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Dedicated to Polly Eisenberg
A devoted teacher and wonderful human being
She would have been proud to see this book
in honor of Ted



Preface and Acknowledgements

This book is dedicated to Ted Eisenberg. It grew out of a symposium with the same
title held in May, 2012 on the occasion of Ted’s retirement. The venue was Ben
Gurion University of the Negev where Ted spent over thirty years as a professor
of mathematics education in the mathematics department. Ted received plenty of
praise during the event, praise, needless to say, that was well-deserved. However,
for a scholar, teacher, and human being like Ted, it is a far greater tribute to discuss
ideas that matter to him. Indeed, nothing could be more disheartening for a scholar
like Ted than to feel his concerns are ignored or belittled. Ted has confessed to us
he has often felt just that in recent years.

Ted’s sense of neglect has not been entirely unfounded regarding one concern that
has preoccupied him with particular acuteness over the years, namely, the growing
distance between mathematicians and mathematics educators. For Ted, to be a math-
ematics educator one must know and care about mathematics itself. It is a position
that, for him, is axiomatic and uncompromising. On the other hand, it is also a fact
Ted painfully admits that the development of mathematics education as an academic
field has allowed some of its practitioners at times to put mathematical knowledge
aside or even pronounce it as irrelevant.

But “at times” does not mean “always” and “some” does not mean “all.” The truth
of the matter, as we see it, is that mathematics education has developed to a point
where the place of mathematics within the field simply cannot be taken for granted:
the question of the relationship between mathematics and mathematics education
needs to be explored deeply and better understood. And as counterweight to Ted’s
own sense that there is a lack of urgency about this in the field, the very stature of
the mathematics educators and mathematicians who participated in the symposium
and who contributed to this book underlines the tremendous interest there actually
is on all sides about this question which Ted holds dear.

We are thus grateful to the participants of the symposium who subsequently con-
tributed to this volume, showing how far Ted’s concern is their concern. And it must
be added that these participants were not only those who presented papers and took
part in planned panel discussions, but also those in the audience who asked astute
questions and brought up issues enriching the general conversation then and the
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viii Preface and Acknowledgements

ideas in this book now. Many of those audience members were especially invited
because we thought that they would indeed enrich the event. So, our first thanks are
to all those who came and made that symposium such a great success. Of course,
though, there were others whose contribution it is important to us to acknowledge:

• Daniel Berend, Miriam Cohen and Michael Lin from the Department of Mathe-
matics at Ben Gurion University, for their excellent organization of the sympo-
sium and their success in finding sources for funding it;

• Abraham Arcavi (Weizmann Institute of Science), Hannah Perl (Israel Ministry
of Education), and Norma Presmeg (Illinois State University) who have, together
with the editors of this volume served as program committee for the symposium;

• Ina Aviv who has been indefatigable and effective in making sure that all partic-
ipants were cared for as best as one could imagine before, during and after the
symposium;

• The Israel Science Foundation, the Trump Foundation, the Chief Scientist’s Of-
fice at the Israeli Ministry of Education, the Center for Advanced Studies in Math-
ematics at Ben Gurion University, the Faculty of the Natural Sciences, and the
Faculty of Humanities and Social Sciences at Ben Gurion University, all of whom
have provided generous financial support.

This volume would never have become possible without the symposium. It is an
amplification and expansion of the proceedings of the symposium, on which the
authors have worked during the year following the symposium. This work was done
happily not only because of the importance of its central question but also because
it was an opportunity finally to present ideas to the public that we have discussed
so often with Ted. More than the symposium itself, in this way, we owe this work
to Ted’s passionate concerns. So, as Francis Lowenthal, one of Ted’s old friends,
wrote at the top of his own contribution and throughout it, we also say with pleasure,
Thank you, Ted!

Michael N. Fried
Tommy Dreyfus

Beer Sheva, Israel
Tel Aviv, Israel
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Chapter 1
Mathematics & Mathematics Education:
Searching for Common Ground

Michael N. Fried

Between these two groups. . . there is little communication and,
instead of fellow-feeling, something like hostility. (C.P. Snow,
The Two Cultures, p. 59)

Prologue

If being mathematically educated could be summed up simply as a familiarity with
certain key mathematical ideas—integer, algebraic equation, function, proof—their
applications, and a facility in working with them, one could state unequivocally what
the interests, foundations, and goals of mathematics education as a field should be.
Not too long ago, only the conditional form of this statement would strike one as
curious and odd. For what else could one mean by being mathematically educated,
and what else could one place higher on the agenda of mathematics education re-
search than the teaching and learning of these key mathematical ideas? And, with
that, one could hardly imagine challenging the close and natural alignment between
mathematics education and mathematics as academic disciplines.

However, over the last quarter century or so, and for better or for worse, this
simple notion of where the core of mathematics education lies has been offset by
goals and interests allying it, as an academic field, more closely with psychology
of learning, cultural differences, and social justice, among others, than with math-
ematics itself. Thus, while the first two-thirds of the twentieth century could boast
of great mathematicians such as Felix Klein, Jacques Hadamard, George Pólya, and
Hans Freudenthal making contributions to mathematics education, today, not only
are such figures rare in the field, they have also been to an extent alienated by it.

In the spring of 2012 a symposium concerning the relationship between mathe-
matics and mathematics education was held at Ben Gurion University of the Negev.
The symposium was in honor of Ted Eisenberg, who over the years has lamented
profoundly the growing divide between the mathematics community and the math-
ematics education community. It has always been his opinion, shared by the editors

M.N. Fried (B)
Science and Technology Education, Ben-Gurion University of the Negev, Beer Sheva, Israel
e-mail: mfried@bgu.ac.il
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4 M.N. Fried

of this volume, that the divide between the two communities is wasteful and un-
healthy for both. The work at hand, which grew out of that symposium, confronts
this disturbing gap. By examining areas of commonality as well as disagreement we
hope to define more clearly the role mathematics as a discipline plays in mathemat-
ics education and mathematics education research and will try to establish a basis
for fruitful collaboration between these disciplines. We can only hope that in the
end readers will be left with a clearer sense of the mutual benefit both communities
stand to lose by failing to strengthen the natural bonds between them.

With the exception of the first part, where we have pieces by Ted, Michael N.
Fried, and Norma Presmeg set together in a kind of general dialogue, the various
parts of the book take up particular subjects, such as proof, history of mathematics,
and educational policy, among others, in which mathematicians and mathematics
education researchers either both have a stake or a common interest. It is important
to remark that in reading the contributions by the mathematicians and mathematics
education researchers one should consider not only what is said but also the ways
in which the different communities approach their respective tasks. While we have
tried to maintain a certain uniformity in format, we have allowed considerable free-
dom in other regards. This comes out of the recognition that although we stress
common interests and shared concerns, there are nevertheless differences between
the communities of mathematicians and mathematics education researchers. One
must confront these differences and try to understand them. Thus, to introduce the
work and frame its theme, we expand a bit more about the distinctions, divisions,
and possibility of cooperation between these two communities. Following that, we
shall describe the main parts of the book in brief.

Distinctions and Connections

The moment one broaches the possibility of conflict or tension or misunderstand-
ing between the mathematics and mathematics education communities the difficulty
immediately arises, how are these to be distinguished, if at all? Not only this, but
also a whole set of distinctions that, previously, one could write off as merely
academic, become relevant—not only “Mathematics vs Mathematics education,”
but also “Mathematician vs Mathematics educator” and “Mathematics educator vs
Mathematics education researcher” and “Mathematics education vs Mathematics
education research.” These distinctions are at the heart of the entire problem we
are considering in this work. Granted, the distinctions may not be new, but their
problematic character is. In the past, the problem of mathematics vs mathematics
education, the main distinction we are considering, could only be viewed as a non-
problem, a false dichotomy. One could then easily say that mathematics and math-
ematics education simply belonged to different categories: a whole, “mathematics,”
and a part, “mathematics education.” Asking about the distinction between mathe-
matics and mathematics education would have been like asking about the distinction
between mathematics and geometry.
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Nor does that view necessarily vanish with mathematics education’s becoming a
separate academic field (see Kilpatrick 1992 for a very good exposé of how that
happened). However, with that change in place, the relationship between math-
ematics and mathematics education became no longer obvious and necessary: it
has now become a question. One must ask, at very least, what justifies the formal,
academic distinction between mathematics and mathematics education in the first
place? While the separation may be merely bureaucratic and not essential, members
of the new field do need to consider their own identity as mathematics educators.
At some level, this itself is a bureaucratic necessity, albeit one also requiring gen-
uine introspection—as a separate discipline, a basis has to be established for hiring
and promoting mathematics educators: what is it a mathematics educator has to do
well, what is that makes a mathematics educator an expert? This runs together with
the next distinction, namely, between a mathematics educator and a mathematician.
The question of the identity of the discipline thus becomes one of the identity of the
practitioner: Is one a mathematician first before one is a mathematics educator? Is a
mathematics educator a kind of mathematician?

Of course this begs the further question of what makes one a mathematics
educator—in particular, how one should distinguish a mathematics educator from a
researcher in mathematics education. Here, since one has the term “mathematics ed-
ucation researcher,” one can treat a mathematics educator simply as a mathematics
teacher. At the university level, naturally, the difference between a mathematician
and mathematics teacher is not nearly so pronounced as it may be at school level
since, besides the obvious fact that it is typically mathematics researches teaching
mathematics students, university level mathematics already begins to have the feel
of mathematics as the mathematician knows it. One could go further and argue that
the difference between doing and teaching mathematics is actually never very great
in that mathematicians must always communicate their thinking. Consider, in this
connection, Andrew Wiles’ “graduate seminar” taught principally to fellow mathe-
matician Nick Katz when Wiles was working on Fermat’s last theorem. As Simon
Singh (1997, p. 242) relates:

Virtually everything Wiles had done was revolutionary, and Katz gave a great deal of
thought as to the best way to examine it thoroughly: “What Andrew had to explain was
so big and long that it wouldn’t have worked to try and just explain it in his office in in-
formal conversations. For something this big we really needed to have the formal structure
of weekly scheduled lectures, otherwise the thing would just degenerate. That’s why we
decided to set up a lecture course.”

Although the seminar was also a ploy to hide Wiles’ secret work on Fermat’s last
theorem, nevertheless, when all the graduate students had dropped out leaving Wiles
and Katz alone, the teacher-student structure remained, as Katz emphasized.

In more ways than one, then, being a mathematician is being a mathematics
teacher and communicator, which is a kind of teacher. The converse, however, is far
from clear. It is even not entirely clear that a teacher should have a mathematician’s
training. Surely, mathematics teachers should know what they teach, but saying that
begs the question at least and really is a mere platitude. In fact, the question of
requisite knowledge for teachers and others is a true question, and an old one. Plato
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asked a similar question regarding the sophists and teachers of rhetoric. He also asks
it most delightfully in a little dialogue centered on a rhapsodist, a reciter of Homer,
Ion, after whom the dialogue is named. Socrates claims—and Ion agrees—that an
expert rhapsodist must understand what he recites if he is to produce worthy inter-
pretations of the epics, similarly, if he is to distinguish a good rhapsodist from a bad
one. To use one of Socrates’ examples, if the subject were numbers, one would ex-
pect that only an expert in the “arithmetical art,” the arithmetical techne (Ion, 537e),
would be able to judge whether the subject was being discussed well. In reciting
Homer, Ion speaks about soldiers, generals, and even doctors: is Ion such an expert
in these that he can speak so well about them? Ion is no general or doctor. Socrates
teases him, saying it must be divine inspiration that he can do so. Yet, as in all
Platonic dialogues the issue remains open in the end, for Socrates well knows that
rhapsodists are successful at what they do, even they are not skilled generals and
doctors.

This is true too about mathematics teachers. For this reason, in informal set-
tings and casual conversation, one often hears their success explained by saying
that teaching is an art—ironically meaning something closer to Plato’s divine inspi-
ration than what the Greeks mean by art, techne, a skill informed by knowledge!
There may, nevertheless, be some truth to that, though research as to what makes a
good mathematics teacher is much more circumspect and far from definitive. As the
National Science Foundation report on science and engineering indicators remarks,
“No research has conclusively identified the most effective teachers or the factors
that contribute to their success, but efforts to improve measures of teaching quality
have proliferated in recent years” (National Science Foundation 2012, Teachers of
Mathematics and Science, side bar 6).

Be that as it may, the specific relationship between mathematical knowledge and
mathematics teaching is equivocal. On the one hand, there is something as power-
ful as it is inexplicable about simply being in the presence of teachers who have
thought deeply about their subjects. The philosopher and literary critic, George
Steiner, describes this beautifully reflecting on his own experiences at the University
of Chicago:

Once a young man or woman has been exposed to the virus of the absolute, once she or he
has seen, heard, ‘smelt’ the fever in those who hunt after disinterested truth, something of
the afterglow will persist. For the remainder of their, perhaps, quite normal, albeit undis-
tinguished careers and private lives, such men and women will be equipped with some
safeguard against emptiness. (Steiner 1997, p. 44)

On the other hand, an early finding of modern mathematics education research
showed that a direct connection between the depth of teachers’ mathematical knowl-
edge and their students’ level of achievement cannot be fully maintained. In the
course of his work with the School Mathematics Study Group (SMSG), Edward
Begle (1972) had shown that empirically there was no significant relationship be-
tween teachers’ knowledge of advanced algebra and their students’ achievement in
algebra. This was a result that Ted Eisenberg himself strengthened with a follow
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up paper in 1977 that controlled for potentially biased factors in Begle’s original
report.1

Although the issue is still open to certain extent, it is hard to doubt that success in
mathematics teaching demands some combination of subject and non-subject depen-
dent knowledge. The utterly integral character of that combination was driving force
of Lee Shulman’s (1986) now-standard concept of pedagogical-content-knowledge.
But even without the concept, the necessary and simultaneous attention to content
and pedagogy is evident in accounts of great mathematics teachers. Thus, Jeremy
Kilpatrick says this of Pólya as a teacher:

One of the things I learned from Pólya was if someone in class had trouble following the
presentation, then you slow the class down. Pólya was always willing to slow the class
down, but he could still make it interesting. That’s one of the remarkable talents he had. He
could move at a slower pace so that students could follow his presentation; even the slowest
member of the class could get something out of it. Yet, at the same time, what he was
presenting was interesting enough and rich enough that the people who understood what
was happening could also learn something. He was not interested in getting someplace in
the discussion where he felt he should be; he was interested in making what he was doing
as illuminating as possible. (Kilpatrick, quoted in Taylor and Taylor 1993, p. 107)

In his writings about mathematics education, the Berkeley mathematician Hung-
Hsi Wu agrees that school mathematics teachers need pedagogical-content knowl-
edge (and he uses the term explicitly) and not just content knowledge (Wu 2011).
Wu objects to what he calls the “Intellectual Trickle-Down Theory,” which holds
that extensive mathematical knowledge will effortlessly trickle down into teaching
competence; he believes that while elementary school teachers simply need more
mathematical knowledge, secondary school teachers need better developed means
in order to make solid mathematical knowledge more presentable and understand-
able for their young, not-yet-mathematically-mature students.

Divisions

If mathematicians like Wu recognize these limits of mathematical knowledge and
the concomitant need for insight into teaching and learning, do they also recog-
nize the need for mathematics education research, which is supposed to study the
teaching and learning of mathematics? More pointedly, do they recognize the need
for mathematics education researchers? The answer is yes and no. One sign on the
positive side is that there are mathematicians who themselves engage in mathemat-
ics education research in the company of other professional mathematics education
researchers, Hyman Bass, for example; another is the active field of tertiary math-
ematics education research which has developed in recent years and is pursued at

1Recent work by Ruhama Even (2011), however, has shown that in their own view, teachers see ad-
vanced mathematical work helpful on three fronts: that it is a knowledge resource; that it improves
their understanding of mathematics and what it is; that it provides a model for what learning math-
ematics feels like.
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least with the cooperation of mathematics departments (see, for example, Holton
2002).

For the negative side, we can return to Wu. One could find other examples where
a dismissive attitude towards mathematics education researchers is more clearly ev-
ident, examples bordering on rancor (the continuing attacks on Jo Boaler by James
Milgram and Wayne Bishop, as documented in Boaler 2012, come to mind). But it
is more informative to look at Wu (in the context of Wu 2011) in part because he is
a mathematician genuinely concerned about mathematics education and somewhat
informed about research touching on mathematics education; Wu’s case shows the
subtle ways one can recognize the need for mathematics education research but not
for mathematics education researchers.

To be fair, Wu does refer to non-mathematician mathematics education re-
searchers, such as Deborah Ball, and not unfavorably, especially when she recog-
nizes the poor mathematical backgrounds of teachers. However, what he sees as the
important task of mathematics education is “the customization of abstract mathe-
matics for use in schools” (Wu 2011, p. 378, emphasis in the original), and this is
a task for mathematicians. Wu describes the paper as “a call for action,” namely,
a call for mathematicians to recognize the “urgent need of active participation in the
education enterprise” (p. 372).

On the face of it, there is nothing wrong with this. In fact, is it not what we
ourselves are asking for in this book? The problem is that while Wu bemoans the
“communication gap between mathematicians and educators” (p. 382), it is not hard
to see that, for him, the gap consists in educators’ not taking account of mathemati-
cians rather than mathematician’s missing the views and knowledge of educators. It
is telling that he chooses to describe the dangers of the communication gap by recall-
ing how Watson and Crick in their work on the DNA molecule benefitted crucially
from the visit of a professional crystallographer, Jerry Donohue. And he summarizes
the story and its moral as follows:

. . . but for the fortuitous presence of someone truly knowledgeable about physical chemistry,
Crick and Watson might not have been able to guess the double helix model, or at least the
discovery would have been much delayed.
The moral one can draw from this story is that, if such misinformation could exist in high-
level science, one should expect the same in mathematics education, which is much more
freewheeling. This suggests that real progress in teacher education will require both the ed-
ucation and the mathematics communities to collaborate very closely and to be vigilant in
separating the wheat from the chaff. In particular, given the long years during which incor-
rect information about mathematics has been accumulating in the education literature and
school textbooks, there should be strong incentive for educators to seek information about
the K-12 mathematics curriculum anew and to begin some critical rethinking. (pp. 382–383)

Although Wu speaks about collaboration explicitly, knowledge is placed squarely in
the mathematicians’ camp. He may object to the “intellectual trickle-down theory,”
but, when it comes down to it, whatever is wrong with the “theory,” it is still the
mathematicians who must correct it. It is hard to see where mathematics education
researchers have a role, other than to sit quietly and listen. Indeed, the paper is
addressed to mathematicians, and it appears in the mathematics journal, the Notices
of the AMS (American Mathematical Society). It is not a call for collaboration: it
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is, as Wu says, a call for mathematicians to take action, not necessarily for them to
listen.

But it is not only mathematicians who are to blame for dividing communities
that should collaborate. Mathematics education researchers can also be dismissive
of what mathematicians might bring to the floor. It can be asked, equally, whether
mathematics education researchers recognize a need for mathematicians in mathe-
matics education. Again, one can cite examples of open opposition to mathemati-
cians having a central role in mathematics education research (see the account of
the ICMI centenary in the first chapter of Dialogue on a Dialogue below). More
often, however, what one finds is an agenda that leaves little room for mathemati-
cians, a tendency to give precedence to areas hardly any mathematician would call
mathematics and which certainly no mathematics department would include in its
program. This is especially manifest when social justice issues are brought into
mathematics education. Accordingly, Sriraman, Roscoe and English note that,

Numerous scholars like Ubiratan D’Ambrosio, Ole Skovsmose, Bill Atweh, Alan Schoen-
feld, Rico Gutstein, Brian Greer, Swapna Mukhopadhyay among others have argued that
mathematics education has everything to do with today’s socio-cultural political and eco-
nomic scenario. In particular mathematics education has much more to do with politics, in
its broad sense, than with mathematics, in its inner sense. (Sriraman et al. 2010, p. 627)

And in her commentary on Sriraman et al. (2010), Keiko Yasukawa confirms this
by concluding:

If we believe that mathematics learning can be a resource to increase democratic participa-
tion in society, to increase equity and social justice, then mathematics learning cannot be
divorced from learning the politics of the world in which we live. Has the study of politics
in mathematics education gone far enough? Evidently not. Can it go further? Yes, through
critical mathematics education that will awaken learners to the ways in which mathematics
is concealed but active in the dominant discourses that are influencing the ways we think
about the fundamental principles of equity and fairness. (p. 643)

If understanding the nature and role of mathematics, not only in science and en-
gineering but also in students’ everyday lives, should be considered part of math-
ematics education, then these kinds of political investigations are not out of place.
However, even these authors would have to admit that there is something merely
accidental about mathematics’ place in the political superstructure. There are other
elements of the superstructure, and there could be other areas attaining the same
prominence as mathematics if they happened to be valued in the same way. In other
words, this key place of mathematics is not related to mathematics “in its inner
sense,” to use Sriraman et al. (2010) phrase. In fact, once one puts on the glasses
of critical mathematics education, every mathematical notion becomes suspect and
must be examined for its socio-political function: every mathematical idea has an
ulterior meaning. This is almost axiomatic in “critical theory” (which dominates the
thought of the authors mentioned by Sriraman, et al.’ above), and it may reflect a
true state of things. But if so, the mathematical meaning of any given mathematical
concept, as the mathematician understands it, becomes not only secondary but also
the very thing one must learn to move beyond. Mathematicians, in this way, can be
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of no help, and critical mathematics education may well see them, if they are not
“liberated,” as part of the problem.2

Distinctions Once Again and the Possibility of Cooperation

The kind of divisive positions we have just described—and there are others—not
only distance the possibility of cooperation between mathematicians and mathe-
matics education researchers, they also lead to a lack of coherence in mathematics
education, regardless whether it is the mathematicians or the mathematics educa-
tion researchers who take charge. Mathematicians dismissive of mathematics edu-
cation researchers and mathematics education researchers dismissive of mathemati-
cians must both find themselves edging towards inconsistency: the first wants to
customize advanced mathematics for use in the schools but gives little credence to
those who research the conditions and nature of learning; the second wants to teach
mathematics and wants it taught while showing that it is only part of a superstructure
concealing the non-mathematical political forces.

The truth is these two communities cannot be completely divorced. Even if they
feel pushed to declare their loyalty to one camp, they will inevitably have one foot
in the other. As argued above, university mathematicians typically and often neces-
sarily take on the role of a teacher, that is, a mathematics educator, and as such must
take an interest in how students learn and how best to teach. Mathematics education
researchers, on the other hand, still insist that they are interested in mathematics
education. And there are areas that interest both communities in ways that are quite
similar, for example, visualization and problem-solving. Remember Pólya’s inter-
ests in problem-solving and his work as a mathematician were joined almost seam-
lessly: consider for example his book with Gábor Szegö on problems and theorems
in analysis, a serious book in which the problems were organized according to their
solution strategies (see Taylor and Taylor 1993, pp. 24–25).

With these common areas of interest in mind, one would expect far more co-
operation and collaboration than one typically finds between the communities of
mathematicians and mathematics education researchers. True, as remarked above,
there are instances of open enmity between these communities that would poison

2I am referring to mathematicians and mathematics teachers who, lacking the “critical” outlook,
devote themselves to teaching mathematics as if it were a neutral subject. For proponents of criti-
cal theory, they, unwittingly, support the power structure rather than reveal it. Thus in his well-
known article “Ideology and ideological state apparatuses” (Althusser 1971), Louis Althusser
writes: “I ask the pardon of those teachers who, in dreadful conditions, attempt to turn the few
weapons they can find in the history and learning they ‘teach’ against the ideology, the system and
the practices in which they are trapped. They are a kind of hero. But they are rare and how many
(the majority) do not even begin to suspect the ‘work’ the system (which is bigger than they are
and crushes them) forces them to do, or worse, put all their heart and ingenuity into performing it
with the most advanced awareness (the famous new methods!). So little do they suspect it that their
own devotion contributes to the maintenance and nourishment of this ideological representation of
the School. . . ” (p. 157).
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any attempt to work together. However, such open enmity is not the rule: most of
the time, it is rather only a vague dismissal of one or the other or simply lack of
acknowledgement. Moreover, as we also remarked, there is not a total lack of col-
laboration.3 So why is there not more?

That question is one of the preoccupations behind this book. Paradoxically,
though, having finally arrived at the question of cooperation and collaboration, we
must return to the question of how these communities are distinct. For collaboration
is a relation between groups that complement one another, and being complemen-
tary presupposes difference—difference in focus, in method, in worldview. Without
such difference, the communities are thrown into a relation not of collaboration but
of competition, as, unfortunately, the relation is all too often perceived.

For our case, a key source of difference between research in mathematics ed-
ucation and in mathematics is the alignment of mathematics education, as part of
general education, with the social sciences or even the humanities, and mathemat-
ics, with the exact sciences. The emphasis on research is important. For when one
considers mathematics education research, one must consider not only its method-
ology, but also, at a deeper level, what kind of knowledge it generates. Recall how
Wu’s treatment of the problems of mathematics teaching rested on what kind of
knowledge teachers possessed and needed to possess. The social sciences and hu-
manities and the exact sciences have their own sense of knowledge, what it means
to know something and what one needs to do to know something. The possibility
of cooperation and collaboration, therefore, comes with an appreciation of the more
fundamental difference between these two streams of thought: cooperation and col-
laboration must be premised on coexistence of such different kinds of knowledge
and modes of pursuing knowledge.

Of course one can deny this and embrace the tempting assumption that these
different kinds of knowledge and modes of pursuing knowledge are, mutatis mutan-
dis, the same for the humanities and social sciences on the one side and the exact
science on the other. It is the assumption that on both sides there are facts and uni-
versal immutable laws which can be verified by methods each side can accept and
understand. To be sure, it is not assumed that a law of “learning science” would be a
law of physics, but that there would be laws; nor is it assumed that, say, a particular
experimental technique would be the same in both cases, but that there would be
experimental techniques whose warrants for accepting or rejecting a claim could be
explained each in the other’s terms.

3One good example of collaboration that does exist is the Klein Project developed and implemented
by ICMI. The project was commissioned in 2008 by the International Mathematical Union (IMU)
and the International Commission for Mathematical Instruction (ICMI). Its guiding idea was to
revisit Felix Klein’s book “Elementary Mathematics from an Advanced Standpoint” and produce
a book for secondary teachers communicating the breadth and vitality of mathematics as research
discipline while connecting it to the secondary school curriculum. An international design team
for the project was appointed led by two ICMI presidents: Michèle Artigue and Bill Barton and
a book is under preparation. In the meantime, Klein Project has produced a set of “vignettes” for
teachers and students. The rationale for this phase of the project and examples of the vignettes
already produced can be found at the website: http://blog.kleinproject.org/.

http://blog.kleinproject.org/
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As tempting as this assumption may be, it leads to a whole variety of mutual mis-
understandings and false expectations. And more than anything else it is what allows
the relationship between the communities to slip into one of competition. It can also
obscure self-understanding—particularly in the social sciences (and, there, partic-
ularly in educational research)—as can be seen in the common tendency towards
“physics envy,”4 “desiring this [other] man’s art. . . [Ourselves] almost despising,”
as Shakespeare would say (see Sonnet xxix). Yet, the existence of “physics envy” as
well as the unreflective use of such terms as “hard science” and “soft science” are
only signs that the assumption we are speaking of is adopted widely, even if it be so
unconsciously or unacknowledged.

Still, this way of thinking in which the methods and rigor of an intellectual pur-
suit, indeed, the value of its knowledge, are judged according to its closeness or
distance from sciences like physics and chemistry has deep roots. Its greatest ex-
pression is in the work of Auguste Comte. Comte’s Cours de Philosophie Positive,
composed between 1830 and 1842, is little read today; yet, despite enormous re-
visions in how philosophers and historians have come to think about the sciences,
including the social sciences, the spirit of this work of Comte haunts the world of
research.

Comte invented the word “sociology,” and what he meant by that is best seen in
the other term he employed, “social physics.” He really meant that, as he goes on to
describe “social statics” and “social dynamics”! Comte believed that the evolution
of society and, therefore, its improvement could be charted by laws comparable to
those of physics. In fact, he thought that laws of social phenomenon were incorpo-
rated into a greater system of laws including physics. Thus he writes:

It is the exclusive property of the positive principle to recognize the fundamental law of
continuous human development, representing the existing evolution as the necessary result
of the gradual series of former transformations, by simply extending to social phenomena
the spirit that governs the treatment of all other natural phenomena. This coherence and
homogeneousness of the positive principle is further shown by its operation in not only
comprehending all the various social ideas in one whole, but in connecting the system with
the whole of natural philosophy, and constituting thus the aggregate of human knowledge
as a complete scientific hierarchy. (Comte 1975a, p. 211)5

4This is the lament of a recent opinion piece in the New York Times by political scientists (note
the name!) Kevin A. Clarke and David M. Primo ((2012, March 30). Overcoming ‘Physics Envy’.
Available at http://www.nytimes.com/2012/04/01/opinion/sunday/the-social-sciences-physics-
envy.html). Interestingly enough, this phrase, so commonly used regarding the social sciences,
was actually coined by Joel E. Cohen with reference to biology. Cohen wrote a book review of a
book on dynamical systems in biology (Cohen, J.E. (1971, May 14). Mathematics as Metaphor.
Science 172, 674–675), which begins, “Everyone likes to discover general and unifying principles
in biology” (p. 674) and then goes on to say, creating the famous phrase, “Physics-envy is the
curse of biology” (p. 675)! So, even within the natural sciences, one should be careful to recognize
that there may not be uniformity in appropriateness of methods and approaches.
5The English translation contained in the collection edited by Gertrud Lenzer was produced in
Comte’s day and, as Lenzer notes, was “enthusiastically approved” by Comte himself. The original
French text can be found in Comte (1975b, leçon 46, p. 66).

http://www.nytimes.com/2012/04/01/opinion/sunday/the-social-sciences-physics-envy.html
http://www.nytimes.com/2012/04/01/opinion/sunday/the-social-sciences-physics-envy.html
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This “positive,” or as we might say, “scientific,” knowledge was, for him, the final
stage in an evolution of knowledge itself, beginning with what he termed the “the-
ological stage” and then the “metaphysical stage” (see pp. 71–72).6 Comte notes
that social thinking will only bear fruit when it finds its way out of the metaphys-
ical stage and fully enters the positive stage, which, he admits, has not yet been
accomplished.

It is Comte’s voice, his faith in progress through science, that one hears in the
American No Child Left Behind policy. There we are told that we must aim for “Sci-
entifically Based Research”7 in order to bring about true educational improvement.
This means research, according to No Child Left Behind, that:

(1) Employs systematic, empirical methods that draw on observation or experiment
(2) Involves rigorous data analyses that are adequate to test the stated hypothesis

and justify the general conclusion
(3) Relies on measurement or observational methods that provide valid data across

evaluators and observers, and across multiple measurements and observations
(4) Is accepted by a peer-reviewed or a panel of independent experts through com-

paratively rigorous, objective and scientific review (US Department of Educa-
tion 2002a)

The implication, completely consistent with Comte’s doctrine, is that research more
philosophical, less empirical and experimental, even if it is “the best one can do
now,” is ultimately to be replaced by this “scientifically based” knowledge.

Interestingly enough, the opposing view, namely, that there are distinct modes
of pursuing knowledge dependent on the object, that what might be appropriate for
physics is not appropriate for the humanities, or, for that matter, educational stud-
ies, was recognized before and after Comte. Before Comte, one could point, say,
to Aristotle, whose introduction to the Nichomachean Ethics begins with a discus-
sion of just this point, saying, for example, that one should not expect probable
arguments from a mathematician as one should not expect strict proofs from an
rhetorician (Book I, 1095b:25–26). But a better example—one whose cogency re-
mains unabated—is Pascal’s distinction between two the different kinds of minds,
“l’esprit de géométrie,” the geometric mind, which proceeds by drawing conclu-
sions from a few first principles, and “l’esprit de finesse,” the intuitive mind, which
proceeds with a kind of intuitive understanding of things whose principles are so
numerous they cannot be grasped one-by-one but must be seen somehow all at once
(tout d’un coup) (Pascal 1962, Lafuma 512). The importance for us is that where

6Comte claimed that education was, in his day, motivated by thinking of the theological, metaphys-
ical and literary types. One of his hopes in laying out the positive philosophy was that education
would turn in the positive direction: in effect, Comte was, in effect, pressing for education based
more on the sciences and mathematics than on the traditional literary curriculum. This theme, now
ubiquitous, was taken up often in the 19th century, for example, by the great biologist Thomas
Huxley who suggested that liberal education should be science education.
7Comte’s sense that progress is impeded by less-than-scientific research can be felt the discussion
of mathematics education and “Scientifically Based Research” recorded at the US Department of
Education Website (US Department of Education 2002b).
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we have this complexity of principles (such as with, say, “learning” whose very def-
inition is hard to frame) it is not enough to modify the analytical approach of the
“l’esprit de géométrie”: an entirely different approach is required. Pascal, makes
it clear in this famous pensée, moreover, that one looks ridiculous, as he puts it,
when applying the geometric mind to things that demand the intuitive mind, and the
contrary; one cannot be reduced to the other.

After Comte, at the end of the 19th century and the beginning of the 20th, in
the work of such figures as Wilhelm Dilthey and Wilhelm Windelband one finds an
acute awareness of the difference between what was commonly called the “human
sciences” and the “exact sciences.” Dilthey (1989), for example, made it clear that
in the human sciences, one is engaged in an activity of interpretation rather than
deduction; one is driven by a kind of “understanding” (Verstehen), as he called it,
of one’s human subjects and what they produce. Windelband, a figure less known
than Dilthey and perhaps less profound, made a pointed distinction between what
he called nomothetic and the idiographic approaches to knowledge (Windelband
1894/1980); the one concerned phenomena that governed by universal law (nomos
means “law” in Greek), while the other concern phenomena connected with indi-
viduals and their own perspectives.

Both Dilthey and Windelband (though their main object was historical inquiry)
touch clearly on the kind of inquiry mathematics education research engages in,
namely, studying the learning of mathematics and the place of mathematics in a
student’s life, as opposed to studying mathematics itself; what does it mean for a
student to encounter and begin to assimilate a new mathematical idea, for a student
to face and overcome a difficulty, to discern a difficulty? These questions involve
exploring the understanding of a student from the inside, as it were. Windelband’s
distinction between nomothetic and idiographic inquiries is extremely important in
this regard, for although mathematics education research often uses statistics and
large populations, some of its most enlightening work is the result of case studies
involving sometimes two or three students. The way in which one draws insight from
an individual student is difficult, if not impossible, to grasp from the nomothetic
perspective: how can a universal law be deduced from an individual case?

But perhaps more than figures such as Dilthey, it is Max Weber whom we must
take account of in the post-Comtean world. For its in Weber one comes face to face
with problem of values in a decisive way. Weber was deeply concerned about the
scientific character of his sociological work. This led him to assert forcefully and
repeatedly that values, or more precisely, value judgments, must be removed from
social science (see the three long essays in Weber 1949).8 What makes this fascinat-
ing and problematic is that work in the human sciences, Weber’s work in particular,

8This point is also made in Weber’s well-known address, “Science as Vocation” (English transla-
tion in the collection Gerth and Mills (1958, pp. 129–156) where he also, as in this place, refers to
what university professors in science—specifically social science—can see as part of their voca-
tion and what they cannot—and what they cannot includes pronouncements of value among their
students.
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refers constantly to values and value-systems.9 There is no overt contradiction in this
of course since it is conceivable to speak about a value-laden subject, say religion,
in a value-free way. But there are already lines of tension, especially since the inner
understanding of such subjects (and Weber has views here that are not inconsistent
with Dilthey) presupposes what it is like to be committed to values.10 These lines
are stretched even further by Weber’s acceptance of what he calls “value-relevance”
in inquiry: the choice of subject matter for investigation may be related to the values
of the investigator, even while the investigation itself is value-free (e.g. Weber 1949,
pp. 21ff).

The notion of value-relevance applies of course even to the purest of sciences and
to mathematics: it is at work in deciding whether a mathematical theory or problem
is interesting and worth pursuing or whether a particular solution to a problem or
proof deserves our praise (see, for example, Corry 1989 and Elkana 1981). In math-
ematics education research, however, as in other forms of educational research, not
only must we speak about value-relevance, but, beyond that, we must speak about a
role of values in a more direct way: here, by the very nature of the subject, engag-
ing in “evaluation” is unavoidable (this will be discussed further in Dialogue on a
Dialogue). For mathematics education research has ultimately the practical aim of
improving mathematics education, of making it better, of saying how we ought to
teach and how students ought to learn. This engagement with values together with
its attention to individuals, its idiographic character, and its need to interpret rather
than only to describe behavior, sets off mathematics education research from the
kinds of research typically pursued in faculties of exact sciences and engineering.
One cannot assume, as Comte did, that, in principle, there could be consistency in
the general methodologies and general outlooks of these different forms of research.

The first step, therefore, in ameliorating the cooperation between researchers as-
sociated with the exact sciences and those in involved in research like mathematics
education research is to recognize these radically different ways of pursuing re-
search and to recognize the necessity of those differences. Mathematics education
research must be understood as something apart from mathematics and mathemat-
ics from mathematics education research: one cannot be subsumed under the other
or replaced by the other. It should not be our mission to “convert” mathematicians
to what they cannot be as it should not be theirs to determine what mathematics
education researchers should research. And yet, to reiterate what has been said in
different ways throughout this introduction, this cannot be a formula to go in sep-
arate ways: the common focus on mathematics, one way or another, will not allow
for that. Cooperation begins when there is at the same time the recognition that each
side is looking in the same direction but with very different, complementary eyes.

9Weber’s famous 1905 work Die protestantische Ethik und der Geist des Kapitalismus (The Protes-
tant Ethic and the Spirit of Capitalism) is a case in point.
10In his chapter on the fact-value distinction in Natural Right and History, Leo Strauss (1953)
makes a point along these lines.
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The Structure of This Book

Almost as a demonstration of the possibility of cooperation, the authors of this book
comprise mathematics education researchers and mathematicians. Some of the au-
thors could wear both hats, and some do. But just putting the two communities
together in one room is not enough to begin a dialogue. Indeed, the first part of
this book raises the question of dialogue and is centered on a dialogue (Eisenberg
and Fried 2009) written by one of the editors, Michael N. Fried, and Ted Eisen-
berg, to whom this book is dedicated. This dialogue, which concerned the state of
mathematics education generally, was in fact a response to paper by Norma Pres-
meg (Presmeg 2009). In her paper, published in the same issue of Zentralblatt für
Didaktik der Mathematik (ZDM), Presmeg had argued that since the purview of
mathematics education includes more than mathematical content per se—that it
concerns how students think about mathematics, how mathematics becomes part
of students’ inner and outer lives, how it is integrated into students’ sociocultural
world, for example—it is necessarily a multidisciplinary subject. Eisenberg, in par-
ticular, felt in the course of broadening mathematics education in this way, mathe-
matical content was in fact becoming lost. The dialogue that he and Fried produced
subsequently revolved around the question of mathematics education is truly about
as a field, what are its true interests, and has it lost its identity by moving too far
away from mathematics.

So Dialogue on a Dialogue revisits these two papers11 and produces a new
dialogue with the same players—Eisenberg, Fried, and Presmeg—providing thus
three points of view. It sets the stage for the rest of the book by raising ques-
tions such as whether mathematics teaching has the same interests as math-
ematics education research and whether the latter should, as Presmeg origi-
nally claimed, be multidisciplinary. It also suggests some of the themes of com-
monality and difference joining and dividing the communities of mathematics
and mathematics education—for example, visualization, proof, policy, problem-
solving.

The remaining parts of the book treat eight of these themes. With two excep-
tions—Mutual Expectations and Problem-Solving—each part has a similar overall
structure: a position paper followed by a chapter containing a series of short re-
sponses or reflections on the same subject. In each case, the latter also contains an
introduction and synthesis of the main points and problems. To provide the reader
with a kind of map for the book, we now summarize these eight parts and set out
the players involved.

11The papers by Eisenberg and Fried and Presmeg were joined by a third written by David Pimm
(Pimm 2009), who also discussed the relationships and provinces of the different disciplines con-
tributing to mathematics education.
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Mutual Expectations Between Mathematicians and Mathematics
Educators

This part is one of two related to the preconditions for mathematics educators
and mathematicians’ working together. On the assumption that mathematicians and
mathematics education researchers do wish to work together, what do they expect
to receive from one another? What kinds of problems do they expect one another
to focus upon? This, perhaps more than any other part, addresses the question of
how each community is defined in light of the other, for what they expect from one
another clearly reflects how they see one another. It is also the part in which one can
see the tensions between the two communities, albeit sometimes between the lines.

The introduction and synthesis of the issues involved is written by Tommy
Dreyfus; the other contributors include Stephen Lerman, Ioanna Mamona, and Uri
Onn. The contributors were chosen carefully so that they would represent a spec-
trum of views from that of mathematics educator whose work is generally distant
from mathematical content to a pure mathematician whose educational interests are
closely tied to his university teaching.

History of Mathematics, Mathematics Education, and Mathematics

In a way, this is the oddest of the parts in this book. In contrast to a subject such
as “proof,” the history of mathematics is neither at the center of mathematics as
a discipline nor at the center mathematics education as a discipline. Yet, it is of
great interest to both even if it is often misunderstood by both. At the same time it
is unavoidable in any effort to see mathematics as a part of general mathematical
culture, as Felix Klein put it, and therefore goes far to address the difficulties of
mathematical literacy and the meaning of being mathematically educated. A proper
understanding of the place of history of mathematics in mathematics and mathe-
matics education may end up being genuine common ground seeming, at present,
foreign to both.

The introduction and synthesis of the issues involved is written by Luis Radford;
the other contributors include Alain Bernard, Michael N. Fried, Fulvia Furinghetti,
and Nathalie Sinclair. Luis Radford was chosen to produce the synthesis, not only
because he himself has done some historical work in mathematics and is himself an
eminent mathematics educator, but also because of his particular cultural-historical
understanding of mathematics. This cultural-historical understanding places mathe-
matics in a grey area between the “two cultures” (using C.P. Snow’s famous phrase)
and, therefore, shows more clearly the relationship between them.

The part opens with a paper by Hans-Niels Jahnke concerning the hermeneu-
tic approach to history of mathematics, an approach that appreciates the historical
character of mathematics of the past while taking into account modern mathematical
notions.
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Problem-Solving: A Problem for Both Mathematics and
Mathematics Education

While history of mathematics may be foreign to both mainstream mathematics and
mathematics education, this is certainly not the case with problem-solving. The
centrality of problem-solving in mathematicians’ own work and in their teaching,
is incontrovertible. Problem-solving is also a central topic for mathematics educa-
tors, who have developed conceptual frameworks to formulate general ideas about
problem-solving (as opposed to the specific ideas needed for solving specific prob-
lems). Both mathematics educators and mathematicians have given thought to prob-
lems helping students understand ideas, and both have given thought to the pro-
cess of solving problems: George Pólya, of course, reflected deeply about this, and
Pólya’s work figures strongly in this chapter. This is, one hastens to add, not only
because of the importance of Pólya’s work regarding problem-solving, but also be-
cause Pólya himself represents a bridge between mathematics and mathematics edu-
cation: he was an eminent mathematician and also a deep influence on mathematics
education.

The introduction and synthesis of the questions raised by problem solving is writ-
ten by Boris Koichu, who has done extensive work on problem solving especially
among talented mathematics students, those most likely later to join the commu-
nity of mathematicians. The other contributors to this part are Gerald Goldin, Roza
Leikin, Shlomo Vinner, and Izzy Weinzweig.

Mathematical Literacy: What Is It and How Is It Determined?

One might say that the guiding question for this part on mathematical literacy is
simply what does it mean to say someone is “mathematically educated”? In this
light, its subject has a theoretical character. However, it also has a practical side
with real consequences for teaching and curriculum development; a notion of liter-
acy is, in this way, also a guide to the design of a mathematics policy, the subject
of Part “Policy: What Should We Do, and Who Decides?”. Moreover, literacy, pre-
cisely because it concerns the ends of policy, is connected to the practical problem
of assessing educational policy and achievement. For this reason, operational defini-
tions for literacy have been produced in conjunction with international assessment,
notably the PISA program.

The synthesis here is written by Anna Sfard; other contributors include Abraham
Arcavi, Iddo Gal, Ron Livné, and Hannah Perl. Sfard’s own contribution clarifies the
notion of literacy by connecting it to another theme of equal importance to mathe-
matics educators and mathematicians, namely the idea of communication.

The part opens with a paper by Paul Goldenberg, who emphasizes what he calls
habits of mind.
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Visualization in Mathematics and Mathematics Education

The subject of visualization is important to both mathematics and mathematics ed-
ucation since it characterizes the way both students and mathematicians commonly
think about mathematical ideas and solve mathematical problems. For this reason,
Hadamard studied visual thinking in his famous work on the psychology of math-
ematical invention (Hadamard 1945), and mathematicians, such as Stanislav Ulam,
writing about their own mathematical thinking attests to the importance of visual-
ization (e.g. Ulam 1976, p. 183). Visualization is also related to the representation of
mathematical objects with the aid of computers: the ability of computers to produce
and manipulate pictures has allowed new ways for students to study and explore
ideas in geometry and analysis. This part, then, takes into account mathematicians
use visualization in their teaching, mathematics educators’ proposals for employ-
ing and developing visual thinking in computer and non-computer environments, as
well as research results from mathematics education.

The introduction and synthesis of this topic is written by Elena Nardi; the
other contributors include, Rina Hershkowitz, Raz Kupferman, Norma Presmeg, and
Michal Yerushalmy.

The part opens with a paper by Ken Clements that discusses, among other things,
Clements work with the then young Terence Tao, later Field Prize medalist—a rare
view into the ways, often visual ways, a young developing mathematician thinks.

Justification and Proof in Mathematics and Mathematics
Education

Common ground here would at first sight seem unproblematic, since “justification,”
interpreted as “proof,” is a subject is crucially important for both mathematics and
mathematics education. Yet, there are in fact strong divisions. For in mathematics
“proof” and “justification” are identified, whereas in mathematics education much
attention is given to forms of justification that fall short of proof but nevertheless are
deeply connected with processes of learning. The idea that an incomplete or even
incorrect explanation may yield more insight for the mathematics educator than a
rigorous proof runs counter to the way of thinking in a discipline that gives little
credit to a justification which is not a proof. On the other hand, mathematicians do
give weight to proof, even a heuristic argument, that actually persuades them of the
truth of mathematical claims. Proofs must have in some sense pedagogical value.

The introduction and synthesis here is written by Keith Weber; the other contrib-
utors include, Gila Hanna, Guershon Harel, Ivy Kidron, and Annie and John Selden.

A paper by David Tall concerning research on mathematical reasoning and think-
ing generally is the opening paper for this part.
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Policy: What Should We Do, and Who Decides?

The central concerns of “policy” are the principles and agents of decision-making
and the program—the policy—actually decided. To the extent “policy” concerns the
agents of decision-making, it is closely related to the subject of collaboration; to the
extent it concerns the policy decided, including the curriculum, it must consider the
ends the policy tries to achieve and is thus closely related to the subject of literacy.
Naturally, beyond the curriculum, the policy decided takes in elements of teaching
practice, assessment, and modalities for further decision-making.

The introduction and synthesis of the issues in this part is taken up by Nitsa
Movshovitz-Hadar; the other contributors are Jonas Emanuelson, Davida Fischman,
Azriel Levy, and Zalman Usiskin.

The part opens with a paper by Mogens Niss who was the architect of the com-
petencies framework used in Denmark. Niss makes it particularly clear how broad
the subject of policy is, involving not only decision making but also views about the
nature of mathematics teaching and learning and even mathematics itself.

Collaboration Between Mathematics and Mathematics Education

This final part contains accounts of genuine instances of collaboration between
mathematicians and mathematics educators or of scholars who have managed to
work in both fields. These instances serve as existence proofs for the possibility of
collaboration, but not uniqueness proofs. There may be different kinds of models
for joint work between mathematicians and mathematics educators.

The introduction and synthesis is written by Pat Thompson; the other contribu-
tions are by Michèle Artigue, Ehud de Shalit, and Günter Törner.

The part opens with an account of collaboration written by Hyman Bass and
Deborah Ball. They themselves are a superb example of the kind of collaboration
that is possible.

One Final Word

Since the symposium from which this book emerged was held in the Negev, it is
fitting keep in mind a Bedouin custom. When one comes to a Bedouin tent, the
host offers coffee. It is always very strong, almost bitter. Then there is talk and
food and talk. Finally, tea is served. It is always very sweet. The meaning of this,
at least according to one account, is that a visit begins with a little unease, a little
uncertainty—thus the bitter coffee. But after conversation, turning things over and
exchanging thoughts, the visit ends sweet.

In a way, this is an image of how we hope readers of this book move from the
beginning to the end. It is, we think, a hopeful book. So while the expectations
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discussed in the second part focus some of the uneasiness and friction existing be-
tween mathematics education and mathematics, the final part, Collaboration, shows
signs that cooperation is possible. In between, many issues and questions are raised.
These are not resolved completely, even at the end. However, the instances of coop-
eration and collaboration described in Collaboration and, perhaps more trenchantly,
the very fact mentioned above that mathematicians and mathematics educators par-
ticipated in the writing of this book show there is no inevitability in the growing
distance between our two communities and that together we can work out these
questions which are of mutual concern.
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Dialogue on a Dialogue



Chapter 2
Mathematics and Mathematics Education:
Beginning a Dialogue in an Atmosphere
of Increasing Estrangement

Michael N. Fried

Abstract In 2009, Norma Presmeg wrote a piece for a special issue of the ZDM
on interdisciplinarity. Presmeg’s paper presented her view of the general spirit of
and possibilities for mathematics education research. This prompted a dialogue on
the state of mathematics education by Ted Eisenberg and Michael Fried, published
in the same issue of ZDM. This paper gives an account of that dialogue and the
symposium in honor of Ted that arose out of it; in doing so, it also further elaborates
on the themes that motivated this book.

Keywords Human sciences vs exact sciences · Mathematical content ·
Mathematicians · Mathematics education researchers · Mathematics education ·
Values

My Dialogue with Ted

When Dani Berend broached the idea of a conference in honor of Ted Eisenberg,
it was immediately clear to me what the subject of the conference should be. It
should concern the relationship between mathematics and mathematics education
as disciplines. The thin mathematical backgrounds of many researchers in math-
ematics education, and worse, their apparent lack of interest in mathematics, had
become one of Ted and my constant conversation topics. Ted often lamented to me
how out of place he felt in a field more and more dominated by sociology, psy-
chology, politics, anthropology, and philosophy, and less and less by mathematics.
His feelings were understandable. For almost his entire academic career, Ted sat in
a mathematics department, and, besides his own mathematics education research,
he taught regular courses in the mathematics department, working hard to introduce
students to calculus and linear algebra. Teaching mathematics, and, therefore, know-
ing mathematics, has always been for him at the center of mathematics education,
and he has always maintained it should be. Not only is a mathematics department
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the right place for the study of mathematics education, in his view, but also a solid
mathematics background was requisite for fruitful mathematics education research.

For my part, when we spoke about these things, I often took the position of the
devil’s advocate and defended the usefulness of non-mathematical mathematics ed-
ucation research. But I was not always consistent in that role, not wholly the devil’s
advocate. On the one hand, I could not help often commiserating with Ted about the
limited mathematical understanding of many researchers who consider mathemat-
ics their specialty and about research that tries to solve the problems of the world
rather than those of mathematics teaching and learning. On the other hand, I could
deny some genuine leanings towards the other side, an inevitable outcome, perhaps,
of my training as a historian of mathematics, where one learns to see mathematical
thought as contingent and embedded in culture.

In any case, these conversations came to head in 2008 when Ted was asked to
review a paper by Norma Presmeg entitled “Mathematics Education Research Em-
bracing Arts and Sciences” (Presmeg 2009). In this position paper, Norma argued
that since the purview of mathematics education research includes more than mathe-
matical content per se—that it concerns how students think about mathematics, how
mathematics becomes part of students’ inner and outer lives, how it is integrated into
students’ sociocultural world, for example—it is necessarily a multidisciplinary af-
fair. And the introduction of multidisciplinary considerations brings with it also the
introduction of different kinds of methodologies. Research in the field, for this rea-
son, takes on a character often closer to the human sciences than the exact sciences,
even though the focus of the field is still mathematics.

Indeed, Norma never discounted the importance of mathematical content in her
piece: she was explicit about that. “The subject matter,” she said, “of research math-
ematicians is the content of mathematics, and without this content there would be
no mathematics education” (p. 132). On the other hand, it was central to her ar-
gument that mathematics education research is not mathematics, not even applied
mathematics! She recalled Millroy’s 1992 study of carpenters in Cape Town which
pointed to distinctions between the mathematics implicit in students’ out-of-school
culture and the explicit mathematics in their in-school culture. But bridging these
two cultures requires the kind of ethnographic approach typical of anthropological
research. Students’ mathematical understanding in these cultural contexts requires
understanding the language conditioned by such cultures, the systems of signs one
uses to construct and communicate ideas, including mathematical ideas, and this
brings one to the semiotic research which has become prevalent in mathematics ed-
ucation research. It becomes apparent by such examples how one can be led in a
very natural way into extra-mathematical disciplines.

For Norma, these borrowings from other disciplines were not only a necessary
widening of the field, but also a refreshing and welcome one. For Ted, ethnographic
research, semiotics, and so on were dragging the field too far afield. Yet, Ted also
understood that Norma’s paper was an accurate picture of the state of the art, and
while for her that meant finally “coming home” (p. 134), as she put it, for Ted it
meant alienation. The situation was particularly painful for Ted because of the enor-
mous respect he has for Norma, unquestionably and rightfully a leading figure in
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mathematics education. It was in that uneasy spirit Ted wrote his review of Norma’s
paper. The gist of his review was that while the paper went against his most basic
beliefs about the nature of mathematics education and direction it should be going,
he saw that according to criteria nearly universally accepted in the field he could
hardly criticize the paper, let alone reject it.

Norma’s paper was intended for a special issue on “interdisciplinarity in mathe-
matics education” for ZDM—The International Journal on Mathematics Education.
The editor of the special issue, Bharath Sriraman, saw in Ted’s review an opportu-
nity for some interesting counterpoint and suggested that Ted write up his criticism
as a reaction to Norma’s paper. He suggested, moreover, that Ted and I do it jointly.
Perhaps because I had played the devil’s advocate a bit too often, Ted responded
that he thought I was more in Norma’s camp than his. So Bharath, who does not
give up easily, suggested that Ted and I write a dialogue on the issues Ted raised in
his critique. When Ted finally told me about Bharath’s proposal, my first inclination
was to say that all this was so much at the center of Ted’s concerns he should really
take up the project himself. But, since I always have trouble uttering a simple “no,”
I said I would think about it.

Thus it stood until March 2008, when I went to Rome to attend the centenary
of the ICMI, the International Commission on Mathematics Instruction, the oldest
and most prominent international organization dedicated to mathematics education.
As is well known, the ICMI was established at the Fourth International Congress
of Mathematicians held in Rome in 1908. The ICMI still belongs to the IMU, the
International Mathematics Union, and its connection with the greater mathemati-
cal world has deep roots. Felix Klein, for example, was the first president of the
ICMI, and he was followed by other eminent mathematicians holding the presi-
dency or other high posts in the commission, figures such as Jacques Hadamard,
Marshall Stone, Sergei Sobolev, Saunders Mac Lane, Hans Freudenthal, and Hy-
man Bass. Yet, at this celebration of the first hundred years of the ICMI, years in
which the commission survived tensions from nationalistic fervor and the violence
of two world wars, and years of triumph in which it saw great changes in mathemat-
ics and mathematics education, the founding of international mathematics education
journals and large scale international mathematics education conferences—it was at
this happy occasion that some mathematics educators saw fit to ask for divorce.

The one that particularly stands out in my mind is Mamokgethi Setati. Setati
did not want merely to broaden the scope of the field; she sought to reestablish its
entire agenda—and in a way that left little room for mathematical content. For her,
mathematics education should focus all of its energies on confronting the problems
of the developing world, “the eradication of poverty, empowerment of women and
gender equality” (Menghini et al. 2008, p. 182), no less. It was in this context that
she also called for a reexamination of ICMI’s relationship with the IMU (p. 184),
a euphemistic way of saying, “End the marriage.” To me, it was immediately clear
that her position was untenable. As I wrote in my review of the proceedings of the
ICMI centenary (Menghini et al. 2008):

Following the implications of Setati’s position, it seems difficult to avoid two equally du-
bious conclusions: (1) mathematics is not at the heart of mathematics education or at least
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must be subordinated to more general social issues, or, at the other extreme, (2) mathematics
has a privileged position in dealing with global social problems such as poverty and gender
inequality. (Fried 2009, p. 524)

As human beings, of course, we must be concerned with social justice. But this is
not the question: the question is whether we must be concerned with social justice
as mathematics educators and, more, whether social justice should trump all else
relevant to mathematics education. I do not think Setati was a lone voice, though
I hardly believe her view as to where mathematics education should be going re-
flected a consensus at the Rome meeting. That said, it was evident, whether one
liked it or not, the field had broadened far beyond teaching and learning mathe-
matical content: I could not help feeling we had reached a watershed and a real
possibility that mathematical content might be swept away altogether. It was then
and there I decided I had thought about it enough: I would tell Ted I am ready to
work on the dialogue.

Although Norma’s paper was the pretense, Ted and I wanted our piece as much
as possible to be like the conversations he and I had so often. I think it was Ted’s
idea that the paper should take the form of an exchange of letters. He wrote about
his vision and his discontent, and I responded. Although it gave to me, in effect, the
last word, still it allowed us both to write a more or less connected account of our
take on the state of mathematics education research. The format also allowed a cer-
tain informality appropriate to airing views rather than presenting findings. But that
should not detract from the seriousness of the exchange. Where mathematics edu-
cation ought to be going and what mathematics education research ought to be are
not empirical questions that findings could ever settle. These are matters that require
continual sober discussion. In fact, the place of empirical research in mathematics
education was one issue we raised in our letters. There were many issues we put on
the table.

Mathematical content in mathematics education and mathematics education re-
search was only one of these issues; however, then and in our own off-the-page
conversations it was a focal one. In Ted’s way of thinking about it, it could be dis-
cussed in terms of university geography, that is, where on campus should a unit on
mathematics education be located? Should it be where the exact sciences and en-
gineering faculties are or where the humanities and social sciences faculties are?
Even taken so literally, where one sees oneself is unavoidably a question of identity
or self-definition, and ours was a discussion about self-definition. Certainly Norma’s
paper was about how mathematics education should be defined—an art? a science?
both together? Setati’s view too was surely a statement of self-definition, albeit one
I could not swallow.

Mathematics and Mathematics Education: Difference
and Confluence

Dani Berend’s idea to have a conference in honor of Ted ultimately became, there-
fore, a symposium concerning the very identity of mathematics education as a field,
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specifically, its identity as it relates to mathematics as a field. But for this reason,
it could not a question about mathematics education alone, for since it is asked
with respect to the discipline of mathematics, whatever identity mathematics edu-
cation crystalizes for itself will also leave a mark on the identity of mathematics
as a discipline: the two really are wed. Indeed, having originally entitled this sym-
posium “Is there still room for mathematics in mathematics education?” it quickly
became apparent that this could not be asked without its complement, “Is there still
room for mathematics education in mathematics?” Thus the symposium was re-
named, “searching for common ground.” As a title, it expressed, first of all, Ted’s
profound belief that mathematics education and mathematics do have a common
ground that must be taken seriously and never ignored. But it also suggested we
have to some extent lost hold of that common ground and must search together to
regain it.

Naturally, with this in the background, we should want to concentrate on com-
monalities; yet, this cannot be done without, at the same time, being cognizant of
how the mathematics education community is set off from the mathematics com-
munity. Failing to discern the separateness these communities only invites claims
that mathematics education is populated by poor mathematicians and mathematics
by poor educational thinkers. (And here, I should emphasize that by the mathemat-
ics education community I mean chiefly the academic community of mathematics
educators rather than teachers in the field.)

Besides the more obvious differences between the two communities—that math-
ematics education researchers do not prove theorems as a matter of course and that
mathematicians do not consider theories of learning and thinking, for example—
I should mention two ways in which these communities at least appear move in
different directions, particularly, ways in which mathematics education as an aca-
demic field of research turns towards the social sciences for its sense of iden-
tity.

The first has to do with how mathematics educators approach their questions,
their methodology. The methodological approaches mathematics education must ap-
ply to understand aspects of teaching and learning and often questions of curriculum
do truly have more in common with social sciences than with the exact sciences or
engineering, the theory of “didactic engineering,” notwithstanding. This is evident
in part by the sheer variety of methodological approaches in the field, that is, by the
lack of a single paradigm for doing research. In fact, it might be argued that this
methodological eclecticism is one reason why the question of identity is so much
more prevalent in mathematics education and the social sciences than it is in the ex-
act sciences (perhaps with the exception of biology, but for different reasons). But
more importantly, like the social sciences, the methodological concerns of mathe-
matics education research share a history, rooted in Comte and Weber, of aiming to
be “value-free,” an “objective” science like physics, and, yet, ever falling short of
that ambition. We want a science of learning and teaching, but we cannot escape, in
its baldest form, our own commitments as to what we think students ought to learn
and how they ought to learn it and how we ought to teach them; our most basic
questions always lead us to questions of values.



30 M.N. Fried

The second has to do with our aims as educators. For the separateness of mathe-
matics education research from the discipline of mathematics can also be felt even
where both are focused on education. This is so because, being typically associated
with a university mathematics department, mathematicians are placed in the posi-
tion of training new mathematicians or scientists. Mathematics education, by con-
trast, concerns the whole gamut of learning and teaching mathematics, including
university level mathematics, but typically concentrating on learning and teaching
school mathematics. The one must ask what constitutes a mathematically trained
person, while the other, a mathematically educated person. These are not, to be
sure, mutually exclusive categories; however, what it means to be mathematically
trained and what it means to be mathematically educated are also not identical, and
the difference is not just one of degree. To be fully mathematically trained is to be
a mathematician; but one can be highly mathematically educated without being a
mathematician; and, conversely, there are competent mathematicians who are sur-
prisingly uninformed about the history of mathematics and matters connected to its
philosophical foundations. A trained mathematician must produce mathematics; one
who is mathematically educated must feel at home with mathematics, appreciate its
power, and know it as a part of one’s culture. What is crucial for the latter is not
always crucial for the former, and the contrary. And from this it follows also that
researchers in mathematics education must take into account considerations that are
at least broader than those mathematicians qua educators must take into account and
some ways are qualitatively different.

But the picture is hardly black and white with regards to either of these differ-
ences; the differences are real, certainly, but they are not such that we can sit con-
tently each in our own separate bailiwicks. Consider the second. To feel at home
with mathematics and appreciate its power one must engage in mathematics at
some level. To become mathematically educated one must understand something
about mathematics from within, and that means having a foot in mathematically
training. Even to understand understanding, as researchers in mathematics educa-
tion should want to do (as pursued, for example, in Sierpinska 1994), one must
engage in mathematics. For example, if one learns that the derivative of a func-
tion at a point P is the slope of the tangent to the graph of the function at P, one
will have a certain level of understanding of the derivative; if one stops there, how-
ever, one could easily believe one understands the derivative tout court. Learning
a little more, one is faced with a new idea, the “gradient,” which is still called the
“derivative”; one might convince oneself that it is similar to the old idea since the
gradient can be related to the tangent plane of a surface. But then one goes further
and learns another idea, the “Jacobian matrix,” and, again, this is called a “deriva-
tive.” One’s notion of the derivative as a “slope” no longer suffices to understand
the “derivative”; one needs a more general idea of a linear operator approximat-
ing the function at a point, which, in odd way, brings one back to the slope of the
tangent. The point is without having experienced such levels of meaning and cir-
culation of ideas, a student’s understanding of mathematical concepts, as well as
an educator’s understanding of understanding are bound to be rather one dimen-
sional.
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On the other side of the equation, well-trained mathematicians who lack a
broader view of their subject—its history, its place in society, its philosophy—may
still be able to do what they have to do very well, but they face the danger of being
something like excellent technicians only. It is thus not by accident that in the very
best mathematicians there tends to be a confluence of training and education: know-
ing history or philosophy of mathematics or the social implications of mathematics
may not allow them to solve more problems or prove more theorems, but it makes
them more worthy of the name “mathematician.” I am certain that Felix Klein had
this in mind when he urged teachers to learn history. As he wrote in his Elementary
Mathematics from an Advanced Standpoint:

. . . I shall draw attention, more than is usually done. . . to the historical development of the
science, to the accomplishments of its great pioneers. I hope, by discussions of this sort,
to further, as I like to say, your general mathematical culture: alongside of knowledge of
details, as these are supplied by the special lectures, there should be a grasp of subject-
matter and of historical relationship [emphases in the original]. (Klein 1908/1939, II, p. 2)

As for values, while it is true, as I described above, that mathematics education,
like all education, is value-laden, it has been one of the leitmotifs of modern phi-
losophy and history of science that even the most exact sciences themselves are not
exactly Wertfrei! One begins to see this by considering how a certain question or
idea or approach in mathematics is deemed interesting or important or beautiful.
It is not just because it is correct, or even clever. One might say it is because it is
useful. But what makes something useful? This has its own set of values attached
to it. And the priority of utility as a measure of importance is itself a matter of
values: one recalls Hardy’s pride in never having done anything useful in mathe-
matics!

The social background of values is also evident in mathematics and science:
a mathematician or scientist’s winning a prize or obtaining a speedy promotion de-
pends on whether the community of mathematicians or scientists values the person’s
work—and that evaluation is not so much a determination as a collective judgment.
Aesthetics plays an important part here too for the work is likely to be judged by
the number of beautiful results it contains. Of course it may be that beauty only ap-
pears to be related to values, that it is actually a completely determined thing itself.
However, if agreement is any measure of that, it worth recalling that when David
Wells asked readers of the Mathematical Intelligencer to judge theorems accord-
ing to their beauty, he had to conclude finally that “. . . the idea that mathematicians
largely agree in their aesthetic judgments is at best grossly oversimplified” (Wells
1990, p. 40).

And there can be real clashes of values in mathematics. Such a clash was de-
scribed in Siobhan Roberts’ biography of H.S.M. Coxeter (Roberts 2006). Coxeter,
being a classical geometer, represented a position favoring a visual and intuitive
approach to geometry. Standing opposed to Coxeter—this was chiefly during the
1940s and 50s—was the more fashionable Bourbaki, who, according Pierre Cartier,
considered that “. . . [geometry] was based on pure logical reasoning, as little visual
insight as possible. Visual insight [in the view of Bourbaki] was considered a con-
cession to human weakness” (quoted in Roberts 2006, p. 122) (a statement of values
if ever there was one!).
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What is interesting for us is that this difference of values within the mathematics
community was played out in discussions about mathematics education. Recall it
was in the context of debating reforms in French mathematics education (at Roy-
aumont in 1959) that Dieudonné, one of the founding members of Bourbaki, cried
out, famously, “Down with Euclid! Death to Triangles!” Coxeter, for his part, par-
ticipating in activities and producing publications “. . . went on a crusade to bring
his passion for the visual and intuitive methods to any and all willing spectators,”
as Roberts puts it (Roberts 2006, p. 163). Thus we see that far from a value-free ex-
istence, the mathematical world has its own biases and preferences and these bring
it directly into regions of common ground with mathematics education. More pre-
cisely, it was as questions about mathematics education that these differences in
mathematical values—those of the Bourbaki camp towards the formal, non-visual
and those of the Coxeter camp towards the intuitive, visual approach—found a nat-
ural means of expression.

As a last word, I should say that when Ted and I wrote our dialogue, it was
clear to both of us that this was only one round of a greater dialogue. We had no
intention giving a final statement about any of the issues we raised. It was only a
beginning. The question is where it should continue, where should its locus be?
The remark above in connection to the Royaumont conference suggests, perhaps,
this may be the role of mathematics education itself, even if, as I have already ar-
gued, mathematics has a stake in the dialogue as well. Indeed, the fact that our
dialogue was published by a leading journal for mathematics education may not
have been an anomaly, a departure from the main issues of mathematics education
research, but an indication of a new issue of emerging importance in the field it-
self.
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Chapter 3
Some of My Pet-Peeves with Mathematics
Education

Theodore Eisenberg

Abstract For nearly half-a-century I have been a mathematics-educator, and re-
cently retired because of a mandatory retirement age for state workers in my coun-
try. As I think back over the years as to how the profession has changed, I am
simultaneously proud and disillusioned. I am proud that there are so many differ-
ent facets to our discipline, but at the same time I am disillusioned that there are
so many different facets to our discipline, because we have seemingly lost sight of
what our profession should be all about. Whereas many of us used to have appoint-
ments in departments of mathematics, the majority of us are now in departments of
education, science teaching, cognitive science, and educational technology, where
the teaching and learning of mathematics per se are attended to peripherally, if at
all. Some colleagues claim we are discipline that has matured from it roots in math-
ematics; others however say we are a discipline that has lost its way. I am very much
a member of this latter camp, a group that is shrinking in size daily. In an effort to
inform the larger mathematical community of this state of affairs, I would like to
put forth some of my pet-peeves on mathematics-education today.

Keywords Mathematics-education · Subtopic of mathematics · Curriculum for
mathematics-educators · Future of classroom mathematics

I have sometimes been described as being a malcontent—but I like to think of myself
as being more of a critical observer than a disgruntled ingrate. Whatever, in keeping
with these monikers, I would like start with a cri-de-coeur, and put onto the table a
few of my current beefs.

Where Is the “Math” in “Mathematics Education” These Days?

Please notice that I said “these days”, because I feel that at one time there was
mathematics in mathematics education.
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As we all know, the sea of mathematics education is a large one, but most of us
try to swim in only parts of it. There are those of us who worry about:

• Dispelling math-phobia; and there are those who worry about
• How to give students non-verbal reinforcement; and those who worry about
• Verbal and social interactions in the classroom; and those of us who worry about
• Teaching techniques in inner-cities, and still others who worry about teaching

techniques in rural areas via long-distance education; and there are those of us
who worry about

• Trying to understand how the brain works with respect to the sequencing and
processing of information; and there are those of us who worry about

• Understanding if there are gender differences in learning styles; while others
worry about

• The role of symbols in mathematics.

The list of our interests go on and on and on, but what is strikingly absent these
days in mathematics education research journals is the presence of mathematics
itself. And I am sure that you all know what I am talking about—just open any of
the premier journals or the conference proceedings of our meetings. One only has to
glance at these to see the dearth of anything that is directly related to mathematics.
And this absence is not just in the journals, it permeates our graduate programs and
the personae of the next generation in our profession. We have moved away from our
historical roots of being a subcategory of mathematics, and I think that this move
has been a bad one, and perhaps even an irreversible one.

It is not my intention to insult or denigrate anyone’s work; quite the opposite.
Many of our colleagues are absolutely brilliant; but many of their efforts are missing
the mark as to what I think main-stream mathematics-education should be all about.
Let me elaborate upon this a bit.

Defining Mathematics Education

My definition of mathematics education is that it is the discipline that worries about
the teaching and learning of mathematics—and although the sprinkling of topics
mentioned above with which some of us are concerned are important, they do not
constitute the heart of our discipline. In the past, the heart of our discipline was con-
cerned with mathematics—and not with topics peripheral to it. I recall as a student
being amazed when I read Plato’s accounting of Socrates’ interaction with Meno’s
slave boy (Meno, 82b–85e). Through a simple series of questions Socrates showed
that the Slave boy was able to construct a square having twice the area of a given
square. I just couldn’t get over the cleverness of the questions—and the sequencing
in which Socrates asked them. Admittedly, Socrates’ intention was on a much lofter
philosophical plane than to teach the slave boy this piece of mathematics. His intent
was to prove to Meno that certain human knowledge is innate, and that it resides
within each and everyone of us, and that all we need is a little help in bringing
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that knowledge to the surface. But that philosophical goal didn’t move me at all,
I accepted it immediately; it was the manner in which he explicated this belief, that
much of human knowledge is already within us, and that with a little help, it can be
drawn to the surface, that made me say to myself “wow!” and I went on to incorpo-
rate that idea into my own personal creed. This notion I thought should stand as the
philosophical base of all teaching.

In the 1960’s, when I went to school, this notion became the mantra of the era:
namely, that we can teach any topic to any person without compromising the topic’s
intellectual integrity. I, and many others swallowed this mantra, hook, line, and
sinker. This mantra became the base of my personal philosophy, not just specifi-
cally for mathematics education, but for all of education. All one needed, I thought,
was an open mind and a kind-hearted teacher.

My heroes in those days were mathematicians who had a sincere interest in teach-
ing. Luckily I had many models in my undergraduate days at Illinois State, but on
the national scene I kept coming across the personae of Peter Hilton, Bob Davis,
Morris Kline, George Pólya, Lillian Lieber, Martin Gardner, and R.L. Moore who
had this new (to me) way of teaching by pitting student against student in competi-
tive situations. (I didn’t like the competitive part of Moore’s teaching, but one cer-
tainly couldn’t argue with his success. And so in mathematics education classes we
talked about how to humanize Moore’s method.) All of this was in the late 1960’s.
Sputnik was already history, the new-math movement in the States was already be-
ing criticized by nearly everyone, the French school of mathematics education was
following in the philosophical foot-steps of the Bourbaki approach to mathemat-
ics, the Nuffield Program in England was coming under attack, as well as most
new programs that advocated discovery learning, inquiry teaching, math labs, open
classrooms, and other programs that were centered on the students, and not on chalk
and talk teachers. Innovative programs were under attack, and they provided fertile
ground for the birth of the various back to basics movements.

I was entering a profession that was fraught with problems and in a state of dis-
array with nothing seemingly being coordinated between the many projects which
were heavily funded. Some say that these were the golden years of our profession,
but the motivation for them was fear: fear that spurred forth a decade of modern-day
school mathematics. In the early 1960’s the mood in the United States was one of
desperation that the Western world was behind the USSR in science and mathemat-
ics; and that was simply unacceptable. The way to reverse that situation was to pour
money into revamping the school curriculum. And most of the Western world did
just that. And at the base of those reform movements was the belief that teachers
have to know more math; informed teachers will put out informed students.

As some of you well remember, that hypothesis did not hold up under exam-
ination, but it certainly seemed to make sense. My point is that individuals of my
generation who went into mathematics education at the secondary and higher levels,
had to take core courses in mathematics per se—and those courses were offered by
Departments of Mathematics.

The profession has moved away from the notion that mathematics educators
should know mathematics at a level that is quite a bit higher than the level they
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would be teaching. An easy analogy for this is that there are two ways to learn the
lay of a new terrain; one way is to go from tree to tree, and rock to rock, and from
hill to hill; eventually one will learn the terrain and the constituent parts will all fit
together. Another method is to climb the highest tree and look around. With respect
to mathematics teaching, training programs can be constructed from the books the
teachers will eventually use; or the other extreme is to take the pre-teachers into the
lofts of higher mathematics; they will see the mathematics they will eventually be
teaching, but they will see it from a different viewpoint. (Some say that these two
methods represent a basic difference between teachers trained in teacher seminars,
as opposed to those being trained in universities.)

You might be thinking that this is exactly how we train teachers today—we take
students into the sky to see the terrain on the ground. And for most going into sec-
ondary teaching you are correct, at the undergraduate level. Even those in elemen-
tary school teaching have to take a sequence in mathematics, and this sequence is
usually offered by mathematics departments. (Guidelines have been developed by
the MAA and the NCTM that specify specific courses and skills teachers at various
levels must know.) But this specification stops at the undergraduate level—and this,
I believe, is wrong.

I believe that all master and doctoral programs that are designed for mathematics
educators should have a set of required core courses in mathematics and that these
courses should be offered by departments of mathematics. Moreover, I believe that
mathematics educators and their students, and those in our profession who worry
about the teaching of mathematics at the secondary and higher levels, should not sit
in departments of education nor in departments of science teaching. They should sit
in departments of mathematics. Let me explain why.

Atmospheres of Learning

I have always believed that environments affect learning. If one wants to learn how
to ask clever questions and increase their problem solving skills, they should as-
sociate with people who are asking the kinds of questions that they wish they had
asked; and they should associate with problem solvers who are solving the problems
that they themselves want to solve. Pretty soon these individuals will be asking more
penetrating questions, and they will be gaining the skills to answer them in innova-
tive ways. If one wants to be a better problem solver, associate with others who are
good problem solvers—listen to how they approach their solutions, and believe me,
pretty soon these individuals themselves will be better problem solvers. The envi-
ronment affects us in every conceivable way and this is why mathematics educators
should sit in departments of mathematics. We are a sub-area of mathematics. For
our own personal development we belong there. But we, in mathematics education,
can also contribute the academic atmosphere of the department, and yes, even in the
realm of mathematics itself.
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So why do I prefer that mathematics educators who are working with higher level
students not sit in departments of education and science teaching? For science teach-
ing, the answer is simple. Science teaching units are just too small; they don’t have
the man-power to stimulate one another in their discipline. Complacency sets in, and
it is a constant fight for most to keep it at bay. We, the teachers of teachers, learn
through social-interactions with others. And if there are only one or two educators
on staff, the numbers aren’t there to foster a healthy learning environment.

And what’s the problem with us sitting inside education departments? Well, most
faculty members in education departments are too far away from what our intellec-
tual interests should be—and that is the teaching and learning of mathematics. For
example, I know of a department of education in which most on staff have trained
themselves to not even see tables and numbers and statistical tests in research and
journal papers. They simply don’t see them—their eyes jump right over them—and
they pooh-pooh the use of statistics and quantitative data. That culture is not con-
ducive to mathematics educators as I see them. So the bottom line is very simple—
for those of us in secondary and higher education we belong in departments of
mathematics. But this isn’t a one way street.

Mathematics departments have a moral obligation to take an interest in all as-
pects of mathematics teaching, particularly at the secondary and higher levels. Many
mathematicians are critical of what is going on in mathematics classrooms in the
schools—they complain bitterly that the level of knowledge of beginning students
has been declining for years. But it is not enough to complain—they have a moral
obligation to do something about it. And this means, at least to me, interacting with
the mathematics educators—who hopefully will be, in my worldview, sitting down
the hall from them.

So the question then becomes: Can we teach the mathematicians anything about
mathematics? And my answer to that is that you will be surprised.

I doubt if there are many mathematicians on the staffs in your universities who
can explain how one can find the harmonic conjugate of a given point on a given line
segment; but most mathematics educators who have taught a course in the history
of math can do it. And I doubt if there are many mathematicians on staff at your
universities who can tell you under what conditions the roots of a cubic equation
can be represented with Euclidean tools in the complex plane. I can continue on
and on with this list, and they, in turn, could counter with lists ten times longer
than mine, of basic notions that we (and probably most of their colleagues who
are in different fields than they) don’t know. But my point is that, “yes”, we know
some mathematics that many mathematicians don’t know, and that having us on staff
would contribute to the to mathematical reservoir of knowledge in the department,
and to many other reservoirs in it too.

George Pólya had a list of commandments for teachers. The commandments that
stick out for me are that teachers should know mathematics, they should like math-
ematics, and they should develop a healthy attitude toward problem solving (see
Polya 1968, p. 116, or type “Pólya’s commandments for teachers” into Google).
These commandments have more of a probability of being inculcated in mathemat-
ics education students at every level, if they are sitting in departments of mathemat-
ics, and not in other departments on campus.
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OK, so you know where I stand on this topic—mathematics educators who deal
with secondary and more mature students, belong in departments of mathematics.
As I see it, having mathematicians and mathematics educators sitting in the same
department, enriches the department and its offerings; it is a win-win situation.

Some Comments on Teaching

Let me make some comments on teaching. I am absolutely frustrated and saddened
when I see intelligent high school and university students who are unable to do the
simplest of calculations. They don’t know their times tables, they can’t work with
fractions, they don’t understand percents, etc., etc., etc. All of you know what I am
speaking about. Our profession has given this problem and all that emanates from it,
the moniker of Numerical Literacy, and this lacking-of-skills phenomena seems to
exist for many reasons. Poor teaching, lack of drill and practice, over-dependency on
technology, it’s material from an older age, etc., etc. And this lack of understanding
of basic notions and of not having basic skills can be found everywhere amongst
our students, and I find this terribly upsetting. Why? Why does this bother me so?
Because I believe that there are certain skills and belief-systems that should be
handed down from generation to generation.

I am sure that all of us have skills that we want to see in our children and
grandchildren. The ability to read and write, the ability to be a rational and crit-
ical thinker, to generalize notions, etc., etc. The list goes on and on, and I am
not speaking about the affective domain, where we want the school to instill in
our children the ability to respect others who are different than we are in appear-
ance and creed. What I am speaking about are cognitive skills. I find it particu-
larly upsetting when students reach for their calculators to do basic computations
(like 7 × 9); when they solve simple equations with algorithmic procedures (like
using the quadratic formula to find x such that x2 + 5x = 0. Nearly 50 % of my
students in a beginning calculus class actually used the quadratic formula on this
problem.)

One of my colleagues at this University (who is not in the mathematics depart-
ment) believes that none of the above matters. As long as the students “know the
underlying concept of the notion” the above-mentioned skills do not matter in to-
day’s world. She believes that every generation sets its own standards as to what is
important and what isn’t. Well, to a point she is correct, but in general, I beg to differ.
I don’t want to get into universal beliefs like the Magna Carta, the ten command-
ments and all of that, but when I see an 8th grader list the numeral 7 nine different
times on a piece of paper and proceed to add them when faced with the problem
of 7 × 9, I cry. (The person I am speaking about got the wrong answer 5 different
times—before he put his head on the table and “tuned out”.) And whose fault is this
that such skills have not been internalized to the point of automaticity? Well, we,
as a profession, are not completely blameless in this, and that is because we, as a
profession, have down-played drill-and-practice to the point where it is ridiculous.
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We have put our faith into computers and calculators, and we have built generations
of adults who lack the basic numerical skills that their parents and grandparents
possessed. And when I say basic, I mean basic!

Certain things should be automatic, and to my way of thinking, basic arithmetical
operations fall under this rubric. And so should a million other things. I have had
mathematics teachers tell me that when I write the base ten number, 5, in base 3
notation, the number has gone from being and odd and prime number, to a number
that is now even and composite! Where does this nonsense come from? Well, once
again, we are not completely blameless.

Concept Images

I think that one of the biggest innovations in our field has been the notion of “con-
cept images.” This notion was introduced by Shlomo Vinner and Rina Hershkowitz
(1980), and in its early stages it was refined by Shlomo and David Tall (Tall and
Vinner 1981), and many others (Bingolbali and Monaghan 2008; Harel 2004; Li and
Tall 1993; Tall 1989). I feel that this notion should stand at the heart of mathematics
teaching. When I see or hear the words logarithm, or integral, or differentiable func-
tions, or the zeros of a function, or irreducible polynomials over the rationals, or,
or, or, . . . . I immediately see pictures, and these pictures capture the concept for me.
Admittedly, there are many ways to view these notions, but the sum total of these
representations is my concept image of the notion. And I am sure that each of you
has developed your own idiosyncratic way to think about these notions. My point is
that this way of thinking about mathematical topics is important, and the develop-
ment of these concept images should stand at the heart of what we are trying to do
in the classroom. But they don’t.

Why? Because mathematics education has evolved into something very different
than helping teachers become more effective in the classroom. And most of you
know exactly what I am speaking about.

On the Education of Mathematics Teachers and Educators
for Higher Degrees

In many countries these days the content-level of a math teacher’s background in
mathematics ends with the awarding of their first degree. The assumption that is
made in many of these Masters and Doctoral programs is that the teachers know
their content, now let’s teach them “how to teach” (and all that implies).

This is a fundamental error. Most of the teachers I know have tremendous holes
in their content knowledge, and they have not mastered many of the topics we think
they have learned. They then go on for a Masters Degree in departments of education
and science teaching—but these degrees are often void of taking even a single course
in mathematics that is offered by the mathematics department. And as such, the
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teachers enter the peripheral topics I mentioned above. Nonverbal reinforcement,
alternative methods of grading, higher level questioning, etc. There is no end to
it, but this all comes at the expense of making the teachers more subject matter
competent. Taking more mathematics courses should be part of every graduate-level
program offered for furthering the education of mathematics teachers. I am well
aware that this is easier said than done, but as a profession, we have moved too far
away from our historical roots.

I do not mean that every math educator should be a research mathematician in
addition to everything else, but the mathematical training of mathematics educators
should not stop with a first degree in mathematics. There are many tremendously
brilliant people in all facets of our profession, and I believe that their graduate pro-
grams should take them a few rungs higher on the ladder of mathematical content.
When they finish a program in mathematics education, they should know more math-
ematics at the end of it, than they did at the beginning of it.

OK, so how can all of this be changed? Well, the first step we should take is to
change the atmosphere in which we have set our programs. Join math departments;
and if that is not possible, make liaisons with your math department. Seek out those
interested in your research interests and try to collaborate with them on a regular
basis—even if this only means having coffee with them once a week. And even if
you only chit-chat with them, sooner, rather than later, your conversations will turn
to the business of doing mathematics.

Start doing mathematics again; work your way through a book or even an article
with a colleague; both of you will benefit from this sort of activity. Even if you find
the mathematics hard, don’t give up. Many times when I get stuck on what seems
to others to be a trivial piece of mathematics, I remind myself of a comment made
by Martin Gardner. He always used to introduce himself as a journalist and not as
a mathematician. His many books and columns in Scientific American certainly can
be used to reverse his self-perception; but he did not consider himself to be a math-
ematician. And he was often asked how it is then that he can write so clearly about
high level and often difficult and intricate topics—and his reply went something like
this: “I can write about them because I myself have to work so hard, so very hard, to
understand them in the first place.” And his articles would often take readers down
the paths that he built for himself to understand the notions. So, just because we our-
selves have to work hard to understand something, it often makes us better teachers
and more attuned to pitfalls in learning.

Glimpsing the Future

There is a popular movement in the US that is being heralded as the future of edu-
cation. Essentially, it is a library of tapes on just about any subject one wants. It is
called the Khan Academy and here is what Wikipedia says about it:

Khan chose to avoid the standard format of a person standing by a whiteboard, deciding
instead to present the learning concepts as if “popping out of a darkened universe and into
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one’s mind with a voice out of nowhere” in a way akin to sitting next to someone and
working out a problem on a sheet of paper: “If you’re watching a guy do a problem [while]
thinking out loud, I think people find that more valuable and not as daunting”. Offline ver-
sions of the videos have been distributed by not-for-profit groups to rural areas in Asia,
Latin America, and Africa. While the current content is mainly concerned with pre-college
mathematics and physics, Khan’s long-term goal is to provide “tens of thousands of videos
in pretty much every subject” and to create “the world’s first free, world-class virtual school
where anyone can learn anything”.
Khan Academy also provides a web-based exercise system that generates problems for
students based on skill level and performance. The exercise software is available as open
source under the MIT license. Khan believes his academy points an opportunity to overhaul
the traditional classroom by using software to create tests, grade assignments, highlight the
challenges of certain students, and encourage those doing well to help struggling classmates.
The tutorials are touted as helpful because, among other factors, they can be paused by
students, while a classroom lecture cannot be.
The success of his low-tech, conversational tutorials—Khan’s face never appears, and view-
ers see only his unadorned step-by-step doodles and diagrams on an electronic blackboard—
suggests an educational transformation that de-emphasizes lecture-based classroom inter-
actions. (Wikipedia, Khan Institute, 2013)

I think that technology is a wonderful thing, but the above description reminds me of
a newspaper cartoon I recently saw. Two individuals sitting in the same living room,
each hunched over their computer, and they were corresponding with one another
by e-mail! I certainly hope that the cartoon will not become a reality for the school
of the future.

Frank Quinn, is a mathematician at Virginia Tech in the US. He was lamenting
on the disconnect between school mathematics and university level mathematics,
and he wrote:

School mathematics is still firmly located in the nineteenth century, so student success rates
in modern [university level] courses has been very low. There is a great deal of pressure to
improve this situation, but recent changes, such as use of calculators and emphasis on vague
understanding over skills, have actually worsened the disconnect. Something has to change.
(Quinn 2012, p. 37)

I agree, something does have to change. Maybe, just maybe someone will remember
Socrates’ dialog with Meno’s slave boy, and realize that this is what teaching should
all about; a give and take between a student and a real teacher—not a virtual one.
To me, the Socratic model of teaching is just as relevant now as it was 2000 years
ago. As Einstein said about teachers: “Setting an example is not the main means of
influencing another, it is the only means.” If we sincerely believe that we can teach
any subject to anyone, then we can.
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Chapter 4
Mathematics at the Center of Distinct Fields:
A Response to Michael and Ted

Norma Presmeg

Abstract This response to Ted and Michael points out that we are unified in con-
sidering mathematics to be central in the work of mathematicians, mathematics
educators, and mathematics education researchers. However, there are distinctions
between the fields of pure mathematics research, the teaching and learning of math-
ematics, and research in mathematics education, and unless these differences are
honored it is possible for researchers to talk past one another. The case of Swedish
mathematics education research is examined to exemplify the distinctions. Another
distinction is that between “training” and “education”. To further characterize math-
ematics education research, submission of manuscripts to Educational Studies in
Mathematics is explored. Values and aesthetics in various relevant fields are touched
upon. Finally, an example is given of the mutual enhancement that exists when
mathematicians and mathematics education researchers work together in university
mathematics departments.

Keywords Distinct fields · Pure mathematics research · Mathematics education ·
Mathematics education research · Sweden · Training · Research manuscript
submissions · Aesthetics · Mutual enhancement

What Are We Talking About?

I want to say at the outset that Ted, Michael and I have much in common in our
sentiments about mathematics. There is no doubt in my mind that mathematics is
central to the endeavors of mathematicians, mathematics educators, and mathemat-
ics education researchers alike.

However, it appears at times as if we are talking past each other, because there
are distinct fields in question. Thus I have constructed a diagram to portray the dis-
tinctness of mathematics itself, mathematics education, and research in pure mathe-
matics and in mathematics education respectively. Each of the subsets in the ellipses
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may be regarded as the topic of the wider set in which it rests. Mathematics, math-
ematics education, and mathematics education research may be conceptualized as
being nested, like Russian dolls, with mathematics at the center, nested in mathe-
matics education, which is nested in turn in mathematics education research. The
topic addressed in mathematics research is mathematics; the topic of mathematics
education is also mathematics; and the topic of mathematics education research in
not mathematics per se, but mathematics education.

On the one hand, mathematicians are engaged in research in various fields of
mathematics, and in mathematics education insofar as they teach mathematics. On
the other hand, mathematics education researchers are not engaged primarily with
research in pure mathematics, except insofar as they may be also mathematicians.
Their research embraces the nested model of various aspects of the “complex hu-
man worlds” (Presmeg 1998, with hints of Bruner’s Actual Minds, Possible Worlds,
1986) involved in the teaching and learning of mathematics at all levels. It is clear
from this conceptualization that mathematics education research cannot simply be
a branch of applied mathematics. Unlike, for instance, business calculus—which
could be regarded as a branch of applied mathematics—in mathematics education
research we are not applying the principles of mathematics to the topic of the re-
search, namely mathematics education.

As I have pointed out many times, mathematics as a field is thousands of years
old, and mathematicians have taught mathematics for thousands of years, but math-
ematics education research as a field in its own right is less than a century old,
notwithstanding the important 1908 meeting in Rome at which the International
Commission on Mathematics Instruction (ICMI) was founded, to which Michael
referred. The International Mathematics Union (IMU) was founded in 1920 as an
international community of mathematicians (Furinghetti and Giacardi 2010) and
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ICMI is an affiliate of the IMU. I, too, attended the bright celebration of the ICMI
centenary meeting in Rome in 2008, and I, too, appreciated the founding of ICMI,
and the founders who were all eminent mathematicians. I, too, deplored the sug-
gestion (and I do believe it was a minority position) that ICMI should break away
from the IMU. But mathematics education research has matured as a field in the last
half-century, as evidenced by a proliferation of journals, conferences, and kinds of
research that it embraces. Yes, despite the title of Sierpinska and Kilpatrick’s (1998)
edited book that followed a high-level conference on mathematics education re-
search’s search for identity, we are still trying to find out who we are! But it is clear
that mathematics education research is now an established field, and many univer-
sities internationally are acknowledging this fact, e.g., by establishing mathematics
education professorships. I elaborate on this point in the next section.

In my paper (Presmeg 2009) that made Ted unhappy, I was not writing directly
about mathematics. Nor was I writing directly about mathematics education. The
topic of the paper was Mathematics education research embracing arts and sci-
ences. When Ted writes in his response to my paper that “Research in mathematics
education should be about the teaching and learning of mathematics” (Eisenberg
and Fried 2009, p. 144), I agree fully—it is central, as in my diagram. And I believe
that, mostly, this is the case. So, with mathematics education as its subject of inves-
tigation, why do we need psychology, sociology, and so on—even linguistics? I am
convinced that the lenses of research methods used in these fields of the humanities
are essential tools for mathematics education researchers to have at their disposal.
The reason is simply because mathematics education involves people, with all their
complexities. It is significant that the title of Ted and Michael’s paper in response
to mine is Dialogue on mathematics education: Two points of view on the state
of the art. This title, involving mathematics education, not mathematics education
research, implies that we were not addressing the same topic in our interchanges—
hence the need for more clarity in what we are talking about.

With regard to the point raised by Ted that mathematics education should be
housed in Mathematics Departments of universities and not in humanities depart-
ments such as Curriculum and Instruction—I fully agree with Ted. In my pro-
fessional life, I have had the privilege of working in both scenarios. I was in the
Department of Curriculum and Instruction for ten years, at The Florida State Uni-
versity. After that for ten years (until 2010), I belonged, as a mathematics education
researcher, to the Mathematics Department of Illinois State University. The latter
housing was exceptionally fruitful. ISU was originally the first teachers’ college in
Illinois (as the name of its town, Normal, attests), founded in 1859. With a tradi-
tion of education as a focus, even though mathematics education was housed in the
Mathematics Department, education was appreciated and promulgated: Our Depart-
ment held—with mutual respect—equal numbers of mathematicians and mathemat-
ics education researchers, which was and I believe still is an unusual phenomenon.
(This Department at ISU will soon be the affiliation of the editors-in-chief of two
top mathematics education research journals in our field: Cindy Langrall of ISU
Mathematics Department will soon assume the editorship of Journal for Research
in Mathematics Education, and as editor-in-chief of Educational Studies in Mathe-
matics ISU is still my affiliation.) The cross-pollination that happens at the interface
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of mathematicians and mathematics education researchers is indeed fruitful to both
groups, which affirms the importance of this symposium in honor of Ted Eisenberg.

A Deeper Look at Some of the Issues

The Case of Sweden

In order to clarify the emerging status of mathematics education research as a field in
its own right, let me examine briefly the case of Sweden in this regard. In the 1990s,
as in many other countries, there were no mathematics education professorships in
Swedish universities. I was asked to serve as the co-advisor for the doctoral research
of Andrejs Dunkels in Luleåin the north of Sweden, because there was nobody lo-
cally who could serve in this capacity, advising him on the qualitative research that
his study demanded, on the teaching and learning of calculus in his class of engi-
neering students. Before he could embark on his outstanding study in mathematics
education, Andrejs had to prove his qualifications as a mathematician, by including
in his dissertation his published papers on pure mathematics topics such as Dirichlet
spaces and the Riesz kernel (Dunkels 1996).

It is to the credit of Andrejs’s principal advisor, mathematician Lars-Erik Pers-
son, that he saw the value of research such as that carried out by Andrejs. Supported
by influential scholars such as Gerd Brandell, he and others were successful in estab-
lishing the Swedish National Program of doctoral studies in mathematics education,
and over the following decade a new cadre of scholars who are expert in mathemat-
ics education research was established. This program embraced all the Swedish uni-
versities, and made use of international expertise by inviting distinguished scholars
such as Jeremy Kilpatrick and Anna Sierpinska, along with many others, to conduct
workshops and co-supervise the research of Swedish doctoral students. There was
also funding for such students to visit overseas universities (e.g., Magnus Österholm
from Linköping came to study with me at Illinois State University).

In 2002 I was privileged to serve on the three-person committee that served as
the search team for the first mathematics education professor in Sweden, at Luleå
University. It is significant for the topic of this symposium that many of the ap-
plicants for this position were mathematicians (several of them from Russia) who,
from the evidence of the material in their application files, were unaware that math-
ematics education research had become a field in its own right. They believed that
because they taught mathematics and were eminent in the field of mathematics re-
search, they had the credentials to become the first mathematics education professor
in Sweden. At that point in early 2002, there was nobody amongst the Swedish ap-
plicants whom the majority of the search team members considered to be a qualified
candidate. Andrejs Dunkels, sadly, had died, and the new cadre of mathematics edu-
cation researchers from the national doctoral program was still being formed. Thus
Rudolf Strässer from Germany was appointed as the first mathematics education
professor in Sweden. Now, in 2012, there are many scholars in Sweden qualified for
such positions.
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Rigorous Research Methods

One aspect that is pertinent to this account of the case of Sweden is the role that rig-
orous research methods have in the emergence of mathematics education research
as a field in its own right. When Andrejs Dunkels started his research, his inten-
tion was to investigate his own teaching methods in his engineering calculus course.
He initially did not realize that he would require evidence for every statement that
he made in reporting his results: Anecdotal evidence would be insufficient to vali-
date his claims. Validity and reliability were well known and accepted constructs in
quantitative research, and Andrejs did use the numerical methods of exploratory data
analysis as part of his methodology. However, it was becoming well accepted at that
point in the 1990s that qualitative methods, too, have their forms of quality control.
Andrejs learned to use triangulation of data collection methods, through audiotaped
interviews, fieldnotes from observations, and artifacts such as the students’ written
work. There are various forms of triangulation (Stake 1995), and evidence for inter-
pretation of data sources was also collated from the notes of an outside observer (in
which capacity I served), from transcripts of the students’ audiotaped interchanges
in class, and from the notes of the researcher himself. And, importantly, in such
research there is the opportunity for respondent validation (“member checks”): The
participants are given the chance to examine the report of the researcher’s interpre-
tations, and their reactions become part of the data pool. We take these methods of
quality control for granted in qualitative mathematics education research now, but
in the 1990s these issues were still being explored. Andrejs used both quantitative
and qualitative methods in his research. Each serves a different purpose, and now,
more than a decade later, such “mixed methodologies” are becoming more common
than they were in the 1990s.

I hope that the influence and value of methodologies adapted from other disci-
plines in the humanities is clear from this account. The quality control that I have de-
scribed is prevalent in case studies in the humanities. But there are other forms that
are more suited to different methodologies, e.g., the “key informant” notion adapted
from ethnographic research in anthropology. The research question determines suit-
able methodology, and these concerns go beyond the bounds of both mathematics
and mathematics education, while embracing both as topics.

Training Versus Education

One might say that the process of becoming a researcher in mathematics educa-
tion (such as in Andrejs’s case) is a form of “training”. Michael uses the distinction
between training and education to characterize the learning of pure mathematics
majors as opposed to the more diffused learning of those who will become familiar
with mathematics without becoming mathematicians. While recognizing the dis-
tinction he makes, I nonetheless want to suggest that “training” may have a rote
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connotation that is unsuitable for efficient learning of prospective mathematics ed-
ucation researchers and mathematicians alike. Familiarity with methods is impor-
tant in both fields, but the capacity to judge suitability and to adapt to the context
goes beyond mere training, and I would prefer to call learning in both cases educa-
tion.

Another point I would like to make, somewhat provocatively, concerns Plato’s
Meno, which Ted cited as a paradigm case of good mathematics education. It seems
to me that despite Socrates’ excellent logic and choice of questions, very little
agency was accorded to the slave boy, most of whose responses to the questions
were of the form “Yes, Socrates” and “No, Socrates”. I know that Michael has a
deeper view of the concerns in the Meno: In fact, for a slave, the boy was exer-
cising considerable agency—and Socrates had the purpose, not of teaching, but of
convincing Meno of the innate quality of knowledge as manifested through anam-
nesis. In the more limited point I am making, I am not meaning to suggest that no
role should be given to the teacher in students’ mathematical constructions; on the
contrary, I believe that teaching is highly important. However, there is a “dance”
between instruction and construction in mathematics education (Presmeg 2012),
as was debated at a lively conference in Frankfurt am Main, Germany, earlier this
year.

Experiences with Submissions to ESM

With regard to the point I made in describing the pool of applicants for the first
mathematics education professorship in Sweden, I would like to enlarge this issue
by considering the range of manuscripts submitted to Educational Studies in Math-
ematics (ESM). As Tommy Dreyfus, as a former editor-in-chief of this journal, can
confirm, we receive a range of submissions not all of which are suitable for publi-
cation in this venue. The mission statement appears in each hard-copy issue of the
journal:

Educational Studies in Mathematics presents new ideas and developments which are con-
sidered to be of major importance to those working in the field of mathematics education.
It seeks to reflect both the variety of research concerns within this field and the range of
methods used to study them. It deals with didactical, methodological and pedagogical sub-
jects rather than with specific programmes for teaching mathematics. All papers are strictly
refereed and the emphasis is on high-level articles which are of more than local or national
interest. All contributions to this journal are peer reviewed.

As the statement suggests, research manuscripts on both theoretical and empir-
ical issues concerning mathematics education are welcomed. However, all such
manuscripts need to include all three of the initials in the acronym ESM to be suit-
able: Education, a research Study, and Mathematics. This requirement is sometimes
violated in manuscripts that we receive. On the one hand some authors report on an
analysis of topics that are of general educational interest, leaving out the essential
component Mathematics. This aspect was of particular concern in the most recent
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double issue (Vol. 80, issues 1 & 2), a guest-edited special issue on Contemporary
theory in mathematics education, which broadens the purview of theoretical consid-
erations that may be useful as lenses for mathematics education researchers (Brown
and Walshaw 2012). Several of the authors had to be reminded that the focus on
mathematics education is central. On the other hand, on a regular basis we receive
manuscripts written by mathematicians reporting their research results in pure math-
ematics: the Education component of the acronym is missing. These authors have
chosen the wrong journal for the dissemination of their results, and an immediate
decision letter to this effect follows.

These points emphasize the importance of distinguishing between the various
components involved in mathematics research and mathematics education research,
as sketched in my diagram.

Values and Aesthetics

In contemplating a suitable title for my response to Ted and Michael, I initially
played with the possibility of using “Different kinds of beauty, in mathematics,
mathematics education, and research in these two domains.” It is appropriate that
there is a session on Visualization in mathematics and mathematics education at
this symposium, because as Michael pointed out, visualization and the broader cat-
egories of aesthetics and values may unearth potential common ground for math-
ematicians and mathematics education researchers. When I started my research on
visualization in teaching and learning mathematics in the late 1970s, there were just
a few scholars working in this area—and several of them are here at this symposium.
Ken Clements (1982) had done important early research (some of it with Glen Lean:
Lean and Clements 1981), and later Tommy and Ted published their influential re-
search results (Dreyfus 1991; Dreyfus and Eisenberg 1990; Eisenberg 1994). There
are more aspects to this topic than I can mention here (and some of them are ex-
plored in the session on visualization)—but let me just say that the complex issue
concerning whether visual thinking is valued in the teaching of mathematics influ-
ences the quality of the learning that takes place (Presmeg 2006). There are some
people who prefer to think visually in making sense of mathematical ideas. My
test on preference for visualization in mathematics (Presmeg 1985) showed clearly
that amongst the general population this preference follows a normal distribution—
a Gaussian curve—hence the designation of “visualizers” to those who consistently
prefer to think visually. A surprising result of my early research was that for the
54 visualizers in my study, it was the pedagogy of teachers in the middle group,
not the visual or nonvisual groups (with regard to their mathematics teaching) that
was optimal for these visualizers in their penultimate year of learning mathemat-
ics in high school. Issues of abstraction and generality are involved. The question
of “reluctance to visualize” put forward by Ted and Tommy is a complicated one
that embraces values as well as individual preferences and their interaction with
instruction. These issues clearly go beyond the nature of mathematics itself, and
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implicate disciplines such as psychology, sociology, and even semiotics because all
mathematics involves representations of various kinds.

One final point that I want to make regarding aesthetics has to do with my feeling
(uncomfortable for Ted) that I was “coming home” in doing mathematics education
research (Presmeg 2009). From the outset I enjoyed the aesthetic elements involved
in doing mathematics, including mathematical proof—a cold, austere beauty. But
I also felt drawn to the arts, especially poetry and music, with the different forms
of soul-sense and beauty that they embodied. As a teenager, I set out to become a
nuclear physicist, heavily involved in the hard sciences in the early specialization of
the system, based on the British system, in which I found myself. I thought that the
beauty of the arts could take care of itself in my life. But the need to work with peo-
ple rather than with the objects of theoretical physics asserted itself, and I became a
high school mathematics teacher, after one year of post-graduate mathematics study
(involving 5 year-long courses in Functional Analysis, Measure Theory, Topology,
Modern Algebra; and Projective Geometry in German because we were required to
be able to read our subject in another language!) and a one-year university teach-
ing diploma (UED). After 12 years of teaching high school I felt the need to study
again, and after a Master’s degree in Educational Psychology (which immersed me
in Albert Einstein’s incomparable capacity to visualize), and a Ph.D. on the topic of
The role of visually mediated processes in high school mathematics: A classroom
investigation, I became a mathematics education researcher. The rigors of the hard
sciences as well as the beauty of the arts were involved in my research—which is
why it felt like coming home.

What Mathematicians and Mathematics Education Researchers
Can Contribute to Each Other’s Fields

I appreciate and agree with Michael’s point that the direction goes both ways in
considering what mathematicians and mathematics education researchers can con-
tribute to each other’s fields. My experiences in the Mathematics Department at ISU
validate this point. The 15 mathematics education researchers interacted freely with
the 15 research mathematicians in our Department, and research collaborations were
frequent. I attended their weekly colloquium on Discrete Mathematics, and we all
taught mathematics courses in the Department. (I particularly enjoyed teaching the
College Geometry course, which included advanced Euclidean geometry as well as
non-Euclidean geometry.)

One vivid memory I have, which is pertinent to this topic, concerns the interview
process when I applied for the professorship that was open in the Mathematics De-
partment at ISU in 2000. During the two days of interviews, one of the meetings
was with the mathematicians. They asked me what I, as a mathematics education
researcher, could offer them in their work. I thought quickly, and then described the
theoretical model of levels of learning geometry put forward by the van Hieles as a
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result of their research in The Netherlands in the 1970s. The mathematicians could
see the value of such research in teaching mathematics. I was hired!

In the light of the damage that can be caused by misunderstandings between
mathematicians and mathematics education researchers (Latterell 2005), I applaud
the selection of the topic of this symposium, and look forward to the exchanges of
ideas that can promote mutual appreciation and interaction.
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Chapter 5
Mutual Expectations Between Mathematicians
and Mathematics Educators

Tommy Dreyfus

Abstract Four authors whose education and current position place them at different
locations on the continuum from mathematician to mathematics educator use their
experience to consider what contribution towards mathematics education mathemat-
ics educators might expect from mathematicians and what mathematicians might
expect from mathematics educators and from mathematics education as a domain.

Keywords Expectations · Mutual expectations · Mathematics · Mathematics
education · Mathematicians · Mathematics educators

Introduction

The purpose of this chapter is to make a start in asking what mathematics education
should be about and what it should not be about in the eyes of mathematicians and
mathematics educators: what do mathematicians as opposed to mathematics educa-
tors think the concerns of mathematics education should or should not be, and what
do mathematics educators think mathematicians could, should, or should not con-
tribute to mathematics education? What, in short, do these two groups expect from
one another? Of course the divide between whom we should call a mathematician
and whom we should call a mathematics educator is not sharp; there is almost a
continuum in the degrees of involvement in mathematics education and mathemat-
ics pure and simple. The authors of this chapter occupy different positions along that
continuum and represent different perspectives. From those different perspectives,
some of the authors make claims about mutual expectations, some ask questions and
some raise issues that suggest questions. All the authors, however, primarily intend
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that the reader become pointedly aware of questions about points of harmony and
discord all along the continuum of mathematics and mathematics education. Many
of these questions are taken up and partially answered later in the book in specific
contexts.

Expectations of a Mathematician

Uri Onn

I was asked to sketch what are my expectations, as a mathematician, from re-
searchers in math education. The following is drawn mainly from the teaching part
of my work rather than my research.

What I See as a Teacher

Most of my students, engineers at all levels who will eventually be part of the tech-
nological backbone (high-tech or low-tech) of our country, have a completely dam-
aged perception of mathematical objects.

Example 1 In a course on linear algebra for first-year bio-tech engineering majors,
I gave the following example of a 2-by-2 rotation matrix:[

cos(a) − sin(a)

sin(a) cos(a)

]

First, the students were completely intimidated (there were voices asking, for ex-
ample, “Why do you mention sine and cosine?—this is an algebra course”). Then,
it turned out that although they would be able to solve any trigonometric identity I
gave them, they did not understand that sine and cosine have a geometric meaning,
that they represent ratios, that they are functions (they do not understand what a
function is, and at best they identify it with its graph, let alone understand its in-
verse). Let me emphasize: out of a class of 70 students none knew what arcsine
was; when I asked them “What is it?” there was a two minutes silence until one
of them explained to the others: “Ah, I know what Uri means: it is shift-sine in the
calculator,” proudly pointing at his iPhone. Everybody nodded in agreement. Now
they knew what it was: arcsine is an operation which involves pressing two specific
buttons on a calculator. It is important to note that they nodded in agreement, that
is, they did see it in school.

Example 2 In a final exam for a Calculus I course for computer science majors,
I asked the students the following:
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– Compute the Taylor polynomial Pn(x0;x) and the remainder Rn(x0;x) in La-
grange form of the function f (x) = √

x around the point x0 = 25.
– Show that |√26 − P2(25;26)| < 1

50000 .

Now, out of almost 300 students more than 150 did not even attempt the problem
(there was no choice, they were supposed to solve all problems on the test to get full
marks, and time was not the issue).

Most of those who did try to solve it could write the formula for the Taylor
polynomial correctly:

Pn(x0;x) = f (x0) + f ′(x0)(x − x0) + f ′′(x0)

2! (x − x0)
2 + · · ·

+ f (n)(x0)

n! (x − x0)
n

and continued

f ′(x0) = 1

2
x

− 1
2

0 , f ′′(x0) = 1

2

(
−1

2

)
x

− 3
2

0 , etc.

In fact they were able to differentiate complicated function (this is technical!). But
less than 30 could get up to (∗) and effectively compute the remainder:

(∗)
√

26 ≈ 5 + 1

2
· 1√

25
+ 1

2

1

2

(
−1

2

)
1

25 · √25

From these 30 even fewer got to this point:

(∗∗)
√

26 ≈ 5 + 1

10
− 1

1000
Many answers looked like this:

√
26 ≈ 300 + 1

3
− 1

150
Students who wrote the latter have, in my opinion, no perception of the magnitude
of numbers, no understanding of the meaning of approximation and no mechanism
of self-control to know whether or not an approximation is reasonable.

But this is not the end. Out of the students who got to (∗∗), several transformed it
wrongly to a decimal fraction and did not arrive safely at

5 + 1

10
− 1

1000
= 5.099

Among the remaining students, some did not attempt to move to decimal fractions,
but we can allow them the benefit of the doubt that they could. Thus, about 15 out of
300 students correctly solved an elementary calculus problem and understood what
they were doing. Many of the students lacked an understanding of material taught
in elementary school.

There are dozens of other examples which show that, at large, students’ percep-
tion of mathematical objects is as if they were discrete set of points in space with no
connections.
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When you think of it, this is not surprising: Our educational system is product
oriented and not process oriented. High-schools are infrastructures designed to pro-
duce students who will pass matriculation exams. The questions in these exams are
arranged in distinct drawers and encourage technical skills. They encourage teach-
ers to teach material in a meaningless order without showing the motivation for and
the relation between different topics. In fact, these exams are meaningless. A stu-
dent who got 100 surely mastered the sporadic disconnected techniques. But by no
means does this grade indicate that he or she has a solid grasp of the mathematical
concepts. And if you think that this number does represent something, then what
about a student who got 70? Does that mean 70 % of the bridges he or she will
design will hold? Does it mean that the algorithms he or she will implement in
life-saving-equipment will work with probability 0.7?

My conclusion is that in Israel we are in an emergency situation, that the dark
picture we see in international comparison tests do not even begin to reveal the
depth of the catastrophe. A missile launched from the Gaza strip will reach Beer
Sheva in about 1 minute: it represents a violent immediate threat against which we
will all immediately act to protect ourselves. A slow and steady process of a society
stripping itself of thinkers is much more dangerous and much harder to fix. There is
a clear tendency downhill: I miss the students I had five years ago when I began to
teach and they were already suffering from these symptoms.

My Expectations from Those Involved in Math Education

My expectations are that mathematics educators:

1. Start asking the right questions before it is too late.
2. Focus on the process and not only on the product.

° Mathematics is not taught, it is mediated: it is a process which makes a deep
structural change in learners’ perceptions, structure of thinking, and internal
representations of concepts. Part of this process is to transform the learner
himself into a mediator who can independently present the world to himself
and be able to solve future unknown problems.

° Don’t be afraid of failure. A failure is a healthy and crucial mechanism for
learning; it indicates that there is a problem. The point is not to avoid failure
but rather to grow out of it. Learn to live with the fact that we do make mistakes
and equip the learner with the mechanism to identify them and fix them.

3. Know (and love) mathematics, at least one level above that immediately relevant
to your teaching/research/decision making.

4. Realize that there are no shortcuts or new inventions that will make math more
accessible. Learning mathematics is a long continuous process with many small
but important layers and much internal ordering.
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Expectations According to a Mathematics Educator from
a Mathematics Department

Joanna Mamona-Downs

The symposium dedicated to Ted Eisenberg was a rare opportunity for mathematics
educators and mathematicians to meet and exchange opinions on the teaching and
learning of mathematics. As a mathematics educator, I was particularly refreshed
by the contingent of mathematicians from their practical-based perspective. Indeed,
many of the points made here will be as if from the eyes of a mathematician.

My task is to record some of the most pertinent issues of common interest be-
tween mathematicians and mathematics educators that were brought up in the round
table session. I allow myself some personal liberty as the reader has the opportunity
to read the other authors’ interventions. I will write in a free style as I think respects
the spirit of this book. In such a short note, I feel the most efficient format is to write
down a list of points/questions.

1. A high percentage of mathematicians teach. Most mathematicians enjoy teach-
ing in the main. A substantial proportion is prepared to devote time not only
to making the exposition lively and meaningful, but also to seek out different
approaches in proving theorems, etc. However careful they are, though, there
likely will be numerous students that still seem perplexed. It is useful then to
think of identifying learning problems; mathematicians are not so well equipped
to deal with this perspective. For this reason, they usually accept the need of
mathematics education.

2. Even if they accept the need of mathematics education, the majority of math-
ematicians have doubts about the output of the ‘community’ of mathematics
educators as it is today. There is a measure of prejudice, but they might well
complain that at least they have difficulty navigating the corpus of mathematics
education literature, and, more seriously, fitting this corpus to their own ‘im-
ages’ about working in mathematics. Is there an onus for educators to make
their results more transparent?

3. Naturally university mathematicians are interested about what and how mathe-
matics is taught at school to understand what they can assume about the knowl-
edge and skills of their incoming students. They prefer their students to be
‘ready’ for tertiary mathematics courses, and in their eyes a system of teach-
ing at school to accelerate the most gifted is desired. However, they also want
to disseminate a sense of the nature and the aesthetics of mathematics to the
general public; most would advocate mathematics as a compulsory subject until
some time in the teens. This fits with the banner ‘Mathematics for all’ espoused
much in the mathematics education literature. This banner can be interpreted in
manifold ways, but it usually suggests a strong strand of motivating the math-
ematics done. The educator, though, tends to do this by introducing modeling,
the mathematician by examples and applications. The difference is to do with a
sensibility for keeping to a mathematical theory. Concerning the issue of inte-
grated ability classes at school, the educator typically believes that intercourse
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between a ‘poor’ and a ‘strong’ student gives advantages to the ‘strong’ as well
as the ‘weak’; however, perhaps, not in a way that a mathematician would im-
mediately recognize.

4. Mathematicians can be interested in teacher training from two slightly differ-
ent perspectives; one is how far their ex-students retain relevance of univer-
sity mathematics over their training period, and the other how they utilize that
knowledge when they become independent teachers. One ex-student of mine,
who subsequently became a secondary school teacher, told me that it took four
years for him to adapt how he was thinking at university to suit his communica-
tion with his students effectively. In this regard, I think the program described
by Tahl Nowik from Bar-Ilan University at the symposium in honor of Ted
Eisenberg is profitable to examine; Nowik’s own account of the program and
his place in it was as follows:

I am a mathematician at the Mathematics Department of Bar-Ilan University, and my
field of interest is topology. In our department I am in charge of the program for train-
ing teachers, which is one of several available programs (others are pure mathemat-
ics, applied mathematics, and mathematics & statistics). In addition to all mandatory
courses common to the pure and applied math programs, the program for future teach-
ers includes several specialized courses: Euclidean geometry, history of mathematics,
a course titled “high-school mathematics from an advanced viewpoint”, and beginning
next year we are adding a course on applications of mathematics.
Over the years that I have been fulfilling this duty, I have put much thought into how
mathematics teacher training should be done, and indeed my views have undergone
changes, which relate to this chapter’s topic. Since we have introduced the course
“high-school mathematics from an advanced viewpoint”, I have been teaching the first
semester of the course, and another member of our department has been teaching the
second semester. The aim of this course, which is given in the third year, is to close
the gap between the “high level” mathematics that the students have studied in our
department, and the “down to earth” mathematics that they will need to be teaching.
It is very hard for the prospective teachers to close this gap by themselves, and there
is a danger for them to ignore all knowledge acquired in their university studies when
arriving to the classroom, and to teach using their own notebook from high-school. . .
This course aims at avoiding the potential disaster described above, and it was self ev-
ident to me when we introduced this course that the most suitable people for teaching
it are professional mathematicians because we understand the mathematics best, and
will be able to clarify the elementary mathematics in view of the advanced mathemat-
ics. Over the years I have been trying to bring the course more and more down to earth,
many times following feedback from experienced teachers who take the course during
their sabbatical year. Eventually I have realized that it is not I who should be teaching
it since what is most important for teaching this course is not extensive in-depth fa-
miliarity with advanced mathematics, but rather extensive in-depth familiarity with the
potential difficulties of high-school students in understanding the elementary mathe-
matics. Thus, beginning this year the two semesters of this course are being taught by
two excellent and very experienced high-school teachers whom we have recruited. So
far I believe this change has been a great success. (Tahl Nowik, symposium lecture,
April 30, 2012)

Hence it would involve a team consisting of both mathematicians and educators
to organize a curriculum for training teachers and run it, a curriculum in which
prominence would be given to courses under the title ‘elementary mathematics
from an advanced viewpoint’, or such like.
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5. Following on from the previous note, who usually trains future teachers? Prob-
ably for the mathematician this could well seem the most tangible role of the
educator. Accordingly, can we give a job profile for a ‘typical’ mathematics
educator? Perhaps: basic teaching duties concern teacher training, advanced
teaching duties involve instructing educational principles on which basis the
training of teachers is made, research is about how to enhance the effectiveness
of the above said principles. I feel most mathematics educators would object
to this description as being narrow, if not representative. What other descrip-
tion fits then? Would this match up to how mathematicians think the work of
educators should/might be? If not, does it matter?

6. Note 4 concerns the issue of teacher training; to some extent a ‘converse’ issue
is the so-called transition stage between school mathematics and that of univer-
sity. Many students find this transition difficult, and much educational research
is devoted to this. Some educators see the problem as being artificial; it is just
adjusting to another institutional setting. Others think that there is a natural
break in the level of thinking that has to be crossed if a student pursues mathe-
matics at the tertiary level. An educator can suggest how to prepare the student
for the ‘jump’, but cannot delete it. Perhaps the first opinion could be tenable
for mathematics taught for students outside the mathematics department. But
the insistence of working with axioms that dominates the mathematics treated
in a mathematics department marks a definite character not found at school.
Given the diverse directions of future lives of school students, it is indeed not
suitable to give much attention to axiomatics at school.

7. So if we want to give support to students entering a mathematics department,
any project offering such support has to be located at university, not at school.
Many universities now offer courses that are not driven by specific mathemati-
cal content or theory but are aimed to help students gain general skills. For ex-
ample, sometimes a ‘problem-solving’ course is offered, sometimes a course on
‘proof’. But precisely because such courses do not deal with specific mathemat-
ical content or theory, their educational intentions have to be clearly defined and
pursued. Is the educator or the mathematician better equipped to teach them?
Are they useful in the end?

8. We broach then the question whether a mathematics department could profit
from the services of a mathematics educator. Beyond teaching general courses
mentioned in the previous note, he/she should be able to teach any first year
course and to teach it with a special care to students’ understanding with-
out compromising rigor; be a person that students come to with their overall
problems; advise teaching staff that has communication problems; to undertake
fieldwork when a lecturer is not sure which argument is ‘best’ on an agreed ba-
sis involving pedagogical concerns; how to alter the way to teach re-takes of key
courses; to be present in departmental meetings concerning teaching, especially
on how to balance the amount and the importance of the material taught against
slowing the pace for better understanding; to trace what undergraduates retain
of what they have learned on leaving university; to choose and review textbooks
for first time readers—for example, ‘classic’ texts often can seem to address the
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lecturer’s apprehension rather than the student’s; to help the department how to
react to students’ evaluation of courses; to inject enthusiasm in teaching: it is so
important for students to see their lecturers teach with some passion. I can spin
out other things. Would the mathematician buy this advertisement, especially if
the department is small?

9. From the last note, the reader might imagine, and correctly, that I am a mathe-
matics educator with a full-time appointment in a mathematics department. In
reality, the interaction with my colleagues is minimal, at least on educational
issues. Despite this, my being within the department has advantages; I am in a
position to interact with undergraduate students informally as well as formally,
and by attending meetings I am fully aware of the politics guiding the changes
in the whole working of the department. If I were placed in an education depart-
ment and only visited the mathematics department to do fieldwork, I would feel
that my work would be less effective because I would not be aware of essential
aspects of the learning of mathematics as a scientific discipline.

10. Particularly over this last decade, there have been quite a few educational stud-
ies where the researcher interviews lecturers about their ways of thinking whilst
doing mathematics, their teaching principles and practice, and other facets that
impinge on their professional life. The output; usually a published paper in
an educational journal, aimed mostly for a readership of educators. Hence the
interaction between educators and mathematicians largely runs one way. Edu-
cators do have a legitimate case for studying mathematicians’ practices and be-
liefs, but perhaps the ultimate test of the value of the collaboration occurs when
the educator regards it as a normal regular activity expected of him/her with
an active role without necessarily having a research motive in studying mathe-
maticians. At the University level, lecturers have freedom to teach as they wish;
the educator cannot influence their teaching without direct contact and persua-
sion. This introduces issues of dissemination; for example, it would be useful
to deliberately set up national and international journals such that the articles
published are accessible and of interest to both communities.

Expectations According to a Mathematics Educator

Steve Lerman

The title of the panel discussion was not couched in terms of people; it did not ask
us to address: ‘Mutual expectations between mathematicians and mathematics ed-
ucators’. Nevertheless I think this is what was implied. In many places around the
world relations between the mathematics and mathematics education research com-
munities are typified by heated interactions, sometimes very heated indeed, leading
to what are called ‘math wars’.

I would like to believe that it is possible to take some of the heat out of those inter-
actions and that may best be aided by an analysis of the nature of intellectual fields,
and so I begin with a few comments on these two intellectual fields, mathematics
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and mathematics education, and the relations between them, from a sociological
point of view. Indeed the question addressed by authors of this chapter can not be
addressed within the field of mathematics, with mathematical insights, nor within
mathematics education. It is a sociological issue, one that is about boundaries, sta-
tus, and control; control of what is taught in school mathematics and of the content
of mathematics teacher education both pre-service and in-service.

Mathematics has a long and highly valued history within the academy, covering
hundreds of years. Mathematics education is a newcomer. It recently celebrated just
100 years of the establishment of the International Commission on Mathematical
Instruction, a sub-committee of the International Mathematical Union. The prob-
lems of the teaching of mathematics have been of great interest to the mathematics
community for much longer, but this event marked an important stage. Systematic
research into the teaching and learning of mathematics has a much shorter history
still. The International Group for the Psychology of Mathematics Education (PME),
perhaps the leading research group in the world, held only its 37th annual meeting
this year, 2013. However the community has a huge range of journals, conferences,
doctoral students, research grants and so on. This is not surprising of course; it is
the nature of intellectual fields in the academy (Said 1977).

Mathematics is a highly valued, hierarchical discourse, with concepts building
on each other, expressing ideas in the most abstract terms. As Hilbert put it:

But, in the further development of a branch of mathematics, the human mind, encouraged
by the success of its solutions, becomes conscious of its independence. It evolves from itself
alone, often without appreciable influence from without, by means of logical combination,
generalization, specialization, by separating and collecting ideas in fortunate ways, new and
fruitful problems, and appears then itself as the real questioner. (Hilbert 1902, quoted from
the 2000-reprint, p. 409)

Mathematics education is very different (Lerman 2010). First, unlike most academic
fields, including mathematics, it has a Janus-like character; a face towards practice
as well as a face towards theory. Its first face leads to an essential demand of research
that it is rooted in teaching-learning problems and should address them in some way,
whether that be in an early years, mainstream school, university, or adult settings,
including the workplace. These research problems are not mathematical. Whether
to teach algebra at elementary school in parallel with arithmetic or afterwards, or
why certain social groups fail mathematics disproportionally are not mathematical
questions, they are educational ones. ‘Truth’ ends up being relative; some people
are convinced by a piece of research, others disagree and criticize it. I suspect this is
the case with all mathematics education research and readers’ reactions to the two
research issues above will illustrate the diversity of opinions and ideas.

Its second face is towards those bodies of theories that can assist in achieving
the demands of the first face. Mathematics educators have traditionally drawn on
psychology, but nowadays draw also on sociology, anthropology, philosophy, ethics
and other fields. The central focus is, of course, the teaching and learning of mathe-
matics, and thus the nature of mathematical activity and thinking are a crucial focus
for study in the field (see Burton 2004). The nature of mathematical activity and
thinking have to be studied using those fields, psychology, sociology, anthropology,
philosophy, and so on.
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Second, educational theories exhibit a horizontal knowledge structure; that is,
mathematics education has developed multiple theories, each one a separate dis-
course. Researchers can examine the same data, a classroom transcript for ex-
ample, and say quite different things in describing what is happening there. This
phenomenon can be quite frustrating both for educational researchers and others
looking in. In some senses mathematics has the same kind of structure. Mathemat-
ics grows both hierarchically, as knowledge grows within a theory, and horizontally
as a new field of mathematics develops. But there is a further distinguishing feature
which helps to explain the multiple theories in (mathematics) education: mathemat-
ics has a strong grammar, in contrast to mathematics education which has a weak
grammar. One can readily agree that a particular structure has all the features of a
Boolean algebra. But mathematics educators will argue about how understanding
develops and how, indeed whether, teachers can identify that a student understands
a mathematical concept or not. This exemplifies the different strengths of the gram-
mars; one precise and singular, the other diverse and multiple.

In determining a curriculum a selection from the field of mathematics is made (as
with history, art, etc.). For example, we might want to see school students acquiring
the ways of thinking and acting of mathematicians and so will look for a curriculum
modeled as an apprenticeship into mathematical thinking—perhaps what we might
call a problem-solving curriculum. We might prefer a curriculum that focuses on
enabling pupils to be able to act mathematically in the real world, and so might de-
sign a curriculum that harnesses real world problems, a modeling curriculum. We
might, as a third option, be concerned that pupils acquire the skills, algebraic ones
especially, that enable them to access some of the powerful ideas in mathematics,
such as infinity and infinitesimals, in order to have access to higher study that re-
quires a mathematical qualification. A fourth possibility is to mirror the ways that
mathematicians often work, collaboratively, and build a curriculum around tasks
that, together with pedagogic moves, enable students to be creative and innovative
in their mathematical work with others. These choices, and further ones we could
think of, are driven by ideology, by beliefs and values. Mathematicians will draw
on different values amongst themselves in addressing what should be taught and
come up with competing emphases; how much more contested will it be when the
decision-making includes other interested groups.

Of course the way I have presented this discussion makes it appear that mathe-
maticians and mathematics educators determine what is to be taught in all the phases
of education. In fact this is to ignore policy makers. Governments determine what is
to be taught. In some countries they will consult mathematicians, mathematics ed-
ucators and other interested parties, including parents and teachers. In other places
they will consult mathematicians only, the high status academic community. In other
places still the consultation will be merely token; the decisions have been made in
advance by politicians (see Bernstein 2000).

This is the underlying reality to the ‘math wars’; competing ideologies regarding
what school mathematics should consist of. At this conference we are celebrating
the work of a mathematician whose heart has always been in helping students to
learn, but especially to enjoy and be challenged by, mathematics. Hence I will re-
spond to the panel question in a way which takes into account the understandings
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that sociological theories give us, but based also on the assumption that mathemati-
cians and mathematics educators want the best for students, however they might
interpret that aim.

Mathematicians can expect that mathematics educators should: recognize the ne-
cessity of taking account of mathematical knowledge and mathematical activity; en-
gage in mathematical activity themselves from time to time; and take the views of
mathematicians concerning what constitute significant areas of mathematics and of
mathematical activity into account in curriculum planning, assessment etc.

Mathematics educators, in return, can expect that mathematicians should: respect
the differences between the two fields; recognize the uniqueness of the research
problems in mathematics education; recognize the ideological positions implied by
any selection of mathematics that constitutes a school curriculum; and acknowledge
the help that mathematicians can receive from mathematics educators’ engagement
with them on researching mathematics teaching and learning at University.

Concluding Comments

Tommy Dreyfus

Most of the comments in this concluding section have been influenced by the above
contributions; however, rather than repeating or summarizing them, I have made
some stronger, others weaker, and given a different perspective to still others, adding
further questions.

Everything I say will be true about some and nothing about all mathemati-
cians/mathematics educators. The reader is asked to interpret the indefinite “math-
ematicians” as “some mathematicians” rather than as “the mathematicians” or “all
mathematicians”. This will relieve me from adding “some” to every statement. It
also illustrates that no statements in mathematics education are universally true.

Expectations by Mathematicians

Mathematicians might see the role of mathematics educators as having to do mainly
with teacher training, or mainly with making sure school graduates have appropriate
mathematical knowledge and ability (whatever that might mean for different groups
of graduates, university bound ones or not). Even a quick look at the mathematics
education literature will show that mathematics educators see the teacher training
and the mathematical knowledge of high school graduates as some of their concerns
but also deal with many others, some of which might be considered unimportant by
mathematicians, among them students’ learning difficulties; the role of technology
in learning mathematics; students’ and teachers’ beliefs and attitudes toward mathe-
matics and ways of teaching and learning it; social aspects of learning mathematics



68 T. Dreyfus

such as whether students should learn in small groups within the classroom, whether
learning mathematics should happen in homogeneous or heterogeneous groups and
at what ages; ethnographic aspects of learning mathematics; epistemological issues
related to learning mathematics; theories about how people learn mathematics; and
many others.

Mathematicians may see mathematics education as a practical, applied rather
than a theoretical domain. They may believe that results in mathematics education
should be practical, applicable. Mathematics educators might ask whether math-
ematicians also expect results in mathematics to be applicable. Is mathematics a
fundamental science, where theoretical as well as applied results are acceptable
whereas mathematics education is an applied domain where only applicable results
are acceptable? If so, how about “applied mathematics”? Is it an applied domain in
this sense? Are only applicable results acceptable in applied mathematics? And is
applied mathematics (the applied mathematician) closer to mathematics education
than pure mathematics as Törner seems to imply in his contribution to Chap. 18 of
this volume.

As a consequence of their beliefs about mathematics education, mathematicians
may not understand what ‘research in mathematics education’ could mean. And
mathematicians who do accept research in mathematics education as a valuable un-
dertaking may have an image of mathematics education as of a scientific discipline
with a (single) theory and a methodology, rather than the more accurate one of
dozens of theories and at least as many methodologies. Indeed, as Fried discussed
at length in the introduction to this volume, the methodological outlook of the ex-
act sciences, with which mathematics is aligned, and that of the social sciences and
humanities have profoundly different foundations, the misunderstanding of which
can lead to false or unrealistic expectations. On the basis of such misunderstanding,
mathematicians may well expect mathematics education research to provide “clear
apodeictic answers” as to whether, say, one teaching method is more effective than
another. They may grant that “effective” has to be defined, but it might not be easy
to convince them that the adequacy of such a definition is limited since, for example,
the same teacher teaching the same content with the same textbook in two classes
may provide rather different experiences of algebra to the students in the two classes
(Eisenmann and Even 2009).

Mathematicians may expect mathematics education to provide simple, clear-cut
solid findings—results that are robust and can be reproduced. While there are such
findings in mathematics education (Education Committee of the European Mathe-
matical Society 2011–2013), they are not the norm, and mathematicians might find
the reasons for this hard to fathom. One such reason is that it is impossible to re-
peat an experiment under the “same” conditions because the same educational con-
ditions never return. As a consequence, mathematicians may respect mathematics
educators as people, as expert teachers or curriculum designers, but many will not
respect mathematics education as a research domain.

Mathematics teachers at university may well blame themselves if the students
in their classes don’t grasp what they teach. They may feel that they haven’t done
their job well. And in many cases, they will expect that explaining things better a
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second time, will make a big difference, something mathematics educators might
doubt. How to explain the mathematics, mathematicians assume, they know better
than mathematics educators since they have a deeper understanding of the content
domain. So they have the expectation that mathematics educators cannot help them.
They may not be interested in mathematics educators getting involved in what is
happening in their university mathematics classes, even if these mathematics educa-
tors have studied similar experiences at other universities and can point to literature
relevant to the issues.

On the other hand, university mathematicians may expect mathematics educators
to be responsible for what is learned in elementary and high school. They may not
have a clear grasp of factors and bodies that have a far stronger influence than math-
ematics educators on mathematics in high school, namely education systems; they
may also fail to clearly distinguish between mathematics teachers and mathematics
education researchers (see Fried, Chap. 2; Presmeg, Chap. 4). Mathematicians may
in fact blame mathematics educators for what’s wrong or what they consider as be-
ing wrong (such as low achievement on high stakes tests like TIMSS or PISA) with
school mathematics.

Expectations by Mathematics Educators

Mathematics educators may expect mathematicians to be interested in students’ lack
of understanding, misconceptions, and so on, at least as far as the mathematicians’
own students are concerned.

Mathematics educators may expect mathematicians to understand that a curricu-
lum consists of more than a syllabus, a list of topics to be taught. Many mathemati-
cians will grant that a curriculum consists of more, that there are, for example, more
or less formal approaches to the content. However, mathematics educators may ex-
pect more from mathematicians, namely that they also understand that a curriculum
includes an underlying epistemology of mathematics, a (possibly theory based) view
of how students learn, a position on how to design units and activities, and how to
achieve an equilibrium between student and teacher activity, and so on (Dreyfus
et al. 1987).

Mathematics educators, especially those who deal with the use of technology in
teaching and learning mathematics, may expect mathematicians to understand that
using technology actually changes the mathematics itself rather than being only an
accessory to help “see” things better.

Mathematics educators may expect mathematicians to see research in mathemat-
ics education as relevant, even to teaching at the tertiary level. They may expect
mathematicians to show some interest in theoretical constructs of mathematics edu-
cation (after all, mathematics itself consists of theoretical constructs).

Mathematics educators may expect mathematicians to appreciate the complexity
of the processes of teaching and learning mathematics (Davis 2011), and the con-
sequent need for interdisciplinary work involving (at least) mathematics, didactics,
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psychology (cognitive and social), sociology, and possibly also anthropology and
other domains. Mathematics educators may expect mathematicians to be amenable
to the conviction that because of this complexity, quantitative research results are
often not meaningful (Schoenfeld 2001).

Mathematics educators might expect mathematicians to consider mathematics
education as more than a group of people responsible for what mathematical knowl-
edge students have when they finish high school, and to appreciate that the education
systems rather than mathematics educators control these outcomes to a large extent.
The situation may be analogous to the one in economics: The people at the helm,
the people making policy decisions may be more than happy not knowing what uni-
versity economists know and what their theories predict because such knowledge
would make their decision making far too complicated. Indeed, this is just the kind
of complexity Niss discusses in his paper in Chap. 15 of this volume. Mathematics
educators might not like matriculation exams and their influence on what is going
on in school classrooms any better than mathematicians do; in fact, mathematics
educators might be even more antagonistic to such exams because they might feel
frustrated by years of failure in trying to effect some change. In fact, they might
think (rightly or not) that the exams have been dictated by what university mathe-
maticians have prescribed to the education ministry. Things are complex.

Given this complexity, where should mathematics educators, groups of mathe-
matics educators, or departments of mathematics education be placed in a univer-
sity? In the mathematics department? In the school of education? What would be
their role in a mathematics department and how would it differ from their role in a
school of education?

Closing Remark

Some expectations are mutual; after starting with teacher education, let me use
mathematics teacher education again to illustrate this mutuality: Some perennial
questions concern teacher education: Should it be under the responsibility of mathe-
maticians or mathematics educators or both, or does the answer depend on the level
at which the prospective teachers are intended to teach? And if both, mathemati-
cians and educators, should the mathematics courses be simultaneous, consecutive
or integrated with the mathematics education courses? Should mathematicians and
educators work in collaboration with one another? And what form would such col-
laboration take? De Shalit discusses one option in his contribution to Chap. 18 of
this volume. What would mathematicians expect from the mathematics educators
and vice versa in such collaboration?

Bridges and collaboration, common ground, need as a prerequisite mutual re-
spect. This is often missing, sometimes from both sides. The authors of the chapters
in this book have demonstrated such mutual respect in their professional lives in
general and when producing this book. With them, we hope that the book will con-
tribute to such respect more generally.
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Chapter 6
History in Mathematics Education.
A Hermeneutic Approach

Hans Niels Jahnke

Abstract The paper discusses the possibility of bringing history in the mathemat-
ics classroom by studying historical sources with students. A manuscript by Johann
Bernoulli about the differential calculus which was brought to a grade 11 classroom
serves as an example. Reading a source is fundamentally a hermeneutic activity and
can be conceptualised by the term ‘horizon merging’. In the so-called hermeneu-
tic circle the horizons of the reader and the author of a text are supposed to merge
by a repeated reading. In contrast to common ideas about the genetic principle the
hermeneutic approach described in the present paper assumes that students have al-
ready some experience with and knowledge of the modern counter-part of the con-
cepts treated in the source. Reading a source is an activity of applying mathematics
in a way completely new to students. It provides opportunities for reflecting deeply
about their images of the respective mathematical concepts.

Keywords Johann Bernoulli · Concept image · Differential · Genetic principle ·
Hermeneutics · Hermeneutic circle · Horizon merging · Historical source ·
Infinitely small quantity

Preliminary Remark

Before I entered the field which usually is called “History and pedagogy of mathe-
matics” (HPM) I had met two rather different notions of what this could mean. One
was the idea to consider history of mathematics as a collection of interesting math-
ematical problems some of which were suitable to be treated at school. This idea
was mainly supported by teachers at schools respectively math educators who saw
themselves predominantly as teachers. To be sure, some work in this direction is
impressive but I asked myself where there was any substantial relation to the history
of mathematics. All these problems were meaningful by themselves and could be
treated without any reference to history.
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The other idea was in a vague sense related to what could be called the “ge-
netic principle”. Prominent mathematicians like Felix Klein and Otto Toeplitz be-
lieved that history of mathematics could contribute to the learner’s understanding
by making visible great lines of development and thereby connecting seemingly un-
connected subjects. Klein had exemplified this by his magnificent book “Lectures
on the development of mathematics in the 19th century” in which he had recon-
structed the immediate pre-history of the mathematics of his time. One can imagine
that students who attended these lectures got a sound idea of what was going on in
mathematics. But these lectures were definitely intended for an advanced audience.

Otto Toeplitz, on the other hand, was more involved in the teaching of begin-
ning university students of mathematics. He, too, intended to present for the case
of analysis the great lines of thought. He justified his “genetic approach” by saying
that if we go back to the roots of mathematical concepts the dust of time and the
scratches of long use would be removed. Infinitesimal analysis would become at-
tractive for students when they can see that its basic concepts had been objects of
an exciting process of research at the time of their invention. But Toeplitz hastened
to add the remark that this is completely different from a “historical method”. This
term, historical method, he says, “. . . brings to mind the idea, which we, on the con-
trary, would particularly like to eliminate, of the old and antiquated, the roundabout
paths often followed by research, the subjective and haphazard nature of scientific
discoveries. It is especially important to me to draw a dividing line in this direction”
(Toeplitz 1927, 93, translation by the author and Michael N. Fried, to appear). As
a consequence, in his “Genesis of the infinitesimal calculus” he never mentioned
Newton’s binomial theorem which Newton himself had considered as one of his
most important discoveries nor did he made an attempt to discuss indivisibles or in-
finitesimals. This tension then between a historical and a mathematical perspective
on history is a running theme in HPM and an important issue for a book about the
common ground between mathematics and mathematics education. I shall return to
this at the end of my paper.

A third experience in the beginnings of my involvement with HPM was a talk
by Jan van Maanen, later co-editor of the ICMI Study on HPM, which he gave in
Toronto in 1992. He reported about a teaching unit on a 17th century Dutch textbook
on algebra which he did with pupils of grade 8 (see van Maanen 1997). Obviously,
there was a strong contrast to Toeplitz’ ideas. There was no great mathematician
discovering something new, no exciting solution of new and deep problems. Instead
of this, there were questions such as these: How did pupils three hundred years ago
solve quadratic equations? Which symbols were used in the textbooks, which pro-
cedures, which applications? This means, instead of studying big ideas and great
lines of thought pupils were invited to look for the specific and the context. They
were invited to compare their own concept image of quadratic equations with that of
pupils at their place two hundred years earlier. Listening to this talk it seemed to me
obvious that these pupils had learnt a lot of substantial mathematics. Somehow the
tension between the historical view of a concept and its modern counterpart itself
provided the productive element which was so exciting to students. For similar ap-
proaches the reader might consult Arcavi et al. (1982), Laubenbacher and Pengelley
(1999) as well as the survey of Tzanakis and Arcavi (2000).
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Thus, I decided to continue in this direction. From the outset it was clear that
the inclusion of history of mathematics into teaching cannot make things easier to
students. Rather the opposite is the case. At all times, scientists have written for a
narrow circle of specialists and not for pupils of later generations. Frequently, their
ideas were still vague and insufficiently formulated in a clumsy language. Thus as a
rule, when it comes to reading texts of eminent mathematicians of the past we have
to expect considerable difficulties. This is even a frequent experience of working
mathematicians when they consult papers in their field which have been written in
a distant past.

In the following I will describe an experience with reading a historical source
with students and then discuss general principles and difficulties underlying this
enterprise.

Johann Bernoulli’s Textbook on the Differential Calculus

First of all I should mention that at the time of this teaching experience I conducted
regularly courses for practicing teachers in which we read historical sources. Every
course comprised 5 sessions of 2 hours each. The participating teachers were asked
to prepare every session by reading a source. Participation was completely volun-
tary, the teachers did not receive any reward or credit. Some of them intended to use
historical material in their classroom, others came out of interest in the history of
mathematics. With hindsight, it is still astonishing to me that this rather naïve proce-
dure really worked. But it is a fact that after two years there was a group of ca. 100
interested teachers whom I invited and of which ca. 20 used to participate in these
reading courses. It was in the context of this in-service teacher training that I did
this teaching experiment, other teachers did similar experiments with their pupils.

Let us now turn to our source. Brothers Jacob Bernoulli (1655–1705) and Jo-
hann Bernoulli (1667–1748) were the most important mathematicians of the Leibniz
school of analysis. It was due to their substantial work that not Newton’s fluxions,
but Leibniz’ differentials became generally accepted on the European continent. Af-
ter Leibniz and Newton had passed away Johann Bernoulli was for some 15 years
the leading mathematician of Europe. It is an indication of the highly competitive
mathematical climate at that time that he was involved in numerous controversies
and quarrels with colleagues. He even managed to fall out with his son Daniel be-
cause the latter had won a prize of the Paris Academy of the Sciences for which he
himself had applied, too. Thus, he earns a place of honour in Ted’s list of idiosyn-
cratic mathematicians (Eisenberg 2008).

Johann Bernoulli wrote the manuscript “De calculo differentialium” in 1690/91
when he was 23 years old. At that time, he conducted private lectures about Leib-
niz’ new calculus to the Marquis de L’Hospital (1661–1704). Johann and L’Hospital
had agreed on a secret contract saying that Johann would teach L’Hospital and
would leave his mathematical discoveries to the latter’s exclusive use. In return,
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L’Hospital payed Johann a considerable salary until his death. For a long time Jo-
hann’s manuscript “De calculo differentialium” was regarded as lost, some histo-
rians even believed that Johann never had written such a paper. Only in 1922 the
manuscript was detected by Paul Schafheitlin in the library of the university of
Basel. This, of course, was no accident since Johann had been a professor at that
university. The more astonishing it is that it took such a long time after Bernoulli’s
death that historians became aware of this important manuscript.

Schafheitlin published the manuscript and translated it into German (Schafheitlin
1924). A comparison of l’Hospital’s textbook “Analyse des infiniment petits” (1696)
with Johann’s manuscript shows that the latter was sort of a draft to the former.
L’Hospital had considerably extended Johann’s text, corrected some mathematical
mistakes (see below) and dressed it up didactically. In the teaching sequence it was
especially stressed that at the time when Bernoulli and L’Hospital wrote their books
the meaning of the basic concepts of Leibniz’ calculus was not at all clear. Thus,
both books were efforts of interpretation and clarification, and not just reproductions
of a given body of knowledge.

Bernoulli’s “differential calculus” comprises 38 printed pages. It contains:

• 3 postulates,
• calculation rules for differentials,
• 11 problems on the determination of tangents to curves,
• 9 problems of maxima and minima,
• methods for determining points of inflection.

For the teaching unit I produced a montage of texts containing the postulates, the
rules for differentials, some problems on determining tangents to curves and prob-
lems on minima and maxima.

In the following I will at first introduce some parts of the source and then describe
how the students worked with it. First, the postulates:

Postulates
1. A quantity which is decreased or increased by an infinitely smaller quantity is

neither decreased nor increased.
2. Every curved line consists of infinitely many segments which are infinitely small.
3. [omitted here: refers to the integral calculus]

A symbolization of the first postulate might be written as

x + e = x

where e is infinitely smaller than x. According to the ordinary rules of algebra this
implies

e = 0.

But this was an implication not intended by the analysts of the Leibniz school—
a fact which does not become clear from the postulate itself but from its later ap-
plications to differentials. To be sure, all of his life Leibniz was rather vague about
what differentials and the infinitely small were. Thus it was young Johann Bernoulli
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who in plain language formulated the central rule underlying any calculation with
differentials. This was a conscious act of interpretation and a determination of mean-
ing which had not been done before and which later was taken over by the Marquis
de L’Hospital.

The second postulate, too, made explicit what the analysts of the Leibniz school
had tacitly assumed, namely to consider a curve as a polygon with infinitely many
sides of infinitely small lengths.

Thus, the second postulate shows the geometrical meaning of the calculus and
determines its application to geometry. In regard to the idea to replace curved lines
by straight lines we could anachronistically speak of a geometrical version of what
we today call linearization.

What infinitely smaller quantities and infinitely small segments are is nowhere
explained. Thus, we have to look at the applications of these concepts to learn more
about them.

Thus, let us look at the calculation rules for differentials, e.g. the product rule.

“The differential of xy is xdy +ydx. When x + e is multiplied by x +f (where e = dx and
f = dy) then the product is xy + ey + f x + ef . After subtracting xy we get ey + f x + ef

which is according to postulate 1 equal to ey + f x = xdy + ydx. q.e.d.”

Bernoulli does not explicitly say what a differential is but from his calculation it
becomes clear that it is a difference between two states of a quantity which are
infinitely near to each other.

d(xy) = (x + dx)(y + dy) − xy

The calculation gives

d(xy) = xdy + ydx + dx · dy = xdy + ydx

Thus d(xy) is infinitely smaller
than xy. The critical point in
Bernoulli’s proof is of course the
argument that dx · dy is infinitely
smaller than xdy or ydx which
are for their part infinitely smaller
than the quantities x and y. Thus
like Russian dolls we have three



80 H.N. Jahnke

nested universes of quantities each one infinitely smaller than its predecessor. I men-
tion in passing that the discussion with the students why dx · dy is infinitely smaller
than xdy was far from easy and we escaped to some plausibility arguments. (Please,
do not misinterpret the figure. y should not be considered as function of x, rather
to each point of the curve the quantities y (ordinate) and x (abscissa) are as-
signed.)

In a further step we consider how the calculus of differentials is applied to the
study of curves.

To Find the Tangent to the Parabola
According to the definition of the parabola we
have ax = y2, thus adx = 2ydy or a : 2y = dy

dx
and since according to postulate 2 it is supposed
that every curve consists of infinitely many straight
lines, the tangent AD and the infinitely small seg-
ment DF of the parabola BDF will be a straight
line. Therefore, if one draws DG parallel to diame-
ter AE, then triangle �DGF ∼ �ACD. Thus we
have FG : GD = CD : AC, and if s designates
the subtangent, then dy

dx
= y

s
= a

2y
. Consequently,

s = 2y2

a
= 2ax

a
= 2x. If, therefore, AC is taken

twice as large as the abscissa BC of point D and if
through A the straight line AD is drawn, then this
is the sought tangent.

For the sake of clarity we replace Bernoulli’s freehand sketch by a computer
drawing. In short: Bernoulli put up the equa-
tion of the parabola ax = y2 (in Bernoulli’s
words its ‘nature’) from which he derived a
differential equation. Then he applied pos-
tulate 2 with two remarkable consequences.
(1) A tangent line to a curve is simply the
prolongation of the infinitely small segment
adjacent to that point. (2) This creates two
similar triangles, the infinitely small trian-
gle FGD and the finite triangle DCA. This
gives dy

dx
= y

s
= a

2y
where s is the subtangent

AC. From this follows

s = 2x

Three features of this text immediately
strike us. (1) There is no coordinate system,
instead the variables refer to the symmetry
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axis of the curve. (2) The equation of the parabola is of a geometrical nature. Any
point of the parabola is constructed by transforming geometrically the rectangle ax

into the square y2. See the segment a attached to B . (3) For determining the tangent
Bernoulli does not calculate its slope, but he calculates the x-coordinate of a sec-
ond point of the tangent, namely A, that is the subtangent s. Then the tangent can
be constructed as the straight line connecting A and D. (4) We pointed already at
the remarkable definition of a tangent as an extension of an infinitely small side of
the polygon representing the curve. All in all, we see here a basically geometrical
conception of infinitesimal analysis in which the role of the algebraic symbolism is
reduced to auxiliary calculations.

Students Read Bernoulli’s Text

Sections of Bernoulli’s manuscript were read with students of an advanced mathe-
matical course (“Leistungskurs”) in grade 11 at a Gymnasium near Bielefeld, Ger-
many (see Jahnke 1995, for details). The students had already been introduced to
the fundamentals of the differential calculus and they knew the concepts of limit and
derivative and how to apply them in order to determine tangents, extremal values and
points of inflection. In Bernoulli’s manuscript they found a conceptual framework
completely different from their own. The textbook on which their calculus lessons
were based consistently avoided differentials, even as a notation. Derivatives were
exclusively written as f ′(x). However, students had met differentials in their physics
classes as very small but finite quantities. Usually, pupils worked in groups on a sec-
tion of the source to which I had added an assignment with special questions. For
example, I asked them to give an intuitive interpretation of Bernoulli’s concept of
“infinitely small quantity”, or I asked them to calculate the differential of x2 after
they had studied Bernoulli’s proof of the product rule for differentials or they had to
find out from the text what a subtangent is.

The teaching started with a ‘map of the history of mathematics.’ Students were
asked to give names and dates of mathematicians they had heard of. Since they
were convinced that they didn’t know anything about history of mathematics they
were astonished that after half an hour the blackboard was full of names and dates.
As it is often the case, as a group they were more successful and brighter than as
individuals.

In a second step they read a short sheet of information about the early history
of analysis, Johann Bernoulli’s biography and the history of the source they were
expected to read. Since studying the source took more time than predicted the treat-
ment of extremal values was finally omitted.

Asked for an intuitive interpretation of “infinitely small quantity” students were
very inventive. They offered:

• “a quantity is always positive”
• x + e = x, but e �= 0?
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• they set up the proportion:

quantity : infinitely small quantity ≡ line : point ≡ area : line ≡ solid : area

• an infinitely small quantity is like the difference between a rational approximation
of π and the number π itself

• an infinitely small quantity is like the difference between 1 and 0.999. . .

The proportion line : point ≡ area : line suggested that students had heard some-
thing about Cavalieri’s principle. However, some of them expressed doubts: Can one
really say that a line is composed of points?

These questions found a remarkable continuation when the tangent to a parabola
was studied. First of all, for the students it was very demanding to handle the unusual
form of Bernoulli’s equation of a parabola. And it was even more demanding to
find out from the involved argument with similar triangles what a subtangent is.
Everybody with teaching experience would expect these difficulties. However, after
an understanding of the meaning of ‘subtangent’ had emerged students were excited
to realize that in order to determine the tangent Bernoulli did not calculate its slope,
but the coordinates of a second point of the tangent. To be sure, the proportion
defining the slope was needed to get rid of the infinitely small quantities, but the
target quantity was not the slope, but a second point. Two points being known one
can construct the tangent by a ruler much easier than using its slope.

Bernoulli’s definition of a tangent as a prolongation of an infinitesimal side of
the polygon caused lengthy discussions. First of all, if one fixes a point which of the
two adjacent sides of the polygon should be chosen? Second, and more important, if
the intuition is correct that an infinitely small quantity can be considered as a point,
how can such an entity define a direction as is supposed in the definition of a tan-
gent. When it defines a direction an infinitesimal should at least contain two points
since two points are needed to determine a direction. The conclusion of this discus-
sion was that an infinitely small quantity must be more than a point, it cannot be
0-dimensional, but has to be 1-dimensional. Of course, this was also the conclusion
of the analysts of the Leibniz school. Thus, we have an infinitely small universe in
which we can do Euclidean geometry just as we can in the domain of the normally
sized quantities.

We stop the analysis of the students’ discussion at this point. Of course, the
source contains a host of additional interesting problems. Half a year after this
teaching unit, students invited me to come again to their class for a further study
of Bernoulli’s manuscript. We decided to investigate Bernoulli’s methods for deter-
mining points of inflection. Curve sketching is a routine topic in German calculus
classes and the criteria for maxima/minima and points of inflection are dead stuff.
They are learnt and mechanically applied. Thus, it was exciting to see that besides
the usual ddy = 0 Bernoulli hat a second criterion for points of inflection.

When one runs through a curve in the neighbourhood of a point of inflection
P then the sketch seems to show that the points of intersection of the successive
tangents move along the x-axis in a way that the tangent in P has an extremal
position. In his commentary to Bernoulli’s manuscript Paul Schafheitlin remarked
that this criterion was not adopted by L’Hospital because it is equivalent to the usual
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ddy = 0. But we found that this is not true. Bernoulli’s criterion is neither necessary
nor sufficient, it is in general not correct. Of course, the students were impressed
to see that such an important mathematician like Bernoulli made such a mistake.
To investigate this criterion is a wonderful exercise for good high school and even
university students.

The Hermeneutic Approach

In the introduction of my paper I referred to the reconstruction of a great line of
thought leading from past roots of a mathematical concept to its modern version. To
me this idea (a typically 19th century idea!) is the essence of the genetic principle
as it was understood by mathematicians of the late 19th and early 20th century and
which is influential even today. For school teaching this is simply unrealistic. This is
the case since school teaching is necessarily episodic and progresses in small steps.
Thus, we have to be realistic and should not overload the enterprise “History and
pedagogy of mathematics” by demands which necessarily must lead to failure. One
can call this a pragmatic categorical imperative.

Thus, the hermeneutic approach grew first of all out of the idea that you should
confine history to a local experience which is quite a modest approach compared to
what you have in mind when you imagine a historically guided reconstruction of a
mathematical concept. In the hermeneutic approach, students are asked to examine
a source in close detail and explore its various contexts of historical, cultural and
scientific nature. The hermeneutic approach will not give you an overview. Rather,
it is a hope that some pupils will like history and develop a certain interest in it
which might motivate them to search for further reading.

The basic guidelines of the hermeneutic procedure can be summarized in 6 prin-
ciples.

(1) Students study a historical source after they have acquired a good understanding
of the respective mathematical topic in a modern form and a modern perspec-
tive. The source is studied in a phase of teaching when the new subject-matter
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is applied and technical competencies are trained. Reading a source in this con-
text is another manner of applying new concepts, quite different from usual
exercises.

(2) Students gather and study information about context and biography of the au-
thor.

(3) The historical peculiarity of the source is kept as far as possible.
(4) Students are encouraged to produce free associations.
(5) The teacher insists on reasoned arguments, but not on accepting an interpreta-

tion which has to be shared by everybody.
(6) The historical understanding of a concept is contrasted with the modern view,

that is the source should encourage processes of reflection.

What then is hermeneutics? For the following the reader should compare Glaub-
itz (2010, 2011) and Jahnke (1994, 1996). Simply said it is the “art or the science
of interpreting texts.” It distinguishes systematically between the author and the
reader of a text and their different perspectives. Thus, the strong tension between
the historical perspective and the modern view on a mathematical topic is not some-
thing which should be smoothed out or eliminated, but is considered as the essential
achievement a historical text might contribute to the intellectual development of a
person. Thus, the whole enterprise of reading a source rests on experiences of “dé-
paysement” as the French say or “Verfremdung” (“alienation”) as the German writer
Bertold Brecht would have said. Sources introduce into teaching an unwieldy ele-
ment. But how comes it that such unwieldy elements do not lead to failure? This
is so only when they have anchor points. The student who deals with something
that he already knows but that is presented in a radically different, unfamiliar way
or an unknown guise, should be able to make connections to these anchor points.
In hermeneutics you would say: His horizon merges with the horizon of the past.
Horizon merging is a term that was coined by Hans Georg Gadamer (1900–2002).
In the horizon merging the student may begin to wonder and to reflect upon what
he possibly had never thought about before. In essence he begins to develop deeper
awareness. This is in fact an instance of broadening one’s horizon. And it does so
by utilizing a strategy of dissonance. It is well known that this kind of incompat-
ible information ensures greater retention and ease of retrieval from memory. But
to do so, there must be a familiar reference frame. It is therefore applied only to
subject-matters that students are already familiar with.

In hermeneutics the process by which the merging of horizons occurs is described
by a spiral, the so-called ‘hermeneutic circle’ which points to the necessity of al-
ready possessing an interpretation of a text in order to gain a new interpretation.
For us as mathematics educators this appears not so strange as it might be for other
people since we are used to reflect about spiral processes, the most prominent being
the process of modelling. I take a picture from the dissertation of my former Ph.D.
student Michael Glaubitz (2011, 61).

You start with a certain image of the text reflecting your expectations about what
it might be about. Then you read the text and realize that some aspects of your image
do not agree with what is said in the source. Thus, you have to modify your image,
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read again, modify and so on until you are satisfied with the result or simply do not
like to continue.

In our case students started with the expectation that Bernoulli’s text might be
about determining tangents to and extremal values of curves, that the idea of a limit
of an infinite process might be central to the subject, that concepts like derivative and
slope of a tangent (a quotient) will frequently appear and that all is sort of algebra,
with new rules, but symbolic in nature. After some windings of the hermeneutic
spiral they had realized that the source was in fact about tangents to and extremal
values of curves, but that there was no limit concept, instead there was the difficult
concept of infinitely small quantity. Also, the slope of a tangent was less important
than expected. It was used in the source to get rid of the infinitely small quantities,
but the target object was a second point of the tangent. Thus, the status of a slope
changed to that of an auxiliary object. And so on.

On a more basic level the hermeneutic circle can be considered as a process
in which a hypothesis is put up, tested against the source, modified, tested again
and so on until the reader arrives at a satisfying result. For example, the students
were asked to infer from the source what a differential is. From their knowledge of
calculus some students formed the idea that a differential is something similar to
a derivative. With this hypothesis they studied Bernoulli’s derivation of the product
rule and realized that this cannot be true, since Bernoulli did not calculate a quotient.
After some further attempts they saw that a differential is in fact a difference. In a
similar manner they found out what a subtangent is.

Can one say then that students behave like historians of mathematics when they
read a source? In principle, this is the case. When they entered the source they
had questions similar to those a professional historian of mathematics would ask.
Roughly spoken, these questions refer to the different meanings of concepts and the
different conceptual structures at the time of Bernoulli and today. There are other
natural questions they did not explicitly pose but which were obviously in their
minds. These refer to what math educators are used to call concept images. An-
other question they asked was whether Bernoulli really believed that infinitely small
quantities exist or whether he considered them as useful but meaningless tools. Of
course, a professional historian would ask this question, too. There are other ques-
tions a historian would routinely study and which our students didn’t ask, namely to
compare Bernoulli’s text with other writings of the Leibniz school.
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The most important difference concerns the previous knowledge a historian and
a student have at their disposal. For example, consider the segment in Bernoulli’s
sketch of the parabola representing the parameter a. A professional historian knows
of course that the segment hints at the ancient ruler-and-compass construction of the
parabola. Of course, the students do not know this. For the teacher it is a difficult
question whether he should tell this to his students. I decided not to do that and
preferred to stop with what they could find out by themselves. Thus, to the students
the segment remained one of the peculiarities of the source they couldn’t explain.

Discussion

In a recent paper Uffe Jankvist (2009) has distinguished between the use of history
as a tool and that of history as a goal. The first concerns the use of history as an as-
sisting means in the teaching and learning of mathematics (mathematical concepts,
theories, methods, motivation and so on). In contrast to this, a use of history as a
goal does not serve the primary purpose of being an aid, but rather that of being an
aim in itself. For instance, it is considered a goal to show students that mathematics
exists and evolves in time and space, that it is a discipline which has undergone an
evolution over millennia, that human beings have taken part in the evolution. The
distinction between tool and goal is quite useful for becoming conceptually clear
about the “whys” and “hows” of history of mathematics in teaching. However, as
Jankvist himself remarked both dimensions are intertwined, and I would say in-
separably intertwined. In the hermeneutic approach, mathematics enters at least in
two ways. First, there is the experience of dissonance or alienation. Students learn
something about their own mathematics by experiencing and reflecting on the con-
trast between modern concepts and their historical counterparts. And the point of
the “hermeneutic circle” as understood here is that the reflection is in both direc-
tions, so that the students deepen both their understanding of history and of their
own set of modern conceptualizations. Second, and equally important, is the fact
that in reading a source (modern) mathematics itself is applied as a tool. The task
to think oneself into the situation of persons living at a time long ago requires to be
able to argue from the assumptions of these persons, to use their symbols and meth-
ods of calculation. This poses completely new demands on the students’ abilities to
argue and to prove mathematically. The teaching unit I have described in this paper
showed clearly that it operated on the upper limit of the students. It was a real stress
test to the mathematics they had learnt. Thus, reading a source deepens the mathe-
matical understanding on both levels, on that of doing mathematics and on that of
reflecting about mathematics.

Michael Fried nicely distinguishes between different attitudes (of mathemati-
cians) in regard to the mathematics of the past (2011), that of “colleagues”,
“treasure-hunters”, “conquerors”, “privileged observers” and “historical historians
of mathematics”. The latter “view the past as fundamentally different from the
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present and see the treatment of the past demanding more than present mathemat-
ical knowledge”. Of course, this tacitly says that modern mathematical knowledge
is necessary for understanding the past.

How then can we describe this “more”, this extra component which goes be-
yond modern mathematics? This brings us back to the theme of this conference “the
search for a common ground between mathematics and mathematics education”.
I would like to describe this “more” by the term “respect”. At first sight “respect”
is a category of human relations. When we communicate honestly with other peo-
ple mutual respect is a necessary condition. In the present context I use this concept
with an additional connotation. This is an epistemological one and says that we have
to accept that there are different legitimate perspectives on the history of mathemat-
ics and none of them has the right to claim exclusive truth for itself. According to
hermeneutics understanding a text consists in the merging of different horizons, the
horizon of the reader and the horizon of the text/author. Different readers with their
different backgrounds arrive at different interpretations. Thus, a history of ideas
(produced by a leading mathematician) which might neglect many historical details
is as legitimate as a social or cultural history of mathematics or the history produced
by our students. However, respect as an epistemological category is injured when
somebody neglects the difference between his reconstruction of the past and the
past itself and takes the mathematical tools he applies as the matter itself.
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Chapter 7
Reflections on History of Mathematics

History of Mathematics and Mathematics Education

Luis Radford

Abstract The specialization that mathematics education research has undergone in
the past decades has led to a sense of division and disconnection between mathe-
maticians and mathematics education researchers. This chapter deals with the possi-
bilities that the history of mathematics may afford to reduce the divide. Although the
recourse to the history of mathematics is an interesting prospect, it unavoidably in-
duces new problems. A range of tensions becomes visible among the involved com-
munities of teachers, historians of mathematics, mathematics education researchers,
and mathematicians. Some of these tensions are investigated in this chapter, in par-
ticular in the case of a hermeneutic reading of original sources. The tensions that
the history of mathematics induces, it is argued, may function as a way to foster a
critical reflection and dialogue to contribute to a rich multi-layered understanding
of mathematics, its history, and its teaching and learning.

Keywords History of mathematics · Hermeneutic approach · Teachers’ beliefs
about mathematics · Aesthetic in mathematical thinking · Mathematics and
culture · Nature of mathematics

Introduction

This chapter presents a reflection on some of the contributions of the history of
mathematics to mathematics education. It also explores the manner in which the
history of mathematics may serve as a bridge across the intensifying divide between
mathematics and mathematics education research. While the first aforementioned
point has been a matter of extensive discussion (see, e.g., Barbin et al. 2008), the
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second point results from the increasing specialization of mathematics education
as a research discipline. It is clear indeed that in the early 20th century, research in
mathematics education revolved around curricular problems and international coop-
eration, as the epoch-making articles published in L’Enseignement Mathématique in
the first decades of the 20th century make clear (see, e.g., Borel 1914; Bourlet 1910).
During the 1970s and 1980s, research in mathematics education moved to new are-
nas: problems of a psychological nature moved to center stage, with an interest in
understanding the students’ thinking, and, more recently, a shift has become clear
with the political concerns of today (see, e.g., the Educational Studies in Mathemat-
ics Special Issue edited by Brown and Walshaw 2012), where a need to go beyond
the definition of mathematics education as the diffusion of the mathematical content
(see, e.g., Brousseau 1997) is questioned, if not contested. Often, these shifts have
led to a sense of disconnection between the work of professional mathematicians
and mathematics education research. In the latter, new terminologies, concepts, and
methods have been introduced and developed, often with the recourse to theories
in the social sciences, such as linguistics, semiotics, sociology, and anthropology.
Sometimes these new trends, which are clearly embedded within social science re-
search, appear as excessive and even unnecessary (Eisenberg and Fried 2009).

The chapter has its origin in a symposium organized in Beer-Sheva in 2012 to
honour the seminal work of Ted Eisenberg. The symposium was an extraordinary
opportunity to reflect on these matters and to try to come up with possible actions
to overcome the separation that seems to affect the communities of mathematicians
and mathematics education researchers. By focusing on the history of mathematics,
the contributors to this chapter present some of the potential and challenges that
such an endeavour entails. The following sections still retain the aural dimension of
the presentations made during the Symposium. We decided to keep them this way
for reasons that will become apparent later.

In the opening section, Alain Bernard reflects on the challenges that a hermeneu-
tic approach may present to the teachers of mathematics. An interpretative turn to
historical texts, Bernard argues, entails some skills and knowledge that teachers may
be lacking in order to ensure suitable hermeneutic classroom discussions. Michael
Fried stresses the tension that a historical attitude induces in mathematics, mathe-
matics teaching, and mathematics education research. He suggests that the recourse
to history in mathematics education may bring a philosophical view that may pro-
vide historians and mathematicians with an opportunity for even philosophical dis-
cussion and historical understanding. Fulvia Furinghetti argues that the history of
mathematics offers a unique window through which teachers’ beliefs about mathe-
matics can be made explicit and turned into possibilities of conceptual growth and
development. Nathalie Sinclair puts forward an interesting conception of mathe-
matics as temporal and material activity embodying diverse modes of thought and
forms of subjectivity. In addition to exploring the past through the written dimen-
sion of historical texts, a hermeneutic approach could also encompass mathematics
as performance and unveil the richness of mathematical narrative styles. In my own
section, I ask three questions and make a remark. They intersect with Sinclair’s ar-
guments. The questions are a rhetorical device used to invite mathematicians and
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mathematics educators to rethink what we mean by mathematics. The thrust of the
questions is my concern with the fact that mathematics has unfortunately become a
technical domain under the influence of contemporary neo-liberal forms of produc-
tion and its emphasis on marketing and consumption as the modern and postmodern
predominant forms of life.

History Within Math and Science Teaching: A Historical Issue

Alain Bernard

My reaction to Jahnke’s insightful proposal for a hermeneutic approach of the his-
tory of mathematics in mathematics teaching is guided by a few basic claims that
are indicated in my title. The first is that there are difficult questions underlying the
introduction or promotion of history of mathematics into math teaching. The second
is that we are now in a situation in which the history of mathematics has come to
be considered almost as a necessary component of mathematics education in many
(though not all) countries. Finally my central claim is that reflecting on the above
questions should be deeply informed and guided by a historical reflection about our
current situation.

I do think, first of all, that “mathematical education” should be understood just in
the general way that was underlined by Presmeg: namely as the activity of teaching
mathematics or even, as was suggested by Niss’ categories, as the organization of
the human and institutional framework for it. By contrast, both Presmeg and Eisen-
berg have rightly reminded us that math education research is a much more recent
academic field that did not exist at the beginning of the 20th century or before. From
a historical perspective, recognizing these facts is crucial, for it enables one to say,
without anachronism, that several major (and also lesser known) mathematicians
have been constantly and deeply involved in math education, that is, into the reform
of math curricula and pedagogical methods from the 19th century to the present day.
For it must be recalled that the level of interest taken in math education by mathe-
maticians in particular or by political people in general has neither really decreased
nor changed. As Niss shows very clearly, there are still active mathematicians, as
well as many other people, that pay much interest to mathematics education and try
to influence it in deep and significant ways. Following Jahnke’s reaction to Niss’
talk, one should add the timeline to his picture: in other words, what is true today
has already been true for a long period.

There are, in turn, deep and long lasting historical reasons, for which many peo-
ple have been concerned by (if not involved in) the constant reform of math ed-
ucation since the 19th century. My remarks will elaborate on one important point
made by Movshovitz-Hadar about the ever evolving perimeter of mathematics and
its necessary consequences on mathematics education. Indeed, a recurrent argument
seems to evoke a golden age in which the very notion of what math education is
about was clearly defined and not a subject of contention. But I fear the Golden Age
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was already an Iron age: the eve of the 20th century was already characterized by
dramatic and significant changes in orientation and subject matter. Thus, introduc-
ing the concept of function as a fully legitimate subject for mathematics education
was precisely the move promoted by mathematicians like Borel, Klein or Poincaré,
who were deeply involved in the reform of curricula in their respective countries:
before then, the concept of function was not a central subject in math education, but
more a subject for advanced studies.

Many other examples could be given. But the question is: why would those peo-
ple have felt the urge for change? Generally speaking, we have to remind ourselves
that mathematics itself, throughout the 19th and 20th century, and especially after
WWII, has constantly undergone drastic and profound changes—more than in ev-
ery other period. These changes have been quite directly related to the changes in
industrial societies: new technologies, new industries, new sciences. These rapid
and radical changes have naturally led many people, first of all mathematicians, to
consider the unavoidable fact that questions concerning mathematics and their edu-
cation on a large scale could not be any more considered in isolation of many others.
Those other questions, which are so constantly present in the background, such that
we tend to forget them, touch on the development of industry, experimental sci-
ence, economy or politics—especially educational policies. For example, much of
the concern about mathematics education was fostered by the launch of Sputnik in
1957 and by the kind of shock it produced in western countries, and first of all in
the USA, by that time. To my view, this remark can and should be extended to much
of the history of the 19th and 20th century mathematics and mathematics education,
with an acceleration after WWII.

I thus come to the last historical fact that I would like to connect to the previ-
ous ones. Ever since there has been a question of changing (mathematics) education
to accommodate the ‘new’ industrial world and its needs, namely from the 19th
century onwards, it has also been a question of introducing history of science in
general (history of mathematics in particular) into science curricula. This was ex-
plicitly done, at least in France in which this contextual question has been much
studied, in order to compensate the inevitable split induced by the twofold curric-
ula, separating science from literature tracks—see, among others, Hulin’s (2011)
synthesis. Very early, during the industrial age, therefore, a teaching of history of
science was welcomed and called for—at least theoretically.

The situation of today has made this traditional wish all the more central than
it has largely entered official curricula: the teaching of science in general, and of
mathematics in particular, is now meant to be deeply ‘cultural’: this means, in par-
ticular, that it should include more history, more epistemology and more facts con-
cerning society at large. We should be strongly aware of the fact that this is not a
recent move, but already the continuation of long-lasting concern; and that this con-
cern, in turn, should not be dissociated from the history of modern science, industry
and philosophy (especially positivism). We should finally be aware of the practical
implication of these moves: namely that science and mathematics teachers are re-
quested, more than ever, to deal with science and mathematics as cultural subjects,
however this might be interpreted.
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With these historical observations and preliminaries in mind, I think we can ad-
dress Jahnke’s proposals and questions. First of all, I can only agree with Jahnke’s
suggestion that readers of historical sources of mathematics should be placed in
the situation of interpreting these sources, and that reading should be considered a
hermeneutical task in a strong sense. Indeed, this proposal addresses somewhat in
depth the real difficulties encountered by teachers when they try to address the long-
lasting demand signaled above.1 But such proposals should be understood against
the historical background that I have summarized before. For, to put it simply, we
retrieve the bizarre situation I have spoken about:

Most students of mathematics who are now asked, as teachers or future teachers,
to develop the kind of pedagogical activities that are indispensable from interpre-
tation, are not ready for it. From my experience, many such teachers were often
not prepared to organize a discussion on a complex argument, implying the elab-
oration of a coherent interpretation that might be expressed orally or by written
means.2

Teachers of literature, philosophy or history, by contrast, would consider natural
that students should develop a complex point of view on a given document; this
idea is more or less alien to many students in science.

The split is not only a problem of being trained or not in the kind of pedagogical
activities that foster interpretation, but also, of course, a question of epistemology
of what science and literature studies are about: there is a kind of invisible limit here
that forbids such cooperation. We are collectively far away from the old idea that
mathematics and science are a legitimate part of literature in a strong sense.

On the other hand, we are perhaps not so far away from these classical ideas.
For these questions and implicit frontiers are now quickly changing: the new tech-
nologies and especially the rise of “digital humanities” are deeply changing the way
we read and write. This does not mean that printed matter is outdated, but we must
nevertheless count on the new media and on the way in which they radically trans-
form the access to historical and cultural information, as well as the way students
and teachers might cooperate with each other. This recent change should probably
be part of the discussion.

1Other proposals, like Michael Fried’s notion of a “radical accommodation” between history of
mathematics and mathematics teaching seem to come close to it—although I understood from
Michael himself that Jahnke’s proposal is not yet radical enough to correspond to the aforesaid
category.
2For example, I am ready to bet that the kind of “open discussion” that Jahnke organized with his
students on Bernoullis’ conception of infinitesimals quantities would be dreadful to many mathe-
matics teachers: both the spirit and the concrete organization of such debates is in many cases alien
to them.



94 L. Radford

Mathematicians, Historians of Mathematics, Mathematics
Teachers, and Mathematics Education Researchers: The Tense
but Ineluctable Relations of Four Communities

Michael N. Fried

Rather than asking whether history of mathematics is good or bad for students or for
teachers of mathematics—and I do think it is good!—I would like to focus on how
our presuppositions about mathematics and about the history of mathematics play
out in the relations among four communities, that is, to the extent each is concerned
with history of mathematics in mathematics education. I have in mind mathemati-
cians, historians of mathematics, mathematics teachers, and mathematics education
researchers. These different communities cannot be assumed to speak in one voice.
I would like to suggest that mathematics education as a whole must somehow sit-
uate itself within a web of tensions created by the interests and commitments of
these four communities. Furthermore, I would suggest that mathematics education
research, though it itself is a pole within this web, has a distinct role of creating a
view of mathematics education in which these tensions can be productive for math-
ematics learning, not paralyzing.

To begin, I should remark that the relationship between the history of mathe-
matics and mathematics education mirrors the overall problem of this book namely,
mathematics and mathematics education. And continuing down this hall of mir-
rors, the relationship between mathematics and history of mathematics themselves
reflects the problem as well. As with mathematics educators, historians of mathe-
matics until the middle of the twentieth century were invariably well-trained mathe-
maticians, most often working mathematicians. The awakening of history of math-
ematics as an independent historical discipline created a certain amount of tension
within the mathematics community just as the crystallization of mathematics ed-
ucation as a separate academic discipline has. When, for example, Unguru wrote
that the history of Greek mathematics needed to be revised (Unguru 1975) so that it
would be based on sound history rather than sound (modern) mathematics, he was
attacked by mathematicians as not understanding mathematical thinking, as he was
attacking them for not understanding historiography (e.g. van der Waerden 1976).

Taking into account history of mathematics in mathematics education adds an-
other level of complexity, however (it was this that was analyzed in Fried 2001,
2007). For history of mathematics as history tries to see the how mathematics of the
past was different from the mathematics of today. With that, it treats mathematics
as a product of culture and, as Judith Grabiner (1974) has put it, as “time depen-
dent.” This means one cannot assume a modern mathematician should be the final
arbiter in judging what was said or done in the mathematical past. To the extent
then that mathematics educators turn to a cultural view of mathematics, they align
themselves with the history community. On the other hand, because working mathe-
matics teachers must teach mathematics with an eye to its application in the sciences
or its investigation in mathematics itself, it must give mathematics an unconditional
objectivity that aligns them with the mathematics community or, more generally,
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Fig. 7.1 A three-way tension
between mathematics,
mathematics teaching, and
the history of mathematics

with those who see mathematics of the past as fundamentally the same as the math-
ematics of today. Pulled in this latter direction, educators are hardly obliged to take
history into account in their teaching; that is, history can be added or subtracted at
pleasure. I would point out that even Freudenthal, who supported the inclusion of
history in mathematics education vigorously, still did not think history could help
one understand better the subject matter of mathematics (Freudenthal 1981).

So there arises, to start, a kind of three-way tension (Fig. 7.1):

(1) Between mathematicians for whom mathematics exists outside of time wait-
ing to be discovered, and historians of mathematics who see mathematics as a
cultural product which by definition develops in time;

(2) Between mathematicians concerned with mathematical content and ideas, and
mathematics educators concerned with the development of students’ mathemat-
ical thinking and their situating their mathematical understanding within their
culture and everyday experience;

(3) Between mathematical educators concerned with preparing students for work
in science and engineering and the concomitant need to teach them modern
mathematical procedures and concepts, and historians of mathematics who keep
the present at a distance in order to understand the past and who we are as beings
possessing that past.

But despite the symmetry of the triangle, there is in fact a clear asymmetry be-
tween the mathematicians and historians of mathematics on the one hand and the
mathematics educators on the other. For while mathematicians and historians of
mathematics (taken as types, of course, not individuals) are fairly consistent in their
respective positions, mathematics educators are somewhat chameleon-like in theirs.
This, however, is the nature of the subject: mathematics education has a diverse
set of ends that are themselves not completely consistent. It is for that reason that
mathematics education can by itself mirror the tension between mathematics as a
discipline and the history of mathematics.

The fourth pole is mathematics education research, which Norma Presmeg was
careful to distinguish from mathematics teaching in Chap. 4. And with this fourth
pole, we have, in fact, a tetrahedral web of relations. This is represented in the tetra-
hedron below (Fig. 7.2), where each face corresponds to a different simplicial set
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Fig. 7.2 A four-way tension
between mathematics,
mathematics teaching,
mathematics education
research, and the history of
mathematics

of tensions (of course the face whose vertices are mathematics education research,
mathematics, and mathematics teaching, respectively, is that which is the main focus
of this book).

The relationship of mathematics education research to history of mathematics
and mathematics is in many ways similar to that of the mathematics teacher: the
disciplines of mathematics and history of mathematics make conflicting demands as
to what the teacher is supposed to teach, as well as to what the researcher is supposed
to investigate. Does mathematics education research waste time if it does not try to
find ways of teaching functions or how to solve a system of linear equations? Does
it neglect the “true hard-core” of the subject, if it looks at mathematics as a semiotic-
cultural system?

However, mathematics education research, as an academic community, has con-
siderably more freedom to define itself and shape a view of mathematics than does
the community of mathematics teachers. Mathematics education research possesses,
accordingly, a greater potential to bridge the divide between mathematics and his-
tory of mathematics by defining a view of mathematics education which can accom-
modate both. As I emphasized in Chap. 2, this means defining what exactly it is to
be mathematically educated. Mathematics education research may take on an im-
portant function in enriching mathematics itself in this regard, while also defining a
role for mathematics teachers in such a way that situates them neatly between math-
ematics and history of mathematics. A tetrahedron such as that in Fig. 7.3 might,
therefore, better show the relation between mathematics education research and the
communities of teachers, mathematicians, and historians, namely, that of a kind
of orchestrator poised above the plane containing mathematics teaching, history of
mathematics, and disciplinary mathematics.

In accepting this bridging role, both with regards to mathematics and history
of mathematics and between mathematics teaching and both of these disciplines,
mathematics education research must contend with questions both of a practical
and theoretical nature.

On the theoretical side, we ought to ask questions such as the following: Does the
introduction of history of mathematics into mathematics education, where this is not
a trivial introduction for the sake of motivation or “spicing up” mathematics lessons,
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Fig. 7.3 The relation between mathematics education research and the communities of teachers,
mathematicians, and historians

imply a philosophical position with respect to mathematics? Does this position dis-
tance mathematicians from mathematics education, for example, by weakening the
claim that modern mathematical understanding is the key to historical understand-
ing? Can mathematics education act as a context for a philosophical discussion of
mathematics where mathematicians and historians can have an equal say (a kind of
amplification of the classroom setting Lakatos chose for his historico-philosophical
discussion of proof)?

On the practical side, I would suggest that bringing history of mathematics into
mathematics education in such a way that it is both mathematics and also truly
history of mathematics consists, first of all, in the study of original texts—really
looking at Euclid’s Elements or working through Descartes’ Geometrie. How to
introduce original texts, however, is not obvious. In its most uncompromising form,
learning by way of original texts falls under the category of what I called in the past
(Fried 2001), “radical accommodation” (as opposed to the other radical alternative,
“radical separation”). It is radical because the texts become primary in every sense of
the word: the study of mathematics in “radical accommodation” becomes precisely
the study of mathematical texts, just as literature is the study of great works of prose
and poetry. I had claimed that this would indeed also be mathematics:

. . . in the study of mathematical texts, one is not only engaged in solving problems and
developing ideas with a great mathematician, and therefore becoming deeply acquainted
with the human activity of mathematical work, but one is also engaged in a kind of reflective
thinking or inquiry that ultimately is of the highest importance for one who deals with
technical scientific and mathematical work. (Fried 2001, p. 402)

But original texts can be introduced without making them the exclusive source of
learning. Indeed, one can gain much historical understanding by bringing mathe-
matics classroom learning to original texts if one is made ever cognizant that one
is indeed an interpreter with a point of view. This is the core of what Jahnke calls
the “hermeneutic” approach (e.g. Jahnke 2000). In taking up a theme such as the
hermeneutic approach, mathematics education research provides an example of how
it can investigate a practical approach to learning that defines a set of mutual re-
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lationships between students and teachers of mathematics, modern mathematical
knowledge, and historical understanding.

History in the Mathematics Classroom

Fulvia Furinghetti

One of the struggles inside the community of HPM (International Study Group on
the Relations between History and Pedagogy of Mathematics, affiliated to ICMI)
is to make clear the relation between history and pedagogy of mathematics. Some
papers written by Ted Eisenberg provide hints for pointing out the links between
these two domains. In the following I will refer in particular to teachers’ be-
liefs.

Let me start with the claim by Eisenberg (1977) that there is close to a zero cor-
relation between teacher knowledge and student achievement, and that other factors
appear to be responsible for student achievement. Among the factors responsible
of this failure in teaching I consider important teachers’ beliefs about mathematics
and its teaching. These beliefs, for example, make teachers neglect what they learnt
at university and reproduce in their classroom what they have been taught in sec-
ondary school. I am not the first to take this point of view. At the beginning of the
twentieth century two important mathematicians engaged in mathematics education
and focused on the problem of teachers’ knowledge by pointing out this fact (Borel
1907; Klein 1924).

Then, a main aim of teacher educators is to challenge prospective teachers’ be-
liefs. As I have discussed in some papers, history may be a good tool for attaining
this aim, since it provides an unknown landscape where people are obliged to look
at things from a different perspective and to grasp aspects that previously escaped
their attention (Furinghetti 2007). As an example, I mention the case of algebra.
Usually teachers tend to consider algebra as an extension of arithmetic, generaliza-
tion, abstraction, and use of symbolization. I challenge this view by asking them
to solve medieval problems such as the following Problem 47 taken from Trattato
d’Aritmetica by Paolo Dell’Abbaco:

A gentleman asked his servant to bring him seven apples from the garden. He said: “You
will meet three doorkeepers and each of them will ask you for half of all apples plus two
taken from the remaining apples.” How many apples must the servant pick if he wishes to
have seven apples left?

In solving this kind of problem two paths may be followed, which may be put in
relation with the analytic and synthetic methods:

– arithmetic path: from the known (left apples) to the unknown (apples to be picked)
– algebraic path: from the unknown (apples to be picked) to the known (left apples)
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Reflecting on these paths leads the teachers to focus on the fact that algebra is not
only generalization, not only abstraction, not only using symbols, not only an ex-
tension of arithmetic: algebra is a method and the analytic method is its core. Then
François Viète’s introduction of parameters and variables is not perceived as some-
thing coming out of the blue, but as a consequence of this way of looking at alge-
bra.

A further belief challenged by history is the view of the role of intuition and
rigor in mathematics teaching and learning (Dreyfus and Eisenberg 1982). Math-
ematicians such as Poincaré (1899) and Klein (1896) considered the history of
mathematics a suitable context for bringing intuition back into the teaching pro-
cess against the excesses of rigor advocated by some of their contemporary col-
leagues.

The main idea expressed by Klein is that students need to approach a topic at
an “intuitive” level and later on to pass to the formal level. History may be useful
in this regard because it brings back the polished concepts as are presented in the
modern textbooks to their origin. History recovers the cognitive roots, described
by Tall (2003) as concepts which are (potentially) meaningful to the student at the
time, yet contain the seeds of cognitive expansion to formal definitions and later
theoretical development. The historian Gino Loria, who was a convinced supporter
of the use of history in mathematics teaching, epitomized this idea about cognitive
roots by using a sentence found in Victor Hugo’s novel Les travailleurs de la mer,
which says that any embryo of sciences presents this double aspect: monster as a
fetus; marvel as a germ (Loria 1914, p. vii).

The focus on formal approaches has the consequence that a vast majority
of students do not like thinking in terms of pictures (Eisenberg and Dreyfus
1991). This way of thinking may be promoted by history, since the early stages
in the development of concepts often reside in the visual domain. This aspect
has been exploited in significant experiments concerning the teaching of calcu-
lus.

Another challenge to teachers’ beliefs is to make them shift the focus of their
teaching from product to process. This shift may be fostered by history, since read-
ing original sources directs the attention to processes, which leads to the genesis of
concepts. The engagement promoted by the contact with an author’s thinking ob-
tained by means of historical passages is an aesthetic value introduced into mathe-
matics teaching. In the words of Hawkins (as cited in Featherstone and Featherstone
2002), aesthetics “is a mode of behavior in which the distinction between ends and
means collapses; it is its own end and it is its own reinforcement” (p. 25). Then
history of mathematics may be a means for introducing a form of aesthetics into the
mathematical discourse in the classroom, as advocated by Dreyfus and Eisenberg
(1986).

The few aspects outlined above suggest ways in which the history of mathematics
challenges teachers’ imagination in finding new modes of dealing with mathemati-
cal discourse in the classroom.
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Aesthetic Considerations

Nathalie Sinclair

This chapter offers some reactions to Jahnke’s chapter, which outlines the possibility
of using historical texts in the mathematics classroom to enable students to (1) de-
velop insights into the development of mathematics, (2) develop an understanding
of the role of mathematics in our society and (3) encourage the perception of the
subjective dimension of mathematics.

I would like to contribute to this discussion by way of Eisenberg’s 1986 paper
(with Dreyfus) on the role of the aesthetic in mathematical thinking, which has had
a strong influence on my own work in mathematics education. They suggested that
explicit attention to aesthetics in the mathematics classroom could help improve
students’ problem-solving abilities. One challenge that mathematics educators must
reckon with is not only finding ways of welcoming—and even eliciting—aesthetic
values in the classroom, but also accepting that the values students have in the class-
room, with respect to mathematics, do not always align with those of mathemati-
cians (see Sinclair 2001).

Of course, judgments of aesthetic values are not only subjective, but also strongly
influenced by socio-historical factors. Yes, it is true that adjectives such as symme-
try, order and precision re-occur across different historical time periods and in di-
verse cultures. But these are very broad descriptors that do not just operate in math-
ematics. Moreover, there are many examples in the history of mathematics where
asymmetry, chaos and fuzziness also vied as aesthetic values.

So, one way of thinking about the historical project proposed by Jahnke is to
focus not only on the changes in mathematical content, but also changes in the aes-
thetic values that constitute the discipline. These values become evident when one
looks, for example, at the dominant activities of the day—perhaps focusing on prob-
lems related to the foundations of mathematics or on solving specific open problems.
They also become evident when considering the techniques and strategies that are
used to solve these problems—be they algebraic means or experimental ones. Fi-
nally, they become evident when questioning the reasons for focusing on certain
problems or techniques over others—because they are more beautiful, right, useful,
ideal or true. In other words, aesthetic considerations of the historical variety would
concern what was attended to, how it was attended to and why it was attended to.
These questions could easily be raised in the context of historical activity in the
classroom and the answers, I think, would certainly support the threefold aims of
Jahnke’s proposal.

From an aesthetic point of view, much can be learned about mathematics and the
people doing mathematics by reading historical texts. One can focus, for example,
on the styles of writing that are used. Netz (2009) has argued that the Archimedean
so-called “ludic” style of writing, which he characterises as involving narrative sur-
prise, mosaic structure and generic experiment, and a certain “carnivalesque” at-
mosphere, evokes very different aesthetic qualities than, for example, the Euclidean
style. Archimedes writes mathematics to delight and inspire; Euclid does so to or-
ganise and convince through strictly logical means. Clearly, these considerations are
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strongly related to the role of mathematics in society (to entertain? To be useful? To
be pure?). It also suggests that the issue of subjectivity is not just of epistemological
interest, but also of aesthetic order.

I have been arguing that the study of historical texts can (and should) have a
strong aesthetic component to it. But now I’d like to raise questions about the lim-
itations of this approach, still within the context of aesthetics. I will discuss three
concerns:

The Historical Text Can Reveal Only the “Body” of Mathematics The first re-
lates to the historian of mathematics Corry’s (2006) distinction between the body
and the image of mathematics. In contrast to the body of mathematics, which in-
cludes “questions directly related to the subject matter of any given mathematical
discipline: theorems, proofs, techniques, open problem,” the images of mathemat-
ics “refer to, and help elucidating, questions arising from the body of knowledge but
which in general are not part of, and cannot be settled within, the body of knowledge
itself”.

Thus, while the body of mathematics might concern itself with describing a
technique used in the course of a proof, the images of mathematics refer to the
motivations, choices and values related to the use of certain techniques. While the
body of mathematics concerns itself with defining objects, the image of mathemat-
ics questions which objects are defined and which are not. As Corry points out,
mathematicians do not customarily write about their images. But images of math-
ematics constitute a layer of mathematical knowledge, one that centrally involves
aesthetic concerns—and one that will not easily be revealed in a study of historical
texts. Indeed, Netz’s study of Archimedes’ style required the use of sophisticated
and specialised analytic tools from disciplines such as archaeology and cognitive
linguistics. I would argue that it is just as much, if not more, in the changing images
of mathematics, that we can learn about the development of mathematics, the role
of mathematics in our society and the subjective dimension of mathematics.

From Written Text to Performance A second point I would like to raise re-
lates to the idea of mathematical writing style that I have already mentioned and
the question of what kinds of historical texts we might choose for students to read.
Consider some of the linguistic features of modern mathematical writing that at-
tempt to render utterly transparent the ‘logical structure’ of the text. These include
the prevalence of non-active verb forms, the lack of direct address and the frequent
use of imperatives. One can also read a more covert agenda aimed at creating the
very sense of decontextualised authority and certainty that is then claimed as the
hallmark of mathematics (Pimm and Sinclair 2009).

In any case, Solomon and O’Neill (1998) have usefully identified two contrasting
styles of writing using a variety of texts authored by the 19th-century mathematician
William Rowan Hamilton (the narrative and the paradigmatic). They argued that the
main difference between these contrasting styles lies precisely in this ‘glue’ of log-
ical versus chronological structuring (and their surface manifestations in terms of
verb tense, personal pronoun use, connectives between sentences and other lexical



102 L. Radford

choices). Interestingly, in Hamilton’s range of mathematical writing, the syntactic
glue changes depending on whether he was writing diary notes to himself, letters to
friends or journal articles or monographs (ostensibly addressed to his colleagues).
Of course, in all the writing, quaternions are the central topic. But when choosing
a text for students to read, we might ask which piece of writing would work bet-
ter in the classroom? Might the diary notes provide greater scope for writing about
images of mathematics? Might studying the transition from the diary notes to the
journal article help make explicit the ways in which professional mathematical com-
munication seeks to immanent, immaterial truth and obscures personal motivations,
feelings and doubts?

Because published texts tend to be the endpoint of mathematical investigation,
both of the problem-solving process and of the writing process, these texts give a
limited sense of mathematical activity. They fail to convey the narrative modes of
thought that characterize discovery and, hence, run the risk of distorting the develop-
ment of mathematics and even maintaining its objectivity. At issue, I think, at least
in part, is the technology of the written word. As Brian Rotman (2008) has argued,
the sequential logic of the printed (and copied) word in and of itself, independent of
style, has a character of immanence and immutability.

It is interesting to imagine alternatives to the text in the historical project that
Jahnke proposes. Consider, for example, being able to study the live performance of
Archimedes, drawing geometric figures in the sand, going back and forth from dia-
gram to symbol to gesture to spoken word. Or a YouTube video of a Terrence Tao
lecture. The perception of subjectivity would be inescapable. Mathematics would
be a temporal, material activity. In our digital era, not only is performance gaining
ground over textual forms of communication, but the ability to manipulate time (re-
verse it, repeat it, fast forward it) will change the mathematical discourse. I wonder
how classroom activities centered on historical texts will have the effect of celebrat-
ing a static, alphabetic way of mathematical communication.

Whither Subjectivity, Agency and Materiality? My third point relates to this
discussion of the authority of the written word. It stems from the ideas of the his-
torical and philosopher of mathematics Gilles Châtelet (2000) whose interest laid
in the subjectivity, materiality and embodiment of mathematics. He studied several
inventive instances in the history of mathematics, such as Hamilton’s quaternions,
Grassman’s theory of the extension and Cauchy’s residue theorem. But he studied
these examples by analysing the diagrams that these mathematicians used to cre-
ate new objects and relationships. For Châtelet, diagrams transduce the mobility of
the body; they are “concerned with experience and reveal themselves capable of
appropriating and conveying ‘all this talking with the hand’.”

And thus, his analysis of these historical episodes is an analysis of the these two,
intertwined pivotal sources of mathematical meaning, mutually presupposing each
other, and sharing a similar mobility and potentiality. Diagramming and gesturing
are embodied acts that constitute new relationships between the person doing the
mathematics and the material world. For Châtelet, the study of mathematical texts
is not just an epistemological undertaking but an ontological one—the points and
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lines in the diagram do not represent ways of thinking about mathematical objects
or spaces; rather, they are those objects and spaces; they can move, extend, cut,
meet.

Although his study is an historical one, Châtelet’s aims are philosophical. They
challenge received notions of mathematics, insisting on its materiality, seeking to
close the gap Aristotle erected between the abstract immobile mathematics and the
concrete, mobile physical. But in terms of this book section, and of Jahnke’s pro-
posal, many questions come to mind: At the most general level, and similar to my
previous point, does the study of text run the risk of ignoring an important part of
the development and subjectivity of mathematics? At a more specific level, might
the study of texts also include a Châtelet-like study of diagrams, not so much for
its philosophical implications, but as a way to excavate the embodied meanings that
created the objects and relationships under study? Lastly, is there room not only for
Jahnke’s epistemological laboratory, but also an ontological one in the mathematics
classroom?

Three Provocative Questions and One Remark

Luis Radford

I start with a general observation. When we try to convince people of the benefits
of history in mathematics education we resort to several possibilities—for instance,
that the history of mathematics may help our students to attain a better understand-
ing of the mathematics that they are learning today or to make the students sensitive
to the fact that mathematics is a cultural construction.

Although laudable, our reasons tend to leave some views unquestioned. We tend
to talk as if there were one mathematics, one history, and one history of mathematics.
Perhaps we should start by asking ourselves what we mean by mathematics; only
then might we be able to deal with the question of its possible histories.

Rationalist epistemologies present us with a view according to which mathemat-
ics is a body of objective knowledge that predicates truths that were already true
even before they were discovered. If this is so, what then is the role of culture in the
construction of mathematics? Culture, it turns out in rationalist accounts, is some-
thing that can only constrain or accelerate the rhythm of mathematics evolution but
can in no way modify its natural course.

Yet, studies such as those of Emmanuel Lizcano (2009) bring to light the fact
that mathematics is immersed in cultural and historical symbolic systems on which
it draws its basic concepts, like those of number and figure. These cultural symbolic
systems function as a semiotic superstructure that endows with meaning mathemati-
cal ideas and activities. In the case of ancient Greece, the whole mathematical edifice
was governed by epistemic and ontological beliefs organized around the distinction
between Being and Non-Being, and the logical principle of the Excluded Third. In
the case of ancient Chinese mathematics, by contrast, mathematical thinking was
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organized around the yin-yang opposition. Since within the oppositional context of
the yin-yang ontology each number has to have an opposed counterpart, what we
now call negative numbers were “natural” to Chinese mathematics and remained
unthinkable to the Greek episteme. To come up with the idea of negative numbers
in Western culture, it was necessary to wait for the creation of new forms of labour
and production and in fact to invent capitalism and its mercantilist practices of debt.
(This does not mean that debts did not exist before. They did, but not in the typically
surplus capitalist sense.)3

This short example opens up a possibility to try to envision, in new non-rationalist
terms, the question of the nature of mathematics and its relationship to culture (Rad-
ford 2008). Of course, this example is not an isolated one. Current research in eth-
nomathematics offers a multitude of examples of mathematics that are quite dif-
ferent from the one we grew up into—many of them practiced orally only, as the
Pythagorean brotherhood did in its own time.

The Provocative Question Is: Should We Be Concerned with Those Mathe-
matics? I am not referring only to mathematics in other cultures that have made
substantial contributions to our mathematics (e.g., Arabic mathematics and its im-
pressive development of algebra). What I have in mind is the mathematics of cultural
formations such as the one of the Lobodan people of the Normanby Island in Papua
New Guinea. Lobodan mathematics is very distinctive in that it remains a-numerical.
Lobodan people think relationally in ways that are different from ours. Drawing on
an epistemology that is different from mainstream Western epistemology, Lobodan
people do not quantify as we do: they compare in contextual ad hoc ways (Radford
2008).

Art scholars seem to be more prone to navigate between cultural forms of art than
mathematicians are to navigate between radically distinct cultural forms of mathe-
matical thinking. The goodness of concerning oneself with other mathematics—
mathematics of other ethnical formations, present and past—bears on the question—
I think I can already hear it—of why? Why should we be concerned with the math-
ematics of other cultural formations?

From a utilitarian viewpoint perhaps there is no reason. The mathematics that
has been developed in the West is precisely the one that responds the best to the

3One of the oldest examples of negative numbers in the Renaissance appears in Nicolas Chuquet’s
Triparty en la Science des Nombres (Marre (ed.) 1880). Chuquet tackles a problem dealing with
a merchant who has bought two kinds of cloths of different price. The total amount of pieces of
cloth and the total amount of money are known. Solving what we would now call a system of
linear equations, Chuquet finds out that the amount of pieces of cloth of the first kind is 15; he
infers that the amount of pieces of cloth of the second kind is equal to 15 minus 17 1

2 and concludes
that the problem is impossible, unless one interprets the difference (−2 1

2 ) as a debt: the merchant
bought 2 1

2 of cloth on credit! (“creance”; see Spiesser 2006, p. 19). In the following centuries,
when algebraists like Bombelli and others do calculations on negative numbers, they are drawing
on a conceptualization that has its roots in a commercial practice that has offered the possibility
to think of negative numbers in a specific way—a social practice that has provided algebraists like
Bombelli and Cardano with the conceptual ground to carry out a formidable cultural abstraction.
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needs of progress as it came to be understood in the early 19th century—progress
in a technological sense, where mathematics became the right hand of massive in-
dustrialization. But this is precisely my point. We need to rethink the nature of
mathematics. Is mathematics technical stuff only? I think that most mathematicians
would agree that the answer is no. In fact, there is a long list of philosophers (among
them Hegel and Heidegger) who perceived the danger of reducing mathematics to
its technical aspect, to a science of computation, to a kind of sophisticated tech-
nology. This conception of mathematics, the philosophers argued, eradicates the
individuals from the discipline. Their concern was the depreciation of the subject of
historical-cultural action. The student of mathematics is put on one side; mathemat-
ical knowledge is put on the other. Their contact is in the technological point. No
wonder that mathematics is often found to be an unappealing subject by so many.

This discussion brings me to my second two-fold question: If mathematics is not
technical stuff only, what else is it? And how can we take into account this neglected
albeit important dimension of mathematics in school mathematics?

We need to rethink the nature of mathematics in general and the nature of school
mathematics in particular. The technification of modern societies from the 19th cen-
tury on led to a technification of mathematics. The justification of mathematics
shifted from a discipline dealing with truth to one dealing with the efficient mas-
tering of nature and the search for an optimal mechanism of production (Radford
2004). In the course of this process truth became obsolete. Euclidean geometry, to
give but one example, has now disappeared from many school curricula. And if
some vestiges can still be noticed, they are the remnants of the past. In Ontario,
where I come from, what remains of geometry is what is susceptible to be translated
into calculations. Our students do not prove theorems. They calculate. We have an-
alytic geometry now.

My aim here is not to plead for a return to Euclid—at least not with the idea
of resurrecting the splendors of truth as the Greeks conceived it. I take an in-
commensurate pleasure in going back to Euclid’s Elements not to find truth there,
but to see how the Greeks conceived of it, much as I come back to Piero della
Francesca’s paintings to see how the Renaissance conceived of the transcenden-
tal realm and pictured the world. I think that we have come to understand that
truth is no longer the adequacy of our representations with the objects they rep-
resent. Truth is not of the order of adequacy. Truth, as Cornelius Castoriadis argued,
“is the constant effort of dismantling the fence in which we find ourselves and to
think otherwise, and to think no longer quantitatively, but deeper, better” (Casto-
riadis 1999, p. 54). Truth would rather be an attitude, what the Greeks called an
ethos.

Along these lines, let me suggest that maybe we can think of mathematics as
a historically constituted social practice, a cultural form of reflection and action,
much like music, poetry, or painting, something practiced not in a vacuum but with
others and for others. Mathematics would be hence not something to acquire (as
if mathematics were merchandise) but a practice in which we come to insert our-
selves, where we step into the public space. It would be what Arendt (1958), fol-
lowing the Greeks, called the polis—a place where we come to hear others’ voices
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and perspectives and to speak out. There may be some hope then that in doing so,
our students will no longer find themselves in front of an impenetrable alienating
discourse, but rather will grow up as subjects of mathematics, as critical cultural
subjects.

Let me now move to the question of history and start with the following remark.
Something that distinguishes the human species from other species is our historical
nature. Indeed, while rats are still doing what they were doing five hundred years
ago, individuals are not. We draw on what previous generations have accomplished.

This is why history cannot be merely a tool to make mathematics accessible to
our students. History is a necessity. As Russian philosopher Eval Ilyenkov put the
matter, history is a necessity because “A concrete understanding of reality cannot be
attained without a historical approach to it.” (Ilyenkov 1982, p. 212)

Reality, indeed, is not something that you can grasp by mere observation. Nei-
ther can it be grasped by the applications of concepts, regardless of how subtle your
conceptual tools are. The current configurations of reality are tied, in a kind of con-
tinuous organic system, to those historic-conceptual strata that have made reality
what it is. Reality is not a thing. It is a process which, without being perceived, dis-
creetly goes back, every moment, to the thoughts and ideas of previous generations.
History is embedded in reality and reality in history.

To confine history to a tool for cognitive improvement is certainly a good idea.
But would we not be missing the most important point? This is my third provocative
question.

History is something that can make us aware of who we are, and how we have
come to be the individuals that we are.

Yet, as Brown (2011) reminds us, history is a problematic concept. Indeed, we
can ask ourselves: Whose history? Told by whom? History is not something out
there. History is not and cannot be an objective, neutral account of events. History
is our spatial and temporal situated understanding of something that tells not only
the story of some events but also our own story. One of the challenges that we have to
face when using history. . . I am sorry, I do not like the utilitarian expression “using
history”. . . Let me restart my phrase. . . One of the challenges that we have to face
when resorting to the histories (as a plural noun) of mathematics (as a plural noun),
is that we have to go beyond the rationalist, regulative view of history that sees
it unfolding as naturally as the movement of a pendulum. There is no history, but
histories. And histories are political in the sense that we cannot focus on everything
and that our histories leave in the margins events, voices, and presences. Bringing
in political histories of mathematics in teaching and learning may help us and our
students understand that mathematics can only make sense within the context of
a history of its own culture; it can help us see how mathematics operates within
the centrifugal forces of society, how it accomplishes inclusion and exclusion, how
it offers cognitive templates of development, and how it helps to shape the selves
into which we evolve in our lives. This is why histories are not narratives of the
past. Histories configure our present and make it possible to envision a future that,
ironically, is already historical, even if it is unpredictable.
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Reflective Summary

The various sections of this chapter point towards challenges and possibilities in
resorting to the history of mathematics in mathematics education and mathematics
education research. The possibilities are certainly substantial, but so are the chal-
lenges. The history of mathematics cannot be simply imported into the classroom,
nor can it be used as a transparent mediating term between the poles of mathemat-
ics and mathematics education research. To be a meaningful mediator, the history
of mathematics needs to appear as a problematic field—one where one can inter-
rogate notions and ideas that we usually leave unthematized, such as mathematics,
its development, and its relationship to culture. To be a meaningful mediator, his-
tory has to subject itself to an enquiry of its own meaning. Such a task, of course,
is extremely difficult. We can only vaguely perceive its contours. At this point, it
appears as an abstract notion in Hegel’s sense: something that has to find determi-
nation in the event of its concrete activity. It might be the case that such an endeavor
will lead us to a better and deeper appreciation of what mathematics is, and of what
teaching and learning mathematics entail. It might be the case that we end up find-
ing new forms of thinking mathematically that have remained buried underneath
the thick layers of technicalities and calculations that characterize to a large extent
the mathematics of today. Maybe we can still extract from the deepness of today’s
practice the aesthetic, intersubjective and embodied dimensions of mathematics and
mathematical thinking.
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Problem-Solving: A Problem for Both
Mathematics and Mathematics Education



Chapter 8
Reflections on Problem-Solving

Problem Solving in Mathematics and in Mathematics
Education

Boris Koichu

Abstract The chapter includes four contributions on different aspects of the rela-
tionship between problem solving in mathematics and in mathematics education.
Gerald Goldin points out that besides the importance of teaching students how to
solve certain classes of problems, problem solving is a means of achieving some
more general purposes pertaining to mathematics learning. Israel Weinzweig devel-
ops the claim that certain sequences of mathematical questions can provide students
with problem-solving experiences similar to those of research mathematicians, and
that such experiences are beneficial for promoting students’ conceptual understand-
ing. Shlomo Vinner discusses the role of schemata and creativity in mathemati-
cal problem solving, and argues that the notions “problem solving in mathematics”
and “problem solving in exam-oriented mathematics instruction” are incompatible.
Roza Leikin presents a study aimed at identifying unique cognitive traits of intel-
lectually gifted students who have the potential to become research mathematicians
in the future. The chapter concludes with a reflective summary, in which the points
made by the contributors are considered as parts of a longer-term debate on the re-
lationships between problem solving in mathematics and in mathematics education,
a conversation that has developed over the years according to a certain spiral pattern.
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Introduction

Problem solving was put on mathematics education agenda under the tremendous
influence of the book “How to solve it?” written by a prominent mathematician
George Pólya in 1945 (e.g., Schoenfeld 1992). Keen interest in problem solving
emerged in the mathematics education community since there and has been sus-
tained until today for a clear reason: mathematical problem solving (including prob-
lem posing, conjecturing and proving) is the central activity in mathematics as a liv-
ing science, and thus it has been hoped that it would also become the central activity
in mathematics education. For a long time, the idea of understanding how math-
ematicians treat and solve problems, and then implementing this understanding in
instruction design, was pivotal in mathematics education research and practice (e.g.,
Pólya 1945/1957; NCTM 1980; Schoenfeld 1985).

A somewhat unexpected result of the extensive development of the idea, “Let’s
teach our students to treat problem solving as mathematicians do,” was that problem
solving became both an over- and underrepresented topic in mathematics education.
It is overrepresented because literally thousands of studies have been devoted to its
different aspects, and a great deal of knowledge on how problem solving occurs
and what can be learned through problem solving has been accumulated. It is un-
derrepresented because neither research nor practice resulted in a clear identity for
problem solving in mathematics education, and because many fundamental issues
related to the role of problem solving in mathematics education, as compared to its
clear role in mathematics, are still unresolved (e.g., Mamona-Downs and Downs
2005).

Some of these issues are discussed in the four contributions to this chapter. Ger-
ald Goldin points out that besides the importance of teaching students how to solve
certain classes of problems, problem solving is a means of achieving some more
general purposes pertaining to mathematics learning. He argues that in order to
achieve these more general purposes, it is important to unravel tacit processes of
learning during problem solving that lie behind the problem solving of experts and
the mathematically gifted. Israel Weinzweig develops, through an elaborated exam-
ple, the claim that certain sequences of mathematical questions, even at the elemen-
tary school level, can provide students with problem-solving experiences similar
to those of research mathematicians, and that such experiences are beneficial for
promoting students’ conceptual understanding. Shlomo Vinner discusses the role
of schemata and creativity in mathematical problem solving, and argues that the
notions “problem solving in mathematics” and “problem solving in exam-oriented
mathematics instruction” are incompatible. Roza Leikin presents a synopsis of a
large-scope study, a part of which is aimed at identifying unique cognitive traits
of intellectually gifted students who excel in solving insight-based mathematical
problems and have the potential to become research mathematicians in the future.
The chapter concludes with a reflective summary, in which the points made by
the four contributors are considered as parts of a longer-term debate on the rela-
tionships between problem solving in mathematics and in mathematics education,
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a conversation that has developed over the years according to a certain spiral pat-
tern.

Mathematical Learning Through Problem Solving: Toward what
Purposes?

Gerald A. Goldin

During the 1980s it became fashionable to highlight problem solving as the lofti-
est goal of mathematics education. In the United States, the National Council of
Teachers of Mathematics published the widely-circulated document, An Agenda for
Action: Recommendations for School Mathematics of the 1980s (NCTM 1980). The
first recommendation could hardly have been worded more strongly or succinctly:
“The National Council of Teachers of Mathematics recommends that problem solv-
ing be the focus of school mathematics in the 1980s”—not “one focus”, but the
focus. And problem solving was selected as the theme for the NCTM’s (1980) Year-
book (Krulik 1980).

At the time, researchers in cognitive science, mathematics education, and science
education were devoting much effort to studying problem solving—characterizing
and studying the processes of effective and less effective problem solvers, exploring
ways of defining and measuring problem-solving outcomes to include processes as
well as products, identifying the influences of problem tasks on problem solving,
including the role of problem structure and the transfer of learning between struc-
turally related problem domains, and modeling problem-solving processes (Goldin
and McClintock 1984; Jeeves and Greer 1983; Larkin et al. 1980; Lester and Garo-
falo 1982; Newell and Simon 1972; Schoenfeld 1985; Silver 1985). However, the
purposes underlying the NCTM’s recommendation remained unclear—why should
problem solving be the focus, rather than skills, concepts, abstraction, modeling,
pattern generation and recognition, problem posing, or other important mathemat-
ical activity? Sometimes hidden assumptions as to the purpose of teaching math-
ematical problem solving influenced the problem solving research, affecting the
questions asked and the ways in which they were answered.

A major, long-standing dichotomy I would like to highlight here has to do with
interpreting the focus on problem solving in mathematics education as (1) having the
goal of teaching students to solve classes of mathematical problems, as distinct from
(2) being the means of accomplishing some other, possibly more general purposes
pertaining to mathematics learning. Thus Schroeder and Lester (1989) distinguish
teaching for problem solving from teaching about or through problem solving.

The first kind of goal was expressed clearly in the mid-1980s. For example Heller
and Hungate (1985), citing Greeno (1980), write:

. . . there is a strong need for more effective instruction, particularly to prepare students to
solve problems with understanding.
Such instruction should be specifically tailored to prepare students to solve the kinds of
problems they will encounter. For the design of such instruction, an understanding of the
knowledge [emphasis in original] required for solving problems is of paramount importance.
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Greeno (1980) summarized this point well:

To teach students how to solve a class of problems, first analyze the knowledge that they
need in order to solve that class of problems, and then carry out the instruction that will
result in their acquisition of the required knowledge. (p. 13)
. . . both descriptive and prescriptive efforts have contributed powerful methods for iden-
tifying that knowledge. In order to design effective instruction in mathematical problem
solving, then, we should continue to apply those methods in different problem domains
to identify the specific knowledge that would need to be taught in each of those domains.
(Heller and Hungate 1985, p. 98)

Thus one characterizes domains of problem tasks according to relevant mathe-
matical criteria, identifies the knowledge needed through task analyses and cogni-
tive analyses, and teaches problem solving primarily by providing that knowledge.
Of course, the more broad the characterization of the problem domains, the more
powerful and general (but, possibly, the more vaguely-defined and less efficient) the
identified knowledge is likely to be.

When the teaching of problem solving is oriented toward standardized mathe-
matics assessments, there is a strong—indeed, nearly irresistible—impetus toward
characterizing the problem domains narrowly, so as to make possible knowledge
representations that are as efficient as possible. The flow chart depicted in Shlomo
Vinner’s presentation (below) is illustrative of such knowledge representations.
Then “what is learned” when problem solving is the focus, and when the knowledge
needed for each class of problems is taught, reduces logically to fluency in routine
procedures, representations, and strategies. Indeed, when the term “mathematical
achievement” is taken to be synonymous with standardized test performance, we
are limiting ourselves a priori to characterizing the potential for learning through
task analysis.

The second kind of goal involves specifying some other learning purposes
which mathematical problem solving can help students to attain (more so, per-
haps, than some alternative kinds of mathematical activity). Among such
purposes might be, for example: students’ acquisition and development of so-
phisticated systems of mathematical representations, including methods for con-
structing new representations (Goldin and Kaput 1996; Goldin 1998); students’
development of generalizable heuristic processes and strategies, including ways
of inventing new strategies (Pólya 1962/1965); students’ increasing sophistication
of intuition in mathematical contexts, of visual imagery (Eisenberg and Drey-
fus 1991), and spatial and kinesthetic encoding; students’ mathematical concept
formation (see the problem solving example presented by Israel Weinzweig be-
low), including the development of links between and among different representa-
tions; students’ creative problem generation and mathematical exploration (Mason
et al. 2009); and students’ development of powerful patterns of mathematical af-
fect.

The latter is of interest not only as a possible outcome of certain kinds of
problem-solving activity, but also in relation to our understanding of mathemati-
cal ability and giftedness. Powerful affect includes patterns of in-the-moment emo-
tional feelings, such as curiosity evoked by novelty; meta-affective excitement,
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determination, and intrigue evoked by frustration and impasse; the joy of math-
ematical discovery, and the anticipatory joy of working toward an insight that
may result in an “aha” experience (Goldin 2000; DeBellis and Goldin 2006).
It also includes beliefs and self-concepts that empower the student toward the
further learning of mathematics and more sophisticated problem-solving chal-
lenges, and accompanying social-contextual interactions (Goldin 2002; Goldin et al.
2011).

Of course, one might seek to characterize the knowledge embodied in such
more generalized purposes as pertinent to solving problems in various mathemat-
ical domains—and, indeed, it is. The NCTM sought, perhaps, to suggest this by
elaborating their recommendation as follows: “This recommendation should not be
interpreted to mean that the mathematics to be taught is solely a function of the par-
ticular mathematics needed at a given time to solve a given problem. Structural unity
and the interrelationships of the whole should not be sacrificed” (NCTM 1980). But
the kinds of knowledge discussed here are not necessary for any particular prob-
lem domain—one does not need sophisticated strategies, profound visual capabili-
ties, or curiosity-driven persistence to carry out a well-learned, practiced problem-
solving process, even when the process is a complex one (again, see the discussion
by Shlomo Vinner below). The task analysis or cognitive analysis will not generally
incorporate the knowledge associated with more general purposes. Such knowledge
develops in ways that often defy prior specification, in the context of solving prob-
lems that involve substantial impasse—where solution strategies are not known or
trivially accessible to the solver.

Then the ways in which we set out to study expert mathematical problem
solvers—mathematicians, scientists, or exceptionally talented students—depend
naturally on which type of purposes we have in mind, possibly less-than-explicitly,
for problem solving in mathematics education. The goal of teaching the knowledge
needed to solve classes of mathematics problems suggests research toward charac-
terizing and representing various experts’ previously-learned, highly sophisticated
techniques, and how they make use of them—an “expert systems” approach. But if
one sees experiences in mathematical problem solving as the means toward reach-
ing other educational goals, including the realization or attainment of exceptional
mathematical ability, what becomes interesting are the (often tacit) processes of
learning during problem solving that lie behind the expertise—cognitive and affec-
tive, meta-cognitive and meta-affective, personal and social processes. It then be-
comes a challenge for mathematics educators to bring such processes to light, and
to make use of them in our educational practice. I think this perspective is implicit
in Roza Leikin’s point (below) that mathematical giftedness is multidimensional,
and that excellence in school mathematics can be unrelated to some of these dimen-
sions.

The tension between the disparate purposes for problem solving in mathematics
education has existed for many decades, and is not likely to disappear soon. In this
short contribution, I have sought to put some of those issues “on the table” for more
explicit discussion.
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Concept Development Through Problem Solving

A. Israel Weinzweig

Introduction

For the most part, when mathematicians do mathematics, they first pose questions
and then try to answer them. In the process, they create new objects and begin to
define them. In contrast, teachers of mathematics tend to answer questions that not
only have not been posed, and that moreover, most students would never think of
asking. Consequently, the objects they introduce have little relevance to their stu-
dents and yield little understanding. I contend that when appropriate problems are
posed and students are given the opportunity to work on them collaboratively, they
encounter the need for certain objects and concepts that can then be introduced.
Since it is they who have felt the need for the concept and a use for it, they de-
velop an ownership of the concept, and a much deeper understanding. I believe that
this provides a much better approach to the introduction of many of the concepts of
elementary arithmetic. I illustrate this approach with an example that I have used
successfully.

The 252 Problem

Students are presented with the number 252. They are asked to find two numbers
whose product is 252 such that:

1. Their sum is an even number;
2. When the smaller number is divided into the larger one, the quotient is an odd

number.

Students1 immediately pull out their calculators and divide 252 by 2,3, . . . , and
each time the quotient is a whole number, they add the quotient and the divisor to
check whether the sum is an even number. If it is, they then divide the quotient by
the divisor to check whether they get an odd whole number. They quickly arrive at
the numbers, 2 and 126 whose sum is 128, an even number, and dividing 2 into 126
yields the quotient 63, an odd number. I then ask if there are other solutions. They
soon come up with 6 and 42, whose sum is 48, an even number, and the quotient
is 7, an odd number. Are there any other solutions? They soon decide there are none.
How do they know? They have exhausted all the possibilities! I refer to this as proof
by exhaustion.

I then change the problem slightly. We now want the sum of the two numbers to
be an odd number and the quotient to be an even number. They immediately get to

1Teachers, prospective teachers and middle school students.
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work on their calculators and come up with the numbers 3 and 84 whose sum, 87, is
odd and the quotient of 84 divided by 3 is 28, which is an even number. I again ask
if there are other solutions. They are convinced there are none. I then ask about 1
and 252. Their sum is 253, an odd number, and the quotient is 252, an even number.
They are surprised. They never thought of dividing by 1 on their calculators.

I change the problem again. By this time the context has been well established so
the language can be looser. We now want the sum to be even and the quotient to be
even. Again they take their calculators and, using proof by exhaustion, assert that it
cannot be done.

Can they find a number other than 252 for which there will be a solution to the
even sum, even quotient problem? They try random numbers. Eventually someone
comes up with one, 504. They then explore 504, for its appropriateness in all the
four problems:

1. Even sum, odd quotient;
2. Odd sum, even quotient;
3. Even sum, even quotient;
4. Odd sum, odd quotient.

So far, they discovered that the number 252 that I provided yields (two) solutions
to the first two; they obtained a numbers, by trial and error, 504 that yields (two)
solutions to the second and third.

Can they find a number for which there is a solution to the last problem? After
some experimentation, they conclude that it is not possible to find such a number.
I point out to them that there is a difference between saying that they are unable to
find such a number, and saying that there is no such a number!

At this point I introduce some terminology to facilitate the discussion. Instead of
saying that 2 divides evenly into 504 (or 24, or 252) we say that 2 is a factor of that
number. When we divide the number by a factor, the quotient is the complimentary
factor of the factor in that number. Thus, 2 is a factor of 504 with complimentary
factor 252 so that 504 = 2 × 252. But 2 is also a factor of 252 with complimentary
factor 126, so that 504 = 2×2×126. Now 2 is also a factor of 126 with complimen-
tary factor 63, so that 504 = 2 × 2 × 2 × 63. Note also that 3 is a factor of 63 with
complimentary factor 21. Hence, 504 = 2 × 2 × 2 × 3 × 21. Moreover, 3 is again a
factor of 21 with complimentary factor 7, so that 504 = 2 × 2 × 2 × 3 × 3 × 7. Now,
2 has exactly two factors, 1 and 2. Similarly, 3 and 7 each have exactly two factors.
These are prime numbers. Each of the above representations of 504 as a product of
factors is a factorization of 504. Since all the factors in the last representation are
prime factors, this is a prime factorization of 504.

I next introduce multiplicity of factors. Thus 2 in the prime factorization of 504
has multiplicity of 3, 3 has multiplicity of 2 and 7 has multiplicity of 1 and write the
prime factorization of 504 as 504 = 23 × 32 × 71.

Observe that I have not explicitly defined multiplicity, but students grasp this
concept quite easily and accept the notation. I find that students have far less diffi-
culty with the concept of multiplicity than with the concept of exponents. It is much
more natural to them and the fact that 71 = 7 requires no great explanation.



120 B. Koichu

I then ask, “What is the multiplicity of 7 in 6?” The usual reaction is to assert
that 7 is not a factor of 6 so that 7 has no multiplicity in 6, at which point it usually
dawns on them that the multiplicity of 7 in 6 is 0, so that the prime factorization of
6 could be represented as 6 = 21 × 31 × 70.

At this point I call attention to the fact that the multiplicity of each prime factor
of 504 is the sum of the multiplicities of these factors in 6 and 84. Moreover, when
504 is divided by 6, in the prime factorization of the quotient—the complementary
factor 84—the multiplicity of each prime factor of 84 is the multiplicity of each
prime factor of 504 reduced by the multiplicity of that prime factor in 6. A clear
advantage of focusing on multiplicity rather than exponents is that they grasp the
central features from a few examples. I refer to them as generalizable examples.

I then raise the question “What is an even number?” Students can usually tell
whether a given number is even or odd, but have difficulty explaining why. After
some discussion, they recognize that if 2 is a factor of a number, then that number
is even. If 2 is not a factor of a number, then dividing that number by 2 will yield a
remainder. Since the remainder is less than the divisor, it will be 1 or 0. In the latter
case, the number is even and in the former case the number is odd. Hence, an odd
number is the sum of 2 times the quotient plus 1, an even number and 1. Thus, 127
is an odd number.

When is the sum of two numbers even or odd? If both numbers are even, say 6
and 84, then they can be written as 6 + 84 = 2 × 3 + 2 × 42 = 2 × (3 + 42), an even
number. For any other even numbers, the numbers in the parenthesis can be changed
appropriately and the result is still an even number! Then the students are asked to
explore in a similar way the structure of the sum of two odd numbers and the sum
of an odd number and an even number.

Then we are ready to return to the question “Can you find a number for which
there is a solution to the odd sum, odd quotient problem?” In the introduced terms,
the students realize that such a number would have to have an odd factor and the
complementary factor would have to be even, or vice versa.

As we have already observed, for one number to divide a second number, the
multiplicity of every prime factor of the second one must be equal to or greater
than the multiplicity of that prime factor in the first number. In an even number, 2
has multiplicity of at least 1, and in an odd number, multiplicity 0. Hence an even
number cannot divide an odd number, but an odd number can divide an even number.
However, in this case, 2 will have multiplicity of at least 1 in the quotient, so the
quotient will never be odd! In view of this, there is no solution to the fourth question
of finding a number with an odd factor, such that the complimentary factor is even
and the factor divides the complimentary factor with an odd quotient.

I call attention to the fact that this is not a question of being unable to find such a
number, but that no such number exists! Then the students come back to the initial
problems, with 252 and 504, and realize why there were two solutions to the first
two problems with the number 252 and two solutions to the second and the third
problems with 504, but none to the first.

In particular, for 252 we could never get an even sum and an even quotient,
whereas for 504 we can never get an even sum and an odd quotient. The fact that
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the multiplicity of 3 is 2 gives rise to the two solutions. They can also observe
that 7 plays a very passive role. We could drop the 7, and the situation would be
unchanged; 36 would still have two solutions to each of the first two problems but
none to the third, 72 would still have two solutions to the second and third problem
but none to the first. However, if we increased the multiplicity of 2 in 72 to an
even multiplicity, say 4, then 144 would have two solutions to each of the three
problems, 144 = (22) × (22 × 32) and 144 = (22 × 3) × (22 × 3) for two solutions
to the even sum and odd quotient problem, and 144 = (2) × (23 × 32) and 144 =
(2×3)× (23 ×3), two solutions to the even sum and even quotient problem. Finally,
144 = (1) × (24 × 32) and 144 = (3) × (24 × 3)—two solutions to the odd sum and
even quotient.

It is the multiplicity of 3 that determines how many solutions there will be to each
of the problems. If the multiplicity is less than 2, there will be only one solution.
If the multiplicity of 3 is 2 or 3, there will be two solutions. If the multiplicity is 4
or 5, there will be three solutions. Students discover these patterns quite quickly!

Summary

The original problem was quite innocuous, yet it opened up a number of interesting
additional problems. In the course of working on these problems, the moment is
made appropriate to meaningfully suggest a new concept which then does not drop
artificially from the sky but its introduction serves a purpose. Note that in the lesson
plan described above it is not the children that explicitly express the need for a new
concept (as might have been the case in the process of a mathematician at work), it
is the teacher who takes advantage of the situation to create an appropriate moment
to introduce a concept which serves a propose, and is then perceived as useful and
meaningful by the students. In this way a number of concepts are introduced: factor
of a number, factorization of a number, prime numbers, prime factorizations of a
number, multiplicity of a factor in a number. The students had to develop a more
precise definition of an even (natural) number and an odd number. They formulated
generic proofs (Mason and Pimm 1984) for the fact that the sum of two odd numbers
or two even numbers is even and only the sum of an odd number and an even number
is an odd number. They had to formulate a generic proof that there was no number
that would produce an odd sum and an odd quotient.

In summary, the students were engaged in doing mathematics rather than only
studying mathematics. This provides an example of an important purpose of prob-
lem solving: how to “ride” on the shoulders of problems in order to meaningfully
and purposefully introduce concepts (even perhaps procedures, notation and other
ideas). Consequently, they learn much more and internalize what they have learned.
It is not so much problem solving per se, but choosing appropriate problems for
solution.
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The Irrelevance of Research Mathematicians’ Problem Solving
to School Mathematics

Shlomo Vinner

Prologue

Because of space limits I have to be short. Therefore, I have to simplify. Simplifi-
cation and oversimplification are quite close and both are considered sometimes by
some people as superficiality. I am aware of this and I am ready to face the charges.

How Do They Really Solve It?

In some of my courses for in-service mathematics teachers I raise the embarrass-
ing question: what is mathematics? I distinguish between mathematics as a product
and mathematics as an activity. Mathematics as an activity (for research mathe-
maticians) is inventing or discovering mathematical structures and exploring them.
Whether it is inventing or discovering depends in which church or synagogue you
practice your philosophical beliefs. Some of these structures were invented or dis-
covered centuries ago and others are quite new. Exploring mathematical structures
is the research mathematician’s job. The outcomes of this exploration are theorems
about the structures under consideration. Thus, mathematics as a product is a col-
lection of mathematical theories like Number Theory, Group Theory, Game Theory,
and many other theories, even if the notion of theory is not part of the theory name.

What part of this collection can be presented to the students in school mathemat-
ics? The classical curriculum in the majority of countries is restricted to elementary
algebra, calculus, geometry and trigonometry. From this the curriculum can focus
on computations, equations, identities of various kinds, function investigation and,
of course, all the related theorems.

From cognitive psychology point of view mathematics is a problem-solving ac-
tivity. However, problem solving in school mathematics is a totally different activity
than the research mathematician’s activity. Because of the currently prevailing ed-
ucational policy, passing the mathematical exams has become the top priority of
teachers and students. The main goal of teaching is, therefore, to prepare the stu-
dents to pass the exams. This is done by providing the students with a tool box, by
means of which they are supposed to be able to solve the mathematical problems
presented to them in homework assignments and on tests. Such problems should
be routine problems or routine problems under disguise. Why? Because it is unfair
to present on an examination a problem for which there does not exist a solution
strategy in the student’s tool box.

Therefore, a student who is asked to solve a routine problem is supposed to have
the following:
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Fig. 8.1 A model describing
a thought process occurring
when a student solves a
routine mathematical problem

1. A pool of solution procedures. Call it A.
2. Mental schemes by means of which the type of a given mathematical problem

and its particular structure can be determined. Call them B.
3. Mental schemes by means of which a solution procedure can be assigned to a

given mathematical problem, whose type and structure were previously deter-
mined. Call them C.

When a mathematical problem X is posed to the student, the following process
is supposed to occur (see Fig. 8.1):

1. B, the identifying schemes, are activated by X. An analysis is carried out which
determines the type and structure of X. Denote that type and structure by Y.

2. C, the solution selector schemes, are activated by Y. They select a solution pro-
cedure from A. Call it Z.

3. Z is applied to X and produces a solution for X.

I am using two way arrows in order to indicate that the involved thought processes
go back and forth from one stage to another in case the problem solvers are stuck
before reaching a solution.

As a matter of fact, if you compare the above model to pages xvi–xvii of Pólya’s
“How to solve it?” (Pólya 1945/1957), you can claim that the above model is a
flowchart representation of Pólya’s recommendations of how to solve word prob-
lems. Pólya describes meaningful thought processes that should be involved in a
successful solution. If you examine these thought processes, you may come to the
conclusion that we do not face here a big intellectual challenge. Real creativity is
not involved and, in fact, cannot be prescribed. Creativity can be described by the re-
search mathematician after it occurred. Some mathematicians do that in their mem-
oirs (e.g., Hadamard 1945/1996). Their texts are extremely interesting for people
who are interested in the psychology of mathematical invention. They are not rele-
vant to the decisive majority of students in mathematics classes in high schools and
even not in Bachelor mathematics classes at universities. Reflecting on my years as
a mathematics student, I recall how I wondered at all kinds of mathematical inven-
tions when I faced them in class or in books. I could not figure out how the Chinese
remainder theorem got into the proof of Gödel’s first incompleteness theorem. I had
no idea how Taylor’s formula was discovered and proved, and so on and so forth.
When I taught calculus in high school, even when proving relatively simple theo-
rems, like the theorem about the derivative of a product of functions, where adding
and subtracting a certain expression does the job—my students asked me: How, on
earth, could I figure it out by myself ? My answer was: Relax, you are not supposed
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to. Just enjoy the beauty of the simple device that I presented to you. It was presented
to me as well when I was a high school student. I also did not figure it out myself.

Thus, if we return to my model, about which I claim that it represents Pólya’s
recommendations of how to solve mathematical problems, I believe that we should
be pleased if our students’ thought processes progress accordingly.

However, there are too many cases in which students fail to follow this path.
They choose quite often the solving tool accidently relying on superficial similari-
ties and uncontrolled associations. Psychologists nowadays speak about two modes
of thinking which they call System 1 and System 2 (e.g., Stanovich 1999). System 1
is characterized by the following adjectives: associative, tacit, implicit, inflexible,
relatively fast, holistic and automatic. System 2 is characterized by: analytical,
explicit, rational, controlled and relatively slow. Thus, notions that were used by
mathematics educators can be related now to System 1 or System 2 and therefore
this terminology is richer than the previously suggested notions. Fischbein (1987)
spoke about intuition and it can be considered as System 1. Skemp (1976) spoke
about two systems which he called delta-one and delta-two which can be consid-
ered as intuitive and reflective, or using the new terminology, System 1 and System 2,
respectively. I myself (Vinner 1997b) have used the notions pseudo-analytical and
pseudo-conceptual which can be considered as System 1.

In mathematical contexts, the required thinking mode is that of System 2. Unfor-
tunately, in many cases, a correct answer can be obtained even by System 1 thought
processes. Daniel Kahneman (2011), a 2002 Nobel prize laureate, claimed that Sys-
tem 1 mode of thinking serves us successfully in almost all our common everyday
situations. Therefore, the chance to change our thinking habits is quite small. But
Kahneman is not an educator. Educators, especially mathematics educators, are sup-
posed to try to improve thinking and behavior. The domain of mathematical problem
solving is quite relevant to that.

Good problem solvers are those who are not locked on the first solution proce-
dure, which occurs to their mind, in case it is an inappropriate one. They are capable
of identifying inappropriate solution procedures and they are capable of considering
additional solution procedures, which are seemingly relevant and sometimes even
not seemingly relevant, at first sight, to the problem under consideration. This re-
quires flexibility of thought and a rich pool of associations. Some of us believe that
we can train our students to become flexible and to improve their problem solving
skills. However, teaching non-routine problem solving is, in my opinion, an oxy-
moron. Solving non-routine problems is the research mathematician’s job. He or
she has to solve problems the solution strategies for which do not yet exist. It is true
that there are some recommended ways to do so, for instance, see Pólya’s various
books. But the advice given there does not guarantee a solution.

Thus, we can enjoy the beauty and originality of the way some mathematical dis-
coveries occurred. We can read with great interest books by Hadamard (1945/1996),
Poincaré (1952), etc. However, this has a very little relevance to the activity of prob-
lem solving in school mathematics. It is irrelevant to the majority of teachers and
students.
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“What is mathematics education for?” asks Underwood Dudley, an emeritus
Mathematics Professor, in his 2010 essay (Dudley 2010). His answer is: “Mathemat-
ics education is for, and has always been for: to teach reasoning, usually, through
the medium of silly problems.” An example of such a silly problem is:

Give 100 loaves to five men so that the shares are in arithmetic progression and the sum of
the two smallest is 1/7 of the three greatest. (Rhind Papyrus, Egyptian textbook of mathe-
matics, 1650 BC).

Of course, Dudley’s expression “silly problems” is not politically correct. A com-
mon dilemma in the academic life, as well as in politics and everyday life is choosing
between truth and political correctness. I prefer truth to political correctness, at least
in the academic life, where we are supposed to be committed to truth.

A quote from Pólya’s lecture on teaching mathematics in primary schools (Pólya
late 1960s) is quite coherent with Dudley claims. Contrary to Dudley, Pólya’s en-
thusiasm was not spoiled by sarcasm.

Mathematics in the primary schools has a good and narrow aim and that is pretty clear
in the primary schools. . . . However, we have a higher aim. We wish to develop all the
resources of the growing child. And the part that mathematics plays is mostly about think-
ing. Mathematics is a good school of thinking. But what is thinking? The thinking that
you can learn in mathematics is, for instance, to handle abstractions. Mathematics is about
numbers. Numbers are an abstraction. When we solve a practical problem, then from this
practical problem we must first make an abstract problem. . . . But I think there is one point
which is even more important. Mathematics, you see, is not a spectator sport. To understand
mathematics means to be able to do mathematics. And what does it mean doing mathemat-
ics? In the first place it means to be able to solve mathematical problems (retrieved from
http://cmc-math.org/members/infinity/polya.html).

According to Pólya in this text, mathematics education is mainly for improving
mathematical problem-solving ability. He does not claim like Dudley that its role
is to teach reasoning in general. Pólya is more modest in his claim. This makes his
claim more acceptable. Indeed, if we challenge Dudley’s claim, there is no exper-
imental evidence that good mathematical problem solvers are also good in solving
problems in other domains.

Epilogue

I assume that the reader has realized by now that I am extending the relevance ques-
tion which appeared in the title of my contribution. At this stage I am challenging
the relevance of mathematics to the ultimate goals of education of young people in
our school systems. I started doing that 15 years ago (Vinner 1997a) by referring my
readers to Confrey (1995). It was claimed there that in the vast majority of countries
around the world mathematics acts as a draconian filter to the pursuit of further
technical and quantitative studies. This is an unpleasant claim and the majority of
people who are involved in mathematics education prefer to ignore it. There are
several reasons for that. The majority of us believe that there is much more in math-
ematics education than preparing students to pass crucial examinations. There are

http://cmc-math.org/members/infinity/polya.html
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also economic reasons for that. If we stop using mathematics as a draconian filter to
the pursuit of further technical and quantitative studies many people will lose their
jobs—teachers, mathematics supervisors, textbook authors, publishers, etc.

Niss (2011) has raised the question: Why do we do research on the teaching and
learning of mathematics? His answer is: “We do research on the teaching and learn-
ing of mathematics because there are far too many students of mathematics. . . who
get much less out of their mathematical education than would be desirable for them
and for society” (p. 1293). I absolutely agree. However, I would like to add to the
research agenda also the question “what does mathematics education contribute to
the students and to the society?”

Can All High Achievers in School Mathematics Become
Professional Mathematicians?

Roza Leikin

Rationale

Mathematical problem solving has been the focal point of mathematics educators,
mathematicians, and educational researchers who are seeking a better understanding
of the mechanisms of mathematical reasoning and of the development of mathemat-
ics understanding and deeper analyzing mathematical proficiency. For instance, high
level problem-solving expertise (e.g. success in solving Olympiad problems) often
serves as an indicator of mathematical giftedness (MG).

High achievements in school mathematics usually reflect students’ problem-
solving proficiency in the topics that students have studied in school. As such, high
achievements can be perceived as an indication of MG. Mathematics teachers usu-
ally evaluate students’ mathematical abilities based on their scores in mathemat-
ics tests. However, MG is a complex construct which is ill-defined. Different re-
searchers use different criteria for its evaluation. Some researchers associate MG
with extraordinary cognitive abilities, connect MG with general giftedness (i.e., IQ
scores) and evaluate MG with SAT-M (Lubinski and Benbow 2006). Often MG is
connected with mathematical creativity by distinguishing between 8 levels of cre-
ativity (Sriraman 2005).

While the notion of MG (or mathematical talent as realized giftedness) is quite
clear with respect to research mathematicians, it is rather vague with respect to
school students. This uncertainty reflects the distinction between absolute and rela-
tive creativity (Leikin 2009). Absolute creativity is associated with “great historical
works” (in the words of Vygotsky 1930/1984), with discoveries at a global level
(e.g., as seen in discoveries of Fermat, Hilbert, Riemann). Relative creativity refers
to discoveries of a specific person in a specific reference group. This type of cre-
ativity refers to the human imagination as it creates something new independently
of the scope of the idea (Vygotsky 1930/1984).
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The relationship between MG as associated with relative creativity and MG as
associated with absolute creativity is not well established. While asking the ques-
tion “Can all high achievers in school mathematics become professional mathemati-
cians?” I have learned that a frequent response, even by experts in education of the
gifted, is that “this question has a simple ‘yes’ answer”. I am skeptical about this
point of view. While the answer to the question is not trivial, its importance is asso-
ciated with understanding of ways in which future mathematicians should be taught
in school. Better understanding of the nature of MG—both as associated with ab-
solute and relative creativity—can inform mathematics educators about the ways in
which school mathematics should be taught to students who can become research
mathematicians. This understanding can lead to a special instructional design and
kinds of mathematical curriculum that can be suitable for these students including
the choice of mathematical problems for MG students. Some insight about teaching
MG students can be learned from Kolomgorov’s mathematical schools in Russia
(Vogeli 1997). However, in past two decades, characteristics of MG students are
overlooked in the mathematics education research.

The Study

Inspired by the observations presented above, a research team2 from the Faculty of
Education and the RANGE (Research and Advancement of Giftedness and Excel-
lence) Center at the University of Haifa carries out MULTIDIMENSIONAL INVESTI-
GATION OF MATHEMATICAL GIFTEDNESS. This study is aimed at providing neuro-
cognitive explanations for cognitive-behavioral characteristics of giftedness. It
combines a neuropsychological investigation (Ph.D. dissertation in progress by
Ilana Waisman) associated with solving mathematical problems with the study
of cognitive abilities and processes (Ph.D. dissertation in progress by Nurit Paz-
Baruch), such as: memory, attention, IQ, executive functions, awareness (in differ-
ent fields), linguistic ability, and creative ability (Ph.D. dissertation in progress by
Miri Lev).

A sample of 200 students was chosen from a population of 1200 10th–12th grade
students (16–18 years old). The sampling procedure was directed at investigation of
the effect of EM (Excellence in Mathematics) and G (general giftedness) factors as
defined bellow. Students for G groups were mainly chosen from classes for gifted
students (IQ > 130). All research population was examined with Raven’s Advanced
Progressive Matrix Test (RPMT). Students were sampled as excelling in mathemat-
ics (EM) if they studied mathematics at high level with scores higher than 92. Addi-
tionally, excellence in mathematics was examined with the SAT-M test (Scholastic

2The team includes Roza Leikin with responsibility for the mathematical content of the study and
research on creativity and giftedness; Mark Leikin who is responsible for cognitive and neuro-
cognitive research dimensions; Shelly Shaul who is an ERP-research specialist at the Faculty of
Education. The team of researchers collaborates in supervision of a group of Ph.D. students in the
design of a multidimensional research puzzle: Ilana Waisman, Nurit Paz and Miri Lev.
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Aptitude Test in Mathematics). Students who were chosen for the research sam-
ple, were subdivided into four experimental groups by the combination of EM and
G factors: G-EM group: students who are identified as generally gifted and excelling
in mathematics; G-NEM group: students who are identified as generally gifted but
do not excel in mathematics; NG-EM group: students excelling in mathematics who
are not identified as generally gifted; NG-NEM group: students who were neither
identified as generally gifted nor excelling in mathematics.

Findings and Hypotheses

Creativity Dimension

The part of the study that explores the relationship between mathematical creativ-
ity and mathematical ability (Leikin and Lev 2013) accepts the distinction between
relative and absolute creativity in order to address personal creativity as a character-
istic that can be developed in schoolchildren. By employing Multiple Solution Tasks
(MSTs) we demonstrate that effects of EM and G factors are task dependent and are
a function of mathematical insight embedded in the mathematical task. Precisely,
the G factor has main effect on creativity associated with solving problems whose
solutions are largely based on insight, while the EM factor has an effect on cre-
ativity associated with solving problems in which variety of the solutions is based
on strategies which are based on the school curriculum. Problems whose solutions
combine both pre-learned multiple strategies and insight-based multiple strategies
allow distinguishing between the four groups of participants with main effect of EM
and G factor on students’ flexibility. The task dependence of the effect of EM and
G factors as reflected in students’ fluency and flexibility when solving MSTs raises
the hypothesis that EM and G traits are interrelated but different in nature.

Cognitive Dimension

A similar hypothesis was raised based on the investigation of memory mechanisms,
speed of information processing, attention and other cognitive traits. For example,
the results of cognitive investigation related to memory capacity in different groups
of participants demonstrate differences in memory mechanisms related to G and
EM factors: The study reveals that the G factor is related to a high level of short
term memory (STM) for both phonological loop and phonological central execu-
tive mechanisms. It was also found that the EM factor is associated with a high
level of visual-spatial memory (VSM), in particular with the visual central execu-
tive mechanism. We also found an interaction between G and EM factors regarding
WM (working memory). The central executive mechanism appeared to be related to
both G and EM factors (Leikin et al. 2013).
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Fig. 8.2 Examples of the items in different tests in the ERP experiment

Neuro-cognitive Dimension

Research on brain activity is performed using ERP—Event-Related Potentials—
methodology (Leikin et al. 2012; Waisman et al. 2012; Shaul et al. 2012). The study
includes different types of short mathematical problems ranging from simple mul-
tiplication, problems that require transition from a geometrical object to a symbolic
representation of its property, transition from visual representation of an algebraic
object to its symbolic representation, and insight-based problems (see Fig. 8.2).

The study differs from all previous ERP-based studies on mathematical process-
ing in the level (higher than in previous studies) of mathematical problems included
in the tests and by the way of sampling the target population. Similarly to creativ-
ity and cognition-related parts of the study, we found that effects of the EM and
G factors are task-dependent. For example, application of a simple multiplication
task revealed the effect of the EM factor only. In contrast, for geometry and alge-
bra tasks the differences in brain activity appeared only in students from the EM
group with higher brain activity in NG than in their G counterparts. For insight-
based tasks, we found that gifted participants who excel in mathematics are more
accurate and faster when solving the problems. The G factor has a significant effect
on accuracy but not on the reaction time, whereas the EM factor has a significant
effect both on accuracy and reaction time. The electrophysiological data have re-
vealed the differences in mean amplitude of brain activity and the time course at
different stages of solving the tasks (introducing a situation, question presentation,
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Fig. 8.3 A developmental
cycle of research on problem
solving

answer verification; see Fig. 8.2) for the G and EM factors. This finding supports
again the hypothesis about differences in the nature of G and EM traits.

In sum, multidimensional investigation of mathematical giftedness demonstrates
that group differences (effect of the EM and G factors) in all three study dimensions
are task dependent. Thus we hypothesize that the G and EM factors are different
in nature. We are happy to report that mathematical excellence can be achieved not
only in G students, while not all G students are excelling in mathematics. School
mathematics rarely introduce insight-based problems even to high level students,
which—according to our study—are essential for realization of mathematical po-
tential in G-EM students who have to be challenged by the mathematics presented to
them. Finally, based on our observations, we argue that excellence in school math-
ematics is a necessary but not sufficient condition for MG and that students from
the G-EM group have high potential to become professional mathematicians in the
future.

Reflective Summary

Boris Koichu

The four contributions to this chapter address different but interrelated aspects of
problem solving in mathematics and mathematics education. The differences are
apparent. The interrelation is highlighted in this section by considering the main
points made by the contributors as integrative parts of a spiral developmental pat-
tern, in which problem-solving models and the associated attempts to use them in
mathematics education seem to have evolved over the last decades. One cycle of a
spiral is schematically presented in Fig. 8.3.

Simply put, each cycle of the spiral begins with the study of how mathematicians
or mathematically advanced individuals solve problems (phase 1 in Fig. 8.3). For
instance, Pólya’s (1945/1957) four-phase model of problem solving emphasizing
the crucial role of heuristics and Schoenfeld’s (1985) model proposing problem-
solving attributes such as mathematical resources, cognition, control, affect and
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practices, were produced in this way. The same holds for some current multiple-
dimensional problem-solving models attempting to capture the interplay between
problem-solving attributes and cycles (e.g., Carlson and Bloom 2005).

In the second phase of a cycle, the gap between expert or gifted problem solvers
and novice or regular problem solvers is expressed in terms of a particular model.
The model or its aspects then serves as a source for formulating objectives for math-
ematics education research and practice (phase 3 in Fig. 8.3). For instance, since we
know that mathematicians and mathematically gifted individuals use an extended
pool of problem-solving heuristics, let’s try to teach our regular students how to do
so (e.g., Schoenfeld 1979; 1983; Koichu et al. 2006; 2007). Or, since we know that
the mathematically gifted are attentive to the elegance of their solutions, let’s try to
teach the rest of the students to appreciate aesthetics in problem solving (e.g., Drey-
fus and Eisenberg 1986). Or, since mathematicians invent new concepts only when
they need them in problem solving, let’s try to introduce mathematical concepts to
our students in this way (e.g., Harel 2013), and so on.

As a rule, these objectives are achieved in a relatively small number of experi-
mental settings, but regular mathematics classrooms change slowly and much less
than is hoped by the proponents and followers of a particular model (e.g., Hem-
bree 1992; Mamona-Downs and Downs 2005). Such observations lead to a certain
level of frustration and, simultaneously, to the search for new factors that have not
yet been taken into consideration (phase 4 of Fig. 8.3). For instance, the focus of
research attention in the 1990s shifted from problem solving per se to exploration
of social and socio-mathematical norms related to problem solving in mathemat-
ics classrooms (e.g., Yackel and Cobb 1996). This research venue appeared to be
immensely useful, in particular, for deepening our understanding of differences be-
tween problem solving in a classroom and in a mathematician’s office; but it also
essentially changed the research agenda. As a result, the approach “let’s teach our
students to treat problem solving as mathematicians do” fell out of the mainstream
for a while and the approach “let’s study what our students actually do in a math-
ematics classroom” was put forward. After a while, interest in mathematical prob-
lem solving as a central theme of mathematics education revived (e.g., Schoenfeld
2007). Now a new developmental cycle begins, as suggested by our spiral cycle,
with consideration of a new, more sophisticated, model of expert problem solving
(e.g., Carlson and Bloom 2005).

One unequivocally positive result of this process is related to the gradual refine-
ment of problem-solving models, making them applicable in a greater number of
contexts. Another positive result is the growing understanding of the complexity of
the use of problem solving in mathematics education. However, as has been men-
tioned above, the continuing gap between the promise of the use of problem solv-
ing and the realization of that promise often becomes a source of frustration. It is
also worth mentioning that the real developmental process, which of course is much
more sporadic and complicated than was presented in the above paragraphs—for ex-
ample, the roles of technology and political influences were not even mentioned—
includes changes in research methods and fluctuations in the foci of research at-
tention. As a result, the very role of problem solving in mathematics education is
periodically questioned.
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Based on the above observations, I suggest that problem solving has entered a
new developmental cycle. The cycle can (tentatively) be characterized by the fact
that it seeks to provide new answers to some old questions; in particular, by em-
ploying and bridging methods, models and theories that have been produced both
within and outside mathematics education. Another characteristic of the current cy-
cle is that it is based on a huge body of accumulated experience, both positive and
negative, and thus, its phases tend to essentially overlap: simultaneous attention is
brought to issues that previously have been considered only separately.

Looking again at the contributions to this chapter, one can see that they represent
positions that can be associated with different phases of this new cycle. The work of
Roza Leikin and her colleagues promises to shed new light on cognitive and brain
processing involved in solving insight-based mathematical problems, and thus, may
potentially lead to producing a problem-solving model sufficiently complex to over-
come some of the limitations of past models (phase 1) and pinpoint the differences
between mathematically gifted and regular problem solvers (phase 2). This work is
nicely aligned with one aspect of Gerald Goldin’s contribution, namely, the call to
study the tacit cognitive and affective processes that lie behind expertise and gifted-
ness in mathematics.

Another aspect of Goldin’s contribution—making use of knowledge about how
mathematicians learn mathematics through problem solving—aligns with Israel
Weinzweig’s contribution. This contribution can be associated with the third phase
of a cycle, namely, with attempts to involve students in act-as-a-mathematician
problem-solving activities. Weinzweig concluded his presentation by saying that
choosing a sequence of problems to solve rather than problem solving per se was
what enabled his students to do (as opposite to study) mathematics; this point puts
forward the importance of problem-based task design aimed at enhancing concep-
tual understanding rather than acquiring techniques needed to prepare for various
test and exams (cf. Isoda and Katagiri 2012, for an elaborated discussion of this
point in the context of the Japanese approach). Finally, Shlomo Vinner’s point about
the irrelevance of problem solving by mathematicians to mathematics education, or
at least to the exam-oriented part of mathematics education, can be associated with
both the second and the fourth phases of the cycle: Vinner discusses the gap between
problem-solving practices of mathematicians and of school students (phase 2) and
expresses some frustration regarding the role ascribed to problem solving in current
school mathematics (phase 4). It is appropriate to note here that the role of problem
solving in teaching is hotly debated nowadays also from the cognitive architecture
perspective (e.g., see Kirschner et al. 2006, and Hmelo-Silver et al. 2007, for pros
and cons of teaching through worked-out examples vs. teaching through problem
solving).

In summary, the next several years will probably be indicative of the future of
problem solving in mathematics education. The enduring questions, “How do math-
ematicians and the mathematically gifted solve problem and learn through problem
solving?” and “How can knowledge about problem solving by mathematicians and
the gifted be used in mathematics education for all?” require our further attention.
Given the proposed spiral evolution of problem solving within mathematics educa-
tion, it seems imperative that mathematicians, mathematics educators and cognitive
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scientists re-join forces in order to address these (and such) questions in a truly
interdisciplinary effort, which has always being advocated by Ted Eisenberg (e.g.,
Eisenberg 1975; Eisenberg and Fried 2009).
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Mathematical Literacy: What Is It
and How Is It Determined?



Chapter 9
“Mathematical Literacy”: An Inadequate
Metaphor

E. Paul Goldenberg

Abstract I’m reminded of Brian Harvey’s 1983 paper titled “Stop Saying ‘Com-
puter Literacy’!” His lament was partly that the analogy to literacy-literacy is,
at best, thin. I’ve recently been adopted onto a project that keeps talking about
numeracy—another adaptation of the L-word. Though I keep referring to my fo-
cus as ‘mathematics’—which will guide me also in this talk—I’ve become curious
about what people mean when they use these literacy-like terms. Googling didn’t
help except to connect the varied and vague usage with the Real World. Whatever
that is. I’ve struggled with the Real World for years. The real world of children or
adults? They’re different. What about the real worlds of the barely-subsisting sub-
sistence farmer, the fairly wealthy city-dweller, and the blue collar laborer? And is
that what really catches peoples’ interest? What about the very real world of the
mind? To take seriously the idea of serving people well and to avoid limiting or
pre-judging their eventual paths, we might focus on the latter.

Many educational terms share a common problem: When you or I use the terms,
we do know what we’re talking about. At least sort of. But whoever we’re talking
with might well have a different understanding, because the terms have no univer-
sally shared definition. Without trying to declare what mathematical literacy should
mean—that would be yet another usage, unshared except among us—I’ll punt. I’ll
take our question “what is mathematical literacy?” to mean “what is a mathemat-
ics education that is ‘useful’ to people?” and will focus not just on the topics of
mathematics but on the thinking, the real world of the mind.

Keywords Mathematics education · Mathematical literacy · Numeracy ·
Mathematical habits of mind
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The Organisation for Economic Co-operation and Development (OECD) defines
mathematical literacy as “an individual’s capacity to identify and understand the role
that mathematics plays in the world, to make well-founded judgements and to use
and engage with mathematics in ways that meet the needs of that individual’s life as
a constructive, concerned and reflective citizen.” This goes beyond culturally useful
written forms and sufficient vocabulary, but leaves us to invent our own meanings
for “well founded judgements”1 and “use and engage with mathematics.” Moreover,
because individuals vary, so does the meaning of “meet the needs of that individual’s
life.” And, does “meet the needs of that individual’s life” mean life as it is, or life
as it might be if education promoted or even permitted change? Too often—in de-
veloping countries and in underserved communities in the United States—abysmal
innumeracy is met by “mathematical literacy” expectations that are higher but still
abysmal, better meeting the needs of lives people already have, but not opening up
genuinely new life options. We have a definition, but no clear meaning.

Numeracy, another spawn of the L-word, also has no agreed-upon meaning
(Donoghue 2002). Focusing on number, the name claims less breadth than “mathe-
matical literacy.” US policymakers and educators tout basic numeracy as a survival
skill: defense against getting the wrong change, being misled by statistics, buying
lottery tickets (mathematician Michelle Manes calls that a tax on people who don’t
understand probability) and predatory lending practices. In a developing country,
numeracy may be a step toward economic development. Marc Tucker writes “Over
the long term, basic skills only give you the right to compete against the Third World
for Third World wages.”2 Al Cuoco often quips that the real value of mathematics
is not as a defense against getting the wrong change, but to let you choose a job that
pays well enough that you don’t care whether the change is correct.

The social goals of promoting economic development and protecting people from
a world of exploitative commerce are truly important—perhaps along with promot-
ing health and peace and protecting the planet, these are the most important goals
we have. If we think long range—not common in policymaking because politicians
need results fast—they set a high bar for learning but, even so, not for any partic-
ular area of learning, mathematics or otherwise. Moreover, at least in the US, my
best guess is that they helped erode intellectual discipline in mathematics educa-
tion, partly through an increased focus on applications3 (not within mathematics)
and partly through minimalism: the common belief that only a few people need or

1Though this calls for logical grounding, the field’s response has been mixed. Even the National
Council of Teachers of Mathematics recommended (in NCTM 1989) a reduction in the emphasis
on proof. Though that statement may have been just a poor choice of wording—the same document
clearly called for greater emphasis on reason than on rote—many in mathematics education hailed
that reduction in emphasis.
2Quoted in National Research Council (1989).
3A focus on the pragmatic utility of mathematical results works against the development of math-
ematical sensibility. If a mathematical result’s value is its utility, one hardly needs to understand
why it works or go through the effort to prove it, as long as an authority has approved the result.
Proof becomes “academic.”
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can learn high level mathematics. Mathematics is seen as exclusive; the rest of us
need the less high level and more egalitarian mathematical literacy, a “mathematics
for all.” As a metaphor, literacy also suggests a first step, a remediation, a threshold
essential for all, not a long-range goal.

When I was asked to contrast mathematics education with “mathematical liter-
acy,” I was reminded of Brian Harvey’s 1983 paper titled “Stop Saying ‘Computer
Literacy’!” His lament was partly that the analogy to literacy was thin. So was the
content. Judging by the curricula, computer literacy meant little more than knowing
new jargon like RAM and floppy disk.

The literacy metaphor is seductive. A “computer literacy” of technical terms and
symbols lets one communicate clearly, ask for help, and read the relevant literature
to learn more. It is culturally useful. But it is not computer science. Mathematics
absolutely requires precise communication so much so that it has elaborate and
extensive formal languages and a vast technical vocabulary. But its essence is in its
logic, manner of thinking, investigative style, and unique approach to establishing
truth and causality: proof. No natural extension of the meaning of “literacy” captures
this essence of mathematics.

Why does this matter? Ideas drive instruction. If we start with an image of a
subject that does not capture its essence, we lose a lot for whatever else we might
gain, and we should be aware of both sides of the coin as we decide what direction
to take.

The problem is this: any “mathematics for all” must serve two kinds of students
without our knowing, in advance, which are which. It must serve students who will
never use even the rudiments of what we teach beyond about fifth grade. After all,
how many people actually need to know how to add 3

7 + 2
5 , let alone the quadratic

formula or the cosine law? At the very least, these students’ time and effort must
not be sacrificed: time spent on mathematics is time taken from a new language,
psychology, learning to cook or maintain a home or car, or studying music, personal
health and nutrition, agriculture. . . . That time must be justified. At the same time,
a “mathematics for all” must not sacrifice the students who will someday choose
mathematics-intensive fields, or would have if they had not already been turned off
or defeated by drivel passed off as mathematics. Since we don’t reliably know which
students are which, we cannot build separate tracks, at least not early.4 To craft a sen-
sible “mathematics for all,” standards and curriculum designers must base decisions
not on which particular facts, skills, or concepts to teach—beyond the most basic,
virtually none are “for all”—but on how to organize the facts that only some will
need in a way that teaches the kind of thinking that all will need: habits of mind
that are the foundation for sound reasoning, creative and logical inventiveness, and
effective problem solving. Bluntly, “mathematics for all” is a sham if it isn’t mathe-
matics for all. Mathematical literacy can certainly be done right, but I think that the

4Culture can exert strong local influences over an individual’s interests and efforts. Early tracking
can lock in those effects long after experiences grow, tastes and interests mature, and an individual
has developed the ego to break with conventions, expectations, and stereotypes. By creating distinct
math/non-math tracks too early, we virtually guarantee that the non-math tracked students never
make it back into the running.
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metaphor, “literacy” in the name, makes it easier not to notice if the mathematics
gets thin.

Developing mathematical ways of thinking alone, without learning some key
results of such thinking, is not sufficient; nor, frankly, is it possible. To paraphrase
Seymour Papert, we can’t learn to think without learning to think about something.
The assertion that “no particular fact is essential” no more justifies the conclusion
that facts don’t count, than the statement “there are many right answers” justifies
the conclusion that there are no wrong ones. It is not enough to know good ways of
thinking—or habits of mind—and how to look up facts when one needs them.

This is obvious in science, where not having extensive knowledge in one’s head
means that one cannot take advantage of serendipity. In medicine, for example, in
the pursuit of an answer to one problem one often trips unexpectedly over the solu-
tion to a seemingly unrelated problem. One would not recognize the solution with-
out knowing about the problem or the territory within which that problem falls.
Likewise, one has no perspective on a historical fact without having a great deal of
knowledge into which that fact fits, or against which that fact stands out. Knowledge
much broader than one’s immediate task is probably always an essential ingredient
in creative, productive work.

This is equally true in mathematics, even elementary arithmetic. For example,
it requires very particular prior knowledge, not just addition skill, to become inter-
ested in the pattern of sums 1, 1 + 3, 1 + 3 + 5, 1 + 3 + 5 + 7, and so on. After
all, any set of addition problems must have some set of answers, and the answers
1, 4, 9, 16 don’t feel special unless they are already “good friends” popping up in
an unexpected setting. Only prior knowledge gives that sense of surprise—very dif-
ferent processes producing the same results—that leads one, like the serendipitous
discovery of some cure, to suspect that there might be some connection worth fur-
ther attention. Here, literacy may be the perfect metaphor: “knowing the literature,”
not just “basic literacy.” In mathematics that might mean being intimate with fre-
quently encountered sets or sequences of numbers, common structures, useful proof
strategies, and so on, maintaining the perspective that these are neither the essence
of the learning, nor can they be treated as the boring first chapter delaying students’
encounter with the real subject.

If mathematical habits of mind become a goal, students need regular experi-
ence inventing mathematical ideas and methods themselves. Not all mathematics
need be learned through discovery—there’s no time for that anyway—but discov-
ering/inventing is part of doing mathematics, “engaging” with it, as OECD puts it,
but with fidelity. Perhaps more importantly, it teaches people how to solve problems
they have not already been taught how to solve, new problems, as life keeps throw-
ing at us. Learning to be a competent problem solver allows a student to adapt to
change, and to remain a valuable and valued resource. That actually does fit with
OECD’s “literacy” in a deep way.

I Googled to see what else is said about mathematical literacy. The results mostly
connect mathematical literacy with the Real World.5 Whatever that is. Which real

5“The real world is overrated.” —Al Cuoco.
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world? The real world of children or adults? They’re different. What about the real
worlds of the barely-subsisting subsistence farmer, the wealthy city-dweller, and the
blue-collar laborer? And is the Real World really what catches peoples’ interest? It
seems hard to believe that what fuels kids’ (or adults’) fascination with dinosaurs,
black holes, Harry Potter, puzzle books, and video games is what educators have
in mind when they call for Real World applications. In fact, puzzle books are so
popular with the general public that even supermarkets sell them. Real World utility
is not what drives those sales.

Or maybe it is. Maybe we’re thinking about the “Real World” in entirely the
wrong way! The fact that people are fascinated with these things suggests a real
world “utility” that the daily-life, application-based, utilitarian movements in math-
ematics education aren’t properly acknowledging. The real world utility lies not in
the context to which the thinking is applied, but in the nature of the thinking. Puzzles
are useful because they exercise the mind.

June Mark, Al Cuoco, and I have long talked about the very real world of the
mind. That real world includes puzzles and mathematics along with Harry Potter
and black holes—a world of curiosity and imagination, with intense focus and con-
centration and (except in the pure fantasy worlds) logic. That real world is where
we need to focus if we are to take seriously being useful in people’s lives without
limiting or pre-judging those lives. If we were kittens, fun would be stalking and
pouncing, because the pleasure centers in our brain reward us for honing skills that
help us survive including keeping our claws sharp. But we’re not kittens. Our sur-
vival depends on keeping our brains sharp and figuring out the complicated world
around us. So, fun for a child is solving puzzles—not just the invented ones we
buy, but natural ones like how to get stuff off a high shelf, figuring out the buttons
on the TV remote, learning to stay upright on a bicycle, sorting out the world. In
mathematics education, that real world application—satisfying curiosity and hon-
ing the mind—is served by focusing not only on topics or applications but on real
problems and the thinking that mathematicians (and other “mathematically literate”
people) do.

Two decades ago, Al, June, and I took that on when we developed and later pub-
lished the beta-test version of what we called “mathematical habits of mind” (Cuoco
et al. 1996). The divide between the mathematics and math education communi-
ties worried us, but what motivated our habits-of-mind work was our observation
that the disconnect between the discipline of mathematics and school mathemat-
ics was not new. School mathematics tended to be a set of mathematical results,
often fragmented and stylized, sometimes (presumably) to make them more learn-
able, sometimes to reflect common (often obsolete) applications.6 This set included

6Standard elementary school content is a legacy of methods optimized for large accurate computa-
tions by hand. The algorithms are particularly safe and easy for adding long columns of numbers,
or performing large multiplications. But other methods, even other “basic facts,” would better
serve today’s needs for algebra readiness and mental calculation. Consider the carry-method for,
say, 39 × 65, that begins “five times nine is forty-five, write down the five and carry the four. . . ”
That algorithm camouflages the fact that four products are being found and added. If, instead, stu-
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what mathematicians knew, but did not reflect the ways mathematicians thought
or worked. Our concern was not, of course, that K-12 students weren’t studying
K-theory or working on open questions, but that what they were doing, in domains
that were accessible to them, did not resemble what mathematicians do in domains
accessible to them. What students were studying was content from mathematics,
not mathematics itself, or its nature. Worse yet, what they were studying was not
what develops the real world of the mind.7 The mathematical habits of mind we
articulated (Cuoco et al. 1996, 2010) feed far more than mathematics. They support
logical thinking in every realm; they are the skills that allow people to make “well
founded judgments” and to meet the needs of an individual’s life not only as it is,
but as it might become.

How Did We Get from Facts to Habits of Mind?

Any set of facts or ideas can be arranged in more than one way to form a coher-
ent curriculum. To find a “best” arrangement, one must consider the goals of the
course (“mastering the content,” for example, is rarely a complete description of
the goals), and such other factors as the students’ backgrounds and goals, and the
teacher’s inclinations and style. What makes an arrangement coherent is that it has a
“story line,” a message about mathematics that is emphasized along with the explicit
content.

What Is a Mathematical “Story Line”?

There are mathematics texts, especially at the K-12 level, that seem to lack much of
a story line at all, or whose “story” is little more than that mathematics consists of
facts, skills, and procedures.

dents learned “30 × 60 is 1800, write that down; 9 × 60 is 540, write that down,” and so on, they
would get a better first approximation, see the four products (and thus a better model of the alge-
braic steps which have no “carry”) and would have a generally more accessible method for mental
computation.
7Developing the real world of the mind might be easier in an alternative curriculum that slices
knowledge a different way, replacing traditional subjects like mathematics with “courses” such
as Communication (comprised of and needed in mathematics, poetry, politics, law, managing our
health. . . ), Reasoning Under Constraint (mathematics, personal budgeting, law, ecology, business
management. . . ), Troubleshooting and Problem Solving (mathematics, science, diagnosing a car,
computer, or person), and so on. Mathematics can help teach these, but so can other subjects.
Replacing current disciplines with such “courses,” however, is impractical. On the other hand, if
each current discipline, with its own unique contexts and facts, were internally organized by the
elements of reasoning that make it a discipline, the inevitable areas of overlap and commonality
would surely become a mutually supportive theme making transfer among disciplines more natural.
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Another common organization, at least in US curricula, has favored applications
as a story line. The implied message about mathematics is that its value lies in its
utility in service of other aims. While the purpose of this article is not to discuss
applications, the relationship to the mathematical literacy definition and the pop-
ularity of this curricular school of thought warrants attention. Personally, I worry
about these issues: (1) Is there solid evidence that applications reliably raise stu-
dents’ interest or are the only (or “best”) way to do so? Students for whom the “real
life” approach is assumed to be most needed may well be more motivated by good
puzzles than by more “real life.” (2) Applications tend, at best, to be only pseudo-
real, the truly real ones being far too hard, tedious, and (often) boring. (3) “Real”
for adults is not guaranteed to be “real” for kids. And where have we learned that
kids, even of college age, are notoriously pragmatic in their approach to life? (4) As
was said earlier, if mathematics is measured by its utility, it hardly needs proof.

A misunderstanding of “mathematics for all” may be partly responsible for the
widespread, uncritical acceptance of the applications-first stance—the assumption
being that while not everyone will be a mathematician, you can’t survive without
mathematics. The first of these assumptions is irrelevant—not everyone will be a
historian, either. The second is untrue and also unbelievable—every kid knows many
adults who claim to know no mathematics, yet they all seem to survive.

Other story lines are also used to organize mathematics curricula. One traditional
view is ladder-like: mathematics builds one step at a time from “basic” building
blocks to “more advanced” concepts. In this model, real mathematical thinking is
neglected for years, and many (most?) students, never get to see that thinking is part
of mathematics.

Historical development or problem solving could also be used as organizers. The
same facts and procedures can be organized to support any of these approaches but,
just as in literature, what we learn is often determined more by the story line than
by the details. All great stories contain the same basic elements—love, power, fear,
greed, hate, bravery, self-sacrifice—but the story that one remembers is how these
elements are put together.

A Proposed Alternative Story Line About Mathematical Thinking

Another view of mathematics is that its story is not about the facts themselves, but
about how mathematicians find the facts.

Such a story cannot be told without facts, of course. To weave a good story whose
elements interrelate in interesting ways one must develop the setting and characters
well. And a mathematical story cannot be appreciated without students developing
some skills that enable them to process the facts with facility, just as one’s sense of
a piece of literature is marred if one cannot read it fluently.

So facts and skills must still be included, but the selection and organization tell a
new story: mathematics is (in part) a way of thinking, a set of “habits of mind.”
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Reasoning at the Core: Habits of Mind

When Al, June, and I were responding to issues in mathematics education, we
chose habits of mind as an organizing principle because, as I’ll try to illustrate later,
that provides fidelity to mathematics and has application beyond mathematics. By
“habits of mind,” we mean ways of thinking that one acquires so well, makes so nat-
ural, and incorporates so fully into one’s repertoire, that they become, well, mental
habits: not only can one draw upon them easily, one is likely to do so. We believe that
putting habits of mind at the focus in curriculum development is valuable not only
for K-12 mathematics learning, but even at the undergraduate level, at least prior to
highly specialized courses. The “new” idea here—if indeed it is new at all—is not
that mathematics (or some other disciplined study) could be good for one’s think-
ing. That notion goes back at least a couple of thousand years, and probably more.
What we propose is not an act of faith that taking mathematics seriously gives one
the mathematics directly and (also) improves one’s thinking, but almost the reverse:
if, among the various principles one needs for organizing mathematics (or other)
curricula, one gives top priority to certain ways of thinking, one gets the thinking
skills directly and also improves one’s mathematics.

Some of the habits of mind that we articulated—reasoning by continuity, look-
ing for extreme cases and passing to the limit, seeking invariants, delaying eval-
uation to seek structure in calculations, and so on—seem distinctively mathemat-
ical. Others—tinkering, visualizing, performing thought experiments, generalizing
from examples, conjecturing, seeking and describing pattern—are more generic.
But even the mathematical ones have common “generic” forms, which should re-
ally be no surprise at all. Mathematics is not an alien thought-form, but an extended
and sharply honed specialization of normal, human, widespread, effective ways of
thinking.

And that’s the key to why we care at all. While any particular mathematical fact
or method will be useful only to some people, virtually all people will need the ways
of thinking, even the polished and extended versions of them, that mathematicians
use.

To reiterate—how many times now?—mathematical habits of mind can’t be
taught content-free: content remains important. Moreover, to avoid limiting future
choices that neither our students nor we can predict now, we must provide that con-
tent. But even as we sometimes apply the content to problems in varied contexts
(including mathematical ones) the organization of that content, the “story line” con-
veyed by the content, can not be about daily-life, as if we could predict what stu-
dents’ daily lives, or even citizen-science concerns, would require: it must be about
seeing the world mathematically through the kinds of thinking that will allow for
flexible, creative problem solving and that will equally well serve a physicist, physi-
cian, composer, auto-mechanic, lawyer,8 investigative reporter, and mathematician.

8Certain logic puzzles that appear in recreational mathematics websites and magazines and books
and that show up in math classes on rainy Thursday afternoons to kill time (but only for students
who have finished all of their “real” work) are used as basic exercises in law, so important that an
entire section of the Law School Admission Test (LSAT) is devoted to these “Logic Games”.
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It’s hard to justify a compulsory mathematics education for all any other way.
Eagerness for more people to fall in love with a truly beautiful subject gives mathe-
matics no edge over art, music, or literature. And it’s hard to defend a compulsory
mathematics of facts and how-to’s, even very important ones, on purely utilitarian
grounds. That would hardly give mathematics an edge over drawing, home repair,
psychology, or understanding one’s own body and health well enough to manage
one’s medical care.

We often sell mathematics with claims like “mathematics is all around you.”
False. The fact that doors are rectangle-shaped is no more mathematical than the
fact that trees are tree-shaped. Things whose properties could be described using
the Pythagorean Theorem will continue to work whether or not I know that theorem.
Things are all around us: the mathematics is what our mind does with those things.
Mathematics is in our minds.

Illustrating the Claim that Habits of Mind Serve More than
Mathematics

Following are five habits of mind that are central to mathematics and have applica-
tions or analogues outside of the discipline.

The Inclination to Build Systematic Explanations and Proof Proof, in devel-
opmentally appropriate ways, can be part of all levels and all subdisciplines, not just
high-school geometry. The form is not what counts, and some aspects of its nature
will change with the grades, but the act of proving and the structure of proof are
essential to mathematics.

Mathematical proof is unique because of the strict criteria by which mathemat-
ics judges its reasoning, but the underlying habit of mind—showing how one idea
follows from others—is a discipline central to good story-writing, science, legal ar-
gument, and, in general, clear thinking. All students need this basic idea. Of course,
we don’t want students to confuse stating sources and reasoning in an essay with
stating the givens and theorems in a mathematical proof, and so to be mathemati-
cally literate, students need more than the basic idea. But the idea that one can chain
thoughts coherently in any discipline should be emphasized as we state and analyze
proofs in mathematics.

The Inclination to Translate Between Visually and Verbally Presented Infor-
mation In geometry, we must often make visual sense of verbal descriptions (e.g.,
“Let point M be the intersection of two medians of triangle ABC inscribed in cir-
cle k. . . ”), and translate in the other direction as well. Describing the behavior of
a function requires moving between ideas about number, order, visual space, and
words. Such translation skills are invaluable outside of mathematics, too: in giving
clear directions to a traveler (or interpreting directions), painting a verbal picture of
a beautiful landscape, diagramming a corporate structure or theoretical framework,
and so on. The mathematical and not-so-mathematical situations differ, of course,
but more in detail than in principle.
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The Inclination to Tinker Take a moment to think up some uncommon examples
of cylinders. The usual image is so tied to objects roughly the size and shape of a
soup can that people must often work hard to think of extreme cases like a coin or a
stiff strand of spaghetti. Why bother? Mostly to become conscious of the indepen-
dence of defining attributes: in this case, recognizing that base diameter and height
can vary independently.

Solving a problem, or gaining deeper understanding of it, may also be aided
by looking for its independent attributes, changing them, and seeing what results.
A problem posed on the Euclidean plane may be re-examined on a sphere or cylin-
der or torus, or with a taxicab metric. After students have proved that the interior
angle sum for a triangle is 180°, let them consider a big triangle drawn, say, on the
parking lot; and, still larger, on the northern hemisphere entirely paved over! Figur-
ing out what part of the proof failed, even without considering all the complexities
of spherical geometry, helps students notice the assumptions they start with. A prob-
lem posed with integers may be re-examined with a superset or subset. Which num-
bers, for example, are “prime” (defined as having exactly two divisors, itself and the
unit) in the set that includes only 2n (or 1

2n) and 1, where n ∈ Z
+? What if that set

included only 4n and 1?
When students tinker, they come to recognize the independent attributes of a

problem situation; in mathematics, such tinkering can lead to extensions or gen-
eralizations of theory. When curriculum tinkers, it provides the counterpoint that
allows important ideas to stand out sharply. When medical researchers, administra-
tors, teachers, and engineers tinker, they discover new ways of looking at problems
and solving them.

Interpreting Diagrams Popular communication makes extensive use of visual
representations of essentially non-visual information, like health statistics or dia-
grams of corporate structure. So does mathematics. But to use visualization well,
one must respect its power, recognize its limitations, and know its forms and ap-
plications. Diagrams like the one shown here are often given as “visual proof” of
the algebraic relationship below it. But this is not, and should not be, a proof at
all to one who lacks the background and perspective to know (1) what information
is overspecified and should be ignored (the absolute and relative sizes of a and b

are shown, but irrelevant), and (2) what is underspecified and must be assumed (the
angles must be taken as right angles even if, in a rough sketch, they happen not to
be), and (3) though the algebraic identity is provably true for a much larger domain,
the diagram’s “validity” requires a and b to be real and positive. Many curricula use
diagrams like this, but fail to help students learn how to produce or translate such
diagrams, or understand their affordances and limitations.
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Reasoning at the Core: Mathematical Practices

Recently, a focus on habits of mind entered American education in a serious way.
The Common Core State9 Standards in Mathematics (CCSSM: NGA and CCSSO
2010) are quite different from the prior individual state standards and even the
NCTM Standards. For one thing, the CCSSM has two sections, one focusing on
mathematical content and the other on mathematical practice. The Content section
is new in focus and coherence, but familiar in form—a list of things to know and
understand, organized more or less by topic. The eight Standards for Mathemati-
cal Practice, however, do not just hone or rearrange prior standards. The ideas they
contain are not new; the habits of mind that Cuoco, et al., had spelled out in 1996
and 2010 are quite evident. But the idea of treating these as standards—that is,
mandating an emphasis on mathematical practice—is very new and very impor-
tant. Nearly all states have now adopted CCSSM, requiring attention not just to the
facts and procedures that are the results of mathematical work, but to the ways that
mathematically proficient individuals do that work. The Standards for Mathemati-
cal Practice—mathematical habits of mind and action—cut across all content topics,
pervading K-12 mathematics curriculum and pedagogy in age-appropriate ways.

I will briefly illustrate three of these eight standards, giving its title, a very brief
excerpt from the original description, and then my own interpretive examples and
commentary.

Look for and Make Use of Structure

Mathematically proficient students. . . can see complicated things, such as
some algebraic expressions, as single objects or as being composed of sev-
eral objects.—CCSSM

Taking structure sense (Linchevski and Livneh 1999) seriously is important not just
because it appears to be effective pedagogy (e.g., Hoch and Dreyfus 2009), but
because it increases fidelity to our subject; it reflects how mathematicians see the
objects we play with.

The CCSSM description of this practice—and much of the literature on struc-
ture sense—makes it seem mostly beyond the level of abstraction appropriate for
elementary school. But even young children can learn to see and reason about the
structure of expressions and relations. One key habit of mind is deferring evalua-
tion for certain kinds of tasks. For example, when we present second graders with

9In the United States, all control and authority over education must remain at State level; our
Constitution does not allow the Federal government to establish central standards or control. The
Balkanization of US, education eventually led States to organize against the chaos and establish a
common set of standards for education.
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7 + 5 © 7 + 4 and ask them to use <, =, or > to compare the two expressions, they
typically perform the calculations first and then compare; often enough, that’s what
they’re explicitly told to do. Random arithmetic practice often has that character—
there is nothing but the calculation to notice—but the point of this exercise is for
students to see structure, + 5 © + 4 or ♣ + 5 © ♣ + 4, rather than focus
on arithmetic. As long as we don’t muddy the idea by talking about “symbols stand-
ing for numbers,” which is distracting and irrelevant, second graders readily see
that, whatever might be in my hand, + 5 is more than + 4. The structure
is “something plus 5 compared to the same thing plus four.” An inclination to defer
evaluation—to put off calculation until one sees the overall structure—helps older
students realize they don’t need common denominators for 1 3

4 − 1
3 +3+ 1

4 − 2
3 . Stu-

dents who do not immediately plunge into left-to-right evaluation can find structure
that makes this a trivial mental computation. When students begin to solve alge-
braic equations, a related idea helps them see 3(5x − 4) + 2 = 20 as “something
plus 2 equals 20” and conclude—using common sense, not mechanically applied
“rules”—that 3(5x − 4) = 18.

In fact, from such reasoning, they can derive the rules for algebraic manipulation,
rules that may otherwise seem totally arbitrary.

Look for and Express Regularity in Repeated Reasoning

Mathematically proficient students notice if calculations are repeated, and
look both for general methods and for shortcuts. Upper elementary stu-
dents might notice when dividing 25 by 11 that they are repeating the
same calculations over and over again, and conclude they have a repeating
decimal. . . . Noticing the regularity in the way terms cancel when expanding
(x − 1)(x + 1), (x − 1)(x2 + x + 1), and (x − 1)(x3 + x2 + x + 1) might lead
students to the general formula for the sum of a geometric series.—CCSSM

Again, though the examples use advanced arithmetic or algebra, this habit of
mind can be developed much earlier. For example, children who know most of their
“multiplication facts” and know how to use those to square small multiples of 10,
like 30 × 30, can enjoy the following activity in which the teacher does not talk at
all, but “enacts” a pattern and invites the children to join in. The teacher sketches a
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segment of number line, draws a pair of arrows from some number and, where the
arrows meet, writes the result of multiplying that number by itself.

Still without speaking, the teacher draws another pair of arrows, from the nearest
neighbors of that number and writes their product, perhaps touching the number
and the × sign to clarify what she is doing. (The silence is more than a dramatic
gimmick. The lack of teacher talk does rivet visual attention on the action, but more
importantly, it avoids camouflaging or competing with the pattern children hear in
the numbers they call out.)

Then the teacher chooses another number, anywhere on the line, draws a pair of
arrows from it and writes its square. At this point, most children see what this no-
tation means, so when the teacher draws arrows from that new number’s neighbors,
she can turn to them and offer the marker, or silently beckon them to call out what
number to write. The teacher continues, choosing a new “center” number and draw-

ing its two arrows, but because children see the structure of the activity (though not
yet any numeric pattern), the teacher no longer writes any numbers spontaneously
but always seeks a called-out number from the class. After continuing in this way
for several more numbers, the display might look like this.
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A few steps later, it might look like this.

Everything so far has involved children practice facts they already know. Perhaps,
for some, the pattern already helped them with facts they were unsure of, like using
8 × 8 to help them remember 7 × 9. But now they do something new.

Still without asking the children anything about the pattern they’ve been using,
or commenting herself, the teacher draws a new number line segment like this and
again beckons children to call out the number.

As before, the teacher draws arrows from the nearest neighbors. But this time,
if they call out 899, they are using a pattern that they abstracted from repeated
reasoning.

Students have not written the pattern in the language of algebra, or even ex-
pressed the pattern orally in their own native language, but they have expressed, in
action, that they have seen the regularity and can use it.10

10See http://thinkmath.edc.org/index.php/Difference_of_squares for one approach to developing
the language of algebra “naturally” with elementary school students as they attempt to describe the
pattern they’ve seen and applied.

http://thinkmath.edc.org/index.php/Difference_of_squares
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Make Sense of Problems and Persevere in Solving Them

The title is almost a cliché. We’ve all talked about sense-making for forever, and
we’re always admonishing students to “keep trying,” so what’s new here? The de-
scriptive text that follows the title does include those old chestnuts, but also includes
two key ideas that are at the very core of problem solving but are often overlooked.

Mathematically proficient students start by. . . looking for entry points to
[a problem’s] solution. . . . They monitor. . . their progress and change course
if necessary.—CCSSM

Many (most?) students see mathematics as a collection of rules to know and follow.
Genuine problems—whether in mathematics or in life outside of school—are not
so cut and dried; they appear without asking what chapter we’ve just studied. So,
too, the pseudo-real problems of good high-stakes tests require students to think, to
go beyond the rules. Even standard word problems require one to figure out where
to start and what to do next. There is no “formula” for that, and that is one reason
why students find them hard. The same is true of finding proofs. Figuring out what
might be a good place to start is key. And, while students do need the patience
and stamina to persist in a potentially profitable direction—what the standard calls
perseverance—equally important is the ability (and inclination) to “monitor. . . their
progress and change course, if necessary.”

Well-constructed, non-arbitrary, logical puzzles place those particular skills front
and center. In crossword puzzles, one must often attempt several “across” and
“down” clues before finding one that can be filled in with confidence. Each step
helps with others that were too hard at first. Sudoku and KenKen® also typically re-
quire you to search before finding something you can do. At least in this one sense,
(certain) puzzles model mathematical investigation, whether or not their content
is mathematical. Suitably designed, puzzles can also be vehicles for mathematical
ideas—the content, not just the practice of mathematics—in a way that crossword
and Sudoku puzzles are not. They must also not be more work than they justify
in curricular worth. The same goes for word problems: the work of decoding the
verbal camouflage should not distract from the mathematical ideas. Too often, the
extra verbiage is the only hard part, while the actual mathematical content turns out
to be trivial. Good puzzles must also not feel like arbitrary “tricks” to the student,
more about psyching out the puzzle’s author than about logic. A satisfying puzzle is
one that you don’t know how to solve at first, but can figure out logically, without a
“trick.”

Puzzles (always modified by “suitable”) have some advantages over “standard
problems” especially for students who are not yet committed mathematicians. When
students don’t know how to start a problem, they often feel either that they are inad-
equate, or that their teacher failed to teach them enough. But puzzles are supposed
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to be puzzling! They give permission not to know how to start before starting. Giv-
ing oneself a little extra time can, with nurturing, become a habit of mind. Puzzles
build stamina and confidence for problem solving. They are genuine problems to
solve—true to real life—not exercises in following a rule or template. They exer-
cise mathematical habits such as experimenting, juggling multiple constraints and,
depending on the nature of the puzzle, others (e.g., visualizing) as well. Even that
elusive “Real World” highly values the ability to solve puzzles—for example those
Logic Games of the Law School Admissions Test—which have been part of the
“literature” of society, part of our culture, as far back as historians have managed to
plumb.

Again, mathematics is not just everyday common sense, but a sharply honed
extension of natural ways people think. Moreover, people crave the thinking, and
even the honing of it, enough to make up stuff that gets them to think. When people
don’t have lots of prerequisite mathematical machinery or complicated things to
think about, they invent opportunities in the form of puzzles. Puzzles—at least some
of them—are “pure mathematical thinking” without the usual content trappings.

This long defense of puzzles is not to suggest that puzzles replace other impor-
tant parts of a mathematical education, but that they be taken seriously! They don’t
replace mathematics problems (except dumb ones); rather, they are a kind of math-
ematics problem, a kind that is respected in the mathematics community but often
considered mere entertainment in schools. Nor is the goal to include objects spe-
cially crafted to be called “puzzles.” Genuine mathematical research—“open ques-
tions” to students if not to mathematicians—give learners much of the same valuable
experience seeking an entry point that puzzles give. Time is tight, but puzzles or re-
search problems that are well selected and crafted and supported by a teacher whose
understanding of mathematics is deep enough can pay for the time they cost by fo-
cusing on mathematical practice, embedding the facts as a byproduct, and providing
the needed practice by being more engaging and therefore commanding more at-
tention. If we are not harassed by tests that value miscellany over thought, research
experiences and puzzles are excellent vehicles for content, and provide structure and
strategies that optimize students’ abilities to learn the content.

Redefining Literacy May Be too Hard. Redefining “The Basics”
Might Be Possible

Reasoning is Basic

Arithmetic facts are basic. But if we start with a more ambitious view of the math-
ematics we want students to learn—for example, if we favor mental algorithms
over paper ones, and if we keep algebraic goals in mind—we might well favor a
different set of basic facts, even to serve purely computational goals. Most chil-
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dren can become quite good mental calculators if they build a strong set of ideas11

about 10: pairs of numbers that make 10, adding or subtracting 10 to/from any-
thing, multiplying by 10, subtracting or adding 10 and then adjusting (in order,
e.g., to add/subtract 8 or 12 to anything mentally), and extending all of these to
multiples of 10 and then to powers of 10. Starting humbly with “how many fin-
gers don’t you see?” to learn pairs that make 10 and learning those playfully to
full mastery,12 nearly all seven year olds fairly quickly make the transition to de-
rive pairs to 20, and when they succeed and are good at it, they almost trivially
extend it to pairs to 30 and feel brilliant because the numbers are “so big.” Pairs
to 100, first starting with multiples of 10 (seventy, thirty), come easily as simple
extensions of the same pair to 10 (seven, three). Then children learn to adjust when
they hear seventy-one. This is not just a way to practice “basic facts,” but a use
of structure in mathematics, a way to build a generalizable sense of mathemat-
ical properties of arithmetic. Another basic for the early grades is doubling and
halving—all numbers, not just “basic facts”—entirely mentally, not with a paper-
and-pencil rule. As with the “everything-about-ten” idea described above, this does
practice “basic facts” and give a solid and extendible foundation for mental arith-
metic, but again it does more. It uses the “natural” (pre-multiplication) ideas stu-
dents have, later to be formalized as the distributive property, and builds a strong
base for applying that property in a formal way in later grades. It supports mem-
ory, but it is more importantly about a mathematical structure, and not just mem-
ory. Such games—pure drill, but no kill—get children comfortable handling the
tens and ones independently, adjusting, using approximation to support exact com-
putations and, by grade four, handling most two-digit (and some three-digit) ad-
dition, subtraction, and multiplication naturally in their heads in a way that fore-
shadows the algebra that we want them later to find “natural” (recall footnote 6
above).

Literacy is basic, too. Even “literacy” in mathematics—the symbols, lingo, and
common knowledge of the discipline—is basic. But mathematics is more than any
interpretation of literacy. Mathematical content certainly is a service to other disci-
plines, but the essence, the real gift, of mathematics is the high refinement of our
natural ways of reasoning, its logic and the precision of its expression of that logic.
To educate students who “make well-founded judgements and use and engage with
mathematics in ways that meet the needs of that individual’s life as a constructive,
concerned and reflective citizen,” we need to keep that essence of mathematics—
which is to say, mathematics—at the center of curricula we develop and of the
preparation of mathematics teachers at all levels.

11For more about how this approach is used in at least one curriculum, see http://thinkmath.edc.
org/index.php/Addition_and_subtraction#All_about_10.
12“My fingers are tired, so I’ll just tell you how many I’d hold up, and you say how many you don’t
see. OK? Seven. (three) Eight. (two) Two. (eight)” and so on. Playfully and at a lively pace.

http://thinkmath.edc.org/index.php/Addition_and_subtraction#All_about_10
http://thinkmath.edc.org/index.php/Addition_and_subtraction#All_about_10
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Chapter 10
Reflections on Mathematical Literacy

What’s New, Why Should We Care, and What Can We
Do About It?

Anna Sfard

Abstract Today’s widespread concern with mathematical literacy indicates the ed-
ucators’ commitment to the old principle, formulated more than three decades ago
by Hans Freudenthal: “The child should be able to use in society what [he or she]
has learned at school.” As obvious and uncontestable as this maxim seems to be,
the question of how the term mathematical literacy should be interpreted and im-
plemented has been an object of debates and disagreements. One position on this
issue has been presented by Paul Goldenberg in the preceding chapter. With Paul’s
critical statement serving as a point of departure, the authors of this chapter tackle
such questions as What do we have in mind while talking about mathematical liter-
acy? Should we give in to the utilitarian approach to school mathematics that seems
to transpire from this latter term, whatever its interpretation? And even if we agree
that the students’ ability to broadly apply mathematics should be fostered, will we
ever be able to overcome the inherent situatedness of learning? How? Coming from
a diverse groups of writers—two researchers in mathematics education, a psychol-
ogist, a mathematician, and a policy maker—the five attempts at answering these
questions may sounds too diverse to end up in agreement. Still, they certainly make
for an interesting, important, and ultimately useful conversation.
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Introduction

These days, the word literacy is in everybody’s mouth. Either alone or preceded by
a noun or adjective—computer, technological, digital or mathematical—it features
prominently in educational discourse and appears with increasing frequency in writ-
ten and electronic media. And yet, as is often the case with buzzwords, this “next
big thing” of the educational parlance often seems to be bringing more confusion
than enlightenment. As observed by Paul Goldenberg in the preceding chapter, the
term mathematical literacy is capable of baffling even the almighty Google. Clar-
ifying the meaning of the expression is one of the goals of the present chapter, in
which two researchers in mathematics education (Arcavi and Sfard), a mathemati-
cian (Livné), an applied psychologist interested in adult numeracy skills (Gal), and
a policy maker (Perl) respond to Goldenberg’s challenging position on the issue of
mathematical literacy.

To initiate this conversation and help ourselves with getting a better sense of the
nature and significance of the topic, let me outline the phenomena that can be seen
as having given rise to the present prominence, indeed, to the very appearance of
the expression mathematical literacy. Our wariness of educational fads aside, let us
try to understand the weighty problems that this term may be signaling.

As far as I can tell, the story of mathematical literacy begins in the last quarter
of the previous century, and this is true even if the term mathematical literacy itself
did not appear until later. Its seeds can be found, among others, in the seminal work
of Hans Freudenthal, guided by the belief that “[t]he child should be able to use
in society what it (!) has learned at school” (Freudenthal 1978, p. 44). As straight-
forward as this principle might have appeared to its followers, research findings
soon began showing that it might be rather difficult to implement. In the late 1980s
researchers specializing in cross-cultural and cross-situational studies—with Jean
Lave (1988) being probably the most outspoken among them—came up with the
disquieting declaration: Most people, even those who had been quite successful in
their school mathematical learning, tend not to use mathematics in day-to-day situa-
tions in which such use could be of help. True, the mathematics-eschewing problem
solvers may still be able to manage, but this, as well as the question of how they are
able to do this, is a different story. What is relevant to our present topic is the fact
that mathematical knowledge stored in the successful high-school graduates’ minds
does not seem to make it to those places for which it was meant. Although this
phenomenon was not altogether unknown before Jean Lave and her socioculturally-
minded colleagues published their findings—indeed, psychologists had been talking
about it ever since the word “transfer” was coined by Thorndike and Woodworth
(1901)—it was the work of the sociocultural researchers that made the decisive im-
pact and highlighted the need to rethink schooling. These latter scholars’ new ren-
dering of the old story offered a novel vision of mechanisms of learning and brought
home to us the significance and possible ramifications of the phenomenon that, in
its revised version, is now known as situatedness of learning.

The fact that what is being learned is tightly dependent on specificities of the situ-
ation in which it is learned may have far reaching implications for mathematics and
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its teaching. Mathematics has always been an obligatory part of school curricula.
The traditional argument in support of this practice has been that mathematics, be-
cause of its abstractness and the special reasoning techniques, is a universal means
for describing the world around us and thus constitutes a necessary ingredient of
everybody’s problem-solving toolbox. This belief goes hand in hand with the con-
viction that equipping students with the tool suffices to ensure that they would use
this tool whenever necessary. In the light, however, of what the socioculturalists
claimed to have shown in their research, this belief loses ground.

To put it differently, it seems that there are two types of mathematical competen-
cies, neither of which develops spontaneously in the mere presence of the other. As
it turns out, only one of these competencies, which I will call formal mathematical,
or simply mathematical, is usually fostered in schools. This competency expresses
itself in the familiarity with the tool and in knowing how to use it. The other com-
petency involves the capability for deciding when to use mathematical concepts and
techniques. To the best of my understanding, it is this latter competency that people
have in mind while speaking about mathematical literacy.

The fact that those mathematical abilities that we need throughout our lives are
not the same as the skills and understandings developing in schools has been offi-
cially acknowledged in the beginning of this century, when the international com-
parative study PISA was first launched. According to its founders, PISA tests the
participants’ mathematical literacy, and thus complements the older comparative
study, TIMSS, which measures mathematical competency that is being developed
in school.

This brief historical account explains the present attention to the issue of math-
ematical literacy and the current calls for a change in school curricula. Aware that
our students’ ability to summon mathematics when it is most needed will not de-
velop by itself, policy makers require that those who teach mathematics stop acting
according to the principle “take care of the ‘how’, and the ‘when’ will take care of
itself”. Attempts to turn the development of applicable mathematical skills into an
explicit goal of school learning are a global trend these days.

And yet, be the reasons for these new initiatives as good as they appear, not
everybody would readily jump in; at least not without some critical reflection. This
is best instantiated by inspired and inspiring ideas presented in Paul Goldenberg’s
chapter. As Paul tries to make clear, almost any aspect of this new global trend
toward mathematical literacy can—and should—be questioned. To begin with, what
do we have in mind while talking about mathematical literacy? In particular, what
can be done, if anything, to bar the unwanted entailments of the metaphor of literacy,
against which Goldenberg warns us already in the title of his chapter? However the
term “mathematical literacy” is interpreted, it seems to have to do with the ability to
treat mathematics as a means to some practical ends rather than as a goal in itself.
It is this usefulness of mathematics, therefore, that becomes the main justification
for our as yet unshaken belief in the slogan “mathematics for all.” But should we
really give in to such a utilitarian approach, renouncing the time-honored tradition
of teaching mathematics for what it is: one of the most astounding achievements of
the human intellect? And besides, even if we do agree that the students’ ability to
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broadly apply mathematics should be fostered, will we ever be able to overcome the
inherent situatedness of learning? How? These and similar questions are more than
enough to start us on an interesting, important, and ultimately useful conversation.

Reflecting upon the Adequacy/Inadequacy of the Mathematical
Literacy Metaphor—Some Thoughts Inspired Paul Goldenberg’s
Paper

Abraham Arcavi

I enjoyed very much reading Paul Goldenberg’s thought provoking paper. In my
view, it challenges the pervasive preoccupation (or perhaps a fad?) with mathemat-
ical literacy initiated and invigorated by the OECD through the introduction of the
PISA exams, which are deeply influencing almost all educational systems (includ-
ing those who do not participate in the exams).

Whereas advocates of mathematical literacy deal with refinements of answers
to the question “what is it?” and they advance reasons for “why is it important?”,
Paul Goldenberg (according to my reading of his paper) poses some challenges to
the idea. He seems to be posing the question “is it?” (i.e. a worthwhile idea). Paul
suggests that the teaching of mathematics can (or should) be organized around other
organizing principles than mathematical literacy (commonly envisioned as related
to “applications”).

I found myself in agreement with almost all of Paul’s articulate and eloquent
exposition, and in particular with the following:

• Stressing not only the “all” but also the “mathematics” in the phrase “mathematics
for all”.

• Sound background knowledge is a necessary pre-requisite for creativity, for
serendipity and for a strong sense of surprise in mathematics learning.

• “Knowing the literature” may be a better characterization/metaphor of what to
pursue than “basic literacy”.

• There is a multiplicity of distinct “real worlds”, and thus the so called applications
may not necessarily engage students.

• There is a pressing need for an organizing principle, a “story line”, around which
to pursue the teaching of mathematics—applications is not the only one, and pos-
sibly not the most appropriate.

• The organizing principle for the teaching of mathematics proposed is “habits of
mind” which have to be anchored in mathematical content.

• “Habits of mind” include those which are distinctively mathematical (e.g. rea-
soning by continuity, seeking invariants, looking for extreme cases and passing
to the limit, observing regularities and seeking structure) and those which are
more generic (e.g. building systematic explanations, translating between differ-
ent forms of representation of information, visualizing, performing thought ex-
periments, conjecturing, and my favorite—the inclination to tinker).
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In my reaction, I would like to concentrate on a selection of the many thoughts Paul’s
talk provoked in me. Firstly, it is worth discerning certain points of convergence
between opposing views regarding mathematical literacy. Secondly, I would like to
propose my own views on some of these convergence points.

First convergence point. Both the arguments of the advocates of mathematical lit-
eracy and Paul’s criticisms of it are a reincarnation of the discussion around a quite
old question: “why math?” Whereas the answers to this question offered by both
perspectives may differ substantially, they seem to tacitly agree that mathematics
should remain a school subject. Let us remind ourselves that this agreement should
not be taken for granted, given, for example, the suggestion to subsume mathemat-
ics within other subjects in elementary school (Benezet 1935), or the dramatic calls
such as “Let’s eliminate math from schools” (Schank 1987), or here in Israel, Pro-
fessor Yair Karo’s appeal of some years ago to end the mathematical studies of a
large percentage of the general population at the end of 9th grade.

Second convergence point. Whereas there are substantial differences in how to
achieve it, a main goal of education seems to be shared by both perspectives, as
stated outright by Paul: “The social goals of promoting economic development
and protecting people from a world of exploitative commerce are truly important—
perhaps along with promoting health and peace and protecting the planet, these are
the most important goals we have.” It seems that mathematics education can and
should play an important role towards the achievement of these goals.

Third convergence point. Whereas “habits of mind” seem to be in stark oppo-
sition to “applications” as the organizing principle for teaching mathematics, both
are presented from an ‘utilitarian’ point of view—namely best serving the needs of
future citizens living within a rapidly changing world.

I fully endorse the first convergence point by stating that, in my view, mathemat-
ics should not be questioned as a school subject throughout K-12. However, I would
like to take issue with the other two.

Demanding that one of the main goals of mathematics education be the advance-
ment of social equity, protecting people from exploitation, promoting health and
peace and saving the planet is laudable; however, it may be a bit unrealistic. There
is only so much one can load on the shoulders of just one school subject, regardless
of how noble these goals may be.

Regarding the next convergence point, are the utilitarian goals the ultimate/only
reason for learning mathematics? Whether we take applications or habits of mind
as the organizing principles, would the only purpose for that be to furnish the future
citizen with a survival kit, and helping the planet? I would like to remind to us of old
fashioned, maybe even romantic goals for teaching and learning mathematics, such
as producing enjoyment, intellectual pleasure, fulfillment of a sense of aesthetics,
and also just gaining plain old non-applicable knowledge and appreciation of an
important component of our cultural heritage.

Finally, I would like to propose a possible meeting point of the different perspec-
tives. From Paul’s talk, one may be tempted to conclude that the habits of mind are
exclusively related to abstract and formal mathematics, and thus they seem to be at
odds with applications of mathematics. It does not have to be so. It is possible to
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find interesting and authentic applications upon which the habits of mind advocated
by Paul not only can be nurtured and developed but they are needed as meaning-
ful tools for those applications. Good curricula have shown that this is possible and
perhaps these will support intellectual enjoyment too.

Mathematical Literacy: For Whom?

Ron Livné

In her introduction to this chapter, Anna Sfard presented Paul Goldenberg’s “po-
sition statement” as our starting point. Having read Paul’s chapter, I agree with
her. The article describes an interesting suggestion in Mathematics Education—
developing “Habits of Minds”; it criticizes another—mathematical literacy. My ar-
gument will be that these suggestions were adopted, by the CCSSM1 and by the
PISA,2 because they fit their respective policies. My conclusion will be that neither
should be taken as an over-arching principle for everybody, but rather, as ingredients
which can contribute to an efficient curriculum if used correctly and with the right
dosage. Moreover, the right dosage is neither the same in all circumstances nor for
everyone. Throughout, I will discuss only the High School level.

The views of PISA were shaped by the European educational systems: children
are sorted into different strands with rigid curricula; their possibilities after school
are largely dependent on the strand in which they find themselves and their results in
a national exam (matriculation, baccalaureate) at the end. On the other hand, in the
American system the curriculum is less dictated: it mainly has to satisfy standards.
The high school certificate is local and less regulated, the sorting is less directed.
The SAT3 exam is only for college; the AP4 Calculus tests are for 6–7 % of the age
group.5

The High School students in Europe must buy a package deal: the strand that fits
their goals best among those available to them. In the USA, the students make their
own package with their goal as guide. The minority (6–7 % of the age group) who
will go into math-rich further studies often take the AP tests. Very few people are

1Common Core State Standards Initiative: see http://www.corestandards.org/, retrieved August 2,
2012.
2Program for International Student Assessment: see http://www.oecd.org/pisa/, retrieved August 2,
2012.
3Scholastic Aptitude test: see http://sat.collegeboard.org/home, retrieved August 2, 2012.
4Advanced Placement: see http://apcentral.collegeboard.com/apc/Controller.jpf, retrieved Au-
gust 2, 2012.
5I was unable to get this and similar statistics from an official source, and had to compute them
by dividing the number of people taking the exam (given by the administrating authority) in a
given year by a official estimate of the age group (the Bureau of Census of the country or the CIA
tables; the country entry in Wikipedia is a good place to start). These figures should be viewed as
approximations.

http://www.corestandards.org/
http://www.oecd.org/pisa/
http://sat.collegeboard.org/home
http://apcentral.collegeboard.com/apc/Controller.jpf
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worried about pedagogical considerations there. For the much larger group who go
to college, algebra is considered a key for future opportunities, an opinion popular
in the last two decades, adapted by CCSSM and by Achieve,6 for example. Indeed,
algebra is useful for a larger segment of College students than is the material in the
AP tests (which presupposes algebra). But as it is commonly taught, algebra is a
procedural affair. In the lower levels, Math requires students to perform algorithms
(one thinks of a Montessori task in Kindergarten, in which filling a jug of water
and from it to a cup is broken to 28 steps in strict order; perhaps extreme, perhaps
fun). The higher levels require finding and delineating the solution more indepen-
dently. The “Habits of Mind” approach goes beyond such needs by emphasizing the
way one reaches solutions. It aims to teach structured research, with the researching
mathematician as paradigm. This point of view is helpful in algebra and onwards; it
has something to offer even earlier, in pre-algebra.

On the other hand, in European systems the mathematical literacy approach aims
at the lower echelons: people who want the national certificate but who will not
study further or will not need formal mathematics later. The package deal of the
national certificate enables these systems to make such students study mathematics
beyond their future economic needs. This ability could be used for civics. The media
is full of mathematical data; number sense, order of magnitude, change of scale,
ability to digest visually displayed numerical data and to understand its implications;
rudimentary statistics; curves that show evolution in time. All these do not require
a chain of logical operations and decisions, but rather the connection with reality
and the translation between forms of representation. These require more maturity
than is available in pre-high school students. Connections with the real world, as
reflected for example in the media, might be a very real factor in making such an
approach appealing and motivating to students who are motivated to study but are
not math oriented. This approach also mixes very well with other subjects in the
curriculum. It is possible to use connections to reality to motivate—admittedly to
a lesser degree—geometry and even rudimentary trigonometry; but geometry, even
in Europe, is taught mainly as a mean to develop the mind. In analogy with this,
for the same population, The “Habits of Mind” approach that Goldenberg described
and helped develop is an appealing suggestion to bring in some amount of algebraic-
type, multi-step reasoning.

While these approaches have developed in specific contexts, global factors are
bringing them into contact. The OECD7 is tripling the size of its population, as
more than a billion Chinese, more than a billion Indians, and a few hundred millions
from other Asian nations are joining the more-than-a-billion of those already there.
Technology, and behind it Science and Math, are very easy to import or export
(the voguish term is “to offshore”). Chinese manufacturing power seems almost
unlimited; Indian programmers and engineers, speaking good English, go abroad or

6For Achieve’s agenda of “college and career readiness” see http://www.achieve.org/.
7Organisation for Economic Co-operation and Development: see http://www.oecd.org/, retrieved
August 2, 2012.

http://www.achieve.org/
http://www.oecd.org/
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even work from India. Even if the demographical influences fell to zero today, the
effect will still be felt till 2030 or a little later.

The influence on the less mathematically oriented is even more significant (and
came earlier). A receptionist for a Chicago hotel can be physically in Delhi. Pro-
duction lines, anything that can be automated/outsourced, become less profitable
because of China (products) and India (services), while growing unemployment is
an ever-present worry in the west. Jobs in large number—and still increasing—are
globalizing. The official opinion of the OECD is that the quality of high school
education is a major asset in the global competition.

For the higher level math students there seems to be an agreement as to what
should be done: the economical value of a first degree in Science, Programming,
and Engineering comes down to India-China prices; but the value of an appropriate
second degree, certain interdisciplinary subjects, or a combination with a Business
degree may actually increase. This has a major influence on the high end of High-
School Math Education (AP tests in the USA; A-level tests in the UK: 6–7 % of
the age group): the separation between the mathematically gifted and the less so
gets steeper. The 6–7 % may contract to an even smaller proportion of technological
leaders.

There is less agreement on what needs to be done with the less mathematically
sophisticated children, and this is where the debate over mathematical literacy takes
place. The difference of opinions is made more acute by the fact that the interna-
tional exams are pushing for internationally uniform norms. For the USA the PISA
is particularly problematic: it mainly values Mathematical Literacy. The math con-
tent is too low; in particular, the level required in algebra is minimal, and dexterity
in handling mathematical expressions is not tested at all because—so seem to think
the PISA administrators—Mathematics is not valuable in itself, only as a part of a
“real” context. This may be true if by Mathematics one means just technique: the
Habits of Mind approach can make a better case for including more math and alge-
bra in the capacities required in the PISA if they can be combined into it. (With this,
one should not forget that even in the mathematical literacy aspect the PISA is not
adequate, though I have seen elsewhere good PISA-type questions.)

The principles we have seen in Goldenberg’s chapter are useful to handle alge-
bra intelligently. And the suggestion to connect algebraic and visual is very sensible
too. But why not combine a story and some math? Here’s an example. At a price
of $100 per ticket, 500 will be sold; for every $ less per ticket 10 more tickets will
be sold. When will the revenue be maximal? The apex of a parabola gives a very
useful model. This idea can be developed; the behavior of a parabola around its apex
(say the apex is a maximum) shows that the benefit (revenue) is optimal in a middle
ground compromise between two policies (increasing ticket price or selling more
tickets); near the optimum a small change in policy in either direction is tolerable;
but exaggerate in either direction and the revenue falls steeper and steeper. This
completely schematic model applies to many questions of choice between compet-
ing policies; it probably applies to the two approaches in math education we have
been discussing, helping those who need more algebra and those who need more
real life connections. Needless to say, quantification is a different matter. . .
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Mathematical Literacy: Internal and External Perspectives

Iddo Gal

A discussion about the meaning of mathematical literacy and its place in mathe-
matics education is a timely one. The current attention to this topic is fueled in part
by a force that many mathematics educators and mathematicians may see as ex-
ternal to mathematics education itself, i.e., the emphasis on mathematical literacy
and on numeracy in OECD’s two key assessment programs, PISA (students) and
PIAAC (adults). My comments pertain to two related aspects: the conceptual lens
from which we hold a discussion on the nature of mathematical literacy, and the
educational approach to developing mathematical literacy.

Conceptual Issues The debate about the meaning and place of mathematical lit-
eracy is naturally held in large part by mathematicians, mathematics educators, and
academics and trainers interested in mathematics education, i.e., insiders to the do-
main. However, to understand mathematical literacy and why it is essential to ad-
dress it as part of mathematics education, it is important to bring in an external view-
point. Instead of asking, “what is the goal of mathematics education?” or, “what
mathematics is most important to teach?” I believe a broader question should be
asked first:

• What are the skills or competencies needed by and expected of citizens from all
walks of life for effective functioning in the information age [at work, at home,
in civic life, etc.]?

Many stakeholders have been pondering for years the nature of desired skills
that adults should possess, and hence that educational systems should develop or
worry about (e.g., Secretary’s Commission on Achieving Necessary Skills (SCANS)
1991). Recent years, though, have seen a focus on a broader notion of ‘competen-
cies’. In its groundbreaking work, OECD’s project DeSeCo (Definition and Selec-
tion of Competencies) has defined competency as: “[The] interest, attitude, and abil-
ity of individuals to access, manage, integrate, and evaluate information, construct
new knowledge, and communicate with others in order to function effectively in the
information age.” (Rychen and Salganic 2003, p. 8). Given this definition, which has
been adopted by many countries (and by OECD), a second external question then
emerges:

• Are educational systems developing the competencies needed by adults?

I argue that a discussion about the nature and importance of mathematical literacy
should be held with the above external questions in mind. However, an external
perspective presents a challenge to mathematics educators. They are asked neither
whether they teach important mathematics nor whether their students can do what
mathematicians do (a popular instructional goal among many mathematics educa-
tors), but a much broader and different question—whether the outcomes of their
hard labor are sufficiently synchronized with the (future) needs of the people they
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educate (and their employers and communities), and aligned with the nature of the
tasks facing adults in modern societies and information-rich economies. Of course,
different people may have different futures, and the future itself is changing as we
speak due to social and technological changes, hence the answers are not simple.
Still, these questions bring a very different focus, on educational outcomes and hu-
man capital, and on competencies, which are posited as building blocks of human
capital.

Mathematics educators are now called upon by external stakeholders to demon-
strate that virtually all of their students are coming out with a broad range of needed
competencies. So far, cumulative results both from PISA and from large-scale sur-
veys of adult skills (PIAAC Numeracy Expert Group 2009; OECD 2013) suggest
that too many people, both adults and students, are not engaging real-life mathe-
matical tasks very well. Thus, whatever is being done in mathematics classes is not
working as well as it should. Why? Is it because we are not doing well in teaching
students to think like mathematicians and should try harder in this regard? I believe
that we should look for different answers. Given space limits, let me emphasize just
two: we need to better understand the nature of the target competencies themselves,
and we have to be aware of the cumulative research findings regarding the complex-
ity of skill transfer and of the many factors affecting people’s ability to cope with
new kinds of mathematical or functional tasks in different life contexts (Lovett and
Greenhouse 2000; Burke and Hutchins 2007).

From Conceptual Issues to Educational Actions Schools have historically
stressed, explicitly or implicitly, students’ ability to handle abstract, college-related
topics such as advanced algebra and calculus. Yet in most countries I know fewer
than 50 % of all students who graduate from high-school enter college, and many
of these never study mathematics any further in college. Why does school math-
ematics focus so much on abstract, “academic” aspects and give relatively little
attention to functional skills and to skill transfer? One very likely explanation is that
the mathematics education community overemphasizes internal views of the goals
of mathematics education and does not sufficiently balance them against external
views.

From an external view, we need to make sure that school graduates are able
to act in a numerate way. Numeracy has been defined (PIAAC Numeracy Expert
Group 2009) as “the ability to access, use, interpret, and communicate mathematical
information and ideas, in order to engage in and manage the mathematical demands
of a range of situations in adult life”. Due to space limits, let me highlight just three
of the terms in this description of adult numeracy:

• “Interpret” reminds us of the role of adults as critical consumers of quantitative
information, as interpreters of a wide range of quantitative messages. Such infor-
mation is often presented via different types of texts. Yet, texts are often seen by
mathematics teachers as a distraction, as external to the world of pure mathemat-
ics, and shunned from the classroom.

• “Engage” is not about having engaging instruction, as some may think, but about
preparing learners to effectively engage a very wide range of real-life situations
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that present mathematical demands. To engage such tasks successfully, one needs
not only a range of cognitive skills and knowledge bases, but also positive or
supporting dispositions, i.e., beliefs, attitudes, and a critical stance, coupled with
productive habits of mind. We want people to feel comfortable about being able to
approach and cope with a range of tasks, including tasks that involve ambiguity,
that call for decision making and solving problems embedded in real contexts,
and the like.

• “Manage” refers to the fact that adults do not normally “solve” problems as in a
math class. Most numeracy situations do not have “solutions” that can be classi-
fied as right or wrong. Rather, adults manage situations, and can decide on one of
several courses of action, based on their assessment of personal goals and situa-
tional demands, severity of consequences, and personal and situational resources.

To develop a transferable competency such as numeracy or mathematical literacy,
and to increase the chance our graduates can autonomously engage a wide range
of real-life mathematical or statistical tasks and situations, we need to rethink the
mix of tasks used in instruction, and the associated teaching sequences and assess-
ment methods. Among other directions, we need to increase the dosage of tasks
involving ill-structured problems, that contain text-based messages conveying vari-
ous quantitative and statistical arguments or requiring critical interpretation of texts,
that present statistical information of the kinds normally encountered in the me-
dia or in workplace and civic action contexts, and that demand the kinds of coping
behaviors that adults are called upon to demonstrate in real life.

Developing Mathematical Literacy as Fostering Habits
of Communication

Anna Sfard

One cannot but admire Paul Goldenberg’s inspired and inspiring vision of what
school mathematics should be all about. One gets swept by his passionate argument.
In my presentation, I will nevertheless begin by taking a critical look at Paul’s ideas.
I will continue with an endorsement—and an extension—of his call for cultivating
mathematical habits of mind.

Here is the point of disagreement: I wish to take exception with Paul’s vehement
rejection of the argument of utility as the one to use while justifying the principle
of “mathematics for all”. Well, it is not easy for me to say this. Like Paul, I have
been brought up to love mathematics for what it is. Like him, I have been born into
the modernist world ruled by logical positivism, where mathematics was treated as
a queen even when it acted as a servant. Still, I am acutely aware of the fact that
times change and that these days, the modernist romanticism is often at odds with
the postmodernist pragmatism.

Many arguments can be brought to show that in our postmodern communication-
driven world, where the need for the kind of mathematical knowledge we had once
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pursued for its own sake no longer goes without saying and where activities such
as thinking and getting to know are seen as closer to surfing than to diving, math-
ematical competency as described by Paul, although desirable for all the reasons
he counts, seems a goal more distant than ever. The very fact that the interest in
mathematics is constantly decreasing8 and that teaching mathematics requires jus-
tification signals that young people may be lacking the motivation needed for the
success of learning. Paraphrasing Emmanuel Levinas’ famous claim on morality
one can say that asking “Why do we need to learn mathematics?” is, in a sense,
the end of mathematics; or at least the end of mathematics as we know it. Above
all, however, the young people’s universe changes too quickly and is way too noisy
these days to allow for what Paul is seeking: the “intense focus and concentration
and. . . logic”. Indeed, in the world that never stops, the long lonely diving into intri-
cacies of mathematics cannot be expected to be the young person’s first preference.
Although diving means going deeper, it also means remaining unseen and staying
in one place; and when the world itself is moving under one’s feet, staying put and
unnoticed may, in fact, mean going backwards. The young person’s preoccupation
with communicating with others leaves little room for substantial episodes of in-
depth, intense, well focused self-communication. All the more so, when her inner
voice is silenced by music flowing from the iPod directly into her ears.

This much for my critique of Paul’s ideas. It is now time to admit that there is a
lot in what he says that I applaud. Thus, in spite of the criticism above, I do sym-
pathize with Paul’s suggestion to use habits of mind as a leitmotif around which
to organize mathematics curriculum. Like him, I am convinced that mathematical
ways of thinking, more than the specific mathematical universes explored in school,
should be seen as, potentially, the student’s most valuable reward for the twelve
years of grappling with numbers, function, and geometric figures. In fact, I am will-
ing to take Paul’s proposal a step farther and suggest that we use the words “habits
of communication” rather than “habits of mind”. For me, this new term is simply
an extension of Paul’s idea. Since mathematics can be seen as a discourse—a spe-
cial type of communication9—the term habits of communication includes all that
is meant by habits of mind, and more: it also contains those habits that regulate
communicating with other people.

8This is evidenced by numerous publications on the drop in enrollment to mathematics-related
university subjects (e.g. Garfunkel and Young 1998; Gilbert 2006; OECD 2006) and by the frequent
calls for research projects that examine ways to reverse this trend (see e.g. TISME initiative in
UK, http://tisme-scienceandmaths.org/). The decline in young people’s interest in mathematics
and science is generally considered these days as one of the most serious educational problems, to
be studied by educational researchers and dealt with by educators and policy makers.
9This basic tenet, that builds on ideas of the philosopher Ludwig Wittgenstein and the psychologist
Lev Vygotsky, defines the approach to the study of thinking and learning known as communica-
tional, or commognitive (this last term, the portmanteau of the words communication and cognition,
signals that the two ingredients are members of the same category). For justification and elabora-
tion of the idea, as well as for a survey of its implications for the theory and practice of teaching
and learning mathematics see Sfard (2008).

http://tisme-scienceandmaths.org/
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I can see a number of reasons why extending Paul’s idea of mathematical habit
in this way may be a good thing to do. First, the new term brings to the fore the in-
terpersonal dimension of mathematics, one that practically disappears when we re-
strict the conversation to habits of mind. The word communication, when reinserted,
reminds us that mathematics originates in a conversation between mathematically-
minded thinkers, concerned about the quality of their exchange at least as much as
about what this exchange is all about; and that what Paul calls habits of mind—
the habits of systematic explanation, of proving, of translating between modalities,
of tinkering and of interpreting diagrams—developed over history as the necessary
characteristics of maximally effective interpersonal communication. More specifi-
cally, one of the major driving forces for the formation of these habits was the math-
ematicians’ (impossible) dream about infallible discourse, which would also have
an unlimited capacity for generalization. And indeed, Paul’s five “inclinations” are
what immunizes interpersonal exchanges against ambiguity and provides means for
solving problems in a way that leads to unshakable consensus.

And there is more. My second argument is that the importance of the commu-
nicational habits one develops when motivated by the wish to prevent ambiguity
and ensure consensus goes well beyond the mathematics itself. I am prepared to
go so far as to claim that if these habits were regulating all human conversations,
from those that take place between married couples to those between politicians,
our world would be a happier place to live. Third, presenting mathematics as the art
of interpersonal communication is, potentially, a more effective educational strategy
than focusing exclusively on intra-personal communication. The interpersonal ap-
proach fits the preferences of today’s young people’s and it is easier to implement.
After all, shaping the ways students talk to each other is, for obvious reasons, a
more straightforward job that trying to mould their thinking directly. Finally, there
are grounds to believe that framing the task of learning mathematics as perfecting
one’s ability to communicate with others creates a better chance for overcoming the
inherent situatedness of learning. Challenging students to find solutions that would
convince even the worst skeptic will likely help them develop the life-long habit
of paying attention to the way they talk (and thus think!). This kind of attention,
being focused on the person’s own actions, may bring about habits that are less
context-dependent and more universal than those developed when the learner is al-
most exclusively preoccupied with mathematical objects. For all these reasons, and
more, I suggest that we teach mathematics as the art of communicating.

Mathematical Literacy: What Does It Mean, to Whom, and Do
We Really Need to Teach It?

Hannah Perl

In his chapter, Paul Goldenberg’s touched upon many aspects of teaching and learn-
ing mathematics which I have struggled with, within myself and together with many
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of the people I have worked with, in the last seven years, as the chief superintendent
of mathematics in the Israeli Ministry of Education. Although Goldenberg’s habits
of mind approach appeals to my perception of teaching mathematics, mathematical
literacy has some merits, which cannot be dismissed and it is necessary to recon-
cile the two conflicting approaches in some manner. My comments are based on my
experience of implementing mathematical literacy curricula in schools.

Since Israel is a member of the OECD, it is expected of our students to participate
in international surveys and assessments in which PISA plays an important role. We
are not only expected to participate, we have to do reasonably well and if possi-
ble, extremely well. Therefore it is reasonable that mathematical literacy should be
fostered throughout the mathematics curriculum. The definition of mathematical lit-
eracy, for us, at the Ministry of Education has to be, at least in its core, the PISA
definition10 as reflected in the PISA framework and questions. This definition in-
cludes the contents, the processes, and the contexts as defined in the framework.
We also have to take into consideration the mathematical tools of the 21st century,
with which the students will be assessed. We can extend the definition of mathe-
matical literacy in the curriculum as we see fit, but the PISA definition has to be its
foundation.

The mathematics chief superintendent and the curriculum developers are ex-
pected to incorporate this particular “mathematics literacy” into the curriculum and
into teaching beginning in middle school (maybe even earlier), and continuing into
high school targeting students 15–16 years old. Resources are made available to
make this process possible. These resources include development of new materials,
teacher professional development and special classroom instructors. As a result, we
want our students to be able to demonstrate their ability to solve a wide range of
problems embedded in “real-life” contexts.

The ability of students to identify and apply mathematics when it is needed does
not develop by itself even with mathematically oriented students and has to be taught
explicitly to both mathematically strong students and those who are not mathemat-
ically inclined. Therefore mathematical literacy should be taught at all levels and
cannot be ignored. Solving a problem that has, as its ingredients, a story, some vi-
sual representations and algebra can be interesting and mathematically challenging.
With careful effort the concept of mathematical literacy can be extended so that
the PISA definition will be embedded in it. This encompassing definition will be
suitable for higher-level students as well.

What kind of mathematics should we teach students who are not mathematically
oriented? One answer is “mathematical literacy” as defined by PISA: skills and

10The PISA 2012 Definition of Mathematical Literacy: “Mathematical literacy is an individual’s
capacity to formulate, employ, and interpret mathematics in a variety of contexts. It includes rea-
soning mathematically and using mathematical concepts, procedures, facts, and tools to describe,
explain, and predict phenomena. It assists individuals to recognize the role that mathematics plays
in the world and to make the well-founded judgments and decisions needed by constructive, en-
gaged and reflective citizens.” (PISA 2012 Mathematics Framework, Draft, November 30, 2010
http://www.oecd.org/pisa/pisaproducts/46961598.pdf).

http://www.oecd.org/pisa/pisaproducts/46961598.pdf
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understanding which students will be able to use throughout their life. Maybe it
is not enough, but it is a must. For example, to understand medical laboratory test
results one needs to understand probability concepts and percentages. Maybe such
realistic problems that may seem “relevant” to their life may motivate students to
learn mathematics.

Mathematically oriented students should be challenged with more complex prob-
lems that integrate a broader range of topics, advanced mathematical texts and the
use of higher mathematical concepts and competencies. The term “realistic” should
be broadened.

It is important to understand that language literacy is intertwined with mathemat-
ical literacy. In order to solve problems that are situated in contexts, students must
be able to read and decipher texts that are frugal and dense (every word counts).
This adds to the level of difficulty of the problem and we have found that this is the
most common complaint of our teachers who claim that reading and understanding
the problem is the main issue. Identifying and applying mathematics come second
and third.

Reflective Summary: Where to from Here?

The position papers presented by the authors of this chapter, when taken together,
substantiate Paul Goldenberg’s claim about the ambiguity of the term “mathematical
literacy”. The six interpretations, no two of which appear quite the same, seem to be
drawing on three basic views, differing from each other in their vision of the relation
between mathematical competency and mathematical literacy.

The first, “not-much-new” view, represented by Paul Goldenberg and Abraham
Arcavi, practically equates the two competencies. According to these authors, the
claim that somebody is mathematically literate is not much different from saying
that this person knows mathematics (or mathematical literature—see Abraham Ar-
cavi’s contribution), except that the word “literacy” stresses the aspect of utility.
According to these authors, the rhetoric of literacy, about which they are not overly
enthusiastic, conveys the message that the main value of mathematical knowledge
lies in its “real-life” usefulness. It also implies that the learning of mathematics
should be organized around its applications.

The other two approaches make a clear distinction between formal mathemat-
ical competency and mathematical literacy. According to the minimalist view, the
requirement of mathematical literacy is somewhat less demanding than the call for
formal mathematical competency. As stated by Ron Livné, mathematical literacy is
meant for “less mathematically sophisticated children” or for “the lower echelons:
people who want the national certificate but who will not study further or will not
need formal mathematics later”. This view is echoed by Hannah Perl who, after ad-
mitting that “mathematical literacy should be taught at all levels”, adds that it is the
only realistic option for students who “are not mathematically oriented”.
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The proponents of the last, maximalist view, with Iddo Gal and myself (Anna
Sfard) among them, tend to claim the opposite: mathematics literacy is more de-
manding than formal mathematical competency. While having the formal mathe-
matical knowledge as its subset, mathematical literacy includes knowing when to
turn to mathematical discourse and what parts of this discourse to use. This said,
mathematical literacy is not “formal mathematics plus” that is, does not result from
a simple addition of the “when” (applications) to the “how” (the formal mathemat-
ical competency). The how of literate mathematical discourse—the repertoire of its
routine ways of doing things—is not quite the same as that of formal mathematical
discourse. For one thing, it is richer and more varied, flexibly adaptable to specifici-
ties of the situation in which one is required to implement the routines.

Clearly, these three conceptualizations of mathematical literacy are mutually in-
compatible, and it is therefore not surprising that the authors occasionally sound as
contradicting one another. Still, it is clear that they agree on one basic issue: math-
ematics, in one form or another, must be an obligatory part of everybody’s school
experience. Indeed, all the contributors seem to care for mathematics and to be gen-
uinely concerned about its future and the future of those who are going to need it.
Even the proposal to significantly reduce the compulsory curriculum, put forth by
some of the authors, grew out of this very authentic concern. And there is yet another
consensual view: the contributors are unified in their belief in the need for a change.
In one way or another, each of them claims that much additional thought must be
given to the questions of “What mathematics should be taught?”, “To whom?”, and
“How?” In other words, the authors propose unanimously that we rethink school
mathematics.

This, however, is where the consensus ends. The debate does not bring agreed
answers to the questions everybody was asking. But responding in unison was not
among the aims of this conversation. Rather, the idea was to brainstorm, think to-
gether, and end up with an assortment of possibilities that can trigger and fertilize a
future discussion. The proposed reforms in school mathematics vary from minor to
radical, and from affecting only some aspects of curricula to requiring a total over-
haul. The proposals are ordered below according the degree of change implied by
their response to the what-, to-whom-, and how-questions.

Minor Reform—Change the “How” This approach, which goes hand in hand
with the “nothing new” view of mathematical literacy, can be described as guided
by the slogan “Keep the what and to whom of the current mathematics curricula,
while revising the how”. Professed in this volume by Paul Goldenberg and Abra-
ham Arcavi, who discuss the idea of organizing the teaching of mathematics around
the habits of mind rather than around applications, this recommendation aims at
continuing and refining the principle of “mathematics for all”.

Moderate Reform—Change the “To Whom” This approach, reflective of the
minimalist view of mathematical literacy, can be described as “Mathematical lit-
eracy for those who can’t (or don’t want to) manage formal mathematics”. The
foundational assumption of this proposal is that mathematical literacy, as a reduced,
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less demanding version of the regular school mathematics, has a chance to succeed
where the ‘normal’ mathematics fails. This approach is reflected in the practice of
grouping the less successful mathematics students in separate classes, supposed to
learn according to special curricula dedicated to mathematical literacy.11

Radical Reform—Change All This approach, which calls for “Mathematics lit-
eracy for all, formal mathematics for some” can be seen as, in a sense, the opposite
of the former proposal. It goes hand in hand with the maximalist view, according
to which mathematics literacy does not lower the bar, but on the contrary, raises the
learning and teaching standards to new heights. To be successful in dealing with
everyday tasks requiring mathematics one should know all that has always been
taught, but must know it in a new, more complex way. Indeed, the radical reform, as
outlined here, is quite different from the one that merely stresses the applications of
formal mathematics. It calls for a reflexive, cyclic process in which formal mathe-
matical discourse is being derived from other discourses and then, after considerable
elaborations, returns to these other discourses in order to refine, to enrich and to ex-
tend them. Deep, far-reaching changes are thus required by the proponents of this
kind of reform in all aspects of school mathematics: in what to teach, to whom, and
how.

Clearly, this latter radical stance clashes frontally with the “minimalist” idea of
mathematical literacy as the “second best” for underachieving students. The “radi-
cals” are likely to claim that the minimalist view results from a faulty interpretation
of certain research findings. True, many studies have shown that even unschooled
people can be impressively skillful in numerical or geometric tasks that constitute
a routine part of their daily activities. And yet, this fact does not imply that mathe-
matical literacy should or can function as a safety belt for students with a history of
drowning in numbers, functions and geometrical figures. Indeed, however one looks
at the impressive findings about “everyday mathematics”, the message seems to be
just the opposite: this mathematics is neither easily learnable—it requires a great
deal of practice; nor truly useful—the skills developed through repetitive perfor-
mance of a small number of everyday tasks are highly situated, that is, they depend
on the specificities of these tasks and of the situations in which they are routinely
executed, and they do not transfer to anywhere else.

Unfortunately, none of the three proposals came with a clear statement on how
to overcome the situatedness of learning that has always been the major obstacle
to our efforts to promote students’ mathematical literacy. How to foster students’
ability and willingness to “speak mathematics” whenever this kind of talk may be
of help remains the question of questions, one that has not yet been properly dealt

11Such tracking has been practiced in a number of countries, with England (the special program
is known as Functional Mathematics; see QCA 2005) and South Africa (see Venkatakrishnan and
Graven 2006) among them. A similar tendency exists in Israel, where there is a plan to allow
students with the history of low achievement to “compromise” on mathematical literacy (see, for
instance, the newspaper publication in Hebrew, http://www.nrg.co.il/online/1/ART2/333/661.html,
retrieved on 21.07.12).

http://www.nrg.co.il/online/1/ART2/333/661.html
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with in this conversation. This topic is weighty and complex enough to merit another
meeting, and probably much more than one.
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Chapter 11
Fifty Years of Thinking About Visualization
and Visualizing in Mathematics Education:
A Historical Overview
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Abstract This chapter surveys meanings given to the term “visualization” in math-
ematics, mathematics education, and psychology, and considers the evidence for the
oft-heard assertion that mathematics learners tend to prefer to think algorithmically
rather than visually. The analysis reveals that students who do very well on pencil-
and-paper “visualization” tests often prefer not to use visual methods when attempt-
ing to solve mathematical problems; and those who do not do well on standard
visualization tests often describe themselves as “visual thinkers”, and prefer to use
visual methods when attempting to solve mathematics problems. The influence of
various mathematics educators, and especially Alan Bishop—who thought of visu-
alization in terms of a person’s use of visual images when posing and solving mathe-
matics problems—of Norma Presmeg, and of a group of mainly Israeli mathematics
educators who developed the construct “concept image”, is also examined. Views
of some mathematicians are also taken into account. In the early 1990s, Zimmer-
mann and Cunningham (Visualization in teaching and learning mathematics, 1991)
wrote of how David Hilbert had spoken of two tendencies in mathematics—one that
sought to crystallize logical relations, and the other to develop intuitive understand-
ing, especially through “visual imagination” (p. 2). In addressing that theme, Ted
Eisenberg and Tommy Dreyfus (Visualization in teaching and learning mathematics,
pp. 25–37, 1991) spoke of mathematics students’ preference for “algorithmic over
visual thinking” (p. 25). The paper draws special attention to the work of two lesser-
known mathematics education researchers, Nongnuch Wattanawaha and Stephanus
Suwarsono. It was Suwarsono who devised and applied a method whereby learner
preferences for visual or verbal thinking, as well as the “visualities” of the mathe-
matics tasks themselves, could be measured and calibrated on the same scale, using
item response theory.
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More than two centuries ago, Johann Friedrich Herbart, a German philosopher, psy-
chologist and educator, emphasized the need for teachers to try to become aware
of links and preferences in individual learners’ minds. Herbart urged teachers to
design lessons that took into account what learners were likely to be thinking
about when they attempted to solve problems (Ellerton and Clements 2005). Dur-
ing the twentieth century there gradually developed, among mathematicians (e.g.,
Hadamard 1945; Hilbert 1999; Zimmermann and Cunningham 1991), psychologists
(e.g., Kosslyn 1980; McGee 1979; Lohman 1979; Paivio 1971; Piaget and Inhelder
1971; Pylyshyn 1973; Richardson 1977; Shepard and Metzler 1971; Thomas 1989;
Thurstone 1938), and mathematics educators (e.g., Bishop 1980; Clements 1982;
Eisenberg and Dreyfus 1991; Skemp 1972; Suwarsono 1982), an interest in the ex-
tent to which people use visual imagery when tackling mathematical tasks.

Toward the end of the 1970s, Gagné and White (1978) argued that each indi-
vidual’s working memory with respect to a given topic or problem comprises a
uniquely related set of five components: verbal knowledge (e.g., the definition of
an equilateral triangle), skills (e.g., how to complete the square in algebra); im-
agery (e.g., a visual image of an isosceles triangle), attitudes (e.g., belief about a
personal inability to cope with geometrical proof); and episodes (memories of perti-
nent personal events). Gagné and White referred to a learner’s unique configuration
in working memory, with respect to a topic, as that learner’s cognitive structure with
respect to the topic. In mathematics education, a similar construct—that of a concept
image—would be accorded center stage (Vinner and Hershkowitz 1980).

Tall and Vinner (1981) maintained that imagery, and especially visual imagery,
could be a key ingredient of a learner’s concept image. They used the term concept
image “to describe the total cognitive structure that is associated with the concept,
which includes all the mental pictures and associated properties and processes”
(p. 152). The contention that idiosyncratic and unique links in cognitive structure
determined an individual learner’s concept image with respect to some mathemati-
cal concept or principle, and that therefore educators needed to take account of and
seek to influence students’ concept images, would be emphasized by numerous re-
searchers during the 1980s (e.g., Dreyfus and Eisenberg 1982, 1983; Tall and Vinner
1981; Vinner and Hershkowitz 1980; Vinner and Dreyfus 1989).

This paper summarizes some of the research carried out since 1970 which has
sought to identify how students think when attempting to solve mathematical prob-
lems. The preparation of the paper has been a moving experience for me, in two
ways. First, after re-reading the writings of Ted Eisenberg, Tommy Dreyfus, and
others within a very hardworking and highly-achieving group of Israeli mathematics
education scholars, I was reminded that their work was—I choose these adjectives
carefully—courageous, creative and powerful. Some of their publications—like, for
example, Eisenberg and Dreyfus’s (1991) “On the Reluctance to Visualize,” Dreyfus
and Eisenberg’s (1986) “On the Aesthetics of Mathematical Thought,” and Eisen-
berg’s (2008) “Flaws and Idiosyncrasies in Mathematicians. . . ”—have had a signif-
icant impact on my own thinking. The second influence on me, personally, was to
reignite my interest in the role of visual thinking in mathematics teaching and learn-
ing. I trust that this paper will not only attest to my re-emerging interest but, in so
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doing, pay tribute to the pioneering and persistent work in the field by Miriam Amit,
Alan Bishop. Tommy Dreyfus, Ted Eisenberg, Michael Fried, Rina Hershkowitz,
Norma Presmeg, Richard Skemp, Schlomo Vinner, and David Tall.

“Visualization” Has Different Meanings Among Different
Groups of Scholars

The term “visualization” means different things to different groups of scholars.
I shall refer, especially, to meanings developed: (a) by psychologists who used fac-
tor analytic techniques; (b) by mathematics educators; and (c) by mathematicians.
Although researchers within and between these groups have offered different defi-
nitions of visualization, the differences within the groups have been less than those
between the groups.

Factor Analysts’ Perspectives on Visualization

I first became acquainted with the psychological literature on visualization during
1976 and 1977 when Nongnuch Wattanawaha and I investigated gender differences
in spatial ability, and how these might have an impact in mathematics education.
We became aware that factor analysis (in psychology) tended to reveal two major
factors—“spatial orientation” and “visualization”—as well as numerous other minor
factors (for further details, see, Lohman 1996).

The following statement by Burin et al. (2000) is representative of the kind of
language to be expected of psychologists working from a factor-analytic perspec-
tive:

Two general kinds of solution strategies for Vz tasks are described in the literature. One
is an analytic or feature comparison approach, in which the examinee seeks to verify the
identity of key features of the probes to match them with the target stimulus. A variant of
this analytic strategy is verbal labeling of the features. The other is a holistic or spatial
manipulation strategy, which involves mental movements of the probes, such as rotation,
translation, synthesis. (p. 277)

Burin et al. (2000) argued that these two “Vz” strategies involved “analytic” and
“holistic” thinking (p. 278), and that persons employing analytic strategies tended
to solve visualization tasks more quickly than those using holistic strategies.

We also discovered that there was a verbalizer-visualizer hypothesis (Richard-
son 1977), which asserted that some people preferred to think in verbal/analytic
ways, and others in visual ways. This hypothesis seemed to be supported by Vadim
Krutetskii’s (1976) research, which indicated that although some gifted mathematics
students preferred to use visual approaches to mathematical problem solving, others
did not, and that, indeed, some tried to avoid using visual approaches. Krutetskii
classified mathematics students into three categories:
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1. Geometric thinkers (with a preference for visual-pictorial thinking);
2. Analytic thinkers (with a preference for verbal-logical thinking); and
3. Harmonic thinkers (who preferred to use a mixture of visual-pictorial and verbal-

logical methods.

Mathematics Educators’ Perspectives on Visualization

Following Bishop (1973, 1980), Presmeg (1986a, 1986b, 2006) maintained that
when a person creates a spatial arrangement there is a visual image in the per-
son’s mind, guiding this creation. For Presmeg, visualization includes processes of
constructing and transforming both visual mental imagery and the inscriptions of a
spatial nature. This interpretation of visualization takes on a constructivist position
whereby a person establishes links between the unique, but temporary, arrangements
of that person’s mental structures, which allows and precipitates unique construc-
tions of meaning.

Presmeg (1985) distinguished between five kinds of imagery:

• Concrete-pictorial imagery occurs when imagery resembles real-life objects or
situations;

• Pattern imagery is employed when pure relationships are imagined in some form,
and the image so formed is devoid of concrete details;

• Memory images of formulas are used when abstract information is manifested in
concrete images;

• Kinesthetic imagery is associated with muscular activity (e.g., gestures by which
a shape or pattern is traced out);

• Dynamic imagery occurs when images are mentally transformed and manipu-
lated.

According to Presmeg (2006), in the 1980s quantitative research which measured
performance, visuality, and other such creations, began to be regarded as a relic of a
positivist, behaviorist era. Cognitive researchers, and those working from semiotic
perspectives, sought ways to investigate what transpired in the minds of students
through introspective and retrospective analyses of interview data, observation data,
or data from responses to questionnaires. Since it was impossible to “photograph”
what went on in the brain, triangulation, in which data from various vantage points
were analyzed and compared, became important (Owens 2005; Owens and Outhred
2006).

Mathematicians’ Perspectives on Visualization

In discussing the question “what is mathematics visualization?” Zimmermann and
Cunningham (1991), two mathematicians, wrote:
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We take the term visualization to describe the process of producing or using geometrical or
graphical representations of mathematical concepts, principles or problems, whether hand
drawn or computer generated. (p. 1)

Zimmermann and Cunningham acknowledged that this view of visualization dif-
fered from common usage and from the view in psychology, where the meaning
was “closer to its fundamental meaning ‘to form a mental image”’ (p. 3).

Of many statements made by scholars about the role of visualization in their own
theorizing, problem posing and problem solving, perhaps the most famous is that by
Albert Einstein:

The words or the language, as they are written or spoken, do not seem to play any role in my
mechanism of thought. The psychical entities which seem to serve as elements in thought
are certain signs and more or less clear images which can be “voluntarily” reproduced
and combined. . . . The above mentioned elements are, in my case, of visual and some of
muscular type. Conventional words or other signs have to be sought for laboriously only in
a secondary stage. . . . In a stage when words intervene at all, they are, in my case purely
auditive, but they interfere only in a secondary stage as already mentioned. (Quoted in
Hadamard 1945, p. 142)

Probably, agreement will never be reached, among mathematicians, mathematics
educators, psychologists, and linguists, on the meaning of the term “visualization.”
That makes it important to be able to determine what someone means when she or
he is using the term.

For me, visualization is something which someone does in one’s mind—it is
a personal process that assumes that the person involved is developing or using
a mental image. From that perspective, one of the most appealing descriptions of
visualization, for me, could be associated with the so-called DIPT classification
framework for spatial tasks developed by the Thai mathematics educator, Nongnuch
Wattanawaha.

Wattanawaha’s DIPT Classification Framework

Wattanawaha (1977) pointed to four fundamental general characteristics of spatial
tasks:

1. The Dimension of thinking required by the task;
2. The degree of Internalization required;
3. The manner in which the task required an answer to be Presented; and
4. The Thought Process required, and in particular whether the sequence of mental

operations needed was given to, or had to be worked out by, the person doing the
task.

Having decided that these four characteristics were of primary importance for the
classification of a person’s response to a task, Wattanawaha identified logical hier-
archies within each characteristic. Thus the Dimension characteristic was taken to
have three values, depending on whether the task required 1-, 2-, or 3-dimensional
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Table 11.1 Wattanawaha’s (1977) DIPT classification framework for responses to spatial tasks

Symbol Name Value labels, and corresponding definitions

D Dimension
(3 values)
1, 2, 3

1. The response used 1-D thought (but not 2- or 3-D thought)

2. The response used 1-D thought, (but not 3-D thought)

3. The response used 3-D thought

I Internalization
(3 values)
0, 1, 2

0. The task was done at the perceptual level. There was no attempt to
evoke a visual image, or the only visual image was a “duplicate” of a
given stimulus, or an image corresponding to a simple transformation
of the stimulus, or parts of it

1. A visual image was evoked, but in order to do the task, thinking
only needed to about aspects of the image—that is to say, it remained
fixed in the mind

2. Not only was a visual image evoked, but in working on the task
that image was operated upon (“transformed”) in the mind

P Presentation
(3 values)
0, 1, 2

0. The form of the expected response to the task did not require a
mental image to be described, identified, or drawn on paper

1. The expected response had to be chosen from a number of
different images (presented in pictorial form) or actions. The pictorial
images or actions corresponded to the final visual image associated
with the task

2. The expected response required the final visual image to be drawn
on paper, or otherwise described using words or hand or other
movements

T Thought
process
(2 values)
0, 1

0. The task specified the mental operations that had to be carried out

1. The task did not specify the mental operations that had to be
carried out, but enough information was given to enable an
appropriate sequence of operations to be determined

thought. In a similar way, the number of values allowed for the Internalization, Pre-
sentation, and Thought Process characteristics were 3, 3, and 2 respectively (see
Table 11.1, taken from Wattanawaha and Clements 1982).

Wattanawaha (1977) analyzed responses to 72 pencil-and-paper spatio-math-
ematical tasks from a representative sample of 2346 students in grades 7 through
9 (1201 males, 1145 females). Although females did not significantly outperform
males on any of the 72 tasks on the Monash Spatial Thinking test, males signifi-
cantly outperformed females on 25 of the tasks. Of those 25 tasks, 21 had an “Inter-
nalization” value of 2. Males especially tended to do better on tasks with D = 3 and
I = 2 (Wattanawaha and Clements 1982).

In a separate study, Clements and Wattanawaha (1978) observed and, where
necessary, questioned, 328 interviewees (from grades 7, 8 and 9) as they worked
through 16 spatio-mathematical tasks suitable for lower-secondary school students.
They concluded that “the range of strategies employed. . . was amazing” (p. 434).
With one of the tasks, for example, a student, on being handed a model of a cube
and shown what an edge was, was asked to state how many edges the cube had al-
together. About 30 percent of the students did not answer correctly, and those who
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Fig. 11.1 The H-task from Wattanawaha’s (1977) Monash Spatial Thinking Test (If the H-shape
in Fig. 1 was placed in the position shown in Fig. 2, what would be the letters for the Corners 1
and 2?)

did answer correctly used a wide range of methods to get answers. Some responses
were very “visual,” others were not, and for some it was difficult to decide one way
or the other (e.g., how could one classify the response: “There are six faces, each
has four edges. Six multiplied by 4 is twenty-four which, which when divided by 2
is 12”?).

Clements and Wattanawaha’s (1978) findings raised the question—are some
written tasks more likely to demand a strong internal visual response, and are some
students more likely than others to give visual responses? If someone answers either
of those questions in the affirmative, then a further question naturally arises—how
can we know that to be the case?

One of the questions on Wattanawaha’s (1977) Monash Spatial Thinking test is
presented in Fig. 11.1.

In 1981, when presenting a paper to a meeting of the American Educational
Research Association on the influence of spatial abilities and visual imagery on
mathematical thinking, I asked the 100 or so people present at my talk to attempt the
H-task in Fig. 11.1. After about a minute, I asked those present to indicate whether
they had used either of the two following methods to find the label for “Corner 1.”

1. Did you imagine the shape in Fig. 1 being rotated and turned, so that it matched
the shape in Fig. 2 (and then work out that the letter J would be at Corner 1)?
Or, . . .

2. Did you avoid imagining the transformation by thinking along the following
lines: “In Fig. 2, Corner 1 is at the far opposite corner from Corner D, and in
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Fig. 1, Corner J is at the far opposite corner to Corner D. Thus, Corner 1 must
be Corner J .

One-fourth of those present indicated that they had used Method 1, and about one-
third indicated that they had used Method 2 (Clements 1983).

Of interest is the fact that in 1983 when I had the privilege of working with
the then 7-year-old mathematical prodigy, Terence Tao (Clements 1984), I asked
him to solve the task shown in Fig. 11.1. He gained the right answers by analytic
reasoning. He told me that he did not attempt to rotate the H-shape mentally, because
that method was “not as good as” the method he used.

Suwarsono’s Work in Establishing a Foundation for Researching
Learner Preferences for Verbal-Analytic or Visual Processing

Suwarsono’s (1982) Research

Stephanus Suwarsono (1982) pushed my thinking away from spatial ability toward
visual imagery (Clements 1982). He wondered how a researcher might legitimately
measure whether someone had a preference for visualizing. He also wondered
whether such a preference might relate to the person’s spatial abilities, and whether
the preference might influence mathematical problem-solving performance.

Suwarsono (1982) developed his Mathematical Processing Instrument (hereafter
MPI) using item response theory (IRT). MPI had two parts: the first consisted of
30 mathematics word problems developed with seventh- to ninth-grade Australian
students in mind; the second contained written descriptions of different methods
commonly used by students attempting the word problems in Part I. Usually, be-
tween three and five possible methods were described for each problem. Students
were asked to attempt the problems in Part I and then to indicate, retrospectively,
which (if any) of the methods described in Part II they had used. If a student believed
that her method for solving a problem was different from any described in Part II,
then she was instructed to say so, and to describe her method in writing.

In constructing his MPI, Suwarsono was guided by the following criteria:

1. The questions should range in difficulty from “very easy” to “moderately diffi-
cult” for the students. Very difficult questions were to be avoided.

2. No diagram was given, or requested, in any question.
3. For each question it could be expected that a variety of methods would be used

by lower-secondary school students. In particular, it was expected that in a large
group of, say, 200 students, some would think in verbal-logical ways, and others
in visual ways.

Suwarsono not only measured the extent to which a person preferred thinking
visually when attempting mathematics tasks; he also measured the “visualities” of
the tasks themselves. That point requires explanation.
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Scoring the MPI

Suwarsono scored students’ responses to Part II of his instrument in the following
manner:

+1 If reasoning was based on a diagram (drawn by a student) or on some visual
image (constructed by the student).

0 If no answer was given, or the student could not decide which method she used.
−1 If reasoning was based on a verbal-logical method which did not involve a

diagram or the construction of a visual image.

Using IRT, Suwarsono calibrated each student on an analytic-visual (ANA-VIS)
dimension, and also each item on the same ANA-VIS dimension.

John Eliot, of the University of Maryland, an authority on how spatial abilities
influence learning, served as an external assessor for Suwarsono’s PhD dissertation.
Eliot liked Suwarsono’s ideas, and his students used Suwarsono’s MPI—with due
acknowledgement (see, e.g., Sheckels and Eliot 1983). This got Suwarsono’s ideas
known in the United States, and they are now used by many scholars interested
in relationships between processing of tasks by visual and verbal means (see, e.g.,
Cheetham et al. 2012; Kozhevnikov et al. 2005; Lowrie and Kay 2001).

Here are 3 of the 15 questions from Part I of the MPI. According to Suwarsono’s
analyses, one of the three is a very visual task, and another is very verbal-analytic.
See if you can decide which is which, before looking at the next paragraph.

• Two years ago Mary was 8 years old. How old will she be five years from now?
• One morning a boy walked from home to school. When he got half-way he real-

ized that he had forgotten to bring one of his books. He then walked back to get it.
When he finally arrived at school, he had walked 4 km altogether. What was the
distance between his home and school?

• A girl had 11 plums. She decided to swap the plums for some apples. Her friend,
who had the apples, said: “For every 3 plums, I will give you an apple.” After the
swap, how many plums did the girl have?

Table 11.2 indicates where each of the three appeared on Suwarsono’s ANA-VIS
scale. On the scale, a very visual item would have a measure of about 40, a very
analytic question, a measure of about 60, and an “average” analytic-visual question,
a measure of about 50. Would the measures shown in Table 11.2 be independent of
the sample of students chosen to develop the MPI instrument? Before you answer
that question, note that Suwarsono used a highly sophisticated form of item response
theory which claimed to generate sample-free measures.

What, do you think the ANA-VIS measure would be for the following “balloon
task”?

A balloon first rose 200 m from the ground, then moved 100 m to the east, and then dropped
100 m. It then travelled 50 m to the east, and finally dropped straight to the ground. How
far was the balloon from its starting point? (Suwarsono 1982, p. 292)

Suwarsono’s (1982) analysis indicated it was: 40.6—which made it a “highly vi-
sual” item.
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Table 11.2 ANA-VIS Measures of three questions from Suwarsono’s (1982) MPI

Question ANA-VIS
measure

Classification

Two years ago Mary was 8 years old. How old will she be in
five years from now?

60.6 Highly analytic

One morning a boy walked from home to school. When he
got half-way he realized that he had forgotten to bring one
of his books. He then walked back to get it. When he finally
arrived at school, he had walked 4 km altogether. What was
the distance between his home and school?

38.8 Very visual

A girl had 11 plums. She decided to swap the plums for
some apples. Her friend, who had the apples, said: “For
every 3 plums, I will give you an apple.” After the swap,
how many plums did the girl have?

51.2 Average (neither
analytic nor visual)

Of course, a student’s response to a mathematics task can be influenced by many
factors—like, for example, teaching received from an instructor who is somewhere
on the ANA-VIS scale; or the approach adopted in a textbook written by an author
who is located somewhere on the same scale; or by a student herself, or himself, who
is located somewhere on the same scale. It is also obvious that a student’s mathe-
matical understanding can be affected by a range of other, contextual variables.

When, in 1980, Glen Lean and I used MPI with first-year engineering students
in Papua New Guinea (PNG), we got four intriguing results (Lean and Clements
1981). First, we found that MPI clearly identified visual and non-visual students.
Second, there was no significant correlation between students’ scores on a highly-
regarded spatial visualization test (demanding mental rotation of cubes) and their
ANA-VIS scores. Third, highly visual students tended to use visual methods even
on highly verbal-logical (analytic) tasks, and highly verbal-analytic students tended
to use verbal-logical methods, even on highly visual tasks. And, fourth, students
who preferred to use verbal-analytic approaches scored higher on a mathematics test
dependent variable than students who preferred to use visual processing approaches.
Figures 11.2 and 11.3 from Lean and Clements (1981) show unedited responses by
two PNG students to the problems shown in Fig. 11.2.

On Suwarsono’s ANA-VIS scale, the first student’s score indicated that he was
highly analytic, and the second student’s score indicated he was highly visual. In-
cidentally, the first student gained the highest score of the 116 engineering students
on a rigorous test of mathematics. The claim that item and person calibration was
sample-free was tested by calibrating MPI items’ analytic-visual measures with both
PNG engineering students and Australian lower-secondary school students. The
Spearman-rho rank correlation between the measures obtained on the “visuality”
of the items exceeded 0.9.

Suwarsono’s (1982) and Lean and Clements’ (1981) analyses established that
there are students who do well on pencil-and-paper “visualization” tests who pre-
fer not to use visual methods when attempting mathematical tasks. I often hear
mathematics students refer to themselves as “visual thinkers,” and have noticed that
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PROBLEM 1: Tau has more money than Dilli and Mike has less money than Dilli.
Who has the most money?
PROBLEM 2: In an athletics race, Johnny is 10 m ahead of Peter, Tom is 4 m
ahead of Jim, and Jim is 3 m ahead of Peter. How many metres is Johnny ahead
of Tom?
PROBLEM 3: Jack, Luke and Kuni all have birthdays on the 1st January, but Jack
is 1 year older than Luke and Jack is three years younger than Kuni. If Kuni is 10
years old, how old is Jack?

(1) Tau 3x (2) John 10 m to Peter x m
Dilli 2x Tom 4 m to Jim x m
Mike x Jim 3 m to Peter x m
∴ Tau has more money. John to Tom?

(3) Kuni Jo P Jo − P
5x + 2x + x 10 m to 0 10 − 0 = 10
If Kuni = 10 yr old Jim P Jo − Jim
∴ 5x − 2x = 3x 3 to 0 10 − 3 = 7
∴ 10x − 3x = 7x Tom 4 m to 5 = 10 − 3 − 4 = 3
∴ Jack is 7 years old. ∴ John 3 metres ahead of Tom.

Fig. 11.2 Solutions by a non-visual student (unedited) to the three problems

Fig. 11.3 Solutions by a visual student (unedited), to the three problems

although these students attempt to use “visual methods” (sometimes appropriately,
but often inappropriately) when attempting to solve mathematics tasks, they tend to
be among mathematically “weaker” students. On the other hand, Eisenberg (1994)
claimed that “a vast majority of students do not like thinking in terms of pictures—
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and their dislike is well documented in the literature” (p. 110). Eisenberg and Drey-
fus (1991) commented that students are reluctant to use visual methods, preferring
“algorithmic over visual thinking” (p. 25).

A Closing Example

Eisenberg and Dreyfus (1991) were right to call for greater use of forms of teaching
that make “higher demands than thinking algorithmically” (p. 25). I can speak first-
hand about what happens to students brought up on a heavy regime of algorithms
that make little or no sense to them. For the past 10 years I have taught an elementary
algebra course for prospective elementary and middle-school teachers who have
chosen to specialize in mathematics. At the beginning of the course most of these
students think they know the mathematics they learned at school well—but in fact
most of them think in very wooden, mechanical ways about algebra (Ellerton and
Clements 2011).

The only graphs about which they know anything much at the start of the course,
are those with equation y = mx + b—almost all of them can parrot that this “cuts
the y-axis at b, and has a slope of m.” One of my aims during the course, is to
seek to develop the students’ visual imagery, so that they can “see,” in their minds’
eyes, graphs corresponding to y = x2, y = x3, y = 1/x, y = √

x, y = √
x2, y =

−2(x − 1)2, etc. I want them to learn to approach mathematics problem solving
in both analytic and visual ways, and toward that end I involve all the students
in project work for which, working in pairs, they develop solutions to interesting
mathematics problems, present the solutions to the whole class, and then create and
solve similar problems. The students are invited to be as creative as possible, and to
seek elegant, rather than pedestrian, solutions.

Here is an example of a “problem” that, over the past four years, I have asked
students to solve: “Suppose, on a circular clockface the time shows exactly 12 noon.
Assuming the clock is working well, how many minutes (to 1 decimal place) will
it take before the minute hand and the hour hand are pointing in exactly the same
direction again?” Most students immediately set about drawing a circular clockface.
Another common starting point with the students is to try to set up an equation in-
volving x (although the meaning of this variable is not usually well defined). Most
cannot estimate what the answer might be. Quite a few say “one hour,” and others
say “65 minutes”. Some simply write “1.05” and do not show a diagram. In inter-
views these students often say they did not think of hands moving around a circular
clockface.

Invariably, pairs of students who are asked to do this problem initially find it
extremely difficult. When they come to talk with me about it, I immediately point to
a circular clockface on a wall and ask them where they think the two hands would
be when they next point in the same direction. The two students usually generate a
statement like “5 past 1.” If that statement is made, I ask them: “Would it be exactly
5 past 1?” After further discussion, they usually tell me: “Well, actually, it would be
a little bit more than 5 past 1.” I then ask: “How could you work it out exactly?”
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At that stage, relevant imagery has been developed. But there is still a way to go.
Indeed, they have now reached what Newman (1983) called the point of “trans-
formation”, from words and imagery, to a symbolic representation of the problem.
There is a fair bit of hard thinking required before they arrive at an equation like:

6t = 360 + 1

2
t, where t minutes is the required amount of time after 12 noon.

From this, the solution 65.5 minutes can easily be obtained.
The next phase is for the pair of students to work with the whole class for about

20 minutes, with the aim of getting the 25 (or so) other students in the class to the
point where they can solve the problem confidently. At this pedagogical stage, I talk
to the pair of students about developing relevant visual imagery—nearly all of them
decide to borrow, or construct, a circular clockface for which they can rotate the
hands. I then challenge them to think of how they would handle the transformation,
or mathematization, stage of the problem. After a lot of talk, and reflection, they
begin to say things like: “Well, the big hand rotates 360 degrees in 60 minutes, so
it’ll rotate 6 degrees every minute, and hence in t minutes it will rotate 6t degrees.
The little hand will move at one-twelfth of that rate, that is to say, it will go 1

2 t

degrees when the big hand goes 6t degrees.” Finally, they make sense of the equation
6t = 360 + 1

2 t .
The next stage is the problem-posing stage. The pair of students have to pose two

related problems suitable for other members of the class to solve. Here are some of
the problems which students have posed:

1. If the time is 3:10, how long would it take before the two hands will be pointing
in exactly the same direction?

2. If the time is 9:50, how long would it take before the two hands will be pointing
in exactly the same direction?

3. How many times in any 12-hour period will the two hands point in exactly the
same direction?

4. Suppose after noon the hour-hand moved backwards (i.e., counter-clockwise) at
its normal rate, but the minute-hand moved forward at its normal rate. How long
would it take before the two hands were pointing in exactly the same direction?

5. On a long straight road, Car A, which is traveling at 60 mph, is 5 miles behind
Car B, which is travelling at 40 mph. Assuming that they continue to travel at
those speeds, how long will it take for Car A to catch Car B?

6. On a long straight road, Car A, which is traveling at a mph, is d miles behind
Car B, which is travelling at b mph. Assuming that a > b, and that they continue
to travel at those speeds, how long will it take for Car A to catch Car B?

7. Suppose Train A leaves City A and travels at a mph toward City B , which is d

miles from City A. At the same time, Train B , began traveling at b mph toward
City B . If the two trains continue to travel at those speeds, how long will it be
before Train A and Train B meet?

The two members of each pair of students who worked on the initial “clockface
algebra task” not only posed problems like Questions 5, 6, 7, but also explained why
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those problems were “like” the first problem. Their imagery was enriched, and they
began to think in images and structures. And yet, at no stage, was visual thinking
an end in itself. These students began to draw diagrams, and to reflect on what the
relevant variables were, and how they should be defined. There can be no doubt that
they began to represent the problems, internally, in multiple ways (Amit and Fried
2005).

Presmeg (1985) suggested that teachers need to be assisted to help visualizer-
students in their mathematics classes to overcome their difficulties and exploit their
strengths in order that they will become more confident in planning learning en-
vironments in which students will visualize their way toward deeper knowledge of
important mathematics. I feel the discussion of the clockface-algebra example above
shows a pedagogical approach that will help to achieve the ends desired.
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Chapter 12
Reflections on Visualization in Mathematics
and in Mathematics Education

Elena Nardi

Abstract Mathematics education research is far from consensus on the roles visu-
alization can play in the teaching and learning of mathematics. This chapter offers
similarly diverse perspectives: Kupferman illustrates a university teacher’s endeav-
our to integrate visualization in teaching with an example of introducing the formal
definition of limit to Year 1 students. He concludes that the benefits of a visually
rich approach cannot be taken for granted, especially when students are not yet
accustomed to it. To bring visualization into students’ mathematical ‘custom’ Pres-
meg calls for teaching visuality, recognising that the relationship between logical
and visual thinking in mathematics is not polarized but orthogonal, and reminding
us that effective teaching of visuality originates in teachers whose own preferences
are mixed and flexible. Analogously, Nardi calls for a new didactical contract that
makes the rules about visualization explicit to learners, while recognising that a de-
liberate ‘fuzziness’ of this contract can also allow the manoeuvring that is often so
potent in mathematics. Much like Kupferman, and in support of Presmeg’s call for
teaching visuality, Hershkowitz, through examples, acknowledges visualization as
one of the languages of mathematics and as one of several ways of thinking math-
ematically. To be expressed, visual thinking needs a language, visual or other; and
visual language, to be meaningful, needs to be attached to some conceptual entity.
Finally, Yerushalmy picks up Hershkowitz’s cue for meaningful integration of visu-
alization into teaching with examples, such as interactive diagrams in algebra, that
illustrate the challenges, affordances and profound epistemological shifts inherent
in visually sensitive curriculum design.
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Geometry · Digital geometry environment · Algebraic · Geometric · Iconic ·
Symbolic · Linguistic · Kinaesthetic

Introduction

In recent years debate about the role of visual representations in mathematics and
mathematics education has intensified on several fronts. For example, the poten-
tial contribution of visual representations in mathematical proof has been much
discussed (e.g., Mancosu et al. 2005) and the multidisciplinary community of di-
agrammatic reasoning (e.g., Stenning and Lemon 2001) has been steadily growing.
Central to this debate is whether visual representations should be treated as adjuncts
to proof, as an integral part of proof or as proofs themselves (e.g., Byers 2007; Gi-
aquinto 2007; Hanna and Sidoli 2007). For example, Giaquinto (2007) argues that
visual means are much more than a mere aid to understanding and can be resources
for discovery and justification, even proof.

Analogous attention to visualization has been apportioned also within mathemat-
ics education. Its richness, the many different roles it can play in the learning and
teaching of mathematics—as well as its limitations—are increasingly being written
about (e.g., Arcavi 2003). The foci of these works are diverse—Presmeg (2006a,
2006b) offers a substantial review of these as well as highlights ones that may need
to take priority. Overall, we still seem far from a consensus on the many roles vi-
sualization can play in mathematical learning and teaching, as well as in pre- and
post-formal aspects of mathematical thinking more generally. So, while many works
clearly recognise these roles, several also recommend caution with regard to ‘the
‘panacea’ view that mental imagery only benefits the learning process’ (Aspinwall
et al. 1997).

In the light of above ongoing debates and developments it is of little surprise
that Ken Clements, in his chapter in this book, puts forward a challenge for clear
terminology concerning visualization. The contributions to this chapter go some
way in responding to this challenge.

• Kupferman takes us through the endeavour of integrating visualization in uni-
versity mathematics teaching with urgency and immediacy. He does so through
an illustrative example from introducing the formal definition of limit to incom-
ing university students. His text brims with observations that ring bells of famil-
iarity to mathematics education researchers. His focus on the concept of limit
as a milestone in the students’ early experiences in Calculus is in fine reso-
nance with numerous studies of advanced mathematical thinking at least since
the 1980s and 1990s (e.g. Tall 1991); as is his proposed visual approach to the
formal definition—Roh’s (2010) ε-strip is a recent example. The caveats about
visualization in his closing statement also chime well with those raised by the
participants in the studies referred to in the contributions by Nardi and Presmeg:
students, especially if unaccustomed to a visual approach, may find it not so help-
ful and the benefits of this approach cannot be taken for granted. In this sense his
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contribution is an apt stepping stone to those that follow: to bring visualization
into students’ mathematical ‘custom’ Presmeg, for example, calls for teaching vi-
suality; and Nardi calls for a new didactical contract that makes the rules about
visualization explicit to learners.

• Much like Kupferman Hershkowitz acknowledges visualization as one of the lan-
guages of mathematics. Her working definition of visualization includes a consid-
eration of it as one of the several ways of thinking mathematically; and, a group of
signs and relationships among these signs, which she terms a language, by which
these several ways of mathematical thinking, including the visual one, might be
developed, limited, expressed and communicated. These two perspectives are in-
terweaved: to be expressed, visual thinking needs a language, visual or other; and
visual language, to be meaningful, needs to be attached to some conceptual entity.
To illustrate the above she embeds her contribution to the debate in two evocative
examples: one from the work with young children of the Agam Programme in the
Weizmann Institute; and another from classroom vignettes of learners engaged
with solving the visually stimulating Matches Problem. Across her account the
significant challenges that pertain to the meaningful integration of visual think-
ing in teaching also emerge strongly. In a way the studies she illustrates from
serve as examples of what Presmeg calls teaching visuality.

• Yerushalmy picks up Hershkowitz’s call for the meaningful integration of visual-
ization into teaching in new and dynamic perspectives. Her contribution takes us
at the heart of the challenges of visually sensitive curriculum design. To this pur-
pose she draws on examples from Algebra in order to: (i) to highlight technolog-
ical affordances with noticeable impact on the way we visualize and understand
mathematical objects and mathematical actions; (ii) demonstrate the potentially
profound epistemological change that is inherent in efforts to design curricula in
which visualization holds a central position; and, (iii) to argue that implementing
ensuing curricular changes requires in-depth review of hitherto taken for granted
research findings and recommendations.

• Nardi quotes Whiteley’s (2004) ‘learning to see like a mathematician’ in order to
explore a particular aspect of the pedagogical role of the mathematician: to foster
a fluent interplay between analytical rigour and (often visually based) intuitive
insight. As in Kupferman’s observation fostering this fluency is much needed
as students’ relationship with visual reasoning is often turbulent. She attributes
this turbulence to unclear didactical contracts of university and school mathemat-
ics with regard to visualization. She also recognises that the ‘fuzziness’ of these
contracts can also allow the manoeuvring that is often so potent in mathematics.
From her data some terms of a flexible but clearer didactical contract emerge—
as do some of the pedagogical challenges that the honouring of such a contract
implies.

• Presmeg closes the section of individual contributions with a challenge to the
analytical-visual dichotomy by reminding us of the Krutetskiian tenet that the
relationship between logical and visual thinking in mathematics is orthogonal,
rather than polarized. She also reminds us of: the instrument she has used in her
work and its capacity to identify individual preferences with regard to visual-
ity; and, some of the difficulties that are inherent in the handling and generation
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of visual imagery in mathematics. She continues with a brief recapitulation of
how dynamic imagery and metaphorical thinking can facilitate the overcoming of
these difficulties; and a revisiting of her findings that the most effective teaching
of visuality originates in teachers whose own preferences are mixed and flexible.
Her contribution concludes with the poignant list of questions—as in Presmeg
(2006a, 2006b)—that the field ought to consider as central in future research.

We close with a few thoughts on visualization in mathematics and mathematics
education taking cue from the list of questions that conclude the contribution by
Presmeg and from the symposium discussion that followed the presentations on
which the above contributions are based.

Visualization in First Year Calculus

Raz Kupferman

First year calculus has always been a serious stumbling block for our undergraduate
students. Within my institution in recent years the percentage of failure has reached
new records: 70 %–80 % failing in final exam, compared to about 50 % in the past.
Amongst faculty the feeling has been that this decline reflects an increasing gap
between high school and university levels.

I have chosen to focus on our Introductory Calculus course because it is the
one that involves the highest degree of failure, but also because colleagues and I
have always viewed it as our “display window”. Its syllabus consists of the follow-
ing topics: real number axioms, functions, limits, continuity, derivatives, sequences,
and series. Our experience (based on bi-weekly quizzes) is that many students lose
contact with the material at a very early stage.

What is it that makes Calculus such a terrifying experience for many (but also a
great source of excitement for others. . . )? Our students are expected to learn a new
language and reach a certain level of proficiency in working with abstract objects
within 3 months. Within the many new concepts that the students learn, it seems as
if their success hinges on their ability to understand at an early stage the notion of a
limit.

Many of the topics learned in high school are accompanied by visual means
(the only one of the five senses that can be used). When it comes to university
mathematics we want our students to develop abstractions, and the natural question
is to what extent we should use visual aids. Despite the stereotypical view of how
mathematicians view this matter, I think that the general perception is that we should
help our students assimilate new concepts and new materials by any means that
helps.

Functions Before defining limits of functions we need to define functions.
A “gentle” definition of a function f : A → B is a machine that, given a number

that belongs to a set A, returns a number that belongs to a set B according to a
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Fig. 12.1 Representations of a function as (a) a mapping between two sets and (b) as a graph

fixed assignment rule. On the other hand, and to the students’ horror, the “formal”
definition of a function f : A → B is a subset R of the Cartesian product set A × B

that satisfies:

∀x ∈ A ∃!y ∈ B such that (x, y) ∈ R.

Interestingly, when it comes to visualizing a function, the students are used to a
representation that corresponds to the “formal” definition—as a graph. The graph
of the function (Fig. 12.1b), which is a visual representation they work with since
middle school, is precisely a subset of the Cartesian product A × B . A visual repre-
sentation of the “machine” like operation of a function is shown in Fig. 12.1a. This
representation is in fact more convenient when it comes to visualize more abstract
functions, and for the visualization of the composition of functions.

Limits What does it mean that the limit of a function f at a point a exists and is
equal to L, which we denote by

lim
x→a

f (x) = L?

The formal definition, written in cryptic mathematical notation is:

∀ε > 0 ∃δ > 0 such that ∀x : |x − a| < δ ⇒ ∣∣f (x) − L
∣∣ < ε,

or in words: for every ε > 0 there exists a δ > 0 such that for every |x − a| < δ it
holds that |f (x) − L| < ε.

This definition is very convoluted to anyone unused to the nesting of logical
clauses, but yet, its understanding is crucial. One of the means I am trying to use
to help the students is visualization. A typical sequence of sketches is shown in
Fig. 12.2. I am presenting the concept of the limit as a game: you, my audience,
have to challenge me by picking a number ε; this number is represented by a shaded
horizontal strip of width ε around the value L (Fig. 12.2a). I have to respond by
choosing an appropriate number δ, which is represented by a shaded vertical strip
of width δ around the value a (Fig. 12.2b). The value of δ has to be such that for
every x within the vertical strip (Fig. 12.2c), the value of the function f (x) is within
the horizontal strip (Fig. 12.2d). If I can find such a δ for every ε, then indeed, the
limit of f at a is L.
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Fig. 12.2 Steps in the visualization of the defining properties of the limit of a function

While I think of such visualization as enlightening, my experience is that maybe
for many students it is more confusing than helpful; they are not used to this visual
language. Visualization is also a form of language that needs to be learned before
one can take advantage of its strength. I encourage lecturers to use visualizations
wherever they find appropriate, but the bottom line of my argument is that the stu-
dents’ ability to benefit from it should not be taken for granted.

Looking at Visual Thinking and Visual Communicating
in Mathematics Learning Through the Lens of Examples

Rina Hershkowitz

I relate here to visualization mainly as:

(1) A mode of mathematical thinking.
(2) A group of signs and relationships among them (“a language”), by which math-

ematical thinking, including the visual one, might be developed, limited, ex-
pressed and communicated to oneself and to others.

Neither of these two perspectives, which may weave together, has a meaningful
existence by itself: visual thinking needs “a language” (either visual or another lan-
guage) to be expressed; and visual language, when it does not represent a thought,
is just a group of signs without a meaning.
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In the following I draw some features of the above two perspectives and raise
some global questions concerning visualization in learning mathematics, by dis-
cussing two different learning topics in which visualization is involved:

Topic 1: Patterns in the “Agam Programme for Developing Visual
Thinking and Visual Language” (Hershkowitz and Markovits
1992)

The Agam programme is an example of an effort to interweave the development of
a visual language with a process of developing the visual thinking of young chil-
dren. The programme is a vision of the artist Yaacov Agam, and it has become an
educational reality through the ongoing work of a team of researchers and educators
of the Science Teaching Department in the Weizmann Institute. The development
and investigation of the programme focuses on several groups of students some be-
ginning with three-to-four-year-olds in the nursery school and continuing with the
same groups to the third grade. This activity was followed by research that showed
that the “Agam children” can apply visual abilities and visual thinking in learning
tasks more successfully than children in the control groups (Razel and Eylon 1990).

Some of the programme’s 36 curriculum units introduce children to such basic
visual concepts as the main geometric figures, directions, colours, and size rela-
tionships. These units make up a “visual alphabet” that forms the basis for more
advanced concepts, such as symmetry, ratio and proportion, numerical intuition, di-
mensions, that serve as building blocks in scientific and mathematical thinking.

The first unit is on the circle and the second on the square. From circles and
squares as “visual letters”, patterns (the third unit in the programme), which are
“visual words”, or “visual sentences”, can be created. A pattern is a visual periodic
series whose elements, at this stage in the curriculum, are: squares, circles, different
colours, different sizes, the figures’ orientation and the interval between the figures
(see, for example, Fig. 12.3a). When children create patterns they are seen as prob-
lem solvers with high-level visual thinking. They analyze the main characteristics
of patterns that are to be used in their creation—for example, the building blocks for
the periodic theme and the length of the period—and choose those that they would
like to have in their own special pattern. Finally, they synthesize all the above in
the reproduction of their pattern. This creation of patterns is not always obvious
and straightforward as we can see in Fig. 12.3b, where the child adds a second di-
mension and creates “periodic themes” which keep the periodicity of form and size
but not of colour. All the purposeful activities in the unit are linear, but children’s
creativity is unbounded (see the “sun” in Fig. 12.3c and the matrix in Fig. 12.3d).

It is worth noting that the above patterns differ from those students typically
encounter when learning early algebra (Radford 2012). While “algebraic patterns”
are visual sequences that can be generalized by means of a quantitative-numerical
rule-of-change, the “periodic patterns” present the principles of a theme, its length,
and its repetition, and therefore can be expressed and described by visual language
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Fig. 12.3 Patterns: (a) Linear pattern; (b) Vertical incomplete patterns; (c) The “sun”;
(d) The “matrix”

(or verbal which is quite heavy in this case). It seems that the difference between
the two types of “patterns” is mainly in the fact that the “algebraic-visual patterns”
express the accumulation of the repeated elements’ quantities in the pattern (see the
next example), where the visual patterns of the Agam programme do not. In this
sense the later are similar to periodic phenomena in science.

Topic 2: Visual-Quantitative-Patterns in Two Dimensions and
Their Algebraic-Symbolic Generalizations—The Matches Problem
(Hershkowitz et al. 2001)

This is a “story” of a problem, borrowed from a verbal communication with Prof.
I. Weinzweig, which I implemented in many teachers’ courses in various countries.
The problem is presented visually (see Fig. 12.4) and when different individuals
solve it by visual thinking it affords and triggers a diversity of visual solution pro-
cesses. In the following I show a few examples of such solution processes which
uncover “mechanisms” of visualization as a mathematical way of thinking (e.g. the
mechanism of composing and de-composing, Duval 1998).
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Fig. 12.4 The Matches
Problem

Fig. 12.5 From One Square
on. . .

The Matches Problem There are squares of “small squares” made of matches.
How many matches are needed for a square with n matches in its side? Explain how
you reached your conclusion. Try to find more than one way.

Example Solution 1 (Fig. 12.5): From One Square on. . . A common strategy was
to start from a corner-square of 4 matches, to continue by counting two chains of U’s
(three matches each) sideways and downwards to obtain 3(n− 1)× 2. The counting
then focuses on the (n−1)(n−1) L’s (with 2 matches each) opposite the four initial
matches. The sum of all the components taken together is therefore:

4 + 3(n − 1) × 2 + 2(n − 1)(n − 1)

The problem solver made a visual transformation (here decomposition and com-
position) and obtained a new pattern, which affords systematic counting. The “prod-
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Fig. 12.6 Looking Above the
Diagonals

uct”, as a mathematical object, is signified in a meaningful way (only?) by the sym-
bolic “language” of Algebra.

Example Solution 2 (Fig. 12.6): Looking Above the Diagonals Here again the prob-
lem solver made a visual transformation in her way of looking at the combination
of matches which enables her to count the matches systematically:

The number of matches in half a square is

2(1 + 2 + 3 + 4 + · · · + n)

So in the whole square there are

2 × 2(1 + 2 + 3 + 4 + · · · + n).

Example Solution 3 (Fig. 12.7): Decomposition of the Square Into Two “Equal
Triangles” The number of horizontal matches “as we descend the staircase” is
1 + 2 + 3 + 4 + · · · + n. The same is true for the vertical matches “as we ascend the
staircase”. Thus in one triangle there are 2(1 + 2 + 3 + 4 + · · · + n). Since there are
two triangles, the final count is: 2 × 2(1 + 2 + 3 + 4 + · · · + n).

Many more example solutions are presented in Hershkowitz et al. (2001).
It is worth noting that I saw very few teachers who did not use the power of

visualization in solving this problem. The teachers who did not hold in the visual-
ization way, “translated” the situation into numbers organized in tables, but failed to
generalize a solution numerically.

Discussion

It has been advocated (see, for example, Steen 1988) that, the search for patterns and
their organization in mathematical language, is a central component of mathematical
thinking.
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Fig. 12.7 Decomposition of Square Into Two “Equal Triangles”

The two learning topics described above show that visualization can play a cru-
cial role in this. This supports Fischbein’s claim that visualization “not only orga-
nizes data at hand in meaningful structures, but it is also an important factor guiding
the analytical development of a solution.” (Fischbein 1987, p. 101). From analyzing
the above two cases, it seems that visualization can be even more than that: it can
be the analytical process itself which concludes with a general solution. As such, its
analytical components may include: (a) decomposition of a structure into substruc-
tures and units, (b) creation of auxiliary constructions, (c) transformation of the
whole structure into another structure (in the second case), and (d) re-composition
and synthesis.

In the first topic above, thinking and language are both visual. Design exper-
iments in the context of the Agam programme showed that by implementing the
purposefully designed activities children construct visually quite compound mathe-
matical and scientific concepts.
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In the second case, the Matches Problem elicited many different solution strate-
gies, lively discussions and a non-negligible amount of enthusiasm on each and
every occasion we proposed it to teachers and students. A few points are worth
noting:

• While the typical solution processes of this problem are visual, the best (and
might be the only) presentation (“language”) to express a generalized solution of
this problem is a symbolic one.

• Different visual solution processes (visual mathematical thinking) give rise to
different (but of course equivalent) algebraic expressions.

• Hence the problem affords symmetrical (reflexive) relationships between visual-
ization and the symbolic representation, rather than the asymmetrical “classic”
way of considering visualization as the intuitive support of a higher level of rea-
soning.

• Do the groups of teachers who failed to use a visual strategy to solve the Matches
Problem represent a different mathematical culture? It might be speculated that
their persistence with numerical approaches is because: (a) their mind’s eye was
not used to visual analysis, and/or (b) visual means were not highly regarded and
not considered as a legitimate mathematical way to produce a general and formal
solution.

Epilogue

There is a need to design (through design experiments) learning trajectories that tar-
get visualization for its own sake. The excellent example “Visual Math” of Michal
Yerushalmy, (in the following section of this chapter), as well as the two cases dis-
cussed above show ways in which this can be achieved for specific topics, and/or
especially designed programmes. All this suggests that the time is ripe to unify ex-
isting research results in order to create an expanded learning trajectory that includes
a strand of visual learning alongside other mathematical strands in the mathematics
syllabus.

What Do We Know About Visualization in the Age of Rapid
Technological Change?

Michal Yerushalmy

Summarizing trends of current interest of research on visualization in mathemat-
ics education, Norma Presmeg (2006a, 2006b) identifies curriculum development
and research of effective teaching of mathematical visualization mainly in dynamic
computer environments to be of importance and interest. Presmeg also points into
the newer theoretical directions that visualization research is looking at, including
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visualization as related to the embodied nature of mathematical learning and to the
semiotic analysis of inscriptions, signs and gestures. The new foci of interest, Pres-
meg argues, mark a change from previous research challenges such as the reluctance
to visualize in mathematics and the status of visual reasoning in mathematics; and,
the diversification of terms and intentions concerning visualization (ibid. p. 209).

I would like to extend Presmeg’s call to make specific aspects of thinking with
technology an important direction of the study of visualization. To do that I would
use examples from algebra in order (i) to highlight technological affordances that
are found to have noticeable impact on the way we visualize and understand math-
ematical objects and mathematical actions, (ii) to demonstrate the possible depth of
the epistemological change that should be considered when designing a curriculum
that assumes visualization to be central to mathematical reasoning and, (iii) to ar-
gue that implementing such curricular changes requires in-depth review of earlier
finding and recommendation of research.

New Visual Landscapes

For over two decades educators study the impact of Dynamic Geometry Environ-
ments (DGEs) on learning and mainly the impact of dragging. The terms figure and
drawing coined by Parzysz (1988) became the true core of the study of geometric
reasoning with technology. It is only recently that we begin to understand the visual
catalog in other subject matters such as algebra and calculus. Earlier studies of stu-
dents’ interaction and uses of diagrams in its static mode focus on the explanatory
ways of visual diagrams and its functions related to problem solving. These func-
tions are changing when mathematical text embeds interactive diagrams and when
digital multimodal communication channels also serve mathematical conversations
(Yerushalmy and Botzer 2011). Issues such as personalization of a diagram, direct
access modification of visuals, randomness, generality and representativeness of vi-
sual examples become the noticeable processes to study (Naftaliev and Yerushalmy
2009). As the actions performed with a visual sign and the motivations to take these
actions are two critical semiotic aspects, the visual functions of interactive technol-
ogy change the semiotic landscape.

To demonstrate the implication of the shift from static to dynamic diagram let
us view a diagram (Fig. 12.8) that shows a visual solution of an equation presented
symbolically and graphically in the form of f (x) = g(x). Graphically, the represen-
tation of a solution is the intersection between the graphs of the two functions. This
visual indication may act as feedback for the correctness of the symbolic operation.
But if the practice of solving equations is part of interaction with the interactive di-
agram that Fig. 12.8 demonstrates (developed by Schwartz 2011), more important
occasion for learning algebraic skills with understanding occur. Interacting with the
diagram would mean transforming (e.g., scaling, translating) the graphs of given
functions’ comparison to produce new equivalent comparisons. Simultaneous trans-
formation of both graphs would keep the solution. Transforming only one side of
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Fig. 12.8 Transformations of equation that yield equivalent equations (Schwartz 2011)

the equation and still keeping the solution is obvious when treating the solution as
the intersection of two graphs, but quite surprising for all of us who learned that
the only way to correctly arrive to solution is “to do the same” to both sides of the
equation.

Setting up learning occasions of this type represents a change of focus and pos-
sible change of order relative to the traditional assumption about algebraic skills
being the foundation for the understanding of functions.

What Does It Take to Change the Lenses?

The dynamic setting and the operations on visual objects in the equation task were
designed to raise conjectures that then can be generalized and proved as part of
learning and practicing symbols’ manipulations. It represents the type of algebra,
the skills and the pedagogical approach of Visual Math (1995/2005). Visual Math
is a function-based algebra curriculum designed to use functions in multiple repre-
sentations early to be the foundation for mastering algebraic skills with understand-
ing, by all students. This is different from strategies that append traditional algebra
problems with graphs as it seeks ways to introduce mathematical concepts by visual
objects upon which symbolic understanding of variables, expressions and equations
are built. The design principles implemented in Visual Math attempt to respond to
the challenge by adopting a view of the domain and representing it in a structure
that is visible to its users. Technology then becomes necessary as it supports direct
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Fig. 12.9 Eight problem situations (adopted from Yerushalmy and Gilead 1999, p. 194)

construction and manipulations of visual objects. The traditional curricular order
aiming at conceptual development of knowledge of algebra has to be changed; sym-
bols such as letters, parameters, equal sign and equation now acquire their meaning
only after graphs of functions, geometrical transformations, comparisons of pro-
cesses modeled by two functions graphs and the rate of change of a given process
are learned.

Designing learning opportunities for the inquiry of linear, single-variable word
problems in context illustrates the research and development process involved in the
unpacking of the traditional school-mathematics known as “linear word-problems”
to the new visual curricular agenda and the learning sequences. Traditionally, word
problems are organized into a learning unit, ordered by the complexity of the equa-
tions to be solved. A Visual Math sequence is based on the centrality of comparison
of two processes and the algebraic meaning of equation and solution that can be
derived from this comparison to algebra beginners. Attempting to map this sub-
domain of school algebra, we identified (Yerushalmy and Gilead 1999) eight main
problem situations derived from this representation: two types of comparisons of
two functions; four intersecting lines that have the same inclination; and, four that
have opposite inclinations (Fig. 12.9). With some limitations, this organization al-
lows the mapping of most linear word problems in algebra that involve a situation
of comparison of two functions.

This visual mapping idea makes the design of the tasks for inquiry manageable
because the number of problem types is reduced and ordering by complexity is
based on the structure of the situations as represented visually by linear functions.
The tasks involve practicing the required skills and provide opportunities that are
mathematically interesting and manageable. On another level, the tasks are aimed
at promoting the heuristics of problem solving (e.g., the study of the differences
and similarities between problems) and strategies of inquiry (e.g., generalizations
or counter-examples). Viewing the eight problem situations sequence through dy-
namic lenses help to understand the mathematical similarity: linear transformation
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of scaling, translations and reflections (in horizontal or vertical lines) would turn a
given model (one of the 8) to any of the other models. The technology acts here as
a cognitive tool offering a way to experiment the generality of an example and its
representativeness of the domain, and to learn similarity among problems and the
solution strategies derived from that.

This example illustrates the challenge of redesigning the pedagogy that would
make the new epistemological assumptions relevant to algebra teaching and learn-
ing. While dynamic visual actions with new tools are assumed, it certainly takes
more than a tool and a task to change the traditional symbolic lenses of school alge-
bra.

New Challenges for the Study of Visualization

In “Challenging known transitions: Learning and teaching algebra with technol-
ogy” (Yerushalmy 2005) I speculate about the degree to which new technologies
will lead to the replacement of current curricula with new content. I also ask how
the use of a new curriculum that is based upon new epistemological assumptions
changes our capability to anticipate students’ difficulties and strengths. We should
wonder whether the hope of educational systems that digital environments would
motivate change is realistic and likely to succeed unless they understand more about
what they are up against. In this regard I suggested and hopefully illustrated that
advances in this area would benefit from in-depth study of curricular approaches.
I would challenge the reliability of earlier research findings regarding students’
visual thinking and suggest that curricular research could benefit from systematic
studies that reexamine visualization as cognitive challenge and as pedagogical pref-
erences, especially those that concern the semiotic potential of technological tools,
for teaching school algebra.

Learning ‘To See like a Mathematician’

Elena Nardi

The mathematicians whose interviews form the evidence base for (Nardi 2008) of-
fer a response to Clements’ challenge quoted in the Introduction (that mathematics
educators need to tighten their working definition of “visualization”) that is much
less rhetorical than it may seem at first. Much like Kupferman and Hershkowitz in
earlier sections of this chapter, these mathematicians describe the role that they hope
visualization has in their students’ thinking as follows:

. . . the diagram is used almost as a third type of language—where the other two are words
and symbols—as an extension of their power to understand. (Nardi 2008, p. 145)



12 Reflections on Visualization in Mathematics and in Mathematics Education 209

The origins of these mathematicians’ perspectives often lie in their own practice.
Many—e.g. as reported in Dreyfus et al. (2012)—make a relatively straightforward
point: consider “what mathematicians often do” (Whiteley 2009, p. 258, also citing
Brown 1997), how “mathematicians work” (Nardi 2009, p. 117), what constitutes
‘expert behaviour in doing mathematics’ (Iannone 2009, p. 224) as one criterion
for deciding pedagogical priorities for university mathematics teaching. For exam-
ple, Whiteley (2009) reflects on his own practices as a mathematician and highlights
the pedagogical importance of exemplification. His support for visual arguments fits
squarely within this emphasis: illustrations and gestures can be close to the cognitive
processes students need to carry out in order to develop understanding, sometimes
even of the ‘purest’ mathematical idea. The usual critique against visual reason-
ing, that visuals ‘are “merely” examples’, ‘too specific to be used in general proofs’
should not deter us, he stresses: “Visuals are strong particularly because they are
examples’ and they can indeed ‘carry general reasoning as symbols for the general
case, provided the readers bring a range of variation to their cognition of the figure”
(p. 260). Furthermore, not only there is nothing wrong with a ‘partial’ perception of
a mathematical idea but also this very ‘partiality’, and any work students may do to-
wards developing conventions and expressions for it, can be instructive. Pedagogical
practice that deprives students of these instructive opportunities is impoverished.

The mathematicians I and colleagues interviewed (2008, 2009) elaborate White-
ley’s “learning to see like a mathematician” (2004, p. 279) further. Part of the peda-
gogical role of the mathematician, they state, is to foster a fluent interplay between
analytical rigour and (often visually based) intuitive insight. The need to foster this
fluency is particularly pronounced as students’ relationship with visual reasoning is
often turbulent. Even when students overcome resistance to employing visualiza-
tion, their reliance on it can be somewhat fraught: pictures may appear unaccompa-
nied by any explanation of how they came to be, or they may appear disconnected
from the rest of the students’ writing. In fact, students’ reticence about employing
visualization has often been attributed (Nardi 2008) to what they perceive as the
‘fuzzy’ didactical contract (Brousseau 1997) of university mathematics: a contract
that allows them to employ only previously proven statements but does not clarify
which parts of their prior knowledge, or ways of knowing, count as proven or ac-
ceptable. Like Whiteley (2009), the mathematicians colleagues and I interviewed
stress the potentially creative aspects of this ‘fuzziness’. They argue that: a picture
provides evidence, not proof; pictures are natural, not obligatory elements of math-
ematical thinking; pictures are “a third type of language” (as quoted in the open-
ing paragraph of this section and the contributions in this chapter by Hershkowitz
and Yerushalmy). From these views emerges a didactical contract in which students
are allowed to use facts that have not been formally established; later, they are ex-
pected to establish those facts formally. The students are encouraged to make use
of the power that visualization allows them. However, they are required to do so
in a sophisticated way—for example, through including articulate accounts of their
thinking in their writing and through acknowledging the support (e.g., of a graphic
calculator) that facilitated the emergence of an insight.

The ‘contract’ described above poses certain challenges to the teacher, whether
at university or school levels. I elaborate some of these challenges by drawing on
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the perspective put forward by one such teacher (of secondary school mathematics),
Spyros (as reported in the analyses of task responses and interview data examined in
(Biza et al. 2009 and Nardi et al. 2012). We asked Spyros to elaborate on whether he
would accept an argument based on a graph and his answer was firm: ‘No, first of all
it is not an adequate answer in exams’ (especially those requiring formal proof ex-
plicitly). We asked him to let aside the examination requirements for a moment and
consider whether an argument based on a graph would be adequate mathematically.
He replied: ‘Mathematically, in the classroom, I would welcome it at lesson-level
and I would analyse it and praise it, but not in a test’. When we asked him to elabo-
rate he said: ‘Through [the graph-based argument] I would try to lead the discussion
towards a normal proof. . . with the definition, the slope, the derivative, etc.’. And
when we asked him to justify he said: ‘This is what we, mathematicians, have learnt
so far. To ask for precision. . . . we have this axiomatic principle in our minds. . . . And
this is what is required in the exams. And we are supposed to prepare the students
for the exams.’

Spyros’s statement is clear: while he cannot accept a graph-based argument as
proof, he recognises graph-based argumentation as part of the learning trajectory
towards the construction of proof. He seems to approach visual argumentation from
three different and interconnected perspectives: the restrictions of the current educa-
tional setting, in this case the Year 12 examination; the epistemological constraints
with regard to what makes an argument a proof within the mathematical commu-
nity; and, finally, the pedagogical role of visual argumentation as a means towards
the construction of formal mathematical knowledge. These three perspectives re-
flect three roles that a mathematics teacher needs to balance: educator (responsible
for facilitating students’ mathematical learning), mathematician (accountable for
introducing the normal practices of the mathematical community) and professional
(responsible for preparing candidates for one of the most important examinations of
their student career). Spyros’ awareness of these roles, and their delicate interplay,
is evidence of the multi-layered didactical contract he seems able to offer to his stu-
dents. As Nardi et al. (2012) propose, Spyros’ views are underlain by a nexus of
priorities (pedagogical, curricular, professional and personal/evaluative) that need
to be considered, and handled, concurrently and with equal urgency.

Visualization in the Learning and Teaching of Mathematics

Norma Presmeg

In response to Ken Clements’ injunction to be precise about terminology concerning
visualization, I want to put forward a model that challenges the analytical-visual di-
chotomy that has been used in some research studies. Following Krutetskii’s (1976)
formulation, the strength of logic (and analysis) determines the effectiveness of
mathematical problem solving, whereas the presence or absence of visualization
determines its type. That is, all mathematical thinking involves logic (which could
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Fig. 12.10 Orthogonal axes
for logic and visualization in
mathematics

be depicted on the x axis), but mathematical visualization is orthogonal to it (on the
y axis) and could be present or absent. My characterization of visualization from the
1980s went beyond Bishop’s (1980) distinction between Interpreting Figural Infor-
mation (IFI) and Visual Processing (VP), although these provided a starting point.
Krutetskii’s (1976) theoretical formulation was central in my research. For him,
strength of logic determines the effectiveness of mathematical thinking, whereas vi-
sualization is optional (Fig. 12.10). There is no duality between logical analysis and
visualization in an either-or sense.

My research identified individuals in all four quadrants of this model (Presmeg
1985) according to their mathematical logic and preference. In my work, visualiza-
tion could be of the form of mental visual imagery (internal representations)—but
it could also be of the form of inscriptions of various kinds (external representa-
tions). Following Piaget and Inhelder’s (1971) claim that visual imagery underlies
the creation of a drawing or spatial arrangement, the distinction between external
and internal representations will not be pursued further as a theoretical issue. In
keeping with the Peircean semiotic framework I used in my later research (Presmeg
2006a, 2006b), my working definition is that a visual image is a mental sign vehicle
involving visual or spatial information, whereas inscriptions are the external sign
vehicles.

Preference for Visualization in Mathematics

In mathematics, sign vehicles are often of a visual nature; even algebraic symbolism
has a structure and needs to be seen, either mentally or in written form. However,
one might talk more broadly about individual preferences for visualization in math-
ematics, and guided by the work of Suwarsono (1982) who worked with seventh
graders in Australia, I constructed an instrument to measure the mathematical vi-
suality of high school students (grades 11 and 12) and their mathematics teachers.
Parts A (6 items: word problems without any figural content) and B (12 items) were
designed for students in the last years of high school; Parts B (the same 12 items)
and C (6 more difficult items) were intended for their mathematics teachers. After
standardization and checks for validity and reliability, the instrument was used to
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select teachers of a range of styles, and visualizers in their grade 12 mathematics
classes. A visualizer is a person who prefers to use visual methods (including vi-
sual imagery) to solve problems that are capable of solution by visual and nonvisual
means, as in my instrument. The frequency distribution graphs of visuality scores
indicated that for most populations this frequency follows a normal, Gaussian, dis-
tribution. But there are people at both ends of the scale: some who seldom, if ever,
feel the need to visualize, and others for whom it is not an option, they always feel
the need. Those whose visuality scores were above the median were taken to be the
visualizers.

Tasks given to students may be more or less visual—whether or not a diagram is
presented. Ken Clements notes that Suwarsono used item response theory to assign
visuality scores to the items (all without diagrams) in his instrument, using the same
scale as he used for the preference for visuality of students. It is noteworthy that in
the development of my instrument, too, based on the responses of an initial group
of high school mathematics students, an item analysis was performed, assigning a
visuality score to each of the 32 items in the original instrument, and also a degree
of difficulty score. As a result of this analysis, 3 items that were judged to be too dif-
ficult (none or only one of the students in the test sample could solve each of these
problems) and 5 that were too visual or too nonvisual, were discarded, resulting in
the 24 items that were retained, some of which were rearranged according to three
criteria (sections should not start with a highly visual or nonvisual problem, prob-
lems should be varied, and the problems should be arranged in roughly ascending
degree of difficulty).

For a mathematical task, the way the task is done depends on the following: the
task itself; instructions to do the task in a certain way (Paivio 1971); individual
preferences (as manifest in the scores on my instrument); and also the culture of the
learning environment. This last aspect may underlie the claim by Dreyfus (1991)
and Eisenberg (1994) that students are reluctant to visualize in mathematics. On the
contrary, some visualizers do not have an option. But they may hide their preference
if the culture does not value and encourage this mode of thought, as was the case
of visualizers in classes of my non-visual group of teachers. Tasks and teaching are
topics in a later section.

Difficulties and Affordances of Use of Visual Imagery
in Mathematics

In keeping with the theme of this book, Searching for Common Ground amongst the
components involved in mathematics research and mathematics education research,
with mathematics squarely at the centre, I shall concentrate on a topic that is relevant
to both fields. One result of my research on visualization, starting in the early 1980s,
was that all of the difficulties experienced by the 54 visualizers in high school in my
initial main study, related in one way or another to the abstraction and generalization
that are essential aspects of doing mathematics.
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• The one-case concreteness of an image may be tied to irrelevant details, or intro-
duce false information.

• A prototypical image may induce inflexible thinking.
• An uncontrollable image may persist, thus preventing more fruitful avenues of

thought.
• Imagery needs to link with rigorous analytical thought processes to be effective.

Implicit in these difficulties is compartmentalization. The damaging effect of
compartmentalization in mathematics education has long been noted by several au-
thors (Duval 1999; Nardi et al. 2005; Vinner et al. 1981). My later research on the
learning of trigonometry (Presmeg 2006b) examined this aspect in more detail.

There were two basically different ways that these difficulties could be over-
come: firstly, a visual image or a diagram of one concrete case could be the bearer
of abstract information—a sign vehicle for an abstract object. Dynamic imagery was
useful in this case, as was pattern imagery. Secondly, metaphorical thinking could
link the domain of abstract mathematical objects with visual imagery or inscrip-
tions in a different domain. The intricacies of each of these cases are apparent in
the research data. Mathematical thinking that alternates between visualization and
logical deduction is particularly effective. Finally, visual images of all types have
mnemonic advantages: It is easier to remember a “picture”.

The interaction of visual styles of mathematical learning with different forms of
teaching was a central component of my research on visualization.

Teaching Visuality

From the literature, augmented by a full year of classroom observations, twelve as-
pects of teaching that were facilitative of visualization were identified and refined by
triangulation of three viewpoints (those of the teachers themselves, their students,
and the observer). From these classroom aspects, it was possible to assign a teach-
ing visuality (TV) score to each of the thirteen teachers in the initial research. These
teachers had been chosen to provide a range of mathematical visuality (MV) scores
according to the preference instrument. However, one strong result of the research
was that TV and MV scores were only weakly correlated (Spearman’s rho = 0.404).
It made sense that some teachers who themselves did not require visualization in do-
ing mathematics, nevertheless recognized their students’ need for such means, and
taught accordingly. According to their TV scores, the thirteen teachers fell neatly
into three groups: a visual group (5 teachers), a middle group (4 teachers), and a
non-visual group (4 teachers). Analysis of the qualitative data from 178 transcribed
clinical interviews with the 54 student visualizers in the study revealed that the group
of teachers whose pedagogy was optimal for the mathematical achievement of these
visualizers was not the visual group, but, counter-intuitively, the middle group. The
visual group of teachers encouraged pictorial thinking and inscriptions, and valued
these means, but they were unaware of the difficulties relating to abstraction and
generalization that could be experienced by these visual students. The middle group
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of teachers, while encouraging visualization, also stressed general thinking, system-
atization, and logical analysis. In the classes of the non-visual teachers, visualizers
were like fishes out of water. I gained the impression that all the visualizers would
have benefitted if their mathematics teachers had been more aware of the pitfalls as
well as the positive potential of visual thinking in teaching and learning mathemat-
ics.

In the light of the intricacies involved in these relationships between student
learning preferences and teaching visuality, including the stance towards visual-
ization in mathematics that is taken by the teacher, I want to say a bit more about
the nature of tasks presented to students by a teacher. It is commendable that Raz
Kupferman (this chapter) presents a diagram illustrating the ε–δ definition of limits
of functions, when he teaches this concept to university undergraduates. However,
he is right that students’ ability to benefit from such a diagram should not be taken
for granted. Many of the visualizers in my research would have attempted to make
such a diagram for themselves, or at least to entertain a mental image of it: they
could make sense of such a definition—if they made sense of it—in no other way.
But potential difficulties tied to generalization need to be taken into account. Not all
students may be benefited by a “visual example”: The research of Elena Nardi and
colleagues with mathematicians (this chapter) confirms that although the introduc-
tion of visual “examples” in teaching college-level mathematics is a positive step,
in itself it is not enough. Nardi quotes Whiteley (2009), “Visuals are strong partic-
ularly because they are examples, and they can indeed carry general reasoning as
symbols for the general case, provided the readers bring a range of variation to their
cognition of the figure” (p. 260). This is the core issue: mathematics teachers—even
those with high teaching visuality scores—do not usually have trouble with abstrac-
tion and generalization in mathematics. However, unless they stress these elements
and the logic of the processes involved (as did my middle group of teachers), the pre-
sentation of a visual example alone may not take into account the difficulties associ-
ated with the “one-case concreteness” of such a visual presentation (Presmeg 1985,
2006a). The stance of the teacher is also important: and teaching visuality was mea-
sured according to 12 criteria, not only the presentation of a picture. My research
showed over and over again, the effectiveness of alternating holistically visual and
rigorously sequential logical processing in mathematics. Nardi (this chapter) points
out that some of the mathematicians she and her colleagues interviewed were aware
of this issue: “Part of the pedagogical role of the mathematician, they state, is to fos-
ter a fluent interplay between analytical rigour and (often visually based) intuitive
insight.”

The tasks presented by Rina Hershkowitz (this chapter), and the way they are
addressed in teaching, illustrate the power of activities that admit a range of flex-
ible methods in their implementation. Curriculum development is suggested, and
this aspect comes out even more specifically in the research on visual algebra of
Michal Yerushalmy and her colleagues. Yerushalmy (this chapter) underscores the
social and semiotic elements of such work: “I would challenge the reliability of ear-
lier research findings regarding students’ visual thinking and suggest that curricular
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research could benefit from systematic studies that reexamine visualization as cog-
nitive challenge and as pedagogical preferences, especially those that concern the
semiotic potential of technological tools, for teaching school algebra.”

Thirteen Significant Questions

At the end of my Handbook chapter (Presmeg 2006a) I put forward a list of thirteen
questions in this field that seem to be significant, as follows. As suggested in previ-
ous sections, some of these issues have started to be addressed by the participants in
this panel on mathematical visualization.

1. What aspects of pedagogy are significant in promoting the strengths and obvi-
ating the difficulties of use of visualization in learning mathematics?

2. What aspects of classroom cultures promote the active use of effective visual
thinking in mathematics?

3. What aspects of the use of different types of imagery and visualization are ef-
fective in mathematical problem solving at various levels?

4. What are the roles of gestures in mathematical visualization?
5. What conversion processes are involved in moving flexibly amongst various

mathematical registers, including those of a visual nature, thus combating the
phenomenon of compartmentalization?

6. What is the role of metaphors in connecting different registers of mathematical
inscriptions, including those of a visual nature?

7. How can teachers help learners to make connections between visual and sym-
bolic inscriptions of the same mathematical notions?

8. How can teachers help learners to make connections between idiosyncratic vi-
sual imagery and inscriptions, and conventional mathematical processes and
notations?

9. How may the use of imagery and visual inscriptions facilitate or hinder the
reification of processes as mathematical objects?

10. How may visualization be harnessed to promote mathematical abstraction and
generalization?

11. How may the affect generated by personal imagery be harnessed by teachers to
increase the enjoyment of learning and doing mathematics?

12. How do visual aspects of computer technology change the dynamics of the
learning of mathematics?

13. What is the structure and what are the components of an overarching theory of
visualization for mathematics education?

I started to work on “overarching theory” for a presentation on this topic at Topic
Study Group 20 of the 11th meeting of the International Congress on Mathemati-
cal Education (Presmeg 2008a), and the problem of compartmentalization was ad-
dressed in research on the learning of trigonometry (Presmeg 2006b), along with
further research on metaphors (Presmeg 2008b). However, much more needs to be
learned in answer to all of these questions.
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Concluding Reflections

These reflections aim to integrate into this book chapter part of the symposium
discussion that followed the presentations on which the above contributions are
based. Quotation marks indicate (here anonymised) verbatim excerpts from the au-
dio recording of this discussion.

Visualization can be used as a bridge between more and less familiar aspects of
mathematics. One example of this is introducing the horrendously complex, multi-
quantified formal definition of limit through graphical illustrations of the conver-
gence of functions that are familiar to students, such as x2 or

√
x. While acknowl-

edging that students who take advanced mathematics courses need to understand,
endorse and employ mathematical formalism, much of this understanding can be
built through visual means. This is not to say that visual means do not have inher-
ent constraints. Diagrams can be confusing: for example, a diagram cannot be of
infinity the way a diagram can be of a triangle. Or, within Analysis and the afore-
mentioned example, students need to be able to see that diagrams—such as the one
in Kupferman’s contribution in this chapter—illustrate how the epsilon-delta expres-
sion defines the limit always in terms of finite quantities, succeeding thus to remove
infinity. A key question that emerges then is what pedagogical practices can help
students benefit most from visualization, while in full awareness of its limitations—
and in full awareness that students do not ‘see’ in the same way their (much more
experienced) teachers do. Some of these limitations include the ambiguous status of
visual arguments in mathematics and their lack of transparency: ‘sometimes visu-
alization will cheat you. You draw a picture, you see something but you do not see
something invisible, behind the picture.’

A perspective of visualization as an approach to mathematics that has to be
judged by the criteria that apply to the analytical approach is problematic. Visu-
alization is often seen as a ‘secondary school’ approach that students need to steer
clear of when they arrive at university, and certainly later on. IT can help avoid this
unnecessary dichotomy: ‘visual signs can be the first channel of making mathemat-
ics, and not necessarily the additional one, [to] what we call symbolic.’ ‘Visual signs
are symbols. As long as we live it as a secondary category, we will not encourage
students to do this.’ The issue therefore becomes what kind of pedagogical practice
can make visualization a legitimate approach for students.

One approach is to allow the curriculum to explore ‘visualization for its own
sake’: this should not be taken to mean ‘teach visualization’ as such but explore
the power of visualization, acknowledge that ‘it has a logic of itself’ and do so ex-
plicitly: we cannot simply ‘expect [students] to be visual’ upon arrival at university,
for example. And the communities of mathematics and mathematics education need
to work harder towards making the substantial mathematics education research on
these matters known to practitioners of mathematics teaching across all levels. Of-
ten excellent intuition, accumulated over years of experience, is but one source of
pedagogical insight.

At the heart of recommendations that can be put forward is alertness to the dan-
gers of ‘opposing visualization with rigour’ and of not acknowledging that there is a
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‘radical change in the didactic contract between secondary and university mathemat-
ics regarding graphical representations’; and of the need to prioritise work towards
making ‘the change of the didactical contract possible to the student and under-
standable to the student’. ‘Reluctance [to visualise] depends on the culture and the
environment’ and therefore endorsing the legitimacy of visual thinking in mathe-
matics needs to be ‘part of the explicit intended curriculum’.

Fostering in students the learning of the ‘grammar and syntax of diagrams, the
same way they learn the grammar and syntax of written mathematics’ would then be
an inextricable part of this curriculum. The assumption that ‘because something is
visual, it is [therefore] transparent, and you understand it’ is incorrect when there is
substantial intermediate work that students need to engage with in order to achieve
this understanding. And this work includes learning to distinguish between visual-
ization in a general sense and mathematical visualization, and learning to engage not
just with the symbolic and the visual registers of mathematics but also the linguistic
and kinaesthetic. The complexity of this task is formidable.

Another inextricable part of this explicit intended curriculum on visualization
would be deploying IT that fosters students’ acquiring of the ‘new lenses’ and ‘re-
thinking the mathematics that we do’. We simply cannot continue with the same
curriculum, purporting to do the same mathematics and merely having visualization
as an add-on. The mathematics we do needs to be reorganized: the content, the order
of difficulty of the problems presented to students, their structure.

The design of this curriculum also needs to consider that classical hierarchies in
psychology have been seriously challenged in recent years. While few would argue
against Bruner’s enactive, iconic, and symbolic classification, its hierarchical struc-
ture, its proposed progression are being doubted in very substantial ways. These are
‘just different means, different kinds of thinking’, seems to be the proposed more
contemporary approach. ‘We cannot say that visualization gives way to generalisa-
tion and abstraction’ and the ‘representation development hypothesis’ is put again
to the test.

There is another issue that this curriculum would need to engage with: visu-
alization can ‘take a lot of time, in comparison to working with symbolism’. Its
time-consuming nature is however compensated by its power to give insight and to
support our power for abduction. This is one more reason why the opposition of
logic and proof to visualization is unproductive.

The optimal approach therefore appears to be to ‘have them [logic/proof and
visualization] simultaneously and working together, sometimes alternating’ and to
acknowledge them as ‘different ways of thinking’. Again new developments in tech-
nology, particularly work on Digital Geometry, are key to achieving this acknowl-
edgement. ‘It’s not a question of either-or, it’s a question of both and throughout’.
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Chapter 13
Making Sense of Mathematical Reasoning
and Proof

David Tall

Abstract This chapter charts the growth of proof from early childhood through
practical generic proof based on examples, theoretical proof based on definitions
of observed phenomena, and on to formal proof based on set theoretic definitions.
It grows from human foundations of perception, operation and reason, based on
human embodiment and symbolism that may lead, at the highest level, to formal
structure theorems that give new forms of embodiment and symbolism.

Increasing sophistication in mathematical thinking and proof is related to earlier
experiences, called ‘met-befores’ where supportive met-befores encourage general-
isation and problematic met-befores impede progress, causing a bifurcation in the
perceived nature of mathematics and proof at successive levels of development and
in different communities of practice. The general framework of cognitive develop-
ment is offered here to encourage a sensitive appreciation and communication of the
aims and needs of different communities.

Keywords Mathematical proof · Crystalline concepts · Met-before · Generic
proof · Van Hiele theory · Structure theorems
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Fig. 13.1 Outline of
long-term development of
proof

Mathematical Thinking in Terms of Human Perception,
Operation and Reason

The cognitive development of mathematical thinking and proof is based on fun-
damental human aspects that we all share: human perception, action and the use of
language and symbolism that enables us to develop increasingly sophisticated think-
able concepts within increasingly sophisticated knowledge structures. It is based on
what I term the sensori-motor language of mathematics, blending together percep-
tion, operation and reason (Tall 2013).

Mathematical thinking develops in the child as perceptions are recognised and
described using language and as actions become coherent operations to achieve a
specific mathematical purpose. According to Bruner (1966), these may be commu-
nicated first through enactive gestures, then iconic images, then the use of sym-
bolism, including not only written and spoken language but also the operational
symbolism of arithmetic and the axiomatic formal symbolism of logical deduc-
tion.

The theoretical framework proposed here follows a similar path enriched by the
experience over time, building from conceptual embodiment that combines the enac-
tive and iconic modes of human perception and action, developing into the mental
world of perceptual and mental thought experiment (Fig. 13.1). Embodied opera-
tions, such as counting, adding, sharing, are symbolised as manipulable concepts in
arithmetic and algebra in a second mental world of operational symbolism. As the
individual matures, there is a further shift into a focus on the properties of mental
objects as in Euclidean geometry, the blending of visual and symbolic modes of
thought and the properties of arithmetic operations recast as ‘rules’ that underlie the
generalized operations and expressions in algebra. Each of these leads to different
forms of mathematical proof: Euclidean proof in geometry, symbolic proof, based
on the ‘rules of arithmetic’, and blending embodied and symbolic reasoning using
language.

Embodiment and symbolism develop alongside each other and interact with each
other. The early stages of practical mathematics begin with experience of shape
and space, and of operations in arithmetic, in which properties of specific examples
are seen to offer generic proof, such as realising that 2 + 3 = 3 + 2 holds not just
for the numbers 2 and 3, but for any pair of whole numbers. This develops into
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the theoretical mathematics of definition and deduction in Euclidean and symbolic
forms of proof.

Properties in both embodiment and symbolism develop into the formal math-
ematics of set-theoretic definition and proof in the axiomatic formal world of pure
mathematics. While theoretical mathematics is based on embodied and symbolic ex-
periences, formal mathematics guarantees that all the properties proved from given
set-theoretic axioms and definitions will also hold in any new context that satisfies
the given axioms and definitions.

Embodiment and symbolism continue to play their part in axiomatic formalism,
not only in imagining new possibilities that may be defined and proved formally,
but also in an amazing turnaround in which certain theorems (called structure theo-
rems) prove that axiomatic systems have embodied and symbolic structures estab-
lished by formal proof. This reveals mathematical thinking at the highest level, and
mathematical proof in particular, as an intimate blend of embodiment, symbolism
and formalism where individual mathematicians develop a preference for different
aspects.

The Evolution of Theories of Mathematical Thinking and Proof

Pierre Van Hiele (1986) focused on structure and insight, seeing a succession of
levels that may be described as recognition and description of figures, leading to
definition and deduction of properties through Euclidean proof.

Ed Dubinsky and others (Asiala et al. 1996) took an apparently different path,
following Piaget’s idea of reflective abstraction to focus on operations that are seen
first as actions, routinized as processes, then encapsulated as mental objects within
knowledge schemas.

Anna Sfard (1991) proposed a framework that alternated between operational
and structural ways of thinking in which operations are condensed as processes,
and then reified as mental objects that now have a certain structure. She suggested
at the time that an operational approach inevitably precedes structural mathemat-
ics. However, her examples involve operational symbolism being reified as mental
objects, without any reference to the van Hiele development of the properties of
objects.

This led to a three-part analysis in Tall et al. (2000) through parallel develop-
ments of conceptual embodiment (broadly following van Hiele) and operational
symbolism (using process-object theories) in school, leading much later to the ax-
iomatic formal framework of set-theoretic definition and proof in university pure
mathematics (Tall 2004a, 2004b).

Following the recent death of Van Hiele in 2011 at the grand old age of one hun-
dred, I revisited his ideas of structure and insight, which he applied to geometry, but
not to the symbolism of arithmetic and algebra (Van Hiele 2002). I realised that the
term operation should not be restricted to the symbolic operations in arithmetic and
algebra. Operations occur in the constructions of Euclidean geometry. For instance,
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we may operate on an isosceles triangle by joining the vertex to the midpoint of the
base to cut the triangle into two parts that are congruent (with three corresponding
sides). This proves that the base angles must be equal, and various other properties
follow, such as the property that the line from the vertex to the midpoint of the base
is at right angles to the base.

The operations of construction in geometry and the various operations in arith-
metic and algebra have a common definition: they consist of ‘a coherent sequence of
actions and decisions performed to achieve a specific purpose.’ A geometric opera-
tion is a construction that focuses on the object (the figure) and results in enabling
us to see relationships concerning the properties of the object. A symbolic opera-
tion performs a calculation or manipulation, focusing more on the properties of the
operations themselves as the operations lead to a symbolic output.

Furthermore the compression of operation into mental object in symbolism be-
gins for the child as embodied operations on objects such as counting, adding,
sharing, and is compressed into symbolic operations on whole numbers, fractions,
signed numbers and so on. This reveals two distinct forms of compression from
operation to mental object that I termed embodied compression and symbolic com-
pression (Tall 2013, Chap. 7).

Embodied compression focuses on the effect of the operations on the objects,
such as counting a collection to find the number of objects, such as ‘six’. Focusing
on the way that the objects are placed leads to a realisation of the fundamental
properties of whole number arithmetic. For instance, the set of six objects may be
subdivided, say, into subsets of ‘four’ and ‘two’ and, by rearranging the sets, it may
be seen that ‘two’ and ‘four’ is also ‘six’. Reorganizing the subsets as two rows
of ‘three’ allows them to be seen as three columns of ‘two’ so that ‘two threes’ is
the same as ‘three twos’. Embodied compression enables us to see at a glance the
flexible properties of arithmetic. ‘Proof’ at this early stage is a form of reasoning
based on our interpretation of the coherence of our own perceptions and actions.
This form of proof, in which a specific example is seen to be typical of a whole
category of examples, is termed generic proof (Mason and Pimm 1984; Harel and
Tall 1991).

Symbolic compression involves performing a counting operation to obtain a num-
ber concept, for instance, the operation of ‘count-on’ calculates ‘two and eight’ as
counting on eight to get ‘three, four, five, six, seven, eight, nine, ten’ while ‘eight
and two’ is the short count ‘nine, ten’. Here the two operations are very different,
one is a long count, and the other is short. The general properties of the symbolic
compression are therefore not as self-evident as they are with embodied compres-
sion.

A gifted child may grasp the flexible properties of arithmetic as part of a coherent
knowledge structure in which symbols operate dually as process or concept (which
we termed a ‘procept’) that may be used as an organising principle to simplify op-
erations. A child who focuses on procedural operations of counting taking place
in time will find arithmetic operations to be far more difficult to cope with. Eddie
Gray and I called this bifurcation ‘the proceptual divide’ between those fixed in in-
creasingly complicated counting procedures and those who develop flexible ways to
derive new facts from known facts (Gray and Tall 1994).
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This bifurcation between those who find mathematics ‘easy’ and those who find
it impossibly difficult begins at a very early age. It should be taken into account in
seeking to explain and predict how each individual attempts to make sense of math-
ematics, building on increasingly sophisticated perception, operation and reason.

Long-Term Pleasure and Pain

Emotions play a vital role in mathematical thinking and have a profound effect
on how individuals make sense of mathematical proof. As my supervisor, Richard
Skemp used to say: ‘pleasure is a signpost, not a destination.’ His goal-oriented the-
ory of learning (Skemp 1979) saw children starting out with the goal of seeking
to make sense of the world. Successfully linking together ideas in coherent ways
gives pleasure, success breeds more success, so that a child with a history of suc-
cess builds up a positive feed-back loop where an encounter with a problematic
situation is often met with the determination to conquer the difficulty. However,
lack of success leads to an anti-goal, to avoid a sense of stress. Further encounters
with stress may lead to a negative feed-back loop in which the desire to avoid fail-
ure leads to less engagement with the mathematics and less technical proficiency
that causes even more difficulty and greater mathematical anxiety (Baroody and
Costlick 1998). As a result of the negative feedback, students may seek the comfort
of learning procedures by rote to succeed in examinations and prefer to learn proofs
procedurally rather than seek to grasp deeper meanings that do not seem to make
sense.

An analysis of the development of mathematical thinking reveals the surprising
conclusion that mathematics is not a system that builds logically on previous ex-
perience at each stage, even though every mathematics curriculum in the world is
intent on presenting topics in a coherent sequence, carefully preparing the neces-
sary pre-requisites at each stage for the more sophisticated stages that follow. On
the contrary, an experience that has been ‘met before’ may be supportive in some
new situations yet problematic in others.

The concept of ‘met-before’ was introduced by de Lima and Tall (2008) and
McGowen and Tall (2010) to describe ‘a structure we have in our brains now as a
result of experiences we have met before.’ Some ideas that work in one situation
such as ‘addition makes bigger’ or ‘take away makes smaller’ in whole number
arithmetic are supportive in the context of fractions yet problematic in the context
of signed numbers. This recalls the concept of ‘epistemological obstacle’ devel-
oped by Bachelard (1938) and Brousseau (1983) and the need for accommoda-
tion by Piaget (see, for example, Baron et al. 1995) or reconstruction by Skemp
(1971).

However, the notion of met-before refers to the effect of previous experience on
new learning. A particular met-before is not in itself supportive or problematic, it
becomes supportive or problematic in a new situation when the learner attempts to
make sense of the new ideas. For instance, ‘take away leaves less’ is supportive in



228 D. Tall

some contexts (e.g. everyday situations where something is removed, in the pos-
tulates of Euclidean geometry, or taking one whole number from another) but it is
problematic in others (such as taking away a negative number or in the theory of
infinite cardinals).

A problematic met-before arises not only in the individual learner, it is a
widespread feature of the nature of mathematics itself. In shifting to a new con-
text, say from whole numbers to fractions, or from positive numbers to signed num-
bers, or from arithmetic to algebra, generalization is encouraged by supportive met-
befores (ideas that worked in a previous context and continue to work in the new
one) and impeded by problematic met-befores (that made sense before but do not
work in the new context).

For instance, properties such as commutativity, associativity, distributivity are
supportive as number systems are broadened through whole numbers, integers, real
numbers, complex numbers, but other aspects such as ‘take away gives less’ or ‘the
square of a non-zero number is positive’ become problematic.

Crystalline Concepts

Given this increasing difficulty of problematic aspects that occur in generalization,
I sought a unifying principle that is supportive in mathematical thinking and binds
mathematical ideas together in any given context. In Tall (2011), I formulated a
working definition of a crystalline concept as ‘a mathematical concept that has an
internal structure of relationships that cause it to have specific properties in the given
mathematical context.’ Such concepts include:

• platonic objects in geometry, such as points, lines, triangles, circles, congruent
triangles, parallel lines that have properties arising through Euclidean proof;

• operational symbols as flexible procepts in arithmetic, algebra and symbolic cal-
culus that have necessary properties through calculation and manipulation;

• set-theoretic concepts in axiomatic formal mathematics whose properties are de-
duced by formal proof.

Not only do crystalline concepts occur at the highest levels of mathematical think-
ing, they emerge in the thinking of a young child who sees the flexible proceptual
structure of arithmetic through embodied compression rather than the procedural
step-by-step counting procedures of arithmetic that operate in time.

They enable flexible thinkers to see mathematical ideas in astonishingly simple
ways. It is not that the fractions 4

8 , 7
14 , 101

202 are all equivalent to each other and to the
simplest possible canonical form 1

2 , it is that they are all manifestations of a single
crystalline concept—the rational number one half—also represented as a unique
point on the number line.

It is not that the expressions 2(x + 7) and 2x + 14 are equivalent but different,
where the first can be turned into the second by ‘multiplying out the brackets’ and
the second can be turned into the first by ‘factorization’, it is that both expressions
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are different ways of writing the same crystalline concept as an algebraic expression.
Indeed, the functions f (x) = 2(x + 7) and g(x) = 2x + 14 are not simply equiva-
lent, they are precisely the same function. Students who think flexibly in terms of
crystalline concepts have much more powerful means of relating mathematical ideas
than those who see equivalent ideas that are changed from one form to another by
carrying out procedures.

Likewise, in axiomatic formal mathematics, an axiomatic system such as
‘a group’ is a crystalline concept with rich interconnections between its proper-
ties. We may not know what specific group we are dealing with, but we do know
that it has an identity that we may denote by e, and that if x is any element, we can
define the power xn for any positive or negative integer and prove that xm+n = xmxn

for any integers m, n.
A crystalline concept may be defined formally and then its properties may be de-

duced as theorems to build up a knowledge structure where relationships are tightly
interconnected by formal proof. For example, we can prove that if we begin with
the axiomatic definition of an ordered field F , then in this context we may formu-
late any of the equivalent definitions for completeness, to prove that a complete
ordered field is not only unique up to isomorphism, it is also unique as a crystalline
concept.

At the highest level of pure mathematical research, it is the compression of struc-
tural properties of defined formal concepts into crystalline concepts that gives gifted
mathematicians a simplicity of thought that is beyond the mere proving of theorems
of equivalence. An ordered field not only contains a subfield isomorphic to the ratio-
nal numbers, it can be conceived as a crystalline concept that contains the crystalline
concept of the rational numbers.

I recall the ideas that I encountered as a graduate student when theoreticians
spoke of the identification of one structure with another structure as ‘an abuse of
notation’. On the contrary, it is this way of thinking that gives the biological brain
of the mathematician a level of flexibility to conceive mathematical ideas in more
simple and insightful ways.

Formal constructions building up more general systems—for example, from nat-
ural numbers, to integers, to rational numbers, to real numbers, and beyond—all
involve equivalence relations of ordered pairs in one structure to construct the
next. At each stage we get an isomorphism between equivalence classes of or-
dered pairs and a substructure of the larger system. This development involves
supportive met-befores that encourage generalization and problematic met-befores
that impede progress. Yet once we have the larger system, we no longer need to
speak of isomorphisms, we can simply refer to the subsystem as a subset given
by specified properties. Being able to move flexibly between seeing subsystems
as subsets or as isomorphic copies leads naturally to the cognitive notion of crys-
talline concept. It offers the human brain a simpler way to think of strictly for-
mulated isomorphic systems as a single underlying crystalline concept that can
occur in different contexts yet operate in the same coherent way in every represen-
tation.
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The Transition from Proof in Embodiment and Symbolism to
Formal Proof

The overall framework for cognitive development from the newborn child to the
frontiers of mathematical research was further developed in the ICMI Study 19 on
Proof and Proving (Tall et al. 2012), and has been extended in How Humans Learn
to Think Mathematically (Tall 2013).

The Van Hiele levels (1986) have been variously reconsidered by a range of au-
thors, may now be seen in as four successive levels which I term

• Recognition of basic concepts such as points, lines, and various shapes;
• Description of observed properties;
• Definition of concepts to test new examples to see if they satisfy the definition

and to use the definitions to formulate geometric constructions;
• Deduction in the form of Euclidean proof in plane geometry.

Each of these is a form of structural abstraction in which the structure of the objects
under consideration and their relationships shift to successive new levels of sophis-
tication. This begins first with observations of geometric objects whose structures
are recognised and described. At this point the foundations of Euclidean proof are
laid down by formulating definitions for figures that not only allow them to be cate-
gorised and constructed but also to use ideas such as congruent triangles and parallel
lines to construct Euclidean proof.

Van Hiele also described a fifth level of rigour that may be seen as shifting in two
directions, the first is to different embodied contexts such as projective geometry
or spherical geometry, the second is in terms of the more sophisticated world of
axiomatic formalism as prescribed by Hilbert.

Van Hiele (2002) saw these levels apply to geometry and not to the symbolic de-
velopment from arithmetic to algebra. The calculation with numbers and manipula-
tion of algebraic symbols involve quite different mental activities from those in Eu-
clidean proof. However, once operations are encapsulated as number concepts and
generalized as algebraic expressions, these too have properties that can be recog-
nised and described, then defined as ‘rules of arithmetic’ to be used in algebraic
proofs to deduce theorems. Thus the sequence of structural abstraction also occurs
in the higher levels of operational symbolism to provide definitions of whole num-
bers, such as even, odd, prime and to deduce theorems such as the uniqueness of
factorization into primes.

Exactly the same structural abstraction arises in the axiomatic formal world of
set-theoretic definition and formal proof. This builds on our experience of concep-
tual embodiment and operational symbolism, beginning with the recognition and
description of mathematical situations and then the definition of axiomatic systems
and of defined concepts within those systems, and deduction of properties of sys-
tems and defined concepts using formal proof.

Experienced mathematicians have flexible knowledge structures that they wish
to pass on to their students. However, by the time students pass through school to



13 Making Sense of Mathematical Reasoning and Proof 231

enter university, they will have already developed in very different ways based on
how they have managed to make sense of previous experiences.

Krutetskii (1976) produced significant evidence that the most gifted chil-
dren are more likely to develop a strong verbal-logical basis to mathemati-
cal thinking than a visual-pictorial foundation. Out of over a thousand stu-
dents, the most gifted nine were classified with five analytic (verbal logical),
one geometric (visual-pictorial), two combining both (one more visual, the other
more verbal) and one who was not classified. Presmeg (1986) found that the
most outstanding senior school mathematics students in her study (7 pupils
out of 277) were almost always non-visualizers. Of 27 ‘very good’ students
(10 % of the sample), eighteen were non-visualizers and five were visualiz-
ers.

This suggests that a small number of those students who enter university
are powerful verbal-analytic thinkers who may benefit from making sense of
set-theoretic definitions, an even smaller number base their thinking on visual-
pictorial representations, and others who may have a blend of visual embod-
ied thinking and operational symbolism or who prefer to learn procedurally by
rote.

Some students seek a natural approach based on a blend of previous experi-
ences of embodiment and symbolism from school mathematics. Some with a more
verbal-logical basis may seek to use a formal approach based on set-theoretic def-
initions and the deduction of properties using formal proof. Others seek to learn
proofs procedurally to reproduce in examinations. All of these approaches may in-
volve supportive and problematic aspects, which have been detailed in the literature
(e.g. Pinto and Tall 1999; Weber 2004; Tall 2013).

As students become more experienced and shift to graduate studies, Weber
(2001) produced evidence that research graduates are more likely to respond flex-
ibly to problems by making links between concepts in a sophisticated knowledge
structure while undergraduates in their early studies, have yet to develop such flexi-
bility.

This is consistent with the lack of aesthetic appreciation of mathematical ideas
noted by Dreyfus and Eisenberg (1986) and also with the relationship noted by
Koichu et al. (2007) between “aesthetical blindness” of students and factors such as
self-esteem that affect their aesthetic judgement.

The theoretical framework presented here traces the development of cognitive
and emotional aspects throughout the lifetime of the individual. A few students,
characterized as being ‘gifted’ develop verbal-analytic skills that enable them to
build formally from set-theoretic definitions to construct highly connected crys-
talline concepts that may have embodiments and operations linked to underlying
formally proved structure theorems. But many others, who focus on ‘maximising
their mark on the exam’ to ‘get a good degree’ to move on in their lives, have good
reasons for doing so. The mathematics is problematic for them and it doesn’t make
sense.
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Problems
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a vague and
uncertain
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proofs
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needed
theorems
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them to see
what could be
calculated

What might be
true

Come up with
new theorems

Fig. 13.2 Van Hiele-like developments in mathematical research

Structure Theorems

Some theorems based on formal axioms and definitions prove formal structures that
enable the ideas to be reconsidered in embodied and symbolic terms. For example,
a finite dimensional vector space over a field F is isomorphic to Fn, so that its
elements may be represented symbolically as n-tuples and its linear maps as ma-
trices, and in the case where F is the field of real numbers and n = 2 or 3, it may
be embodied in two or three dimensional space. In the same way a finite group is
isomorphic to a subgroup of a group of permutations, which allows it to be operated
on symbolically and embodied as the transformations of a geometric object.

Structure theorems enrich formal mathematics with new forms of embodiment
and symbolism, to enable mathematicians to recognise problems, imagine possibil-
ities, to formulate conjectures and to prove new theorems. Mathematicians of dif-
ferent persuasions see proof as their main research goal, but achieve it in different
ways, as the algebraist Saunders MacLane observed when comparing his approach
with that of the geometer Michael Atiyah:

For MacLane it meant getting and understanding the needed definitions, working with them
to see what could be calculated and what might be true, to finally come up with new ‘struc-
ture’ theorems. For Atiyah, it meant thinking hard about a somewhat vague and uncertain
situation, trying to guess what might be found out, and only then finally reaching definitions
and the definitive theorems and proofs. (MacLane 1994, pp. 190–191)

Both strategies follow the same format—becoming aware of a problem, considering
possibilities, formulating conjectures and seeking proof—and this follows the broad
van Hiele format of recognition, description, definition and deduction (Fig. 13.2).

The Overall Development of Proof

The long-term growth of mathematical thinking of proof begins with the perceptions
and actions of young children, and develops through three successive levels:
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• practical mathematics exploring shape and space and developing experience of
the operations of arithmetic. This involves the recognition and description of
properties, such as the observation that the sum of numbers is not affected by
the order of operation and proof is often formulated as generic proof.

• theoretical mathematics of definition and deduction, as exhibited by Euclidean
proof in geometry, and of the definition of the ‘rules of arithmetic’ and properties
such as even, odd, prime, composite, and the theoretical deduction of theorems
such as uniqueness of factorization into primes.

Theoretical mathematics is appropriate for most applications of mathematics, while
those who go on to study pure mathematics change meaning once more to

• formal mathematics based on set-theoretic definition and deduction.

In mathematical research, mathematicians use various combinations of embodi-
ment, symbolism and formalism to imagine possible theorems and to formulate con-
jectures to seek proof and to shift to ever more sophisticated levels using structure
theorems.

This framework offers mathematicians, mathematics educators, teachers and
learners the opportunity to share an overall development of proof based on the fun-
damental sensori-motor bases of human thinking that becomes increasingly sophis-
ticated through the use of language and symbolism. It offers an integration of the
cognitive and affective development of mathematical knowledge and mathematical
proof.

To enable different communities of practice to come together for mutual bene-
fit, it is essential to develop a common context of discourse that enables different
communities to speak meaningfully to each other. In the final chapter of How Hu-
mans Learn to Think Mathematically (Tall 2013), I consider the problems encoun-
tered in communication between different communities. It becomes clear that each
community has its own ways of working that may be highly appropriate in its own
context but that the shift to another context involves met-befores that may impede
the possibility of an expert in one community making sense of the needs of another
community. This suggests the need for a sense of openness and willingness to listen
to other points of view and to see the relevance of various viewpoints in differ-
ent contexts. It should be possible for a community to realise that viewpoints that
may be essential in their own context may not be appropriate in others. For instance,
a formal mathematician could become more sensitive to the practical needs of math-
ematics in the everyday community, or recognise the theoretical requirements of
applied mathematicians, who build on natural modelling of real situations rather
than formal set-theoretic definitions and proof. In the other direction, it should be
possible for those involved with practical mathematics to develop some insight into
more technical requirements, or for technical mathematicians to have a sense of the
power of the greater generality of axiomatic mathematics. The goal should surely be
a more respectful understanding between various communities of practice involved
in mathematics, including pure and applied mathematicians, mathematics educa-
tors and a range of other communities of practice in science, sociology, psychology,
philosophy, history, cognitive science, constructivism and so on.
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The theory presented here focuses on the fundamental ideas of proof that occur
as humans use their perception, operation and reason to build increasingly sophis-
ticated mathematical knowledge. It begins with practical experiences in which spe-
cific examples may be seen as generic examples of proof. Then these experiences
lead to theoretical proof based on Euclidean definition and proof in geometry, def-
initions based on the symbolic ‘rules of arithmetic’ in arithmetic and algebra, or a
blending of embodied thought experiment and symbolic proof. At a formal level,
definitions are given as quantified set-theoretic definitions and formal proof that ap-
ply in any context where the axioms and definitions are satisfied.

The long-term development is affected by supportive and problematic met-
befores that apply not only to developing students, but also to the historical evolution
of mathematics and to the competing views of differing communities of practice.
Experts with sophisticated knowledge structures are subject to personal conceptions
of mathematics that they may share with other experts in their community but per-
haps not with other communities. The framework given here offers an opportunity
to evolve theoretical ideas into the future by blending differing viewpoints to grasp
the fundamental basis of the long-term development of mathematical thinking and
proof by building on the fundamental ideas of perception, operation and reason.
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Chapter 14
Reflections on Justification and Proof

Justification and Proof in Mathematics
and Mathematics Education

Keith Weber

Abstract In this chapter, we explore how investigations into mathematicians’ prac-
tice can inform instruction on justification and proof. Each co-author of this prac-
tice presents an investigation of how mathematicians use justification and proof in
their professional practice and suggests pedagogical implications based upon in-
sights from their investigations.

Keywords Justification · Mathematicians’ practice · Proof

Introduction

In 2000, Eric Knuth noted that there was a rebirth of proof in mathematics class-
rooms. In the 1990s, many researchers noted that the role of proof in mathematics
was limited (e.g., Schoenfeld 1994; Wu 1996). But in the last decade, mathematics
educators have advocated that justification and proof was expected to play an impor-
tant role in all aspects of students’ mathematical learning (e.g., Knuth 2000). If we
accept the premise that proof should be taught to all students of mathematics, this
begs the questions: what role should proof play in the mathematics classroom and
how should it be taught? Often proof is taught independently from other mathemati-
cal content, leading students to view proof as a pedantic ritual that they are required
to engage in rather than as a tool for facilitating communication and advancing
mathematical knowledge (e.g., Harel 1998; Schoenfeld 1994)—consequently stu-
dents often see little value in the proof they observe or produce (e.g., Harel 1998;
Healy and Hoyles 2000; Schoenfeld 1989).
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Addressing these shortcomings involves an important opportunity for mathemati-
cians and mathematics educators to collaborate. An important source of insight into
what justification and proof should mean and how these constructs should be used
for students is mathematicians’ practice with justification and proof. Toward this
end, mathematics educators have explored how justification and proof have been
used in mathematical practice. This is based on the assumption that what motivates
mathematicians to engage in justification and proof might similarly motivate stu-
dents to do the same and that students may gain similar benefits from the kind of
proving mathematicians do. Narrowing the gap between mathematical and class-
room practice with respect to justification and proof has the potential also to bridge
the gap between mathematicians and mathematics educators.

In this chapter, we explore different ways that mathematicians treat justifica-
tion and proof in their professional practice and explore the implications for mathe-
matics education. We also explore different ways that educational researchers have
used to investigate mathematicians practice, including different sources of data from
mathematicians, to form these implications. Gila Hanna’s contribution examines re-
cent philosophical theses with respect to mathematical proof and their implications
for mathematics education. Notably, philosophers have stressed the communica-
tive functions of (informal) proofs, including providing explanation and illustrat-
ing methods, and Hanna believes proof can have similar functions in mathematics
classrooms. Guershon Harel’s contribution explores the different types of intellec-
tual need that have the potential to motivate all individuals (notably mathematicians
and students) to engage in justification. Harel argues that creating these types of
need in the classroom environment can help students view justification and proof as
meaningful mathematical activities. Ivy Kidron’s contribution is based on her fine-
grained analyses of the opportunities to construct mathematical knowledge in the
process of forming justifications, illustrating how many of the insights gained from
constructing a proof are obtained by linking aspects of an individual’s knowledge
that were previously disconnected. Annie Selden and John Selden’s contribution
explores how proofs are typically written by mathematicians, contrasting this both
with other genres of writing and the ways in which students write proofs. They
base their conclusions on their reading of the mathematical literature, as well as
their own experience as research mathematicians. Keith Weber’s contribution uses
insights gained from laboratory experiments with mathematicians to explore the het-
erogeneity in mathematicians’ practice with respect to proof, and he suggests that
a variety of practices with regard to justification may be beneficial to include in
mathematics teaching.

Proof in the Curriculum: Reflecting Modern Mathematical
Practice

Gila Hanna

My starting point is the view that educational researchers and curriculum develop-
ers cannot foster the use of reasoning and proving in mathematics teaching without
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understanding what it means to reason and to prove in mathematics itself. I firmly
believe that an appreciation of current thinking in mathematical practice and in the
philosophy of mathematics stands to provide mathematics educators with new per-
spectives on questions crucial to the teaching of mathematics, as well as to open up
new avenues for research in mathematics education.

My research interests focus on epistemological issues related to proof and prov-
ing in mathematics education. The focus of my research is not on cognition. Its
objective is to direct the attention of educational researchers to the newest devel-
opments in the philosophy and practice of mathematics and to their relevance for
effective mathematics education.

Over the past thirty years or so, philosophers of mathematics have shifted their
interest markedly, away from a preoccupation with the logical foundations of mathe-
matics and towards a detailed study of mathematical practice. This new focus brings
with it a greater relevance to mathematics education, because of the light it throws
on applications of mathematics, on the role of new technologies in mathematics,
on the ways in which today’s mathematicians actually devise and judge proof, on
the reasoning styles they use, and on the ways in which they present and weigh
evidence.

At the same time, philosophers of mathematics have come to a greater recogni-
tion of the central importance of mathematical understanding, and so have looked
more closely at how that understanding is best conveyed and thus at what counts as
explanation in mathematics. As might be expected with these two shifts in focus,
these philosophers have turned their attention more and more from the justificatory
to the explanatory role of proof (Corfield 2003; Kitcher 1981; Mancosu 2001; Rav
1999; Sandborg 1997; Tappenden 2005).

Proof in Mathematical Practice

There is a standard definition of mathematical proof which is universally accepted as
the ideal: A mathematical proof is a finite sequence of propositions, each of which
is either an axiom or follows from preceding propositions by the rules of logical
inference. Now, this is actually the definition of a formal proof, a Hilbertian view of
proof, and it is what students learn when they first encounter the concept of deduc-
tive proof. But in mathematical practice the vast majority of proofs are not purely
syntactical derivations. Proofs do not necessarily conform to this standard defini-
tion simply because in many contexts mathematicians either cannot afford to live
up to the demands of formal proof or simply choose to employ informal proofs that
provide more insight and understanding.

In addition, many of the rather informal proofs that mathematicians routinely
produce are nevertheless considered by other mathematicians to be sufficiently rig-
orous and thus reliable. In fact, one could say that there are informal standards of
rigor, or standards of informal rigor, that are acceptable to experts in the field (Az-
zouni 2009; Marfori 2010).
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It is informative to examine what the mathematician Yu. Manin (1998) has to
say about such proofs. He perceives the practice of mathematics as both imprecise
and informal, and describes proof as having three levels: (1) An individual level,
where proving depends on the preferences of individual mathematicians and their
inclinations for various styles of reasoning, such as geometric, visual, or algebraic
calculations; (2) A social level, where mathematicians have to rely on the work of
others and on the authority of accepted proofs and reasonings; (3) An epistemolog-
ical level, where mathematicians know that a rigorous proof has an ideal (formal)
representation, but consider this ideal to be an “imaginary text.”

Manin goes on to explain that the standard definition of mathematical proof (as
stated above) is an “ideal representation” which might arouse either “a strong aver-
sion” or a high degree of “enthusiasm.” However, he also concedes that because
mathematicians must maintain high standards of proof, ultimately “we have to re-
sort to the ideal of mathematical proof as an ultimate judge of our efforts” (Manin
1998, pp. 154–155).

Terrence Tao (2010) points out mathematicians are expected to adhere to “the
highest standards of rigor that are practical” (rigor not being the same as logical
formality) when they devise proofs. But he also states that the same level of rigor is
not necessarily appropriate to every part of mathematics.

From Mathematical Practice to Mathematics Education

The Use of Proof to Promote Understanding

Incorporating reasoning and proof in the curriculum to reflect its importance in
mathematical practice is good as far as it goes. But it has become clear that there is
much to be gained by also looking closely at how mathematicians reason and prove.
In other words, mathematical practice has lessons for instructional practice. Since
in mathematical practice proofs that provide insights and understanding are highly
valued, it behooves mathematics educators to pay great attention to the explanatory
role of proof, and perhaps even to assign more weight to its explanatory than to
its justificatory role. This suggests that a somewhat more “liberal” view of proof,
encompassing the use of computer graphics and other forms of experimentation
and visualization, would have beneficial effects on the effectiveness of mathematics
teaching. Also the ability to understand a proof or to provide a proof depends on a
good grasp of the specific mathematical topic under consideration and on one’s fa-
miliarity with the concepts involved. Thus it is crucial that students be taught more
mathematics.

The Use of Proof to Teach Mathematical Methods

This approach is inspired by mathematical practice, in which proofs do much
more than provide warrants for mathematical statements (Rav 1999). In the course
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of proving a mathematical proposition, a mathematician brings to bear not only
other mathematical truths, but also many powerful tools of mathematical practice—
resources that encompass strategies and techniques and may best be referred to as
methods. But proofs do not just make use of these methods. They also serve as a
test bed, an opportunity for mathematicians to verify the validity of methods, adapt
them to new contexts, and extend them. Often they also provide the incentive to
construct entirely new ones (Avigad 2006; Corfield 2003; Dawson 2006; Hanna and
Barbeau 2008; Rav 1999). Recently the mathematician Terrence Tao has recom-
mended “learning the power of other mathematicians’ tools”, and adding them to
one’s bag of tricks (Tao 2001, Blog).

Using proof to teach mathematical methods is not intended or expected to re-
place or compromise in any way the teaching of proof itself or of logical derivation
in the Euclidean sense. What it could do is provide mathematics educators with
another very important reason to accord to proof a position of significance in the
mathematics curriculum.

Formal Proofs and Proof Assistants

In ordinary mathematical practice, as mentioned above, many informal proofs are
considered to be an appropriate standard of proving, and suitable for publication.
Nevertheless, mathematicians would certainly prefer a higher level of certainty than
these proofs afford. It so happens that mathematicians now have access to a very
promising way of gaining confidence in a proof, with the development, over the
past twenty years, of several computer programs known as “automatic proof check-
ers” and “proof assistants.” Checking the correctness of a proof has reached a level
that no ordinary proof can match. According to Wiedijk (2008), these programs
have been successful in checking the validity of the proofs of several well-known
theorems, such as the Fundamental Theorem of Algebra (2000), Jordan’s Curve
Theorem (2005), the Fundamental Theorem of Calculus (1996), the Four Colour
Theorem (2004), and the Prime Number Theorem (2008).

Some mathematicians (Calude and Müller 2009; Hales 2008; Harrison 2008;
Wiedijk 2008) envisage the use of proof assistants in daily mathematical practice,
to provide an objective criterion for the correctness of a proof and thus to supplement
or even partially replace the process of peer review. As Wiedijk (2008) put it, “When
the part of refereeing a mathematical article that consists of checking its correctness
takes more time than formalizing the contents of the paper would take, referees will
insist on getting a formalized version before they want to look at a paper” (p. 1414).

Theorem-Provers for Education

Mathematics education has greatly benefitted from the intensive use of several ed-
ucational software packages, such as Dynamic Geometric Software (DGS), spread-
sheets, and Computer Algebra Systems (CAS). As reported by Maric and Neuper
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(2011) there is now a fully functional version of Theorem-Prover System (TPS)
appropriate for the school and undergraduate levels and dubbed eduTPS. Unfortu-
nately, it has not yet been sufficiently noticed by mathematics educators, and thus
has not been tested by educational researchers or tried in the classroom. A group
of researchers will be presenting this new software at the upcoming Conference on
Intelligent Computer Mathematics, CICM 2012. It is still an open question whether
the use of eduTPS would be beneficial to the teaching of mathematics.

Categories of Intellectual Need

Guershon Harel

The goal of this paper is to define intellectual need and outline its different man-
ifestation in mathematical practice. The definition is oriented within a larger con-
ceptual framework called DNR-based instruction in mathematics (DNR). DNR can
be thought of as a system consisting of three categories of constructs: premises
(explicit assumptions underlying the DNR concepts and claims), concepts oriented
within these premises, and instructional principles. The latter are claims about the
potential effect of teaching actions on student learning justifiable in terms of these
premises and empirical observations. The initials D,N , and R stand for the three
foundational instructional principles of the framework: Duality, Necessity, and Re-
peated reasoning. (For a more comprehensive discussion of DNR, see Harel 2008a,
2008b). Here we only present four of the eight premises of DNR—those that are
needed for the definition of intellectual need:

1. The knowledge of mathematics premise: Mathematics consists of two related but
different categories of knowledge: all the ways of understanding and ways of
thinking that have been institutionalized throughout history.

2. The knowing premise: Knowing is a developmental process that proceeds
through a continual tension between assimilation and accommodation, directed
toward a (temporary) equilibrium.

3. The knowledge-knowing linkage premise: Any piece of knowledge humans know
is an outcome of their resolution of a problematic situation.

4. The subjectivity premise: Any observations humans claim to have made are due
to what their mental structure attributes to their environment.

Definition of Intellectual Need

If K is a piece of knowledge possessed by an individual or community, then, by the
Knowing-Knowledge Linkage Premise, there exists a problematic situation S out of
which K arose. S (as well as K) is subjective, by the Subjectivity Premise, in the
sense that it is a perturbational state resulting from an individual’s encounter with a
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situation that is incompatible with, or presents a problem that the individual recog-
nizes as unsolvable by, her or his current knowledge. Such a problematic situation S,
prior to the construction of K , is referred to as an individual’s intellectual need: S is
the need to reach equilibrium by learning a new piece of knowledge. Thus, intel-
lectual need has to do with disciplinary knowledge being created out of people’s
current knowledge through engagement in problematic situations conceived as such
by them. One may experience S without succeeding to construct K . That is, in-
tellectual need is only a necessary condition for constructing an intended piece of
knowledge.

Categories of Intellectual Need

DNR offers five categories of intellectual needs: (1) need for certainty, (2) need for
causality, (3) need for computation, (4) need for communication, and (5) need for
structure.

Need for Certainty When an individual (or a community) considers an assertion,
he or she conceives it either as a fact or as a conjecture—an assertion made by
a person who has doubts about its truth. The assertion ceases to be a conjecture
and becomes a fact in her or his view once the person becomes certain of its truth.
The need for certainty is the natural human desire to know whether a conjecture
is true—whether it is a fact. When the person fulfills this need, through whatever
means deemed appropriate by her or him, the person gains new knowledge about
the conjecture.

Need for Causality Certainty is achieved when an individual determines (by
whatever means he or she deems appropriate) that an assertion is true. Truth alone,
however, may not be the only aim for the individual, and he or she may desire to
know why the assertion is true—the cause that makes it true. Thus, the need for
causality is one’s desire to explain, to determine a cause of a phenomenon. “Math-
ematicians routinely distinguish proofs that merely demonstrate from proofs which
explain” (Steiner 1978, p. 135). For many, the role of mathematical proofs goes be-
yond achieving certainty—to show that something is true; rather, “they’re there to
show. . . why [an assertion] is true,” as Gleason, one of solvers of Hilbert’s Fifth
Problem (Yandell 2002, p. 150), points out. Two millennia before him, Aristotle, in
his Posterior Analytic, asserted that “we suppose ourselves to possess unqualified
scientific knowledge of a thing, as opposed to knowing it in the accidental way in
which the sophist knows, when we think that we know the cause on which the fact
depends as the cause of the fact and of no other.”

Need for Computation The need to compute refers to one’s desire to quantify, de-
termine a missing object or construct a mathematical object, determine the property
of an object or relations among objects, etc. by means of symbolic algebra. It also
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includes the need to find more efficient computational methods, such as one might
need to extend computations to larger numbers in a reasonable “running time.” Of-
ten the need to compute reflects two inseparable abilities: (a) the ability to represent
a situation symbolically and manipulate the representing symbols as if they have a
life of their own, without necessarily attending to their reference; and (b) the ability
to pause at will during the manipulation process in order to probe into the referential
meanings for the symbols involved in the manipulation.

Need for Communication In mathematics, the need for communication refers
collectively to two reflexive acts: formulating and formalizing. Formulating is the
act of transforming strings of spoken language into algebraic expressions (i.e., ex-
pression amenable to computation by means of symbolic algebra as discussed in
the preceding section). Formalization is the act of externalizing the exact intended
meaning of an idea or a concept or the logical basis underlying an argument. In
modern mathematics the acts of formulation and formalizations are reflexive in that
as one formalizes a mathematical idea it is often necessary to formulate it, and,
conversely, as one formulates an idea one often encounters a need to formalize it.

Need for Structure The need for structure is the need to re-organize the knowl-
edge one has learned into a logical structure. A critical element in this definition
is the verb “to re-organize,” and, by implication, its source verb “to organize.” The
verb “to organize” implies an action on something that already exists, and the verb
“to re-organize” implies that something has already been organized. Accordingly,
the need for structure is not a forward need; that is, one does not feel intellectually
compelled to learn new knowledge in a particular order and from that fit a prede-
termined structure; rather, one assimilates knowledge into one’s existing structure,
and reorganizes it if and when one perceives a need to do so. The nature of the
structure into which one organizes one’s own knowledge is idiosyncratic and de-
pends entirely on one’s past experience. Such a structure is unlikely to be logically
hierarchical, and even mathematicians are unlikely to involuntarily organize their
knowledge into a systematic logical structure. Thus, the term “re-organize” in the
above definition recognizes that individual learners or communities of learners first
organize the mathematical knowledge they learn in a form determined by their ex-
isting cognitive structures; later they may meet the need to re-organize what they
have learned into a logical structure.

Summary

In this brief paper, we have identified five categories of intellectual needs. Collec-
tively, these five needs are ingrained in all aspects of mathematical practice—in
forming hypotheses, proving and explaining proofs, establishing common interpre-
tations, definitions, notations, and conventions, describing mathematical ideas un-
ambiguously, etc. DNR-based instruction is structured so these same needs drive
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student learning of specific topics, and by realizing the different needs that drive
mathematical practice, students are likely to construct a global understanding of the
epistemology of mathematics as a discipline. These needs, thus, are common to stu-
dents and mathematicians, and so they are real components of the common ground
this volume is striving for.

Justification and Construction of Knowledge

Ivy Kidron

In the following contribution, I use my work with Dreyfus (Dreyfus and Kidron
2006; Kidron and Dreyfus 2009, 2010a, 2010b) to elucidate the intricate relation-
ships between processes of justification and construction of knowledge from a cog-
nitive perspective. I organize this issue around three questions: What is justification
for the mathematician and the student? How do mathematicians construct justifica-
tions? How can justification lead to new knowledge?

What Is Justification for the Mathematician and the Student?

My position is that justification can lead to the construction of knowledge because
justification provides insights into the connections underlying the statement to be
justified (Kidron and Dreyfus 2010a). This position is consistent with the view of
Rota (1997), who wrote:

Verification alone does not give us a clue to the role of a statement within the theory; it
does not explain the relevance of the statement. . . the logical truth of a statement does not
enlighten us as to the sense of the statement. . . .every teacher of mathematics knows that
students will not learn by merely grasping the formal truth of a statement. Students must be
given some enlightenment as to the sense of the statement. (pp. 131–132)

The term enlightenment has been introduced by Rota (1997) to refer to “insight
into the connections underlying the statement to be justified”. Rota pointed out that
enlightenment is not easily formalized and that unlike mathematical proofs, it admits
degrees: “Mathematical proof does not admit degrees. A sequence of steps in an
argument is either a proof, or it is meaningless. Heuristic arguments are a common
occurrence in the practice of mathematics. However, heuristic arguments do not
belong to formal logic. . . . Proofs given by physicists admit degrees. In physics, two
proofs of the same assertion have different degrees of correctness. . . . A great many
characteristics of mathematical thinking are neglected in the formal notion of proof”
(ibid., pp. 134–135).

We might learn from Rota two important ideas: the first is that even though
heuristic (non-deductive) arguments are not proofs, they nevertheless deserve more



246 K. Weber

of a place in mathematics. Since heuristic arguments have a place in mathemat-
ics they ought to have a place in mathematics teaching as well. Moreover, heuris-
tic arguments provide different levels of conviction. The second is that, to mathe-
maticians, proofs can provide insights. Thurston (1994) also expressed his view of
justification when he wrote that mathematicians should pay much more attention
to communicating not just definitions, theorems and proofs, but also mathematical
ideas. He added that there are certain theorems that are generally accepted and as
long as people in the field are comfortable that the idea works, it does not need to
have a formal written source. Thurston observed that when people are doing math-
ematics, the flow of ideas and the social standard of validity are much more reliable
than formal documents. An implication is that when presenting proofs to students,
the instructor should be transparent about the ideas that motivated the proof.

How Do Mathematicians Construct Justifications?

We may ask: Are there regularities in the processes of constructing justifications
that should be common to mathematicians and students?

Selden (2012, p. 398) investigated the issue of how tertiary students deal with
various aspects of proof and proving? Selden points out that upon being given a
statement to prove, students’ first job is to understand both the statement’s struc-
ture and its content. Then the students have to interpret and use previous theorems
and definitions in proving. Tall (2006) also emphasizes the role of incorporating
previous constructs toward the building of justifications, as appears in his concept
of “met before”: a structure we have in our brains now as a result of experiences
we have met before. In the new situation, the “met before” becomes supportive or
problematic. Tall (2006) maintains that “a teacher can do a great deal by adopting
a connectionist viewpoint to help each learner to address a problem by building
on current knowledge” (p. 211); hence teachers should understand and address not
only the mathematical structure but also the role of the learner’s prior knowledge in
constructing a justification. Kidron and Dreyfus (2010a) described justification as
a process of combination of selected previous constructs. They analyzed the justi-
fication construction of one mathematician who was attempting to understand the
family of solutions to the differential equation, dx/dt = rx(1 − x) and sought to
justify how changes in the parameter r led to different final state solutions. In this
case study, significant advances in the justification process came from viewing the
same diagram in different ways. For instance, she noticed that the bifurcation map
of the family of solutions, which she used as an aid for her reasoning, branched
when the discriminant of the differential equation vanished (see Kidron and Drey-
fus 2010a, for more details). Noticing this connection led to an enlightenment (in
the sense of Rota).
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How Can Justification Lead to New Knowledge?

The mathematician in the study by Kidron and Dreyfus (2010a) constructed a justi-
fication which constitutes a complex learning process. Her attempts at justification
gave rise to several interweaved modes of thinking that develop in parallel and inter-
act. Kidron and Dreyfus observed a combination of numerical and graphical modes
of thinking as well as a close approach of an algebraic mode to an analytical mode
of thinking. Finally, they observed an integration of a dynamic graphical view with
an algebraic/analytic one incorporating all four modes of thinking, the numerical,
the algebraic, the dynamic graphical and the analytic one into a single consistent
image.

These different modes of thinking refer to different constructions of knowledge.
Kidron and Dreyfus’ analysis refers not only to what justification means for the
mathematician in the study but also to the relationships of this meaning of justi-
fication for the patterns of knowledge construction. They analyzed the interaction
pattern of combining constructions of knowledge and show that combining con-
structions is associated with the construction of justification. They observed that
“enlightenment,” to use Rota’s term, occurs when constructions combine—at the
integration of different modes of thinking. An important question might be: is every
justification a construction of new knowledge? it is not easy to answer this question.
Nevertheless, if we observe the dynamics of the process of constructing a justifica-
tion: it goes from a bunch of disconnected selected previous constructs to an inter-
linked network of previous constructs that provide a justification. The establishment
of new connections requires construction of new knowledge towards a more formal
reasoning.

Similarities and Differences Between Justification Processes
of Students and Mathematicians

The relationship between the process of constructing a justification and the phe-
nomenon of combining modes of thinking were observed by Kidron and Dreyfus in
a few case studies including mathematicians and young learners (Kidron and Drey-
fus 2009). The combining points indicated the integration of different knowledge
constructs and different modes of thinking. An important question for which I do
not have yet an answer is: Are combining modes of thinking an indicator for certain
types or forms of justification? Which types and forms?

Studying how mathematicians construct mathematical knowledge via the process
of justifying can inform mathematics instruction. The main idea is to learn how ex-
pert mathematicians bring together different types of mathematics resources while
combining rigorous and intuitive thinking. This idea is well developed in Wilkerson-
Jerde and Wilensky (2011). They point out that experts are likely to refer to specific
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examples or instantiations when making sense of an unknown aspect of a mathe-
matical idea. They claim that for some experts, specific instantiations of the math-
ematical object being explored serve a central role in the process of constructing a
proof.

This is well expressed by de Villiers (2004) who argues that “mathematicians are
often convinced by the truth of their results (usually on the basis of quasi-empirical
evidence) long before they have proofs” (p. 402). Quasi-empirical evidence might
be provided by means of generating examples. We may ask: What is the aim of
generating examples? Is it only for empirical evidence and conviction? Or maybe
the aim is a better insight in the sense of the statement to be proved, helping to
judge the probable truth of the conjectures? Indeed, Selden (2012, p. 403) points
out that generating examples and counter-examples can help students judge the truth
of conjectures. But students are often reluctant to generate examples (Watson and
Mason 2005). Moreover, Alcock and Weber (2010) have noted that students who
attempt to use examples are often not successful.

Enlightenment and Aesthetics

Analyzing similarities and differences between justification processes of students
and mathematicians especially in connection to the notion of “enlightenment” which
accompanies some of the justification processes, we may ask: how to build in stu-
dents an appreciation for the power and beauty of a mathematical argument?

Viewed this way, Rota’s “enlightenment” may be compared to the “sudden illu-
mination that underlies the aesthetics of the solution processes” (Dreyfus and Eisen-
berg 1986). Ted Eisenberg pointed out the importance of appreciation of the aes-
thetics of mathematical thought yet was concerned to find that few students derive
pleasure from the beauty of mathematics.

The Genre1 of Proof

Annie Selden and John Selden

A Study of Mathematicians’ Views on Features of Proofs

Some years back, while attending the Park City Mathematics Institute,2 we inter-
viewed mathematicians regarding what they thought of the following seven conjec-

1Here we are invoking the “new view” of genre. As Friedman and Medway (1994) wrote, “. . . the
notion of genre has been reconceived. . . . Genres have come to be seen as typical ways of engaging
rhetorically with recurring situations.” (p. 2).
2The Park City Mathematics Institute is a program of the Institute for Advanced Study, Prince-
ton, NJ. It is designed for mathematics researchers, post-secondary students, and mathematics
educators at the secondary and post-secondary levels.
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tured features of proofs, while looking at one of their own published mathematics
papers. Overall, they tended to agree.

Proofs Are not Reports of the Proving Process

For example, one does not write into a final written proof things like, “I tried this
[technique or idea] and it did not work.” One also does not (usually) write “I want
to show [the conclusion or sub-conclusion that one will prove next], except perhaps
in rather long, complicated proofs.”

Mathematicians do not consider “the function of the written document as a record
of the work done. . . and consistency with historical development is hardly consid-
ered at all as a relevant factor. . . ” (Csiszar 2003, pp. 247–248). “False starts, mis-
takes, revisions—these are all part of the creative process [in discovering and prov-
ing theorems]. But when the final result is published, we seldom see the enormous
effort that was necessary for the creation; we see the polished product, the correct
statement with a clean proof. . . . [This is] an important feature of mathematics.”
(John Ewing, as quoted by Csiszar 2003, p. 244).

Proofs Contain Little Redundancy

Unlike arguments in philosophical papers, one does not consider the argument from
another point of view (at least in the same proof). Furthermore, “. . . mathematicians
appear to prize brevity, conciseness, and precision of meaning.” (Shepherd et al.
2012). “Mathematicians collectively take pride in their writing style for its rigor and
precision.” (Csiszar 2003, p. 244).

Symbols Are (Generally) Introduced into Proofs in One-to-One
Correspondence with Mathematical Objects

For example, one does not do what one of our transition-to-proof course students
did, when proving the following Theorem: For integers m, n, and p, if m divides
n and m does not divide p, then n does not divide p. The attempted proof began
with the following unnecessary profusion of letters: Proof: Since m, n, and p are
integers and m divides n and n does not divide p, let m = j and n = jk and p = l,
where j , k, and l are integers, and did not get better. “In the genre of mathematical
proofs it is not permissible to let the same symbol represent two different numbers,
except across independent subproofs. Perhaps this is because doing so seems very
likely to cause validators confusion.” (Selden and Selden 2003, p. 13).
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Proofs Contain Only Minimal Explanations of Inferences, that Is, Warrants
are Often Left Implicit

For example, one of our transition-to-proof students correctly proved the Theorem:
For all sets A and B , if A ∩ B = A, then A ∪ B = B as follows. Proof: Let A

and B be sets. Suppose A ∩ B = A. Let x ∈ A. Since A = A ∩ B , then x ∈ B .
A warrant for this step, that the student deemed unnecessary, would have been:
From x ∈ A and A = A ∩ B , one has x ∈ A ∩ B . Then x ∈ A and x ∈ B , so x ∈ B .

The Manual for Authors of Mathematical Papers (MAMP) suggests that au-
thors, “Omit any computation which is routine (i.e., does not depend on unexpected
tricks). Merely indicate the starting point, describe the procedure, and state the out-
come. . . ” (as quoted by Csiszar 2003, p. 244). Also, the Associate Editor for the
Journal of Geometric Analysis, suggests, in giving advice to authors, that while
most mathematical arguments need to be justified, sometimes “the reason will be so
obvious to the reader that it is actually more effective to leave it out.” (Lee 2012,
p. 3).

Proofs Contain only very Short Overviews or Advance Organizers

For example, one might state at the beginning of a proof by contradiction “Suppose
to the contrary that. . . ” However, one would not generally give the overall organiza-
tion of the proof in advance, such as indicating that there would be a case argument,
and that the first case would be proved directly.

This contravenes Leron’s (1983) idea of using a hierarchical structure of levels
when presenting proofs in the classroom. He stated that, “While the age-old and
venerable method [of presenting proofs in a step-by-step, ‘linear’ fashion] may be
well suited for securing the validity of proofs, it is nonetheless unsuitable for. . .
presentations.”

Entire Definitions (Available Outside the Proof) Are not Quoted in Proofs

For example, it is quite common for beginning undergraduate real analysis students
to state the entire definition of continuity within a proof, rather than merely writing,
“By definition of continuity, we have. . . ” Also, in a point-set topology proof, one
would not usually include standard definitions of compact and connected. This, and
other, student proving difficulties related to the genre of proof were noted by Selden
and Selden (2011).

Proofs Are “Logically Concrete” in the Sense that Quantifiers, Especially
Universal Quantifiers, Are Avoided Where Possible

Students often want to argue for all x within a proof, rather than selecting a fixed, but
arbitrary x and arguing about that. It is implicit that, whichever element is selected,
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the argument can be about that element. Although this is a simple rhetorical device,
it is very powerful and it simplifies the logic required of validators, thereby perhaps
avoiding some errors.

Even mathematics graduate students can take a very long time to employ, and get
comfortable with, this feature of the genre of proof. Mary was a teacher, returning
to graduate school in mathematics. She was taking beginning real analysis with
Dr. K, who assigned 3 or 4 weekly proofs, graded them very thoroughly, and allowed
them to be resubmitted. He emphasized things like writing “Let x be a number”
into proofs. She recalled feeling this requirement was not particularly important or
appropriate. However, she complied to get full credit. Near the middle of the course,
Mary came to feel that this “made sense and it was the way to do it.” She reported
to us, two years later, that she could not think of any other way to write (this feature
of) proofs (Selden et al. 2010).

Discussion and Conclusion

The genre of proofs has developed over considerable time, but not necessarily by
conscious intent. This is probably because mathematicians have come to see this
genre as having value. Csiszar (2003, p. 268) suggested that this rhetoric contributes
to a sense of a “proof’s inevitability” and that readers can obtain pleasure from
“seeing a proof unfold as it must before one’s [their] eyes.” In addition, sometimes
mathematicians want to get the flow of the argument without wallowing in the de-
tails. As the MAMP stated, readers want “to see the path—not examine it with a
microscope.” Finally, we suggest that one reason this genre may have developed is
because it makes the validation of proofs as easy, and hence as reliable, as possible.
That is, distractions are minimized, thereby maximizing the finding of errors.

On the Heterogeneity of Mathematical Practice with Respect to
Proof

Keith Weber

Many mathematics educators contend that the teaching of mathematical proof
should be informed by how proof is used by mathematicians. For instance, Herbst
and Balacheff (2009) averred that, “since a notion of proof exists in the discipline
of mathematics, it might be entitled to exist in classroom activity. And if it were to
exist, it would be expected to exist in a form that was accountable to, if not com-
patible with, how it exists in the discipline” (p. 43). Similarly, Harel (2001) claimed
that in his research program, “the goal of instruction must be unambiguous; namely
to gradually refine current students’ proof schemes toward the proof scheme shared
and practiced by the mathematicians of today” (p. 188). Claims such as these are
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based on the premise that there is significant agreement amongst mathematicians
with respect to their professional practice with proof. Indeed, Harel and Sowder
(2007) explicitly acknowledged as much, stating that their research program “is
based on the premise that a shared scheme exists” among mathematicians. In this
contribution, I will report the results of several recent large-scale empirical stud-
ies that my colleagues and I have conducted with mathematicians that reveal that
mathematicians often behave quite differently in how they seek conviction and read
proofs. I will then suggest some consequences for mathematics educators about the
goals of proof-related instruction.

Do Mathematicians Agree on what Constitutes a Proof?

Selden and Selden (2003) and others have argued that an important goal of proof-
oriented mathematics classes is to teach students how to distinguish between valid
and invalid arguments (e.g., Weber 2008). Such a goal would appear to be based on
the premise that we can, in a sense, objectively classify an argument as valid or in-
valid. Indeed, many mathematics educators and mathematicians express exactly this
viewpoint, contending that although one might not be able to give precise criteria for
what constitutes a proof, mathematicians for the most part agree on whether or not a
given argument is valid. Azzouni’s (2004) article, for instance, attempted to explain
why “mathematicians are so good at agreeing with one another on whether some
proof convincingly establishes a theorem” (p. 84). McKnight et al. (2000) asserted
that “all agree that something is either a proof or it isn’t and what makes it a proof
is that every assertion in it is correct” (p. 1). Selden and Selden (2003) remarked on
“the unusual degree of agreement about the correctness of arguments and the truth
of theorems arising from the validation process” (p. 7); they contended that validity
is a function only of the argument and not of the reader: “Mathematicians say that
an argument proves a theorem, not that it proves it for Smith and possibly not for
Jones” (p. 11).

Inglis et al. (2013) recently conducted a study whose findings challenge the no-
tion of uniform agreement. In this study, 109 mathematicians were shown an ar-
gument purporting to prove that

∫
dx
x

= lnx + C and were told the argument was
submitted for publication in the Mathematics Gazette, an expository mathematics
publication. The argument first established that limk→−1

∫
xkdx = lnx + C and

then concluded the theorem. In other words, the argument established the theorem
by commuting the limit and integral sign. When asked if the argument was valid,
29 mathematicians (27 %) agreed that it was and 80 (73 %) said it was not, with
applied mathematicians significantly more likely than pure mathematicians to judge
the argument to be valid (50 % vs. 17 %). To make certain that this disagreement
was not due to performance error, perhaps due to a lack of content knowledge, we
added the following question after the mathematicians had made their judgments.
We first informed participants that a mathematician critiqued this argument by not-
ing that the limit and integral sign were commuted, asked if such a critique was
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reasonable, and then asked if this alone was enough to render the argument invalid.
Participants found this critique to be reasonable—82 % agreed it was with only 9 %
saying it was unreasonable with no reliable statistical differences between those
who originally judged the argument to be valid or invalid. Of the 29 who judged the
argument to be valid, 24 (83 %) claimed this critique was not sufficient to render
the argument invalid. Of the 80 who judged the argument to be invalid, only 24 %
of those who initially judged the argument to be invalid made this judgment. Hence,
most of those who accepted the argument as valid did so despite being aware that
the limit and integral were commuted and finding this to be a reasonable critique of
the argument. This suggests that mathematicians do not agree about whether par-
ticular inferences within an argument are permissible, even in a domain as basic as
elementary calculus.

Is Empirical Evidence Convincing?

Suppose a student reads a claim that all integers have a mathematical property (e.g.,
all integers are not odd perfect squares). This student verifies this claim for a large
number of integers and becomes convinced that this claim is true. Is this student’s
behavior desirable? Is it consistent with mathematical practice? Many in the math-
ematics community believe the answer to both questions is no. Balacheff (1987),
for instance, refers to this type of empirical reasoning as “naïve”. However, others
disagree, arguing in fact that it is fairly common for mathematicians to gain convic-
tion via empirical reasoning. de Villiers (2004) expressed this as follows: “Contrary
to the belief common amongst many mathematics teachers that only proof provides
certainty for the mathematician, mathematicians are often convinced by the truth
of their results (usually on the basis of quasi-empirical evidence3) long before they
have proofs” (p. 402). The following study provides evidence that both viewpoints,
to some extent, are correct.

Weber (2013) presented 49 mathematicians with an argument that no term in a
particular sequence bn was a perfect square. Without informing them of what the
sequence was, the mathematicians were presented with an empirical argument in
support of this claim. The argument listed the first 12 terms of the sequence and
verified that the odd-numbered terms in the sequence were congruent to 2 (mod 4)
and the even terms in the sequence were congruent to 3 (mod 4). They were also
told that a computer verified that this trend continued for the first 10,000 terms of
the sequence. As no perfect square is congruent to 2 or 3 modulo 4, the argument
concluded that no term in the sequence bn was a perfect square. Mathematicians
were asked, on a scale of 0 through 100, how persuasive they found the argument.
They were also asked a multiple choice question on how persuasive the argument
was, with their choices being: (a) completely persuasive, (b) highly persuasive, as

3By quasi-empirical evidence, de Villiers (2004) was including naïve empirical evidence collected
with the aid of computers (see p. 398).
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persuasive as some proofs that they have read, (c) somewhat persuasive, or (d) not
persuasive, meaning their conviction in the statement did not increase as a conse-
quence of reading this argument. Of the 49 mathematicians, 8 (16 %) said they found
the argument completely or highly persuasive while 11 (22 %) found the argument
not persuasive. This illustrates how some mathematicians might dismiss arguments
that others find to be quite persuasive. These 49 participants, as well as 48 partici-
pants who were in a control condition for this study, were also asked if they were
ever convinced that a claim was correct solely on the basis of empirical evidence. Of
these 97 participants, 26 (27 %) answered yes, while the remaining 71 participants
(73 %) answered no. In summary, some mathematicians find arguments based on
empirical evidence to be highly persuasive while others do not.

Implications for Instruction

If we can make a claim of the form “most mathematicians do X with respect to
proof”, then it would arguably be good policy to set a goal for mathematics instruc-
tion for students to do X as well. For instance, I believe few mathematicians believe
that checking a general claim for a small number of examples constitutes a mathe-
matical proof and consequently students should learn that these types of empirical
arguments are not proofs. However, the situation is more complicated if it is the
case that “some mathematicians do X while others do not”. This makes it harder to
say whether students should find a particular argument to be valid or whether stu-
dents should ever find empirical evidence to be convincing. One approach might be
to expose students to the different viewpoints that mathematicians have. This goes
against the popular view that an answer in mathematics is either correct or it is not,
but it would paint a more accurate picture of mathematical practice.

Reflective Summary

Many mathematics educators believe that mathematicians’ practice with justifica-
tion and proof should inform how proof is taught in the mathematics classroom.
This presents an opportunity for mathematics educators and mathematicians to col-
laborate as mathematics educators can explore mathematicians’ insights about their
practice. The reports in this chapter inform how this might occur. Many students
find the genre of proof in mathematics to be perplexing. Selden and Selden’s contri-
bution aims to understand what characteristics the genre of proof has. The insights
from this chapter can be shared with students, so they can better comprehend the
proofs they read and so they have a greater understanding of the types of arguments
they are asked to produce. Kidron’s contribution tackles the important issue of what
can be learned by the process of producing a justification. One way that producing
a justification may lead to insight is by having the learner construct connections
that are novel to him or her. Kidron documents how this occurs in the work of the
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professional mathematician and contends it can occur in the work of the student as
well. Hanna explores modern trends in the philosophy of mathematics. Throughout
her piece, she argues that the role that proof plays for mathematicians might be able
to play analogous roles in the mathematical classroom, particularly with regard to
understanding. Harel urges the mathematics education community to consider jus-
tification more broadly. Typically mathematics instructors treat concepts and their
definitions as a starting point for their investigations. Harel challenges this practice,
arguing that mathematicians only create concepts to fill an epistemic need as a tool
for solving problems that they consider important. He illustrates how such an epis-
temic need can be created for students as well. Weber’s contribution highlights the
limits of using mathematicians’ practice to inform instruction by demonstrating that
mathematicians sometimes disagree on important aspects of justification and proof,
including whether mathematicians find empirical evidence to be highly persuasive
or if mathematicians can agree on what types of inferences are valid within a proof.
If mathematicians disagree on these issues, mathematics educators must use other
criteria in deciding what behavior is desirable or normatively correct on the part of
their students.
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Policy: What Should We Do,
and Who Decides?



Chapter 15
Mathematics and Mathematics Education Policy

Mogens Niss

“The first and foremost goal of a mathematics teacher is to help
students learn mathematics, not to make them feel good about
not knowing mathematics” (Ted Eisenberg in a dialogue with
Michael Fried, Eisenberg and Fried 2009, p. 145)

Abstract This chapter explores aspects of the relationship between mathematics
education policy and mathematics. It argues that some of the differences of views
and opinions encountered on the stages on which mathematics education policy is
discussed and debated, are often rooted in very different views of and stances on
the nature and essence of mathematics as a discipline and as a subject. After an
initial attempt at introducing and clarifying some key concepts used in the chapter,
the analysis is supported and illustrated by a number of concrete examples from
the writings of influential organisations, mathematicians and mathematics educators
who have articulated their positions with regard to mathematics education policy.

Keywords Nature of mathematics · Mathematics education · Mathematical
pedagogy · Math wars · Education policy · Policy makers · Policy agents ·
Justification question

Introduction: The Notion of Policy

This paper deals with the relationship between three entities, “mathematics”, “math-
ematics education”, and “policy”, of which policy perhaps appears to be “the odd
term out”, as it typically deals with issues related to decision-making, society, pol-
itics, economy, management and administration, whereas the two other may seem
relatively familiar and well-defined, at least within a community of mathematicians
and mathematics educators. However, in this paper I shall argue that problems with
and disagreement about policy in the context of mathematics and, above all, math-
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ematics education are in large part, but of course not solely, rooted in disagreement
about what mathematics and mathematics education are supposed to mean and be.

As it is a key point in this paper that the relationships amongst the three compo-
nents at issue are markedly influenced by the meaning attached to each of them, it
follows that we need to take a closer look of the terms.

Firstly, I propose the following definition of policy:

• A policy is a set of measures—decisions and actions—designed and implemented
to pursue certain ends and goals that are deemed desirable by those adopting the
policy.

Admittedly, this is a very wide definition as it ranges from decisions and actions un-
dertaken by, say, members of a household in order to achieve certain goals, through
to measures put in place by a government, or a trans-national body such as the UN
or the EU, to pursue some general ends. Oftentimes, however, the term policy is
restricted to contexts in which measures are adopted by some powerful body or
agency to bring about desired changes, typically termed “reform”, of a larger sys-
tem. In some cases a policy may also be adopted in order to prevent certain changes
from happening to a system, e.g. global warming. I submit that a wide definition
of policy, such as the one proposed here, has the advantage of conceptual clarity,
even though it leaves the issue of distinguishing between different kinds, levels and
scopes of actual policies to the specific usage of the term in concrete situations.

The policies that preoccupy us here are predominantly to do with mathematics
education at large, i.e. the teaching and learning of mathematics in schools and
other educational institutions. At national and international levels there are, indeed,
significant policy issues related to the position, maintenance and development of
mathematics as a discipline. However such policy issues are not in focus in this
paper.

Mathematics education policy is being conducted by policy makers, each of
whom operates at a variety of different policy levels, ranging from single class-
rooms in single institutions, over networks of different categories of local, national
or international peers, to the insides of agencies, associations or organisations. Pol-
icy makers in mathematics education are those who make the final decisions on the
overall measures that are to be implemented in the teaching and learning of mathe-
matics. They include

• The teacher or instructor
• The teaching institution
• The teacher educator
• The teacher education institution
• Politico-administrative authorities
• National official bodies
• International organisations (e.g. the OECD, The World Bank).

Some will argue that it is too far-fetched to consider the individual teacher, instructor
or teacher educator a policy maker. I agree that when such a person operates in a
“normal mode” within the established curricula, practices, rules, and frameworks
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of his or her institution, he or she is not a policy maker. In contrast, the individual
teacher, instructor of teacher educator does in fact function as a policy maker when
deliberately working to change his or her own approach to teaching or assessment,
or when engaging in discussions with others about changing the local curriculum,
or adopting new materials, or when trying to influence policies through his or her
involvement in professional associations, committees and suchlike.

Policy levels and policy makers are influenced by a multitude of different policy
agents who have their own philosophical, ideological or commercial interests and
agendas to pursue. Significant policy agents include:

• Textbook authors and publishing houses
• Employers
• Testing agencies
• Teacher organisations
• Mathematics educators (including researchers)
• Mathematicians
• Representatives of other disciplines
• Individual politicians
• Lobby groups
• Media

The demarcation line between a policy maker and a policy agent is a bit blurred
and not so easy to draw. For instance, the same individual or agency can have ei-
ther role depending on the context. Thus a mathematician is a policy agent when
pleading in a magazine article for a particular stance as regards the role of proof and
proving in school mathematics, but a policy maker when serving on a department
committee equipped with the power to decide on a new mathematics programme in
the mathematician’s university.

Amongst and across mathematics education policy levels, policy makers and pol-
icy agents, respectively, there are usually different, and in some cases even conflict-
ing, interests, priorities, and agendas. Not only the ends and goals pursued can be
different, the preferred means put forward or adopted to pursue them can be very
different as well. In both respects we sometimes encounter substantive disagreement
or fights, if not outright battles or even (math) wars, as in the USA, the Netherlands
and Portugal (e.g., see Schoenfeld 2004). How may this be explained?

Three Interrelated Explanations

I can think of three possible, interrelated explanations.
The first—and most fundamental explanation—is that different policy makers

and agents often hold differing, and sometimes incompatible, views of the nature
and essence of mathematics as a discipline. These differences seem to be rooted in
different experiences of what mathematics is (all about), and in different ensuing
images and ideas about the role of mathematics in society.
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The second explanation is to do with differing answers to what is sometimes
called the justification question: To whom in society should mathematics education
be provided, and with which aims?

Answers to this question—and to the ensuing question of what mathematics
should then be taught—in turn depend on underlying, explicit or implicit, concep-
tions of mathematics as a discipline and of its role in society and culture.

The third explanation focuses on differing views concerning the (best) ways to
teach and to learn mathematics with regard to different categories of students.

Such views reflect views of teaching and learning in general but become specific
when focusing on the teaching and learning of mathematics. Views of and perspec-
tives on what constitute teachers and learners and their respective relationships with
mathematics, as well as what constitutes teaching and learning of mathematics, dif-
fer across and amongst policy makers and agents and, once again, reflect different
perceptions of mathematics as a discipline.

It is now time to substantiate these attempts at explaining possible origins of
disagreement and fights over mathematics education policy.

Before doing so, we have to acknowledge a methodological problem, though.
Policy makers are people who make decisions, and their perceptions and views typ-
ically manifest themselves first and foremost through the very specification and im-
plementation of those decisions, e.g. when, say, a ministry of education in a coun-
try introduces a new mathematics curriculum for some segment of the education
system, or when a school board endorses some textbook systems while discard-
ing others, or when a private or public assessment agency introduces a new set
of assessment modes and instruments in mathematics. Sometimes, but not always,
policy makers accompany their decisions with explanations so as to clarify their in-
tentions or to defend themselves against actual or potential criticism. To the extent
they also publicise their reasoning, if so typically in rather general terms, this is
primarily for official use, and one cannot be sure that the publicised reasons are the
real, underlying reasons that drive the policy makers. One also cannot be sure—in
case underlying reasons, different form the publicised ones, do exist—that either
set of reasons (the underlying ones, the publicised ones, or their union) constitute a
consistent set of motivations and justifications. The identification of policy maker’s
real, underlying perceptions, thinking and reasoning therefore requires thorough, in-
depth investigations, combining interpretation of documents with empirical studies,
for example by way of questionnaires, interviews and suchlike. Cooper (1985) pro-
vides an excellent example of such in-depth investigations. In summary, as policy
makers’ perceptions and views of mathematics and mathematics education are usu-
ally not directly accessible on the surface of things, interpretive investigations—as a
matter of fact research proper—are needed to uncover these perceptions and views.
There are, however, exceptions to this picture. They occur when policy makers op-
erate directly on the specific advice and recommendations produced by some group
of people (typically a committee entrusted with the task of producing advice and
making recommendations to policy makers), while officially buying into the expla-
nations and reasoning offered by the group to substantiate its recommendations.
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When it comes to policy agents, the situation is different. Policy agents work
by articulating themselves as best they can, presenting their concerns, analyses, in-
vestigations, and recommendations, while making their underlying reasoning and
justification as explicit, transparent and convincing as possible. Some policy agents
operate as lobbyists, i.e. they try to influence policy makers under clandestine cir-
cumstances away from the public domain, whereas others operate in public or semi-
public domains in order to contribute to shaping public opinion and, eventually, the
views of the policy makers. This means that policy agents’ views and perceptions
of mathematics and mathematics education are often explicit and accessible, and
subject to scrutiny and debate on the basis of their face value. As policy agents have
interests and agendas, some more than others, it is not necessarily the case, how-
ever, that the analyses put forward to support conclusions and recommendations
encountered in the open domain correspond to the real driving forces behind the
conclusions and recommendations.

The Nature and Essence of Mathematics

When attempting to capture and characterise the nature and essence of mathematics,
the questions one might ask represent different perspectives:

• What are the purposes and goals that mathematics as a field serves or might serve?
• What are the content and the structure of mathematics—what are its concepts,

objects, results and theories?
• What are the methods and processes—the modes of operation—by which mathe-

matics obtains its results?
• What are the means of justification of statements and claims, including results, in

mathematics, and what are the bases for these means?
• What are the relationships and links between mathematics and other fields (disci-

plines and fields of practice)?
• What are the driving forces and mechanisms in the historical development of

mathematics?
• What is the socio-cultural role and the sociology of mathematics, i.e. who are the

people who make, do and use mathematics for different purposes and in different
ways, and in what contexts and under what conditions do they work and operate?

As they stand, all of these questions are phrased as descriptive/analytic questions,
focusing on what is the case. However, most of them have a dual, normative coun-
terpart, focusing on what ought to be the case.

When trying to identify the views of different policy makers and policy agents in
mathematics education, it appears that these views differ greatly as to which of the
above perspectives are perceived as important for capturing the nature and essence
of mathematics.

In order to provide some blood and flesh to the generalities we have stuck to
so far, it is time to consider some examples. Let us begin by paying attention to
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some policy agents who have expressed their perceptions and conceptualisations
of the nature of mathematics so as to pave the way for inferences pertaining to
mathematics education.

In a regular lecture at ICME-10, the 19th International Congress on Mathematical
Education, in Copenhagen 2004, Vagn Lundsgaard Hansen, a professor of mathe-
matics at the Danish Technical University with a strong interest and frequent per-
sonal involvement in mathematics education at upper secondary and tertiary levels,
spoke about what he calls the dual nature of mathematics:

. . . maybe today mathematics can best be understood as a framework for studying concrete
real-world phenomena in terms of the underlying abstract mathematical models. (Hansen
2008, p. 1)

and

In mathematical modelling, however, the abstract aspects are inseparably related to concrete
aspects like a yin-yang relation where neither aspect can flourish without the other. (op. cit.,
p. 2)

So, amongst the perspectives listed above, Hansen emphasises the purposes and
goals of mathematics with particular regard to its links with other fields, and re-
lates these links with the content, structure, methods and processes of mathematics.
He submits that this dual nature of mathematics should occupy a pivotal role in
the teaching of mathematics: “Accordingly, the teaching of mathematics ought to
include both concrete and abstract mathematics right from the beginning of the ed-
ucational system” (op. cit., p. 1).

Also another mathematician with a strong interest and activity in mathematics
education of a long standing spoke about the nature of mathematics at ICME-10,
namely Zbigniew Semadeni of Warsaw University in Poland. The focal perspective
of his paper on the triple nature of mathematics—Semadeni (2008)—is the content
and structure of mathematics. The triple nature of mathematics consists of the fol-
lowing three facets, which are meant to describe “certain features of mathematics
as a body of present human knowledge”, not “mathematics as an activity” (op. cit.,
p. 4):

The deep idea of a mathematical object is a well-formed abstract idea which includes the
meaning of the object, its properties, its relationships with other objects [. . .] and its pur-
poses. (op. cit., p. 3)

Surface representations of a mathematical object are signs [. . . ] for this object. (op. cit.,
p. 1)

and finally

By a formal model of a mathematical object X we understand the counterpart of X in an
axiomatic theory (op. cit., p. 4).

In Semadeni’s perception “. . . deep ideas are the most important component in the
triad” (op. cit., p. 17), especially because “(m)ost of mathematical reasoning is con-
trolled by deep ideas”, whereas “formalized reasoning is restricted to surface rep-
resentations only” (op. cit., p. 17). Semadeni’s distinctions may be seen as having
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some resemblance with David Tall’s “three worlds of mathematics”, the conceptual,
the proceptual, and the axiomatic worlds (e.g. Tall 2004).

The purpose of Semadeni’s paper is to counteract the “. . . regrettable and widen-
ing gulf between the philosophy of research mathematicians (respectively, scien-
tists) and the philosophy of philosophers and educationalists dealing with math-
ematics (respectively, natural science)” (op. cit., p. 17). More specifically “. . . the
conception of deep ideas may act as a bridge between the Platonist attitude of math-
ematicians and the constructivist trends among researchers in mathematics educa-
tion.” (op. cit., p. 18).

Speaking about the goal of mathematics education, the well-known mathemati-
cian and populariser of mathematics Keith Devlin submits (Devlin 2000, p. 17) that

. . . a major goal should be to create an awareness of the nature of mathematics and the role
it plays in contemporary society. [. . . ] An educated citizen should be able to answer the
following two questions about mathematics:

• What is mathematics?
• Where and how is mathematics used?

By asking these questions, Devlin invokes most of the perspectives on mathematics
listed above. His own answers to his own questions detail his overarching answer—
mathematics is part of human culture—by pointing to the four faces mathematics
shows to the world (op. cit., p. 1 and pp. 13–18):

1. Mathematics as computation, formal reasoning, and problem solving—the fa-
miliar face.

2. Mathematics as a way of knowing—mathematics is the science of patterns, uni-
fying all the different branches of the subject.

3. Mathematics as a creative medium—relations between mathematics and art.
4. Applications of mathematics—making the invisible visible.

Devlin summarises his view of mathematics as follows:

“All of mathematics, however, consists of variations of the same theme: the identification,
abstraction, study, and application of patterns, using the mental tools of logical reasoning”
(op. cit., p. 26).

He explicitly states that mathematics goes beyond quantitative literacy (op. cit.,
p. 24). Devlin’s points outline an epistemology of mathematics, with particular em-
phasis placed on the purposes, goals, and objects of mathematics as well as on its
methods and processes.

In the chapter “Mathematics in Society” (Niss 1994) in the book Didactics of
Mathematics as a Scientific Discipline, I wrote about the five-fold nature of mathe-
matics as

• A pure science, focused on creating knowledge and insight into matters that are
entirely intra-mathematical

• An applied science, focused on creating knowledge and insight, by mathematical
means, into matters pertaining to extra-mathematical domains
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• A system of tools for societal practice, sometimes called “cultural techniques”,
which do not manifest themselves as mathematics but nevertheless depend heav-
ily on mathematics

• A field for developing and harvesting aesthetic experiences and pleasures and, as
a derivative of these four aspect of the nature of mathematics:

• A universal teaching subject, the world’s largest.

The perspectives adopted here are the societal role and sociology of mathematics
and the closely related purposes and goals of mathematical activity. The educational
point made in my chapter is that mathematics education has to respect and reflect, in
a balanced way, this four-plus-one-fold nature of mathematics, that is, not only the
first aspect, or only the third aspect, as is sometimes the case. If this point of view is
to be taken seriously, the teaching and learning of mathematics has to pay substan-
tive attention to the first four aspects of the nature of mathematics while reflecting
on both the commonalities and the differences in mathematics as a teaching subject
across cultures and countries.

The U.C. Berkeley mathematician Hung-Hsi Wu has a long record of taking a
deep and serious interest in mathematics education in the USA, where he is a promi-
nent voice in public debates. He has given many talks and published many papers
in which his views of mathematics and mathematics education have been articu-
lated. One characteristic example—there are many others—is his plenary presen-
tation “What is Mathematics Education?” delivered at the NCTM Annual Meeting
in March 2007, with accompanying text (Wu 2007), in which he presents his views
in a succinct manner. Here, he defines mathematics education as “mathematical en-
gineering” (op. cit., p. 2), which is neither meant to be a metaphor nor an analogy
but is based on his more general definition of “engineering as the customization of
abstract scientific principles to satisfy human needs” (op. cit., p. 3). The job of the
mathematics educator is to engineer abstract mathematics so as to “meet the needs
of students and teachers in the K-12 classrooms” (op. cit., p. 5). The core of this pa-
per is an outline of “five basic characteristics of mathematics” (op. cit., p. 9), alias
the “unviolable scientific principles in mathematical engineering”, i.e. mathematics
education (op. cit., p. 8):

Precision: Mathematical statements are clear and unambiguous. At any moment, it is clear
what is known and what is not known

Definitions: Bedrock of mathematical structure (no definitions, no mathematics)
Reasoning: Lifeblood of mathematics; core of problem solving
Coherence: Every concept and skill builds on previous knowledge and is part of an unfold-

ing story
Purposefulness: Mathematics is goal-oriented. It solves specific problems

Clearly, the perspectives Wu have adopted here are the ones that deal with the con-
tent and structure, and the methods and processes of mathematics, whereas the oth-
ers are not invoked. At the end of his paper, Wu deplores what he sees as the lack
of mathematical engineers (in 2007) (op. cit., p. 18), resulting from the fact that
mathematicians generally know (only?, my question) mathematics and educators
generally know (only?, my question) education, and concludes “Let there be mathe-
matical engineers” (op. cit., p. 20). It is worth noting that there are also mathematics
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educators (e.g. Wittmann 1974, 1995) who see mathematics education as an en-
gineering (design) science. This does not imply, however, that they (in this case
Wittmann) and Wu would agree on the consequences of these views.

We finish this section by contrasting two perceptions and views of the nature
of mathematics. First, Frank B. Allen, emeritus professor of mathematics, a former
president of the NCTM, and later national advisor for Mathematically Correct, a
policy agency in the USA, gave a talk “Language and the Learning of Mathematics”
(Allen 1988) to the NCTM in 1988, at a time when NCTM’s well-known Curricu-
lum and Evaluations Standards for Mathematics of 1989 (NCTM 1989) was in the
making. Allen, in his paper, objects to the main tenets of the “reform movement”
of the 1980’s in the USA because they give too much emphasis to problem solving
and applications (op. cit., pp. 2–4). The basis of Allen’s objection is this: “Indeed,
in a very real sense, mathematics is a language.” (op. cit., p. 3) and “Mathematics is
essentially a structured hierarchy of propositions forged by logic on a postulational
base.” (op. cit., p. 4).

Evidently, Allen’s perspective on mathematics concentrates on its content and
structure and the method (proof) involved in creating this structure.

Renuka Vithal, of the University of KwaZulu Natal in South Africa was one of
the four panellists in the plenary panel at ICME-10, 2004, devoted to the theme
“Mathematics for whom and why? The balance between mathematics education for
all and for high level mathematics performance”. In her contribution “A battle for
the soul of the mathematics curriculum” (Vithal 2008), Vithal asks “Who decides
what counts as mathematics?” (op. cit., p. 73), and states:

. . . what counts as mathematics has shifted and opened. Drawing on a broad range of dis-
ciplines, scholarship in areas such as ethnomathematics and critical mathematics education
has forced a recognition of a much broader set of practices, knowledge and skills as mathe-
matics. By holding on to a narrow definition of mathematics not only do many get excluded,
pursuing a limited meaning fails to prepare the diversity of learners for life in an increas-
ingly technological but unequal and unjust local and global world. (op. cit., p. 73)

The perspectives adopted by Vithal deal primarily with the purposes, goals, and pro-
cesses of mathematics, and partly with its content and structure as well. She explic-
itly challenges classical perceptions of mathematics, such as Allen’s, by insisting on
including a notion such as ethnomathematics under the aegis of mathematics.

The examples offered above presumably suffice to allow for the conclusion that
policy agents do indeed hold widely different, and sometimes conflicting views and
perceptions of the nature and essence of mathematics.

Do we get a different picture if we consider policy makers? We have to keep in
mind that many categories of policy makers remain silent about their own views,
whilst often manifesting their perceptions of the nature of mathematics indirectly in
terms of the nature that students are supposed to be exposed to and to experience.
The policy makers we are now going to listen to are agencies or official commit-
tees which have, or have been given, decision-making power over highly influential
proposals or plans on behalf of larger groups or communities, without in and of
themselves being official authorities. One might argue that they could as well have
been labelled policy agents, but as they act as representatives of larger collectives
I found that they belong in the policy maker category.
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The NCTM in the USA figures prominently here, because of the highly
influential—but at the same time, in some quarters, somewhat controversial—
Curriculum and Evaluation Standards for School Mathematics, 1989, and the more
recent Principles and Standards for School Mathematics, 2000.

The 1989 Standards (NCTM 1989) identifies three features of mathematics:

Three features of mathematics are embedded in the Standards: First, “knowing” mathemat-
ics is “doing” mathematics.
[. . . ]
Second, [. . . ] the curriculum for all students must provide opportunities to develop an under-
standing of mathematical models, structures and simulations applicable to many disciplines.
[. . . ]
Third, [. . . ] The new technology [. . .] has changed the very nature of the problems important
to mathematics and the methods mathematicians use to investigate them”. (op. cit., pp. 7–8)

The perspectives in play in this quotation are on the purposes and goals, as well
as on the methods and processes, of mathematics, but other fields enter the game
as well. In contrast, the main perspective adopted in the 2000 Standards (NCTM
2000) is that of purposes and goals of mathematics and mathematics education. The
publication identifies (op. cit., p. 4) four needs for mathematics in a changing world:

• Mathematics for life
• Mathematics as a part of cultural heritage
• Mathematics for the workplace
• Mathematics for the scientific and technical community.

The Danish KOM Project (KOM: Competencies and the Learning of Mathematics),
of which I had the privilege of being the director, worked on behalf of the Danish
Ministry of Education to come up with analyses and proposals for a rather thor-
ough makeover of mathematics education in Denmark, at all educational levels. The
project, the official report of which was published in 2002 (Niss and Jensen 2002),
and its various ramifications have proved pretty influential beyond the borders of
Denmark, e.g. in the frameworks of PISA and in a number of countries. An English
translation of the general parts of the original report was published in 2011 (Niss and
Højgaard 2011). The perspective adopted in the KOM Project is predominantly that
of the methods and processes of mathematics but also that of its purposes and goals.
This is reflected in the following (updated) definition of mathematical competence
and mathematical competencies:

Possessing mathematical competence—i.e. mastering mathematics—is an indi-
vidual’s capability and readiness to act appropriately, and in a knowledge-based
manner, in situations and contexts in which mathematics actually plays or poten-
tially could play a role.

A mathematical competency is a distinct major constituent in mathematical
competence. The KOM Project identifies eight such mathematical competencies:
Mathematical thinking; Mathematical problem handling; Mathematical modelling;
Mathematical reasoning; Representing mathematically; Handling mathematical
symbolism and formalism; Communicating mathematically; Dealing with (phys-
ical) aids and tools for mathematical activity. For details, see Niss and Højgaard
(2011, pp. 52–68).
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The mathematical competencies are meant to pertain to any educational level but
do of course play out very differently at different levels. So, the relationship between
mathematical competencies and mathematical content should be perceived as a two-
dimensional one, in which the competencies are “orthogonal” to the mathematical
content domains.

Whilst the mathematical competencies are activated in dealing with situations
presenting mathematical challenges, the KOM Project also identifies three kinds
over overview and judgment regarding mathematics as a discipline. These are (op.
cit., pp. 73–75):

• The actual application of mathematics in other subject and practice areas
• The historical development of mathematics, both internally and from a societal

point of view
• The nature of mathematics as a subject.

Evidently, these items correspond closely to the last three of the perspectives men-
tioned in the beginning of this section.

The Common Core State Standards for Mathematics initiative in the USA offers
states a common platform to join in on in an attempt to create a sort of a national
curriculum. In addition to being preoccupied with describing mathematical content
at grade levels K-12 (Common Core State Standards Initiative 2011), the CCSSM
identifies eight Standards for Mathematical Practice (op. cit., p. 6) which have sev-
eral similarities with the mathematical competencies of the KOM Project:

1. Make sense of problems and persevere in solving them
2. Reason abstractly and quantitatively
3. Construct viable arguments and critique the reasoning of others
4. Model with mathematics
5. Use appropriate tools strategically
6. Attend to precision
7. Look for and make use of structure
8. Look for and express regularity in repeated reasoning

In this part of the CCSSM, the perspective adopted is on the methods and processes
of mathematics, whereas the remaining parts have a content and structure focus.

Based on the voices present in the material presented here, we are now in a po-
sition to conclude that as far as these voices of policy agents and policy makers of
today are concerned, it is possible to identify marked differences in the priorities and
relative emphases expressed by these voices with regard to: the purposes and goals
of mathematics and mathematical activity; the content and structure of mathematics;
its methods and processes; justification of mathematical claims and results; the re-
lationship between mathematics and other fields; and the development, societal role
and sociology of mathematics. These differences, which sometimes take the form
of contradictions, regarding the perceptions and views of the nature and essence
of mathematics are likely to be (co-)responsible for the marked disagreement that
emerges from time to time amongst policy agents and policy makers. In this paper I
have not considered historical cases, such as the introduction of the so-called “new
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math” or “modern mathematics” in the 1960’s and 1970’s. However, there is little
doubt that the massive controversies of those days about this movement were also
rooted in very different views about the nature and essence of mathematics.

The Justification Question

There is an infinitude of responses to the question “To whom should mathematics
education be provided, and why?” and to the follow-up question “What should they,
hence, be taught?”. Let two opposite voices of policy agents suffice to illustrate the
controversies one can encounter in the spectrum of answers to these questions.

In 2011 two US mathematicians, Solomon Garfunkel, the founder and director
of the Consortium for Mathematics and Its Applications (COMAP) since its estab-
lishment early in the 1980’s and a protagonist in the advancement of mathematical
applications and modelling in mathematics education at all levels, and David Mum-
ford, a Fields medallist (1974) and a renowned pure and applied research math-
ematician of Brown University, wrote an opinion piece in the New York Times,
(24th August), backed up by later unpublished elaborations (Garfunkel and Mum-
ford 2011a; 2011b; 2011c). Their answers to the “for whom?” and “why?” questions
and partly to the “how?” question are as follows:

For some in the higher education community, mathematics education means the education
of mathematicians—the replenishing of the species. (Garfunkel and Mumford 2011b, p. 7)

. . . we need a system of mathematics education that seeks first and foremost to recognize
the mathematical needs of the average citizens. . . (Garfunkel and Mumford 2011c)

Science and math were originally discovered together, and they are best learned together
now. (Garfunkel and Mumford 2011b)

It is through real-life applications that mathematics has emerged in the past, has flourished
for centuries and connects to our culture now. (Garfunkel and Mumford 2011a)

A math curriculum that focused on real-life problems would still expose students to the
abstract tools of mathematics [. . . ] (Garfunkel and Mumford 2011a)

. . . what we need is ‘quantitative literacy’ [. . . ] and ‘mathematical modeling’. . . (Garfunkel
and Mumford 2011a)

Garfunkel and Mumford (2011b, p. 3) make a plea for the recognition of two very
different student populations, the 1 % who need sophisticated, high level mathemat-
ics, and “the remaining 99 % whom we hope will use math as a tool that helps them
deal with the problems of daily life”. As the latter group needs a completely differ-
ent diet to that of the former group, the one-size-fits all idea should be abandoned.
In other words, Garfunkel and Mumford seriously question the appropriateness of a
unified mathematics education in school.

The voices we’ve just heard are as far way as we can imagine from another US
voice, when it comes to the issues of “what?” and “how?”. On the homepage of
the group Mathematically Correct the opening statements (Mathematically Correct
2012) read as follows:
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. . . our children have less and less exposure to rigorous, content-rich mathematics.
The advocates of the new, fuzzy math have practiced their rhetoric well. They speak of
higher-order thinking, conceptual understanding and solving problems, but they neglect
the systematic mastery of the fundamental building blocks necessary for success in any of
these areas. Their focus is on things like calculators, blocks, guesswork, and group activities
and they shun things like algorithms and repeated practice. The new programs are shy on
fundamentals and they also lack the mathematical depth and rigor that promotes greater
achievement.

Whether intended or not, when making their points regarding the “for whom?”,
“why?”, and “what?” questions of mathematics education, the policy agents just
quoted invoke certain (in fact opposite) perceptions of the nature and essence of
mathematics as a subject and a discipline. Even though the perceptions of these
policy agents are very explicit, it would have been easy to quote numerous other
policy agents with similar views, albeit phrased less pointedly.

Mathematical Pedagogy

This section touches upon views of the best/right ways to teach and learn mathemat-
ics. In view of the fact that most of mathematics education research and development
deal with these issues either directly or indirectly, it is not possible to go into any de-
tail with them here. However, here, too, views differ along several dimensions, and,
again, many of differences are closely linked to (but are not completely determined
by) different perceptions of mathematics as a discipline. Below, some significant
dimensions of mathematical pedagogy are depicted in bipolar terms:

• A hierarchically ordered syllabus defined solely in content terms vs. a curriculum
constituted by loosely connected topics

• Examples first—theory later, or vice versa
• Meaning, sense making and understanding vs. rote learning, memorisation and

skill drill
• Focus on concepts vs. focus on procedures and algorithms
• Exploration, inquiry and discovery learning vs. receiving information from

teacher and textbook
• Open-ended problem solving vs. solving of closed, prototypical exercises
• Rigorous proof vs. plausible reasoning
• Collaborative activities for learning vs. individual activities for learning
• Technology as add-on tools vs. technology as a system of mediating artefacts
• Summative testing vs. formative assessment
• Textbook centred teaching and learning vs. teaching and learning by way of al-

ternative materials

These and several other contrast pairs constitute key policy issues to all categories
of policy makers and agents. In debates, these pairs are seen by many as serious
dichotomies that call for a definite resolution in a pro-or-con stance. Personally I
don’t think they are dichotomous. But any stance taken on any of them reflects



274 M. Niss

views and perceptions of the nature and essence of mathematics and mathematical
activity.

Conclusion

I believe to have shown above, by way of existence proofs, that for some actually
existing policy agents and policy makers, the positions they take on key issues in
mathematics education policy are deeply linked to views and perceptions of math-
ematics as a discipline, in and of itself and in its relations to the society and to the
world in general. It would be unreasonable to claim that what I have found above
covers all significant issues in mathematics education policy. Likewise, it would be
unreasonable—in fact wrong—to claim that views and perceptions of mathematics
as a discipline solely determine the policy makers’ and agents’ policies. It requires
comprehensive empirical research and thorough theoretical analyses to reveal the
extent to which this is actually the case.

The finding that views and perceptions of mathematics are co-determinants of
mathematics education policies is not surprising in itself. What may be surprising
is that these views and perceptions are not only different, and based on different
priorities and emphases, but that they are held, invoked, and fought for or against
as if they were all deeply and fundamentally contradictory and incompatible. Some
of them probably are: It is, of course, not possible at the same time to hold the
view that mathematics education should be completely devoid of anything that is
to do with extra-mathematical applications and modelling and the view that math-
ematics education should primarily deal with applications and modelling. What is
possible, however, is to insist that mathematics education for all should put empha-
sis on serious, extra-mathematical applications and modelling and at the same time
provide solid mathematical underpinning of everything that happens in the mathe-
matics classroom. However, people (such as myself!) who hold this view are obliged
to clarify how these two components should be balanced in concrete context marked
by limited time and resources.

In many cases, since we cannot get everything we want in mathematics educa-
tion at the same time, disagreement over mathematics education need not be based
on antagonistic views and perceptions. Instead they may be explained by different
emphases and different priorities concerning different valid facets of our beloved
discipline. Perhaps, at the end of the day, disagreement on the allocation of time to
different aspects and activities of mathematics in the presence of constraints is the
key to many fights over mathematics education policy. But this, too, goes back to
the nature of essence of mathematics as a discipline.

When witnessing policy debates one cannot avoid thinking that sometimes math-
ematics education policy is being conducted to foster and favour certain views and
perceptions of the nature of mathematics as a discipline, and that sometimes the na-
ture of mathematics as a discipline is being invoked as a means to foster and favour
certain pre-determined mathematics education policies, if not politics at large. I, for
one, tend to prefer the former over the latter.
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Chapter 16
Reflections on Policy

What Should We Do, and Who Decides?

Nitsa Movshovitz-Hadar

Abstract Although mathematics is essential to mathematics-education, and math-
ematics-education is essential to mathematics, these claims do NOT imply that
mathematics and mathematics-education are the same. Actually, they are gradually
growing apart. This chapter summarizes the views of its authors on the relationship
between the mathematics and mathematics-education communities with respect to
policy issues believed to be important to both communities.

One argues that the professional object for mathematics teachers should be
viewed as the teaching and learning of mathematics rather than mathematics in it-
self. Knowledge and experiences from mathematics as a discipline is necessary but
not sufficient to form sustainable policy. Hence policy should benefit from being
informed by mathematics-education research to a larger extend that currently.

Another view states that instructional policy is only as good as its translation to
classroom practice. Without appropriate support for teachers to make the signifi-
cant changes in classroom instruction being asked of them, curricular initiatives are
bound to fail. Mathematicians and mathematics educators can and should collabo-
rate to provide support to teachers in implementation of good mathematics teaching.

Yet another claim is that unlike mathematics, mathematics-education is an ap-
plied social science, and therefore research in it should be judged to a large extent,
by the successful implementation of its outcome.

Last but not least is a view of mathematics and mathematics-education as two
quite different areas of study, attributing many of the disputes that have arisen be-
tween mathematicians and mathematics educators with regard to what school math-
ematics should be, to these differences.

In conclusion, it seems necessary for the mathematics-education community and
the mathematic community at large, to join forces and formulate a core of common
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agreements, upon which decision makers can be held accountable. Indeed, a diffi-
cult task, however without it there seem to be no hope for progress in the desired
commonly agreed goal to improve the outcome of mathematics-education.

Keywords Accountability · Classroom instruction · Curriculum · Curriculum
change · Experimental school teaching · Mathematics-education ·
Mathematics-education research · Mathematics-education practice · Pedagogical
content knowledge · Policy · Policy issues in mathematics-education · Relationship
between mathematics and mathematics-education · Teacher knowledge · Teacher
education

Mathematics and Mathematics-Education Policy—Searching for
Common Ground

Nitsa Movshovitz-Hadar

About the Relationship Between Mathematics and
Mathematics-Education

The American Mathematical Society defined mathematics implicitly by its Math-
ematics Subject Classification index (MSC 2010). Mathematics-education appears
as subject no. 97. But mathematics-education is not just a formal part of mathemat-
ics. Mathematics-education has been playing a central role in the development of
mathematics since antiquity, and clearly, there is no future to mathematics without
mathematics-education. Hence, one cannot but remain amazed at the small, almost
negligible amount of time and effort the majority of contemporary research mathe-
maticians invest in mathematics-education per se.

Not surprisingly, but nevertheless somewhat paradoxically, the MSC index (ibid.)
includes mathematics sub-entries under “area 97: Mathematics-education.” But
Mathematics is not just ‘by definition’ at the heart of mathematics-education. Obvi-
ously, mathematics plays a central role in mathematics-education, and clearly, there
is no future to mathematics-education without mathematics. Hence, one cannot but
remain amazed at the small, almost negligible amount of time and effort the ma-
jority of contemporary research mathematics educators invest in mathematics per
se.

Unlike the set theoretical implication A ⊆ B and B ⊆ A ⇒ A = B , although
mathematics is essential to mathematics-education, and mathematics-education is
essential to mathematics, these claims do NOT imply that mathematics and math
education are the same. Actually, they are gradually growing apart!

A similar paradoxical relationship between education and mathematics-education
can easily be formed. Is it because as yet we have not defined clearly what
mathematics-education is all about? Or, at least its policy?

Let us examine the relationship through a few analogies, which should be con-
sidered ‘with a grain of salt’.
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In a way—

• Mathematics-education (abbr. ME) is to Mathematics, as Sentential Logic (abbr.
SL) is to Mathematics. Both are Meta-mathematics. SL is about the language of,
and about the nature of deduction in Mathematics. ME is about the comprehen-
sion of, and about the nature of didactics in Mathematics.

• Mathematics-education is to Mathematics, as conducting a concert is to compos-
ing the music. Both ME and conducting a concert are not a free creation. Both
are subject to human and real-life constraints.

• Mathematics-education is to Mathematics and behavioral sciences, as Architec-
ture is to Mathematics and natural sciences. Their designs and constructs are in-
terdisciplinary.

• Lastly, Mathematics-education research is to Mathematics-education practice, as
Medical research is to Medical practice. Both of these research domains iden-
tify basic symptoms, and run empirical studies to develop and test innovative
remedies for common cognitive/bodily diseases. Their results are implemented
by practitioners for the benefit of their target populations.

Anyhow, mathematics and mathematics-education are definitely NOT mutually
exclusive disciplines. They are inseparable, and in many ways are also complemen-
tary.

About Policy Issues in Mathematics Education

As commonly understood, policy refers to the collection of governing principles and
plans instituted in order to operate some system, or a group of individuals, or some-
time even one person.1 Unlike a law, which prohibits or enforces certain behavior,
some policies merely guide and help decision making about actions that are most
likely to achieve a desired outcome (e.g. to increase the visibility of mathematics as
a field of study2) or avoid some negative effect that has been noticed (e.g. declining
enrollment in mathematics programs (see footnote 2)). A policy can be considered
as a “Statement of Intent”, not necessarily including implementation procedures.3

How likely is it to reach a consensus about policy among mathematicians and
mathematics-educators, beyond the obvious intent: ‘to improve the outcome of
mathematics-education’? A major concensus-seeking process was carried out by
NCTM in preparing its policy book on mathematics-education (2000): Principles

1Note that Mogens Niss, in his Chap. 15 in this book, defines policy as something much more
practical: decisions and actions, rather than the principles on which these decisions and actions are
based.
2Example taken from The Joint Policy Board for Mathematics (JPBM). http://www.mathaware.
org/about.jpbm.html. Accessed 13 June 2013.
3Note, once again that this is less in accord with Mogens Niss’ definition that appears in Chap. 15
of this book.

http://www.mathaware.org/about.jpbm.html
http://www.mathaware.org/about.jpbm.html
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and Standards for School Mathematics. Regretfully, one policy principle was left
out: a commitment to periodic review and continuous discussion. (This is not say-
ing that NCTM has no intent to do it. Rather the opposite is implied by the fact that
NCTM published in the past three related important documents4).

Clearly, mathematics itself is growing very rapidly and it permeates almost all
walks of life. Which policies could/should be adopted in order to adequately prepare
future mathematicians and scientists for the explosion of mathematics knowledge?

And not less important—What policies are appropriate for the education of the
majority whose career may not be directly related to mathematics, but will be greatly
affected by it?

Mathematics has become multifaceted to the extent that two mathematicians spe-
cializing in two different areas find it difficult to communicate. Who, then, can be
approached for a comprehensive view of contemporary mathematics? Or, for an
overview of its essence? Who, then, is there to be able to tell: What is important
to teach at the pre-university level? And why is it important to teach it? Obviously,
only after the policy is clear, can one deal with the issues of how to do it, and who
can do it. How else can we relate to questions such as: Why and what for are we
teaching the Pythagorean Theorem? Why are we not teaching at least 1 % of its
proofs? Nor its generalization obtained by replacing the squares on each side by
any similar polygons or semi circles? Nor do we clearly explicate that the cosine
theorem is actually its extension to triangles that have no right angle?

And why don’t we expose school students to the fact that 2 is the only power for
which there is a solution (in fact infinitely many ones) to the Diophantine equation
an + bn = cn, which makes the Pythagorean Theorem unique indeed?

How else can we justify why Euler’s Polyhedron Theorem V + F = E + 2 is
absent from most school curricula? And the infinitude of primes, or the theorem
about 2-coloring of every map that is formed by intersecting circles?

Are these less accessible? Less important than the solution of quadratic equa-
tions? Or are they not sufficiently beautiful? Less powerful in terms of applica-
tions???

Setting criteria for sifting priorities cannot be an informed process without com-
monly agreed upon ‘foundations’ of mathematics-education, and without a periodi-
cal consensus-seeking discussion.

We witness long and hot debates about including this topic or omitting another
one from the curriculum, employing this teaching strategy or avoiding another one,
but they seem to lead nowhere, as there has not been enough investment in laying
out the basic assumptions, the ‘axiomatic system’ of mathematics-education.

4The three prior publications by NCTM are:

– Curriculum and Evaluation Standards for School Mathematics (1989), which outlined what stu-
dents should learn and how to measure the outcomes.

– Professional Standards for Teaching Mathematics (1991), which includes best practices for
teaching mathematics.

– Assessment Standards for School Mathematics (1995), which focused on employing accurate
assessment methods.
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Isn’t this the only area in the MSC2010 index (ibid.) that so far no attempt
has been made to axiomatize? Nevertheless, there have been attempts at forming
some mathematics-education statements as meta-mathematical theorems (e.g.: Ev-
ery mathematics theorem is a boxful of surprises, Movshovitz-Hadar 1988, p. 39;
1993, p. 267).

It seems necessary for the Mathematics-education community and the mathe-
matic community at large, to join forces and formulate a core of common agree-
ments, upon which decision makers can be held accountable. Indeed, a difficult task,
however without it there seem to be no hope for progress in the desired commonly
agreed goal to improve the outcome of mathematics-education.

Let’s not take too seriously the analogy between a discussion of mathematics-
education policy and the idea of axiomatizing it as a mathematics sub-area. Insti-
tuting a policy is usually based upon accumulated experience, beliefs and research-
based evidence. A concensus-seeking process takes compromise. We ought to be
ready to stick to it for a while, but we also have to be prepared to reconsider it
in view of recent developments—not only in mathematics itself, but also in the
technology that becomes available, and in developments in other related areas that
mathematics-education is leaning upon.

Let me conclude this part by two open questions:

Q1. Narrowing the gap between school mathematics and contemporary math-
ematics—Is it a non-realizable dream, or can some curriculum-policy encour-
age it?

Q2. Alongside the teaching and learning of mathematics, should mathematics serve
also as a vehicle for human-values education? Or are these two ‘orthogonal’?

On the Professional Object of Teachers

Jonas Emanuelsson

I have participated in educational research with a special interest in the teaching and
learning in and about mathematics for a more than the past decade. During last years
I have mainly done classroom studies of learning in an international context. I am
the head of a department specialized in education rather than mathematics. This is
an environment where education and training of becoming teachers, many of them
mathematics teachers, heavily influences the daily life at the department. How to
bridge the gap between mathematicians and mathematics educators in the context
of teacher education is on the agenda almost every day.

One general point I want to emphasize here is that the professional object of
mathematics teacher is better viewed as the teaching and learning of mathematics
rather than viewed as mathematics in itself. In their teaching teachers should be ori-
ented towards how learners respond to the mathematics taught instead of towards
the mathematical content in itself. The content in an educator’s mind while teaching
should be mathematics as understood and handled by their students. Both working
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teachers and pre-service teachers should, in my view, acquire sensitivity to discern
the learners’ understanding of mathematics. An integral part of policy in relation
to mathematics education should consequently be directed towards the support of
building knowledge in and about the learners’ perspective on mathematics. Formu-
lated in this vain policy have a possibility to become more helpful in answering
questions on what teachers should know and hence what should be taught in teacher
education programs.

At Gothenburg University prospective teachers study mathematics in one part of
the organization (faculty of Science) and mathematics-education in another (faculty
of Education). Chalmers University of Technology is the host for another teacher
education program. At both universities, the mathematicians teaching mathematics
in the teacher education programs and the mathematics educators teaching in the
same programs do not always have constructive dialogues. There are elements of
struggle for students and resources rather than a constructive collaboration aiming
at catering for the best quality in teacher education. Many mathematicians tend to
see the teaching of mathematics as something you learn in the course of teaching
rather than something that can be informed by mathematics-education research or
by extensive and documented experience from teaching in schools. On the other
hand mathematics educators often see mathematicians as only interested in those
students who are of “the right stuff” to become research students in mathematics
and hence, in their view, tend to neglect a major part of the students.

Teacher education at the two universities of Gothenburg broadly follows three
different paradigms or approaches with respect to teaching. These approaches are
not mutually exclusive. Instead they usually exist side-by-side often within the same
program and sometimes even in the same course. These paradigms can be summa-
rized as follows:

– Teaching through knowing mathematics more solidly. The capability to teach im-
proves with mere practice

– Learning to teach by imitating exemplary mathematics teaching
– Learning to teach by drawing upon research in mathematics-education

These paradigms place mathematics in very different roles. In the first paradigm
mathematical knowledge is placed at the centre. Knowledge about teaching and the
students learning falls to the background and is diminished to something that is
personal and learned through practice. The second approach tends to underempha-
size the systematic knowledge of both mathematics and mathematics-education re-
search. If not balanced with solid knowledge in mathematics as a discipline the third
approach runs the risk of being mathematically shallow. One could ask if this over-
simplified description of different types of approaches illustrates the often argued
gaps between mathematicians, mathematics-education researchers and mathematics
educators?

There is considerable agreement that an effort is needed to bridge the gap
between mathematicians, mathematics educators and researchers in mathematics-
education as to how the nature of mathematics and mathematics-education are per-
ceived. The bringing of people together in a joint knowledge building process is
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foolish to argue against, and we should strive to bring it about in our respective
communities. However I would like the different communities scrutinize what we
possibly can gain from such bridging and how we should proceed to accomplish
that. These are important and I think fair questions.

Mathematics-education, in my understanding, is best viewed as a hybrid science
with a strong foundation in social science but with connections to mathematics both
as a discipline and a school topic. The objects of study are human behavior, rea-
soning, problem solving while keeping a sharp focus on mathematical content as
perceived, handled and treated by humans and organizations. We use methods and
theories, sometimes fine-tuned to fit our specific purposes but borrowed from other
social sciences rather than from mathematics in our efforts in understanding edu-
cation, teaching, instruction, learning in and about mathematics. Our objects of re-
search hence come from the human, cultural, social and psychological world. They
do not belong to the world of mathematics. Mathematics-education is hence hard
to conceptualize as an applied form of mathematics. Deep knowledge of mathemat-
ics is of course a necessary but not sufficient condition to practice mathematics-
education research (or to teach it).

When forming policy about educational issues such as curriculum development,
teacher education (both content and form), I argue that policy should be informed
by research and practice in mathematics-education to a larger extent than presently.

To sum up I want to pose a series of questions that address issues raised above
and in the paper by Mogens Niss in Chap. 15 this volume (the enumeration of open
questions is continual throughout this chapter).

Q3. In the discussion on policy e.g. teacher education policy we often state that
results and experiences from both research in mathematics and research in
mathematics-education are much needed. Furthermore we often argue that pol-
icy can benefit from bridging the gap between these two fields. What more
precisely can we expect, or hope to, gain from such bridging?

Q4. On what basis can we make well informed decisions on what to include in
school curriculum and curriculum for (mathematics) teacher education? At the
lowest level and at a minimum I argue that we would like policy makers, cur-
riculum developers, teachers and becoming teachers to know something stable
and systematic about:

(a) Different ways of teaching mathematics and the corresponding learning
that might be occurring (in relation to different aspects of mathematics, in
different settings, during different contextualization, with kids of different
backgrounds and experiences and so on).

(b) The targeted age groups ways of using mathematics in everyday situations
(also outside schools and other institutions).

(c) Adults ways of using mathematics in future life (everyday life, in further
academic studies and in different professions).

(d) Ways of using mathematics in other school subjects.
(e) Ways of using mathematics in other scientific disciplines.



284 N. Movshovitz-Hadar

(f) We also need to know mathematics in terms of its historical development,
use, nature, structure, affordances and constrains, as well as facts and pro-
cedures.

I am confident that mathematicians can contribute in answering these questions and
that discussion on a shared arena can improve the answers.

I want to know, hear, and see more contributions from mathematicians. The idea
and effort of building relations between education (as a practice and as a university
discipline) and the mathematics discipline gave rise to mathematics-education. Re-
search in mathematics-education is now developing as a discipline on its own with
its own journals, conferences and organizations. I want to defend this as a specific
area of expertise and invite mathematicians to take part. As other authors in this
section argue I agree that mathematicians should become more active in the field of
mathematics-education and participate in conferences and publish in mathematics-
education research journals.

From Policy to Practice

Davida Fischman

Instructional policy is only as good as is its translation to classroom practice; it is
useless to have stellar curriculum and instructional approaches determined at the
national level, which then go through multiple interpretations and simplifications
until they reach the classrooms of most teachers as a set of sterile packages of in-
formation and rules, which are then implemented as a laundry list of skills and
algorithms. A typical chain of interpretations in the United States involves federal
policy makers (whose policies determine allocation of funds to states as well as in-
structional standards), state policy makers (who refine instructional standards and
determine state assessments of students), district mandates, school imperatives, and
finally—finally!—the teacher, who puts all of this into practice in the classroom.
In every consideration of mathematics and mathematics education policy, it is im-
perative that we consider the practical consequences for teachers and their students.
Ongoing policies with an emphasis on multiple choice tests, along with the common
view of school mathematics as computational, have continued to support teaching
that is focused almost exclusively on computation and students who are afraid of
mathematics, or if not, they love it because school mathematics primarily (in their
experience) is algorithmic and computational, with few opportunities for creative
thinking and little demand for real understanding.

On a recent plane trip, my neighbor asked what I do. When I responded: “I teach
mathematics”, he replied: “Oh, I’m crazy about math!” He went on to tell me that
he liked to play with numbers and find out all kinds of things about them. While
his level of knowledge of mathematics might not have been very advanced, his
teacher(s) had seemingly succeeded in the goal of “. . . lead[ing] students to appreci-
ate the power and beauty of mathematical thought” (Dreyfus and Eisenberg 1986).
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Some of us (mathematicians and mathematics educators) love mathematics for its
power to help us understand and tame the world around us, others for the beauty of
the structures of mathematics. Is it not incumbent upon us to support the creation
and implementation of policies and curricula that lead the majority of students to
view mathematics as powerful and beautiful?

Unfortunately, these goals are often at odds with the perceived need for account-
ability in the education system, which generally translates to measuring teachers’
effectiveness by their students’ scores on standardized, state-sponsored, tests of skill
in applying mathematical algorithms and accurate computation. This behaviorist ap-
proach to education was lamented by Ted many years ago (Eisenberg 1975), and its
use has only increased since then. He notes: “Behaviorists claim that education is an
observable change in behavior, which is measurable, and hopefully permanent. . . .
The student must be able to ‘do something’ as a result of instruction.” And he goes
on to say “It is incredulous that the State Departments of Instruction confuse ed-
ucation with training.” Where is the “beauty and power” of mathematics in this
approach? It is lost in the avalanche of paperwork, skills testing, and fear generated
by teacher and administrator evaluation based almost exclusively on student scores
in such tests.

With the advent of the Common Core State Standards, there is hope that student
assessment in the United States will shift its focus to assessing understanding of
mathematics, the ability to synthesize and apply mathematical ideas, and the abil-
ity to engage in and articulate mathematical thinking. How will school districts,
teachers, and university mathematics educators respond to these changes and to the
challenges that come along with them? It seems self-evident that in order to teach
mathematics well, a teacher must have a deep understanding and appreciation of
mathematics; mathematicians as well as mathematics educators will not, in general,
argue with this statement. However, this statement is unfortunately vague—what
constitutes “deep understanding”? Is such understanding developed by an under-
graduate degree in mathematics? An advanced degree in mathematics? Special types
of courses in mathematics education? A great deal of work has been done to an-
swer these questions and to define appropriate concepts (for example, a synthesis of
work involving pedagogical content knowledge can be found in Graeber and Tirosh
2008), but while there has been progress in understanding what is an appropriate
knowledge base for a good mathematics teacher, there is still no consensus nor a
generally accepted definition of the required concepts. If we are to arrive at poli-
cies that generally lead to high quality teaching, we would do well to include both
mathematicians and mathematics educators in these discussions; this seems to be
an excellent area for productive collaboration of mathematicians and mathematics
educators to enrich the field in partnership.

Currently, mathematicians seldom view themselves—or are viewed by mathe-
matics educators—as able to contribute to these discussions. Pre-service teachers
typically are taught mathematics content by mathematicians, and teaching methods
by mathematics educators; graduate programs all too often continue this separation
of areas. Teachers, having been educated in a culture that separates content from
pedagogy, are sent out into the professional world inadequately prepared to merge
the two into a productive instructional program.
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Thus teachers are asked to teach content for which they have been insuffi-
ciently prepared and students continue to learn mathematics primarily as a col-
lection of procedures rather than a vital, deep, and beautiful discipline, and many
very quickly develop a poor attitude toward what they believe to be mathemat-
ics.

At the other end of the spectrum are the mandated content and practice standards
for students. In the US, state content standards are frequently far higher than the
mathematics in actual classroom instruction, although not necessarily coherent or
designed to lead to a good understanding of the fundamentals of mathematics. In
recent years, there has been a well-orchestrated effort to construct common core
content standards that are mathematically coherent, and standards for mathematical
practice as a framework to support high quality mathematics work in the classroom.
In addition to the standards document itself, the writing team is involved with writ-
ing supporting documents to clarify the content, and in designing assessments that
reflect this approach and content.

What support will be provided to teachers as they are asked to change their
approach to mathematics and to teaching mathematics, and to improve their con-
tent knowledge in order to bring their instruction to the level expected by the new
standards? Over the years, various reforms have been designed and introduced
with great fanfare and high hopes—only to crash on the rocks of classroom real-
ity.

Teachers are the bridge between policy and practice. Ultimately, it is classroom
instruction that makes or breaks a student’s education—but classroom practice can-
not be legislated. There is a human process that must take place in order to enhance
instruction, and policy makers must consider this process at least as important as
creating standards documents and determining textbooks. Without adequate support
for teachers to make this transition, and time to practice new approaches without
fear of immediate criticism, nothing substantive can change in classrooms through-
out the country.

What is the role of mathematicians in this story? Typically mathematicians en-
gage in the doing of mathematics, and leave the education to those who prefer to
focus on education. As a research mathematician, that was certainly my approach
to mathematics education for years. But then—if we mathematicians are unwilling
to contribute to the world of education, what right have we to complain that it is
done poorly? If we wish to see K-12 students learn mathematics as we believe it
should be learned, it is up to us to participate in the design and implementation of
good curricula and support what we understand to be good mathematical practice.
In order to do this effectively, we need to learn more, and become more reflective,
about mathematics education.

Clearly, research in mathematics and research in mathematics education are very
different animals. Having “grown up” professionally as a mathematician, and cur-
rently learning to engage in high-quality mathematics education research, I have
experienced the enormous differences in these two types of research; some of these
differences are described in other papers in this monograph (e.g. other contributions
to this policy discussion).
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And yet. . . both revolve around mathematics and the doing of mathematics, albeit
from different perspectives and in different contexts. Without a serious exchange of
ideas between mathematicians and mathematics educators, both disciplines are less
than they might be. There are mathematics faculty who have two distinct standards
for mathematics: they themselves carry out first-rate mathematics research, but for
the majority of their students they hold little hope of a deep understanding of math-
ematics, and the kind of teaching in which they engage does not lead to students
stretching their thinking and developing good mathematical practice. We also know
mathematics educators whose teaching revolves to a great extent around process and
pedagogical strategies at the expense of content. Would we not be better off if there
were more education in the world of the mathematician, and more mathematics in
the world of the educator?

Some examples of university policies that support such collaboration include
funding travel of mathematics faculty to meetings and conferences focusing on
teaching, support for education and content faculty to collaborate on teaching, re-
search, and grant activities, mentoring of junior mathematics faculty by senior math-
ematics and education faculty in learning about education and grant opportunities,
and last but not least: recognition in the promotion and tenure process for mathemat-
ics faculty who engage in research and professional development activities related
to mathematics education. In order that involvement in the work of education not be
relegated only to veteran, tenured, mathematicians or to adjunct faculty or lecturers
who teach mathematics education courses because they have no choice, university
policy would need to change in many universities to include at least some of the
items listed here. In order for young tenure-track mathematicians to become in-
volved in education, their departments/colleges/universities will need to create poli-
cies (particularly regarding promotion and tenure) that support their participation
in such activities. This would in turn require a major change in perspective, and
would be potentially quite contentious—but without this sort of change, there is
little hope that large numbers of mathematicians will become involved in educa-
tion.

Some questions for consideration (the enumeration of open questions is continual
throughout this chapter):

Q5. What makes “good” mathematics education research?
Q6. Would greater emphasis on mathematics as a discipline in policy decision-

making lead to better, more effective, education policies?
Q7. How can the education system reconcile its perceived need for accountability

with its stated goal of teaching students to think mathematically and appreciate
the power and beauty of mathematics? Can accountability systems be used
towards this end?

Q8. In what ways and to what extent should mathematicians be involved in mathe-
matics education, and what policies should universities enact to provide recog-
nition and encouragement to young mathematicians who participate in this
work?
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On the (Almost) Separate Roles of Mathematicians and
Mathematics Educators

Azriel Levy

When one looks at the areas of mathematics and mathematics-education, almost ev-
erything mathematicians do has nothing to do with Math Education. And almost
everything mathematics educators do has very little to do with what mathematicians
do best, which is discover new mathematics. We can rely on mathematicians to tell
us what parts of mathematics are more suitable for youngsters which intend to have
a career in mathematics or science, but they have no advantage over mathematics
educators when it comes to decide what mathematics to teach to youngsters who in-
tend to become cooks or taxi drivers. Therefore many mathematicians are involved
in mathematics-education, mostly in advanced high school education and the in-
volvement goes down as you go down the ladders of the depth of the mathematics
and of the school years. Of course, a mathematician can contribute much even to
nursery school mathematics but this is a result of his personal qualities not of his
expertise as a mathematician. The reasons for the higher involvement of mathemati-
cians in advanced level high school mathematics are not only because this is the part
of school mathematics which is closest to the mathematics done at the university but
also because the graduates of high school mathematics are the beginning students
of the university mathematics.

In Israel I did not evidence any rift or disputes between mathematicians and math
educators because of the tacit agreement that the contents of the advanced level high
school mathematics is determined mostly by the mathematicians, and as you go
down the ladder of depth and school years the weight shifts more to the mathematics
educators. Still, in the past some disputes occurred because the mathematicians and
the mathematics educators belong to separate social groups, and a fad which carries
over one group does not necessarily carry over the other. This was the case with the
Cuisenaire rods.

A practical advantage which mathematics educators have over the mathemati-
cians is that they control directly experimental school teaching, mostly by means
of their graduate students, and as a result they can come up with realistic changes
to the curriculum. Now we come to a problematic point, where the difference be-
tween mathematics and mathematics education comes to play. When a mathemati-
cian proves a good new theorem he writes up the proof and publishes it, and this
is the end of the story of that theorem, and this is his contribution to mankind. Per-
sonally, this publication can mean to him a Ph.D. degree or a promotion at the uni-
versity. When a mathematics educator carries out some experimental teaching and
it turns out successfully he also writes up the description of what he did, publishes
it, and gets promoted or gets his Ph.D. degree. The difference between the mathe-
matician and the mathematics educator is that the theorem that the mathematician
proved becomes a part of human knowledge and stays there forever, but the results
of the experimental teaching are usually valid only for the present time and place,
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and are not a lasting contribution to mankind.5 Therefore, the mere publication of
the mathematics educator’s innovation should not be the end of the story, and the
mathematics educators should invest a part of their time and energy to make what
they create, part of the current curriculum, or the prevalent teaching method. This is
not always a very enjoyable activity in an educational system which is, by its very
nature, conservative, but since mathematics-education is an applied social science
its practitioners should not avoid that part of their work.

It is therefore up to the universities to judge the mathematics educators not only
on their published work but also on the implementation of their results. This is not
a problem of mathematics-education only, but of many applied sciences at the uni-
versity. I understand that one can be a great surgeon but one will not be promoted
without writing some mediocre papers. My feeling is that in Israel many good ideas
in the area of mathematics-education ended with a Ph.D. thesis or a university pro-
motion.

The same conflict between theorizing and applying is also evident in mathematics-
education conferences. I attended several conferences on technology in mathematics-
education. The main problem now is not the invention of new software and hard-
ware but the mass implementation and the efficient use of those which became well
known. Yet most of the talks were about new software and hardware or about novel
uses of existing software rather than the efficient wide scale use of the bread and
butter software. It is always more enjoyable to expose your bright new ideas than
to describe the uphill fight of getting more and more students to use efficiently the
available resources.

Mathematics and Mathematics Education: Two Quite Different
Perspectives on the Same Subject

Zalman Usiskin

Allow me to begin with a comment on Mogens Niss view expressed in Chap. 15 of
this volume. Unlike Mogens Niss, I distinguish a policy from a practice. A policy
is something that is written down and is usually decided by a committee. Because a
committee is involved, it is difficult to change a policy, whereas an individual can
change a practice. Also, because it is decided by a committee, there are people from
a variety of opinions on the committee; otherwise there is no need for a commit-
tee. Because of that variety, there are bound to be disagreements on the setting of
policies, the beliefs of the committee members come into play, and beliefs trump
data.

As an example of disagreement, many people in the United States think that stu-
dents are worse today than students a generation or two ago even though widely

5Nevertheless, the reader may note the series of short publications by the Education Committee of
the European Mathematical Society (EMS) on solid findings in mathematics education; One article
of this series has been published in every Newsletters of the EMS since September 2011.
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available data—from the National Assessment of Educational Progress—indicate
that students in the United States—particularly elementary school students—are
performing better than they ever have, an estimated one to two years ahead of where
they used to be. Students are also taking more mathematics than ever before, so
much calculus in high school that more students in the US take first-year calculus
in high school than in college, and the best students fulfill their college mathematics
requirements in high school.

So why do people not believe the data? I think it is because, in the past, college
mathematics departments recruited their mathematics majors from their best calcu-
lus students, but today many of these students are never seen by those departments.
In their place are students who in prior years would not have gone to college or, if
they had gone, would not have had to take as much mathematics. So it is the case
that the students college faculty see, are not as good as they used to be, but not
because students in general are worse now than before.

When mathematics in upper secondary school was taken only by those who were
going on to study in the physical sciences or engineering, there was not much dispute
between mathematicians and mathematics educators because these students would
all take calculus and so there was obvious preparation in school for that. It is with
the notion that all students should study mathematics through secondary school that
tensions have come to the forefront. The battle is of a common type in society when
decisions have to be made that affect different groups: it is a turf war.

Everyone in Israel knows how bitter turf wars can be and how difficult they are
to settle. But they must ultimately be settled and the directions for settling them
are rather well-known even if difficult to establish. That is what we are trying to
do here: discussions of our common goals and searching for common ground; frank
discussions of our differences in a civil manner and in a way that clarifies the reasons
for these differences and tries to erase misconceptions; all of this aiming at mutual
respect and tolerance.

Our fields are not alike. Even a cursory look at journals in mathematics and
mathematics-education shows these fields to be fundamentally different. For the
most part, the ultimate objects of mathematics are concepts and problems; the ulti-
mate objects of mathematics-education are students. The objects of mathematics are
inanimate and eternal; the objects of mathematics-education are animate—indeed,
often quite animated—and constantly changing. Truth in mathematics is established
by a logical proof, while truth in mathematics-education is dependent on data, and
data fluctuate, so a result in mathematics-education in one place might not apply to
another.

Póya, an acknowledged expert in both fields, described the first step in solving a
difficult problem as understanding the problem. The underlying problem that fuels
mathematics-education and brings mathematicians into mathematics-education is
the perception that students do not know as much mathematics as we would like
them to know. There has never been a time or a place where this problem is not
perceived. Even in Singapore and Shanghai people have these beliefs. Then the
question is: Who can best address this problem?

Ted and Michael Fried pointed out in their paper (Eisenberg and Fried 2009) that
mathematics educators do not agree on many fundamental questions, such as the
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best ways to do research and what are important questions to ask, which is true,
but the reality is even more frustrating because even on those things in which there
might be agreement today, conditions could change tomorrow. There are disagree-
ments in mathematics, too, such as whether computer proofs should be considered
as valid or, if we want to go back into history, whether we want to allow the ax-
iom of choice or an equivalent, but there is more agreement in mathematics than
in mathematics-education, as one would expect of a natural science over a social
science.

Unlike Jonas Emanuelsson and some others represented in the book, I find it
very appealing to view mathematics-education as one type of applied mathematics.
And like other fields that apply mathematics, such as statistics, computer science,
physics, or operations research, although the field is grounded in mathematics, the
problems that fuel mathematics-education emerge from the world outside of mathe-
matics. Additionally, there are aspects to the field of mathematics-education that are
not mathematical at all, and other aspects that are border-line.

The policy-maker dealing with mathematics curriculum, the area of my major
work, deals with the selection of content to be covered in school, who should en-
counter that content, in what sequence, and at what age. Concerning the selection of
content, is statistics mathematics? Is formal logic a part of mathematics? Is physics
mathematics? In general, when if ever does applied mathematics cease to be math-
ematics? Should telling time be a part of the mathematics curriculum? What about
reading tables of data or locating one’s home town on a map? What about doing a
logic puzzle such as a Sudoku puzzle? What about a discussion of lucky numbers
and favorite numbers and unlucky numbers? Is computing using a calculator doing
mathematics or avoiding it? Is conjecturing mathematics or is it proto-mathematics,
that is, not the real thing but leading up to the real thing. These questions bring out
differences both between and within our groups in what we think mathematics is,
and differences in what we think is real or good mathematics.

Pólya’s second step in problem solving he called “devising a plan”, and one bit
of his advice in this regard is to look at a related problem. A discussion like this
one could involve statisticians and mathematicians rather than mathematics educa-
tors and mathematicians. We all know that while in some universities statisticians
reside in a department of mathematics, in other universities they have their own
department. The statisticians on my campus are all very knowledgeable about math-
ematics, but they do not view their discipline as a sub-branch of mathematics. My
own background reflects the difference—I minored in statistics as an undergraduate
in a department of mathematics and at no time in any of my statistics courses was I
ever asked to examine a data set. Our distributions were all theoretical. In contrast,
the statisticians on my campus feel that data is the starting point for all statistics,
just as we in mathematics-education have to begin with the learner, the teacher, or
the school situation, not with mathematics.

An effect of this difference in view is seen in the Common Core State Stan-
dards in the US, where statisticians had very little influence. Only a few years ago
a committee of the American Statistical Association (ASA) published a report with
detailed guidelines and examples for a curriculum in statistics K-12 (Franklin et al.
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2007). The Common Core document references this report but it seems that is as
far as the Common Core authors went. There is no statistics in grades K-5 and the
statistics that is in grades 6–12 is not developed with anything near the care that is
in the ASA document.

The difference in views of statistics reflects a fundamental difference between
school mathematics and the mathematics as done even in the most inclusive college
mathematics departments. School mathematics covers a far broader agenda than
mathematics. Just as statistics involves such things as the design of experiments, a
topic that is not on the radar screen of pure mathematics, the school mathematics
teacher, and thus the school mathematics curriculum, is obligated to cover all the
basics of the mathematical sciences that the public needs, including quantitative lit-
eracy and other topics that do not fit any sort of logical mathematical system. This
might explain circle graphs or the metric system, both topics hard to fit into a dis-
cussion of the properties of numbers, are not mentioned in the recent Common Core
standards in the United States and why much more attention is given to fractions,
easily associated with division, than to decimals, a numeration system.

The natural sequence in mathematical research is logical. Accordingly, when
I first wrote curriculum, I thought that all children would learn easily from a
carefully-written well-explained logical mathematical argument. I was mistaken.
The learner brings elements into learning mathematics that do not fit mathematical
logic. Young children are not typically convinced by a logical argument. Even adults
are not always convinced by logical arguments; they tend to view an argument as
valid if they believe the conclusion, and invalid if they do not believe the conclu-
sion. It’s not too strange to feel that way. We have to teach students to have faith in
mathematical logic and in mathematical systems; we have to teach students that one
can proceed logically from a false statement to another false statement. We cannot
assume that such thinking is innate.

The belief in the primality of a logical sequence in mathematics curriculum is
related to what is meant by understanding of a mathematical concept. Does a person
fully understand the division of fractions because they can derive the general rule
from other properties? I would say they do not. The full understanding involves
knowing alternate algorithms for finding the quotient, recognizing and being able to
apply the division of fractions in problem situations, and being aware of the history
of the idea. Some mathematics educators and psychologists might add to this the
ability to represent division of fractions in some sort of iconic way. Mathematics
educators tend to harbor a broader view of understanding than mathematicians.

Sticking to the notion that a logical sequence is needed in order to understand
a mathematical concept can narrow what students encounter in their mathematics
experience. There is no mention of infinite decimals in the Common Core, perhaps
because some on the writing committee felt that an understanding of limits is needed
to understand infinite decimals. Rarely does one find theorems such as the Isoperi-
metric Inequalities in the plane and 3-space before college even though they have
many applications, probably because the proofs of these statements require college-
level mathematics.

Agreeing that a logical sequence is not appropriate for all topics in school math-
ematics, some people hold the notion that the optimal sequence through elementary
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mathematics should follow the sequence of their invention by mathematicians. How
else can we explain that negative numbers do not appear in the Common Core cur-
riculum until grade 6, after fractions and decimals? I remember well a conference in
the early 1970s at Southern Illinois University where Frederique Papy spoke about
how negative numbers were introduced in their elementary school mathematics cur-
riculum in Belgium. In first grade, from the beginning of school, the teacher and
students graph the high and low temperatures for each day. And around Novem-
ber the low temperatures first go below freezing, so voila (but not in Beer Sheva!)!
Pure mathematics avoids everyday experiences, but mathematics-education not only
cannot avoid them, it is well-advised to use them.

Although the fields of mathematics and mathematics-education are so different,
in both fields we teach mathematics, and in both fields we think deeply about math-
ematical concepts, and we think that our perspective gives us special insights into
that mathematics. Some of us—perhaps most of us here—would like to think that
we straddle the fields, but for most people these differences constitute the way it is.

Thus we should not be surprised that there are conflicting views towards a host
of curricular issues. In some places, the diversity of views is welcomed and there
is mutual respect between mathematicians and mathematics educators. However,
in the US, these conflicts have not been resolved; whoever is in power locally or
nationally rules the day, and the conflicts are being played out as we speak in the
implementation of the Common Core, where the stakes for agreement are higher
than they have ever been. We should take advantage of the fact that mathematics is
an international language and work together for the common good.

With the entry of mathematicians into the mathematics-education arena, one of
the nicest things that has happened is that mathematicians have been outspoken
in the view that elementary mathematical concepts can be quite complex, and that
understanding these concepts is not trivial and requires deep thought.

But other mathematicians have not been so thoughtful. They know a little about
mathematics-education but they think they know more than the people who have
spent their lives in the field. Their writing is a combination of accurate statements
and silly pronouncements, hidden behind mathematical arguments to exhibit their
knowledge of theory.

It is also the case that there is nonsense research in mathematics-education. We
need some of our mathematicians to speak out against those mathematicians who
are preaching nonsense. And, at the same time, more of us mathematics educators
need to speak out against nonsense in our field.

Reflective Summary

Nitsa Movshovitz-Hadar

The focus of this chapter, mathematics and mathematics-education policy, is mul-
tifaceted. The multitude of ideas and connections embedded in mathematics, and
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the characteristics of research in mathematics as well as in mathematics-education
make it almost impossible to cover many policy issues under the constraints of one
chapter in a book or one panel in a symposium. We have touched upon several issues
but more are left implicit, untouched or as open questions specified explicitly.

Nevertheless, mathematics teachers’ preparation and the school curriculum are
the two pillars of mathematics-education. Teacher education policy and curriculum
policy are therefore at the heart of mathematics-education policy. Striving for vision
may yield an overview of the essence of contemporary mathematics. In collabora-
tion between mathematicians and mathematics-educators, such an overview may
yield criteria to examine pre-university mathematics subjects for their educational
potential. This would be an invaluable contribution towards a curriculum policy.

A collaborative process of investigation about the requisite mathematical knowl-
edge of mathematics teachers, its acquisition and lifelong development (such as
Gutfreund and Rosenberg 2012) will hopefully yield some new policy concerning
teacher preparation.

To the extent that policy concerns curriculum and standards, it demands informed
opinions on the kinds of fundamental issues we spoke about.

To the extent that it should make decisions about such things, it must face the
difficulty of reconciling seemingly conflicting ends—for example, between being
mathematically precise and rigorous and being intuitive or heuristic for the sake of
creating steps towards further learning.

A forum where policy is discussed and decided becomes thus a natural occasion
for discussing matters of common interest to mathematics-education as well as a
context requiring mathematicians and mathematics educators to come together and
bring with them their own special perspectives in order to sift priorities.

Pre-university mathematics-education is facing many challenges: e.g. creating
motivation, and maintaining it; mathematics-education should go hand in hand with
education for human values. Mathematics-education must go hand in hand with
mathematics, namely exposing students of all ages to the broad spectrum of con-
temporary mathematics that permeates almost all walks of life, to the true nature of
mathematics as an ever-growing body of knowledge, its applications, its beauty and
its rich intellectual challenge.

Math education policy should be adopted to help in coping with these challenges.
The “how to” will follow if the policy statements are clear.
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Chapter 17
Mathematics and Education: Collaboration
in Practice

Hyman Bass and Deborah Loewenberg Ball

Abstract This chapter describes the work of a longstanding collaboration between
a research mathematician and a practicing teacher and education researcher. In ad-
dition to showcasing specific aspects of the joint work, and the ideas that have been
produced, the chapter also examines the nature, challenges, and opportunities of this
unusual cross-disciplinary collaboration.

Keywords Collaboration · Mathematics instruction · Mathematical knowledge

Over the last 15 years, we have been studying the work of teaching mathematics in
primary school classrooms (Ball 1999; Ball and Bass 2000a, 2000b, 2003a, 2003b,
2008, 2009; Bass 2005; Ball et al. 2005a, 2005b). Our goal, as research mathe-
matician and education researcher, has been to understand what it takes to teach
mathematics with integrity, and to contribute to the improvement of teachers’ train-
ing. We have asked: What is mathematical about mathematics teaching, and what
are the mathematical demands of that work?

We brought to this research complementary training, skills, knowledge, and
perspectives. We studied primary records of practice so as to focus on common
artifacts that we could examine, analyze, discuss, and unpack. These records—
most often videotapes of lessons—also enabled us to hold teaching still, and to
study and re-study the same moments, interactions, explanations, questions, and
tasks.

The perspective that we have developed is that mathematics teaching is a special
form of mathematical practice—a form of applied mathematics (Bass 2005)—and
it has been this frame that has both required our collaboration and supported its
development. We will illustrate this with examples, showing both the affordances of
our work together, as research mathematician and education researcher, and also its
challenges and the problems we have had to solve.
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Two premises guide our work:

• Children are not learning mathematics nearly as well as they could, and should
• Improving mathematics instruction and student learning depends on expertise

both in disciplinary mathematics and in instruction

Addressing these issues has been our driving purpose; what we have learned
about collaboration is a by-product of our actual work together. We did not set out
to study collaboration; our work demanded it. But that work taught us much about
the entailments of collaboration.

Our work together started in 1994, with a question from Ball to Bass: “What
mathematics do you see in this episode of elementary teaching?” This exchange
illustrates several characteristic features of our ongoing work. First, its motivation
was to better understand the mathematical resources needed for the work of teach-
ing mathematics. Second, to seek answers to this problem, an education researcher
was enlisting the views of a research mathematician, a not altogether commonplace
impulse, particularly in the case of primary instruction. Third, rather than seek an an-
swer based on mathematical reflections of a disciplinary practitioner, or on an anal-
ysis of the school curriculum, the query was situated in examination of a primary
record of practice, not in some imagined or presumed reality of elementary mathe-
matics instruction. In other words, whatever conclusions we drew about the mathe-
matical demands of mathematics teaching were “practice-based,” i.e. grounded in a
close study and analysis of teaching practice itself. It was this direct link to practice
that provided some assurance that the theoretical ideas that we developed would be
closely enough tied to practice to inform the improvement of mathematics instruc-
tion.

Herein rests the first lesson of our collaboration—namely, that using artifacts of
practice was fundamentally important to grounding our joint inquiry. As different as
our perspectives were, situating their use in a shared example of learning and teach-
ing enabled us to bring our different expertise and knowledge, as well as dispositions
and curiosities, to bear. The fact that we were looking at the same classroom lesson,
example of student work, or episode of children talk helped us to focus our inquiry
in common ground. This is a very different approach than, for example, writing a
curriculum, or discussing standards for student learning, neither of which would be
similarly disciplined by actual classroom interactions and mathematical discourse.

The Elementary Mathematics Laboratory (EML)

We focus here on one way that we have institutionalized this practice-based ap-
proach to our work, through establishment of the Elementary Mathematics Labo-
ratory (EML). The EML is now conducted under the auspices of TeachingWorks
(http://www.teachingworks.org/), a new organization at the University of Michigan
whose mission is to raise the standard for classroom teaching practice by transform-
ing how teachers are prepared and professionally supported.

The EML is an intensive two-week summer program for upper primary students
who have not been successful in school mathematics. It is based on “turn-around”

http://www.teachingworks.org/
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(in contrast with remedial) instruction, which advances students’ mathematical de-
velopment (knowledge, skills, and disposition) at the same time that it strength-
ens sometimes underdeveloped basic skills. It develops mathematical proficiencies
around fractions, basic arithmetic skills, mathematical explanation and reasoning,
and the use of language and representations in mathematics. It also attends to the
development of study and learning skills, such as participating productively in class,
doing homework, preparing for a test, keeping notebook records, etc.

What makes the EML a “laboratory” is that it is a setting for the real-time study
of the interplay of instructional design, teaching, and learning. The features that
enable this include these:

• The teaching is public and designed to be open for collective study, by a diverse
professional community of observers (Ball et al. 2013)

• There is careful documentation (high quality audio and video, detailed lesson
plans, student notebooks, etc.) (Suzuka 2013)

• The teaching and learning are deliberately made as public and visible as possible
(Ball et al. 2013; Suzuka 2013; Mann and Thames 2013)

• There are planned instructional experiments
• The physical environment borrows some features from the “surgical theatres”

commonly used in the training of medical professionals (Suzuka 2013)

The research questions whose investigation has been supported by the EML in-
clude the following:

• What are some of the key sites of using mathematical knowledge in and for teach-
ing (MKT)?

• What constitutes “knowledge at the mathematical horizon” and how is it entailed
by and used in practice?

• What mathematical problems are central to beginning teaching, and how might
this inform high-leverage initial professional training in mathematics instruction?

• What are some of the challenges and affordances of using the number line as a
central mathematical object in the teaching and learning of rational numbers in
elementary school?

• What dilemmas are inherent in seeking to help students develop basic skills in
active mathematical practice?

• What are the mathematically intensive instructional resources that are highest
leverage to advancing children’s mathematics learning and engagement, and how
can they be more effectively used?

• What is involved in “turnaround” instruction that seeks to fill in gaps that students
have accumulated while also providing challenging work that accelerates their
mathematical opportunities and progress?

• What are the problems and challenges of designing and using homework in ways
that advance children’s academic development and that are equitable and sensitive
to home-school connections?

Our research work is situated in other sites as well as the EML. For example we
use records of practice from other settings and classrooms. Also we have begun
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a practice-based study of the resources most immediately and critically needed by
beginning mathematics teachers (both primary and secondary).

To illustrate what we have learned through—and about—collaboration, we turn
next to make two claims that are products of our joint inquiry. Our discussion of
each claim is grounded in episodes of instruction.

Claim 1 Mathematics in instruction is importantly different from mathematics con-
sidered in the abstract, or in the curriculum.

Discourse around mathematics education in the US is currently influenced by
the new Common Core State Standards for mathematics (http://www.corestandards.
org/), an initiative to build a common national curriculum. In addition to a focus-
ing and ordering of the mathematical topics of the curriculum, the Common Core
includes standards for mathematical practice:

MP1. Make sense of problems and persevere in solving them.
MP2. Reason abstractly and quantitatively.
MP3. Construct viable arguments and critique the reasoning of others.
MP4. Model with mathematics.
MP5. Use appropriate tools strategically.
MP6. Attend to precision.
MP7. Look for and make use of structure.
MP8. Look for and express regularity in repeated reasoning.

It is a challenge to teachers to assign tangible meaning to these practices, and to
acquire some vivid images of what it could mean to teach, and to learn them. Math-
ematical practice provides one helpful frame for understanding the mathematics we
might see in the practice of teaching. We use this in an analysis of an episode of
teaching in an EML class.

It is the beginning of the third day of class, with the following “warm-up” prob-
lem on a poster in front of the class as the students enter:

How many different three-digit numbers can you make using the digits 1, 2,
and 3, and using each digit only once?
Show all the three-digit numbers that you found.
How do you know that you found them all?

On the face of it, the mathematics involved in this problem consists of finding all
the permutations of three objects, and proving the completeness of the solution set.
What, further, is the mathematics involved in an instructional enactment of this prob-
lem with upper primary students who have been unsuccessful with school mathe-
matics, and who may not have been regularly presented with mathematically chal-
lenging work? The problem appears to be sensible and accessible, and it is clearly
stated. So it would seem that the children are well situated to set off individually

http://www.corestandards.org/
http://www.corestandards.org/
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working on the problem. But the instruction we shall now see presumes none of
this.

Teacher: . . . Jamal, could you read it nice and loud?

Jamal reads the problem.

Teacher: Can you tell us what you think the problem is telling you to do?
Jamal: It’s asking to make as many three-digit numbers as you can with one, two,

and three. And—
Teacher: Do other people agree with what Jamal is saying?
Students: Yes.
Teacher: Can somebody give an example of a number that would not be an answer

to this question? What’s a number that would not be an answer to this?
Sean?

Sean: One two three four?
Teacher: And tell us why that wouldn’t be one?
Sean: Because it’s a four-digit number.
Teacher: Excellent. What else does it do that doesn’t fit? There’s one other thing

that’s not good about it. What is it, Eli?
Eli: It’s a thousand.
Teacher: It’s a thousand, but there’s something else that doesn’t fit the conditions

of the problem. So he put two wrong things into it, in a way. What was
the other thing? Susanna?

Susanna: He’s using the number four.
Teacher: He used the number four. Is that allowed?
Student: No.

The instruction begins with a public student reading, and interpretation, of the prob-
lem. Giving one solution of this problem means providing a number that meets these
conditions: (1) It is a three-digit number; (2) It uses only the digits 1, 2, and 3; and
(3) It uses each of these digits only once. This apparently straightforward, but cru-
cially important, understanding of the problem is not a part of the habitual thinking
or experience of many of these children; it is a habit that can, and must, be taught,
if these children are to be successful mathematically.

Interestingly, the teacher first directs their attention not to what a solution looks
like, but rather to non-solutions, for which the children are asked to identify the
conditions whose violation makes an example a non-solution. We argue that recog-
nition of this explicitly needed resource for student work on the problem, as well
as the approach taken to this by the teacher, represents a kind of thinking and prob-
lem solving that is as much mathematical as pedagogical. The teacher goes on to
elicit other student nominated non-solutions (like “two billion” and “zero”), though
none of these violate condition (3), a case she wanted in order to complete the ac-
count of ways that a proposed solution might fail. Rather than address this directly,
she next asks for possible solutions. But then she interjects an example violating
condition (3).
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Barak: Three—Three one two.
Teacher: Okay. Can you explain why you think that is one of the answers?
Barak: It’s using three-digit numbers and it’s using the numbers.
Teacher: It’s used three-digit number—It uses the—Say it again?
Barak: The numbers one and two and three.
Teacher: And one more thing. What does it say?
Barak: And using each name—digit only once.
Teacher: Did you use each digit only once?
Barak: Yes.
Teacher: Okay, so would this be an answer? (Writes “221” on the whiteboard.)
Student: Yep.
Students: No.
Teacher: Can someone explain why that one is not an answer to this? Why is this

one not an answer? Lucas?
Lucas: You used the two twice.
Teacher: It uses the two twice. Is it a three-digit number?
Lucas: Yes.
Teacher: Does it use only the numbers one, two, or three?
Students: Yes.
Teacher: But? What’s wrong with it again, Lucas?
Lucas: It used the two twice.

At this point the teacher gathers more solutions from the students, in each case
recording the solution on the board, and asking a student other than the contributor
to explain why it is a solution, explicitly verifying the three conditions. When the
students cease to produce new solutions, the teacher asks if they think that they have
them all, and to give reasons for their belief, and finally she asks if they could prove
that they have them all.

What is the mathematics involved in this instruction? In terms of mathematical
content it is clearly about finding all three-digit numbers using the digits 1, 2, and 3,
each only once, and proving that one has all (six) of them. In the course of this
students encounter the notions of digit, three-digit number, the concept of zero as a
number, etc. But there is more. In fact the teaching is also focused on developing
mathematical practices and habits of mind that are foundational to doing mathemat-
ics, but that are often left implicit. Among the practices in which the teacher engages
the students are the following, especially MP1 and MP3:

MP1. Make sense of problems and persevere in solving them.
MP3. Construct viable arguments and critique the reasoning of others.
MP6. Attend to precision.
MP7. Look for and make use of structure.

What kinds of mathematical work and knowledge are being deployed by the teacher
in this instruction? One is the design of the mathematical task, to accessibly engage
the students in a rich problem with which the above mathematical practices could
be mobilized and made an explicit goal of the instruction, enacted in a way that
enlists the interactive participation of an entire class. A pre-condition for this is
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the teacher’s awareness of the importance and significance of these practices, and
knowing the kinds of questioning and scaffolding that could induct the students into
them.

What does this examination of an episode of instruction illustrate about Claim 1?
First, there is far more mathematics visible in watching it in action than one can see
from the curriculum alone. Second, the students’ opportunities to learn mathematics
depend on the mathematical transactions that occur during instruction. And, finally,
the more we examined mathematics instruction, the more we uncovered about the
content, the learning, and the work of building bridges between the mathematics and
the children.

A second lesson from our collaboration is that the interplay of mathematical and
pedagogical perspectives in our analyses permits a method of study that is neither
solely a mathematical analysis nor a pedagogical one (Thames 2009). When we
first began to work, Ball asked Bass to provide a “mathematical commentary” on
some episodes of instruction (Ball 1999) and provided specific questions to guide
his viewing and annotation. Quickly, however, his comments were the object of dis-
agreement as we discussed and compared our interpretation of events and interac-
tions. For example, Bass would ascribe to students significant mathematical insights
for which there was little evidence. He often interpreted and explained teacher rea-
soning from his perspective instead of considering the mathematical and pedagog-
ical dilemmas in which instructional practice is managed. As we worked through
our examination of specific data and evidence in video records of practice, and ar-
gued, often vigorously, about the mathematics in instruction and the instruction of
the mathematics, about student thinking and about teacher moves, we began to meld
an approach to analysis of mathematics instruction that was sensitive to the multi-
ple considerations that are the foundation of practice. As we grew more skilled, the
arguments did not recede, but our ability to examine the mathematics in practice im-
proved. It was from this development that our ability to consider a new perspective
on teacher knowledge emerged: a concept that we and our research group came to
label “mathematical knowledge of teaching” (Ball and Bass 2000a, 2000b, 2003a,
2003b; Ball et al. 2005a).

Claim 2 Mathematics instruction is fundamentally a special kind of mathematical
practice.

First of all, what do we mean by “mathematics instruction?” It is not:

• What teachers do
• The cause of student learning
• Equivalent to the curriculum

Rather, in our view, teaching is what is co-produced by students and teachers in
contexts, around specific mathematics and curriculum (Cohen et al. 2003).
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To illustrate, and support this claim we situate our argument in the examination
of an episode of practice. The instruction in this example strove to achieve three
commitments: (1) to work on substantial mathematics and treat the mathematics
with integrity; (2) to take students’ thinking seriously and make it an integral part
of the instruction; and (3) to treat the construction of mathematical knowledge as
the work of an intellectual collective, with mathematical justification and critical
evaluation of solutions and claims being a central demand of the student work. Our
interest here is to understand the mathematical demands of teaching to fulfill those
commitments.

The third grade class (eight-year olds) analyzed here was culturally and linguisti-
cally diverse (with many children speaking English as a second language, and some
only recently arrived in the United States). It is mid-year, and the children were
working on even and odd numbers. They came to third grade “knowing” which
(small numbers) were even and which were odd, but without any formal definition
of these notions. The topic was introduced through investigation of problems such
as this one: Mick has 30 cents in his pocket and he wants to spend it all (on gum,
2 cents, and pretzels, 7 cents) and not have any change left in his pocket. What can
he buy for 30 cents? What are his choices? The solution to this problem pushed the
children into encounters with notions of even and odd numbers, and eventually to
make conjectures about their arithmetic properties (e.g., even + odd = odd, odd +
odd = even, etc.).

On one particular day, the students were asked about the meeting they had with
the fourth graders to discuss whether zero was even or odd or neither. One of the
boys, Sean, reflecting on a discussion they had the previous day, raises his hand and
says,

I don’t have anything about the meeting, but I was just thinking about six, that it’s a. . . I’m
just thinking it can be an odd number, too, cause there could be two, four, six, and two,
three twos, that’d make six. . . . And two threes, that it could be an odd and an even number.
Both! Three things to make it, and there could be two things to make it.

The teacher does not challenge or correct Sean. She first re-voices and tries to pub-
licly clarify what he is saying, and then she invites comments from the class. His
classmates quickly disagree. They already knew from second grade that six is even.
We watch as this mathematical debate unfolds, attending to how the children are
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processing mathematical ideas and claims, and to the mathematical moves of the
teacher to shepherd this discussion. Cassandra, the first to object, points to the num-
ber line above the blackboard, saying,

Six can’t be an odd number because this is (she points to the number line, starting with
zero) even, odd, even, odd, even, odd, even, . . . . Because zero’s not an odd number.

Sean persists,

. . . because there can be three of something to make six, and three of something is like
odd. . .

Keith protests, “That doesn’t necessarily mean that six is odd.” Several students
chime in, “Yeah.” When the teacher asks Keith, “Why not?” he responds,

Just because two odd numbers add up to an even number doesn’t mean it has to be odd.

We note that the reasoning of both Cassandra and Keith is sound, though different.
Cassandra argues from a different definition (of even and odd) to a contrary con-
clusion. Keith, on the other hand, directly challenges Sean’s argument, not simply
his conclusion. Meanwhile, the teacher leaves it to the students to reconcile the dis-
agreement, while carefully moderating the discourse. Thinking that Sean may be
just confused about the meaning of “even”, she makes an important mathematical
move, and asks Sean,

What’s our working definition of an even number? Do you remember from the other day
the working definition we’re using?

When Sean does not seem to recall, she asks several other students, until Jillian
offers,

It is, um, if you have a number that you can split up fairly without having to make (long
pause) to split one in half, then, um, it’s an even number.

When the teacher then asks Sean if he can do that with six, he affirms, and so she
says, “So then it would fit our working definition; then it would be even, okay?” To
which Sean comfortably concurs, adding, “And it could be odd. Three twos could
make it.” Sean, defying the tacit understanding of the class, seems to allow that a
number can be both even and odd. The teacher then realizes that to mediate this
discussion requires a definition of odd numbers as well as one for evens, something
she had not before thought necessary. After some discussion, the class agreed that
odd numbers were those you could not split up fairly into two groups, or that, when
you group them in twos, there is one left over. But Sean is tenacious, saying that,
“You could split six fairly (two threes) and not fairly (three twos).”

The teacher pursues a new line of questioning and asks Sean if he thinks all
numbers are odd then. When he says no, she asks him which numbers are not odd.
He says that 2, 4 and 8 are not odd, but that 6 can be odd or even. Several students
then shout, “No!” And Tembe challenges him: “Show us!” Sean only repeats, “There
are three twos; one, two; three, four; and five, six.” Unconvinced, Cassandra and
Tembe insist, “Prove it to us that it can be odd.” The teacher then invites Sean to
prove it to the class and asks everyone to pay close attention. Sean goes to the
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board, where there is a drawing of six circles, which he then proceeds to separate
into groups of two,

saying, “There’s two, two, and two. And that would make six.” To which Cassandra
rejoins, “I know, which is even!” And Tembe backs her up.

Then Mei raises her hand to say, “I think I know what he is saying.” The teacher
asks Sean to remain at the board while Mei explains,

. . . I think what he’s saying is that you have three groups of two. And three is a odd number
so six can be an odd number and an even number.

It seems that the question is no longer whether Sean is right or wrong, but whether
Mei has correctly interpreted Sean’s idea and argument. The teacher first gets Sean’s
confirmation of this, and then she asks if others agree with Sean. After having clearly
articulated Sean’s argument, Mei herself then says,

I disagree with that because it’s not according to like. . . here, can I show it on the board?

At the board, facing Sean, Mei continues,

It’s not according to like. . . how many groups it is. Let’s say that I have (long pause while
she thinks). . . . Let’s see. If you call six an odd number, why don’t (pause). . . let’s see
(pause). . . let’s see—ten. One, two, . . . (draws circles on board) and here are ten circles.
And then you would split them; let’s say I wanted to split, split them, split them by twos. . .
(she draws the dividing lines and counts the groups of two). One, two, three, four, five, . . .
Then why do you not call ten a, like. . . an odd number and an even number, or why don’t
you call other numbers an odd number and an even number?

What is Mei doing here? First she has understood and explained Sean’s idea, one
with which she in fact disagrees, and she has pinpointed the fault in Sean’s argument.
(“It’s not according to how many groups (of two).”) But she goes well beyond the
mere statement of that critique. She embraces Sean’s own reasoning, and cleverly
constructs an argument that she is persuaded will make Sean, in his own terms, see
the error of his ways. She generalizes the principle of Sean’s reasoning—that six is
made of an odd number of groups of two—and so sees that this same criterion would
usher in an unlimited supply of new odd-and-even numbers, to her a menacingly
chaotic predicament that she fully expected Sean to back away from. Her reflective
pauses were needed to search mentally, while the class waited quietly, for the next
example—10—of an odd number of groups of two. To Mei’s surprise, and then
dismay, Sean responds,

I disagree with myself. . . I didn’t think of it that way. Thank you for bringing it up; so, I say
it’s. . . ten can be an odd and an even.

In this exchange, Mei, who seems to seek to persuade Sean with the implications
of his argument, in fact succeeds instead in giving Sean an expanded understanding
and appreciation of his own idea, which he embraces with thanks. Mei’s argument
is mathematically solid, well expressed, and well understood by Sean (and the class,
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as we later see). Mei and Sean differ in the significance that they each attach to it.
Exasperated, Mei then proclaims,

Yeah, but what about other numbers?! Like, if you keep on going on like that and you say
that other numbers are odd and even, maybe we’ll end it up with all numbers are odd and
even. Then it won’t make sense that all numbers should be odd and even, because if all
numbers were odd and even, we wouldn’t even be having this discussion!

Noteworthy here is Mei’s mathematical sensibility about definitions, noting that they
fail in their purpose if they lose the capacity to make significant distinctions, to give
concepts appropriately sharp boundaries.

In these few moments of instruction, what can we observe about the mathemati-
cal work going on, by the students and by the teacher? On one level the children are
exploring aspects of even and odd numbers. But, perhaps more significantly, they
are deeply engaged in several mathematical practices:

MP1. Make sense of problems and persevere in solving them.
MP2. Reason abstractly and quantitatively.
MP3. Construct viable arguments and critique the reasoning of others.
MP5. Use appropriate tools strategically.
MP6. Attend to precision.
MP7. Look for and make use of structure.
MP8. Look for and express regularity in repeated reasoning.

They are making mathematical claims and counterclaims, and critically examining
each other’s ideas. There is an imperative for justification of claims that the children
seem to be used to doing and to which they hold each other accountable. They are
developing and using mathematical language and representations. They are making
mathematical generalizations. Such mathematical practices, much as we rhetorically
encourage them, are not learned if they are not taught and practiced. That entails an
instructional investment that we have not fully seen, but whose benefits we can see
manifested in this episode.

To reconcile mathematical disagreement, the teacher recognizes the need for def-
initions of the mathematical terms in play. She asks the class to make explicit the
“working definition” of even number. In fact three definitions of even (and odd)
numbers are implicitly in use: fair share (a number is even if it can be split into
two equal groups), pair (a number is even if it is composed of groups of two), and
alternating (the even and odd numbers alternate on the number line, with zero being
even). These are not all explicitly stated or shown to be mathematically equivalent,
but they are tacitly assumed to be so. Most students (not Sean) assume the “even”
implies “not odd”. Noticing these different definitions in the children’s reasoning,
realizing the need to reconcile them, and considering what is entailed in establishing
their equivalence are all crucial aspects of the teacher’s mathematical thinking. It is
also important that the teacher to knows what are mathematically appropriate and
usable definitions of even and odd numbers for third graders. Mathematical reason-
ing is not feasible without some careful attention to commonly understood mathe-
matical definitions. For example, the children’s later proofs of conjectures (e.g., odd
+ odd = even) depend crucially on the use of such definitions.
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Though Sean misuses the mathematical term “odd”, he nonetheless has a clear
mathematical idea about six: he notices that it has “an odd way of being even.”
But, lacking vocabulary to name this (well specified) feature, he disconcertingly
appropriates the name “odd-and-even” for it. Sean is thinking only about six. But
Mei recognizes that Sean’s argument about six is generalizable and opens the door
to far-reaching possibilities that she assumes would cause Sean to retreat from his
claim, but he does not do so.

What are these “Sean numbers” (as the teacher came later to call them) intro-
duced by Sean and Mei? They are the odd multiples of two. Is this a topic worthy
of instructional time? The concept of even and odd is about mod 2 arithmetic. Sean
and Mei have cracked the door open on mod 4 arithmetic, identifying numbers con-
gruent to 2 mod 4. These numbers turn out also to be exactly those natural numbers
that are not a difference of two squares, and were studied by the ancient Greeks. So,
the idea surfaced by Sean’s natural curiosity about numbers in fact has some inter-
esting mathematical significance that he could not have anticipated, but that might
figure in the teacher’s evaluation of how much instructional play to give it. Indeed,
once Mei had essentially defined these Sean numbers, the students eventually began
an exploration of their properties—finding patterns (every fourth number, starting
with two, is one); making and proving conjectures (a sum of two Sean numbers is
not one); etc.

But, more important, what the children are learning goes well beyond the prop-
erties of Sean numbers. It includes the skills of mathematical exploration and rea-
soning, hearing, using, and critiquing the reasoning of others, generalizing, using
mathematical definitions and representations, etc. For those who wonder in frus-
tration over our students’ failure to gain proficiency with or appreciation of such
mathematical practices, you might consider that this episode provides one image of
what it might look like for young children to begin to develop such skills.

But these practices do not develop naturally in a classroom. They must be
cultivated and scaffolded through deliberate instruction, itself informed by such
mathematical practices as: posing productive and accessible tasks; asking strate-
gically purposeful mathematical questions; using appropriate mathematical models
and representations; prompting promising mathematical explorations; encouraging
speculative thinking and conjecture; asking for mathematical justifications of so-
lutions and claims; evaluating mathematical arguments; developing mathematical
language and its careful use; and being attentive to mathematical structure. This
illustrates some of what makes teaching a special kind of mathematical practice.

The third lesson from our almost twenty years of collaborative work, by a re-
search mathematician and an educational researcher, is that the norms of evidence
and argument needed to make claims about instruction in the analyses we do have
little precedent in our respective fields and practices of research. Mathematical ar-
guments and reasoning rest on principles contained within the discipline, although
claims made in qualitative approaches to the study of education most often rest on
theoretical frameworks that guide the sorts of questions asked and the kinds of ev-
idence marshaled to answer them. Instead, in our work, we have had to develop
standards of argument and evidence to support our efforts to use mathematics as



17 Mathematics and Education: Collaboration in Practice 311

a lens to investigate instruction and the resources (such as teacher knowledge) in-
volved in its practice, and our simultaneous efforts to develop an instructional and
pedagogical set of tools for an applied mathematics of teaching and learning. Our
interactions have often been heated and determined as we hammer out our different
perspectives, and the work is intellectually challenging. It is challenging because
there is no road map for what we have tried to do, and because we have needed
the strengths of our own respective disciplinary perspectives and training to do the
work. Our commitment to find the interplay of perspectives and in so doing to un-
cover new ways to understand, explain, and develop mathematics instruction has
supported our efforts, but it is work not for the timid of intellectual spirit.

What Have We Learned?

Improving mathematics learning depends on intertwining deep expertise in the prac-
tice of both mathematics and instruction. These connections can be built strongly
when collaborations engage in practice—through direct engagement in instruction,
through artifacts that can be discussed, studied, and re-examined over and over. This
involves cross-disciplinary and new interdisciplinary work—about what are the key
questions, what counts as a claim, and what counts as evidence and warrants. A cru-
cial foundation for such collaboration is mutual respect; another is solid grounding
in the domains of mathematics as a discipline and in the actual practice of instruction
as well as its close and disciplined study. With almost twenty years of experience
with this work, we can see our progress as well as the hard knocks of the argu-
ments it has taken to get here. We are encouraged by the results and interested in
articulating more fully the methods involved so that others can also engaged in such
partnerships.
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Chapter 18
Reflections on Collaboration Between
Mathematics and Mathematics Education

Patrick W. Thompson

Abstract Our chapter is in four sections. Michèle Artigue tells the story of her
transition from mathematical logic to mathematics education and of collaborations
at a wide variety of institutional levels. Günter Törner gives a history of collabora-
tion between mathematics and mathematics education in Germany along with a list
of recommendations to foster collaboration. Ehud de Shalit shares lessons learned
from personal experiences collaborating in the production of a math fair and in the
design of a mathematics education major. Pat Thompson tells of several collabora-
tive efforts at his home institution and examines ways that mathematics education
contributed mathematically to them. A concluding section provides a reflection on
our charge—structural and cultural issues involved in collaborations between math-
ematics and mathematics education.

Keywords Collaboration · Constraints · Affordances · Examples · Mathematics ·
Mathematics education

Introduction

The editors of this book asked our group to address the matter of collaboration be-
tween mathematics and mathematics education. For some time we debated whether
to change our charge so that it referred to people rather than to disciplines—
collaboration between mathematicians and mathematics educators. We finally
decided there was much wisdom in the editors’ original charge. We therefore
attempted to focus on aspects of the disciplines and their organizations that might
lend to collaboration among the people populating them.

With contributions by
Michèle Artigue, Université Paris 7 Diderot, Paris, France
Günter Törner, Universität Duisburg-Essen, Duisburg, Germany
Ehud de Shalit, The Hebrew University of Jerusalem, Jerusalem, Israel

P.W. Thompson (B)
Arizona State University, Tempe AZ, USA
e-mail: pat@pat-thompson.net

M.N. Fried, T. Dreyfus (eds.), Mathematics & Mathematics Education: Searching for
Common Ground, Advances in Mathematics Education,
DOI 10.1007/978-94-007-7473-5_18,
© Springer Science+Business Media Dordrecht 2014

313

mailto:pat@pat-thompson.net
http://dx.doi.org/10.1007/978-94-007-7473-5_18


314 P.W. Thompson

Collaboration Between Mathematics and Mathematics
Education: Personal Experiences in France and Abroad

Michèle Artigue

Collaboration between mathematics and mathematics education is first collabora-
tion between individuals who belong to the corresponding communities or navigate
at their interface. Preparing my contribution on this theme has given me an oppor-
tunity for reflecting on my personal experience and for trying to draw some lessons
from it. In this contribution, I summarize this reflection and its outcomes.

Such a reflection is necessarily subjective. For that reason, it is important that
I start by pointing out some characteristics of my professional life that necessar-
ily influence my perception. I was trained as a mathematician at the Ecole Nor-
male Supérieure in Paris, and logic was my first research area. My Ph.D. was on
recursivity issues and then I got a position at the mathematics department of the
University Paris 7 and entered a research group working on non-standard models
of arithmetics and bicommutability between theories. One of my professors at the
Ecole Normale Supérieure, André Revuz, had been recently recruited there and he
was in charge of a new and original institution, called IREM (Institute of Research
on Mathematics Teaching). IREMs are specific structures attached to universities
with close links to mathematics departments. The first three IREMs were created
in 1969, but there are now 28 that form a network covering the whole country, and
there are even some IREMs abroad (http://www.univ-irem.fr). Their mission is to
contribute to teacher professional development, to develop innovation and research,
and to produce resources both for teaching and for teacher education. For fulfill-
ing these missions, the IREMs create mixed thematic groups including university
mathematicians, teachers and teacher educators working part time collaboratively.
For instance, at the creation of the IREM of Paris at the University Paris 7 in 1969,
the mathematics department was allocated six specific positions by the Ministry of
Education, and mathematicians from the department were invited to spend part of
their academic duty contributing to IREM activities, in collaboration with the 20
secondary teachers delegated half time to the IREM by the academic authorities.1

I was soon invited by André Revuz to join the IREM team, and this was the origin
of my engagement in educational issues. In the mid 1970s, Revuz proposed that two
colleagues and I take charge of mathematics teaching in an experimental elementary
school that had been recently attached to the IREM. We had a lot of freedom for
organizing mathematics teaching and learning in that school, and in this capacity I
collaborated with Guy Brousseau. Brousseau had obtained the creation of a similar
school attached to the IREM of Bordeaux, a laboratory where the main constructs of
the theory of didactic situations were being developed and put to the test (Brousseau
1997).

1The current means of the IREM are far from this idyllic state, for instance the many secondary
teachers contributing to its activities only receive some extra salary.

http://www.univ-irem.fr
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I thus entered the emerging community that would be later known as the French
didactic community, and had the possibility to contribute to its development while
pursuing my research in logic. This context also led to the fact that, even when years
later I stopped doing research in mathematics, I could continue to collaborate with
mathematicians. I taught with them at the undergraduate level or in teacher educa-
tion programs; I worked with them at the IREM as well as in different academic
institutions and commissions, such as the CNU (National Council of Universities)
which is in charge of the qualification and promotion of university academics2 and,
later on, worked with mathematicians in the CREM (Commission of Reflection on
Mathematics Teaching) presided by the mathematician Jean-Pierre Kahane and in
ICMI, the International Commission on Mathematical Instruction. These charac-
teristics of my professional life made me move regularly at the interface between
communities, and they certainly influence my vision of collaboration between math-
ematicians and didacticians.

Collaboration between mathematicians and didacticians is necessary, and I am
personally convinced that no substantial and sustainable improvement of mathe-
matics education can be obtained without building on the complementarity of their
respective expertise, without their common engagement and coordinated efforts.
However, I am perfectly aware that productive collaboration is not easy to create
and that maintaining it, once established, requires continued effort.

The situation was certainly different in the sixties and even the seventies, a time
when didactic research was just emerging. The proceedings of the first ICME con-
gresses, for instance, attest to the existence of such collaborations, as well as to
the existence of many individuals combining research activity both in mathemat-
ics and mathematics education. But, as I explained in the closing lecture of the
symposium organized for celebrating the centennial of ICMI in Rome in 2008 (Ar-
tigue 2009), the development and professionalization of research in mathematics
education and the increasing pressure put on researchers—whatever their field of
expertise—inexorably increases the distance between the communities and their re-
spective agendas. This distance makes individuals who can maintain a substantial
and recognized research activity both in mathematics and in mathematics education
more and more an exception. Of course, there are still some people who span the
boundary between mathematics and mathematics education, and they play a particu-
larly important role in maintaining and even strengthening the connections between
the communities. However, the quality of relationships between mathematicians and
didacticians depends increasingly on the establishment of productive collaboration
between individuals or groups who do not have full expertise in both domains, but
who think that collaboration is needed for the improvement of mathematics educa-
tion and are ready to invest part of their time and energy for making this possible and
productive. As I also pointed out in my Rome lecture, the development of mathe-
matics education as a genuine field of research has led to the building of theoretical

2In France, most didacticians are attached to the section of CNU in charge of applied mathematics
and applications of mathematics.
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frameworks, constructs, of technical terms that make communication more prob-
lematic. Mathematics education has progressively built a specific form of discourse
in which research articles are written and results expressed. Making these results
and ideas accessible outside the research community needs appropriate transposi-
tion of discourse. I am not sure that the didactic community does this so well. The
difficulty of the work is often under-estimated and the efforts of those who invest in
it are not valued enough by academic institutions.

Committed individuals are certainly essential for initiating and developing fruit-
ful collaboration, but, without appropriate structures and institutional support, any
impact remains necessarily limited and its sustainability is impossible to ensure.
Looking for institutional support and creating adequate structures is thus crucial.
Moreover, priority should certainly be given to actions where collaboration can
make a visible difference while being accessible at a reasonable cost. I would say
that teacher education and professional development, teaching and learning at the
university, popularization and enriching activities are in some sense natural candi-
dates as many mathematicians already are engaged in them. Also, collaboration is
possible at a policy level in curricular commissions and in joint reactions to policy
decisions that we think damaging for mathematics education or teacher education.

In looking at my personal experience, many positive examples come to mind that
reflect different forms of collaboration. I will briefly evoke six of these and give an
extended seventh example:

1. Collaboration at a personal level: collaboration with the mathematician Adrien
Douady, and then with Marc Rogalski for instance was essential for my research
and engineering work on the teaching and learning of differential and integral
processes, and of differential equations (Alibert et al. 1988; Artigue 1992). Con-
versely they benefited from our collaboration for their teaching at university.
There is no doubt that my research interests in the area of Calculus and Analysis
favored such a form of collaboration.

2. Collaboration in innovative university programs, teacher education and profes-
sional development. As I explained above, this form of collaboration was some-
thing normal for me as I have spent more than three decades working both in
a mathematics department and in an IREM. For instance, in the early eighties,
together with mathematicians and physicists, I was involved in the development
of a very innovative and successful experimental mathematics and physics pro-
gram for first year university students. I also worked with Jean-Luc Verley, an
historian of mathematics leading the corresponding group at the IREM, in the
creation of an experimental course combining history of mathematics and di-
dactics in the master’s program of mathematics. More recently, I worked with
François Sauvageot, a mathematician colleague, in the creation of a course on
modeling in a master’s program devoted to the education of mathematics teacher
educators. There is no doubt that the existence of the IREM structure was essen-
tial for initiating these innovations and making them successful.

3. Collaboration in national groups and commissions, such as the CREM (Com-
mission of Reflection on Mathematics Teaching), asked in 1999 by the Ministry
of Education to reflect on what should be taught in mathematics, why and how,
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and whose main reports published in 2001 still constitute a reference in France
(Kahane 2001).

4. Collaboration in the supervision of doctorate students. René Cori, who leads the
IREM group on logic, and I are jointly supervising a thesis on the teaching of
logic at senior high school (some elements of logic were recently reintroduced
from grade 10). Even if logic was my initial research area, this was a long time
ago and I feel my collaboration with René is necessary.

5. Collaboration in popularization and dissemination activities. This form of collab-
oration that I personally experienced in the conception of the UNESCO travelling
exhibition “Experiencing Mathematics!” is increasingly developing.

6. Collaboration in the organization and management of actions, but also at a re-
flective level that is required for more systematic study of the functioning and
effects of such activities. Doctoral theses such as the recent thesis by Nicolas
Pelay in France, which was co-supervised by the mathematical historian Jean-
Pierre Crépel and the didactician Viviane Durand-Guerrier (Pelay 2011) are very
promising from this perspective.

My seventh example involves collaboration at the ICMI level. One of the main am-
bitions of ICMI is to organize the collaboration of all those who can contribute to
the improvement of mathematics education worldwide, to guide and support their
efforts, and to disseminate their outcomes. As I explained in the Rome lecture, my
election as ICMI vice-president in 1998 occurred at a moment of tension between
ICMI and its mother institution, the International Mathematical Union. We had to
reflect on what we wanted to achieve and how it could be possible. At that time,
voices were being raised in the community of mathematics education asking ICMI
to allow it to become independent. The ICMI Executive Committee resisted these
voices while acknowledging that the status quo was not acceptable. Thanks to mu-
tual efforts among mathematicians and mathematics educators, the situation pro-
gressively improved to a quality of relationships and collaboration today that were
difficult to imagine in 1998. Along the years, I experienced the decisive role that
can be played by influential and respected individuals (members of the two exec-
utive committees, especially their presidents and secretaries, such as Hyman Bass,
ICMI President from 1998 to 2006, and Bernard Hodgson, ICMI General-Secretary
from 1998 to 2009, Jacob Palis, John Ball and László Lovász, the successive IMU
Presidents during that period).

I also witnessed how collaborative work on common projects is essential for
overcoming mistrust and bad experiences. I could mention many different experi-
ences. I will limit myself to two of them. The first one is the Felix Klein project,
whose aim is to make the mathematics developed since the Klein era accessible and
source of inspiration for teachers (focusing on senior high school teacher in the first
phase of the project). This project was inspired by the work of Felix Klein him-
self, who a century ago gave a series of lectures for German teachers that led to
the famous series Elementary mathematics from an advanced standpoint. The Klein
project is now a joint project of ICMI and IMU, led by a team made of mathemati-
cians and mathematics educators (http://blog.kleinproject.org).

http://blog.kleinproject.org
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The realization of the Klein project cannot be envisaged without a collaboration
between mathematics and mathematics education, and we observe that the inter-
est such collaboration raises can reinforce further collaboration between commu-
nities and even provoke it. A paradigmatic case is that of Brazil where a Klein
project in the Portuguese language has been launched at the initiative of the Brazil-
ian Mathematical Society with the participation of all societies in charge of math-
ematics and mathematics education, and a strong support from the government
(http://klein.sbm.org.br).

I must also mention the recent CANP project (CApacity and Networking Pro-
gramme)3 jointly launched by ICMI and IMU with the support of UNESCO and
ICIAM (International Council for Industrial and Applied Mathematics) for the de-
velopment of teacher educators in developing countries. One realization of this
project is a conference held annually in a different part of the world. The first confer-
ence took place in September 2011 in Bamako (Mali) for Francophone sub-Saharan
Africa, the second held in August 2012 in Costa Rica for Central America. The next
conferences are planned in Cambodia (2013) and Tanzania (2014). As explained in
the description of CANP, this project is jointly led by mathematicians and math-
ematics educators, and addresses all those involved in teacher education: expert
teachers, didacticians, mathematicians, inspectors and advisors. The conferences
aim to foster the collaboration among all communities engaged in teacher educa-
tion in a given country as well as regional collaboration. Conferences take the form
of a two-week workshop in which didactic and mathematics themes are combined
together with study of questions of specific interest for the region. Once again, the
first conferences look very promising, showing that collaboration between mathe-
maticians and didacticians, even if it is unusual in many countries, is nevertheless
possible and can be rewarding when carefully organized and planned in a spirit of
mutual respect. Such projects also show how the ICMI spirit of collaboration among
communities can disseminate and impact local situations.

This contribution to the reflection undertaken in our panel will perhaps appear
too optimistic to some whose experience is quite different from mine. This vision
is nevertheless realistic. Fruitful collaborations indeed exist at different levels and
in many different contexts. Even in difficult contexts, actions are possible which in
the long term can move positions and visions, by relying on the individual forces
that always exist, and by patiently cultivating these. However, these positive descrip-
tions and outcomes should not hide that collaboration is always costly. Whatever are
its conditions, collaboration needs personal efforts of decentration, the building of
intermediate languages, the building of an appropriate semiosphere where commu-
nication is made possible between members of different communities. Mathemati-
cians, historians, teachers and didacticians have all to learn a lot for productively
collaborating; they have to accept the limitation of their knowledge and expertise
but also to be convinced of its value and importance for others. There is no alter-
native because, as already stressed above, each community alone will not produce
sustainable and large-scale improvement of mathematics education.

3http://www.mathunion.org/icmi/other-activities/outreach-to-developing-countries/canp-project/.

http://klein.sbm.org.br
http://www.mathunion.org/icmi/other-activities/outreach-to-developing-countries/canp-project/
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Establishing a collaborative culture requires patience and determination. It is eas-
ier to destroy than to build. But when collaboration works, it is so rewarding!

Collaboration Between Mathematics and Mathematics
Education: Some Personal Experiences and Remarks

Günter Törner

To paraphrase Euclid, There is no royal road to collaboration between mathematics
and mathematics education. I am fully aware that each country has its own math-
ematical tradition and culture, which has been lived for many centuries by math-
ematicians. The TED-symposium confirmed that situations differ among different
countries.

Nevertheless, there might be a chance that each reader reflects on the variables
that I identify here for Germany. Eventually in the reader’s country there is some
latitude, which might be filled and framed. Also, I am aware that my viewpoint is a
personal one.

From 1997 I was a member of the Executive Board of the German Mathematical
Society (DMV). In the late 1990’s the alarming results of TIMSS were published,
which showed German students performing much lower than we anticipated, and
soon the question arose: Who is “guilty”—the teachers, the society of mathematics
educators, or the DMV through teacher education at universities?

Soon we realized that our Society is not very large and thus our influence is lim-
ited, since at that time we counted 4,000 members. Thus it was not straightforward
for the Society to be invited to public hearings to present our views. Our Society
therefore joined efforts with two other learned societies covering the field of math-
ematics education. After that we started to produce jointly-authored declarations on
various occasions when mathematics at school was discussed in the press. Through
this effort, we spoke in the name of more than 10,000 members. Next we argued
against the claim that schoolteachers were responsible for the poor outcomes of
German mathematics teaching and for the claim that the problems were systemic.

We also realized that there is no such thing as the mathematician, the mathemat-
ics educator, or the mathematics teacher. Rather, there is great variability in values
and perspectives within each group. Further, we had to confess that few people in
the mathematics community were intimate with the processes in the ordinary math-
ematics classroom. Upon getting in contact with mathematics educators and coming
to truly appreciate their research, we understood that we do not have a deficit in re-
search on teaching and learning, but rather an implementation problem. However,
contrary to the expectations of administrators and politicians, carrying out sustain-
able and effective research in mathematics education about implementation is much
more difficult than just publishing some interesting new results in mathematics.

But mathematics education is not the only area facing an implementation prob-
lem. Mathematics itself is facing many implementation problems—cooperation of



320 P.W. Thompson

pure mathematics with applied is just one—and these are often ignored in the daily
practice of mathematics departments! To summarize: To change mathematics edu-
cation, so as to develop collaboration between mathematics and mathematics edu-
cation, is not solely a personal problem or endeavor, but should be classified as a
communal challenge. Collaboration between mathematics and mathematics educa-
tion should be regarded as a task of cooperation between societies.

Lest I be misunderstood, I must say that in there are fruitful local collaborations
between mathematicians and schools or teachers in numerous places in Germany,
including mathematics departments. These efforts are important, and should be em-
phasized publicly. However, though such projects are necessary, they are not suffi-
cient. Bottom-up approaches must be complemented by top-down initiatives.

Looking back to earlier times at the beginning of the last century, in the glori-
ous time of Felix Klein, mathematics education at school was in accordance with
the insights of mathematics education at university. It might sound incredible to-
day, but Felix Klein worked to strengthen school education in the lower secondary
grades and in kindergarten. In a seminar (circa 1910) he invited famous educa-
tional researchers to share their thoughts about the implications of Pestalozzi’s re-
search for mathematics education at school. Pestalozzi was a famous (primarily
non-mathematics orientated) educationalist. This was Klein’s idea—to learn from
an educationalist. I am sorry to say that, today, I do not know any mathematician,
internationally recognized as a leading researcher in his or her field, who is so con-
vincingly and simultaneously engaged in mathematics and school mathematics ed-
ucation.

The New Math movement of the 1960’s and 1970’s provoked a separation of
teachers and mathematics educators in the DMV. Mathematicians, sometimes with
hubris, ignored teachers’ needs, their proposals, and their contributions. Thus there
was a “divorce” within the DMV of mathematics and mathematics education. So far
mathematics education was a session of some few mathematicians at their annual
meetings, now ‘Gesellschaft für Didaktik der Mathematik’ (GDM) was established
as an independent learned society, also attracting primary school teachers. Some
members of DMV left the mathematical society and joined GDM. GDM organized
its own annual meetings and there was no correspondence between these societies,
no discussion on common topics, nearly hostile neighborhood.

Forty years later, both sides recognized that this splitting was a mistake. Unfor-
tunately, there is now so much accumulated divergence that it makes little sense to
propose a reunification. We have to accept that, for example, primary school teach-
ers are very far from DMV intellectually and probably would not join DMV, but
there are at least more than one hundred persons which are members in both so-
cieties. Also, some of the DMV members, in parallel with mathematics education,
are aware that foundations for mathematics are laid in the primary grades and thus
feel also responsible for that group of teachers. Meanwhile, about 2000, in Germany
we started some gentle cooperation between mathematicians and mathematics ed-
ucators in various projects financed by foundations (see Hoechsmann and Törner
2004). It is a partnership on a level playing field.
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Nevertheless, we struggled (and continue to struggle) with closely held beliefs
among mathematicians and among mathematics educators. One problematic be-
lief held by many mathematicians is that the problem of learning and teaching is
trivial or unimportant. Mathematicians do not entertain elaborate models for learn-
ing. Rather, they like to generalize their private opinions to the general case—even
though they would never extend knowledge from one mathematical example to all
related examples.

Finally, there is too much hubris among mathematicians. Mathematicians of-
ten speak as if mathematical objects are real, available for inspection. On the
other hand, it is too often the case that mathematics educators do not have a
command of the larger body of mathematics that mathematicians see as arising
from the ideas under discussion. Mathematicians then form the impression that
educators have underdeveloped worldviews of mathematics—on the role of sys-
tems, the role of axiomatics, and on formal aspects of mathematics. It is also true
that mathematicians overemphasize these same aspects, without appreciating the
nature and role of meaning and understanding in students’ mathematical learn-
ing.

Over the years I have become aware of multiple Do’s and Don’ts. Here I offer an
incomplete list:

• STEP 1: Avoid philosophical discussions. Although some of our problems are
rooting in the philosophy of mathematics, be careful to start discussing them.
Philosophies are often deeply anchored and hard to change, hence such discus-
sions might not affect our daily practice.

• STEP 2: Cooperation must first be grounded in communication.
• STEP 3: You may solve the “problem” under discussion in your department, but

this will—if successful at all—lead only to a local solution.
• STEP 4: Be sensitive in communication processes. Don’t act as a missionary.

Don’t try to convince. Your collaborators can contribute many experiences and
insights.

• STEP 5: Be modest in your expectations. Expect to invest years of effort.

While it is easy to call for win-win collaborations, they are not easy to accomplish
in our context. Thus, the DMV tried to define win-win situations on a large scale
where groups and societies are involved. Certainly it is a win-win situation for a
country when mathematicians and mathematics educators are willing to cooperate.
Math wars create losers: teachers, students and finally mathematics itself.

Successes in Germany can also be attributed to additional factors.

• The International Congress of Mathematicians (ICM 1998) at Berlin provided an
opportunity for an inventory in the field, and the DMV made use of it. Magnus-
Enzensberger, an internationally respected essayist, gave a famous talk (Enzens-
berger 1999): Draw-Bridge Up, the Ivory Tower, portraying misconceptions of
mathematics.

• The presidency of Martin Grötschel, who is now serving as the Secretary of
IMU, changed the self-view of the DMV by bringing many applied mathe-
maticians into the society and into offices of the DMV. Groetschel also be-
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gan an initiative in 1993 that granted a seat for mathematics education on the
Executive Committee of the DMV. Today it is no longer disputable that there
should be a mathematics education representative in the DMV’s internal discus-
sions.

• The 2007 Joint annual conference of mathematicians and mathematics educators
in Berlin was a success. However, the 2010 Joint annual conference in Munich
was not as successful. We learnt from this conference that success is highly de-
pendent upon the local organizers. As a consequence, at this moment there is no
plan for a further joint conference.

We aimed to establish a culture of a reciprocal appreciation among mathematicians
and mathematics educators, and we are practicing it. We came to understand that
blaming the other side does not improve the situation. We accepted that poor text-
books do exist (in school and in university mathematics) and that poor teaching
exists (at school as well as at university).

We are also convinced that transparency and openness generate confidence. We
try to abolish envy and jealousy. We are practicing graciousness: Invite math educa-
tion representatives to all Executive Committee meetings of our mathematical soci-
ety. It is also important to note that we invite our mathematics education colleagues
into our “private homes” and “temples” like The Mathematical Research Institute
Oberwolfach, the Fields Institute, and the Banff International Research Station. We
know this is not easy, since we have to reject a mathematically oriented conference
topic to host mathematics educators for a week; but it is paying off.

Meanwhile there are well-established projects:

• A joint commission on issues of teacher education with delegates from the Ger-
man Mathematical Society (DMV) and two more societies representing the math-
ematics educators and teachers of mathematics.

• A joint commission dealing with the transition problems of students starting to
study mathematics after leaving school, and who have a high drop rate—which
must be lowered.

We are widening our views and are eager to gain more friends in mathematics edu-
cation. We are convinced they do exist. Together with Celia Hoyles (NCETM, Lon-
don) and the Deutsche Telekom Foundation4 (DTS) we are inviting charity foun-
dations, NGOs and institutions to the FOME-conference (Friends of Mathematics
Education) in Berlin (March 2013)—organizations that are parallel to mathemat-
ics and which are sponsoring projects for mathematics classrooms. The Interna-
tional Mathematical Union (IMU), the International Commission on Mathematical
Instructions (ICMI) and the European Mathematical Society (EMS) will support
us. All this will serve to improve mathematics education, not least by the help of
mathematicians. Better school education improves the success of students at univer-
sity.

4http://www.telekom-stiftung.de/dtag/cms/content/Telekom-Stiftung/en/396336.

http://www.telekom-stiftung.de/dtag/cms/content/Telekom-Stiftung/en/396336
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Collaboration Between Mathematics and Mathematics
Education: Two Personal Examples

Ehud de Shalit

The session on collaboration between mathematics and mathematics education at
the TED conference has given me the opportunity to reflect upon two very rewarding
experiences I have had in recent years, and to share my thoughts about them with
the other members of the panel. I would like to precede my description of these
two enterprises, though, with a confession. Coming from the side of mathematics,
I often feel unsure in the company of math educators. Math education is by now a
mature field that has its own paradigms and methodology, and its own language that
I do not speak. In a paradoxical way, serving mathematics for over 30 years blinded
me to some very basic truths about math education. I often find the observations
made by math educators eye-opening and awe inspiring. I can only regret the fact
that despite a somewhat growing trend toward collaboration in recent years, in Israel
at least, the two communities still remain largely disjoint.

The Meet Math Exhibition

Some 8 or 9 years ago I was recruited by Prof. Hanoch Gutfreund to participate
in a full-scale, 400 square-meters math exhibition. The Meet Math exhibition, an
Italian-Israeli-Palestinian co-production, opened two years later for 3 months in the
Città della Scienza in Napoli, before moving for 8 more months to the Bloomfield
Science Museum in Jerusalem, finally settling in its permanent residence at Al-Quds
university in Abu-Dis.

I will not say anything here about the very interesting experience of working
with people from other nationalities to enhance peace in the region. I will only fo-
cus on the scientific experience per se. Our team was incredibly large. It included
mathematicians, curators, designers, educators, carpenters, as well as financiers. Ev-
erything had to be done from scratch—defining the goals, the target audience and
the concepts, and of course, building the exhibits and writing the texts. Focus shifted
rather early from History of Mathematics (with emphasis on Arab contributions in
the Middle Ages) to the subject matter itself, with hands-on exhibits. To the sur-
prise of the Italians, it was the Palestinian members of the team who preferred an
exhibition that would benefit their school children directly, over a learned historical
exhibition that would pay tribute to their heritage but attract fewer viewers, mostly
adult. Perhaps at my insistence, the target audience was set at junior-high and high
school children. I felt that too often science museums catered either to the very
young, or to adults and professionals, leaving out the formative years in which the
child chooses his or her future direction.

Some of the messages that we wanted to communicate were obvious—the use-
fulness of mathematics, its role as a language for other sciences, that doing math
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can be fun, etc. Other messages were subtler and not always easy to explain. Does
the mathematician discover or invent the mathematical world? What is the differ-
ence between an illustration of a mathematical fact and its proof? We used a rather
standard exhibit of Pythagoras’ theorem, in which liquid flows from one square to
fill up the other two, to address this point. Next to it, we also had a tangram-based
proof of the theorem, and the activity around the exhibit focused on which of the
two was more convincing and why.

Is there room for ugly mathematics (to paraphrase G.H. Hardy)? What is an algo-
rithm and what is algorithmic complexity? We used the Tower of Hanoi to illustrate
this last point. What is an open problem? We presented a computer game in which
the visitor chose a number x, and then successively applied to it the transformation
3x + 1 if what they had at hand was odd, or x/2 if it were even. It is an open prob-
lem (called the Collatz conjecture) to show that this game always ends with 1. The
statistics can be quite amazing—some very high numbers are reached, and the game
lasts for quite a long time, before it finally ends with 1.

Some exhibits dealt with fundamental notions encountered in school. Against
a background of Leonardo’s Vitruvian man, children measured their heights and
arm-spans, and a computer recorded their measurements and calculated their ratio,
showing that it was almost constant. A toy car moved on a rail by one’s hand, pro-
duced on a screen a graph of distance versus time, allowing the visitor to “feel” what
constant-speed motion or acceleration meant, and relate it to the graph. Other ex-
hibits dealt with more advanced subjects—tiling the floor with “darts” and “kites” to
produce a non-periodic Penrose tiling (fun and aesthetic), classifying knots (learn-
ing about chirality), or following Euler’s path across the Koenigsberg bridges with
a rope.

The organization of the exhibition was basically thematic. Its core was arranged
in four halls, called Number, Shape, Pattern and Computing respectively. Never-
theless, the unity of mathematics and relations between the various areas were con-
stantly emphasized. Balance between computer-based exhibits and mechanical ones
was another issue. Whenever possible, we had a preference for the latter.

As a mathematician, I had to set aside my preconceptions and listen to the expe-
rience of curators and educators. Nevertheless, I believe that some of the messages,
and the ways in which they were presented, would not have come across, if not for
the involvement of the mathematicians. As much as it is important to present science
in a friendly, appealing and accessible way, it is also important to adhere to its true
nature and meaning, as perceived by the scientist. Resolving the potential conflict
between these two goals is possible when Scientist and Educator work together in
harmony.

Fundamental Issues of Math Education—Building a New Teacher
Education Course at the Hebrew University

High school math teachers in Israel are required to hold both a B.Sc. in math, or
in a related area, and a teaching certificate. Unfortunately, the two programs at the
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Hebrew University (and to the best of my knowledge at most other universities in
Israel) are not coordinated. The prospective teacher takes the same math classes,
from logic to topology and differential equations, which any other undergraduate
in mathematics would take. In fact, nobody at the department of mathematics takes
notice of which of the 100 students in each cohort intends to become a teacher.

They then start, in their third year, certificate studies at the School of Education,
where they focus mostly on pedagogy and general education courses. Very little
is done to address didactical issues pertaining to mathematics. The practicum is
conducted in the fourth year in selected participating schools, but it is often left to
the older teachers in those schools to guide the would-be teachers in their first field
experience. The old practices of teaching-to-the-test and emphasizing technique at
the expense of understanding are then instilled from day one, and whatever spirit of
reform the new teacher brings is washed away. Mathematicians, or researchers from
the science teaching unit at the university have not been involved with the School of
Education’s teacher education program.

To add insult to injury, the mathematics department and the school of education at
the Hebrew University are located in different campuses, separated by a 30-minute
bus ride.

Changing this unfortunate scenario was the ultimate goal of Prof. Baruch
Schwarz from the school of education, Prof. Abraham Arcavi from the Weizmann
Institute Department of Science Teaching, and myself, when we met 2 years ago
with the idea of upgrading the teacher education program, and in particular, form-
ing collaboration between educators, science teaching experts, and scientists.

As a pilot for such a program, we devised and ran a year-long seminar on Funda-
mental Issues of Math Education, which met every Sunday for 2 hours at the school
of education. All three of us were present in every class, as well as some 14 students
of variable background and age. This was a unique experience. I am not aware of
a similar joint effort in Israel, although courses dealing with didactical issues are
probably well established worldwide. Every week we met for several hours to dis-
cuss between ourselves the coming weeks and the division of labor. The issues were
discussed in depth, each of the three organizers contributing his particular angle.
I have been exposed to articles and examples that enriched my understanding of
mathematical teaching, and I hope my colleagues have profited here and there from
my perspective as a mathematician.

The course was structured in such a way as to facilitate the collaboration. It was
divided into 7 sections, and 4 weeks were devoted to each of them. Five of the
sections were thematic: they dealt with the teaching of (1) arithmetic, (2) algebra
and functions, (3) geometry and trigonometry (4) probability and data analysis and
(5) calculus. Two sections were “horizontal”—dealing with (6) mathematical mod-
eling and (7) problem solving.

Within each section, each of the organizers gave one 2-hour lecture. Naturally,
I would speak about the mathematics of the concept, often in historical perspec-
tive, and my colleagues would discuss studies related to didactical questions, or the
cognitive and psychological development of mathematical thinking. The last week
within each section was a workshop conducted by one or two of the students, who
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were assigned tasks related to the material discussed in class. Typically, they had to
prepare an activity or a school lesson, followed by a discussion among all of us.

The material did not necessarily overlap school curriculum, and no attempt was
made to cover every aspect. Some of the students, having years of teaching experi-
ence behind them, contributed important insights. At other times we were surprised
to see them miss what seemed to us obvious didactical points.

Examples of issues that were discussed included:

• Components of good teaching: understanding math, skill-building, developing
mathematical sense and intuition,

• How to avoid compartmentalization: the unity of mathematics,
• Revisiting ideas and making connections among ideas in teaching,
• Procedural vs. conceptual learning,
• Order, pace and age adaptation,
• Application of advanced technologies in teaching.

All were discussed in-context within the sections, and not abstractly. As an example,
the section on Functions and Algebra Teaching included:

Lecture 1: Ehud de Shalit: Evolution of the function concept (following Kleiner
1989)

Lecture 2: Baruch Schwarz: Different presentation of functions—a didactic analy-
sis

Lecture 3: Abraham Arcavi: Dynamical software and its use in teaching functions
Lecture 4: Student workshop: Four schemes for grade adjustment (a class presen-

tation).

We believe that courses of this sort can serve as a model for collaboration between
mathematicians and mathematics educators in teacher education programs in the
future.

What Can Mathematics Education Bring to Mathematics?

Patrick W. Thompson

The editors asked our group to address the matter of collaboration between mathe-
matics and mathematics education. Collaboration between the two often is viewed
from the perspective that mathematical content is within the purview of mathemati-
cians and pedagogy is within the purview of mathematics education. A consequence
of this view of collaboration is that discussions of collaboration assume that each
field brings to a collaboration what is in their purview. I would like to pursue a dif-
ferent perspective—one in which mathematics education actually can contribute to
mathematics in regard to the mathematical preparation of mathematics majors as
well as to the mathematical preparation of future mathematics teachers.

I will develop this thesis through two examples at Arizona State University. The
first is the development of a calculus course; the second is the development of a
B.Sc. Mathematics degree program with a concentration in mathematics education.
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Calculus

Calculus courses, in the US at least, are plagued by an orientation that calculus is
nothing but procedures and facts. Students’ understandings of calculus are often
incoherent when viewed as a body of ideas; any coherence in their understandings
is too often about just connections among procedures.

At ASU we have designed an experimental introductory calculus course (differ-
ential and integral calculus of one variable) that aims from the beginning to have
mathematics and non-engineering science majors learn the calculus as a coherent
body of ideas that are necessitated intellectually (Harel 1998, 2008a, 2008b). The
course is necessitated by two fundamental problems: (1) You know how fast a quan-
tity is changing and you want to know how much of it there is. This problem leads to
the idea of accumulation functions and of an indefinite integral as an accumulation
function. (2) You know how much of a quantity there is and you want to know how
fast it is changing. This problem leads to the idea of instantaneous rate of change
and properties of a function’s behavior that can be discerned from its rate of change.
A detailed description of the course appears in Thompson et al. (2013).

The course’s curriculum emerged from a combination of mathematics education
research on students’ understandings of accumulation and rate of change (Carlson
et al. 2003b; Schnepp and Nemirovsky 2001; Thompson 1994; Thompson and Sil-
verman 2008; Yerushalmy and Swidan 2012), insights into the ways that curricula
and instruction can be designed to motivate students’ mathematical interest (Harel
2008a; Harel and Sowder 2005), and research on students’ quantitative reasoning
and uses of notation to represent it (Carlson et al. 2003a; Ellis et al. 2012; Grave-
meijer and Doorman 1999; Johnson 2012; Kaput et al. 2007; Schoenfeld 2007; Sel-
ter et al. 2000; Smith and Thompson 2007; Thompson 1993, 1995). This body of
research did not dictate to us what should constitute a calculus curriculum. Rather,
it provided a way to think about meanings that belong evidently to the calculus as
emerging from a mosaic of understandings that students typically build in school.

On one hand the design and experimentation of this course could be seen solely
as a mathematics education effort. On the other hand, however, it is a true example
of collaboration between mathematics and mathematics education. Our effort could
not have happened without the support and trust of the Department’s director and
of the mathematics faculty. Several members of the first-year mathematics faculty
are trying this new approach. More are participating with us in planning a grant
proposal to investigate what students learn from in-principle different curricular and
instructional approaches to major ideas in the calculus.

B.Sc. Mathematics with Mathematics Education Concentration

The Bachelor of Science degree in mathematics is the primary undergraduate de-
gree in ASU’s School of Mathematical and Statistical Sciences (“the School”).
The School had already created concentrations within the B.Sc. in computational
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mathematics and statistics. Most recently it created a concentration in mathematics
education. Moreover, with the support of ASU’s Mary Lou Fulton Teachers Col-
lege (MLFTC), Arizona’s Department of Education (AZDoE) granted graduates
of the Math Education concentration what is called institutional recommendation,
meaning that graduates of the B.Sc. Mathematics/Mathematics Education will au-
tomatically receive a license to teach secondary mathematics. The School’s B.Sc.
Math/Math Education is Arizona’s first program not housed in a college of educa-
tion whose graduates receive an institutional recommendation for licensure.

ASU’s Bachelor of Science in Math/Math Education resulted from a long col-
laboration among the School’s mathematicians and mathematics educators (Luis
Saldanha, Pat Thompson). In particular Fabio Milner (applied mathematics) was in-
strumental in obtaining university approval for the program. Bruno Welfert (math-
ematics) and Matthias Kawski (applied mathematics) supported our effort in their
successive terms as Director of Undergraduate Studies. In addition, ASU’s MLFTC
was instrumental in assisting us to prepare proper documentation to support an ap-
plication to the AZDoE for institutional recommendation of our program’s grad-
uates, and for including our application as part of theirs. MLFTC’s support was
essential, as it is the only body within ASU from which AZDoE will accept such
proposals.

We designed the B.Sc. Math/Math Education degree so that it focuses deeply
on its graduates’ Mathematical Knowledge for Teaching secondary mathematics
(MKTsm). Specifically:

(1) Students in our Math/Math Ed program take the School’s standard program in
mathematics for its B.Sc. Mathematics degree.

(2) They take a subset of the MLFTC program for secondary education majors. Stu-
dents are not required to take MLFTC’s general education courses that overlap
with the specialized math education courses described below, in (3).

(3) Students take five courses that the School designed specifically to draw connec-
tions between mathematics and mathematics education. The five courses are:

(a) Algebra and Geometry in the High School (Year 1). This is a conceptual
overview of the secondary mathematics curriculum. At the same time that
students take this course, they enroll in a field experience course called Men-
tored Tutoring. Mentored Tutoring has students in the review course work
with students in remedial mathematics courses under the guidance of the
review course’s instructor.

(b) Technology and Mathematical Visualization (Year 2). The TMV course is
designed to have students re-conceive the mathematics they know so that
symbolic representations have imagistic content. This is not a programming
class. We use software, primarily Geometer’s Sketchpad (GSP) for geom-
etry and Graphing Calculator (GC; Avitzur 2011) for everything else. The
idea of the course is that students need to engage in mathematical thinking
to create visualizations that might help them convey a particular mathemat-
ical idea to students. As a simple example, we set the problem of how to
define a function that takes two points (of dimension 2 or 3) as input and
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produces a graph of the segment that connects them.5 They must not only
define the function, they must explain why the function produces what was
requested. A second example is that students must define a function g whose
graph will be a plane that is tangent to the graph of an arbitrary function of
two variables f at an arbitrary point on f ’s surface. A user of a student’s
project must have control over the definition of f and the location of the
arbitrary point. The plane must adjust dynamically as the user moves the
point of tangency.

(c) Curriculum and Assessment in Grades 7–12. In this course we introduce
students to curricula from various countries and to principles of assessing
school students’ understandings of the mathematics in them. We have not
yet offered this course, but we anticipate that, for US students, it will be an
eye-opening experience for them to see the mathematics that other countries
expect their students to learn in high school.

(d) The Development of Mathematical Thinking. In essence, this course will
introduce students to research on the development of additive and multi-
plicative reasoning. This is another course we have yet to offer, but our
intent is for students to become consciously aware of different ways that
school students’ might understand mathematical ideas that teachers often
take as unproblematic. We also see this course as helping our students con-
ceptualize the school mathematics curriculum as entailing their students’
development of systems of ideas over time.

(e) Research Project in Mathematics Education. This is a seminar in which
students will design, conduct, and interpret a teaching experiment with one
or two high school students. We see the Project course as a culminating
experience through which our students will draw from what they learned in
the courses described above.

We counsel students enrolling in the B.Sc. Math/Math Ed to enroll from the start
in the experimental, conceptually oriented calculus that we designed. We feel that
moving future teachers from a procedure-oriented mathematics to an idea-oriented
mathematics is a long process, and that it is unlikely to happen if their university
mathematics continues their school practice of mathematics as memorization.

Mathematics educators in the School are also engaged in the design of curricu-
lum for students who are not in education. Kyeong Hah Roh, who has a Ph.D. in
mathematics education and a Ph.D. in mathematics (differential geometry), worked
with mathematicians on our faculty to redesign Mathematical Structures, a course
required of all students in any mathematics concentration. The course gives an in-
troduction to proof and higher mathematics. Dr. Roh also redesigned our under-
graduate advanced calculus and real analysis courses based on research on students’

5One solution: f (X,Y ) = (1 − t)X + tY , 0 ≤ t ≤ 1. GC produces a graph that is a segment in
2- or 3-space, depending upon the dimension of vectors X and Y . An explanation of why this
works necessarily involves two things: imagining the value of t varying in small increments and
describing the role of proportionality in traversing the hypotenuse of a right triangle.
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learning of proof, functions, and limits. Marilyn Carlson led a 10-year research and
development project to transform the School’s precalculus course, which is a reme-
dial course for students who are unprepared to take calculus. The redesign is rooted
firmly in developmental research on students’ difficulties in learning mathematical
ideas that are essential for students to succeed when they reach calculus, such as
deep understandings of linearity, rate of change, and the concept of function.

Comments on Collaboration and Its Outcomes

It might be useful to discuss the nature of the collaborations I’ve described and about
places of friction where things did not go smoothly. The calculus redesign was an
outgrowth of my and Marilyn Carlson’s research. The School’s contribution was to
allow the redesign on an experimental level. Actual collaboration began with the
attempt to increase the number of course sections using the redesigned curriculum.
Jay Abramson and Mark Ashbrook have been instrumental in that effort. However,
other instructors have been reluctant to adopt this new curriculum and approach.

The redesign of Mathematical Structures, advanced calculus, and real analysis
were an outgrowth of Kyeong Hah Roh’s research on teaching and learning math-
ematics. Her redesign was successful in terms of outcome measures, but other in-
structors of these courses have been slow to pick up Roh’s changes.

Marilyn Carlson’s redesign of precalculus, also an outgrowth of her research,
has been the most successful of the innovations. After several years of resistance
among perennial instructors of precalculus, all sections at ASU are now using her
curriculum. Fabio Milner and several first-year mathematics instructors were inte-
grally involved in the redesign, giving substantive input regarding the mathemati-
cal treatment of ideas, and were important supporters in the politics of curriculum
change.

Regarding the B.Sc. Mathematics/Mathematics Education, the School faculty
voted to approve this concentration. So the general acceptance among mathemati-
cians that mathematics has an important stake in mathematics education is evident.

The friction in all these moving parts comes from the fact that few mathemati-
cians understand aims, methods, and results of mathematics education as a disci-
pline. The comment, “So, you train teachers how to teach math, right?” is not un-
common. It is a revelation to many who spend time working with us that we take
mathematics seriously—in some ways more seriously than they do. Conceptual co-
herence in the mathematics that is actually conveyed through discourse is of central
importance in mathematics education, and we find that it is less important in math-
ematics. By “less important in mathematics” I mean that language and actions in a
mathematician’s classroom often have little chance of being interpreted by students
as anything remotely resembling what the instructor intended. When we address this
problem (intended meaning is the meaning actually conveyed) in curriculum, math-
ematicians are often puzzled by what we are trying to teach. They are accustomed
to discourse in which their personal mathematical language is the language in which
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ideas are offered to students. They fail to realize that the courses we designed often
are more conceptually rigorous than the versions they teach, because our courses
are designed with the goal (and expectation) that students actually understand the
mathematical ideas taught. As I say to my mathematics colleagues, “Mathematics
education is easy—until you take student learning seriously.”

Though mathematics education as a discipline is sometimes understood poorly,
good things happened nevertheless. There is enough trust, little enough mistrust,
and enough shared commitment to address problems in our students’ learning to let
innovation blossom.

Conclusion

The four discussions of collaboration between mathematics education and mathe-
matics highlight many ways that collaboration can happen and many levels of social
organization at which it can happen. Sometimes collaboration is between profes-
sional societies; sometimes collaboration is between individuals engaged in a shared
task.

Running through the authors’ examples is the theme laid by Artigue when she
said, “. . . no substantial and sustainable improvement of mathematics education can
be obtained without building on the complementarity of [math and math ed] exper-
tise, without their common engagement and coordinated efforts.” Törner illustrated
this in his discussion of the separation of mathematics and mathematics education
in Germany decades ago and the subsequent realization that, to have an influence
at a national level, the two disciplines needed each other to address the problem of
systemic sources of unmet expectations about students’ mathematical learning.

This chapter’s examples also illustrate that, at all levels of collaboration, indi-
viduals matter and institutions matter—simultaneously. At a level of collaboration
between societies, it is important that individual players have vision and commit-
ment to address problems of mathematics education—and a standing within their
respective fields that allows them to exert influence with others in their societies. At
a level of personal collaboration, collaborators’ efforts happen within institutions
whose structures either enhance or obstruct their efforts. The physical separation
of education and mathematics at Hebrew University constrained collaborative ef-
forts to improve the University’s teacher education program. The inclusion of math-
ematics education within ASU’s School of Mathematical and Statistical Sciences
afforded collaboration in the design of a program in which mathematics and mathe-
matics education are often addressed simultaneously within individual courses. The
location of mathematics education within the School, and the School’s support of it,
was also a major factor in the University’s approval of the program.

The chapters’ examples also point to a shared a trait noted by Törner: successful
collaboration requires mutual trust and respect among collaborators in the context
of a shared commitment to solving a problem. This is not to say that there can-
not be misunderstanding of each other’s values, commitments, or competence re-
garding the nuances of the problem. Rather, the nature of trust is that collaborators
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carry a commitment to listen respectfully to each other and be open to modifying
their positions. The examples by de Shalit of the Meet Math Exhibit and the design
of a teacher education program at Hebrew University illustrate this point well. In
Thompson’s example of calculus redesign there were deep and prolonged discus-
sions of the meanings of rate of change and of differential that would prove foun-
dational for students’ future learning, which led to sustained conversations of how
the course might be shaped to support students development of those meanings and
how it might be shaped to build upon those meanings.

We end by emphasizing a comment by Törner and illustrated by the other three
authors. It is that successful collaboration between mathematics and mathematics
education is most probable when collaborators have a shared commitment to a prob-
lem and believe that others in the effort have something to contribute to its solution.
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Postscript



Chapter 19
We Must Cultivate Our Common Ground

Jeremy Kilpatrick

Abstract The present volume addresses some valuable themes relevant to the
scholarly contributions of Ted Eisenberg to the teaching, learning, and doing of
mathematics. In this reflective postscript, I raise some issues associated with the
identity of, and the tension between, the academic fields of mathematics and math-
ematics education. I argue that, far from having drifted apart, those fields continue
to make productive contact with and complement one another. Their common pre-
occupation with mathematics as it is created through teaching keeps them together.
The challenge to mathematicians and mathematics educators is to make fertile the
common ground they share.

Keywords Mathematics · Mathematics education · Academic fields · Community ·
Teaching · Ted Eisenberg

Communities of Mathematics and Mathematics Education

To judge by the chapters in the present volume, the spring 2012 symposium hon-
oring Ted Eisenberg must have been a fascinating, frustrating occasion: fascinating
because of the wealth of challenging ideas put forward by these distinguished math-
ematicians and mathematics educators; frustrating because so many of the ideas
were developed only sketchily and, despite the best efforts of the synthesizers for
each panel, not always well integrated. The themes of the plenaries and panels—
mutual expectations, history, problem solving, mathematical literacy, visualization,
justification and proof, policy, and collaboration—appear to have been chosen not
merely, as Michael Fried says in his introduction, because they reflect “commonality
and difference joining and dividing the communities of mathematics and mathemat-
ics education” but also because they all touch on issues that Ted has addressed at
one point or another throughout his long, productive career. An elaboration of any
one of those themes and the issues it raises concerning the common ground be-
tween mathematics education and mathematics could easily have filled a book this
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size. With eight themes plus the “dialogue on the dialogue” regarding the identity
of mathematics education as a field as it relates to mathematics as a field, the book
cannot possibly do justice to the many points the authors raise. Nor can I in this
reflection do anything like adequate justice to any of those points. Instead, I address
questions of identity and challenge the contention, made in the introduction, that
there is a “growing divide between the mathematics community and the mathemat-
ics education community.” I see those communities as closely intertwined as they
have ever been—even though from some angles of vision they might appear to be
moving apart. We have common ground whether we know it or not.

Identity Issues

In her contribution to the volume, Norma Presmeg cites the 1998 book edited by
Anna Sierpinska and me, Mathematics Education as a Research Domain: A Search
for Identity. That book was the report of a multi-year study undertaken for the In-
ternational Commission on Mathematical Instruction (ICMI) in an effort to answer
the question: What is research in mathematics education, and what are its results?
The question had been raised by mathematicians concerned with issues of mathe-
matics education and uncertain as to the contributions that research was making to
the enterprise. The study began in August 1992 with the production of a discussion
document describing the reasons for the study and raising a number of questions the
study would attempt to address. That document, which called for papers addressing
those questions to be submitted by 1 September 1993, was published in early 1993
in several bulletins and journals concerned with mathematics education. The papers
and other expressions of interest were used to develop a program for an invitational
study conference of more than 80 people held in and near Washington, DC, in May
1994. Preliminary results of the study were reported at the International Congress
of Mathematicians in Zürich in 1994 and at the Eighth International Congress on
Mathematics Education in Seville in 1996.

Anna and I used the subtitle “A Search for Identity” because it had become clear
at the outset of the study that it would not resolve the question of what research
in mathematics education is or should be and that, instead, the study would lead to
further questions such as what it means to be a researcher in mathematics education
and whether we have a common identity. Our strategy for choosing the subtitle,
however, proved a bit foolhardy: Reviewers of the book made clever remarks about
an adolescent field seeking selfhood and pointed out that research in mathematics
was nowhere near as uncertain about its sense of self as research in mathematics
education appeared to be.

In a paper prepared for the centennial of the journal L’Enseignement Mathéma-
tique, I asked whether some of the self-questioning about the field’s identity might
be understood in light of history:

Perhaps the questioning comes from the history of the field, and in particular, from the way
mathematics education has developed internationally, as illustrated in the ICMI. One can
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also ask, what other field would have the officers of its premier international organization
appointed by a group outside the field? The ICMI is a commission of the International
Mathematical Union (IMU) and is therefore subject to IMU’s oversight. Could it be that
the insecurity and apparent disarray of the field, despite its growth and accomplishments
through the twentieth century, might stem in part from the way it has been treated by math-
ematicians? (Kilpatrick 2003, p. 328)

I went on to make the following argument, which conflicts with some—although
certainly not all (e.g., those of Norma Presmeg and Steve Lerman)—of the argu-
ments in the present book:

Mathematics education is not a branch of mathematics, nor does it belong among the arts
and sciences. It is a separate field with very different traditions, foundations, problems,
methods, and results. It is much more contingent on history and culture than mathematics
could ever be, and that is part of the reason for what outsiders perceive as a field in disarray.
(p. 329)

I found it remarkable to observe how the protagonists in the present collection of
papers are so often taken to be a triad: mathematicians, mathematics educators, and
researchers in mathematics education. Examples include Norma Presmeg’s model
of “complex human worlds,” Jonas Emanuelsson’s characterization of the groups
whose gap in perception of the nature of mathematics and mathematics education
needs to be bridged, and Michael Fried’s characterization of different communities,
to which he added the community of historians of mathematics.

One issue that selection of protagonists raises is the question of what a mathe-
matics educator is. Is a teacher of mathematics in primary or secondary school a
mathematics educator? Some would say yes, but others reserve the term mathemat-
ics educator for people in tertiary education or serving in other educational enter-
prises that are not schools. In Europe, the term didactician is often used in place of
educator (see, e.g., the paper by Michèle Artigue), and there the distinction between
didactician and teacher is clear.

A second issue is the asymmetry of the two classifications: two kinds of work-
ers in mathematics education, and one kind of worker in mathematics. Is it only
in mathematics education that there is a distinction between researchers and non-
researchers? Is it possible to be a mathematician and not be a researcher in math-
ematics? In some articles in the present collection, mathematician is preceded by
research, but there seems to be throughout an unspoken assumption that all mathe-
maticians are (or could be) doing research.

Another issue is what it takes to be an expert in mathematics. In testimony before
the Texas legislature regarding the Common Core State Standards in Mathematics
(National Governors Association Center for Best Practices, Council of Chief State
School Officers 2010), Jim Milgram (2011), professor emeritus of mathematics at
Stanford, made the following observation: “I was . . . one of the 25 members of the
CCSSO/NGA Validation Committee, and the only content expert in mathematics.”
Three of the 25 members of that committee were eminent teachers of school math-
ematics, and five were university mathematics educators. Although several of the
latter worked in departments of mathematics, and although many of the eight pos-
sessed graduate degrees in mathematics, they did not, by Jim’s standards, qualify as
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experts on the content of school mathematics—presumably because they lacked a
doctorate in mathematics.

That assumption raises the further issue of who a mathematician is. Is having
earned a doctorate in mathematics the only criterion? Or is having done research in
mathematics beyond the doctorate also a criterion? One can become a mathematics
educator simply by declaring one’s interest in the field; might that also be true of
becoming a mathematician? I simply note here that nothing in the book at hand
addresses, let alone resolves, the issue.

Expanding; Not Moving Apart

Many of the chapters in the book suggest that there has been some movement of
mathematics education away from mathematics, a movement propelled by the ways
in which research in mathematics education has become less concerned with math-
ematics and more concerned with such matters as, according to Michael Fried’s
introduction, “psychology of learning, cultural differences, and social justice.” My
view is that any such movement is something of an illusion caused by the enormous
growth of the field of mathematics education.

In 2008, in connection with the ICMI centennial, I searched the Web for “math-
ematics education.” Using Google, I got 1,280,000 hits; using Google Scholar, I got
129,000 (Kilpatrick 2008). Five years later, in February 2013, I conducted a similar
search. Using Google, I got 3,100,000 hits; using Google Scholar, 287,000. In each
case, the number had more than doubled in just 5 years. Although the literature base
of mathematics education has certainly expanded, and perhaps especially in recent
years, I think it is the wrong metaphor to say that the fields of mathematics and
mathematics have moved apart. The centers of gravity may be further apart than
they used to be, but I do not think it is reasonable to conclude that the fields are now
more separated than in the past.

Some years ago, a conference was held to examine US doctoral programs in
mathematics education (Reys and Kilpatrick 2001). A survey had determined that
there was a huge array of such programs, large and small, with some located in
departments of mathematics and others in colleges or schools of education. Some
institutions were granting from 4 to 7 mathematics education doctorates a year; oth-
ers were averaging fewer than 1 in 4 years. A surprising characteristic of a number
of the programs was their minimal requirements or expectations concerning the ad-
vanced study of mathematics. That characteristic, however, was not true of the two
largest programs—those at Teachers College, Columbia, and at the University of
Georgia. At both institutions, by the time doctoral students finished their program,
they were expected to have either a master’s degree in mathematics or its equivalent.

It would be easy to conclude from the survey that many of the graduates of US
doctoral programs are being minimally prepared in mathematics. That may be true
for some programs. But as several authors in the present book observe, and oth-
ers have observed as well (Bass and Hodgson 2004), mathematics education is a
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multidisciplinary field. Doctoral students in mathematics education need to acquire
knowledge, skills, and abilities in a variety of fields beyond mathematics, among
them: educational research methods, philosophy, psychology, sociology, anthropol-
ogy, history, linguistics, semiotics, and educational policy.

At the University of Georgia, we insist that whatever topic students choose for
their dissertation research, it needs to involve mathematics in a serious and inten-
sive way. Others may do research in which mathematics is taken as a placeholder
and might be easily replaced by another school subject such as biology or history.
For example, an education researcher might examine the effects of homework as-
signments on mathematics learning. If that study does not, however, take seriously
the questions of what sorts of assignments are being made and what mathematics is
being learned—in other words, if it takes mathematics as a black box—then we do
not consider it an appropriate study for a doctorate in mathematics education. The
study might be useful to mathematics educators, but if it does not treat mathematics
as problematic and open to analysis, then it does not belong to the field. The field
of mathematics education depends on the maintenance of strong connections with
mathematics, its many applications, and its history and cultural contexts.

I would argue that mathematics and mathematics education are bound together
like yin and yang:

Mathematics and mathematics education have a synergistic relation, and neither can ex-
ist without the other. In my view, mathematics education has not attained the status of a
discipline, and it is not completely a profession. But as an academic field, it is linked to
mathematics through a mutual concern with teaching. (Kilpatrick 2008, p. 36)

That concern connects the two fields better than one might at first think. As Michael
Fried says in his introduction, when Andrew Wiles was working on his proof of
Fermat’s last theorem, he ended up running a one-student seminar with Nick Katz.
Michael notes that “the difference between doing and teaching mathematics is actu-
ally never very great in that mathematicians must always communicate their think-
ing.” Jens Høyrup (1994) made essentially the same point when he observed that
“one aspect of mathematics as an activity. . . is to be a reasoned discourse; . . . as
an organized body of knowledge [it is] the product of communication by argu-
ment” (p. 3). Consequently, “teaching is not only the vehicle by which mathematical
knowledge and skill is transmitted from one generation to the next; it belongs to the
essential characteristics of mathematics to be constituted through teaching” (p. 3).

Cultivating; Not Searching

In 2004 and 2005, Richard Schaar, a mathematician with Texas Instruments, brought
together three mathematicians (Jim Milgram, Wilfried Schmid, and Richard) and
three mathematics educators (Deborah Lowenberg Ball, Joan Ferrini-Mundy, and
me) to engage in “constructive discourse between mathematicians and mathematics
educators in order to seek common ground in their mutual efforts to improve K–12
mathematics teaching and learning” (Mathematical Association of America 2013).
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Given the task of sitting down together to craft a consensus statement, we soon
recognized that, once we had put aside stereotypes and become better acquainted,
there were a surprising number of issues in school mathematics teaching and learn-
ing on which we could agree. Here is our account of how the process worked:

We tried to bring clarity to key perspectives on K–12 mathematics education. We began by
exploring typical “flashpoint” topics and probed our own positions on each of these to de-
termine whether and where we agreed or disagreed. For the first meeting, held in December
2004, we began with summary statements drawn from prior exchanges among the members
of our group. We affirmed some agreements in this meeting and “discovered” others. We
listened closely to one another, frequently asking for clarification or for examples. We tested
our understanding of others’ points of view by proposing statements that we then examined
collectively. We drafted this document as a group, composing actual text as we worked.
One of us typed, and our emerging draft was projected onto a screen in the meeting room.
The process enabled us to take issue with particular words and terms and then reshape them
until all of us were satisfied. We were forced to look closely at our own language and to
seek common ground, not only in the terms we used but even in their nuanced meaning.
(Ball et al. 2005, p. 1055)

The resulting document contains some basic premises that underlay our claims to-
gether with brief paragraphs on seven areas on which we found common ground—
ranging from the automatic recall of basic facts to teacher knowledge.

My experience with the Common Ground Committee, whose work was funded
by the National Science Foundation and Texas Instruments, Inc., was similar to an
experience I had some three decades earlier with Morris Kline, one of the most
outspoken critics of the new math in US schools. When you have a conversation
with people who have expressed strong views about a topic like school mathemat-
ics, and you get them away from microphones and reporters—or in today’s world,
away from tweets and blogs—they moderate their language substantially. You dis-
cover that there are many areas of mutual agreement that might not have surfaced
previously. Consequently, I strongly believe that mathematicians and mathematics
educators already occupy considerable common ground.

The problem seems to be largely one of communication and mutual respect, both
of which are enhanced by collaboration. The account by Deborah Ball and Hy Bass
in the present volume provides dramatic affirmation of the value of sustained col-
laboration, affirmation that is well supported by the comments of Pat Thompson,
Michèle Artigue, Günter Törner, and Ehud de Shalit. For many years, the US Na-
tional Science Foundation, in awarding grants for work in mathematics education,
has encouraged grantees to include mathematicians among their advisors. That prac-
tice has helped many projects avoid serious mathematical errors as well as devel-
oping a better appreciation by mathematicians of the work of their mathematics
education colleagues. It is not always the case, however, that a mathematician’s cri-
tique is valid. For example, Hung-Hsi Wu (1997) once complained about a school
mathematics textbook that failed to include the formula relating radians to degrees.
His complaint ignored the instructional issue thereby posed: The textbook authors
had formulated an exercise in which students were to find the formula, and putting
it into the textbook would have made that exercise pointless (Kilpatrick 1997). With
Wu as an example, Michael Fried, in his introduction, points up the need for com-
munication, mutual respect, and collaboration in both directions—on the part of
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both mathematicians and mathematics educators. I could not agree more. That col-
laboration should address the common ground we share and work to make it bloom.
As Candide so wisely said, observing that this is, in fact, not the best of all possible
worlds: “We must cultivate our garden.”
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Appendix A: Homage to Ted Eisenberg



Introduction

As Francis Lowenthal notes in his address below, most speakers at the symposium
began or ended their contributions by relating to Ted Eisenberg’s work. Where Ted
comes into people’s lives, one way or another, it always leaves a mark. Rather than
reprinting all of these comments here, let these remarks by David Tall suffice to
exemplify their spirit:

. . . Finally, and most importantly on this celebratory occasion, I pay tribute to Ted Eisenberg,
who has played a subtle role in this long-term development with his desire to encourage
students to grasp the aesthetic values of mathematical proof and his criticism of a behaviorist
approach to learning. Out of respect for the thinking of others, even when they are different,
indeed because they are different, we may come to a greater insight into how we can make
sense of mathematics in general and, in particular, how we make sense of mathematical
reasoning and proof. (David Tall, symposium lecture, May 2, 2012)

With the purpose of giving the reader an overview of the gist of Ted’s scientific work
over the more than 40 years since he obtained his PhD, we also include, at the end of
this appendix, an annotated bibliography of the most important papers he authored.

However, the main part of the appendix consists of two addresses given on the
occasion of the festive dinner in honor of Ted that took place during the symposium
on May 2, 2012.
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Ted as Advisor and Colleague

Tommy Dreyfus

This may surprise you, but I met Ted in something like a prison cell. It was in a
nice park, but then you had to go into one of the older buildings, to the basement,
through long corridors until you arrived at a door that led into something like a
small shelter or darkroom. There was a light bulb and two desks, one for Ted and
one for me. Luckily for us, the whole thing was located in the Weizmann Institute
and belonged to a wonderful mathematics education team. And luckily for me, Ted
was there.

That was in 1977. We both spent a lot of time there. We both had small chil-
dren at home (I think his were 1, 3 and 5, and mine were 2 and 4) and it was not
easy to work at home. Home was, respectively, the responsibility of Polly and Mar-
ianne. This was my first and best opportunity to get to know Polly, her devotion
to the family, to education, and to teaching, whether it was mathematics or En-
glish. All those of us who have known her are very sad that she is not with us this
week.

So at that time, Ted and I spent a lot of time in the prison cell, and I can tell you,
you get to know each other quite well in this way. It was an incubator—no, not for
hatching chicks but for ideas and papers.

The ideas ranged from empirical research on intuitions about functions via issues
of visualization, to issues concerning the acceptance of mathematical theories, and
aesthetics in mathematics. Writing with Ted was a lot of fun and very satisfying.
He did well where I was weak: After we collected data, analyzed, and discussed
things thoroughly, sometimes for months, he could sit down for just a few hours and
come up with a complete draft for a paper that was quite unintelligible to anybody
except me. Everything was there but it was often cryptic, and the arguments had to
be pieced together from shreds. I hope I then did reasonably well doing what Ted
was less good at.
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There was commitment from both of us: When there was a deadline, we were
there in the prison cell at all hours of the day and night; I remember one instance
when we stayed there until about four hours before Ted’s 7 am flight to the US,
where he hand delivered the paper the next day (no, there was no email at the
time).

We also had fights. The fights between us arose after the paper was written: Who
would be the lead author? If you know Ted, you also know what form the fights
took. You may know the story of the woman who conceived but didn’t give birth
for many years; when the doctors finally decided to operate, they found two bearded
men, each bowing to the other one and saying “After you, please”. So Ted always
fought for being second author. And guess who won: We have over 30 common
publications, and on two thirds of them I am first author. We have 14 common peer
reviewed journal articles, and on only 3 of them is Ted the first author.

Well, not only did this help my promotions, but having come to the Weizmann
Institute in 1977 as a theoretical physicist, it was also the collaboration with Ted that
introduced me to mathematics education as a scientific domain in the first place, to
designing and carrying out research studies, writing papers based on them, present-
ing the work at conferences, editing special issues of journals, and so on. In other
words, in the prison cell and afterwards, in a selfless and deliberate way, Ted put me
on the path of my career. Thank you, Ted.



Thank You, Ted!

Francis Lowenthal

If I were a really nice guy, I would first address myself to the authorities: the Dean
of the Faculty of Human and Social Sciences and the Dean of the Faculty of Natural
Sciences, the chairperson of the Department of Mathematics, the organizers of this
excellent symposium and Ina who helped so much. But I am not a nice guy, as
everybody knows; I will thus start with those words: “Thank you Ted”.

Ted, I am not one of your former students, nor did we spend long hours in the
same tiny office. I am only a friend. I will thus start with the words others used to
end their speeches.

Ted, we met a very long time ago, during your first PME conference. It was in
Grenoble, in a bus. We immediately sympathized. You are only a few years older
than I am, but you started speaking using what sounded like fatherly words. It was
in 1981 and I was in love, but I had not told anybody, except the lady concerned of
course. I don’t know why, but I immediately told you. I do not remember exactly
how you answered, but as a consequence of that as soon as I was back in Belgium,
I proposed. And the lady accepted. And Christiane is here with me.

Thank you Ted!

We live far away from one another, but using e-mails (the very beginning of e-
mails!) we kept in touch. We always remained in contact. There were very good and
less good moments, depending on the events. There were also very sad ones. And
there were meetings everywhere, including in Israel and stays here in Beer Sheva.
This is how I met Polly and the three Eisenberg girls: Rivka, Naomi and Davida.

But one of these stays remains radiant in my memory. In 1998, I came to Tel
Aviv University to work, with a colleague, on language and aphasia. The research
ended on a Friday morning but I had to wait till Sunday to have an El Al plane. My
colleague had booked a room for me in the closest possible place to the hospital
where we worked. Unluckily, that place happened to be a home for elderly people
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Fig. A.1 The square grid

Fig. A.2 How many ways
for the taxi driver from A

to B?

Fig. A.3 How many even
subsets?

and I did not feel that old. I was alone till Sunday. So I phoned you at home. Your
wonderful Polly answered. I told her: “I am alone till Sunday, may I come one of
these days and visit you?” And Polly told me: “I come and fetch you. You will spend
the full Shabbat with us”. It was, at least for me, the non religious Jew, a wonderful
Shabbat.

Thank you Ted!

We also worked together, most of the time by e-mails. Once you had the idea to
study the “Modeling up, modeling down principle”. You had the feeling that many
mathematical problems are badly presented in schools, and thus badly solved by the
students.

You created a set of exercises such as the one in Fig. A.1, showing a 5 by 5 grid
and asking the children “How would you proceed to find how many squares there
are, knowing that the answer is more than 26”.

The answer is 55! The idea was to ask then the same question but with a 20 by 20
grid. Christiane tried this with very weak high school students in Belgium. She had
surprises such as “since it is 55 (five five) for a 5 by 5 grid, it must be 2020 (twenty
twenty) for a 20 by 20 grid“.

But, your genial idea, Ted, was to ask students “How are you going to solve
that?” rather than “Please, find the solution!”
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Fig. A.4 Introduction to proofs by induction

Fig. A.5 Shall we prove this
by induction?

Fig. A.6 Example of a
graphic proof, easier to
understand

We went on with the number of paths of minimal length for a taxi driver in New
York (Fig. A.2): this is a much more difficult problem. And then we went on: we
devised together other problems, visual or not.

I must confess, Ted, that I still do not know how to solve the “even number
subsets” problem (Fig. A.3).

A few years later, we worked together on proofs by induction.
Ted, you chose the picture in Fig. A.4 for one of our papers! We tried to show that

a proof by induction was only acceptable because it was based on a hidden axiom:
the acceptance of the principle of induction, which is not granted! This automati-
cally led us to reexamine certain proofs and show that in many cases another type
of proof would be better suited.

How can we prove the equality in Fig. A.5? Using a proof by induction? No: in
this case, it is better to give a graphic proof, using the partition shown in Fig. A.6,
for n = 6.

In other cases, the simplest and most efficient proof requires the use of the prin-
ciple of recursion (Fig. A.7).
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Fig. A.7 Tower of Hanoï problem

Fig. A.8 Execute the
program in the open space

Fig. A.9 The result of
executing the program

And this is where our research ways parted. We remained in contact, but you had
given me a new idea: “go back to your PhD field, Recursion”. And this is what I did.

Thank you Ted!

I had used logico-mathematically inspired tools to observe and favor cognitive
development in children.

A simple procedural computer language: on the left the procedures, in the center
the program (in fact the pegs used are colored pegs, but they are represented in this
paper by squares and triangles with the initial of the color used). The children had
to manipulate the pegs in order to execute this program by placing little squares on
the right: the child had to “do the same (as in the center) but only with squares (as
defined on the left)”. To my great surprise, these mathematical tools and situations
had a bigger influence on language acquisition than on mathematical knowledge
(Figs. A.8, A.9).
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Fig. A.10 Two “embedded”
procedures

After our paper on induction and recursion I discovered Hauser, Chomsky and
Fitch’s 2002 paper. These authors looked at different sentences which, they claim
are grammatically correct. One can find some of their examples here. They consider
that all of these sentences, even the last one, are understandable by all humans, even
when presented in a single font!

1. This is the house that Jack built
2. This is the cat that lives in the house that Jack built
3. The malt that the rat that the cat killed ate lay in the house that Jack built
4. The boy the girl Peter likes likes likes spaghetti

They claimed that the main (and only) difference between human and animal
communication is precisely the fact that we, human beings, are the only ones able
to use full recursion.

Some researchers agreed but others were against this idea: To clarify the situ-
ation, I organized last year, in Mons University, an international conference. The
main result of our discussions is that full mathematical recursion is probably inac-
cessible to normal human beings (we mathematicians are not normal beings!). What
actually matters for language acquisition is the fact that we can use embedded struc-
tures, up to a certain level of complexity. Last year’s conference was a great success.
This led me to a new research approach:

What would be the influence of manipulations of embedded structures on chil-
dren’s language acquisition and on reading acquisition? In order to observe this I
chose to examine the influence of pegboard problems containing embedded logico-
mathematical structures, like those shown in Fig. A.10.

And all this started with our discussions about Induction and Recursion, here in
Beer Sheva, and by mail.

Thank you Ted!

Recently, Christiane tried to convince me to plan, for the first time in my life, a
Seder, the evening meal opening Pessah. It should be a rather special Seder since
most of the participants would be non Jewish people: there would be Jews but also
Christians, Moslems and nonbelievers. But all these people will have something in
common: all of them are sincerely interested in everything that touches the notion
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of sacred. I felt embarrassed and I turned to you, Ted, the fatherly figure. I asked
you if such a Seder would not be sacrilegious, would it be “proper behavior”? And
you told me “go ahead with it”. So next year, in Belgium, there will be such a Seder,
and it is obvious that we hope that you will be one of us.

Thank you Ted!
Todah rabah Ted!
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Mathematics Education Research Embracing
Arts and Sciences

Norma Presmeg

Abstract As a young field in its own right (unlike the ancient discipline of math-
ematics), mathematics education research has been eclectic in drawing upon the
established knowledge bases and methodologies of other fields. Psychology served
as an early model for a paradigm that valorized psychometric research, largely based
in the theoretical frameworks of cognitive science. More recently, with the recogni-
tion of the need for sociocultural theories, because mathematics is generally learned
in social groups, sociology and anthropology have contributed to methodologies
that gradually moved away from psychometrics towards qualitative methods that
sought a deeper understanding of issues involved. The emergent perspective struck
a balance between research on individual learning (including learners’ beliefs and
affect) and the dynamics of classroom mathematical practices. Now, as the field ma-
tures, the value of both quantitative and qualitative methods is acknowledged, and
these are frequently combined in research that uses mixed methods, sometimes tak-
ing the form of design experiments or multi-tiered teaching experiments. Creativity
and rigor are required in all mathematics education research, thus it is argued in
this paper, using examples, that characteristics of both the arts and the sciences are
implicated in this work.

1 Introduction

‘Beauty is truth, truth beauty,’—that is all
Ye know on earth, and all ye need to know (Keats, 1820/1953, p. 234).
As reflected in his famous closing lines to “Ode on a Grecian urn,” John Keats

had a deep sense of the extent to which the arts and the sciences are intertwined in
the human psyche. As mathematics education researchers with interest in improving
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the experiences of those learning and teaching mathematics, we are involved with
human beings in all their complexity. The beauty of aesthetic experience and the
affective issues that accompany this experience or its absence, are counterbalanced
and intertwined with the need for mathematical truth. “Don’t force it! Maths just
won’t be forced. That’s the beauty of it, that’s its beauty: where it stands strong
against this forcing things into it that don’t have any place for it at all,” emphasized
Mr Blue, in pointing out an error of reasoning to the boys in his grade 12 mathe-
matics class (Presmeg, 2006b, p. 20). Thus I shall argue in this position paper that
despite the inevitable fashions that influence modes of research, the humanism of our
endeavor necessitates the implication of aspects of both the arts and the sciences in
investigating issues of mathematics education.

As a means of summarizing where we were a decade ago, I shall revisit a vi-
gnette that I described for the International Commission on Mathematical Instruc-
tion (ICMI) study, “What is research in mathematics education and what are its
results?” in 1994 (Sierpinska & Kilpatrick, 1998). I shall view this vignette in the
light of some of the directions taken in our field since this ICMI study, with the
lens of aspects of the arts and the sciences as a focus for attention. Throughout this
paper, the arts and the sciences are taken broadly as ways of viewing the world.
I wish to highlight both the creative features of the arts, as epitomized in poetry,
painting, and creative writing, and the humanistic features of fields that relate to hu-
man beings in all their complexity. At the same time, I acknowledge and celebrate
the rigor and certainty (albeit contingent) of the methods of the sciences. The main
thrust of the argument is that these contrasting aspects are not necessarily mutually
exclusive, and that an integrated, unified whole is possible in mathematics education
research—as it is in individual human beings—with an appreciation of the strengths,
limitations, and purposes of each facet on its own terms, but in relation to the whole.

2 A Vignette

In the 1990s, I taught a course on informal geometry to students at The Florida State
University who are prospective middle grades and high school mathematics teach-
ers. One goal of the course was to introduce the students to ways that manipulatives
and real world experiences might undergird the learning of geometry in grades 5–8.
In the first week I asked them to bring or wear to the next class, something that had
geometry in it, and to come to class prepared to tell why they had chosen that partic-
ular item and to talk about its geometry. In an interview, one of the students, Dena
(who wanted to teach algebra rather than geometry), told me about her reactions to
this task, as follows (Presmeg, 1998a, pp. 57–58).

Dena. I noticed when you said, for us to bring something to class or wear some-
thing that had geometry in it, for a little while I was having a difficult time,
because, everything I picked up had geometry in it. And, I said, maybe there’s
something I misunderstood about the directions. Y’know.
Interviewer. In fact, even just the shape of a piece of clothing, any clothing.
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Dena. Yeah. Anything, has geometry in it. So, for a little while I was confused.
I didn’t know what to bring to class, until, until I realized that, everything is go-
ing to have. I said to myself, everything, of course everything is going to have
geometry to it because, y’know, anytime. . . You’re going to make a desk. I mean,
you draw, y’know. Your plans, for making the desk, involves geometry. And ev-
erything, that is, just everywhere. I think that geometry is taught as something
abstract, sketching things with proofs and rules and, not as very, everyday.

Dena’s recollections of her high school geometry experiences were negative
ones. “I didn’t like it at all!” she concluded.

It is important to note that in this vignette Dena is using the word “abstract” as
a placeholder for the rote, and for her meaningless, way that she learned school ge-
ometry. This usage in no way implies that abstraction is unimportant in mathematics
education. On the contrary, I believe that, along with generalization, it is essential
in meaningful teaching and learning of mathematical content, a difficult and deep
topic that I have addressed in more detail elsewhere (Presmeg, 1997b, 2008).

Implicit in this episode are several points that are relevant to the emergence of
mathematics education as a field in its own right, separate from but not unrelated to
other disciplines such as mathematics, psychology, sociology, philosophy, linguis-
tics, history, and anthropology. It is significant that in coming of age, mathematics
education research broke away from its primary reliance on psychometric research
and emulation of the hard sciences. After all, in the complex worlds of human be-
ings learning mathematics in group settings, all aspects of the arts and the sciences
that might have bearing on the improvement of this learning are relevant.

2.1 The Many Fields Implicated in Learning and Teaching
Mathematics

Firstly, the disciplines of mathematics in its research aspect and mathematics educa-
tion research are related by their common interest in mathematics. However, these
fields differ substantially because their subject matters and goals are different. The
subject matter of research mathematicians is the content of mathematics, and with-
out this content there would be no mathematics education. On one level, because
mathematicians teach, they are also engaged in mathematics education. However,
in mathematics education it is the complex “inner” and “outer” worlds of human
beings (Bruner, 1986), as they engage in activities associated with learning of math-
ematics, that form a primary focus of the enterprise, and therefore also of its re-
search. Dena’s agonizing over the nature and boundaries of geometry is fruitful and
provocative subject matter to a mathematics education researcher interested in the
teaching and learning of geometry. The avenues along which this research may lead
depend not only on the data, but also on the interests and interpretations of the re-
searcher. The tendency of such hermeneutic research to use progressive focusing
rather than pre-ordinate design (Hartnett, 1982) makes this kind of research as in-
teresting as a mystery story, even if the mystery is to some extent self-created. In this
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respect, mathematics education research may have elements in common with math-
ematics research. Certainly, the humanism of the arts and the rigor of the sciences
are implicated in both, despite their different goals.

A second point is that the inner and outer worlds of a student relate to concerns
of the disciplines of psychology and sociology, respectively, and to the interactions
between their elements. A balance between elements of these two disciplines is
required in mathematics education, as witnessed in 1990s debates on the necessity
of steering a course between Piaget and Vygotsky, representing individual and social
aspects of learning, respectively, in constructing theory for mathematics education
research (Confrey, 1991; Ontiveros, 1991). It is significant that Confrey believed that
neither Piaget’s nor Vygotsky’s theory alone was adequate to model the complex
processes of human learning. She suggested that proposing an interaction between
the two lenses would necessitate significant changes in both theories.

Confrey’s analysis prefigures the point—well expressed by Cobb (2007)—that
in the face of incommensurable theories one way of proceeding is to find out how
practitioners in the discipline of the parent theory view the canons of their research.
This perspective enables the mathematics education researcher to bring a broader
vision to the construction of home-grown theories that will be useful in address-
ing problems of mathematics education. Cobb (2007) explained the benefit of this
attitude as follows.

The openness inherent in this stance to incommensurability has the benefit that in coming
to understand what adherents of an alternative perspective think they are doing, we develop
a more sensitive and critical understanding of some of the taken-for-granted aspects of our
own perspective (p. 32).

In the creativity literature it has long been a well-accepted principle that new
views may be garnered by making the familiar strange, and by making the strange
familiar (e.g., De Bono, 1970). However, Cobb (2007) went much further than that.
He compared four theoretical perspectives that have been influential in mathematics
education research. The first of these is experimental psychology, whose methodolo-
gies have been advocated again—as in the 1950s and 1960s—by funding agencies
in the USA recently as the only form of scientific research in mathematics educa-
tion (US Congress, 2001). Next is cognitive psychology, viewed from the actor’s
perspective rather than the subject’s. The final two are Vygotskian sociocultural
theory, and distributed cognition. In comparing these four perspectives with regard
to their characterization of the individual learner, and in their usefulness for design
research in mathematics classrooms, Cobb came to the balanced conclusion that
each perspective has merits for certain purposes, but not necessarily for designing
effective mathematics teaching. In his view, scientific randomized experiments are
useful to and serve the administrative and political purposes of policy makers. He
makes a strong case that insistence on the hegemony of scientific research in the
form of randomized statistical experiments would be short-changing the commu-
nity of classroom teachers of mathematics. As he shows clearly, all theories are
based on philosophical premises, although those advocating a particular stance may
not acknowledge the limiting effect of these choices. This analysis suggests that al-
though the scientific and the humanistic aspects of mathematics education research
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are both legitimate and integral to the enterprise, they address different questions,
have different purposes, and are useful to different stakeholders.

A third point implicit in Dena’s pondering in the initial vignette is that philos-
ophy is ubiquitous in all questions which are of concern to mathematics education
researchers. The nature of geometry is an ontological issue, while how it was taught
in Dena’s school experience relates to issues of epistemology. Both components are
essential in mathematics education theory building, since one’s beliefs about the
nature of mathematics and mathematical knowledge are the ‘spectacles’ through
which one looks at its teaching and learning. These ontological and epistemological
issues are still being debated in research that concerns the beliefs of teachers and
students regarding the nature of mathematics and its teaching and learning (Leder,
Pehkonen, & Törner, 2002).

Tension between the view that “Everything is mathematics” (as Dena expressed
it, “Everything is going to have geometry to it”), and the rigorous mathematical posi-
tion that “Only formal mathematics is valid”, was well expressed by Millroy (1992)
in her monograph on the mathematical ideas of a group of carpenters, who did not
consider their practice to involve mathematics. This tension still plays out in mathe-
matics classrooms. On the basis of her research results, Millroy argued strongly for
the broadening of traditional ideas of what constitutes mathematics. She wrote, “We
need to bring nonconventional mathematics into classrooms, to value and to build
on the mathematical ideas that students already have through their experiences in
their homes and in their communities” (p. 192). Steen’s (1990) view of mathemat-
ics as the science of pattern and order opens the door to this lifting of the limiting
boundaries of mathematics. Millroy’s recommendation is consonant with those in
the National Council of Teachers of Mathematics (NCTM)’s (2000) recent calls for
connected knowledge in mathematics education. A related point is that a “mathe-
matical cast of mind” may be a characteristic of students who are gifted in math-
ematics (Krutetskii, 1976). This mathematical cast of mind enables these students
to identify and reason about mathematical elements in all their experiences; they
construct their worlds with mathematical eyes, as it were. But unless teachers are
aware of the necessity of encouraging students to recognize mathematics in diverse
areas of their experience, only a few students will develop this mathematical cast of
mind on their own. Many more will continue to regard mathematics as “a bunch of
formulas” to be committed to short term memory for a specific purpose such as an
examination, and thereafter forgotten (Presmeg, 1993).

The foregoing sets the scene for a fourth point which emerges from these consid-
erations, namely, the links which mathematics education research has been build-
ing with various branches of anthropology, particularly with regard to methodology
and construction of theory. Millroy’s (1992) study was ethnographic. Entering to
some extent into the worlds of Cape Town carpenters in order to experience their
“mathematizing” required that Millroy become an apprentice carpenter for what she
called an extended period, although the four-and-a-quarter months of this experience
might still seem scant to an anthropologist (Eisenhart, 1988). But the point is that
the ethnographic methodology of anthropological research is peculiarly facilitative
of the kinds of interpreted knowledge that are valuable to mathematics education
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researchers and practitioners. After all, each mathematics classroom may be consid-
ered to have its own culture (Nickson, 1992). In order to understand the learning, or,
sadly, the prevention of learning which may take place there, the ethnographic math-
ematics education researcher needs to be part of this world, interpreting its events
for an extended period, and then documenting the culture of this world, making the
familiar strange and the strange familiar while walking the tightrope of being in but
not totally of the world that is observed. In this kind of research the humanities are
implicit.

3 Recent Trends in Research Foci and Methodologies

While the history of mathematics goes back several millennia, mathematics edu-
cation as a field of study in its own right is barely half a century old (Sierpinska
& Kilpatrick, 1998). The oldest fully international journal in this field, Educational
Studies in Mathematic, a few years ago celebrated its 50th volume. (The journal was
founded by Hans Freudenthal in 1968. Journal for Research in Mathematics Educa-
tion was started shortly thereafter.) All of the emphases identified in the foregoing
section are still relevant to mathematics education research (Lester, 2007). However,
in the last decade there have been some developments that emphasize the integrated
nature of all the aspects of being human that play out in the learning of mathematics.
I shall mention just a few of these trends here. The recent work of Luis Radford and
his collaborators epitomizes two such strands, namely, an expanding emphasis on
semiotics as a theory for mathematics education research, and the place of gestures,
not as an adjunct but as part of an integrated semiotic system for learners to make
sense of mathematical concepts (Radford, Bardini, & Sabena, 2007). Radford et al.
use a “semiotic-cultural” theoretical framework as a lens for interpreting the learn-
ing taking place in a micro-analysis of a video segment in which a group of three
grade nine students are trying to generalize the pattern in a sequence of geometrical
figures. The video technology is indispensable in this fine-grained work, because
the researchers aim to document the role of their gestures as semiotic means for
students to grasp the ways that they are seeing the patterns, not merely for the pur-
pose of communication, but in order to reify these patterns and give them meaning.
This research emphasizes the integrated nature of human learning. The rigor of the
careful documentation certainly has scientific qualities, while the humanities are im-
plicit in the goals and methods of the investigation. Another recent indicator of the
significance of attention to the whole learner rather than an emphasis on cognition,
is evident in research that addresses the mathematical identities of learners, and the
way in which culture and experience shape these identities (Sfard & Prusak, 2005).

In recent years it has become acceptable in mathematics education research to
use a methodology of mixed methods (Johnson & Onwuegbuzie, 2004), in which
the scientific rigor of statistical research is perceived as complementary to the intu-
itive insights that are possible in fine-tuned qualitative research. Each addresses dif-
ferent questions, and serves different functions. In mixed-methods research, going
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beyond the significance for different stakeholders that Cobb (2007) identified, an in-
vestigation may address the details of some educational phenomenon and attempt to
generalize by identifying, for instance, how widespread the phenomenon is. Johnson
and Onwuegbuzie present an eight-step process for conducting such research, which
they consider superior to mono-method research. As more mixed-method investiga-
tions appear in mathematics education research it will be interesting to see whether
they have significance for both the groups identified by Cobb (2007)—policymakers
and administrators, as well as classroom teachers of mathematics. What counts as
“good” educational research? Hostetler (2005) encourages researchers to move be-
yond questions of qualitative and quantitative paradigms, and to consider the ethical
and moral values entailed in research methodologies.

The foregoing account downplays the contestations that accompany changes in
any field, and these have certainly been present in the changing paradigms of math-
ematics education research too (Sriraman, 2007; US Congress, 2001). In what fol-
lows, I shall use a first-person-singular account of my own experiences (character-
ized as a war between the arts and the sciences in my own nature) in parallel with a
narrative description of some elements of the changing field of mathematics educa-
tion research during the last four decades. The different and sometimes conflicting
voices in these accounts find a rationale in some elements of hermeneutics and phe-
nomenology, which are addressed briefly in the next section.

4 A Conceptual Framework for a Narrative Account

To some extent a first-person narrative account finds conceptual underpinnings in
a hermeneutic-phenomenological theoretical framework such as that used by Roth
(2008) to justify his personal voice in analyzing editorial power and its role in autho-
rial suffering in science education research journals, exacerbated by the demands of
promotion and tenure processes in academia. As he points out (citing Ricoeur and
Latour), this framework acknowledges and celebrates the importance of both sci-
entific explanation and personal understanding in interpretation. Thus it is also an
appropriate framework for an account that compares personal history and the history
of a field, and that posits complementary roles for humanistic and scientific elements
in both. The phenomenological dimension draws on lived experience, whereas the
hermeneutic aspect relates to the interpretation of parallels between this personal
experience and the changing modes of research in mathematics education. These
interpretations can never be considered as complete. As Brown (1997) pointed out,

In emphasizing that mathematics only ever comes to life in human exchanges we highlight
[the] selfreflexive dimension. For Derrida, meaning is always in the future, always ‘de-
ferred’, there is never a closure to a story because this story can always be extended (for
example, 1992) . . . We can always explore further and revise the meanings we have created.
The meaning we derive is always contingent. . . . I cannot disentangle things independently
of my history (pp. 70–71).

Thus I undertake to analyze movements in the field of mathematics education
research in conjunction with my own history as a mathematics education researcher.
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This hermeneutic-phenomenological position resonates with that of Peirce (1992,
p. 313) in his construct of synechism, “the tendency to regard continuity. . . as an
idea of prime importance in philosophy,” the startling notion that knowledge in its
real essence depends on future thought and how it will evolve in the community of
thinkers.

In the following contingent account, I describe how the “war” between the arts
and the sciences in my nature during my teenage years was reconciled to an in-
tegrated whole in the conduct of contemporary mathematics education research.
I suggest that it is possible for the corresponding “war” between scientific and hu-
manistic elements in the field of mathematics education research to find integration
in recent unifying trends that see both quantitative and qualitative methodologies as
valuable, although serving different purposes and having different goals.

5 The Arts and the Sciences—At War?

When I was a teenager, a senior in high school, I read Sir James Jeans’ books about
the universe, and I was also particularly inspired by the life and work of Marie Curie,
who was a dedicated woman in the man’s world of the hard sciences at the end of
the nineteenth century. I was also intrigued by the incomparable life and work of
Albert Einstein (1970, 1973, 1976, 1979). At that point it seemed that the arts and
the sciences were at war in me, because I was attracted to both and choosing a
career was difficult. At last, decades later, I “came home” to mathematics education
research, which included elements of both of these two sides of my nature.

Albert Einstein was a visualizer, and his mental imagery was the rich source
of his creative insights (Holton, 1973; Schilpp, 1959). In my first career as a high
school mathematics teacher, I noticed that there were students in high school math-
ematics classes who were visualizers, as I knew from the exceptionally high spatial
scores they were achieving on the battery of tests they were doing for vocational
guidance—and they were achieving poorly in mathematics, as had Einstein in the
restrictive environment of the gymnasium he attended in Munich before moving to
Switzerland. The question of why demanded further investigation. Thus the follow-
ing central research goal, as it concerned mathematics education, became the topic
of my doctoral research (Presmeg, 1985):

To understand more about the circumstances which affect the visual pupil’s operating in his
or her preferred mode, and how the mathematics teacher facilitates this or otherwise.

The research was exciting, absorbing, and full of surprises. In keeping with the
phenomenological stance I am adopting, I see parallels between my experience in
this investigation and the field of mathematics education research itself, which was
starting to emerge as a field of study in its own right.

As suggested in the opening section, initially the study of problems in the learn-
ing of mathematics was a small subset of the wider realm of the concerns of psy-
chology. With respect and admiration for the relative certainty of results obtained by
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researchers in the hard sciences, in which empirical investigation was used to con-
firm or disconfirm theory, early researchers in mathematics education (especially in
the 1960s and 1970s) tried to emulate this research. Psychometric research was the
only genre of research in mathematics education that was considered worthy of the
name. Of this period, the Soviet psychologist Krutetskii (1976) wrote as follows:

It is hard to understand how theory or practice can be enriched by, for instance, the re-
search of Kennedy [in 1963], who compared, for 130 mathematically gifted adolescents,
their scores on different kinds of tests and studied the correlation between them, finding
that in some cases it was significant and in others not. The process of solution did not inter-
est the investigator. But what rich material could be provided by a study of the process of
mathematical thinking in 130 mathematically able adolescents! (p. 14).

Indeed, it was lamented that mathematics education research was having little
impact, in fact appeared to be irrelevant, in mathematics teachers’ classroom prac-
tices. Research as epitomized in “Aptitude-Treatment Interaction” studies (ATIs)
seemed to have little impact or relevance in mathematics classrooms. The question
of relevance is still an issue in mathematics education research, but more recent
developments in this growing field as it embraces mixed methods and welcomes
teachers as researchers (Kemmis, 1999) may have the capacity to address this issue.

In the early 1980s, when I was engaged in my doctoral research, qualitative,
hermeneutic research under banners such as “illuminative evaluation” (McCormick,
Bynner, Clift, James, & Brown, 1977) was starting to be viewed as legitimate in
mathematics education because it could address questions about details of teaching
and learning that were inaccessible to purely statistical research. My study involved
both quantitative and qualitative methods, but it was the fine grain of transcribed in-
terview data that enabled the insights into why some students who liked to visualize
were not achieving their potential in mathematics. At about the same time, research
carried out by teachers in their own classrooms (later widely accepted as “action re-
search”, e.g., Ball, 2000) was gaining currency. It was recognized that methods from
other disciplines might need adaptation to the particular requirements of mathemat-
ics education research, but that there was a rich variety of methodologies that could
be valuable. In the last three decades, mathematics education journals and confer-
ences have proliferated, and universities internationally have established programs
in mathematics education, housed either in schools of education or more rarely in
mathematics departments. These changes accelerated in the 1990s. In a search for
identity in its own right (Sierpinska & Kilpatrick, 1998), mathematics education
and its research became recognized as a legitimate field, distinct from, yet informed
by, the disciplines of mathematics, psychology, sociology, anthropology, philoso-
phy, and even linguistics (Sfard, 2000; Dorfler, 2000). Mathematics education, as a
human science, embraces human concerns as well as the need for abstraction and
rigor. Various qualitative research methodologies adapted from the humanities be-
came recognized as legitimate in addition to the previously dominant psychometric
paradigms. In particular, following Bishop’s (1988, 2004) seminal work, there was
increasing recognition of cultural and social aspects of the classroom learning of
mathematics, complementing the psychological emphasis of cognitive theories of
learning. Despite some movements that resisted the changes (cf. the “math wars” in
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the USA), in this field there is no need for war between the arts and the sciences—
both are important. I have come home!

6 Creativity in the Arts and in the Sciences: Mathematics
Education Creativity Spanning Both

As mentioned, the heart of Albert Einstein’s immensely creative thought was his ca-
pacity to visualize (Schilpp, 1959). Mathematics has an obvious visual component,
not only overtly, as in geometry or trigonometry, but also in the mental imagery that
by self-report enhances the thinking of many creative mathematicians (Sfard, 1994).
Why, then, were there visualizers in high school mathematics classes who were find-
ing this subject so difficult that they were obtaining failing grades in examinations
(Presmeg, 1985)?

The purpose of my doctoral research was to investigate the strengths and lim-
itations of visual processing in mathematics in a classroom context at senior high
school level, and to investigate the effect on learners who are visualizers of the pre-
ferred cognitive modes, attitudes, and actions of their mathematics teachers. (For a
fuller account, see Presmeg, 2006a, b.) Selection of students and teachers required
the development of a new mathematical processing instrument to measure prefer-
ence for visual thinking in mathematics. I still use this instrument to understand
more about the visualization styles of students in my classes. On the basis of the
preference for mathematical visualization (MV) scores obtained using this instru-
ment, 13 mathematics teachers were chosen to represent the full range of scores
available. In the senior classes of these teachers, 54 visualizers (23 boys and 31
girls) were chosen from 277 high school students. Visualizers were taken to be those
who scored above the median score for this population, on the preference test.

The research methodology included participant observation in the classes of the
teachers over an eight-month period, and tape-recorded interviews with teachers and
students, as well as sparing use of non-parametric statistics to identify trends in the
data from the visualization instrument. As a framework for observation in lessons,
17 classroom aspects (CAs) were identified that the literature suggested were fa-
cilitative of formation and use of visual imagery in mathematics. The teaching vi-
suality scores obtained by triangulation of viewpoints (teacher’s, students’, and re-
searcher’s) on the basis of the CAs were only weakly correlated with the teachers’
MV scores from the preference instrument. It made sense that a good teacher who
feels little need of visual supports might recognize the need of mathematics learners
for more of these supports. After item analysis and refinement of the CAs, teach-
ing visuality scores divided the teachers neatly into three groups, namely, a nonvi-
sual, a middle, and a visual group according to their styles of teaching. Analysis of
108 transcripts of lessons revealed 45 further classroom aspects that differentiated
the three groups of teachers, and that suggested that the visual teachers manifested
traits associated with creativity, such as use of humor in their teaching. (Einstein
had a marvelous sense of humor—see Dukas & Hoffmann, 1979.)
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One of the biggest surprises in this research was that it was the teaching of the
middle group of teachers, not the visual group, which was optimal for the visualiz-
ers in the study. All the difficulties experienced by the visualizers in their learning
of mathematics related in one way or another to the generality of mathematical prin-
ciples. An image or a diagram, by its nature, is one concrete case, and students need
to learn how to distinguish the general elements from the specific ones in learn-
ing mathematics. Visual teachers, who had mastered these distinctions, were not
cognizant of the difficulties experienced by their students. In my data, there were
two ways in which a mental image or related diagram could represent generalized
mathematical information. Firstly, the image itself could be of a more general form,
which I designated pattern imagery. Secondly, a concrete picture (mental or repre-
sented on paper or a computer screen) could be used metaphorically to stand for a
general principle. This latter result of this research led me to the fascinating study
of the use of metaphor and metonymy in mathematics education, during the decade
of the 1990s (Presmeg, 1992, 1997a, b, 1998b). However, I also became involved in
another compelling research agenda, which I shall describe in the next section.

It is noteworthy that the need for rigor, including equivalents of validity and
reliability, respectively, was never absent in the qualitative research paradigms that
were gaining ground in the 1980s. But the pendulum swung too far away from the
previous quantitative paradigm in the 1990s, occasioning a necessary backlash in the
2000s from proponents of statistical methodologies—suggesting that in this field the
war was not yet over.

7 Different Bridges: Semiotic Chaining Linking Mathematics
in and out of School

In the last two decades, two strands of significance have been developing in the
mathematics education research community. On the one hand, there have been
increasing calls that teachers facilitate the construction of connected knowledge
in mathematics classrooms (National Council of Teachers of Mathematics, 1989,
2000). These connections entail not only the linking of various branches of math-
ematics that have been taught as separate courses at high school level, but also the
linking of classroom mathematics with other subjects in the curriculum. And partic-
ularly, the importance is stressed of linking school mathematics with the experiential
realities of learners. On the other hand, the importance of symbolizing and discourse
in the teaching and learning of mathematics has come to the fore (Cobb, Yackel, &
McClain, 2000), along with recognition of the significance of sociocultural aspects
of the learning of mathematics (Bishop, 1988).

I set out to link these two significant strands by exploring answers to the fol-
lowing question: How can teachers use semiotic theories to help them facilitate the
construction of connections in the classroom learning of mathematics? In particular,
semiotic chaining presented a fruitful method of bridging the formal mathematics of
the classroom and the informal out-of-school mathematical experiences of learners.
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The significance for mathematics education of theories originating in linguistics was
becoming apparent to me. At first in this research I used chaining of signifiers based
on Lacan’s inversion of Saussure’s dyadic model of semiosis (Saussure, 1959). I in-
vestigated how teachers and graduate students could use these chains to link the
cultural activities of learners with mathematical principles. Working with two re-
search assistants and a doctoral student, Matthew Hall, we interviewed students and
taught teachers to build such chains and use them in the mathematics classroom
(Hall, 2000). There was the potential for the celebration of diversity and equity. We
had some success, but the research suggested the need for a more complex model,
because not just signifiers and signifieds, but interpretation, were endemic in the
activities. Thus I was led to development a nested model of chaining based on the
triadic theory of Peirce (1992, 1998). Some of his many constructs illuminated the
research, like searchlights, and I am still excited and involved in the exploration of
the repercussions of this work. Many instances of the potential of semiotic chain-
ing to foster connected knowledge of mathematics illustrated its significance (e.g.,
Presmeg, 2006c), and the research is ongoing. Recently, I have been using a tri-
adic Peircean lens to investigate ways that students connect, or fail to connect, the
various registers (Duval, 1999) of school trigonometry (Presmeg, 2006b).

There are clearly intertwined elements of the arts and the sciences in this mathe-
matics education research. In the wider field of research methodologies accepted as
useful in the twenty-first century, a renewed interest in statistical research to counter
the pendulum swing of the 1990s is evident. It will be a pity if another (counter) pen-
dulum swing prolongs the war, because both qualitative and quantitative methodolo-
gies have a role to play in the complex field of research on the teaching and learning
of mathematics.

In the next section I invoke Habermas’s (1978) knowledge-constitutive interests
to argue this case further.

8 Knowledge-Constitutive Interests Invoking Arts and Sciences

Using Ewert (1991) and Grundy (1990) as sources, in Fig. 1 I have summarized the
three types of knowledge and their philosophical bases posited by Habermas (1978).
This triad comprises not merely three different ways of looking at knowledge, but
three different ways of characterizing what counts as knowledge. It is beyond the
scope of this paper to discuss Habermas’s theory in depth. (Interested readers should
consult the original sources.) In this paper I shall use this summary to argue that
there is room in mathematics education research for all three kinds of knowledge.

Of Habermas’s three types of interests that constitute knowledge, it is the tech-
nical one that epitomizes knowledge in the hard sciences. Literary creativity and
research are examples of the seeking for knowledge of the second type, in which
interpretation of the human condition is paramount. The enterprise seeks to under-
stand that condition, but not necessarily to change it. The critical reflection called
for in the third category, by way of contrast, has the goal of changing the human
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Technical Practical Emancipatory

Social media:
labour interaction power

Conditions for the three sciences:
empirical-analytic hermeneutic critical

→ procedures for basic activities:
control of external communication reflection
conditions

Trichotomous division between sciences:
natural science cultural science critical science

Forms of knowledge:
instrumental subjective critical theory
rationality meaning

Philosophical basis:
positivism phenomenology critical theory

*******************************************************************
Eidos and disposition:

specific, definable the Good liberation
ideas - techne - phronesis - critique
(skill) (judgement) (critical community)

Action and outcome:
poietike practical action emancipatory action
→ product → interaction → praxis

*******************************************************************
Fig. 1 Three Knowledge-constitutive Interests

condition in some way—hence its designation as emancipatory. In contemporary
mathematics education research, examples are found of all three types of interests.
In broad categories, the technical interest is ongoing in large-scale statistical studies,
the practical interest is evident in hermeneutic studies that aim for understanding of
the mathematical thinking of individual students or small groups of students, and the
emancipatory interest is apparent in studies that address issues of social justice and
critical issues such as access to the study of mathematics. It is beyond the scope of
this paper to characterize the landscape of mathematics education research in detail,
but the following are examples of research in each of these three categories.

As an example of research in the first category, the investigations of Gagatsis
and his co-researchers at the University of Nicosia seek new knowledge of issues
in the teaching and learning of mathematics through the statistical investigation, us-
ing large samples, of such topics as “Students’ improper proportional reasoning”
(Modestou and Gagatsis, 2007), or “Exploring young children’s geometrical strate-
gies” (Gagatsis, Sriraman, Elia, & Modestou, 2006). Because it is not feasible to
assign children randomly to the classes in these studies, the studies may be char-
acterized as of pseudo-experimental design. The methodology enables group trends
and relationships to be uncovered, without seeking to ascertain the reasons why
these trends and relationships are significant. In-depth investigation of the question
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of “Why?” would entail research in the second category. In my own research on
visualization, the construction and validation of an instrument for preference for vi-
sualization involved interests in the technical category: validity and reliability were
established using non-parametric statistics (Presmeg, 1985). Large samples showed
that there was no statistically significant difference between the boys and the girls
with regard to their preference for visual thinking in mathematics; however, there
was a significant difference between the preference for visualization of the teachers
in this part of the study, and their students, who needed far more visual supports
than they did.

Again, the question of why was deferred to Habermas’s second category. Insights
into the difficulties and strengths of visualization in teaching and learning mathe-
matics came from interpretive research involving a whole school year of classroom
observation and interviews with 54 high school “visualizers” and their 13 mathe-
matics teachers. All of the problems experienced by these learners related in one
way or another to the need for mathematical abstraction and generalization, as in-
dicated in an earlier section of this paper. Whereas this kind of research provided
insights, it did not have the overt goal of changing classroom practice, although
teacher awareness of the results might in fact result in “practical action”—praxis—
in the classroom (Grundy, 1990). Emancipatory interests, in contrast, have the goal
of praxis.

Examples of research involving emancipatory interests can be found in the chap-
ters of the monograph on International perspectives on social justice in mathematics
education (Sriraman, 2007). After a useful historical introduction to issues of social
justice by the editor, Sriraman, several of the chapters describe projects that in one
way or another attempt to address the issues of equity that are implicit in social jus-
tice applied to mathematics education. For instance, Merrilyn Goos, Tom Lowrie,
and Lesley Jolly describe a framework for analyzing key features of partnerships
amongst families, schools, and communities in Australian numeracy education. Iben
Maj Christiansen contributes a thoughtful and exploratory chapter based on her ex-
periences introducing mathematical ideas to university students in South Africa and
Denmark, through social data that highlight inequity. Her analysis leads her to the
startling question, “Does our insistence on these ‘critical examples’ end up being
‘imposition of emancipation’?” Tod Shockey contributes the positive influence of a
culturally appropriate curriculum for Native Peoples in Maine, USA. Libby Knott
explores issues of status and values in the professional development of mathematics
teachers in Montana, USA. Eric Gutstein provides a companion piece to his recent
influential book on social justice in a Chicago school classroom (Gutstein, 2006).
These chapters and others have the more or less explicit goal of changing praxis
in mathematics education. Although the monograph also contributes useful empiri-
cal and theoretical ideas to the ongoing conversation about social justice in mathe-
matics education (practical interest), its emancipatory interest places it squarely in
Habermas’s third category. My own research on ways that teachers may incorporate
the cultural practices of students in their classes into the praxis of school teaching
and learning of mathematics also embraces this category to some extent (Presmeg,
2006a).
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9 Final Thoughts

Although I am positing a balance among Habermas’s categories, and the necessity
of embracing all three interests in various aspects of the complexities of mathemat-
ics education and its research, Habermas in his formulation suggested a movement
in the direction of the critical theory component (Brown, 1997). Brown described
succinctly the educational implications of movement towards the emancipatory in-
terest, as follows.

If we were to follow Habermas in defining more ‘emancipatory’ forms of educational prac-
tice we would need to differentiate more clearly between teacher’s intention and signifi-
cance for the student and stress the developing critical powers of the individual student.
Such moves towards emphasizing interpretive aspects of mathematical activity, however,
inevitably result in placing less stress on the conventional categories of mathematics, as
may be represented in the teacher’s input or school curriculum. . . . In doing this we may
hope to achieve a style of teaching which enables students to critically examine the purpose
and scope of the mathematics they meet, while at the same time recognizing its grounding
in their personal experience (pp. 97–98, his emphasis).

It is my contention in this paper that it is not necessary to abandon the “con-
ventional categories” of mathematics in striving for students’ individual critical
thinking and personal interpretation. Of the three categories of Habermas’s (1978)
knowledge-constitutive interests, the technical one pertains to the sciences, whereas
the practical and emancipatory belong to the concerns and complexities of human
life and its interpretation, to the integrated thoughts and feelings of human beings.
The discipline of mathematics itself, with its inexorable logic and instrumental ra-
tionality, resides as a content domain in the technical category, although the cre-
ative domain of mathematicians doing research in mathematics might arguably re-
late better to the subjective meaning of the practical category. In contrast, because
the teaching and learning of mathematics are practices engaged in by human be-
ings, subjective meaning is all-important if mathematics is to be learned meaning-
fully, and critical theory relates to the improvement of this teaching and learning in
mathematics classrooms. However, the content of mathematics with its historically
constituted canons is the subject of this teaching and learning.

Thus I argue that both the sciences and the arts are inevitably implicated in math-
ematics education, whose research also requires the full gamut of methodologies
available in the arts and the sciences.
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Dialogue on Mathematics Education: Two Points
of View on the State of the Art

Theodore Eisenberg and Michael N. Fried

Abstract On many fronts, the field of mathematics education does not speak with
a single voice. There appears to be no firm consensus regarding the scientific char-
acter of mathematics education, the research methodologies it deems legitimate, the
kinds of questions it addresses, the appropriate preparation for its practitioners, and
its relationship with other disciplines, including, ironically, mathematics itself. Our
field seems to be going through a new phase of self-definition, a crisis from which
we shall have to decide who we are and what direction we are going. The authors
of the present paper themselves tend towards different positions on these questions.
The paper, then, takes the form of a letter in which one of us raises issues about
the current state of mathematics education and the other responds. We see this as an
attempt to initiate a dialogue on our field, which we consider urgently needed.

Keywords Nature of mathematics education research · Legitimate methodologies ·
Interdisciplinary influences · Mathematical content

1 Introduction

Recently, I (T.E.) had the opportunity to read a version of the plenary paper deliv-
ered by Norma Presmeg at the Second International Symposium on Mathematics
and its Connections to the Arts and Sciences (MACAS2). My view of the paper
was quite critical and left me feeling that all is not well in mathematics education
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research. Rather than responding directly and with a single voice, the idea arose,
partly through the urging of Bharath Sriraman, that I and a colleague, Michael Fried,
write a dialogue taking off from various points in Norma Presmeg’s paper. It made
sense to engage Michael in this, since while our positions are not entirely opposed
they are opposed enough to highlight the concerns of others in the field, and in ac-
tual fact we do often discuss these issues via e-mail. An exchange of letters as the
chosen form for our dialogue, therefore, seemed natural. Our hope, needless to say,
is not to settle all the questions involved, but to initiate a genuine and broad dialogue
on the nature of mathematics education and mathematics education research.

2 Dear Michael

Although we teach at the same university our paths seem not to cross as often as I
would like. Anyway, I wanted to raise several issues Norma Presmeg discusses in
her paper “Mathematics Education Research: Embracing Arts and Sciences.” Norma
Presmeg’s long history of deep and serious commitment towards understanding how
we learn and teach mathematics is everywhere evident in her paper, though we did
not need her paper to tell us that! But it is just this that makes her views on the
current situation in the mathematics education community and her interpretations
and conclusions so troubling for me. She states several times in the paper she has
found her academic home, and perhaps she is right; but I feel that because of the
path mathematics education research (hereafter mathematics education research =
MER) has taken over recent years, I have been banished from my academic home;
these days, I feel like a fish out of water. Let me raise a few of the items, prompted
by the paper that have made me reflect on the nature of mathematics education and
get your take on them.

2.1 MER: What It Should Be, What It Was, and What It Is

Research in mathematics education should be about the teaching and learning of
mathematics; it’s definition is that simple to state. And at one time it seemed to be
just that; individuals worrying about better ways to teach and learn mathematics.
Forgetting the roots of our discipline, which one can easily trace back to ancient
Greece, as I see it, modern mathematics education research was born in 1957 with
the launching of Sputnik. The world was going crazy in those years with fear that
another world war was around the corner and that the democratic world was go-
ing to lose the race to claim outer space for its own. I was just a schoolboy then,
but I remember well the movements around the world to close the educational gap
between the good guys, us, and the bad guys, them (the Sputnik launchers). New
curricula were popping up everywhere, and their construction and implementation
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were heavily financed with governmental money. To an outsider, the world of math-
ematics education in those days must have looked like a bowl of acronyms; the al-
phabet soup of projects and programs from those years and before included SMSG,
UICMS, Minimast, the Madison Project, the PRIMES project, SMP, AAAS, and
the list goes on and on. But the common denominator of all these projects was that
mathematics educators were working with mathematicians and classroom teachers
to make mathematics accessible to larger segments of the school population and to
do this in an intellectually honest way. Indeed, the ideology “That we can teach any
topic to any individual in an intellectually honest way” became one of the mantras
of the time and the core of the belief system of young teachers and students like
myself. But make no mistake about it, the driving forces behind the reforms were
fear of the USA and its allies not being number one in the world and competition.
Mathematics and its teaching and learning are driven by fear and competition. The
fact that we made a mess of things in implementing new curricula at the school level
is another matter.

Although Norma Presmeg elaborates in MER that esthetics is the main force that
drives mathematics forward—and one can easily find many statements in the liter-
ature supporting her on this point—when we get right down to it, it is nonsense.
Competition with our self and amongst ourselves is the driving force behind mathe-
matics. It is not money per se that breeds ingenuity, but the challenge of succeeding
where others have not, with professional recognition, kudos, and fame being some
of the wonderful by-products of success. Beauty follows proof and invention, it does
not drive it. Recognition as being the first to have accomplished something others
could not is the real motivator. I have yet to find a single mathematician willing to
delay publication of a proof for, say, the Riemann Hypothesis because the proof,
though correct, was not esthetic. Not one mathematician has ever admitted that he
or she would delay publication of a proof in hope of finding a route that is more
esthetic; not one. Esthetics? Nice to muse about, but not in today’s academic world.

(Recent TIMSS evaluations have placed our country into non-enviable rankings
and our Ministry of Education has been jolted, sending delegations to Singapore
and Finland to see if we can adapt their curricula and teaching methods here. Do
you think that the esthetics of mathematical thought has played any role whatsoever
in our Ministry pushing teachers to improve the performance of their students? We
only participate in TIMSS and other such comparisons with the hope that we will be
rated number one. I once wrote a letter to someone high in the Ministry’s hierarchy
suggesting that we should stop participating in such evaluations because we are
never going to do well in them; my letter has yet to be answered, or its receipt even
acknowledged.)

2.2 MER, “Our” Background in Statistics

Norma Presmeg’s paper is right on target when she states that the beginning years
of mathematics education research studies were statistical in nature; I recall in those
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days texts similar to Campbell and Stanley’s (1963) classic Experimental and Quasi-
Experimental Designs standing at the heart of many mathematics education pro-
grams. Mathematics educators of my generation were skilled in applied statistics;
we could talk about ANOVA, ANCOVA, regression and correlation, factor analysis,
biased estimators, etc. Today’s math educators seem to know none of these notions;
but what is worse is that these notions seem to be pooh-poohed by the MER com-
munity. Michael, at our own university, even basic statistics is no longer a required
course at the MA level in most of the mathematics education programs offered on
campus. Worse, I have seen some instructors on staff instructing students to skip
over statistical tables in articles, telling them that if anything important is buried in
those tables, the author will state it in a more readable format elsewhere (and as you
might guess, the instructors who practice this are amongst the most popular on cam-
pus). Norma mentions that we have “moved on” from statistical studies, but to what
have we moved? As I see it, we have moved to an amorphous sea of gobbledygook,
which has in it islands of sanity.

2.3 MER, “Our” Language

The professional vocabulary of those who claim to be doing mathematics education
research today is foreign to me. Words and phrases like hermeneutic research, semi-
otics, ethnographics, metaphor and metonymy, are sprinkled like spice throughout
Norma’s paper; but I venture to say that most math educators in the world would be
hard pressed to define these notions in an inclusive and exclusive way. And as you
well know things get much worse if we look at the papers of others: therein we will
see words like reification, sensorial stimuli, an epistemic stance, knowledge objecti-
fication, apodeictic calculations, and ontogenetically speaking. I agree that these are
bona fide words and notions. I have looked-up their definitions in dictionaries many
times; why many times? Because the definitions do not stick. But my real concern
with this sort of language is: who are we trying to impress? A discipline should be
built around simple words, not ones that most in the field can barely pronounce, let
alone define. It is as though authors who use such words believe that this type of
language elevates their paper into being “real science.” But to those in the field like
me, using this sort of language has the opposite effect; using such words gives the
impression that mathematics education is a pseudo-discipline; that is putting on the
airs of trying to be more than what it is. Using such a vocabulary and coining new
words is detrimental to the discipline. Einstein used to say, things should be made
as simple as possible, but not simpler; I think as a profession we should follow his
advice.

Norma Presmeg is also correct in saying that MER has switched its emphasis
from mathematics to the individual. But whereas she embraces it, I abhor it. I am
well aware that discussions in the classroom, non-verbal reinforcement, alternate
methods of evaluation, making peace with one’s deficiencies, feeling good about
yourself, etc. are important in life, and that they have become the focal points of
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many studies in our discipline. But I believe that they are missing the point. The first
and foremost goal of a mathematics teacher is to help students learn mathematics,
not to make them feel good about not knowing mathematics. And in order to help
students learn mathematics, the teacher must know mathematics; it is as simple as
that.

2.4 MER and Formal Mathematics

In general, the mathematics requirement in most math education programs today
is appalling. We have talked about this with one another before. I do not have any
minimal levels of competence in mathematics that I can recommend, to set the math
level for everyone in our profession at level X, or X + 20, or X + 50, or even higher.
But as a profession we seem to be lost. We are wandering looking for identity; and
I don’t like it. As I see it, mathematics education is a sub-domain of mathematics,
and as such, mathematics educators belong in departments of mathematics, not in
schools of education or in units of science teaching. And if mathematics educators
do sit in mathematics departments, then they must know some mathematics. I am
not saying that all mathematics educators should be mini-mathematicians nor that
knowing mathematics is all they need to be good teachers, but they should have
taken a good chunk of formal mathematics; they should like mathematics and they
should maintain an interest in mathematics. This last sentence was Polya’s mantra,
and I agree with it totally. But I am embarrassed to say that I know mathematics edu-
cators who denigrate mathematics (and in so doing, they also unwittingly denigrate
themselves.) Martin Gardner, of Scientific American fame, would often be asked
how he could write and explain things so clearly. And his answer was, because he
had to work so hard to understand them. We should follow in his footsteps.

The world wide web has made it is easy to find the academic background of many
professors at major universities who have identified themselves as being mathemat-
ics educators. Mathematics education groups at some of the most prestigious uni-
versities have many members without even a first degree in mathematics. At one
university that I checked their mathematics educators were trained in elementary
education, and psychology, and there was even one on that staff whose academic
degrees were in social work! I am not saying that these individuals are stupid, far
from it. But what I am saying is that these individuals have not studied higher-level
mathematics; they have not experienced the abstraction that boggles so many stu-
dents in our classes, they have not “been there.” Yet these individuals seem more
than willing to tell the MER community how mathematics is learned and how it
should be taught! I find it incredible that they have the nerve to speak and sad that
we listen to them and often hang on their every word. Yes, MER has moved away
from the teaching and learning of mathematics, and I feel as though we are not go-
ing to return to it anytime in the near future. This is a tragedy of our own making.
Norma relishes the openness of the MER, I do not. (And for those mathematics edu-
cators who sit in departments of education or elsewhere, I again repeat my definition
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of mathematics education; it deals with the teaching and learning of mathematics,
not the zillion things around it.)

2.5 Making MER More Humane

Norma Presmeg’s paper talks about making mathematics more humane and I think
we both know what she means by this. I imagine that most everyone in the pro-
fession has been at one time or another humbled by mathematics, how it is taught
and how difficult some topics are to grasp, etc. When I hear of such testimonials or
even experience difficulties myself, I try to think of the mantra that any topic can be
taught to anyone in an intellectually honest way. All that is needed is time, patience,
desire, and empathy.

2.6 MER Some Last Words

It seems to me that the job of math educators is to build environments where learning
can occur. It is not to continually look for easy solutions, quick fixes and panaceas
that are just not there. We should not continually look for ways to get students
around the abstraction, that just happens to be the fiber of mathematics today, but
rather we should search for ways to bring students to the abstraction. There comes
a time when we have to buckle down and master the abstraction, not to continually
look for ways to circumvent it. Norma has given us a wonderful snapshot of where
MER is today. But I seem to see things very differently. What’s your take on it all?

Sincerely,
Ted.

3 Dear Ted

Many thanks for your letter and for the opportunity to put on paper some things we
have often spoken about over coffee (and, I agree, those coffee conversations are
far too rare and short!). First, I should say that while I do tend towards the view of
things conveyed in Norma Presmeg’s paper, I think she can defend her own ideas
well enough. So, I will only speak for myself. And, as for that, there are many points
on which we see eye to eye, as you know. Let me begin with Sect. 1, then, “MER,
what it should be, what it was, and what it is.”

First I want to say that “Research in mathematics education should be about the
teaching and learning of mathematics” is truly, as you say, a simply stated definition;
however, it is also one that hides many complexities. For one, there is the question
of what mathematics should be taught and learned or, alternatively, why we should
learn mathematics in the first place, the “why” having much to do with the “what.”
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You state that “. . . modern mathematics education research was born in 1957 with
the launching of Sputnik.” Although I am not sure modern mathematics education
research was actually born with Sputnik,1 you are certainly right to point to that
time as a watershed period in our field. The shock of Sputnik gave a new weight
and urgency to mathematics and science education and presented a warning that
the neglect of mathematics and science education has a price; indeed, that message
was still echoing in the 1983 report “A Nation at Risk” (which even mentions Sput-
nik!). As motivations, Sputnik or the space-race, which followed, or the drive for
technological and scientific prowess suggest that the goal of mathematics education
should be to produce good mathematicians, scientists, or engineers. The force of
that goal is clear in the strength with which Bruner denies it in the book that so
reflects the mood after 1957, Bruner’s (1960) The Process of Education [the same
book containing the statement you quote: “any subject can be taught effectively in
some intellectually honest form to any child at any stage of development” (p. 31)]:
“The intention (of the 1959 Woods Hole conference) was not to institute a crash
program, but rather to examine the fundamental processes involved in imparting to
young students a sense of the substance and method of science. Nor was the objec-
tive to recruit able young Americans to scientific careers, desirable though such an
outcome might be” (p. vii). So, even then, in the late 1950s and early 1960s, what
was born, therefore, was a question: what is the goal of mathematics education, and
therefore of mathematics education research? What does it mean to teach, in our
case, the “substance and method” of mathematics?

Questions on the teaching and learning of mathematics surely rest on how we
conceive the goals of mathematics education. Put differently, as educators, we ought
to think about what it means to be educated, and, as mathematics educators, what it
means to be mathematically educated. The “new math” that emerged from meetings
such as that at Woods Hole (though the movement, of course, has a much longer
history) was one answer to what mathematically educated means; the social utility
movement,2 reincarnated, in a sense, in the “back to basics” movement of the 1980s
and 1990s, was another; sensitivity to social and cultural issues connected to math-
ematics is yet another. I do not mean to say that one of these is the true and correct
view, nor that anything goes (I will say more about that later, when I speak about
your Sect. 4). However, what I do want to emphasize is that what it means to be
mathematically educated is not an issue that is completely clear, nor is it one that
is going to be answered adequately by mathematicians, historians, industrialists, or
social reformers alone. In this connection, it is worth pointing out that the Woods
Hole meeting engaged not only scientists and mathematicians, but also psycholo-
gists, historians, cinematographers, and even a classicist!

Treating the question of what it means to be mathematically educated demands
this kind of integrative view, and mathematical education research may, collectively,
provide it.

1Considerably earlier origins of research in mathematics education in European traditions are dis-
cussed in (Sriraman, B., & Torner, G. 2008).
2See pp. 17–18 of (Kilpatrick, J. 1992).
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This brings me to the issue of esthetics. You are probably right in claiming that
esthetics is not the “main force that drives mathematics forward” and that “compe-
tition with our self and amongst ourselves” must also be taken into account. It is
true indeed that the history and, particularly, sociology of science and mathemat-
ics has shown how far scientists and mathematicians are influenced by institutional
forces, a zeal for recognition, and, yes, competition.3 But, surely, this cannot be the
whole story, and, surely, one cannot discount also an esthetic force, or, more gen-
erally, what Polanyi (1964) called “intellectual passions”4 in scientific and mathe-
matical work. Esthetics may not be the main force in mathematical work, but it is a

force, and certainly a part of what makes a mathematician tick. There are enough ac-
counts of this from mathematicians themselves. Speaking from my own experience,
I can say my own love of mathematics has been charged by a few, but powerful,
mathematical-esthetic moments; they are rare, but one holds on to them like talis-
mans. Being mathematically educated must somehow take in this aspect of math-
ematical experience: having felt at least once or twice the beauty of mathematics
seems to me essential for knowing what mathematics is about. In this way, I agree
with Davis and Hersh (1981) when they write: “Blindness to the esthetic element in
mathematics is widespread and can account for a feeling that mathematics is dry as
dust, as exciting as a telephone book, as remote as the laws of infangtheif of fifteenth
century Scotland. Contrariwise, appreciation of this element makes the subject live
in a wonderful manner and burn as no other creation of the human mind seems to
do” (p. 169).

On one level, it is hard to disagree with your sentiments regarding issue Sect. 2
“MER, ‘our’ background in statistics.” It is so easy to be fooled by numerical
data, to think what is negligible, significant, and what is significant, negligible; it
is hard, then, to argue against the necessity of researchers possessing at least some
degree of statistical sophistication. But, on another level, I think such sophistication
serves researchers best when it helps them develop, rather, a sense of the limits of
statistics, a kind of healthy suspicion, in general, of quantitative approaches in our
field. Like many other fields connected to the social sciences, we suffer not a lit-
tle from “physics envy.” What we must realize is that physics can be physics only
because, at bottom, its objects are simple—particles can move in six directions,
can rotate, mutually attract, mutually repel (they cannot chase one another!), and
so on. Schrodinger (1967) said something like that in his wonderful essay “What
is Life?” in comparing physics to biology. But our objects— “learning,” “under-
standing,” “affect,” etc.—are infinitely more complex even than biological concepts.
In fact, we are still trying to understand what these things are, let alone quantify
them. For statistics to be useful, on the contrary, one must satisfy two conditions:
(1) one must know what it is one is interested in measuring; (2) one must mea-
sure what one is interested in. So, statistics can be very useful in telling whether
more cars pass through a certain intersection between 9:00 am and 11:00 am than

3See, for example, Hagstrom, (1974); Merton (1957) and Fisher (1973).
4Especially, p. 192 of (Polanyi, M. 1964).
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between 1:00 pm and 3:00 pm; one is interested in a certain number of cars, and
what one measures is just that. All too often, what happens in social science re-
search is that there is some idea, say “learning,” which we really do not completely
understand, that is, we do not really know what it is, but we are interested in mea-
suring it; we then measure some numerical quantity, taken to be related somehow
to “learning,” run statistical tests on our measurements of that quantity, and draw
our conclusions about “learning.” In doing this, we violate both (1) and (2). What
is worrisome, to my mind, is that, with our thirst to be “scientific” and the, often
concomitant, aversion towards “mere philosophical talk,” we may forget to ask ba-
sic questions such as what we truly mean by “learning.” I do not mean to reject all
such statistical studies, but only to say that ours is a field that is at least equally—
and, perhaps, even primarily—interpretative in character, that is, beyond the making
of measurements, mathematics education rests on explorations of meaning. I think
this is what Norma has in mind when she refers to MER embracing arts and sci-
ences.

Much of what you say about “‘our’ language” in (4) I applaud heartily. Mathe-
matics education research, of course, is not the only academic field guilty of using
language which obfuscates more than it illuminates, but that does not free us from
the sin! Interestingly enough, the language problem goes hand-in-hand with what I
wrote above about statistics; both statistics and jargon have the appearance of being
precise without truly being so. And it is not only jargon. It is also simple words,
like “powerful,” “rich,” and “meaningful,” when they are over used or used thought-
lessly. Our research will only teach us something if we constantly ask ourselves
what our words mean and not just throw them around to fill up the page. You know,
the trap of seductive pseudo-technical or otherwise imprecise language is not new;
it is what Bacon had in mind when he speaks about the “idols of the market.” He
says that these particular idols (there are three other “idols of the mind” that get in
the way of knowledge) “. . . are the most troublesome of all. . . which have entwined
themselves round the understanding from the associations of words and names.”5

In this regard, an injection of true philosophy—which, when it is true, has every-
thing to do with being precise and saying what we mean—could do us a great deal
of good. On the other hand, we ought not judge a word, necessarily, by its length.
There are words imported from other fields—say, from anthropology, linguistics, or
philosophy itself—that are as precise in those fields as “manifold,” “variety,” “dif-
feomorphism,” and “surgery” are in mathematics. In the right context, and used in
the right way, such words can be very useful and often necessary. The golden rule,
I think, is, as in your quotation from Einstein, to use words “. . . as simple as possi-
ble, but not simpler. . . ” But one must keep in mind that both halves of the rule are
equally essential.

In response to your very first point, I argued that grasping what it means to be
“mathematically educated” requires our going outside the mathematicians baili-
wick. Still, we must not exclude mathematicians nor, as absurd as it sounds, to

5Francis Bacon, Novum Organum, Book I, Sect. 59.
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exclude mathematics itself. So, here I certainly agree with you that something is
terribly wrong when mathematics gets pushed out of mathematics education.6 As I
have said on many occasions, it is a sad fact that most of Polya’s writings on math-
ematics education would probably be rejected by many professional mathematics
education research journals (probably—going back to my rant about statistics—on
the grounds that they were not scientific enough!). Saying how or what mathemat-
ics should be taught and, obviously, teaching mathematics should rest, it seems to
me, on mathematical experience that is broad and deep. By deep, I mean, first of
all, that one has seen enough mathematics to know that there are different levels at
which a mathematical concept or procedure can be framed. For example, one’s first
encounter with the derivative might be as the slope of the tangent to the graph of
a function or as the rate of change of a function; as one learns more mathematics
one learns that the derivative of a function is a matrix whose dimensions depend
on the dimensions of the spaces containing its range and domain; later, when one
learns about more general linear spaces, one learns to see a derivative of a func-
tion as the linear operator best approximating the function at a point in the space.
At each level, one goes, literally, deeper into the meaning of “derivative,” sees it
in a wider context, and gets closer to its foundations; teachers who have not gone
through something like this themselves will not truly know what depth means in
mathematics and, therefore, I doubt they will be very successful in persuading their
students that mathematics is deep. What I said above about esthetics too, I believe,
implies that teachers (if they are to inculcate an esthetic sense in their students) need
broad enough and, I dare say, deep enough experience doing mathematics to be able
to see the true beauty of subject;7 it is hard to see how someone who has never
worked on a difficult problem and suddenly glimpsed how the parts of the problem
harmonized into a neat solution would be able to inspire student’s delight in mathe-
matics. Mathematics educators, for their research as well as for their task as teacher
educators, need such experience even much more than teachers do. I might add that
“broad experience” takes in such things, in my view, as the history of mathematics
as well, but I won’t ride that particular hobbyhorse of mine right now. . . .

As for humanising mathematics and what you wrote earlier about the shift from
mathematics itself to the individual, I will only add this. I think, as people who care
about individuals learning mathematics, we have to care about individuals. But—
and I am agreeing with you here—this does not mean making mathematics easy and
painless. Learning mathematics, learning anything serious, is a little like mountain
climbing; it is hard work, but the view at the end is worth it; and the view is all

6I do not think this concern is yours only. If you recall, PME30 in 2006 was given the title: “Math-
ematics in the Center.” Such an obvious thing would be unnecessary to say if it were not that
mathematics had moved away from the center, or even off to the periphery.
7Nathalie Sinclair has argued (e.g. in Sinclair, N. 2004) that we should not assume esthetic ex-
perience belongs exclusively to professional mathematicians, but that all students have a kind of
esthetic faculty allowing this kind of experience. She might be right about that; however, I would
argue that the depth of one’s mathematical esthetic experience reflects the depth of one’s mathe-
matical understanding.
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the more beautiful because one has worked hard to get there. I am reminded here
of what Rilke says, writing to the young poet F. Kappus about the difficulty of
sex but more broadly about life in general: “Sex is difficult; yes. But it is difficult
things which we have been given to do; nearly everything serious is difficult, and
everything is serious.”8 Things which humanize us are not always easy, indeed, are
rarely so; there is no cutting corners. In this way, Ted, I think your “MER, some last
words” are mine as well, mutatis mutandis. . . .9

Best wishes,
Michael.
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The Harmony of Opposites: A Response
to a Response

Norma Presmeg

After months of waiting, when authors finally receive the decision letter from an
editor for a manuscript that has been submitted to a refereed journal, the decision is
often a relatively negative one, rejecting the manuscript but asking for a complete
revision and resubmission. In reading the reviews, the author may become discour-
aged, perceiving that at least some of the reviewers did not interpret the contents of
the manuscript in the way that was intended. This phenomenon is consonant with
the three kinds of interpretant posited by Peirce (1998), namely, the intensional, the
effectual, and the communicational interpretants, which are, respectively, “a deter-
mination of the mind of the utterer”, “a determination of the mind of the interpreter”,
and “a determination of that mind into which the minds of utterer and interpreter
have to be fused in order that any communication should take place” (p. 478). Peirce
called the latter fused mind the commens. As an editor, I attempt to help writers to
see that “misinterpretation” by a reviewer is something for which to be grateful,
because it shows the author that more clarity is needed in the writing. It is in this
spirit that I respond to the letters between Ted Eisenberg and Michael Fried. One
could consider my position paper on the topic “Mathematics education research:
Embracing arts and sciences” to be the intensional interpretant in this case. Then
Eisenberg and Fried’s response is the effectual interpretant. My current response to
their interpretant is an attempt to establish a commens, a fused mind for the purpose
of establishing communication.

This chapter is a reprint of an article published in ZDM—The International Journal on
Mathematics Education (2009) 41, 151–153. DOI 10.1007/s11858-008-0133-9.

This paper is a response to Theodore Eisenberg and Michael Fried’s critique (“Dialogue on
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1 Distinctions Among Terms

Before responding directly to the points raised by Eisenberg and Fried,1 I want to
point out that we are talking about three central topics, and in the zeal to establish
a point it is easy to slide among these three referents, namely, mathematics, mathe-
matics education, and mathematics education research (MER). These three referents
are related, but they are distinct. Mathematics refers to the content itself, the body
of established knowledge in this field. Mathematics education refers to the teaching
and learning of this content by people at all levels. MER refers to attempts to find out
more about what is involved in the latter endeavor, that is, to investigate elements
of what Michael rightly points out is a complex phenomenon, human teaching and
learning of mathematics.

My paper was not about mathematics, nor about mathematics education as such;
it was about MER, as the title indicates. According to the title of Ted and Michael’s
response paper (“Dialogue on mathematics education”), they are writing about
mathematics education rather than MER; however, their text addresses elements
of this research. I agree with Ted (in his Sect. 2.1) when he claims, “Research in
mathematics education should be about the teaching and learning of mathematics;
its definition is that simple to state.” However, I would add just three words to clarify
what is meant: “Research in mathematics education should be about the investiga-
tion of the teaching and learning of mathematics.” Then it is clear that “individuals
worrying about better ways to teach and learn mathematics” are not, simply by that
action, doing MER. More is required: if one thinks of research as disciplined in-
quiry, then some form of systematic investigation is needed—and that is where not
only scientific methods, but also all of the methodologies of the human sciences
may have a role to play in casting light on the varied and complex phenomena under
investigation.

2 Mathematics

Although my paper was not about mathematics itself, let me clarify some aspects
of the way that I view the nature of mathematics, because this aspect was a caveat
introduced by Ted. It goes without saying that without mathematics there would be
no mathematics education, and hence also no MER. However, following research
that showed the effects of beliefs about the nature of mathematics on its teaching
and learning (summarized well in the book edited by Leder et al. 2002), the way
that mathematics itself is viewed becomes a foundational issue, not only affecting
mathematics education but therefore also relevant to its research.

Ted claims that “mathematics and its teaching and learning are driven by fear
and competition” (Sect. 2.1), rather than by a sense of the beauty of mathematics,

1In the friendly spirit of the response paper by Ted Eisenberg and Michael Fried, I shall hereafter
refer to them as Ted and Michael.
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or an aesthetic sense as attested by the elegance of a proof. It is an unfortunate fact
that “fear and competition” have a role to play not only in the press for mathemati-
cians to publish their results, but also in the publish-or-perish syndrome impinging
on mathematics education researchers in academia. But the need to attain promotion
and tenure should not be put forward as a defining factor of the nature of mathemat-
ics. I remember being thrilled when I first read Davis and Hersh’s (1981) account
(also cited by Michael in Sect. 3) of what is involved in “the mathematical expe-
rience”, because it resonated with my own perception of how the inexorable logic
of mathematics has an austere beauty of its own. Thus, I do believe with Sinclair
(2004, 2006) that aesthetics (in both senses—artistic beauty and sensory awareness,
as the derivation of the word, aisthesis, implies) have a role to play in experiencing
mathematics.

With regard to the nature of mathematics, Ted and I are in agreement that ab-
straction is important. The form is what matters, without any necessary connections
to sensory experience, even if such experience is essential because it is the only way
that we can write down or communicate the form to others (in representations—or
better, inscriptions, the term that I prefer, e.g., Presmeg 2006). The relationships
among what Peirce (1998) would designate the objects of mathematics, the signs
that stand for these objects in mathematical symbolism, and the interpretants that
we create for them, are a deep subject that is beyond the purpose of this response
paper. But the point is that these objects are abstract, no matter what signs are cre-
ated to stand for them. Perhaps that is why mathematicians resort to metaphors to
describe the objects of their cognition (Sfard 1994).

3 Mathematics Education

I also agree heartily with Ted that “watering down” of the content of mathematics
in order to remove the challenge of learning mathematics just so that learners will
“feel good” is totally unacceptable. The following quotation, by Hiebert and Wearne
(2003), captures not only the spirit of the reform initiated by the National Council
of Teachers of Mathematics in the USA (2000), but also what I have believed and
tried to put into practice in my own teaching, at high school and at college levels,
for well over three decades.

Allowing mathematics to be problematic for students requires a very different mind-set
about what mathematics is, how students learn mathematics with understanding, and what
role the teacher can play. Allowing mathematics to be problematic for students means pos-
ing problems that are just within students’ reach, allowing them to struggle to find solutions
and then examining the methods they have used. Allowing mathematics to be problematic
requires believing that all students need to struggle with challenging problems if they are to
learn mathematics deeply. (p. 6)

It is ironic that Ted claims (Sect. 2.5) that “Norma Presmeg’s paper talks about
making mathematics more humane and I think we both know what she means by
this”—implying a watering down of the content. In the first place, my paper was
not addressing mathematics itself, nor its teaching directly. In the second place, this
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claim is in direct opposition to my beliefs, as captured in the foregoing quotation.
I do believe that learning and doing mathematics can be enjoyable—another pos-
sible concomitant of “humane”—but the joy comes from meeting the challenge in
solving a mathematics problem, and recognizing harmony and unity where it was
not perceived previously. I can resonate with Martin Gardiner’s remark, as quoted
by Ted (Sect. 2.4), that he could write and explain things so clearly because he had
to work so hard to understand them. I have witnessed many prospective teachers
doing well in the classroom because of the effort they themselves had to put in, in
order to understand the mathematical content deeply.

4 Mathematics Education Research

MER was the central focus of my paper Mathematics education research: embrac-
ing arts and sciences. The main thrust of the paper was a parallel between the “war”
of the arts and sciences in my own early thinking (as I struggled between aspira-
tions to become a theoretical physicist or to take up music and poetry), and the
“wars” among paradigms in the history of MER over the last half century. (See the
book by Latterell 2005, for one view of the “math wars” and their impact on math-
ematics education in the USA.) Although the conclusion of my paper dealt with
unity and harmony, the transitions between paradigms were certainly not without
contestation, as the term “war” implies. In emulating the hard sciences, statistical
research in mathematics education was the only kind of research deemed worthy
of the name in the 1960s and 1970s. But this research, at that time, had little or no
impact on the teaching and learning of mathematics in actual classrooms (Krutetskii
1976). Thus the paradigm had to change. Ted is right (Sect. 2.2) that a knowledge
of statistics became less mandatory in the qualitative research paradigm that gained
ascendance in the 1990s as the paradigm “moved on” from statistics: the pendulum
swung too far! But the whole point of my paper was that the pendulum swung back
again to a far more stable and balanced position in the decade of the 2000s. More
and more of the new generation of mathematics education researchers are fluent in
“ANOVA, ANCOVA, regression and correlation, factor analysis, biased estimators,
etc.” (Sect. 2.2). The point is that both qualitative and quantitative methodologies
are now acknowledged to be important, for different reasons and with different pur-
poses, in investigating the phenomena of mathematics education.

5 Balance and Harmony

“Mixed methods” of research are commonplace in mathematics education investiga-
tions now, as researchers try to combine the deep insights of qualitative case study
methods and others, with the generalizability and precision afforded by statistical
designs and quasi-experimental methods (“quasi” because it is often not possible
to include random assignment of students in whole-class sampling). The field can
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only benefit from the enlarged arsenal of methodological tools now available and
accepted in MER. It is not that validity and reliability belong only to statistical re-
search. Variants of these criteria have been hardwon in the decades of the ascendance
of qualitative methodologies, and it is now taken for granted that such studies will
use elements of quality control such as triangulation, respondent validation (“mem-
ber checks”), and full reporting (“paper trails”). These terms should not be viewed
as mere jargon for the sake of impressing or providing pseudo-scientific quality
where it does not exist (Ted’s Sect. 2.3). These terms are just as necessary in a qual-
itative paradigm as are validity, reliability, hypothesis-testing, and significance in a
quantitative one. Now the paradigms are no longer at war in the minds of current
mathematics education researchers.

There is also no war now, in the arts and sciences in my own nature. I use reason
and logic in all aspects of my work: but I also use the more creative artistic human
elements of my nature, not only in literary work, editing, and research, but also in
my teaching of college level mathematics and mathematics methods courses. It is in
that sense that I have “come home”. My intent was in no way to drive others, such
as Ted, from their homes. I hope that this “response to a response” has helped to
clarify what I was trying to express. I am grateful to both Ted and Michael for their
deep thought, and for the push to elucidate my meanings.
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