WebSphere. HUi\ElE

Patterns: Service-
Oriented Architecture
and Web Services

Design service-oriented architectures
using Web services

~ . .
Explore service bus, directory,
and gateway solutions

~ Learn by example with
practical scenarios

Mark Endrei
Jenny Ang
Ali Arsanjani
Sook Chua
Philippe Comte
Pal Krogdahl
Min Luo

Tony Newling

ibm.com/redbooks Red h OOkS

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

Patterns: Service-Oriented Architecture and Web
Services

April 2004

SG24-6303-00

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

First Edition (April 2004)

This edition applies to IBM WebSphere Application Server base V5.1, IBM WebSphere
Application Server Network Deployment V5.0.2.4, IBM WebSphere MQ V5.3, and IBM
WebSphere Studio Application Developer V5.1.1, for use with IBM AIX 5.1, Red Hat Linux
Advanced Server V2.1, and Microsoft Windows 2000.

© Copyright International Business Machines Corporation 2004. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Contents

NotiCeS e iX
Trademarkso e X
Preface Xi
The team that wrote thisredbook. Xi
Become a publishedauthor Xiv
Comments WelCOME. i e e e Xiv
Chapter 1. Patternsfore-business 1
1.1 The Patterns for e-business layered assetmodel.................... 3
1.2 How to use the Patterns fore-business 4
1.2.1 Business, Integration, or Composite pattern, or a Custom design ... 5
1.2.2 Selecting Applicationpatterns. 10
1.2.3 Review Runtime patterns 11
1.2.4 Review Product mappings, 14
1.2.5 Review guidelines and related links 14
1.3 SUMMaANY . . o e 15
Chapter 2. Service-oriented architecture 17
2.1 Overview of service-oriented architecture. 18
2.1.1 The business driversforanewapproach. 18
2.1.2 Service-oriented architecture asa solution. 20
2.1.3 A closer look at service-oriented architecture 24
2.1.4 Service-oriented architecture benefits. 30
2.2 Web services architecture. 31
2.2.1 WhatWebservicesare. iiiiiiiininnn. 31
2.2.2 Web service interoperability 34
2.3 Web services and service-oriented architecture 37
2.4 Enterprise Service Bus e 38
2.4.1 BasicWebservices. 38
2.4.2 What an Enterprise Service Busis 39
243 ThelIBMVISION e e 40
2.5 Where to find more information. 43

Chapter 3. Service-oriented architecture and Patterns for e-business . . 45

3.1 Using service-oriented architecture with Patterns for e-business 46
3.2 Self-Service businesspattern i 47
3.3 Extended Enterprise business pattern 48
3.4 Application Integration pattern. 49

© Copyright IBM Corp. 2004. All rights reserved. iii

3.4.1 Process Integrationconcepts 49

3.4.2 Application Integration application patterns 50
3.4.3 Direct Connection application pattern. 52
3.4.4 Broker application pattern. i 54
3.4.5 Serial Process application pattern., 55
3.4.6 Parallel Process applicationpattern 57
3.5 Runtimepatterns. 58
3.5.1 Nodetypes 58
3.5.2 Runtime patterns for Direct Connection 62
3.5.3 Runtime patterns forBroker, 67
3.6 Product mappingso oot e 69
3.6.1 Products used inthese mappings.ooviiu.. 70
3.6.2 Product mappings.ot e 72
Chapter 4. Service-oriented architecture approach.................. 79
4.1 The SOA approach and Patterns for e-business. 80
4.1.1 Serviceidentification. 80
4.1.2 Patterns for e-businessand SOA 80
4.2 Business scenario: Supply chain management. 82
4.3 Stepsofthe SOAapproach. i 83
4.3.1 Domaindecomposition i 85
4.3.2 Goal-service modelcreation.................. 90
4.3.3 Subsystemanalysis 92
4.3.4 Serviceallocation 96
4.3.5 Component specification. 97
4.3.6 Structure components and services using patterns 98
4.3.7 Technology realization mapping, 100
4.4 Summary and conclusion e 104
4.5 Where to find more information. 104
Chapter 5. Technologyoptions 107
54 Introduction e 109
5.1.1 Advantagesof Webservices. i .. 109
5.1.2 Disadvantages of Web services 109
B2 TransSpPOrt e 110
52 HTTP. o e 110
5.2.2 JavaMessage Service 111
5.2.3 Simple Mail Transfer Protocol. 113
5.2.4 HTTPR ... e e 115
5.2.5 Emerging standards fortransport oL 115
5.3 Service communication protocol 116
5.3.1 SOAP .. 117
5.4 Servicedescription e 120

iv Patterns: Service-Oriented Architecture and Web Services

541 XML. ... 121

5.4.2 WSDL ..o 123
5.4.3 ebXML.o 125
5.5 SEIVICE ..ttt e e e 128
5.5.1 WebservicesandJ2EE L. 129
5.5.2 Web Services Invocation Framework 132
5.6 BUSINESS PrOCESSttt e 133
5.6.1 WSFLand XLANG e 135
5.6.2 Emerging standards for business process 136
5.7 Service registry 139
5.7.1 Static and dynamic Web services.......................... 140
B5.7.2 UDDI . .. 141
5.7.3 Emerging standards for serviceregistry 143
5.8 PoliCy. . .. 144
5.8.1 Emerging standards forpolicy. 144
5.9 SECUNtY . . ottt 145
5.9.1 Security atthe transportlayer.......... 149
5.9.2 Security at the service communication protocol layer. 150
5.9.3 Security at the service descriptionlayer 150
5.9.4 Emerging standards forsecurity o . 151
5.9.5 Where to find more information. 153
5140 Transaction 153
5.10.1 Emerging standards for transaction 154
5.10.2 Where to find more information. 155
511 Management e 156
5.11.1 Emerging standards for management. 157
Chapter 6. HTTP servicebus 159
6.1 BuSINESS SCeNArio.ottt 160
6.2 Designguidelines 160
6.2.1 Design OVeIVIEWttt 161
6.2.2 Service design considerations o 164
6.2.3 Component design considerations 180
6.2.4 Object design considerations 186
6.3 Development guidelines i 187
6.3.1 Gettingstarted. 188
6.3.2 Importing the supplied WSDLfiles 188
6.3.3 Service development considerations 190
6.3.4 Service consumer (client) development considerations 200
6.3.5 Testing considerations 210
6.4 Runtime guidelines 214
6.4.1 Service deployment considerations 214
6.5 Bestpractices 223

Contents v

6.5.1 Designbestpractices i ..
6.5.2 Interoperability bestpractices
6.5.3 Java implementation best practices
6.5.4 Performance bestpractices

Chapter 7. JMS servicebus
7.1 BUSINESS SCENANIO . . . o oottt e
7.2 Designguidelines
7.2.1 DeSign OVEIVIEWottt
7.2.2 Service design considerations L.
7.2.3 Component design considerations
7.2.4 Object design considerations
7.3 Development guidelines i
7.3.1 Service development considerations
7.3.2 Service consumer (client) development considerations
7.4 Runtime guidelines
7.4.1 Service deployment considerations
7.4.2 Service consumer (client) deployment considerations
7.4.3 Testing considerations i

Chapter 8. Servicedirectory.
8.1 Business scenario.
8.2 Designguidelines e
8.2.1 Design OVEerIVIEWt e
8.2.2 Service design considerations
8.3 Development guidelines i
8.3.1 UDDI developmenttoolsand APIs
8.3.2 Service development considerations
8.3.3 Service consumer (client) development considerations
8.3.4 Testingconsiderations
8.4 Runtime guidelines
8.4.1 Service deployment considerations
8.5 Bestpractices
8.5.1 Using UDDI and WSDL together.
8.5.2 WebSphere Studio and WebSphere UDDI registry differences . . .
8.5.3 Dynamic or static discovery during the Web service life cycle
8.5.4 LDAP and UDDI considerations

Chapter 9. Web servicegateway
9.1 BUSINESS SCENANO o oo e
9.2 IBMWeb ServicesGatewayciiiiiiiiiie
9.3 Designguidelines e
9.3.1 Design OVEIVIEWottt
9.3.2 Service design considerations

Patterns: Service-Oriented Architecture and Web Services

9.4 Runtime guidelines 289

9.4.1 Service deployment considerations 289
9.4.2 Service consumer (client) deployment considerations 297
9.4.3 Testing considerations 300
Chapter 10. e-business on demand and Service-oriented architecture. 301
10.1 e-businessondemand 302
10.2 The on demand operating environment 304
10.2.1 Integration. 307
10.2.2 Automation e 313
10.2.3 Virtualization 318
10.3 Service-oriented architecture forondemand 320
10.3.1 Thestartingpoint 321
10.3.2 Building the on demand operating environment 322
10.3.3 Ondemand technologies 324
Appendix A. Scenarios lab environment.......................... 329
Lab SetUp . . . oo 330
Sample application setup. e 330
Appendix B. Additional material 333
Locating the Web material i 333
Usingthe Webmaterial i 333
System requirements for downloading the Web material 334
How to use the Web material 334
Abbreviations and acronymso 335
Related publications 337
IBM Redbooks 337
Other publications 337
ONliNE rESOUICES . .\t vttt e e e e e 338
Howtoget IBM Redbooks 339
INdeX . .. e 341

Contents vii

viii Patterns: Service-Oriented Architecture and Web Services

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.

© Copyright IBM Corp. 2004. All rights reserved. ix

Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

alphaWorks® Everyplace® RACF®

AIX® IBM® S/360™
Cloudscape™ ibm.com® Tivoli®
CICS® IMS™ TotalStorage®
developerWorks® iSeries™ WebSphere®
Domino® Lotus® XDE™

DB2 Universal Database™ pSeries® z/OS®

DB2® Rational® zSeries®
e-business on demand™ Redbooks™

@server ™ Redbooks (logo) (@@ ™

The following terms are trademarks of other companies:

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United
States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.
UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure
Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.

X Patterns: Service-Oriented Architecture and Web Services

Preface

The Patterns for e-business are a group of proven, reusable assets that can be
used to increase the speed of developing and deploying Web applications. This
IBM® Redbook focuses how the Self-Service and Extended Enterprise business
patterns, and the Application Integration pattern, can be used to start
implementing solutions using the service-oriented architecture approach.

It guides you through the process of selecting and applying Business, Application
and Runtime patterns. Next, the platform-specific Product mappings are
identified based upon the selected Runtime pattern.

The book presents guidelines for applying the Patterns and service-oriented
architecture approach to a sample business scenario and for selecting Web
services technologies.

It provides detailed design, development, and runtime guidelines for several
scenarios, including synchronous and asynchronous service buses, UDDI
service directory, and the Web Services Gateway.

The book concludes with an examination of how a service-oriented architecture
can provide a step in the direction of IBM’s e-business on-demand vision.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.

© Copyright IBM Corp. 2004. All rights reserved. xi

Pal Krogdahl, Jenny Ang, Tony Newling, Not present: Ali Arsanjani, Sook Chua)

Mark Endrei is an IT Architect at the International Technical Support
Organization, Raleigh Center. He writes about WebSphere® and Patterns for
e-business. Before joining the ITSO early in 2001, Mark worked in IBM Global
Services Australia as an IT Architect. He holds a bachelor's degree in Computer
Systems Engineering from the Royal Melbourne Institute of Technology, and an
MBA in Technology Management from Deakin University/ APESMA.

Jenny Ang is a Consulting IT Architect with the Enterprise Architecture and
Technology Center of Excellence, IBM Global Services US. She has in-depth
knowledge of all phases of the software development life cycle applying
object-oriented methods and techniques. As a solution and application architect,
she is currently focused on service-oriented architectures, Web services and
Web-based development projects which exploit J2EE technologies. She holds a
Bachelor of Engineering degree in Civil and Structural Engineering and a
post-graduate diploma in Systems Analysis from the National University of
Singapore.

Ali Arsanjani is a Senior Consulting IT Architect and Chief Architect in the SOA
and Web Service Center of Excellence in IBM Global Services, US. He has 21
years of experience in software development and architecture. He holds a PhD in
Computer Science from DeMontefort University. His areas of expertise include
patterns, component-based and service-oriented software architecture and
methods. He has written extensively on patterns, service-oriented architecture,
component-based development and integration, business rules and dynamically
re-configurable software architecture.

Xii Patterns: Service-Oriented Architecture and Web Services

Sook Chua is a Senior Consultant with IBM Business Consulting Services. She
has more than 10 years of experience in architecting and implementing
enterprise-wide, mission-critical systems. She holds a Master of Science in
Software Engineering from the National University of Singapore. Her areas of
expertise include object-oriented architectural design and leading custom
application development using J2EE technologies.

Philippe Comte is an IBM SWG IT Architect in France. He has 20 years of
experience in IT. He has a degree in Business Management from the
ESSEC-Paris School of Economics. His areas of expertise include large
centralized applications, collaborative and middleware systems.

Pal Krogdahl is a Consulting IT Architect with IBM Business Consulting
Services, IGS in Sweden. He has been working for IBM since 1998, in various
areas such as software development, technical pre-sales consulting and solution
architecture. His areas of expertise are in Distributed Computing, middleware
and Application Services Architecture, with focus on Enterprise Application
Integration (EAI) and service-oriented architecture (SOA).

Dr Min Luo is a Certified Consulting IT Architect in the IBM Global Service
Center of Excellence for Enterprise Architecture and Technology, and for Service
Oriented Architecture and Web Services. He has over 15 years of IT industry
experience, and has taught undergraduate and graduate Computer Science
courses for over seven years. He has successfully designed and implemented
solutions for transportation, financial, and manufacturing industries, and
large-scale government social services projects. Dr. Luo received a PhD in
Electrical Engineering from the Georgia Institute of Technology in 1992,
specializing in Network Simulation and Optimization. He also holds an MS in
Computer Science (1987) and BS in Computer Information Systems (1981).

Tony Newling is a Consulting IT Architect with Software group in IBM Australia.
He has 17 years of experience in the IT industry, including roles in systems
programming, education, and customer technical support. His areas of expertise
include application and process integration. He holds a B.S. degree in Geology
from Australian National University, and a Graduate Diploma in Computing from
Macquarie University, Australia.

Thanks to the following people for their contributions to this project:
Jonathan Adams, IBM UK

Jeff Estefan, NASA/Jet Propulsion Laboratory
Michele Galic, IBM ITSO Raleigh

Beth Hutchison, IBM UK

Bart Jacob, IBM ITSO Austin

Preface xiii

Dr. Keith Jones, IBM Boulder
Martin Keen, IBM ITSO Raleigh
Barbara McKee, IBM Austin
Kadhar Masthan, Cognizant Technology Solutions
Rimas Rekasius, IBM Chicago
Rachel Reinitz, IBM Mountain View
Linda Robinson, IBM ITSO Raleigh
Rick Robinson, IBM UK

Andre Tost, IBM Rochester

Guru Vasudeva, IBM Cincinnati
Paul Verschueren, IBM UK

Olaf Zimmermann, IBM Germany

Julie Czubik, IBM ITSO Poughkeepsie

Become a published author

Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,

Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

Xiv Patterns: Service-Oriented Architecture and Web Services

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

» Use the online Contact us review redbook form found at:
ibm.com/redbooks

» Send your comments in an Internet note to:
redbook@us . ibm.com

» Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 662

P.O. Box 12195

Research Triangle Park, NC 27709-2195

Preface xv

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

XVi Patterns: Service-Oriented Architecture and Web Services

Patterns for e-business

This redbook is part of the Patterns for e-business series. In this introductory
chapter we provide an overview of how IT architects can work effectively with the
Patterns for e-business.

The role of the IT architect is to evaluate business problems and build solutions
to solve them. To do this, the architect begins by gathering input on the problem,
an outline of the desired solution, and any special considerations or
requirements that need to be factored into that solution. The architect then takes
this input and designs the solution. This solution can include one or more
computer applications that address the business problems by supplying the
necessary business functions.

To improve the process over time, we need to capture and reuse the experience
of the IT architects in such a way that future engagements can be made simpler
and faster. We do this by capturing the knowledge gained from each
engagement and using it to build a repository of assets. IT architects can then
build future solutions based on these proven assets. This reuse saves time,
money, and effort; and in the process, it helps ensure delivery of a solid, properly
architected solution.

The IBM Patterns for e-business help facilitate this reuse of assets. Their
purpose is to capture and publish e-business artifacts that have been used,
tested, and proven to be successful. The information captured by them is
assumed to fit the majority, or 80/20, situation.

© Copyright IBM Corp. 2004. All rights reserved. 1

The IBM Patterns for e-business are further augmented with guidelines and
related links for their better use.

The layers of patterns, along with their associated links and guidelines, allow the
architect to start with a problem and a vision for the solution, and then find a
pattern that fits that vision. Then, by drilling down using the patterns process, the
architect can further define the additional functional pieces that the application
will need to succeed. Finally, he can build the application using coding
techniques outlined in the associated guidelines.

2 Patterns: Service-Oriented Architecture and Web Services

1.1 The Patterns for e-business layered asset model

The Patterns for e-business approach enables architects to implement
successful e-business solutions through the re-use of components and solution
elements from proven successful experiences. The Patterns approach is based
on a set of layered assets that can be exploited by any existing development
methodology. These layered assets are structured in a way that each level of
detail builds on the last. These assets include:

>

Business patterns that identify the interaction between users, businesses,
and data.

Integration patterns that tie multiple Business patterns together when a
solution cannot be provided based on a single Business pattern.

Composite patterns that represent commonly occurring combinations of
Business patterns and Integration patterns.

Application patterns that provide a conceptual layout describing how the
application components and data within a Business pattern or Integration
pattern interact.

Runtime patterns that define the logical middleware structure supporting an
Application pattern. Runtime patterns depict the major middleware nodes,
their roles, and the interfaces between these nodes.

Product mappings that identify proven and tested software implementations
for each Runtime pattern.

Best-practice guidelines for design, development, deployment, and
management of e-business applications.

These assets and their relationships to each other are shown in Figure 1-1 on
page 4.

Chapter 1. Patterns for e-business

3

Customer
requirements

Composite
patterns

Business
patterns

Integration
patterns

Application
patterns

Runtime

patterns Best-Practice Guidelines

o Application Design

o Systems Management

o Performance

o Application Development
e Technology Choices

Product
mappings

Figure 1-1 The Patterns for e-business layered asset model

Patterns for e-business Web site
The Patterns Web site provides an easy way of navigating through the layered

Patterns assets to determine the most appropriate assets for a particular

engagement.

For easy reference, see the Patterns for e-business Web site at:
http://www.ibm.com/developerWorks/patterns/

1.2 How to use the Patterns for e-business

As described in the last section, the Patterns for e-business have a layered
structure where each layer builds detail on the last. At the highest layer are
Business patterns. These describe the entities involved in the e-business
solution.

4 Patterns: Service-Oriented Architecture and Web Services

http://www.ibm.com/developerWorks/patterns/

Composite patterns appear in the hierarchy shown in Figure 1-1 on page 4 above
the Business patterns. However, Composite patterns are made up of a number of
individual Business patterns, and at least one Integration pattern. In this section,
we discuss how to use the layered structure of Patterns for e-business assets.

1.2.1 Business, Integration, or Composite pattern, or a Custom
design

When faced with the challenge of designing a solution for a business problem,
the first step is to get a high-level view of the goals you are trying to achieve. A
proposed business scenario should be described and each element should be
matched to an appropriate IBM Pattern for e-business. You may find, for
example, that the total solution requires multiple Business and Integration
patterns, or that it fits into a Composite pattern or Custom design.

For example, suppose an insurance company wants to reduce the amount of
time and money spent on call centers that handle customer inquiries. By allowing
customers to view their policy information and request changes online, the
company will be able to cut back significantly on the resources spent handling
this by phone. The objective is to allow policy holders to view their policy
information stored in legacy databases.

The Self-Service business pattern fits this scenario perfectly. It is meant to be
used in situations where users need direct access to business applications and
data. Let us take a look at the available Business patterns.

Business patterns

A Business pattern describes the relationship between the users, the business
organizations or applications, and the data to be accessed.

Chapter 1. Patterns for e-business 5

There are four primary Business patterns, explained in Table 1-1.

Table 1-1 The four primary Business patterns

Business Patterns Description Examples

Applications where users

Self-Service interact with a business | Simple Web site
(User-to-Business) via the Internet or applications
intranet
Applications where users
Information Aggregation can extrgct useful Business intelligence,
(User-to-Data) information from large knowledge management,
volumes of data, text, Web crawlers
images, etc.

Applications where the
Collaboration Internet supports E-mail, community, chat,
(User-to-User) collaborative work video conferencing, etc.
between users

Applications that link two
or more business
processes across
separate enterprises

EDI, supply chain
management, etc.

Extended Enterprise
(Business-to-Business)

It would be very convenient if all problems fit nicely into these four slots, but
reality says that things will often be more complicated. The patterns assume that
most problems, when broken down into their basic components, will fit more than
one of these patterns. When a problem requires multiple Business patterns, the
Patterns for e-business provide additional patterns in the form of Integration
patterns.

Integration patterns

Integration patterns allow us to tie together multiple Business patterns to solve a
business problem. The Integration patterns are outlined in Table 1-2 on page 7.

6 Patterns: Service-Oriented Architecture and Web Services

Table 1-2 Integration patterns

Integration Patterns Description Examples
Integration of a number
Access Integration of services through a Portals

common entry point

Application Integration

Integration of multiple
applications and data
sources without the user
directly invoking them

Message brokers,
workflow managers

These Business and Integration patterns can be combined to implement
installation-specific business solutions. We call this a Custom design.

Custom design

We can illustrate the use of a Custom design to address a business problem
through an iconic representation, shown in Figure 1-2.

Self-Service

Collaboration

Information Aggregation

Access Integration

Extended Enterprise

Application Integration

Figure 1-2 Patterns representing a Custom design

If any of the Business or Integration patterns are not used in a Custom design,
we can show the unused patterns as lighter blocks than those that are used. For
example, Figure 1-3 on page 8 shows a Custom design that does not have a
Collaboration business pattern or an Extended Enterprise business pattern for a

business problem.

Chapter 1. Patterns for e-business

7

Self-Service

Information Aggregation

Access Integration
Application Integration

Figure 1-3 Custom design with Self-Service, Information Aggregation, Access Integration
and Application Integration

A Custom design may also be a Composite pattern if it recurs many times across
domains with similar business problems. For example, the iconic view of a
Custom design in Figure 1-3 can also describe a Sell-Side Hub composite
pattern.

Composite patterns

Several common uses of Business and Integration patterns have been identified
and formalized into Composite patterns. The identified Composite patterns are
shown in Table 1-3 on page 9.

8 Patterns: Service-Oriented Architecture and Web Services

Table 1-3 Composite patterns

Composite Patterns

Description

Examples

Electronic Commerce

User-to-Online-Buying

® Www.macys.com
& Www.amazon.com

Portal

Typically designed to aggregate
multiple information sources and
applications to provide uniform,
seamless, and personalized
access for its users.

e Enterprise Intranet portal
providing self-service functions
such as payroll, benefits, and
travel expenses.

o Collaboration providers who
provide services such as e-mail
or instant messaging.

Account Access

Provide customers with
around-the-clock account access
to their account information.

® Online brokerage trading apps.

e Telephone company account
manager functions.

e Bank, credit card and insurance
company online apps.

Trading Exchange

Allows buyers and sellers to trade
goods and services on a public
site.

e Buyer's side - interaction
between buyer's procurement
system and commerce
functions of e-Marketplace.

e Seller's side - interaction
between the procurement
functions of the e-Marketplace
and its suppliers.

services from prospective sellers
across the Web.

Sell-Side Hub The seller owns the e-Marketplace
. and uses it as a vehicle to sell www.carmax.com (car purchase)
(Supplier) goods and services on the Web.
The buyer of the goods owns the
e-Marketplace and uses itas a
. vehicle to leverage the buying or
Buy-Side Hub procurement budget in soliciting WWW.Wre.org
(Purchaser) the best deals for goods and (WorldWide Retail Exchange)

The makeup of these patterns is variable in that there will be basic patterns
present for each type, but the Composite can easily be extended to meet

additional criteria. For more information on Composite patterns, refer to Patterns
for e-business: A Strategy for Reuse by Jonathan Adams, Srinivas Koushik, Guru
Vasudeva, and George Galambos.

Chapter 1. Patterns for e-business 9

1.2.2 Selecting Application patterns

Once the Business pattern is identified, the next step is to define the high-level
logical components that make up the solution and how these components
interact. This is known as the Application pattern. A Business pattern will usually
have multiple possible Application patterns. An Application pattern may have
logical components that describe a presentation tier for interacting with users, an
application tier, and a back-end application tier.

Application patterns break the application down into the most basic conceptual
components, identifying the goal of the application. In our example, the
application falls into the Self-Service business pattern and the goal is to build a
simple application that allows users to access back-end information. The
Self-Service::Directly Integrated Single Channel application pattern shown in
Figure 1-4 fulfills this requirement.

Back-End

Application 2
. synchronous synch/
FlEsEiE A VI\./ebt. asynch Back-End
pplication Application 1

Application node Application node containing
Read/Write data containing new or existing components with
modified components no need for modification

or which cannot be changed

Figure 1-4 Self-Service::Directly Integrated Single Channel

The Application pattern shown consists of a presentation tier that handles the
request/response to the user. The application tier represents the component that
handles access to the back-end applications and data. The multiple application
boxes on the right represent the back-end applications that contain the business
data. The type of communication is specified as synchronous (one request/one
response, then next request/response) or asynchronous (multiple requests and
responses intermixed).

10 Patterns: Service-Oriented Architecture and Web Services

Suppose that the situation is a little more complicated than that. Let's say that the
automobile policies and the homeowner policies are kept in two separate and
dissimilar databases. The user request would actually need data from multiple,
disparate back-end systems. In this case there is a need to break the request
down into multiple requests (decompose the request) to be sent to the two
different back-end databases, then to gather the information sent back from the
requests, and then put this information into the form of a response (recompose).
In this case the Self-Service::Decomposition application pattern shown in

Figure 1-5 would be more appropriate.
Back-End
Application 2

Decomp/ Sy”ChL Back-End
Recomp async Application 1

synchronous

Presentation

s Transient data icati
Application node ; Application node
I:I C(?r?taining new @ - Work in progress n containing existing Read/
- Cached committed data components with no need Write data

or modified - Staged data (data replication [P :
components 3 Ow)g (p for modification or which

cannot be changed

Figure 1-5 Self-Service::Decomposition

This Application pattern extends the idea of the application tier that accesses the
back-end data by adding decomposition and recomposition capabilities.

1.2.3 Review Runtime patterns

The Application pattern can be further refined with more explicit functions to be
performed. Each function is associated with a runtime node. In reality these
functions, or nodes, can exist on separate physical machines or can co-exist on
the same machine. In the Runtime pattern this is not relevant. The focus is on the
logical nodes required and their placement in the overall network structure.

As an example, let's assume that our customer has determined that his solution
fits into the Self-Service business pattern and that the Directly Integrated Single
Channel pattern is the most descriptive of the situation. The next step is to
determine the Runtime pattern that is most appropriate for his situation.

Chapter 1. Patterns for e-business 11

He knows that he will have users on the Internet accessing his business data and
he will therefore require a measure of security. Security can be implemented at
various layers of the application, but the first line of defense is almost always one
or more firewalls that define who and what can cross the physical network
boundaries into his company network.

He also needs to determine the functional nodes required to implement the

application and security measures. The Runtime pattern shown in Figure 1-6 is
one of his options.

Demilitarized Zone

Outside World (DMZ)

Internal Network

)
Public Key Directory and
Infrastructure

Security
”””” Services

. \
Domain Name
Server |

—mZom-4dzZ—

Web

Application
Server

Protocol Firewall

Domain Firewall

Existing
Applications
and Data

\—/ T
Directly Integrated Single Channel application
Presentation — Application

N\ Application
\

Figure 1-6 Directly Integrated Single Channel application pattern::Runtime pattern

By overlaying the Application pattern on the Runtime pattern, you can see the
roles that each functional node will fulfill in the application. The presentation and
application tiers will be implemented with a Web application server, which
combines the functions of an HTTP server and an application server. It handles
both static and dynamic Web pages.

Application security is handled by the Web application server through the use of
a common central directory and security services node.

12 Patterns: Service-Oriented Architecture and Web Services

A characteristic that makes this Runtime pattern different from others is the
placement of the Web application server between the two firewalls. The Runtime
pattern shown in Figure 1-7 is a variation on this. It splits the Web application
server into two functional nodes by separating the HTTP server function from the
application server. The HTTP server (Web server redirector) serves static Web
pages and redirects other requests to the application server. It moves the
application server function behind the second firewall, adding further security.

Demilitarized Zone

Outside World (DMZ) Internal Network
7777777777)
{ \
: Public Key | Directory and
. Infrastructure Security
%/‘ | _ _ Services
= =
Domainvame) T | |8 | wes |[E
pEomanpiamey - = = Application
! Server R = Server L o —
""" T ’L(N 8 Redirector '%
- o o £
£ e e o
T r a
! User o

Existing
Applications
and Data

\—/ T
Directly Integrated Single Channel application
\.A

Figure 1-7 Directly Integrated Single Channel application pattern::Runtime pattern:
Variation 1

Presentation —{ Application

pplication

These are just two examples of the possible Runtime patterns available. Each
Application pattern will have one or more Runtime patterns defined. These can
be modified to suit the customer’s needs. For example, the customer may want to
add a load-balancing function and multiple application servers.

Chapter 1. Patterns for e-business 13

1.2.4 Review Product mappings

The last step in defining the network structure for the application is to correlate
real products with one or more runtime nodes. The Patterns Web site shows
each Runtime pattern with products that have been tested in that capacity. The
Product mappings are oriented toward a particular platform, though more likely
the customer will have a variety of platforms involved in the network. In this case,
it is simply a matter of mix and match.

For example, the runtime variation in Figure 1-7 on page 13 could be
implemented using the product set depicted in Figure 1-8.

Demiilitarized zone Internal network

- Directory and o Windows 2000 + SP3 \'Nve\z nﬁiﬁ;&%’i’g‘%
° Windows 2000 +SP3 Security « IBM SecureWay Directory VV3.2.1 + IBMWebSphere Application
* IBM WebSphere Application Grriters o [BMHTTP Server 1.3.19.1 Server V5.0
Server V5.0 HTTP Plug-in .

* IBMGSKit 5.0.3

* IBMHTTP Server 1.3.26 + IBM DB2 UDB EE V7.2 + FP5

© IBMHTTP Server 1.3.26
* |BM DB2 UDB ESE 8.1

* Web service EJB application

N JCA Option:
. * Z/OS Release 1.3
ke = = Existing « IBM CICS Transaction Gateway
S 2 $ Applications |, V5.0
[) and Data ¢ IBM CICS Transaction Server
3 £ webserver || = V22
o = ; + CICS G-application
o [} Redirector c pp
- g £
5 s £
o o <) JMS Option:
o o * Windows 2000 + SP3
* |BM WebSphere Application

Server V5.0
* IBM WebSphere MQ 5.3
* Message-driven bean application

» Windows 2000 + SP3

* |BM WebSphere Application
Server V5.0

JMS Option add: * Windows 2000 + SP3

» IBM WebSphere MQ 5.3 * |BM DB2 UDB ESE V8.1

Figure 1-8 Directly Integrated Single Channel application pattern: Windows 2000 Product mapping

1.2.5 Review guidelines and related links

The Application patterns, Runtime patterns, and Product mappings are intended
to guide you in defining the application requirements and the network layout. The
actual application development has not been addressed yet. The Patterns Web
site provides guidelines for each Application pattern, including techniques for
developing, implementing, and managing the application based on the following:

» Design guidelines instruct you on tips and techniques for designing the
applications.

14 Patterns: Service-Oriented Architecture and Web Services

» Development guidelines take you through the process of building the
application, from the requirements phase all the way through the testing and
rollout phases.

» System management guidelines address the day-to-day operational
concerns, including security, backup and recovery, application management,
and so forth.

» Performance guidelines give information on how to improve the application
and system performance.

1.3 Summary

The IBM Patterns for e-business are a collected set of proven architectures. This
repository of assets can be used by companies to facilitate the development of
Web-based applications. They help an organization understand and analyze
complex business problems and break them down into smaller, more
manageable functions that can then be implemented.

Chapter 1. Patterns for e-business 15

16 Patterns: Service-Oriented Architecture and Web Services

Service-oriented
architecture

This chapter provides an introduction to service-oriented architecture. It also
introduces Web Services as an implementation of service-oriented architecture
(SOA).

In this chapter, we discuss the following topics:

» Overview of service-oriented architecture

» Web services architecture

» Web services and service-oriented architecture

» Enterprise Service Bus

» Where to find more information

© Copyright IBM Corp. 2004. All rights reserved. 17

2.1 Overview of service-oriented architecture

In this section we briefly describe the evolution of service-oriented architecture.
We then explore the relationship between component-based development and
service-oriented architecture and show how components can be the
cornerstones of the infrastructure for implementing services.

2.1.1 The business drivers for a new approach

While IT executives have been facing the challenge of cutting costs and
maximizing the utilization of existing technology, at the same time they have to
continuously strive to serve customers better, be more competitive, and be more
responsive to the business’s strategic priorities.

There are two underlying themes behind all of these pressures: Heterogeneity
and change. Most enterprises today contain a range of different systems,
applications, and architectures of different ages and technologies. Integrating
products from multiple vendors and across different platforms were almost
always a nightmare. But we also cannot afford to take a single-vendor approach
to IT, because application suites and the supporting infrastructure are so
inflexible.

Change is the second theme underlying the questions that today’s IT executives
face. Globalization and e-business are accelerating the pace of change.
Globalization leads to fierce competition, which leads to shortening product
cycles, as companies look to gain advantage over their competition. Customer
needs and requirements change more quickly driven by competitive offerings
and wealth of product information available over the Internet. In response the
cycle of competitive improvements in products and services further accelerates.

Improvements in technology continue to accelerate, feeding the increased pace
of changing customer requirements. Business must rapidly adapt to survive, let
alone to succeed in today’s dynamic competitive environment, and the IT
infrastructure must enable businesses’ ability to adapt.

As a result, business organizations are evolving from the vertical, isolated
business divisions of the 1980’s and earlier, to the horizontal
business-process-focused structures of the 1980’s and 1990’s, towards the new
ecosystem business paradigm. Business services now need to be
componentized and distributed. There is a focus on the extended supply chain,
enabling customer and partner access to business services. The CBDI Forum
Report Business Integration - Drivers and Directions illustrates this evolution of
business as shown in Figure 2-1 on page 19. You can access this CBDI report
and a related CBDI workshop titled Service Based Approach at:

18 Patterns: Service-Oriented Architecture and Web Services

http://www.cbdiforum.com/

Vertical Horizontal Ecosystem
1980s and Earlier 1980s and 1990s The New World
|

C .}

.M.

Figure 2-1 The evolution of business

How do | make my IT environment more flexible and responsive to the ever

changing business requirements? How can we make those heterogeneous
systems and applications communicate as seamlessly as possible? How can we
achieve the business objective without bankrupting the enterprise?

The IT answers/enablers have been evolving in parallel with this evolution of

business, as shown in Figure 2-2. Currently many IT executives and

professionals alike believe that now we are getting really close to providing a

satisfactory answer with service-oriented architecture.

Monoloths
Structured
Client/Server

3-Tier
N-Tier

Distributed Objects
Components
Services

Figure 2-2 The evolution of architecture

In order to alleviate the problems of heterogeneity, interoperability and ever

changing requirements, such an architecture should provide a platform for
building application services with the following characteristics:

» Loosely coupled
» Location transparent
» Protocol independent

Chapter 2. Service-oriented architecture

19

http://www.cbdiforum.com/

Based on such a service-oriented architecture, a service consumer does not
even have to care about a particular service it is communicating with because
the underlying infrastructure, or service “bus”, will make an appropriate choice on
behalf of the consumer. The infrastructure hides as many technicalities as
possible from a requestor. Particularly technical specificities from different
implementation technologies such as J2EE or .NET should not affect the SOA
users. We should also be able to reconsider and substitute a “better” service
implementation if one is available, and with better quality of service
characteristics.

2.1.2 Service-oriented architecture as a solution

Ever since the “software crisis” prompted the beginnings of software engineering,
the IT industry has been struggling to find solutions to solve the above problems.
Throughout the years, the following short list of core technology advancements
have brought us to where we are today. We will briefly discuss those core
technologies and our focus will be on how such technologies help resolve IT
problems.

Object-oriented analysis and design

Larman describes the essence of the object-oriented analysis and design as
considering “a problem domain and logical solution from the perspective of
objects (things, concepts, or entities)” in Applying UML and Patterns - An
Introduction to Object-Oriented Analysis and Design. Jacobson, et al, define
these objects as being “characterized by a number of operations and a state that
remembers the effects of these operations” in Object-Oriented Software
Engineering: A Use Case Driven Approach.

In object-oriented analysis, such objects are identified and described in the
problem domain, while in object-oriented design, they are transitioned into logical
software objects that will ultimately be implemented in a object-oriented
programming language.

With object-oriented analysis and design, certain aspects of the object (or group
of objects) can be encapsulated to simplify the analysis of complex business
scenarios. Certain characteristics of the object(s) can also be abstracted so that
only the important or essential aspects are captured, in order to reduce
complexity.

Component-based design

Component-based design is not a new technology. It is naturally evolved from
the object paradigm. In the early days of object-oriented analysis and design,
fine-grained objects were marked as a mechanism to provide “reuse”, but those
objects are at too low a level of granularity and the there are no standards in

20 Patterns: Service-Oriented Architecture and Web Services

place to make widespread reuse practical. Coarse-grained components have
become more and more a target for reuse in application development and
system integration. These coarse-grained components provide certain well
defined functionality from a cohesive set of finer-grained objects. In this way,
packaged solution suites can also be encapsulated as such “components”.

Once the organization achieves a higher level of architectural maturity based on
distinctly separate functional components, the applications that support the
business can be partitioned into a set of increasingly larger grained components.
Components can be seen as the mechanism to package, manage and expose
services. They can use a set of technologies in concert: Large-grained enterprise
components, that implement business-level use-cases, can be implemented
using newer object-oriented software development in combination with legacy
systems.

Service-oriented design

In Component-Based Development for Enterprise Systems, Allen includes the
notion of services, describing a component as “an executable unit of code that
provides physical black-box encapsulation of related services. Its service can
only be accessed through a consistent, published interface that includes an
interaction standard. A component must be capable of being connected to other
components (through a communications interface) to a larger group”.

A service is generally implemented as a course-grained, discoverable software
entity that exists as a single instance and interacts with applications and other
services through a loosely coupled, message-based communication model.
Figure 2-3 on page 22 shows important service-oriented terminology:

» Services: Logical entities, the contracts defined by one or more published
interfaces.

» Service provider: The software entity that implements a service specification.

» Service consumer (or requestor): The software entity that calls a service
provider. Traditionally, this is termed a “client”. A service consumer can be an
end-user application or another service.

» Service locator: A specific kind of service provider that acts as a registry and
allows for the lookup of service provider interfaces and service locations.

» Service broker: A specific kind of service provider that can pass on service
requests to one or more additional service providers.

Chapter 2. Service-oriented architecture 21

Applications or Services Services
4 ™ N 4 S N
] 1

Service :> Service
Consumer Locator
I

1

—> Serce
Broker
I

1

|:> Service
Provider
I

Figure 2-3 Service-oriented terminology

Interface-based design

In both component and service development, the design of the interfaces is done
such that a software entity implements and exposes a key part of its definition.
Therefore, the notion and concept of “interface” is key to successful design in
both component-based and service-oriented systems. The following are some
key interface-related definitions:

» Interface: Defines a set of public method signatures, logically grouped but
providing no implementation. An interface defines a contract between the
requestor and provider of a service. Any implementation of an interface must
provide all methods.

» Published interface: An interface that is uniquely identifiable and made
available through a registry for clients to dynamically discover.

» Public interface: An interface that is available for clients to use but is not
published, thus requiring static knowledge on the part of the client.

» Dual interface: Frequently interfaces are developed as pairs such that one
interface depends on another; for example, a client must implement an
interface to call a requestor because the client interface provides some
callback mechanism.

Figure 2-4 on page 23 shows the UML definition of a customer relationship
management (CRM) service, represented as a UML component, that implements
the interfaces AccountManagement, ContactManagement, and
SystemsManagement. Only the first two of these are published interfaces,
although the latter is a public interface. Note that the SystemsManagement

22 Patterns: Service-Oriented Architecture and Web Services

interface and ManagementService interface form a dual interface. The CRM
service can implement any number of such interfaces, and it is this ability of a
service (or component) to behave in multiple ways depending on the client that
allows for great flexibility in the implementation of behavior. It is even possible to
provide different or additional services to specific classes of clients. In some
run-time environments such a capability is also used to support different versions
of the same interface on a single component or service.

AccountManagement
{published}

(> ContactManagement
{published}

Systems Management

CRM

ManagementService

Figure 2-4 Implemented services

Layered application architectures

As mentioned before, object-oriented technology and languages are great ways
to implement components. While components are the best way to implement
services, though one has to understand that a good component-based
application does not necessarily make an good service-oriented application. A
great opportunity exists to leverage component developers and existing
components, once the role played by services in application architecture is
understood. The key to making this transition is to realize that a service-oriented
approach implies an additional application architecture layer. Figure 2-5 on
page 24 demonstrates how technology layers can be applied to application
architecture to provide more coarse-grained implementations as one gets closer
to the consumers of the application. The term coined to refer to this part of the
system is “the application edge,” reflecting the fact that a service is a great way to
expose an external view of a system, with internal reuse and composition using
traditional component design.

Chapter 2. Service-oriented architecture 23

— O

Service Layer

O— —O
Component Layer
O —O

Object/Class Layer

——

Figure 2-5 Application implementation layers: Services, components, objects

2.1.3 A closer look at service-oriented architecture

Service-oriented architecture presents an approach for building distributed
systems that deliver application functionality as services to either end-user
applications or other services. It is comprised of elements that can be
categorized into functional and quality of service. Figure 2-6 on page 25 shows
the architectural stack and the elements that might be observed in a
service-oriented architecture.

Note: Service-oriented architecture stacks can be a contentious issue, with
several different stacks being put forward by various proponents. Our stack is
not being positioned as the services stack. It is just presented as useful
framework for structuring the SOA discussion in the rest of the publication.

24 Patterns: Service-Oriented Architecture and Web Services

Functions Quality of Service

Business Process

Service

Service Description

Policy
Security
Transaction
Management

Service Registry

Service Communication Protocol

Transport

J

Figure 2-6 Elements of a service-oriented architecture

The architectural stack is divided into two halves, with the left half addressing the
functional aspects of the architecture and the right half addressing the quality of
service aspects. These elements are described in detail as follows:

» Functional aspects include:

Transport is the mechanism used to move service requests from the
service consumer to the service provider, and service responses from the
service provider to the service consumer.

Service Communication Protocol is an agreed mechanism that the service
provider and the service consumer use to communicate what is being
requested and what is being returned.

Service Description is an agreed schema for describing what the service
is, how it should be invoked, and what data is required to invoke the
service successfully.

Service describes an actual service that is made available for use.

Business Process is a collection of services, invoked in a particular
sequence with a particular set of rules, to meet a business requirement.
Note that a business process could be considered a service in its own
right, which leads to the idea that business processes may be composed
of services of different granularities.

The Service Registry is a repository of service and data descriptions which
may be used by service providers to publish their services, and service

Chapter 2. Service-oriented architecture 25

consumers to discover or find available services. The service registry may
provide other functions to services that require a centralized repository.

» Quality of service aspects include:

— Policy is a set of conditions or rules under which a service provider makes
the service available to consumers. There are aspects of policy which are
functional, and aspects which relate to quality of service; therefore we
have the policy function in both functional and quality of service areas.

— Security is the set of rules that might be applied to the identification,
authorization, and access control of service consumers invoking services.

— Transaction is the set of attributes that might be applied to a group of
services to deliver a consistent result. For example, if a group of three
services are to be used to complete a business function, all must complete
or none must complete.

— Management is the set of attributes that might be applied to managing the
services provided or consumed.

SOA collaborations

Figure 2-7 shows the collaborations in a service-oriented architecture. The
collaborations follows the “find, bind and invoke” paradigm where a service
consumer performs dynamic service location by querying the service registry for
a service that matches its criteria. If the service exists, the registry provides the
consumer with the interface contract and the endpoint address for the service.
The following diagram illustrates the entities in an service-oriented architecture
that collaborate to support the “find, bind and invoke” paradigm.

Service
Description

Service
Registry

Find

Publish

Bind and Invoke

Service
Provider

Service
Consumer

Service
Description

Figure 2-7 Collaborations in a service-oriented architecture

26 Patterns: Service-Oriented Architecture and Web Services

The roles in a service-oriented architecture are:

»

Service consumer: The service consumer is an application, a software
module or another service that requires a service. It initiates the enquiry of
the service in the registry, binds to the service over a transport, and executes
the service function. The service consumer executes the service according to
the interface contract.

Service provider: The service provider is a network-addressable entity that
accepts and executes requests from consumers. It publishes its services and
interface contract to the service registry so that the service consumer can
discover and access the service.

Service registry: A service registry is the enabler for service discovery. It
contains a repository of available services and allows for the lookup of service
provider interfaces to interested service consumers.

Each entity in the service-oriented architecture can play one (or more) of the
three roles of service provider, consumer and registry.

The operations in a service-oriented architecture are:

»

Publish: To be accessible, a service description must be published so that it
can be discovered and invoked by a service consumer.

Find: A service requestor locates a service by querying the service registry
for a service that meets its criteria.

Bind and invoke: After retrieving the service description, the service
consumer proceeds to invoke the service according to the information in the
service description.

The artifacts in a service-oriented architecture are:

»

Service: A service that is made available for use through a published interface
that allows it to be invoked by the service consumer.

Service description: A service description specifies the way a service
consumer will interact with the service provider. It specifies the format of the
request and response from the service. This description may specify a set of
preconditions, post conditions and/or quality of service (QoS) levels.

In addition to dynamic service discovery and definition of a service interface
contract, a service-oriented architecture has the following characteristics:

>

>

»

Services are self-contained and modular.
Services support interoperability.
Services are loosely coupled.

Services are location-transparent.

Chapter 2. Service-oriented architecture 27

» Services are composite modules, comprised of components.

These characteristics are also central to fulfilling the requirements for an
e-business on demand™ operational environment, as defined in Chapter 10,
“e-business on demand and Service-oriented architecture” on page 301.

Finally, service-oriented architecture is not a new notion. As shown in Figure 2-8,
examples of technologies that are at least partly service-oriented include
CORBA, DCOM and J2EE. Early adopters of the service-oriented architecture
approach have also successfully created their own service-oriented enterprise
architectures based on messaging systems such as IBM WebSphere MQ. Most
recently, the SOA arena has expanded to include the World Wide Web (WWW)
and Web Services.

Distributed Systems Architecture

()
Service Oriented Architecture (SOA)

| CORBA]

World
W?c:e We_b
(V\\;Vvs\?V) Services
l Others |

G J
| J

Figure 2-8 Different implementations of service-oriented architecture

Services in the context of SOA

In service-oriented architecture, services map to the business functions that are
identified during business process analysis. The services may be fine- or
coarse-grained depending upon the business processes. Each service has a
well-defined interface that allows it to be published, discovered and invoked. An
enterprise can choose to publish its services externally to business partners or
internally within the organisation. A service can also be composed from other
services.

Services vs. components

A service is a coarse-grained processing unit that consumes and produces sets
of objects passed-by-value. It is not the same as an object in programming
language terms. Instead, it is perhaps closer to the concept of a business

28 Patterns: Service-Oriented Architecture and Web Services

transaction such as a CICS® or IMS™ transaction than to a remote CORBA
object.

A service consists of a collection of components that work in concert to deliver
the business function that the service represents. Thus, in comparison,
components are finer-grained than services. In addition, while a service maps to
a business function, a component typically maps to business entities and the
business rules that operate on them. As an example, let us look at the Purchase
Order component model for the WS-1 Supply Chain Management sample, shown
in Figure 2-9.

CustomerReferenceType

PurchOrdType * + getValue ()

+ setValue ()

RN

+ getOrderNum ()
+ setOrderNum ()

+ getCustomerRef () Item
+ setCustomerRef ()
+ getltems () ItemList 1 : gettllg E))
+ setltems () se
+ getTotal () + getltem () « | +getQty ()
+ setTotal () + setValue () : settgt_y(())
getPrice
+ setPrice ()

Figure 2-9 Purchase Order component model

In a component-based design, components are created to closely match
business entities (such as Customer, Purchase Order, Order ltem) and
encapsulate the behavior that matches the entities’ expected behavior.

For example, the Purchase Order component provides functions to obtain
information about the list of products ordered and the total amount of the order;
the Item component provides functions to obtain information about the quantity
and price of the product ordered. The implementation of each component is
encapsulated behind the interface. So, a user of the Purchase Order component
does not know the schema of the Purchase Order table and the algorithm for
calculating tax, rebates and/or discounts on the total amount of the order.

In a service-oriented design, services are not designed based on business
entities. Instead, each service is a holistic unit that manages operations across a
set of business entities. For example, a customer service will respond to any
request from any other system or service that needs to access customer
information. The customer service can process a request to update customer
information; add, update, delete investment portfolios; and enquire about the

Chapter 2. Service-oriented architecture 29

customer’s order history. The customer service owns all the data related to the
customers it is managing and is capable of making other service inquiries on
behalf of the calling party in order to provide a unified customer service view.
This means a service is a manager object that creates and manages its set
components.

2.1.4 Service-oriented architecture benefits

30

As discussed earlier, businesses are dealing with two fundamental concerns:
The ability to change quickly, and the need to reduce costs. To remain
competitive businesses must adapt quickly to internal factors such as
acquisitions and restructuring, or external factors like competitive forces and
customer requirements. Cost-effective, flexible IT infrastructure is need to
support the business.

With a service-oriented architecture, we can realize several benefits to help
organizations succeed in the dynamic business landscape of today:

» Leverage existing assets.

SOAs provide a layer of abstraction that enables an organization to continue
leveraging its investment in IT by wrapping these existing assets as services
that provide business functions. Organizations potentially can continue
getting value out of existing resources instead of having to rebuild from
scratch.

» Easier to integrate and manage complexity.

The integration point in a service-oriented architecture is the service
specification and not the implementation. This provides implementation
transparency and minimizes the impact when infrastructure and
implementation changes occur. By providing a service specification in front of
existing resources and assets built on disparate systems, integration
becomes more manageable since complexities are isolated. This becomes
even more important as more businesses work together to provide the value
chain.

» More responsive and faster time-to-market.

The ability to compose new services out of existing ones provides a distinct
advantage to an organization that has to be agile to respond to demanding
business needs. Leveraging existing components and services reduces the
time needed to go through the software development life cycle of gathering
requirements, performing design, development and testing. This leads to
rapid development of new business services and allows an organization to
respond quickly to changes and reduce the time-to-market.

» Reduce cost and increase reuse.

Patterns: Service-Oriented Architecture and Web Services

With core business services exposed in a loosely coupled manner, they can
be more easily used and combined based on business needs. This means
less duplication of resources, more potential for reuse, and lower costs.

» Be ready for what lies ahead.

SOAs allows businesses be ready for the future. Business processes which
comprise of a series of business services can be more easily created,
changed and managed to meet the needs of the time. SOA provides the
flexibility and responsiveness that is critical to businesses to survive and
thrive.

Service-oriented architecture is by no means a silver bullet, and migration to
SOA is not an easy task. Rather than migrating the whole enterprise to a
service-oriented architecture overnight, the recommended approach is to migrate
an appropriate subset of business functions as the business need arises or is
anticipated.

2.2 Web services architecture

Web services are a relatively new technology that have received wide
acceptance as an important implementation of service-oriented architecture. This
is because Web services provides a distributed computing approach for
integrating extremely heterogeneous applications over the Internet. The Web
service specifications are completely independent of programming language,
operating system, and hardware to promote loose coupling between the service
consumer and provider. The technology is based on open technologies such as:

» eXtensible Markup Language (XML)

» Simple Object Access Protocol (SOAP)

» Universal Description, Discovery and Integration (UDDI)

» Web Services Description Language (WSDL)

Using open standards provides broad interoperability among different vendor
solutions. These principles mean that companies can implement Web services
without having any knowledge of the service consumers, and vice versa. This

facilitates just-in-time integration and allows businesses to establish new
partnership easily and dynamically.

2.2.1 What Web services are

The W3C’s Web Services Architecture Working Group has jointly come to
agreement on the following working definition of a Web service:

Chapter 2. Service-oriented architecture 31

“A Web service is a software application identified by a URI, whose interfaces
and bindings are capable of being defined, described, and discovered as

XML artifacts. A Web service supports direct interactions with other software
agents using XML-based messages exchanged via Internet-based protocols.

Basic Web services combine the power of two ubiquitous technologies: XML, the
universal data description language; and the HTTP transport protocol widely
supported by browser and Web servers.

Web services = XML + transport protocol (such as HTTP)

Some of the key features of Web services are the following:
» Web services are self-contained.

On the client side, no additional software is required. A programming
language with XML and HTTP client support, for example, is enough to get
you started. On the server side, merely a Web server and a servlet engine are
required. It is possible to Web service enable an existing application without
writing a single line of code.

» Web services are self-describing.

Neither the client nor the server knows or cares about anything besides the
format and content of request and response messages (loosely coupled
application integration).

The definition of the message format travels with the message. No external
metadata repositories or code generation tools are required.

» Web services are modular.

Web services are a technology for deploying and providing access to
business functions over the Web; J2EE, CORBA, and other standards are
technologies for implementing these Web services.

» Web services can be published, located, and invoked across the Web.
The standards required to do so are:

— Simple Object Access Protocol (SOAP), also known as service-oriented
architecture protocol, an XML-based RPC and messaging protocol

— Web Service Description Language (WSDL), a descriptive interface and
protocol binding language

— Universal Description, Discovery, and Integration (UDDI), a registry
mechanism that can be used to look up Web service descriptions

32 Patterns: Service-Oriented Architecture and Web Services

» Web services are language independent and interoperable.

The interaction between a service provider and a service requester is
designed to be completely platform and language independent. This
interaction requires a WSDL document to define the interface and describe
the service, along with a network protocol (usually HTTP). Because the
service provider and the service requester have no idea what platforms or
languages the other is using, interoperability is a given.

» Web services are inherently open and standards based.

XML and HTTP are the technical foundation for Web services. A large part of
the Web service technology has been built using open source projects.
Therefore, vendor independence and interoperability are realistic goals.

» Web services are dynamic.

Dynamic e-business can become a reality using Web services because, with
UDDI and WSDL, the Web service description and discovery can be

automated.

» Web services are composable.

Simple Web services can be aggregated to more complex ones, either using
workflow techniques or by calling lower-layer Web services from a Web
service implementation.

Figure 2-10 shows a typical Web service collaboration that is based on the SOA
model shown previously in Figure 2-7 on page 26.

2a. Query Service

1. Publish service

Service
Consumer

2b. Returns the
service contract

3a. Invoke
service
according
to contract

= Public |-
uDDI

3b. Request
reaches
Web

Server
Internet

B 3c. Request
1 reaches
- ‘ service
provider Service
| ¥ “| Provider
)
Web
Server

Figure 2-10 Web service collaboration

Chapter 2. Service-oriented architecture 33

2.2.2 Web service interoperability

Web services are one of the rising stars in the IT world, supporting the
integration of existing systems and sharing of resources and data, both within
and outside an organization. They are a relatively new technology, with Web
services standards continuing to be refined and developed.

For the key promise of Web services interoperability to work, standards need to
be carefully managed. In addition, guidance in interpretation and implementation
of standards is essential to facilitate adoption of a technology. The Web Services
Interoperability Organization has an important role in this area, as a standards
integrator to help Web services advance in a structured and coherent manner.

IBM’s commitment in this direction includes active participation in WS-I standards
development, and early delivery of WS-I compliance in runtime and development
products. In this publication, we place considerable emphasis on WS-I standards
and guidelines as an enabler for Web services interoperability.

Web Services Interoperability Organization

Web Services Interoperability Organization (WS-1) is an open, industry
consortium of about 150 companies, representing diverse industries such as
automotive, consumer packaged goods, finance, government, insurance, media,
telecommunications, travel and the computer industry. It is chartered to:

» Promote Web services interoperability across platforms, operating systems,
and programming languages with the use of generic protocols for
interoperable exchange of messages between services.

» Encourage Web services adoption.
» Accelerate deployment by providing guidance, best practices and other
resources for developing interoperable Web services.

WS-I, as a standards integrator, supports the relationships with standards bodies
who own specifications and fosters communication and cooperation with industry
consortia and other organizations, as shown in Figure 2-11 on page 35.

34 Patterns: Service-Oriented Architecture and Web Services

Standards Bodies

wae [e
| VT ol 1 ETF

Standards,
Specifications, l I Requirements

Protocols

Implementation
Guidance, Best
Practices

Requirements

Businesses, Industry Consortia, Developers, End Users

Figure 2-11 WS-, standards and industry

WS-I has a set of deliverables to assist in the development and deployment of
Web services, including its profile of interoperable Web services. A profile is
defined in the WS-I Glossary as follows:

“A collection of requirements to support interoperability. WS-I will deliver a
collection of profiles that support technical requirements and specifications to
achieve interoperable Web Services.”

It includes the following deliverables:
» Profile Specification

This includes a list of non-proprietary Web services-related specifications at
certain version levels, plus a list of clarifications and restrictions on those
specifications to facilitate the development of interoperable Web services.

» Use Cases and Usage Scenarios

These capture the business and technical requirements, respectively, for the
use of Web services. These requirements reflect the classes of real-world
requirements supporting Web services solutions, and provide a framework to
demonstrate the guidelines described in WS-I Profiles.

Chapter 2. Service-oriented architecture 35

» Sample Applications

These demonstrate the implementation of applications that are built from Web
services Usage Scenarios and Use Cases, and that conform to a given set of
Profiles. Implementations of the same Sample Application on multiple
platforms, using different languages and development tools, allow WS-I to
demonstrate interoperability in action, and to provide readily usable resources
for the Web services practitioner.

» Testing Tools

These are used to monitor and analyze interactions with a Web service to
determine whether or not the messages exchanged conform to WS-I Profile
guidelines.

For more information on WS-I, refer to:

http://www.ws-i.org/

WS-I Basic Profile 1.0

WS-I has delivered its first profile of interoperable Web services called WS-1
Basic Profile 1.0, which focuses on the core foundation technologies upon which
Web services are based: HTTP, SOAP, WSDL, UDDI, XML and XML Schema.
Basic Profile 1.0 was unanimously approved on July 22, 2003, by the WS-I board
of directors and members.

The WS-I Basic Profile 1.0 - Profile Specification consists of the following
non-proprietary Web services related specifications:

SOAP 1.1

WSDL 1.1

uDDI 2.0

XML 1.0 (Second Edition)

XML Schema Part 1: Structures

XML Schema Part 2: Datatypes

RFC2246: The Transport Layer Security Protocol Version 1.0
RFC2459: Internet X.509 Public Key Infrastructure Certificate and CRL
Profile

RFC2616: HyperText Transfer Protocol 1.1

RFC2818: HTTP over TLS

RFC2965: HTTP State Management Mechanism

The Secure Sockets Layer Protocol Version 3.0

YyVyVYyVYVYVYYY

vyvyyy

36 Patterns: Service-Oriented Architecture and Web Services

http://www.ibm.com/software/solutions/webservices/resources.html

The WS-I Basic Profile 1.0 - Usage Scenario consists of three usage scenarios,
where a usage scenario is a design pattern of interacting entities including actor,
roles and message exchange patterns:

» One-way Usage Scenario

— Simplest usage scenario, where the message exchange is one-way, with a
Consumer sending a request to a Provider

— Should be used only where loss of information can be tolerated
» Synchronous request/response Usage Scenario

Most commonly used usage scenario where a Consumer sends a request to
a Provider, who processes the request and sends back a response

» Basic callback Usage Scenario

— Used to simulate an asynchronous operation using synchronous
operations

— Composed of two synchronous request/response usage scenarios, one
initiated by a Consumer and the other by a Producer

A mapping of the usage scenarios to the clarifications and restrictions of the
profile specifications is done via a Web services usage stack to guide Web
services developers.

The WS-I Supply Chain Management sample application depicts an application

for a fictitious consumer electronics retailer. We will use the WS-I sample to

illustrate concepts and scenarios throughout the publication.

See also the following IBM developerWorks® articles:

» First look at the WS-I Basic Profile 1.0, available at:
http://www.ibm.com/developerworks/webservices/library/ws-basicprof.html

» First look at the WS-I Usage Scenarios, available at:
http://www.ibm.com/developerworks/webservices/Tibrary/ws-iuse/

» Preview of WS-I sample application, available at:

http://www.ibm.com/developerworks/webservices/library/ws-wsisamp/

2.3 Web services and service-oriented architecture

Web services are a technology that is well suited to implementing a
service-oriented architecture. In essence, Web services are self-describing and
modular applications that expose business logic as services that can be
published, discovered, and invoked over the Internet. Based on XML standards,

Chapter 2. Service-oriented architecture ~ 37

http://www.ibm.com/developerworks/webservices/library/ws-basicprof.html
http://www.ibm.com/developerworks/webservices/library/ws-iuse/
http://www.ibm.com/developerworks/webservices/library/ws-wsisamp/

Web services can be developed as loosely coupled application components
using any programming language, any protocol, or any platform. This facilitates
the delivery of business applications as a service accessible to anyone, anytime,
at any location, and using any platform.

It is important to point out that Web services are not the only technology that can
be used to implement a service-oriented architecture. Many examples of
organizations who have successfully implemented service-oriented architectures
using other technologies can be found. Web services have also been used by
others to implement architectures that are not service-oriented. In this
publication, however, our focus is on using Web services to implement an SOA.

For more information on SOA and Web services, refer to:

http://www.ibm.com/software/solutions/webservices/resources.html

This Web site provides a collection of IBM resources on this topic.

2.4 Enterprise Service Bus

Web services based technologies are becoming more widely used in enterprise
application development and integration. One of the critical issues arising now is
finding more efficient and effective ways of designing, developing and deploying
Web services based business systems; more importantly, moving beyond the
basic point-to-point Web services communications to broader application of
these technologies to enterprise-level business processes. In this context, the
Enterprise Service Bus (ESB) model is emerging as a major step forward in the
evolution of Web services and service-oriented architecture.

2.4.1 Basic Web services

Basic (point-to-point SOAP/HTTP) Web services provide a solid foundation for
implementing a service-oriented architecture, but there are important
considerations that affect their flexibility and maintainability in enterprise-scale
architectures.

First, the point-to-point nature of basic Web services means that service
consumers often need to be modified whenever the service provider interface
changes. This is often not a problem on a small scale, but in large enterprises it
could mean changes to many client applications. It can also become increasingly
difficult to make such changes to legacy clients.

Second, you can end up with an architecture that is fragile and inflexible when
large numbers of service consumers and providers communicate using
point-to-point “spaghetti” style connections.

38 Patterns: Service-Oriented Architecture and Web Services

http://www.ibm.com/software/solutions/webservices/resources.html

Last, basic Web services require that each consumer has a suitable protocol
adapter for each provider it needs to use. Having to deploy multiple protocol
adapters across many client applications adds to cost and maintainability issues.

Let us look at how the Enterprise Service Bus approach addresses these issues.

2.4.2 What an Enterprise Service Bus is

The Enterprise Service Bus concept is not a product, but an architectural best
practice for implementing a service-oriented architecture. As shown in

Figure 2-12, it establishes an enterprise-class messaging bus that combines
messaging infrastructure with message transformation and content-based
routing in a layer of integration logic between service consumers and providers.

Enterprise Service Bus
e Transforms message formats between

consumer and provider
Service Consumers ® Routes requests to correct service Service Providers

provider

e Converts transport protocols between
consumer and provider
\ J

Figure 2-12 Enterprise Service Bus

The main aim of the Enterprise Service Bus is to provide virtualization of the
enterprise resources, allowing the business logic of the enterprise to be
developed and managed independently of the infrastructure, network, and
provision of those business services. Resources in the ESB are modelled as
services that offer one or more business operations.

Implementing an Enterprise Service Bus requires an integrated set of
middleware services that support the following architecture styles:

» Services oriented architectures, where distributed applications are composed
of granular re-usable services with well-defined, published and
standards-compliant interfaces

» Message-driven architectures, where applications send messages through
the ESB to receiving applications

» FEvent-driven architectures, where applications generate and consume
messages independently of one another

Chapter 2. Service-oriented architecture 39

The middleware services provided by an Enterprise Service Bus need to include:

» Communication middleware supporting a variety of communication
paradigms (such as synchronous, asynchronous, request/reply, one-way,
call-back), qualities of service (such as security, guaranteed delivery,
performance, transactional), APls, platforms, and standard protocols

» A mechanism for injecting intelligent processing of in-flight service requests
and responses within the network

» Standard-based tools for enabling rapid integration of services

» Management system for loosely-coupled applications and their interactions

2.4.3 The IBM vision

As shown in Figure 2-13 on page 41, IBM is extending its Web services and
service-oriented architecture vision with an Enterprise Service Bus architecture
that provides a standards-based integration layer using the
intermediary/mediator pattern.

40 Patterns: Service-Oriented Architecture and Web Services

Portal B2B
Service Interactions

Enterprise Service Bus (Mediation):
Transform, Route, Notify, Augment

[
\ \ \

!
L

Workflow & Es X EJB f’j Data

Compensation Adapter Joc Script Access

Figure 2-13 Enterprise Service Bus conceptual model

Intelligent mediations are invoked between service consumer and provider that
facilitate the selection of services, logging, usage metrics, and so on. These
mediations can be configured by policies that define consumer and provider
capabilities and requirements. For example, if a provider expects encrypted
messages, the requester mediation should include such capability. If a requester
only supports SOAP/HTTP, an intermediary should be added to convert to

SOAP/JMS.

Chapter 2. Service-oriented architecture 41

The other main components in this model include WSDL services that are
generated using tools, or implemented by programmers. These include:

» A workflow and compensation system that executes business processes, or
workflows. Activity nodes in a business process typically map to invoking an
operation on a Web service. This component supports J2EE transactions and
a compensation model for long duration business processes.

» Enterprise Information System (EIS) adaptors based on the J2EE Connector
Architecture allow integration with legacy systems.

» XML database access through a WSDL interface.
» Custom-built WSDL services implemented by programmers using the J2EE
programming model.

The Enterprise Service Bus supports multiple protocols for communication
between services, including SOAP, HTTP, JMS, RMI/IIOP, and so on.

The Enterprise Service Bus can be implemented today using currently available
IBM WebSphere products, for example:

» IBM WebSphere Application Server V5.1 provides a J2EE runtime
environment for services using SOAP over HTTP or JMS, and J2EE
Connectors for EIS integration.

» IBM WebSphere MQ provides the JMS messaging infrastructure.

» The Web Services Gateway with IBM WebSphere Application Server Network
Deployment V5.1 provides SOAP message routing, transformation, and
protocol conversion. The UDDI Registry provides dynamic service discovery.

» IBM WebSphere Application Server Enterprise V5.0 provides the Process
Choreographer for service orchestration or workflow.

» IBM DB2® XML Extender enables database access via the ESB.
» IBM WebSphere Portal allows integrated, personalized end-user access to
business services.

You can also expect a strong focus on Enterprise Service Bus capabilities in
future releases of WebSphere family products.

Note: Implementation of an Enterprise Service Bus is beyond the scope of
this publication. The intention here is just to provide an introduction to this
important architectural best practice.

42 Patterns: Service-Oriented Architecture and Web Services

2.5 Where to find more information

For more information on topics discussed in this chapter, see:
» The following IBM developerWorks articles:
— First look at the WS-I Basic Profile 1.0, available at:
http://www.ibm.com/developerworks/webservices/library/ws-basicprof.html
— First look at the WS-I Usage Scenarios, available at:
http://www.ibm.com/developerworks/webservices/Tibrary/ws-iuse/
— Preview of WS-l sample application, available at:
http://www.ibm.com/developerworks/webservices/Tibrary/ws-wsisamp/

— Using Service-Oriented Architecture and Component-Based Development
to Build Web Service Applications, available at:

http://www.ibm.com/developerworks/rational/1ibrary/510.html
» W3C Working Group Note, Web Services Architecture, available at:
http://www.w3.0rg/TR/2004/NOTE-ws-arch-20040211/

» Craig Larman, Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design and the Unified Process, 2nd Ed.,
Prentice Hall, 2001

» lvar Jacobson, Magnus Christerson, Patrik Jonsson, Gunnar Overgaard,
Object-Oriented Software Engineering: A Use Case Driven Approach,
Addison-Wesley, 1992

» Paul Allen, Component-Based Development for Enterprise Systems,
Cambridge University Press, 1998

Chapter 2. Service-oriented architecture 43

http://www.ibm.com/developerworks/webservices/library/ws-basicprof.html
http://www.ibm.com/developerworks/rational/library/510.html
http://www.ibm.com/developerworks/webservices/library/ws-iuse/
http://www.ibm.com/developerworks/webservices/library/ws-wsisamp/
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

44 Patterns: Service-Oriented Architecture and Web Services

Service-oriented
architecture and Patterns for
e-business

In this chapter we introduce how the IBM Patterns for e-business compliment the
service-oriented architecture (SOA) approach. We look at how SOA applies to
Patterns, in particular the Self-Service and Extended Enterprise business
patterns, the Application Integration pattern, and the associated Application
patterns, Runtime patterns, and Product mappings.

A detailed description of the service-oriented architecture approach can be found
in Chapter 4, “Service-oriented architecture approach” on page 79.

© Copyright IBM Corp. 2004. All rights reserved. 45

3.1 Using service-oriented architecture with Patterns for
e-business

The Patterns for e-business is not a solution development methodology. It is a
collection of proven architectures, derived from more than 20,000 successful
Internet-based engagements. The Patterns for e-business bridge the business
and IT gap by defining architectural patterns at the various levels shown in
Figure 3-1, from Business patterns to Application patterns to Runtime patterns.

With a service-oriented architecture approach, this is taken to another level of
abstraction with the creation of a service integration layer. This enables a
business to be agile and respond quickly and efficiently to changes in the market
and its customer’s requirements, as well as to stay competitive.

Customer
requirements

Business
patterns

Composite
patterns

Integration
patterns

Application
patterns

Runtime

patterns Best-Practice Guidelines

® Application Design

e Systems Management

e Performance

® Application Development
® Technology Choices

Product
mappings

Figure 3-1 Service-oriented architecture and Patterns for e-business

Patterns for e-business can be used with any methodology. When used with a
SOA approach, the focus is on creating and integrating loosely coupled services
instead of applications to support a business. The service-oriented paradigm
leverages the notion of services as discrete building blocks of business
functionality which are composed to satisfy business requirements. Services are

46 Patterns: Service-Oriented Architecture and Web Services

self-contained and modular, while applications tend to be too coarse-grained to
be reused effectively, and are often too inflexible to be leveraged within an
enterprise or an extended enterprise.

The existing Business, Integration, Application and Runtime patterns are
consistent with the SOA approach. The business problem will drive the
identification of the appropriate Business, Integration, Application and Runtime
patterns involved in a potential solution. Runtime patterns that involve two or
more middleware nodes connecting logical application tiers will have additional
communication options (and hence Product mappings) between the tiers with the
use of services in a SOA.

One candidate for a new Composite pattern in the context of services is the
Value-Chain. Essentially, the Value-Chain consists of a Self-Service business
pattern and a set of recurring (often twice recurring) Extended Enterprise
business patterns that can be combined to provide value to a chain of business
partners. This end-to-end composite pattern is prevalent in any Value-Net.

3.2 Self-Service business pattern

The Self-Service business pattern essentially captures the direct interactions
between users and an enterprise, which range from simple information access to
complex updates involving core enterprise systems and data. This blends in
nicely with a service-oriented architecture which fundamentally comprises of
service consumers and service providers. Users such as customers, business
partners, stockholders and employees are service consumers, while the
enterprise is the service provider.

The Self-Service::Directly Integrated Single Channel application pattern, for
example, provides a user access channel to presentation logic running in the
presentation tier. The presentation tier can request or consume services
provided on the Web application tier. The Web application tier in turn can
consume services provided on the back-end or enterprise tier, as shown in
Figure 3-2 on page 48.

We use Application Integration patterns to examine these intra-enterprise

service-oriented connections in more detail in 3.4, “Application Integration
pattern” on page 49.

Chapter 3. Service-oriented architecture and Patterns for e-business 47

Secure Zone

|
Presentation /\ A vl\ilg:tion /\ Back-end
PP Application
synch synch/
asynch

Figure 3-2 Self-Service::Directly Integrated Single Channel application pattern

3.3 Extended Enterprise business pattern

The Extended Enterprise business pattern addresses interactions and
collaborations between business processes in separate enterprises. The
interactions and collaborations are implemented using programmatic interfaces
to connect inter-enterprise applications or services. In this instance, an
enterprise can be both a service consumer and a service provider.

The Extended Enterprise::Exposed Direct Connection application pattern, for
example, allows a pair of applications to directly communicate with each other
across organization boundaries. A source application in Partner A can request or
consume services provided by Partner B, as shown in Figure 3-3. Although not
shown on this diagram, a source application in Partner B can also request or
consume services provided by Partner A.

Partner A Demilitarized Inter- Partner B
Secure Zone Zone enterprise
Zone
Source Connection
Application Rules

Figure 3-3 Extended Enterprise::Exposed Direct Connection application pattern

48 Patterns: Service-Oriented Architecture and Web Services

Extended Enterprise is essentially a manifestation of the Application Integration
pattern with additional QoS concerns such as security, performance and
availability. A service-oriented architecture implemented with open standards
facilitates this extension by simplifying the effort to integrate likely disparate
technologies and information models.

3.4 Application Integration pattern

The Application Integration patterns capture commonly observed solution
alternatives in the domain of Enterprise Application Integration (EAIl). They
capture best practices around back-end integration of applications and data,
process automation, and workflow implementations involving human
interactions. It is important to note that front-end integration such as the
composition of a portal or single sign-on across multiple applications is captured
by the Access Integration pattern.

3.4.1 Process Integration concepts

Process Integration enables companies to connect people, process, and
applications across and beyond their enterprise. These solutions make it
possible to leverage existing IT investments while providing the flexibility to adapt
quickly to changing business conditions and emerging technologies.

The interactions involved in Process Integration patterns can be classified as
parallel or serial.

» An interaction is denoted as parallel if it includes a set of concurrent 1-to-1
interactions between a source application and multiple targets.

» An interaction is denoted as serial if it includes a series of 1-to-1 interactions
between a source application and multiple targets that are subject to
time-sequenced dependencies.

Distributing parallel and serial interactions along two dimensions of a matrix
provides the four combinations shown in Figure 3-4 on page 50.

Chapter 3. Service-oriented architecture and Patterns for e-business 49

Focus: Controlling a Single FEELE p el Sl
" ; Splitting & Joining Multiple
S 8 Series of Operations Series of O ti
= > in Multiple Targets eries of Wperations
o in Multiple Targets
g
f Focus: Adapting and Focus: Adds Switching,
B ° Transporting Messages Splitting & Joining
S =z on a Single Path Messages on Multiple Paths
to a Single Target to Multiple Targets
No Yes
Parallel Interaction

Figure 3-4 Classification of interactions

For more information on Process Integration concepts, refer to Patterns: Direct
Connections for Intra- and Inter-enterprise, SG24-6933.

3.4.2 Application Integration application patterns

Application patterns for Application Integration can be broadly categorized as
either Process-focused or Data-focused. These two categories enable different
types of integration functionality:

» Process-focused integration: The integration of the functional flow of
processing between the applications and services

» Data-focused Integration: The logical integration of the information used by
applications

Selecting the right Application Integration approach depends on the integration
requirements of the business problem being automated. In this publication we
focus on the Process-focused approach. For full details on the other Application
Integration patterns, please see the IBM Patterns for e-business Web site:

http://www.ibm.com/developerWorks/patterns

Process-focused Application Integration patterns are observed where multiple
automated business processes are combined to yield a new business offering or
to provide a consolidated view of some business entity by integrating multiple
corporate business systems. An often quoted example is the consolidated view
of the state of all relationships of the business with a particular customer.

This mode of integration is highly flexible. In its more sophisticated form it
enables “late binding” of the targets of integration and is particularly useful in
tying together different platforms and technologies. However, it represents a

50 Patterns: Service-Oriented Architecture and Web Services

http://www.ibm.com/developerWorks/patterns

more difficult design and development task compared to data-focused integration
and often requires complex middleware.

The Process-focused Application Integration patterns are presented here in
order of increasing flexibility and sophistication. As the Application patterns build
on each other, their capabilities and reliance on middleware increase, and they
require less application development effort. From the following Application
patterns, select the one that best fits your requirements:

» Direct Connection application pattern: Message/Call Connection variations
» Broker application pattern: Router variation

» Serial Process application pattern: Serial Workflow variation

» Parallel Process application pattern: Parallel Workflow variation

Using the classification framework shown in Figure 3-4 on page 50, the four

Process-focused Application Integration patterns are classified as shown in
Figure 3-5.

c Serial Process Parallel Process
-g S‘f Variation: Serial Work Flow Variation: Parallel Work Flow
3]
o
2
£
s !:)lr.ect Connection Broker
o 9 Variations: Message/Call L
n =Z . Variation: Router
Connection
No Yes

Parallel Interaction

Figure 3-5 Classification of Process-focused Application Integration patterns

The framework also applies to the Extended Enterprise domain. Using the
interaction classification framework in Figure 3-6 on page 52 as a guide, we
observe the following three Application patterns and their variations for the
Extended Enterprise business pattern (also known as inter-enterprise
integration):

» Exposed Direct Connection application pattern: Message/Call Connection
variations

» Exposed Broker application pattern: Router variation

» Exposed Serial Process application pattern: Also known as Managed Public
Processes

Chapter 3. Service-oriented architecture and Patterns for e-business 51

Exposed Serial Process
Variation: Exposed
Serial Work Flow

Yes

Exposed Direct Connection
Variations: Exposed
Message/Call Connection

Exposed Broker
Variation: Exposed Router

Serial Interaction

No

No Yes

Parallel Interaction

Figure 3-6 Classification of Extended Enterprise patterns

3.4.3 Direct Connection application pattern

The Direct Connection application pattern represents the simplest interaction
type and is based on a 1-to-1 topology. It allows a pair of applications within the
organization to directly communicate with each other. Interactions between a
source and a target application can be arbitrarily complex. Generally, complexity
can be addressed by breaking down interactions into more elementary
interactions.

More complex point-to-point connections will have modeled connection rules
such as business rules associated with them, as shown in Figure 3-7 on

page 53. Connection rules are generally used to control the mode of operation of
a connector depending on external factors. Examples of connection rules are:

Business data mapping rules (for adapter connectors)
Autonomic rules (such as priority in a shared environment)
Security rules

Capacity and availability rules

vyvyyy

52 Patterns: Service-Oriented Architecture and Web Services

Secure Zone

Source Connection Target
Application Rules Application

Figure 3-7 Direct Connection application pattern

Note: The Connection Rules component is not needed when there are no
modeled rules associated with the connection.

The Direct Connection application pattern has two variations:

» Message Connection variation
» Call Connection variation

All applications of the Direct Connection application pattern will be one variation
or the other. The variation required depends on whether the initiating source
application needs an immediate response from the target application in order to
continue with execution.

Both variations may be used either with synchronous or asynchronous
communication protocols. However, there are preferences for a specific protocol
type depending on the variation. For example, the Call Connection variation has
a more natural fit with synchronous protocols while the Message Connection
variation favors asynchronous protocols.

In the Extended Enterprise domain, the Exposed Direct Connection application
pattern (and its Exposed Message/Call Connection variations) allows a pair of
applications to directly communicate with each other across organization
boundaries.

Direct Connection and SOA

The 1-to-1 interaction of the Direct Connection application pattern maps directly
to the basic service consumer to service provider interaction of service-oriented
architectures, which is also 1-to-1 in nature.

Chapter 3. Service-oriented architecture and Patterns for e-business 53

As we will see in 3.5.2, “Runtime patterns for Direct Connection” on page 62, a
direct connection can also be implemented using a connection that is logically
(rather than physically) centralized. In service-oriented architectures this
configuration is often called a service bus, and is an enabler for standardization,
reuse and improved operational tools.

Services can be inventoried and discovered via a service registry or directory.
With the Direct Connection application pattern, the Connection Rules component
may model service discovery rules and directory. This allows for flexibility in
runtime discovery and invocation of services. The “best” service can be used
based on the appropriate functionality and QoS at the time it is needed.

Note: The very simple service bus described here allows us to model the
common transport infrastructure needed to integrate a set of basic Web
service consumers and providers. It provides just a small subset of the
integration capabilities of a true Enterprise Service Bus, as described in 2.4,
“Enterprise Service Bus” on page 38.

3.4.4 Broker application pattern

54

The Broker application pattern, shown in Figure 3-8, is based on a 1-to-N
topology that separates distribution rules from the applications. It allows a single
interaction from the source application to be distributed to multiple target
applications concurrently. This application pattern reduces the proliferation of
point-to-point connections.

Secure Zone

Source Broker
Application Rules

Target
Application

Broker Rules
& WIP Results

Figure 3-8 Broker application pattern

The Broker application pattern applies to solutions where the source application
starts an interaction that is distributed to multiple target applications that are
within the organization. It separates the application logic from the distribution

Patterns: Service-Oriented Architecture and Web Services

logic based on broker rules. The decomposition/recomposition of the interaction
is managed by the broker rules tier.

Router variation

The Router variation of the Broker application pattern, shown in Figure 3-9,
applies to solutions where the source application initiates an interaction that is
forwarded to, at most, one of multiple target applications.

Secure Zone

oo
.
.o
Py
aaaa
.
.
.
=

Source Router
Application Rules [Tl]

Target
Application

RIO]

Router Rules

Figure 3-9 Router variation

In the Extended Enterprise domain, the Exposed Broker application pattern (and
its Router variation) allows a single interaction from a partner’s source
application to be distributed to multiple target partner applications concurrently.

Broker and SOA

The Broker application pattern provides service consumers with some important
benefits over the Direct Connection application pattern. It enables intelligent
routing of service requests to multiple service providers, and decomposition and
re-composition of these requests to match the service consumer’s needs. The
Broker pattern supports the business requirements at the right time, by allowing
services to be easily pulled together and adapted at the integration layer.

The separation of the service interface on the broker from its implementation on
a target application helps address the likely differences in technology and
information models. Legacy applications can be leveraged by wrapping them
with service brokers so that they can participate in an SOA.

3.4.5 Serial Process application pattern

The Serial Process application pattern, shown in Figure 3-10 on page 56,
extends the 1-to-N topology provided by the Broker application pattern by

Chapter 3. Service-oriented architecture and Patterns for e-business 55

facilitating the sequential execution of business services hosted by a number of
target applications. Thus it enables the orchestration of a serial business process
in response to an interaction initiated by the source application.

Secure Zone

Source Process
Application Rules Target

Application

‘ e
Intermediate m

Results Process
Execution Rules

Figure 3-10 Serial Process application pattern

The Serial Process application pattern separates the business process flow logic
from individual application logic. The process logic is governed by serial process
rules that define execution rules for each target application, together with control
flow and data flow rules. It may also include any necessary adapter rules.

In the Extended Enterprise domain, the Exposed Serial Process application
pattern allows a single interaction from the partner’s source application to
execute a sequence of target applications.

Serial Process and SOA

The Serial Process application pattern supports the execution of business
processes (or more specifically, the steps in process flows) in an orchestrated
manner. These steps typically involve invoking services in a certain sequence to
satisfy business requirements.

As we have seen, a service-oriented architecture creates self-contained and
modular business functionality in terms of services with well-defined and
documented interfaces. The service interface serves as a contract identifying the
service, the functionality that it provides, the information that is needed and the
rules for invocation.

With business processes needing services and SOA delivering services, this is a
powerful and complementary fit. The agility that is enabled by this combination
provides the flexibility much needed by businesses to compete in this new
economy. Process logic can be easily changed to include new services, exclude

56 Patterns: Service-Oriented Architecture and Web Services

existing services or simply re-sequence the execution of services. Obviously, not
every step in a business process flow will leverage a service based on SOA and
combinations of SOA-based services. Non-SOA services and human-provided
services can be expected.

Web services can be used to implement an SOA based on open standards. As
discussed in 5.6.2, “Emerging standards for business process” on page 136, an
important emerging standard for business process execution and SOA within the
Web services paradigm is BPEL4WS. It should be relatively easy to instantiate
the Serial Process application pattern using Web services created using
BPEL4WS-compliant products.

Tools, such as the Process editor in IBM WebSphere Studio Application
Developer Integration Edition, can already be used to define a business process
involving Web services, other applications, and human interactions. The process
composed and tested in Studio can then be deployed to IBM WebSphere
Application Server Enterprise V5.0.

See IBM Redbook Patterns: Serial and Parallel Processes for Process
Choreography and Workflow, SG24-6306, for further details.

3.4.6 Parallel Process application pattern

The Parallel Process application pattern, shown in Figure 3-11, extends the basic
serial process orchestration capability provided by the Serial Process application
pattern by supporting parallel (concurrent) execution of the sub-processes.

Secure Zone

Parallel Process
Rules

Source
Application

Target
Application

e

a—
Intermediate m

Results process
Execution Rules

Figure 3-11 Parallel Process application pattern

Chapter 3. Service-oriented architecture and Patterns for e-business 57

The Parallel Process Rules tier supports all the services provided by the serial
process rules tier within the Serial Process application pattern. In addition, the
interaction initiated by the source application may control parallel (concurrent)
sub-processes on multiple target applications. Each sub-process may consist of
a sequence of operations executed in succession on a target application. This
parallelism requires that additional start and join conditions be defined for
sub-processes executing in parallel. This requires sophisticated runtime engines
that can initiate parallel threads of control, and ensure these threads join upon
completion, and manage them as a unit (for example, to allow cancellation of the
process or to report its status).

Parallel Process and SOA

The discussions in “Direct Connection and SOA” on page 53, “Broker and SOA”
on page 55, and “Serial Process and SOA” on page 56 also apply for the Parallel
Process application pattern.

We introduced the concept of a very simple service bus in “Direct Connection
and SOA” on page 53. Each of the subsequent application patterns add
important capabilities to this simple service bus, concluding with the Parallel
Process application pattern. We end up with a very sophisticated pattern that can
support all of the capabilities of a true Enterprise Service Bus, as discussed 2.4,
“Enterprise Service Bus” on page 38.

3.5 Runtime patterns

A Runtime pattern uses nodes to group functional and operational components.
The nodes are interconnected to solve a business problem. Each Application
pattern leads to one or more underpinning Runtime patterns.

We can overlay the Application pattern over the Runtime pattern to identify
where business logic is deployed on nodes. The Runtime patterns covered give
some typical examples of possible solutions, but should not be considered
exhaustive.

Note: In this section we review Runtime patterns for Direct Connection and
the Router variation of Broker, in the context of service-oriented architecture.
Look for details on the other runtime patterns in a future IBM Redbook.

3.5.1 Node types

58

A Runtime pattern consists of several nodes representing specific functions.
Most Runtime patterns consist of a core set of common nodes, with the addition

Patterns: Service-Oriented Architecture and Web Services

of one or more nodes unique to that pattern. To understand the Runtime pattern,
you will need to review the following node definitions.

Application Server/Services

The Application Server/Services node provides the infrastructure for application
logic and can be part of a Web application server. It is capable of running both
presentation and business logic, but generally does not serve HTTP requests.
When used with a Web server redirector, the Application Server/Services node
can run both presentation and business logic. In other situations, it can be used
for business logic only. The Application Server/Services node supports hosting of
Web services applications.

Applications may also rely on services provided by their hosting server to interact
with other applications. Examples of services provided by the Application
Server/Services node include:

» A TCP/IP pipe established using the hosting operating system
» A servlet or EJB invoked by WebSphere Application Server
» The JMS or J2EE Connector APIs provided by WebSphere

Connector
Connectors provide the connectivity between two components. A connector is

always present to facilitate interaction between two components.
Depending on the required level of detail, a connector can be:

» A primitive (or unmodeled) connector, represented by a simple line between
components

» A component (or modeled) connector, represented by a rectangle on a line
between components
A connector may be an adapter connector, a path connector, or both.

See also:

» “Adapter connector” on page 59
» “Path connector’ on page 60

Adapter connector

Adapter connectors are concerned with enabling logical connectivity by bridging
the gap between the context schema and protocols used by the source and
target components. An adapter connector is one that supports the transformation
of data and protocols.

Chapter 3. Service-oriented architecture and Patterns for e-business 59

Path connector

Path connectors are concerned with providing physical connectivity between
components. A path connector may be very complex (for example, the Internet)
or very simple (an area of shared storage).

Rules repository

The rules repository contains the rules generally used to control the mode of
operation of an interaction, depending on external factors. Examples of such
rules are:

Business data mapping rules (for adapter connectors)
Autonomic rules (such as priority in a shared environment)
Security rules

Capacity and availability rules

vyvyyy

The rules repository may or may not exist. If it does exist, it could still be left off
the Runtime pattern, for example, when analysis determines that interaction
rules are not an important part of the solution.

Router

The Router node is a variation of the Broker node. It allows a single interaction
from a source component to be switched and adapted to only one of multiple
target components. It separates the application logic from the distribution logic
based on router rules.

Domain QoS providers

The integration pattern for a domain is composed of a topology pattern and
domain QoS providers. Intra-enterprise integration and inter-enterprise
integration are both examples of domains. This combination of topology pattern
and QoS providers is used to describe observed patterns in the domain:

Integration pattern = topology pattern + QoS providers

The QoS capabilities framework can be used to address the particular QoS
concerns for the domain:

Autonomic

Availability

Federation
Performance

Security

Standards compliance
Transactionality

vVVvyVvYyVvYyYVvYYyvYyyYy

60 Patterns: Service-Oriented Architecture and Web Services

The domain QoS providers may or may not exist. If they do exist, they can still be
left off the Runtime pattern, for example, when analysis determines that domain
QoS providers are not an important part of the solution.

Protocol firewall node

A firewall is a hardware/software system that manages the flow of information
between the Internet and an organization's private network. Firewalls can
prevent unauthorized Internet users from accessing private networks connected
to the Internet, especially intranets, and can block some virus attacks (as long as
those viruses are coming from the Internet). A firewall can separate two or more
parts of a local network to control data exchange between departments.
Components of firewalls include filters or screens, each of which controls
transmission of certain classes of traffic. Firewalls provide the first line of defense
for protecting private information, but comprehensive security systems combine
firewalls with encryption and other complementary services, such as content
filtering and intrusion detection.

Firewalls control access from a less trusted network to a more trusted network.
Traditional implementations of firewall services include:

» Screening routers (the protocol firewall)
» Application gateways (the domain firewall)

A pair of firewall nodes provides increasing levels of protection at the expense of
increasing computing resource requirements. The protocol firewall is typically
implemented as an IP router.

Domain firewall node
The domain firewall is typically implemented as a dedicated server node.

A domain firewall is usually used to separate a secure zone, such as the internal
network, from a demilitarized zone. This provides added security protection from
the un-secure zone, such as the Internet.

Partner infrastructure

Partner infrastructure includes the partner's installed applications, data,
computing, and network infrastructure. Partner infrastructure has unspecified
internal characteristics; only the means with which to interact with it are specified.

Inter-enterprise network infrastructure

Inter-enterprise network infrastructure includes the network infrastructure
allowing connectivity between enterprises. Inter-enterprise network infrastructure
has unspecified internal characteristics; only the means with which to interact
with it are specified.

Chapter 3. Service-oriented architecture and Patterns for e-business 61

3.5.2 Runtime patterns for Direct Connection

62

When using the Direct Connection runtime pattern, shown in Figure 3-12 on
page 63, the source application uses a connector to access the target
application.

The connector itself may be explicitly or implicitly modeled. If the connector is
explicitly modeled, the modeler can use decomposition and abstraction
techniques to expand the connector to the appropriate level of detail.

The term Connector may be qualified by both the connector variation and by the
interaction variation. Some examples are:

» Adapter Connector
» Path Connector

» Message Connector

» Call Connector

» Call Adapter Connector

The source and target applications both rely on services provided by their
respective hosting servers. These are modeled using the Application
Server/Services node.

The Rules Repository and Domain QoS Providers may or may not exist. If they
do exist, it is a modeling decision as to whether they need to be shown in the
Runtime pattern. For example, analysis may determine that connection rules are
not an important part of the solution, so the Rules Repository may be left off the
Runtime pattern.

Patterns: Service-Oriented Architecture and Web Services

Internal network

SEEE— SEEE—
App Sf-;rver/ Connector App Sfarverl
Services Services
SEEE— SEEE—
Rules Domain QoS
Repository Providers

Direct Connection

Source Connection Target
Application Rules Application

Figure 3-12 Direct Connection runtime pattern

With a service-oriented architecture, the Rules Repository could also serve as
the service directory which contains a repository of available services and allows
interested service consumers to look up service provider interfaces.

Basic Direct Connection runtime pattern

The basic Direct Connection runtime pattern allows integration between a source
and target application that use different protocols using a single adapter
connector. Direct Connection using a single adapter connector is shown in
Figure 3-13 on page 64.

Chapter 3. Service-oriented architecture and Patterns for e-business 63

Internal network
<Service Consumer> <Service Provider>

)

App Server/ Adapter App Server/
Services Connector Services
-—

f_;ﬁ
Rules
Repository
—
<Service Directory>

Direct Connection

Source Connection Target
Application Rules Application

Figure 3-13 Direct Connection using single adapter

This Runtime pattern is important in service-oriented architectures because it
enables logical connectivity by bridging the gap between the messaging schema
and protocols used by the service consumers and service providers. This pattern
is often used to provide a service-oriented interface to an existing or legacy
system.

This pattern includes the Rules Repository node to model a service directory.
The service consumer can optionally discover services using the service
directory.

Direct Connection using coupling adapter connectors

Direct Connection can also be implemented using coupling adapter connectors,
as shown in Figure 3-14 on page 65, to improve reuse potential in multiple point
to point scenarios. It supports conversion of the request and response into a
common protocol between the adapters.

64 Patterns: Service-Oriented Architecture and Web Services

Internal network

<Service Consumer> <Service Provider>
App Server/ Adapter Adapter App Server/
Services Connector Connector Services

Direct Connection

Source
Application

Connection Target
Rules Application

Figure 3-14 Direct Connection using coupling adapters

Direct Connection using a service bus

Figure 3-15 on page 66 shows a service consumer connected to two other
service providers via a simple service bus. The application pattern overlays in
Figure 3-15 on page 66 show that multiple Direct Connection application
patterns can be deployed using the service bus. The service consumer (or
Source Application) can use the service bus to initiate direct connections to two
service providers; one to Target Application 1 and the other to Target Application
2.

Chapter 3. Service-oriented architecture and Patterns for e-business 65

Internal network
<Service Consumer> <Service Provider> <Service Provider>

App Server/ App Server/ App Server/

Services Services Services

<Service Bus>

Direct Connection

Source Target
Application Application 2

Direct Connection

- Source Target
Application Application 1

Figure 3-15 Direct Connection using a simple service bus

In order to focus on the service bus concept, we do not explicitly model adapter
connectors or connection rules in Figure 3-15. The service bus concept is,
however, an extension of the Direct Connection with coupling adapter connectors
runtime pattern that enables a set of connected Direct Connections. The service
bus approach:

» Minimizes the number of adapters required for each point-to-point connection
to link service consumers to service providers.

» Improves reuse in multiple point-to-point scenarios.
» Addresses any technical and information model discrepancies amongst
services.

Figure 3-16 on page 67 shows the service bus with the adapter connectors
explicitly modelled. The common protocol or format of the service bus is of
‘X’-type, and ‘X’-type adapter connectors are used to bridge the various service
consumers/providers of different types. We call a connected set of ‘X’-type

66 Patterns: Service-Oriented Architecture and Web Services

adapter connectors such as this an ‘X ’-type bus. Examples include a HTTP
service bus or a JMS service bus.

Internal network
<Service Consumer> <Service Provider> <Service Provider>

App Server/ App Server/ App Server/

Services

Services Services

CD T1 Type C:) T2 Type

'S to X'-type 'T1 to X'-type 'T2 to X'-type
Adapter Adapter Adapter
Connector Connector Connector
U X Type <Service Bus>

Figure 3-16 Service bus with adapter connectors

The service bus can span across multiple system/application tiers, and may
extend beyond the enterprise boundary.

A Rules Repository node may also be included to model a service directory,
allowing services to be discovered within and outside the enterprise.

Note: As noted in “Direct Connection and SOA” on page 53, the very simple
service bus described here provides just a small subset of the integration
capabilities of a true Enterprise Service Bus, as described in 2.4, “Enterprise
Service Bus” on page 38.

3.5.3 Runtime patterns for Broker

Multiple similar interactions will often benefit from a centralization strategy that
uses an integration hub to enable standardization and reuse. The Broker is a
message distributor hub which, based on pre-defined distribution rules, invokes
multiple targets concurrently. Key components of this solution design include
message transformation, content-based routing, and message
decomposition/re-composition.

Chapter 3. Service-oriented architecture and Patterns for e-business 67

Router variation

The Router variation of the Broker pattern invokes, at most, one of multiple
possible targets. Figure 3-17 shows the Router variation of the Broker runtime
pattern.

Internal network <Service Providers>

)
App Server/
Services

<Service Consumer> <Service Gateway> [“~———
App Server/ App Server/
Services Services
-~
' App Server/
Services
-~

Broker: Router variation

I Target

Source Router .. I Target

Application Rules [™-.. Target
: Application

Figure 3-17 Broker runtime pattern: Router variation

In a service-oriented architecture, the Router node (or service gateway) adds
some key capabilities to the service integration infrastructure. These capabilities
include:

» Converting transport protocols between consumer and provider

» Transforming message formats between consumer and provider

» Routing requests to the correct service provider

Figure 3-18 on page 69 shows how our simple service bus can be extended

using the Router runtime pattern. We only show one service bus, but the Router
node could be used to route a service request from one protocol bus to another,

68 Patterns: Service-Oriented Architecture and Web Services

converting, for example, from HTTP to JMS or RMI/IIOP. A Rules Repository
node can also be added to model a service directory, allowing services to be
discovered within and outside the enterprise.

Internal network

<Service Directory> <Service Provider> <Service Provider>
)
Rules App Server/ App Server/
Repository Services Services

App Server/

. Router
Services <Service Bus>
-~
<Service Consumer> <Service Gateway>

Figure 3-18 Router (Service Gateway)

3.6 Product mappings

The next step after choosing a Runtime pattern is to determine the actual
products and platforms to be used. It is suggested that you make the final
platform recommendation based on the following considerations:

» Existing systems and platform investments
» Customer and developer skills available
» Customer choice

The platform selected should fit into the customer's environment and ensure
quality of service, such as availability and performance, so that the solution can
grow along with the e-business.

This section introduces the major products used in our scenario chapters,
Chapter 6 through Chapter 9, and provides an overview of the products as they
apply to the Direct Connection runtime pattern and Router variation of the Broker
runtime pattern.

Chapter 3. Service-oriented architecture and Patterns for e-business 69

Note: Although these Product mappings are based on WebSphere
Application Server, our compliance with standards such as the WS-I Basic
Profile promotes interoperability with any similarly compliant service
consumers or providers, no matter what the platform.

3.6.1 Products used in these mappings

This section provides information about the products used in the Product
mappings.

IBM WebSphere Application Server V5.1

IBM WebSphere Application Server V5.1 represents a continuation of the
evolution to a single, integrated, cost-effective, Web services-enabled, J2EE
server foundation for applications that offers customers:

v

One deployment model

One administration point

One programming model

One integrated application development environment

vYvyy

With IBM WebSphere Application Server V5.1, IBM enables customers to
expand their business opportunities and productivity through a world class
infrastructure ready for e-business on demand.

IBM WebSphere Application Server base V5.1 provides a robust application
deployment environment for single-server light production situations.

It contains a base application server that supports the full J2EE 1.3 environment.
It allows a full range of enterprise integration and offers enhanced security,
performance, availability, connectivity, and scalability options. Administration is
done through a Web-based interface or through a scripting tool.

It includes support for new Web services standards, including JAX-RPC and
Web services for J2EE (both part of the J2EE 1.4 release), and for WS-Security.

More information about IBM WebSphere Application Server base V5.1 can be
found at:

http://www.ibm.com/software/webservers/appserv/was/

70 Patterns: Service-Oriented Architecture and Web Services

http://www.ibm.com/software/webservers/appserv/was/

IBM WebSphere Application Server Network Deployment V5.0.2
IBM WebSphere Application Server Network Deployment V5.0.2 is designed to
add non-programming enhancements to the features provided in the base
edition. These enhancements add scalability features, allowing you to run
applications on multiple servers and on multiple physical nodes.

In addition to the features included with the base edition of WebSphere
Application Server, you get:

» The Deployment Manager, which allows you to centrally manage a number of
different application server instances and clustering for workload
management and failover.

» The Network Dispatcher and Caching Proxy Server. These features provide
the edge-of-network functions required to set up a classic DMZ in front of the
application server.

» A private UDDI registry for easier deployment of internal Web services
applications and a Web Services Gateway.

More information about IBM WebSphere Application Server Network Deployment
V5.0.2 can be found at:

http://www.ibm.com/software/webservers/appserv/was/network/

IBM WebSphere MQ

IBM WebSphere MQ provides assured once-only delivery of messages across
more than 35 industry platforms using a variety of communications protocols.

The transportation of message data through a network is made possible through
the use of a network of WebSphere MQ queue managers. Each queue manager
hosts local queues that are containers used to store messages. Through remote
queue definitions and message channels, data can be transported to its
destination queue manager.

To use the services of a WebSphere MQ transport layer, an application must
make a connection to a WebSphere MQ queue manager, the services of which
will enable it to receive (gef) messages from local queues, or send (put)
messages to any queue on any queue manager. The application’s connection
may be made directly (where the queue manager runs locally to the application)
or as a client to a queue manager that is accessible over a network.

Chapter 3. Service-oriented architecture and Patterns for e-business 71

http://www.ibm.com/software/webservers/appserv/was/network/

Dynamic workload distribution is another important feature of WebSphere MQ.
This feature shares the workload among a group of queue managers that are
part of the same cluster. This allows WebSphere MQ to automatically balance
the workload across available resources, and provide hot standby capabilities if a
system component fails. This is a critical feature for companies that need to
maintain round-the-clock availability.

WebSphere MQ supports a variety of application programming interfaces
(including MQI, AMI, and JMS), which provide support for several programming
languages as well as point-to-point and publish/subscribe communication
models. In addition to support for application programming, WebSphere MQ
provides a number of connectors and gateways to a variety of other products,
such as Microsoft Exchange, Lotus® Domino®, SAP/R3, CICS, and IMS, to
name just a few.

More information can be found at the IBM WebSphere MQ Web site:

http://www.ibm.com/software/ts/mgseries

3.6.2 Product mappings

Product mappings for the Direct Connection runtime pattern and Router variation
of the Broker runtime pattern are presented in this section.

Product mappings for Direct Connection
This section presents Product mappings for the Direct Connection pattern using:
» HTTP service bus

» JMS service bus
» Service directory

HTTP service bus

The implementation of the simple HTTP service bus shown in Figure 3-19 on
page 73 is based on IBM WebSphere Application Server V5.1, and is an
example of the Application Integration::Direct Connection runtime pattern.

72 Patterns: Service-Oriented Architecture and Web Services

http://www.ibm.com/software/ts/mqseries

Internal network

<Service Consumer> <Service Provider> <Service Provider>
s o
x))) o
2\ .
S App Server/ App Server/ App Server/ S

Services Services Services
5 Adapter Adapter Adapter 5
$ 7] Connector Connector Connector s
Rl S — —
WebSphere Application WebSphere Application
— Server V5.1 Server V5.1 —
/\ Windows 2000 + SP4 Red Hat Linux AS 2.1
U SOAP 1.1/ <Service Bus>
HTTP 1.1

Figure 3-19 Direct Connection Product mapping for HTTP service bus

This example uses both Windows and Linux systems, and shows a service
consumer interacting with two service providers using the HTTP service bus. The
service consumer invokes a service provider using coupling adapter connectors
that convert the request into the common SOAP/HTTP protocol.

The service consumer uses the JAX-RPC API to send a request via the
WebSphere V5.1 SOAP provider. The service provider uses JAX-RPC API to
receive the request from the consumer via its WebSphere V5.1 SOAP provider.

Note: When integrating between J2EE application servers, RMI/IIOP is
generally the preferred approach. The intention of this product mapping is to
demonstrate that WebSphere V5.1 can be used to implement both Web
service consumer and Web service provider.

The HTTP service bus can be extended beyond the enterprise boundary using
the Extended Enterprise::Exposed Direct Connection runtime pattern. This
pattern, shown in Figure 3-20 on page 74, allows a service consumer invoke a
service provider hosted externally, on Partner Infrastructure.

Chapter 3. Service-oriented architecture and Patterns for e-business 73

Partner A Demiilitarized Inter- Partner B

Secure Zone Zone enterprise
Zone
WebSphere Application E
Server V5.1 :
Windows 2000 + SP4 ('“ o
] ©
z 5
S
App Server/ Adapter = /\ i Nﬁ:‘f'::rk
. c -
Services Connector £ U § ST TE
> > E soar | B
o HTTP r
JAX-RPC ‘ ‘ SOAP Provider ~— &

Figure 3-20 Exposed Direct Connection Product mapping

We used these two Product mappings to implement the sample scenario
described in Chapter 6, “HTTP service bus” on page 159.

JMS service bus

The implementation of the simple JMS service bus shown in Figure 3-21 on
page 75 is based on IBM WebSphere Application Server V5.1 and IBM
WebSphere MQ V5.3, and is another example of the Application
Integration::Direct Connection runtime pattern.

74 Patterns: Service-Oriented Architecture and Web Services

.é Internal network g
%; <Service Consumer> <Service Provider> <Service Provider> %_;
<> <>
I R e VEE
5
3 App Server/ App Server/ App Server/ g
2 Services Services Services g
))
5y Adapter Adapter Adapter 5y
g 71 Connector Connector Connector g
s -~ -~ R -
< <
@ @
[[
= Windows 2000 + SP4 Red Hat Linux AS 2.1 =

WebSphere MQ <Service Bus>
(for JIMS)

Figure 3-21 Direct Connection Product mapping for JMS service bus

Figure 3-21 shows that WebSphere MQ is performing an adapter connector role,
allowing JMS clients to access the MQ JMS Provider. WebSphere Application
Server still provides JAX-RPC and a SOAP Provider, as we saw in Figure 3-19
on page 73, but in this case we have not explicitly modeled these components
separately, in order to focus on WebSphere MQ as the transport provider. This
Runtime pattern makes use of the SOAP/JMS support of the WebSphere SOAP
Provider.

We used this combination of runtime nodes and products to implement the
sample scenario described in Chapter 7, “JMS service bus” on page 229.

Service directory

The Product mapping shown in Figure 3-22 on page 76 adds a UDDI service
directory to the to the Application Integration::Direct Connection runtime pattern.

Chapter 3. Service-oriented architecture and Patterns for e-business 75

Internal network

<Service Consumer> <Service Provider>
)
App Server/ App Server/
PP . Connector PP .
Services Services
» Windows 2000 + SP4 —_— * Windows 2000 + SP4
* IBM WebSphere Application . * IBM WebSphere Application
Server V5.1 ‘-._ Rules Server V5.1
Repository * AIX 5.1 ML4
» IBM WebSphere Application

Server V5.0.2.4 Network
Deployment - UDDI Registry
» IBM DB2 UDB ESE V8.1

<Service Directory>

Figure 3-22 Direct Connection Product mapping for service directory

Figure 3-22 shows that the UDDI Registry provided with IBM WebSphere
Application Server Network Deployment V5.0.2.4 performs the rules repository
role. The Connector in Figure 3-22 can be decomposed into a set of coupling
adapter connectors, similar to Figure 3-19 on page 73, allowing the service
consumer to first invoke the lookup service provided by the UDDI service
directory, then invoke the target service provider.

This Product mapping uses both Windows and AIX® systems in the service
directory deployment. We used this combination of runtime nodes and products
to implement the sample scenario described in Chapter 8, “Service directory” on
page 251.

Product mapping for Router variation of Exposed Broker

The implementation of the service gateway shown in Figure 3-23 on page 77 is
based on the Web Services Gateway packaged with IBM WebSphere Application
Server Network Deployment V5.0.2.4, and is an example of the Router variation
of the Extended Enterprise::Exposed Broker runtime pattern.

76 Patterns: Service-Oriented Architecture and Web Services

Partner A | Demilitarized Inter- Partner B
Secure Zone Zone enterprise
Zone J
©
s
o Partner C
App Server/ Exposed ic Infra
i R r S |l -
Services oute| 5 structure
<]
SOAP §
HTTP
 Windows 2000+SP4 : C\/l:bsé;r:\falf:vs 024 \aJ Y
° ISBeI\'{IvZ\rIe\;)SS ﬁ)here App Network Deplogln%e'nt i Partner D
< JAX-RPC * Web Services
Gateway

Figure 3-23 Product mapping for Router variation of Exposed Broker runtime pattern

The service consumer, which resides on the App Server/Services node, invokes
a service provider located on the Partner Infrastructure via the Exposed Router
node. The IBM Web Services Gateway is used to support the router functionality,
acting as a proxy to the partner service.

Similarly, a service provider residing on the App Server/Services node can be
invoked by a service consumer located externally on the Partner Infrastructure.
This interaction also uses the Exposed Router node, but in the reverse direction,
as shown in Figure 3-24.

Partner B Inter- Demilitarized
enterprise Zone
Zone

Partner A
Secure Zone

())
[s
Partner C 3 S
Network |.{ £ | A o
Infra- | b e = Exposed App Server/
structure [{ S [U """" c Router Services
©
] -g SOAP g SOAP
: 1 2 e n' N CVIXbSSJr:VI L4V5 0.2.4 MHTTP * Windows 2000+SP4
PartherD : © Jvebsphere V.0.2. « IBM WebSphere App
g Network Deployment s V5.1
H * Web Services . J:)r:.;rpc
H Gateway

Figure 3-24 Product mapping for Router variation of Exposed Broker runtime pattern (reverse direction)

Chapter 3. Service-oriented architecture and Patterns for e-business 77

These Product mappings use both Windows and AIX systems in the service
gateway deployment. We used this combination of runtime nodes and products
to implement the sample scenario described in Chapter 9, “Web service
gateway” on page 279.

78 Patterns: Service-Oriented Architecture and Web Services

Service-oriented
architecture approach

The aim of this chapter is to describe an approach to developing service-oriented
architectures. This approach combines the IBM Patterns for e-business with
service-oriented computing concepts to solve key business problems
encountered in industry today.

We use this service-oriented architecture approach to develop a solution
overview for a sample business scenario. We explore the lower-level design and
implementation considerations for our SOA solution in the scenario chapters,
Chapter 6 through Chapter 9.

© Copyright IBM Corp. 2004. All rights reserved. 79

4.1 The SOA approach and Patterns for e-business

A service-oriented architecture, as described earlier, is a set of business-aligned
services that are combined (composed and choreographed) to fulfill business
goals. IT systems provide interfaces to these services and combine them into
applications that support rapidly changing business needs. The services are
manifested as a set of interfaces without any dependencies on their
implementation mechanism or location. This architectural style allows better
alignment of required business capabilities with IT functions.

4.1.1 Service identification

SOA has implications not just at the technology level but at the junction point
between business and technology. It helps bridge that gap by bringing a more
business-driven focus to how we discover and expose services. These services
will often, but not necessarily always, be at the business use-case level. At this
level, we are dealing with the large-grained activities that the business wants to
expose, trigger, or support in a business process.

Identifying the set of services that a business requires their IT to support is not a
trivial task. Analysts agree that an approach or method is needed to uncover the
business-aligned services, their dependencies, and their supporting
large-grained components. Service identification is a determining factor in
creating and migrating to a successful service-oriented architecture.

The approach outlined in this chapter can be used with your existing application
development method. It provides extensions to help you create an SOA. It
augments current object-oriented methods with a set of seven steps and their
corresponding outputs (artifacts or work products) that support the design of
component-based, service-oriented architectures.

4.1.2 Patterns for e-business and SOA

The role of Patterns for e-business in the SOA approach is shown in Figure 4-1
on page 81. Using the Patterns for e-business, we can leverage IBM
best-practices in designing and building robust, industrial strength applications.

80 Patterns: Service Oriented Architecture and Web Services

Need for Business-Aligned SOA

Modeling and Service Identification

4 Ny

Patterns for e-business [<#———» Servnce_-Orlented
Architecture

Access Integration | | Service Provider |

Self-Service/Collaboration | |

|
|
| Application Integration |
|

B3 Service Description |
e 5
2 <
g_ Extended Enterprise | » | Service Consumer |
[}
Q O 2
@) O B
2| SOA Method |
| Application Integration | @
| Extended Enterprise | | Loosely-Coupled Value-Net |

3

An SOA is a composite pattern with Self-Service, Collaboration, and/or
Access Integration on the front-end, and one or more Extended
Enterprise and/or Application Integration patterns on the back-end.

Figure 4-1 Using Patterns for e-business with an SOA approach

As highlighted in Figure 4-2 on page 82, most (if not all) of the Business and
Integration patterns are applicable in the context of service-oriented
architectures.

The Self-Service business pattern allows users to interact with business
services. The Collaboration pattern enables collaborations between business
partners that partly involve service integration and partly involve workflow and
people. The Extended Enterprise business pattern allows one business to
interact with another businesses’ services. These Business patterns are
combined on the front-end using the Access Integration pattern and on the
back-end using the Application Integration pattern.

Chapter 4. Service-oriented architecture approach 81

Self-Service

Collaboration

Access Integration

Extended Enterprise

Application Integration

Figure 4-2 SOA with Access Integration, Self-Service, Collaboration, Extended
Enterprise, and Application Integration

We focus on Self-Service, Extended Enterprise and Application Integration in this
publication, exploring how the Business patterns, Integration patterns,
Application patterns, Runtime patterns and Product mappings can be applied at
the appropriate stages of the SOA approach.

4.2 Business scenario: Supply chain management

The Web Services Interoperability Organization (WS-I) has developed a supply
chain management business scenario to demonstrate features of the WS-| Basic
Profile 1.0. The WS-I sample business scenario and the technical solution
overview are described in the following documents:

» WS-I Supply Chain Management Use Cases 1.0
» WS-| Usage Scenarios 1.0
» WS-I Supply Chain Management Technical Architecture 1.0

For full details, see the Web Services Interoperability Organization Web site:
http://www.ws-i.org

We use this business scenario to show how the Patterns for e-business and SOA
approach can be used to develop solutions to real-world business requirements,
that are based on interoperatibility principles defined in the WS-I Basic Profile.

82 Patterns: Service Oriented Architecture and Web Services

http://www.ws-i.org

As shown in Figure 4-3, this business scenario is a simplified supply chain for a
consumer electronics retailer. In a typical B2C model, customers may access the
retailer's Web site, review the catalog, and place orders for products such as
TVs, DVD players and video cameras.

The retailer system requests fulfilment of a consumer’s order from the internal
company warehouse, which responds as to whether line items from the order can
be filled. If stock for any line item falls below a minimum threshold in the
warehouse, a replenishment order is sent to an external manufacturer using the
B2B model.

The manufacturer does not immediately fulfil replenishment orders. It will
complete the order at some later time (possibly after completing a manufacturing
run).

Consumer

\ / Retailer Warehouse

Browser Q
Manufacturer

Logging
Facility

Organization boundary

Figure 4-3 High-level business context

Now, rather than taking the WS-1 Supply Chain Management Technical
Architecture as a given, we will apply the SOA approach that includes the
Patterns for e-business to this business scenario.

4.3 Steps of the SOA approach

This section introduces a method for discovering services (top-down) and
leveraging services (bottom-up, from legacy and packaged applications). It
includes a combination of techniques and steps that describe how to employ

Chapter 4. Service-oriented architecture approach 83

top-down and bottom-up techniques to successfully create and/or migrate to an
SOA.

This method consists of the seven main steps shown in rough sequence in
Figure 4-4. These activities or steps are not necessarily linear and sequential,
but rather exploratory and iterative, incrementing functionality and understanding
of the team as the project proceeds.

The process can be optimized by determining which steps can be carried out in
parallel and which are dependent on other steps. Our experience shows that you
can interleave and spin off multiple threads of activities. But there are times when
you have to wait for the output of a process before you begin the next step. You
will discover what works best for you and your team, depending on the project
and organizational culture.

‘ Current Business and Technical Architecture

Composne Patterns

Busmess Patterns Integration Patterns

Domain Decomposition

ikm

3]

Goal Service Model
Creation

)

(1b)
Existing Assets Analysis
Componentize Legacy Systems

Subsystem Analysis
Application Patterns { }
Service Allocation 4
Component Specmcatlon
‘ Leverage Component

Structure Enterprise Components using Patterns @ Service Repository
Runtime Patterns]

(D

Technology Realization Mapping

v

Product Mapping

Service
Repository

Future Enterprise and Application Architecture

Figure 4-4 Seven main steps of the SOA approach

Here, you start at the top of the figure and work your way down towards
implementation, test and deployment (not shown here for simplicity). Steps that
are vertically parallel can be done pretty much concurrently.

The usage of the Patterns for e-business within the steps of building an SOA are
also shown in Figure 4-4. The timing for applying the Patterns may vary, but
should roughly be as shown.

84 Patterns: Service Oriented Architecture and Web Services

We start the process when the business problem suggests the use of a
service-oriented approach. Business problems involving exposure of back-end
business services at the edge of the enterprise are typical candidates.

The top-down aspect of the SOA approach comes from taking business
perspectives and models into consideration: Business functions, processes,
sub-processes, and use cases are elaborated to form the outlines of component
boundaries.

Components provide boundaries and containers for services (often discovered
through use case analysis and goal-service model creation). Services are the
units of functionality that are exposed for business process orchestration and
choreography and the creation of composite applications. Components provide
these services on their interfaces and will often contain finer grained object
hierarchies and/or legacy systems that implement them.

In the following sections, we outline the seven key steps necessary to support
component-services architectures. We apply each of the steps to the WS-
supply chain management sample scenario. The supply chain scenario is
reasonably simple, so our application of the SOA approach will be at a
comparable level of detail.

As already stated, the SOA approach does support legacy integration (starting at
Step 1b Existing Assets Analysis in Figure 4-4 on page 84), but we do not cover
this aspect in this publication.

4.3.1 Domain decomposition

In this step we decompose the domain into its constituent business architecture
consisting of value-chain, business processes, sub-processes, and use cases.

From a business perspective, the domain consists of a set of functional areas.
We decompose the domain into functional areas across the value-net; these are
often good candidates for implementation as technology subsystems. Figure 4-5
on page 86 shows our domain decomposition for the supply chain management
scenario.

Chapter 4. Service-oriented architecture approach 85

3 Manufacturers

<<Customer>> <<Retailer>> <<\Warehouse>> <<Manufacturer>>

Legend

Value Chain —> <<Logging Facility>> >-<=——
Participant

Figure 4-5 Domain decomposition of value chain into functional areas and domains

In defining the functional areas across a value-chain or value-net we define the
scope of the effort:

» Is it within the enterprise; is it across one, two or more business lines?

» Is it across a value-chain within business partners in a supply chain?

After decomposing domain into a value-chain of functional areas, we then
decompose each functional area into processes, sub-processes, and business
use cases.

Use case model
The decomposition of the functional areas described above leads to the following
set of business use-cases:

UC1: Purchase Goods

UC2: Source Goods

UC3: Replenish Stock

UC4: Supply Finished Goods

UC5: Manufacture Finished Goods

UCB6: Configure and Run Demo (Not implemented in our sample.)
UC7: Log Events

UC8: View Events

vVVyVYyVYVYYVYYVvYYy

For a full description of the use cases, please see WS-I document Supply Chain
Management Use Case Model, available at:

http://www.ws-i.org/

The use case model is shown in Figure 4-6 on page 87.

86 Patterns: Service Oriented Architecture and Web Services

http://www.ws-i.org/

ﬂPurchase Go;ds m Supply Hmshed
] Goods

T

% «include» Retailer System "\ «include»
Consumer
e _
UC2: Source Goods : Manufacture
. - Hnlshed Goods

UC3: Replenish Stiock / \
Manufacturing System
O —Ucs: Conflgure an(D & Log Ev;é
J—

X De mo
Demo UN

\@vmw Events %
- Demo System

Figure 4-6 WS-1 SCM use case model

We can now use the business use cases (high-level, coarse-grained use cases
like Purchase Goods) to further decompose the domain, as shown in Figure 4-7
on page 88. The business use cases identified are good candidates for services
that will ultimately be exposed as Web services on an enterprise component. The
business use case definitions are business driven and aligned, and offer a
common, reusable “chunk” of business functionality.

Chapter 4. Service-oriented architecture approach 87

88

<<Retailer>>

<<Customer>> '
Purchase Replenish
FUAZED Goods Stock
Goods Source
Goods Log

Events

<<Warehouse>>
<<Logging Facility>>

Source
—— %
3 Manufacturers
<<Manufacturer>> |:
Supply Manufacture
Lo\ Goods Goods
Log
Events

Value-Chain
Participant

Figure 4-7 Domain decomposition into business processes and business use cases

With the business use cases, it is important to define the data to be input and
output from each service or external invocation at least at a high level. These
definitions are then refined during component and service specification.

As we move into design, each functional area is mapped to one or more
subsystems in the architecture. Functional areas are a business notion, while the
subsystems are a technology notion. There is a straightforward mapping
between them, so we often find that at least one subsystem will then be identified
and elaborated for each functional area. Similarly, business level use cases can
be mapped to system level use cases in this stage.

In this way, each functional area or business process can be thought of as an IT
subsystem that creates a natural business-driven boundary for the large-grained
enterprise components that provide services.

In contrast, object-oriented analysis and design tends to produce object graphs
of relatively tightly coupled finer-grained objects, which tends to impede
component reuse. With the SOA approach this is avoided by identifying the larger
encompassing (perhaps virtual) structure first. The constituent elements are then

Patterns: Service Oriented Architecture and Web Services

refined through a more top-down approach, or allocated (if leveraging legacy, for
example).

Applying Business and Application Integration patterns

At each stage of the SOA approach, we can leverage corresponding assets from
the Patterns for e-business. We start with Business patterns to define high-level
business participants and their relationships, using the functional areas and
business use cases identified in domain decomposition.

Let us look at how we applied Business and Integration patterns to the WS-
SCM sample business problem. We know there are two business models
associated with it:

» A B2C interaction between the consumer (end user) and the retailer’s
business system; and

» A B2B interaction between the retailer's warehouse and the external
manufacturers

This implies the use of the Self-Service and Extended Enterprise business
patterns. We can also use the Application Integration pattern to integrate the
internal service consumers and service providers in the value-chain, and the
Extended Enterprise business pattern to service consumers and service
providers across enterprise boundaries. We applied these Patterns to the SCM
business scenario, as shown in Figure 4-8.

'nl Self-Service

Consumer

y_/

Browser

Extended Enterprise

Manufacturer]

/

Retailer Warehouse

Application \@

Internet

Application Intdgration

Internet

Application Integration

Logging
Facility

Organization boundary

Legend
Business Pattern

Application Integration
Pattern

Figure 4-8 Supply chain management Business and Application Integration patterns

Chapter 4. Service-oriented architecture approach 89

Table 4-1 summarizes the linkage between the supply chain management use
cases and functional areas from domain decomposition, to the Business or

Table 4-1 SCM sample application use cases

Integration pattern we have applied to each.

Use case name | Description Invoker Implemented | Business or
by Integration
pattern
UC1: Purchase Consumer selects and Consumer (or | Retailer Self-Service
goods purchases goods from retailer customer)
catalog
UC2: Source Retailer system sources goods | Retailer Warehouse Application
goods to fulfil a consumer order from Integration
warehouses
UC3: Replenish | When stock in a warehouse Warehouse Warehouse Application
stock falls below a threshold, a Integration
reorder is issued
UC4: Supply Response to a replenish stock | Warehouse Manufacturer Extended
finished goods use case Enterprise
UCs: Replenishment of Manufacturer Manufacturer Application
Manufacture manufacturer stock when Integration
finished goods levels fall below a specified
threshold
UCe6: Configure Allows sample applicationtobe | Demo user None Self Service
and run run for different technical (not
demonstration scenarios implemented)
UC7: Log events | Track activities performed by Retailer, Logging facility | Application
different system actors Warehouse, Integration
Manufacturer and Extended
Enterprise
UC8: View View activities recorded in the Demo user Logging facility | Self Service
events log

4.3.2 Goal-service model creation

Service identification implies the discovery of business aligned services for the
entire organization. As discussed, the business level use cases identified in
domain decomposition are good candidates for services. In this step we create a
goal-service model to test the completeness of the candidate services identified.

90 Patterns: Service Oriented Architecture and Web Services

By interviewing business owners, querying them on the goals within the scope of
work, we can create a tree of related sub-goals that are prerequisites to
achieving the initial high-level, often intangible, and lofty goal. Each level of
sub-goal is broken down to a set of further sub-goals until the services required
to fulfill them are clear. This is called a goal-service model.

To create a goal-service model, identify the goals and sub-goals that must be
realized in order support higher level goals. Then associate the sub-goals with
the services required to realize the sub-goals. This will make services traceable
back to the goals that the business indicates it needs to achieve. This traceability
of services back to business goals is essential to ensure that the complete set of
business services is anticipated as early as possible.

Various notations are possible for a goal-service model. We provide a simple
example using a nested list of goals, sub-goals, and services in Figure 4-9. This
example covers the retailer functional area.

Goal-service model for retailer business function:
1. Increase revenue
2. Increase sales
3. Provide self-service shopping capability
3.1. Purchase Goods
3.2. Source Goods
3.3. Provide user-friendly interaction experience
3.3.1. Get Catalog
3.3.2. Manage Shopping Cart
4. Maintain accounting records
4.1. Log Events
4.2. View Events

Key:
» Goals are shown in regular text.
» Services are shown in italic.

» Value-adds (additional services needed that were not discovered during
Domain Decomposition) are shown in bold.

Figure 4-9 Goal-service model example

Chapter 4. Service-oriented architecture approach 91

Starting with the high-level business goal of increasing revenue, we identify
lower-level subgoals and services needed to realize the business goals above.
For the SCM sample, the top level goal of increasing revenue may be achieved
by increasing sales. To increase sales we can provide more accessible and
convenient self-service shopping capability. The Purchase Goods and Source
Goods use cases identified in domain decomposition provide this capability.

Looking closer at the self-service shopping goal, it is important that interaction
experience provided is user-friendly. To achieve this we need to provide the user
with a shopping catalog that she can browse. In a real world scenario some sort
of shopping cart facility would also be usual. This simple goal-service model
helped us to identify that some additional services are needed to support the
business goals. We will need to revisit the domain decomposition to incorporate
the new services.

All the services identified are seen to directly support the business domain’s
needs and goals. This traceability is a very significant factor in ensuring that the
gap between business required services and IT system implementations remains
minimal.

4.3.3 Subsystem analysis

After completing domain decomposition we have an idea of the functional areas
in the business domain and how they interact within the value-chain for the
business domain. We have a fractal (recursive or composite) view of the
business domain: An extended enterprise with suppliers and customers, with
individual business lines within an organization, and business processes and use
cases within the business lines.

Now we move more into design- and architecture-driven decisions. Subsystem
analysis refines the business use cases into system use cases that support a
given business process. Subsystems are composed of business components
(such as Customer, Order, and Product) and technical components (such as
messaging, security, and logging).

During subsystem analysis, business and technical components are identified as
follows:

» Analyze the process flow within the subsystem (often a sequence of use
cases) to discover/identify candidate business components.

» Use non-functional requirements to find technical components.

» Identify the required functionality for each business component; tat is, the
system level use cases each component must it support.

92 Patterns: Service Oriented Architecture and Web Services

The high-level business use cases discovered during domain decomposition are
often good candidates to be placed on the interface of these subsystem
components and expose the enterprise component's services. These business
use cases often collaborate to support a business process.

In our SCM scenario, the four main subsystems identified are Retailer,
Warehouse, Manufacturer, and Logging Facility. Each of these subsystems
exposes a set of business services. For convenience, we can lump a set of finer
grained services as a single callable service with several operations for the
individual functions required.

Figure 4-10 shows the Retailer subsystem. After goal-service model creation, we
split the Purchase Goods business use case into Get Catalog and Submit Order
services.

Retailer Enterprise Component

Replenish Stock

— . RetailerSoap

Retailer -

; Bindinglmpl

—(_Submit Order

Catalog Customer

Product Order

Technical Business

Components Components

Figure 4-10 Business use cases are exposed on the subsystem

Each business use case relies on a set of system use cases encapsulated in the
subsystem. The subsystem leverages the business and technical components to
realize the use case and support the exposed business service such as Submit
Order.

The model shown in Figure 4-10 is only meant to provide a simple example of
how subsystem analysis is performed. In practice, standard UML modeling
techniques are used, with business use cases realized by subsystems, and
system use cases realized by business and technical objects.

Chapter 4. Service-oriented architecture approach 93

94

After completing subsystem analysis, we end up with the following larger-grained
components that are being implemented as services:

» Retailer Service provides the functionality to access the product catalog and
to place orders.

» Warehouse Service supports the shipment of products ordered and updates
stock inventory as products ship. Where inventory falls below a threshold, it
will submit a Purchase Order (PO) to a Manufacturer for finished goods.

» Warehouse Callback Service receives notification from a manufacturer that a
PO has been processed, successful or not.

» Manufacturer Service accepts PO submission for finished goods and initiates
the manufacturing process.

» Logging Service logs events as they happen and supports retrieval of events
logged for display to the end-user.

At this point these coarse-grained services can be composed into an
orchestration. Flow modeling tools such as IBM WebSphere Business Integration
Modeler are an important aid in this area.

Applying Application patterns

Application patterns help structure the business and technical services needed
for the SCM scenario at a high-level, as shown in Figure 4-11 on page 95.

Patterns: Service Oriented Architecture and Web Services

Self-Service:: o Extended Enterprise::
Stand Alone Single Channel g 3 Exposed
Consumer N 2% Router
Present- | | Retailer EE Warehouse
° ation Service 59 Service |
g kg Manufacturer
g € 2 Warehouse Service
Callb{ack Exposed
Browser Service Router

Application Integry
Direct Connectio

Internet

irect Connectior

2
K
3o
ge
2
d c
&
4o
k]
4 £
45

Exposed Direct
Connection

Logging \ }
Facility

Legend
Business Pattern::
Application Pattern

Application Integration
Pattern

Organization boundary

Figure 4-11 Supply chain management Application patterns

In this simplified solution, we show the five primary services needed to support
the business:

» Retailer service

» Warehouse service

» Warehouse callback service
» Logging facility service

» Manufacturer service

Notice the use of the Direct Connection application pattern between services
within the Enterprise. The Direct Connection application pattern is the simplest
interaction type based on a 1-to-1 topology. It allows a service consumer and
provider within the organization to directly communicate with each other. For
example, when a customer submits an order, the Retailer Service will then send
a message to a Warehouse service to locate the ordered goods and request
shipment.

The Exposed Router application pattern is applied to the business need of a
Warehouse having to submit a Purchase Order to a specific Manufacturer for
finished goods when the inventory falls below the pre-defined threshold limit. The
retailer’'s warehouse can interact with any of the three Manufacturers in the

Chapter 4. Service-oriented architecture approach 95

sample application. The Router pattern applies to solutions where the source

application initiates an interaction that is forwarded to, at most, one of multiple
target applications. The selection of the target application is controlled by the

Router tier.

When a Manufacturer has completed processing a purchase order submitted by
a Warehouse, it notifies the Warehouse asynchronously via the Warehouse
Callback Service of its completion. The Exposed Router pattern is used to
control the services that can be invoked from outside the organization by external
partners, such as the Manufacturers.

4.3.4 Service allocation

We have identified all the required services through a combination of domain
decomposition and goal-service modeling. In this step, service allocation, we
ensure that all the services identified have a “home” and that they are all
traceable back to business goals and to components.

In this way we not only ensure that every service has business value, but also
that all the services have been identified. Importantly, we are also managing the
proliferation of services; like objects in the object-oriented paradigm, services
tend to proliferate if not carefully managed.

Service allocation asks who (which component) will provide the implementation
and management of each service. The answer will depend on whether you are a
service provider or consumer.

Service consumers want the flexibility to replace an implementation based on
new functional requirements, non-functional characteristics (such as higher
volume handled, less down time), and economic factors (such as cheaper
service).

Service providers, on the other hand, will want to implement the interface using
one or more of their components or existing functionality (if not componentized).

Figure 4-12 on page 97 shows the traceability between the services identified in
the goal-service model, and the new and existing components that implement
and manage each service.

96 Patterns: Service Oriented Architecture and Web Services

Goals

Services [—1]
(I [—] —
] [—] =
- Component 1
—
(E—
/_
C7/]
] -
] T 7/
] 7]
m l:l |:| Previously Discovered

Services

il

Services Discovered During
Goal Service Modeling

Component 2

IIIIIII1I,II

Figure 4-12 Service allocation

Service allocation is trivial in our supply chain management sample because we
we have only a small number of services, and we assume that there are no
existing internal service providers that need to be considered. We do, however,
need to allocate the responsibility to implement the Manufacturer service
providers to our external manufacturer business partners.

The WS-1 Supply Chain Management Sample Application Architecture document
defines the following set of interfaces for the supply chain management sample:

http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-08/Retail
er.wsd]l
http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-08/Wareho
use.wsdl
http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-10/Manufa
cturer.wsdl
http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-08/Loggin
gFacility.wsd]l

4.3.5 Component specification

After subsystem analysis, we have defined the subsystem interfaces, system use
cases, business and technical components, their dependencies and flow. We
have then ensured that each identified service is assigned to a component.

Chapter 4. Service-oriented architecture approach 97

http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-08/Retailer.wsdl
http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-08/Warehouse.wsdl
http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-10/Manufacturer.wsdl
http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-08/LoggingFacility.wsdl

The next step is to develop specifications for the each of the components
needed. Properties, such as those shown in the template shown in Figure 4-13,
need to be captured for each business or technical component that will
participate in a release within the scope of the project.

Component Specification

=Rules
»<rule 1>
»<rule 2> <<Component>>
=Services
»<service 2>
»<service 1>
= Attributes
»<data element 1>
»<data element 2>
=Uses Components
»<dependency on component 1>
=Variation Points
»Pluggable Rules
»[Configurable] Workflow
» Configurability Requirements

Figure 4-13 Component specification template

4.3.6 Structure components and services using patterns

We have applied business and architectural analysis to identify and define the
components providing the services. We have allocated services to components
and developed specifications for each of the components.

We structure these components and services using patterns in this step.

Applying Runtime patterns

In this step, we can use Patterns for e-business Runtime patterns to establish the
middleware structure needed to support the services identified, and then allocate
each service to a logical middleware node. We applied the Runtime patterns
shown in Figure 4-14 on page 99 to the SCM scenario.

98 Patterns: Service Oriented Architecture and Web Services

Outside
World

Stand-Alone Single Channel Application Pattern::Runtime Pattern: Variation 1

Enterprise Domain) Partners
Inter-Enterprise
DMz Internal Network DMz Zone

Directory and
Security Database
Services
= Web Server 3
= Redirector 2 ‘
2 (3
8 '% Application Direct Cpnn_ectlon Manufacturer Service ol
2 £ Server / f‘;pl'ca:_"’" Partner Infrastructure
=4 o ; ntegration
Services
% gl Pattern::Runtime H
Pattern ;
N P Rules :
Connector Repository ;
Retailer Service ‘
on this node A N
i
i
InterEnterprise
Service bus Exposed Networﬁ(
Routey Infrastructure
H <
Application 2 2
CETERET Server / R Rule_ts - D Exposed Router
Services epostioly | | & g Application
1 g 5 Pattern::Runtime Pattern
Warehouse & I\ | i [[s] o
Warehouse Callback | | | .o
Services on thisnode | .t
Application Exposed Direct
Ser\{er/ Connector C ion Applicati
Logging Service of = | Services Integration
this node Pattern::Runtime Pattern

Figure 4-14

Application of Runtime patterns during the structure components and services step

Here we have three distinct Runtime patterns for our SCM solution. Other
variations of these Runtime patterns can be used to address availability and
performance requirements, but are we focusing the simpler, entry-level Runtime
patterns in this publication.

For the U2B interaction, we have variation 1 of the Stand-Alone Single Channel
runtime pattern. This variation uses a Web server redirector containing the Web
server and an application server, effectively splitting the function of a Web
application server across two machines. The application server resides in the
internal network to provide it with more security. The application server node will
run both presentation and business logic. The Web server remains in the DMZ
and serves static pages. A Web server redirector is used to forward the requests
from the Web server to the application server.

For the interaction between services within the organization, the Direct
Connection runtime pattern comprises of a source service accessing the target

Chapter 4. Service-oriented architecture approach 99

service via a connector. Connectors provide the connectivity between two
components. In this instance, we use the Direct Connection runtime pattern to
implement a logical service bus, as described in “Direct Connection using a
service bus” on page 65. The Exposed Direct Connection runtime pattern allows
external access to the Logging service.

For the B2B interactions, the Router variation of the Exposed Broker runtime
pattern is used. The Router can perform intelligent routing of messages to one
target service at a time. It does not include the simultaneous distribution or
decomposition capabilities that the Broker node provides. (Ideally, the Router
variation of the Exposed Broker runtime pattern would also be used for external
access to the Logging service. We have used the Exposed Direct Connection
runtime pattern simply to demonstrate the use of this pattern.)

In Chapter 6 through Chapter 9 we examine in detail the implementation of this
solution across four stages. Each stage builds on the previous stage, allowing us
to work our way gradually to a comprehensive solution.

As stated earlier, valid alternate Runtime patterns are possible, include the
following:

» Router instead of Direct Connection pattern for the interactions between:

— Retailer Service and Logging Service
— Warehouse Service and Logging Service
— Warehouse Callback Service and Logging Service

if there is a need for protocol conversion between the services.

» Serial Process instead of Direct Connection pattern for the
Retailer-to-Warehouse service interaction if the process logic is separated
from the application logic.

» Exposed Router instead of Exposed Direct Connection pattern for the
Manufacturer-to-Logging service interaction. Use of the gateway to decouple
the deployment and invocation of the service is a more prudent choice,
especially in an inter-enterprise environment.

4.3.7 Technology realization mapping

100

Once the functionality of the services and components have been specified in
detail, their implementation mechanism must be resolved. The choice of how to
realize the implementation of the specification is a key architectural step.

You can build everything from scratch. Or you can out source it completely as a

turn-key solution. Between these two extremes lies the most common needs of

IT organizations: To decide what to build, what to buy. However, it is important to
realize that these are not the only alternatives. As shown in Figure 4-15 on

Patterns: Service Oriented Architecture and Web Services

3

page 101, there are various alternatives to the traditional “build versus buy’
decision, namely:

» Build new component functionality (roll your own).

» Transform legacy to enable reuse of functionality exposed as services.
» Integrate by wrapping legacy systems.

» Buy and integrate with third party products.

» Subscribe and out source parts of the functionality, especially via Web
services.

Build Transform Integrate Subscribe Buy Outsource

< >

Figure 4-15 Plan and design your service implementation carefully

A service’s implementation can be realized by wrapping a legacy system with a
message queue service or a Web service. But in most cases mere exposure of
legacy functionality is not sufficient. Componentization of the legacy system or a
small subset of the system must take place to properly expose the functionality
required. This process is called transformation, where the legacy system is
transformed from one state to a componentized state. A key factor is the scope of
componentization: Avoiding the “boil the ocean” syndrome where all the legacy is
broken into parts. Rather, an appropriate subset is selected and transformed
through componentization. This is mostly an automated process. The IBM
Legacy Transformation Offering focuses on these kinds of solutions.

Subscription assumes that an enterprise application Integration model has been
implemented and there are services to subscribe to, in a hub and spokes
architecture.

Once we have specified the components that we need, we can weigh the
advantages and disadvantages of how to realize the components. This mapping
is called a technology realization.

A table like Table 4-2 on page 102 can be created for this purpose.

Chapter 4. Service-oriented architecture approach 101

Table 4-2 Technology realization mapping table

Business
process

Sub-process Use case Component Current Future
Iservice Implementati | Technology
on Realization
(if exists) mechanism

In our simple SCM example we move straight from the Runtime patterns
identified in “Structure components and services using patterns” on page 98 to
applying the Product mappings.

Applying Product mappings

The Patterns for e-business Product mappings can be used with component
realization to help you identify and select proven and tested middleware
implementations for your scenario. We applied the Product mappings shown in
Figure 4-16 on page 103 to the SCM scenario.

102 Patterns: Service Oriented Architecture and Web Services

. - * Partners
Outside » Windows 2000 + SP4 Inter-Enterprise
World DMZ ‘ = IBM SecureWay Directory V3.2.1 ptwork DMz Zone
[|* IBM HTTP Server 1.3.19.1 Windows 2000 + SP4
” L]
» Windows 2000 + SP4 IBM GSKit 5.0.3 .
-Al 1BM DB2 UDB ESE V8.1
Stand-Al = IBM WebSphere Application [|* IBM DB2 UDB EEV7.2+FP5 _ fi{ °
Server V5.1 HTTP Plug-in N\
* IBM HTTP Server 1.3.26 Directory and
T Security Database
Services
= Web Server =
= Redirector ‘;“ ‘
2 1<
i i " 1
g £ Application RlisclConnection Manufacturer Service o
el E Server / Appllcat_lon Partner Infrastructure
&_9 oo Services Integratlon_)
Pattern::Runtirf« AIX 5.1 ML4 i
Pattern |+ IBM WebSphere Application i
Server V5.0.2.4 Network i
Deployment - UDDI Registry i
N s Rules « |BM DB2 UDB ESE V8.1 H
Connector Repository { i
Retailer Service i §
on this node 72 e . i \ /_\ ‘
Z
* Windows 2000 + SP4 —
» IBM WebSphere Application Exposed [MEREAE D
Server V5.1 Servicalbus Rguter Network
» Windows 2000 + SP4 Infrastructure
* IBM WebSphere Application
Server V5.1
3 5
* Red Hat Linux AS 2.1 -
Application
* IBM WebSphere Application pSFe’zrver/ Rules ° AIX5.1 ML4 — Exposed Router
Connector A Repository » IBM WebSphere Application i aati
Server V5.1 Services Server V5.0.2.4 Network Application
| A Deployment - WS GateWay Pattern::Runtime Pattern
Warehouse & N e = ™
Warehouse Callback | | | ™
Services on this node | .-
Application Exposed Direct
Server / Connector Connection Application
Logging Service on—) | .- Services Integration
GIBOEED Pattern::Runtime Pattern
Figure 4-16 Application of Product mappings during the component specification step

We use IBM WebSphere Application Server V5.1 to host all the services in the
our SCM solution. WebSphere hosts the front-end, user interface application and
each of the services implemented:

» Retailer service

» Warehouse service

» Warehouse callback service

» Logging facility service

» Manufacturer service

In Chapter 6, “HTTP service bus” on page 159, we look in detail at how the
service consumers and providers in the scenario can be integrated using the

SOAP/HTTP Web services support provided with IBM WebSphere Application
Server V5.1 and the Direct Connection runtime pattern.

Chapter 4. Service-oriented architecture approach 103

In Chapter 7, “JMS service bus” on page 229, we look at adding reliable
messaging using SOAP/JMS Web services. We examine how IBM WebSphere
Application Server V5.1 service consumers and providers can be reconfigured to
communicate using the IBM WebSphere MQ JMS provider, instead of HTTP.

In Chapter 8, “Service directory” on page 251, we add the UDDI Registry
provided with IBM WebSphere Application Server Network Deployment V5.1.

In Chapter 9, “Web service gateway” on page 279, we include the Web Services
Gateway provided with IBM WebSphere Application Server Network Deployment
V5.1 to allow integration between the Warehouse and Manufacturer services
using the Broker runtime pattern.

Note: When integrating between J2EE application servers, RMI/IIOP is
generally the preferred approach. The intention of the SCM product mapping
is to demonstrate that WebSphere V5.1 can be used to implement all of the
components of the service-oriented solution, and to demonstrate WebSphere
conformance with all of the WS-I Basic Profile 1.0 features covered by the
SCM sample.

4.4 Summary and conclusion

The method described here helps map a current business model and its
underlying IT architecture to a service-oriented enterprise and application
architecture. The combination of SOA and Patterns for e-business produces a
powerful set of best-practices and design decisions that help expedite mapping
of business processes to IT and the creation of a robust service-oriented
architecture that is in line with the needs of the business.

The SOA approach discussed here is an extension that can be easily added to
your current method. It combines a top-down and bottom-up approach to the
modeling, design and implementation of a service-oriented architecture for
on-demand computing.

4.5 Where to find more information

For more information on topics discussed in this chapter, see:

» The following Web Services Interoperability Organization documents:
— WS-I Basic Profile 1.0
— WS-/ Supply Chain Management Use Cases 1.0
— WS-I Usage Scenarios 1.0

104 Patterns: Service Oriented Architecture and Web Services

— WS-I Supply Chain Management Technical Architecture 1.0
WS-I documents are available at:
http://www.ws-1i.org

Ali Arsanjani, A Domain-language Approach to Designing Dynamic
Enterprise Component based Architectures to Support Business Services,
Proceedings of Technology of Object-oriented Languages and Systems 39,
2001

Keith Levi, Ali Arsanjani, A goal-driven approach to enterprise component
identification and specification, Communications of the ACM Volume 45 Issue
10, 2002

Chapter 4. Service-oriented architecture approach 105

http://www.ws-i.org

106 Patterns: Service Oriented Architecture and Web Services

Technology options

This chapter describes some of the Web services related technology options
available to you when developing a service-oriented architecture. You can use
the information in this chapter, along with pointers to other sources, as input to
your architectural decision making when considering Runtime patterns and
Product mappings for the application patterns you choose to deploy.

In “A closer look at service-oriented architecture” on page 24 we presented an
architectural stack and the elements that might be observed in a service-oriented
architecture. We use this stack to structure our discussion of Web service
technology options, as shown in Figure 5-1 on page 108.

© Copyright IBM Corp. 2004. All rights reserved. 107

108

Functions Quality of Service

S Business Process B 5

pel > Re]

g = 5

o BPEL4WS) 3

L= all || &

%) . S =

= Service a (%)
= 2 = >
» = c €=
> , — > S [oR)
S Service Description 3 § ‘g GE) g
© Ie) o n 2 e
s WSDL XML o [0 c T s
n I =
5 : = = |22
%) Service Communication Protocol 5 =

>|| E

SOAP £ 5

(] o

] o]

a Transport 2])

Q| | BEEP WS-ReliableMessaging ‘é’ ‘£

21| HTTP JMS SMTP
J1
- Current Standards
- Emerging Standards

Figure 5-1 Web services and the service-oriented architecture stack

The industry is working quickly to develop the additional standards that are
required to simplify the implementation of service-oriented architectures. Brief
descriptions are provided in this chapter for both current and emerging standards
for each level of the architecture stack. For more information, see the IBM
developerWorks section on Web services standards:

http://www.ibm.com/developerworks/views/webservices/standards.jsp

Patterns: Service-Oriented Architecture and Web Services

http://www.ibm.com/developerworks/views/webservices/standards.jsp

5.1 Introduction

This chapter describes Web services technologies relevant to service-oriented
architecture, including some of their advantages and disadvantages. For an
overall perspective, some of the pluses and minuses of Web services are
included in this section. It is not recommended that Web services are seen as the
solution to all your integration problems, and should not be considered as the
best architectural approach for all future solutions. Just as with any other
technology or architectural approach, there are inherent advantages of using
Web services in the right place and for the right reasons.

5.1.1 Advantages of Web services

When appropriately selected and implemented, the use of Web services
technologies can enable a business to:

» Deliver new IT solutions faster and at lower cost by focusing their code
development on core business, and using Web services applications for
non-core business programming.

» Protect their investment in IT legacy systems by using Web services to wrap
legacy software systems for integration with modern IT systems.

» Integrate their business processes with customers and partners at less cost.
Web services make this integration feasible by allowing businesses to share
processes without sharing technology. With lower costs, even small
businesses will be able to participate in B2B integration.

» Enter new markets and widen their customer base. Web services listed in
UDDI registries can be “discovered” and thus are “visible” to the entire Web
community.

5.1.2 Disadvantages of Web services

All new technologies have problems and disadvantages that should be taken into
consideration before they are used. To try and assist you with identifying if Web
services is appropriate or not, the following list gives some issues you should
consider when selecting to use Web services:

» Binding to Web services dynamically requires that the contents of the UDDI
registry be trusted. Currently, only private UDDI networks can provide such
control over the contents.

» The SOAP server footprint is significant and the technology is relatively new,
so adding the Web service provider stack to existing enterprise systems can
be a problem.

Chapter 5. Technology options 109

» Standards for integration of business processes, management of
transactions, and the awareness of the policies of interchanging partners are
all still under development. To realize the promise of Web services, these
types of standards should be available in implementation products.

5.2 Transport

The transport layer in our architectural stack, as shown in Figure 5-2, is related to
the mechanisms used to move service requests from the service consumer to
the service provider, and service responses from the service provider to the
service consumer. There are a number of standards in use today for Web
services, but the most common one is HTTP.

Functions Quality of Service

Transport

Figure 5-2 The transport layer

5.2.1 HTTP

110

The HTTP protocol is commonly used for the transport of service requests and
responses. HTTP extensions and HTTP/1.1 are stable specifications used as the
standard transport protocol of the World Wide Web.

The World Wide Web Consortium (W3C) has closed the HTTP Activity, as they
have achieved the goal of creating a successful standard. The W3C has started

Patterns: Service-Oriented Architecture and Web Services

a new activity to extend the XML protocol. The XML Protocol Working Group will
define new HTTP bindings for XML, as a higher-level protocol.

Advantages of HTTP

There are a number of advantages of using HTTP as a transport for Web
services interactions, including:

» HTTP is a widely adopted protocol. Any organization with a Web server has
implemented HTTP, and any client using a Web browser uses HTTP.
Therefore the HTTP infrastructure is widely available.

» The HTTP protocol is open and deployed on many different system types,
including non-traditional computing devices such as PDAs.

» Most enterprises allow HTTP to travel freely through protocol firewalls.
Therefore, there are fewer barriers to extended enterprise use of HTTP as a
transport for Web services.

Disadvantages of HTTP

HTTP is a light-weight and stateless protocol that was not originally designed to
carry application data. Some of the disadvantages of using it for Web services
include:

» The protocol is stateless. If any state data is required to maintain an
application session, the applications must create and manage the state data.

» HTTP is not a reliable protocol. If reliable delivery of application data is
required, the application must either:

— Develop a reliability framework, such as exchanging receipt messages.

— Use a more reliable protocol.

5.2.2 Java Message Service

Messaging middleware is a popular choice for accessing existing enterprise
systems in an asynchronous manner. Messaging communication is loosely
coupled, as compared to tightly coupled technologies such as Remote Method
Invocation (RMI) or Remote Procedure Calls (RPC). The sender does not need
to know anything about the receiver for communication. The message to be
delivered is sent to a destination (queue) by a sender component, and the
recipient picks it up from there. Moreover, the sender and receiver do not both
have to be available at the same time to communicate. Messaging is one of the
options if you are implementing a solution based on the Message variation of the
Direct Connection pattern in an intra-enterprise scenario.

Chapter 5. Technology options 111

112

Messaging middleware may be an appropriate transport protocol when there is a
requirement for Web services to communicate:

» Asynchronously, where the sender of a message does not wait for a reply to
the message

» Reliably, where the sender is assured that the message will be delivered

A standard way for using messaging middleware from a Java application is using
the Java Message Service (JMS) interface. JMS offers Java programmers a
common way to create, send, receive and read enterprise messages. The JMS
specification was developed by Sun Microsystems with the active involvement of
IBM, other enterprise messaging vendors, transaction processing vendors, and
RDBMS vendors.

JMS has two messaging styles, or in other words, two domains:

» One-to-one, or point-to-point model
» Publish/subscribe model

IBM JMS implementations
IBM provides two implementations of JMS:

» A JMS provider included with WebSphere Application Server V5.0. This can
be used for asynchronous communication between applications running on
WebSphere V5.0 servers.

» IBM WebSphere MQ V5.3 includes built-in JMS Provider support with
enhanced performance features for integrating JMS applications with other
applications. IBM WebSphere MQ takes care of network interfaces, assures
once and once only delivery of messages, deals with communications
protocols, dynamically distributes workload across available resources, and
handles recovery after system problems. IBM WebSphere MQ is available for
most popular operating system platforms.

Advantages of JMS

There are a number of advantages of using JMS as a transport for Web services
interactions, including:

» JMS provides a more reliable transport than alternatives, such as HTTP.
» Asynchronous requests can be readily deployed.
» It leverages existing, enterprise-proven messaging systems.

Patterns: Service-Oriented Architecture and Web Services

Disadvantages of JMS

Although JMS is an open standard for Java-based systems, the actual transport
system must be provided by a software product. Therefore, there are several
considerations, including:

» The communicating Web services must have access to JMS providers that
can communicate with each other. Generally, this implies the same product
must be installed. For example, both systems must have IBM WebSphere MQ
installed.

» JMS is a Java-based standard and is not as readily accessible to systems
that are not based on Java.

5.2.3 Simple Mail Transfer Protocol

Simple Mail Transfer Protocol (SMTP) is one of the protocols that has made the
Internet extremely popular, and is the basis of Internet e-mail. Its objective is to
transfer electronic mail reliably and efficiently between people. It is then different
from other messaging protocols like IBM WebSphere MQ or JMS which have
been designed to handle information transfer between programs.

SMTP is independent of the particular transmission subsystem and requires only
a reliable ordered data stream channel. An important feature of SMTP is its
capability to relay mail across transport service environments. It has been
published originally as RFC 821 by the Internet Engineering Task force (IETF) in
1982. Since then new RFCs like RFC 2821 have enhanced the original standard
to take into account new technical capabilities.

As a widely used messaging standard, SMTP is a potential transport for SOAP
messages. The writers of the W3C SOAP 1.1 Note state that “SOAP can
potentially be used in combination with a variety of other protocols; however, the
only bindings defined in this document describe how to use SOAP in combination
with HTTP and HTTP Extension Framework”. The W3C SOAP 1.1 Note is
available at:

http://www.w3.0rg/TR/soap/

Most implementations currently use HTTP to transport SOAP messages, but
there is no reason why you cannot use other layers, such as SMTP.

Apache SOAP SMTP transport

Apache SOAP has been included as a WebSphere SOAP engine since
WebSphere V4.0. It has now been superseded by Apache Axis and by Web
Services for J2EE.

Chapter 5. Technology options 113

http://www.w3.org/TR/soap/

114

The Apache SOAP distribution includes classes which permit the servicing of
SOAP requests using e-mail. It does this using a combination of SMTP and POP.
A class called SMTP2HTTPBridge must be running in a separate JVM on the
server. As the name suggests, this class operates as a bridge, mapping requests
between HTTP and SMTP. Strictly speaking, this is not an independent SMTP
transport; what it really does is convert e-mail SOAP messages to and from
HTTP SOAP messages.

SMTP and Web Services for J2EE

The Java API for XML Messaging (JAXM) Optional Package enables
applications to send and receive document-oriented XML messages using a pure
Java API. JAXM implements SOAP 1.1 with Attachments messaging so that
developers can focus on building, sending, receiving, and decomposing
messages for their applications instead of programming low level XML
communications routines. The specifications ensure that message delivery can
be accomplished by supporting a number of communications infrastructures and
key networking transports including, but not limited to, HTTP(S) and SMTP.
However, we have not been able to find a reference to an implementation on
SMTP.

JAXM adds support for plugging-in higher level messaging protocols like ebXML.
JAXM is not a full-fledged messaging API like JMS.

J2EE also provides a mail API. The JavaMail 1.3.1 API defines a set of abstract
classes that model an e-mail system. The API provides a platform independent
and protocol independent framework to build Java technology-based mail and
messaging applications. The JavaMail APl is implemented as a Java platform
optional package and is also available as part of J2EE. The reference
implementation includes the core JavaMail packages and IMAP, POP3, and
SMTP service providers.

Where to find more information
For more information on SMTP, see:

» The SOAP Protocol:
http://www.w3.0rg/TR/SOAP/
» Apache SOAP:
http://xml.apache.org/SO0AP/
» SMTP:
http://www.ietf.org

Patterns: Service-Oriented Architecture and Web Services

http://www.w3.org/TR/SOAP/
http://xml.apache.org/SOAP/
http://www.ietf.org

5.2.4 HTTPR

Reliable HTTP (HTTPR) was a proposed protocol for offering the reliable delivery
of HTTP packets between a server and a client, but was withdrawn in favor of the
OASIS evolving WS-ReliableMessaging standards. The HTTPR proposal offers
reliability by adding extensions to HTTP, whereas WS-ReliableMessaging, as
covered in further detail in the following section, delivers reliability at the SOAP
envelope level.

5.2.5 Emerging standards for transport

Commonly used transport protocols for Web services are currently dominated by
HTTP, for reasons discussed in “Advantages of HTTP” on page 111. However, for
enterprises to depend on Web services for business critical processing, more
reliable transport protocols are required. Some emerging work in this area is
discussed in this section.

WS-ReliableMessaging

As discussed in “Disadvantages of JMS” on page 113, current reliable message
transport mechanisms require communicating parties to be using the same
infrastructure, such as IBM WebSphere MQ. The WS-ReliableMessaging draft
standard has been developed to provide a framework for interoperability between
different reliable transport infrastructures.

The draft standard was released in March 2003 by IBM, BEA, Microsoft, and
TIBCO. The protocol defined in the standard provides four delivery assurance
descriptions that must be implemented by partners in the communication:

AtMostOnce

AtLeastOnce
ExactlyOnce
InOrder

vyvyyvyy

The WS-ReliableMessaging draft standard uses WS-Policy (see 5.8, “Policy” on
page 144) and associated standards as a framework for determining the
capabilities and requirements of partners in a reliable messaging exchange. The
authors also strongly recommend that communication be secured using
WS-Security and associated standards (see 5.9.4, “Emerging standards for
security” on page 151).

Where to find more information
For more information on WS-ReliableMessaging, see:

http://www.ibm.com/developerworks/webservices/Tibrary/ws-rm/
http://www.ibm.com/developerworks/webservices/library/ws-rmimp/

Chapter 5. Technology options 115

http://www.ibm.com/developerworks/webservices/library/ws-rm/
http://www.ibm.com/developerworks/webservices/library/ws-rmimp/

BEEP

Blocks Extensible Exchange Protocol (BEEP) is a generic application protocol
framework for peer-to-peer asynchronous interactions over a TCP/IP connection.
Unlike HTTP, BEEP does not have a notion of a server or client, and rather
initiates a message-based communication session when a requestor initiates a
request for connection with a provider.

Standardized by the Internet Engineering Task Force (IETF), BEEP supplies a
protocol framework to manage peer-to-peer connection, authentication,
message transport and error handling. But all this comes at a cost, and as such
BEEP does not lend itself for communications that could be categorized as
one-shot such as DNS look-up or tightly coupled RPC protocols like NFS. The
appropriate environment for the use of BEEP is when you require an application
protocol framework that is:

» Connection-oriented: Any BEEP based communication is expected to be
initiated and disconnected for each interaction. In other words BEEP is
expecting your application to connect, undertake the required task, and
disconnect.

» Message-oriented: Just as with the fundamental concepts of SOAs,
applications using BEEP to send data will do so based on well defined and
structured data, giving the ability for the applications to be loosely coupled
with limited knowledge of each others’ implementation.

» Asynchronous: BEEP, unlike HTTP, is a peer-to-peer style communication
framework, which does not restrict the interactions to be in a particular order.

Where to find more information
For more information on BEEP specifications, see:

http://www.beepcore.org

5.3 Service communication protocol

116

The service communication protocol layer of our architectural stack, as shown in
Figure 5-3 on page 117, describes and defines the technologies and standards
required to supply a transport mechanism between integrated services. If we
consider the transport layer of the stack (discussed in the previous section) to be
represented by a road between two end points, then the service communication
protocol layer would be the vehicles traveling on the road, facilitating the
transport of a package between the package sender and the receiver.

Patterns: Service-Oriented Architecture and Web Services

http://www.beepcore.org

Functions Quality of Service

Service Communication Protocol

Figure 5-3 The service communication protocol layer

5.3.1 SOAP

Simple Object Access Protocol (SOAP) is a network-, transport-, and
programming language-neutral protocol that allows a service consumer to call a
remote service provider. The message format is XML. The currently adopted
standard is W3C’s SOAP 1.1 specification, while SOAP 1.2 is in the review
process.

SOAP has the following characteristics:

»

>

SOAP is designed to be simple and extensible.

SOAP provides a framework to describe message content and process
instructions, and an optional set of encoding rules for representing defined
data-types.

All SOAP messages are encoded using XML.

SOAP is transport protocol independent. HTTP is one of the supported
transports. Hence, SOAP can be run over an existing Internet infrastructure.

There is no distributed garbage collection. Therefore, call by reference is not
supported by SOAP; a SOAP client does not hold any stateful references to
remote objects.

Chapter 5. Technology options 117

118

» SOAP is operating system independent and not tied to any programming
language or component technology. It is object model neutral.

Due to these characteristics, it does not matter what technology is used to
implement the service consumer, as long as the consumer can issue XML
messages. Similarly, the service provider can be implemented in any language,
as long as it can process XML messages.

As shown in Figure 5-4, a simple SOAP message consists of three main parts:
Envelope, optional header(s) and a body.

SOAP Envelope

SOAP Header
[0..N]

SOAP Body
[1]

Figure 5-4 Overview of a SOAP message

SOAP with Attachments

The SOAP architecture is based on XML documents. However, some issues
arise when these documents contain binary data (such as images) or
encapsulate other XML documents. To handle these situations, the SOAP
standard has been enhanced with the SOAP with the Attachments feature. This
feature allows SOAP messages to be composed of several parts to improve the
handling of specific payloads.

SOAP encoding and performance
There are several ways to encode messages in SOAP messages.

» SOAP Remote Procedure Call (RPC encoding), as defined as the SOAP 1.1
chapter 5 specification

» SOAP Remote Procedure Call Literal encoding (SOAP RPC-literal), which
uses a user-defined method to marshal and unmarshal the XML data

» SOAP document-style encoding, also known as message-style or
document-literal encoding

Patterns: Service-Oriented Architecture and Web Services

These techniques bring different benefits and limitations. The choice of a
encoding technique for a particular scenario may be a critical success factor for a
given project.

Figure 5-5 shows the expected benefits of each technique.

SOAP RPC RPC-Literal Document-Style
Encoding Encoding Encoding

Simplifies Simplifies
Developer System
Work Work

Figure 5-5 Positioning of SOAP encoding techniques

SOAP and the WS-| Basic Profile

The WS-I Basic Profile 1.0 (see “WS-I Basic Profile 1.0” on page 36) precludes
the use of SOAP encoding. SOAP encoding is used to indicate the use of a
particular scheme in the encoding of data into XML. This introduces complexity. It
has proven to be a frequent source of interoperability problems.

The WS-I Basic Profile 1.0 therefore requires use of either the RPC/literal or
Document/literal forms of the WSDL SOAP binding. Considerable detail is
provided in the specification describing correct use of the SOAP binding
extension elements, to ensure a consistent and interoperable description of the
RPCl/literal and Document/literal forms of the SOAP binding. The aim is that
WSDL tools will generate code that will be interoperable with regards to the
SOAP messages produced and/or consumed.

SOAP and reliable messaging services

The SOAP standard is independent of any transport. However, the only binding
that is used as a reference implementation is HTTP. This means that SOAP does
not yet have a standard binding for reliable messaging. Several vendors offer
reliable messaging solutions, with the IBM offering based on the WebSphere MQ
family of middleware.

Another environment sometimes considered in this context is ebXML (see 5.4.3,
“ebXML” on page 125). The ebXML messaging service has the same objectives
as the WebSphere MQ offering, but implementations are still very recent, as the
standard was only published in 2001 as part of the global ebXML architecture.

Chapter 5. Technology options 119

Accessing CICS via SOAP

Until a recent enhancement to the mainframe CICS Transaction Server,
programmers had to write Java programs accessing the CICS functions via a
J2EE connector like the CICS Transaction Gateway. Then the Java programs
could be exposed as Web services.

The new IBM SOAP for CICS feature enables programmers to access CICS
transactions directly via SOAP calls. The aim of this new feature is to provide
more flexibility for accessing legacy business functions. It is intended to provide
an additional form of connectivity appropriate for some applications, especially
those used within service-oriented or extended enterprise architectures.

5.4 Service description

120

One of the main benefits of Web services is to allow for loosely coupled
architectures. To achieve that goal, the service provider and the service
consumer should be as independent as possible. A structured service
description, highlighted in the architectural stack in Figure 5-6, is key to enabling
that independence. Services can be provided without the need for the provider or
the consumer to care about the other’s technical platform or programming
language.

Functions Quality of Service

Service Description

Figure 5-6 The service description layer

Patterns: Service-Oriented Architecture and Web Services

5.4.1 XML

There are two levels of service description:
» Operational service description (XML and WSDL)
» Complete service description

XML is the de facto syntax used to exchange message data between the Web
service consumers and providers. It allows for a customized markup language
with tags defined in a Document Type Definition (DTD) or XML Schema.

DTD is inherently flawed, as it has limited data typing and cannot support date
formats, numbers or other common data types. It uses its own language to define
XML syntax which is not XML specification compliant and hence makes it difficult
to manipulate a DTD programmatically.

To solve these problems, the World Wide Web Consortium (W3C) defined a new
standard to define XML documents called XML Schema. XML Schema provides
the following advantages over DTDs:

Strong typing for elements and attributes

Standardized way to represent null values for elements

Key mechanism that is directly analogous to relational database foreign keys
Defined as XML documents, making them programmatically accessible

vyvyyy

XML is not a prerequisite for defining messages. Other formats such as OMG’s
Interface Definition Language (IDL) or a simple fixed record format could be used
instead. However, the parties must agree on what format to use. Where many
organizations are involved, managing numerous non-standard message formats
would be cumbersome. Hence XML is gaining wide acceptance as the standard
message format. Industry-specific vocabularies have also been developed in
accounting, construction, education, finance, government, health care,
insurance, legal, manufacturing, telecommunications and travel (to name a few!)
to facilitate communication within each industry.

XML allows for the representation of data in a standard and structured format. It
provides the syntax of a language but it does not convey the meaning associated
with the data. Various industries may use the same word differently and they may
have different words that mean the same thing.

OASIS has developed the Universal Business Language (UBL) in an effort to
define a common XML business document library. UBL will provide a set of XML
building blocks and a framework that will enable trading partners to
unambiguously identify and exchange business documents in specific contexts.

Chapter 5. Technology options 121

Transformation of XML documents

With XML:s flexibility in the development of different vocabularies, there is a need
to be able to transform one XML format to another.

Two W3C specifications that are part of the Extensible Stylesheet Language
(XSL) family are used for transforming XML documents into other XML
documents:

» Extensible Stylesheet Language Transformations (XSLT) is the language for
transforming XML. It defines the set of rules used in the transformation from a
source tree into a target tree. A transformation defined in XSLT is called a
stylesheet.

» XML Path Language (XPath) is an expression language used by XSLT to
access or refer to parts of an XML document.

An XSLT processor is used for the actual transformation and typically has a
performance overhead, so online processing of larger documents can be slow,
although the use of XSL just-in-time compilers may speed up the transformation
time.

With XSLT, XML-based applications can be linked to Web services. It can
convert an XML document into a different XML format such as WSDL and SOAP.
It can also transform the logical structure into a presentation format such as
HTML pages.

Advantages of XML

There are many advantages of XML in a broad range of areas. Some of the
factors that influenced the wide acceptance of XML are:

» Acceptability of use for data transfer

XML is a standard way of putting information in a format that can be
processed and exchanged across different hardware devices, operating
systems, software applications, and the Web.

» Uniformity and conformity

XML gives you an common format that could be developed upon and is
accepted industry-wide.

» Simplicity and openness
Information coded in XML is human readable.
» Flexible and extensible

The tag-based format of XML makes it flexible and easily extendable. It can
be customized to support an organization’s needs. When a new piece of
information is required, a tag is simply added to the structure. There is no
dependency on the position of the information in the structure, unlike a fixed

122 Patterns: Service-Oriented Architecture and Web Services

record format. An application that is unaware of this new information in the
structure is not affected by the extra data.

» Separation of data and display

The representation of the data is separated from the presentation and
formatting of the data for display in a browser or other device.

» Industry acceptance

XML has been accepted widely by the information technology and computing
industry. Numerous tools and utilities are available, along with new products
for parsing and transforming XML data to other data, or for display.

Disadvantages of XML
Some XML issues to consider are:

» Complexity

While XML tags can allow software to recognize meaningful content within
documents, this is only useful to the extent that the software reading the
document knows what the tagged content means in human terms, and knows
what to do with it.

» Standardization

When multiple applications use XML to communicate with each other they
need to agree on the tag names they are using. While industry-specific
standard tag definitions often do exist, you can still declare your own
non-standard tags.

» Large size

XML documents tend to be larger in size than other forms of data
representation. This has performance implications and may be unsuitable for
high-performing systems.

5.4.2 WSDL

The W3C has adopted the Web Services Description Language (WSDL) as a
standard for base-level service description. At the time of writing this book, the
current version of WSDL is 1.1.

WSDL specifies the operational characteristics of a Web service using an XML
document. It provides a notation to answer the following questions:

» What (is this service about)?

» Where (does it reside)?

» How (can it be invoked)?

Chapter 5. Technology options 123

124

A Web service is considered as a set of endpoints operating on messages
containing either document-oriented or procedure-oriented (RPC) messages.
WSDL offers a standard way to abstractly describe the operations and
messages: The service interface definition. These descriptions are bound to a
specific network protocol and message format to create an endpoint: The service
implementation definition. Figure 5-7 shows this combination.

<definitions...>

Service <import...>
Implementation ssemice...
p o <port...>
Definition </service>

</definitions>

<definitions...>

: <types...>
Service <import...>
Interface <message...>
Definition <porttype...>

<binding...>

</definitions>

Figure 5-7 Components of a basic service description using WSDL

The service interface definition can be instantiated and referenced by multiple
service implementations.

A WSDL document is defined in one or more physical files according to the
implementation. When several files are used an import element is used to link
each file. The WSDL is generally divided into an implementation WSDL file and
an interface WSDL file. The binding may be defined in a separate, third file.

WSDL does not prescribe any specific message format or network protocol.
However, the WSDL 1.1 specification only describes bindings for SOAP 1.1 over
HTTP, direct HTTP 1.1 request (HTTP GET and POST), and Multipurpose
Internet Mail Extensions (MIME).

Advantages of WSDL

As a fundamental requirement for the implementation of Web services, WSDL is
required to publish the interface description contract for other services to invoke
upon.

Patterns: Service-Oriented Architecture and Web Services

Disadvantages of WSDL

The WSDL document does not provide some of the information a potential user
may require, such as:

» Who provides the service?

» What kind of business provides the service?

» What the other services are available from this provider?

» What quality of service should be expected from this provider?
» Is the service free or fee-based?

The UDDI standard provides a potential source of this information, in order to
build a more complete view of a given service. See “UDDI” on page 141.

5.4.3 ebXML

ebXML stands for Electronic Business using XML. It provides a modular suite of
specifications that enables enterprises to conduct business over the Internet.
Using ebXML, companies now have a standard method to exchange business
messages, conduct trading relationships, communicate data in common terms
and define and register business processes.

It is a joint development effort between Organization for the Advancement of
Structured Information Standards (OASIS) and the United Nations Centre for
Trade Facilitation and Electronic Business (UN/CEFACT). OASIS (formerly
known as SGML group) has brought XML expertise, while UN/CEFACT, who was
the main sponsor of Electronic Data Transmission (EDI), has brought business
expertise.

Figure 5-8 on page 126 presents a simplified view of the main components of the
ebXML architecture.

Chapter 5. Technology options 125

Business Process

Specifications Registration
and Discovery
Design Time Specification
' Models and
Profiles

Partner Profiles
and Agreements

Specification

Run Time

\

Messaging Service

Figure 5-8 ebXML architecture

The major specifications in the ebXML suite are (working our way up from the
bottom left of Figure 5-8):

» Reliable messaging with ebXML Message Service Specification (ebMS):

Provides guaranteed, once-only delivery, secure, SOAP-based
communication.

» Partner profile and agreements with ebXML Collaboration Protocol Profile
and Agreement (ebXML CPP/A):

Describes an organization, its services, business processes and technical
abilities. It holds configuration information for partners' runtime systems and
stores quality-of-service (QOS) information.

» Business process specifications with ebXML Business Process Specification
Schema (ebXML BPSS):

Defines business activities, collaborations, and transactions and describes
their relationships. Also provides a machine-readable specification instance.
It enables collaborative “Business” Web services.

» Registries and repositories with ebXML Registry/Repository (ebXML
Reg/Rep):

Provides a powerful classification and storage mechanism for artifacts,
including BPSS process specifications and CPP/A partners profile. It may be
considered to B2B applications what databases were to enterprise
applications.

126 Patterns: Service-Oriented Architecture and Web Services

» Semantics and models with ebXML Core Component (ebCC):

The Core Library is a set of standard “parts” that may be used in larger
ebXML elements. For example, Core Processes may be referenced by
Business Processes. The Core Library is contributed by the ebXML initiative
itself, while larger elements may be contributed by specific industries or
businesses. It enables B2B interoperability by a common vocabulary.

The term SOAP used here refers to a suite of specifications broader than SOAP
itself. It includes Web Service Definition Language (WSDL) and Universal
Description, Discovery, and Integration (UDDI), also called the WUS (WSDL,
UDDI, SOAP) stack as a whole. This stack is seen by ebXML sponsors as less
powerful and feature-rich than the ebXML suite of specifications but simpler to
use and more suitable for satisfying alternate requirements.

For example, SOAP over HTTP alone is not sufficient to provide reliable
messaging at the application level. Also, the qualities of service that can be
captured in ebXML with CPP/A are more detailed and sophisticated than can be
realized with SOAP and WSDL.

ebXML and Web services

The ebXML architecture appears to have many similarities with the Web services
architecture. However, the ebXML organization views the ebXML standard not as
an alternative to Web services, but as the standard for “Business” Web services.
“Business” Web services are based on a peer-to-peer collaborative business
process model, while the basic Web services are based on a client-server, RPC
style model.

ebXML provides a modular suite of specifications that is designed to enable
standards-based, peer-to-peer, collaborative, business communication between
enterprises. ebXML is complimentary to basic Web services and builds upon
them to enable “Business” Web services.

ebXML registry

An e-business registry is a software product that organizes the information
needed to conduct e-business in an automated way. It covers various
capabilities:

» Registration of businesses and their capabilities via categories

» Reqgistration of service descriptions

» Discovery of businesses and services

The ebXML registry is a central component of the ebXML initiative to provide a

complete framework for electronic business. It manages the storage and the
discovery mechanisms for the various elements that are needed to do

Chapter 5. Technology options 127

e-business within the ebXML framework, and has some advanced features
regarding the business aspects of a transaction:

» The Collaboration Protocol Agreement (CPA) defines the capabilities that two
parties need to agree upon before engaging in a business collaboration.

» The Collaboration Protocol Profile (CPP) describes the message exchange
capabilities of a participant.

» The Business Process Specification Schema (BPSS) provides a standard
framework to allow the combination of various transactions. It can be
compared to BPEL4WS (see “BPEL4WS” on page 137).

The UDDI registry, as covered in 5.7.2, “UDDI” on page 141, is currently focused
on the discovery aspects of automated e-business. The ebXML registry adds
collaboration features. The two registries offer some level of interoperability in
terms of discovery. At the time of writing, the UDDI Technical Committee is
preparing a technical note to provide guidance on how to use UDDI registries
within the ebXML framework. The intent is to leverage the complementary
strengths of each registry. However, there is no mechanism to move data from
one type of registry to the other. The request APIs are specific to each.

UDDI registries seem to be more frequently used than ebXML registries.

Where to find more information
For more information on ebXML, see:

» ebXML
http://www.ebxml.org
» OASIS

http://www.oasis-open.org

5.5 Service

The service layer of our architectural stack, as shown in Figure 5-9 on page 129,
represents the implemented software that can be located and invoked based on
a published WSDL interface description.

128 Patterns: Service-Oriented Architecture and Web Services

http://www.ebxml.org
http://www.oasis-open.org

Functions Quality of Service

Service

Figure 5-9 The service layer

In this section we examine two different programming models for accessing Web
services:

» Web Services for J2EE
» Web Services Invocation Framework (WSIF)

5.5.1 Web services and J2EE

Web services are intended to provide interoperability standards between
systems, regardless of the architecture or implementation approach of end-point
systems.

The Java 2 Platform, Enterprise Edition (J2EE) is an important programming
model and architecture, which IBM supports with WebSphere Application Server
and WebSphere Studio. Since many of the Product mappings described in this
book are based on WebSphere Application Server, it is instructive to review the
state of J2EE and Java standards for implementation of Web services on J2EE
platforms.

A new set of Java Specification Requests

The technologies used by the J2EE application servers to provide Web services
facilities are evolving very quickly. The Java community has recently adopted a

Chapter 5. Technology options 129

set of standards to define the different aspects of how Web services can be
supported in a J2EE-compliant application server.

These standards are described as Java Specification Requests (JSRs). JSRs
are used as the tracking mechanism for all Java specifications, from proposal
through to acceptance or rejection. Information about the Java Community
Process, which manages the development of specifications, and the JSRs
themselves, can be found at:

http://jcp.org

The main JSR concerning this domain is JSR 109, Implementing Enterprise Web
Services (also known as Web Services for J2EE). It reached the final release
status in November 2002.

The aim of JSR 109 is to define the programming model and runtime architecture
for implementing Web services in Java. It federates the work done on several
other JSRs. This JSR was led by IBM.

In much the same way that servlets tied together a set of concepts like cookies
and HttpSession; and EJBs tied together techniques such as RMI, JTA/JTS,

JDBC, and so on with a programming model and runtime model; the promoters
of this JSR view it as doing the same for implementing and using Web services.

The Web Services for J2EE 1.0 specification is an addition to J2EE 1.3. J2EE 1.4
and requires support for Web Services for J2EE 1.1. There are minor differences
between the J2EE 1.3 version (JSR-109 1.0) and the J2EE 1.4 version (JSR-109
1.1).

Specifications have also been opened for defining APls to specific parts of the
Web services stack:
» JSR 67: Java APIs for XML Messaging

JAXM provides an API for packaging and transporting business transactions
using on-the-wire protocols being defined by ebXML.org, OASIS, W3C, and
IETF.

» JSR 93: Java APIs for XML Registry

JAXR provides an API for a set of distributed registry services that enable
business-to-business integration between business enterprises, using the
protocols being defined by ebXML.org, OASIS, and ISO 11179.

» JSR 101: Java APIs for XML-Based RPC

JAX-RPC defines APIs to support emerging industry XML-based RPC
standards.

130 Patterns: Service-Oriented Architecture and Web Services

http://jcp.org

» JSR 110: Java APIs for WSDL

This JSR provides a standard set of APIs for representing and manipulating
services described by WSDL documents. These APIs define a way to
construct and manipulate models of service descriptions.

Introduction in WebSphere Application Server

Support for JSR 109 and the other related JSRs first appeared in WebSphere
Application Server V5.0 as technology previews. IBM WebSphere Application
Server V5.1 provides a more complete implementation, in addition to the Web
services components that were available previously.

Supported standards

The following standards are supported by the Web Services for J2EE component
of IBM WebSphere Application Server V5.1:

» SOAP 1.1

» WSDL 1.1

» Web Services for J2EE (JSR-109) 1.0

» Java API for XML-Based RPC (JAX-RPC) 1.0

» SOAP with Attachments API for Java (SAAJ) 1.1

SOAP considerations

Apache SOAP 2.3 shipped with WebSphere Application Server V4.0 and V5.0. It
continues to co-exist with Web Services for J2EE. Apache SOAP is a proprietary
API, and applications written for it are not portable to other SOAP
implementations. Applications written for Web Services for J2EE should be
portable to any vendor's implementation that supports Web Services for J2EE.

The Web services technology preview in WebSphere V5.0 leveraged the work
that IBM contributed to the Apache Axis code base. The Web Services for J2EE
support included with WebSphere V5.0.2 is derived from Apache Axis, but has
diverged and contains many IBM-specific features to enhance performance,
scalability, reliability, interoperability, and integration with the WebSphere
Application Server.

The Apache SOAP channel and the SOAP/HTTP channel both support SOAP
applications that are SOAP 1.1 compatible (for example, Apache SOAP 2.3 and
Axis SOAP 1.0). So if you have an application that uses a production-supported
Axis 1.0 SOAP stack, generating SOAP 1.1, then this application can use either
channel.

If you are using the Apache SOAP channel, then the SOAP message format
must be RPC style. To handle document style SOAP messages, you must use

Chapter 5. Technology options 131

the SOAP/HTTP channel (which supports both RPC style and document style
SOAP messages).

If you deploy Web services that pass attachments in a MIME message, then
these Web services can only be accessed using the SOAP/HTTP channel.

There is currently no specification for SOAP JMS; each vendor chooses its own
implementation technique. Therefore, interoperability is not possible using this
protocol at this stage.

Interoperability

Web Services for J2EE intends to conform to the WS-I Basic Profile 1.0, and
should interoperate with any other vendor conforming to this specification. At the
time of the writing, the Basic Profile 1.0 had not been completed, so it is possible
that minor incompatibilities exist.

Development tools

WebSphere Studio Application Developer V5.1 provides IDE support for the
development of Web Services for J2EE. IBM WebSphere Application Server
V5.1 provides command line tools for Web services enabling WebSphere
applications.

5.5.2 Web Services Invocation Framework

132

The Apache Web Services Invocation Framework (WSIF) provides a standard
Java API to invoke services, no matter how or where the service is provided, as
long it is described in WSDL.

WSIF enables the developer to move away from the native APIs of the
underlying service, and interact with representations of the services instead. This
allows the developer to work with the same programming model regardless of
how the service is implemented and accessed.

WSIF is WSDL-driven and it provides a uniform interface to invoke services
using WSDL documents. So if a SOAP service you are using becomes available
as an EJB, for example, you can change to RMI/IIOP by just modifying the
WSDL service description, without needing to modify your applications that use
the service.

This API is used by tools such as WebSphere Studio Integration Edition and
runtimes such as WebSphere Application Server Enterprise to construct and
manipulate services defined in WSDL documents. The architecture allows new
bindings to be added at runtime.

Patterns: Service-Oriented Architecture and Web Services

For more details on the Web Services Invocation Framework see:

http://ws.apache.org/wsif/

Advantages of WSIF
WSIF has the following advantages:

» Multiple bindings can be offered for services, and bindings can be decided at
runtime.

» Services can be used either by a set of stub classes (static) or by a dynamic
interface invocation (dynamic).

» You have the flexibility to switch protocols, location, etc., without having to
recompile your client code.

Disadvantages of WSIF

WSIF is a Java API, and so cannot be used in environments that are not based
on Java.

5.6 Business process

Using industry standards, Web services can advertise their interfaces, be
discovered and invoked upon, and communicate with each other to deliver
end-to-end functionality. But to support the business process, a further level of
abstraction is required. The business process layer in our architectural stack,
shown in Figure 5-10 on page 134, allows us to create and define complex
processes or workflows. Processes are composed from the operations supplied
by Web services that can be nested and sequenced according to business
requirements.

Chapter 5. Technology options 133

http://ws.apache.org/wsif/

Functions Quality of Service

Business Process

Figure 5-10 The business process layer

By isolating the business process from the implementation of the underlying Web
services, as shown in Figure 5-11 on page 135, you can more readily adapt to
changing business conditions.

134 Patterns: Service-Oriented Architecture and Web Services

Business Process Architecture

5

29900¢0000 $$$$$$$$4?

Service Architecture

te00¢0099

Component Architecture —

—8] =
ELE

Figure 5-11 Isolating the business process from the implementation

Using a consistent modeling approach simplifies communication between all
parties involved in the business process. In addition, models can be shared
between partners without dictating the development tools or run-time
environment that each of the partners in the process must use. A consistent
modeling approach based on open standards also allows the activities in the
process to be loosely coupled to the process itself, thereby minimizing the time
and effort required to implement changes to the process as the business
environment or requirements change.

5.6.1 WSFL and XLANG

Both the Web Services Flow Language (WSFL) from IBM and Microsoft XLANG
were early suggestions for business process execution standards. These both
have been combined and further developed to create a common standard
backed by most of the current industry leaders as BPEL4WS, which is described
in further detail in “Emerging standards for business process” on page 136.

Chapter 5. Technology options 135

Process Choreographer

IBM WebSphere Application Server Enterprise V5.0 a provides a facility called
the Process Choreographer. Business processes are described using a subset of
the Web Services Flow Language (WSFL), an IBM specification that was
developed before any standards work commenced on business process
descriptions for Web services. A development plugin for WebSphere Studio
Integration Edition may be used for process development. More information
about Process Choreographer is available from:

http://www.software.ibm.com/wsdd/zones/was/wpc.html

See also IBM Redbook Patterns: Serial and Parallel Processes for Process
Choreography and Workflow, SG24-6306.

Advantages of Process Choreographer

There are a number of advantages to commencing the development of business
processes using Process Choreographer, without waiting for products based on
the new standards to be released. These include:

» You can start to develop experience with building business processes.

» You can develop processes that compose activities that are implemented as
Web services, as J2EE components, as existing enterprise applications, and
as manual activities.

Disadvantages of Process Choreographer

Since Process Choreographer does not currently implement open standards,
there are some disadvantages in using it, including:

» You will have to migrate processes at some stage to standards based
implementations. Note that it is likely IBM will provide tools to assist with this
migration.

» Your business process developers will most likely have to learn changes to
the development tools in support of a standards implementation.

» Any process activities that do not have a Web services interface will not be
usable as activities in a standards-based implementation.

5.6.2 Emerging standards for business process

136

As already mentioned above, the proposals developed by individual vendors
such as IBM and Microsoft in the past to create a business process execution
standard, have been combined and further developed. As such there is currently
only one major standard emerging to satisfy the requirements of the business
process layer of our Web services stack.

Patterns: Service-Oriented Architecture and Web Services

http://www.software.ibm.com/wsdd/zones/was/wpc.html

BPEL4WS

The Business Process Execution Language for Web Services (BPEL4WS)
provides a standard way of describing business processes that are based on
Web services. Existing standards, such as WSDL, do not provide facilities that
are required in complex business protocols, such as the description of behavior
dependent on data sent between services, exception management and recovery,
and coordination between business partner participants for long running and
complex processes. BPEL4WS aims to meet these requirements.

BPEL4WS was first specified in July 2002 by BEA, IBM, Microsoft, SAP, and
Siebel. The specification was constructed to combine the approaches previously
described by Microsoft (XLANG, for the BizTalk server) and IBM (Web Services
Flow Language, or WSFL). The latest release of the specification at the time of
writing, version 1.1, was submitted to the OASIS standards group in May 2003. A
copy of the standard is available from:

http://www.ibm.com/developerworks/webservices/Tibrary/ws-bpel/

You should note that the World Wide Web Consortium (W3C) has established a
working group to develop the Web Services Choreography Interface (WSIC),
which may provide an alternative standard. However, at the time of writing no
draft had been issued.

At the time of writing, support for BPEL4WS is emerging in some products and
technology previews. IBM provides BPWS4J as a runtime engine for WebSphere
Application Server and Apache Tomcat. The BPWS4J toolkit also includes a
development tool. BPWS4J can be downloaded from:

http://www.alphaworks.ibm.com/tech/bpws4j

IBM also provides a technology preview of a development plug-in for WebSphere
Studio Integration Edition, as illustrated in Figure 5-12 on page 138.

Chapter 5. Technology options 137

http://www.ibm.com/developerworks/webservices/library/ws-bpel/
http://www.alphaworks.ibm.com/tech/bpws4j

138

tﬁ: Business Integration - WebSphere Studio Application Developer Integration Edition - |EI|1|
File Edit Mavigate Search Project Run ‘Window Help
|5-ERA|[ARADBER] 20 |8 &l EXEIERE
e[?® - s smEsa Tl ollE=Eg 06 8
E @] Services X ||] Welcome ﬁﬁﬁﬁ X l
: echo - - r R
=
B echo.proces: - -
i lanapprova L Contral Link.
ﬂ lnanapprova -
% loanapprova
E-H multistockgu [Empty getQuotel
-[¥] mulkistac {4} Java Snippet Block
- &3 mulkistoc &)
B et Invoke Service
@) processi) irwoke I» bl
. stockque rvoke Java
BB multistockgue— | @ Invoke EIB Iriput getQuote? Cutput
H mutualfund T Invoke Process
B mutualfund f v
tualfund.: Receive Even®
Services]Packag... |J2E i . getQuotes Overview]
= Shiow J. 1 [
o= outline N & v x S ake |—I |
513 Process | Interface | Server | Variables | Client | Staff lProcess]
37 Tasks (0 items) G 2 ow X |
| C | ! | Description | Resource | In Folder | Locﬁ
«| | »
Tasks]Server Configuration | Servers |C0nsole | Properties

Insert

|wricable 122

Figure 5-12 BPEL4WS Importer/Exporter Technology Preview

This plug-in provides facilities to develop process flows using a visual editor, and
generate WSDL files and other artifacts necessary to implement the process.

Implementations of the BPEL4WS standard may be appropriate Product
mappings, particularly for the Extended Enterprise business pattern and the

Application Integration pattern. However, the use of BPEL4WS technologies is
not evaluated in this book.

For additional details, you may wish to review the following documents:

http://www.ibm.com/developerworks/webservices/1ibrary/ws-bpelwp/
http://www.ibm.com/developerworks/webservices/1ibrary/ws-autobp/
http://www.ibm.com/developerworks/webservices/1ibrary/ws-bpelcoll/

The last reference is the first in a series of columns that describe BPEL4WS at
version 1.0 of the standard.

Patterns: Service-Oriented Architecture and Web Services

http://www.ibm.com/developerworks/webservices/library/ws-bpelwp/
http://www.ibm.com/developerworks/webservices/library/ws-autobp/
http://www.ibm.com/developerworks/webservices/library/ws-bpelcol1/

5.7 Service registry

The service registry layer in our architectural stack, shown in Figure 5-13, allows
service providers to publish the definition of the services they offer using WSDL
and service consumers to find information about the services available.

Functions Quality of Service

Service Registry

Figure 5-13 The service registry layer

In Web services architectures, the UDDI registry is typically mentioned in this
role. The UDDI registry is often compared to the Yellow Pages of a telephone
system. However, this approach overlooks some other complementary ways to
provide the information needed to exploit available services.

Continuing with the telephone system analogy, let us look at some of the
alternatives:
» Direct request

When you need to know the telephone number of a person, one of the easiest
ways to get it is to request it from that person directly. That is very often the
way to get the mobile number of a person because telephone directories
rarely list mobile phone numbers.

» Simple aggregate publishing

When business people meet, they often exchange business cards. Business
cards are a way to provide telephone numbers and additional information,
such as fax numbers, e-mail addresses, and so on. Of course, you need to

Chapter 5. Technology options 139

have them printed in the first place, which adds some complexity over the
direct request solution.

» Directory use

It is only on some occasions that people refer to Yellow Pages; for example, to
discover a service provider in a domain they are not familiar with. The Yellow
Pages Directory provides more information than the other methods but
requires a large effort to centralize information and publish it.

Similarly for Web services, you can use simple to complex discovery
mechanisms to satisfy various business needs:

» The exchange of a service description on anything from an e-mail to a
diskette can be compared to a direct request.

» WS-Inspection Language can be compared to business cards.

» The UDDI registries can be compared to Yellow Pages.

Figure 5-14 summarizes this discussion. This figure was adapted from Web
Services Conceptual Architecture Version 1.0, available at:

http://www.ibm.com/software/solutions/webservices

High Function UDDI

(Private or Operator)

WSDL-Repository
WS-Inspection Language

Microsoft DISCO/ADS

. e-mail, FTP, HTTP GET
Simple

Static Find Dynamic Find

Figure 5-14 Service discovery continuum

5.7.1 Static and dynamic Web services

The ultimate aim of a fully automated service-oriented information system, an on
demand system, is to provide up-to-the minute discovery and bind to services.

140 Patterns: Service-Oriented Architecture and Web Services

http://www.ibm.com/software/solutions/webservices

However, this fully automated model is not yet the prevailing one either at build
time or at run time.

There are two ways of binding to Web services: Static and dynamic.

>

5.7.2 UDDI

In the static process, the binding is done at design time. The service
consumer obtains a service interface and implementation description through
a proprietary channel from the service provider (by e-mail, for example), and
stores it in a local configuration file. No private, public, or shared UDDI
registry is involved.

This process is well adapted to the development environment. It has the
drawback that is makes it more difficult to receive information on the latest
status of the service over time.

The dynamic binding occurs at runtime. While the client application is
running, it dynamically locates the service using a UDDI registry and then
dynamically binds to it using WSDL and SOAP.

This requires that the contents of the UDDI registry be trusted as well as the
service provider. Currently, only private UDDI networks can provide such
control over the contents.

The main current standard for services registries is the Universal Discovery
Description and Integration standard defined by the UDDI organization, which is
part of the OASIS organization, and is intended to act as an information broker
between the service consumers and the service providers. At the time of writing
this book, the latest version of the standard is version 3.

UDDI specifies the way to store and retrieve information about services and
especially the provider name and the technical interfaces.

UDDI registry structure
There are several types of information stored in a UDDI structure. As shown in
Figure 5-15 on page 142, this includes four primary data types:

»

»

»

businessEntity, describing the service provider
businessService, containing non-technical information about a service

binding Template, containing technical information to access the service (for
example, URL, and may map to a WSDL document port)

tModel, or technical model

Chapter 5. Technology options 141

businessEntity

—| businessService

bindingTemplate

bindingTemplate

—{ businessService

\—{ bindingTemplate

=
-

tModel

tModel

tModel

tModel

Figure 5-15 Main UDDI data types

Figure 5-16 highlights the links between UDDI entries in a WSDL document.

WSDL Description

<definitions...>

UDDI Description

businessEntity

|

businessService l

bindingTemplate l

bindingTemplate

. <import...>
Service <service...>
Implementation <port...>—|
Definition <port...>~
</service>
</definitions>
<definitions...>
. <types...>
Service <import...>
Interface <message...>
Definition <porttype...
<binding...>

</definitions>

tModel 9

Figure 5-16 WSDL to UDDI mapping

142

Patterns: Service-Oriented Architecture and Web Services

Types of UDDI registries

There are three main types of UDDI registries that deal with different business
paradigms:

» UDDI operator cloud node

A public implementation of the UDDI standard is the UDDI Business Registry,
or UBR. The UBR consists of several UDDI nodes. These nodes are
managed by companies such as IBM, Microsoft, SAP and NTT. When a
service provider wants to publish its services, they go to one of the UBR Web
sites and register and publish their services. The data is then replicated to all
the nodes in the UBR. For an example of a UBR, see:

http://uddi.ibm.com

The initial UDDI standard was focused on a multi-node public UBR. In
addition to the description of services, it deals extensively with the replication
and management issues of a multi-node environment.

This registry supports the claim of universal Web services discovered at run
time.

At the time of writing this book, the UBR contains a limited number of entries.
Among those entries very few are real Web services. Most entries are
descriptions of businesses.

» Group or partner registries

These implementations focus on a specific number of known partners,
generally from the same industry, to focus on really needed services and
tackle the issue of confidence between providers and consumers.

» Private registries

Most companies tend to start Web services projects using an internal (private)
UDDI registry.

Service discovery with UDDI registries

In addition to storing information about services in an orderly manner, UDDI
registries provide a search tool that allows for easy discovery of services:

» For example, all the services provided by a given business entity.

» Listing of services according to various categorizations.
5.7.3 Emerging standards for service registry

The only emerging standard currently under development for service registry is
WS-Inspection.

Chapter 5. Technology options 143

http://uddi.ibm.com

WS-Inspection

The WS-Inspection specification, developed by IBM and Microsoft, allows the
inspection of services offered at a site using an XML document made available at
the point-of-offering. It provides a format for listing references to service
description documents that have been authored in any number of formats. It also
defines a set of conventions making it easy to locate WS-Inspection documents.

For more information on WS-Inspection see IBM Redbook, WebSphere Version
5.1/Application Developer 5.1.1 Web Services Handbook, SG24-6891.

5.8 Policy

Policy has both functional and quality of service aspects in our architectural

stack, as shown in Figure 5-17.

Functions

Quality of Service

Policy

Figure 5-17 The policy layer

5.8.1 Emerging standards for policy

The WS-Policy framework is a metadata framework for describing quality of
service (QoS) requirements and capabilities associated with services.

144 Patterns: Service-Oriented Architecture and Web Services

The WS-Policy element in the Web services security roadmap provided by IBM
and Microsoft in April 2002 has been further refined to include four documents:

» A Policy Framework (WS-Policy) document that defines a grammar for
expressing Web services policies

» A Policy Attachment (WS-PolicyAttachment) document that defines how to
attach these policies to Web services

» A set of general policy assertions (WS-PolicyAssertions)
» A set of security policy assertions (WS-SecurityPolicy)

WS-Policy is designed to allow extensibility. Policy is a broad term covering not
only security, but other domains such as reliability, transactions, privacy, and so
on. Each domain requires a language that lays out the available policy assertions
for the domain, such as WS-SecurityPolicy for security.

In the future, WS-Policy should allow the selection of service providers based on
their published capabilities. Service consumers could also use WS-Policy to
publish their capabilities and requirements, allowing matching of compatible
service consumers and providers.

Using the Enterprise Service Bus vision introduced in 2.4, “Enterprise Service
Bus” on page 38, service consumers and providers could publish their policy
requirements and capabilities to the ESB. The ESB could then identify the
mediations needed in the request flow to meet the QoS requirements of each; for
example, by setting message context (such as transaction IDs) and message
security (such as encryption).

Where to find more information

For more information on WS-Policy, see the following articles on IBM
developerWorks:

» Web Services Policy Framework (WSPolicy) specification at:
http://www.ibm.com/developerworks/Tibrary/ws-polfram/

» Web Services Security: Moving up the stack, New specifications improve the
WS-Security model at:

http://www.ibm.com/developerworks/webservices/Tibrary/ws-secroad/

5.9 Security

In the world of e-business, we rely heavily on the exchange and transport of data
between a number of dispersed systems and applications, both within the
enterprise and across organizational boundaries to business partners, suppliers

Chapter 5. Technology options 145

http://www.ibm.com/developerworks/library/ws-polfram/
http://www.ibm.com/developerworks/webservices/library/ws-secroad/

146

and customers. Whenever we need to package and exchange data, there is an
inherent risk that during the time the data is traveling between its source and
target application it can be intercepted and therefore stolen or modified. This
threat is inherently high in a distributed architecture such as Web services, where
transactions between a service consumer and the service provider are
conducted using plain XML included in a SOAP message. This means that
anyone that manages to intercept the transaction could easily read the data
included within the SOAP payload. The security layer of the architectural stack,
as shown in Figure 5-18, was included to secure Web services against these
types of threats.

Functions Quality of Service

Security

Figure 5-18 The security layer
In any architectural solution, the following security requirements must be
addressed, with no exceptions when it comes to Web services:

» Identification: The party accessing the resource is able to identify itself to the
system.

» Authentication: There exists a procedure to verify the identity of the accessing
party.

» Authorization: There exists a set of transactions the authenticated party is
allowed to perform.

» Integrity: The information is not changed on its way.
» Confidentiality: Nobody is able to read the information on its way.

Patterns: Service-Oriented Architecture and Web Services

» Auditing: All transactions are recorded so that problems can be analyzed after
the fact.

» Non-repudiation: Both parties are able to provide legal proof to a third party
that the sender did send the information, and the receiver received the
identical information.

Most of the systems implemented using Web services today only partially fulfill
these requirements, either due to lack of standards or stable technologies.

In April 2002, IBM and Microsoft proposed a technical strategy and roadmap for
“addressing security within a Web service environment.” The Web services
security (WS-Security) specifications define a comprehensive Web service
security model that supports, integrates and unifies several popular security
models, mechanisms, and technologies (including both symmetric and public key
technologies) in a way that enables a variety of systems to securely interoperate
in a platform- and language-neutral manner.

The WS-Security specification provides a broad set of specifications that cover
security technologies including authentication, authorization, privacy, trust,
integrity, confidentiality, secure communications channels, federation,
delegation, and auditing across a wide spectrum of application and business
topologies. These specifications provide a framework that is extensible, flexible,
and maximizes existing investments in security infrastructure. By leveraging the
natural extensibility that is at the core of the Web services model, the
specifications build upon foundational technologies such as SOAP, WSDL, XML
Digital Signatures, XML Encryption, and SSL/TLS.

As shown in Figure 5-19 on page 148, this set includes a message security
model (WS-Security) that provides the basis for the other security specifications.
Layered on this, we have a policy layer that includes a Web service endpoint
policy (WS-Policy), a trust model (WS-Trust), and a privacy model (WS-Privacy).
Together these initial specifications provide the foundation upon which we can
work to establish secure interoperable Web services across trust domains.

Chapter 5. Technology options 147

WS-SecureConversation WS-Federation WS-Authorization

WS-Policy WS-Trust WS-Privacy

Today

Time

WS-Security

SOAP Foundation

Figure 5-19 The evolving WS-Security roadmap

For more information, see the IBM developerWorks article Security in a Web
Services World: A Proposed Architecture and Roadmap:

http://www.ibm.com/developerworks/webservices/Tibrary/ws-secmap/

As already identified, the landscape of Web services security is still being
defined, and although new standards are continually being developed and
deployed, the ways to achieve security with Web services today is at the following
levels:

» At the transport level

At the transport level, Web services are secured by using the in-built security
features of transport channel technologies such as HTTPS.

At the service communication protocol level

Although constantly evolving with new specifications being developed, Web
services security at this level is ensured using SOAP message based
security.

At the service description level

With XML document exchange as one of the fundamental components of
Web services, it stands to reason that another level of security can be
achieved at the service description level through the use of current
XML-based security technologies such as digital signatures and encryption.

148 Patterns: Service-Oriented Architecture and Web Services

http://www.ibm.com/developerworks/webservices/library/ws-secmap/

Functions Quality of Service

Business Process

Service

Service Description
XML Based Security

Policy
Security
Transaction
Management

Service Registry

Service Communication Protocol
SOAP Message Security

Transport
Transport Channel Security

Figure 5-20 Current Web services security standards

5.9.1 Security at the transport layer

Web services interactions are based on message exchanges between the
service consumer and service provider, so the security capabilities of the
underlying transport protocol responsible for providing the connection between
the services can often be utilized.

HTTP transport

Hyper Text Transfer Protocol (HTTP), described in “HTTP” on page 110, is the
most commonly used protocol for information exchange on the Internet.
Unfortunately, HTTP is an inherently insecure protocol, since all information is
sent in clear text between unauthenticated peers over an insecure network.

HTTPS, which stands for HTTP via SSL (Secure Sockets Layer), allows service
consumer and provider authentication through certificates, which have been
either self-signed or signed by a certification agency. The consumer must
support SSL. Upon establishing a secure connection, the provider and consumer
negotiate the SSL protocol version to use, and a unique session-ID is
established. If the certificate presented by the provider is unknown to the
consumer, the consumer is free to accept or reject the certificate. In turn, the
provider can also demand a certificate from the consumer. During a secure

Chapter 5. Technology options 149

session, the provider and consumer share a common key pair that allows them to
encrypt and decrypt messages they exchange.

Although HTTPS does not cover all the aspects of general security framework, it
provides a sufficient security level regarding party identification and
authentication, message integrity, and confidentiality. However, authorization,
auditing, and non-repudiation are not provided. Also, it is protocol-based and
therefore all the security disappears once the message has passed the HTTP
server. In addition, the encryption is message-wise and not element-wise; to
access the routing information, we have to decrypt the entire message.

5.9.2 Security at the service communication protocol layer

When trying to secure a SOAP message, two types of threats should be
considered:

» The message could be modified or read by unauthorized persons.
» An unauthorized person could send messages to a service that, while
well-formed, lacks appropriate security claims to warrant processing.

The WS-Security specification addresses these threats.

WS-Security

Web Services Security (WS-Security) Version 1.0 was jointly developed by IBM,
Microsoft, and VeriSign, and was released in April 2002. It was submitted to
OASIS by 18 companies, and now involves over 50 companies.

WS-Security describes SOAP messaging enhancements for protecting
messages by encrypting and/or digitally signing the body, headers, attachments,
and any combination or part thereof. This specification defines how to attach and
include security tokens, such as X.509 certificates, within SOAP messages.

For more information, see the IBM developerWorks article Web Services
Security (WS-Security):

http://www.ibm.com/developerworks/webservices/Tibrary/ws-secure/

5.9.3 Security at the service description layer

150

So far, we have discussed Web services security provided by the underlying
transport (HTTP/S) and service communication protocol (SOAP) layers. We have
already mentioned that Web services are about XML document exchange and
therefore another level of security can be achieved at the XML document level. In
this section we provide a brief overview of a set of security technologies that are
being adopted as standards or are in the process of adoption.

Patterns: Service-Oriented Architecture and Web Services

http://www.ibm.com/developerworks/webservices/library/ws-secure/

XML digital signatures

XML digital signatures is a standard for securely verifying the origins of
messages. It specifies a standard procedure for signing XML documents with a
variety of different digital signature algorithms. Digital signatures can be used for
validation of messages as well as for non-repudiation.

XML encryption

XML encryption is still a work in progress. Its aim is to allow encryption of digital
content, such as GIF images or XML fragments. XML encryption allows the parts
of an XML document to be encrypted while leaving other parts open, encryption
of the XML itself, or the super encryption of data (that is, encrypting an XML
document when some elements have already been encrypted).

Security assertion markup language

Security assertion markup language (SAML) is the first industry standard for
secure e-business transactions based on XML. SAML is being developed to
define a common way for sharing security services between companies engaged
in business-to-business and business-to-consumer transactions. SAML allows
companies to securely exchange authentication, authorization, and profile
information among their customers, partners, or suppliers regardless of their
security solutions or platforms. As a result, SAML supports the interoperability
between different security systems.

5.9.4 Emerging standards for security

We know that the Web services security standards still have some way to go, but
ongoing development is addressing the gaps or short falls. The ability to
implement Web services solutions that provide standards-based, enterprise-level
security is not far from reach.

Extensions to the WS-Security specification are extending security coverage
further up the functional and over to the non-functional components of the stack,
as shown in Figure 5-21 on page 152.

Chapter 5. Technology options 151

152

Functions Quality of Service

Business Process é

%)

& =

. S

Service a -
- ® S -
® = = c c
s >N o Qo
[3) . L > 25 B S
14 Service Description 0 52 s)
[0} [¢} 05 n)]
3 o O c o
2 0N o @
0] = — =

2 Service Communication Protocol S

WS-SecureConversation © i

2

L@

Transport b b

Transport Channel Security ==

Il

Figure 5-21 Emerging Web services security standards

WS-SecureConversation

WS-SecureConversation describes how to manage and authenticate message
exchanges between parties, built on the concept of trust based on security
tokens, including security context exchange and establishing and deriving
session keys.

WS-Federation

WS-Federation describes how to manage and broker the trust relationships in a
heterogeneous federated environment, including support for federated identities.

WS-Authorization

WS-Authorization describes how access policies for a Web service are specified
and managed. In particular it describes how claims may be specified within
security tokens and how these claims will be interpreted at the endpoint.

WS-Policy

WS-Policy describes the capabilities and constraints of the security (and other
business) policies on intermediaries and endpoints. See also 5.8, “Policy” on
page 144.

Patterns: Service-Oriented Architecture and Web Services

WS-Trust

WS-Trust describes a framework for trust models that enables Web services to
securely interoperate, by defining a set of interfaces that a secure token service
may provide for the issuance, exchange, and validation of security tokens.

WS-Privacy
WS-Privacy describes a model for how Web services and requestors state
privacy preferences and organizational privacy practice statements.

5.9.5 Where to find more information

Because Web services security is a quickly evolving field, it is essential for

developers and designers to regularly check for recent updates. In this section,

we provide some important entry points for your exploration.

XML Signature Workgroup home page can be found at:
http://www.w3.org/Signature/

XML Encryption Workgroup home page can be found at:
http://www.w3.org/Encryption/

SAML (security assertions markup language) OASIS Security Services

Technical Committee home page can be found at:
http://www.oasis-open.org/committees/security/docs/draft-sstc-use-strawman-
03.html

For information on WS-Security, refer to the standard proposition overview on

developerWorks:

http://www.ibm.com/developerworks/Tibrary/ws-secure/

The Web services security model proposition can be found at:

http://msdn.microsoft.com/Tibrary/default.asp?url=/Tibrary/en-us/dnwssecur/
html/securitywhitepaper.asp

5.10 Transaction

When using a distributed architecture such as Web services to automate
business processes across the enterprise, the concept of transactions becomes
very important. Figure 5-22 on page 154 shows transaction support as a quality
of service layer in our architectural stack.

Chapter 5. Technology options 153

http://www.w3.org/Signature/
http://www.w3.org/Signature/
http://www.w3.org/Encryption/
http://www.w3.org/Signature/
http://www-106.ibm.com/developerworks/library/ws-secure/
http://www.oasis-open.org/committees/security/docs/draft-sstc-use-strawman-03.html
http://www.oasis-open.org/committees/security/docs/draft-sstc-use-strawman-03.html
http://www.ibm.com/developerworks/library/ws-secure/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwssecur/html/securitywhitepaper.asp

Functions Quality of Service

Transaction

Figure 5-22 The transaction layer

A transaction, in the traditional definition, is a mechanism that insures all
participants in a given environment (both business and technical) obtain an
agreed upon outcome, such as a business transaction, financial transaction, or
data transaction. These transactions have the following properties:

» Atomicity: If successful, then all the operations happen, and if unsuccessful,
then none of the operations happen.

» Consistency: The application performs valid state transitions at completion.

» Isolation: The effects of the operations are not shared outside the transaction
until it completes successfully.

» Durability: Once a transaction successfully completes, the changes survive
failure.

5.10.1 Emerging standards for transaction

154

To facilitate these definitions within a Web services environment, the transaction
layer of our stack contains the WS-Coordination and WS-Transaction standards.
Although a Web services environment requires the same level of coordination
and behavior defined for a traditional transaction, to control the outcomes of an
operation, a more flexible approach is also required to handle transactions and
outcomes from multiple services.

Patterns: Service-Oriented Architecture and Web Services

It should be noted that both WS-Coordination and WS-Transaction are still
regarded as emerging standards, and that further work to finalize the
specifications are required.

WS-Coordination

WS-Coordination is a general purpose and extensible framework for providing
protocols that coordinate the actions of distributed transactions. The defined
framework enables an application service to create a context needed to
propagate an activity to other services and to register for coordination protocols.
The framework also enables existing transaction processing, workflow, and other
systems for coordination to hide their proprietary protocols and to operate in a
heterogeneous environment. It can be used with message sequencing and state
machine synchronization.

WS-Transaction

WS-Transaction includes support for the two types of transactions. It describes
coordination types that are used with the extensible coordination framework as
described in WS-Coordination. Two coordination types are defined: Atomic
Transaction (AT) and Business Activity (BA). WS-Transaction is a building block
used with other specifications (for example, WS-Coordination, WS-Security) and
application-specific protocols that are able to accommodate a wide variety of
coordination protocols related to the coordination actions of distributed
applications.

Conversation Support for Web Services

IBM is making available through alphaWorks® a technology called Conversation
Support for Web Services (CS-WS) for supporting a conversational model of
interaction between distributed, autonomous systems. The specification includes
an XML dialect to describe a conversation interaction, called Conversation Policy
(CP). CPs are preprogrammed interaction patterns that are used to specify the
message formats, sequencing constraints, and timing constraints that define the
interaction protocol. The other specifications in the set extend the J2EE
Connector Architecture APIs, both at the system and application level, to provide
a standard runtime framework to execute CPs on a J2EE application server.

5.10.2 Where to find more information

For more information on transaction, see the following articles on IBM
developerWorks:

» Web Services Coordination (WS-Coordination) at:

http://www.ibm.com/developerworks/Tibrary/ws-coor/

Chapter 5. Technology options 155

http://www.ibm.com/developerworks/library/ws-coor/

» Web Services Transaction (WS-Transaction) at:
http://www.ibm.com/developerworks/Tibrary/ws-transpec/

» Conversational Support for Web Services: The next stage of Web services
abstraction at:

http://www.ibm.com/developerworks/Tibrary/ws-conver/

5.11 Management

As more and more businesses start to trust key parts of their operations to Web
services, the management of these Web services becomes ever increasingly
critical. In the case of our Web services architectural stack, as shown in

Figure 5-23, the management layer is related to the ability to discover the
existence, availability and health of the Web services infrastructure, service
registries and Web service applications. Optimally, the management system
should also be able to control and configure the infrastructure and components of
the implemented SOA.

Functions Quality of Service

Management

Figure 5-23 The management layer

But the quality of service aspects of management within the Web services
architecture are broader than just the architectural stack, and must also include
the management of the underlying infrastructure and networks required to
implement and run the Web services. And furthermore, it must extend outside of

156 Patterns: Service-Oriented Architecture and Web Services

http://www.ibm.com/developerworks/library/ws-transpec/
http://www.ibm.com/developerworks/library/ws-conver/

the enterprise, to include integrated business partners, suppliers and customers.
Only then can you ensure the management of the overall end-to-end Web
services environment.

5.11.1 Emerging standards for management

The OASIS organization has created a technical committee (TC) called Web
Services Distributed Management (WSDM). There are two notable Web services
management submissions to the WSDM TC:

» WS-Manageability, which is a joint submission by IBM, Talking Blocks, and
Computer Associates. For information on WS-Manageability, see:

http://www.ibm.com/developerworks/Tibrary/ws-manage/

» Web Services Management Framework (WSMF), which is a joint submission
by HP, Sun, BEA, IONA, TIBCO, Informatica, and webMethods. For
information on WSMF, see:

http://devresource.hp.com/drc/specifications/wsmf/index.jsp

The OASIS Web Services Distributed Management Technical Committee home
page can be found at:

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm

Chapter 5. Technology options 157

http://www.ibm.com/developerworks/library/ws-manage/
http://devresource.hp.com/drc/specifications/wsmf/index.jsp
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm

158 Patterns: Service-Oriented Architecture and Web Services

HTTP service bus

This chapter describes the implementation of a simple supply chain management
application on an HTTP service bus. The application is based on the WS-I
Supply Chain Management (SCM) sample application, introduced in Chapter 4,
“Service-oriented architecture approach” on page 79.

We deploy multiple instances of the Direct Connection application pattern,
introduced in “Direct Connection application pattern” on page 52, to a Direct
Connection runtime pattern using a HTTP service bus, as described in “Direct
Connection using a service bus” on page 65.

In this chapter, the following topics are discussed:

>

»

A recap of the sample business scenario that our solution needs to address.

Design guidelines describing how the sample application shows appropriate
design approaches for exposing services from applications.

Development guidelines showing how development tools may be used to
expose services and make them available on a service bus.

Runtime guidelines discussing the considerations for deploying the
applications and services.

Best practices summarize the things you should consider when deploying a
service bus.

© Copyright IBM Corp. 2004. All rights reserved. 159

6.1 Business scenario

The sample application used in this chapter is a simplified supply chain for a
consumer electronics retailer. Consumers may access the retailer's Web site,
review the catalog, and place orders for products (Self-Service business pattern).
The retailer system requests fulfilment of a consumer’s order from company
warehouses (Application Integration pattern), which respond as to whether line
items from the order can be filled. If stock for any line item falls below a minimum
threshold in any warehouse, a replenishment order is sent to the manufacturer
(Extended Enterprise business pattern). The manufacturer will fulfil the
replenishment order at some time; this process is asynchronous to the re-supply
order.

As we saw in Chapter 4, “Service-oriented architecture approach” on page 79,
our business scenario consists of a retailer, warehouse, logging facility, and three
external manufactures, as shown in Figure 6-1.

Consumer

\ / Retailer = > \Varehouse

Browser Q
Manufacturer

Logging
Facility

Organization boundary

Figure 6-1 High-level business context

The use cases defined for our business scenario are described in “Use case
model” on page 86.

6.2 Design guidelines

This section provides design guidelines for the sample application implemented
on an HTTP service bus. In “Layered application architectures” on page 23 we

160 Patterns: Service-Oriented Architecture and Web Services

briefly looked at structuring applications in service, component, and object
layers.

The IBM developerWorks article, Using Service-Oriented Architecture and
Component-Based Development to Build Web Service Applications, draws a
number of important conclusions about best practices for designing
service-oriented applications, including:

» Components do not necessarily make good services, just as objects do not
necessarily make good components.

It is not a good practice to simply expose public object methods as services.
One reason for this is that object methods tend to be fine grained, and
exposing them as services would significantly increase cross-network
communication to complete a business process.

» Patterns are available to construct effective services from components, and
components from classes.

» Those patterns may be codified in tools to assist in the design and
implementation process.

This section reviews design considerations for services, and to some degree
components, from the application implementation layer model shown in
Figure 2-5 on page 24.

For more information on this approach, see Using Service-Oriented Architecture
and Component-Based Development to Build Web Service Applications,
available at:

http://www.ibm.com/developerworks/rational/Tibrary/510.html

6.2.1 Design overview

In Chapter 4, “Service-oriented architecture approach” on page 79, we
developed the high-level solution overview for the WS-1 SCM sample application,
shown in Figure 6-2 on page 162, based on a service-oriented and Patterns for
e-business approach. In this section we take a closer look at the Runtime
patterns highlighted in Figure 6-2 on page 162, and Product mappings identified.

Chapter 6. HTTP service bus 161

http://www.ibm.com/developerworks/rational/library/510.html

Outside
World

DMz

Enterprise Domain

Internal Network

DMz

Partners
Inter-Enterprise

Zone

Application Dirsct C_onn_ectlon Manufacturer Service o
Server / Application Partner Infrastructure
Services Integration

Pattern::Runtime H
Pattern X
A H
T e Rules |
Connector Repository
Retailer Service J x
on this node pN N H

InterEnterprise
Network
Infrastructure

Service bus ‘
|

Application
Server /
Services

Connector

Warehouse &
Warehouse Callback
Services on this node e

Logging Service on—) | ... ot
this node

Application
Server /
Services

Exposed Direct
Connection Application
Integration
Pattern::Runtime Pattern

Connector

Figure 6-2 Runtime patterns for the Supply Chain Management Sample

As discussed in “Applying Business and Application Integration patterns” on
page 89, the sample application exhibits the following patterns:

» Self-Service business pattern for the consumer interaction with the retailer.
This pattern is not described in this book. For more information, see IBM
Redbook Patterns: Self-Service Application Solutions Using WebSphere
Application Server V5, SG24-6591.

» Application Integration pattern for interactions between the retailer and the
warehouse, and between these services and the logging facility. The
implementation of the services on an HTTP service bus is an example of the
Application Integration::Direct Connection runtime pattern, as shown in
Figure 6-3 on page 163.

162 Patterns: Service-Oriented Architecture and Web Services

<Service Provider>

)

App Server/
Services

——

Adapter
Connector

.~/

Internal network
<Service Consumer> <Service Provider>
§))
>
EIN App Server/ App Server/
Services Services
5 Adapter Adapter
% 7| Connector Connector
Rl S —
WebSphere Application
— Server V5.1

WebSphere Application
Server V5.1
Red Hat Linux AS 2.1

/\ Windows 2000 + SP4

JAX-RPC

SOAP Provider

SOAP 1.1/
HTTP 1.1

<Service Bus>

Figure 6-3 Service bus with adapter connectors

We used both Windows and Linux systems in the HTTP service bus

deployment. Figure 6-3 shows an example where a service consumer

(retailer) interacts with two other service providers (warehouse and logging
facility) using the HTTP service bus.

» Extended Enterprise business pattern for interactions between the
warehouse and the manufacturers, and between the manufacturers and the
logging facility. In this case, the implementation of the services is based on
the Extended Enterprise::Exposed Direct Connection runtime pattern. This
pattern, shown in Figure 6-4 on page 164, is used for both the replenish stock
and supply finished goods use cases, which require a business interaction
between the warehouse and the manufacturer services.

Chapter 6. HTTP service bus

163

Partner A Demiilitarized Inter- Partner B

Secure Zone Zone enterprise
Zone
WebSphere Application E
Server V5.1 :
Windows 2000 + SP4 ('“ o
= ©
2 3
S
App Server/ Adapter = /\ ic Nﬁ:‘f'::rk
. = -
Services Connector £ U § ST TE
> i E SOAP 3
o JHTTP r
JAX-RPC ‘ ‘ SOAP Provider ~—’ 2

Figure 6-4 Exposed Direct Connection: Web services Product mapping

6.2.2 Service design considerations

The WS-l sample application was primarily developed to illustrate the use of the
WS-I Basic Profile. It was not specifically designed to illustrate Web services best
practices, although some are exhibited in the sample application design. See
“Best practices” on page 223 for further details.

Selecting the service interaction style

The WS-I sample application, on which the implementation described in this
book is based, implements three usage scenarios:

» One-way
» Synchronous request/response
» Basic callback

Table 6-1 on page 165 maps the WS-I usage scenarios to runtime patterns, and
lists the sample application services that use each approach.

164 Patterns: Service-Oriented Architecture and Web Services

Table 6-1 Mapping the WS-I service usage scenarios to runtime patterns

Runtime pattern WS-l usage Sample application uses
scenario

Application One-way Retailer -> LoggingFacility

Integration::Direct (logEvents)

Connection (message Warehouse -> LoggingFacility

variation) (logEvents)

Extended Manufacturer -> LoggingFacility

Enterprise::ExposedDirect

Connection (message Since the logging facility is

variation) implemented in the secure zone of
the retailer, this is an
inter-enterprise implementation.
Note that there is no change to the
logging facility implementation, by
making it available as a Web
service, it can be used by both
internal and external applications.

Application Synchronous Consumer -> Retailer

Integration::Direct request/response Retailer -> Warehouse

Connection (call variation)

Basic callback

Extended
Enterprise::Exposed Direct
Connection (call variation)

Synchronous
request/response

Basic callback

Warehouse -> Manufacturer
Manufacturer ->
WarehouseCallBack

Design alternative: One-way scenario

The one-way scenario is defined for situations where the consumer needs to
send a message to the provider, but does not need to know whether the provider
received the message or what it did with it. The sample application
LoggingFacility is used by all consumers to log events under the WS-I one-way
messaging usage scenario, as shown in Figure 6-5 on page 166.

Chapter 6. HTTP service bus 165

166

i

J Provider @ LoggingFacility

F

/ Consumer @ Manufacturer

1 : \JogEventy,

Figure 6-5 Example of a WS-I one-way scenario

The Figure 6-5 scenario is an example of the message variation of the
Application Integration::Direct Connection runtime pattern. When the
Manufacturer is the consumer of the Logging facility service, it is an example of
the message variation of the Extended Enterprise::Exposed Direct Connection
runtime pattern.

This one-way approach should be selected when the consumer needs to send
information to the provider in a send and forget mode. When planning to use this
scenario, you should carefully consider the quality of service requirements and in
particular the reliability of the transport used to send the message. Since there is
no reply from the provider, the consumer cannot know whether the provider
received and processed the message. If the requirements specify that the
message must be processed, consider either:

» Using a reliable transport, such as JMS or WS-ReliableMessaging

» Using a call variation, and including logic in the consumer to retry if a
response message is not received

The reliable transport option should be preferred, since the tasks of tracking
message delivery and recovering from failures to deliver messages are complex,
and better suited to middleware which is designed for this purpose rather than
application code.

Design alternative: Synchronous request/response scenario

The synchronous request/response scenario is defined for situations where a
consumer needs a response to a request. The consumer waits for a response
from the provider. Figure 6-6 on page 167 provides an example.

Patterns: Service-Oriented Architecture and Web Services

E

J Provider : \Warehouse

7

J Consurmer : Retailer

| 1 \ShipGoodsRequest),
I

e

| ShipGoodsResponse

Figure 6-6 Example of a WS-I synchronous request/response scenario

The Figure 6-6 scenario is an example of the call variation of the Application
Integration::Direct Connection runtime pattern, since both the Retailer and
Warehouse services are hosted in the secure network zone of the company.

This pattern should be selected when the requirements specify that a request
must be responded to before the business process can continue. In the sample
application, for example, it is not possible for the consumer to buy a product until
they have been supplied with a catalog listing. So the business process to buy a
product cannot continue until the requested catalog listing has been returned.

Quality of service attributes are important qualifiers on the selection of this
scenario to meet a business requirement. The synchronous request/response
scenario in a Web services environment will almost always suffer greater latency
than request/response using other approaches, such as RPC. This is because:

» More components are required to implement this scenario for a Web services
environment than, for example, an RPC environment.

» Since the data exchanges are in self-describing XML, there is a greater cost
to parse and process the message exchanges than for serialized object data.

Design alternative: Basic callback scenario

The basic callback scenario is provided for situations where a consumer needs a
response to a request, but will not wait for the response, which might take some
time for the provider to send. An example is shown in Figure 6-7 on page 168.

Chapter 6. HTTP service bus 167

7

J Consurner delegate @ Warehouss
Callback

;

£ Provider @ Manufacturer

7

f Consumer @ \Warehouse

1 : \POSubmity |

— < | ackPo
Mate: initial request message j

with acknowledgement that it has
been recew|ed. u kel 2 1 \SUbmItSHY, >i

| Mote: response to initial request, j

| | with acknowledgement that
| response has been received,

Figure 6-7 Example of a WS-I basic callback scenario

The Figure 6-7 scenario can be implemented using two instances of the call
variation of the Extended Enterprise::Exposed Direct Connection runtime
pattern; one instance for the consumer request and one for the provider
response. The Extended Enterprise pattern is used because the Warehouse and
Manufacturer services are hosted in different secure network zones, and
communicate over the Internet.

Describing the service

In developing the sample scenario, we assume that the WS-I defined each
service required for the sample application in WSDL, after the use cases and
message types had been defined. This is a top-down design approach.

Figure 6-8 on page 169 shows the relationships defined in the WSDL for an
implementation of the Manufacturer service. We are using the WSDL Editor from
WebSphere Studio Application Developer V5.1.1 for a concise view of the WSDL
files. For the full listings, all WSDL files are packaged with our version of the
sample application available on the Web; see Appendix B, “Additional material”
on page 333, for details.

168 Patterns: Service-Oriented Architecture and Web Services

Definition

Irnports
4 Manufacturer . wsdl
4_ Configuration,wsdl
Services

[i ManufackurerService

Bl = Manufacturer
4 wsdlsoap:address

Bindings

= :,] ManufacturerSoapBinding
[€] wsdl:documentation
:O: soap:hinding
El &, submitPo
@ soapioperation
D input
1 output
g POFault
[] WwarehouseCallbackSoapBinding

Types
=
=
L‘.
Port Types Messages
= B ManufacturerPortType S PoSubmit
B % submitPo P PurchaseCrder ()
[input g P ConfigurationHeader ()
I output P StartHeader ()
& POFault A ackPO
g ConfigurationFault [submitPOFault
R WwarehouseCalbackPort Type A shSubmit
[processPOFault
[acksh

(4 Callback
[ConfigurationFaultMessage
[ConfigurationFaultMessage

Figure 6-8 Example of Manufacturer WSDL structure

From the structure shown in Figure 6-8, we can see that:
» This WSDL file imports two other WSDL files, which define Manufacturer and

configuration. These files are the WS-I definitions of the port types and
message formats that the implemented Manufacturer service should provide.
These import statements would normally refer to a network location; in this
case we made a local copy of the WSDL files so we could examine them
easily using the WSDL editor.

Two port types are defined in this WSDL file. The ManufacturerPortType is
provided by the Manufacturer service. The other port type is for use with the
Warehouse callback service.

One operation is defined on the port type, submitPO. This operation expects
an input message of type POSubmit, which is composed of parts. Output and
fault messages are also defined for the operation. Figure 6-9 on page 170
shows the details of the PurchaseOrder message.

Chapter 6. HTTP service bus 169

E— o590 |EH

— B— 90 E— F— age

Figure 6-9 Purchase order message structure from Manufacturer WSDL file

170

Design alternative: Top down or bottom up

In the case of the sample application, the service interfaces were designed by
WS-l first, and then the implementations were provided by various vendors,
including IBM. This is an example of top-down design. Top-down design was
considered in this case because:

» There were no existing systems or implementations when the decision was
made to create the services. Therefore, restrictions imposed by existing
system implementations did not have to be considered in the logical design of
each service.

» The intent was to build interoperable services, with the facility to deploy any
service on any system type. Therefore, WSDL could be developed to meet
the interoperability goal, avoiding extensions or complex headers.

When using a top-down approach, you need to avoid:
» Making the service design too complex
» Being tempted to use all available features of WSDL or imported schemas

If you are in the situation where you have existing systems from which you wish
to expose some Web services, you may need to consider a bottom-up approach.
This means that the WSDL is generated from existing code, using facilities such
as the WebSphere Studio Application Developer Web Service wizard. If you
decide to use a bottom-up approach, the main issue which might arise is
problems with interoperability. This means that the service may not be usable by
intended consumers of the service, if you do not control those consumers. This is

Patterns: Service-Oriented Architecture and Web Services

because the generation tool may introduce elements into the WSDL that are
artifacts of the underlying implementation, or features that are not interoperable.
To mitigate this risk:

» Ensure that your WSDL generation tool provides options to generate WSDL
that conforms to the WS-I Basic Profile. For example, Figure 6-10 shows the
option in the WebSphere Studio Application Developer Web services wizard
to specify an encoding style that is more likely to be interoperable.

x

Web Service Java Bean Identity

Configure the Java bean as a Web service, [@

‘Web service URL: I http: fflocalhost: 9080/ StockQuaoteProjiservices/StackQuoteService

W3DL Folder: I JatockQuateProjiwebContent MEE-TNF fwsd|

WSDL File: I StockQuoteService, wsd|

Java Qutput Folder: I,I’StockQuoteProj,l’JavaSource j
r—Methods:

----- getQuote(java.lang, Skring)

Select Al | Deselect Al |

Skyle and Use
’7(3' Docunﬁnt,l’ Literal ¢ RPCY Likeral ¢ RPC/ Encoded
&

Security c{Document (wrapped) style service with Literal XML encoding, | j
T

[Define custom mapping for package to namespace.

Mext = | Einish Cancel

Figure 6-10 WebSphere Studio WSDL generation options

An advantage of using WebSphere Studio Application Developer for this task
is that it will generate a warning if you make a choice that might restrict
interoperability. An example is shown in Figure 6-11 on page 172.

Chapter 6. HTTP service bus 171

b Web Services Warning x|

‘fou have made a choice that may result in a Web service that does not
comply with WS-I, Do you wish to ignore this warning and continue?

Ignore Ignore All Cancel | (& Z Details

RPC Encoded is selected ;I
4

i

Figure 6-11 WebSphere Studio WSDL generation warning

» Provide facilities for consumers to test their client applications against the
service.

Design alternative: Separate interface and implementation

As discussed in 5.4.2, “WSDL” on page 123, the WSDL service description
requires both interface information and implementation information. For the
sample application, the interface WSDL was provided by WS-I. In order to
implement the service, all that was required was to define the service and port
information in an implementation WSDL file which imports the interface WSDL
file.

Figure 6-12 shows the interface WSDL file for Manufacturer, as provided by
WS-I.

Definition
Irnports Types
— =
4 Configuration.wsdl = [8] =
= @ hitkp: f v, ws-i,orgfSampleapplications SupplyChainManagement 2002- 10/Manufacturer [CallBack. L‘.
Services Bindings Port Types Messages
[] ManufacturerSoapBinding [ManufacturerPort Type [POSubmit
[] WwarehouseCallbackSoapBinding B WarehouseCallbackPort Type [ackPo
[submitPOFault
[SMSubmit
[>] processPOFault
[acksh

[Callback
[ConfigurationFaultMessage

Figure 6-12 Interface WSDL for Manufacturer

172 Patterns: Service-Oriented Architecture and Web Services

Note that the interface WSDL shown in Figure 6-12 on page 172 does not
include any service definitions. Bindings, port types and message contents are
defined, but the definition of the service is left to the service implementor.

Example 6-1 shows the implementation WSDL file.

Example 6-1 Manufacturer service implementation WSDL file

<?xml version="1.0" encoding="UTF-8"?>
<wsd1:definitions

targetNamespace="http://www.ws-i.org/SampleApplications/SupplyChainManagement/2
002-10/Manufacturer.wsd1"

xmins:tns="http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-10
/Manufacturer.wsdl"
xmins:wsd1="http://schemas.xmlsoap.org/wsd1/"
xmIns:wsd1soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"

xmins:intf="http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-1
0/Manufacturer.wsdl">

<wsdl:import location="Manufacturer.wsdl"

namespace="http://www.ws-1i.org/SampleApplications/SupplyChainManagement/2002-10
/Manufacturer.wsd1"/>
<wsdl:import location="Configuration.wsdl"

namespace="http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-08
/Configuration.wsd1"/>

<wsdl:service name="ManufacturerService">
<wsdl:port binding="intf:ManufacturerSoapBinding" name="Manufacturer">
<wsdlsoap:address
location="http://entsrviw.itso.ral.ibm.com/Manufacturer/services/Manufacturer"/
>
</wsd1:port>
</wsdl:service>

</wsdl:definitions>

From the implementation file, notice that:

» The interface WSDL is imported.

» The service is defined using the <wsdl:service> tag.

» The port is linked to the binding name defined in the interface file.

Chapter 6. HTTP service bus 173

174

There are a number of advantages of separating the interface and
implementation files, including:

» It allows the interface definition to be reused for different implementations.

» Your WSDL development tool may not allow the definition of multiple ports for
a service, requiring you to separate the implementations into different files.

You should be aware, however, that implementor of service consumers will
require the implementation WSDL file in order to generate their client code.

Design alternative: Imbed or import data definitions

Within your WSDL files, you need to define the messages produced and
consumed by your service, and the types of the contents of those messages. You
can define this information wholly within the WSDL file, or you can define it in
schema files and import the schemas into the WSDL.

For the sample application, the type and message definitions were available in
schema files and we chose to use those. An example of the import of types and
message definitions is shown in an extract from the Manufacturer interface
WSDL file shown in Example 6-2.

Example 6-2 Extract from Manufacturer WSDL showing imported message definitions

<wsdl:types>
<xs:schema elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:import
namespace="http://www.ws-1i.org/SampleApplications/SupplyChainManagement/2002-10
/ManufacturerP0.xsd" schemalocation="ManufacturerP0.xsd"/>

</xs:schema>
</wsdl:types>

<wsd]:message name="POSubmit">
<wsdl:documentation>
A purchase order.
</wsd1:documentation>
<wsdl:part name="PurchaseOrder" element="po:PurchaseOrder"/>

</wsd1:message>

The alternative approach is to define types and messages within the WSDL, as
shown in Example 6-3 on page 175.

Patterns: Service-Oriented Architecture and Web Services

Example 6-3 Extract from a simple WSDL showing imbedded message definitions

<wsd1:types>
<schema elementFormDefault="qualified" targetNamespace="http://itso.ibm.com"
xmins="http://www.w3.0rg/2001/XMLSchema">
<element name="hello">
<complexType>
<sequence/>
</complexType>
</element>
<element name="helloResponse">
<complexType>
<sequence>
<element name="helloReturn" nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
</schema>
</wsdl:types>
<wsd]:message name="helloResponse">
<wsdl:part name="parameters" element="intf:helloResponse"/>
</wsd1:message>

There are a number of trade-offs to be considered when deciding whether to
import or imbed your message and type definitions, including:

» Defining messages separately from the interface or implementation files
facilitates reuse of the message definitions in other service definitions.

» Changes to schema files may impact services that use those definitions,
particularly if the implementor of the service or consumer has generated
serialization code directly from the WSDL files. This means that once a data
schema is published, altering it may have a big impact on users of services
that use the schema.

» For any imports that refer to a network location, the network location must be
available when performing operations such as designing WSDL files, starting
services, and so on.

» Both runtime and development time products must support the use of
imported schemas.

Selecting the service communication protocol

All the services in the sample application use SOAP as the service
communication protocol. The purpose of the sample application is to
demonstrate interoperability between services that conform to the WS-I Basic
Profile, which includes SOAP 1.1. No alternatives to SOAP were considered for
this reason.

Chapter 6. HTTP service bus 175

176

Alternatives that do exist include HTTP GET/POST carrying an XML message as
a request string or request body, or MIME.

Something you should consider is whether to implement a Web service at all. For
internal applications, Web services may be significantly more resource intensive
than other integration mechanisms, such as remote procedure call or message
based integration. In particular, XML parsing may be more resource intensive
than a tighter coupling between applications.

Design alternative: Selecting the binding style

SOAP provides two binding styles, document and rpc. Both styles are used in the
sample application to illustrate potential uses of these styles. For example,
Manufacturer uses the document style, as shown in the extract from the WSDL
file shown in Example 6-4.

Example 6-4 Extract from Manufacturer WSDL showing document style

<wsd1:binding name="ManufacturerSoapBinding" type="tns:ManufacturerPortType">
<wsd1:documentation>
<wsi:Claim conformsTo="http://ws-i.org/profiles/basicl.0/"/>
</wsd1:documentation>
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="submitP0">
<soap:operation/>
<wsd1:input>
<soap:body parts="PurchaseOrder" use="1iteral"/>
<soap:header message="tns:POSubmit" part="ConfigurationHeader"
use="literal">
<soap:headerfault message="cfg:ConfigurationFaultMessage"
part="ConfigurationFault" use="literal"/>
</soap:header>
<soap:header message="tns:POSubmit" part="StartHeader" use="literal"/>
</wsd1:input>
<wsd1:output>
<soap:body use="literal"/>
</wsd1:output>
<wsdl:fault name="POFault">
<soap:fault name="POFault" use="literal"/>
</wsd1:fault>
</wsd1:operation>
</wsd1:binding>

The Warehouse service, on the other hand, uses RPC style, as shown in
Example 6-5 on page 177.

Patterns: Service-Oriented Architecture and Web Services

Example 6-5 Extract from Warehouse WSDL showing rpc style

<wsd1:binding name="WarehouseSoapBinding"
type="tns:WarehouseShipmentsPortType">
<wsd1:documentation>
<wsi:Claim conformsTo="http://ws-i.org/profiles/basicl.0/" />
</wsd1:documentation>
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="rpc"/>
<wsdl:operation name="ShipGoods">
<soap:operation

soapAction="http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-0
8/Warehouse.wsd1"/>
<wsd1:input>
<soap:body use="Tliteral"

namespace="http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-08
/Warehouse.wsd1"
parts="ItemList Customer" />
<soap:header message="tns:ShipGoodsRequest" part="ConfigurationHeader"
use="literal">
<soap:headerfault message="c:ConfigurationFaultMessage"
part="ConfigurationFault" use="literal" />
</soap:header>
</wsd1:input>
<wsdl:output>
<soap:body use="Tliteral"

namespace="http://www.ws-1i.org/SampleApplications/SupplyChainManagement/2002-08
/Warehouse.wsd1"/>
</wsd1:output>
</wsd1:operation>
</wsd1:binding>

The RPC style assumes that the provider is a procedure, and the call to the
service is a remote procedure call, where the consumer provides the call
parameters in the SOAP body. The call parameters are wrapped in an element
that specifies the procedure’s name. The document style makes no assumptions
about how the provider will process the service call, which leaves more flexibility
in the definition of the messages consumed by and produced by the service.

Considerations for deciding which style to use include:

» Advantages of RPC style

— ltis simpler to write and provide services for RPC style. These services
are more rigid in the message formats they use, and therefore less parsing
and message analysis code is required in the application code than with

Chapter 6. HTTP service bus 177

178

document style, which may have to cater for more data and more
combinations of document structure.

— RPC is a more natural style for interfacing to existing applications that
already exist and use a synchronous call style (remote procedure call).

— Provides an XML interface to applications that do not have an XML
interface today.

— Supported in older versions of application servers. For example,
WebSphere Application Server V4 provides RPC style, but not document
style.

» Advantages of document style

— Document style is more naturally suited to asynchronous processing and
one-way scenarios.

— Changes to the message schema are less likely to break service
consumers. Adding elements to messages, and reordering sequences in
message definitions, are less likely to impact both consumers and
providers.

— ltis possible to add information to the XML document that is being
exchanged between the consumer and provider for purposes other than
the invocation of the service. In the RPC style, the message must be
validated in order to invoke the target procedure. With document style,
validation of additional elements can be deferred to a component of the
implemented service.

— Microsoft tools for the creation of Web services tend to use the document
style, so interoperability with service providers or consumers built on
Microsoft platforms is more likely.

— Document style services tend to perform better than RPC style services.
This is because the SOAP server has to perform validation with RPC style,
whereas for document style the XML request is sent straight to the
processing application.

A detailed discussion of the merits of document style is available from:

http://www.ibm.com/developerworks/webservices/library/ws-docstyle.html

Design alternative: Selecting the encoding style

Two mechanisms for describing the body of a SOAP message are available,
literal and encoded. The sample application services use only literal encoding,
since the WS-I Basic Profile does not allow the use of encoded. For interoperable
Web services, you should use literal. You need to ensure that both your
development tools and runtime platform support literal encoding. The latest
releases of WebSphere Studio Application Developer and WebSphere
Application Server support this encoding style.

Patterns: Service-Oriented Architecture and Web Services

http://www.ibm.com/developerworks/webservices/library/ws-docstyle.html

Some development tools and runtime environments, particularly older releases,
use encoded style by default, and some do not support literal. If you are using
older releases, you may need to use the encoded style. If this is the case in your
environment, you will need to pay special attention to interoperability testing with
potential partners.

Allowing consumers to locate the service

A vital component of a service-oriented architecture is the approach used for
finding and invoking services. Three main alternatives are available for service
location, supplying the address in a WSDL file, using Web services inspection
language (WSIL), or using a UDDI registry.

Design alternative: Specify location in WSDL file

The simplest alternative for service location is to provide a WSDL file to
consumers of the service. Example 6-6 shows the service location information in
an extract from the Manufacturer WSDL file.

Example 6-6 Extract from Manufacturer WSDL file showing service location

<wsd1:service name="ManufacturerService">
<wsdl:port binding="intf:ManufacturerSoapBinding" name="Manufacturer">
<wsdlsoap:address
location="http://entsrvlw.itso.ral.ibm.com/Manufacturer/services/Manufacturer"/
>
</wsd1:port>
</wsdl:service>

The consumer uses the location to invoke the service. Tools such as WebSphere
Studio can generate client stub code from the WSDL file. The approach used to
generate the Warehouse client for the Manufacturer service is detailed in 6.3.4,
“Service consumer (client) development considerations” on page 200.

Design alternative: Using WSIL

WSIL (or WS-Inspection) provides a light-weight service discovery mechanism
without introducing the complexity of UDDI. For a full discussion on WSIL see the
IBM Redbook WebSphere Version 5.1/Application Developer 5.1.1 Web Services
Handbook, SG24-6891.

Design alternative: Using a UDDI registry

This alternative is discussed in detail in Chapter 8, “Service directory” on
page 251.

Chapter 6. HTTP service bus 179

6.2.3 Component design considerations

180

The availability of tools and wizards to generate Web services from almost any
existing programming asset brings a number of risks that apply to bottom up
implementations. For example, with bottom-up design, it is possible to:

» Expose details of the implementation of your business processes to
consumers.

» Introduce unnecessary network communication which may result in latency
and application performance that does not meet expectations.

You should review your approach to deployment of Web services to avoid these
pitfalls.

Sample application component overview

The sample application has a high-level deployment structure as shown in
Figure 6-13.

Retailer System Manufacturer

B —
User Interface P i Manufacturer
Service
Retailer Service IRTEE L
e L rE 1 ManufacturerB
Lz Service
warehouse [| |...-o-TT e B A
. L2s- e e o
Service ___‘_“ cem et m PR R - ManufacturerC
T AE Service
Warehouse f -
Callback Service N
Logging

Logging Facility &,’ ’
Service -

Figure 6-13 Sample application deployment diagram

Each service is designed to be implemented independently of the others, and in
this case some services have been co-located on a node due to:

» Amount of hardware available to implement the system.

» Performance and capacity plans might allow such a co-location.

Patterns: Service-Oriented Architecture and Web Services

The Manufacturer service is representative of how each service component is
designed. Figure 6-14 shows the package hierarchy used by the Manufacturer
service.

1
WY
Service facade and client bindings
for services this service consumes
K Service logic {implementation)
Irmpl
1 "R _
b
" X
PO S
Data handling classes for Data handling classes for outgoing
incoming purchase orders shipping notes

Figure 6-14 Package structure for Manufacturer service

Implementing services on a facade

The facade pattern was introduced in the book Design Patterns: Elements of
Reusable Object-Oriented Software, and is in common use in J2EE
environments, particularly where session beans are used as a fagade to hide the
implementation of entities.

A fagade hides the underlying implementation of a service, and presents only the
interface that the service offers.

If you use a top-down approach with tools such as WebSphere Studio
Application Developer, a fagcade may be generated for you. In the case of the
sample application, a facade is implemented for each service. Public methods
are only made available for the operations the service publishes. Figure 6-15 on
page 182 shows selected classes from the Manufacturer service.

Chapter 6. HTTP service bus 181

182

_________ K
/, O<]“’ KManufacturerSuapBindingImpl

Marufact Porti

didibolddbicid Lidid + ManufacturerSoapBindinglmpl {3 g Manufacturer

Cubmfﬁﬂo() + submitPC () fagade
—_—
/I" "~ Item
ManufacturerImpl 5 PurchOrdType - price : float

+ ManufacturerImpl {) : Egrfjrr\]ﬁgr;t: Java.lang.String +1Item)
+ submitPC () : +getlD ()
- checkStock () + PurchOrdType ¢) +setlD ()
- validateProducts () + getCrdarium {) L ——— +getQty)
+ shouldManufacture {) + setOrderium () ItemList + satCity ()
+ addInventoryAndShip () + getCustomerRef {) + getPrice {)
+getData () + setCustomerRef {) + Itemlist) + setPrice ()
- checkHeader) + getltems () +getltem ()
+ getEndpointURL 3 + setltems {) +setltem ()
logEvent ¢_) + getTotal {) +getltem ()
doCallback + setTotal {) /‘ﬁ + zefltem ()

I— \\ /

5 StockWorker

- shipMum @ int

- connectionFactoryMame @ String = "java:cormp/eny AWSISample/jms AWSISarmplaQCF"

- queueMame : String = "java:compfenyAWSISample/jms AWSISamplec

- setupQueue 3

+ Stockwoarker ()

+ dowark ()

Figure 6-15 Selected classes from Manufacturer service implementation

From Figure 6-15, observe that:

» The ManufacturerImpl class contains the main processing logic for the
manufacturing service.

» The StockWorker class is delegated to handle incoming purchase orders.

» The PurchOrdType, ItemList, and Item classes handle the data received from
the service call.

Please also note that Figure 6-15 shows only a subset of the classes that
implement the Manufacturer service; in particular, the classes used to manage a
shipping notice, send the shipping notice back to the warehouse that sent the
original purchase order, and perform logging are not included. The classes that
implement the Web service infrastructure are not described either, since these
are provided for you through the Web service wizard.

The connection between the fagade and the service is specified to the runtime
environment (for example, WebSphere Application Server) using the Web
services deployment descriptor (webservices.xml), as shown in Example 6-7 on
page 183.

Patterns: Service-Oriented Architecture and Web Services

Example 6-7 Web service deployment descriptor for Manufacturer service

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE webservices PUBLIC "-//IBM Corporation, Inc.//DTD J2EE Web services
1.0//EN" "http://www.ibm.com/webservices/dtd/j2ee web _services 1 0.dtd">
<webservices>

<webservice-description>

<webservice-description-name>ManufacturerService</webservice-description-name>
<wsd1-file>WEB-INF/wsd1/Manufacturer Impl.wsdl</wsdl1-file>

<jaxrpc-mapping-file>WEB-INF/Manufacturer Impl _mapping.xml</jaxrpc-mapping-file
>
<port-component>
<port-component-name>Manufacturer</port-component-name>
<wsd1-port>

<namespaceURI>http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002
-10/Manufacturer.wsd1</namespaceURI>
<localpart>Manufacturer</localpart>
</wsd1-port>

<service-endpoint-interface>org.ws_i.www.ManufacturerPortType</service-endpoint
-interface>
<service-impl-bean>
<servlet-link>org_ws_i_www_ManufacturerSoapBindingImpl</servlet-1ink>
</service-impl-bean>
</port-component>
</webservice-description>
</webservices>

Note from Example 6-7 that the <service-endpoint-interface> tag describes the
class we have described as the fagade interface class, and the <servlet-link> tag
describes the fagcade implementation class.

If you are using a bottom-up approach, you should consider implementing a
facade and generating services from that. Tools such as Rational® XDE™
provide the facility to include “Gang of Four” (GoF) patterns, such as the fagcade,
in your design.

Invoking the service from the consumer

So far we have discussed component design considerations for services using
Manufacturer as an example. The Warehouse service is a consumer, or client, of
the manufacturing service. Figure 6-16 on page 184 shows the Warehouse
implementation classes that are involved in invoking the Manufacturer service.

Chapter 6. HTTP service bus 183

184

K ® f indi b 3 d
<><:I“ ManufacturerSoapBindingStu StartHeaderType

ManufacturerPort fype + ManufacturerSoapBindingStub) + StartHeader Type {
+ submitPo {) + getiZonversationID {)
+ submnitPo) + getConversationID ()

+ getCallbackLocation |)
+ setCallbackLocation {)

K 3 .
O‘q ManufacturerServicelLocator

ManufacturerService + gettanufactureraddress {)

+ gettanufacturerywSDOPortharme ()
+ getManusciurardddrass [) + sethanufactureryWwSDDPorame ()
+ getManScturer) + gettanufacturer |)

+ getPort (|)
- th iSC|aS%
3

+ getServiceMame [)
-orderMum @ int=1

+ getPorts {)
+getCalls {)

WarehouseImpl

+ shipGoods {)

- checkStockandShip {)

- getEndpointIRL {3

- checkHeadsr {)

- gettanufacturerlURL)

- replenishStock {)

- orderFromianufacturer)

+ addStock (0

Figure 6-16 Warehouse classes acting as consumer of manufacturing service

Note that Figure 6-16 shows a subset of the classes required to call the
manufacturing service. The Warehouselmpl class performs the actual
warehouse processing. When stock replenishment is required, the
replenishStock method creates a purchase order, and the
orderFromManufacturer method makes the call to the service through the
ManufacturerSoapBindingStub facade.

A service locator class is provided as one mechanism to find the service. The
design trade-offs for using the service locator class are discussed in “Locating
the service” on page 207.

The Web services client deployment descriptor (webservicesclient.xml) sets up
the relationship between the service and the fagade for the service, as shown in
Example 6-8.

Example 6-8 Extract from Web services client deployment descriptor for warehouse

<?xml version="1.0" encoding="UTF-8"?>

Patterns: Service-Oriented Architecture and Web Services

<!DOCTYPE webservicesclient PUBLIC "-//IBM Corporation, Inc.//DTD J2EE Web
services client 1.0//EN"
"http://www.ibm.com/webservices/dtd/j2ee_web services client 1 0.dtd">
<webservicesclient>
<service-ref>
<description>WSDL Service ManufacturerService</description>
<service-ref-name>service/ManufacturerService</service-ref-name>
<service-interface>org.ws_i.www.ManufacturerService</service-interface>
<wsd1-file>WEB-INF/wsd1/Manufacturer Impl.wsdl</wsdl1-file>

<jaxrpc-mapping-file>WEB-INF/Manufacturer Impl _mapping.xml</jaxrpc-mapping-file
>

<service-gname>

<namespaceURI>http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002
-10/Manufacturer.wsd1</namespaceURI>
<localpart>ManufacturerService</localpart>
</service-gname>
<port-component-ref>

<service-endpoint-interface>org.ws_i.www.ManufacturerPortType</service-endpoint
-interface>
</port-component-ref>
</service-ref>

</webservicesclient>

Programming models for service providers and consumers

A significant advantage of service-oriented architectures is that the consumers
(clients) and providers (services) need not use the same programming model.
Therefore, there are a wide range of options available to you when developing a
Web service or a Web service client. This section is restricted to a discussion of
some Java programming model options.

Design alternative: JAX-RPC 1.0

The JAX-RPC 1.0 programming model is a standards-based approach to
implementing Web services and Web service clients in Java. JAX-RPC V1.0 is
available as a generated programming model in WebSphere Studio Application
Developer V5.1. We recommend that this model be used for both services and
consumers where possible, since this is the most recent standards-based
approach available.

Emerging design alternative: JAX-RPC 1.1

At the time of writing, work on the V1.1 of the JAX-RPC standard was on-going.
This level of the standard is planned to provide support for the WS-I Basic Profile,
and significantly, support for the one-way scenario. You should consider

Chapter 6. HTTP service bus 185

upgrading to development tooling and runtime environments that provide this
level when they become available.

Design alternative: Apache Axis or IBM SOAP

These alternatives were provided in earlier releases of development tools and
runtime environments from IBM than those discussed in this book. These options
are retained in some cases for compatibility reasons. In general, we recommend
that you do not use these alternatives unless specifically required by the services
you are using, or to retain compatibility with other clients.

Implementation environments for providers and consumers

If you are using a Java programming model for your Web service provider or
consumer, you have an additional choice of whether to implement the component
as a Java bean or a session EJB. Where possible, you should consider using
session EJBs, since these can be managed by the container, and therefore you
can use system management tools and techniques to manage quality of service
characteristics. In addition, session EJBs allow you to implement fine-grained
security (role-based security on individual methods).

6.2.4 Object design considerations

Since a top-down design approach was used for the sample application, the
application designer is free to choose an implementation approach.

Our implementation is based on the Supply Chain Management example
application package with WebSphere Studio Application Developer V5.1. You
can add this example to your Studio workspace by selecting File -> New ->
Example... from the main menu. Then select Web Services -> Supply Chain
Management in the New Example wizard.

We made a number of changes to the Studio example to demonstrate its
deployment to different runtime patterns, including HTTP service bus described
in this chapter. Our version of the sample applications available on the Web; see
Appendix B, “Additional material” on page 333, for details.

Figure 6-17 on page 187 shows the class structure for part of the Manufacturer
implementation.

186 Patterns: Service-Oriented Architecture and Web Services

Manufacturerimpl

3
CustomerReferenceType
+ ManufacturerImpl {) [k PurchOrdType -‘
+ submitPO ¥P + CustomerReferenceType)
- checkStock { Y - ordertum @ java.lang.String I gexallue ()
- walidateProducts () - total @ float setvalue {)
+ shouldManufacture)
+ addinventoryAndShip { * PurchordType {) 3 . I3
+ getData () + getOrderium () ItemList Item
B cgrlweckHea Lo + setCrdertum () By
+4(_letEnd T + getCustomerRef {) + MerList {) price : float
¥ logEvent ¢) + setCustomerRef {) + getltem () T IEm ()
docallback {) P EEIIENS ms{*setltemn {) | [+ getiD ()
resliznn (3 +gettem () | |+setD ()
| +getTotal () + setlterm () +getty {)
r + getTotal {) 4 cetQty ()
I_ :
" Stockworker : gs:;rilccs E))
. . s -]
- shiphum ¢ int " ManufacturerData
- seupOuene) - pn lang i
+ Stockworker () - stockLevel @ int SubmitPOFault Type
+ dovork - minLevel © int K o
- raxlevel : int + SubmitPOFaultType () eason
 SEEE—— + getReason)
DataHolder + ManufacturerData () #Reason ()
+ getStockLevel {3 + getvalue ()
DataHalder () :99”""'”'-9"9') + fromvalue ()
+ isRegistered) gettaxLevel {) m_(_l
+ createData () | |+ addStock () + tnString ()
¥ getData () + lessenStock)

Figure 6-17 Class diagram for PO management part of Manufacturer implementation

This set of classes deals specifically with the management of a purchase order
message received for the submitPO operation, as seen in Figure 6-8 on
page 169 and Figure 6-9 on page 170.

Whether you are using top-down or bottom-up approaches, you will need to
consider the data types and how they are passed between providers and
consumers. Tool wizards can help you with this task but you should examine the
choices that are made.

6.3 Development guidelines

Web services providers and consumers both require a number of helper
functions that make a service accessible, send and receive SOAP messages,
serialize and deserialize data, and so on. We recommend that you use
development tools to generate this code for you, for two significant reasons:

» These functions are relatively complex and it is easy to introduce errors if you
are attempting to hand code these functions.

Chapter 6. HTTP service bus 187

» Programming models and Web service interaction styles have been
enhanced in recent times, with objectives of improving performance and
interoperability between systems. Development tools tend to include wizards
that will generate helper code according to the latest patterns, as well as your
choices for service interaction style.

For the sample application, we used WebSphere Studio Application Developer
V5.1.1 to both generate the Web services infrastructure, and to modify the
implementation code.

6.3.1 Getting started

WebSphere Studio Application Developer provides the facility to create
workspaces that isolate a set of development activity. We created a new
workspace folder to hold our development work, and specified the location of the
workspace in the startup dialog for WebSphere Studio Application Developer, as
shown in Figure 6-18.

WebSphere Studio x|
‘wiebSphere Studio stores your work in a directory called a workspace. Y'ou can change the workspace each time
you start WebSphere Studio. Specify the directory to uze for this session:
IE:\workspace Browse... |

™ Use this workspace as the default and do nat show this dislog box again

()3 é I Cancel |

Figure 6-18 Selecting the WebSphere Studio workspace

We then set up a connection to a CVS repository to enable the sharing of code
and design assets between members of the team.

The first step is then to import the WSDL files that provide the service interface
details, and commence the development tasks.

6.3.2 Importing the supplied WSDL files

188

The implementation of our sample application is based on WS-I interface WSDL
and XML Schema definitions of the supply chain management services. The
approach used to design and develop the WS-I service interface definitions is
documented in the Supply Chain Management Use Case Model and Supply
Chain Management Sample Application Architecture documents, available from
WS-I.

Patterns: Service-Oriented Architecture and Web Services

We imported the required WS-I WSDL and XML Schema files into a WebSphere
Studio project as follows:

1.

Obtain the required WSDL interface files from the WS-1 Web site:
— http://www.ws-1i.0org/SampleApplications/SupplyChainManagement/2002-08/Retai
lTer.wsdl

— http://www.ws-1i.0org/SampleApplications/SupplyChainManagement/2002-08/Wareh
ouse.wsdl

— http://www.ws-1i.0org/SampleApplications/SupplyChainManagement/2002-10/Manuf
acturer.wsdl

— http://www.ws-1i.0org/SampleApplications/SupplyChainManagement/2002-08/Loggi
ngFacility.wsdl

We also downloaded all the imported WSDL and XML Schema files. For
example, Manufacturer.wsdl imports the following files:

— http://www.ws-1i.0org/SampleApplications/SupplyChainManagement/2002-10/Manuf
acturerP0.xsd

— http://www.ws-1i.0org/SampleApplications/SupplyChainManagement/2002-10/Manuf
acturerSN.xsd

— http://www.ws-1i.0org/SampleApplications/SupplyChainManagement/2002-08/Confi
guration.wsdl

— http://www.ws-1i.0org/SampleApplications/SupplyChainManagement/2002-08/Confi
guration.xsd

Save the files to a temporary folder, such as C:\temp\ws-i.

In WebSphere Studio, create a Simple Project to hold all your WSDL and
XML Schema files. We created a project named Build with a folder named
wsdl to hold the files.

Switch to the Resource perspective when working with Simple Projects.

Import the WSDL and XML Schema files downloaded previously into the
Build/wsdl folder. You can use File -> Import... -> File system.

Edit all of the files to modify any import elements using URLSs relative to the
WS-1 Web site. In Manufacturer.wsdl, for example, the imports shown in
Example 6-9 on page 190 need to be changed as shown in Example 6-10 on
page 190.

This avoids the need for on-going WS-l Web site connectivity from your
development environment.

. We also added the following files in our Build/wsdl folder, which define custom

mappings from the WSDL namespaces to Java packages:

— Config-NStoPkg.properties
— Log-NStoPkg.properties
— Man-NStoPkg.properties

Chapter 6. HTTP service bus 189

— Retailer-NStoPkg.properties
— WH-NStoPkg.properties

These mappings are used to customize the Java package names that are
used for generated classes, rather than accepting package names that are
auto-generated from the XML namespaces referenced in the WSDL.

Note: You can also download our version of the sample application from the
Web with these steps already completed; see Appendix B, “Additional
material” on page 333, for details.

Example 6-9 Relative imports in Manufacturer.wsdl

<wsdl:import
namespace="http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-08
/Configuration.wsd1" Tocation="../2002-08/Configuration.wsdl"/>
<wsdl:types>

<xs:schema elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xs:import

namespace="http://www.ws-1i.org/SampleApplications/SupplyChainManagement/2002-08
/Configuration.xsd" schemalLocation="../2002-08/Configuration.xsd"/>

Example 6-10 Updated imports in Manufacturer.wsal

<wsdl:import
namespace="http://www.ws-1i.org/SampleApplications/SupplyChainManagement/2002-08
/Configuration.wsd1" location="Configuration.wsdl"/>
<wsdl:types>

<xs:schema elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xs:import

namespace="http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-08
/Configuration.xsd" schemalLocation="Configuration.xsd"/>

6.3.3 Service development considerations

190

Once the key design decisions have been made, as discussed in “Service design
considerations” on page 164, the service implementation code must be
developed.

Patterns: Service-Oriented Architecture and Web Services

Service development alternatives

The design decision which will most impact the development approach is
discussed in “Design alternative: Top down or bottom up” on page 170. For the
sample application, the service descriptions (WSDL) were produced first, and
then the service implementation code was written. We discuss top-down and
bottom-up development approaches in this section.

Top-down service development

In the case of a top-down development approach, the following high-level steps
are required:

Develop WSDL to describe the service interface.
Develop WSDL to describe the service implementation.
Make WSDL available for clients to use.

Generate implementation skeletons.

Implement service code.

Deploy service for testing.

Test service.

© N o o A~ 0 Db =

Deploy service in production.

Bottom-up service development

Where you are creating a service from existing application code, the high-level
steps are:

Select the interface code you wish to expose.
Generate implementation WSDL from the service.
Make WSDL available for clients to use.

Deploy the service for testing.

Test service.

o a0k 0N =

Deploy service in production.

Sample application service development

This section describes the key development steps for the top-down development,
as used in the sample application with WebSphere Studio.

We first created some Studio projects to hold the implementation code for each
service. We used the following approach for the Manufacturer service:

1. Switch to the Resource perspective and create the implementation WSDL file
for each service in the Studio Build/wsdl folder.

Chapter 6. HTTP service bus 191

&F Resource - Manufacturer_Impl.wsdl - IBM WebSphere Studio Application Developer

The implementation WSDL imports the WS-I interface WSDL, so the only
work required is to define the service and the bindings for the service. As
shown in Figure 6-19 for the Manufacturer service, we used the Studio WSDL
Editor to develop the WSDL implementation file.

=1alx]
Fil= Edit Mavigate Search Project WSDLEditor Run Window Help
I-BEe|ga-[sllece-2-B00(2Y F
= x|
al BalRd
&4 Definition =]
3 Imparts Types
< Manufacturer wsdl 3
4 Configuration. wsdl ll
Services Bindings Port Types Messages
E;;_'«_':ManuFacturerService = [:] ManufacturerSoapBinding H ManufacturerPortType [Posubmit
[€] wsdl:documentation H ‘WarehouseCalbackPort Type [ackpo

i wsdlsoap:address

;O; saap:binding
3B, submitP o

[:] WarehouseCallbackSoapBinding

[submitPOFault
[sMSubmit
[processPOFault

A acksm

[Calback

[ConfigurationF aultMessage
[ConfigurationF aultMessage

=
o | .
Docurnentation
Port =
Mame [ManFacturer |
Bmdmg|intf:ManuFacturerSUapBinding |Z||_| _I
-

Source lGraph]

‘Wrikable Inserk |1 i1

Figure 6-19 Developing implementation WSDL for a service

192

The WSDL Editor simplifies the task of adding the service definition, the

binding to the port definition (in the interface file), and the specification of the
service address.

We named each implementation WSDL file by adding “_Impl” to the interface

file name. For example, the implementation file name for Manufacturer.wsdl is
Manufacturer_Impl.wsdl.

Create an Enterprise Application Project and Dynamic Web Project for each
service provider.

From the Studio Web perspective, we created a new Dynamic Web Project
named ManufacturerWeb for the Manufacturer A service. In the New Web

Patterns: Service-Oriented Architecture and Web Services

Project wizard, we checked Configure advanced options and created a new
EAR project named Manufacturer and set the Context root to Manufacturer.

3. Create a folder in the Web project for the WSDL and XML Schema files. We
created a folder named wsdl under ManufacturerWeb/WebContent/WEB-INF.

4. Copy the required WSDL and XML Schema files (that were previously
added/imported into the Build/wsdl folder) to the
ManufacturerWeb/WebContent/WEB-INF/wsdl folder.

For ManufacturerWeb, we copied the following files for the Manufacture A
service provider:

— Manufacturer_Impl.wsdl
— Manufacturer.wsdl

— ManufacturerPO.xsd
— ManufacturerSN.xsd
— Configuration.wsdl

— Configuration.xsd

We copied the following files for the Manufacture A service consumer:

— LoggingFacility_Impl.wsdl
— LoggingFacility.wsdl
— LoggingFacility.xsd

5. Repeat the process for all of the required service providers and consumers.
Table 6-2 shows the consumers that are required for each service provider in
the our version of the sample application.

Table 6-2 Required service providers (top) and service consumers (left)

@ o 2
S - F —
o o o o o 3
) 2 2 2 9 &
< 3 13} 13} 13} 30 o
5 o © © (] =B] c
2 < = = = £ 9 =
—) 2 =] =] QO = (=)}
] - c c c == o
7} < < < < < 8 °
i = = = = =2 | a

SCMSampleUl X
Retailer X X
Warehouse X X X X
Manufacturer X X
ManufacturerB X X
ManufacturerC X X

Chapter 6. HTTP service bus 193

We are now ready to generate implementation skeletons for each of the Web
service providers and consumers from the WSDL. We used the following steps to
develop the implementation skeletons for the Manufacturer service:

1. To start the New Web Service wizard, navigate to the implementation WSDL

file, ManufacturerWeb/WebContent/WEB-INF/wsdl/Manufacturer_Impl.wsdl,
right-click, and select New -> Other....

2. From the New window, select Web Services and Web Service, and click
Next, as shown in Figure 6-20.

x
Select

Create a new 2ML web service,

- Component Tesk

- Data

- Eclipse Modeling Framework
- EIB

- Example EMF Model Creation Wizards Unit Test UDDI
- J2EE =

@) wsnL
B Java S Java beans For ML 5ch
- Plug-in Development 8" Java beans for chema
- Remate File Transfer
- Derver
- Simple
- Symptom Database
- LML Yisualization
[+ Web
- Web Services
[#- Examples

< Back I Mext = é I Eimist | Cancel |

Figure 6-20 Commencing the development of a Web service

3. From the Web Services page, select the Web service type of Skeleton Java

bean Web Service, ensure that “Start Web service in a Web project” is not
checked, and click Next.

From the Service Deployment Configuration page, specify the Web project for
the generated service code, in this case ManufacturerWeb. To select the
runtime you wish to use, click Edit... as shown in Figure 6-21 on page 195.

194 Patterns: Service-Oriented Architecture and Web Services

x

Service Deployment Configuration

Choose from the list of runtime protocols and deployment servers, or use the default [@
settings,

—Server-Side Deployment Selection:

‘Web service runtime: IBM WebSphere W5
Server: WebSphere 5,1 Test Environment

Service Web Project: Manufackureriveb j

< Back | Mext = | Finish | Cancel |

Figure 6-21 Specifying location for a Web service and setting runtime options

5. Select the Web service runtime and the server you wish to use, as shown in
Figure 6-22 on page 196. Click OK.

Chapter 6. HTTP service bus 195

196

4P Service Deployment Configuration x|

Choose from the list of runtime protocols and deployment servers, or use the default settings.

" Choose Web service runtime protocal First

" Explore options

—Server:

@ Websphere 5.1 Test Environment ;I
- websphere vS.1 Server =
. websphere Express v5.1 Server LI
—Web service runtime:
Apache Axis 1.0
- IBM WebSphere Y5
- IBM SOAP
Service Web Project: j

[8]4 ‘E I Cancel |

Figure 6-22 Selecting the Web service runtime for the service

6. Back in the Service Deployment Configuration main page, click Next.

7. The Web Service Selection Page should already be populated with the
required WSDL file. For Manufacturer it should be:

/ManufactureriWeb/WebContent/WEB-INF/wsd1/Manufacturer_Impl.wsdl

Note that if you wish to generate a WSIL file, you can do so on this page. Click
Next.

8. On the Web Service Skeleton Java Bean Configuration page, check the
details that have been provided. We are using custom namespace mappings,
so check the option to set these. Click Next.

9. In the Web Service Skeleton namespace to package mapping page, import
Build/wsdl/Man-NStoPkg.properties, then click Next.

The service skeleton will be created. You can allow the overwrite of files and
deployment descriptors if you are confident that you are not replacing code
you have provided.

10.The Web Service Publication page allows you to publish your WSDL to a
registry. This facility is discussed in Chapter 8, “Service directory” on
page 251. You can bypass this step at this time by clicking Finish. Service
skeleton code is generated as shown in Table 6-3 on page 197.

Patterns: Service-Oriented Architecture and Web Services

Table 6-3 Web service skeleton code generated by WebSphere Studio

Package

Files

Purpose

Oorg.ws_i.www

ManufacturerPortType.java
ManufacturerSoapBindingimpl.java

Process service requests.

Oorg.ws_i.www

StartHeaderType.java
StartHeaderType_Deser.java
StartHeaderType_Helper.java
StartHeaderType_Ser.java

Process SOAP headers for
service requests.

Configuration,
PO

Org.ws_i.www.

For each element in a message, the
following types of java files
[element].java
[element]_Deser.java
[element]_Helper.java
[element]_Ser.java

For example:

Iltem.java

Iltem_Deser.java
ltem_Helper.java
ltem_Ser.java

Create and manage an
object for each element of
a message required by the
service.

The service implementation code must now be written. The implementation code
for the sample application is not discussed in detail. We modified the skeleton
service implementation class that Studio has generated for us,
org.ws_i.www.ManufacturerSoapBindinglmpl, as shown in Example 6-11 in bold.

Example 6-11 Service implementation code extract for Manufacturer service

ManufacturerSoapBindingImpl.java

by the IBM Web services WSDL2Java emitter.

4

*
*
* This file was auto-generated from WSDL
*
*

package org.ws_i.www;

import org.ws_i.www.Impl.ManufacturerImpl;

public class ManufacturerSoapBindingImpl
implements org.ws_i.www.ManufacturerPortType {

private ManufacturerImpl impl = null;

public ManufacturerSoapBindingImpl() {
if (impl == null) {

Chapter 6. HTTP service bus 197

// Manufacturer A
impl = new ManufacturerImpl(ManufacturerImpl.MAN_A);

}

public boolean submitPO(
org.ws_i.www.PO.PurchOrdType purchaseOrder,
org.ws_i.www.Configuration.ConfigurationType configurationHeader,
org.ws_i.www.StartHeaderType startHeader)
throws
java.rmi.RemoteException,
org.ws_i.www.P0.SubmitPOFaultType,
org.ws_i.www.Configuration.ConfigurationFaultType {

return impl.submitP0(purchaseOrder, configurationHeader, startHeader);
// return false;

As you can see, we modified the generated skeleton to create an instance of the
class containing the implementation code for the Manufacturer service,
org.ws_i.www.Impl.Manufacturerlmpl, and to invoke its methods as needed. A
number of other Java classes contain the internal implementation code for the
Manufacturer, and the client for the Warehouse callback service that the
Manufacturer consumes. You can find all the code in our version of the sample
application.

Programming model for the service

There are a number of alternatives for the programming model and approach you
use to implement the service.

Design alternative: Service implementation type

If you are developing your service in Java using WebSphere Studio Application
Developer V5.1.1, you have a number of alternatives for the implementation
model your service will use. These alternatives can be selected using the Web
service creation wizard, as shown in Figure 6-23 on page 199.

198 Patterns: Service-Oriented Architecture and Web Services

x

Web Services

Review your Web service options and make any necessary changes before i’:@
proceeding to the next page.

—Service

‘Weh service bype:) Skeleton Java bean Web Service ﬂ

[start wieh servi

Skeleton EJB Web Service ||
I™ Test the Web S{URL web Service

] st e | DaDy Web SPervice _ =

I~ | Generate & Pray.

—Client prosxy

Client proxy bype: [Java prosy j

I | Test the generated proxy.

™ Overwrite Files without warring
V¥ Create folders when necessary

™ Check out Files without warring

< Back | Mext = | Finish I Cancel |

Figure 6-23 Selecting the Web service implementation approach

The wizard includes facilities for:
» Top-down development, generating either of the following from WSDL.:
— A service implemented as a Java bean

The Java bean approach is simpler and faster to implement, but not as
easy to manage in a runtime environment.

— A service implemented as an EJB

An EJB requires a little more effort to implement, but can be managed by a
J2EE runtime container such as WebSphere Application Server.

» Bottom-up development, generating a service from any of the following:
— A Java bean.

— An EJB (stateless session bean is supported for WebSphere Studio
Application Developer V5.1.1).

— An existing Web application named by URL.

— A Document Access Definition Extension (DADX) file, which defines SQL
or DB2 extender statements.

Chapter 6. HTTP service bus 199

— A Web service deployment descriptor. Using this approach allows you to
re-deploy the components of a service without re-specifying all
configuration and mapping information.

Your choice of bottom-up development approach will most likely be dictated
by the existing programming assets you have available to deploy as services.

Design alternative: JAX-RPC 1.0

If you are using a top-down approach, you need to select the Web services
programming model. JAX-RPC is introduced in “Programming models for service
providers and consumers” on page 185. To use this model, select the IBM
WebSphere V5 Web service runtime in WebSphere Studio V5.1.1 when
generating the service Java skeleton or EJB skeleton.

Design alternative: Apache Axis or IBM SOAP

These options should be considered if required for compatibility purposes. If you
do need to use these alternatives, select Apache Axis 1.0 or IBM SOAP when
generating your service code.

6.3.4 Service consumer (client) development considerations

200

Tools such as WebSphere Studio Application Developer can simplify the process
of developing the service consumer infrastructure for finding and invoking a
service. The service consumer logic must then be developed using the
development approach that is standard for your organization.

We used the following steps to develop the service consumer infrastructure for
the Warehouse function to send a purchase order to the Manufacturer service in
the sample application:

1. We already created a Dynamic Web Project for Warehouse and copied in the
required WSDL and XML Schema files in section “Sample application service
development” on page 191.

2. Select the service’s WSDL file, right-click, and select New -> Other..., as
shown in Figure 6-24 on page 201.

Patterns: Service-Oriented Architecture and Web Services

tﬁ: Web - IBM WebSphere Studio Application Developer
File Edit Mavigate Search Project Run Window Help
=% e [ja8-]/8 ||| &-[][® 2% e -
iz v x
e S
E‘F:I =-1a8 Warshouseweh =
... web Site Mavigation
@ ‘Wweb Deployment Descriptor
e 2 Java Resources
v =
‘@ E@ WebConkent
B META-IMNF
{25 WEB-INF
(& attachments HTMLHTHL File
[#-{= backup Go To Qs)
ISP Fil
- classes Open @___ e
(= lib Open With » [#] Faces 5P File
B wsdl — BNPpageTemplate File
----- @ Configuration, wsd| Copy o
----- [8] Configuration. xsd Faste ﬁ} Javascript File
----- @) LoggingFacility wsdl Delete. ., S C35File
..... [8] LoggingFarcilicy. xsd Jr— 9 Image Flle
----- @ LoggingFacility_Impl.wsc [— .
----- @) Manufacturer wsdl o Tt Folder
----- [RIRanufacturer Tmpl vsdl Import... o
----- @) ManufackurerB_Implwse Export... = Project...
----- @) ManufackurerC_Impl.ws: —m
----- [8] ManuFacturerPo,xsd Add Bookmark. .
----- [8] ManuFacturersi.xsd Rebuild Project
----- @) warehouse.wsdl
e : Refresh
«| |
Project Mavigator]Struts Explorer Run Yalidation

Figure 6-24 Generating a Web service client from WSDL with WebSphere Studio

3. From the New window, select Web Services and Web Service Client, and
click Next.

4. From the Web Services page, select the Client proxy type of Java proxy, and
click Next, as shown in Figure 6-25 on page 202.

Chapter 6. HTTP service bus 201

x

Web Services
=
Review your Web service options and make any necessary changes before D !
proceeding to the next page. L=

Client proxy

Client proxy bype: [Java proxy j

™ Test the generated proxy

™ Overwrite Files without warring
V¥ Create folders when necessary

™ Check out Files without warring

Einish | Cancel |

Figure 6-25 Specifying the Web service client options in WebSphere Studio

5. From the Client Environment Configuration page, specify the Web project for
the generated service consumer code, in this case WarehouseWeb. For the
Client-Side Environment Selections, we used the defaults, as shown in
Figure 6-26 on page 203.

202 Patterns: Service-Oriented Architecture and Web Services

x

Client Environment Configuration

Choose from the list of supported runtime protocols and servers For the client D !
environment, or use the default settings, L=

Client-Side Environment Selection:
& Use Defaulks

" Choose Web service runtime protocal First

" Choose server first

" Explore options

Web service runtime: Server:
IEM WebSphere W5 WebSphere 5,1 Test Environment

™ Default runtime
environment

Client Web Praject: | WarehousetWeb j

< Back Finish | Cancel |

Figure 6-26 Specifying the Web service client environment configuration

Note that selecting the default client side environment, as shown in

Figure 6-26, will result in a Web service client for the IBM WebSphere V5
runtime environment being generated. Alternatives for the client bindings are
shown in Figure 6-27 on page 204.

Chapter 6. HTTP service bus 203

204

x

Client Environment Configuration

Choose from the list of supported runtime protocols and servers For the client D !
environment, or use the default settings, L=

- Client-Side Environment Selection:

" Use Defaulks
" Choose Web service runtime protocal First
e t first
G &
—Web service runtime: —Server:
Apache Axis 1.0 E[H] Existing Servers
- 1BM SO4P .. wiebSphere ¥5.1 Test Environme
i IBM WebSphere ¥S BE Server Types
< | ol
Client Web Praject: | WarehousetWeb j

< Back | Mext = | Finish I Cancel |

Figure 6-27 Available options for specifying Web service client runtimes

By selecting Explore Options, it is possible to select both the runtime style
and the server type the client will run on. Use these options if your client or
server are using older Web services facilities, such as the Apache SOAP
server base used in WebSphere Application Server V4.

Once the environment has been selected, click Next.

6. The Web Service Selection Page should already be populated with the
required WSDL file. For Manufacturer it should be:

/WarehouseWeb/WebContent /WEB-INF/wsd1/Manufacturer_Impl.wsd1

Note that if you wish to generate a WSIL file, you can do so on this page. Click
Next.

7. On the Web Service Proxy Page, select the option to generate a proxy. We
are using custom namespace mappings, so check the option to set these, as
shown in Figure 6-28 on page 205. Click Next.

Patterns: Service-Oriented Architecture and Web Services

x

Web Service Proxy Page

=]
Select generate proxy if you want ko generate a proxy for your service, Ia
V¥ Generate proxy
Qutput Folder I Jwarehousetebflavasource
Security Configuration IND Security j

¥ Define custom mapping For namespace ko package.:

< Back | Mext = | Finish I Cancel |

Figure 6-28 Specifying code generation and namespace for Web service client

8. In the Web Service Client namespace to package mapping page, import
Build/wsdl/Man-NStoPkg.properties, then click Finish.

The service consumer code will be generated, as shown in Table 6-4.

Table 6-4 Web service client code generated by WebSphere Studio

Package Files

Purpose

org.ws_i.www ManufacturerPortType.java
ManufacturerService.java
ManufacturerServicelLocator.java
ManufacturerSoapBindingStub.java

Locate and invoke service.

org.ws_i.www StartHeaderType.java
StartHeaderType_Deser.java
StartHeaderType_Helper.java
StartHeaderType_Ser.java

Set up SOAP headers for
service request.

Chapter 6. HTTP service bus 205

Package Files Purpose

Org.Ws_i.www. For each element in a message, the | Create and manage an

Configuration, following types of java files object for each element of

PO [element].java a message required by the
[element]_Deser.java service.

[element]_Helper.java
[element]_Ser.java
For example:
ltem.java
ltem_Deser.java
Iltem_Helper.java
ltem_Ser.java

The client implementation code must now be written. The implementation code
for the sample application is not discussed in detail. Within the client application,
the target service can be invoked using the generated Web service client code.

Within the Warehouse application, we have a set of code to replenish Warehouse
stock if the stock levels get too low. A purchase order object is created, along
with a SOAP request.

We invoke the Manufacturer service from the Warehouse code as follows:

1. The required Service object is looked up in JNDI using the following code
fragment:

Context ctx = new InitialContext();
ManufacturerService service = (ManufacturerService)
ctx.lookup("java:comp/env/service/ManufacturerService");

The ManufacturerService interface is implemented by the
ManufacturerServicelLocator class. This class allows us to locate the service
and create a port for invoking it.

2. A port object is created from the service using the following code fragment:
ManufacturerPortType port = service.getManufacturer();

The ManufacturerPortType interface is implemented by the
ManufacturerSoapBindingStub class. This class allows us to invoke
operations provided by the service.

3. A purchase order is submitted to the service using the port, as follows:
port.submitPO(purchaseOrder, configurationHeader, startHeader);
None of the generated Web service client code needs to be modified. It is just a

matter of making use of the generated code from wherever needed in the client
application.

206 Patterns: Service-Oriented Architecture and Web Services

Many of the design and implementation considerations for the service consumer
will be dictated by the service provider interface. In addition, you will have to
design the service consumer implementation according to normal development
best practices.

However, there are a number of design alternatives available to you, and these
are discussed next.

Programming model for the client

When developing the client, you have a number of Java alternatives for the client
programming model, as discussed in “Programming models for service providers
and consumers” on page 185.

Design alternative: JAX-RPC 1.0

To use this model, select the IBM WebSphere V5 Web service runtime in
WebSphere Studio V5.1.1 when generating the Web service client code, as
shown in Figure 6-27 on page 204.

Design alternative: Apache Axis or IBM SOAP

These options should be considered if required for compatibility purposes. If you
do need to use these alternatives, select Apache Axis 1.0 or IBM SOAP when
generating your service code. These options are shown in Figure 6-27 on

page 204.

Locating the service

Approaches for finding services are discussed in Chapter 8, “Service directory”
on page 251. However, when the service information is available at development
time to the client developer (as is the case in this scenario), there is still a
requirement to select a technique for locating the service within the client code
prior to invoking the service.

We look at two alternatives when using JAX-RPC: Container-managed or client
managed service lookup. The container-managed approach uses the location, or
endpoint URL, specified in the WSDL file when the client was generated. The
client-managed approach allows the application to set the endpoint URL
dynamically, at runtime.

Note that when the client is deployed to a IBM WebSphere Application Server
V5.1 environment, the client classes can be regenerated to point to the service
location currently specified in the WSDL file. The Deploy Web Services option on
the WebSphere Administrative Console is shown in Figure 6-29 on page 208.

Chapter 6. HTTP service bus 207

4} websphere Administrative Console - Microsoft Internet Explorer 10l =|

File Edit View Favorites Tools Help | .ﬂ'
QBack -~ o) - [¢] 2] . | - Search 7 Favorites @ Media £2 | - = 3
Address I@I] http:/ appsty Lw.itso. ral ibm, com:9090{ adminsecurelogon. da j Go | Links **

Home | Save | Preferences | Logout | Help | B

Install New Application =

User ID: admin

Allowys installation of Enterprize Applications and Module

appsrvlw
Servers
Bl spplications —+Step 1: Provide options to perform the installation
Erterprize Applications
o Specify the various options available to prepare and install your application.
Install Mews Application
Resnurces AppDeployment Options Enable
Security Pre-campile JSP]
Environmerit Directory to Install Application I
System Administration
Distribute Application I~
Troubleshooting
Usze Binary Configuration (|
Deploy EJBs (|
Application Mame IWarehouse
Create MBeans for Resources I~
Enable Class Reloading]
Reload Interval in Seconds ID
(Deploy WehServices I~)
Nextﬂ Cancel E
=
[&] pone | tnternet v

Figure 6-29 Deploying the Web service client and regenerating client classes

Design alternative: Container managed

Container-managed lookup uses a JNDI lookup to find the service information.
We used this mechanism to look up the Manufacturer service location, as shown
in the following code snippets:

Context ctx = new InitialContext();
ManufacturerService service = (ManufacturerService)
ctx.lookup("java:comp/env/service/ManufacturerService");

Having found the service, the port type object can be created and the service
invoked.

This approach is recommended as it avoids having the physical location of the
service coded in client source code. The service location is contained in
generated classes, which are regenerated by WebSphere Application Server

208 Patterns: Service-Oriented Architecture and Web Services

when the client code is deployed and the Deploy Web Services option is selected
during the deployment.

Design alternative: Client managed

It is also possible to set an alternative endpoint URL (to the one specified in the
WSDL file) at runtime using the service locator class generated by the Web
service client wizard. When creating the port for the service, you simply pass the
required endpoint URL to the get<PortType> method of the service locator as
follows:

WarehouseCallbackPortType port =
service.getWarehouseCallBack(new java.net.URL(cbd.callbackLoc));

We use this method to invoke the WarehouseCallBack service in the sample
application. This approach allows the Manufacturer to call the required
Warehouse back using the endpoint URL passed in the original request
(cbd.callbackLoc).

Generally speaking, we recommend use of the container-managed approach,
since it provides more flexibility for managing changing service locations without
changing and recompiling client code. However, the client-managed approach
can be useful in development environments when endpoints are changing
frequently, or when the endpoint is not know at build time, as for our
WarehouseCallBack sample.

Invoking the service

If you are using JAX-RPC, there are three main design alternatives for invoking a
service. They are stub based, dynamic invocation interface, and dynamic proxy.

Design alternative: Stub based

This is the approach used by the Warehouse to invoke the Manufacturer service
in the sample application. A stub for the service endpoint is created in the client
project by the Web services wizard.

This approach is the simplest alternative and has the advantage of being
generated by the Web services wizard. Provided you have access to the
implementation WSDL for the target service, or at least have the service
description, you can use this approach. In most Web services projects at this
stage, the service definitions are available for use by client programmers.

Design alternative: Dynamic invocation interface

This approach requires you to create the client calling code using the
javax.xml.rpc.Call class. Since all the parameters of the call need to be set in
your client code, you could use this mechanism to create a truly dynamic call, by

Chapter 6. HTTP service bus 209

retrieving the WSDL for the target service dynamically and then creating a
request to the service.

The dynamic invocation interface is therefore more complex and requires more
client side coding. It may be useful in environments where there are different
versions of services or schemas available, and you wish to bind dynamically to
one version at run time.

Design alternative: Dynamic proxy

This approach is a relatively new facility which allows you to have a dynamic
proxy built to the service at run time. As yet, few detailed examples exist, so you
may wish to keep a watching brief on this technique as detailed explanations and
code patterns appear.

6.3.5 Testing considerations

Testing Web services is particularly important, since it is more likely that the
provider (service) and consumer (client) are written by different people or even
different organizations than applications that are more tightly coupled.

Testing the service

WebSphere Studio Application Developer provides two main tools for testing the
Web services that you develop:

» Web Services Explorer
» Web Service Client wizard

Testing alternative: Web Services Explorer

The Web Services Explorer allows you to invoke a service from a Web browser
within the WebSphere Studio environment. To start the explorer:

1. Open the Web perspective.

2. Open a project that contains the implementation WSDL file for the service.

3. Right click on the WSDL file, and select Web Services -> Test with Web
Services Explorer.

Figure 6-30 on page 211 shows the explorer running in the WebSphere Studio
environment.

210 Patterns: Service-Oriented Architecture and Web Services

Web Services Explorer « o B B E M
5] Navigator & A | | [# actions
o2 WEDL Main Y . 5 =

- @) C:fworkspace/LoggingFaciityvek Invoke a WSDL Operation 20uree

E-.@ LoggingFadiityService
(1, LoggingFacilitySoapBinding Enter the parameters of this WSOL operation and click Go to invoke,
Endpoints

|http:jjappsrvll‘itso.raI.ibm.com:9DEID,fLDgg\ngFaciIity,fservicesILoggingFacihty LI

¥ getEventsRequestElarment

DemolserlD string

11
Go Reset
[i] Status 7

Source
¥ getEventsResponseElement
* LogEntry —
Timestamp (dateTime): 2004-03-09T04:37:19.7732
ServicelD (string): 22
EventID (string): 33

Figure 6-30 WebSphere Studio Web services Explorer

The form is dynamically generated by WebSphere Studio from the WSDL file.
Links are available to assist you in entering data in the correct format into the
form.

Testing alternative: Web service client wizard

When you generate a Web service client with WebSphere Studio, you have the
option to generate Java Server Pages that you can use to test the service. To do
this, ensure the Test the generated proxy option is selected in the wizard, as
shown in Figure 6-31 on page 212. The overall process of generating a client is
described in 6.3.4, “Service consumer (client) development considerations” on
page 200. You can see in Figure 6-25 on page 202 that we did not generate the
test JSPs in that case.

Chapter 6. HTTP service bus 211

x

Web Services
=

Review your Web service options and make any necessary changes before D !
proceeding to the next page. L=

Client proxy

Client proxy type: IJava proxy j

('7 Test the generated proxy)

™ Overwrite Files without warring
V¥ Create folders when necessary

™ Check out Files without warring

Einish | Cancel |

Figure 6-31 Option to generate JSP test files for a Web service

Once you have generated the client code using the option shown in Figure 6-31,
the page shown in Figure 6-32 on page 213 allows you to configure the test client
and run the test client on the server.

212 Patterns: Service-Oriented Architecture and Web Services

b web Service Client
Web Service Client Test

Do you wank to kest the generated proxy?

[+ Test the generated prosxy

Test Facility IWeb service sample J5Ps

JSP project: I SkockQuoteProj

Falder: I samplefStockQuoteServiceProxy

JSP Folder: I fatockQuateProjiwebContent/sample/StockQuaoteServicePromxy

—Methods

Browse. .. |

useINDI{boolean)
getEndpointi)
etQuoteljava.lang. String)
ekStockQuoteServicel)
setEndpoint{java.lang. String)

Select Al | Deselect Al |

¥ Run test on server

Cancel |

Figure 6-32 Invoking a test of a Web service using a generated client

The wizard will deploy the test client, start the server, and open a browser so you
can test the service methods. An example of a test client deployed to test the

StockQuoteService is shown in Figure 6-33.

x|
Ihttp:,l’,l’localhost:9D8D,I’StockQuoteProj,l’sampIe,l’StockQuoteServiceProxy,l’TestCIient.jsp j e | =] @ é’§f‘? a | D
. = =
Methods Inputs
. useJNDI. colean symbol: IlBM
o getEndpomt)
s setEndpomnt
(javalang String) Invokel Clearl =
o getStockQuoteService() =]
o getCuote(java lang, String) Result
o fo4.31 H
http: fflocalhost: 9080/ StockQuoteProjfsamplefStockuoteServiceProxy/Input. jsp?method=18

Figure 6-33 Testing a Web service from a generated Web service client

Chapter 6. HTTP service bus 213

Testing alternative: Build your own test client

You will probably run into one limitation or another with the Web service test
tools. For example, the tools may not support SOAP headers or certain XML
types. In these cases another alternative is to build your own test client. The Web
Service Client wizard makes it very easy to generate a stub that you can then
invoke from a very simple JSP, for example.

Testing the client
Testing considerations for your client application are the same as for any other
application. You will need to ensure that:

» The owner of the service provides a test version that includes specific test
cases for validation that your client is working correctly.

» You have appropriate network connectivity from your development
environment to the test service.

6.4 Runtime guidelines

Once the services or service consumers are developed, they need to be
deployed to a runtime environment. For this project, we used IBM WebSphere
Application Server V5.1, which provides runtime support for the programming
models discussed earlier in this chapter, including JAX-RPC.

6.4.1 Service deployment considerations

214

The options available to deploy each service include:

» Preparation of an enterprise archive (EAR) file containing all the
implementation code and WSDL files, which can then be deployed using the
WebSphere Application Server Administrative Console.

» Use of the WebSphere Studio Application Developer application publishing
function.

We chose to export an EAR file from WebSphere Studio, since we were using a
temporary development and server infrastructure. If you are regularly developing,
testing, and publishing Web services, you should consider setting up the remote
publishing facility.

Publishing a service for deployment
To publish a service, we performed the following steps:

1. In WebSphere Studio, select the enterprise project to be exported.
2. Right click, and select Export....

Patterns: Service-Oriented Architecture and Web Services

3. From the Export window, select EAR file, and click Next.
4. Specify a location on the file system for the EAR file, and click Finish.
5. Copy the exported EAR to the application server that you want to deploy to.

We recommend that you copy the EAR file to the
<WAS_HOME>/installableApps folder on the application server. That way it
will be readily available on the server if you need to re-install.

Deploying a service
To install the service on a WebSphere Application Server instance, we performed
the following steps:

1. Open the Administrative Console of the application server. For the
Manufacturer service, we used:

http://entsrviw.itso.ral.ibm.com:9090/admin/

2. Enter a User ID and click OK to start.

3. First configure any application server resources needed by the application
being deployed.

Each Manufacturer service (we have three) needs a JMS queue connection
factory, queue, and listener port. The submitPO operation kicks off a long
lived process that may need to wait on a production line run, so the submitPO
call should not block while goods are being manufactured. The Manufacturer
places a purchase order received from the Warehouse on a JMS queue so it
can return immediately. A message-driven bean then processes the request
from the queue.

To configure the JMS resources needed for Manufacturer:

a. We used IBM WebSphere MQ as the JMS provider, and used WebSphere
MQ Explorer to create the following queue manager and queues on
entsrviw:

¢ SCM.SAMPLE.QM queue manager shared by all three manufacturers
e WSISampleAQ queue for Manufacturer A
e WSISampleBQ queue for Manufacturer B
e WSISampleCQ queue for Manufacturer C

b. In the WebSphere Administrative Console, create the queue connection
factory by navigating to Resources -> WebSphere MQ JMS Provider ->
WebSphere MQ Queue Connection Factories. In the WebSphere MQ
Queue Connection Factories form, click New then:

i. Set Name to WSISampleQCF.
ii. Set JNDI Name to jms/WSISampleQCF.
iii. Set Queue Manager to SCM.SAMPLE.QM.

Chapter 6. HTTP service bus 215

Click OK to accept the defaults for the remaining fields.

All three manufacturers use the same queue connection factory in our
environment.

c. Create the queue(s) by navigating to Resources -> WebSphere MQ JMS
Provider -> WebSphere MQ Queue Destinations. In the WebSphere
MQ Queue Destinations form, click New, then:

i. Set Name to WSISampleAQ.
ii. Set JNDI Name to jms/WSISampleAQ.
iii. Set Base Queue Name to WSISampleAQ.

Click OK to accept the defaults for the remaining fields.

Repeat for the Manufacturer B and C queues, WSISampleBQ and
WSISampleCQ.

d. Create the listener port(s) by navigating to Servers -> Application
Servers -> server1 -> Message Listener Service -> Listener Ports. In
the Listener Ports form, click New, then:

i. Set Name to WSISampleAListenerPort.
ii. Set Connection factory JNDI name to jms/WSISampleQCF.
iii. Set Destination JNDI name to jms/WSISampleAQ.

Click OK to accept the defaults for the remaining fields.

Repeat for the Manufacturer B and C listener ports,
WSISampleBListenerPort and WSISampleCListenerPort.

e. Save your changes and restart the server.

4. In the Administrative Console, expand Applications and click Install New
Application.

5. Inthe workspace form on the right, enter the path of the EAR file to install. We
are installing the EAR file from the server, so we set the Server path to:

C:\WebSphere\AppServer\installableApps\Manufacturer.ear
Click Next, as shown in Figure 6-34 on page 217.

216 Patterns: Service-Oriented Architecture and Web Services

Preparing for the application installation

Specify the EARMIARAR module to uplosd and install.

Path: Browyse the local machine or a remote server: [i choose the local path if the ear

Context Root: Used only for standalone YWeb modules (* war) [vou must specify a context

Cancel

¢ Local path: resides on the same machine as
I — | the browwser. Choose the server
path if the ear resides on any of

the nodes in your cell context.

(& Server path:
IstallableApps\Manufadurer.ear

I roat if the module being installed is
aWaAR module.

Figure 6-34 Specifying an EAR file for deployment to the application server

6.

In the Preparing for the application installation page, scroll to the bottom of
the page and click Next.

In the Step 1: Provide options to perform the installation from, we checked the
following options:

— Pre-compile JSP
— Deploy WebServices

Note: Similar to the Deploy EJBs option, the Deploy WebServices
option adds WebSphere product-specific deployment classes to a Web
services application, based on its Web services deployment descriptors
(and WSDL). As with EJBs, you can generate the Web services
deployment classes in WebSphere Studio instead.

Click Next.

The deployment descriptors for Manufacturer.ear contain all the details
needed for the remaining forms, so you can scroll down the page and click the
final Summary step.

The Summary page for the deployment of Manufacturer is shown in
Figure 6-35 on page 218.

Chapter 6. HTTP service bus 217

—+Step §: Summary

Summary of Install Options

Options Values
Distribute Application Yes

Usze Binary Configuration Mo
Deploy WehServices Options: Extension Directories

CelltodesServer Click here
Enahle Class Reloading Mo
Create MBeans for Resources es
Deploy EJBs Mo
Deploy WehServices Options: Classpath

Reload Interval in Seconds o
Application Mame: Manufacturer

Directory to Install &pplication

Pre-compile JSP Yes
Application Mame Manufacturer
Deploy WehServices Yes

Previous | Finishrj\ Cancel |
Loy

Figure 6-35 Finishing the Web service deployment

9. On the summary page, click Finish. It will take some time to deploy the
application.

10.0Once the deployment is completed, click Save to Master Configuration to
save the configuration.

11.Click Save again.

Start the service
Once the service is successfully deployed it can be started and tested.

1. Expand Applications in the WebSphere Administrative Console navigation
tree, and click Enterprise Applications.

2. Check the box to the left of the application (Manufacturer in our case) and
click Start.

Completing the sample application deployment
You can use the same procedure, as described for Manufacturer.ear, to install the
remaining services/applications:

ManufacturerB.ear
ManufacturerC.ear
LoggingFacility.ear
Retailer.ear
SCMSampleUl.ear
Warehouse.ear

vVvyYvyvyYYyvyy

218 Patterns: Service-Oriented Architecture and Web Services

You do not need to configure any further application server resources for the
sample application, as we created all the needed resources in Step 3., on
page 215.

See Appendix A, “Scenarios lab environment” on page 329, for a description of
the lab environment we used when deploying our WS-I Supply Chain
Management scenarios.

Trying out the sample application
To start using the sample application:

1. We entered the following URL in a Web browser:
http://appsrvlw.itso.ral.ibm.com/SCMSample/

The Initialize Supply Chain Management Sample page, shown in Figure 6-36
on page 220, should appear. You can enter your own customer details, or just
accept the defaults.

Click Place New Order to continue.

Note: With our version of the sample application, endpoints are not
configurable from the user interface. This is may be useful when
demonstrating WS-I compliant interoperability between SCM services
implemented by various vendors, but not in our scenarios.

Chapter 6. HTTP service bus 219

a Initialize Supply Chain Management Sample - Microsoft Internet Explorer ;IQILI
File Edit View Favorites Tools Help | ltu.

QBak - &) - [x] [@ |) Search <7 Favorites @) Media 421 | - & L) 3

Address I@ http:/ appsty Lw.itso.ral.ibm, comSCMSanple) j Go | Links >*
WS»I1 Supply Chain Management Sample
WIS Application

ORGANIZATION

Enter Customer data. Then place an order.

|Customer Name IA Shopper

|Customer Number |412345-3876543xy2

|Customer Address ||1 23 Customer Lana

|Cor|ﬁgurator COptions | & Tze all local endpoints - no configuration options

|

Figure 6-36 Initializing the Supply Chain Management Sample

2. In the Place Order page, shown in Figure 6-37 on page 221, enter the
quantity of each product you want to order. To submit a purchase order to all
three Manufacturers, we used the following test data:

— 6 of product number 605003

— 46 of product number 605003
— 16 of product number 605003
Click Submit Order to continue.

220 Patterns: Service-Oriented Architecture and Web Services

WS»| Supply Chain Management Sample
WERSERMCES Application

ORGANIZATION

Shopping Cart

Enter quantities for products to order. Then Submit Order.

e e]

l— 605001 TV, Brandl 24in, Color, Advanced Velocity Scan IModulation, Sterea

[so0s002 TV, Brand2 32in, Super Slim Flat Panel Plasma TV
[e 605003 TV, Brand3 50in, Plasmna Display TV
[# soso04 Video, Brandl S-VHS Video
[eos005 Video, Brand2 I, §-VHS Video
[sos006 Video, Brand3 s-vhs, mindv Video
[so0s007 DVD, Brandl DVD-Player W/Built-In Dolby Digital Decoder DVD
|15— 505003 DVD, Brand? (P;IIa)y_SR]\DH\.?z;ficﬂl;fﬂ?;i}ti%:osgié’and mmulti-channel SACDs, and audic CD-Es & DVD
[oy DU DVDRa i Seeton o Do e DVDCD oy
l— 605010 TV, Brand4 E)e:egr;i:i:;vahd product code that 15 allewed to appear in the catalog, but is unable v

&

® Stibmit Order

Configure

U

Figure 6-37 Placing an order

3. In the Order Status page, shown in Figure 6-38 on page 222, you can see
that each of the products ordered is in stock with Warehouse A (we only have
one warehouse).

Click Track Order to continue.

Chapter 6. HTTP service bus 221

WS»Il Supply Chain Management Sample
WIS Application

ORGANIZATION

Order Status

Rewview order status. Then Track Order or pick a different configuration,

Product Number

605003 3435588 ostock from Warehouse 4
605004 46 915770 i stock from Warehouse &
605005 16 3200.00 i stock from Warehouse &

o Gonfigir

Figure 6-38 Order status

4. In the Order Tracking page, shown in Figure 6-39 on page 223, you can see
from the events logged in the LoggingFacility that the Retailer submits an
order to Warehouse. Warehouse checks its stock levels and ships the goods if
it has the stock. If its stock levels fall below the minimum level, Warehouse
also submits a purchase order to the Manufacturer of the product. For our
particular test data, you can see that Warehouse submitted a purchase order
request to Manufacturer A, B, and C.

Click Configure to start over.

222 Patterns: Service-Oriented Architecture and Web Services

WS Supply Chain Management Sample
WERSERXER Application

ORGANIZATION

Track Order

Rewview details of the order. Then Configure another order or review Order Status.

Service D [RventMDescription ______________________________________[Vendoy

Eetailer. submutCrder TC1-5 Order placed by A12345-9576543-xyz for 605003, 605004, 605003

Warehoused ShipGoods TC22-2-1 Warehoused will deterrmine itz abdity to ship product{s) 605003, 603004, £05008.
Manufacturerd submatP O TIC23-3 WManufacturerd is replenshing stock for 603004,

Manufacturerd submatP O TTC04-1 Wanufacturerd is shipping product 605004 from exsting mventory.

“Warehoused submit3M TIC3-7-1 Warehoused has recetved notice that product 605004 has been shipped by MManufactrerd
“Warehoused submit3M TIC3-7-2 Warehoused has replemished stock for product 603004

ManufacturerB submutP O THC23-3 WManufacturerB is replemishing stock for 605008,

ManufacturerC submtP O TTIC23-3 WanufacturerC is replemshing stock for 603003,

Warehoused ShipGoods TIC2-2-2 Warehoused 15 able to ship 605003, 603004, £05008.

Eetailer. submutCrder TTC1-2 Processing of the order from A12345-9576543-xyz has finished normally

ManufacturerB. submutP O TT25-5 WManufacturerB has produced addiional units of 605008 and 15 shupping 41 units.
Warehoused submit3M TIC3-7-1 Warehoused has recetved notice that product 603008 has been shipped by WManufacturerB
“Warehoused submit3M TIC3-7-2 Warehoused has replemished stock for product 603003

ManufacturerC submatP O TTC25-5 WanufacturerC has produced additonal units of 605003 and 15 shipping 471 urits.
“Warehoused submit3M TIC23-7-1 Warehoused has recetved notice that product 603003 has been shipped by MManufacturerC
“Warehoused submit3M TIC3-7-2 Warehoused has replemished stock for product 603003

@) Order Status @ Configure

Figure 6-39 Order tracking

6.5 Best practices

There are a number of sources of best practice information for Web services

implementations. In particular, we suggest you review the IBM developerWorks
section on Web services, which is frequently updated with new information. See:

http://www.ibm.com/developerworks/webservices/

This section summarizes some of the key best practices that have been
developed by IBM Web services implementation teams.

Chapter 6. HTTP service bus

223

http://www.ibm.com/developerworks/webservices/

6.5.1 Design best practices

The best practices listed in Table 6-5 deal with the design of your Web service.

Table 6-5 Design best practices

Topic

Explanation

Reason

Develop
incrementally

Start with small set of services and
build on them as requirements
dictate.

Allows you to absorb all
the technologies,
implement your own best
practices, and test.

Granularity

Design Web services as complete
units of work. A Web service
probably maps best to the
implementation of a use case.
Implement a fagcade over fine
grained object methods.

Minimize network
latency and the number
of cross-network calls.

Interaction style

Implement an appropriate
interaction style for each business
scenario. Do not automatically
assume synchronous request/reply
is required.

Minimize performance
overhead of
unnecessary network
calls.

Separate interface

Use tools to generate WSDL and

Tool vendors cannot

RPC model and the target
application does not accept XML.
Use document style in other
situations.

and then inspect generated WSDL to predict exactly how you

implementation in ensure it meets your requirements. plan to have a service

WSDL used. Check the
generated code.

Binding style Select RPC style when using an Use the style appropriate

to the application. RPC
style may perform less
than document style.

State management

If state management is required,
implement it in the consumer, or use
implementations of BPEL4WS.

Web services should be
stateless to avoid issues
with scalability and

flexibility of deployment.

Caching

Cache service locations and other
appropriate information (does not
change regularly) on the consumer.
The JAX-RPC programming model
includes a cached endpoint that
could be used.

Minimize application
latency due to network
transport.

224

Patterns: Service-Oriented Architecture and Web Services

Topic

Explanation

Reason

Minimize size of
XML messages

Avoid passing unnecessary data,
and consider using both references
and caching.

The larger and more
complex the XML
message that passes
between services, the
slower the service will
perform.

Unique namepaces

Use your company name or a
unique domain name to avoid
schema namespace clashes.

Ensures your service
consumers are using the
correct schema.

WSDL readability

Ensure element names are

meaningful and WSDL is annotated.

Particularly for tool
generated WSDL,
simplifies use of the
service and debugging.

6.5.2 Interoperability best practices

The best practices listed in Table 6-6 deal with the design of your Web service to
maximize the chance that it will be interoperable with other systems.

Table 6-6 Interoperability best practices

Topic

Explanation

Reason

Use WS-I Basic
Profile styles

Use only literal encoding. Use
document or rpc style according to
business requirements. Use
products that implement WS-I Basic
Profile standards.

Use of these standards
means interoperability is
more likely.

Simplify WSDL and
schemas

Different implementations deal with
different facilities in unique ways.
Avoid mixed type arrays and the use
of sequences.

Not all SOAP
implementations
implement the standards
correctly.

Test boundary
conditions

Test services with clients that send a
range of invalid data, invalid SOAP
headers, invalid schema
information, and so on.

Some implementations
are forgiving of invalid
SOAP requests. Ensure
your assumptions about
consumers or providers
are correct.

6.5.3 Java implementation best practices

The best practices listed in Table 6-7 on page 226 deal with the implementation
of your Web service in the Java programming model.

Chapter 6. HTTP service bus

225

Table 6-7 Java implementation best practices

Web services.

Topic Explanation Reason

Use EJB If possible, use stateless session Better management
EJBs for both service facilities, role-based
implementations and service security, and reuse
consumers. within the firewall.

Use JAX-RPC Java standard for implementation of | More likely to produce

interoperable Web
services.

Use serializable

A serialization engine manages

Improved performance,

as a service.

interface which objects are serialized to XML | since only the required
and vice-versa. data is serialized.
Compatible with J2EE
approach.
Implement a Do not simply expose existing Ensures course
fagade (interface methods as services. Wrap them granularity, improves
class) with a facade class, and expose that | performance, and hides

implementation details
from consumers.

Do not initialize
variables

For objects being created on de-
serialization of XML, the initialized
variables will be over-written.

Application
performance.

6.5.4 Performance best practices

The best practices listed in Table 6-8 help you ensure the best possible
performance for your Web service.

Table 6-8 Performance best practices

Topic Explanation Reason
XML parser Make sure your service The XML parser is a
implementation is using the most significant contributor to
recent XML parser available. the overall service
performance, and new
parsers tend to be faster
than old ones.
Use SAX Use a SAX parser rather than DOM | SAX s better performing
if possible. Recent IBM product than DOM.
implementations tend to use SAX.

226 Patterns: Service-Oriented Architecture and Web Services

Topic

Explanation

Reason

Keep XML
documents simple

Minimize number of elements,
element types, and complex
elements.

The more complex the
XML document, the
longer it takes to parse,
and the slower your
service will be.

SOAP attachments

If sending binary data, you can
either use SOAP attachments or
encode the data in base64

encoding. Use SOAP attachments.

Binary encoding incurs a
performance overhead
over SOAP attachments.

Chapter 6. HTTP service bus 227

228 Patterns: Service-Oriented Architecture and Web Services

JMS service bus

This chapter describes the addition of a JMS service bus to our simple supply
chain management application. This application is based on the WS-I Supply
Chain Management (SCM) sample application, introduced in Chapter 4,
“Service-oriented architecture approach” on page 79. We start this chapter using
the application as deployed Chapter 6, “HTTP service bus” on page 159, and
describe the changes we made to add our JMS service bus.

We deploy the Direct Connection application pattern, introduced in 3.4.3, “Direct
Connection application pattern” on page 52, to a Direct Connection runtime
pattern using a JMS service bus, as described in “Direct Connection using a
service bus” on page 65.

In this chapter, the following topics are discussed:

» The sample business scenario that our solution needs to address

» Design guidelines describing how the sample application shows appropriate
design approaches for exposing services from applications

» Development guidelines showing how development tools may be used to
expose services and make them available on a service bus

» Runtime guidelines discussing the considerations for deploying the
applications and services

© Copyright IBM Corp. 2004. All rights reserved. 229

7.1 Business scenario

The sample application used in this chapter is a simplified supply chain for a
consumer electronics retailer. As discussed in Chapter 6, “HTTP service bus” on
page 159, the supply chain components have been deployed as services, and
the application can be used.

However, the company requires that all orders be logged for auditing, and there
are concerns that some of the logged messages might be lost under the current
infrastructure. The IT department has reviewed the technology options available,
and decided that reliable messaging should be used to log orders from the
retailer service to the logging service. The change to the business scenario is
shown in Figure 7-1.

Consumer

\ / Retailer

Browser Q
Manufacturer

Add reliable logging Logging

Facility

Warehouse

Organization boundary

Figure 7-1 High-level business context with enhanced logging

We will be implementing the UC7: Log events use case across a JMS bus for the
Retailer service as a consumer. It would also be possible to add the other
internal consumer of the logging service (Warehouse); however, this was not
done since there was no immediate business requirement to do so.

7.2 Design guidelines

230

There are no significant changes to the overall design guidelines to those
discussed in Chapter 6, “HT TP service bus” on page 159. However, we discuss

Patterns: Service-Oriented Architecture and Web Services

some variations on the Runtime patterns used to access the logging facility in

this section.

7.2.1 Design overview

The design change implemented in this chapter adds a reliable transport for
retailer access to the logging facility. We decided to change only the Retailer to
use the new transport, although all other consumers of the Logging facility
service could be changed if business requirements existed for such a change.

We selected JMS to implement this reliable transport, based on the discussion in

5.2.2, “Java Message Service” on page 111.

Figure 7-2 shows the high-level solution overview for the WS- SCM sample
application we developed in Chapter 4, “Service-oriented architecture approach”
on page 79. In this section we look at a JMS Product mapping for the Runtime

pattern highlighted in Figure 7-2.

Outside
World

DMz

Retailer Service
on this node

Logging Service ol
this node

Enterprise Domain

Internal Network

Rules
Connector Repository

Direct Connection
Application
Integration
Pattern::Runtime
Pattern

Application
Server /
Services

Service bus ‘

[Connedor

Application
Server /
Services

DMz

Inter-Enterprise
Zone

Partners

7

Figure 7-2 Runtime patterns for the Supply Chain Management sample

Chapter 7. JMS service bus

231

232

The Retailer service use of the logging facility is an example of an Application
Integration pattern. The implementation of the services on a JMS service bus is
an example of the Application Integration::Direct Connection runtime pattern, as
shown in Figure 7-3.

g Internal network g
%; <Service Consumer> <Service Provider> <Service Provider> %_;
2> £
o ——) — \ /o0
g‘,w App Server/ App Server/ App Server/ §<f>
2 Services Services Services 2
))
54 Adapter Adapter Adapter L
g 71 Connector Connector Connector g
s -~ -~ Y -
< <
& o
® 8
= Windows 2000 + SP4 Red Hat Linux AS 2.1 =
U WebSphere MQ <Service Bus>
(for IMS)

Figure 7-3 Product mapping for Application Integration::Direct Connection pattern

Figure 7-3 shows that WebSphere MQ is performing an adapter connector role,
allowing JMS clients to access the MQ JMS Provider. WebSphere Application
Server still provides JAX-RPC and a SOAP Provider, as we saw in Figure 6-3 on
page 163, but in this case we have not explicitly modeled these components
separately, in order to focus on WebSphere MQ as the transport provider. This
Runtime pattern makes use of the SOAP/JMS support of the WebSphere SOAP
Provider.

The logEvent operation of the logging facility is the business critical operation.
This operation is an example of a one-way scenario (where the service consumer
is not concerned as to whether the request has been processed), so the
Message variation of the Direct Connection runtime pattern is an appropriate
choice.

We used both Windows and Linux systems in the JMS service bus deployment.
Figure 7-3 shows an example where two service consumers (Retailer and
Warehouse) interact with a service provider (Logging facility) using the HTTP
service bus. Note that we are only implementing one consumer on our JMS
service bus, retailer.

Patterns: Service-Oriented Architecture and Web Services

Extending the JMS service bus was considered for the Extended Enterprise
business pattern used with the sample application. The Manufacturer services
provided by the business partner of the retailer also use the logging facility.
However, for business partners to use a JMS transport, both companies would
have to implement a JMS provider such as IBM WebSphere MQ, set up channels
between the companies, and allow for those channels to pass through each
company’s protocol firewall. For these reasons, it was decided to have the
Manufacturer service continue to use the HTTP service bus to log business
activities, using the logging service provided by the retailer.

7.2.2 Service design considerations

Chapter 6, “HTTP service bus” on page 159, discusses the implementation of all
services on an HTTP service bus. The Logging facility service is already
deployed for use by all other services using a HTTP transport. This section
describes the considerations for adding a JMS transport option to the Logging
facility service so the Retailer service has a reliable transport option for crucial
audit logging.

An important consideration in adding a JMS transport option to an existing
service is ensuring that access to the service by HTTP is retained for all existing
Logging facility users. This is important for two reasons:

» The logging facility provides two operations:
— logEvent, for requesting that an event be logged
— getEvents, for requesting all log records for a particular situation

The Retailer service uses only the logEvent operation, and this operation is a
one-way operation, which is ideally suited to a transport such as JMS, which
supports send-and-forget. However, the getEvents operation is a
request/reply function and it is simpler to deploy on HTTP. Note, however,
than JMS can be used for request/reply scenarios.

» The external users of the service require HTTP access in order to meet
corporate security requirements, which do not allow protocols such as JMS to
pass through the protocol firewall.

Therefore, we need to add the JMS protocol to the already existing HTTP
support.

Selecting the service interaction style

A one-way, send-and-forget interaction style has been selected for the Logging
facility service. Quality of service concerns, such as whether the message was
received and logged, are delegated to the infrastructure. For this reason, we
have chosen a JMS transport for reliable message delivery.

Chapter 7. JMS service bus 233

Describing the service

Each service required for the sample application was defined initially in WSDL,
after the use cases and message types had been defined. This is a top-down
design approach.

For the Logging facility, we need to make some changes to the design to allow
the implementation of the JMS transport. Figure 7-4 shows the design of the
service as implemented in the HTTP service bus.

Definition

Irnports Types
4_ LoggingFacility wsdl

Services Bindings Port Types Messages
[it LogaingFacilityService = :,] LoggingFacilitySoapBinding = B LoggingFacilityLogPort Type [logEventRequest
B = LoggingFacility [€] wsdl:documentation B 3 logEvent [getEventsRequest
1& wsdlsoap:address :O: soap:hinding —— Blinput (4 getEventsResponse
= :@: logEwvent 48 getEvents [getEventsRepositoryMissingFault

@ soapioperation
'@, getEvents

Figure 7-4 Design of LoggingFacility as implemented in HTTP service bus

Figure 7-4 is captured from the WebSphere Studio WSDL Editor. Notice that:

» The WSDL file imports some definitions from another WSDL file,
LoggingFacility.wsdl. This file contains interface definitions for the WS-I
sample application. Importantly, this imported file also specifies the required
binding for the logging facility, to the HTTP transport. This is done because
the WS-I Basic Profile requires HTTP 1.1 as the transport protocol. Since we
are implementing a JMS bus, we need to override or add to this binding.

» The logging service has two operations, logEvent and getEvents.

» The messages used by those operations, and returned by the getEvents
operation, are defined within the WSDL file.

To add the JMS transport to the service, we need to update the WSDL to include:

» A SOAP binding to the http://schemas.xmlsoap.org/soap/jms transport

» A port on the service that specifies the JMS endpoint address

234 Patterns: Service-Oriented Architecture and Web Services

The two options we considered when adding the JMS transport where to:
» Add new bindings for the JMS transport to the existing HTTP bindings.
» Replace the existing HTTP bindings with the new JMS bindings.

The ideal approach would be to have a common interface WSDL file that is
imported by two different implementation WSDL files, one for the HTTP bindings
and another for JMS. This way service consumers could select one or the other
transport when implementing their client applications.

Since it is not particularly important which binding is specified it the WSDL when
implementing the service provider, we decided to simply replace the HTTP
bindings with the new JMS bindings. This way we only have one binding, and so
only one set of generated Web service provider deployment code. With this
approach we just need to configure endpoints for both JMS and HTTP, using the
service provider generation tools. Both endpoints invoke the same service
provider deployment code.

To replace the HTTP bindings with JMS bindings we edited the LoggingFacility
WSDL files as follows:

» Replace the transport attribute in soap:binding (in
LoggingFacilitySoapBinding) with the JMS binding, as follows:

<wsd1:binding name="LoggingFacilitySoapBinding"
type="tns:LoggingFacilityLogPortType">

<wsd1:documentation xmlins:wsd1="http://schemas.xmlsoap.org/wsd1/">

<wsi:Claim xmins:wsi="http://ws-i.org/schemas/conformanceClaim/"

conformsTo="http://ws-i.org/profiles/basicl.0/" />

</wsd1:documentation>

<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/jms" />

<wsdl:operation name="TogEvent">

You can find LoggingFacilitySoapBinding in LoggingFacility.wsdl.

» Replace the location attribute in soap:address (in LoggingFacility port, in
LoggingFacilityService) with the JMS endpoint address, as follows:

<wsdl:service name="LoggingFacilityService">

<wsdl:port name="LoggingFacility"
binding="intf:LoggingFacilitySoapBinding">

<soap:address

location="jms:/queue?destination=jms/LoggingFacilityQ&connectionFactory
=jms/LoggingFacilityQCF&targetService=LoggingFacility"/>

</wsd1:port>
</wsdl:service>

Chapter 7. JMS service bus 235

236

Notice the format of the JMS endpoint address URL:

jms:/queue?destination=<jms queue jndi name>&connectionFactory=<jms qcf
jndi name>&targetService=<service name>

The destination and connectionFactory parameters are used in the Web
service consumer to locate the correct queue for placing service requests.
The targetService parameter is used in the Web service provider to determine
which Web service should be invoked for the request.

» Merge the three files used to define LoggingFacility

(LoggingFacility_Impl.wsdl, LoggingFacility.wsdl, LoggingFacility.xsd) into one
WSDL file called LoggingFacility_Impl.wsdl.

While not ideal from the WSDL best practices perspective, merging the
WSDL in this way means we can avoid setting up a Web server to ensure that
imported WSDL files can be found by all the runtime modules that need
access to them. With the JMS sample, our service needs to be implemented
in an EJB module, but the router modules providing endpoints for the HTTP
and JMS transport are in separate Web and EJB modules. The router
modules also need access to any WSDL imports.

We recommend that in practice you should set up a Web server to host the
WSDL and all imports, rather than merging files.

A disadvantage of this approach is that we end up with two copies of the WSDL.
Consumers needing the JMS transport use the new WSDL file, and consumers
needing the HTTP transport use the old WSDL file.

The advantage is that existing consumers are not affected by this change.
Existing HTTP consumers can also switch to JMS by simply updating the JMS
soap:binding and soap:address in their existing WSDL files, as described above,
and regenerating their Web service client deployment code. Note that there is no
need for the existing consumers to merge WSDL files, as the imports work
correctly within a single Web module.

Design alternative: Top down or bottom up

In the case of the sample application, the service interfaces were designed by
WS-I first, and then the implementations were provided by various vendors,
including IBM. This is an example of top-down design. Top-down design was
considered in this case for the same reasons as outlined in “Design alternative:
Top down or bottom up” on page 170.

Selecting the service communication protocol

The IBM WebSphere Application Server V5.1 SOAP Provider also supports
SOAP over JMS, so retaining SOAP as the service communication protocol for
our JMS service bus scenario makes sense.

Patterns: Service-Oriented Architecture and Web Services

Standards are still evolving in the area of asynchronous transports and there is
currently not a standard binding defined for SOAP over JMS. The bindings used
by all implementations, including WebSphere, are currently proprietary.

Design alternative: Selecting the binding style

Document style was chosen for the binding style by the WS-I in the original
interface definition. Document style is a natural selection for a service such as a
Logger, since a generic logging service could be sent almost any imaginable
information in an XML document to be logged. Although not implemented in the
sample application, facilities such as the DB2 Universal Database™ XML
extender, perhaps used in conjunction with the DB2 MQ Extender, could be used
to implement a robust logging facility with little programming effort.

Design alternative: Selecting the encoding style

Literal encoding was specified for the logging facility, since the original WS-I
specification, to meet the WS-I Basic Profile, requires literal. There was no
obvious reason to change this selection.

Allowing consumers to locate the service

No change to the approach for allowing clients to locate the service was made for
the JMS service bus. However, our JMS implementation will allow existing clients
to simply update their current WSDL and redeploy to use the new JMS transport.

7.2.3 Component design considerations

No significant changes to component design considerations are required for the
implementation of a service on a JMS service bus. Most considerations are
covered in Chapter 6, “HTTP service bus” on page 159, and a detailed
explanation of the structure of the Logging facility is not necessary to understand
the changes required for a JMS implementation.

Implementing JMS Web services

One change that is required for JMS is in the implementation environment. Only
stateless session beans can be exposed as JMS Web services using the Product
mappings described in this chapter. For this reason, the LoggingFacility service
provided with our version of the sample application is fagaded by a stateless
session bean.

A detailed description of the implementation considerations is provided in 7.3.1,
“Service development considerations” on page 238.

Chapter 7. JMS service bus 237

7.2.4 Object design considerations

There are no changes to object design considerations resulting from the decision
to implement a JMS service bus.

7.3 Development guidelines

The LoggingFacility service was implemented as a Java bean in the original
Supply Chain Management example application package with WebSphere
Studio. We changed this Java bean to a stateless session bean, as required by
the IBM WebSphere V5 Web service runtime for JMS Web services.

7.3.1 Service development considerations

238

We chose to begin development again using a top-down approach, starting with
the WSDL. The main reason for this is that the Web services bindings are
generated for the implementation environment being used. Since we were
changing from a Java bean base to an session bean base, as well as adding a
JMS transport, the simplest approach was to start with a fresh project and copy
in our implementation.

We used the following approach to implement the LoggingFacility service:

1.

Create an Enterprise Application Project and EJB Project for the JMS service
provider.

From the Studio J2EE perspective, we created a new EJB 2.0 Project named
LoggingFacilityEJB for the LoggingFacility service. In the New EJB Project
wizard, we also created a new EAR project named LoggingFacility.

. Create a new EJB 2.0 Project for the Web service JMS router.

We created a new EJB 2.0 Project named LoggingFacilityJMS for the JMS
router in the LoggingFacility EAR Project.

. Create a new Dynamic Web Project for the Web service HTTP router.

We created a Dynamic Web Project called LoggingFacilityWeb in the
LoggingFacility EAR Project, and set the context root to /LoggingFacility.

Create a folder in the JMS service provider EJB Project for the WSDL file. We
created a folder named wsdl under LoggingFacilityEJB/ejbModule/META-INF.

4

Copy the WSDL file with JMS bindings, as created in “Describing the service’
on page 234, to the LoggingFacilityEJB/ejbModule/META-INF/wsdl folder.

We built the JMS service provider using the merged WSDL file,
Build/jms/wsdl/LoggingFacility_Impl.wsdl, which is included in our version of

Patterns: Service-Oriented Architecture and Web Services

the sample application available on the Web; see Appendix B, “Additional
material” on page 333, for details.

We are now ready to generate an implementation skeleton for the Web service
provider from the WSDL. We used the following steps to develop the
implementation skeleton for the LoggingFacility service:

1. To start the New Web Service wizard, navigate to the implementation WSDL
file,
LoggingFacilityEJB/ejbModule/META-INF/wsdl/LoggingFacility_Impl.wsdl,
right-click, and select New -> Other....

2. From the New window, select Web Services and Web Service, and click
Next.

3. From the Web Services page, select the Web service type of Skeleton EJB
Web Service, ensure that “Start Web service in a Web project” is not
checked, and click Next, as shown in Figure 7-5.

b web Service x|
Web Services
Review your Web service options and make any necessary changes before i’:@
proceeding to the next page.
—Service
‘Web service type: |Skeleton EJB Web Service j

[start web service in Web project
™| Tiest: thie ek service
™| Launch the Web Services Explorer o publish this Web service bo 2 UDDT Registry.

I~ | Generate & Pray.

—Client prosxy

Client proxy bype: [Java prosy j

I | Test the generated proxy.

™ Overwrite Files without warring
V¥ Create folders when necessary

™ Check out Files without warring

Einish Cancel

Figure 7-5 Web Services page

4. From the Service Deployment Configuration page, specify the EJB Project for
the generated service code, the Router project that will provide the JMS

Chapter 7. JMS service bus 239

endpoint, and the runtime you wish to use. As shown in Figure 7-6, we used
the following settings:

— Web service runtime: IBM WebSphere V5
— EJB Project: LoggingFacilityEAR

— Router project: LoggingFacilityJMS

Click Next.

Note: The Router project must be an EJB project for a JMS endpoint, as
the JMS router is a message-driven bean.

x

Service Deployment Configuration
Choose from the list of runtime protocols and deployment servers, or use the default i’:@
settings,

—Server-Side Deployment Selection:
‘Web service runtime: IBM WebSphere W5
Server: WebSphere 5,1 Test Environment
Edit... |
EJB Project: I LoggingFacilityEJE j
Router project: I LoggingFacility M5 j

< Back I Mexk = é I Finish | Cancel

Figure 7-6 Service Deployment Configuration page

5. The Web Service Selection Page should already be populated with the
required WSDL file. For LoggingFacility it should be:

LoggingFacilityEJB/ejbModule/META-INF/wsd1/LoggingFacility Impl.wsdl

6. On the Web Service EJB Skeleton Configuration page, check the details that
have been provided. As shown in Figure 7-7 on page 241, we used the
following settings for LoggingFacility:

— WSDL file name: LoggingFacility_Impl.wsdl

240 Patterns: Service-Oriented Architecture and Web Services

— Queue kind: queue

— WSDL service name: LoggingFacility

— Connection factory: jms/LoggingFacilityQCF
— Destination: jms/LoggingFacilityQ

— Listener port name: LoggingFacilityListener
Click Next.

x

Web Service EJB Skeleton Configuration

Configure the an EJB skeleton to be generated, i’:@

WSDL Folder I JLoggingFacilityE JB/ejbModuleMETA-INF frsd|

WSDL file name
Queue kind Iqueue j

WSDL service name I LoggingFacility

Connection Fackory I jmsfLoggingFacility QCF

Destination I msfLoggingFacility G

Part liskener name I LoggingFacilityListener

Security Configuration

IND Security j

[Define custom mapping for namespace ko package.

< Back | Mext = %l Finish I Cancel |

Figure 7-7 Web Service EJB Skeleton Configuration page

7. The Web Service Publication page allows you to publish your WSDL to a
registry. You can bypass this step at this time by clicking Finish.

8. The wizard will create the EJB skeleton and an endpoint for the JMS
transport. We also need to add an endpoint for the HTTP transport for the

HTTP LoggingFacility service consumers.

To add a new endpoint for HTTP transport, right-click the LoggingFacilityEJB
project and select Web Services -> Endpoint Enabler. As shown in
Figure 7-8 on page 242, we used the following settings for LoggingFacility:

— Select transports: HTTP

— The name of the HTTP router module: LoggingFacilityWeb

Chapter 7. JMS service bus

— The context root associated with the HTTP router module: LoggingFacility

Click OK.
x
Select transports
JHTTR |

The name of the HTTP router module:

I LoggingFacilityweb

The context rook associated with the HTTR router module:

I LoggingFacility

The name of the M5 router module:

I LoggingFacilityEJE_IMSR.ouker

Themame of the Listener Input Port bo be associated with the MDE:

I LoggingFacilityEJE_ListenerPaort

The M5 desination bype:

ITopic j

Cancel

Figure 7-8 Endpoint Enabler Configuration

When adding an endpoint for a Web service, the Endpoint Enabler tool makes
the following changes:

— Adds the WebSphere endpoint servlet or message-driven bean to the
router module:

* Foran HTTP endpoint, it adds the following servlet to the web.xml
deployment descriptor file in the selected HTTP router Web module
(LoggingFacilityWeb in our case):

com.ibm.ws.webservices.engine.transport.http.WebServicesServlet and a
mapping URL.

¢ For a JMS endpoint, it adds the following message-driven bean to the
ejb-jar.xml deployment descriptor file in the selected JMS router EJB
module (LoggingFacilityJMS in our case):

com.ibm.ws.webservices.engine.transport.jms.JMSListenerMDB

242 Patterns: Service-Oriented Architecture and Web Services

— Adds a link to the router module, to the ibm-webservices-bnd.xmi
deployment descriptor file in the Web service module (LoggingFacilityEJB
in our case), similar too:

e Foran HTTP endpoint:
<routerModules transport="http" name="LoggingFacilityWeb.war"/>
* For a JMS endpoint:
<routerModules transport="jms" name="LoggingFacilityJMS.jar"/>
The service implementation code must now be written. The implementation code
for the sample application is not discussed in detail. We modified the skeleton
service implementation session bean that Studio has generated for us,

org.ws_i.www.LoggingFacilitySoapBindingimpl.java, as shown in Example 7-1 in
bold.

Example 7-1 Service implementation code extract for LoggingFacility service

LoggingFacilitySoapBindingImpl.java

by the IBM Web services WSDL2Java emitter.

*
*
* This file was auto-generated from WSDL
*
* 4

package org.ws_i.www;
import org.ws_i.www.Impl.DataStore;

public class LoggingFacilitySoapBindingImpl implements javax.ejb.SessionBean {
private javax.ejb.SessionContext sessionContext = null;

private static DataStore impl = null;

public void ejbActivate() {
}

public void ejbCreate() {
impl = new DataStore();

}

public void ejbPassivate() {
}

public void ejbRemove() {
}

public javax.ejb.SessionContext getSessionContext() {

Chapter 7. JMS service bus 243

244

return sessionContext;

}

public void setSessionContext(javax.ejb.SessionContext sc) {
sessionContext = sc;

}

public void TogEvent(org.ws_i.www.LogEventRequestType document)
throws java.rmi.RemoteException {
imp1.addEntry (document) ;

}

public org.ws_i.www.GetEventsResponseType getEvents(
org.ws_i.www.GetEventsRequestType document)
throws java.rmi.RemoteException, org.ws i.www.GetEventsFaultType {
return impl.getEntry(document);

As you can see, we modified the generated skeleton to create an instance of the
class containing the implementation code for the LoggingFacility service,
org.ws_i.www.Impl.DataStore, and to invoke its methods as needed. You can find
all the code in our version of the sample application.

Note: The DataStore should really be implemented using an entity bean,
rather than using a static variable on the session bean. We only use the static
to keep the implementation as simple as possible, so we can focus on service
integration.

Modifying the sample application to enable JMS

Rather than creating the JMS LoggingFacility service from scratch, as described
here, you can enable the JMS endpoint in the sample application as follows:

1. Open LoggingFacility/META-INF/application.xml with the WebSphere Studio
Source Editor and uncomment the JMS router module:

<!--module id="EjbModule_1079473348253">
<ejb>LoggingFacilityJMS. jar</ejb>
</module-->

2. Open LoggingFacilityEJB/ejpModule/META-INF/ibm-webservices-bnd.xmi
with the WebSphere Studio Source Editor and uncomment the link to the JMS
router module:

<!l--routerModules xmi:id="RouterModule 1079474059756" transport="jms"
name="LoggingFacilityJMS.jar"/-->

Patterns: Service-Oriented Architecture and Web Services

The sample application is available on the Web; see Appendix B, “Additional
material” on page 333, for details.

7.3.2 Service consumer (client) development considerations

The HTTP service consumer development considerations discussed in “Service
consumer (client) development considerations” on page 200 also apply to JMS
service consumers.

One point worth emphasizing here is configurability of our service-oriented
architecture. The IBM WebSphere V5 Web services runtime allows us to easily
reconfigure existing HTTP clients to use the new JMS transport. Let us look at
the steps needed to switch Retailer, as a LoggingFacility service consumer, over
to the new JMS transport.

Enabling an existing consumer to use the JMS transport
To reconfigure Retailer to use the new JMS transport:

1.

In the Studio J2EE perspective, Project navigator view, navigate to
RetailerWeb/WebContent/WEB-INF/wsdl.

Edit LoggingFacility_Impl.wsdl and change soap:address from:

<wsd1soap:address
location="http://appsrvll.itso.ral.ibm.com:9080/LoggingFacility/services/Lo
ggingFacility"/>

To:

<wsd1soap:address
location="jms:/queue?destination=jms/LoggingFacilityQ&connectionFactory
=jms/LoggingFacilityQCF&targetService=LoggingFacility"/>

Save your changes.
Edit LoggingFacility.wsdl and change soap:binding from:

<soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document"/>

To:

<soap:binding transport="http://schemas.xmlsoap.org/soap/jms"
style="document"/>

Save your changes.

Notice the warning that appears in the Studio task list: WS-1: Transport
attribute of the soap:binding does not contain
http://schemas.xmlsoap.org/soap/http. This WS-I compliance warning
appears because the JMS transport is not part of the WS-I Basic Profile 1.0.

Chapter 7. JMS service bus 245

After these changes to the WSDL file, it is just a matter of configuring the JMS
resources needed and redeploying the application. See “Service consumer
(client) deployment considerations” on page 247 for details.

Enabling a new consumer to use the JMS transport

The WebSphere Studio Web Service Client wizard can be used to JMS Web
service enable new LoggingFacility service consumers.

You can use the same procedure for JMS, as described for HTTP with
Warehouse as a consumer of Manufacturer in 6.3.4, “Service consumer (client)
development considerations” on page 200.

In this case, use the LoggingFacility_Impl.wsdl file we created in “Describing the
service” on page 234, rather than the original LoggingFacility_Impl.wsdl.

7.4 Runtime guidelines

Once the services or service consumers are developed, they need to be
deployed to a runtime environment. For this project, we used IBM WebSphere
Application Server V5.1, which provides runtime support for JIMS Web services.

7.4.1 Service deployment considerations

To deploy the new LoggingFacility service, we performed the following steps:
1. In WebSphere Studio, export the LoggingFacility project as an EAR file.
2. Copy the exported EAR to the application server that you want to deploy to.

We recommend that you copy the EAR file to the
<WAS_HOME>/installable Apps folder on the application server.

3. To configure the JMS queue connection factory, queue, and listener port
needed for the LoggingFacility JMS transport:

a. We used IBM WebSphere MQ as the JMS provider, and created the
following queue manager and queue on appsrvil:

¢ SCM.LOG.QM queue manager
* LoggingFacilityQ queue

b. In the WebSphere Administrative Console, create the queue connection
factory by navigating to Resources -> WebSphere MQ JMS Provider ->
WebSphere MQ Queue Connection Factories. In the WebSphere MQ
Queue Connection Factories form, click New then:

i. Set Name to LoggingFacilityQCF.

246 Patterns: Service-Oriented Architecture and Web Services

ii. Set JNDI Name to jms/LoggingFacilityQCF.
iii. Set Queue Manager to SCM.LOG.QM.

Click OK to accept the defaults for the remaining fields.

c. Create the queue by navigating to Resources -> WebSphere MQ JMS
Provider -> WebSphere MQ Queue Destinations. In the WebSphere

MQ Queue Destinations form, click New, then:

i. Set Name to LoggingFacilityQ.
ii. Set JNDI Name to jms/LoggingFacilityQ.
iii. Set Base Queue Name to LoggingFacilityQ.

Click OK to accept the defaults for the remaining fields.
d. Create the listener port(s) by navigating to Servers -> Application

Servers -> server1 -> Message Listener Service -> Listener Ports. In

the Listener Ports form, click New, then:

i. Set Name to LoggingFacilityListener.
ii. Set Connection factory JNDI name to jms/LoggingFacilityQCF.
iii. Set Destination JNDI name to jms/LoggingFacilityQ.

Click OK to accept the defaults for the remaining fields.
e. Save your changes and restart the server.
4. Install the LoggingFacility service on a WebSphere Application Server

instance using the same procedure, as described for Manufacturer.ear in

“Deploying a service” on page 215.

7.4.2 Service consumer (client) deployment considerations

The main difference when deploying the service consumer is in the configuration

of the JMS provider, IBM WebSphere MQ in our case. To deploy the new
Retailer, a JMS consumer of the LoggingFacility service, we performed the
following steps:

1. In WebSphere Studio, export the Retailer project as an EAR file.

2. Copy the exported EAR to the application server that you want to deploy to.

We recommend that you copy the EAR file to the
<WAS_HOME>/installable Apps folder on the application server.

3. Configure the JMS queue connection factory, queue, and listener port needed

for accessing the LoggingFacility JMS transport.

We used IBM WebSphere MQ as the JMS provider, and used the MQ client to
access the remote queue manager and queue on appsrv1l. Consider using a

local, clustered queue manager to take advantage of MQ workload and
failover management.

Chapter 7. JMS service bus

To configure the JMS resources needed:

a. Inthe WebSphere Administrative Console, create the queue connection
factory by navigating to Resources -> WebSphere MQ JMS Provider ->
WebSphere MQ Queue Connection Factories. In the WebSphere MQ
Queue Connection Factories form, click New, then:

i. Set Name to LoggingFacilityQCF.

ii. Set JNDI Name to jms/LoggingFacilityQCF.
iii. Set Queue Manager to SCM.LOG.QM.

iv. Set Host to appsrvil.itso.ral.ibm.com®.

v. Set Portto 1414.

vi. Set Transport Type to CLIENT.

Click OK to accept the defaults for the remaining fields.

b. Create the queue by navigating to Resources -> WebSphere MQ JMS
Provider -> WebSphere MQ Queue Destinations. In the WebSphere
MQ Queue Destinations form, click New, then:

i. Set Name to LoggingFacilityQ.
ii. Set JNDI Name to jms/LoggingFacilityQ.
iii. Set Base Queue Name to LoggingFacilityQ.

Click OK to accept the defaults for the remaining fields.
c. Save your changes and restart the server.

4. Install the Retailer application on a WebSphere Application Server instance.
You can use the same procedure as described for Manufacturer.ear in
“Deploying a service” on page 215.

Be sure to select the Deploy WebServices option if you did not regenerate the
Web service client in Studio.

7.4.3 Testing considerations

In addition to the considerations discussed in 6.3.5, “Testing considerations” on
page 210, the WebSphere MQ Explorer (shown in Figure 7-9 on page 249) can
be helpful for basic troubleshooting of JMS transport issues.

248 Patterns: Service-Oriented Architecture and Web Services

10l =|
%) Consdle widow b0 |DEHE @ sx
|J Action Wiew Favorites |J s o= | | E| | EP |J|I'|§||||E Ay | e | b |
Tree I Favorites I ame | Queue Tvpe | Cluster Mame | Cluster Mamelist
[Console Root 8 LoggingFacilityo Local
El&l wehsphere MQ
ED Queue Managers
- =i 5CM.LOG.OM on ‘appsrv1l,
=-E3 dvanced
- Clusters
N I3 | K 2
|

Figure 7-9 WebSphere MQ Explorer

You can use the Message Browser to look at messages arriving on the
destination queue for the JMS transport. With the LoggingFacility stopped, we
could view a logEventRequest message placed on the queue by Retailer, as
shown Figure 7-10.

Propetties for Message ﬂ

Generall Heportl Eontextl Identifiersl Segmentation Data |

Meszage Data Length: |953

Format: IMQHHF2

Coded Character Set [D:

Encoding:

|319

|2?3

—Message Data

& Hewadecimal

 Text

< SOApENY
:Body»cl
ogEventR
equestEl
ement =Emn

DS 1
ws—1.0rg
sSamnpled
pplicati
on=-Supp LI

o]

Cancel | Help

Figure 7-10

Properties for Message logEventRequest

Chapter 7. JMS service bus

249

250 Patterns: Service-Oriented Architecture and Web Services

Service directory

In this chapter we discuss the use of an e-business service directory in the
context of the sample application introduced in Chapter 6, “HTTP service bus” on
page 159. A service directory is generally perceived as a key enabler of dynamic
e-business. It is important to understand how the current technologies and
standards help us achieve those goals.

We examine use of the Direct Connection Rules Repository node to model a
service directory, as described in “Basic Direct Connection runtime pattern” on
page 63. Introducing this node allows a service consumer to discover services
using a service directory.

In this chapter, the following topics are discussed:

» The sample business scenario that our solution needs to address

» Design guidelines describing the guiding principles we used when modifying
the sample application

» Development guidelines showing how we implemented the sample
application changes

» Runtime guidelines discussing the considerations for deploying the service
directory

» Best practices summarizing the things you should consider when deploying a
service directory

© Copyright IBM Corp. 2004. All rights reserved. 251

8.1 Business scenario

252

The sample application used in this chapter is the same simplified WS-I Supply
Chain Management (SCM) sample used in the previous chapters. We introduce
a non-functional requirement that involves a lookup in a service directory.

In this scenario, the requirement is a more flexible and efficient way of locating
services in the organization. The business wants to reduce the IT management
costs associated with changing the location of service providers, in both test and
production environments. The IT department has reviewed the technology
options available, and decided that a UDDI registry should be used to look up
service provider endpoint URLSs, starting with a pilot for retailer access of the
warehouse service. The change to the business scenario is shown in Figure 8-1.

Add service discovery
Ii‘ ¥
Consumer [\
\/ Retailer = U > \Varehouse

Browser Q
Manufacturer

Logging
Facility

Organization boundary

Figure 8-1 High-level business context with service discovery

The architecture of the WS-1 SCM sample application includes the potential
usage of entries in the UDDI Business Registry (UBR), a public UDDI registry
offered by several companies, including IBM, Microsoft, and SAP.

The SCM Web services are published as tModels in the UBR. The tModelKeys

are listed in “Advertisement of tModels” of the WS-/ Supply Chain Management
Sample Application Architecture document. Figure 8-2 on page 253 shows the

UBR entry for the Warehouse service tModel from the IBM UBR at:

https://uddi.ibm.com/ubr/registry.html

Patterns: Service-Oriented Architecture and Web Services

https://uddi.ibm.com/ubr/registry.html

Home Products & services Support & downloads My account
B Corporation = Services DD = Find

UDDI Business UDDI Business Registry Version 2

Registry

Bublich Universal Description, Discovery, and Integration
upls

Find Technical Model Details

Account

The details of the selected technical madel are shown below. Please use your hrowser's

Back button to return to the previous page OR Press the New Search hutton to search
Related Links: again.

Technical Model Information

UIIC: 7ACFS7FO-CCO06-11DE-904F -0006290C0A53

swes-i-org: Sampledpplications: SupplyChainManagement.\Warehouse

Technical Model Description(s)

Weh service type specification for the Warehouse Weh service in the WS- Supply Chain en
Management Sample Application.

Overview URL

bt Moo v Nane

LorgfSampleApplicationsSupply Chainkanagement 2002-
OghMvarehouse wadl

Technical Model Locator(s)

Cote Doosorpion ———— Tie |
wadlSpec Specification for & Weh Service described in WsDL LDDITYPE
soapSpec Specification for interaction with 2 VWeh Service using SOAP messages LDDITYPE

Help UDDI Terms of Use Suppart

About IEM Privacy Terms of use Contact

Figure 8-2 Warehouse service tModel entry in the UDDI Business Registry

The purpose of publishing the WS-1 SCM services in the UBR is to allow the
discovery of the service interface definitions (in WSDL files). This information is
necessary to build a Web service client. However, neither the name of the
Business Entity providing the service nor the URL for accessing the
implementation of the service (the server where the service actually runs) are
given. Vendors participating in the WS-I sample scenario need to provide that
information in the UBR once they have built their services and made them
available on the Web.

Chapter 8. Service directory 253

Vendors build their implementations of the WS-l sample services in accordance
with the WSDL descriptions available from pointers in the UBR. As multiple
services are built using the same descriptions, they should not only be
interoperable but interchangeable as well. For example, the Warehouse
implementation of one vendor should give the same results as the Warehouse
implementation of another vendor. The sample application can potentially use
different vendors of the same service, by making a simple runtime configuration
change in the service consumer (Retailer in the case of the Warehouse service).

It is our understanding that the SCM scenario does not intend to provide dynamic
discovery of service interfaces at run time; rather, it aims to allow the use of
different providers of the same service.

Our aim in this chapter is slightly different. We focus on another facet of service
discovery. Currently, most Web service implementations are not using dynamic
discovery of services (that includes discovery of interface and implementation
definitions) at runtime. But static discovery is not enough to cope with important
quality of service and infrastructure issues.

One of the expected benefits of an SOA architecture is the ability to better cope
with changes. Loosely coupled services should allow more flexibility than tightly
coupled applications.

A basic issue that comes to mind concerning flexibility is that services may not
remain at a given physical location over time. IT production departments may
need to move them from one server to another. An obvious need is the promotion
of code from one environment to another, such as from test to production. The
service used for test or integration purposes cannot be at the same location as
the production service. Moreover, one could think of locating several identical
services in different places to provide high availability (via failover) and potentially
some level of load balancing.

In this chapter, we essentially tackle how a service consumer can change from a
service provider in one location to a provider in another location, with as few
changes as possible to the application code or the deployment descriptors.

8.2 Design guidelines

254

In our sample application, the location of a service is found by reading the WSDL
implementation document of the service at build or deployment time.

Patterns: Service-Oriented Architecture and Web Services

To relocate a service, we need to take several actions with the service provider
and the service consumer:

» Service provider side:
— Implement the service at another location on another server.

— Make the modified WSDL implementation document available to the
consumers of the service.

» Service consumer side:
— Get the new WSDL implementation file.
— Regenerate the Web service client deployment code from the new WSDL.
— Redeploy the service consumer (client) on its server.

8.2.1 Design overview

We want to extend the application by adding the capability to use a service in a
different location without touching the service consumer and the WSDL
document used. To do this, we intend to:

» Implement a private UDDI registry where the service location will be
published and changed.

» Modify the service consumer to look up the endpoint address of the invoked
service. In this case, we will modify the Retailer as a consumer of the
Warehouse service.

» Create a new helper class that will query the UDDI registry where the service
location is published and return the current endpoint URL for the service.

Figure 8-3 on page 256 shows the high-level solution overview for the WS-1 SCM
sample application we developed in Chapter 4, “Service-oriented architecture
approach” on page 79. In this section we add a service directory Product
mapping for the Runtime pattern highlighted in Figure 8-3 on page 256.

Chapter 8. Service directory 255

Outside
World

DMz

Warehouse &
Warehouse Callback
Services on this node

Enterprise Domain

Internal Network

Retailer Service
on this node

icati Direct Connection
Application onn
FS’Fo’srver/ Application
Services Integratlon'
Pattern::Runtime

Pattern

Rules

Connector Repository

Service bus ‘

Application
Server /
Services

DMz

Inter-Enterprise
Zone

Partners

Figure 8-3 Runtime patterns for the Supply Chain Management sample

256

Figure 8-4 on page 257 provides a closer look at the Application
Integration::Direct Connection runtime pattern and Product mapping for our
UDDI scenario.

Patterns: Service-Oriented Architecture and Web Services

Internal network

<Service Consumer> <Service Provider>
)
App Server/ App Server/
PP . Connector PP .
Services Services
» Windows 2000 + SP4 —_— * Windows 2000 + SP4
* IBM WebSphere Application . * IBM WebSphere Application
Server V5.1 ‘-._ Rules Server V5.1
Repository * AIX 5.1 ML4
» IBM WebSphere Application

Server V5.0.2.4 Network
Deployment - UDDI Registry

<Service Directory>
» IBM DB2 UDB ESE V8.1

Figure 8-4 Product mapping for Application Integration::Direct Connection pattern

Figure 8-4 shows that UDDI Registry provided with IBM WebSphere Application
Server Network Deployment V5.0.2.4 performs the rules repository role, allowing
service consumers to look up the endpoint URL of the required service provider.
The Connector in Figure 8-4 can be decomposed into a set of coupling adapter
connectors, similar to Figure 6-3 on page 163, allowing the service consumer to
first invoke the lookup service provided by the UDDI services, then invoke the
target service provider.

We used both Windows and AlX systems in the service directory deployment.
Figure 8-4 shows an example where a service consumer (retailer) interacts with
a service provider (warehouse) using the service directory.

8.2.2 Service design considerations

Figure 8-5 on page 258 shows the interaction between the service consumer,
directory and provider for our service directory scenario.

Chapter 8. Service directory =~ 257

/ Gonsurmer : Retaller

/ Oredtory : LD / Rrovider : Warehouse

1: \RequestEndRuirtLR\

—

Figure 8-5 Sequence diagram for the UDDI scenario

Mapping WSDL information to UDDI entries

In “UDDI” on page 141 we provide an introduction to the relationship between the
information contained in WSDL documents and their corresponding entries in a
UDDI registry.

A good understanding of these mappings is necessary to correctly query
information from the UDDI registry.

8.3 Development guidelines

In this section we look at some UDDI development tools and describe the
development environment steps needed to build and test the application with its
new service discovery capabilities.

8.3.1 UDDI development tools and APIs

Development tools and APIs that you can use when implementing a UDDI
service directory include:

» WebSphere Studio Application Developer
» UDDI4J and UDDI4JV2
» UDDI Extensions from IBM alphaWorks

258 Patterns: Service-Oriented Architecture and Web Services

WebSphere Studio Application Developer

WebSphere Studio V5.1 provides a number of tools to enable publishing and
discovery of Web services using UDDI, including:

» Web Services Client wizard for creating a Java client to a deployed Web
service and for testing the Web service

» Unit Test UDDI wizard for installing, configuring, and removing a private UDDI
registry

» Web Services Explorer for discovering and publishing your Web service
descriptions

These tools provide facilities to browse the UDDI registries or WSIL documents
to locate existing Web services for integration. Web services can be published to
a UDDI V2 Business Registry, advertising your Web services so that other
businesses and clients can access them. These tools support the following
specifications:

» Universal Description, Discovery, and Integration 2.0
» Web Services Inspection Language (WSIL) 1.0

UDDI4J and UDDI4JV2

The UDDI standard describes a set of XML messages that can be exchanged
between a service consumer (client program) and a UDDI registry.

UDDI4J is a client Java API used to interact with a UDDI registry. This class
library generates and parses messages sent to and received from a UDDI server.
It provides two mains sets of APIs:

» Publish APIs, which are used by the provider to manage its entries in the
directory. It contains Query, Save, Delete and Authorization methods.

» Inquiry APIs, which are used by the requester and the provider to retrieve
service information. It contains Find and Retrieve methods.

UDDI4J follows the evolution of the UDDI standards. UDDI4J is the API used to
communicate with UDDI V1 directories, while UDDI4J V2 is the API used to
communicate with UDDI V2 directories. As UDDI registries are accessed via
Web service protocols, a SOAP transport is required to use UDDI4J V1 or V2.

The classes of UDDI4J have the prefix com.ibm.uddi. The classes of UDDI4JV2
have the prefix org.uddi4j. The UDDI directory provided with IBM WebSphere
Application Server Network Deployment V5.0 is a UDDI V2 directory, so client
applications need to use the UDDI4JV2 APIs to find information about a service.
For more information on UDDI4J see:

http://www.ibm.com/developerworks/oss/uddidj/

Chapter 8. Service directory 259

http://www.ibm.com/developerworks/oss/uddi4j/

UDDI Extensions from IBM alphaWorks

The IBM alphaWorks UDDI Registry Extensions provide advanced UDDI search
capabilities. They enable the formation of complex queries comprising search
criteria from two standard UDDI “find” APIs, find_business and find_service, in a
single query. That is, the find_business APl is extended with an embedded
find_service API, and find_service with an embedded find_business API.

The equivalent queries are complex and error-prone with the current UDDI

search technology. The client search requester must perform two steps:

1. Issue two queries: A find_business query and a find_service query.

2. Process the two sets of results returned by the queries and find the
appropriate intersection of the results.

The UDDI Registry Extensions reduce client programming complexities and
make UDDI easier to use. They also reduce network bandwidth usage and
improve performance.

For more information on the UDDI Registry Extensions see:

http://www.alphaworks.ibm.com/tech/uddiregextensions

8.3.2 Service development considerations

260

To enable the discovery of service location at runtime, we first to need to
establish a UDDI registry in our development/test environment and publish the
service to it.

Deploying the WebSphere Studio Unit Test UDDI registry

We choose to use the Unit Test UDDI registry available in WebSphere Studio
Application Developer V5.1.1 in our development and unit test environment.

This registry is very convenient and simple to install. It can use either a DB2
database, or the lightweight Cloudscape™ database provided with Studio.

To deploy the WebSphere Studio Unit Test UDDI registry:

1. Click File -> New -> Other... from the Studio main menu.

2. Select Web Services, Unit Test UDDI in the New window, then click Next.

3. In the Unit Test UDDI Registry Configuration window, we selected Private
UDDI Registry For WAS v5.1 with Cloudscape for the unit tests, as shown
in Figure 8-6 on page 261. Click Next.

Patterns: Service-Oriented Architecture and Web Services

http://www.alphaworks.ibm.com/tech/uddiregextensions

x

Unit Test UDDI Registry Configuration
Configure the unit test UDDI registry,

& Deploy the Unit Test UDDI Registry

Private UDDI Registry bype: |Private UDDI Registry For WaAS v5.1 with Cloudscape, j

€ Update the previously deploved UBDT registry:
€ Remove the previously deployed UDDT registry:

Eimish | Cancel |

Figure 8-6 Unit Test UDDI Registry Configuration in WebSphere Studio

4. In the Unit Test UDDI Registry with Cloudscape Configuration window, you
need to take care to select Use an existing test server. If not, a new one will
be created. As shown in Figure 8-6, click Finish to create the Unit Test

Registry.

Chapter 8. Service directory 261

262

&P Unit Test UDDI

Unit Test UDDI Registry with Cloudscape Configuration
Configure the Unit Test UDDI Registry with Cloudscape,

User Defined Categories:

ame | File | Checked

" Create a new server for unit best UDDT regiskry

& |se an existing server

Server name: |WebSphere v5.1 Test Environment

¥ Launch the Web Services Explarer

Cancel |

Figure 8-7 Unit Test UDDI Registry with Cloudscape Configuration

The wizard adds the following projects to the Studio workspace:

» UDDI-EAR
» UDDI-EJB
» UDDI-SOAP

You can then use the Web Services Explorer to publish a service in the Unit Test
UDDI Registry. We published the Warehouse service to the Unit Test UDDI

Registry as follows:

1. Start the Web Services Explorer by selecting Run -> Launch the Web
Services Explorer from the Studio main menu. If needed, open the Unit Test

UDDI Registry using Inquiry URL:

http://localhost:9080/uddisoap/inquiryapi

2. Click the UDDI Page icon on the Web Services Explorer toolbar to work with

UDDI registries.

3. Click the Publish icon on the Actions toolbar, as shown in Figure 8-8 on

page 263.

Patterns: Service-Oriented Architecture and Web Services

web Services Explorer

¢+ HEE P

5 Mavigatar &9 /4| | [# Actions
£ LUDDI Main
E II||I||:II:-3"-I|:|'_:-t: i I .'.' aJilg L] i | | ‘9 Find
; Executed Queties
{8 Published Businesses Marne of this query
= Published Services
. Published Service Interfaces query results

Search for I Businesses - l

Fublish

Figure 8-8 Web Services Explorer

4. To publish the service interface, select Service Interface and complete the

required details in the Publish form, as shown in Figure 8-9.

Publish
Publish: | Service Interface

Publication format

& Simple € Advanced

Authentication may be required.

Publish URL
hip: fAocahost: 9080, uddisoap foublishapi

User ID
admin

Password

WEDL URL Browse...

file: A2 fwrarkspace A arehouseieb AebContent AWEB-IMNF fwsdl AW arehouse, wsd)
Marme

Warehouse Service

Description

Drescripton of Warehouse Service Interface

Go [: Reset

Enter a WSDL URL, name and an optional description for the service interface to be published.

Figure 8-9 Publish Service Interface

5. To publish the business, select Business and complete the required details in

the Publish form, as shown in Figure 8-10 on page 264.

Chapter 8. Service directory 263

Publish
Publish: | Business -

Publication format
& Simple € Advanced

Enter a name and an optional description for the business to be published, Authentication may be
required.

Marme
Warehouse Business
Description

Business for Warehouse application

k Reset

Figure 8-10 Publish Business

6. Scroll down to the bottom of the Business Details form and click Publish
Service to add a service to the business.

7. To publish the service, select Service and complete the required details in the
Publish Service form, as shown in Figure 8-11.

w2 Publish Service

Publication format

& Simple € Advanced
Provide the wSDL URL, narme and an optional description for the service to be published. Authentication
may be required.

WSDL URL Browse..,
file: f2: fwrark space A arehouseteb AebContent AWEB-INF fwsdl AW arebouse_Tmpl wsdl

Marme

WarehoLise Service|

Description

Reset
Figure 8-11 Publish Service

Using the Web Services Explorer, we have published the interface WSDL as a
tModel. Then we published the implementation WSDL. A pointer to this
implementation WSDL goes into the overviewURL element of the
tModellnstanceDetails of the bindingTemplate. As part of this publishing process,
the accessPoint element of the bindingTemplate is updated with the endpoint
address in the implementation WSDL.

264 Patterns: Service-Oriented Architecture and Web Services

As described in 8.4.1, “Service deployment considerations” on page 269, the
process is slightly different in the runtime environment. You can set the
accessPoint element directly from the UDDI Registry user console with IBM
WebSphere Application Server Network Deployment V5.0.

8.3.3 Service consumer (client) development considerations

As discussed in “Invoking the service” on page 209, there are three main design
alternatives for invoking a service using JAX-RPC. They are stub based, dynamic
invocation interface, and dynamic proxy.

The SCM application uses static stubs. A static stub is a Java class that is
statically bound to the Service Endpoint Interface (SEI), WSDL port, and port
component. It is also tied to a specific protocol binding and transport. A stub
class defines all the methods that an SEI defines. Therefore a client can invoke a
Web service directly via the stub class. However, each time the Web service
definition is modified (interface or implementation) the stub class must be
regenerated.

We need to modify the Retailer application to locate the endpoint URL of the
Warehouse service in a private UDDI registry. In the development environment,
the service provider and consumer will usually reside on the same server. There
is often no interest at this stage in relocating the service to different servers. So
we chose to modify the client code to allow use of both static and dynamic
service discovery, depending on the setting of the following environment
variables in the RetailerWeb application:

» uddiEnabled (set to true or false)
» uddilnquiryURL

» uddiPublishURL

» uddiWarehouseService

» uddiWarehouseBusiness

Example 8-1 shows an extract of the code we added the Retailer application to
perform the UDDI lookup.

Example 8-1 Extract of the modified Retailer code

WarehouseService service = null;
WarehouseShipmentsPortType port = null;

try {
Context ctx = new InitialContext();
service = (WarehouseService)
ctx.lookup("java:comp/env/service/WarehouseService");
if (useUDDI == true) {

Chapter 8. Service directory 265

// Use the UDDIHelper class to look up the end point URL
if (whUDDIHelper == null) {
whUDDIHelper = new UDDILookupHelper(
whUDDIInquiryURL, whUDDIPublishURL,
whUDDIService, whUDDIBusiness);
}
port = service.getWarehouse (
new java.net.URL(whUDDIHelper.getAccessPoint()));
} else {
// Use the end point URL from the wsdl-file entry in
// webservicesclient.xml
port = service.getWarehouse();
}
} catch(Exception ex) {
if (useUDDI == true) {
whUDDIHelper = null; // failed so try a new UDDIHelper next time

The UDDILookupHelper class contains the logic that queries the UDDI registry. It
is imported by the Retailer Java code. Example 8-2 provides an extract of the
logic used to search the UDDI registry.

Example 8-2 Extract of the UDDILookupHelper class

public String getAccessPoint() throws
java.net.MalformedURLException,
org.uddi4j.UDDIException,
org.uddi4j.transport.TransportException{

if (accessPoint == null) {
java.net.URL inquiryURL = new java.net.URL(inquiryURLStr);
java.net.URL publishURL = new java.net.URL(publishURLStr);

UDDIProxy uddiProxy = new UDDIProxy(inquiryURL, publishURL);

TModelInfo tModelInfo = uddiProxy.find_tModel(

serviceName, null, null, null, 1).getTModelInfos().get(0);
String servicelnterfaceKey = tModelInfo.getTModelKey();
System.out.printin("found key : "+servicelnterfaceKey);

Vector nameVector = new Vector();
nameVector.add(new org.uddi4j.datatype.Name(new String(businessName)));
BusinessInfo businessInfo = uddiProxy.find_business(
nameVector, null, null, null, null, null, 1
) .getBusinessInfos().get(0);

266 Patterns: Service-Oriented Architecture and Web Services

String businessKey = businessInfo.getBusinessKey();
System.out.printin("found business key : "+businessKey);

Vector serviceInfoVector = uddiProxy.find service(
businessKey, null, null, null, null, 10
) .getServiceInfos().getServiceInfoVector();
Enumeration serviceInfoEnum = serviceInfoVector.elements();
BindingTemplate bindingTemplate = null;
while (serviceInfoEnum.hasMoreETements()) {
ServicelInfo serviceInfo = (ServiceInfo)serviceInfoEnum.nextElement();
String serviceKey = servicelnfo.getServiceKey();
Vector businessServiceVector = uddiProxy.get_serviceDetail(
serviceKey) .getBusinessServiceVector();
BusinessService businessService =
(BusinessService)businessServiceVector.elementAt(0);
Vector bindingsVector =
businessService.getBindingTemplates().getBindingTemplateVector();
for (int i=0;i<bindingsVector.size();i++) {
bindingTemplate = (BindingTemplate)bindingsVector.elementAt(i);
if (bindingTemplate.getServiceKey().equals(servicelnterfaceKey))
break;
}
}
accessPoint = bindingTemplate.getAccessPoint().getText();
System.out.printin("found access point with URL "+accessPoint);
}

return accessPoint;

Walking through Example 8-2 on page 266, we first instantiate a UDDI proxy with
the appropriate URLs. We then look for the service interface, which was stored
as a tModel with a particular name. Note that we are not using any of the
advanced features of UDDI, such as the CategoryBag. We simply search for the
name, because we know what it is. This code would be more complex if we were
to search for a tModel using a different set of search criteria.

Then we find the service entry that references this tModel. Unfortunately, there is
not one query API that allows us to do this; we have to query all services for the
business and check each one for a match. We get all of the services that are
defined for the business. We retrieve all of the binding templates defined for each
service. Each binding template contains a key field pointing to its respective
tModel. Once we find the binding template that points to the service interface we
retrieved earlier, we can stop looking.

The actual endpoint URL of the service is stored in the access point field of the
binding template.

Chapter 8. Service directory 267

See the following classes for the full code listings:

» org.ws_i.www.Impl.RetailerLogic in the RetailerWeb project
» com.ibm.itso.uddi.UDDILookupHelper in the UDDIUtility project

These classes are included in our version of the sample application available on
the Web; see Appendix B, “Additional material” on page 333, for details.

8.3.4 Testing considerations

We used the TCP/IP Monitor tool provided with WebSphere Studio to validate the
data exchanged between the various servers.

TCP/IP Monitor allows messages to be traced by redirecting messages from one
TCP/IP port to another, displaying the contents as they go. The application
server normally listens on port 9080. To trace messages sent to the application
server, TCP/IP Monitor can be configured, for example, to listen on port 80 and
redirect messages to 9080. The client is modified to use port 80 to access the
server.

To use TCP/IP Monitor, create a new Server and Configuration and select Other
-> TCP/IP Monitor Server for the server type.

Figure 8-12 shows our UDDI inquiry captured using TCP/IP Monitor.

"EJ TCPJIP Manitar 0 & "8 8 x
E-H locahast:ao Time: 12:51,57,804 AM
{—27 Tuddisoap/inquiryapi Response Time: 90 ms
{—27 Juddisoap/finguiryapi Type: HTTP

[huddisnapfinguiryapi
fuddisoapinguiryapi

Request: localhost:80 - Response: localhost: 9080 -
Size: 556 bytes IBY'IE Wiew 'l Size: 1281 bytes IByte View 'l

Header: POST fuddisoapfinguiryapi HTTRf1.0 Header: HTTP/1.1 200 O

<?xml wersion='1.0' encoding='UTF—;| <?xml wversion="1.0" encoding="UTF—E;|
<S0OAP-ENV:Envelope Xmlns:30LAP-ENV= ar</bindingTemplate></bindingTempls
<30LP-ENV:EBody>

<get_serviceletail generic="z.0" x

</ 30AP-ENV:Body:

</ 30AP-ENV:Envelope>

q wlilis il

Figure 8-12 TCP/IP Monitor

268 Patterns: Service-Oriented Architecture and Web Services

8.4 Runtime guidelines

After implementing and testing the application changes to add our UDDI registry,
they need to be deployed to a runtime environment. Our services and service
consumers remain on IBM WebSphere Application Server V5.1, but we add IBM
WebSphere Application Server Network Deployment V5.0.2.4, which includes a
UDDI Registry.

8.4.1 Service deployment considerations

The Retailer now has two options for finding the location of the Warehouse
service:

» Using the static stub generated at development or deployment time, from the
deployment descriptors and WSDL packaged with the application.

» Using a lookup to a private UDDI registry. For this option, we need to deploy
and populate a private UDDI registry. We also need to redeploy the updated
Retailer application, which is a Warehouse service consumer.

Deploying the UDDI Registry

The UDDI Registry is essentially a J2EE application installed in the WebSphere
Application Server runtime. When deploying the UDDI Registry, there are two
main choices to make for the installation:

» Install on a single application server or on a server in a deployment manager
cell.

We used a single server application server because our scenario did not
require the full IBM WebSphere Application Server Network Deployment
V5.0.2.4 installation.

» The database for persistence.

We used IBM DB2 UDB V8.1 to simulate a production-oriented environment.
The lightweight Cloudscape database is an interesting choice for preliminary
tests only.

Details for completing the installation can be found in the WebSphere Information
Center article, Installing the UDDI Registry into a single appserver at:

http://www.ibm.com/software/webservers/appserv/infocenter.html
Populating the UDDI Registry

For this scenario, we need to populate the UDDI Registry with a Business Entity
named “Warehouse Business”, a service named “Warehouse Service”, and a

Chapter 8. Service directory 269

http://www.ibm.com/software/webservers/appserv/infocenter.html

tModel named “Warehouse Service”. We considered two ways of populating the
registry:

» Using a Java program using the UDDI4J publish API
» Using the administration interface provided by the registry

Rather than custom building a program, we used the following steps to publish
the Warehouse service using the WebSphere UDDI Registry user console.

For this example, we use the Manufacturer service. It imports five WSDL files
and XML schema files. To provide access to the Manufacturer service
description:

1. Create a new folder called wsdl under the
<WAS_HOME>/installedApps/<node_name>/UDDIRegistry.ear/gui.war
folder on your WebSphere UDDI Registry node.

2. Locate the following files in the WarehouseWeb/WebContent/WEB-INF/wsdl
folder under your WebSphere Studio workspace for the supply chain
management sample:

— Warehouse_Impl.wsdl
— Warehouse.wsdl

— Warehouse.xsd

— Configuration.wsdl

— Configuration.xsd

3. Copy these files to the new wsdl folder on your UDDI registry node. In our
case, the Warehouse_Impl.wsdl file will now be accessible in the gateway
administrative console Web module with the following URL:

http://appsrvla.itso.ral.ibm.com/uddigui/wsd1/Warehouse_Imp1.wsd1

4. Edit the WSDL to make sure any imports will be accessible from client
applications. For example, our Warehouse_Impl.wsdl contains two relative
imports that need to be updated. We changed:

— location="Warehouse.wsdl" to
"http://appsrvia.itso.ral.ibm.com/uddigui/wsdl/Warehouse.wsdl"

— location="Configuration.wsdl" to
"http://appsrvia.itso.ral.ibm.com/uddigui/wsdl/Configuration.wsdl"

5. Save your changes.

Note: We deployed our service WSDL and XML schema files to the UDDI
user console Web module for simplicity only. In a production environment, it
would make more sense to deploy these files to an appropriate Web server.
This topic is discussed further in 8.5, “Best practices” on page 275.

270 Patterns: Service-Oriented Architecture and Web Services

6. Open the WebSphere UDDI Registry user console in a Web browser using

the following URL:

http://appsrvla.itso.ral.ibm.com/uddigui/

7. To add a tModel for the Warehouse service:

a. Click Add a technical model from the Publish tab in the navigation frame

on the left.
b. In the Publish Technical Model form:

¢ Under Technical Model Name, set Name to Warehouse Service.

e Under Descriptions, set New description to Description of Warehouse

Service Interface and click Add.
¢ Under Overview URL, set URL to

http://appsrvla.itso.ral.ibm.com/uddigui/wsd1/Warehouse.wsdl.

e Under Locator, click Show category tree. In the category tree, select
udditype -> tModel -> specification -> wsdISpec, as shown in

Figure 8-13, then click Add.
Click Publish Technical Model.

74} Taxonomies

Eoh udditype

E% These types are used for tModels [tModel]

ﬁ') Categorization (taxonomy) [categorization]

) Namespace [namespace]

1 Protocol [protocol]

ﬁ') Signature component [signatureComponent]

=M Specification for a Web Service [specification]
) Specification for a Web Service described in WSD
=43 Specification for a Web Service using XML messa
L@ Unique identifier [identifier]

IZII--.-,% unspsc

IZII--.-,% geo

o5 naics

-5 other

IZII--.-,% unspsc?

wsdiSpec]
[xmiSpec]

Figure 8-13 Selecting wsdlSpec for the tModel

8. To add a business for the Warehouse service:

a. Click Add a business from the Publish tab in the navigation frame, as

shown in Figure 8-14 on page 272.

b. In the Publish Business form, under Business Name:

i. Set New name to Warehouse Business and click Add.

ii. Click Publish Business.

Chapter 8. Service directory 271

4} 1BM wWebsphere UDDI Registry user console - Microsoft Internet Explorer =[]

File Edit View Favorites Tools Help | ::I"

eBack =gy = |ﬂ &1 o | ! Search - Favaorites @4 Media {“| -t &= 3
Address I@'] http: f{appsr1a.itso.ral ibm, comfuddiguif

Links **

jGo

IDDI Registry

IEi | - i | = : . =
Find | % Publish & Publish Business
| Descrihe and puhlish a husiness. |
Quick Publish
“ husiness .
 technical model
MNames ofthe business.
called: -
| Name Language Action
ey narme: |Wareh0use Business |Eng|ish j @ add
1 Publish now
Fublish a business ar
technical model using a nanme é@ Publish Business Fublishes the business with the current form contents.
anly.

Free text to describe the business.

& Add aﬁa)usiness — Description Language Action
Descrik-'and add a husiness. I I - 1 =1

Figure 8-14 WebSphere UDDI Registry user console

Advanced Publish

9. To add a service to the new business:
a. Click Show owned entities from the Publish tab in the navigation frame.

b. Locate the Warehouse Business in the list of registered businesses and
click Add service.

c. Inthe Publish Service form:

i. Under Service Name, set New name to Warehouse Service and click
Add.

ii. Under Access Points, set URL type to http and Address to
appsrviw.itso.ral.ibm.com:9080/Warehouse/services/Warehouse and
click Add.

iii. Under Technical Models, click Add..., then find and select the
Warehouse Service Technical Model.

iv. Click Publish Service.

272 Patterns: Service-Oriented Architecture and Web Services

The Warehouse service is now published in the UDDI registry. Let us review
some of the settings used.

Among the various ways of categorizing tModels and services in a UDDI registry,
there is a udditype taxonomy. Under this taxonomy, there are two specifications
to describe Web services:

» Web services described in WSDL (wsdISpec)
» Web services described in XML (xmISpec)

In this category there is an additional specification for interaction with a Web
service using SOAP messages (soapSpec).

As shown in Figure 8-15, we defined the tModel as using wsdISpec. However,
this information is not used by any query in our scenario.

H Technical Model Details

| Technical Mode! details. |

Technical Model Name

Name
Warehouse Service

Technical Model Descriptions

Description Language
Description of Warehouse Service Interface en

Overview URL

URL Description Language
http://appsrvia.itso.ralibm.com/uddigui'wsdl/Warehouse.wsdl en
Technical Model Locators

Key value Key name Category type
wsdlSpec Specification for a Weh Service described in WSDL uddi-arg:types

Figure 8-15 tModel details published in UDDI registry

The final step is to link the Business entity and tModel to a service that specifies
the location of the service (see Figure 8-16 on page 274), as defined in the
Warehouse_impl.wsdl implementation file.

The link between the tModel and the service is important, as we need to look for
the tModel, which references the WSDL interface file, in order to find the service
itself, which contains the service location information.

Chapter 8. Service directory 273

274

= Service Details

|Service details. |

Business Key
GE2FAAGE-ABT4-44F0-B093-A9E423A9937F

C4D9ADC4-2108-4865-9FDD-DE25D4DEDDE2

Name Language
Warehouse Service en

Descriptions

Description Language
Description of Warehouse Service Interface en

Access Points

Type Access point
http http:/appsrviw.itso.ral.ibm.com:9080/Warehouse/services/Warehouse

Technical Models

Key Usage
UUID:47202447-C585-45BA-9496-DB9319DB9632

Figure 8-16 Service details published in UDDI registry

The tModelKey that we have received is imposed by the system. There is no way
to use a predefined key in UDDI V2 specification. The idea is to prevent duplicate
keys causing problems in the UBR, the public UDDI service. However, as we are
using a private UDDI registry, it makes sense that the key can be locally
managed if desired. The UDDI V3 specification offers a solution to this issue.
Locally managed keys allow for easier exchange of information between private
UDDI test registries and private UDDI production registries.

Redeploying the service consumer

As discussed in 8.3.3, “Service consumer (client) development considerations”
on page 265, we make some changes to the Retailer application to locate the
endpoint URL of the Warehouse service using UDDI.

To enable the UDDI lookup, first set the uddiEnabled environment variable in the
RetailerWeb module to true using the WebSphere Studio Deployment Descriptor
Editor, as shown in Figure 8-17 on page 275.

Patterns: Service-Oriented Architecture and Web Services

Environment Variables

Yariables Details

The following environment: variables are relevant ko this web Details of the selected environment variable:
lication:

application Type: | Boolean |z“
uddiEnabled Valus: |true |
uddinguiryURL Descrinti | |
5 uddiPublishURL ESEription:
4 uddiwarehouseService
uddiwarehouseBusiness

Remave

Crverview |Servlets |Filters |Listeners |Security lEnvironment]References |Pages |Parameters |MIME |Extensi0ns |Source

Figure 8-17 Retailer Environment Variable for UDDI integration

After setting the environment variable(s), export Retailer.ear from Studio for
deployment to the WebSphere Application Server runtime. See 6.4.1, “Service
deployment considerations” on page 214 for an example of exporting and
deploying an EAR file.

8.5 Best practices

In this section we look at service discovery best practices in a J2EE environment
like WebSphere Application Server, and how such practices can benefit SOA.

8.5.1 Using UDDI and WSDL together

UDDI entries can be configured manually, as we did in “Populating the UDDI
Registry” on page 269, or programmatically. Not all fields are particularly relevant
to Web services, but still need to be consistent with the complete WSDL
document describing a service. The UDDI standard has been built to offer more
functions than those strictly needed for Web services. The UDDI information can
contain metadata about the provider as well as the service.

Tools like WebSphere Studio Application Developer make it easier to create the
UDDI description from a WSDL file or from Java source in the development
environment. When you publish a service, however, you need to decide where to
store the WSDL files since the UDDI registry only contains pointers to the WSDL.

You can leave the WSDL files in the Web project associated with a service.
Alternatively, you may prefer to make the WSDL files available via HTTP, as we
did in “Populating the UDDI Registry” on page 269, or in a specific directory on
the UDDI registry file system.

Chapter 8. Service directory 275

We also recommend the following documents from the OASIS UDDI
Specification TC:

» Using WSDL in a UDDI Registry, Version 1.08 at:

http://www.oasis-open.org/committees/uddi-spec/doc/bp/uddi-spec-tc-bp-using
-wsd1-v108-20021110.htm

» Using WSDL in a UDDI Registry, Version 2.0 at:

http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-
v200-20030627 .htm

8.5.2 WebSphere Studio and WebSphere UDDI registry differences

The Web Services Explorer user interface for the WebSphere Studio UDDI
registry works differently from UDDI Registry user console for IBM WebSphere
Application Server Network Deployment V5.0. This can create some confusion
about how to set the service endpoint URL.

With the Web Services Explorer and Studio, the address that is stored and
shown is indeed the URL of the implementation WSDL. However, this is not the
access point that is stored in the accessPoint variable in UDDI. The Web
Services Explorer does not provide access to the accessPoint. It is copied from
the implementation WSDL file when you publish. You can only change it later by
publishing a new service.

In the runtime environment, we do not actually need the WSDL files, as our Web
service consumer (client) uses a static stub. The client only needs to look up the
endpoint address at runtime.

8.5.3 Dynamic or static discovery during the Web service life cycle

276

As with any programming artifact, Web services have a life cycle composed of a
number of phases such as:

» Development phase

» Deployment phase

» Runtime phase

We have seen previously that a Web service is essentially defined by a service
interface and a service implementation. The discovery of the service interface
and of the service location can either be static or dynamic. The benefits of each

kind of discovery vary during the different phases of the life cycle of the Web
service and its clients.

Patterns: Service-Oriented Architecture and Web Services

http://www.oasis-open.org/committees/uddi-spec/doc/bp/uddi-spec-tc-bp-using-wsdl-v108-20021110.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v200-20030627.htm

Figure 8-18 provides a summary of dynamic discovery of either interface or
location during the Web service life cycle.

Discovery of Interfaces: Static
Discovery of Location: Dynamic

2 Potential Benefits at:
Runtime

Discovery of Interfaces: Dynamic
Discovery of Location: Dynamic

Potential Benefits at:
Deployment Time?

Discovery of Interfaces: Static
Discovery of Location: Static

1 Basic Situation

Discovery of Interfaces: Dynamic
Discovery of Location: Static

Potential Benefits at:
Development Time

Figure 8-18 Static and dynamic discovery during the Web service life cycle

We can use this framework to further explore potential benefits of static and
dynamic discovery during the Web service life cycle:

» Quadrant 1

Static discovery of interfaces and location is the basic situation.
Quadrant 2

At runtime, we think the service interfaces are known by the Web service
consumers most of the time. They are modified rarely, if ever. So, the most
pressing need is to cope with service location flexibility without modifying the
consumers. That is the aim of the scenario we explored in this chapter. To
achieve that goal, services must be published to a private production UDDI
registry. Service consumers must look up the service location in the UDDI
registry.

Web services are often used to expose existing applications to the Web, using
a bottom-up approach. This approach results in services that have a wide
range of interfaces that only specialized clients are able to use. Conversely,
services can be built with known interfaces agreed upon by a wide variety of
providers in a top-down development approach. This approach paves the way
for generic service clients who could have the opportunity to use the UBR to
search for generic services.

Quadrant 3

During development time when the service is still being modified, its
interfaces may change. This situation creates consistency issues for the
teams who are programming the Web services clients. So, for that period of
the life cycle, dynamic discovery of interfaces is a valuable feature which will

Chapter 8. Service directory 277

inform developers very efficiently that the interfaces they need have been
modified. To do that, services under development must be published regularly
in a private development UDDI registry. On the client side, a helper class must
be added to search the registry for the tModel which points to the interface
WSDL file.

» Quadrant 4

What benefits could we expect from dynamic discovery of both service
interface and service location? It may be great to imagine that any client could
discover any service. It would definitely solve issues at deployment time. But
programming the Web service consumer could become very complex, as
everything would be variable and undefined until just before execution. The
present technologies do not seem to offer sufficient flexibility to support such
a dynamic model.

8.5.4 LDAP and UDDI considerations

There is no formal relationship between UDDI and LDAP. The two technologies
are designed to do different things. UDDI is a specific-purpose registry that is
intended to manage descriptions of Web service types, business organizations,
and the Web services that businesses offer. LDAP is an extensible,
general-purpose directory that is most often used to manage users and
resources. New LDAP object classes could be defined for the things UDDI
registers, but there is not a global, public, LDAP directory system.

The UDDI specification does not dictate registry implementation details. The
UDDI specification defines an XML-based data model and a set of SOAP APIs to
access and manipulate that data model. The SOAP APIs define the behavior a
UDDI registry must exhibit. A UDDI implementation could be built on an LDAP
directory as long as it conforms to the specified behavior. Thus far, all UDDI
implementations have been built on relational databases.

UDDI implementations have initially focused on the public UBR and are now
evolving towards the idea of private registries. In that sense, it could happen that
UDDI directories become as frequent for service registry as LDAP directories are
for user registry.

278 Patterns: Service-Oriented Architecture and Web Services

Web service gateway

This chapter describes the addition of a service gateway to our simple supply
chain management application. This application is based on the WS-I Supply
Chain Management (SCM) sample application, introduced in Chapter 4,
“Service-oriented architecture approach” on page 79. We start this chapter using
the application as deployed Chapter 6, “HTTP service bus” on page 159, and
describe the changes we made to add our service gateway.

We deploy the Broker application pattern, introduced in “Broker application
pattern” on page 54, to the Extended Enterprise::Exposed Router variation of the
Broker runtime pattern using a service gateway, as described in “Router
variation” on page 68.

In this chapter, the following topics are discussed:

» The sample business scenario that our solution needs to address

» An introduction to the IBM Web Services Gateway

» Design guidelines describing the design approach used

» Runtime guidelines discussing the considerations for deploying services in
the gateway

© Copyright IBM Corp. 2004. All rights reserved. 279

9.1 Business scenario

The sample application used in this chapter is the same simplified WS-I Supply
Chain Management (SCM) sample used in Chapter 6, “HTTP service bus” on
page 159. We introduce a non-functional requirement that suggests the addition
of a service gateway.

In this scenario, the requirement is for a more secure and flexible way of
controlling access to the services consumed and provided across the
organization boundary. The IT department has reviewed the technology options
available, and decided that a Web services gateway should be used, starting with
a pilot for interactions between the warehouse and external manufacturers. The
change to the business scenario is shown in Figure 9-1.

Add a service gateway
(]

Consumer

\ / Retailer = > \Varehouse ‘.

Browser Q
Manufacturer

Logging
Facility

Organization boundary

Figure 9-1 High-level business context with service discovery

In this scenario, we focus on the inter-enterprise interaction between the
Warehouse service and the external Manufacturer services to satisfy the UC4:
Supply finished goods use case. We introduce the IBM Web Services Gateway to
act as a proxy for the WarehouseCallBack and Manufacturer services.
Introducing the IBM Web Services Gateway provides a number of advantages:

» Central access point for all services crossing the enterprise boundary

The gateway provides a single, well-known point to for internal service
consumers to access external service providers, and vice versa.

280 Patterns: Service-Oriented Architecture and Web Services

» Decoupling the deployment of Web services from clients

The gateway isolates any changes in the deployment of services from
consumers of the services. The location of services also becomes
transparent to clients of the service.

» Central security control point

Access control can be applied to Web services so only authorized consumers
are allowed to access services.

» Protocol conversion between Web service requesters and providers

Access to the services of applications that use protocols other then HTTP is
planned for the near future. Therefore, access to the Web services has to be
open for different protocols.

9.2 IBM Web Services Gateway

The IBM Web Services Gateway is a runtime component that provides
configurable mapping between Web service providers and requesters. Services
defined with WSDL can be mapped to available transport channels. The Web
Services Gateway is included with IBM WebSphere Application Server Network
Deployment V5.0.2.

The basic gateway components are:

» Channels that define the entry-points into the gateway and carry the Web
service request and response through the gateway

» Filters that are used to intercept service invocations which come into the
gateway and act upon the services

» Services that are described with the help of a Web Services Description
Language (WSDL) document

» UDDI references to manage the publishing of an exposed Web service to a
private or public UDDI registry

Figure 9-2 on page 282 shows the relationship between the first three
components. The entry point to the gateway is defined by a channel. A channel is
a piece of software that defines the protocol you can use to access the gateway.
The incoming message is assessed on arrival through the channel to determine
which service is required. Each service (defined in a WSDL document) has to be
bound to one or more channels. One or more filters can be bound to a service for
manipulating both request and response messages. The WSDL service
definition specifies the provider service interface and implementation used to
access the target service.

Chapter 9. Web service gateway 281

282

IBM Web Services Gateway

1

Filter

So_urct_e { Channel '— Service —‘ Provider} Ta_rget_
Application Application

| J

Figure 9-2 IBM Web Services Gateway

A request to the Web Services Gateway arrives through a channel and is
translated into an internal representation of the service. With the help of filters for
the request, a request can be logged, intercepted, or generally manipulated.
After filtering the request, an appropriate provider is used to communicate with
the target service. The provider in the gateway acts as a client for the target Web
service.

The response from the target service flows along the exact same path back to
the provider. There is no extra channel for an immediate response. In this sense
the layout of the gateway is asymmetric. However, one or more response filters
can be deployed independently of the request filters.

The process of deploying a target service into a gateway channel generates two
different external WSDL files; an implementation definition and an interface
definition. These new WSDL files can be exported for use by client applications,
and are the externalization of the service capabilities offered by the internal
target service. The implementation WSDL definition is used to simplify the
connection process for a client, particularly when dynamic invocation is being
used. Having obtained the implementation definition, the client can then access
the WSDL interface definition produced by gateway, which provides full
information about the target service (as presented externally by the gateway).

The Web Services Gateway uses the Web Services Invocation Framework
(WSIF) API from Apache to decouple invocation from deployment within the
gateway. Over time, the location of the Web service target application and the
bindings may change, but these details are handled by the gateway. The Web
Services Gateway separates the actual implementation of a service from how it
is accessed by another service for:

» Inbound requests: To Web services created and deployed within the
organization.

Patterns: Service-Oriented Architecture and Web Services

» Outbound requests: To Web services created and deployed outside the

organization.

Process abstraction: The service invocation approach must be flexible
enough to cope with events such as switching frequently between external
providers of a similar service without requiring changes to the application.

Flexibility: As a service provider, you need the flexibility to change your
deployment infrastructure without notifying all the service requestors. For
example, consider a Web service deployed in a machine that later fails during
operation. There needs to be a process to route the invocations to an
alternate service in your infrastructure.

WSIF is used within Web Services Gateway as shown in Figure 9-3 on page 284.
It demonstrates the WSIF transformation from a SOAP message to a target
service:

1.

The SOAP message arrives at the gateway and the channel listener accepts
the message.

The channel converts the SOAP message into a WSIF message format.

3. Elements within the message are used to locate the appropriate target

service, which is bound to the channel within the gateway.

The target WSDL associated with the gateway service is then processed by
WSIF.

5. WSIF dynamically generates a Java proxy class.

6. The target Web service is called.

Chapter 9. Web service gateway 283

SOAP message

\

Channel

Gateway Service

\
Target WSDL

® OO

WSIF

\

©)

Java proxy class

\
Target Service @

Figure 9-3 WSIF transformation

Refer to the following IBM developerWorks articles for further details:

» Applying the Web services invocation framework
http://www.ibm.com/developerworks/webservices/Tibrary/ws-appwsif.html

» An introduction to Web Services Gateway
http://www.ibm.com/developerworks/webservices/library/ws-gateway/

» Business process integration with IBM CrossWorlds, Part 3: Automatically
externalize Web services with WebSphere Business Connection

http://www.ibm.com/developerworks/ibm/1ibrary/i-cross3

9.3 Design guidelines

This section provides design considerations for adding the Web service gateway
to the sample application.

9.3.1 Design overview

As discussed in 6.2.1, “Design overview” on page 161, integration between the
warehouse and manufacturers can be mapped to the Extended

284 Patterns: Service-Oriented Architecture and Web Services

http://www.ibm.com/developerworks/webservices/library/ws-appwsif.html
http://www.ibm.com/developerworks/webservices/library/ws-gateway/
http://www.ibm.com/developerworks/ibm/library/i-cross3

Enterprise::Exposed Direct Connection application pattern. In this chapter we
look at the Extended Enterprise::Exposed Broker application pattern as a design
alternative, where we add a service gateway on the enterprise boundary

between the warehouse and manufacturers.

Figure 9-4 shows the high-level solution overview for the WS- SCM sample
application we developed in Chapter 4, “Service-oriented architecture approach”
on page 79. In this section we add a Web services gateway Product mapping for

the Runtime pattern highlighted in Figure 9-4.

Enterprise Domain

. Part
Outside Inter-Enterprise arners
World DMz ‘ Internal Network DMz Zone
p s
/ N ‘
Manufacturer Service ol
Partner Infrastructure
H
[H J i
e M 2
¢ Bres InterEnterprise
Service bus Rp ; Network
outer Infrastructure
(Application g ;
g':zrver] Rules T = Exposed Router
Services NI £ 8 Application
\ - S S Pattern::Runtime Pattern
N e & °
Warehouse & [N | L a a
Warehouse Callback
Services on thisnode | ... e —

Figure 9-4 Runtime patterns for the Supply Chain Management sample

The Product mapping for our implementation of the service gateway, shown in
Figure 9-5 on page 286, is based on the Router variation of the Extended

Enterprise::Exposed Broker runtime pattern.

Chapter 9. Web service gateway 285

Partner A Demilitarized Inter- Partner B

Secure Zone Zone enterprise
Zone J

)
© .
H ’ Partner C
2 |.-] Network artner
App Server/ Exposed i Infra
i Router © |- ;
Services 8[| structure
o X
SOAP 3
HTTP %y, "
* Windows 2000+SP4 : C\}zbss';rxlr-:vs 024 r R
° lsi%g?ss.?here App Network Deployment i % Ratern

« JAX-RPC * Web Services E
Gateway H

Figure 9-5 Product mapping for Router variation of Exposed Broker runtime pattern

286

The Warehouse service, which resides on the App Server/Services node,
invokes the Manufacturer service located on the Partner Infrastructure via the
Exposed Router node. The IBM Web Services Gateway is used to support the
router functionality, acting as a proxy to the Manufacturer service.

The WarehouseCallBack service, also residing on the App Server/Services
node, is invoked by the Manufacturer service located externally on the Partner
Infrastructure. This interaction also uses the Exposed Router node, but in the
reverse direction, as shown in Figure 9-6 on page 287.

As a consumer of the WarehouseCallBack service, the Manufacturer is only
aware of the service interface definition and is isolated from the actual
implementation of the WarehouseCallBack service on the App Server/Services
node. The same applies to the Warehouse, as a consumer of the Manufacturer
service.

Patterns: Service-Oriented Architecture and Web Services

Partner B Inter- Demilitarized Partner A

enterprise Zone Secure Zone
, Zone

)
X ©
Partner C ’ d;.\
Network |.{ =
Infra i Exposed App Server/
re |18 Router i
structure |1 8 Services
g SOAP
W o AIX 5.1 ML4 IHTTP :
s .+ WebSphere V5.02.4 * Windows 2000+SP4
3 | 0.2. IBM WebSphere A
Partner D 4 i Network Deployment ¢ Server?/S.? ere App
: * Web Services « JAX-RPC
Gateway

Figure 9-6 Product mapping for Router variation of Exposed Broker runtime pattern (reverse direction)

We used both Windows and AlX systems in the service gateway deployment.

9.3.2 Service design considerations

In Table 6-1 on page 165 we mapped the WS-I usage scenarios to the Runtime
patterns that were applicable to the sample application.

The additional mapping for the Router variation of Exposed Broker is shown in
Table 9-1. As mentioned previously, the basic callback scenario is really a
combination of two synchronous request/response usage scenarios. Here we
use two instances of the Router variation of the Exposed Broker runtime pattern:
One instance for the consumer request and one for the provider response.

Table 9-1 Mapping WS-I service usage scenarios to Exposed Broker runtime pattern

Runtime pattern WS-l usage Sample application uses
scenario

Extended Synchronous

Enterprise::Exposed request/response

Broker (Router variation) -
Basic callback Warehouse -> Manufacturer

Manufacturer ->
WarehouseCallBack

Synchronous request/response scenario

Figure 9-7 on page 288 shows the interaction between the Warehouse as
service consumer, the gateway, and Manufacturer as the service provider for our

Chapter 9. Web service gateway 287

service gateway scenario. The reverse applies to the callback interaction from
Manufacturer to WarehouseCallBack.

| Consumer : Warehouse | Gateway : WSGW / Provider : Manufacturer

1 : \POSubmit\ ‘

‘ Note: WSIF — T
‘ transformation |:

2 : \Transform\

3 : \POSubmit\

. ‘
ackPC ‘J

ackPC

Figure 9-7 Gateway scenario sequence diagram

The WSIF transformation referenced is described in 9.2, “IBM Web Services
Gateway” on page 281.

Locating the service

The Web Services Gateway locates the service provider (for example,
Manufacturer) from the WSDL associated with the service. The location of the
WSDL can be specified in two ways:

» A URL that points to the WSDL file
» A UDDI location

This scenario uses a URL that points to the WSDL file because we do not have a
requirement for consumers to dynamically discover the services offered by the
gateway.

Why use a UDDI registry

A UDDI registry can be used by the gateway node to obtain the interface
description and the implementation description of the Web services it is proxying.

Although it may be easier in the short term to simply put the WSDL files of the
Web services on a Web server than to implement a solution using a public or a
private registry, consider the following trade-offs:

» Web sites do not have a discovery protocol that allows consumers to search
for and download WSDL files.

288 Patterns: Service-Oriented Architecture and Web Services

» As the use of Web services becomes more popular, consumers are
increasingly likely to use a UDDI registry to find Web services.

» UDDI registries allow a fine degree of classification for Web services that
allows consumers to quickly find the Web services to fit their needs.

For an example using UDDI with the Web Services Gateway, see the IBM
Redbook Patterns: Broker Interactions for Intra- and Inter-enterprise,
SG24-6075.

9.4 Runtime guidelines

In our gateway scenario there is very little work to do in the development
environment. We move straight to the runtime environment to install and
configure the gateway, then deploy the needed services to the gateway. Our
services and service consumers remain on IBM WebSphere Application Server
V5.1, but we add IBM WebSphere Application Server Network Deployment
V5.0.2.4, which includes the Web Services Gateway.

Important: IBM WebSphere Application Server Network Deployment V5.0.2.4
is required for this scenario. V5.0.2.4 provides a number of required Web
Service Gateway fixes, including PQ80762, PQ80763, PQ80764, PQ80765,
PQ80766.

9.4.1 Service deployment considerations

In this section we start with a brief look at installing and configuring the Web
Services Gateway. After that we walk through the process of implementing a
gateway solution, based on three simple steps:

» Deploying the Web Services Gateway service
» Exporting the WSDL service implementation file

» Creating the Web service consumer (client)

Installing the Web Services Gateway

Web Services Gateway is essentially a J2EE application installed in the
WebSphere Application Server runtime. For this scenario, we installed the
gateway on a stand-alone IBM WebSphere Application Server base V5.0.2.4
server.

Chapter 9. Web service gateway 289

Details for completing the installation can be found in the WebSphere Information
Center article Installing the gateway into a stand-alone application server at:

http://www.ibm.com/software/webservers/appserv/infocenter.html

Configuring the gateway
After the gateway has been installed and started it must be configured. To
configure the Web Services Gateway:

1. Open the IBM Web Services Gateway systems administration console, shown
in Figure 9-8. For the default installation on server1, the URL for accessing
the console will be:

http://<hostname>:9080/wsgw/admin/

/3 IBM Web Services Gateway Admin Tool - Microsoft Internet Explorer 10l =|
File Edit View Favorites Tools Help | }{'
QEBack - £ - [@] @ |) Search <7 Favorites %) Media 421 | v i 3
Address I@j http:/fappsrvla.itso.ral.ibm.comjwsgeadmin/ j a Go | Links **
IBM Web Services Gateway
gggﬂ'ﬂ;‘;e Welcome to the IBM Web Services
Back Up Gateway systems administration console
Restore
About To begin, please make a selection from the options to the
left
List To modify features after initial deployment, first select "list"
Deploy under the feature and then selact the item you want to
Remove madify
List
Deploy
Remove
List
Deploy
Remove
List
Deploy
Remove
[&] pone |_|_|_|O Internet v

Figure 9-8 IBM Web Services Gateway systems administration console

2. Click Gateway -> Configure in the navigation panel on the left to configure
the gateway.

290 Patterns: Service-Oriented Architecture and Web Services

http://www.ibm.com/software/webservers/appserv/infocenter.html

3. In the Configure Gateway window, set the following properties:
— Namespace URI for services

The gateway namespace URI will appear in WSDL files exported from the
gateway. Keep in mind that Java clients generated from the WSDL need to
convert the gateway namespace to a Java package.

Note: Take care when specifying the namespace URI for services. If
you need to change the namespace URI, you will need to redeploy all of
your deployed services.

— WSDL URI for exported definitions

This is the URI that Web service clients will use to access the WSDL file
and the exposed Web service.

Our gateway configuration settings are shown in Figure 9-9.

Configure Gateway

MNamespace URI for services |urn:appSN1 a.tso.ralibm.com

WSDL URI for exported definitions |http:,-",-"appsr\.f1 a.itso.ralibm.compwsow

Proxy Configuration

Enable proxy authentication [

Proxy user Iusername
Proxy password quuu

Use Gateway proxy credentials r
for invoking WebServices

Apply Changes k

Figure 9-9 Configuring the Web Services Gateway

4. Click Apply Changes to configure the gateway.

Deploying a channel
There are two types of channels provided with the Web Services Gateway:

» Apache SOAP Channel
» SOAP/HTTP Channel
Both channel types support SOAP 1.1 compatible Web services that use the

RPC SOAP messaging style. The SOAP/HTTP Channel adds support for
document messaging style, and for passing attachments in a MIME message.

Chapter 9. Web service gateway 291

Two versions of each channel type are supplied with the gateway, so you can set
up separate channels for inbound and outbound requests. This also provides a
simple way to grant different access rights to users within your organization from
those outside your organization.

In our scenario, we are using the SOAP/HTTP Channel because we are using
the document style SOAP message format.
To deploy a SOAP/HTTP Channel:

1. Click Channels -> Deploy in the navigation panel on the left to deploy a
channel.

2. In the Deploy Channel window, the following fields are required:
— Channel Name: SOAPHTTPChannelt
— Home Location: SOAPHTTPChannel1Bean
— End Point Address: http://<hostname>[:<port>]/wsgwsoaphttp1
— Async Reply Context Name: leave blank (not supported)
— Async Reply Context Value: leave blank (not supported)

See the InfoCenter article Web services gateway - Channel deployment
details if you need channel settings for other channel types or for clustered
environments.

Our channel settings are shown in Figure 9-10.

Deploy Channel

Fields rnarked with an asterisk (*) are required

Channel Hame* |SOAPH'I_I'PChanneI1
Home Location™ |SOAPH'I_I'PChanneI1EIean
End Point Address™ |http:,-",-"appsr\.f1 a.itso.ralibm.compwsgwsoaphttpl

Async Reply Context Mame |

Async Reply Context WValue |

o,

Figure 9-10 Deploying a gateway channel

3. Click OK to deploy the channel.

292 Patterns: Service-Oriented Architecture and Web Services

Deploying the Web Services Gateway service
Once the gateway is configured and the required channel deployed, you can
deploy the service. There are two steps involved:

1. Provide gateway access to the WSDL file (and any files it imports) for the
target Web service you want to deploy.

2. Use the gateway systems administration console to deploy the service.

Accessing the target WSDL from the gateway

The WSDL file for the service you want to deploy needs to be accessible by the
gateway. The gateway and Web service consumer (client) applications will also
need access to any WSDL files or XML Schemas imported by the service WSDL.

If your service WSDL includes imports, our recommendation is to make the
WSDL and any imports available via an HTTP URL. This way both the gateway
and clients can access the required files from the same location. Ideally, these
HTTP URLs should point to documents on a related Web server.

If your service WSDL does not import other files, you can place the WSDL on the
local file system of the gateway node, since clients will be able to access all the
required service definitions via the gateway.

For this example, we use the Manufacturer service. It imports five WSDL and
XML schema files. To provide access to the Manufacturer service description:

1. Create a new folder called wsdl under the
<WAS_HOME>/installedApps/<node_name>/wsgw.serveri.<node_name>.e
ar/wsgw.war folder on your Web Services Gateway node.

2. Locate the following files in the ManufacturerWeb/WebContent/WEB-INF/wsdl
folder under your WebSphere Studio workspace for the supply chain
management sample:

— Manufacturer_Impl.wsdl
— Manufacturer.wsdl

— Configuration.wsdl

— ManufacturerPO.xsd
— ManufacturerSN.xsd

— Configuration.xsd

To deploy the other two Manufacturer services and the WarehouseCallBack
service you also need the following files from the ManufacturerBWeb,
ManufacturerCWeb, and WarehouseWeb projects:

ManufacturerB_lmpl.wsdl
ManufacturerC_Impl.wsdl
WarehouseCallBack_Impl.wsdl
Warehouse.wsdl

Chapter 9. Web service gateway 293

— Warehouse.xsd

3. Copy these files to the new wsdl folder on your gateway node. In our case, the
Manufacturer_Impl.wsdl file will now be accessible in the gateway
administrative console Web module with the following URL:

http://appsrvla.itso.ral.ibm.com/wsgw/wsdl/Manufacturer Impl.wsd1

4. Edit the WSDL to make sure any imports will be accessible from client
applications. As shown in Example 9-1, our Manufacturer_Impl.wsdl contains
two relative imports that need to be updated. We changed:

— location="Manufacturer.wsdl" to
"http://appsrvia.itso.ral.ibm.com/wsgw/wsdl/Manufacturer.wsdl"

— location="Configuration.wsdI" to
"http://appsrvia.itso.ral.ibm.com/wsgw/wsdl/Configuration.wsdl"

Example 9-1 Manufacturer_Impl.wsdl before changes to import locations

<wsdl:import location="Manufacturer.wsdl"
namespace="http://www.ws-1i.org/SampleApplications/SupplyChainManagement/2002-10
/Manufacturer.wsd1"/>

<wsdl:import location="Configuration.wsdl"
namespace="http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-08
/Configuration.wsd1"/>

5. Save your changes.

Note: We deployed our service WSDL and XML schema files to the gateway
administrative console Web module for simplicity only. In a production
environment, it would make more sense to deploy these files to an appropriate
Web server.

Deploying the gateway service
To deploy Manufacturer_Impl.wsdl as a gateway service:

1. Open the Web Services Gateway systems administration console and click
Services -> Deploy in the navigation panel on the left.

2. In the Deploy Gateway Service window, we set the following fields:
— Gateway Service Name: ManufacturerWsgwService
— Channels: Click to select SOAPHTTPChanneli

— WSDL Location:
http://appsrvia.itso.ral.ibm.com/wsgw/wsdl/Manufacturer_Impl.wsdl

— Location Type: URL

294 Patterns: Service-Oriented Architecture and Web Services

We accepted the defaults for the remaining fields. Our gateway service
settings are shown in Figure 9-10 on page 292.

Deploy Gateway Service

Fields rnarked with an asterisk (*) are required

Gateway Service Properties

Gateway Service Mame® |ManufactureN\-"ngServer

Message part representation™ # Seneric dasses
" Deployed Java classes
Authorization Policy " Control access ta this service

Audit Policy " Log requests to this service

Annotation URL |
Channels SOAPHTTPChannel

Request Filters (no filters deployed)
Response Filters (no filters deployed)
UDDI References (no UDDI References deployed)

Mote 1: To deselect iterns in the rultiple selection boxes abave,
use Ctrl+rnouse click ar refresh the page

Target Service Properties

WSDL Location™ |J:,-",-"appsr\.f1 a.itso.ralibm.compwsgwiwsdliManufacturer_mplwsdl [i
Location Type™ & URL [
C uopI [

Target Service Mame |

Target Service Mamespace |

Target Service Identity Information |

UDDI Publication Properties

Fields rarked with two asterisks (**) are required when a UDDI Reference iz selected above

Business Key** | [il

o

Figure 9-11 Deploying a gateway service

3. Click OK to deploy the service.

4. We used a similar process to deploy the other two Manufacturer services and
the WarehouseCallBack service as gateway services. You can see our final

list of gateway services in Figure 9-12 on page 296.

Chapter 9. Web service gateway

295

List of Gateway Services

Select any item to modify its properties

ManufacturerBWwsgwSeryice
ManufacturerCW s Quw Service
ManufactureryysgwService

wWarehouseCallBacksgwService

Figure 9-12 List of Gateway Services

Exporting the WSDL file

When the service is deployed, the gateway generates new WSDL files that can
be shared with clients of your Web service. The gateway-generated WSDL
implementation definition file has the gateway as the service end-point, and it
imports the WSDL interface definition file that contains bindings and portType
information.

To export the WSDL file generated by the Web Services Gateway:

1. Open the Web Services Gateway systems administration console and click
Services -> List in the navigation panel on the left.

2. Inthe List of Gateway Services window, click the required service,
ManufacturerWsgwService in our case.

3. In the Service: ManufacturerWsgwService window:
a. Scroll down to the Exported WSDL definitions section.

b. Right-click External WSDL implementation definition (WSDL only) and
select Save Target As... from the pop-up menu, as shown in Figure 9-13
on page 297.

c. Save the WSDL file to the required location. We saved the file as
Manufacturer_Impl.wsdl under the
WarehouseWeb/WebContent/WEB-INF/wsdl folder in our WebSphere
Studio workspace.

296 Patterns: Service-Oriented Architecture and Web Services

Use the following two links to view the \WsDL th
describe this service, These links are NOT intenc
that).

Wiew external WSOL implermentation definition

Wiew external WSDL interface definition

The follawing two links return the WSODL for use by app
service, For example, use these if you want to create :
Developer (TM], aor the Web Services Toolkit, Please n
blank page will be returned.

External WSDL interface definition (WSDL anly)

Open
Open in Mew \Window
Prink Target

Ut

Copy
Copy Shorkeut
Faste

Add to Favorites. ..

Properties

Exported WSDL definitions

teway has produced to
n programs (see below for

d the WwsDL definitionz for this
WebSphere Studic Application
generating the WSDL then a

Figure 9-13 Exporting the WSDL implementation definition file

We are now ready to Web service-enable our service consumer application using

the gateway-generated WSDL implementation definition file for our target

service.

9.4.2 Service consumer (client) deployment considerations

This scenario provides another example of the configurability of our
service-oriented architecture. The IBM WebSphere V5 Web services runtime
allows us to easily reconfigure existing Web service clients to access a service
provider via the gateway. Let us look at the steps needed to change Warehouse
to access the Manufacturer service via the gateway.

Enabling an existing consumer to use the gateway
To reconfigure Warehouse to access Manufacturer via the gateway:

1. In the Studio J2EE perspective, Project navigator view, navigate to

WarehouseWeb/WebContent/WEB-INF/wsdl.

2. Edit Manufacturer_Impl.wsdl and change soap:address from:

<wsdlsoap:address

lTocation="http://entsrvlw.itso.ral.ibm.com:9080/Manufacturer/services/Manuf

acturer"/>

To use the SOAP address from the Manufacturer_Impl.wsdl file exported from

the gateway:

<wsdlsoap:address

location="http://appsrvla.itso.ral.ibm.com/wsgwsoaphttpl/soaphttpengine/urn
%3Aappsrvla.itso.ral.ibm.com%23ManufacturerWsgwService"/>

Save your changes.

Chapter 9. Web service gateway

297

298

Note: Replacing the endpoint address with the gateway address in the
client WSDL works well in our case. You need to be careful with this
approach in more complex scenarios. The safest approach is to
regenerate the Web service client from the gateway WSDL.

However, regenerating the Web service client from the gateway WSDL
usually means the class names of the generated client stubs will also
change. You will then need to change the client application to use the new
stub class names.

3. To allow Warehouse to access all three manufacturers via the gateway, we
also changed the following WSDL files in the same way:

— ManufacturerB_Impl.wsdl in WarehouseWeb/WebContent/WEB-INF/wsdl
— ManufacturerC_lmpl.wsdl in WarehouseWeb/WebContent/WEB-INF/wsdl

4. To allow Manufacturers to access the WarehouseCallBack service via the
gateway, we just changed the callbackEndpoint environment variable in the
WarehouseWeb module to the SOAP address from the
WarehouseCallBack_Impl.wsdl file exported from the gateway. Figure 9-14
shows this variable in the WebSphere Studio Deployment Descriptor Editor.

Environment Variables

Yariables Details
The following environment: variables are relevant ko this web Details of the selected environment variable:
application: -
Type: [String =]
4 callbackEndpoint . - " ~
Walue: | http: ffappsrvla.itso.ral.ibm, comjwsgwsoaphtt |
Description: | |

Remave

Crverview |Servlets |Filters |Listeners |Security lEnvironment]References |Pages |Parameters |MIME |Extensi0ns |Source

Figure 9-14 Environment Variable for WarehouseCallBack endpoint

When submitting a purchase order, Warehouse passes the callback endpoint
address to Manufacturer in the SOAP header shown in Example 9-2.

Example 9-2 SOAP request for submitPO operation

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Header>
<Configuration

xmlns="http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-08/Con

figuration.xsd">

Patterns: Service-Oriented Architecture and Web Services

<UserId>4309d4eb:fb44c05435:-7ffb</Userld>
</Configuration>
<StartHeader
xmlns="http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-10/Man
ufacturer/CallBack">
<conversationID>7</conversationID>

<callbackLocation>http://appsrvla.itso.ral.ibm.com/wsgwsoaphttpl/soaphttpengine
/urn%3Aappsrvla.itso.ral.ibm.com%23WarehouseCal1BackWsgwService</callbackLocati
on>
</StartHeader>
</soapenv:Header>
<soapenv:Body>
<PurchaseOrder
xmlns="http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-10/Man
ufacturerP0.xsd">
<orderNum>7</orderNum>
<customerRef>A12345-9876543-xyz</customerRef>
<items>
<Item>
<ID>605004</1D>
<qty>46</qty>
<price>100.0</price>
</Item>
</items>
<total>0.0</total>
</PurchaseOrder>
</soapenv:Body>
</soapenv:Envelope>

After making these changes, it is just a matter of redeploying the Warehouse
application, as described in “Deploying the new consumer” on page 300.

Enabling a new consumer to use the gateway

The WebSphere Studio Web Service Client wizard can be used to Web service
enable an application needing to access a service via the gateway.

You can use the same procedure as that described for Warehouse as a
consumer of Manufacturer in 6.3.4, “Service consumer (client) development
considerations” on page 200.

In this case, use the Manufacturer_Impl.wsdl file exported from the gateway, as

described in “Exporting the WSDL file” on page 296, rather than the original
Manufacturer_Impl.wsdl.

Chapter 9. Web service gateway 299

Deploying the new consumer
To deploy the new Warehouse, a consumer of the Manufacturer service, we
performed the following steps:

1. In WebSphere Studio, export the Warehouse project as an EAR file.
2. Copy the exported EAR to the application server that you want to deploy to.

We recommend that you copy the EAR file to the
<WAS_HOME>/installable Apps folder on the application server.

3. Install the Warehouse application on a WebSphere Application Server
instance. You can use the same procedure as described for Manufacturer.ear
in “Deploying a service” on page 215.

Be sure to select the Deploy WebServices option if you did not regenerate the
Web service clients in Studio.

9.4.3 Testing considerations

In addition to the considerations discussed in “Testing considerations” on
page 210, the Diagnostic Trace Service can be used to enable tracing of
application server components. The following trace specification can be used
when diagnosing Web Services Gateway problems:

com.ibm.wsgw.*=all=enabled:
org.apache.wsif.*=all=enabled:
com.ibm.ws.webservices.*=all=enabled

300 Patterns: Service-Oriented Architecture and Web Services

10

e-business on demand and
Service-oriented
architecture

In this, the last chapter of the book, we give you a brief introduction to IBM’s
e-business on demand vision and strategy. We describe in further detail the on
demand operating environment, and how it can be realized through
service-oriented architecture. IBM offers industry-leading products and services
to support the journey from e-business to the next evolution, e-business on
demand. And in line with this transition, we conclude with a look at the current
IBM on demand technologies.

© Copyright IBM Corp. 2004. All rights reserved. 301

10.1 e-business on demand

In October of 2002, IBM announced its vision of the next major phase of
e-business adoption and called it e-business on demand. In fact, e-business on
demand is not just a vision, nor is it new. It is a statement of IBM’s belief of how
businesses will need to transform themselves to be successful. Businesses will
have to adapt to cope with ever-increasing pressures from competition and other
factors associated with the global economy. This implies a transformation to a
fully integrated business across people, processes, and information, including
suppliers and distributors, customers and employees.

IBM defines an on demand business as an enterprise whose business
processes, integrated end-to-end across the company and with key partners,
suppliers, and customers, can respond with speed to any customer demand,
market opportunity, or external threat.

There are four key attributes of an on demand business:

» Responsive: Able to sense and respond to dynamic, unpredictable changes in
demand, supply, pricing, labor, competition, capital markets, and the needs of
its customers, partners, suppliers, and employees.

» Variable: Able to adapt processes and cost structures to reduce risk while
maintaining high productivity and financial predictability.

» Focused: Able to concentrate on its core competencies and differentiating
capabilities.

» Resilient: Able to manage changes and external threats while consistently
meeting the needs of all of its constituents.

As shown in Figure 10-1 on page 303, IBM has identified the following three
stages of the e-business on demand evolution that most organizations are
currently going through:

» Access: Transform the communication with Internet access, publish static
information, and Web-enable simple processes.

» Enterprise Integration: Transform the business processes by integrating
internal processes and external value nets.

» on-demand: Transform the business model to manage the operations
dynamically, allowing the business to rapidly respond to market changes and
opportunities, as well as deliver customized products and services in
real-time.

302 Patterns: Service-Oriented Architecture and Web Services

T

Access, Publish, Transact Integrate Integrate Adapt
Internally Externally Dynamically

Figure 10-1 The on demand evolution

IBM as an organization is uniquely positioned to help businesses make the
transition to e-business on demand, and to do this, offers a number of services,
including:

» On demand business transformation

IBM Business Consulting Services (BCS) offers the expertise and experience
in business process integration and industry issues. On Demand Innovation
Services provides access to a team of IBM researchers who specialize in
business transformation and technology consulting.

The on demand business transformation offering is primarily constancy
based, and focuses on the transformation and streamlining of the business
processes within the enterprise. The resulting SOA solution interconnects the
underlying technology based on business process modeling tools, supplying
the ability to drive and configure the technology implementation to support the
business process and not visa versa.

» On demand flexible finance and delivery

IBM offers a growing portfolio of on demand business process services with
utility-based pricing for horizontal applications such as e-procurement, or
vertical applications such as straight-through processing for finance. Strong
consultative support from IBM and its Business Partners provides the ability
to select the appropriate applications and infrastructure components, as well
as the ability to integrate, run and manage new services.

This extends the concept of integrating business processes supplied by
external partners into the enterprise, as outsourced business functions that
are paid for on a utility-based structure. Service-oriented architecture allows
each of the outsourced services to be integrated into the overall architecture
as a service with a well defined interface contract. This supplies integration,
management and operability advantages for both the service provider and
service consumetr.

Chapter 10. e-business on demand and Service-oriented architecture 303

» On demand operating environment

IBM has been an early advocate of open standards, leading with Linux and
Web services. IBM also maintains an industry leading family of middleware
products, which are critical to business process integration, workflow and
systems management, and data and content management. IBM provides a
broad portfolio of storage and server offerings, which can scale instantly, add
capacity and processing power on the fly, and which possess advanced
self-managing capabilities. Finally, IBM is leading the industry charge to
reduce IT complexity through autonomic computing initiatives, and is driving
business adoption of Grid computing as the next evolution of the Internet,
allowing companies to more easily tap into Web-based applications to share
distributed computing resources.

For an organization to successfully attain and maintain an on demand
business, it must build an IT infrastructure that is designed to specifically
support the business’ goals. The rest of this chapter focuses on this
infrastructure, the e-business on demand operating environment, and how it
can be supported using a service-oriented architecture.

For more information related to IBM’s on demand vision and strategy, please visit
the IBM on demand home page:

http://www.ibm.com/ondemand

10.2 The on demand operating environment

304

So what is an on demand operating environment? It is not a specific set of
hardware and software. Rather, it is an environment that supports the needs of
the business, allowing it to become and remain responsive, variable, focused,
and resilient.

An on demand operating environment unlocks the value within the IT
infrastructure to be applied to solving business problems. It is an integrated
platform, based on open standards, to enable rapid deployment and integration
of business applications and processes. Combined with an environment that
allows true virtualization and automation of the infrastructure, it enables delivery
of IT capability on demand.

An on demand operating environment must be:

» Flexible
Self-managing
Scalable
Economical

>
>
>
» Resilient

Patterns: Service-Oriented Architecture and Web Services

http://www.ibm.com/ondemand

» Based on open standards

Table 10-1 provides some examples of how a service-oriented architecture can
support these characteristics of an on demand operating environment.

Table 10-1 Relationship between the on demand operating environment and SOA

on demand
operating
environment

Service-oriented architecture

Flexible

Discoverable: The needed service can be found at design time or
at runtime, not only by unique identity but also by interface identity
and by service kind. This permits the architecture to be flexible and
responsive to change, both in the business process and to other
services.

Self-managing

Although services in themselves are not self-managing, the SOA
infrastructure and middleware can provide self-management
capabilities when using products such as IBM WebSphere and
Tivoli®.

Scalable

Interface-based design: Multiple instances of services can be
provided to enable scalability and failover.

Economical

Single instance: An important goal of service-oriented architecture
is to identify and establish single, always running instances of the
required business services. This avoids inefficient duplication of
business function around the enterprise.

Resilient

Coarse-grained: Operations on services are frequently
implemented to encompass more functionality and operate on
larger data sets. Architectures relying on complex, fine-grained
interactions tend to be more fragile.

Asynchronous: SOAs can use asynchronous messaging to
improve the resilience of the business process.

Based on open
standards

Loosely coupled: Services can interact with other services and
service consumers independently of programming language,
protocol, or platform. This flexibility is enabled with Web services,
for example, through the use of open standards such as XML,
SOAP, and HTTP.

IBM provides on demand operating environment offerings that can be
categorized into three primary areas:

» Integration: Provides the facilities to gain a unified view of processes, people,
information, and systems

Chapter 10. e-business on demand and Service-oriented architecture 305

» Automation: Overcomes the complexity of systems management to enable
better use of assets, improved availability and resiliency, and reduced
operating costs

» Virtualization: Simplifies deployment and improves use of computing
resources by hiding the details of the underlying hardware and system
software, allowing for consolidation and the ability to adapt to changing
demand

The value of the on demand operating environment is in the ability to dynamically
link business processes and policies with the allocation of IT resources using the
offerings across all of these categories. In the on demand operating environment,
resources are allocated and managed without intervention, enabling resources to
be used efficiently based on business requirements. Having flexible, dynamic
business processes increases the ability to grow and manage change within the
business.

o~

Flexible, dynamic Business policies drive
business processes IT resource allocation

Auiormziion Virtialization

Assets used Resources allocated
efficiently based and managed

on business S——_—" dynamically without
requirements intervention

Figure 10-2 Overview of an on demand operating environment

Figure 10-3 on page 307 provides an overview of the key components of an on
demand operating environment. We look at each of these categories in relation
to service-oriented architecture next.

306 Patterns: Service-Oriented Architecture and Web Services

Integration of People - Process - Information
Anywhere, Anytime, from Any Device

: Transactional Information
Collaboration @ @

Autornaiion

Availability Optimization

Virtualization Engine

Distributed

ko]

o}

§ Application Development, Deployment & Maintenance
1

3

& Business

ke Objectives

% and Policy-Based Orchestration

(“;') Policies

<

S

@)

Viriuali£:ition

Figure 10-3 Key components

10.2.1 Integration

Integration is the efficient and flexible combination of resources to optimize
operations across and beyond the enterprise. Integration crosses people,
processes and information, and although not a new concept, the value of
investing in such integration, and the ability to apply the technologies and
products that truly enable such integration, has never been higher.

People

The IT environment must enable the business to interact with employees,
customers, business partners, and suppliers by supporting integrated business
processes, collaboration, and data sharing. No matter the role of the user, the
operating environment must:

» Simplify the end-user experience.
» Provide secure, role-based interactions.

» Standardize access to applications.

Chapter 10. e-business on demand and Service-oriented architecture 307

308

» Allow users access to the processes and data they require anytime and
anyplace.

Let us review the above criteria in the context of a service-oriented architecture.

Simplify end-user experience

An on demand operating environment provides the tools and facilities to make
employees more productive, and to make it easier for customers, suppliers, and
partners to do business with the company.

In a fast changing business environment, it is important for the underlying
business systems to be adaptable to changes in the business process.
Applications, internal departments, and partner systems need to be integrated to
the enterprise to support the end-to-end process, with as little effort and
complexity as possible. Using a service-oriented architecture to separate the
interfaces of applications and systems it is possible to implement, replace or
revoke services with minimum impact to the user experience. The enterprise can
be extended to include support for business partner systems by agreeing on a
well defined interface contract, independently of the implementation approach
and underlying platform.

Secure role-based interactions

Providing people with what they need, when they need it, requires a solution that
includes integrated, role-based policies. Such facilities help ensure privacy and
the protection of data and resources while meeting the dynamic demands of the
users.

By implementing a layered service-oriented architecture, a common interface is
used by all applications and services within the enterprise for access: The
service bus. With a more traditional enterprise architecture the security is
generally implemented either on the front end, or as a complex implementation of
components distributed across the entire system with a high degree of
dependency on each other. It becomes difficult to maintain consistent security
policy across individual applications. Through the implementation of an SOA and
a security service layer, such as WS-Security, a common role-based security
model can be introduced independent of the underlying applications. Additionally,
this model allows changes in business security policy without any change
required to or impacting the underlying individual applications and integrations.

Standardize access

As the business changes to meet market pressures, new applications must be
made available to enable users to become productive without extensive training.
By providing standardized interfaces to applications and using facilities such as
portals to gain access to applications, users can quickly adapt to new

Patterns: Service-Oriented Architecture and Web Services

applications. This will also ensure that resources within the company can quickly
be redeployed as necessary to meet changing demands.

This is achieved by separating the presentation logic from the underlying
applications and data storage. SOA provides a presentation layer between the
user and the underlying services. This way all presentation logic is decoupled
from the functions supplied and the associated data. Services are also reusable
by any number of different user interfaces, based on a single service interface.

Access to required processes and data

Whether using a desktop system, laptop, or other devices, such as ATMs, PDAs,
cell phones, and so on, users demand access to applications and information
from anywhere at anytime. An on demand operating environment provides a
secure, yet flexible infrastructure to support local, remote, and mobile users
through whatever devices they might be using.

By extending the presentation service layer described above, the
service-oriented architecture adopted by the enterprise can be tailored to
support new requirements for client type support, with no changes required to
any of the existing business systems.

Processes

Business can no longer afford to develop and maintain isolated, vertical business
processes. An on demand business must manage and coordinate the entire
enterprise horizontally, and the IT infrastructure needs to be an enabler not a
barrier. An on demand operating environment supports:

» A consistent modelling of business processes
» Integration of applications

» External connectivity

Now let us review the above criteria for processes’ support within an on demand
operating environment in the context of a service-oriented architecture.

Consistent modeling

By providing a consistent model of business processes, you can more easily
adapt applications as the business needs change. Consistent modelling is
independent of underlying product implementations; therefore, the model can
persist even when more cost-effective products might be chosen on which to
build the solution.

Modeling a business process in a way that is abstracted from the implemented
technologies makes it easier to adapt to changing business conditions. Using a
consistent modeling approach simplifies communication between all parties

Chapter 10. e-business on demand and Service-oriented architecture 309

310

involved in the business process. In addition, models can be shared between
partners without dictating the development tools or runtime environment that
each of the partners in the process must use. The service-oriented approach
facilitates the use of tools for implementing a business process from a model
defining how a set of services needs to be orchestrated and composed.

Integration of application

It is no longer practical to build vertical solutions in a vacuum, independent of,
and without consideration of, other applications in other parts of the business.
Just as a business must integrate all of its business processes to run more
efficiently and be responsive to changing demands, an on demand operating
environment provides the infrastructure needed to allow applications to be
integrated by using common standards and open technologies. As new,
unforeseen opportunities and requirements surface, applications that previously
might have seemed unrelated will need to be quickly and efficiently integrated.

The Enterprise Service Bus concept, covered in “Enterprise Service Bus” on
page 38, will be a key enabler for this requirement. It provides the ability for all
applications, both intra- and inter-enterprise to appear on the network as a set of
services, through the use of well defined interface contracts based on industry
standard technologies.

Another dramatic benefit of the Enterprise Service Bus is the ability to leverage
legacy systems. We can integrate existing legacy systems into the SOA by
wrapping these systems in a well structured interface contract, with minimal
changes to the legacy system applications.

External connectivity

By conforming to standards, applications and processes can be connected to
other external applications and processes. As the business changes, new
partners arise, or mergers occur, the cost and time associated with rewriting
applications or redesigning processes to be compatible with existing tools is
unacceptable in an on demand world. By planning for and enabling the
integration and interconnectivity of applications as provided in an on demand
operating environment, the business can be more responsive to changes as they
occur.

Just as with the integration of applications within the enterprise as defined in
“Integration of application” on page 310, the principle can be extended to support
the integration of applications published as services by business partners and
other external entities with minimal requirement for additional development effort,
allowing for a faster response time to changes and new demands.

Patterns: Service-Oriented Architecture and Web Services

Information

Information integration enables real-time access to diverse and distributed
information across and beyond the enterprise. Information can reside in multiple
source systems (Oracle databases, Microsoft spreadsheets, flat files, and so on)
and be distributed across a variety of operating environments (Microsoft
Windows NT, Linux, UNIX, z/OS®, for example). By better integrating
information, organizations can increase efficiencies, better serve customers and
suppliers, make better decisions, and respond more quickly to new opportunities
or threats.

The on demand operating environment provides:
» A greater range of information access strategies to best match business value

» Access to diverse and distributed information as though it were in a single
source, whether or not it is

» Data consolidation

Again, let us review the above criteria for information in the context of a
service-oriented architecture.

Greater range of information access strategies

An on demand environment must allow companies to either consolidate
information onto a single platform or to access the data in place depending on
business needs.

Whatever strategy the business defines for accessing data and information inside
and outside of the enterprise, the underlying architecture and infrastructure must
support access in a heterogeneous environment containing a large number of
applications and data stores. To facilitate this requirement, the on demand
operating environment needs to be able to dynamically locate, extract and
manipulate information on a just-in-time basis.

The Enterprise Service Bus approach, discussed in “Enterprise Service Bus” on
page 38, will be a key enabler for the on demand requirement to supply the
enterprise with a comprehensive data access strategy.

Access to information

An on demand environment enables data and content to be accessed
independently of its location or platform. This allows for access to real-time
information, information that resides outside of the enterprise, and information
that cannot be moved. The ability to access data without impact to the existing IT
infrastructure enables corporations to gain greater return on existing information
assets.

Chapter 10. e-business on demand and Service-oriented architecture 311

The ability to introduce new sources of information or data without impacting
existing applications, and within a reduced time scale, is imperative to ensure
that the organization can respond with speed to any customer demand, market
opportunity, or external threat.

The service-oriented architecture approach allows applications or data stores to
be wrapped as a service and made available for invocation by any other service.
The enterprise is then able to rapidly gain access to new information and data
when required, with minimal impact on the existing applications.

Data consolidation

Where data needs to be consolidated for greater performance and availability, an
on demand environment provides data placement management. This allows
information to be consolidated or cached when business requirements demand
it.

To better understand the value of a service-oriented architecture when
discussing data consolidation within an on demand operating environment, it
would be easiest to review each of the above mentioned alternatives for data
placement management independently.

» Consolidation. The consolidation of data to a central repository is not unique
to the on demand operating environment. As organizations extend through
mergers and acquisitions, the requirement to merge independent data
repositories such as customer and employee information becomes a
necessity.

Although a service-oriented architecture will not supply any direct support for
the management of data consolidation or tools for data migrations, it will
supply a robust infrastructure to enable the enterprise to rapidly deploy new
information and data sources to be harvested for consolidation.

» Caching. In situations where the information in question resides outside of the
enterprise and/or is for reference or regarded as volatile data, it would
generally be more appropriate to locally cache the data for a defined length of
time or until no longer valid. Let us consider the standard Web services
example of a stock quote request. Unless the data was regarded as part of
the core business function, it would be unrealistic or impractical for the
enterprise to locally manage a repository of constantly changing stock values,
and advisable to request the current values of a complete portfolio from the
external supplier when required and on demand. The retrieved data could
then be cached locally until expired or invalid, to facilitate a faster response
time for subsequent requests by other users or for other values of the
currently cached portfolio.

312 Patterns: Service-Oriented Architecture and Web Services

IBM integration offerings
IBM offerings in the area of integration include:

» IBM Collaboration Portal Offering: A security-rich, enterprise-wide
collaborative portal that enables employees to do their work from anywhere,
at anytime, faster and more effectively.

» IBM Business Integration Offering: Allows companies to integrate their
business more effectively, connect with their value chain more efficiently, and
adapt business processes dynamically.

» IBM Information Integration Offering: Enables businesses to access diverse
and distributed information across and beyond the enterprise. Consolidating
information into a single database near the application is the de facto
standard for new application development. However, when there is wide
diversity in the data accessed, the IBM Information Integration Offering lets
you leave data where it is, yet access it transparently as though it were a
single database.

10.2.2 Automation

Automation is the capability to dynamically deploy, monitor, manage, and protect
an IT infrastructure to meet business needs with little or no human intervention.

Automation blueprint

IBM has created an Automation blueprint, as shown in Figure 10-4 on page 314,
to assist customers in breaking down the tasks of implementing automation into
specific capabilities that they can focus on as their business needs require.

Chapter 10. e-business on demand and Service-oriented architecture 313

314

Business Driven Service Management

Billing/Metering - Service Level Management - End-to-End Business Process Management

Policy Based Orchestration

Availability
Virtualization
Software Resources System Resources

= Powered by Autonomic Computing

Figure 10-4 IBM Automation blueprint

At the bottom of the blueprint is the foundation: The software and system
resources with native automation capabilities required for higher-level automation
functions. IBM has a full portfolio of hardware and software with built-in
autonomic capabilities to allow for the most advanced levels of automation. Many
of these resources can be virtualized to the other capabilities. The key point is
that in order to achieve the highest levels of on demand automation, resources
need to be virtualized so that they can be dynamically provisioned as business
policies require.

The second layer from the bottom shows the key automation capabilities.
Availability helps ensure that systems are available 24x7. Security keeps
systems protected from threats and provides the functions for a great user
experience in accessing applications and data they need while keeping out
unwelcome users. Optimization provides tools to make the most of the resources
that are in place so that they are running at peak performance and efficiency and
provide the maximum return on investment. Provisioning focuses on the
self-configuring, dynamic allocation of individual elements of the IT infrastructure
so that identities or storage or servers are provisioned as business needs dictate.

The next layer, Policy-Based Orchestration, helps customers automatically
control all the capabilities of the four areas we just discussed so that the entire IT
infrastructure is responding dynamically to changing conditions according to

Patterns: Service-Oriented Architecture and Web Services

defined business policies. This orchestration builds on the best practices of the
customer’s collective IT experience and helps to ensure that complex
deployments are achieved with speed and quality.

Finally, Business Driven Service Management capabilities provide the tools
needed to manage service levels, meter system usage and bill customers for that
usage, as well as model, integrate, connect, monitor, and manage business
processes end-to-end for complete linkage of IT and business processes.

Autonomic computing and automation

There has been a lot of discussion within the industry about autonomic
computing. So far we have introduced automation as one of the key goals of an
on demand operating environment. It is natural to ask the question, “What is the
difference between autonomic computing and automation?”

Automation is the goal, the benefit customers will achieve, and autonomic
computing is the discipline and enabling technology that gets you there.
Autonomic computing is the driver for the development of advanced technologies
(autonomic technologies) that are embodied by the IBM automation offerings, as
well as other products.

Autonomic computing provides the technology to enable information systems to
be self-managing. These self-managing characteristics combine to deliver the
automation required of an on demand operating environment. Autonomic
technologies are the “inside” components, and automation is the end result that
is visible “outside” to the user.

Autonomic computing is a fundamental underpinning for automation offerings.

Automation requirements

An on demand operating environment provides automated capabilities to
address policy-based orchestration and provisioning.

Policy-based orchestration is all about providing an end-to-end IT service that is
dynamically linked to business policies, allowing the ability to adapt to changing
business conditions. Having each individual element of an IT system respond to
change is definitely a great start, but in the end, to truly be an on demand
business requires orchestration of the automation of multiple elements of the
systems so that the entire IT infrastructure is responding as it should to changes
in business policies or conditions. For example, if a customer’s order entry
application suddenly experiences a surge in load, just allocating more CPU may
not be enough; it may also need additional storage, more network capacity, and
even additional servers and new users to handle the increased activity. All of
these changes must be orchestrated so that the dynamic allocation of multiple
resource elements occurs seamlessly. The policy-based orchestration

Chapter 10. e-business on demand and Service-oriented architecture 315

316

component of the on demand operating environment works across the following
areas:

v

Provisioning
Availability
Security
Optimization

vvyy

It is important to understand that automation within an on demand operating
environment is predominantly obtained through the correct implementation of
hardware and management services such as orchestration provisioning
software. Where a service-oriented architecture can deliver additional
advantages in the area of automation within the on demand operating
environment, is in supplying a robust architecture and infrastructure to ensure
that the business can change it's response from “just in case” provisioning,
where expensive resources such as backup systems for disaster recovery sit idle
until needed, to “on demand” provisioning, in which resources that support lower
priority work can be re-purposed to meet urgent needs of higher priority work in
minutes.

Let us take a closer look at the key areas of the automation component within the
on demand operating environment.

Provisioning
Provisioning is the end to end capability to automatically deploy and dynamically

optimize resources in response to business objectives in heterogeneous
environments.

Provisioning helps to respond to changing business conditions by providing the
ability to dynamically allocate resources to the processes that most need them,
driven by business policies. Provisioning of individual elements, such as
identities, storage, servers, applications, operating systems, and middleware, is a
critical step to being able to then orchestrate the entire environment to respond to
business needs, on demand.

Availability

Availability means systems have to be available 24 hours a day, 7 days a week,
365 days a year to meet the requirements of global business. To meet that
requirement without employing huge amounts of human capital, automation can
help by monitoring your systems and automatically taking actions to maintain
high availability without human intervention, before issues become problems.

To provide the kind of infrastructure that supports an on demand business
requires a complex set of underlying technologies. However, to support a flexible
and responsive business, the components must be able to be reconfigured,

Patterns: Service-Oriented Architecture and Web Services

managed, and applied to the business objective. This task is immensely complex
and cannot be accomplished without automation.

Security

Security is the ability to ensure the business is protected from threats, that the
right users get to the right information at the right time, and that the automation
that helps these functions occurs without expensive help desk or administrator
attention. As businesses open up to potentially millions of users, it is critical that
welcomed users are identified and provided with highly satisfying user
experiences. It is equally critical that unwelcome users are also identified and
prevented from accessing systems, causing damage, or even stealing other
users’ information. Security is certainly a key focal point of most businesses
today.

Optimization

Optimization helps businesses make the best use of their existing resources and
helps ensure all resources are running at peak performance and efficiency. It is
critical to make the best use of the resources they already have, so we focus
heavily on heterogeneous, cross-platform support that integrates with what is
already installed. Tight IT budgets and the need to respond quickly drive
businesses to insist that their current investments are optimized.

As with integration and virtualization, automation is not a new concept. But an on
demand operating environment requires new levels of automation that can
provide the flexibility and responsiveness to support an on demand business.

IBM automation offerings
IBM offerings in the area of automation include:

» IBM Optimization Offering for zSeries®: provides a highly automated
environment for WebSphere workload management with IBM eServer zSeries
and z/OS.

» IBM iSeries™ Enterprise Edition: Incorporates a set of software licensing and
hardware features designed to help meet the particular demands of a small,
medium or large enterprise, with services and educational vouchers to help
get started quickly. The iSeries provides an on demand environment capable
of running multiple operating systems simultaneously and dynamically
adjusting to changing requirements.

» IBM User Provisioning Offering: Extends identity management to incorporate
automated provisioning of identities and central enforcement of access
control.

» IBM Web Server Provisioning Offering: Delivers infrastructure automation,
including Web infrastructure monitoring driving automatic provisioning;

Chapter 10. e-business on demand and Service-oriented architecture ~ 317

“Agnostic” network and storage hardware requirements (subsystems and
SAN); protection against server failures and data loss and is integrated with
the IBM middleware stack.

» IBM Storage Provisioning Offering: Provides an intelligent console with a set
of business policy driven automated tools for managing storage capacity,
availability, events and assets in an enterprise environment. It can help
identify, evaluate, predict and control storage management assets. It can
detect potential problems and automatically make adjustments based on
business policies and actions defined.

» IBM Availability Management Offering: Enables management of IT resources
within the context of business priorities, managing the availability and
performance of critical business systems and web environment. Monitoring
your infrastructure and pro actively avoiding system failures and taking
automated actions to resolve potential problems.

» IBM Security Event Management Offering: Extends the value of traditional
systems event management with the inclusion of security events, providing a
holistic view of the health of the IT infrastructure and helping you actively
monitor, correlate and quickly respond to IT security threats across your
business.

» IBM Tivoli Autonomic Monitoring Engine Offering: Delivers self-healing
capabilities today by delivering a set of IT resource monitors that incorporate
automated best practices to detect errors and an underlying engine that
analyzes errors, correlates into root cause and initiates corrective action.

10.2.3 Virtualization

318

Virtualization is the process of presenting computing resources in ways that
users and applications can easily get value out of them, rather than presenting
them in a way dictated by their implementation, geographic location, or physical
packaging.

By providing an on demand operating environment where resources can be used
efficiently based on business requirements, virtualization can improve working
capital and asset utilization.

From the service-oriented architecture perspective, virtualization is provided in
the location transparent and loosely coupled interface specifications. The overall
business system is no longer dependant on the implementation, location or
packaging of a service, but rather the interface contract to which the application
or service can be invoked.

Let us look at how virtualization enables the sharing of resources.

Patterns: Service-Oriented Architecture and Web Services

Servers

By building an environment where the hardware and systems software are
hidden from the users and applications, servers can be shared across business
units, processes, and applications, allowing for consolidation.

Storage

Providing access to data, regardless of its physical location or file structure,
provides economies through cost-effective storage media and more efficient data
sharing.

Distributed systems

Taking advantage of advances in distributed systems such as grid computing
allows resources across the enterprise (individual systems, servers, clusters, and
storage devices) to be shared and dynamically allocated to meet business
needs. This dynamic allocation allows for higher utilization of resources, resulting
in costs savings, as well as increased capability to meet unforeseen processing
requirements by allocating available resources on demand.

Networking

As the world has become networked together through the Internet, it is critical to
be able to manage and control portions of the network, which might even be
shared between among different enterprises, as individual or virtual networks.
This includes technologies such as VPNs, VLANS, IP virtualization, Web services
gateway and more.

In an on demand operating environment, virtualization of resources within the IT
infrastructure provides many benefits. Where the underlying hardware and
system software is hidden from the users and applications, an open
standards-based infrastructure can be deployed to simplify:

» Systems administration: Rather than having individual servers dedicated to
specific applications, and therefore specialized support staffs, virtualization
allows for a common environment that can simplify the overall administration
requirements, while allowing resources to be allocated as needed by the
business.

» Asset portfolio management: An on demand operating environment provides
a common environment for running applications, while maintaining
independence from underlying hardware and systems software. In this
environment, assets can be easily managed, changed, and reallocated
without requiring changes to the applications. Likewise, applications can be
modified and enhanced to meet business needs without necessarily requiring
changes to the underlying systems. If additional computing power or storage
is required, it can often be provided through available resources.

Chapter 10. e-business on demand and Service-oriented architecture 319

» Cost structure: By utilizing virtualization to dynamically allocate system and
storage resources, the overall cost of hardware and software can be
controlled.

Overall, a virtualized environment provides simplified access to data and IT
resources on demand. Idle capacity can be used to meet unforeseen demand
and to reduce the need to purchase additional hardware and software. The
savings realized from reduced capital expenditures can be reinvested in other
areas to help grow the business.

Virtualization in different forms has been around for at least 40 years, dating back
to the days of the S/360™. However, with the maturing of grid technologies and
SANSs, we are now moving from the days of virtual storage or even virtual
machines to virtual computing environments, allowing businesses to gain even
larger financial and business advantages.

IBM virtualization offerings
IBM offerings in the area of virtualization include:

» |IBM TotalStorage® Virtualization Family: Helps customers with complex
storage environments, who are looking to mask complexity and share storage
capacity across heterogeneous systems, reduce their management and
operational costs.

» IBM Entry Virtualization Server Offering: Designed to target customers who
need to simplify their IT infrastructure as a first start toward the virtualization
of their IT resources.

» IBM Server Allocation for WebSphere Application Server: Maximizes
utilization of existing computing resources. This offering provides the
capability to dynamically provide workload management of multiple
applications across multiple server clusters, a first for any application server
product.

» IBM Grid Offering for Analytic Acceleration - Financial Markets: Helps
enhance competitiveness and agility in the financial trading market. IBM uses
a comprehensive approach to help determine the most appropriate
combination of technologies for analytic acceleration in financial services.

10.3 Service-oriented architecture for on demand

320

So far we have taken a high level view of IBM’s e-business on demand vision and
strategy “The new agenda”, followed by a closer look at the on demand operating
environment, and the associated offerings provided by IBM. Next, we will

investigate how we can implement an on demand operating environment using a
service-oriented architecture, and the appropriate IBM on demand technologies.

Patterns: Service-Oriented Architecture and Web Services

Figure 10-5 shows how the characteristics of a service-oriented architecture
support the on demand operating environment by supplying a flexible underlying
architecture and infrastructure.

Architectural
Characteristics

o Self-contained

o Modular

e Interoperability

o Loosely coupled

o Location transparent

Virgiidlization Autormziion

Figure 10-5 Supporting the on demand operating environment with SOA

The service-oriented architecture supports the three categories of the IBM on
demand operating environment (integration, virtualization and automation) as an
integrated unit spanning the complete enterprise system. By implementing a
service-oriented architecture that is flexible, self-managing, scalable,
economical, resilient and based on open standards, we can assist the enterprise
in becoming:

» Responsive
» Variable
» Focused

Let us start by taking a look at the landscape of today’s business environment.

10.3.1 The starting point

In many enterprises of today, applications are tightly coupled, component

oriented, with a high dependency on each others deployment characteristics,
and have a strong requirement to be aware of the location and platform of all
other integrated information providers. Often implemented as vertical silos to

Chapter 10. e-business on demand and Service-oriented architecture 321

facilitate the business functions of individual departments, and then if required,
replicated across departmental and organizational boundaries. These
applications frequently drive the business and a number of management
capabilities such as customer relationship management, value chain
management and enterprise resource management, among others.

As already said, for the enterprise of today to survive, there is a necessity to not
only integrate these business systems end-to-end across the company, but also
with suppliers, distributors and customers. But in a rapidly changing market, the
integration of all enterprise systems both vertically and horizontally is no longer
sufficient, and the business will have to be able to adapt to meet demands from
both clients and competitors without having to be concerned about the affect this
change will have on the health of the supporting IT systems. In a heterogeneous
environment of partner systems, legacy systems, packaged applications and
in-house developments, the ability to maintain the health of your supporting IT
infrastructure and business systems requires a robust architecture. It must
supply a stable and structured framework to support the new on demand
business, and its operating environment.

10.3.2 Building the on demand operating environment

322

So the business has been streamlined by defining the business rules and
mapping them to processes that can respond dynamically to changes in your
market. The business has defined the new processes that will allow it to control
cost across the entire value chain, and stay focused on its core business.

The next step is to define the new environment that is required to support the
needs of the transformed business - the on demand operating environment. But
just as with the business in general, building the on demand operating
environment requires changes in all aspects of IT, from architecture,
development, deployment to the ongoing maintenance. The key to starting the
transformation to the new operating environment is to first evaluate how well your
applications and infrastructure are working across the enterprise today, and
determine if there are other better ways of doing things:

» Are your key business processes duplicated vertically across the enterprise?

» Are applications tightly coupled with heavy dependencies with each other,
leading to large, costly and risky development should you want to replace one
of the applications or change your business processes?

» Will acquisitions or mergers with new partners create complex integration
issues, that could have a detrimental impact on your market position giving
advantage to your competition?

» Can your operating environment and IT infrastructure respond dynamically
with your business to changes in market forces—whether that is customer

Patterns: Service-Oriented Architecture and Web Services

needs, supply issues, competitive pressure or something completely
unexpected?

But how do you evolve from an IT infrastructure optimized for departmental
processes to one that is optimized to support the organizational processes? This
is especially difficult when you are dealing with different departmental
applications, infrastructure components, application languages, operating
systems, servers platforms and storage devices.

In the end you are faced with two options. Rip everything out and replace it all
with a new single environment and infrastructure, and then insist that every
department within the organization, and every integrated supplier, business
partner and potential new acquisitions commit to doing the same.

Alternatively, you can commit to using open industry standards such as Web
services and service-oriented architecture, starting out with an appropriate
subset of your infrastructure. By implementing an on demand operating
environment using a service-oriented architecture, the business can create a
level of abstraction between the business process and the technology
implemented to support it. Additional by deploying the business functions already
supported by existing applications as services with a well defined interface
contract, it is possible to separate the physical implementation and location of
that service from its published interface.

From the perspective of building the on demand operating environment, it is
beneficial to separate it out into the following parts:

» The systems environment: The environment that allows true virtualization and
automation of the infrastructure and enables delivery of IT capability on
demand. In other words, the infrastructure and hardware.

» The application environment: The integrated platform based on open
standards, to enable rapid deployment and integration of business
applications and processes. In other words, the software.

» Ultility services: Outsourcing infrastructure, business processes and non-core
business functions. In other words, stay focused on what the business does
best.

The systems environment

The basic fact is that delivering on demand flexibility requires the infrastructure of
today to undertake the next step in the on demand evolution. The systems
environment of the client/server era where standalone units with under utilized
processing power, over-sized storage capabilities and complex system
administration is gone. The new on demand environment relies on just in time
provisioning of storage capacity and processor power, by using virtualized
storage to manage application and storage growth.

Chapter 10. e-business on demand and Service-oriented architecture 323

The application environment

This is where the key benefits of a service-oriented architecture can be realized.
As any organization that is attempting to integrate their existing applications,
information systems, processes and partners will know, this is a challenging,
costly and often risky process. Using a service-oriented architecture can greatly
simplify the integration of these applications, information and components. The
Enterprise Service Bus, discussed in “Enterprise Service Bus” on page 38, is a
key service-oriented architecture best practice for enabling the on demand
operating environment.

Utility services

The third part of the IBM e-business on demand operating environment is the
ability to deliver the infrastructure and business processes as a service. By
outsourcing both the non-critical systems and business processes, the enterprise
is left with a smaller and more streamlined IT infrastructure. Using the open
standards of a service-oriented architecture, the enterprise is capable of
integrating services to support their business functions, such as human
resources and customer relationship management, from external suppliers
rapidly with limited impact to existing business systems.

Combine and deliver a three with a service-oriented architecture, and you have
created the first iteration of your enterprise e-business on demand operating
environment.

For further information on the service-oriented architecture approach, please
Chapter 4, “Service-oriented architecture approach” on page 79.

10.3.3 On demand technologies

324

There are many technologies, both new and still evolving, that can make the on
demand operating environment a reality. It needs to be understood that the on
demand operating environment is about a broad set of standards working
together to provide a consistent and comprehensive set of facilities.

IBM’s product portfolio now spans five brands which can supply the support
required to deliver an on demand service-oriented architecture. Rational
provides a powerful set of modeling and development tools; Tivoli includes
systems and application management; Lotus brings collaborative services; DB2
adds information integration and data management; while WebSphere provides
the foundation for managing transactions and messages, reliably and securely.

In the following sections, we describe some of these technologies and how they
apply to on demand computing.

Patterns: Service-Oriented Architecture and Web Services

Web services

Web services are becoming the standard way to implement a service-oriented
architecture. They provide the facilities needed to access corporate data, legacy
transaction systems, and new business applications based on standards, such
as J2EE, XML, and SOAP. Because of the strict use of standards based
interfaces, various Web services can be combined to generate new, integrated
applications quickly from existing components.

Grid computing

Grid enables the virtualization of widely distributed computing resources, such as
processing, storage capacity, data, and network bandwidth, to create a single
virtual system, granting users and applications seamless access to vast IT
capabilities. Put simply, grid enables customers to get more business value out of
what they own.

Through open technologies such as the Globus Toolkit for grid computing and
emerging standards such as OGSA and OGSI, grid computing is no longer
applicable to only scientific and research projects. Businesses can now seriously
look at grid computing as a way to get higher utilization out of their computing
and storage resources efficiently and cost effectively. Grid computing enables the
dynamic reallocation of resources to meet spikes in demand or changing
business requirements.

Autonomic capabilities

Autonomic capabilities are being developed and integrated with hardware and
software products across IBM product lines. Autonomic capabilities are
considered an elemental capability that can be used to automate activities for
desired business outcomes.

Autonomic capabilities can generally be categorized in the following four areas.

Self-configuring

The ability to dynamically configure components “on the fly” and initialize them in
the context of the overall system; this includes the ability to influence relevant
changes in other products in the environment.

Self-healing

The ability to recover from a failing component by first detecting improper
operations (either proactively through predictions or otherwise) and then initiating
corrective action without disrupting applications.

Self-optimizing

The ability of systems or components to efficiently maximize resource allocation
and utilization to meet end-user needs without human intervention.

Chapter 10. e-business on demand and Service-oriented architecture 325

326

Self-protecting

The ability of a component to detect hostile or intrusive behavior as it occurs and
take autonomous actions to make itself less vulnerable.

Information integration

Information integration can take on many forms, from federated databases to
content management systems.

Federated databases allow data stored in various database and file systems to
be accessed through a common interface such as SQL, hiding the complexity of
the environment and the actual location of the data. Using such technologies aid
the integration of applications and provides location transparency.

Content management systems enable users and applications to easily find and
manage the data they need to perform their jobs.

Blade computers

Blade computers allow large numbers of server class computing resources to be
tightly packed into small places. This provides more efficient and cost effective
use of space, as well as making it easier to physically manage a large number of
servers. Using blade computers is one form of consolidation. By utilizing various
virtualization and autonomic technologies, these computers can be efficiently
reconfigured and reallocated to meet changing demands.

Pervasive device support

Products such as IBM WebSphere Everyplace® Access simplifies wireless for
the enterprise. In one package, it delivers the technology needed to give mobile
users access to productivity data and enterprise applications from virtually
anywhere, at any time. It supports multiple devices such as PDAs and
smartphones from a single platform, based on open standards.

IBM products and software for on demand

IBM has broad product support for the on demand operating environment. At the
core of IBM’s middleware platform for the support of integration and the
Enterprise Service Bus is the WebSphere Application Server and WebSphere
MQ, but there are many more.

IBM WebSphere

Together with WebSphere Studio Application Developer, WebSphere Application
Server delivers an application server and development environment designed to
help the enterprise to deliver e-business applications to run in an on demand
operating environment. The WebSphere product family is built on an open
standards based platform that supports the J2EE standards, XML, SOAP, UDDI,
WS- profiles and the construction of a service-oriented architecture.

Patterns: Service-Oriented Architecture and Web Services

IBM WebSphere MQ connects the enterprise both internally and with external
partners to exchange and distribute information securely and reliably. It provides
an important alternative messaging transport when basic HTTP is insufficient.

To support the on demand operating environment, WebSphere offers
comprehensive solutions to address the following business issues:

» A strong foundation and tools to help reduce business risk
» Business portal software to strengthen business relationships

» Business integration software to optimize operations

For further information on IBM WebSphere software please visit the WebSphere
home page at:

http://www.ibm.com/websphere

IBM Lotus

IBM Lotus is one of the leading industry products for messaging and
collaborative support, as well as delivering document management, knowledge
discovery, workflow, e-learning and presence awareness.

By componentizing the core parts of the Lotus products and unifying access to
each of the components via a common service-oriented interface, the software
supplies a template based structure allowing the enterprise to rapidly define on
demand workplaces that fit a specific market segment or business need. These
enterprise workplaces can be rapidly deployed and integrated with limited impact
to the existing infrastructure, which allows the enterprise to react to market needs
and respond rapidly.

By using standard IBM development tools such as WebSphere Studio
Application Developer, the enterprise can build applications that utilize Lotus
based services such as workflow and instant messaging directly in the enterprise
system, via a single collaborative API.

For further information on IBM Lotus software please visit the Lotus home page
at:

http://www.ibm.com/Totus

IBM DB2 Information Management

The IBM DB2 relational database and associated tools such as the DB2
Information Integrator, can support the enterprises requirements for data
management and manipulation in a service-oriented architectural on demand
operating environment. With extended support for Web Services, DB2 and the
data stored within it can be accessed and invoked as a service based on a well
defined interface contract such as a WSDL.

Chapter 10. e-business on demand and Service-oriented architecture ~ 327

http://www.ibm.com/websphere
http://www.ibm.com/lotus

For further information on IBM DB2 please visit the DB2 home page at:
http://www.ibm.com/db2

IBM Tivoli Configuration Manager and Tivoli Access Manager

To manage the IT infrastructure within the on demand operating environment, the
enterprise must maintain a continual focus on:

» Improving productivity to maintain a competitive advantage
» Obtain new business insight from the existing IT infrastructure
» Build a resilient infrastructure that protects the business assets and data

But at the same time, reduce the number of required skilled resources to manage
the infrastructure and reduce the complexity of administration and maintenance.

The role of the IBM Tivoli product family is to manage and secure the on demand
operating environment. To do this, Tivoli offers the following solutions to address
the fundamental issues faced by the enterprise in managing the on demand
operating environment:

» Performance and availability
» Configuration and operations
» Security
» Storage
For further information on IBM Tivoli software please visit the Tivoli Software
home page at:
http://www.ibm.com/tivoli

328 Patterns: Service-Oriented Architecture and Web Services

http://www.ibm.com/db2
http://www.ibm.com/tivoli

Scenarios lab environment

In this appendix we describe the lab setup we used when deploying our WS-|
Supply Chain Management scenarios.

We then explain how to set up our WS-1 Supply Chain Management sample in
the IBM WebSphere Studio Application Developer development/test
environment.

© Copyright IBM Corp. 2004. All rights reserved. 329

Lab setup

Figure A-1 shows the lab environment we used when deploying our WS-I Supply
Chain Management scenarios described in Chapter 6 through Chapter 9.

The chapters covering each scenario are:

» Chapter 6, “HTTP service bus” on page 159

Chapter 7, “JMS service bus” on page 229

v

v

Chapter 8, “Service directory” on page 251

v

Chapter 9, “Web service gateway” on page 279

appsrvil
(Linux)

!

Logging
" Service

appsrvia

=) © (AIX)

SCM @ uDDI
SampleUl Registry

' 0
Retailer l l ngtSewice
Service \f ateway
'

' ® i —
Warehouse "
Service Manufacturer

Service
Warehouse U
CaIIb_ack entsrviw
Service W2
appsrviw
(W2K)

Figure A-1 Lab environment

Sample application setup

To install the WS-I Supply Chain Management sample application in the IBM
WebSphere Studio Application Developer V5.1 for Windows workspace:

1. Download the WS-I Supply Chain Management sample. See Appendix B,
“Additional material” on page 333, for details.

330 Patterns: Service-Oriented Architecture and Web Services

2. Extract the WS- Supply Chain Management sample to the required location,
for example, C:\ on Windows.

3. Stop WebSphere Application Server if it is running locally.

4. Start Application Developer using the -data option to specify the WS- Supply
Chain Management workspace folder. For example, on Windows:

wsappdev -data C:\workspace

5. Import the WS-I Supply Chain Management projects into your WebSphere
Studio workspace:

a. Select File -> Import from the Studio main menu.

b. Inthe Import window, select Existing Project into Workspace as the
import source and click Next.

c. Inthe next window, click Browse, then navigate to the Build project folder.
For example, on Windows:

C:\workspace\Build
Click OK, then click Finish to import the project.

d. Repeat steps a to c for each of the remaining WS- Supply Chain
Management projects:

LoggingFacility
LoggingFacilityEJB
LoggingFacilityJMS
LoggingFacilityWeb
Manufacturer
ManufacturerB
ManufacturerBEJB
ManufacturerBWeb
ManufacturerC
ManufacturerCEJB
ManufacturerCWeb
ManufacturerEJB
ManufacturerWeb
Retailer
RetailerWeb
SCMSampleUl
SCMSampleUIWeb
Servers

UDDIUtility
Warehouse
WarehouseWeb

6. Set up the service endpoint DNS names.

Appendix A. Scenarios lab environment 331

Our development environment consisted of a single machine running the
WS-I Supply Chain Management services in the WebSphere Studio test
environment.

You can use the sample application without modifying the WSDL endpoint
addresses if you add the entries shown in Example A-1 to your system hosts
file (<WINDIR>\system32\drivers\etc\hosts on Windows). Substitute
127.0.0.1 with the IP address of your WebSphere Studio machine, if needed.

Example: A-1 Sample application hosts file entries

7.0.0.1 appsrvla.itso.ral.ibm.com appsrvla
127.0.0.1 appsrvll.itso.ral.ibm.com appsrvll
127.0.0.1 appsrvlw.itso.ral.ibm.com appsrviw
127.0.0.1 entsrvlw.itso.ral.ibm.com entsrvlw

7. Generate the EJB deployment code:

a. Select, then right-click the LoggingFacilityEJB project, and select
Generate -> Deploy and RMIC Code from the pop-up menu.

b. In the Generate Deploy and RMIC Code window, click Select all to select
all the EJBs, then click Finish.

c. Repeat steps a to b for each of the remaining EJB projects:

¢ ManufacturerEJB
¢ ManufacturerBEJB
¢ ManufacturerCEJB

8. Start the Supply Chain Management Sample by right-clicking
SCMSampleUIWeb and selecting Run on Server....

The starting page for the Supply Chain Management Sample should appear,
as shown in Figure 6-36 on page 220.

332 Patterns: Service-Oriented Architecture and Web Services

Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material

The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246303

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG246303.

Using the Web material

The additional Web material that accompanies this redbook includes the
following files:

File name Description
$9246933.zip Zipped Supply Chain Management sample

© Copyright IBM Corp. 2004. All rights reserved. 333

ftp://www.redbooks.ibm.com/redbooks/SG246303
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

System requirements for downloading the Web material

The following system configuration is recommended:

Hard disk space: 20 MB

Operating System: Windows, AIX, Linux
Processor: 500 MHz Pentium, pSeries®
Memory: 512 MB RAM minimum

How to use the Web material

Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder.

334 Patterns: Service-Oriented Architecture and Web Services

Abbreviations and acronyms

B2B
API

BEEP

BPEL4WS

BPM

CcCl
CiCs

CICS TG
CORBA

Css
Cs-ws

DMZ
DNS
DOM
EA
EAI

EAR
ebXML

ECI
EDI
EIS

EJB
EPI

ERP

Business-to-business

Application Programming
Interface

Blocks Extensible Exchange
Protocol

Business Process Execution
Language for Web Services

Business Process
Management

Common Client Interface

Customer Information Control
System

CICS Transaction Gateway

Common Object Request
Broker Architecture

Cascading Style Sheets

Conversation Support for
Web Services

Demilitarized zone
Domain Name System
Document Object Model
Enterprise Architecture

Enterprise Application
Integration

Enterprise Archive

Electronic Business using
XML

External Call Interface
Electronic Data Interchange

Enterprise Information
System

Enterprise JavaBean

External Presentation
Interface

Enterprise Resource Planning

© Copyright IBM Corp. 2004. All rights reserved.

ESB
HTML
HTTP
HTTPS

IBM

IDE

llopP
ITSO

J2c
J2EE

JAR
JDBC
JMS
JNDI

JSP
JSR
JTA
JVM
LAN
LDAP

MQAI

MQSC
MvC
OAM
OLTP
ORB

Enterprise Service Bus
HyperText Markup Language
HyperText Transfer Protocol

HyperText Transfer Protocol
Secure

International Business
Machines Corporation

Integrated Development
Environments

Internet Inter-ORB Protocol

International Technical
Support Organization

J2EE Connector

Java 2 Platform, Enterprise
Edition

Java archive

Java database connectivity
Java Message Service

Java Naming and Directory
Interface

JavaServer Pages

Java Specification Requests
Java Transaction API

Java Virtual Machine

Local Area Network

Lightweight Directory Access
Protocol

WebSphere MQ
Administration Interface

WebSphere MQ Commands
Model-View-Controller
Object Authority Manager
online transaction processing
Object Request Broker

335

PDA
PKI
QoS
RACF®

RAR
RMI
SAX
SCM
SOA
SOAP

SSL
TPA
UBR
uDDI

URL
VAN
WAR
WAS

WLM
WSDL

WSFL
WS-I

wsIC

WSIF

WSIL

WSMF

XML

336

Personal Digital Assistant XSL
Public-Key Infrastructure
Quality of Service XSLT

Resource Access Control
Facility

Resource Adapter Archive
Remote Method Invocation
Simple API for XML

Supply Chain Management
Service-Oriented architecture

Simple Object Access
Protocol

Secure Sockets Layer
Trading Partner Agreement
UDDI Business Registry

Universal Description
Discovery and Integration

Uniform Resource Locator
Value Added Networks
Web Archive

WebSphere Application
Server

Workload Management

Web Services Description
Language

Web Services Flow Language

Web Services Interoperability
Organization

Web Services Choreography
Interface

Web Services Invocation
Framework

Web Services Inspection
Language

Web Services Management
Framework

Extensible Markup Language

Patterns: Service-Oriented Architecture and Web Services

Extensible Stylesheet
Language

Extensible Stylesheet
Language Transformations

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks

For information on ordering these publications, see “How to get IBM Redbooks”
on page 339. Note that some of the documents referenced here may be available
in softcopy only.

>

>

»

Patterns: Direct Connections for Intra- and Inter-enterprise, SG24-6933
Patterns: Broker Interactions for Intra- and Inter-enterprise, SG24-6075

Patterns: Serial and Parallel Processes for Process Choreography and
Workflow, SG24-6306

Patterns: Self-Service Application Solutions Using WebSphere Application
Server V5, SG24-6591

WebSphere Version 5.1/Application Developer 5.1.1 Web Services
Handbook, SG24-6891

Other publications

These publications are also relevant as further information sources:

>

Jonathan Adams, Srinivas Koushik, Guru Vasudeva, George Galambos,
Patterns for e-business: A Strategy for Reuse, IBM Press, 2001, ISBN
1-931182-02-7

Paul Allen, Component-based Development for Enterprise Systems,
Cambridge University Press, 1998, ISBN 0521649994

Ali Arsanjani, A Domain-language Approach to Designing Dynamic Enterprise
Component based Architectures to Support Business Services, Proceedings
of Technology of Object-oriented Languages and Systems 39, 2001

Erich Gamma, Richard Helm, Ralph Johnson, John M. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software, Addison Wesley,
1995, ISBN 0-201-63361-2

Ivar Jacobson, Object-oriented Software Engineering - a Use Case Driven
Approach, 1992, Addison Wesley, ISBN 0201544350

© Copyright IBM Corp. 2004. All rights reserved. 337

Craig Larman, Applying UML and Patterns - An Introduction to
Object-Oriented Analysis and Design, 2nd Ed, 2001, Prentice Hall, ISBN
0130925691

Keith Levi, Ali Arsanjani, A goal-driven approach to enterprise component
identification and specification, Communications of the ACM Volume 45 Issue
10, 2002

Lawrence Wilkes, Business Integration - Drivers and Directions, CBDI Forum,
2002

Olaf Zimmermann, Mark R Tomlinson, Stefan Peuser, Perspectives on Web
Services; Applying SOAR, WSDL and UDDI to Real-World Projects, 2003,
Springer, ISBN 3-540-00914-0

Online resources

These Web sites and URLs are also relevant as further information sources:

>

IBM Patterns for e-business
http://www.ibm.com/developerWorks/patterns/
IBM aphaWorks
http://www.alphaworks.ibm.com/

IBM CICS

http://www.ibm.com/software/ts/cics

IBM developerWorks
http://www.ibm.com/developerworks

IBM Web services
http://www.ibm.com/software/solutions/webservices
IBM WebSphere Developer Domain
http://www7b.boulder.ibm.com/wsdd/

IBM WebSphere MQ
http://www.ibm.com/software/ts/mgseries

IBM WebSphere software platform
http://www.ibm.com/software/webservers/appserv
Apache Web Services Project
http://ws.apache.org/

Apache XML Project

http://xml.apache.org/

338 Patterns: Service-Oriented Architecture and Web Services

http://xml.apache.org/
http://www.ibm.com/developerWorks/patterns/
http://www.alphaworks.ibm.com/
http://www.ibm.com/software/ts/cics
http://www.ibm.com/developerworks
http://www.ibm.com/software/solutions/webservices
http://www7b.boulder.ibm.com/wsdd/
http://www.ibm.com/software/ts/mqseries
http://www.ibm.com/software/webservers/appserv
http://ws.apache.org/

» CBDI Forum
http://www.cbdiforum.com/

» ebXML
http://www.ebxml.org/

» Java Community Process
http://www.jcp.org/

» OASIS Web Services Security (WSS) Technical Committee
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

» Sun Java 2 Platform, Enterprise Edition
http://java.sun.com/j2ee

» Sun Java Technology Products and APIs
http://java.sun.com/products/

» Web Services Interoperability Organization
http://www.ws-i.org/

» World Wide Web Consortium (W3C)
http://www.w3.o0rg/

How to get IBM Redbooks

You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Related publications 339

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.cbdiforum.com/
http://www.ebxml.org/
http://www.jcp.org/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://java.sun.com/j2ee
http://java.sun.com/products/
http://www.ws-i.org/
http://www.w3.org/

340 Patterns: Service-Oriented Architecture and Web Services

Index

Symbols
NET 20

Numerics
80/20 situation 1

A
Adapter connector 59
Coupling 64
AIX 257,287
Apache Axis 186, 200, 207
Apache SOAP SMTP 113
Application environment 324
Application gateways 61
Application Integration pattern 49, 162, 232
Data-focused 50
Process-focused 50
Application patterns 3, 10, 50, 94
Broker 54
Direct Connection 52
Directly Integrated Single Channel 47
Exposed Direct Connection 48
Parallel Process 57
Process-focused 50
Serial Process 55
Application Server/Services node 59
Architectural stack 25
Architecture
Event-driven 39
Layered application 23
Message-driven 39
Service-oriented 17
Web services 31
Asset portfolio management 319
Atomicity 154
Auditing 147
Authentication 146
Authorization 146
Automation 313
Blueprint 313
Autonomic 325
Autonomic computing 315

© Copyright IBM Corp. 2004. All rights reserved.

Availability 316
Availability Management Offering 318

B
Basic callback 37, 164
Basic Web services 38
BEEP 116
Best practices 3, 14, 39, 223, 275
Bind and invoke 27
Binding style 224
bindingTemplate 141
Blade computers 326
Bottom up design 170, 236
Bottom up development 191, 199
BPEL4AWS 137
Broker 21
Broker application pattern 54
Router variation 55
Service-oriented architecture 55
Broker runtime pattern 67
Router variation 68
Business drivers 18
Business Integration Offering 313
Business patterns 3, 5, 89
Business process 25, 133
Business use cases 87
businessEntity 141
businessService 141

C

Caching 224, 312

Call Connection variation 53
Channel 281, 291

CICS via SOAP 120

Client managed service location 209
Collaboration Portal Offering 313
Compensation 42

Component specification 97
Component-based design 20, 180, 237
Composite patterns 3, 8
Confidentiality 146

Connection rules 52

Connector 59

341

Consistency 154

Consolidation 312

Consumer 21

Container managed service location 208
Conversation Support for Web Services 155
Coupling adapter connector 64

CS-WS 155

D
Data consolidation 312
Data-focused Application Integration 50
DB2 327
DB2 XML Extender 42
Deploying a service 215
Design considerations
Service provider 164, 233, 257, 287
Design guidelines
HTTP service bus 160
JMS service bus 230
Service directory 254
Service gateway 284
Development guidelines 187, 238, 258
Service consumer 200, 245, 265
Service provider 190, 238, 260
Digital signatures 151
Direct Connection application pattern 52
Call Connection variation 53
Message Connection variation 53
Service-oriented architecture 53
Direct Connection runtime pattern 62, 162, 232
Directly Integrated Single Channel application pat-
tern 47
Distributed systems 319
Document-style encoding 118, 176, 237
Advantages 178
Domain decomposition 85
Domain firewall 61
Domain QoS providers 60
Dual interface 22
Durability 154
Dynamic invocation interface 209
Dynamic proxy 210
Dynamic Web services 141

E

e-business on demand 301
ebXML 125
Ecosystem 18

Encoded 178
Encryption 151
Endpoint Enabler 241
Enterprise Information System 42
Enterprise Service Bus 38, 310

IBM vision 40
Entry Virtualization Server Offering 320
ESB See Enterprise Service Bus
Event-driven architecture 39
Exposed Direct Connection application pattern 48
Exposed Direct Connection runtime pattern 163
Extended Enterprise business pattern 48
Extensible Stylesheet Language Transformations
122

F
Facade pattern 181, 226
Filter 281
Find 27
Firewall

Domain 61

Protocol 61
Functional 25
Functional area 88

G

Globus Toolkit 325

Goal-service model 90

Granularity 224

Grid computing 325

Grid Offering for Analytic Acceleration 320
Guidelines 3, 14

H
HTTP 110, 149
Advantages 111
Disadvantages 111
HTTP service bus 72, 159
Best practices 223
Component design 180
Design guidelines 160
Development guidelines 187
Runtime guidelines 214
Service consumer development considerations
200
Service deployment considerations 214
Service provider design considerations 164

342 Patterns: Service-Oriented Architecture and Web Services

Service provider development considerations
190
Testing considerations 210

HTTPR 115

HTTPS 149

|
IBM SOAP 186, 200, 207
Identification 146
Import 174
Information 311
Information Integration Offering 313
Inquiry APl 259
Integration 307
Integration pattern 89
Integration patterns 3, 6
Integrity 146
Interaction style 224
Inter-enterprise network infrastructure 61
Interface-based design 22
Interoperability 225

Web service 34
iSeries Enterprise Edition 317
Isolation 154

J
J2EE 20
Web services 129
Java Message Service 111
Advantages 112
Disadvantages 113
Web services 237
WebSphere MQ support 112
Java Specification Request 130
JAX-RPC 130, 185, 200, 207
Dynamic invocation interface 209
Dynamic proxy 210
Stub based invocation 209
JMS service bus 74, 229
Component design 237
Design guidelines 230
Development guidelines 238
Runtime guidelines 246
Service consumer
Deployment considerations 247
Service consumer development considerations
245
Service deployment considerations 246

Service provider design considerations 233
Service provider development considerations
238
Testing considerations 248

JMS transport 234

JSR 101 130

JSR 109 130

L

Layered application architecture 23
LDAP 278

Legacy 83

Legacy Transformation Offering 101
Linux 163, 232

Literal 178, 237

Location of Web service 179
Locator 21

Lotus 327

M

Management 26, 156

Mediation 41

Message Connection variation 53
Message-driven architecture 39
Modeling 309

MQSeries See WebSphere MQ

N

Namepace 225

Namespace to package mapping 196
Networking 319

Non-repudiation 147

o
OASIS 121,125
Object-oriented design 20, 88, 186
On demand 301
attributes 302
IBM products and software 326
Operating environment 304
Service-oriented architecture 320
Technologies 324
One-way 37, 164, 233
Operating environment 304
Operation 169
Operator cloud node 143
Optimization 317

Index 343

Optimization Offering for zSeries 317

P
Packaged applications 83
Parallel interaction 49
Parallel Process application pattern 57
Service-oriented architecture 58
Parallel Process Rules tier 58
Partner infrastructure 61
Path connector 60
Patterns for e-business 1
Application patterns 3, 10
Best practices 3, 14
Business patterns 3, 5
Composite patterns 3, 8
Guidelines 3, 14
Integration patterns 3, 6
Product mappings 3, 14
Runtime patterns 3, 11
Service-oriented architecture 45
Web site 4
People 307
Pervasive devices 326
Policy 26, 144
Port type 169
Private UDDI registry 255
Process Choreographer 136
Advantages 136
Disadvantages 136
Process integration 49
Process-focused Application Integration 50
Process-focused Application pattern 50
Product mappings 3, 14, 69, 102
Direct Connection product mappings 72
Router product mappings 76

Profile

WS-l 35
Protocol firewall 61
Provider 21

Provisioning 316
Public interface 22
Publish 27

Publish APl 259
Published interface 22
Publishing a service 214

Q

Quality of Service 26

Domain QoS providers 60

R

Redbooks Web site 339
Contact us xv

Reliable messaging services 119

RMI/IIOP 104

Router module 241

Router node 60

Router variation 55, 68

RPC encoding 118, 176
Advantages 177

Rules repository 60

Runtime guidelines 214, 246, 269, 289

Runtime patterns 3, 11, 58, 98
Broker 67
Direct Connection 62, 162, 232
Exposed Direct Connection 163

S
SAML 151
SAX 226

Screening routers 61
Security 26, 145, 308, 317
Service communication protocol 150
Service description 150
Transport 149
Security Assertion Markup Language See SAML
Security Event Management Offering 318
Self-Service business pattern 47, 162
Serial interaction 49
Serial Process application pattern 55
Service-oriented architecture 56
Server Allocation for WebSphere Application Server
320
Servers 319
Service 21, 25,27, 128
Communication Protocol 25
Deployment considerations 214, 246, 269, 289
Web Services Gateway 281, 293
Service allocation 96
Service broker 21
Service bus 54
Simple 54, 65
Service communication protocol 116, 175, 236
Security 150
Service consumer 21, 27
Deployment considerations 297

344 Patterns: Service-Oriented Architecture and Web Services

Service consumer deployment considerations 247
Service description 25, 27, 120
Security 150
Service directory 75, 251
And UDDI 288
Best practices 275
Design guidelines 254
Development guidelines 258
Runtime guidelines 269
Service consumer development considerations
265
Service deployment considerations 269
Service provider design considerations 257
Service provider development considerations
260
Testing considerations 268
Service gateway 68, 279
Deployment considerations 297
Design guidelines 284
Runtime guidelines 289
Service deployment considerations 289
Service provider design considerations 287
Testing considerations 300
Web Services Gateway 281
Service identification 80
Service implementation definition 124, 172
Service interface definition 124, 172
Service location
Client managed 209
Container managed 208
Service locator 21
Service locator class 184
Service provider 21, 27
Service registry 25, 27, 139
Service requestor See Service consumer
Service-oriented architecture 17
Approach 79
Architectural stack 25
Benefits 30
Business drivers 18
Collaborations 26
On demand 320
Patterns for e-business 45
Web services 37
Service-oriented design 21
Services vs. components 28
SMTP 113
Apache SOAP 113
Web Services for J2EE 114

SOAP 117
CICS 120
Encoded 178
Literal 178, 237
Reliable messaging services 119
WS-| Basic Profile 119
SOAP attachments 227
SOAP encoding 118
SOAP with Attachments 118
Software crisis 20
SSL 149
Stack 25
State management 224
Static Web services 141
Storage 319
Storage Provisioning Offering 318
Structure components and services 98
Stub based invocation 209
Subsystem analysis 92
Supply Chain Management sample
Trying it out 219
Synchronous request/response 37, 164
Systems environment 323

T
TCP/IP Monitor 268
Technologies
On demand 324
Technology options 107
Technology realization mapping 100
Test UDDI registry 260
Testing considerations 210, 248, 268, 300
Tivoli Access Manager 328
Tivoli Autonomic Monitoring Engine Offering 318
Tivoli Configuration Manager 328
tModel 141
Top down design 168, 170, 236
Top down development 191, 199
TotalStorage Virtualization Family 320
Transaction 26, 153
Transport 25,110
Security 149

U

UBR 252

UDDI 141, 252, 288
And LDAP 278
Inquiry APl 259

Index 345

Operator cloud node 143 SMTP 114

Private registry 255 Web Services Gateway 42, 281, 286

Publish APl 259 Channel 281, 291

Unit Test registry 260 Filter 281
UDDI Business Registry 252 Service 281, 293
UDDI Registry Extensions 260 UDDI 281
ubDDI4J 259 Web Services Interoperability Organization See
uDDI4JV2 259 WS-
UDDILookupHelper class 266 Web Services Invocation Framework See WSIF
UML 22 Web Services Management Framework 157
Universal Description Discovery and Integration webservicesclient.xml 184
281 WebSphere Application Server 42, 70, 326
Usage Scenario Network Deployment 71, 257

WS-l 37 Process Choreographer 136
Use case model 86 SOAP considerations 131
User experience 308 Web services 131
User Provisioning Offering 317 WebSphere MQ 42, 71, 215, 232, 246
Utility services 324 JMS support 112

WebSphere MQ Explorer 248

V WebSphere Portal 42

WebSphere Studio Application Developer 188, 326
Web service client wizard 211
Web Service wizard 194
Web Services Explorer 210

Windows 163, 232, 257, 287

Value-Chain 47, 85
Value-Net 47, 85
Virtualization 318

w Workflow 42
W3C 31 Workload management 72
Web Server Provisioning Offering 317 WS-Authorization 152
Web service client wizard 211 WS-Coordination 155
Web service gateway 279 WSDL 123
Web service interoperability 34 Advantages 124
Web Service wizard 194 Disadvantages 125
Web services 325 Import 174
Advantages 109 Operation 169
Architecture 31 Port type 169
Basic 38 WSDL Editor 168
Disadvantages 109 WSDL location 179
Dynamic 140-141 WSDL readability 225
ebXML 127 WS-Federation 152
J2EE 129 WSFL 135
JMS 237 WS-l 34
location in WSDL 179 WS-| Basic Profile 132
Service-oriented architecture 37 SOAP 119
Static 140-141 WS- Basic Profile 1.0 36
Technology options 107 WS-| Profile 35
WebSphere Application Server 131 WS-I Supply Chain Management sample 82, 159
Web Services Choreography Interface 137 Trying it out 219
Web Services Explorer 210 WS-I Supply Chain Management Technical Archi-
Web Services for J2EE 130 tecture 82

346 Patterns: Service-Oriented Architecture and Web Services

WS-I Supply Chain Management Use Cases 82
WS-I Usage Scenarios 82
WSIF 132, 282

Advantages 133

Disadvantages 133
WSIL 179
WS-Inspection 144, 179
WS-Manageability 157
WSMF 157
WS-Policy 145, 152
WS-PolicyAssertions 145
WS-PolicyAttachment 145
WS-Privacy 153
WS-ReliableMessaging 115
WS-SecureConversation 152
WS-Security 148, 150
WS-SecurityPolicy 145
WS-Transaction 155
WS-Trust 153

X

XLANG 135

XML 121
Advantages 122
Digital signatures 151
Disadvantages 123
Encryption 151

XML messages 225

XML parser 226

XML Path Language 122

XPath 122

XSLT 122

Index

347

348 Patterns: Service-Oriented Architecture and Web Services

Patterns: Service-Oriented Architecture and Web Services

G

Patterns: Service-Oriented
Architecture and Web
Services Redhooks

Design The Patterns for e-business are a group of proven, reusable

service-oriented assets that can be used to increase the speed of developing INTERNATIONAL

architectures using and deploying Web applications. This IBM Redbook focuses TECHNICAL

Web services on how the Self-Service and Extended Enterprise business SUPPORT
patterns, and the Application Integration pattern, can be used ORGANIZATION

to start implementing solutions using the service-oriented

Explore service bus ;
P ’ architecture approach.

directory, and

gateway solutions .. e you through the process of selecting and applying BUILDING TECHNICAL
Business, Application and Runtime patterns. Next, the INFORMATION BASED ON

Learn by example platform-specific Product mappings are identified based upon PRACTICAL EXPERIENCE

with practical the selected Runtime pattern.

scenarios IBM Redbooks are developed by
We present guidelines for applying the Patterns and the IBM International Technical
service-oriented architecture approach to a sample business Support Organization. Experts

from IBM, Customers and
Partners from around the world
create timely technical

We provide detailed design, development, and runtime information based on realistic
guidelines for several scenarios, including synchronous and scenarios. Specific _
asynchronous service buses, UDDI service directory, and the recommendations are provided

; to help you implement IT
Web Services Gateway. solutions more effectively in

your environment.

scenario and for selecting Web services technologies.

This publication concludes with an examination of how a
service-oriented architecture can provide a step in the
direction of IBM’s e-business on-demand vision.

For more information:
ibm.com/redbooks

SG24-6303-00 ISBN 073845317X

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Chapter 1. Patterns for e-business
	1.1 The Patterns for e-business layered asset model
	1.2 How to use the Patterns for e-business
	1.2.1 Business, Integration, or Composite pattern, or a Custom design
	1.2.2 Selecting Application patterns
	1.2.3 Review Runtime patterns
	1.2.4 Review Product mappings
	1.2.5 Review guidelines and related links

	1.3 Summary

	Chapter 2. Service-oriented architecture
	2.1 Overview of service-oriented architecture
	2.1.1 The business drivers for a new approach
	2.1.2 Service-oriented architecture as a solution
	2.1.3 A closer look at service-oriented architecture
	2.1.4 Service-oriented architecture benefits

	2.2 Web services architecture
	2.2.1 What Web services are
	2.2.2 Web service interoperability

	2.3 Web services and service-oriented architecture
	2.4 Enterprise Service Bus
	2.4.1 Basic Web services
	2.4.2 What an Enterprise Service Bus is
	2.4.3 The IBM vision

	2.5 Where to find more information

	Chapter 3. Service-oriented architecture and Patterns for e-business
	3.1 Using service-oriented architecture with Patterns for e-business
	3.2 Self-Service business pattern
	3.3 Extended Enterprise business pattern
	3.4 Application Integration pattern
	3.4.1 Process Integration concepts
	3.4.2 Application Integration application patterns
	3.4.3 Direct Connection application pattern
	3.4.4 Broker application pattern
	3.4.5 Serial Process application pattern
	3.4.6 Parallel Process application pattern

	3.5 Runtime patterns
	3.5.1 Node types
	3.5.2 Runtime patterns for Direct Connection
	3.5.3 Runtime patterns for Broker

	3.6 Product mappings
	3.6.1 Products used in these mappings
	3.6.2 Product mappings

	Chapter 4. Service-oriented architecture approach
	4.1 The SOA approach and Patterns for e-business
	4.1.1 Service identification
	4.1.2 Patterns for e-business and SOA

	4.2 Business scenario: Supply chain management
	4.3 Steps of the SOA approach
	4.3.1 Domain decomposition
	4.3.2 Goal-service model creation
	4.3.3 Subsystem analysis
	4.3.4 Service allocation
	4.3.5 Component specification
	4.3.6 Structure components and services using patterns
	4.3.7 Technology realization mapping

	4.4 Summary and conclusion
	4.5 Where to find more information

	Chapter 5. Technology options
	5.1 Introduction
	5.1.1 Advantages of Web services
	5.1.2 Disadvantages of Web services

	5.2 Transport
	5.2.1 HTTP
	5.2.2 Java Message Service
	5.2.3 Simple Mail Transfer Protocol
	5.2.4 HTTPR
	5.2.5 Emerging standards for transport

	5.3 Service communication protocol
	5.3.1 SOAP

	5.4 Service description
	5.4.1 XML
	5.4.2 WSDL
	5.4.3 ebXML

	5.5 Service
	5.5.1 Web services and J2EE
	5.5.2 Web Services Invocation Framework

	5.6 Business process
	5.6.1 WSFL and XLANG
	5.6.2 Emerging standards for business process

	5.7 Service registry
	5.7.1 Static and dynamic Web services
	5.7.2 UDDI
	5.7.3 Emerging standards for service registry

	5.8 Policy
	5.8.1 Emerging standards for policy

	5.9 Security
	5.9.1 Security at the transport layer
	5.9.2 Security at the service communication protocol layer
	5.9.3 Security at the service description layer
	5.9.4 Emerging standards for security
	5.9.5 Where to find more information

	5.10 Transaction
	5.10.1 Emerging standards for transaction
	5.10.2 Where to find more information

	5.11 Management
	5.11.1 Emerging standards for management

	Chapter 6. HTTP service bus
	6.1 Business scenario
	6.2 Design guidelines
	6.2.1 Design overview
	6.2.2 Service design considerations
	6.2.3 Component design considerations
	6.2.4 Object design considerations

	6.3 Development guidelines
	6.3.1 Getting started
	6.3.2 Importing the supplied WSDL files
	6.3.3 Service development considerations
	6.3.4 Service consumer (client) development considerations
	6.3.5 Testing considerations

	6.4 Runtime guidelines
	6.4.1 Service deployment considerations

	6.5 Best practices
	6.5.1 Design best practices
	6.5.2 Interoperability best practices
	6.5.3 Java implementation best practices
	6.5.4 Performance best practices

	Chapter 7. JMS service bus
	7.1 Business scenario
	7.2 Design guidelines
	7.2.1 Design overview
	7.2.2 Service design considerations
	7.2.3 Component design considerations
	7.2.4 Object design considerations

	7.3 Development guidelines
	7.3.1 Service development considerations
	7.3.2 Service consumer (client) development considerations

	7.4 Runtime guidelines
	7.4.1 Service deployment considerations
	7.4.2 Service consumer (client) deployment considerations
	7.4.3 Testing considerations

	Chapter 8. Service directory
	8.1 Business scenario
	8.2 Design guidelines
	8.2.1 Design overview
	8.2.2 Service design considerations

	8.3 Development guidelines
	8.3.1 UDDI development tools and APIs
	8.3.2 Service development considerations
	8.3.3 Service consumer (client) development considerations
	8.3.4 Testing considerations

	8.4 Runtime guidelines
	8.4.1 Service deployment considerations

	8.5 Best practices
	8.5.1 Using UDDI and WSDL together
	8.5.2 WebSphere Studio and WebSphere UDDI registry differences
	8.5.3 Dynamic or static discovery during the Web service life cycle
	8.5.4 LDAP and UDDI considerations

	Chapter 9. Web service gateway
	9.1 Business scenario
	9.2 IBM Web Services Gateway
	9.3 Design guidelines
	9.3.1 Design overview
	9.3.2 Service design considerations

	9.4 Runtime guidelines
	9.4.1 Service deployment considerations
	9.4.2 Service consumer (client) deployment considerations
	9.4.3 Testing considerations

	Chapter 10. e-business on demand and Service-oriented architecture
	10.1 e-business on demand
	10.2 The on demand operating environment
	10.2.1 Integration
	10.2.2 Automation
	10.2.3 Virtualization

	10.3 Service-oriented architecture for on demand
	10.3.1 The starting point
	10.3.2 Building the on demand operating environment
	10.3.3 On demand technologies

	Appendix A. Scenarios lab environment
	Lab setup
	Sample application setup

	Appendix B. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks

	Index
	Back cover

