 for all x = L,, hence

—1Inf)(x) < —1lng,(x) < — Inf;(x) for all x21,
—Inf(x) — Inf(x) — Inf(x)

and
) | —Ine) o —inf)

Tt —Inf(X)  x—tw —Inf(x)

X—+0 £y (x) f(x)

according theorem 3.1.

x—~+o —q(x

Analogously
) —an(x) . —Ing,(x) —Inf(n(x)
lim — = ll_l'n- —) = lm —T =
ot AW xotw —In f(x) xo+w N (x)

= lim (— f‘"’(x)> <— L“)) =1
Xt oo f(n)(x) f(x)
qed
The following theorem shows the effect of trimming off
some extreme order statistics on the tail behaviour of Ty, .

Theorem 3.3.: Let random variables X;, . . . , X, be
independent copies of X €& F, with common density
f(x—0), @€ Ry and let X;, < ...<X, be their re-
spective order statistics. Let ¢, . . . . ¢, be nonnegative

n
constants such that ch =1 Put ¢g= ¢,y =0 and
k=1
assume that ¢, =0 for 0<s< i and n—-j+1=s<
n+1, 0=i+j<n, ¢;;; >0 and ¢, ; >0. Denote
g, (x—0) density of the statistic

n
Tn=2"¢;X;
i=1
and put
En(x—0) | (x—0
Hp(x—0)= n( / ( )
g,(x—0) | f(x—0)
Tt hold:
(i) 1f XeF(P) then
1< lim Hy(x—0) < lim Hp(x—6)<n—i; (3.3)
X400 X—+®
(i) if XeF(E) or F(H) then
j+1< lim Hy(x—0) < lim Hy(x—0) <n—i, (3.4)

X+ ® x=t®

Proof: We can put @ =0 without loss of generality. It
follows from the assumptions that

X+ S Th £ Xn—j)-

Proceeding in the same way as in the proof of the theo-
rem 3.2, we can show that exists finite constant L, such
that

f(i41)(%) < En(X) < f(n_j(x) forall x>1L,,

hence
~Infp_p®x)  —Ilngalx) _ —In fii41)(x)
—Inf(x) = —Inf(x) —1Inf(x)
for all x = L, > La; that gives the desired conclusions.

ged

4. Examples

Let us illustrate the results on the behaviour of the
sample mean and sample median.

Theorem 41.: Let X, ..., X, be independent co-
pies of random variable X € F, with the common den-
sity f(x — @), # € R;. Let g, (x — @ denote the density
of the sample mean T, and H x — @ be defined as
above. Then

1< lim Hy(x—60) < lim H,(x—0) <n.

(4.1)
N—+ 0

X—+
Proof: Follows immediately from theorem 3.2.
The example demonstrates that both bounds in (4.1))
are attainable.

Example 4.1.: Let £(X,) ~ N(@,¢), i=1,...

Then €(Ty) ~N(@.¢?/n) and
Hy(x—0) = (n(x=0)/2)/((x—6)/2)=n for all xeR,.

so that the upper bound is attained not only for x - 40,
but for all real x.

(b) Let f(x—M)=za-1- 14+ (x=0))-1 for all x € R,
® € R Then T, is distributed according to the same
Cauchy distribution and :

H, (x—0) = 1 for all real x,

so that the lower bound is attained not only for x —
420, but for all real x.

Theorem 4.2.: Let X, ..., X, be independent co-
pies of random variable X € F, with common density
f(x — @), ®ER, Let g,(x — 6) denote the density of
the sample median T, and H,(x— ) be defined as
above. It holds:

(i) if XeF(P) then

— 2
1< lim Hy(x—0) < lim Hn(x—(-))s["‘; ]

X>+ o X—+oo

(ii) if XeF(E) or F(H) then

[n+1]_<_ lim Hp(x—0) < lim Hn(x—6))5[9—¥]; (4.3)

X—+0 X—~to

where [-] means the function integral part.

Proof: Follows immediately from theorems 3.1. and 3.3.

Remark: If we compare these results with those of Ju-
re¢kova (1981) we can see that it is the lower bound in
(4.2.) which is surprising. Nevertheless, it is easy to show
that it is attainable in such a way that for every e,
0 <e <1, exists X € F(P) such that

1< lim Hy(x—0) <1+e.

X—+o0

Actually, let, say, n=2k-+1, 60 =0 and

f(x)=K for all x [x|<A,
=K. |x|757! for all x |x| = A,



where 0 < A < -+ and K is normalizing constant. Then
(4.4) is true if

&
K—e¢

0<s<

6. Refrences

BARLOW, R. E.,, PROSCHAN, F.
Mathematical theory of reliability.
J. Wiley and Sons., New York, 1966.
FIELD, Ch. A.,, HAMPEL, F. R.
Small sample asymptotic distribution of M-estimators of
location.
Biometrika 69, (1973), 29—46.
GUMBEL, E. J.
Statistics of extremes.
Columbia University Press, New York, 1962.
HAMPEL, F. R.
Some small sample asymptotics.

This phenomenon is typical for densities with extremely
heavy tails and one can see that every shift of some mass
from the tails to the center substantially improves the
behaviour of the sample median from the point of view
of the chosen criterion.

Proceedings of the 1st Prague Conference on Asymptotic
Statistics, Vol. IT, (1973), 109—126.
JURECKOVA, J.
Tail behaviour of location estimators.
AS 9, (1981), 578—585.
KLAASSEN, C. A. J.
Statistical performance of location estimators.
Mathematical Centre Tract 133, Amsterdam 1981,
RONCHETT], E.
Robust testing in linear models — infinitesimal approach.
Dissertation ETH No. 7084, Ziirich, 1982,



Imperial College, London

Simulation in Research on Linear Models
ANTHONY C. ATKINSON

Abstract !

Sketches are given of six applications of simulation in
research on linear models. Fairly full references are given
to more extended treatments of the topics, as they are
to recent developments in the generation of pseudo-
random numbers and variables.

1. Introduction

Although the mathematics of least squares has been
understood for over 150 years, research into statistical
methods for the linear model can still yield problems to
which an analytical solution is not possible. This is
clearly frequently the case in recent developments, such
as the generalized linear model (Nelder and Wedderburn,
1972; McCullagh and Nelder, 1983) where, usually, only
asymptotic results are available. To answer many infe-
rential questions recourse has then to be made to simu-
lation. The purpose of the talk, on which this paper is
based, was to describe examples of the use of simulation.
These, it is hoped, both exemplify some recent advances
in statistical techniques and also illusirate general prin-
ciples in the design and analysis of simulation experi-
ments.

2. Robust Regression

The eslimating equation for the location parameter of a
simple sample can be written as

n
2 (vi—i)=0. M
i=1

which is the least squares solution yielding the sample

mean. In robust estimation using M-estimates (1) is re-
placed by

n
2 w{(.vi—,&)/a} =0. ()
i=1
One example is Huber’s ‘Proposal 2’ in which
—¢ (z£—0)
p(z)= 2z (—c<z<c)
¢ (z2c¢).

Details of this and other methods of robust estimation are
given in Huber (1981).

For least squares regression the analogue of (1) is the
set of p equations

xt(y—xp)=x"r=0. )

where r is the vector of n least squares residuals. The
robustified version of (3), analogous to (2) is

XTW{(y—Xﬁ)/U}=XTV'(1')=0~ @

In which the v function acts on the robust scaled resi-
duals. See, for example, equation (6.11) of Bock (1982),
who also discusses estimation of the scale parameter o.

The numerical solution of (4) usually starts from the
least squares estimates satisfying (3). A difficulty is that,
due to their position in X space, some observations have
small residuals, irrespective of the value of the response.
To see this consider the least squares residuals

r=y=Xp={1-x(X"X)"X y=a-my. o
The idempotent matrix H, often called the ‘hat’ matrix
(Hoaglin and Welsch, 1978), has diagonal elements h;.
The variance of the ith residual is given by

var(r;) =¢*(1—hy). (6)

For remote points in X space, so-called ‘leverage’ points,
h; =1 and, from (6), var(r;) - 0 as the prediction at x;
comes increasingly to depend only on y;. Thus observa-
tions with large values of h;, which can be caused by
erroneous values of the carriers x;, will have small resi-
duals and will not be down-weighted by the M-estimate
(4). This form of robust regression therefore does not
prolect either against erroneous leverage points, nor
against leverage points with outlying responses.
Alternative methods of robust regression which are in-
tended to protect against these departures are described
by Huber (1981, Cap. 7), Krasker and Welsch (1982) and
by Huber (1983). In an investigation by simulation of the
properties of estimates of location given by (1), Andrews
et al. (1972) used conditional Monte-Carlo methods which
reduced the computation involved by factors of powers
of ten. Can such efficient methods be developed to aid
our understanding of robust regression?

3. Regression Diagnostics

In diagnostic regression analysis the aim is the identi-
fication of features of the data, often groups of one or
a few observations, which either have an appreciable
effect on the fitted model or which indicate ways in
which the model is systematically inadequate. The aim of
identification can be contrasted with that of robust ana-
lysis where the aim is accomodation, that is inference
when a small, but unidentified, set of observations is
allowed to come from some other process (Cook and
Weisberg, 1983). Diagnostic regression analysis is the
subject of the books by Belsley, Kuh and Welsch (1980),
Cook and Weisberg (1982) and Atkinson (1985). In all
three books graphical methods play an important part.
To detect observations which have an appreciable effect
on conclusions drawn from the data Cook (1977) suggested
the measure

D= o B) XX (f-Bfpe o

where the p elements of .3(11 are the least squares esti-
mates of the parameters when observation i is deleted
and s? is the residual mean square estimate of ¢ The

PAN
motivation for (7) is inspection of the distance /f\ilfi\ -
relative to the confidence region for .



An expression for (7) which is both computationally
more convenient and also more revealing is found by
rewriling D; in terms of the residuals r;- A further
development (Atkinson, 1981) is the modified Cook statistic

n—p 1/2( hy )1/2 .
Ci= — ) et
' ( p ) 1—h; |Il| ®

which is proportional to the square root of (7) when s

is replaced by the deletion estimate s, . In (8)
I"-:= (yi——yi)/ VS(I‘)(l—hl) 9)

is often called a deletion residual.

If there are no outliers the deletion residuals follow a
t-distribution. Normal, or half normal, plots of the r;*
therefore can provide a diagnostic plot for the presence
of outliers, which will be detected by departure of the
plot from linearily. But, except for a balanced design
when all h; are equal, there is no reason why a half
normal plot of the modified Cook statistics C; should be
straight. To aid interpretation of such half normal plots
Atkinson (1981) suggests use of a simulalion envelope
found by ordering the values of the C; calculated from
19 samples. Several examples of the use of these plots
are given in Chapter 6 of Atkinson (1985).

The simulation can be made quite straightforward. Be-
cause the r;* are residuals, the parameters of the linear
model, and also the scale parameter ¢ are not important.
The deletion residuals are calculated from (9) using
values from a standard normal sample fitted to the linear
model with the same matrix of carriers X as that
observed. Calculation of the residuals is simple. If n is
sufficiently small, (5) shows that premultiplication of y
by the n X n matrix I-H yields the residuals. Alterna-
tively XTy can be found and premultiplied by the stored
value of V= (XTX)—l to yield the parameter estimates.
In neither case is a matrix inversion required for each
sample,

4. Selection of Regression Models

In the regression models of Sections 2 and 3 it was
assumed that the carriers in the matrix X were known.
Choice of these carriers from a set of explanatory vari-
ables is usually by a rather ad hoc process of hypothesis
testing and inspection of residuals. More formal and algo-
rithmic methods for the choice of a ‘best’ model include
several information criteria.

The residual sum of squares from the least squares para-

meter estimates }/‘)’\defined in (3) is

R=rTr=yT(1—H)y. (10)

For the jth model let this sum of squares be R;. As terms
are added to the model the residual sum of squares will
decrease. But this desirable progression is offset by an
increase in the variance of the parameter estimates and
in the mean squared error of predictions based on the
model. These effects can be balanced by use of Mallows’
Cp (Mallows, 1973) or Akaike’s AIC (Akaike, 1973) to
select the regression equation. For both criteria the model
is chosen for which R; + 2p; 0% is a minimum, where pj
is the number of parameters in the jth model. If the
value of o2 is not known, a suitable estimate is employed.
This criterion can be extended to that of finding the
model for which the generalized information criterion

AIC(x) = Rj+apja’, (1

10

is a minimum. The value of « is at our disposal. Con-
sistent choice of the true model is found by replacing «
by an «(n), an increasing function of n such that a(n)/n -
0 as n—>%, The conditions are discussed by Hannan
and Quinn (1979).

Understanding the choice of « for finite samples requires
simulation. A review and examples are given by Atkin-
son (1980a). Unlike the investigation of regression diag-
nostics in Section 3, the simulation here does not require
individual observations and their residuals. If the errors
are assumed to be normally distributed, all that is
required are the values of the sufficient statistics. When

the observations are normally distributed, XTy has a
multivariate normal distribution with mean XTXﬁ and

variance ¢2XTX. Independently of xT y, the residual sum
of squares has a distribution which is 2¢? times a gamma
distribution with index (n —p)/2. The residual sums of
squares for models with less than p parameters are readily
calculated from these quantities, without the need to
re-sample for a variety of g values. The speed and effi-
ciency of the calculations are further increaced by
applying all selection rules to each sample.

5. Generalized Linear Models

Many of the techniques of the linear model can be ex-
tended to the anlysis of non-normal sets of data with
structure in the means by use of the generalized linear
model (McCullagh and Nelder, 1983). The goodness of
fit of such models is ascertained by the deviance which
asymptotically has a y* distribution. But if the number
of observdtions is not large relative to the number of
parameters, the distribution may be far from its asymp-
totic form. The simulation technique of Monte-Carlo
testing, discussed by Marriott (1979), can be used to give
an idea of the significance of observed results.

An example is given by Williams (1982) on ‘passive
smoking’, which is the name given to the apparent effect
on the death rate from cancer of non-smoking wives of
husbands who smoke. Part of Williams’ results are repro-
duced in Table 1, which shows an observed effect with
a y* value of 8.7 on 2 degrees of freedom, seemingly
highly significant. The strange feature of the data is that
the simple model, which this y* value rejects, has a
deviance of 91.7 on 96 degrees of freedom. If this model
really were inadequate the deviance should be appre-
ciably greater than its expectation, rather than slightly
less.

Table 1 also shows the results of 19 simulations when
the simple model is assumed true. All 19 simulated
values of the deviance for the simple model are less than
the observed value. The simple model does not include
a smoking effect. The 19 y* values for this estimate ob-
tained from the simulation in the absence of a real effect
range from 0.1 to 2.9, well in line with expectation, as
against 8.7 for the observed effect. Williams’ conclusion,
supported by further simulations of the model with a
smoking effect, is that the simple model is unacceptable.
This powerful procedure is a slightly elaborated version
of the straightforward Monte-Carlo test. In the basic
version the observed value of a test statistic is ordered
amongst values simulated under the null hypothesis. The
rank, rather than any distributional form, is often used
to determine significance.

6. Tests of Transformations

In the parametric family of power t_ransformations ana-
lysed by Box and Cox (1964), the loglikelihood is shown



to be proportional to the residual sum of squares of the
observations after the normalized transformation

Z(A)QL_I_‘

PRt o

where y is the geometric mean of the observations. To
test hypotheses about the value of 1 in (12) requires
maximization of the likelihood over 1. An advantage of
the approximate score test introduced by Atkinson (1973)
is that maximization is not required.

The model leading to this test is that, for some 1 and to
a sufficient degree of approximation, the transformed
observations satisfy the linear model

z(A)=Xpf+e.

Expansion of this model about the hyvpothesiszed value
29 yields the linearized model

72(A) = XB— (21— ) w(hp) +¢. (13)

Box (1980) calls the derivative w(ly) = 6z (1)/04 | 1= 1,
a constructed variable. Often in diagnostic work 1,=1,
corresponding to the hypothesis of no transformation.
The test of the significance of regression on w(dy) in (13)
is localy equivalent to testing the null hypothesis 1= 2.
The expression for this t test is obtained by analogy with
expressions from the analysis of covariance (Cox and
McCullagh, 1982).

Other constructed variables have been suggested leading
to the exact test of Andrews (1971) and to Tukey’s
celebrated one degree of freedom for non-additivity
(Tukey, 1949). The relationship between these tests is
developed by Atkinson (1982). To examine the compara-
tive behaviour of two of the tests and the likelihood ratio
test, Atkinson (1973) simulated the power of tesis for the
hypothesis of the inverse transformation in the survival
time data presented by Box and Cox (1964). As with the
other simulations mentioned in this paper, all tests were
applied to every simulated set of observations. This is
equivalent to use of a randomized block design to increase
efliciency. More importantly, the results were presented
graphically as a normal plot of the proportion of tests
which were significant. Not only is the impact of such a
plot greater than that of the corresponding table, but
interpretation is facilitated. The power of the {iests is
indicated by the slope of the plots, differences in the
size of the tests causing a change in intercept. Such plots
are highly commended for the presentation of simulation
results.

7. Tests of Separate Families of Hypotheses

A test for the choice between a gamma model with log
link and a log-normal model is an example of a test of
separate families of hypotheses of the kind introduced
by Cox (1961, 1962). The test statistic is the log likelihood

Table 1
Analysis of Deviance Table for Hirayamas’

ratio for the separate models, from which is subtracted
the expected value of the ratio under the null hypothesis.
This corrected ratio is then divided by the square root
of the asymptotic variance of the ratio, again calculated
under the null hypothesis. Calculation of the expectation
and variance is usually complicated and, as the examples
in Atkinson (1970) show, the resulting test statistic usually
has a distribution which is far from the asymptotic limit
of normality.

Under such conditions the Monte-Carlo procedure of
Section 5 provides a comparatively easy way of assessing
the significance of an observed test statistic. Rather than
calculate the complete statistic, including expectation and
variances, it is enough, and much simpler, to simulate the
distribution of the log-likelihood ratio. For the example of
the gamma and log-normal distributions Atkinson (1982)
plotted simulated values of the residual sum of squares
for the log-normal model against the deviance for the
gamma model, which are the two components of the ratio.
The simulations were performed with each distribution
as the null hypothesis. In addition to the relative simpli-
city of the procedure, an advantage is that the results can
be simply presented as a plot.

0. Generation and Testing of Pseudo-Random Numbers
The simulation methods outlined in this paper rely
heavily on the availability of a supply of pseudo-random
numbers which can be converted into pseudo-random
variables. The most important property in determining
the quality of pseudo-random numbers {rom a linear
congruential generator, is that overlapping or successive
k-tuples of numbers fall a k-dimensional lattice.
Examples of the structure and properties of the gene-
rators are given by Atkinson (1980b) who also demon-
sirates the damage that a poor lattice structure can do
to a generator of normal variables. A description ol tests
for the lattice siructure is given by Knuth (1981, Section
3.3.4). Recent advances in the theory of lattice tests are
due to Ripley (1983b).

on

9. Computer Generation of Random Variables

As a result of the continual increase in speed and powe!
of computers, fast algorithms for the generation of pseu-
do-random variables are becoming less important. The
spread of micro-computers, many with inadequate soft-
ware, has direcled attention more to the provision of
portable algorithms which are easy to program. The most
important recent general algorithm for continuous random
variables which meets these requirements whilst being
relatively fast is the ratio of uniforms method (Kinder-
man and Monahan, 1977). An example of the resulting
algorithm for the normal distribution is given by Knuth
(1981, Section 3.4.1) and by Ripley (1983b) who also pro-
vides a survey of recent work in the area.

“passive smoking” data, from Williams (1982)

The Monte-Carlo test clearly shows the significance of the smoking effect, despite the low

deviance (91.7) for the simple model.

Observed

Degrees of

ﬁesurlrtrs 7of 19

deviance freedom simulations Comment
Ignore husband’s 91.7 96 59 —90 all < observed
smoking
Include husband’s 83.0 94 57 —89 13 < observed
smoking
Smoking effect 8.7 2 0.1— 2.9 all < observed

11
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Note About Solutions of Asymptotic Minimax Test Problems for Special Capacities

TADEUSZ BEDNARSKI

Abstract

Explicit formulas for the optimal test statistics are given
in the case of an asymptotic minimax test problem with
neighbourhoods generated by a class of special capacities.

1. Infroduction

The first contribution to local asymptotic robust test pro-
blem for parametric models contaminated in term of
capacities, was done by Huber-Carol (1970), then gene-
ralized and considerably developed by Rieder (1978). The
results presented here constitute further extension of these
papers.

Let {P, : [#] < 7} be a tamily of probability measures in-
dexed by real parameters. Let n be the number of inde-
pendent observations with distributions that come either
from Pyor P, It is assumed thatP_ |, €Pyp Py P,
and the setsP;, are viewed as possible departures from
the distributions in the parametric family. The statistical
inference in such situations is formalized as a sequence
of test problems for the product sets Pg" and \1\&?‘“. It is
intuitively clear that an asymptotic minimax sequence of

can be understood as a robust solution

for the sequence of hypotheses P,&,’?,ln against qu?ln .

It has been proved by Rieder (1978) that, under suitable
regularity conditions, when Y, are e-contamination and
total variation neighbourhoods of P __,, and P, , respec-
tively, then the optimal solution is given by the sequence
of statistics

tests, say {7} .

T (/1) 16,

where IC is a truncation of the logarithmic derivative of
dpP,/dP, at # =0. The tests {y,} are then indicators of
{T, >t} for some fixed t depending on the asymptotic
significance level.

Rieder (1980) has further developed his results to some
estimation problems preserving the same type of conta-
minating neighbourhoods. In Bednarski (1983) the prob-
lem of asymplotic minimax lesting is studied, however
the neighbourhoods are allowed to be generated by a
class of special capacities, see also Bednarski (1981). The
object of the study was to delermine the dependence
between the optimal IC and the employed contamination.
Here we show that under suitable regularity conditions
one can give an “almost” explicit formula for IC and see
that in some circumstances it may diller considerably from
a simple truncation of the logarithmic derivative of the
likehood ratio.

2. Basic Notions and Assumptions

Let £ be a polish space with Borel g-field B and let M
be the set of all probability measures on B. Let § be a
class of concave functions from [0,1] to [0,1] such that for
every € Ff(1) >0. For every f€F and PEM we define

a special capacity Vep as a set function from 3 to [0, 1]
such that vfyp(ﬁ) =0and forall A 0, AEQ

ve.p(A)=[P(A)+fOP(A)] AL

The symbols A and \/ will denote minimum and maxi-
mum respectively. Each capacity v;p generates a set
Pip=1{HE M HA)<V;p (A) for all A€B}. This set
can be viewed as a contamination of P, It is convex and if
£(0) =0 and f is continuous in 0, then P;p is weakly
compact. For further information about the capacities see
Bednarski (1981), Buja (1980) and Huber and Strassen
(1973).

Let now{P4€ M:[?| < r} be the given parametric family
and let fy, f; € F. The sets T, and P;,, will be here gene-
rated by the capacitics

[Pt W R)or_ oAt

and [Pl/ﬁ+(1/ n)t,0p J/\ 1

o/
respectively. The following regularily conditions are
assumed to hold through the paper. Compare Bednarski
(1983).

A l: There exists an exponential family{Q, € M: @ < 1}
so that Qg ~ c(0) exp (M#4)dP, for some random
variable -1 and lim sup nH*Pg - Qe pn) =0 where
H stands for the Hellinger n |# =1
distance.

A 2. The distribution F of /4 under P, has a densily with
respect to Lebesque measure and the distribution has
a convex support.

A 3. There exists A € B so that

—27 4A(11’0+fUOPU(A)+f1OP0(A"')<O,
A
A 4. The functions [, and [; are differantiable on (0,1).

3. The Result and Examples

Theorem. Under Conditions A1—A 4 we have that the
optimal test statistic IC is equal

I 04" = 1,0[1=F(4")]} [2r + 4",

where 4* = d\/ 1 Ad; for some uniquely determined con-
stants dy, d; and f* denotes the derivative of f.

Proof. From Bednarski (1983) we have that the optimal IC
can be constructed as follows:

The first step is to minimize over z, for each t€ R, the
expression

g(7.8) = f,0Py(4>7)+,0Py(4<2)— 27 \ AdP, +

A>z

tPy(4>2) for t=0
—tPy(4<7) for 1<0.

13



Under Condition A 2 the distribution function F is strictly
increasing on the support of F, therefore one easily check
that if inf g (z,t) < O, then there is a unique z (t) for which
the infimum z is attained. Let t, < O and t; > O be such
that g (z (tp), ty)) = g (z(ty), t;) = O. Then the function z ( -)
is continuous and strictly increasing on [t t,].

In the second step we define the family {A;}; € R of mea-
surable sets by he formula

@ for t 21,

{/,I>Z(t)} te(ly.ty)
A= U A t=1t,

s>

£ t<t,

and finally we put IC (w) = (1/27) inf {t: » ¢ A}}.
Therefore we obtain

z(t)  for 4> z(ty)
1C(4) = {z="(4) Ae[z(to). z(t)]
z(lo) A< z(t,)

and the problem reduces to finding an explicit formula
for z-!' (4). Under Conditions A2 and A4 we know that
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the derivative of g (z,t) in z is equal O if we put z = z (t).
Hence we obtain that for t€ [t, t]

=f0 F[z(t)] — (01— F(#(0) |+ 202(1).

if we put now dy = z (t)) and d; = z (t;) the proof will be
completed. In the simple examples given below we shall
assume that fy=f,=f and we put for f typical shapes.

1) If f(x)=cx or f(x)=c for some ¢ > 0, then IC=A4*.
2) If f[(x)=c|'X, ¢ >0, then

1C= (c/4n) {1/ VF(4) —1/ V1—F (4%} +4*
3) If f(x)= — x>+ x4 ¢, where 0 < c <1, then

IC=(1/7)|[1—2F (4% + 4%,

The interesting feature of the solutions ist that, except for
the linear case 1), we smoothly diminish the influence of
oullying observations in the region where 4 is not yet
truncated. It seems possible that various properties of
tests obtained can also be studied via the infinitesimal
approach developed by Ronchetti (1982) and Rousseeuw
and Ronchetti (1979).
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RIEDER, H.
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RONCHETTIL, E.
Robust testing in linear models: The infinitesimal appro-
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PhD thesis, ETH, Zirich (1982).
ROUSSEEUW, P. J. and RONCHETTI, E.
The influence curve for tests.
Research report 21, Fachgruppe fuer Statistik, ETH, Ziirich
(1979).
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Some Remarks on the Comparison of Means in the Case of Correlated Errors

JURGEN BOCK

Abstract

After the discussion of an approximative test for the one-
way anlysis of variance with correlated errors an exact
method is developed, basing on Hotellings T2 This proce-
dure can be robustified by means of Tiku’s MML-esti-
maltors.

1. Introduction

Box (1954 a,b), Ljung and Box (1980) and Tiku (1982)
studied the one-way analysis of variance with unequal
variances and the two-way analysis of variance, assum-
ing that errors within rows constitute a stationary Gaus-
sian process. It has been shown in a simulation study by
Andersen, Jensen and Schou (1981) that the approximations
given by Box are excellent, and that disregarding corre-
lations may lead to seriously misleading ccnclusions. The
data have been simulated for AR (1) and MA (1) time
series models. But the power of the tests is not investi-
gated in the paper of Andersen et al. On the other hand
it is not clear whether the approximations are sufficient
good in the case of estimated correlation coefficients.
Finally we do not know anything about the robustness
against deviations from normality.
In this paper we can not answer all this questions. We
will investigate the special case of no row effects (i. e. the
one way classification) in more detail. Then we propose
an alternative method which can easily be robustified.
Let us assume for the observations Vi at equally spaced
time points the model

(t==1.....T)

Y=g G=1....1) M
where the uy; for fixed j constitute a stdtionauy Gaussian
process (E(uy =10), cov (uy, Uyyp,) = dp o (h), and the
rows are independent replications of the same process.
We want to test the hypothesis Hy: py = ...
approximative F-test.
Y’Ay, SSB = y'BYy with
Y= (Vg Yizs -5 Yo Yo Yoz - - -

= pp by an
The sums of squares are SSR :=

» Yoo

—ILO(

Yo Yoo Yorn)

CnCp \

[,:(1,,..._1Te,re,'r)®<1 cpe ) The star denotes the Kro-

and the idempotent matrices

neckerproduct, I the identity matrix and e a vector with
all components equal to cne.

With the positive definite covariance matrix V=23 .01,
a(0) o(1)...a(T—1)
v e a0 o(T—2)
a(':I‘—l) ...01\1;)5(0)

one gets AVB = 0, therefore SSR and SSB are uncorre-
lated (sec e. g. Rasch (1976)).

Box has approximated the distributions of the sums of
squares under the null hypothesis Hy:p; = ... = up by
Gamma distributions with the same expectations and
variances.

For further discussions we give the expectations and va-
riances for the nonnulldistribution too:

E(SSR)= {1 (AV)=T(n—1)(0)
F(SSB) = tr (BV) + 4 Bu =
T T
=0(O)[T—--1—Ze(t—5) +n > (u—E)’ ()
T st=1 t=1
with = (..o pge oo TP e s wr)

=k Do

Calculating the moments by the derivatives of the charac-
teristic function one can show, that for a normal distri-
buted vector

(t—s)=a(t—s)/a(0).

5~ N(/l*, ..\_:8:" the variance of 3§ is equal to

’ 2 ’
Vi 3)=2t1'<23)+4,u* Z u, (3)
Therefore we get from SSR = (AY)’ (AY) and SSB = (BY)’
BY)
T
V(SSR) = 2(n—1)6%(0) Z (t—s)

T T T 2
V(ssn)zzaZ(O)[Zgz(t—s)— Z(Z (t—s)+

s,t=1 5=1
[ Zee)]
o(t—s)
T Tz stzvl )

+4n6%0) D (ug— ) (uy— e(t — ). @)
sit=1

Following Andersen et al (1981) the null-distribution of

F-——LF F—-§_S_B_T(L—_ll (5)

is approximated by an F-distribution with

__ 2E*(SSB) 2E*(SSR)
B= ————and fp="""—
V(SSB) V(SSR)
degrees of freedom, where
_ (T—1) E(SSR®

(n—1)T E(SSB)
Therefore

(6)




1)T?
= -—fl;w) - M
“ @2(( —s)
s.t=1
= T-1 (®)

T

T 3 ot—

st=1

In practical applikations the autocorrelations in (6), (7),
(8) have to be replaced by estimates, so we get the test
statistic F* = ¢F with an estimated ¢ having perhaps an
F-distribution approximately. In our case

SPR(h)

= e

is an unbiased estimator of o(h). (This is not true in the
two-way classification case.) We use /§(h) :/&(h)/Aa(O).

An approximation to the noncentral distribution of F, as
in the central case, would have different degrees of free-
dom for the numerator (see (2), (4)). But there is the same
problem, we do not know the goodness of the approxi-
mation in the case of estimated autocorrelations. Therefore
we started to investigate the power by a simulation study;
these results will be given in a following paper.

2. Paired Observations

It is very interesting to look at the case T=2. This is the
case of paired observations. To test the hypothesis Hy: p¢
= u, one uses generally the t-test with the test statistic

4.
t:m 10
g /n (10)

=]
=

. 1
with 4=y, ¥y; A'=;1-.

and n—1 degrees of freedom.
The Box-approximation yields (with p =0 (1))

f,=1, fr= , c= 1
B R= 12 1—0o (1
~ cny.—y
F= ( IA 2) (12)
20(0)
or, if we replace ¢ by ¢
Fi.—¥.)'n
pro =%)n . -

26(0)[1—2(V]
If H, holds, F* = t? is exactly F-distributed with 1 and
n—1 d.f. and the approximation fails in the d.f.
For known correlations one can compute the exact distri-

bution of F.

3. Multiple Comparisons

Thé easiest way to get a multiple comparison-procedure,
which is independent on correlations, seems to construct
a t-procedure by means of

|
3

b= Y k=1 T). s

— A
Uk ik
Sik 1 =1

Ay =Yij— Yij-

The distribution of each t;;; is a central or noncentral
t-distribution with n—1 d.f. Every pairwise comparison
is independent on correlatiocns. But the multivariate distri-
bution of all t;,, depends on the correlation, therefore the

16

T—
SPR(M: :Z' Z Vij—

familywise risk too. One way to get a multiple procedure
could be, to construct an approximative Scheffé-procedure
by means of the Box-Andersen-approximation,

4. A Robust Test

As we have seen, it is not possible 1o generalize the
classical comparison procedure in such a way, that they
are entirely independet on correlations, so we look first
for a test with a risk of first kind independent on corre-
lations. The basic idea is, to seek for a teststatistic, which
does not change under regular linear transformations.
Then we can transform to the uncorrelated case.

(9)
n

yt+h 3= ¥t+h-)

The random veclors §; = (2,5, Zyj ..., Zp;) With z;; =
yij — ¥y (i=2,...,T) are independent and normal distri-
buted with mean vector ""”’a = (ua— Mgy ..., M — ) and
covariance matrix GVG” where

-110..0
=101 0

G=[ :
0

—10...01

We can deal with our comparisonproblem as a multi-
variate test of the nullhypothesis H*;: By = 0. This leads to
Hotellings T2(3)

7]

n—

—
—
e
=
|
=gl
~
—
&
I
|
~

The distribution of T* () (n—T 4 1),/(n — 1) (T—1) is non-
central F with T—1 and n—T -+ 1 d.f. and noncentrality
parameter n M; (GVG)-! u, (Anderson (1958)). The teststa-
tistic does not change under a linear transformation 3=Cjg*
(IC] #0). Choosing C in such a way that CC’ = GVG’,
we get the identity matrix as covariance-matrix of §* =
C-'3, but T2 (3*) has the same distribution as T2(3). The
risk of first kind is independent on correlations. while the
power depends on correlations through the noncentrality
parameter. Due to Tiku and Singh (1982) one can ro-
bustify the test in the following manner:
Define (j = 1,...,n)

\"Zi = zli )

Wzl—IzJ——h\uZw'

“41—741—b4127‘11‘b423z71

etc,

where the ’b\’s are the partial regression coefficients (see
Kendall and Stuart, 1973, Chapter 27), and

T =my W5 (16)

N ey
..,rT) and the diagonal matrix W = diag
Kﬂ\, yer,O , ) The »’s and o ’s are the MML estimators of
mean and stdnddld deviation calculated from typ II cen-

sored samples

Wiiran) o Win-r) 0=2.....T). (17)



The r smallest and the r largest observations are censored,
and

n-r

= ( Z Wi+ (Wi r41+ Wi nor)

j=r+1

/m

Oy = {Bi+ V81 +aacy)|/2){a(a— 1)
where

m=n—2r+2rf, Aj=n—2r. Biy=ra(W; n_p— Wj r41)

n—r

2 2 2 A2
Ci= Z wij+lﬁ(wi r+1 T Wi n—r)'—mvi-
i=r+l

For n = 10 the coefficients are obtained from the following
equations
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Robustness of Multiple Comparisons Against Variance Heterogeneity

JAN B. DIJKSTRA

Abstract

It Hy:py=... = puy is rejected for normal populations with

classical one way analysis of variance, it is usually of

interest to know where the differences may be. If the

population variances are equal there are several ap-

proaches one might consider:

1. Least Significant Difference test (Fisher, 1935)

2. Multiple Range test for equal sample sizes (Newman,
1939)

3. An adaptation for unequal sample sizes (Kramer, 1956)

4, Multiple F-test (Duncan, 1951)

5. Multiple Comparisons test (Duncan, 1952).

For all these methods (including the one way analysis of
variance) alternatives exist that are robust against va-
riance heterogeneity. A modification of (3) has some un-
attractive properties if the variances and the sample size
differ greatly. The adaptations for unequal variances of (4)
and (5) seem better than (1) for cases with many samples.
Test (2) is rather robust in itself if the variances are not
too much different. Modifications exist that allow slight
unequalities in the sample sizes.

1. Introduction

In 1981 Werter and the author published a study on tests

for the equality of several means when the population

variances are unequal. The problem can be stated as

follows: Ho: py= ... =

x;j~N(yj. of) for i=1,....k
i=l....,m.

The conclusion of this study was that the second order
method of James (1951) gives the user better control over
the size than some other tests [Welch (1951), Brown and
Forsythe (1974)], so it is to be preferred since none of the
tests in the study was uniformly most powerful.

The test statistic t is defined as:

k
t= Zwi(xi—i)l,
i=1

TFor some chosen size « this test statistic is to be compared
with a critical level hy(a), given by:

ha(e)= 2+ 5 (31 +12) Z (1__)

where w;=

16(

3+ lz) (

Here XZ:xz(a) is the percentage point of a y*-distributed
variate with r=k —1 degrees of freedom, having a tail
probability «. The other basic items in the formula are
given by:

=[] =D (k+1)...(k+25—3)

k
S WAEL
and Ry = 2’ = Tl) . where vi=n;—1

This method is an approximation of order —2 in the ¥,
to an “ideal” method. Brown and Forsythe (1974) consi-
dered the first order method of James (order —1 in the »;) .
Their conclusion was that for unequal variances the
difference between the nominal size and the actual pro-
bability of rejecting the null hypothesis when it is true
can be quite impressive. Werter and the author found
that this difference almost vanishes if one takes into ac-
count the second order terms.

The test as stated gives only the binary result that H, is
accepted or rejected. If one prefers the tail probability
of the test the equation t=h.(x) has to be solved. Because
h,(«) is monotonous in « this can be done in about ten
function evaluations with an acceptable precision of 0.001
in «. In the formula for hy(«) the terms Ry, are indepen-
dent of «, so it is only necessary to recompute the y.$
for every iteration. This version of the test was used on a
Burrcughs B 7700 computer. The average amount of pro-
cessing time for common cases was about 0.026 sec, so
the very complicated formula does not yield an expensive
algorithm.

If Hy is accepted this usually means the end of the analy-
sis. Otherwise it may be of interest to know where the
differences lie. For this one has to perform a simultaneous
test and it would be nice if this could be done in such a
way that « means “The accepted probability of declaring
any pair #;, y; different when in fact they are equal”. In
the following sections some strategies are worked out for
this kind of simultaneous statistical inference.

nj 1 k k
Xj —
_;, xi=i2xij, x=——Zwixi and W=Zwi.
Si n; 55 Wini i=1

)& 0-3)

2
+ %(3x‘+x2) [(BRo3— 10Ry, +4Ry — R}, + 8RyRy,y —4R?)) 4+ (2Ry— 4R,,+ 2R, — 2R},

+4R,, Ry — 2R},) (1, — 1) + i(—RﬁHRuRn-ZRan-mz+4Ran—R30) (32— 21, — )|

3 .
+ (Rza —3Ry+ 3Ry — Rzo) (516+214+ 12) + E (sz —4R,;+6R,; — 4Ry, + Rzo) (3518 +15%,+ 92, + 512)

+

|-

+

W | —
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(_ 2R;; + 4Ry + Ry +2R12R1o—‘ 4R Ry + Rfo) (gle — 3% — %4 — Xz)

( —Rn+R§1)(27xa+3x6+_x4+x2)+i(Ru—RuRn) (45xa+9x6+7x‘+3x2)‘



2. Least Significant Difference Test

The method consists of two stages. First Hy: 1y = ... = g
is to be tested with classical one way analysis of variance.
If H, is rejected a t-test is to be performed for every pair.
This idea originates from Fisher (1935) and it presupposes
the variances to be equal.

Fisher suggested using thc same « for the t-tests as for
the overall analysis of variance. Of course this is not safe
in the sense menticned in the introduction. An alternative
to be considered is the Bonferroni idea ﬂ*a/( ) that is
mentioned in Miller (1966). For this the probability that
no error is made under H, is limited as followes:

P=(l—(—%) J—{E)é}-:l—«

For unequal variances the one way analysis of variance
can be replaced by the James second order test. For com-
paring the pairs there are several possibilities. The situa-
tion iscalled the Behrens-Fisher (1929) problem, and one
of the best approximate solutions is Welch’s modified t-
test (1949). This test has been evaluated by Wang (1971)
and he concluded that it gives the user excellent control
over the s‘ize whatever the value of the nuisance para-
meter 0 = o, a; *may be. The test statistic is

Xj— Nj

wEE

J

and the critical level for some chosen size f is given
by Students t-distribution with a parameter » that takes
the pattern ol the variances into account:

In most cases Vi is not an integer, so it has to be replaced
by the nearest one. Ury and Wiggins (1971) suggested using
this test with the Bonferroni . The simultaneous confi-
dence intervals for this approach are given by:

2 52\‘/;‘
Yo, [ 8 Sj
5N FL FHL-—"_)

There are some alternatives mentioned in the literature.
Hochberg (1976) suggested using:

Kk

. i . . TNV >
where y is the solution of 1';1 - P{ {t”iJ} > }
in which »; comes from Welch’s modified t-test.
Tamhane (1977) suggested using Banerjee’s (1961) approxi-
mate solution of the Behrens-Fisher problem with y=1—

1

= a,

1 This y has some history and will also bc men-
tioned in the following sections. The confidence intervals
become:

11— a;k

9%

r

% uE Xj = X;

|l( 1/2,)2 s1 +(t1/”Y _SE]UZ

l vyl ‘

Tamhane also suggested using Welch's test with this j.
In the literature the author has found nine different ap-
proximate solutions of the Behrens-Fisher problem and
five ideas concerning the size of the separate tests. Every
combination can be made, so there is quite a lot of
methods one can consider for pairwise comparisons. But
to be really safe, in the sense that the probability of de-
claring any pair different when in fact they are equal
should be limited by «, the pairwise size f will become
very small. For k = 15 and « = 0.05 the Bonferroni approach
willi yield f=0.00048, so it becomes almost impossible to
reject any pairwise comparison.

Another disadvantage of this approach is the fact that
the results have to be represented by a matrix containing
symbols for acceptance and rejection. Working at a ter-
minal, as is usually done in applied statistics nowadays,
one has to swallow an enormous lot of information in one
glance if k exceeds the region of very small values. The
next sections will suggest approaches that are better in
this respect.

3. Multiple Range Tests

In this section a sirategy will be pointed out that was
originated by Newman (1939), Duncan (1951) and Keuls
(1952). At first it will be necessary for the sample sizes to
be equal (n;=n for i=1,..., k). Also variance hetero-
geneity will not be allowed. Later on these limitations
will be dropped.
Let x,,.... Xy, be the sample means, sorted in non-
decreasing order. The first hypothesis of interest is Hy: /¢ =
. = fty, where the ;’s are renumbered so that their
ordering becomes the same as the sample means which
are their estimates.
Then H,, can be tested with:

‘ l — S
—uc [M — Nt A, 57
n

where ¢ is the studentized range distribution, » = k(n—1)
and the residual variance is estimated by :

If H, is rejected, the next stage is to test 1= ... =n,_;and
k- Proceeding like this until every hypothesis
is accepted will yield a result that can be represented as
followes:

Hy= ... =0

The interpretation of this figure is that #; = yu; has to be
rejected if there is no unbroken line that underscores X,

and X For instance:
Iy = 5 © accepted
Ity = pg : accepted
1y = g rejectled.

If a candidate for the splitting process contains p means

then q ;p’ is to be used instead of q ]'; . Newman and Keuls
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suggested ap=a and Duncan preferred apzl— (l—a)p_l.
Now the equality of the sample sizes will be dropped,
but for the moment the variances will still have to be
equal. Miller (1966) suggested using the median of ny,...,
ng. Winer (1962) considered the harmonic mean H

Kramer (1956) modified the formula of the test to this
situation:

‘ /2
s 1 1
‘,,,l_‘uj€lx1~—Xj+qpva{ /2(H;-+n—J)} J.

K
where v=N--k and N=Zni
i=1

Only in Kramer’s case does the studentized range distri-
bution hold. For Miller and Winer the approximation will
be reasonable if the sample sizes are not too different.
Kramer’s test contains a trap that can be shown in the
following figure:

X3 Xu

Suppose n; and n; are much smaller than n, and n;. Then
=u, can be accepted while uy and uj are signifi-
cantly different. But the strategy will make sure that this
difference will never be found.

From here on the variances will be allowed to be unequal.
For equal sample sizes Ramseyer and Tcheng (1973) found
that the studentized range statistic is remarkably robust
against variance heterogeneity. So for almost equal sample
sizes it seems reasonable to use the Winer or Miller
approach and ignore the differences in the variances.
Unfortunately, the robustness of Kramer’s test is rather
poor [Games and Howell (1976)], so if the sample sizes
differ greatly one might be tempted to consider:

;
si )l /2.’
nj ‘ J
where only the variances of the extreme samples are taken
into account. This idea was mentioned by Games and
Howell (1976) with Welch’s 3. The studentized range
distribution does not hold for these separately estimated
variances, but the approximation seems reasonable though
a bit conservative.

The context in which Games and Howell suggested using
this method was one of pairwise comparisons with other
parameters for . But it looks like a good start for the
construction of a “Generalized Multiple Range test”.
This test, however attractive it may seem, still contains
the trap that was already mentioned for Kramer’s method.
But there is more:

o= ...

2
% 1 54
1= Ui 6] SN Ay l1/2(n_i+
] ;

Suppose s’ and s% are (much) smaller than s and s%,
Then a significant difference between u, and u; can easily
be ignored.

20

The author has not found in the literature other ap-
proaches to variance heterogeneity within the strategy of
multiple range tests. Some other «’s have been suggested,
but since the choice of ap has almost nothing to do with
robustness against variance heterogeneity, their merits
will not be discussed in this paper.

The representation of the results with underscoring lines
seems very attractive since this simple figure contains
a lot of information, and also the artificial consistency
that comes from the ordered means has some appeal.
However the whole idea of a Generalized Multiple Range
test seems wrong. One simply cannot afford to take only
the extreme means into account if the sample sizes and
the variances differ greatly.

4. Multiple F-Test

This test was proposed by Duncan (1951). In the original
version the population variances must be equal. The pro-
cedure is the same as for the Multiple Range test, only
the g-statistic is replaced by an F, so that the first stage
becomes classical one way analysis of variance. At first
Duncan proposed using a,=1—(1—a)P-!, but later he
found « , = 1 — (1—)(®-H/(-) more suitable [Duncan (1955)].
The nature of the F-test allows unequal sample sizes. This
seems to make this approach more attractive than the
Multiple Range test, but there is a problem:

Xy X

Xg)

) )

( (
1| ||
| |
Suppose u; = ... = uy is rejected. The next two hypothe-
ses to be tested are py = ... = py and py = ...= ps So
and w, will always be called different. But if n; and n;
are much smaller than n, and nj it is possible that a pair-
wise test for u! and p; would not yield any significance.
Duncan (1952) saw this problem and suggested using a
t-test for the pairs that seemed significant as a result
of the Multiple F-test. This approach he called the Mul-
tiple Comparisons test. Nowadays this term has a more
general meaning and it seems to cover every classifying
procedure one might consider after rejecting uj;= ...y .
Now the equality cf the variances will be dropped. It is
well known that the F-test is not robust against variance
heterogeneity [Brown and Forsythe (1974), Ekbohm (1976)].
So it seems reasonable to use the non-iterative version of
the second order method of James, thus making a “Mul-
tiple James test”. One could use Duncan’s ap, but the
author prefers a, = 1 — (1—)P/k [Ryan (1960)] as a conse-
quence of some arguments pointed out by Einot and
Gabriel (1975). This ap was mentioned in another context,
but the arguments are not much shaken by the unequality
of the variances.

This new test contains the same problem as the Multiple
F-test, but that is not all:

#y and ug will always be called different if uy =... = y,
is rejected. Now suppose that s?, and s, are much smal-
ler than s and s%. Then the difference between u; and u,
may not be significant in a pairwise comparison. Here the
structural difference between this test and the approach
mentioned in the previous section comes into the picture:



If extreme means coincide with big variances and small
samples, then the Generalized Multiple Range test can
ignore important differences, while the Multiple James
test can wrongly declare means to be different.

One can of course apply Welch’s test for the Behrens-
Fisher problem to the pairs that seem significant as a
consequence of the Multiple James test. This combination
should be called the “Generalized Multiple Comparisons
test”. A lot of extra work may be asked for, so it is of
interest to know if this extension can have any serious
influence on the conclusions.

Werter and the author have examined this by adding
another member to the family: the “Leaving One Out
test”. This is a Multiple James test in which after rejection
of uy=...=pynotonly py=...= y__;and u, =.
are considered but all the subsets of w,..., u, where one
y; is left out. The same p is used and the acceptance of
a hypothesis means that the splitting process for this
subset stops. The Leaving One Out strategy is not limited
to py = ... = py bul is applied to every subset that be-
comes a candidate. This approach will avoid the classical
trap of the Multiple F-test and also the specific problem
that comes from variance heterogeneity.

The Multiple James test and the Leaving One Out test
were applied to 7 case studies, containing 277 pairs. Only
2 different pairwise conclusicns were reached, where the
Leaving One Out test did not confirm the significance
found by the Multiple James test. But since the Multiple
Comparisons test is considered a useful extension of the
Multiple F-test, this may not be representative.

The Leaving One Out test can be very expensive. In the
worst case situation where all the means are isolated the
number of tests will be 2 —(k-+1) instead of only !, k(k—1)
for the Multiple James test and any member of the Least

S g
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The Power of Run Test Verifying the Hypothesis of Model Linearity

CZESLAW DOMANSKI

Abstract

The paper concerns the studies of empirical power of
some tests based on the number and length of runs, which
verify the linearity hypothesis of a model. The obtained
results of the power of run tests are compared with the
power of the F test.

1. Introduction

The paper presents the results of studies on the power
of tests based on the length of runs and on the number
of runs, verifying the linearity hypothesis of a model with
two explanatory variables in the form

Y=0(0+(X1X1+0¢2X2+5. (1)

Model (1) is considered at usually postulated assumptions
concerning & ([gy,..., &,1T ~ N (0, 62I)) — cf. e.g. Goldber-
ger (1966). Let a sample consisting of n independent ob-
servations (xy;, Xe;, ¥;) be given for i = 1,2,...,n. On the
basis of this sample a hypothesis H: E (Y|X,, Xo) = ay+
a X + a:X, should be verified taking into account the runs
of residual signs (cf. Domanski (1980))

e =V, — aNy T aXy; (2)

where a,, a;, a, are the o. 1. s. estimates of parameters ay,
a;, a9, respectively. While analyzing the model with two
explanatory variables usually many criteria of ordering
of e; can be given. Let h be some function of two va-
riables, and w — some permutation ordering the numbers
hy =h(xy, xy), 1 e hyy S hg, <0< hg,.
Let us consider such criteria for ordering the résiduals €
for which function h is determined by one of the following
formulae

(i) h(xioxo)=a,Fax;;+axy;
(ii)

(i) h(xy5. Xp1) = Xp5-

hixyi. x91) = X455

(iv) hixg5.x0) = x15+ x5,

(V) h(xpi,xg) = x4+ x5,
Assume that the explanatory variables are standardized,
thus making the above mentioned criteria independent of
linear transformations of these variables.
Let us note that the four first criteria are special cases
of the function of the form

h(xyi.X01) = yo+vixai X
(the coeftficient in criterion (i) being random), while cri-
terion (v) is a special case of the function
h(xyi.Xg1) = y X5 4 1%, -
We gave up, however, this type of generalization in the
present study.
2. The Range of Study

The subject of our study is the evaluation of several
variants of a run test and F test verifying the hypothesis

of linearity for the model with two explanatory variables.
Let us note that run tests are based on the tests with
discrete distributions, while the F test has a continuous
distribution. That is why the randomized run tests based
both on the number and length of runs have been in-
vestigated.

Critical values and randomizing probabilities for the tests
based on numbers of series have been taken from Do-
manski (1979) while those for the tests based on the length
of series — from not published Domanski, Tomaszewicz
(1980). The F statistic used for verification of hypothesis
that some of the regression coefficients are equal to zero
is described in Goldberger (1966).

To evaluate the power of tests being studied, we used the
Monte Carlo experiment with the following procedure. For
determined sample sizes n = 10, 20, 30 the values of x;;
were generated from the uniform distribution and the
values Xx5; from the normal distribution in such a way
that the correlation coefficient between sequences {xy;}
and {x,;} be equal to the fixed number r. In turn, for each
sequence of pairs (x; X,;) treated further on as already
stated, sequences {y; } were generated, where

vi=gxp.x) g, i=12..., n); Ei:N(O,ag), 3)
The variance 0‘25 determines the dispersion of empirical
points on the area defined by function g. Function g is also
as follows

P 2 2 4
g(x;.x9) =cotc x;Hepxp+ e3xy Feax; +Cs%X;. )

Without a loss of generality it can be assumed that ¢y =0
and c; = 0. It is possible to reach it by isometric transfor-
mation of (X;, Xy) plane. Thus

g(xl‘x2)=c4(-2v2u,x1—2u2x2+vzxf+x§) (5)
where v = Vey/e;. In the experiment some variants of
parameters u;, us, v and the following value were con-
sidered:

2

2 9

Y =57
St + o
where

Sh= 4] Z(g(xli*xzi) - 1<x1i'x2i))2

n<=
1

and 1 is a linear approximation function of g minimiz-
ing S,

A significant problem in this experiment is the choice of
alternative distributions of random component ;. As the
alternatives of normal distribution, the Pareto and double
exponential distributions as well as the uniform, log-
normal and exponential distributions were considered (cf.
Domanski and Tomaszewicz (1983)).

Densities of these distributions are defined as follows:
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a) uniform (UNIF)

f(x)= for —)3<x<Y3

L
V12
b) normal (NORM)

f(x)= exp(—xz/z)/ﬁ;
¢) log-normal (LNOR)
f(x)=-exp (—ln(x+ VE)Z/Z)/VE for x> — Vg
d) exponential (EXP)

f(x)=exp(—x —1) for x> —1
e) double exponential (2EXP)

f(x) = exp (—— x| VE)/VE
f) Pareto (PAR)
f(x)=3(1+]|x|)""/2

The experiment covered over 70 combinations of parame-
ters r, uy, uy, v, 9% The results of some of them are pre-

sented in Tables 1—4.

3. Conclusions

The following main conclusions can be formulated on
the basis of the experimental results:

1. With an increase of the correlation coefficient r the
power of all tests increases, except the run test based
on ordering criterion (v) for which it decreases.

2. The shift of (uy, uy) usually does not affect significantly
the power of tests being considered.

3. The F test proved to be the strongest in almost all
cases.

4. The F test appeared to be the most robust to non-
normal distributions.

5. The powers of all tests being considered, are similar
for symmetrical distributions NORM, UNIF and 2EXP.
In the case of symmetrical distribution PAR and asym-
metrical distributions LNOR and EXP significant diffe-
rences can be observed in the powers of tests as com-
pared with the normal distribution.

6. The power of tests based on the length of run is usually
higher than that of tests based on the number of runs.

7. The power of tests based both on the number and
length of runs is usually the highest for variants (ii)
or (v).

Table 1
Empirical power of tests (in %) forr = 0.9, v =3, 2 =05, uy = uy = 0, a =0.1
Test based on Distribution
UNIF NORM LNOR EXP 2EXP PAR

n= n= n= n= n= n= n= n= n= n= n= n= n= n= n= n= n= n=

10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30
number of runs (i) 6 8 6 9 11 5 6 25 9 14 16 15 4 8 8 4 12 6
number of runs (ii) 33 41 49 45 46 73 71 64 96 19 26 28 51 60 176 73 713 95
number of runs (iii) 19 30 20 28 36 57 25 68 41 17 23 20 25 42 25 34 57 43
number of runs (iv) 39 35 40 47 42 61 70 72 85 19 20 25 53 48 57 70 64 84
number of runs (v) 29 37 51 38 45 65 59 90 90 19 23 27 42 63 10 57 85 86
length of runs (i) 15 10 13 16 7T 12 9 2 14 28 28 35 13 8 15 11 3 13
length of runs (ii) 29 42 58 43 57 75 64 83 91 34 46 50 43 61 81 57 81 96
length of runs (iii) 28 42 32 38 50 51 54 80 67 36 42 43 36 58 47 49 80 67
length of runs (iv) 32 47 49 47 55 T4 65 82 88 35 42 48 43 65 69 57 83 86
length of runs (v) 46 57 67 49 67 88 67 94 97 37 38 49 59 178 84 71 90 94
F statistic 51 96 99 54 97 100 83 94 97 18 31 44 56 94 99 73 92 99

Table 2
Empirical power of tests (in %) forr =09, v=3, %*=09, u =u,=0,a=0.1
Test based on Distribution
UNIF NORM LNOR EXP 2EXP PAR

n= n= n= n= n= n= n= n=— n— n= n= n= n= n= n= n= n= n=

10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30
number of runs (i) 9 11 9 10 12 8 15 14 17 14 11 9 10 10 9 4 10 8
number of runs (ii) 15 15 17 14 18 21 31 48 56 49 67 83 22 21 24 31 37 47
number of runs (iii) 12 15 12 14 12 13 26 32 31 29 54 29 16 19 14 20 26 19
number of runs (iv) 13 16 11 14 17 19 32 36 45 48 52 67 21 20 22 33 30 38
number of runs (v) 15 13 15 17 12 17 25 37 46 40 67 178 18 18 23 27 33 45
length of runs (i) 20 19 19 17 22 19 27 16 51 27 3 13 21 17 18 16 11 15
length of runs (ii) 26 25 23 21 26 33 51 64 69 48 63 83 28 30 39 32 44 63
length of runs (iii) 22 23 20 21 27 26 48 54 57 41 61 57 24 26 22 28 40 34
length of runs (iv) 23 24 19 22 26 36 56 60 67 48 63 79 27 31 29 33 46 47
length of runs (v) 29 27 25 25 28 36 47 57 68 53 77 86 33 36 38 46 52 64

42 31 50 61 56 93 99 16 24 30 28 41 53

F statistic 13 21 30 12 30
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Table 3

Empirical power of tests (in %) for r=105,v=1, > =05 u =u =0, a=0.1
Test based on Distribution
UNIF NORM LNOR EXP 2EXP
n-= n= n= n= n= n= n= n= n= n= n= n=
10 20 30 10 20 30 10 20 30 10 20 30
number of runs (i) 13 12 22 15 15 21 8 13 28 i 15 30 10
number of runs (ii) 21 10 32 18 10 40 17 4 65 14 7 48 32 . .
number of runs (iii) 8 20 28 5 17 29 1 44 34 5 40 35 4 24 28
number of runs (iv) 22 30 33 26 30 42 49 40 67 35 33 44 31 40 49
number of runs (v) 9 13 38 10 14 47 6 16 75 6 15 51 8 17 60
length of runs (i) 22 22 37 29 23 46 44 27 60 34 23 56 22 . .
length of runs (ii) 25 29 52 28 29 59 52 47 82 41 38 70 37
length of runs (iii) 13 27 34 17 23 41 13 43 49 22 35 46 11
length of runs (iv) 26 41 33 31 44 39 59 65 55 45 50 31 35
length of runs (v) 217 30 53 29 35 62 37 44 83 32 35 66 27 . .
F statistic 49 97 100 52 94 100 80 91 96 62 92 99 58 94 98
Table 4
Empirical power of tests (in 7)) forr=0, v=1, p =05 u =u, =0, a=0.1
Test based on Distribution
UNIF NORM LNOR EXP 2EXP
n= n= n= n= n= n= n= n= n= n= n= n= n= n= n=—
10 20 30 10 20 30 10 20 30 10 20 30 10 20 30
Dilmber of runs (i) 21 42 26 25 32 32 29 80 46 1 54 37 29
number of runs (ii) 3 5 30 2 6 35 1 1 55 1 2 43 3 . .
number of runs (iii) 31 35 21 35 35 23 66 65 38 42 46 29 43 47 23
number of runs (iv) 3 20 28 2 23 41 1 40 58 1 24 40 4 19 44
number of runs (v) 17 22 37 10 24 48 7 32 51 13 21 47 13 27 58
length of runs (i) 19 48 42 30 46 49 55 74 71 3 56 63 35 . .
length of runs (ii) 4 18 49 i 19 58 1 2 78 3 13 71 4
length of runs (iii) 26 48 38 37 47 45 62 74 63 46 57 52 41
length of runs (iv) 4 14 20 4 18 28 1 12 28 2 17 26 6
length of runs (v) 37 32 56 27 30 68 39 41 7 31 94 72 20 . .
46 79 92 93 98

F statistic
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The Robustness of Selection Procedures Investigated by a Combinatorial Method

HARTMUT DOMROSE

Abstract

Bechhofer’s indifference-zone-approach in selection with
selection rules based on the sample mean, the a-trimmed
mean an the median is investigated. The author investi-
gates the robustness of these selection rules against
deviation from an assumed distribution by assuming the
distributions belonging to the populations are threepoint
distributions, This method yields exact results. The selec-
tion rule based on the sample mean is investigated for
robustness against deviation from the normal distribution.

1. Introduction

We consider the problem of selecting the t “best” from
a given populations/]; , ..., I, with the means py,..., pt, -
The “best” ones are defined as populations with the t
greatest means. Let py <...=< ., and IT; be the
population with mean ;. In our paper we use the
Bechhofer’s indifference-zone-approach, that is

min g5, —max p
i>a—t i<a-—t =d>0,

and assume the least favourable case for
distributions

(i

continuous

M= = )= Ma—an — 9= = e —d. m
For every population //; an estimation of p; is calcu-
lated from a sample y; of size n by an estimator h(y;, n),
and the populations yielding the t greatest estimations are
selected. The distributions belonging to /1, ,..., Il are
assumed to be threepoint distributions with the same
variance ¢?=1, the same skewness y, and the same kur-
tosis y,. Then the cardinality of the set of possible values
of h(y;,n) is the same limited number N(h, n) for all po-
pulations. The probabilities of these values are easily com-
puted. If {h; , i=1,...,N(h, n)} is the set of possible
values of h(y,, n), the probability of a correct selection
(CS) can be calculated because of (1) as

N(h.n) a—t
P(CS)= D> P(-m‘“ h(%’)v"):h‘)'P<h(ym'“><“i) @

i—1 j>a-t /

A correct selection is defined as the selection of the
variates with the t greatest means. We will now denote
the selection rule described above by SR (h, n, a, t, d).

2. Description of the Method Used

In our investigations we consider only equidistant three-
xx+Ax+24

Pib2 D3
between two possible values d, = h;  ; — h; is conslant

for 1 <i<N(h, n) and N(h, n) is less than or the same
as in the case of nonequidistance. Let D, = [d/dn} the
maximal number of possible values of h(y,,, n) in an
interval of length d. Then we have P (h (yrl-ﬁ, n) < hi\/) =
Ph(y,,n)=<hj,p | 3

point distributions ( ) Therefore the difference

From the binomial theorem follows

26

P(jr:l;'_]th(y(j)'“)’:hi)
& (t)P(h(y(a)‘n) =hi)ip(h(Y(a)-n) > hi)t—l

i=1

=P(h(y(a),n)Zhi)t—P(h(y(a),n)>h-,)t. (4)

With (3) and (4) we obtained from (2)

[P(h (Viapon) = hi)‘- P(h(y(a).n)> hi”

. P(h(y(a),n) < h-,+Dn)a~t,

This formula was used in our computer calculations. We
now see that we can calculates P(CS) under the above
conditions if we know the distribution of the best popu-
lation.

N(h,n)

P(CS)=

i=1

3. Special Problems of the Method Used

The assumed discrete distribution yields a discrete distri-
bution of h(y;, n) for each sample size n. This is why in
our investigations there exists more than one least fa-
vourable case, in contrast to the continuous distributions,
and why P(CS) is constant fore the same n but different

values of d. For example we consider -—(’];i 0 |3') with
16 2316

p=0,02=1, y = p,=0.

For n=2 the sample mean y can take the five possible

values {_ J3, — 13/2 0, |§/2y ]'ﬁ} with the difference

d,=13/2

For SR(y, 2, 2, 1, d) we obtain P(CS) = 0.676 if 0 < d<

13 /2 and P(CS) = 0.909 if 13 /2 < d < 13.

Moreover P(CS) does not increase continuously while n

increases. We choose the above example and d=1 and

consider Table 1.

Table 1

SR(y, n, 2,1, 1)

a t n d, D,=d/d, P(CS)
2 1 2 b2t 909
2 1 3 13/3 1 860
2 1 4 13 /+ 2 1939
2 1 5 13/5 2 917
2 1 6 3/6 3 961

P(CS) decreases when N(h, n) increases and D, remains
constant. Therefore the probability of every possible va-
lue h; decreases and, because of (3), P(h(y‘l‘ , n) <hj
decreases also.



4. Robustness Against Deviation From an Assumed
Distribution

4.1. Definition of Robustness

Definition 1:
SR(h, n, a, t, d) is called ¢(f)-robust against devia-
tion from an assumed distribution G in a set  of
distributions, if it follows from P(CS/G)=1-§
that min P(CS/F) =1 — f — «(f).

Fe¥

Definition 2:
SR(y, n, a, t, d) is called ¢(f)-robust against devia-
tion from the normal distribution N(u, ¢ in a set
F of distributions, if it follows from
P(CS/N(u,09)) =1—f that min P(CS/F)=1-§-
£(B). Fe§

4.2. The Sample Mean

In this paper we investigated SR(y, n, a, {, d) with
a=2(1)20, t=1(1) [a/2], n=3(1)20(5)50(10)100, d=1
and 0.5 with the method described in chapter 2 in the
(y1, ¥2)-points given in Table 2.

Table 2

nmeooon P P Ps
0 0 1/6 2/3 1/6
0 -1 1/4 1/2 1/4
0 6 1/18 8/9 1/18
1 0 .6222 .3333 0444
2 6 .0892

.0099 .9008

Because of the problems described in chapter 3 we re-
stricted our attention to sample sizes n planned under

Table 4

the normal distribution for P(CS) =0.90, that means
the computer program printed P(CS) for a configuration
n, a, t, d only if P(CS) = 0.85 by using ¢(f) as small as
possible, Tahle 3 gives an example.

Table 3
SR(y, n, 20, 1, 1) in the point y, =y, =0

n 10 11 13

12 14 15
P(CS) 8545 9170 8959 9408 9676 .9581
P(CS/N(y, 0%) 90 95
n 16 17 18 19 20 21
P(CS) 9770 9706 9838 .9794 .9887 .9939
P(CS/N(u, 69)

.99

SR(y, n, 20, 1, 1) is 0.28-robust against deviation from
N(u, 6% in the equidistant threepoint distribution with
1= y2=0. Table 4 compares our results with the exact
values under N(u,¢%) given for instance in Rasch (1984).
Rasch et al. (1978) and Rasch et al. (1981). We denote by
n; the minimum sample size with P(CS/N(g,0%) 21— f.
A “—=” means that the selection rule is not ¢(f)-robust in
Lthe sense of definition 2 for ng.e;, and “+4"” means that
the procedure is still robust with an ¢(8) less than that
considered. Robustness is given in y; =y, =0. We there-
fore conclude that our investigation method is practicable
for an exact robustness study.

It seems that the skewness influences the robustness
more than kurtosis does. With most configurations the
least favourable distribution was the threepoint distri-
bution with y; =2 and 7, = 6. But nevertheless in most
cases we obtained e&(f)-robustness with «(f) < f in all
five (yy, y»)-points for all n =z ng. .

Sample sizes n where SR(y, n’, a, t, d) is &(f)-robust against deviation from N(u, ¢? for all n’=n.

n denotes the minimum sample size with P(CS/N(y, ¢2)) =1—6.

d . a=2 a=3 a=4 a=4 a=) a=bH a=6 a=6 a=6 a="7
¢ LA =1 (=1 t=1 t=2 t=1 (=2 (=1 (=2 (=3 t=1 (=2
1 4 5 6 7 7 9 8 9 10 8 10 N
11 14 15 16 16 17 17 18 19 17 19 ngn
0.48 0 0 4 6 6 7 7 9 8 9 10 8 10
0 -1 4 5 B 8 B 9 8 9 10 8 10
0 6 4 5 8 7 7 9 8 9 10 8 10
1 0 4 6 6 7 7 9 3 9 10 8 10
2 6 T 14 14 - = = = = = = =
B 2 6 4 5 6 7 7 9 8 9 10 8 10
0.5 14 20 25 28 28 33 30 36 38 32 39 ng
44 53 58 62 62 68 65 72 T4 67 75  nNoun
0.28 0 0 14 20 925 925 30 30 30 35 40 35 40
0 -1 14 20 25 25 30 30 30 35 40 35 40
0 6 14 2 25 25 30 30 30 35 40 35 40
1 0 14 20 25 25 30 30 50 50 40 35 40
2 6 20 30 30 30 50 50 60 50 40 60 50
0.4p 1 0 + + + 4+ 4+ 4+ 30 3 + + 4+
9 6 14 20 25 30 30 30 30 3 -+ 35 40
a=T7 a=8 a=8 a=8 a=8 a=9 a=9 a=9 a=10 a=10 a=10
d “(B) oo =3 {==1 t=2 t=3 t=4 t=1 t=2 t=4 t=1 t=2 t=5
1 11 9 11 11 12 9 11 12 9 11 13 n.
20 18 20 21 21 18 20 22 18 21 22  n.
0.4 0 0 11 8 10 10 11 9 11 12 9 11 13
0 -1 11 8§ 10 10 11 9 11 12 9 11 13
0 6 11 8 10 10 11 9 11 12 9 11 13
1 0 11 13 10 10 11 13 11 12 13 11 13
2 6 —_ - - - = = = = = =7
B 1 0 + 8 4+ 4+ + 9 + 4 9 + 4+
2 6 3 10 9 11 12 9 11 13




45 35

36

43

Trimming the mean reduces roubstness in the sense of

42 41 48 51 n.
78 69 77 81 82 71 79 85 73 81 88 n.o
0.28 0 0 40 35 40 45 45 35 40 50 35 45 50
0 -1 40 35 40 45 45 35 40 50 35 45 50
0 6 40 35 40 45 45 35 40 50 35 45 50
1 0 40 50 40 45 45 50 40 50 35 50 50
2 6 40 —_ — 50 50 — 50 50 — 60 50
0.48 1 0 4 35 + + + 35 + + + 45 4
2 6 + 35 40 45 45 35 40 =+ 35 45 +
o a=11 a=11 a=11 a=12 a=12 a=14 a=14 a=16 a=20
d By o t=1 t=3 t=5 t=1 t=5 t=1 t=5 t=1 t=1
1 10 13 14 10 14 10 15 11 11 n.
19 22 24 19 24 20 24 20 21 n.o
048 0 0 9 12 14 10 14 10 15 11 11
0 —1 9 12 14 10 14 10 15 11 11
0 6 12 12 14 10 14 10 15 11 11
1 0 13 13 14 13 14 14 15 13 13
2 6 — — 17 — — — 17 — —_
B 1 0 9 12 -+ 10 -+ 10 =+ 11 11
2 6 14 13 14 10 14 11 15 14 17
d ) . a=11 a=11 a=11 a==12 a=12 a=14 a=14 a=16 a=20
€ A t=1 t=3 t=5 t=1 t=5 t=1 t=5 t=1 t=1
0.5 37 50 55 38 55 40 59 41 44 n.
74 87 93 75 93 7 96 79 82 n.o1
0.28 0 0 35 50 50 35 50 40 60 40 45
0 -1 35 50 50 35 50 40 60 40 45
0 6 35 50 50 40 50 40 60 40 45
1 0 35 50 50 35 50 40 60 60 50
2 6 50 50 50 60 50 60 60 60 60
0.4p 1 0 + + =+ —+ + + + 40 45
2 6 35 + -+ 50 4 50 -+ 60 50
f 2 6 -+ + + 35 + 40 + 40 45
4.3. The g-trimmed Mean Table 5
Let y; =¥y ,.--»¥in) be a sample from [} with Sample sizes required by SR(y,, n, a, t, d) to yield
Ry P(CS) =1—8
Viy <. < ¥y Thany, =Vn—20 Y vy is N i
j=a+1
called the a-trimmed mean of the sample. We investi- z=01ln «=02n
ated SR(y ., n, a, t, d) with n = 10(1)20(5)50, a = 2(1)20, —
8 Wo.n ) D206) M , a=10 a=20 a=10 a=20
t=1(1) [a/2], d=1 and 0.5, and SR(¥o-2p,0, 8, t, d) with 1—§ i Y2 t=1 =1 -1 =1
n = 6(1)20(5)50 and the values of a, t, and d given above o —
in the same five distributions as in chapter 4.2. We were 0.9 0 0 10 13 11 11
looking for robustness in the sense of definition 1 when 0 —1 12 14 13 18
the assumed distribution G is the threepoint distribution ? g 11(1) ié 12 23
with y; =y, = 0. Table 5 gives the minimum sample sizes 9 6 10 12 9 10
required by SR(_a, n, a, t, d) to yield P(CS) 21— for (g5 0 0 15 16 13 15
some chosen configurations. In the point y, =y,=0 we 0 —1 15 18 20 25
obtained nearly the same values of n as those required ? g 1; %(13 lg 22
by y. We found that =0, o=—1 and y =1, y,=0 9 6 12 16 11 11
are clearly. the two least. fav9urab1e dlStI‘ll?uthl’lS. Wk.ule 0.99 0 0 925 25 20 925
the 0.1n-trimmed mean is still robust against deviation 0 —1 30 30 30 35
from G with &(f) < 1.5 in all five points in most con- 0 6 14 14 11 11
tigurations, the 0.2n-trimmed means has not this property. 1 0 20 25 30 35
2 6 19 20 14 16

definition 1 in our investigations. Special results veri-
fying this statement can be found in Domrose (1984).

4.4, The Median

In this chapter we want to give a short comment re-
garding the selection rule based on the median y  .q-
We investigated this rule for n=3(2)39 and the same
values a, t, d in the same five (y,, y.)-points considered
in chapter 4.1. In contrast to the sample mean and the
x-trimmed means, the median has only three possible
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values and therefore the same P(CS) for all d less than
the difference 4 between the points of the threepoint
distribution. Table 6 gives P(CS) for a chosen configura-
tion and 0<d < 4. A gap means that P(CS) < 0.85 or
P(CS) > 0.99 respectively. When i =y,=0, SR(Yyeq> N
a, t, d) yields nearly the probabilities of SR(y, n, a, t, 1.05).
But in the point y, =1, y»=0 we found no meaningful
robustness against deviation from the equidistant three-
point distribution in (0, 0).



Table 6 posed for selection rules for arbitrary distributions since
P(CS) of SR(¥eqs N, 2, 1, d) with 0 < d < 4 it was not robust in the sense of definition 1 in the chosen
e ] I I - : discrete example.

y= 0 0 0 1

2
3 .868 982 977
5 .932 .996 .993
7 .965 5. References
9 .982 .909
11 .990 .934 DOMROSE, H.
13 .953‘ .851) Dissertation A, 1984.
o i i HERRENDORFER, G. (ed.)
19 .982 .882 Robustheit 1.
21 .987 .890 Probleme der angewandten Statistik.
23 '990 ‘898 FZ fir Tierproduktion Dummerstorf-Rostock, Heft 4,
25 ' 906 (1980).
27 912 RASCH, D.
29 919 Einfithrung in die mathematische Statistik, Bd. 2.
31 924 VEB Deutscher Verlag der Wissenschaften, Berlin, 1984.
33 .930 RASCH, D., HERRENDORFER, G (ed.)
35 935 Robustheit III.
37 939 Probleme der angewandten Statistik, Heft 7.
39 944 FZ {fir Tierproduktion Dummerstorf-Rostock (1982).
T o o RASCH, D., HERRENDORFER, G., BOCK, J., BUSCH, K.
The least favourable discrete distribution we found is Verfahrensbibliothek, Bd. 2.

VEB Deutscher Landwirtschaftsverlag, Berlin 1978.

the ‘symmetrlc twopoint distribution. In this case P(CS) RASCH, D, HERRENDORFER, G., BOCK,J. BUSCH, K.
of SR(Yjeq- D, 8 t, d) would be constant for all odd Verfahrensbibliothek, Bd. 3.

sample sizes. Summerising the median cannot be pro- VEB Deutscher Landwirtschattsverlag, Berlin 1981.
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Results of Comparisons Between Different Random Number Generators

FEIGE, K.-D.; GUIARD, V.; HERRENDORFER, G.; HOFFMANN, J.; NEUMANN, P.; PETERS, H.;

RASCH, D.; VETTERMANN, Th.

Staff from various research establishments in the GDR
have investigated generators of equidistributed pseudo-
random numbers in regard of their statistical proper-
ties. The tests were performed on the following com-
puters:

ES 1040 by Ms. Peters (Rostock)

BESM-6 by Dr. Neumann (Dresden)

CDC-1604 A by Mr. Vettermann (Bohlitz-Ehrenberg)
KRS 4200 by Dr. Feige (Dummerstorf-Rostock).

Apart from investigating several multiplicative generators
of the type

Xptq = (@xy) mod M
and generators of the mixed type
Xpt1 = (@xp 4 b) mod M

(lixed point arithmetic in some cases but floating point
arithmetic others), the group also studies a few special
techniques for generating random numbers.

The parameters of the generators are given in table 1.

In case 4a) the algorithm certainly seems quite compli-
cated, but in fact it represents merely a bit shift gene-
rator: Bits 16 and 32 of a 32-place binary number are
combined in such a way that they yield a new bit in-
formation which is then attached to the preceding random
number. The possible overflow at the beginning ol the
random number is ignored, When programmed in an
assembler language, generators of this type are usually
very fast.

Thumhart’s generator consists of four multiplicative
components that are combined in such a manner that,
by means of a special transformation, the index for the
next generator is calculated from the preceding random
number,

Following up an idea expressed by McLaren and Prof.
Marsaglia in 1965, Mr. Teuscher found in 1979 new para-
meter combinations for a random number generator
which in practical terms consists of two independent,
hierarchically arranged multiplicative generators. The
generator works on the principle that 128 random num-
bers are first calculated with the first generator. The
second generator is then used to select random numbers
pseudorandomly from the 128 numbers and to replace
each selected number by the next one calculated by the
tirst generator.

Most generators were programmed in the assembler
language of the computer concerned, although FORTRAN
was used in some cases (only FORTRAN was used f{or
the BESM-6).

With each generator 10000 random numbers (RN) were
generated, the same 10 starting points (x,) being used in
each case. The generators were subjected to the following
tests by using these random numbers:

G — x*-test for equi-distribution in 100 cquidistant
classes in (0,1),

R — y*-test for the two-dimensional distribution
of consecutive pairs of numbers (lag 1, 2, 3
and 4) in 10 X 10 classes,
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I — yz*interval test in respect of omission of a
certain interval I;C (0,1), (I;: (0, 0.2), I,:
(0.2, 0.4),..I5: (0,8, 1)),

M — z®-maximum- test for evaluating the distri-
bution that might be expeclted on the as-
sumption of the equidistribution of the ge-

nerator,
X, s? — the mean, variance, skewness and kurtosis
Vi Vo of the RN sequence was put as an additio-

nal, descriptive from of generator evaluation,

— some members of the group ascertained the
number of ascending or descending sequen-
ces (vy, vy) of RN and the number of RN
above or below the arithmetic mean (ny) of
a sample of 10000 RN. n, or n, are the num-
bers of sequences below or above the arith-
metic mean of the sample.

The different results are presented in tables 2—5. If you
find in the tables an A, then initial test shows that the
properties of this particular generator are bad.

We propose that the following best generators be used in
the subroutine versions we have elaborated for the diffe-
rent computers:

CDC-1604 A

Xn+1= (5"x,+1) mod 23 = (2e)
ES 1040

N1 = (10"7 x,+10% 3) mod 10%e 2 @2f)
NXpl = (5‘3xn) mod 2% 2 (1)
Xn+1=(T3%,) mod 2% 2 (5h)
and with good results

Xn+1=(2""x,) mod 1049399 2 (4¢)
Ynt+1=(8323y,) mod 228

KRS 4200

Xn41 = (2°x,,) mod 1049399 2 (4¢)
Yn+1=(8323y,) mod 2?°

BSM-6

Xn+1 = (3141592221 x,, + 1) mod 2% £ (2b)
Nnt1= (57 x,) mod 242 £ (le)

While testing the uniformly distributed random number
generators, the group at Dummerstorf also analysed the
properties of transformers which, at least approximately,
transform the random numbers of a (0,1)-equidistribution
into a normal distribution.

We tested the following transformations:

a) u,= V% In

2.30753 + 0.27061 z,,
b) |Un] = 2 —Zn
140.99229 2,

1+ xp

1—x,




with

with

with

and

py = —0.322232431088

pp=—1

p» = —0,342242088547
p3 = —0.0204231210245
p; = —0.453642210148 - 10—

Zy= V——zln Xn Xp <0.5
Zn=V—2In(1—x,) x,205

/—2nz
c) u1:x,l/ ”

; _
—2lnz

ST
Ya

z=x1+x2 and 0<z<1

d) u;=/=2Inx, cos2rx,
u,=J—2Inx, sin2ry,
. (((zn-p4+p3)zn+p7)zn+p1)zn+po
|un]=zn+

(((Zn cq,+q3)zn + Ch)zn +Q1) zZh+q

Zn=1)—2In )\n for x,<0.5

In= ij_l;(l—xn)- for x,20.5

¢ty = 0.99348462606 - 10-!
oy = 0.588581570495

q2 == 0.531103462366

oy = 0.10353775285

s, = 0.385607006341 - 10—

The class limits for the y-test were selected so that the
same expected frequencies E; can be assumed for the
25 classes on the condition of an N(0,1)-normal distri-
bution. In the table 6 we have included a couple of se-
lected observed frequences. The y*-test of fii, finally, also

permits

only the second and fifth transformation to be

performed on the KRS 4200 and on the ES 1040 again.

Table 1

Generators

1. Mulliplicative Generators

. . _ M )

82027 22
28 46 RENES|
5 + 86 R
51.‘) A
517 A
53 23
65539 231

2. Generators of mixed typ
Xpit = (@@xy) + b) mod M

a)
b)
)
d)
€)
f)

M

a b
21041 101 236
3141592221 1 25
2718281821 1 9
51 1 o
515 1 233
104 = 10113 10 e

3. Mixed generators (floating point arithmeti
a b

al [ I3

b 0.

¢) 13

4, Special techniques

231 216

c)

: 932 n_ %n . .
a) Xp4=2x, mod 22+ ||+ = mod2)+1) mod 2

b) Thumhart’s generator (Roe (1970))

4 multiplicative generators with
a; == 252114 903 917

a,= 8064131757
ay= 282 629
M = 2%

the index I, for the next generator is calculated with

(aIn xn) mod 238 — (aIn xn) mod 2%

236

Ihy=

¢) McLaren — Marsaglia (1965)
(special parameters Teuscher (1979))

Npip =2 x, mod 1049339
v+ 1=18323 vy, mod 2%
= .‘"1+|/221 =7 bil

ln+l

5. Additional generators
(only tested on ES 1040 computer)

a) Xpy=10"x, mod 10006499
(but other starting points)
b) Xpii=(10"7x,+10" l/3) mod 10%e
(and then like 4¢) — gen.)
C) Xp+1=5%p

if Xn+‘>A=7 xn+l=xn—A

Xn+1 > B= Xpp =X —B
Xn+1 > C= xn‘+l=xl‘l——'C
else Xn+1= Xn
with A =137 438 953 472
B= 68719476 736
C = 34359 738 368
and xo= 11919641 733
a b
d) 97 788 675 100
e) 326 .
r) 7,’: —
£) 7 —_—
h) 713 —
i) 30 —
]) 319 _
Ik) 10 006 499 —

001
1013
23—
93l __ 1
A —
101
1010
o3 1
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Table 2

Results for CDC-1604 A

Gen. G R I M
1a) 95.5 87.7— 105.8 55— 7.9 79.8—102.1 (¥)
1b) 99.7 85.8— 98.4 7.5— 9.9 29.5-— 38.6 (*)
1lc) 96.1 85.3— 106.7 6.5—11.8 83.2— 90.8 (%)
1d) 96.5 96.3— 110.8 (*) 6.1— 1.5 83.0— 96.9
le) 104.6 97.0— 104.0 (*) 7.9— 9.8 90.6—112.0 (*)
1f) 98.1 85.3— 1025 5.9—11.0 64.4— 95.3 (%)
2a) 89.9 92.0— 109.8 73— 9.1 86.2— 99.9 (*)
2b) 89.9 94.0— 104.1 5.7—10.3 66.3— 88.4 (*)
2¢) 100.8 94.5— 103.2 7.3—10.7 (*) 60.8— 85.1
2d) 95.8 92.8— 102.4 53— 9.9 84.3— 87.5 (*)
2e) 88.7 86.1— 97.6 5.6— 9.2 66.5— 82.3
3a) 105.5 94.5— 119.9 7.8—11.2 {¥) 85.0— 90.0 (*)
4a) 101.9 (%) 968.9—40045. (*¥) 1353.0 *) 500000 (*)
4h) 102.8 (¥) 92.6— 108.0 (*) 6.2— 8.3 70.8— 85.5
4c) 101.4 97.8— 108.8 (*) 6.6—10.6 48.9— 94.4
theor.
values 124.3 124.3 16.9 124.4
Table 2
(continuation)
Gen, u uy X s? 7t )
1a) — — — — — —
1b) — — — — — —_
1c) —0.07 —0.25 0.5014 0.0835 —0.0039 —1.2070
1d) —0.76 —0.22 0.4988 0.0835 0.0003 —1.1994
le) 0.76 0.15 0.4992 0.0826 —0.0004 —1.1905
1f) 0.17 0.27 0.5003 0.0831 0.0003 —1.1962
2a) — — — — — —
2b) 0.24 1.05 0.4999 0.0829 0.0044 —1.1981
2c) 0.18 0.60 0.4990 0.0834 0.0044 —1.1981
2d) —0.21 —0.12 0.4982 0.0827 0.0099 —1.1923
2e) 0.31 —0.27 0.5003 0.0829 0.0002 —1.1975
3a) —0.08 0.63 0.4970 0.0838 0.0120 —1.2065
4a) — — — — — —
4Db) — — — —_ — —
4c) — -— —_— — — —
theor.
values +1.96 +1.96 0.5000 0.0833 0.0 —1.2
Table 3
Results for ES 1040
Gen. G R I M ng V| = Vy
la) 118.1 131.1 14.3 159.1 1975—5034 3291—3369
1b) 112.3 144.1 17.6 383.9 4974—5050 3282—3351
1c) 123.0 116.0 24.9 218.4 4983—5023 3301—3355
1d) 150.8 127.6 18.3 140.1 4949—5045 3305—3375
le) 116.9 136.5 22.6 2244.1 4975—5031 3300—3350
1f) 115.7 124.6 17.8 108.1 4959—5046 3303—3364
2a) 128.5 124.2 19.3 129.2 4918—5005 3264—3340
2b) 155.3 127.8 20.4 149.0 4922—5021 3281—3364
2¢) 144.5 138.0 19.0 170.0 4904—5071 3286—3388
2d) 108.4 134.4 19.8 246.4 4945—5028 3289—3350
2e) 114.3 121.4 28.5 642.6 4978—5032 3306—3385
2f) 133.4 112.3 16.0 119.0 4971—5073 3290—3370
4c) 102.4 135.0 17.2 130.0 4966—5044 3289—3373
da) 115.26 110.9 23.0 126.0 4947—5050 3294—3353
5b) 112.6 116.8 17.4 257.0 4949—5043 3303—3364
5¢) 122.3 10121.0 19.7 24540.0 4953—5063 2982—3047
5d) 115.2 115.7 22.4 183.9 4960—5063 3309—3362
He) 112.2 126.0 19.6 117.2 4952—5012 3302—3355
5f) 114.0 117.6 15.4 171.8 4961—5067 3293—3361
5g) 123.9 127.5 13.5 415.3 4951—5028 3293—3369
5h) 128.5 150.5 19.2 113.1 4966-—5028 3313—3377
5i) 127.5 115.6 15.7 127.0 4915—5049 32853359
5k) 130.3 115.8 16.4 179.5 4963—5045 3302—33381
51) 120.8 144.1 19.8 103.1 4949—5049 3284—3372
theor.
values 123.2 123.2 15.5 123.2 5000 3333




Table 3

(continuation)

Gen.

1a)
1b)
1c)

1d)

1

e

1f

2a)
2b)
2¢)

2d)
2e)
2f)
4c)
5a)
5b)
ac)
od)
9€)

values

Table 4

Results for BESM-6
Cen. " G

1c¢) 122.4
1d) 120.6

le 111.2

1f) 122.1
2b) 107.1

2c) 134.6
2d) 116.1

3a) 131.9
theor.

values 123.2
Table 5

Results for KRS 4200
Gen. G

1a) 2064—2346
1h) 106.3—174.3
1¢) 98.1—127.2
1d)—1{f) A

1g) 493.1—512.3
2a) 53147
2b)—2e¢) A

3a) 210.8—269.7
3b) 246.4—344.3
3c) 553.7—1728.1
4a) A

4b) 34689

4c) 72.6—109.1
theor.

values

123.2

R
125.6
143.0
132.3
116.1
119.0
130.2
144.4

142.3

123.2

R

1y ~ Ny

2454—2535
2427—2540
2465—2528

2450—2551
2447—2539
2465—2530

2447—2528
2474—2548
2454—2539

2455—2508
2464—2528
2461—2514

2469—2531
24382533
2469—2528
1973—2080
2428—2531
2473—2543

2444—2523
2473—2551
2455—2520
2475—25217
2472—2528

2500

22.2
15.0
14.2
22,5
16.9
19.2
16.8
31.8

209.0—294.1

101.6—259.4

79.3—2611.5
A

1082—35839

25879—50107
A

23560
527—82473
1078—24707

A
27245—31652
78.8—124.0
123.2

115.9

2443—2532

299.1

262.1
217.5
227.7
174.8
118.9
235.9

123.2

X
0.5004
0.4985
0.4975

0.5006
0.4998
0.5005

0.4970
0.4987
0.5009
0.5003
0.5001
0.4992

0.5004
0.4999
0.4997

0.5009
0.5004
0.5000

0.5005
0.4995
0.5008

0.4983
0.4995
0.4999

0.5

%
0.4970—0.5049
0.4952—0.5028
0.4980—0.5036
0.4958—0.5049
0.4964—0.5046
0.4943—0.5033
0.4943—0.5018
0.4933—0.5048

0.5000

g2

0.0828

M

1.96—26.1
7.6—16.2
9.5—117.1

A

A
2687

A
225.3—828.1
315.1—1014.9
23.9—866.3

A
756.4—1761.9
4.1—17.1

15.5

—1.211

0.08333
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—0.0248
0.0833 0.0277  —1.172
0.0835 0.0331  —1.232
0.0840 —0.0245  —1.217
0.0831 0.0248  —1.218
0.0833 —0.0298  —1.170
0.0828 0.0443  —1.178
0.0838 0.0421  —1.215
0.0824 0.0409  —1.160
0.0832 0.0198  —1.171
0.0837 —0.0230  —1.225
0.0838 —0.0267  —1.224
0.0834 —0.0329  —1.181
0.0832 —0.0278  —1.230
0.0833 0.0833  —1.170
0.0836 —0.0306  —1,232
0.0829 —0.0325  —1.182
0.0834 —0.0834  —1.214
0.0831 —0.0344  —1.176
0.0828 —0.0189  —1.166
0.0835 —0.0179  —1.213
0.0834 0.0372  —1.213
0.0834 0.0351  —1.229
0.0832 0.0363  —1.174
0.0833 0.0 —1.2
s* , o o
0.0824—0.0846 —0.0268 —1.23
0.0821—0.0842 0.0300 —1.17
0.0826—0.0847 0.0144 —1.18
0.0830—0.0850 —0.0310 —1.23
0.0818—0.0838 —0.0229 —1.18
0.0823—0.0846 —0.0235 —1.18
0.0818—0.0834 0.0318 —1.18
0.0816—0.0833 —0.0274 —1.17
0.0833 0.0 —1.2
X s2
160.3—401.6 0.483—0.489 0.083—0.0852
35.7—114.0 0.498—0.503 0.083—0.0835
100.9—546.6 0.498—0.507 0.0822—0.0835
A A
A 0.544—0.557 0.0786—0.082
388.4—547.3 0.340—0.3411 0.1051—0.1061
A A
255—17342.5 A
500—193020 0.460—0.474 0.0769—0.0777
259.5—1245.0 0.498—0.503 0.0926—0.0951
A A
3039.5—3356.2 0.308—0.310 0.0986—0.098
45.5—94.1 0.496—0.503 0.0823—0.0842
123.2 0.5000



Table 6
Results of the comparison of N(0,1)-transformations

transt. intervals

(—2.054) (2.054,1.751) (1.751,1.555) ... (0.1509,0.107) (0.107—0.0502) (0.0502—0.)  x2-value time
min. max.

a 7200 4262 3680 , 3991 3997 4000 2900.4 1.00
b 4006 3992 3980 R 4032 4036 4045 2.25 1.95
¢ 4066 4015 3945 , 4014 3974 4247 18.2 2.20
d 3848 3841 3942 s 3981 4250 4507 80.6 2.85
e 3918 4034 3998 , 4009 4000 3999 2.1 3.15
E, 4000 4000 4000 4000 4000 4000

in all cases N =100 000

References

Mac LAREN, M. D.,, MARSAGLIA, G., BRAY, I. A. TEUSCHER, F.
A fast procedure generating exponential random variables. Ein hierarchischer Pseudo-Zufallszahlengenerator.
Communications of the ACM 7 (1964) 5, 298—300. Unverodffentlichte Praktikumsarbeit, Dummerstort (1979).

34



Academy of Agricultural Sciences of the GDR

Research Centre of Animal Production Dummerstorf-Rostock

Robustness of the Two-sample Sequential t-test

DIETMAR FRICK

Abstract

Hajnal's pooled variance sequential two-sample and a
Welch type sequential two-sample t-test proposed by
Reed and Frantz are compared for different forms of
violation of the wunderlying normal assumption. For
Monte-Carlo studies eight alternative distributions of the
Fleishman System with given values of skewness y; and
kurtosis y, were used. The results show that both tests
are robust for « and f when the violation of the normal
assumption in the X-population and Y-population is of
the same nature. The influence of unequal variances is
also considered. The results show that for small devia-
tions of o4 /g, from 1 both tests can be used if we take
one x- and one y-observation at each stage of the sequen-
tial test, or if we take x- and y-observations with the
same probability x, =, =1, For x = 7, only the
Welch type test can be used because Hajnal's test tends
to have uncontrolled type I or type II error in this case.

1. Introduction

The model assumptions for Hajnal's (1961) pooled vari-
ance sequential two-sample t-test are that observations
are taken from two normal populations with unknown
means py and g, and with common unknown variance
o> Each observation comes from the X- or Y-population
according to the constant probabilities 7y and 7, =1-x,
respectively. The hypothesis tested is Hy : uy, = uy and the
alternative is Hp: (uy — py)?/0?=d* where d is a fixed
constant. The sequential probability ratio criterion is

B ' f411 de )
Q*exp< 2a) ( 2 2 2a (f 1,

where
_X—y . 1,1, .
t= sa @ —nx—}—ny,f——nx+ny—2,
.
s’szﬁ:l\s + n __,1” b},
f

and H is the confluent hypergeometric function. Sampling
and computation of Q proceeds as long as
A=8(1-a)<Q< (1 —-p)/a=B. If Q<A we accept Hy
and if Q > B we reject H,. Reed and Frantz (1979) pro-
posed a Welch modilication of this test for the case
oy F Oy

Now we have to compute

22
B d, By +1 1 dy b
Q,, =exp ~ 9a H 2Ty g ( 22
; ) aff, +t J
where
- - Z
R </ ’f”,iy,/L .
2 2w
Sx %y x/ f’,. (sy/ny)?*
] ny Ny ny—1

3%

\2
! Hy = Hy)

2

Ow

and d,

In the latter equation we find a weighted average of the
2

lati i o2 = a0 +a
population variances oy, = ay0y T 740,

2. The Simulation Experiment

Each simulation experiment consisted of 10,000 samples in
order to satisfy precision requirements for the estima-
tions of the probabilities « and f. The cases d=d,, =1
and d=d,, =15 were considered for a«=0.05 and
f==0.10 and various forms of sampling. Only the results
of the case d=d,=15 are presented here. Smaller
values of d and d, or of « and f§ have in general influ-
ence on the ASN-values. Without loss of generality we
put uy=10 and o¢*=o¢,>=1 for computer simulations.
The confluent hypergeometric function was computed by
a series approximation.

3. The results
3.1. Influence of nonnormality

Both tests are robust if the violation of the normal
assumption in the X- and Y-population is the same. The
tests are conservative in « when y, increases. That means

(nominal)

T >0 <z(yy=0<a
and for y., <0:
Tlyy=0) <a (<0 <a

in general (& denotes the estimation of the type I error a).
The values of f increase when », increases. An influence
of 3 does not exist when at each stage of the tests ny~ n,
holds.

Some extreme cases of differences between the types of
violation are presented too. An influence of kurtosis
exists as described above. (The z- and f-values depend
on the sum of the y.,-values of the populations.) It seems
that the values of the skewness

yIIY/n 2

e /n +'y/n 3)

of v=X—y have an important influence on the «- and
p-values. That means that the differences in skewness of
the populations and/or differences in sample size at each
stage (for instance in the case m +w ) are serious. If
ijv(nx,n )] >0 on each stage then we can find greater

3 2
x’lx/rl

a: -values. For y{, >0 we can find greater ﬁ -values in the

case pry=pi-+d (d > 0) and the opposite for iqy <0.
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Table 1 (see Lee and Fung (1980)). For =, =i=:zy and o,? =}=oy*
(7, =0.75 was considered only) Hajnal’s test has uncon-
trolled type I and type II errors. Note that Welch type
test has for 7, =0.75 and for o,* =0, the value @~0.07
but for unequal variances the test has relativ constant

Empirical values of « and f§ for ny= ny (pairwise
sampling) (upper values) and for z,=0.75, Ty, = 0.25

d=d =15 =005 f=0.10

” . ” rif;:/\;ﬂ;‘"? 4;\ 73{7 ~ error rates (’; + f ~ const.). If we have informations
Mix  Tax y Ty " H w W aboutec= 0,Yo* we can also use Hajnal’s test in the case
0 0 0 0 0.0339 0.0614 0.0308 0.0552 Ay =+ a, with the following modification:
0.0386 0.0670 0.0686 0.0615 o
0 1.5 0 1.5 0.0365 0.0650 0.0271 0.0635 n (fxc + fy) 12
0.0387 0.0704 0.0614 0.0661 V= f—(n‘ip”n”cj
0 3.75 0 3.75 0.0296 0.0671 0.0232 0.0670 \ X vyl
0.0368 0.0686 0.0499 0.0650 .
0 7 0 7 0.0225 0.0696 00199 00681  Where n=n,+ny, f,=n,—1 and fy =ny—1 The esti-
0.0372 0.0700 0.0436 0.0677 mations of « and f of the proposed modification are de-
0 -1 0 -1 0.0376 0.0544 0.0347 0.0546 N ~
0.0414 0.0646 00905 00496  Doted by ay, and fy.
0.5 0 0.5 0 0.0352 0.0583 0.0319 0.0586
0.0405 0.0619 0.0754 0.0433
1 1.5 1 1.5 0.0360 0.0633 0.0264 0.0656

0.0401 00576 00704 00361  1aple 2
15 375 15 375 00321 00623 00236 00708  Empirical values of « and f for d = d,, = 15, a = 0.05,
0.0405 00585 00804 0035 —010, x =05

2 7 2 7 0.0247 0.0702 0.0188 0.0696
0.0391 0.0599 0.0771 0.0337 = A** — — -
2 7 0 0  0.0464 0.0911 0.0388 00929 o.2/0.2 “ [; a [
0.0685 0.0913 0.0712 0.0766 s/ H = v W
0 0 2 7 0.0429 0.0312 0.0376 00313 1 0.0398 0.0697 0.0437 0.0696
0.0329 0.0254 0.0955 0.0165 o 0.0450 0.0682 0.0437 0.0658
2 7T -2 7 0.0950 0.1147 0.0850 01187 4 0.0583 0.0629 0.0465 0.0672
0.0856 0.1078 0.1223 0.1097 9 0.0854 0.0608 0.0481 0.0698
-2 7 2 7 0.0910 0.0041 0.0824 0.0043 —
0.0873 0.0058 0.1274 0.0033 ., = 0,75, N o~ A~ ~
P 2/0 2 Ofp ﬂ}{ Ay ﬂW ay ﬂH’
. . 1 00107 02251 0.0430 00898  0.0497  0.0917
3.2. Influence of unequal variances 1, 0.0096 0.1522 0.0457 0.0796 0.0462 0.0818
1/ [
For 7, = n,=05 (pairwise sampling or alternative samp- 0.0167 0.0981 0.0575 0.0796 0.0439  0.0732

o , v 0.0385 0.0670 0.0686 0.0615 0.0385  0.0670
ling is possible too) both tests are robust for ; <oy 0.0970 0.0463 0.0788 0.0576 0.0408  0.0655

1

2 . .
ox‘3< 4, For extrem deviations in variances Hajnal's test 4 0.1861 0.0315 0.0837 0.0544 0.0478 0.0625
has increasing values of « but the values of § are stabil 9 0.3038 _0-0249 0089900537 7”0-0638 00539
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Optimal Designs for Contaminated Linear Regression

NORBERT GAFFKE

Abstract

One notion cf robustness of linear regression designs
refers to moderate deviations of the regression function
from the ideal linear regression setup, which may be
modelled by including additive contamination functions.
These may be caused for example in polynomial regres-
sion by higher order terms, which have not been included
in the ideal model. The paper shows how the concepts of
optimal design theory for linear regression can be ex-
tended to contaminated linear regression and points out
the main problems arising in the contaminated case.

1. Introduction

Consider a regression problem with a real valued re-
gression function y (x) which is more or less unknown.
The controlled variable x can be chosen by the experi-
menter within the experimental region X without random
error, whereas an observation of the regression function
v at x is affected by random error. More precisely, let d =
(X, ..., %y) be an exact design of size n with points x; € X
which are not necessarily distinct. The observations under
d are represented by real valued random variables Yy,
.o, Yy, with

EYgi=y(x;). VarYgi=0’. 1<i<n,

1
Cov(Yqi.Yaj)=0. 1<i#j<n. an
The variance o¢®>0 may be known or unknown and is
independent of d and i. An important special case is
given, if Yg,..., Yy, are assumed to be independent and
normally distributed with expectations y(xy),...,y(x,) and
variance o2 But we will only be concerned with the theory
of linear estimation, so the normality assumption will not
be imposed. A linear regression setup specifies the re-
gression function y to be a member of a given finite
dimensional space of real functions,

(LR) ye{a\'f:a=(a\1 ..... ak)'eIRk},
wheref = (f;,...,f,)": X > IRk is given. A’ denotes the
transpose of the vector or the matrix A. In the linear re-
gression setup (LR) least squares estimation under a given
design d provides best linear unbiased estimators for the
parameters ay, ..., a, and for the whole regression func-
tion y. The theory of optimal linear regression designs,
mainly initiated by Kiefer, aims at minimizing (w.r.t. the
design d) the dispersions of these estimators. Of course,
the resulting optimal designs are heavily based on the
setup (LR), which is somewhat contrary to the common
occurrence in practice, that there is often uncertainty
about the specification of the functions f,, ..., f;. Box and
Draper (1959) were the first, who tried to take into
account the possibility of deviations from the ideal model
(LR). A situation which shows well the relevance of such
considerations arises, when (LLR) is a polynomial regression
of some specified degree m, which is thought of as a rea-
sonable Taylor approximation of the unknown regression

function. Here it might occur, that m was chosen too small
and higher order terms not included in the model are
present. In fact, Box and Draper and others considered
these polynomial models, and they gave some attention
to the simple, but relevant, case of fitting a straight line,
when the actual regression function is quadratic. Although
the conclusions of Box and Draper (1959) turned out to
be generally not acceptable, (cf. Stigler (1971), Galil and
Kiefer (1977)), there seems to be agreement, that it may
sometimes be favourable, to take into account the possi-
bility of deviations from the ideal linear regression model
in the design and analysis of the experiment. This is
indicated by the numerous articles on this subject after
the Box-Draper paper.

Generally deviations from the ideal setup (LR) may be
modelled assuming the presence of a contamination func-
tion y (x) from some specified set I', and the “contami-
nated linear regression setup” is given by

(CLR) yelaf+yiacR", yer}.
The set I' may be thought of as a neighbourhood of the

constant zero. I' may be a parametric family as in the
Box-Draper approach,

rcive:berP). eg.
r={b'g:b'b<e?),

where g = (g,...,8,)" : X = IRP and ¢ > 0 are given, or I’
may be nonparametric, e.g. I' = {y :X>IR: |y x|
¢ (x), x €%}, with a given function ¢ =0 on ¥, (cf. Marcus
and Sacks (1977), Sacks and Ylvisaker (1978), Pesotchinsky
(1982), Li and Notz (1982)).

In Section 2 we will briefly outline the concept of optimal
linear regression design, which will be extended in Section
3 to the contaminated case. There are two major diffe-
rences to the linear regression setup (LR): Firstly, the use
of least squares estimators as obtained from (LR) can
no longer be justified, and other linear estimators, which
are unbiased under (LR), should be taken into considera-
tion. Secondly, optimal linear estimators in (CLR) and
also optimal designs for (CLR) will generally depend on
the variance o2 which will mostly be unknown. Although
in some cases the optimal design and optimal estimator
are the same for any o2 by the latter fact the theory re-
mains unsatisfactory. For parametric families of conta-
minations there are some alternative approaches, which
will not be considered here. The all-bias designs of Box
and Draper (1959) minimizing the integrated bias of the
regression function estimator from the ideal model, which
could be improved by Karson, Manson, and Hader (1969)
by using more suitable estimators. The efficiencies of a
design under two or more rival linear regression models
may be combined to yield a global criterion, so that an
“optimal” design performs well under any of the possible
models. This was done by Stigler (1971), Atkinson (1972),
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Liuter (1976), Cook and Nachtsheim (1982). Recently
Studden (1982) obtained further results for polynomial
regression using Stigler’s approach.

2. Linear Regression Designs

In the linear regression setup (LR) a least squares esti-
mator 44 under a fixed design d provides best linear un-
biased estimators for the parameters a,...,3; (or for
linear functions of these parameters), and hence for the
regression function y (x). If K is a given (s)Xk)-matrix,

and if Ka is estimable (identifyable) under d, then Ka,
is the best linear unbiased estimator for Ka, i.e. it mini-
mizes in the Léwner semiordering the matrix risk (rela-
tive to variance)

o""E((ba—Ka) (bg—Ka) | 2.1)
over the set of all linear unbiased estimators %d for Ka.
The Loéwner semiordering on the set of all symmetric
(sXs)-matrices is defined by A < B iff B— A is nonnega-
tive definite.

Of course, the restriction to linear estimators is critical,
if there are further assumptions on the underlying distri-
butions than those in (1.1.). The requirement of a linear

P
estimator by to be unbiased is supported by the fact, that

/l;d is unbiased if its matrix risk (2.1) is bounded, which
is a consequence from the unbounded parameter set in
(LR). In fact, if the ratio a/o can be restricted to a
bounded subset of IRK, then least squares estimation may
be improved using biased linear estimation, cf Hoffmann
(1977). But we will consider here the simpler case (LR)
and least squares estimation. The dispersion of the best

linear unbiased estimator K4, is given by

7 'E <(Kéd—Ka) (Kﬁd—Ka)'} = —rl]-KM_(d)K'. (2.2)

where
n

Z f(x;)f'(xy)
=1

M(d)= ~
n
is the information matrix (per observation) of d = (x, ...,
xp), and M (d) denotes a generalized inverse of M (d).
If x €¥X and K = f’ (x), then (2.2) reduces to the variance
(relative to ¢%) of ¥4(x) = 44°f(x), the best linear unbiased
estimator for y (x),

_ N 1, -
¢ E(Falx) = y(0)' = — £ (x)M (@) @3

The dispersions (2.2) and (2.3) provide a basis for the
selection of an “optimal” design in the linear regression
setup (LR):
Suppose that the experiment aims at the estimation of
the linear transformation Ka of the parameter vector,
then d should be chosen to make the dispersion matrix in
(2.2) “small”. Or suppose that the global performance of
the regression function is to be explored, then d should
be chosen to make the variance function in (2.3) 1/n.
'M™ (d) f “small”. Too measure the “size” of a dispersion
matrix or a variance function one has to introduce an
optimality criterion. In the case of parameter estimation
this is a real function ¥ on the set of all positive definite
(s)Xs)-matrices, (here the rows of K are assumed to be
linearly independent), which is increasing in the Lowner
semiordering, i.e. A < B implies ¥ (A) < ¥ (B) for any po-
sitive definite matrices A and B. A design d* € 4 (K) is
called ¥-optimal for estimating Ka, iff

. T N T -1 - 4

# (ng KM (d )K)_dr;aj?x)]’(nd KM~ (d)K),

(2.4)
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where 4 (K) is the set of all designs d € 4 under which
Ka is estimable, 4 being the set of all designs under con-
sideration, and ng is the size of d. Algebraically 4 (K) is
characterized by

AK) = {de:R(K') C R(M(d))] 2.5)

where R (A) denotes the range of a matrix A. All the
commonly used optimality criteria are homogeneous of
some degree with respect to positive scalar factors, so that
the factor 1/ny in (2.4) can be omitted, when considering
designs of fixed size n. Well-known examples of optimality
criteria are the D-, A-, and E-criteria,

P (V) = det V, ¥, (V) = tr V, ¥ (V) = A (V)
(largest eigenvalue of V). In the case of estimating the
whole regression function y an optimality criterion is a
function n:$, ~IR U {~} on the set $, of all non-
negative real functions h on X, which is increasing in the
pointwise semiordering of real functions. i. e. 0 <h, (%)
< hy (x) for all x€ X implies 1 (h) <1 (hy).

Prominent examples are given by

(D) = sup h(x).

xeX

n() = { h(x) dw (x),h =0
X

where w is a given probability measure on X. A design
d* € 4 (f’) is called n-optimal for estimating y, iff

'-‘7(“5*1 M (d*) f) = min n(nJ’f’M_(d)f). (2.6)

de A(f")
where 4 (f’) denotes the set of all d€ A, under which {* (x)a
is estimable for all x€ X. Clearly,

A(f)={deA: 1(x)eR(M(Q)) for all xe%]. 2.7)

hence, if the componenis f,...,f of f are linearly in-
dependent on X, then A4 ({) is the set of all designs with
regular information matrices. Again, the factor 1/ny in
(2.6) can usually be removed, since N is homogeneous of
some degree and nyg = n is fixed.

Of course, problems (2.4) and (2.6) can formally be com-
prised under the more general problem of minimizing
b (ng M(d) orP (M()) (for fixed sample size), where
@ is an (IRU {x})-valued function on the set of all non-
negative definite (k)Xk)-matrices which is decreasing in
the Lowner semiordering.

For tackling these complex optimization problems the
notion of an approximate design has proved to be of
high importance. An approximate design £ is a probability
measure on X with finite support, or, if a suitable ¢-field
B over X has been specified, then £ may be an arbitrary
probability measure on (X,8). The exact designs d of size
n are imbedded in the set 4 of all approximate designs as

those elements Ene A which have finite support and whose
weights are integer multiples of 1/n. The definition of the
information matrix (per observation) of a design is ex-
tended by
M(£) = '\f(x)f'(x)ds(x). ted.
¥

For a fixed sample size n problems (2.4) and (2.6) are
considered on the larger set 21",

w(KM™(§)K') = min (KM (K, (2.48)
ted(K)
n(£'M™(8")f) = min n(£'M7(£)1), (2.68)
tedit)



where A4 (K) and Z(f’) are defined analogously to (2.5)
and (2.7). The main advantage of the “approximate theory”
lies in the tractability of the minimization problems (2.4 a)
and (2.6a), which is gained by the convexity of the sets

A, A (K), A(t’) and the corresponding sets of information
matrices. All the commonly used optimality crilerin can
be written as convex functions of the information matri-
ces, (i.e. the functions @ as introduced above are convex),
so that convex programming methods are applicable, such
as directional derivatives and subgradients, duality and,
tor iterative procedures, steepesi descent algorithms. Two
other appealing features of the approximate theory should
be mentioned: Firstly, an optimal approximate design E£*
does not depend on the sample size n. Secondly £* allows
an easy interpretation in the exact theory: By some round-
ing-off procedure of the weights of E* to integer multiples
of 1/n an exact design E¥ is obtained, which may be ex-
pected to come close to E* with respect to the criterion
under consideration, (which behaves continuously). And
under the standard assumption of compactness of the
effective experimental region {f (x) : x € X} this is not af-
fected when admitting general probability measures on
(X, ), since by Carathéodory's Theorem for any E €I
there exists a £’€ A with finite support and M (8") =
M (§), (actually such a E’ can be found with at most
k (k + 1)/2+ 1 support points). Of course, a rounding-off
procedure as above will yield a good exact design :‘;; only
it the number of support points of £* is small compared
with n.

3. Contaminated Linear Regression

As in Section 2 we distinguish under (CLR) between
linear parameter estimation, (estimation of a linear trans-
formation Ka of the parameter vector a), and linear esli-
mation c¢f the regression function y. For parameter esti-
mation the following identifyvability condition should bhe
imposed:

If a’f+p, = b’f+4y, with a, beIRk, », »,5 I", then
Ka = Kb.

It I' is convex and such that —y € /" whenever y €/
then this condition is equivalent to the following one:

a’t € I' with a € IRK implies Ka = 0.

More specially, if I' = {y : X > IR : |y )| < ¢ (x), x € X},
with ¢ =0 given, and K = I, then the parameter vector
a is identifyable in (CLR) iff |a’f (x)] < ¢ (x) for all x €%
forces a = 0, (cf. Sacks and Ylvisaker (1978)). For esti-
mation of the regression function y an identifyability
ccndition is not needed.

We will first consider the case, that under an exact design
d = (x4,...,X,) the ordinary least squares analysis from
the ideal model (LR) is used. Under (CLR) the estimators
K4, and ?d (x) =44 £ (x), 4, being a least squares esti-
mator for a (under LR), are biased, and their risks split
up into a variance term and a bias term:

For d€ 4 (K) (as defined in Section 2)

o 'E{(K8y— Ka) (Kdq — Ka)'}
1

= KM @K +07*(E(Ka,) — Ka) (E(Kag) — Ka) .
Since EYd=E(Ydl~--- ~de)l=X(d)a+y(d)‘ where
X(d)=(fj(Xi)lsign_lfjf_k) is the design matrix of d and

y(d)= (y(x1) ..... y(_xn))"

we have

EKﬁd=—l1;KM_(d) X'(d)[K(d)a+ y(d)]

=Ka+%KM"(d)X'(d)y(d),

o~ "E|(Kay—Ka) (Kig— Ka)

- %KM'(d)K'+a_2KM_(d)7(d)?’ @M (K. 30

where

Fd) = = X @yl =1 3y (x)1(x).
i=1

Similarly, for d e 4 (f’) (as defined in Section 2)

dTEFax) —yx) = % £ (x)M ™ (d) £(x) + a‘“(E(yd) - y(x))".
and
Efy= % FX)M (X ()E Y= (x)a+ % £(x)M ™ (d)X'(d)y(d)

hence
o TE(Fa(x) — y(x)?

- % M@+ [F M @Fd— @] 62
Let Rg (d,0'y) denote the matrix risk in (3.1), and
r (d, o-'y) (x) the mean squared error function in (3.2), and
let ¥ and v be optimality criteria as introduced in Section 2.
A design d* € 4 (K) might be called P-optimal or ¥ mini-
max for estimating Ka, ift

sup '/’(RK(d*.U_1y))= min sup '.I’(RK(d.a—1y)). (3.3)
el

deA(K) yel
and d* € 4 (f") might be called n—optimal or 1-minimax
for estimating y, iff

sup r/(r(<l*.a'1;;))= min  sup n(x'(d.a"1y)), (3.4)

el de |(f) el

Of course, these criteria depend on ¢% so that in general
they will lead to the selection of a single optimal design,
only if the variance o® can be specified in advance. It
might be tempting to consider contaminations relative to
standard deviation ¢ and to assume in (CLR) that o-'y € I’
(instead of y € I'), so that in (3.3) and (3.4) the supremum
can be taken over ¢-'y € I' and ¢ is ruled out. But then
the problem of an unknown variance ¢® is merely trans-
tered to the problem of specifying the set I'. In the case
of a parametric family of contaminations

= {b'g ‘be B}
where g = (g, ..., 8p)’ :X = IRP and B C IRP are given,
and if g,..., g, are linearly independent on X, then we

may write
RK(d.a—1 bg) = RK(d.a—1b) and
t(d.c” "bg)=r(d.a”'b).

Instead of taking the supremum over b € B as in (3.3)
and (3.4) one may also consider an average with respect
to some probability measure f on B:

[ 7 (Ric(a*.0™"b)) dB(b) = min

&w (R(d.a™"b))dB(B), .9
de A(K)

B B
}in(l'(d*~0—1b))dﬁ(b) = min_ én(dd-a"b))dﬁ(b’-

(3.6)

Criteria (3.3) with K = I, were considered by Pesotchin-
sky (1982), criterion (3.4) with 1= 1, W the uniform mea-
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1
sure on X = }was considered by Huber (1975),

272
Section 4, and with w the uniform measure on a finite
region X by Welch (1983), who also worked with an
average criterion (3.6). Actually these authors were con-
cerned rather with approximate designs, and the extension
of (3.3) — (3.6) to the approximate thecry is straight-
forward:

For E € 4 let
y (&)= S y(X)E(x)d&(x).
X

and extending (3.1) and (3.2)

(3.1a)

Ri(n.£o7y)= KM (OK +o "KM ()7 ()7 ()M (§)K,

1
n
if £€ 4 (K), and

r(nde”'y) (x)= 1 £ (M@ (%)

+oT P MTOTEO -y ] B
it £ €4@).
Thus optimal approximate designs as defined analogously
to (3.3) — (3.6) will generally depend on the sample size n,
(and of course on ¢?), contrary to the uncontaminated case
(LR). Actually they will depend on n and ¢? through ¢%n,
since ¥ and 7 are usually homogeneous of some degree.
But there are other good points of the approximate theory
in (LR) which do not carry over to the contaminated case:
The objective functions in (3.3) — (3.6) are generally not
convex functions of E.
There may be difficulties in interpreting general probabi-
lity measures E on (X, B). For nonparametric contamina-
tions Carathéodory’s Theorem is not applicable, which in
the setup (LR) ensured the existence of a £’ with finite
support which is equivalent to ¢ It may even be possible
that the objective functions in (3.3) — (3.6) behave discon-
tinuously when approximating an optimal design £* with
infinite support by designs with finite support. More
exactly: If X is a compact metric space, (usually a compact
subset of IRQ), and E* is a Borel probability measure on X,
then the objective functions in (3.3) — (3.6) may fail to be
continuous at E* with respect to the vague topology on
the set of Borel probability measures. This in fact occurs
in Huber (1975), Sec. 4, Sec. 5, who considered the example

f(x)=(1.x), xe[—%,é],
1/2
y: min g (y(x)—a—ﬁx>2dx552

«,felR _-1/2

I'=

with ¢2>0 given. The 7,, -minimax design £* = E* (0%
(ne?), w being the uniform measure on [—1/2, 1/2], is ab-
solutely continuous with respect to Lebesgue measure. But
for any design E with finite support

sup (e (n.807'7) =

so that E* does not admit a reasonable interpretation,
which was observed by Li and Notz (1982), p. 136. The
same objection pertains to the minimax design for esti-
mating the slope of the regression line given by Huber
(1975), pp. 295—296.

So for nonparametric contaminations one should generally
restrict to approximate designs with finite support. It can
easily be shown that, if the set I' is uniformly bounded
and {f (x) :x €X}is compact, then the objective functions
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in (3.3) and (3.4) are continuous functions of the weights
of £ when the (finite) support of £ is kept fixed. So when
rounding off the weights of an optimal approximate design
E* one may still expect to obtain good exact designs E¥,
(under the above assumptions). For a parametric family
of contaminations

l“={b'g:beB}‘

general probability measures do usually not cause any
problems, since Ry (n, E, 6-'b) and r (n, &, 6-'b) depend on
& only through the matrices M (¢) and [ f (x) g’ (x) d
(x), and hence Carathéodory’s Theorem is applicable,
if {f(x) :x€ %} and {g (x) :x € X} are compact.

Criteria (3.3) — (3.6) are based on the assumption that
under any design d the least squares analysis from the
model (LR) is used. As mentioned in the introduction this
is nct conclusive, and there may be other linear estimators
whose global performances in (CLR) are better than those
of the ideal least squares estimators, (cf. Karson, Manson
and Hader (1969), Marcus and Sacks (1977), Sacks and
Ylvisaker (1978), Agarwal (1981)). These will be considered
now.

To ensure that a linear estimalor has bounded risk, (ma-
trix risk for parameter estimation, mean squared error
for regression function estimation), the unbiasedness con-
dition under the ideal model is still imposed. Let d = (%,
..., Xpy) be a given exact design, and let (1/n) LY, be a
linear estimator for Ka, where K is a given (sXk)-matrix
and L an (s)Xn)-matrix of constants, such that (1/n) LY4
is unbiased for Ka in (LR), i.e.

LX) =K, (3.7)

Then under (CLR)
o E{(nT'LY g~ Ka) (nT LY, — Ka)) )
=n"? {LL'+ a—zL;'(d)*/'(d)L'} =R(d.T.ay). (say).

So, if ¥ is an optimality criterion measuring the “size”
of a positive definite matrix, then the global performance
of the estimator in (CLR) may be quantified by

sup 'V (R(d.L. 0-1}/))«
vel
or in the parametric case I' = {bg : b € B} by an average

| #(R(d.L.a""b))df(b),

R
and, clearly, these quantities should be minimized with
respect to L subject to (3.7). Let £ (K, d) denote the set of
all matrices L. which satisfy (3.7). Then instead of (3.3)
and (3.5) one may define a design d* € 4 (K) to be ¥-opti-
mal for estimating Ka, iff

inf sup ¥ (R(d.L.o™"
Lelnt sup v (R(AL0TTy)

= min inf  sup ¥V (R(d,L,a-1y)),
deA(K) Le€(K.d) yel

(3.9)
or in the parametric case

inf | 7(R(d"L.o7"b)) dB(b)
Le¢(K.d*) B

= min inf \"I’(R(d.L.a"’b))dﬂ(b). (3.10)

deA(K) Lef(K.d) R

For estimating the regression function one can procede in
a similar way: Consider linear estimators for y,



~

Yar®=n""(LYq) f(x). xex.
where L is a (k X n)-matrix of constants, such that

nT ' (x)LX(d)=f'(x) for all xe%X. (311

(3.11) is the unbiasedness condition in (LR), which rewrites
as n'LX () = I, if the components of f are linearly
independent on X. The reason for not admitting any linear
unbiased estimator n-!¢’(x) Y4, x € X, where ¢ : X > IRn, is
that the estimated function x = n-'¢’ (x) Y4 will generally
not be a member of (CLR). The mean squared error func-

tion (relative to ¢%) of ?d‘,l (x) in (CLR) is given by
5TE (g L0 =y ()’
=n"* X LLE(x)+ 6™ [ F (9 Ly(d) — y(x)]

=r (d‘L,o_d y) (x). (say). (3.12)

Now, for a given criterion 7, an optimal design d* € A (f")
for estimating the regression function y may be defined
analogously to (3.4) and (3.6) to be a minimizer of

inf  sup l/(l'((l,],.(:’_1;,)),

(3.13)
Lee(f.d) el

or in the parametric case,

inf .\.q(r(d‘L.a”b))dﬂ(b).

(3.14)
Lee(f.d) o

where d€ 4 (f°), and € (f’, d) denotes the set of all matrices
L satisfying (3.11).

Criteria (3.9) were applied by Marcus and Sacks (1977)
and Li and Notz (1982), and a criterion of type (3.14) by
Agarwal (1981). We will briefly indicate the necessary
alterations in (3.7) — (3.14) for the approximate theory.
Firstly, we note, that for a given exact design d = (x,,
-~ Xp) one can restrict to estimators n-'LY4 and n-!
(LY 4)" (%), respectively, whose matrices L are such that
the i-th and j-th columns of L are equal whenever X = Xj.
This can be seen as follows: If X{ = Xs, then replace the

first two columns [, [, of L by ([, +1,)/2. The matrix L,
say, still satisfies (3.7) or (3.11), respectively, since

n
LX) = 4f'(x) =L.X(d).
i=1

where L = [[;, 1, ..., 1 1. Also

n

Ly(d)= Z y(x)ty=Ly(d)

i—=1
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Systems of One-Dimensional Continuous Distributions and their

Application in Simulation Studies

VOLKER GUIARD

Abstract

One-dimensional continuous distribution systems (Pear-
son, Johnson, Tadikamalla-Johnson, Burr, Grassia, Gram-
Charlier-Edgeworth, generalized Lambda distributions,
Schmeiser-Deutsch, Fleishman, truncated normal distribu-
tion, double rectangular distribution) are described and
their suitability for use in simulation studies for inves-
tigaling robustness is considered.

1. Introduction

Simulation studies using certain alternative distributions
are a common way of investigating the robustness of
statistical procedures with respect to violations of the
assumed normal distribution.

In such cases the degree of non-normality is usually ex-
pressed by the parameters (In the whole paper the Mk
(k < 4) are assumed to be finite)

skewness: e

1= T3
Hy
and
. 3
kurtosis: V2= —
9

where p is the k-th order central moment.

The parameters y; and y, naturally do not uniquely de-
fine the shape of a distribution. (The upper and lower
bounds for P(x < x;) in dependence of Xo and the first
four moments of the distribution of x are given in Simp-
son and Welch (1960).) This is why different distributions
should be used for each pair y, y, in robustness studies.
The »; and y, must satisfy the following inequality:

2
y22y1—2.‘

The equality sign applies if, and only if, the distribution
is a two-point distribution. In some cases only unimodal
distributions are of interest as alternative distributions.
The inequality to be satisfied by such distributions is

ygzﬁ )/1(C—~i—‘)—1],

5

where c is given by the equation
_8y1C= (3——-(}2)2.

The proof for this inequality and the explicit solution
of the last equation can be found in Herrendorfer, G.
(1980). The same inequality was derived by Johnson and
Rogers (1951).

Distribution systems are a useful tool for indentifying
distributions with given values for »; and y,.

By the term ‘“distribution system” we understand
a class of distributions constructed by means of a

common rule and covering the whole of the ad-
missible region of the (y, y»)-plane or part of this
region that is of particular interest.

This paper will present only systems of one-dimensional
continuous distributions. A few {wo-dimensional distri-
bution systems are given, for cxample, in Mardia (1970).
Cook and Johnson (1981) and Johnson and Tenenbein
(1981). Johnson, Ramberg and Wang (1982) apply the
Johnson system to the multi-dimensional case. Further
multi-dimensional systems are described by Johnson and
Kotz (1972), for example, and Johnson and Kotz (1982)
also discuss discrete distribution systems.

Lower bound of the admissible ranges in the (¥4, v9)-plane
for all distributions (———) and for unimodal distributions

---)

For the sake of clarity, and to simplify practical mani-
pulation, preference is given to systems which as far as
possible contain not more than one distribution for each
pair, y;, y.. The “suprasystem” proposed by Savageau
(1982), in which a large variety of different distribution
systems are produced by a common construction rule, is
unsuitable for use in simulation studies.

We shall, moreover, ignore distribution systems which
describe only one line in the (y;, yo)-plane. Johnson,
Tietjen and Beckman (1980), for instance, developed a
listribution system containing only symmetric distribu-
tions (y; =0).
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In describing the different distribution systems, we shall
discuss the following points:

D: definition of the system by a construction rule

S: typical shapes of the distributions

Rr' region in the (y,, y9)-plane covered by the dis-
tributions

Cp*/ connection between the parameters of the dis-
tributions and the values of ¢, and y,

G Generation of random numbers for these distri-
butions

Random numbers are usually generated by transforma-
tion of uniformly or normally distributed variables. It
will be assumed that the procedures for generating such
random variables are known. This subject is reviewed
in Herrendorfer (1980), Guiard (1981) and Rasch and
Herrendorfer (1982).

In some cases the construction rule for a distribution
system consists of the instructions for transforming appro-
priate uniformely distributed or normally distributed ran-
dom variables in order to obtain the random variables
required. In this case the point G is contained in point
D.

Some distribution systems (for instance the Pearson or
the Johnson and Burr system) have not been constructed
for simulation purposes but for fitting to empirical dis-
tributions. The generation of random numbers for these
distribution systems is sometimes quite complicated.

For the sake of simplicity, the location and scale para-
meters will not be mentioned when discussing the distri-
bution systems. These parameters can, of course, be in-
cluded, but they do not affect the values y; and y.

2.  Systems of Distributions

2.1. The Pearson System
D:

The density function, f(x), of a Pearson disiribution
satisfies the two following conditions:

L 9 £(x) = £(x) _ dtax
x b, +b;x 4+ b,x?

2. The expression
lim  x"(by+bx+b,x?) - f(x)=0
x —bound

holds for the boundary points of the range of definition
of the distribution (h =0, 1, 2, 3).

Pearson’s differential equation is usually given in the
literature with a; =1. In this case, however, the type XII
is not a Pearson distribution on account of a; = 0. There
is exactly one Pearson distribution for each pair y;, 7
(¥2 >yt —2).

S:

There is no functional form that is common to all Pear-
son distributions. They are divided into the different
types presented in the following table, in which the first

and second kind beta distributions are denoted by Bl
and B2 respectively.

Bl f(x)=ax""(1—x)™

B2: f(x)=a(x+1)n1x

O0<x<1.n;>—1)
(X>0. n2>_1, n1+n2<_5)

Ny
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A normalization constant must be inserted for a.

The table gives only the distributions with y = 0. The
distributions with p; < 0 are obtained by the substitution
X <= —X.

Johnson, Nixon and Amos (1963) give a table of the
quantiles of all Pearson distributions with E(x) =0 and
V(x) =1 for different y; and y,.

Cpoyi bo=4dy,—3y14+12
b, = ‘/1(72+6)
b2= 2)’2—3)’3
a;= —2(5y,—6vI+86)
ag=—b,

The distribution type and the corresponding distribution
parameters can be derived from these values by the
methods given in Elderton and Johnson (1969), Herren-
dorfer (1980), Guiard (1981).

Table of the Pearson types

G:

Cooper, Davis and Dono (1965) describe a universal gene-
rator for all Pearson distributions. Most Pearson distri-
butions can be produced with a generator for beta distri-
butions. Generators for the first kind beta distribution
are given in Johnk (1964), Ahrens and Dieter (1974) and
Cheng (1978). Of these generators, the one presented by
Cheng (1978) is the fastest (Schmeiser and Shalaby (1980)).
Schmeiser and Babu (1980) constructed a generator which
is even faster than that constructed by Cheng (1978).
Further very fast generators are given in Atkinson (1979),
Atkinson and Pearce (1976) and Atkinson and Whittaket
(1979).



Figure 2
Pearson-types in the (y,2 y.)-planc

2.2, The Johnson System

D:
If z has a standardized normal distribution, it follows

that
-y
x=g(e 7 )

has a Johnson distribution, whereby specific monotonic
functions must be inserted for g(u). Depending on g(u),
there are three types of Johnson distributions:

) _u
Su: 8(W= 14 (bounded, 0 < x < 1)
Si.i glu)=u (log-normal distribution, 0 < x < )
Sy: g(u)= % (u—— —3) (unbounded, — X < x < x)

(Johnson (1949), Elderton and Johnson (1969))

shapes

NN A

AN
SL /\~
Sy T~

R,

¥
There exists exaclly one Johnson distribution for each
pair 7y, y». Type S; represents the border between types

Sg and Sy.

Figure 3
Johnson distributions in the (y,2% y.)-plane

C, .
Tl?lelconnection between the distribution parameters p
and ¢? and the values of y; and y, is complex. The fol-
lowing possibilities exist for calculating the parameters
of the different types:
Sy,: For given yy, the expressions(p = e

réd=®m—=1 (p+2°?
and

ya = (p—1) (p* 4 3p* -+ 6p + 6)
(Vol. 1, 1958))

(Kendall Stuart

yield, after solving the cubic equation in p,

o=Vat+i@—1 +Va-fa=1 —1(Q=1+§)

o*=1np and y, (see above).

(In this case p is a scale parameter.)

Sy Tables: (Johnson and Kitchen (1971 a, b))
Approximation method: Bowman, Serbin and Shen-
ton (1981)

Sy;: Tables: Johnson (1965)
Approximation methods: Leslie (1953), Bowman and
Shenton (1980), Shenton and Bowman (1982)

G: SeeD

2.3. Systems Analogous to the Johnson System

Other systems analogous to the Johnson system can be
obtained by applying the same functions g( ) if other
distributions are assumed for z. If, for instance, a La-
place-distributed random variable is used for z, the types
S’y S'f, and S'g are obtained (Johnson (1954)).
Tadikamalla and Johnson (1982) proposed an additional
system:

D: Let z have a logistic distribution

f(z) =e2 (14 e %)% F(z) = (1 + e—2)-

Then calculate x by applying Johnson’s trans-
formation functions g( ) to z

This yields the types Ly, L; and Lg in ana-
logy to Sy, Sp, and Sg.

The forms of the distributions are similar to
those of the Johnson distributions. There is
exactly one distribution for each pair yy, 3
(y2 > 12— 2). The line of the L distributions
ist situated above the Sg linc.
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Cp—y- Tadikamalla and Johnson (1982) mention tables
in an unpublished North Carolina report for
finding the distribution parameters.

G: Generale a random variable u that is (0,1)-uni-

formly distributed and calculate

In other words, simulation is simpler in this
case because it is unneccessary to generate a
normally distributed random variable.

2.4. Burr’s Distribution Systems

Intending to fit a theoretical distribution function F(x)
to an empirical distribution function, Burr (1942) pro-
posed twelve different types of functions for F(x), which
were later designated types I to XII. Since these types
cannot all be derived from the same construction rule
and, moreover, the corresponding regions in the (y, y.)-
plane sometimes overlap considerably, we shall not speak
ol the distribution types belonging to a system but of
different systems.

Some of these systems occupy only a line or a point in
the (3, v»)-plane and are therefore of no interest in our
context.

System XII, which has proved to be of considerable prac-
tical use, was investigated more thoroughly by Burr (1968,
1973), Burr and Cislak (1968), Hatke (1949), Rodriguez
(1977) and Tadikamalla (1980). Tadikamalla stresses the
importance of system III and states its relationships to
other distributions. System III is identical to the threc-
parameter Kappa distribution described by Mielke and
Johnson (1973).

Only systems III and XII will be described in the fol-
lowing,.

D! XII: F(x)=1—(14+x°¢)7"

— c—1 c\—-k—1 X.C.k>0
f(x) = ke x71(1+x°) o
1I1: F(X):(l-*—x_c)“k
x.k>0, c>4

f(x) =ke x" ¢! (14 x7¢)7k!

Relationship between the two systems:

If x follows distribution XII with the parameters ¢ and
k, then x—! has the distribution III with the same values
of ¢ and k.

S XII I1I shape
c <1 ck < 1 :k
1
c = 1 ck =1 [\ Pareto distribution
c>1 ck > 1 _/\—
lk =1 k=1 log~logistic distribution

For k=1 and any ¢, the corresponding distributions of
the two systems are identical.

As shown in Fig. 4, system III occupies a much larger
region of the (y,, y»)-plane than system XII.
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Figure 4

Regions in the (yy, yy)-plane for
Burr XII (=)
Burr III (= and in addition |||)

\ XII ‘ 111

E{x") =
Table for
finding
k and ¢
from y,
and y,

G:
Generate a (0,1)-uniformly distributed random variable
u and set

for system XII and

for system III.

2.5. Grassia’s System

=

x=-e7Y, let y be I'-distributed with the parameters b
and p

0<x<1

3 b —1n )P (D).
f(x)=Db"x ( lnx) / (p) p.b>0
(Grassia (1977), Tadikamalla (1981))

S:
Most important types of shape:



The shapes of these distributions are discussed in greater
details by Grassia (1977).

R.:

The region occupied by Peason type I distributions is
covered in the (y(, y.)-plane.

Figure 5
Region of Grassia's distributions in the (4, y))-plane

Cp-ri E(xK) ( b_)"

ot X)) =(———

P b+k)

Tadikamalla (1981) drew up a program for calculating p
and b from y; and y,.

G:

See D. ‘
Generators for the ['-distribution are given by Ahrens
and Dieter (1974).

2.6. Distribution Systems Constructed by Series Expansion
Gram-Charlier series or Edgeworth scries can be used
to generate densily functions, the coefficients of the se-
ries being simple functions of the moments and cumu-
lants, respectively, of the distributions concerned. The
Gram-Charlier series has the following form (Kendall,
Stuart (1958)):

0
() =p(x) X ¢ Hy(x)
k=0
where ¢(x) is the densitly function of the standardized
normal distribution and Hy (x) is the Hermite polyno-
mial of order k.
We have

i p(x)

axk

The orthogonalitly relationship

=(- l)ka(x)q;(x)

QH JH,(x) p(x)d Lo
.\ k(X H(x) p(x)dx = k! for 1=k
—

of the Hermite polynomials is used to calculate the co-
efficient ¢ (Kendall, Stuart (1958)). There ist one-to-one
correspondence between the first k coefficients of the
series and the first kK moments (or cumulants) of the
distribution.

The Edgeworth scrics has following form (Kendall,
Stuart (1958)):
1 _
f(x)::exp[z del‘ o(x)
k=1

0
where D= —
ox

1“;(_1)k for k2
k!
and dy=
%, —1

2

for k=2

where ), is the cumulant of order k. In other words,
the Edgeworth series is calculated by formally applying
the exponential function

exp () =1t -g"v +5 0

to a series of differential operators. These differential
operators must subsequenily be applied to ¢(x). The
result is a Gram-Charlier series with (in general) an
infinite number of terms. In other words, an Edgeworth
series cannot be described exactly by a finite Gram-
Charlier series unless only the first 1 cumulants are given
and the further cumulants are left unknown. In this case
the cumulants can be used to calculate the first 1 mo-
ments, which in turn can be used to calculale directly
the coefficients of the corresponding Gram-Charlier series.
One problem of describing the series in this way is that
the generated function f(x) will not in all cases assume
only positive values, i.e, it will not always represent a
density function.

We shall now give a simple example representing thc
most important application for both of the series. (The
case given here for an Edgeworth distribution was used,
for example, by Subrahamaniam (1968 a, b, 1969) to cal-
culate the distribution of quadratic forms and order
statistics.)

Edgeworth

Gl‘al;;:éhal‘liEL‘
D: With E(x) =0, V(x) =1
and ¢, = 0 for k >4 being
given, the series obtained is

£(x) = @(x) [1 4 c3H3(x) +

D: With % =10, », =1,
;= x; =0

¢g =0 for k> 6 being
given, the series obtained is

¢, Hi(x)] 1(x) = ¢(x) {1+ c3Hs(x) +
¢ Hy(x) 4 cgHg(x)]

. | _ Y2 N 4 R _1

Cp_},.ca_—s—!. C,,—4! L3_§!—,c4—zl—,cb.-2-c3

G:

The author knows of no method for generating random
numbers.
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Figure 6

The regions in the (y,2 p,)-plane in which all values of {(x)
are positive (Gram-Charlier: ——, Edgeworth: - --) and the
regions in which the corresponding distribution is unimodal
(Gram-Charlier: -.
(Barton, Dennis (1952))

These distribution systems cannot be used for simulation
purposes until a random generator has been developed.
The admissible range in the (yy, y.)-plane, moreover, is
relatively small, although it can be enlarged by choosing
suitable coefficients ¢, for k > 4.

2.7. The Generalized Lambda Distributions

D:
Let u be uniformly distributed in (0,1). Then construct
2
x=11+[ul3—‘(1’“) 4]//12-
The density function is:

Ay -

/Wt3u’13—l + 14,(1‘_ u)’lf‘1

f(x)=f(x(u) =

S:

Some examples of shapes:

R.:
A'ccording to a diagramm of Ramberg et al. (1979) distri-
butions exist for

ya 2 —1.25+ 1662577

C

p—v
Ramberg et al. (1979) give a table showing the values 4, 14,
13 and A, for given y; and 7.

G:
See D.

2.8. The Schmeiser and Deutsch System

D:
Let u be uniformly distributed in (0,1). Then construct
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(—(,@—u)13 ifu<i,
"(u—/h)'13 ifu>4,

—ahx< (=20

Figure 7

Distributions of Schmeiser and Deutsch in the (yy, y,)-plane
(——— approximate upper bound for 1, <1 (bimodal),
(. . . . approximate lower bound for 3, >1 (unimodal)

The regions for A3 >1 and ;<1 overlap. Two distri-
butions exist for each pair (, ) in the overlapping
region,

Cy .

Schmeiser and Deutsch (1977) constructed nomograms for
finding 1, and 4, from ;; and 7.

G:

See D.

2.9. Fleishman’s System

D:

Let z have a standardized normal distribution. Then cal-
culate x = a -+ bz + cz? 4 dz3 = P(z). (This transformation
is the so called power transformation.)

S:

Case 1: c2<3bd <§ P(z) has no point of Zel‘O)
ez



Figure 8
Fleishman distributions in (yy, y,)-plane
. approximate border between unimodal and bimodal
distributions
- - - approximatc lower bound of the possible region in the
(¢ y») -plane

C, .

Fi)eiéhman (1978) gives a table showing the values of b,
¢ and d (a = —-c) for given y; and j..

G:

See D.

2.10. The Truncated Normal Distribution

D:

Truncate the standardized normal distribution at the
points u and v(u < v).

Figure 9
Truncated normal distributions in (y,, y,)-plane

The limits of the admissible range are still unknown.

C,_.:

R%séh and Teuscher (1982) showed how the values of
and yy depend on u and v and also gave a small table.
With (&(u) = distribution function of the standardized
normal distrib.) 4= (v) — @ (u)

and
1].i-1 i—1
¢ = ZIV p(v)—u " g(u)
we have
c;—2¢y—3c,¢,—0Cy
n= 3/2
(l—cz—cg)
Y 1¢?—6¢t + 3¢, — 12¢lc, — ¢, — 4cycy — 3¢
1= 2
(1—c,—cl)
G:

If z is uniformly distributed in (0,1) construct

x=¢“1[d-z+¢(u)].

2.11. The Double Rectangular Distribution

D:
¢, if x;<x<x,
f(x)=(c, if x,<x<x;
0 otherwise
S

Example for f(x)

X X2 X3
Ry.

This distribution system covers the whole range of all
possible unimodal distributions (cf. chapter 1). without
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the distributions with y, =0 and y, + —1,2. An analogous
distribution system which covers the whole admissible
range of the (y, yy)-plane would, for example, be the
system of triple rectangular distributions. The properties
of these, however, have yet to be investigated.

Cpﬂ,:

Guiard (in Herrendorfer (1980)) has shown how the para-
meters of the distribution depend on y; and y.. For given
values of 7, and y, it is necessary to calculate

16y2—15y,—18
Ve —
4y,
and
S5y, +6
4y,

The values x,, x, and x; are the solutions of the equation
x3 — wx?—3x —v=0.
In order to solve this equation calculate

¥ __(X)’_
p= q 9= 3

w+v
2

(In the region of the (v, y9)-plane being admissible for
the system D = p? -+ g2 < 0 must hold.)

Setting r = ]lipl sign g and « == arccos ;1—3, we obtain
x W
X;= —2r C0S -3—+?
n+ o w
= 2 —
X, r cos( 3 )+ 3
n—u« w
= 2r cos —.
* ( 3 )+ 3

In order to ensure that x; <x,<xy the indices of x;
and X, must be rearranged if r < 0. Moreover, we have

X, + X,
="
(x5 — Xq) (X, — x1)
— (Xt xy)
c,=

(x5 —x9) (X3 — X,)

G
It u is uniformly distributed in (0,1), calculate

u . X, +X;
Y, ifug 22
C-' X3—X1
X= 2
x5+ XX .
YL BTX0% 0 therwise
Cy X+ X,

3. Comparison of the Different Distribution Systems

One or more distribution systems can be selected for
simulation purposes on the basis, for instance, of the
following criteria:

S — similarity with empirical distributions en-
countered in practice;

R, — size of the region covered in the (y(, y4)-plane

Cp—y — simplicity with which the distribution para-
meters can be calculated from 7, and y, (in
the following table the availability of simple
procedures for these calculations are denoted
by 1 and the availability of tables by 2);

G — simplicity with which random numbers can
be generated;

GT — computer time required for generating random

numbers.

In the following table the author has awardet subjetice
“marks” for the different criteria stated above (low
marks = good system). The column GT shows the com-
puter times in milliseconds reported by Tadikamalla
(1980 a) for calculating 10 000 random numbers on a DEC
system 10 computer. In this study the generator u, 41 =
630 360 016 u; (mod 231 — 1) was used for the uniform dis-
tribution and the polar method (Box, Muller (1958), Au-
torenkollektiv (1980)) for the normal distribution. These
generators require a computer time of 18 and 94 micro-
seconds, respectively.

When investigating robustness, it appears advisable to
show the robustness of a statistical method also for un-
favourable distributions. There seems reason to suspect
that “long-tailed” distributions have unfavourable pro~
perties in respect of robustness. Pearson, Johnson and
Burr (1979) compared the quantiles of systems of Pear-
son, Johnson, Burr (XII) and of the non-central t-distri-
bution and the non-central y* distribution for several
values of y; and y,. These comparisons showed that the
Burr distributions have extremely long tails.

S R;, Cp~' G
Pearson 1 1 1 4
Johnson 1 1 2 2 S :160; S :165;S :196
Tadik.-Johnson 1 1 2 1 L :139; L :142;L :162
Burr XII 1 4 2 1 252
Burr III 1 3 4 1
Grassia 2 4 4 3
Gram-Charlier 5 1 5
generalized lambda-
distribution 1 2 2 1 245
Schmeiser-Deutsch 1 3 1 140
Fleishman 2 2 110
Truncated normal
distribution 2 3 3 2
Double rectangular

1

distribution 4 2

a0
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A Combinatorial Method in Robustness Research and Two Applications

GUNTER HERRENDORFER, KLAUS-DIETER FEIGE

Abstract

After defining robustness for interval estimations and
tests, the paper presents an exact method for investigat-
ing this property for discrete distributions with finite
supports. This method is used to investigate the u- and
t-tests in the case of the single sample problem for robust-
ness in respect of two and three point distributions.

1. Introduction

Mathematical statistical procedures can be divided into
parametric and nonparametric. All statistical procedures
are based on the following assumptions:

— (V1. ¥ ...,¥,) is the realization of a random vector
¥, ¥ ..., ¥n)
— y; is F(y)-distributed. The moments of y; that are of
interest are finite and at least partly unknown.
F;(y) must satisfy one further condition in the case of
parametric procedures:
— F; (y) must be known ecxpect for the parameters.
The known parametric procedures (t-test, u-test, y’-test,
F-test, etc.) have very desirable properties if all of their
assumptions are exactly fulfilled.
The behaviour of these procedures when their assump-
tions regarding disiribution are not fulfilled was inves-
tigated as early as the nineteen-twenties (e. g. Rider, 1929).
Tukey (1960), Mandelbrot (1962) and Herrendorfer, G., (ed.)
(1980) studied a large number of characters and found
that the assumptions regarding distribution can be con-
sidered justified in only a few cases. Many characters
have distributions with “a long tail” or are unilaterally
truncated. Moreover, it can generally be assumed that
samples include outliers, which are known to have-a
considerable effect on the properties of parametric pro-
cedures. As a consequence of these studies, investigations
into robustness proceeded along two lines, which were
described by Ray (1978), for instance:

— Within what limits can a given procedure be applied
meaningfully, i.e. how “robust” is a procedure against
non-fulfillment of the conditions on which it is based?

— How can a “robust” statistical procedure be cons-
tructed?

It seems virtually impossible to find a definition of “ro-
bustnes” that is simultaneously clear and comprehensive.
Bickel (1976) formulated three questions that must be
answered whenever robustness is investigated:

— Robustness against what? What is the supermodel?

— What has to be robust? Which procedure is being con-
sidered?

— What sort of robustness? What is the aim of the robust-
ness investigations and which criterion of robustness
being used?

The robustness investigations presented here deal with
known parametric procedures (the u- and t-test statistics)

and were performed to find out how they behave if the
distribution is not the assumed normal distribution. We
assume that all other conditions are satisfied. Let G, be
the class of distributions for which the statistical proce-
dure d being studied was derived and which give d its
“desirable” properties. The supermodel then consists in
specifying a larger class, G, O Gy, of distributions. The
criterion used to decide whether a statistical procedure
is robust or not must be specified separately for each
class of decision procedures.

Let d, be an interval estimation. In the class G, (e.&.
normal distributions with |u] <%, 0<{e2<), d, has
the real confidence coefficient 1 —«. If d, is applied to
a sample with a distribution g ¢ G,, the real confidence
coefficient will become a function of g and the experi-
mental design, Vy, (in the simplest case it will be a
function of the sample size, n)

[1_0‘d("“VN~g)]-

The measure used for the deviation from the nominal con-
fidence coefficient, 1 — «, can be

ocd/zx.VN.g)—a (6}]

or a function of (1).

In the case of intervalestimations it can first only be
demanded that this difference is not too great. In other
words, the following definition can be used.

Definition 1:

An interval estimation, d,, for a given nominal
confidence coefficient, 1 —a«, which also has the
real confidence coefficient 1— « for the class Gy
of distributions is (a, €)-robust in the class Gy D Gy
for the experimental design Vy if

Max la(,((x.VN.g)——a‘Ss ()
ger

hold for the given values of « and e.

An analogous definition can also be given for robustness
of the first kind risk of a test. In the case of the u-test
and t-test, for the one sample problem (Hy:p = u,,
H, :u % pg), this would mean finding such a n, for a
given class, Go, of distributions that the procedure is
(a, €)-robust for n = n,.

We shall first describe a procedure for calculating dis-
crete distributions with a finite support, r.e. for k-poini
distributions with k < %, a4 («, n, g). We shall then apply
this method to investigate the robustness of the u-test and
t-test in the sense given in Definition 1.

2. An Exact Method for Investigating Robustness Against
Discrete Distributions

The literature dealing with the robustness of the most
important statistical procedures was discussed in detail
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by Posten (1979), Tan (1982), Tiku (1975), Ito (1980) and
by Herrendorfer, G., (ed.) (1980), Guiard, V., (ed.) (1981),
Rasch, D., and Herrendoérfer, G., (ed) (1982) and will
therefore no tbe considered here.

k

Y ¥aoees Yk

Let gk=( B ),Zpi=1. pi>0
P P2t Pk i=1

be a discrete distribution (|y, | <) with k points in
the support, and let

(3)

D= (¥1.¥2:---" Yn)'

be a random sample whose components y; are distributed
according to (3). Then the probability for the realization

k
Pw_()’v)’z ..... Yk> Zni=n n=>0 (4)
ng.n,,....Ng/ 4
is given by
! n, n, . DNk
P(t):sz>= p11912--'pk . (s)

n,teny!-...eng!

The number of possible different samples can be calcu-
lated from

‘n+k—1
M:( ) ©

k—1

The statistic d, can be calculated for each possible
sample. Let, moreover, g, be known. In this case,
E(y;) = p and V(y;) =o% for instance, are also known
and it is possible to test whether a correct or false deci-
sion has been, made for a particular sample.

The M possible samples are ordered in some (fixed) se-
quence. We now arrange the probabilities calculated
according to (5) in the same order as the samples to obtain
the vector P. We shall call the corresponding decision
vector H. A component of H is 0 if a correct decision has
been made for the corresponding sample; otherwise it
is 1. For an interval estimation it is easy, for instance,
to calculate

ad(a.n.gk)=P'H (7)

We shall demonstrate this by estimating a mean as an
example. A random sample of size n =13 is given, and

-3 0 13
S T ®
A 6 6

is used as a k-point distribution. For g; we have E(y) =
0; V(y) = 1. The interval estimation

Table 1

Calculation of a4 (0.05;3;gs) for the interval estimation (9)

/

— S
<y. —1(2;0.975) =

13

is calculated for each sample realized. The results of these
calculations are shown in table 1.
This yields

;Y. +1(2;0.975) %> o

2 1
0.05;3:8,)=—=—~0.01.
“al 8= % = Tog
This interval holds for the class G, of normal distributions
and n = 2,

3.  Results for the u-test and t-test and the Corresponding
Interval Estimations for . in the Single Sample Pro-
blem

3.1. Results for the Distribution g, corresponding to (3)

We consider distributions whose first four moments are
bounded and denote this class by K(u;e;r;1) [y —
skewness and y» — kurtosis]. The g, given in (8) thus
lies within the subclass K(0;1;0;0), which also contains
the slandardized normal distribution.

Since a k-point distribution is defined by 2k-—1 para-
meters, K (0;1;0;0) contains an one-parametric family of
three-point distributions, of which only g3 according to
(8) will be investigated at first. The results up to n =43
are given in Fig. 1, and show a typical behaviour also
for other k-point distributions.

If we set e =02 - o= 0.01, the real values of « should
be between 0.04 and 0.06. These results still give no n,
for the u-test, so that for n =n, the test can be con-
sidered robust for g;. In respect of the t-test the results
are different: according to Def. 1 the test can be con-
sidered (0.05;0.01)-robust in respect of g3 for n = ny=11.

3.2. Two-point Distributions

The inequality

Y2272 (10)
hold between 7, and y, for a distribution. For two-point

distributions,

ya=ri—2
always holds, so that these distributions are situated at
the edge of the permissible region in the (»,)-plane.
It can be shown that exactly one standardized two-point
distribution lies at each point of the parabola. The totali-
ity of all two-point ditributions with V(y)=1 can be
given by

(1)

y, 2" 2 3 4 5 6 7 8 9 10
-3 3 2 2 1 1 1 0 0 0 0
0 0 1 0 2 1 0 3 2 1 0
V3 0 0 1 0 1 2 0 1 3
_ 1 12 3 48 24 3 64 48 12 1
P & 6 6 ¢ 6 6" 6 6 6 6
y -13 ~1.15 —058 —0.58 0 0.58 0 0.58 115 13
s? 0 1 4 1 3 4 0 1 1 0
I 13 —363 —554 —306 —430 —4.38 0 —1.90 —133 13
Iy 13 1.33 4.38 1.90 4.30 5.54 0 3.06 363 13
iy 1 0 0 0 0 0 0 0 0 1

o4



Fig. 1: obd(o, 05;n;95) for the u- and t-tests (2<n2¢3)
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gy A=| 1 (12) .
A . ’ 1 i ny/ 4 1 \"™
1437 14+y? AeR. P(2=92(M‘n‘n1))=< )(ly—zz) <1+ 2) (20)
The class ‘ m/ A I+yE ALty

2_ 42 4
K(A;I:y 11 4y2+y )
y y

(13)

contains g»(y, 4).
Let a random sample, ¥ = (y,...,¥,), with Yi ~ gy, 4)
begiven. Its realization have the form

o YIRS
v, (y.4nn)=| °* . 0<n,<n 14)
n, n—n,
with
Fmypa_ LY m (19
¥ ooon
and

(16)
The hypotheses

Hy:u=0 (4=0)

Hoa:u®0  (4%0)

are to be tested by means of the normal u-test for nor-
mal distributions of known variance. This is done with
the aid of the statistic

(17)

u=‘7V;

(18)
and the decision rule

51-Vn <u_yp—H,

decisions, (19)

I¥]-Vn< Uy_,j2—>Hp

The aim is to find the samples for which H, will be
rejected:

' ) 2
’y-}-A—HF—y-ﬁ >u (21
n

1
-3 In

After some manipulation, this yields the two inequalities

‘ 1
y+4—u,_« —\yn
( 2%)

1+y?

n, < =n}, 22)

and

1
y+A+u1_g—~)yn
( )
1+y? °
Denoting the smallest integer larger than A by [A], we

find that (21) is satisfied for all n; < [n}| =n, and all
n; = [ny*] = n,. The power function of the u-test is then
given by

1 _ﬁu[n‘gz(y,A)] = (T_}-_-I;,—;)—n- [(:)-l— (T)yi +...+ (:u>y2nu

(24)

+(")y“‘°+(n )y""°“’+...+(")y2“
n, ne+1 n

The distribution function of the binomial distribution is

n,>

(23)
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n

B(n;p;n1)=1—2 (r_l)pi(l—p)“_i (25)
i

i=n,q
With

v2
= — (2(’)
Py

we have

l—ﬁu[n,gz(y‘A)]:: B(n,p‘ nu+1)+1—B(n. p.ny).

It is naturally also possible to describe ‘the distribution
function by the F-distribution, and an analogous appraoch
can also be used with success for the t-test for testing (17).
For 4= 0 we obtain in each case a real « value for the
nominal « and for the given y and n. The values of n,
are of particular practical interest. These are given in
tables 2 and 3. The calculations was performed up to
n =299 and n = 250.

Table 2
Minimum sample size (ng) for the u-test for given a and

y in the case ¢ =0.2 «

N\ 0.1 0.05 0.01 7 s

1 95 116 186 0 —2

1.25 64 88 206 045  —1.7975
054+ 05/5 104 97 - 1 —1

2 116 131 21 15 +0.25
30 >209  >299 > 299

Table 3

Minimum sample size (ng) for the t-test for given a and
y in the case ¢ =02 «

, % 0.05 001 7 7

1 95 151 256 0 —2

1.25 86 87 172 045  —L17975
054055 102 186 - 1 —1

2 125 270 >209 15 +0.25
30 >299  >299 >209 2097 896

As the tables show, the t-test cannot be considered robust

in respect of two-point distributions for the selected X
until n becomes very large.

3.3. Three-point Distribution

3.3.1. Results in the Class K(u;0%;0;0)

Five parameters are necessary in order to define a three-
point distribution. Since we have only four parame-
ters (u, o p; and ps), K(u/e?;0;0) contains a one-para-
metric family of three-point distributions. We will con-
sider how these depend on x; (the right support point).

The values of ¢ have been calculated for 2 < n < 250 for

the following distributions and are presented in table 4.

(-—4 ,700230 —0,754315 1,2 )
0,004073 0,601730 0,394197
— l 3 0 ER

1
6
1 ,390867 0,443486 2,5 )
( 0,294272 0,658180 0,047548
(—1 , 269762 0,647540 3,5
0,357175 0,629758 0,013067
(—1 ,188165 0,771498 5 )
0,400561 0,596254 0,003185
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Table 4

Dependence of ny on x3 for e= 0.2« for the u-test and
t-test in K(O 1;0; 0)

t-test

u- test
x

X3\0.1 005 001 01 005 001
1.2 80 62 115 87 45 7

3 56 95 164 T %
25 a1 21 39 16 41 34
35 15 41 50 22 29 64
5

43 39 63 41 56 84

If, in the above distributions, x; is replaced by —x;. we
obtain, after rearrangement, for instance x;= 4.700230 in
the first distribution. Due to the special selection of the
parameters p, o2, 7, andy,, this distribution also has the
same parameters and thus also belongs to the same
family of three-point distributions. It is evident that the
real a-values are not affected by this transformation. The
results shown in table 4 also hold for distributions re-
sulting from the above transformation. In other words,
it would have been sufficient to conduct these investi-
gations only for x3= 3. This can be immediately gene-
ralized to the corresponding three-point distributions
with =0, ¢2=1 and 7 =0. Table 4 shows clearly that
it is not sufficient to take only one three-point distri-
bution from the one-parametric family as a ,represen-
tative”. The differences in the real « and, consequently,
in n, are substantial. As shown by Rasch, D,, and Herren-
dorfer, G., (ed) (1982), the results yielded by the two-point
distribution for y=1 can be regarded as results for a
three-point distribution with x;=20, If these results are
compared with those in table 4, it will be seen that the
value of n, for the two-point distribution with y=11is
greater than the ng values for the three-point distributions.
The speculation that the results obtained here for X=X
must be considered extreme seems to be justified. In
other words, for studies on robustness in respect of three-
point distributions belonging to the class K(0;1;0;0) it is
sufficient to investigate two-point distributions with y = 1.
The results published in Rasch, D., and Herrendérfer, G..
(ed) (1982) show that the two-point distribution with
y=1 can be considered a ,borderline distribution® for
three-point distributions belonging to the class K(0;1 05,
For the following investigations we choose i =7 and
7o =—1.9.

3.3.2. Results in the Classes K(0;1;0;7) and K(0;1;0;—1.9)

In view of the results obtained in 3.3.1, different x;
values were selected in order to include extreme three-
point distributions. The calculations were restricted to
2 <n < 150 in order to keep the calculation effort within
reasonable limits. In view of this constraint, the investi-
gations into robustness for «= 0.01 are no longer suffi-
cient and have therefore been ommitted from the follow-
ing tables. The distributions have also been omitted to
save space. The two following tables do, however, show
the two x4 values.

These results confirm our suspicion.

So far we have considered only distributions with = 0.
We shall now take a look at how skewness affects robust-
ness.

3.3.3. Results for yy =1

Since there was reason to believe that the values n, are
increased by skewness, the calculations were performed



for 2 < n=<250. The two following tables coniain the
results for three-point distributions from the classes
K(0;1;1;0) and K(0;1;1;—0.5).

Comparison of tables 5, 6 and 7 reveals that the effect
of yy=1 on n; is greater than that of y,=17 or y,=—1.9.
If, moreover, tables 7 and 8 are compared with the results
for two-point distributions with y, =1 in tables 2 and 3,
it is evident that the two-point distribution can no longer
be considered “extreme”.

Table 5

Dependence of n; on x; for ¢ = 0.2 2 in the class
K(©;1;0;7)

. u-test  ttest

a 0.10 0.05 0.10 0.05
X3 X
1.5 1.021041 12 16 9 23
2 1.017090 31 35 29 38
3 1.012657 61 61 52 66
4 1.010084 72 Vil 83 84
6 1.007179 35 42 35 41
10 1.004558 48 62 48 65
50 1.000981 62 96 64 94
Table 6

Dependence ol n, on x; for ¢ = 0.2 2 in the class
K(0:1;0;—1.9)

) u-test t-test
o 0.10 0.05 0.10 0.05
X3 X3
1.5 1.021041 12 16 9 23
2 1.017090 31 33 29 38
3 1.012657 61 61 52 .66
4 1.010084 72 77 83 84
6 1.007179 35 42 35 41
10 1.004558 48 62 48 65
50

1.000981 62 96 64 94
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Analogy of the Linear Regression and the Two-Sample Problem in Robustness Investigations

MANFRED HORN

Abstract

For the linear model y; = a-+bx; +e; with given x-
values the robustness of the t-criterion for testing the
slope against 0 or of the corresponding confidence interval
for the slope may be investigated, among others. When
doing this for the simplest case of only two different
values of x, the t-test becomes equivalent to the t-test for
comparing the two means of y at those two positions
of x. And the confidence interval of the slope is simply
the interval for the difference of these two means divided
by the distance between the two x-values. Thus robust-
ness statements for the 2-sample problem may be trans-
ferred to regression.

For the inverse problem of confidence estimation of some
x-value corresponding to a given y-value similar conside-
rations are possible.

1. Introduction

The investigations are related to the linear model y; =
a+bx;+e (i=1,...,n) with given, nonrandom x;.
The e; are independent random variables with Ee; = 0,
Var e; = o If we assume the e; to be normal distributed,
we get hy

~

bitn_z’l_m/2 (”

lZ(Xi—i)z

limits of a (1—a)-confidence interval of b,

lE(xi—?)_’ ()

a t-distributed variable for testing the hypothesis H : b=0,

t=

o

1 (Xo - 3—‘)2 \

<y°—-§——8x0)2.<_t:‘_2‘l_a/232 (H-*‘ —2—-(;:?‘_:)—2) (3)

a (1—a)-confidence region of an unknown regressor value
Xo for which the expectation y, = a4 b xg is given.

The task is to investigate the robustness of (1), (2), (3)
against violations of the normality assumption. The most
convenient case for practical investigations is that one
with only two different values X; and X, of the regressor
(Xy > X)), ie.

X, i=n+1..... n,+n,.

In this case we write the model in the form

.Vij=a+ij+eij <i=1,....nj; j=1-2;n,+n?=n),

2. Formulas

j
1 .
With \J=E;Zy-,j (i=12) we get
i=1
b= ¥o— ¥4 a___xzy1“x1)—’2
X,—X, X,—X,
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The estimated line passes trough the points (X, y)),
(X4, ¥2). The estimate of ¢? is

- A 2 b 2 n, \
Z(yi—ﬁ—-bxi) Z(Yil"',‘-'l) +Z(yi2—§2)
Szz':.i:1 - i=1 i=1
n--2 n1+n1—2
Because K—:ﬂ&_’f_‘}i_&
n1+n2
n
d __ 2=:_n_1£12_. —_— 2
an é‘(x‘ ‘() n1+n2 (XZ X1) .

(1) and (2) can be written as

tn,+n,-21-428

Vo= ¥ '/n1+n2
X, =X, X,— X, mn,

and

Y2—V¥ |/ nqn
=227}/ Ihils 2)
S n;+n,

3. Analogy to the Two-sample Problem

We can consider yyy, . s ¥n, and yp,. .-y ¥pn,e as indepen-
dent samples. The common variance estimate is

Ny

Z(Yil—y_'l)?'*‘g(hz—b_’z)?

i=1

n,;+n,—2

i.e, it is identical with s Now we can calculate a con-
fidence interval for the difference Ey;, —Ey;, . Its limits

are
_ - n,+n,
Vo= Vit bty 4ny-2.1-a/28 L E—
1 2 n1n2

This is identical with (1) apart from the factor 1/(X,—Xj).
Consequently, robustness statements for the t-interval of
the difference of expectations of two independent random
variables can be transferred to the confidence interval
given by (1).

We can also test the hypothesis H:Ey;;
t-criterion using the quantity

Vo=V mn,
s n,+n, °

This quantity is identical with (2). Because b = (Ey;,—
Ey;;) / (Xa—X,), both hypotheses H:b =0and H:Ey;, =
Ey;, are identical. The power function of a t-test depends
on H, (by the noncentrality parameter). For the test of
H :b = 0 the noncentrality parameter is

b o ou Eyj2—Eyp n;n,
7V2(Xi—‘\> = - l n,+n; °

Thus both tests have the same noncentrality parameter
and by it identical power functions. Therefore robustness




statements concerning the power function of the 2-sample
problem can be transferred to the problem examined
by (2).

The relation (3) holds under normality with probability
1—a for any x, or y,, We suppose that the probability
under an alternative distribution will be independent
from xqy or y, too. Thus we restrict to the simple case
Xy = 0 or y, = a. Then we get the relation

(‘ —A QStZSZ(—l--}————L——
= n 2<xi—fx>2)

which reduces to

i} X2 X3
(X,8, — X,&,)" <t2s? (n_1+n_2) (3)
2 1

n
i
_ 1 .
where ej=n—j E ejj (i=12).
i=1

Relation (3’) can also be derived with the following arti-
ficial 2-sample problem. We take X;eq,...,X; en, and
Xoen, ..., Xy en,1 as two independent samples and ask for
a confidence interval of E X, e;—EX,e,;. Because

Var (X8, — X,& )= X?Var &, + X? Var &,

2 ,
=g? (ﬁ_,. .)ié)
n, n,

the limits of a confidence interval of EX, e, —EX,e(
are given by

X X
n,

Xi&,—X,€ £ty yny-21-a/2 S -
1

In this way robustness statements with confidence inter-
vals for a difference of two expectations may be trans-
ferred to (3) as well to (1).
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Rates of Consistency of Classical One-Side Tests

JANA JURECKOVA

Abstract

One-sided tests of location are considered with the rate
of consistency as a measure of performance. It is shown
that the classical tests are poor for testing location of a
long-tailed distribution and thus are highly non-robust
from this point of view. On the cther hand, the test based
on the sample mean is equally good for every distribution
with the exponential tails as for the normal distribution.
The situation is similar with the t-test.

1. Introduction

Let Xi,...,X, be independent random variables, identi-
cally distributed according to the distribution function
F (x—0), where F belongs to a family ¥ of continuous di-
stribution functions (d.f.) such that 0 < F (x) <1 for all
x € Rl. The problem is that of testing the hypothesis
H: 6 = 6, against K: O > O,.

The power-function of a consistent test tends to 1 as
6—0,— %0, The rate of this convergence can be considered
as a measure of performance of the test. Juretkova (1980)
showed that the rate at which the tails of the distribution
F tend to 0 provides a natural upper bound on this con-
vergence. We shall show that this upper bound is attain-
able by the test based on the sample mean and that the
t-test is near to the upper bound, provided F has expo-
nentially decreasing tails. On the other hand, the beha-
viour of both tests is poor in the case of a long-tailed
distribution F. It means that these classical tests are
highly non-robust, if we admit long-tailed distributions,
with respect to the rate-of-consistency criterion. It was
shown in Jureckova (1980, 1982) that the situation is diffe-
rent with the signed-rank tests and with the robust pro-
bability ratio tests, which never attain the upper bound
but are more robust with respect to the mentioned
criterion,

2. Rate of Consistency of X -Test

We shall restrict our attention to the tests of the form

L if Th(X;=60..... X, —0,) > C,,

lr"n(zs) ={m if T,=C, 2.1)

0 if T, <C,
where Tp(x,—t..... Xp—t) is nonincreasing int  (2.2)
and [X(n)<00]=>Tn(X1—00 ..... Xn—0,)<Cp: (23)

Xm =...= X, are the order statistics corresponding to
Xy, ...,X,. We do not impose other conditions on Cp, 7,
in (2.1) but, in special cases of interest, C, and y, are

60

determined so that the test ¥, is of size « with respect to
some fixed distribution Fy€F (0 < a < 1/2).
Let us denote

- log E(.;(l - l['n(z‘())
—log F(O,— 0)

L 0f0O< » (2.9)
where the expectation E, is calculated with respect to
F (x-6). The probability of the error of the second kind
of the test y should tend to 0, as®—6; - x©, provided the
test y, is consistent for F. The rate of this convergence
can be considered as a measure of performance of v, with
respect to F. It turns out that the left-hand tail of the
distribution F provides a natural upper bound on this rate

of convergence. This fact is stated in the following
theorem.
THEOREM 2.1. Let X, ..., X, be a sample from the

distribution F(x—~0) (F€ ). Let v, be the test of H:0 = 0,
against K+ @> 0, satisfying (2.1) — (2.3). Then

lim B(@.yy: 1) <n.

) -0

(2.5)

Proof. The theorem was proved in Jured¢kova (1980) under
the assumption of symmetry of F. In fact, the symmetry
of F is not necessary, because

Eo(1= 1 (X)) = Po(Tn(X — 05) <Cp) 2 Po(X(n) < Oy)

=(F(6,-0))" (o)
which implies (2.5).

The first question is that of attainability of the upper
bound in (2.5). We shall show that the upper bound is
attainable by the test based on the sample mean, provided
F(x) >0 and 1-F (x) * 0 exponentially fast as x » — o
and x = - %0, respectively.

THEOREM 2.2. Let y, be the test of the form

(1if n'(R,—0y) =y,

in(X) = -
" lo it n'A(X,—0,)<u,

2.7
where u, = ¢! (1-a), 0 <« < 1/2, @ is the standard nor-
mal d.f. and

n
XHZ%ZXi.

i-1
Then

(2.3)

(i) lim B(@.yy:F)=n

@ -

for every d.f. satisfying

. r =1
lim {—log F(x)(b1 x| ‘) }:1 (2.9)
X —@
and
lim {—log(l—F(x))(b,|x]"7)“’}=1 (2.10)
X— 0



for some ry, v, by, by satisfying

221,210 by>b,>0.

(2.11)
(i) Tim B(@.yy;F) <1 (2.12)
~ .o
for every d.f. F satisfying
-
lim {—log F(x) (m log|x|) }=1 for some m>0, (2.13)
N +—@
Proof. (i) Let F satisfy (2.9) — (2.11). Using the Markov

inequality, we may write for every ¢, 0 < #+ <1, and for
all sufficiently large O,

Eo(l= (X)) =Po(n"" K, <n'?(0,— 0)+u,)

SPO(I)—(,,|>0——00— n_'/zu“)

2.14)
<E(expin(i—ob, [X,[")) |
'exp{—n(l—L)b1(0—00—n"/2uﬂ)”}

If we are able to prove

]:lo(exp=n(l—c)b1ii,1|”=) <% (215)
then (2.14) implies
lim B(O.y,:F)
v (2.10)

—r
> tim (n(1—0)(0—0,—n""2u,)" (0 —6,) ‘):n(l—n

A o
for every ¢ 0 < ¢ <1, and this further implies (2.8). Thus,
it remains to prove (2.15). By Jensen's inequality,

Eg(exp {n(l— )by Ry} < Eq ("xp{‘m A ixil”})
il /

§ n
:(Eo(exp{b,(l—f)|x1l"}))4 (207
Iv follows from (2.9) and (2.10) that there exists K, >0
such that

(2.15)

1—GXD{—'(.l—i)bzx‘d.}ﬁl’(x)ﬁ1—ex[){~—(l+%)b2xl'g:‘

for x > K, and

exp{~(l+%)b1ix|l1}sx»(x)sexp{—(i-é)bl[xlﬁ} (2191

for x < —K,. Let L; be the smallest number of [—K, , 0]
such that
exp]’—(’l—%)bwiqul‘}=F(L‘) (2.20)
and Ly be the largest number of [0, K, | such that
. . 4l .
I —exp |~ (1— Tz»)bzl,,z”‘ =1F(L,). (2.21)

It is easily seen that such numbers always exist. Consider
the d.f.

exp{—(l—%)b1|x|”} if x <L,
Ge(x)={ IF(x) it 1, <x<1,, (2.2
l—exp{—(l—%)bz\'?} if L,<x.

Then G,(x) is continucus and
Fin)z G(x) if x20
(223
N <Gy) if x<0,
Hence, integrating by parts and taking (2.11) into account,
we get

Eo(lexp{bﬁl—w) XWI”}) < \ exp{lh(l——:‘)IXIr‘l}dGC(.\)

—
I
=\ exp{m(l—;) x\”}dr(x)
I
®
+rzbz(1—§)\,\"?"exp{b1<1—c)x"1—(1—§)b2x"1=dx
I
].4
+1'1b‘(1—%) \ ,X‘”'IGXD<—éb1%X‘”}dx<\iﬁ‘ (.20
- '

This completes the proof of part (i).
(ii) Let F satisfy (2.13). Then

]‘:l-/(l - ’/'n‘/,{\-)) =P, (in <00—0+ n_'/zua)
> 1»0(X1<0—00 —n My, Xn1<0—0,— n"]”uw
X, <@n—=1)(0,—0+n"""u,))

N

= (l"(OVOO—n_l‘“u,,))n_], F{(2n — 1)(00—04-11_1"‘%1:‘).)

so that

lim B(O.yy: F) < Tim

M ) ool

—_—

m ('lug,('_'Zn —~1)

[N . !
+log(0—0, -n : “u,)) (mlog (O 6),“,’)) (= 1. (2.20)
The test (2.7) attains the highest possible rate of con-
sistency for every distribution with exponentially decreas-
ing tails. These distributions cover, among others, the
normal distribution N (0, ¢¥) with unknown ¢. From this
point of view, the t-test cannot be better than P, even
for N (0, ¢®) with unknown g. On the other hand, the test
v’y is poor for long-tailed distributions satisfying (2.13)
(even if the right-hand tail of F is exponential).
The following section will be devoted to the tail-behaviour
of the t-test.

3. Rate of Consistency of t-Test

Let us consider the t-test of H: ©@=0), against K: & >0,
in the form

v il To( X = 0g) 2 t(n—1]1—a)
i (X)= (.1
2 00f Ty (X = 0)<t(n—1]1—a)
where
Ty X —05) = (n—1)""* (X, —0,1/S,,.
| n n‘ (2
\n‘n_l i Sn= l X, — Xyl
il i-

and t (n—1|1—a) is the upper a-percentile of t-distribu-

tion with (n—1) degrees of freedom. Jureékova (1980)
proved that

, /=2

lim BO.yh: 1) = n (14t —1]1—0) - (n—1)"")

e

a.n
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provided F is normal, while

lim 13(0. qu,:F) <1 (34)

) -

provided F is a long-tailed distribution satisfying (2.13).
The question of interest is whether w; is equally good
for other distributions with exponential tails as for the

ncrmal distribution. This is partially answered in the
following theorem.

THEOREM 3.1. Let Xi,...,X, be a sample [rom the
population with the df. F(x—0) such that F satisfies

2.9) and (2.10) with 0 <r <1, 0<b <bh, Let y, be
the t-test of (3.1) and (3.2). Then

lim B(O. yhs F)2 n“/z((n - 1)_]/2t(n —11—- o) + 1)_1.1 (3.5)

O—c

provided 0 < r; < 2, and

lim B(O.y5:F)2n((n—1)""t(n—1f1—a)+1) 7" (o

) — 00

provided r; = 2.

Proof. We have

Eo(l=vh(X)) =Pl —1)" "t —1)1—0)8, - X, >0 —0,)

n 1/2 \
coiist _1)~|/2t(n_1|1—0))<%2‘ xf) >0—00). ()
: i=1
Let first 0 <r; < 2. Then, using the Markov inequality,

we get
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n 1/2
110((1+(n—1)—1/21(n—1}1—0))(%2)(?) >0—00)
) i=1 !

! ’ B 1 n 1'1/2'
SEO(exp'n”/“(l-—e)b1(EZXiz) ) (3.8)
i-1

|

'exp{—n-wl(l—f)l%(0—00)1.‘(1—%(n—1>—]/zt(n — 1}1_”)“'1!‘

for every ¢, 0 <e <1, and by c,-inequality,

¥ e )
EU(GXD"1“/2(1—&)[)1(%‘2)(?) ’)
i=1 )

(

n A
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l oy
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Asymptotic Robustness of Bayesian Decision Rules in Statistical Decision Theory

YURIJ S. KHARIN

Abstract

We consider the statistical classification problems when
conditional probability distributions of observations are
given with distortions. Robust decision rules are derived
for Tukey’s model with contaminating distributions and
for the model with additive distortions of observations.
The guaranteed risk values for robust and Bavesian
decision rules are found and compared by the method of
asymptotic expansions. The results are illustrated for the
case of Gaussian observations.

1. Introduction

In statistical decision theory the Bayesian decision rule
(BDR) is widely spread, which minimizes the risk (ex-
pected loss) of decision making. For BDR construction in
statistical classification problems it is necessary to know
the loss matrix, class prior probabilities and the condi-
tional probability densities. In practice these characteris-
tics are estimated by real data. That is why the specific
prior uncertainty appears in applied classification pro-
blems: the values of the mentioned characteristics are
fixed but with any possible distortions; in other words,
the statistical classification model assumes any distortions.
Ignoring them we receive the BDR, the risk r, of which
is minimal for the distortionless model. However, in the
situation with the real data the classification risk r of this
BDR can be much more than r,.

In this connection the following topical problems of robust
statistics are considered in the paper: A) to investigate
BDR'’s risk in the presence of distortions; B) to construct
the robust decision rule the guaranteed risk value (sup-
remum) of which is minimal; C) to find this minimal
guaranteed risk value,

The review of robust statistics results was given by Rey
(1978). The problems A, B were considered before in a
simple case: the loss matrix (Kadane (1978)) and prior
probabilities (Kadane (1978), Berger (1979)) only are sub-
jected to distortions. A problem closed to B was con-
sidered by Randles (1978): the loss matrix and prior
probabilities are exactly known and conditional densities
are Gaussian, but their parameters are estimated by a
sample with outliers. In Huber (1965) a special case of
problem B with densities distortions was considered (1wo
classes), but for another optimality criterion: to construct
the test for which the power is maximal and the size is
equal or less than the significance level.

In this paper the problems A, B, C are solved for the
situation with densities distortions by the method of
asymptotic expansions of risk (Kharin (1981), (1982)).

2. Mathematical Model

Let observations of L classes £y,..., &;, appear in RI
with prior probabilities xy,..., 7y (7 -+...4 7, =1.
An observation from £, is a random vector X; € RN with

probability density p; (x), x & RN, The classification loss

matrix W= (w;, ) is given; wj, =0 is the loss value
when we classify an observation from £ into £,
(i, k= 1", L). The density p;(-) is given with distortions:
Pi(+)ePife ). i=1TL. )
where P; (s_“) is the family of admissible densities for
2;;0=<e¢,; <1is the distortion level for £; . If £ ,; =0,
then any distortion in £; is absent; P; (0) contains the
single element p; (1) = p?(-): the distortionless density.
The concrete definitions of the families {P; (#,{)} are
given in the following sections.
Let d=d(x) be a decision rule (DR) defined by the
measurable function d(:) ; XN - {1,2,...,L} . The risk
for this DR is the mean of the loss:

L
Z it (d;Pi) .

i=1

‘=‘<d?{91})=
where
ri(d§pi):E{“'i,mxi)}is
the conditional risk of the classification of the observa-
tions.

By the guaranteed risk value for DR d(-) we mean the
supremum of the risk on all admissible distributions (I):

L
ti(d)=  sup t(d;{py)) = 2’ mit,(d).
{pi(~)e}'in+i)} -

rild= sup  ry(dipy),

pPi(-)ePjles)

We say that the decision rule d = d«(x) is a robust one
(RDR), if its guaranteed risk value is minimal:

L (de) = inf v (d).
O

We shall characterize the asymptotic robustness of a
DR d(-) by asymptotic expansions of its risk Ty (d) on
the powers of the values {¢,}.

3. Asymptotic Robustness of DR in the Case of Tukey’s
Model

Let the model (I) of the distortions be Tukey’s model
with contaminating distributions (Tukey (1960))

(1—e)p

0<¢; <e+, hi(-)elli}.

Pife,y)=1pi(): py(x) = %(x) 4+ ¢ hy(x).

Hy={hy(-) \h )ax =1

Here h;(-) is a density of the contaminating distribution
from the family H,, ¢; — the coefficient of contamination
influence for 2,. Tukey’ model (2) has the following in-
terpretation in the statistical classifcation problems. The
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class £, of observations consists of the two subclasses:
O = .Q‘.’ Uehel ne =g
(frequently observable) subclass; !2? is the non-studied
(rarely observable) subclass. A random observation from

.(.)(1’ is the well known

!!? has the known density p(i) (-) and from Qih — an
unknown density h; () € H;. If 2, is observed, then an
observation from .Q? appears wilh probability 1—e¢;
and from 2 — with probability &;.

At first we investigate the influence of the distortions

(1), (2) on the BDR, which is constructed for the distor-

[0

tionless model V. This rule is well known:

nbl\)

ki

L
d=dy(x)= Z i1 0(x).

where U(-) is Heaviside unity function; V? C RN is the

region where the decision “d=1i" is made;

I (0 =1, if x € V§; 0, if x ¢ V{};
1.

£2(x) = 5‘

i () = £, (x) = £(x).

™Dy (X) Wy
ki (X) is the Bayesian discriminant function for classes
20 o0

i***k*
The BDR’s risk

L L
v, = r(<10: {1)?}) S TiToi- Z Wij \ x)dx.
i =1 10
J
Let wy, = MAX W . The following theorem holds.
Theorem 1. For conditions (1), (2) the guaranteed risk

value for BDR dy(-) is

I
vy (do) = 1o+ 2. G (Wig o). (3
i-1

By analogy with (3) the infimum of risk can be obtained:

1.

v (dg)= inf t(dy: (p3]) = 10— _\::rizﬂ(roi —wi_).
fpitreri(ey ) i=1
where w,_ = min Wij.
i
Corollary. If ¢,; =& Is independent of i, then

r+((lo)=v0+a+(ﬁ+—ro). r_(d0)=r0—4+(ro—W*).

where \ |

1.
=)

il

W

In particular, if Wy = 1— 61]-

then the probability of classification error belongs to the

interval: .
ooyt Sv(dot [Di]) Sep o, (=),

Let
L

ina \\,,p N)

j=1

)+ 8;(x).

gi(x)=

f(\)—f (x) f(x) = fl.(x) — £3(x).

Theorem 2. For the distortions (1), (2) the robust decision
rule is given by

let . +(

U(fki(x))' (4)
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(0;; is Kroneker’s symbol),

Corollary. In the situation with equal contamination
levels (’54—1 =¢, ,i=1,L) the BDR is the robust decision
rule.

We derive now the asymplotic expansion for v (ds) and

coompare it with t (dy). Let </ be the gradient on x € R™;
“1” is the transposition symbol; £y = mz_xx €y

Aije(®) = |V 5[ [V 1] = (9785 (OO

Iyj= {x: f;(x) =0]
is the discriminant surface in RN for the two classes
0 o
2 -(JJ, =+ ; Fij
which is the border for V?.

is that “part” of the surface 1'ij

Theorem 3. If {p(,] (x)} are differentiable and surface

integrals
-1
almu“‘ \ pl(\)pm ‘vtu [ dsI\'-I‘

i

’ -1
biiji = \ 5 (X) DY () Py (%) (A1 (%)) gy
r;jn/kj

are finite, then the guaranteed risk for RDR di(-) allows
the asymptotic expansion

1.
1) =r,(d reamFO(e)] ;
r+((*)—f+((o)_ O™ mé+164m (°+)’ )
Im=1
where
-1 I. l \
(‘lm=2, Z (“'lj-“'li)(“ymj"“vmi)(alnn]/z bllﬂl]l\)
i=1 =i+ kST
1.
— N\ {w . , ,
— (“13“ “li)(“mk"“mi)blmijk .
k=j+1

The total proof of this theorem is given in Kharin (1982).
Note, that in the case with L =2 classes bjn;;, =0 and
the computation of expansion coefficients in (5) becomes
casier.

The practical value of theorems 1, 3 lies in the fact, that
(3), (5) generate the approximate formula (with the re-
mainder term 0 (rf)) for RDR’s guaranteed risk compu-
tation.

4. Asymptotic Robusiness of DR for Additive Distortions
of Observations

Let the observation model have the form:

Xi=X0 ey, Y. i=11, ()
Here X‘i’ ¢ RN is the distortionless random vector with
known thrice differentiable density p(i] (x); Y; € RN is
the random vector of distortions with unknown density
h; () € H;; [X}, Y, are independent. Let H; be the family
of densities having the moments for third order inclusive,
the first and second order moments being fixed:

Thi(v)20. \h( Jdy=1. E{Y;]= 4.

rY

]Ii= hi(')

Cov{Y,Y|=2



where y; € RN s fixed mean and X is fixed covariance
matrix. The model (6) has the following interpretation.
The study of the classes {.‘!i} (including the estimation
of {p? (-)} ) was conducted for “ideal” conditions (with-
out distortions), but real observations are corrupted by
random noises {Yi}, the statistical properties of which
are partly known.

Because of additivity of the model
densities in (1) takes the form:

(6) the family of

lJ-,(\'s,Hj)z pi(+): py(x)= \ p; l,\')ln(y)(ly. h-l(-)eili
Ry ’
By analogy with the section 3 we investigate the asymp-
{otic robustness of DR for this model.

Let

L
0j=— Z \ p?(x)d.\ — column-vector,
\

j=1 3.0

I .
f"izi“'ii\ v’ p; %(x )dx — (N x N) — malrix,
j=1 \<1>

Theorem 4. For the model (6) of distortions the guar-
anteed risk value allows the asymptotic expansion:

I
ry(dy)=ro+ Vs

i
Theorem 5, With the remainder 0( ) the RDR for the
observations with additive distortions has the form (4),
where

e (u o +*+|(“ /, ,,..p’r('_\d‘i/;i))/’/g),}.0(‘»“)

L
fi(x) = f{(x) + 2’ rwiap(x).
1= 1

aitN)=ci( = Vo) +egi( VD),

+1e (3 VD) 2)

The asymptotic expansion for the guaranteed risk value
of this RDR is defined by (5), where the expansion
coefficients are evaluated by the formulas:

5. Robust Classification of Gaussian Observations with
Distortions

In statistical classifcation problems the Gaussian model
is usually used as a distortionsless model for { !J‘i’ } For
this situation we illustrate here the results of the section
3. Let us have L =2 classes and p;(x) =ny (x|a;, B) is
the given N-dimensional normal density of an observation
from !JO' a; ¢ RN — the mean, B — non-singular co-
variance malrix; w;; =1—9;; (because of this the risk
is the unconditional probability of error). It is known
that the BDR is linear in the described situation:

d=do(x)=U(b"'x —3,)+1. b=B""(a, —a,)

Yo= (az +31)TB_1 (d; - 31)/2+ In (n1/n2)

and the error probability is equal to

2
rozl—:ni’b(/J/Z—(—1)14_11n(n1/n2)).
where @ (- ) is the stdndard normal distribution function

and 4= 1 (a)—al) Tp- 1(32— dl) is Mahalanobis distance.
By theorem 1

)
S it (a2= (=1 In nlm/m)).

i=1

Using theorems 2, 3 we find RDR and its guaranteed risk:

I—eyy
Y=ot In g

d=d,(x)=U[b's=y)+1

t42

ERTEENY

el +0(:3)
n)/24)

In Kharin (1982) the comparative analysis of r;(d*) and
T, (dy) is made and the conditions of RDR’s essential
superiority are established.

v ldy) =1y (dg) = ———
2}/) I(\p( +(ln(

I
Cim = 4 Uym iy -

=

i=1 j=it 2

I
=J
X\

lijn[‘k‘i

+1
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Ranks, Standardized Ranks and Standardized Aligned Ranks in

the Analysis of Friedman’s Block Design
PAUL VAN DER LAAN, JOS DE KROON

Abstract

In this paper the use of ranks, standardized ranks and
standardized aligned ranks in the analysis of Friedman’s
block design is elucidated. Block designs with unequal
numbers of observations per cell are considered with the
restriction that the design is orthogonal.

1. Introduction

A randomized block design with I blocks and J treatments
and with m;; (> 0) observations per cell is considered.
A cell is an intersection of a block and a treatment. We
assume that the observations have continuous cumulative
distribution functions and that the observations in diffe-
rent blocks are independent. In this paper we restrict
ourselves to orthogonal designs, i.e. the number my; i=1,
...,land j =1,...,J) of observations in cell (i, j) is equal
to m; *m;/m  where m; = ;‘m >

m'j=‘; m;; and m =

= Z'my; following the familiar dot notation.
33
In the following figure the foregoing is summarized.

ij

Treatments
1 ... F oo 3d
Iim m, . m m, =L m.
- 1.7 771
B . |11 1y 1 i
1 m, *m .
0 = LR §
c T M iJ M50 my Z.mu mu m
J .
k
° =Lz
Llmy ™ ™ "7
m1 m.J mJ
=2Im, =Lm,. = Im;
i il PR i iJ
Figure 1.1.

An orthogonal randomized block design; m;. represents the

i
number of observations in cell (i, j).

We want to test the null hypothesis
Hy: no treatment effect

against shift alternatives of the form Fy;(z) = F;(x — 4;)
where Fij () is the continuous distribution function from
which the observations in the i-th block and under treat-
ment j are drawn (i=1,..., I and j=1,..., J) and 4;
is a shift parameter.

2. The Use of Ranks

For testing the null hypothesis in the case that the
number m;; of observations per cell isequaltol (i=1,...,
I; j=1,..., J), the distribution-free test of Friedman
using ranks can be applied (Conover (1971)). The obser-
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vations within a block are ranked in increasing order of
magnitude and ranks 1,2,...,m; = J are allocated (i =1,
.., I). The test statistic Q of Friedman is defined as
follows

Q=121+ X X (-1 )"
1

where Iy i=1,...,1; j=1,...,Jd) is the rank of the
observation in cell (i, j), the combination of block i and
treatment j.

Furthermore, i'.j =1y r;; and E_ = (1J)"'Y X' r;; Tables
i ' i
can be found in Owen (1962) and Obeh (1977). The

test statistic Q has under the null hypothesis of no
The test statistic Q has under the null hypothesis of no
treatment effect, asymptotically for I tends to infinity, a
chi-square distribution with J-1 degrees of freedom (Hajek
and Sidak (1967)).

In the case of an equal number m of observations per cell
one can apply the test of Friedman for m observations
per cell as we call it, with test statistic

Q= 12{mJ(mJ -}-1)}_1 22X - e
i1

where r'ij) is the rank of the 1-th observation (1 = 1,
...,m) in the i-th block and under freatment j (i =1,
.., I; j=1,...,d), ranking each block separately, 17.]-. =
(Im)-t XXy, = (Jm)-! YX¥X r (Conover
il idil

(1071)). It is well-known that Q,, has under H, asympto-
tically, as mI tends to infinity, a chi-square distribution
with J-1 degrees of freedom. In table 2.1 some critical
and “almost” critical values of Q ,, can be found for the
levels .001; .01; .05 and .10, respectively.

andr ij1

Table 2.1.

Critical and “almost” critical values of Q, for the levels
.001; .01, .05 and .10, respectively.

The left column gives values C and the right column the
values P = P [Q,,= C].

J=2,m=2,1=2 7.68  .007 549  .026
480  .056 588  .021 420  .055
2.70 167 4.32 .054 3.09 107

. 3.00 119 B

J=2,m=2,1=3 —— J=2m=21=8
720  .009 J=2,m=2,1=6 10.80  .0010
5.00  .037 12.10  .0003 9.08  .0029
320 120 1000  .0015 750  .008

=810  .005 6.08  .018

J=2,m=2,1=4 6.40  .015 480  .038
9.60  .0015 490  .037 3.68  .074
735  .008 3.60  .081 270 .132
5.40  .029 250  .156 S
375  .079 o J=2 m=21=9
2.40 179 J=2,m=2,1=7 1127 .0007

—————— 12.34  .0003 9.60  .0021

J=2,m=2,I=5 10.37  .0012 8.07  .005

12.00  .0003 857  .004 6.67  .013
972  .0015 694  .011 540  .026



421 051 4.00  .054 J=3, m=21=8
327 093 278 114
12.96  .0010
240 156 o ails 1289 oonl
J=2 m=21=10 J=2,m=4,1= 9.00  .009
i . 11.02  .0007 882 011
1176 .0006 M .
1014 0016 10.08 0012 6.11 047
796 009 752  .006 6.04  .051
. 018 675  .010 475 095
600 .018 469 035 461 101
486  .036 108 050
384  .065 300 097 o3 I
¢ 9. . =3, m=21=
294 L 252 .13l 08 0009
J=2,m=3 1=2 . e 1279 0011
771 .0050 J=3m=21=2 486 010
6.10  .015 9.14  .0007 879 011
4.67 040 8.14 0037 6.10 048
343 .090 743 011 6.00 050
2.38 170 6.14 .041 470 .095
o P Y .056 1.67 103
J=2,m=31=3 514 086
9.92 L0010 4.43 116 . oy
840 0032 St J=dmeg 12
7.00  .009 J=3,m=21=3 10.98  .0009
573  .020 10.67 .0010 10.48  .0010
459  .041 10.57  .0014 8.40  .009
3.57 .077 8.67  .009 813  .011
268 132 8.00  .012 5.91 .048
T T T 600 047 573  .052
J=2,m=3, I=4 581 .056 480 095
1071 .0007 495  .082 458 103
9.33 0020 4.67 107 -
6.86 .010 J 73 2'1 s J=3,m=31=3
576  .020 =3, m=21=
476 036 12,07 .0009 {}gé gg}g
386 .062 11.64 0011 oL
3.05 102 8.64 009 8. 2 .
s e e o1 8.56  .010
J-2,m=31=5 579 050 5.90  .048
11.67 .0004 5.64 057 5.81 83;
10.37  .0011 457 097 4~f§g g
694  .009 450 110 1.6 :
595 017 R
4.20*  .050 J=3,m=21=5 J=3,m=3,1=4
344 078 1240  .0010 1242 .0010
2775 119 12.06  .0011 12.36  .0010
- ) T 863 .010 $.87 010
J=2,m=3,1=6 8.46 011 882 010
11.46  .0006 6.17  .046 6.02  .048
1029 .0012 589  .052 5.96  .050
714 008 463 096 469 097
622 .015 451  .106 462 101
457 039 -
384 060 J=3,m=21=6 J=3 m:=31=5
317 .090 1276 .0009 12.85  .0009
257 131 12.33 L0011 12,82 .0010
T STLT 900 009 8.87  .010
=2 m=4, 1=2 871 010 882 010
10.67 0002 6.05 049 597 049
9.38 38% 590 053 592 050
;’83 oot 462 100 476 095
504 029 443 109 460 101
417 050 J=3,m=2T=17 J:4,m--2,T=2
338 .082 6 - or
’ 1261 .0010 11.25  .0009
(267 128 y953 0011 11.08 0013
, 41— 8.94  .009 933 .009
J=2,m=4, 1:3 8.86  .011 925  .010
Ll e 6.04 047 733 046
10.03 - o0lt 6.00  .052 725 051
R 457 099 617 094
625  .013 453 106 608  .106

4.69 035
When the numbers mj; of observations per cell are not
equal, it is possible to apply the test of Benard and Van
Elteren (1953). This test is suitable for general designs.
For orthogonal designs the test statistic has the following
form ‘

?

QO=121\'{§|1117.(1114,‘+1){ %'m:j‘{;-‘j. ﬁé%'.mij(min)} .

* Critical at the .05 level.

The test statistic @, has under the null hypothesis asymp-
totically, as I tends to infinity, a chi-square distribution
with J-1 degrees of freedom (Benard and Van Elteren
(1953)). If my; =1 (i=1,...,I; j=1,...,J) this test sta-
tistic is equivalent with Friedman’s test statistic and if
my; — m it is easy to show that this test statistic is iden-
tical 1o the test statistic of Friedman's test for m obser-
vations per cell.

3. The Use of Standardized Ranks

When the numbers of observations per block are unequal,
the test of Benard and Van Elteren presents difficulties.
Namely, the level of the transposed response variable, the
rank, depends on the number of observations in the cor-
responding block and therefore differs from block to block
in the case that the numbers of observations per block
are unequal. This objection can be avoided by using a
natural generalization of Friedman’s rank statistic. For
this generalization of Friedman’s test statistic standardized
ranks Ty (i=1,...,;j=1,...,Jand1=1,...,my) are
defined as follows

l\'mz {rm_‘—;—(m-‘.—)— 1)} {ligmi,(mj, +1)}—1/7

Under the null hypothesis these standardized ranks have
expectation zero and asymptotically, as m; tends to infinity
for i =1,....1, unit variance. The “standardization fac-
tors™ are derived by De Kroon and Van der Laan (1983 a).
They also showed that the test statistic (for orthogonal
designs)

=

@ = ?’m’j(f'_j_y

for testing against treatment effect, has under the null
hypothesis asymptotically, as m; tends to infinity for all i,
a chi-square distribution with J—1 degrees of freedom.
If the numbers of observations per block are equal they
also showed that the proposed test statistic is equivalent
with the test statistik of Benard and Van Elteren.

We shall now give a simple example in which the diffe-
rence of the test procedure of Benard and Van Elteren
and the proposed test procedure can be illustrated. The
results of an experiment with four treatments and ob-
servations in six blocks are given. Ranking the observations
per block gives the following rank results:

Treatments

1 2 3 4
B 1 T )_"ﬂ-g ' 47}& m;. = 4
! 2\1"213}4’ M. = 4

0 N \k\f
¢ 3)1 2 301 ma—4

k o Ta 4
s ' \.i_,]\ { \ki,‘ 4 m,. = 4

5 \ U2 s
NS S m; = 4

3 4 1 2

6 \ 6 | 5 7|9
Total rank sum | 8 112 10 11 | me = 4

We find for the test statistic of Benard and Van Elteren
Q) = 4.27
and this is below the five percent critical point 7.815.
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The results of the sixth block neutralize the very con-
cordant results of the first five blocks. For the proposed
test statistic based on standardized ranks we find

~

Q = 11.15.

This result is significant at the five percent level. The
example can only be considered as an illustration for the
difference of both test statistics. To obtain a better based
judge it is important to make a comparison of the power
functions of both tests. In table 3.1. the simulation results,
based on 2 000 samples from Normal parent distributions,
are presented for the following orthogonal design where
the numbers of observations per cell are indicated:

Treatments
1 2 3
1 12 12 12

2 2 2 2

3 1 1 1

wm N o O =~

The cases considered are the null hypothesis Hy and the
alternative f j+ %, where y is the standard Normal variate
and ﬂj is the mean of treatment j (j = 1,2, 3), with f,

0, By = % and B3 = 1.

The results for different critical values are dependent
since the same samples were used to estimate the powers.
The same can be said for the two cases. To get an efficient
comparison the same samples were used to estimate the
powers of both tests. For this design one can conclude
that the power of the new test based on standardized
ranks is better than the power of the test of Benard and
Van Elteren, as may be expected. More Monte Carlo re-
sults can be found in De Kroon and Van der Laan (1983 a).

Table 3.1.

Estimated powers of the test of Benard and Van Elteren (BE) and the test based on standardized ranks (SRT)

4. The Use of Standardized Aligned Ranks

For all these tests there is a separate ranking in each
block. Thus comparisons of the reponses take place only
within each block. Blocks can be made comparable by
subtracting from the observations an estimate of the lo-
cation of the block, for instance the median of the ob-
servations in the block. In this way we get m  differences.
This method of making blocks comparable is denoted by
the term “aligning”. We rank the m differences in in-
creasing order of magnitude with ranks 1,2,...,m . The

ranks are called aligned ranks and denoted by ri.j;. Now
we can determine standardized aligned ranks.

=2

Zln=ri|
1 !

v
P

(riji—13.) ]'“;] 4
J

These ranks have under the null hypothesis of no treat-
ment effect and given ranks in the blocks, expectation
zero and symptotically, as m tends to infinity for i = 1,
..., I, unit variance. De Kroon and Van der Laan (1983 b)
present a test based on these standardized aligned ranks.
They also compare the power functions of the various
tests. These comparisons are based on simulation experi-
ments.

5 A Concluding Remark

From the results of the various simulation experiments
which can be found in the papers of De Kroon and Van
der Laan (1983 a and b) one can draw the following ten-
tative conclusion. Standardized ranks and standardized
aligned ranks may provide an improvement in power,
compared with ordinary ranks, for the problem considered
in this paper. Not much gain, if any, seems to be obtained
by using standardized aligned ranks instead of standar-
dized - ranks.

2 H, ,
X P [ 12> X} BE  SRT BE SRT
1.00 .607 .622 617 .966 .967
1.40 497 .508 .505 941 .955
1.80 407 409 413 913 932
2.20 333 .342 .336 .885 .906
2.60 273 .280 .269 .853 .885
3.00 223 222 225 .818 .851
3.40 .183 .180 .182 782 .825
3.80 .150 152 .149 .748 793
4.20 122 .116 116 709 .760
4.60 100 .094 .095 .665 721
5.00 .082 .078 .078 .634 .689
5.40 .067 .066 587 .649

x Pl 2>x| .. T B

{ 19> } BE SRT E SRT
5.80 055 050 058 543 606
6.20 045 039 047 502 573
6.60 037 034 1038 464 535
7.00 030 026 029 430 496
7.40 025 023 022 397 464
7.80 020 018 018 363 425
8.20 017 015 013 328 394
8.60 014 011 012 295 366
9.00 011 010 1009 264 336
9.40 009 007 009 236 307
9.80 007 1006 1008 209 276
10.00 007 004 1006 200 260
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Chernoft Type Bounds of Errors in Hypothesis Testing of Diffusion Processes

FRIEDRICH LIESE

Abstract

A hypothesis testing problem of discriminating between
two diffusion processes &; (t), 0 < d§; = a; (t, &) dt +
dwW (1), 0 < t < T, isconsidered. The errors of first and
second kind can be estimated in terms of Hellinger inte-
grals, In the present paper upper bounds for the Hellin-
ger integrals are obtained.

1. Introduction

Let [2, 3] be a measurable space, P, Q probability mea-
sures on [2, F] and R a o¢-finite measure dominating
P, Q. The functional

S

H\.(P,Q)=\(dp) (99)]_*(11%. 0<s<1.

MWar/ Var

is called the Hellinger integral of order s. Hg plays an
important role in probability theory in treating the pro-
blem of absolute continuity Nemetz (1974) and Liese
(1976), in information theory Gallager (1968) and in
statistics Chernoff (1952), Evans (1974), Hibey, Snyder,
van Schuppen (1978) and Osterreicher (1978). In the pre-
sent paper we make use of the relation to the errors of
first and second kind in hypothesis testing problem if
both the hypothesis Hj:P and the alternative H; :Q
are simple.
There is a measurable partition C;, Cy, C; of 2, C; € F,
CiNG =0i+ijCUC C=Q with
P(C) =Q(Cy == 0 and P(-1C) ~ Q- ) Cy)
where ~ denotes the measure theoretical equivalence. Put
z— GP(1.Cy)
dQ (- Cy)

Given a level L the likelihood ratio test is defined by the
critical region

K=c . N{z<L).
The errors of first and second kind are given by a =
P(K), ﬂ=Q(§), respectively. Upper bounds for these
errors in terms of Hellinger integrals are due to Cher-
noff (1952)

«< inf L°H,_(P.Q).

0<s<1

In this way the estimation of the errors of first and se-
cond kind leads to the estimation of Hy. In the present
paper we investigate the Hellinger integrals of the distri-
bution laws Psi, of diffusion processes

< int L7 H(P.Q). (1)
u<s<l

Chernoff bounds are investigated by many authors. The
common method due to Evans (1974) is to introduce a new
process #(t) such that H <Psu P ) becomes a functional

t

of the type M exp {— g Viy rs‘)ds}.
0

Then a differential equations for this function is derived.
But this differential equation can not be solved in gene-
ral in a closed form.
In contradiction to this method we aim to estimate
Hy <P;~*l’ P;__z) by simpler and closed analytic expressions
using only the processes & and the functionals a;
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2. Results

Let [2, &, P] be a complete probability space, (fﬂ)tzo
a nondecreasing family of sub-c-algebras completed with
the zero sets of P. Assume that (W(t),5¥,) is a Wiener
process, i.e. (W(t),{¥,) is a continuous martingale with
W(0) =0 a.s. and

M((W(t) — W(s)?[Fg) =t —s, I=s=st <.

Denote by Cr the space of all continuous functions x(t),
0<t<T, with x(0) =0 (if T=02 then only 0<t<
is assumed). Denote by £ the s-algebra of subsets of Crp
generated by the projections up to t, £, = (x(s), 0 <s < 1).
Given a conlinuous stochastic process &(t), 0 <t<T on
[2, ¥, P] the distribution law which is defined on
[Cy, €] is denoted by P. - R denotes the r-algebra
of Borel sets of [0, T]. Assume that a; (t,x), i=1,2,
0=t<T, x € Cp, are N & L1 measurable and that
a; (t,) is Li-adapted, i.e. a; (t,-) is € -measurable for
every fixed 0 <t <T.

THEOREM Assume that &(t), i=1,2, 0<t<T< %
are ?\'t -adapted stochastic process with

):P({:\yaf(t,w)dmoo =1 o

o

l"([:\ya?(t.éi)dt<ai

si(t)=\ai(u.si)dwwm. 0<t<T o)
0
then
S1_]%527%
Uy (Pe.Pe )< inf | MD (&)275] (o
1( 51 ~9) \‘?:§1<\_7<] Z(‘*?)
where

0

T
Dy(x)=exp {—- % s(1—5) \ (31(t.x) — az(t.x))zdt}. (s)

Corollary 1 Assume that & (), 0<t<{>, i=1, 2, are
stochastic processes with (2), (3) for every T < 90, then (4)
is valid with Dg (x) from (5), where T = o0,

Corollary 2 Assume that & are from the theorem or
from corollary 1 and denote by «, g the errors of first
and second kind in the likelihood ratio test with given
level L, then

a< inf
0<s1<8,<1

s_]fas
L“‘[M(DSQ(&))”'S‘] %2

=< inf
0<s1<sy<1

’ S1 }82—9
L_\"[I\I(I)sz(gz))srﬁJ sz

Corollary 3 Assume that £ are choosen as in the pre-
ceding corollary, then



" 1

. !
a<LY Mexp{— é \ (an(t.y) = ay(1.8)) "t

0

B<L

~—

.
Mexp {— o | (anft.&;) =L, &)t
U

0 |r—m

In order to investigate the quality of the bounds of the
errors of first and second kind given above we consider
an example.

Assume that a(t), 0 <t <T is a real measurable function
T

with s a(t)dt < o0, Put a,(t, X) = a(t), a.(t, x) = 0, then
0

t
(= | awdu-+ W)
0

& and & (t) = W(t). Furthermore
P. 7/ P and
T T
I (W)= exp | | aaw() — L [ a
an. =exp{|a(t)dW(t)— 3 |albat
& .

Y 0
holds Lipster, Shiryayev (1978). The random variable
dPE’ , considered on the probability space
[Cp L1 PEE] is a‘c normally distributed one with mean
— 1/ ’1{ a?(t)dt and variance T a%(t)dt. Put A= 1; a%(t)dt
and de?note by @ (x) the distri‘l]aution function of t;e stan-
dard normal distribution. Given a level L. we get

In Z where Z =

F=P¢,({Z>L})

1 1
an+2A lnL-f-EA

=P — > —
VA VA

2

lnL-f-—;—A
=l—-0| ———- (6)

=

Denote by M; the expectation with respect to PSi then

M,explitlnZ} =M, ZexpitlnZ}
=M, exp|{(l+it)InZ]

Since In Z is normally distributed with mean — !/, A and
variance A

M,exp{wlnZ}=exp {— % Aw + %Aw’}
holds for every complex w. Put w=1- it then
ol — v lit 1 1 442
Mlexp{ltlnz}—e,\p 1t—2—A—5At
That means that In Z considered on the probability space
[Cp, €1, P | is normally distributed with mean !/, A

and variance A. Consequently the error of first kind is
given by

1
lnL—EA

c=P¢ ({ZSL)) =0 | ——— )
VA

We now assume that there is no reason to differ between

the processes & and &, That means that the error « is

not worse than § and conversely. In such a case we choose

L so that a=f. (6) and (7) show that we have to take
L =1. Hence

«(A=p)=o(= 3 Va) ®

Let us now compare the exact value of « with the bound
appearing in corollary 2. First of all we observe that

"
D,, (&) =exp —%sy (1~s,) | a2(v)at
[

is deterministic. Therefore

$1 | s2—5q

inf L™ M(Dy,(&))277] ™
0<S112§2<1 ( 52(51))

N
= inf exp ——ls2<1—52)—1— al(t)dt
0< 8 <8y< 1 2 S2 o
1
=exp{——A
‘p{ 8 l

In order to compare this bound with the exact value
® (—1/, }' A) we remark that

and

’I)(——I— VX)~ 3—1—(5xp{—-1—A} A—>

2 n VX 8
This asymptotic expression shows that the exact values
for the errors tend more fast to zero than the bound in
corollary 2 as A = 20, In the following table some values

of the upper bound and of the exact error probability
are collected.

o1, (p< 1 ~)
A exp. l 8 A[ 5 1A
1 0,8825 0,3085
3 0,6873 0,1932
5 0,5353 0,1318
10 0,2865 0,0569
15 0,1534 0,0264
20 0,0825 0,0127
25 0,0439 0,0062
30 0,0235 0,0031
35 0,0126 0,0016
40 0,0067 0,0008
3. Proofs

First of all we remark that T << % and (2) imply

1([\ a(L.g)|dt < f}) =1

such that the stochastic differential equations (3) make

sense. In view of Lipster, Shiryayev (1978) the relation (2)

implies P, ~ P, and the Randon-Nikodym derivative
dPEi

X 0= dPy,

the Wiener process has the form

(x), x € Cq considered as a functional of

1 T

X,(W) = oxp | — % {aZa wyat+ astt. wyaw ()
0 0
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Hence

T
X (W)X, (W) =exp -—%S(saf(t,w)-{-(l——s) (t.W))dl
0 ()
T
+ \(sa1(t.W)+(1—s)aq(t,W))dW(()
0

=D p(W)Z (W) where

t
g(sa1(u W)+ (1—s)a,(u. W))’du
0

\t(w): Xp

K\D|v-

(10)
t

+ \ (sa(u. W)+ (1—s)a,(u, W) dW(u)
0
and
t
1 2
Dy (W)=exp —Es(l—s)E(a(u.W)—az(u,W)) du}, (1
0
Suppose now 0 < s; < s3 < 1. Then in view of (9)

S Sq S
— — J—_
S 1- S 82 S
XP(W)X, (W) =D p(W)Zg, (W)X, (W)
Consequently
}151(P51'I)57) = \ X:1Xl-51 dp\\'
hoono L5
8o So S9
= ZSTT DSz.T XZ de
Applying now Holder’s inequality with p= S 4= : S"S
Sy’ Sa— 8
we obtain
I S1 8284 5_1
S2—81 S
H“1<P51‘P52) = \ Dot X,dPy (stz.pow) "

* $1 S2—H S1

S2-51 s ' 9

Il

/ . .
$1 S~ % $9

MD*?‘T‘1 (&) ] ™ (‘MZSTT(W))S?

Il
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It is known Lipster, Shiryayev (1978) that Zs, 1 (W) forms
a supermartingal with MZg ; (W) < 1. Hence
e 7%

HS1<P51.P5 )< MDs: F1("2) 2 (12)

Consequently the theorem is established.

the
- £, forms an increasing sequence
o (x(t), 0=t <o), It

In order to prove corollary 1 we denote by P?

restriction of P, to €,
of sub-o-algebras generating £ =

holds Vajda (1972)

n) _(n)  raresy .
Hs(Pg»Ps )——nhn;H (P 6 P52 ) for every 0<s <1, {13)
Alternatively
$ 1 S n
Sp—5 1 S.\1— [
Dsz‘n1(52)=exp ire—r— S (&) —ay(t.85)) at
0

(1)

52(1‘§2)51 ¢ 2
. 5 (an(t.&2) —ag (1.6)) "t
0

— exp
n-»oo

0o | —
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. S
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Sq S2—%1
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Power Simulation with the Same Random Sequences Under the

Null Hypothesis and the Alternative

M. A.J.van MONTFORT and L. R. VERDOOREN

1. Introduction

In studies of the power of a test Monte Carlo techniques
are used where the calculus to be done for getting the
exact power is too complicated. The simpliest way, called
crude Monte Carlo, consists of getting the fraction realized
test statistics in the critical region at the alternative hy-
pcthesis (K). In that situation simulated power (x) at the
null hypothesis (H) is an unbiased estimator of the size
(z) of the test with a positive variance hased on the hi-
nomial experiment.

Rothery (1982) investigates the power of a new statistic in
the situation where the power curve of an old statistic is
known completely, and he deals with reduction of the
variance of the simulated power by simulating both sta-
tistics using the same sequence of pseudo random num-
bers, and compared the result with crude Monte Carlo.
Also in his procedure the estimated power at H is an
unbiased estimator of « with a positive variance.

In the situation where no control statistic is available
variance reduction could be gained by using the simulated
critical value instead of using the known critical value,
see Andrews et al. (1972, p. 55). Here we give an example
of the reduction of the mean square error (MSE) by esti-
mating the power in the same sample as in which the
critical value is estimated and dropping the knowledge
of the exact critical value.

2. The MSE of the Estimated Power

Here we simulate the distribution of the test statistic
under H and K simultaneously and use the a-point of the
empirical distribution function at H as the critical value
in order to estimate the power (x) at K. The here studied
test statistic x could be the critical level of a test statistic
with a strictly monotonically increasing cumulative distri-
bution function (cdf). (Random variates are in bold face;
their realizations are denoted by the same symbol not
in bold face; a >~ b means that the cdf of a and b are
equal.) The critical level is the smallest significance level
at which H is rejected in favour of K; note that the critical
level has a uniform distribution at H.
For a test statistic x could hold

x~u" (N
where wu is uniformly distributed in (0,1), © a positive
parameter with @ =1 at H and 6 > 1 at K. This example
is chosen because of its transparancy.
Formula (1) is closely related to the Lehmann alternative.
A size a test for K results in a left sided critical region
with critical value a.
For the power one gets (with y = 1/6)

7I=P(_)(xSa)=P(uHSa)=P(u$zx]/(-l)=‘\y. (2)

Note that formula (1) is equivalent to

1
—logx=0. -1, )
and to
—log(—logx)~—logO+g (4)
where g stands for the standard double exponential distri-

bution (or Gumbel distribution or type I distribution of
maxima) with

P(gSg):exp(—exp(—g))‘ —o<g<+w. (5)

In a simulation with n uniforms on (0,1) we get for the
crude Monte Carlo with known critical value «:

n7=+#of u's with u’<«

=4#of u's with u<of=

(6)
(where 4 stands for frequency).

So n ;r\ has a binomial distribution with parameters n
and «"

In this situation 7 is an unbiased estimator of x and
MSE (%) = var (%) = ar(l = ar)/n. )

N
An other estimator = based on Ug, ..., u, could be ob-
tained in the following way. Sorting the uniforms gives

Uy, =...Su, . The critical value « is estimated by t,
with

L= U(n,). (8)
We restrict ourselves to combinations of n and « with
ne integer.

An estimate ; for the power x is given hy

nﬁ:#ofu&ﬂt
= 4% of U(i)St;,

=no+ #of u; between t and t”, (9)

We now derive the MSE of ;

Note that for ® =1 we find # = « without random
fluctuations.

Note also that (wp, iy ,..., %) behaves like an ordered
sample of n —n a = n (1—«) uniforms on the interval (t, 1),
so the number of u; values between t and t’ has a
binomial distribution with parameters n (1—a) and (t"—t)/
(1—t). Given t formula (9) results in

E(#t)=a+(1—0a)-(t'—t)/(1—1). (10)

In order to get E (;) we have to integrate formula (10)
over t. Using the wellknown fact that t =u, . has a beta-
distribution with density

)= I'p+q) P!

1—t) !
I'(p)I'(q) 4=

0<t<1 (11)

13



with integer valued parameters p and q with

P=nu«
q=n+1—n«
p+q=n-+1
we get
: t'—t
E(n):S{a-l—(l—a) — }f(t)dt
0
1
=a+(l-—a)g =L f(t)dt
J1-t

=a+(1—«)

1 {F(n+l)-F(p+y)_ } w

q—1| I'(n+y) - I'(p)
For the bias of 7 we get with formula (12)
bias (%) = E(#) — n = E(#) —o", 3

The derivation of var (:7) with formula (9) needs

1 Y__ Y _
var(ﬁlt)=§-n(1—a)- tl—tt -(l—tl——_%)

_l-a (t'=t)(1—t)
n (1—t)?

(14)

and results in
1
var () = S var (ﬁ|t) f(t)dt

0
__ (=«ln) I'p+y) _ _T'(p+2y)
(@—1)(@=27(p) |Fn—1+y) T'(h—1+2y)
_I'e+1)  I'p+1+y) )
I'(n) F(n+y)

The MSE of 7 follows by inserting formulae (13) and
(15) in

MSE () = {bias (#))” + var (7). (16)

If the efficiency of ¥ with respect to a/; is defined by
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MSE(#)
MSE(#)

we get with formulae (7), (13) and (15)
Py _ ¥
Kff = o (l ] )/n '
|bias (7))’ + var ()

A numerical example with « = 0.05 gives the following
values of the efficiency (Eff.); the right-hand column gives
the rank of the uniform used for the critical value.

Eff =

17

6 n 1435 50 05
power =ql/® 0.066 0.118 0.425 0.549 N«
n= 20 4.61 1.88 1.02 0.94 1
40 4.30 1.77 1.04 0.98 2
100 411 1.70 1.06 1.02 5
200 4.05 1.68 1.07 1.03 10
500 4.01 1.66 1.07 1.04 25
1000 4.00 1.66 1.08 1.04 50
2000 3.99 1.65 1.08 1.04 100
5000 4.00 1.65 1.08 1.04 250
10 000 3.99 1.65 1.08 1.04

500

This table shows that for small deviations from the null
hypothesis H a lot can be gained by using the same
random sequences at H and K including a simulated
critical value. Only far from H for unrealistically small
simulation sample sizes a small loss is found.

3. Concluding Remarks

In power estimation it seems to pay to replace crude
Monte Carlo by simulating the power in the same sample
as in which the critical value is simulated.

If one is interested in a difference in power, say = (Gh) —
7 (4,), the above mentioned method stresses attention to
the number of uniforms between t! ® and t!%: with
t =y, , and leads to similar results.

If some testprocedures have to be compared then the use
of only one random sequence and its estimated critical
values compares these tests at the same critical level,
being the correct critical level without random fluctuation.

Robust estimates of location: survey and advances.
Princeton NJ: Princeton University Press, 1972.

ROTHERY, P.

The use of control variates in Monte Carlo estimation of

power.

Applied Statistics 31 (1982), 125—129.
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Robustness of Two-Sample Tests for Variances
GERD NURNBERG

Abstract:

12 two sample-test for variances are investigated for ro-
bustness against violations of the assumed normal distri-
bution by means of simulation. The degree of non-nor-
mality is discribed by the parameters skewness (y,) and

kurtosis (y.). The real risk of first kind ;' and the power
function (at 3 points) of the 12 tests are determined for
the sample sizes n=6, 18, 42 and different pairs of (y,
ya)-values.

1. Introduction

Let X; and X, be independent random variables with
X, ~ N (1, 63) and Xy ~ N (i, 03 ).

By means of two independent random samples (X,...,
Xin and Xu, ..., Xon) with X;; ~ N (), 0}) and

Xoj~ N (20, "3) we want to test the null-hypothesis

against

A number of test statistics is available for testing varian-
ces: o.g. Bartlett (1937), Cochran (1941), Box (1953). First
investigations of the effect of nonnormality were made by
Box (1953), Levene (1960), Overall, Woodward (1974),
Brown, Forsythe (1974) and Geng, Wang, Miller (1979).

2. Definition of Robustness
Definition 1:
A test T, for given nominal risk of first kind «, which

has a real risk of first kind « for the normal distribution
is called e-robust in a class G of distribution if

max |«(n,g) I EL
geG

for given values of «, n and e.

The real risk of first kind « (n, g) depends on the sample
size n and the distribution g€ G.

In this paper the class G is characterized by functions of
the first four central moments s, =E (x — )k (k=1,...,4)
of the distributions:

A?n and y2=#—;-—3
] Hq

E(X)z‘u, v(x)=,“2=0'2- }/1=

and so we can write G = K (g, 0% 94, o) with skewness y,
and Kurtosis y,. Since all investigated tests are invariant
tests with respect to linear transformations of the obser-
vations, we can limit ourself to the class

G =K (0.1, yy, p).
3. Generation of Random Samples with Given
Distribution g€ G

Because the investigations of robustness (due to Defini-
tion 1) are made by means of simulation it is necessary

to generate realizations of the two random samples with
given first four moments.
The following three steps are carried out.

1. Generation of uniformly distributed random numbers
[see Herrendorfer (1980)]

2. Transformation of uniformly distributed random num-
bers to normally distributed ones with mean 0 and
variance 1 [Ode/Evans (1974)]

3. Using “Power Transformation” for given y,- and y.-va-
lues [Fleishman (1978)]:

y = a+ bx + ex? -+ dx* with x ~ N (0,1).

The coefficients a, b, ¢, d depend on given y;- and y»-
values.

Robustness of tests comparing two variances is investi-
gated for different sample sizes n (n = 6,18, 42) and also
different values of y; and y..

Figure 1
(g,, g) of characteristics from agriculture and medicine
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yi=1; ya=15

wt

+—> Y
" + > Y
-3 -2 5
nm=2=1
Figure 2

Densities of distributions generated by ,Power Transfor-
mation¥: ———
Density of the standardized normal distribution: - - -

For choosing (yy, y»)-values we investigated the sample
skewness (g) and sample kurtosis (g,) of practical charac-
teristics from agriculture and medicine.

The results are presented in Figure 1.

The selected (yy, y9)-values are:

71 0 0 1 0 15 0 2

¥a 0 15 15 37 37 1 7

Figure 2 shows the densities of distributions generated by
“Power Transformation“ for the selected (y4, y,)-values.

4. Description of the Tests

a) Bartlett-test [Bartlett (1937)]
Test statistic:

2 2
S S
B:—é—,(n—l){ln;;—+lns—§ @1
1 n
with 512= 1 . (xij—ii')z (l=1,2),
n—1 {3
g Sts
2
d C=1+ !
an = - .
2(n—1)



In the special case of testing two variances and for
equal sample size the Bartlett-test corresponds io the
two-sided F-test!

b) Modified Bartlett-test [Box (1953)]

Test statistic:
ry =1
B*=B-(1+%)

with B from (4.1)
and

Approximate critical values: z*(1;1—a).

¢) Modified y*-lest [Layard (1973)]

2 2 2\ 2
Ins;+ Ins 1 ,
A=(n—-1D (msf——‘—?——’)/[u(l—;)-gz]
i=1

with g’y from (4.2)
Approximate critical values: 7 (1;1 —a).

d) Cochran-test

-

Test statistic:

?
max [si}
G=—— (i=12)

s, +s,
In the special case of testing two variances and for
equal sample size the Cochran-test corresponds to the
two-sided F-tlest!

e) F-test

Test stalistic:

F=

m[m
[

Critical values:

l“(n-—Ln—l. 1——%)

f) Range-test
Test statistic:

max {w;}
R=—— (i=12)
min {wi}

1

min {xii }
J ’

Critical values: R (2, n—1; 1—a)

[Table in Pearson Hartley (1966)]

Box-Scheffe-test (also known as Box-test or Box-Ken-
dall-test) [Box (1953), Scheffé (1963)]

The samples are randomly divided in ¢ groups. These
groups contain my; i=12;j=1,...,¢) observations

with w; = max {xij} — fj=1,...,1n
J

ac
~

\1 =
(.a my; n |.
j=1
Let Zij = In sfj where sfj is an estimator of nf.

Test statistic:
2

2Ac—1)c Y (% ~Z)

i=1

by f( —z,)

Approximate critical values: F (1, 2 (c—1), 1—a)
In this study c is choosen to 2 and 3.

h) Box-Andersen-test [Box/Andersen (1955)]
Test statistic:

=

S
F=—:

2
Sz

Approximate critical values:

r\ =1 ry =1
Am—n-l1+28) : m=p-[1+8) ;. 1-2
F((n 1) (1+ 2) ; (n=1) <1+ 2) ;1 2),
with g, from (4.2).

i) Jackknife-test [Miller (1968)]

1 .
X; i=12;j=1..... n
n——lZ it )

t£]

Let ii(j) =

5a2<j)= n—i—2 % (xit—
4

ii(.i))z

and Z;;=n-In sz —(—=1)-In siz(j)

Test statistic:

2 n
21 2 (25—
Approximate critical values: F (1; 2 (n—1), 1—a)

j) Levene-z-test (also known as Pfanzagl-test)
[Levene (1960)]

Let y;j= Ix x,l i=12;j=1,.... n
Test statistic:
Ft MQ,
MQg
SQr

with MQ,=8Q, and MQp =
SR IR A
s 2 .
bQA=;'Zyi.—'é;
i=1
n 1 2
Zyu ;Z
i=

Approximate critical values: F (1,2 (n—

2(n—1)

s5Qp =
i=1

1), 1—a)

k) Levene-s-lest
Let y; = x5 -~ X .’;2
Then the test is carried out in the same way as the
Levene-z-test.

5. Results and Discussion

10,000 computer runs were carried out to evaluate the
rcal risks of first kind 'x and also the power of the con-
sidered tests for each sample size n (6,18,42) and each
selected pair (yy, y») for nominal risks of first kind « =
0.01; 0.05; 0.10. The power is evaluated for three values
1 = 1.44; 1.96; 3.24 with

2

nq°

69"
The number of 10,000 computer runs is a result of planning
the simulation experiment for the estimation of a probabi-
lity in case of robustness with ¢ = 0.2 - « [see Herrendorfer
(1980)].

7



For « = 0.01 and ¢ = 0.2 - « the number of 10,000 computer
runs is not large enough therefore the results show only
the tendencies in the behaviour of the considered tests.

N
The simulation results (« (n, g)) are summarized in table 2.
For ¢ = 0.2 - «, that means 20-9),-robustness (e. g. for « =
N\
594, a can vary between 4 ;—6?), the Range- and F-test

(and with that, the Bartlett- and Cochran-test in the case
of comparing two variances and equal sample size) are

not robust. The real risk of first kind a/z\ of these tests
increases with increasing y,. For yy, =17, n = 42 the real
risk is close to 309, for a nominal risk « = 5", The
skewness y, seems to have only a little influence on the
real risk.

The Jackknife-test isn’t 20-Yj-robust too but the real
risk ;\ is closer to the nominal than that of the F-test.
Furthermore the skewness y; seems to have also an in-
{luence.

The Box-Scheffé-tests (c = 2 or 3) are quite robust for

all sample sizes n. The real risk /a\ is very close to the
nominal risk « and in most cases conservativ.

The Levene-z-test is robust for n = 42 and y; = 0. If y, &0,
the test isn’t 20-Y-robust, this fact was pointed out by
Miller (1968). The same behaviour we find for the modi-
fied x2-test. The Levene-s-test is quite robust for all in-
vestigated distributions and sample sizes n = 18 and 42.
A similar behaviour shows the Box-Andersen-test which
is only in the case n = 6 nonrobust, but in all other cases
the real risk is close to the nominal.

The modified Bartlett-test is 20-Y/,-robust for n = 18 and
n = 42 for all investigated distributions.

Summarizing the results we can conclude:

1. For small sample size n (n = 6) only the Box-Scheffé-
test (¢ =2 or 3) is 20%, robust for all investigated
distributions.

2. For n = 18, and 42 the following four test are 209
robust:
— modified Bartlett-test
— Box-Scheffé-test
— Box-Andersen-test
— Levene-s-test

78

Now we investigate the power of these four robust test:
Figure 3 contains the power of the robust tests in depen-
dence on some (yy, y9)-values for n = 42 and « = 0.05.
The corresponding simulation results are summarized in
table 3.

Figure 3
Powerfunctions of the robust tests in dependence on (y, y)
for n =42 and ¢ = 0.05

These figures show that the power of the robust tests
decrease if y, increase. The power of the Box-Andersen-
test and the Levene-s-test are nearly the same so that
only one line is drawn for both power curves. Further-
more we can see that the power of the modified Bartlett-
test is slightly superior in all cases.

Only the Box-Scheffé-test (c = 3) is less powerful in all
cases. To get an impression of the loss of power for in-
creasing y, the power of the F-test under normal di-
stribution is considered in these figures too.



Figure 4 gives an impression of the power of the robust
tests if the underlying distribution is the normal one. We
can find that in this case the power of the modified Bart-
lett-test, Box-Andersen-test and Levene-s-test are similar
to that of the F-tlest,

Figure 4
Powerfunctions of the robust tests under normal distribution
for n =42 and ¢ = 0.05

Summarizing the above results we recommend for testing
equality of two variances if the underlying distributions
are similar to those investigated in this study the

— modified Bartlett-test

— Box-Andersen-test

— Levene-s-test

6. Planning of Experiments

The loss of power of the robust tests for increasing y.
can be adjusted if we use greater sample sizes as for the
F-test under normal distribution. Therefore we derived

a method of planning of experiments for the Box-Ander-
sen-test. This method is investigated by means of simu-
lation. It is well known that for a given risk of first kind
a and risk of second kind f, and a given

I
1

A=—.
93

the sample size n’ for the F-test under normal distri-
bution is a solution of the equation

A=F(W =1 =L 1= 5] P = Lo =1 1= ). )

Now the sample size n for the Box-Andersen-test is
evaluated from n”:

i 2
n=(n l)(l+ 2)+| (6.2)
with n” from (6.1) for given «, f, and 4.

Table 1 shows the theoretical power (1—fy) and the empi-

N
rical power (1—f) for « = 0.05 and n = 42 using (6.1) and
(6.2).

Table 1
Comparison of the theoretical and empirical power

(10,000 computer runs) of the Box-Andersen-test using
(6.1) and (6.2)

- 0 yu = LD Y2 = 3.7
i 144 196 324 1.44 196 324 144 196 3.24
1-f, 021 057 096 013 035 079 009 023 0.57
1—f 020 054 095 0.14 039 081 011 028 0.66
i 144 196 3.24

1—B, 0.07 0.15 0.39
1= 0.09 021 052

In practice we don’t know the kurtosis y, of the distri-
bution of a characteristic. Therefore we have to use an
estimate g, of y, in formula (6.2) for planning of experi-
ment for the Box-Andersen-test.
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Table 2

Results of simulation for tests comparing two variances « (1, g) - 100 in dependence on n, a and (yy, ¥»)
n==6 7'|:0, y3=0 ]r'l:U, j/_1=15 71:10,}'1215 ;'1:0, 73:375 > :15,}}11375
CT—— a-100 10 5 10 5 10 5 10 5 10 5
Test —

mod. Bartlett- 13.88 6.66 14.32 6.25 14.62 7.07 15.58 7.59 18.03 9.75
mod. z3- 16.30 9.11 18.42 10.01 18.14 10.28 21.65 12.86 2323  13.97
F- 10.60 5.28 14.85 8.06 14.19 8.03 19.75 12.37 20.60 12.63
Range- 10.44 5.22 14.96 8.36 13.67 7.64 20.04 12.65 19.62 11.94
Box/Scheffé 2- 10.42 5.55 9.34 4,52 9.30 4.42 9.78 5.05 9.65 4.68
BOX,/‘SCheITé 3- 9.41 4.58 9.12 4.49 8.61 4.30 9.04 4.47 9.67 4.59
Box/Andersen- 12.38 5.72 11.57 4.89 12.38 6.05 11.67 5.91 15.01 8.07
Jackknife- 9.03 5.05 9.90 5.35 9.97 5.45 12.43 6.84 12.36 7.10
Levene-z- 13.60 7.33 13.79 6.85 15.33 8.52 14.81 7.62 19.72 11.61
Levene-s- 12.15 5.29 11.14 4.18 12,12 5.43 10.61 4.87 14.20 7.00




=0 o= y1=0; y=15 »=10;p92=15 p;=0; y=3.7 p; =15;9,=3.75
'I:\ . a - 100 10 5 10 5 10 5 10 5 10 5
L —— _— S e _

mod. Bartlett- 11.56 5.53 11.41 5.37 12.32 5.90 12.53 5.86 13.60 7.01
mod. x*- 12.27 6.31 12.74 6.49 13.87 6.99 14.59 7.58 15.42 8.77
F- 10.39 5.30 18.04 10.94 17.86  10.54 26.12  18.07 26.37 17.99
Box,Scheffé-2- 9.93 4.99 9.35 4.61 9.39 4.80 10.10 4.92 9.66 4.69
Box/Scheffé-3- 10.23 5.16 9.63 4.87 9.47 4.58 10.71 5.09 9.62 4,67
Box,;Andersen- 11.07 5.14 10.22 4.7 11.35 5.30 10.95 5.00 12.05 6.30
Jackknife- 9.86 5.31 11.59 6.36 12.60 6.66 14.12 8.21 14.54 8.54
Levene-z- 11.45 5.63 11.08 5.51 14.34 7.64 11.94 6.11 17.30  10.23
Levene-s- 11.13 4.95 10.06 4.34 11.14 5.03 10.34 4.32 11.59 5.66
Table 2: continuation
n = 42 v =0; Yy=10 =0 ya=15 yp=10; yp,=15 y1=20; Y9 =3.75
ST — - 100 10 5 10 5 10 5 10 5
Test T ) [ o .
mod. Bartlett- 10.82 5.48 10.66 5.79 11.77 5.95 10.76 5.23
mod. x3- 11.15 5.74 11.30 5.36 12.43 6.53 11.60 5.93
F- 10.21 5.19 19.56 12.52 20.03 12.54 28.89 20.63
Box/Scheffé 2- 10.44 5.64 9.83 4.88 10.09 5.42 10.13 5.02
Box/Scheffé 3- 9.85 5.32 9.84 4.87 10.21 4.97 10.16 5.10
Box/Andersen- 10.61 5.29 10.78 4.49 11.40 5.68 9.92 4.84
Jackknife- 10.00 5.39 11.14 5.97 12.17 6.88 12.61 7.27
Levene-z- 10.83 5.55 10.24 5.06 14.51 8.14 11.06 5.58
Levene-s- 10.68 5.25 10.10 4,22 11.27 5.49 9.70 441

Table 2: continuation

n =42 y1=15;, y9=37 y;=0; ye=T0 y;=20; p,=170

T« -10010 5 10 5 10 5

TeSEZ . T . o U [

mod. Bartlett- 12,73 6.08 10.86 5.03 12.50 5.98

mod x2- 13.39 6.79 12.12 5.93 13.57 6.89

F- 30.20 22.23 37.00 28.97 37.94 29.95

Box/Scheffé 2- 9.75 4.79 9.64 4.42 10.12 4.81

Box/Scheffé 3- 9.25 4.59 9.53 4.58 10.04 4.98

Box/Andersen- 11.43 5.58 9.76 4.28 11.32 5.23

Jackknife 14.35 7.94 13.87 7.82 14.90 8.75

Levene-z- 17.41 10.32 11.26 5.41 19.70 12.33

Levene-s- 11.21 5.20 9.17 3.74 10.90 4.75

Table 3

P
Results of simulation for the power function of the robust test (1—f (n, g, 1)) - 100 in dependence

on n,i, «, and yy, ¥

A 1.44 1.96 3.24
qut o o IOQ 10 5 10 5 i()ﬁ 5
n=18; yy =20, y5=0
mod. Bartlett- 19.92 10.92 37.99 24.57 74.01 59.02
Box 'Scheffé-3- 15.01 8.00 26.49 15.65 54.36 37.13
Box,Andersen- 19.13 10.36 36.53 23.13 72.21 56.48
Levene-s- 19.14 10.06 36.48 22.15 71.71 54.30
n=18; y; =0, y» =15
mod. Bartlett- 18.74 9.98 31.29 19.55 62.13 46.29
Box, Scheffé-3- 14.59 7.74 23.49 13.28 45.23 29.19
Box/Andersen- 17.16 9.00 29.18 17.67 58.82 42.22
Levene-s- 16.92 8.28 28.54 15.99 57.40 38.06
n=18; yy=1.0, y,=1.5
mod. Bartlett- 19.86 11.01 33.31 21.03 64.03 48.73
Box‘,”Scheffé-3- 14.37 7.67 22.84 13.15 45.81 30.46
Box/Andersen- 18.21 10.23 31.24 19.32 60.61 45.08
Levene-s- 17.97 9.54 30.45 17.73 59.00 41.50
n=18; y;, =20, y»=3.75
mod. Bartlett- 16.66 8.47 27.87 16.61 54.08 38.23
Box Scheffé-3- 12.78 6.72 20.39 11.69 39.49 24.91
Box/Andersen- 14.45 7.23 24.88 14.10 49.17 33.65
Levene-s- 13.78 6.13 23.79 11.95 46.65
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Table 3: continuation

i 1.44 1.96 3.24
T - 100
Test ”-oi;\,,:_ 10 > _ 10 ° 1? o ,,.5,**‘“
n=18; y, =15, y,=3.75
mod. Bartlett 19.20 10.87 28.95 18.47 55.54 40.85
Box/Scheffé-3- 12.99 6.70 19.72 10.81 38.44 24.32
Box/Andersen- 17.18 9.48 26.13 16.21 51.06 36.67
Levene-s- 16.44 8.31 24.84 14.42 48.77 31.98
n=42;y,=0, y2=0
mod. Bartlett- 31.20 20.17 68.19 54.11 97.65 94.54
Box/Scheffé-3- 24.04 13.44 51.15 34.66 88.56 75.28
Box,Andersen- 30.84 19.78 67.69 53,46 97.48 94.13
Levene-s- 30.83 19.58 67.73 52.88 97.46 93.80
n=42;y,=0,7,=15
mod. Bartlett- 24.48 14.70 54.55 40.23 90.31 82.19
Box/Schetfé-3- 19.19 10.70 41.26 26.07 717.03 59.73
Box-Andersen- 23.52 13.99 53.26 38.79 89.57 80.77
Levene-s- 23.32 13.45 52.90 37.52 89.27 79.09
n=42; yy=1.0, y,=1.5
mod. Bartlett 26.33 16.64 53.82 39.93 89.86 81.64
Box/Schettfé-3- 19.72 10.55 39.25 24.71 76.84 59.75
Box-Andersen- 25.37 15.99 52.75 38.46 89.04 80.05
Levene-s- 25.25 15.40 52.23 37.40 88.68 78.59

Table 3: continuation

I 1.4 1.96 324
e - 100 5 7 V " 5 5
Test - ot 0 W ’ e ’
n=42; y =0, y2.=3.75
mod. Bartlett- 21.29 12.30 43.67 29.99 80.48 38.99
Box/Scheffé-3- 16.88 8.93 32.90 20.51 65.59 46.75
Box/Andersen- 20.32 11.29 41.76 27.96 78.41 65.56
Levene-s- 19.66 10.52 41.00 26.16 77.50 62.57
n= 42, ’yL= 15, Vo= 3.75
mod. Bartlett- 21.91 12.63 43.58 30.08 79.40 67.83
Box,Scheffé-3- 16.45 8.77 32.05 19.47 64.11 46.01
Box/Andersen- 20.59 11.66 41.67 28.14 77.08 65.22
Levene-s- 20.18 10.79 40.88 26.47 76.14 62.17
n=42; y; =0, po="7.0
mod. Bartlett- 18.78 10.22 36.94 23.65 70.25 56.26
Box/Scheffé-3- 15.26 8.08 28.14 16.66 56.11 38.20
Box/Andersen- 17.08 8.90 34.04 21.20 66.78 52.03
Levene-s- 16.34 7.68 32.72 18.89 64.68 47.49
n=42; y; =20, y,="170
mod. Bartlett- 19.51 11.19 36.02 23,71 69,43 55.29
Box/Scheffé-3- 15.16 8.13 26.35 15.49 53.37 36.42
Box/Andersen- 17.63 10.19 32.92 21.76 65.77 51.09
Levene-s- 17.06 9.09 31.89 19.64 63.75 47.00
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The Influence of Different Shapes of Distributions with the Same

First four Moments on Robustness

GERD NURNBERG and DIETER RASCH

In robustness research the robustness of a statistical pro-
cedure against non-normality often is investigated for
distributions with given skewness ; and kurtosis y,. But
we know that the shape of a density function can vary
even if the first four moments are fixed. The question
is whether such variation may have an influence on the
robustness statements.

Six distributions with u =0, ¢g*=1, ;= 1.5 and 7,~ 3.75
are considered:

(i) truncated standard normal (truncation points u, =
2.85; uy=4.71)
(ii) Power-transformed normal with
== 0.865886203523, ¢ == 0.221027621012,
d = 0.027220699158
(iii) log-normal (¢ = 0.1786671141)
(iv) CQ (1, 4) with 1, = 2.426
(v) CQ (2,2, with 1,=1.579
(vi) CQ (3,1y with 4;,=105

These distributions belong to three shape-types. Type 1
(()), (iv), (v)) in figure 1, type II ((ii), (iii)) in figure 2
and type III ((vi)) in figure 3. We investigated the ro-
bustiness of the six distributions and found different power
functions.

Table 1 shows the values of the empirical power function
due to p=0 (Hy) and p=d (H,) for four («, f)-combi- Figure 1

nations and d =0.6; d =1.0 and d = 1.6. Densities of distributions of typ I
We find that the distributions of type I and II respectively 82/) o
show different behaviour in empirical a- and f-values. (v):'

Table 1

Empirical values (« - 100) of a(f,) of the sequential t-test (test 1 in the paper of Rasch)

Distribution I II III
N v W i G (i)
1002 1008 -

d==0.6 5 10 1038 . 10.11 9.6 7.67 7.32 9.2
b 20 10.41 10.06 9.7 7.57 7.43 9.2

10 20 15.91 15.68 15.1 12.63 11.99 14.6

10 50 15.94 16.39 16.0 13.70 12.86 15.5

d=1.0 5 10 11.06 11.13 10.7 7.93 7.09 10.0
5 20 11.14 10.99 10.7 8.06 7.09 9.9

10 20 16.31 16.31 16.1 12.90 11.56 15.1

10 50 17.94 17.20 17.1 14.69 13.45 16.8

d=16 b] 10 10.76 11.67 10.5 7.13 6.75 9.2
) 20 11.01 11.72 10.6 8.14 6.97 9.4

10 20 15.58 16.50 14.8 12.22 11.32 13.6

10 50 19.55 19.98 18.9 16.06 15.16 174

6%



Figure 2

Densities of distributions of typ II
(ii) :
(iii) :

The distribution of type III seems to have an intermediate
behaviour.

The investigations of tests for comparing two variances
(see paper by Niirnberg) for the distributions of type I
((), (iv)) and type II ((ii), (iii)) led nearly to the same
results for these distributions (see table 2).

So we conclude that the deviations of moments higher
than the fourth for some procedures may have an influ-
ence on robustness properties and may have no influence
for other procedures.
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Figure 3

Densities of distribution of typ I1I
(vi):

Table 2

Empirical values (gz\- 100) of a of the robust two sample
test of variances for different distributions with y; =~ 1.5;
7y~ 3.75, for n =42 and a == 0.05

Distribution Type I Type 1I
test (i) (iv) (ii) (iii)
Box-Andersen- 5.94 5.79 5.58 5.25
mod. Bartlett- 6.49 6.29 6.08 5.71
Levene-s- 5.51 5.40 5.20 4.90
5.24 5.12 4,59

Box-Scheffé-3- 5.29
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Robust Bayes Regression Estimation Under Weak Prior Knowledge

JURGEN PILZ

Abstract

We are concerned with robustifying the linear Bayes
regression estimator to guard against incorrect specifi-
cation of the error covariance matrix and of the first and
second moments of the regression parameter. In particular,
we derive a minimax Bayes estimator in case that the
prior expected parameter value may vary in some subset
Q of the parameter space and only upper bounds of the
covariance matrices of the error and prior distribution
are known. Moreover, we show that the resulting estima-
lor has a smaller risk than the least squares estimator in
some region around the centre of Q.

1. Introduction

In the present article we deal with Bayes regression
estimation in case of weak and incomplete prior infor-
mation. Usual conjugate Bayes estimators require exact
assumptions on the type of the error and prior distribu-
tion. With qradratic loss structure, restricting considera-
tion to linear estimators allows the analysis to be carried
out in terms of the first two moments of these distribu-
tions, The computation of the linear Bayes estimator but
still requires exact knowledge of the moments.

We consider the case that we have only approximate
prior knowledge of the first and second moments and
construct a minimax Bayes estimator. This leads to a
robustification of the Bayes estimator in the sense of a
minimization of the maximum possible Bayes risk which
can occur in case of a misspecification of the sampling
and prior distribution.

The minimax Bayes compromise criterion was used,
among others, by Hodges and Lehmann (1952), Bunke
(1964), Solomon (1972) and in the context of regression
parameter estimation by Wind (1973), Watson (1974) and
Pilz (1981). Solomon (1972) constructed a minimax linear
Bayes estimator for a multivariate location parameter in
case that its prior expected value is only known to belong
1o a prespecified rectangular solid, the sampling and prior
covariances were but assumed to be known exactly.
Chamberlain and Leamer (1976) considered the case of
an uncertain prior covariance matrix and obtained regions
where the linear Bayes estimator is constrained to lie
when the prior covariance matrix may vary in some sub-
class of possible covariance matrices. Leamer (1982) con-
structed similar regions for the case that only upper and
lower bounds for the prior covariance matrix (in the usual
semiordering sense for positive semidefinite matrices) are
known.

Another important direction in the development of robust
Bayesian alternatives to classical minimax and least
squares estimators roots in the construction of Bayesian
Stein-type estimators as considered in Berger (1980),
(1982).

The intent of our analysis is at least three-fold. First,
we wish to incorporate prior knowledge in a flexible and
realistic way. Secondly, we have to guard against the

effects of a misspecification of the prior contents needed
for the analysis. Thirdly, we aim at an improvement in
efficiency (risk) over the standard least squares estimator
in some parameter subregion of interest. The minimax
Bayes estimator developed in the sequel meets these
requirements satisfactorily.

2. The Model

In the following let denote R' the r-dimensional Eucli-
dean space, *smm the set of real matrices of type n Xr,
M, and M the sets of positive definite and positive
semidefinite matrices of order r, respectively. If A, B €
952? then by A <B we mean that B—A € ’Jﬁrz ,A<B
means that B—A € M and ||x||% is shorthand for
the quadratic form x> Ax with x€R" .

We consider the regression model

Y=XO+e, Ee=0 (1)

where Y is the n X1 vector of random observations,
X € ‘:TRHXF is the design matrix, @ =(6,,..., 0T is the
vector of unknown regression parameters and e is the
n X1 vector of random errors having expectation zero.
We will make no further distributional assumptions on
the error vector e but only assume knowledge of an
upper bound X, € 9)2? for the covariance matrix, i. e. the
error distribution may be any member of the class

Po={Pe:Ee=0, X:=Cove<Zy) @

Suppose that we have prior knowledge about the regres-
sion parameters which can be represented by any prior
distribution from the class

‘Dg={P@:y:=EOGQ, ¢>:=COVOS(DO} (3)

where Q is some subset of R and &, is an r X r posi-
tive definite matrix which plays the role of an upper
bound for the prior covariance matrix of 6.

Assumption 1:

Let be QCR" compact, convex and symmetric about
some centre point u, € R".

In particular, we will consider the case in which Q is
either an ellipsoid

T ,—

Q1={#6Rri (u— o) 4 1(xt—/to)ﬁl} O]
with centre point wo= (up, .- . ,unr)T € R' and “shape”
matrix 4 € amf- or in which Q is a rectangular solid

Q2={,ue R": |ui— moil Smy; i=1,..., r} (5)

with edges of prespecified lengths 2m; =0 (i=1,...,1).
The sampling and prior information will be assumed to
be stochastically independent (which is a standard as-
sumption in Bayesian statistical inference).
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Assumption 2:
The joint distribution of (@, e) is given by

Pge=Pp®PceP.= Po®Pe.

Let D be the class of all estimators of @ . The goodness

N\
of an estimator & € D will be evaluated by a quadratic
loss function

L(0.6)=lo—8l;. uemZ. )

Then, for(:)\= @)\(Y) € D, the Bayes risk is given by
A~ ~
9(p9-e‘0> =EgEy|o "9-0(Y)"U- e

ay
We wish to find an estimator 6y which minimizes the
maximum possible Bayes risk over all distributions from

P=Py @ P.. Any estimator /@ME which attains this
minimum, i. e, for which it holds

sup 0<P(-),e1@MB)— inf  sup Q(P(,eﬂ) (8)
Poee?® 0ep Poec?®
will be called a minimax Bayes estimator w.r.t. .
If we confine ourselves to the class of linear estimators

={éeD: O=2Y+z, ZeM,,,, zeR“}

then the Bayes risk only depends on the first two moments
of Py and P, the type of these distributions does not
play any role. If the moments y=E®, & =Cov @ and
2 =Cove were known exactly then we could use the
linear Bayes estimator which takes the form

Op=(X"z7'x+07") 7 (X" Y + o7 y) ©)
(see e.g. Hartigan (1969)). If we have, however, only
approximate knowledge of these moments as indicated

by the above classes P and P, then it will be shown
in section 4 that the minimax Bayes estimator in D, has

a similar structure as /éB.

Before proceeding with the general problem, let us con-
sider first the special case in which the prior expectation
p is known precisely to have the value uy so that Q
reduces to Q == {uo}.

Theorem 1:

The estimator 6OMB __( xT V'l X+ 4"1) ( XT3y + @ /'0)
is minimax Bayes in D w.r.t. Pp={Pg , € ‘D E 0 = u).
Note that the minimax Bayes optimality of OMB is not
restricted to the class of linear estimators but holds under

all estimators @ € D. This result is proved in Pilz (1983,
section 6.2) for the special case in which the upper bound
Zy has the form X,=0¢%I, with some ¢¢® >0, for arbi-
trary X, € 9)?1? the proof can proceed in the same way.
The proof essentially makes use of monotony relations
between distribution functions and of the fact that /(;?\,IB
is Bayesian in D with respect to the normal distributions
PY =N(ug %), P) =N(0,Z,) which are least favour-
able distributions within 9.

Theorem 1 states that in case of known prior expectation
the minimax Bayes estimator is simply the linear Bayes
estimator with the unknown covariance matrices replaced
by its upper bounds.

3. Reduction of the Problem

Now we deal with the search for a minimax Bayes esti-
mator in D w.r.t. P=Py @ P, when there is uncer-
tainty about x4 and Q is no longer a single-element sub-
set.
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Lemma 1:
N
Let be Pg, € P. Then 6 =ZY+z € D) has Bayes risk

o(PoeiB)=tr U[zzzT+ zoqbon] + [ Zop — 2|}

where Z,=1,—ZX.
Proof:

o(Poe:8)=Eg.|0—2(X0+e)— z||€1= Eo 200~ (Ze+2)|};

=Eq, (072, UZ,0—20"2, U(Ze +2) +|Ze + 7|}

=tr ZJUZ, (¢+WT)—2,; ZiUz
+trzuzz+2 Uz

=tr UZZZ" + tr UZ,@Z + |Zou — 2.

Thus, the search for a minimax Bayes estimator in D,
leads us to the problem of minimizing

ﬂs)LﬂlL;’{tl U[ZZZ +Zo‘1’Z ]"'"Zo/‘—zllzl}

over all Z € M., and z €R".

Lemma 2:

pzl:p(pg(P(,e,ZY+z)—trU[ZZOZ + 24007, |
+ sup |Zou - 7[;.

This is clear since with 2 < X, and @, < &, it follows
that

tr U[zzzT+zo¢on] <tr U[ZZOZT+ zoqboon].

Lemma 3:
For every Z € M, and z € RT it holds

sup [Zou— 2]}y 2 sup 2o — Zogeol,.

Proof:

Writing z=Zoug—g with arbitrary g € R" it follows
from the symmetry of Q: = {n €ER:= H— o, 4 € Q}

about the origin (due to Assumption 1) that

2 ) -
sep 1Zoss — 2]y =;:§ { |Zoa % + 2gTUZOy} + e,

-2 2

2 sup |Zoy = sup |Zg (u— po)|g-
AeQ reQ

In view of lemma 3, a minimax Bayes estimator is deter-

mined by a matrix Z which minimizes

sup o(Py :0)=sup f
Ppecd ( e ) #eg z(n)
where

200 = tr U[2Z527 + 20020 |+ |Zou— ol 10)

and Z,=1, — ZX as before, However, we cannot obtain
an analytical expression for this extremum. To solve the
problem, we use a minimax theorem known from game
theory and which, after an additional integration, permits
us to perform the minimization over Z first. This mini-
mization then can be done analytically.

Lemma 4:

Let be Q a compact Hausdorff space, F a class of real-

valued and continuous functions on Q and F the convex
hull of F. Then it holds

inf sup f(,u)-—sup mf Sf(,u)q(dp)
feF ueQ qeQ Q



where Q* is the set of all probability measures defined
on the ¢-algebra of the Borel subsets of Q.
This result is due to Peck and Dulmage (1957).

Now, with our set Q C R' satisfying Assumption 1, we
define for every probability measure q € Q* the matrix

Cq= S (10— o) (1 — 1) " a(dl) )
Q
Then, with f,, from (10) we obtain

5 f2(0)a(du) = tr UZZ,Z" +tr UZo(®0+C)Zy (1)
Q
and Lemma 4 reads

inf  sup f,(u)=sup inf \fz(y)q(dy). (13)

ZeMp, , 4EQ qQEQ* ZeMy, (:32

since F= {f, : Z€ M} is convex.

4, The Optimal Estimator

With the preliminary considerations of section 3 we can
now prove our main result.

Theorem 2:

With quadratic loss and Q according to assumption 1,

~ T - -1 . - —
Oup= (X"Z7"X+@,+C) ™) (XTE5Y + (8,4 Co) )
where C,=Cq

-1

and qo=arg sup tx'U(XTZ[;1X+(¢°+Cq)_1)
qeQ*
is the unique minimax Bayes estimator in D, w.r.t. P,
A\

The minimax Bayes risk of @yg is given by

Pocen #(PociOun) = tr U(xT2;x +(@o+Co) )

Proof:

To minimize the term on the right hand side of (13), write

T 1

z2=[X"57 X+ (0 +Cq) | XTEHG

with arbitrary G € M., . Observing that Z,= I, —ZX,
we obtain

222"+ 20+ C) 2T = [XT 27 X+ (By+Cy) ]

+GX(B,+C) X GT+GE,G".
From this it follows with (12) that

V fz(Wa(du) 2 trU(XTEO"X+(¢>°+Cq)“‘)'1

Q .

for any Z€ M., since trUGK(P + Cp) XTGT +
GZ,GT ) = 0. Thereby, equality holds if and only if G =0
which implies that

sup inf S fz(u)a(du) = sup trU(XTE; X+ (8+Cy) ") .
qeQ* ZeMp, p Q qeQ*

Finally, the existence of a measure ¢y and thus of a
matrix Cy maximizing the trace functional is guaranteed
by the fact that this functional is continuous and convex

over the compact and convex set B = {Bq € 9J2r> 1By =
XT Z1X (@ + C)~', q € Q*} (see Lemma 5). The re-
sult then follows from equations (12) and (13).

Obviously, QMB coincides with the estimator @{1:,[3 given
in Theorem 1 if we have no doubts that 4 =E @ is cor-
rectly specified by ug, i.e. if Q reduces to Q= {io}. In

this case we have Cq = Cp=0 and ’(?)MB is precisely the

linear Bayes estimator w.r.t. any prior P, such that
E @ =y and Cov @ = ¥, Otherwise, if we are not sure
about the correctness of u, and so Q has cardinality
card Q > 1, then the minimax Bayes estimator is Bayesian
(in D)) w.r.t. any prior distribution having moments

EO@=yu, and Cov O =0,+C,.

This means that minimax Bayes estimation w.r.t. P is
equivalent to Bayes estimation with an enlarged prior
covariarnce matrix, the enlargement C, being due to un-
certainty about the first order moment E @, If our prior
knowledge becomes more and more diffuse, which means
increasing size of Q, then (¢4 C))—! approaches the ma-

trix of zeroes and in the limiting case Q=R" we have
coincidence of QMB with the least squares estimator
?—)%S = (XT X;1 X)~'XTY~! Y taken according to the lar-
gest possible error covariance matrix X\,

5. Approximate and Particular Solutions

Lemma 4 and Theorem 2 from above accomplish the re-
duction of the problem of finding a minimax Bayes esti-
mator w.r.t. P to the maximization of the functional

T(B,)=tr UBGI1 where Bq=XTZ(,_1X+(‘1504—(3(1)_1 (14)

over the set of all matrices Bq generated by the proba-
bility measures ¢ € Q*. In general, this maximization will
have to proceed numerically, an explicit solution for a
special case and rough approximations of the optimal
matrix C, will be given below.

Lemma 5:

(i) B= {B,:q € Q*} is a compact and convex subset
of M.
(ii) T(-) is a continuous and convex functional on 3.

Proof:

(i) First, observe that the matrices Cq are positive semi-
definite, for it holds aTCya = [q (aT u—aTue? a(du) =0
for any vector a € R” and any q € Q* From this it is
clear that the matrices B, are positive definite since
xT3lxe MZ and (b, + Cyt € M. . The compact-
ness and convexity of BV follows from the fact that Q*
is compact &¢nd convex.

(ii) The continuity of T follows immediately from the
regularity of B, and the linearity of the trace functional.
The convexity of T can easily be verified by help of the
well-known fact that

(@A + (1 —a)B)—' < aA-!+ (1 — 0)B-L

for any two matrices A, B €9’Rr> and any real a €(0,1).
From Lemma 5 and Caratheodory’s Theorem we conclude
that the supremum of T over B and thus the optimum
matrix C, in 6MB will be attained for some measure q
which is concentrated on at most r(r-+1)/24+ 1 extreme
points of Q. This may substantially reduce the computa-
tional efforts needed in the maximization of T.

In case that @ is an ellipsoid, the shape matrix yields
an upper bound for the optimal C,.

Corollary 1:
Let be Q =Q as given by (4). Then it holds: Cy < 4 and

PZf‘e‘;(D@(Pe,e;OMB)Stru(xTz;1x +(@o+a)T)
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Proof:

Let be 4-1/2 the symmetric square root of 4-' and define
Q= {1 € R": u=4"'"(u— puy), # €Q}. Then it holds
FT ;S 1 or, equivalently, ’;;71 < I, from which it follows
that (u — o) (u— pg)T < 4 for every » € Q. Thus, C;=

fq (4 — o) (u—pdT q(dw) £ 4 for all g € Q*. This, in
turn, implies that

By < (XTE; X+ (0g+4)7) "

which yields the desired bound for the maximum Bayes
risk.

It is argued that by inserting 4 instead of the optimal
matrix C, the resulting estimator

~ - —-n ! - -1
Oup= (X" X +(¢+4) ") (XTE7 Y+ (0o +4) 1)
is minimax Bayes with respect to an uncertainty ellipsoid

Q, which includes the original ellipsoid Q.
Next we give an explicit solution for the special case in

which Q is a rectangular solid and all the relevant ma-
trices are diagonal.

Corollary 2:

Let be Q==Q, as given by (5) and assume the matrices
U, XT ¥-1X and ¥, to be diagonal. Then the estimator

Opp= (XTEO_1X+(¢0+C0)_1)_1<XT20_1Y+(¢0+C0)—1y0)
with

C,=diag(m]. ... mz)
is minimax Bayes in D;.
Proof:

First it is clear from the matrix inequalities in Theobald
(1975) that the optimal Cy, must also be diagonal to achieve
a maximum value of T. Then it follows that the optimal
C, must be such that its diagonal elements have maximum
value. Now, for any g € Q* the diagonal elements ¢; of
Cq satisfy

Ci=s (41— #o1) a(dw) < mf
Q
and equality is attained for any measure g* giving weight
p; >0 to the corner points p't) of Q (i=1,...,s<27)
and zero weight to all the remaining points of Q. An
optimal measure can then be obtained by choosing the

weights p; such that the off-diagonal elements of C will
vanish, i. e.

S
Cp1= Z o (/‘g)—/“ok) (/‘i])‘ /‘oi) =0
izl

forkl=1,...,r; k<1.

6. Risk Comparisons

In this section we shall compare the usual risk and the

N
minimax Bayes risk of @y with that of the least squares
estimator. For the sake of simplicity, let us assume that
the family of possible error distributions is given by

Pl={P,:Ee=0, Cove=o02V, 075(0.03]} (15)

with some given constant ¢,> > 0 and given matrix
V € M, i.e. the error covariance matrix is known up to
a multiple, Further, let us assume that X is of full rank.

Then the LSE for ® and the covariance matrix are given
by
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~ e 1 ~ . -
bLs=(x"v'X) " X"V7'Y, Covéis=o2(X"VX) "
Let denote By=XTZX !X + (#+Cy)-' the optimal ma-
trix B, computed with C;, =C, 2| =¢,*V being the
upper bound for the error covariance matrix, and define
B:=0By= XV 'X+al(®,+C) " (16)
so that the minimax Bayes estimator takes the form
A -1
OMBZB_1<XTV_1Y+O;((D0+C0) ,uo)
Clearly, Gy is a biased estimator with bias given by
b(@) = 2B~ (@, +Co) (uo—6) a7
and covariance matrix
Cov éMB=g7B-1XTV_1XB_1. (18)
Lemma 6:
~ ~
(i) Cov Oyg < Cov frg
- - - -1 .
(if) With H=0¢(®,+C,)  BT'UB ™ (#+C,) . Oy has risk
R(Q’UﬁMB):"2 tr UB_1XTV_1XB_1+|l|0—!‘0|‘f1'
Proof:
(i) By direct computation we have B (X V-1 X)! B =
XT v-1 X 4+ A where A = 200 (PoF Co)=t + 04’ [(Po+ Cp)

XT v-1 X (P, + C»]-! is positive definite. Thus, it follows
that

-1

Cov By = a?{B(XTV"><)_18]_1<02 (XTv'x) )
: =Cov Oys.
(ii) R(6.0:0yp)= Egio lo— aMB(Y)"iJ
=trU(CovByg) + "b(@)";
= trUBT'XTV'XB™" + 0 — o]

The following result demonstrates that there exists a non-
empty subregion in the parameter space for which the
minimax Bayes estimator has smaller risk than the least
squares estimator.

Theorem 3:

With quadratic loss (6) and a full rank matrix X, Oyp
has smaller risk than /@\LS for all parameters (@, o) €
R X (0, 04) for which it holds

lo—solyy <ot U (X"V7'%) =BTV 'xB .

Proof:

N\ N AN\
Observing that @ g has risk R(O,¢;0pg) = tr U(Cov ALs)
we obtain

R(6.0:01.5) — R(0.0:0yp) = tr U(Cov 8.5 — Cov )
- “0_ /‘o":x
This yields the result by virtue of the fact that
trU(Cov By s — Cov Byyp) = o7 tru((xTvx)
—B7'xTV'XB"

is positive due to the positive definite character of the

. ~ N
difference Cov O g — Cov Opyp.



Obviously, the subregion of parameter values @ for which

/@MB leads to an improvement in risk over the LSE is
an ellipsoid which is centered at the symmetry point p,
of the uncertainly region Q associated with the possible
values of the prior expectation y =EO. The size of this
ellipsoid and the magnitude of the improvement depend
on the precision of our prior knowledge expressed by the
matrix ( ¢ + Cy)—! and on the quality of the upper bound
a,% for the variance of observation,

When comparing the corresponding minimax Bayes risks,
it turns out that the risk of (:)\MB is bounded from above
and below, respectively, by that of the LSE and of the

/No
minimax Bayes estimator @yg in case of Q = {w}.

Corollary 3:
Let be P="DP, @ PL. Then it holds

(P(-),ei éMB)

<atru(xTvx)"

N1
atrU(XTV X +a30;") < sup o
Pyee®
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Distribution of the Maximal Gap in a Sample and its Application

for Outlier Detection

RICHARD PINCUS

Abstract

Regardless of the underlying distribution the maximal
gap is asymptotically stochastically larger than a Gum-
bel-distributed variable. An asymptotic expression for
the distribution of the maximal gap is given and is com-
pared with the outcome of simulation studies for trun-
cated normal distributions.

1. Introduction

Given n = 3 independent observations x;,..., x
malized maximal gap in the sample

n the nor-

M, = max X = Xo-n)
i=2..n X(n)— X(1)

forms a reasonable test statistic for detecting an unknown
number of possible outliers.
The distribution of M, depends on the underlying distri-
bution of x,...,x,, of course, and gets a simple form
if the observations are uniformly distributed. It will be
shown that M or rather a transformation Z, =nM, —
logn is asymptotically ‘stochastically minimal’ if the
underlying distribution is just uniform.

2. The Distribution of the Maximal Gap Under Uniform
Distributions

By invariance it is evident that the distribution of M,
does not depend on location and scale.
In the following (I —jx),; means max (1—jx; 0), 0 <

x<1.
Proposition 1:
If x,...,x, are uniform distributed, then the distribu-

tion of M, is given by
S [

Proof:
M,, has the same distribution as

Mp = max X(j— X(j_1)

i=2..n
where x{w ey x,‘n,h are independently uniform (0,1)-
distributed and xgh =0,x, =1
Validity of (1) is easy to see for n = 3. Now we have
1
’ " ’ x ’ - !
P(MnHSx):SP(MHS;)-(n—l)x" dx )

1-x
Substituting (1) in (2) gives the result.
The distribution (1) was found by Fisher (1929) as the
distribution of Y(n) /Zy; for the exponential distribu-

tion, see Barnett and Lewis (1977), p. 79.
For the transformed variable

Z

n=nM, —logn
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we get from (1), substituting x = (z + log n)/n:
Proposition 2:
A non degenerated limit distribution of Z, exists and
has the form
_C_Z

l’(ZnSz)—;‘—»e v —o<z<m (3)
The limit distribution is the so called extreme value
distribution of first kind, or Gumbel distribution.
Figure 1 presents the exact distribution function of Z,
for selected n at the 5-, 10-, 20- and 30-percent points of
limit distribution, and shows that (3) forms a satisfac-
tory approximation if n = 20.

Figure 1
P(nM —logn <2)

~

Z

n 2.97 2.25 1.50 1.03
5 997 953 184 .580
10 977 930 .804 .654
20 967 921 .809 .683
30 .963 917 .810 .692
50 960 912 .809 .698
950

3. Asymptotic Distribution of the Maximal Gap Under
Non Uniform Distribution

Let £ be a density with f >0 on a finite interval, and
let xy,...,x, independently distributed according to that
distribution.

Without loss of generality we may
support is the interval (0, 1).

A rough approximation of the density by a step func-

assume that the

. . j—1] . .
tion with values fj on <74K—‘IV{)’ j=1,...,K, gives by

(3) for the maximal gap in the j-th interval, provided it
contains n; observations

_e—(y—lognj)

P(an(j)KSy)——wa >0.

By the law of large numbers we can further approximate
n;, by nf; /K, thus getting

_ o~ (xtj-108(nt3/K))
P(nM(j)Sx) —e @)

Since nM < x iff nM(j) < x for all j, (4) gives taking the
product of all expressions
Z_:%e—xlj
P(NM<X) — e " )

If we know choose K sufficiently large and form the
limit in the exponent of (5) we get



Proposition 3:
Under the above condition on the boundedness of the
distribution we have asymptotically

—-xf(t)

-nfe F(dt)

PnM<x)—> e , x>0. (6)

n

Remark: Convergence P, —Q, is used in this section
in the sense that for any sequence of intervals, A, say.
Q, (A — cimplies P, (A, ) —c

An interesting property of the right side of (6) is, that
it attains it minimum iff £ forms a rectangular distri-
bution, i.e. f=1.

In that case (6) can be written as e—e X108 and s
equivalent to (3).
Proposition 4:
We have
—xf(t) _ —(x—log n)

e'“S" FHUR@Y 5 e . x>0, (7)
with equality iff f(t) =1 (a.e), 0 <t <1,
Proof:

If we return to (5) then replacing fj /K by p;, we have

Kb 4
Sp;=1, and see that X p; e ¥KPy Xx =g, is maxi-
. . < _1
mized subject to Epj =1, pj=0, iff py=...=pg= &

This immediately implies the assertion.

An interpretation of inequality (7) is that the Maximal
Gap test forms a consistent Goodness-of-Fit test for
uniform distributions.

On the other hand the Maximal Gap test indicates outliers
in the presence of an underlying non-uniform distribu-
tion with a probability larger than «, even if there are
not outlier.

If one has information on the underlying distribution one
can use (6) to find the asymptotically true significance
point.

4. Monte-Carlo Results

Monte-Carlo studies showed, however, that the approxi-
mation (6) is not very accurate for moderate sample sizes
like n=230 and even n =100, so that higher order appro-
ximations could be useful.
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Figures 2 and 3 show resulis of simulation with standard

normal distributions truncated at -+ 13. For sample sizes
n=30 and n= 100, respectively, 1000 repetitions were
done. As to expect, for truncation points + 1, i.e. for a
distribution which is ‘nearer’ to a uniform one, the appro-
ximation is better, while for truncation at + 15 it is
worse.

Figure 3
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Robustness of the Two-Sample T-Test
HARRY O. POSTEN

Abstract

In the literature, one finds evidence that the two-sample
t-test is robust with respect to departures from norma-
lity, and departures from homogeneity of variance (at
least when sample sizes are equal or nearly equal). This
cvidence, presented in various articles, is usually based
on an approximate approach without error analysis or
on a simulation approach that is of limited extent. The
present paper takes a closer and more extensive look at
the quality of this procedure under departures from the
primary assumptions of normality and of equal variances.
The results presented are a synthesis of several previous
papers by the author and colleagues, with particular
emphasis on the use of a broad Monte Carlo approach to
the assessment of robustness.

1. Introduction

In robustness research, there are two directions one may
take. One may attempt to quantify or measure the degree
of robustness inherent in a standard statistical procedure,
or one may attempt to develop a new alternative pro-
cedure which, in some sense, is more robust than the stan-
dard procedure. In recent years, much of the robustness
literature has been concerned with the development of
such new procedures. However, significant contributions
can still be made in the study of the robustness of stan-
dard procedures since, even for the most familiar proce-
dures, there exists vagueness concerning the conditions
under which the procedure is robust and under which
it is nonrobust. For example, one finds general evidence
in the literature that the two-sample t-test is fairly ro-
bust with respect to departures from normality and also
with respect to departures from homogeneity of variance
(at least when sample sizes are equal or nearly equal).
On the other hand, one can also find evidence that the
two-sample t-test may not be robust under certain con-
ditions., Bradley (1980) provided results from a simulation
study (30,000 generated values of the two-sample t-sia-
tistic for samples from several pairs of populations and
sample sizes) which suggested that dramatically different
shapes for the two populations could produce significant
nonrobustness in the Type 1 error probability. Also, stu-
dies by Hyrenius (1950) and Zachrisson (1959) for the one-
sample t-test hint at the possibility of nonrobustness of
the two-sample t-test under two types of practical con-
ditions: the condition of samples from a compound popu-
lation (occurring when a population is a mixture of two
or more distinct populations), and the condition of the
samples being stratified samples from two or more popu-
lations (occurring when conditions change during the
selection of the sample). Despite this negative evidence,
there is sufficient support in the literature (see Hatch and
Posten (1966) for a survey of robustness research for the
one- and two-sample t-tests) to indicate that under simple
random sampling from populations which do not differ
strongly in shape and which are not extreme departures
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from normality, the two-sample t-test is not very sensi-
tive to nonnormality. Also, the evidence indicates that
with equal or nearly equal sample sizes this test is robust
with respect to departures from homogeneity of variance.

The present paper is concerned with a synthesis of several
recent studies which in a detailed manner provide an
assessment of the robustness level of the two-sample
t-test under common practical conditions. In some cases,
the results are restricted to the two-tailed test or to equal
sample sizes, but on the whole they provide answers to
the question “What level of robustness does the two-
sample t-test have?” for important practical cases.

2. Robustness Under Heterogeneity of Variance

A recent paper, Posten, Yeh and Owen (1982), studied
the change in the true significance level a(1) of the two-
sample double-tailed t-test when the populations are
normal but the ratio 1= ¢,%0,? varies from the assumed
value 1=1. The results of this theoretical study indicate
an extremely strong level of robustness under departures
from equal variances when the sample sizes are equal.
This level of robustness is probably stronger than most
people realize. Table 1 provides these results in terms
of the concepl of “total robustness at a given robustness
level”. Specifically, the t-test is considered to be totally
robust at level ¢ if, no matter what the value of 1, one
makes no more an error than ¢ in assuming the signi-
ficance level to be «(l), the value under the condition of
equal variances. Mathematically, this means that as 2
ranges over (0,), |a(il) —a(l)| varies only within a
range bounded by e. For example, from table 1, with
n;=n; =20 and «(l) =.05, the maximum error one can
make in assuming the significance level to be 0.05 is
0.0072. Thus, the true significance level will be no more
than 0.0072 from the assumed level of 0.05, no matter how
much ¢,2 varies from ¢, Further, an error of a magnitude
near the value 0.0072 will occur only when o,? is very
much larger or smaller than ¢+> and table 1 may there-
fore be used to conservatively determine the degree of
robustness of the equal sample size t-test under viola-
tions of the assumption of equal variances. From table 1,
it is clear that this test is quite robust when sample
sizes are equal.

The question of what happens to the robustness of the
two-sample t-test when sample sizes are unequal is dis-
cussed in the same paper. The results are given in table 2
in terms of maximal regions of robustness. A “maximal
region of robustness” of level ¢ is the region of i-values
over which the {rue significance level, «(1), deviates from
the assumed value, «(l), by no more than ¢. If this range
of 1 is wide in a practical sense, then the t-test is robust
at this level ¢. The maximal regions of robustness are
given in table 2 for equal sample sizes and for sample
sizes that vary 109, and 20%, from equality. Table 2
indicates that the sizes of maximal regions of robustness
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Table 1
Minimum value of ¢ for which the t-test is totally robust
at level ¢ (n; =ny=n)

rominal value = (1) nominal value ¢ = (1)

=005 ¢=1001 =005 ¢=001

n € € n € £
2 .0954 .0539 15 .0098 .0052
3 .0589 0341 20 .0072 .0038
4 0419 0241 25 .0057 .0030
5 0324 .0184 30 .0048 .0025
6 0263 0148 50 .0028 0015
7 0222 0124 100 L0014 .0007
8 0191 .0106 500 .0003 L0001
9 .0168 .0093 1000 .0001 .0001

10 0150 .0082 20 .0000 .0000

Table 2

spect to the Type 1 error probability, even when sample
sizes are somewhat unequal, as long as the smaller sample
is taken from the population having the smaller variance.
The original paper also contains results for a(l) = .01 with
similar results.

3. Robustness Under Nonnormalily

To precisely determine the degree of robusiness of the
two-sample t-test over a wide range of practical non-
normal distributions is a difficult problem. An exact
theoretical approach is impractical because of its mathe-
matical intractability, an approximate approach would
lack accuracy assurances, and a simulation approach re-
quires an exhorbitant amount of computer time to achieve

Maximal regions of robustness of level ¢ for the twotailed t-test

(nominal significance level g(l) = 0.05)
¢ =10.03

Zqual Sample 10 9/, Sample

Sizes Size Change
ny n, A-range n; n.,
5 5 0.02—85.63
10 10 0.00—> 9 11
15 15 0.00—> 14 16*
20 20 0.00—> 18 22
25 25 0.00—>2© 23 27*
30 30 0.00— % 27 33
10 40 0.00—> 36 14
50 50 0.00— 45 55
& =10.02
ny n, A-range ny n,
5 5 0.09—12.33
10 10 0.00—20 9 11
15 15 0.00—0 14 16*
20 20 0.00—> 18 22
25 25 0.00—> 23 27*
30 30 0.00—0 27 33
40 40 0.00—> 36 44
50 50

0.00-— 45 55

A-range ng n,

20 %, Sample
Size Change

A-range

4 6 0.00—2.89
0.00— 8.33 8 12 0.00—3.06
0.00— 12 18 0.00—3.17
0.00— 17.58 16 24 0.00—3.25
0.00— > 20 30 0.02—3.30
0.00-— 36.95 24 36 0.03—3.33
0.00—104.22 32 18 0.06—3.38
0.00— > 40 60 - 0.05—3.42
A-range ny n, A-range

4 6 0.00—2.14
0.00—4.02 8 12 0.21—2.17
0.00—9.31 12 18 0.26—2.20
0.00—4.95 16 24 0.28—2.21
0.00—3.90 20 30 0.29—2.22
0.00—5.55 24 36 0.30—2.23
0.00—5.96 32 18 0.31—2.24

0.00—6.26 40 60 0.31—2.25

* = sample size change nearest to 10 %), change from equality but not greater

reduce dramatically as sample sizes vary significantly
from equality. Thus, the t-test tends to lose its strong
degree of robustness rapidly as the sample sizes become
unequal. When each sample size varies by 10", from a
condition of equal sample sizes, the t-test still has a
respectable amount of robustness with respect to the
Type 1 error probability. However, when the sample
sizes reach a 20", difference from equalily, one might
wish to be more cautious with the use of the t-test. To
an important degree, the loss of robustness when sample
sizes are unequal is in the range where 1 > 1, that is,
when the larger variance is associated with the smaller
csample size. The level of robustness for the unequal
sample size test can, therefore, be significantly improved
it one knows beforehand which population has this
smaller variance. In this case, the smaller sample size may
be assigned to the population with the smaller variance.
The range of 1 is the restricted to (0, 1] and table 2 can be
used with the righthand entries all replaced by 1. The re-
sult is that the t-test becomes somewhat robust with re-

respectable precision over an extensive practical range
of distributions. A simulation approach, however, can be
made practical by using a computler artifice to speed up
sample generation and by using low priority computer
time {o reduce computer costs.

Such a simulation study was provided by Posten (1978).
The intent of that study was lo accurately quantify the
degree of robustness of the two-sample t-test for a range
of sample sizes over a wide range of practical distribu-
tions. The Pearson family of distributions was chosen
because it appeared to have best withstood the test of
time, in terms of representing practical data. The range
of coverage was for both negative and positive skewness
over 0<f, <20 and 14=<$,<178 where f; = pu;%¢"
and B, = u,/¢*. This seems to be a wide range of coverage
for practical distributions if one judges by the range of
reported values of f; and f. in, for example, Scheffe (1959)
and Pearson and Please (1975). The decision on the fine-
ness of the grid covering this region was conservatively
made and the final coverage was for ;=0 (0.4) 2.0 and
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fo=141(0.4) 7.8, excluding the impossible distributions in
this range. The study was constructed over sample sizes
ng =ny,=n with n=>5 (5) 30.

The basic strategy of the study was to generate a suffi-
ciently large number of observations for each of the 87
Pearson distributions to provide very good accuracy in
the significance level and power evaluations for each
sample size. The key to bringing the simulation study
within a practical range was a computer artifice used for
producing a large enough number of generated values
[from each of these distributions, to provide 100,000 values
of t for each sample size n==75 (5) 25. For practical pro-
gramming reasons, it was decided to settle for 83,000
generated t-values in the case n = 30.

Random variable generation on a computer is usually
performed by using a linear congruential method to ge-
nerate uniformly distributed random values and then
transforming these to values that follow the required
distribution, This transformation can be rapidly effected
by use of the inverse distribution function. In the case
of the Pearson distributions, these inverse functions are
not available. Therefore, the transformations for the
Pearson distributions were accomplished by numerically
tabulating the distribution function within the computer
and obtaining the transformed values by interpolation
from this interval table. The numerical tabulation was
over many values (2000—6000 values, depending on the
distribution) of the argument. This approach ordinarily
would provide a relatively slow transformation method,
because for each generated uniform value it is necessary
to search for the tabulated interval which includes it
before performing the transformation by interpolation.
Since searching is a relatively slow computer process, a
significant reduction of generation time can be achieved
if the search is eliminated. To accomplish this, uniform
numbers were {irst generated in blocks of 10,000. Each
block was ordered and stored on tape in ascending order.
This strategy allowed each uniform value to be trans
formed without searching for the proper interval which
included it, since each succeeding uniform value is very
close to the preceding value. The transformed values are
then no longer random but may easily be restored to the
random order of the original uniform values by storing
each transformed value in a storage position correspond-
ing to the original occurrence position of the uniform va-
lues. The tape, then, has a block of 10,000 uniform values
ordered in ascending order followed by a block of 10,000
integers which identify the original order position for
each of the 10,000 uniform values. Five hundred such pairs
of blocks were ordered on tape, enough to provide at
least 100,000 double-samples for each value of n = 5(5)25.
These ordered uniform values were then used to cffi-
ciently generate the five million observations required for
cach Pearson distribution in the study.

Each stage of the Montle Carlo study was conducted with
cxtreme care in order to provide quality assurances on the
accuracy of the results. Since the study was identical in
form tor all Pearson distributions, with the only pro-
gramming variation being in the actual numerical eva-
luation of each Pearson distribution, the overall quality of
this study can be judged by viewing the results for the
normal distribution member of the Pearson family. For
the normal distribution, the results (36 results in all) can
be compared with known correct probabilities for this
distribution. The latter are given in table 3, where each
entry is the evaluated probability using 100,000 generated
t-values (except for n = 30, as previously indicated). Since
these values are actually the Monte Carlo evaluations of
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0.05 for the first two columns, 0.50 for the next two co-
lumns and 0.95 for the last two columns, table 3 provides
strong quality assurances for this study. To two decimal
places, all round off exactly to the correct probability.

The original paper provides results for both one- and
two-tailed tests. However, only the two-tailed results will
be presented here (the one-tailed results are similar).
Table 4 provides the results for the significance level.
Rounding off to two decimals, it is evident from the table
that for all sample sizes and Pearson distributions studied,
the significance level is in the range 0.03 to 0.06. Further,
for only a few extreme distributions, when n =5, does
the significance level round off to 0.03, 0.04 or 0.06. All
other significance levels round off to 0.05. Thus, there
is extremely little variation in the significance level over
this extensive range of distributions. This means that one
of the arguments favoring the choice of a nonparametric
procedure for this problem, that the significance level of
a nonparametric procedure is always exactly the nominal
level, is of little consequence since for the equal sample
t-test (over the range of distributions studied), the signi-
ficance level is very near the nominal level. Arguments
favoring a nonparametric approach for this problem
should therefore be based only on power considerations.
Results for the power evaluated at noncentrality para-
meter values corresponding to powers of 0.50 and 0.95
under normal conditions are provided in tables 5 and 6.
A review of these tables shows that for all sample sizes
and all distributions studied, the range of the power levels
is only 0.444 to 0.566 for the 50 Y%, normal power level
and 0.934 to 0.983 for the 95Y%, normal power level. In
each of these cases, the more extreme probabilities occur
with the more extreme distributions and, as sample size
increases, the robustness level improves further, If n is at
least 15, the two power levels to two decimals are in the
range 0.48—0.53 and 0.94—0.96. The latter result along
with the results for the significance level indicate a very
strong level of robustness for the equal sample t-test,
probably stronger than most users realize.

4. Comparisons with the Wilcoxon Test

The foregoing suggests that, at least for the equal sample
case, the two-sample t-test should be quite useful as a
solution to the two-sample location problem. However,
considerable theoretical support, particularly asymptotic
efficiency levels, recommends the Wilcoxon test as a
viable general alternative to the t-test. The prominent
nonparametricist G. E. Noether, in fact, recommends its
use most of the time in lieu of the t-test.

Unfortunately, there are comparatively few studies in the
literature on the small sample power of the Wilcoxon test
and the existing papers are, for the most part, concerned
with Wilcoxon power for normal parent populations. A
recent paper by the author, Posten (1982), however, using
the broad simulation approach discussed above, provides
an evaluation of Wilcoxon power over the same sample
sizes and Pearson distributions discussed in the previous
section. Again, the objective was an accurate assessment
of power with the two noncentrality values used being
the exact values required to produce 50Y, and 95",
power for the t-test under normality. These values of
the shift parameter are the values used in the foregoing
t-test study. Thus, this Wilcoxon study is identical in
form to the t-test study, thereby allowing direct com-
parisons of power for the two procedures. However, be-
cause the length of computer time required for the



Table 3

Monte Carlo probabilities for the two-sample two-tailed
t-test (normal case, significance level = 0.05)

Significance level

Upper Double Upper
n Tail Tail Tail
Test Test Test
5 0.0503 0.0510  0.4999
10 0.0497 0.0495 0.4984
15 0.0507 0.0486 0.4999
20 0.0511 0.0495 0.5012
25 0.0507 0.0495 0.4991

0.0483 0.4989

Monte Carlo evaluation of Wilcoxon power is significantly
greater than for the t-test, only two million values were
generated for each of the 87 Pearson distributions in-
volved, This still provided 40,000 generated values of the
Wilcoxon statistic, U, for each sample size n = 5(5)25. For
n = 30, 33,200 values of U were generated each time.

The original paper provides results for both one- and
two-tailed tests but for the present purpose only the two-
tailed results will be discussed (the one-tailed resulls are
not very different). As it turns out, the power of the
Wilcoxon test for a fixed shift value is more variable
over the Pearson family than the power of the t-test. In
many cases, particularly for the 50 ", (normal t-test
power) shift value, this variability is favorable to the
Wilcoxon test since it results in higher power for this
test. Tables 7 and 8 provide the Wilcoxon Monte Carlo
results, For purposes of comparing Wilcoxon and t-test
power, these tables provide the difference in power of
the t-test and the Wilcoxon test (t-test power minus Wil-
coxon test power).

It is evident from the large number of negative entries
in tables 7 and 8 that, except for sample size n = 5, these
results support, to a large degree, the recommendations
of some nonparameiricists that the Wilcoxon test be used
generally rather than the t-test. For n =25, the tables in-
dicate that the power function of the t-test is dominant
over that of the Wilcoxon test over essentially the entire
range of the Pearson family presented. Other than this,
the Wilcoxon function is dominant over a substantial
part of the Pearson family if one is concerned with the
50 %4 (normal) shift value of the power curve. The region
of dominance is considerably reduced if one considers the
power curve region around the 95", (normal) shift value.
In fact, the situation often changes, with the t-test power
increasing (around the 95Y, shift value) to being nearly
equal or superior to the Wilcoxon power. The general
pattern of the Wilcoxon power curve, if one stays away
from a modest sized region of the Pearson family near
the normal distribution, seems to be approximately the
following: the power curve of the Wilcoxoen test starts
off (near the null value) more sharply than the t-test and
is superior to the t-test power curve until the shift para-
meter reaches values associated with higher probabilities,
at which point the t-test power may be nearly equal or
superior to the Wilcoxon power. This is not a perfect
picture since it depends upon the region of the Pearson
system involved. The reader may review the pattern of the
tables {or particulars.

As previously indicated, the results of this study, to a
large degree, would appear to support the nonparame-
tric recommendation to use the Wilcoxon test as a general

50 Y%, Power

95", Power

Double Upper Double
Tail Tail Tail
Test Test Test
0.4997  0.9499 0.9501
0.4986  0.9507 0.9507
0.5005 0.9511 0.9512
0.5012 0.9510 0.9511
0.4986 0.9508 0.9506
0.9495

0.9495

solution to the two-sample location problem. A note of
caution, however, is probably justified. The range of
distributional coverage provided by the Pearson distri-
butions of this study is extensive. It is conceivable that
in many application areas the range of distributions one
is likely to meet are of considerably less extent. Conse-
quently, depending upon the area of application, one may
wish to consider a more restricted region of the Pearson
family. In particular, it seems reasonable to at least eli-
minate distribulions near the left boundary and lower
extreme left boundary of the Pearson plane, where the
U-shape and J-shape distributions reside. The latter
distributions seem more likely to announce their presence
in the sample data. Despite the support provided by this
study for the Wilcoxon test, the results could also provide
to some degree an argument for general use of the t-test,
particularly if U- and J-shaped distributions are dis-
regarded. Suppose one asks what is the region in the
Pearson system where the power of the t-test at the 50",
value of the shift parameter is not less than 0.05 of the
Wilcoxon power and for the 95, value of the shift para-
meter is not less than 0.03 of the Wilcoxon power? This
would be a region in which the power function of the
{-test is either superior of “not bad at all” compared to
the Wilcoxon power. An inspection of tables 7 and 8
shows that this region varies with the sample sizes but
in general is a fairly substantial region. A similar argu-
ment could also be applied to the Wilcoxon test since
the truth of the matter is that over a substantial part
of the Pearson plane the power of the two tests does
not differ dramatically.

5. Conclusions

It would seem that despite the informativeness of the
foregoing studies, these results do not definitely make a
choice between the equal sample t-lest and Wilcoxon
test for the general two-sample localion problem. The
results tend to at least partially support a Wilcoxon
choice in a situation when the population differ only by a
shift parameter. However, several authors, Boneau (1962),
Van der Vaart (1960) and Glazer (1963), have indicated
that for normal populations and equal sample sizes, the
t-test is superior to the Wilcoxon test in robustness for
departures from the assumption of equal variances. It
would seem, therefore, that further studies of the effects
of variance heterogeneity on the two tests would be
needed over an extensive practical family of nonnormal
distributions before a single procedure might be specified
as a somewhat general choice for the two-sample location
problem.
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Table 4
Monte Carlo Results for Significance Level (Two-Sample t-Test, Double Tail Test, « = .05)
By By 14 1.8 2.2 2.6 3.0 3.4 3.8 4.2
0.0 0563 .0555 .0540 .0523 .0510 .0498 .0491 .0484
0.4 .0514 .0520 .0514 .0509 .0500 .0493 .0438
0.8 .0454 .0480 .0488 .0489 .0488 .0486
1.2 0404 .0438 .0459 .0467 .0472
1.6 n= 5 0348 .0398 .0427 .0445
2.0 0307 .0353 .0393
0.0 0515 .0509 .0501 .0498 .0495 .0489 .0485 .0481
0.4 .0516 .0507 .0497 .0492 .0486 .0482 .0480
0.8 0508 .0502 .0492 .0484 .0476 .0476
1.2 L0497 .0495 .0486 .0476 .0471
1.6 n=10 0477 0480 .0478 .0472
2.0 0450 .0463 .0469
0.0 L0509 .0494 .0492 .0491 .0486 .0484 .0482 .0479
0.4 0505 .0501 .0492 .0487 .0483 .0481 .0477
0.8 .0508 .0501 .0490 .0486 .0481 .0477
1.2 L0507 .0500 .0487 .0480 .0479
1.6 n=15 20503 .0497 .0486 .0481
2.0 0494 .0491 .0482
0.0 0510 .0504 .0499 .0498 .0495 .0492 .0491 .0490
0.4 0509 .0504 .0499 .0496 .0494 .0492 .0489
0.8 0500 .0502 .0499 .0494 .0492 .0492
1.2 0499 .0500 .0498 .0493 .0491
1.6 n=20 0494 .0495 .0493 .0490
2.0 L0494 .0487 .0488
0.0 L0505 .0503 .0503 .0499 .0495 .0496 .0494 .0493
0.4 0502 .0496 .0491 .0492 .0494 .0493 .0493
0.8 .0500 .0497 .0490 .0490 .0487 .0488
1.2 0493 .0493 .0494 .0490 .0488
1.6 n =25 0494 .0490 .0491 .0489
2.0 .0495 .0488 .0489
0.0 .0496 .0494 .0495 .0494 .0491 .0491 .0492 .0490
0.4 0498 .0495 .0495 .0493 .0494 .0494 .0491
0.8 L0495 .0492 .0493 .0492 .0488 .0489
1.2 0492 .0492 .0492 .0489 .0486
1.6 n=30 .0490 .0490 .0489 .0485

0490 .0484

4.6 5.0 5.4
0479 .0474 .0471 .0468 .0466 .0464 .0463 .0461 .0460
0482 .0478 .0475 .0473 .0470 .0468 .0465 .0464 .0463
.0483 .0481 .0477 .0474 .0471 .0469 .0466 .0466 .0465
0472 .0473 .0473 .0472 .0471 .0469 .0466 .0465 .0463
0455 .0460 .0463 .0463 .0464 .0465 .0465 .0465 .0464
.0416 .0434 .0445 .0451 .0454 .0456 .0458 .0459 .0460
0478 .0474 .0472 .0469 .0468 .0466 .0465 .0463 .0463
0477 0475 .0474 .0472 .0470 .0470 .0468 .0466 .0465
0474 .0472 .0470 .0469 .0468 .0467 .0466 .0466 .0465
.0468 .0468 .0466 .0465 .0466 .0464 .0463 .0463 .0463
0465 .0463 .0459 .0460 .0460 .0460 .0459 .0459 .0460
0464 .0462 .0458 .0457 .0455 .0455 .0454 .0455 .0456
0477 .0476 .0475 .0473 .0472 .0471 .0470 .0469 .0468
0477 .0474 .0473 .0472 .0470 .0470 .0470 .0468 .0467
0474 .0472 .0471 .0470 .0470 .0468 .0467 .0467 .0466
0475 .0472 0468 .0468 .0468 .0469 .0468 .0466 .0467
0472 .0471 0467 .0468 .0466 .0464 .0466 .0465 .0464
0477 .0472 0467 .0464 .0462 .0462 .0462 .0461 .0460
0489 .0487 .0486 .0485 .0484 .0483 .0483 .0481 .0480
0487 .0486 .0484 .0482 .0481 .0481 .0481 .0480 .0480
0491 0487 .0486 .0484 .0482 .0481 .0479 .0478 .0477
0487 .0487 .0485 .0486 .0484 .0482 .0481 .0480 .0479
0487 .0486 .0485 .0484 .0483 .0481 .0481 .0481 .0479
0486 .0485 .0482 .0482 .0483 .0482 .0480 .0478 .0478
.0491 .0488 .0487 .0486 .0485 .0484 .0483 .0484 .0483
0491 .0491 .0490 .0489 .0486 .0485 .0483 .0482 .0482
0487 .0486 .0485 .0484 .0485 .0485 .0485 .0483 .0483
0486 .0485 .0485 .0485 .0482 .0481 .0482 .0482 .0482
0489 .0487 .0483 .0480 .0480 .0482 .0482 .0480 .0479
.0487 .0486 .0484 .0483 .0481 .0478 .0477 .0478 .0479
.0490 .0488 .0488 .0487 .0487 .0486 .0486 .0485 .0484
.0491 .0489 .0487 .0487 .0485 .0484 .0483 .0482 .0481
0490 .0488 .0487 .0488 .0487 .0487 .0484 .0483 .0482
0488 .0485 .0487 .0486 .0484 .0484 .0485 .0484 .0485-
0486 .0482 .0481 .0481 .0480 .0480 .0481 .0483 .0481
.0480 0478 .0479 .0477 .0477

.0478



Table 5

Monte Carlo Results for .50 Normal Power N.C.P. (T'wo-Sample {-Test, Double Tail Tgst, 2= 05)

By By 14 1.8 2.2
0.0 4444 4599 4756
u.4 4582 .4764
U.8 .4660
1.2

1.6 n= 95

z\

0.0 4714 4791 4862
u.4 4809 4863
0.8 4876
1.2

1.6 n=10

2.0

0.0 4835 4882 4938
0.4 4882 4922
3.8 4928
1.2

1.6 n=15

2.0

0.0 4884 4922 4955
0.4 4923 4955
0.8 4958
1.2

1.6 n =20

2.0

0.0 4912 4926 .4943
0.4 4927 4945
0.8 4947
1.2

1.6 n=25

2.0

0.0 4910 .4938 4957
0.4 4941 4953
0.8 14961
1.2

1.6 n =30

2.0

Table 6

Monte Carlo Results for

1.8 2.2
0.0 9828 9713 9631
0.4 9740 9636
0.8 9657
1.2
1.6 n= 5
2.0
0.0 9636 9601 .9568
0.4 9595 .9564
9559
n=10
9594 9575 9549
9574 9554
.9550

9571 9555 9538

CcCwHRCcCC IR RS S SNRRSOSNEES
N N N N R AR B=—RF- SOR-SN =R Y s

9553 .9534
.9539
n =20
9555 9546 9536
9538 .9529
9525
n= 25
0 9539 9530 9519
4 9531 .9520
0.8 9522
1.2
1.6 n == 30
2.0

2.6

2.6

.9560
.9555
.9562
9578

9536
.9536

.9526
9524

9531
.9531
9532
9533

9523
9517
.9518
.9522

9522
9521
.9519
9515

9509
9504
.9503
9512

3.0

4997
.5014
.0040
.5001
4789

.4986
4988
4994
0007
.5009

.5005
.0019
.5023
.0014
.5020

5012
0015
0011
0025
.0034

.4986
.5006
4997
4987
5001

4987
4994
4997
4990
.5003

3.0

9501
.9495
9491
.9493
.9491

3.4

.5099
5112
0146
5161
0100
48670
o044

o030
o000y

5054
.5059
.5069
5044
9053
o063

0060

.Du67

0008

0041
.0041
0043
0050
0053

0058

0010
2030
0021
0015

5018

0025

5011
.5009
9010
0013
0018
.0026

.95 Normal Power

3.4

.5453
.9461
9441
.9430
9434

9407

9480
9481
9474
.9469
9467
.9464
9494
.9494
.9491
.9488
9488
.9488
9493
.9494
.9491
9492
.9491
.9490
.9496
9500
.9499
.9492
.9489
.9486
9487
9485
.9486
.9486
9493

9494

3.8
0182
0181
.0222
0297
.0268
.5202
0095
5080
.5091
0111
0119
0109
.5080
.5087
.5098
0109
.5098
.5106

.5068
5065
0070
0074
0084
.5087
5032
5048
.0044
0041
0037
.0046
5027
0031
.5026
.5028
.5040
0042

4.2

.5256
.5247
5281
0322
.5364
0371

0137
125
.0136
0151
0171
5173

0112
5118
5125
0145
0141
0139
5089
0092
.5089
.5099
50111
0116

.5055
.0065
.5072
.0064
.5065
.0061

.5035
.5047
.0048
.0043
.5050
.5066

4.2

.9407
.9422
.9403
9372
.9332
9323
.9443
.9449
.9439
.9426
9417
9411
9471
.9467
.9460
.9457
.9453
.9452
9471
.9472
9471
9467
9464
.9461
9474
.9482
.9480
9478
9472
.9466
9471
.9462
.9464
.9466
.9467
.9466

4.6

.5306
.5304
.5326
5377
.0423
.5463

0172
0161
5171
.0188
0211
0227

5138
5140
0153
0172
0179
0173

0110
0114
5114
0122
0135
.0138

0075
.5083
.0089
9091
0089
.5091

.5049
0064
.5068
.5068
0064
5072

E. (Two-Sample

4.6

9391
9408
9395
.9364
9322
9283
.9433
.9440

.9428
9413

.9399
9393

.9464

9457
.9450
9441
9440
9435
.9460

.9463

9461
.9459
9454
9450
.9465
9473
9473
.9469
.9460
9457

9463

.9456
.9457
.9455
.9455
9455

5.0

.5352
.5350

5.4

.5393
5391
9407
0447
.5494
.9961

.5229
5224
0227
0247
0275
0304

0188
.0186
.5198
0213
9233
.5242

0151
0155
.5158
0159
0171
0187

.0106
0111
5117
0130
0133
0135
9076
.0085
.5087
.9094
5103
0108

Double Tail
5.4

9378
.9392
.9388
.9363
9334
.9290
9418
9421
9417
.9400
.9386
.9365
9447
9444
.9436
9431
9421
9413
9446
.9449
.9447
9443
9437
9435
9453
.9462
.9459
.9458
9452
9444
.9448
9451
.9447
.9445
.9440
9438

58 62 66 7.0 74

.5426
9425
9449
9471
9525
.5588
.ozd1
L5200
.Hz51
0271
L0295
9332
5206
0204
D210
9239
.Hz4Y
9210
0162
D171
9178
9180
9190
.5206
5120
9124
9127
9139
9147
0147
0087
.5098
0101
9105
5115
9127

5.8

9370
.9386
.9385
.9368
.9340
.9302
9411
9414
9410

.9398

.9385
.9365
.9441
.9440
.9432
.9427
9415
.9406
9442
.9446
9441
.9439
9434
.9425
9450
.9455
9454
,9451
.9446
.9440
.9445
.9448
9446
9437
9434
9433

.5454
.5453
.5467
0495
0945
0603
0274
52171
0274
.0292
0313
.5352
0225
0224
0434
0248
.5261
.0286
0174
0184
0195
.0196
.0208
0222
5131
0136
5139
0153
.0160
0163
.5096
.5108
0114
5114
5122
0134

Test, a ==.05)

6.2

9364
.9380
9383
.9369
9344
9311
.9406
.9408

.5480
.5480
.5490
.5519
.5565
.0619

.0292
5291
0295
0311
0333
.5366
0240
.5235
.5246
.5259
0279
.5300
0187
.0198
.5206
5210
.5220
0235
.0143
0147
0153
.0163
5175
D177

.0106
0119
5126
0129
0135
0147

6.6

.9361
9377
9379
9368
.9349
9318
.9401
.9403
9401
.9396
.9382
.9367
.9431
.9431
9425
9422
9411
.9399
9435
.9436
9436
9433
9425
9418
9443
.9444
.9447
9443
.9441
9431
9438
9441
9439
9431
9427
9423

.5500
0503
.9010
.5540
.9580
.0636

5308
5310
5312
5331
5352
5377

.5254
5249
0261
5273
.5292
.5309

0197
0210
0222
.5224
.9232
.0248
0153
.5155
.5162
0174
.0182
5193

0117
.0129
.0135
5141
.5149
.5158

7.0

9358
9374
9375
.9368
9351
9325
.9398
.9398
.9399
.9395
9384
.9367
9427
9427
.9425

.5521
.9525
0533
.0557
.5594
.5645

.5323
5327
5331
.9346
.5366
.5388

.0266
.0262
.5272
.0288
.0304
5321
.5206
0219
5232
0234
0244
.9259

.0163
0163
5174
.0184
.5191
9204

5125
.5135
.0141
.0150
5157
0167

7.4

.9356
9370
19372
.9366
9355
.9332
.9395
.9396
9397
9394
9385
9370
.9423
9425
.9422
9416
.9405
9395
.9430
9428
9431
9427
.9424
.9415
.9438
.9440
.9443
9441
.9436
.9429
9431
9432
.9432

7.8

0538

.9356
.9336
.9394
.9393
.9397
9392
.9383
.9369
9422
9425
.9420
9415
.9405
9395
9426
94217
.9429
9426
9421
9413
9437
9437
.9440
.9440
9434
9428
.9430
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Robustness of Three Sequential One-Sample Tests Against Non-Normality

DIETER RASCH

Abstract

By simulation it was shown that only one of three se-
quential tests of the hypothesis Hy: u = p against Hp:
(v~ pup)? = 02d? is robust with respect to the first kind
risk « but not with respect to the second kind risk f. An-
other test is robust with respect to g but not with respect
to a.

1. The Test Statistics

The sequence { Vi, Yo, - .,} with identically and indepen-
dently distributed components with mean x and variance
02 (0 < 062 < ) was used to test the hypothesis

Ho:p = m

against

d>0).

We consider three tests developed for normally distributed
y; following Wald (T, (n), 1947), Bartlett (T, (n), 1946) and
Mann (T (n), 1980) respectively. The test statistics T; (n)
(j =1,2,3) are

HA3 (M—Mn)z = ¢g?d?

42 1 nd?t?
Ty(n)=— "= 4 InH[2; =; : M
2
2 2 2 n—1+41)
1 1 _
T,(n)=—-—1<1 n sf,—m[ s§+(yn—d)2]} )

n-1

? +[Z<yi—d>2] ?
i=1

i=1

S
i=1

(3)
In (1) to (3) we used

2 n _
t, 3 (¥ — w0)
S
n
) n
yn:_ Yi

2 1 ¥ —2

S = —— -

n= 1 ;/_:_{ (¥i )
and the confluent hypergeometric function H (a;b;c).
Usually the decision rule used for the sequential test is;

Accept Hy jf Tj(n)<b=1InB (i=1.2)

orif T,(n)<D.

Reject Hy it  Tym2a=1InA (G=1.2)
orif T,(n)=A.
Take a further observation y,_, if
b<Tjn)<a 3j=1.2)
orif B<T,(n)<A
with A=1=F angp=_"°
« 1l—«

100

Using this rule, test Ty has approximately the sirength
(2, B).

2. The Simulation Experiment

The simulation experiment consists of two parts. Without
loss of generality we put py = 0 and o* = 1.

Part I

We investigated the behaviour of the three tests under
the normal assumption and for truncated normal distri-
butions. 10000 samples were generated for the normal
distribution and one truncated distribution for each of
the 264 possible combinations of

(a, §) = (0.05; 0.10), (0.05; 0.20), (0.10; 0.20) (0.10; 0.50)
d = 0.6; 1.0; 1.6

T (n) =T (n), Ty (n); Ty (n)

u =002 d+02

and for the other truncated distributions and the distri-
butions of part II only for 4 = 0 and px = d (72 combina-
tions per distribution). (See Table 1) Pseudo-random num-
bers (p.r.n) from N (u,1) are generated by the combina-
tion ZZGD/NVJ1 (Feige et.al. 1984).

Part 1I

Pr.n. from N(y,1) were generated for the 72 parameter
combinations mentioned in part I. These p.r.n. were trans-
formed into p.r.n. with given skewness y; and kurtosis y,
by the power transformation z = —c+ by + cy?+- dy3
(Fleishman 1978). For both parts we calculated for each
u-value the relative frequency of the 10000 samples in
which H, was accepted and used this for 4 = 0 as an esti-
mate of « and for x = d as an estimate of 1—f. Further,
we calculated the average n of the sizes of the 10000
samples and the variance of these sample sizes sfl. We used
n as an estimate of E(n). We also determined n;, and
Noax and the frequency distribution of the sample sizes.

3. Results

(i) With four exceptions the empirical «-values are, under
normal conditions lower than the nominal ones.
Under normal conditions the empirical (1—f)-values
are with the exception of Tj; (a, f) = (0.05, 0.10) higher
than the nominal ones, so that all tests are in most
cases conservative, as could be expected from theory
in the case of test 1.

(ii) With respect to « test 2 is robust for all investigated
alternative distributions (it is worst in the normal
case), tests 1 and 3 are non-robust for small d if »,
and y, both differ greatly from zero.

(iii) With respect to B test 1 is always robust, test 2 is
robust only if the values of d are not to small and
test 3 is robust only for d = 1.6.

(iv) The ASN is low for test 2 if d is small and is also
good for test 1 if d is large. Test 3 always needs



larger average sample sizes than either test 1 or test 2.  in the second kind risk non-robust. We therefore propose
For median d-values, the sample sizes do not differ the following test statistic

too much between the three tests.
T,, if u<

[\

4, Proposal T,. if u
Lim and Fung (1982) investigated sequential t-test based where u is an in (0,1) uniformely distributed pseudorandom
on M-estimators under three non-normal (long-tailed) dis- number. The properties of this test T will be investigated
tributions. All simulated tests where either in the first or  for some more d-values.

Table 1

Distributions used in the simulation experiment and their parameters
(u, v standarized truncation points, b, ¢, d parameters of the power

transformation)
No of Truncation points - o
distribution u \ Vi Y2
1 - o 0 0
2 0.5 3.0 1.0057 0.5915
3 —1.5 3.0 0.3480 —0.3488
4 2.85 4.71 1.505 3.75
Parameters of power transformation
b c d Vi V2
5 0.748020807992 0 0.077872716101 0 3.75
6 0.63044672784 0 0.11069674204 0 7.00
7 0.953076897706 0.163194276264 0.006597369744 1.00 1.50
8 0.865886203523 0.221027621012 0.027220699158 1.50 3.75
Table 2
Percentage 102 t, of false rejection of Hy for 8 distributions and test 1
- a Number of distribution in table 1
d 102 102,3 1 2 3 4 5 6 i 8
0.6 5 10 4.19 7.52 474 1038 3.16 2.64 6.12 7.67
20 4.34 7.44 493 10.41 3.23 2.95 6.17 7.57
10 20 8.85 1299 9.33 1591 6.94 6.46 1052 12.63
50 994 1379 1027 1594 8.30 8.06 11.65 13.70
1.0 5 10 3.90 8.49 447 11.06 2.76 2.13 6.40 7.93
20 4.15 8.67 470 11.14 3.03 2.42 6.36 8.06
10 20 790 13.33 9.00 16.31 6.60 579 10.65 12.90
50 10.39 14.64 11.20 17.94 8.78 7.1 12.60 14.69
1.6 5 10 3.87 777 426 10.76 2.32 2.24 6.04 7.73
20 4.27 8.01 4.58 11.01 2.60 2.43 6.43 8.14
10 20 7.68 12.47 8.51 15.58 5.58 5.13 10.51 12.22

50 11.82 1633 12.72 19.55 9.70 855 1435 16.06

Table 3
Percentage 10? fﬂ of false acception of Hy for 8 distributions and test 1

I\AIurr‘l‘tr)er of dis}ﬁbutioﬁ irnrtableﬁi

d 0%  10% 1 2 3 4 5 6 7 8
06 5 10 754 326  6.09 168 800 7.86 414 237
20 1554 895 1378 505 1464 1476 1046  7.24
10 20 1572 943 1420 545 1434 1415 1085  17.66
50  39.90 3430 4079 27.91 3435 3197 3622 30.56
10 5 10 595 035 342 0 716 722 122 034
20 1177 152 801 006 1190 1173 373 127
10 20 1158 168 830 007 1152 1109 394 136
50 3013 1313 2859  0.21 2435 2250 18.93 11.23
16 5 10 430 0 061 0 6.83 642 002 001
20 759 0 1718 0 953 927 012 0.04
10 20 760 0 201 0 938 887 013  0.04

2.37 0.44

50 15.01 0.17 10.58 0.08 1398 1264

101
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Table 4
Percentage 102f“ of false rejection of H, for 8distributions and test 2

Number of distribution in table 1
102 1028 1 2 3 4 5 6 7

8
0.6 5 10 4.25 1.75 3.44 0.98 3.26 2.51 1.62 1.17
20 4.64 1.69 3.59 1.11 3.33 2.68 1.78 1.36
10 20 8.92 3.95 7.11 2.62 6.78 5.94 4.25 3.26
50 11.15 5.46 9.32 3.96 9.06 8.03 6.26 441
1.0 5 10 2.61 1.14 2.00 0.61 1.26 0.77 1.14 0.80
20 2.65 1.20 2.28 0.61 1.39 0.84 1.31 0.88
10 20 5.21 2.73 4.92 1.91 3.01 2.12 3.14 1.94
50 7.21 4.20 7.00 3.18 4.36 3.34 4.50 2.99
1.6 5 10 0.51 0.42 0.67 0.25 0.21 0.18 0.37 0.28
20 0.58 0.45 0.71 0.26 0.25 0.19 0.42 0.29
10 20 1.37 1.08 1.42 0.58 0.78 0.42 1.01 0.77
50 2.37 2.00 2.50 1.29 1.31 0.88 1.84 1.36
Table 5
Percentage 102f 8 of false acception of H, for 8 distributions and test 2
Number of distribution in table 1
d 102 108 1 2 3 4 5 6 7 8
0.6 5 10 8.37 19.18 1148 22.85 6.85 5.71 1548 18.38
20 1546 27.80 19.45 3130 13.15 11.53 24.01 27.01
10 20 15.51 28.15 19.64 31.58 13.11 11.46 2410 27.30
50 32.27 4453 36.28 46.32 2856 2652 39.93 4227
1.0 5 10 445 10.37 6.66 9.55 2.78 1.93 8.07 8.07
20 8.90 16.70 11.56 14.13 5.96 485 13.60 1290
10 20 9.17 17.11 11.97 1455 6.10 497 1394 13.29
50 20.55 26.81 22.86 2494 16.04 1444 24.18 24.32
1.6 5 10 11.19 0.19 1.60 0.01 0.54 0.35 0.76 0.13
20 12.55 0.85 3.21 0.04 1.31 1.03 1.58 0.53
10 20 12.65 0.94 3.36 0.06 1.33 1.06 1.67 0.61
50 8.09 5.34 8.77 1.46 5.75 5.03 6.04 3.77
Table 6
Percentage 102f  of false rejection of Hy for 8 distributions and test 3
Number of distribution in table 1
d 102 108 1 2 3 4 5 6 7 8
0.6 5 10 4.80 8.80 5.26 12.60 3.27 2.41 7.03 6.73
20 4,90 9.18 5.41 12.54 3.33 3.53 7.15 7.02
10 20 9.17 14.47 9.32 18.17 6.60 5.43 11.70 12.01
50 10.77 1582 11.68 19.10 8.60 7.03 1330 1315
1.0 5 10 2.61 5.43 3.46 441 1.05 0.58 3.22 4.01
20 2.80 5.74 3.70 4.63 1.12 0.65 3.54 3.23
10 20 5.50 8.51 6.53 7.69 2.37 1.69 6.11 5.78
50 7.23 10.28 8.45 9.42 3.64 2.64 8.40 7.89
1.6 5 10 0.43 0.09 0.66 0.11 0.13 0.06 0.34 0.45
20 0.48 0.11 0.69 0.16 0.18 0.08 0.39 0.63
10 20 1.12 0.48 1.47 0.39 0.43 0.23 0.73 0.78
50 1.80 0.93 2.33 0.66 0.79 0.49 1.22 1.02
Table 7
Percentage 102f 2 of false acception of Hy for 8 distributions and test 3
Number of distribution in table 1
d 102 1028 1 2 3 4 5 6 7 8
0.6 5 10 10.36 1947 12.60 25.36 9.81 8.86 1746 16.79
20 1890 29.87 21.68 3484 1774 16.80 27.21 22.75
10 20 1891 30.09 21.74 3535 17.67 16,57 27.20 27.15
50 4044 4959 4346 53.64 3796 3637 4772 4512
1.0 5 10 6.56 12.72 8.72 12.36 3.77 3.02 9.80 10.25
20 1244 19.85 14.88 18.69 8.70 728 16.19 15.80
10 20 12.77 20.34 15.31 19.25 8.86 7.36 16.58 16.03
50 27.84 3433 3088 33.71 23.04 21.12 3145 29.50
1.6 5 10 1.75 0.59 2.14 0.04 0.82 0.61 0.94 0.99
20 4.19 2.01 4.76 0.34 2.30 1.82 2.48 2.12
10 20 4.47 2.17 5.05 0.36 2.48 1.95 2.78 2.55
50 14.01 1099 13.71 6.58 10.71 929 11.74 10.79
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A Test for Exponential Regression and its Robustness

DIETER RASCH AND ERHARD SCHIMKE

Abstract

We consider the regression model y; =a - fexp (¥ x;)
+e; (y <0) with i.i.d. error variables e; with E(e;) = 0,
Vie) = o2 By simulation experiments we investigate the
possibility of using the elements of the sequence V4 (n)

17N\

(n=4,...) as approximations of the variance Vw) of the

. - g [} {] 0
least squares estimator ¢ of #" = («, 8,7) = (Ji, 92, By).
Here V, (n) is equal to

Valn)= {g“, g'(xi,ﬁ) g(xi, ﬂ)J—] with
oxi-8) = (81(x1. 7). &2 (x1- 9). &(x;. 9)).

gj(x;.9)= % £(x;.9) and £(x;.0) = a+pexp (yx;).
i

We find that approximations for the estimation problem
are already good for n =4 and very good from n = 6 on.
Tests and confidence intervals in respect of y can easily
be constructed with sufficient accuracy from n=4 on.
We also investigate the robustness of the proposed test
against non-normality.

1. Introduction

We consider the exponential regression model of the
form

vi=otpe i+ e =f(x;.0)+e M
(i=1....ni («py)e2cR V(e)=0?>0)

and limit ourselves to the parameters g <0, y <0 (£ =
R!X R—-X R-), a case which often arises in describing
growth or production functions. The e; may be i.i. d.
random variables, in the main part of the work we con-
sider the normal case. It is well known that the reali-

AN
sation 3’: (a,b,c) of the least squares estimatior & =
(a, b, ¢) is obtained by first computing c iteratively from

h(C)=</F\‘—.,VX)(6—%1/&@)—(6—%22)(8—?@):0 (2)

and then calculating a and b from

_ b~
=y——A
a=y n (3)
and & _sAh
G—VvB
b=~ @
D—=AB
n

respectively.
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We use the following abbreviations

n n n n
A= Zeyxi, B=ineyxi‘ C=Zewxi, D=ine2;1xi.
i=1 i=1 i=1 i=1
n n n
E= in2e2;'xi’ F= Zyie;vxi~ G=inyi erxi
i=1 i=1 i=1

If we replace 7 by ils least squares estimate ¢ we write
NN N

A B,...,G.

It is well known that 5 is consistent (Malinvaud (1970))
and that

V;(g_ﬁ) (s)

is asymptotically N [04, a’n V 4 (n)]

where
n A pB\
Vam=[Aa c 8D
fB D BE
" [CE-D? BD—AE %(AD—BC)
_1 _ _ 1iap_
=2 | Bo-aE nE —B? 5 (AB—nD)
Lap—Bo) LaB—np) Lnc—ay
B i ?

(Jennrich 1969),

with 4 =n (CE — D? 4 2ABD — A2E — B2C,

It is the aim of this paper to find by simulation experi-
ments a lower bound n; for n such that, for n > n,,

E(8)x9 and V(8)~Van)e?

The problem of testing hypothesis and constructing con-
fidence intervals with respect to y was discussed by Bates
and Watts (1981), Beale (1960), Bismarck et al. (1974),
Brandt (1973), Broemling and Hartley (1968), Gallant
(1975 a, b), Halperin (1963), Halperin and Mantel (1963),
Hartley (1964), Maritz (1962), Milliken and Graybill (1970),
Milliken (1978), Schmidt (1979, 1980, 1982, 1983), Sunda-
rary (1978), Williams (1962) and in most cases solved
approximately or asymptotically.

Exact methods for constructing confidence intervals (also
used to obtain tests) are often difficult or lead to difficult
interpretations.

From theorems of Gallant (1975 b) and Schmidt (1980)
we find that

_ (e—yg)24p?

“ (nC — A?%)s? M



is asymplotically (for y = y, central) chi-square distributed
with one d.f. if

is used as an estimator of o-.
So with §’ = (yy,...,¥y)

1, if z> ¥ (1.1—a%)
k(p)= ()
0. otherwise

will be an asymptotical a*-test for the null hypothesis
Hy:y=y, against Hp: yFy, (10)

Furthermore we know from Gallant (1975 b) that, for a
normal error distribution,

z=F ¢,

so that F under H, is F-distributed with one and n—3
d.f. and ¢ converges in probability to zero. In section 3
we investigate the small sample properties of a modifi-
cation of (7) which, we conjectured, has an approximate
t-distribution (central under H, and noncentral otherwise).
The conjecture was based on the asymptotic properties
of (7) and on the results of section 2. In section 4 we
discuss the robustness of the test based on the statistic
of section 3.

In the simulation experiments we used the program
ZZGD to generate pseudo-random numbers from a uni-
form distribution in (0;1) and transformed them by the
program NVO01 into normally distributed random num-
bers (see Feige et al. (1984) on page 30 ff. for details).

2. Small Sample Distribution of a, b, ¢ and s

The simulation experiment was based on a parameter
configuration of a real growth process. Rasch (1970) fitted
an exponential regression function to growth data of
cattle. For the wither height for instance the following
estimates for 0= x; <60 month were found: a==133,
b = —56, ¢ = —0.068, s2=1.04. Without loss of generality
we used « =0 to save computing time and we put ¢2=1.
The simulation experiment for this section was done in
two parts. In part I we considered 48 (§, 7)-combinations
of y = —0.10(0.01)—0.03 and p = —80(10)—30, n = 14
and equidistant points x; € {0;65). This part led to the
conclusion that the influence of (B,7) is not so great as
expected, and therefore we used only 12 combinations
(8,7 for further investigations. Part I was realized with
N =1000 samples for the 48 parameter combinations.
Part II was realized with N = 5000 samples for the 12
parameter combinations of y = —0.09(0.02)—0.03 and f =
—T70(20)—30 fore n =4 and n = 6 equidistant x; € (0; 0.65)
respectively. For both parts in each of the N samples we
added a N(0;1) pseudorandom number to each of the
n values

Be’ A (i=1..... n)
and estimated «a =10, g, y and ¢*=1 by (3), (4), (2) and
(8) respectively. For the N samples we calculated the
mean, variance, skewness and kurtosis of the empirical
distribution of a, b, ¢ and s and we also calculated the
correlation coefficient rg , between the residual standard
deviation s and the estimate ¢ of y. Furthermore we com-
puted the empirical covariances of the vector (a, b, c) and
the determinant of the empirical covariance matrix of
this vector.
Tables 1, 2 and 3 contain the means and variances of
the estimates of «, f# and » from N = 5000 samples for

n=4 and 6 and from N = 1000 samples for n=14 for
the (B,7)-values used in part II of the experiment. More
information for n=14 and results concerning the co-
variances and the determinant can be found in Rasch
and Schimke (1982).

We see that a and b are a little biased especially for

y = —0.03, but the relative bias (for instance for « = 130)
is small. The bias of ¢ is negligible and decreases with
increasing n. We can thus state that ¢ is nearly unbiased
for n = 10. Empirical and asymptotic variances of a, b
and c¢ are also in good agreement for n=4; agreement
is worst for a and best for c. The correlation coefficients
between c- and s-values (s square root of s? in (8)) lie
between —0.013 and 0.026 for n =4 and between —0.016
and 0.044 for n= 6 so it seems that s and ¢ are uncorre-
lated and also independent.

Goodness of fit tests were performed to test the hypo-

thesis Hy, that e is normally distributed and H,,* that
n—3)s? . . .

o :i,s) is chi-square distributed with n—3 d.f.

o2

The results are contained in table 4. The null hypothesis
H, ? was at the 5%-level in no case rejected. In table 4

(£, i
we have Xj=\—r </ _with empirical‘ (fj) and theoretical

(’!.
(rpj) absolute freq]uency in class j. The empirical skew-
ness and kurtosis values are in good agreement with the
acceptance of the corresponding distributional hypothesis.
as can be seen from table 5 taking into account that a
random variable z with chi-square distribution with v d. £.

. 2 .
has mean v, variance 2v, skewness y; = 2] and kurtosis
v
12
v

Summarizing it seems that most of the assumptions
needed for a statistic
(e—yo)b VZ

tm— ———

s’/na—ﬁ2

with 2:n(6€—ﬁ2)+ 2ABD — A’E—B2C

Y

/=

(1)

to have a Student distribution with n—3 d.f. also for
finite n if y = y, are fulfilled. But we do not know whether

¢ is independent of C and X, and other difficulties may
arise from estimating V, (¢), so we had to investigate
the properties of a test based on (11).

3. Properties of Testing H, Ty =y by the Statistic (11)
The null hypothesis

H(] !y= Yo
wes tested against
Hy: y =+ 70

in N=10000 samples in a simulation experiment per-
formed in an analogous manner to that dealt with in
chapter 2 for the twelve (B, y)-combinations of part II,
with n=10 and for four (8, 7)—c0mbinations and n=14
after we found that n=4 is acceptable in the normal
case (table 14). For n=9 we also performed a simula-
tion with ¢2>1 and found that the restriction on ¢?=1
is without loss of generality (table 15).

Tables 6 to 10 give the relative frequencies of rejection
of Hy under the null hypothesis and for some values of
the noncentrality parameter for first kind risks ¢* = 0.01,
a* = 0.05 and g* = 0.10. The results are easy to interpret.
The test based on the statistic (11) can be used if n = 4.
The properties of the test of Hy by (11) with the per-
centiles of Students distribution with n — 3 d. f. are nearly
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independent of (f, y). For n > 4 this test is approximately
an a*-test if «* = (.05, and it seems that it as also almost
uniformly most powerful unbiased (in this connection
see figure 1).

So we found that the test

*
1, if t>t({n—3.1— S_)
k()= it t> (n 3.1 3

0. otherwise

is approximately a uniformly most powerful unbiased
a*-test (a* = 0.05). The properties for «* = 0.01 are also
not bad. Therefore, and because ¢ is nearly unbiased
for y,

are the limits of an approximate (1 — ¢*) confidence
interval for P

4. Robustness of the Test Investigated in Chapter 3

The t-test based on test statistic (11) seems to be fairly
acceptable from n larger than or equal to 4. To investi-
gate the behaviour of the test for non-normal distributions
we generated six distributions by Fleishman’s power
transformation as described in detail by Guiard (1984)
with the same sample size n=4. We characterized the
non-normal distributions by their skewness Vi and kur-
tosis y2, and simulated 10000 runs of t-tests for each of
the four extreme combinations of = —30 and f=—70
with y=—0,03 and y=—0.09 to save computing time
and for each of the distributions characterized by (s y2)
as follows

y»p 00 0 1 152
v, 15 4 T15 4 7

Table 11 contains the percentages of rejecting H, if it is
true for three values of o* The behaviour of the empi-
rical power function can be seen in tables 12 and 13 for
two (B, y)-pairs. We find that with only few exceptions
the t-test based on (11) is e-robust with ¢=10.2 «* and
that the empirical power function is nearly the same for
all distributions, including the normal one.

5. Definition of the Robustness of a Test and Planning
the Sample Size of a Simulation Study

Following Rasch and Herrendorfer (1981) we define the
robustness of a test as follows

Definition:
Let ¢(Y) be a test for the hypothesis 4 = J, based on a
sample 9 and let ¢(h) be an a*-test if the distribution g

of the components of § is a element of G. Then ¢() is
called e(a*)-robust in the class HD G of distributions if

I}:/{Ea};(ltx*—ahlﬁe(zx*)

where a" is the size of the test for a given element of H.

In an analogue way robustness with respect to the whole
power function can be defined.

We usually use e(a* = 0.2 2* (20 %-robustness).

To determine the size of a simulation experiment we
need a precision requirement. We will estimate a proba-
bility P by a confidence interval with coefficient 1 —«,
in such a way that the half expected width of this inter-
val is not larger than § that is E(d) < §, Then with the
normal fractile the sample size needed is given by
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u2 (XCP(I—P)
N=

We will estimate by simulation the first kind risk a*
of a test («* <!/,). The sample size increases if «* in-
creases to !/5. So we propose to use for P in the above
formula the conservative value P = a* 4 e(a*) = a* + ¢
and we are on the safe side. If we choose a* = 0.05 we
obtain the following sample sizes

5
] 0.001  0.003 0004 0005 0007 0.010
0.005 199668 22186 12480 7987 5547 1997
2167

0010 216667 24075 13542 8667 6019

For e(a*) = ¢ == 0.2 a* = 0.01 («* = 0.05) we found N =
10000 runs as a reasonable choice and so 10000 runs
were performed in each paper of the research group of
Dummerstorf-Rostock.

Conclusions:

The test statistic t= )z is a 20 0/p-robust (approximately)
a*-test of H 1y =y (against H, Zy=F yo) in the Fleish-
man-system (1 < g2 <16 if 0 < x < 65).
Acknowledgement:
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Figure 1

Relative number of rejections for 10 000 tests (n = 10, normal
case)

Relative rejections for 1000 tests

Table 1
Means, empirical and asymptotic variances of the estimates
of « from N samples of size n=4 (N ==15000), n=6 (N =
5000) and n = 14 (N = 1000)

CE— D
—f —10% n 10°a 1002 ==
a0
30 3 4 520 104309 80077 4
6 644 98099 61368
14 263 39213 33850
5 4 147 19734 18716
6 125 13575 12998
14 128 7283 6552
7 4 55 10502 9899
6 52 6740 6330
14 27 3087 2929
9 4 35 7197 7308
6 2 4458 4415
4 —12 1820 1921




Table 1 continued

5
T
9
70 3
B)
7
9
Table 2

25

100

23
20

301
124

3

75
54
22
27

38
20

29

93815

68084
37041

19159
13069
6371

9699
6442
2755

6829
4437
1963

87822
62070
33320

19257
12948
6227
10035
6330
2781

7254

4426
1784

PRV

Means, empirical and asymptotic variances of the estimates
of f from N samples of size n=4 (N =5000), n=6 (N =
5000) and n =14 (N = 1000)

—p —10%

30

30

3

n

—b

30.252
30,625
30.287

30.135
30.142
30.166

30.059
30.048
30.035

30.035
30.019
29.987

50.323
50.307
50.190

50.041
50.090
50.042
50.048
50.033
50.032
50.039
50.023
50.021

Table 4

Result; of (A accepted, R rejected) chi-square tests for comparing the distribution
of ¢ with a normal one and the distribution of (n — 3)s? with a chi-square distribu-

tion with n—3d - f,

Table 2 continued

70.038

—b

70.297
70.125
70.173
70.081
70.154
70.061
70.054
70.014
70.027
70.018
70.020

107 s},

85366

55038
25661

26924
18477

8424
18955
143179

8627
17216
13641

8382

Means, empirical and asymptotic variances of the estimates
of y from N samples of size n=4 (N=5000), n=6 (N=
5000) and n =14 (N = 1000)

. " ”
80077 03 g
61368 1
33050 5 .
187