

201 West 103rd Street, Indianapolis, Indiana 46290

Java Connector
Architecture

Atul Apte

Building Custom Connectors and Adapters

00 0672323109 fm 4/18/02 10:08 AM Page i

Java Connector Architecture
Building Custom Connectors and Adapters
Copyright © 2002 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored
in a retrieval system, or transmitted by any means, electronic,
mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained
herein. Although every precaution has been taken in the prepara-
tion of this book, the publisher and author assume no responsibil-
ity for errors or omissions. Nor is any liability assumed for damages
resulting from the use of the information contained herein.

International Standard Book Number: 0-672-32310-9

Library of Congress Catalog Card Number: 2001094798

Printed in the United States of America

First Printing: April 2002

05 04 03 02 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks
or service marks have been appropriately capitalized. Sams
Publishing cannot attest to the accuracy of this information. Use of
a term in this book should not be regarded as affecting the validity
of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as
accurate as possible, but no warranty or fitness is implied. The
information provided is on an “as is” basis.

Associate Publisher

Michael Stephens

Acquisitions Editor

Carol Ackerman

Development Editor

Tiffany Taylor

Managing Editor

Charlotte Clapp

Project Editor

George E. Nedeff

Copy Editor

Nancy Sixsmith

Indexer

Chris Barrick

Proofreader

Melissa Lynch

Suzanne Thomas

Technical Editors

Andrew Yang

Jan Haderka

Raj Rao

Team Coordinator

Lynne Williams

Interior Designer

Anne Jones

Cover Designer

Aren Howell

00 0672323109 fm 5/2/02 11:01 AM Page ii

Contents at a Glance

Introduction . 1

1 Introduction to Adapter Technology . 5

2 Overview of J2EE . 21

3 Overview of EJB . 29

4 Adapter Reference Model. 39

5 Role of XML in Adapters . 55

6 Introduction to Web Services . 69

7 Adapter Development Methodology and Best Practices . 81

8 Pitfalls of Adapter Development. 111

9 Testing Adapters . 121

10 Overview of JCA. 131

11 Developing J2EE Resource Adapters . 155

12 Deploying Adapters . 193

13 Customizing Adapters . 203

14 Developing Integration-Ready Applications. 221

15 Trends in Adapter Technology . 235

16 Components of Integration Technology . 243

17 Source Code for ASCII File J2EE Adapter . 255

Appendixes

A Glossary. 315

B References . 321

Index . 323

00 0672323109 fm 4/18/02 10:08 AM Page iii

Table of Contents

Introduction 1

How This Book Is Organized. 2
Summary. 4

1 Introduction to Adapter Technology 5

Understanding Adapters. 6
History and Evolution of Adapters . 6
Adapter Contexts. 7

Data Synchronization . 8
Online Services . 9
Process Automation . 10

Definition of Application Integration Adapter . 11
Logical Definition. 11
Physical Definition . 12

Application Models . 12
Application Components. 13
Host-Based Application Model . 13
Client-Server Application Model . 14
Thin-Client Application Model . 16
Three-Tier Application Model . 17
Web Application Model . 18

Points of Integration. 19
Summary . 20

2 Overview of J2EE 21

Introduction to J2EE. 21
J2EE Specification. 22
J2EE Architecture . 23

Server Configurations. 23
Containers . 24

J2EE Components . 26
J2EE Reference Implementation . 26
Summary . 28

00 0672323109 fm 4/18/02 10:08 AM Page iv

3 Overview of EJB 29

Introduction to EJB . 29
Understanding EJB Roles . 30
Types of EJB . 32

Entity Beans . 32
Session Beans. 33
Message-Driven Beans . 35

Client Access . 36
Adapters and Beans . 37
Summary . 38

4 Adapter Reference Model 39

Role of Software Reference Models . 39
Choosing Reference Models . 40
Adapter Requirements and Architecture Models . 41

Logical Models. 41
Objectives of the Logical Adapter Reference Model . 42

Assigning Responsibility . 42
Reducing Complexity. 43
Defining the Problem Domain. 43

Layered Architecture . 44
Use Case Models . 46
Logical Adapter Reference Model . 46

Functional Dimension. 48
Shared Services Dimension. 49

Design Considerations . 49
Session Management. 50

Applying the Logical Reference Model . 50
Adapter Types . 51

Summary . 53

5 Role of XML in Adapters 55

Overview of XML. 56
XML and HTML Similarities and Differences . 57
Data Management . 58

Document Type Definitions (DTDs) . 60
XML Schema. 61
XSL-Based Transformation . 61

00 0672323109 fm 4/18/02 10:08 AM Page v

XML Parsers . 63
DOM Parsers. 63
SAX Parser. 63

Using XML in Adapters . 64
Why XML Will Not Replace Adapters . 66
Summary . 67

6 Introduction to Web Services 69

Benefits of Web Services . 70
Application Services (A Conceptual Model). 71

Service Directory . 72
Simple Object Access Protocol (SOAP). 72

SOAP Processing Model . 74
Universal Description, Discovery, and Integration (UDDI). 74

UDDI Data Types . 75
WSDL. 75

Web Services’ Impact on Resource Adapters . 76
Adapters and Web Services Working Together. 76

Summary . 78

7 Adapter Development Methodology and Best Practices 81

Understanding Integration Project Objectives . 82
Managing Integration Teams. 84

Enterprise Integration Teams . 84
Business-Model-Driven Integration. 85
Advantages and Disadvantages . 86

Role of Adapters in Integration Project. 87
Adapter Analysis . 88

Documenting the Integration Scenario. 90
Determining Hub and Spoke Scenarios. 92
Determining Peer-to-peer Scenarios . 92
Analyzing Application Architectures . 93
Analyzing Application Data Models . 94
Analyzing Application APIs . 94
Analyzing Buy Versus Build Options . 95
Estimating Adapter Development . 95

Adapter Design . 96
Selecting an Implementation Environment. 97
Constraints Identified During Analysis. 98

Java Connector Architecture: Building Custom Connectors and Adaptersvi

00 0672323109 fm 4/18/02 10:08 AM Page vi

Adapter Hosting Environment . 99
Building the Target Reference Model . 100

Adapter Coding. 100
Using Appropriate Tools. 101

Adapter QA . 102
Setup of the QA Environment. 103
Selecting Valid Test Data . 103
Identifying Regression Test Cases. 103
Developing a Test Harness . 104

Deploying Adapters . 104
Multiplatform Deployment Guidelines . 105
Deploying Internationalized Adapters . 106

Adapter Maintenance . 107
Planning Adapter Upgrades . 107
Deploying Adapter Fixes . 107
Importance of Vendor Relationships . 108

Summary . 109

8 Pitfalls of Adapter Development 111

Strategy and Planning Pitfalls . 112
Assuming All Adapters Are Available as Prebuilt

Components . 112
Adapter Development Is Planned as a One-Time Effort. 112
Lack of Vendor Relationship Management . 113
Not Understanding the Vendor Product Roadmap . 114

Architecture Pitfalls. 114
Assuming that Adapters Are Extensions of Integration

Infrastructure . 114
Underestimating the Technical Impedance. 115

Analysis and Design Pitfalls. 116
Not Understanding Hidden Integration Requirements. 116
Managing Technical Constraints . 117
Forgetting Customization. 118

Development and Implementation Pitfalls. 118
Importance of Test Data. 118
Lack of Supporting Tools. 119

Summary . 119

Contents vii

00 0672323109 fm 4/18/02 10:08 AM Page vii

9 Testing Adapters 121

The Importance of Testing . 121
Stages of Adapter Testing . 122
Types of Adapter Testing. 122

Black Box Testing. 123
White Box Testing . 123
End-to-End Testing . 124
Stress Testing . 124

Testing Environments . 125
Reference Implementation Test Environment . 126
Application Server Test Environment . 126
Operating Systems . 127
Hardware . 127
Test Harness. 128

Gathering Test Data . 128
Planning Regression Tests . 129
Summary . 129

10 Overview of JCA 131

Objectives of JCA Specifications . 132
System Contracts . 134

Roles Specified in the JCA Specifications. 135
Understanding Connection Management . 137

Managed and Non-managed Applications . 137
Understanding Transaction Management. 141

Local Transactions . 141
Role of ManagedConnection Objects. 142

Understanding Common Client Interface . 143
Categories of CCI. 143
Overview of Interaction . 144
Understanding Metadata Interfaces and Records . 147

Overview of JCA Security . 148
Security Contract . 150

Support for Packaging and Deployment . 152
Deployment Descriptors and Deployment Tools. 152

Summary . 153

Java Connector Architecture: Building Custom Connectors and Adaptersviii

00 0672323109 fm 4/18/02 10:08 AM Page viii

11 Developing J2EE Resource Adapters 155

Documenting ASCII File Adapter Integration Scenarios . 156
Integration Scenario Description . 156
Use Case Model . 157

Designing the Logical Reference Model . 161
Access Layer Modules . 161
Engine Layer Modules . 165
Foundation Layer Modules . 166
Common Component Layer Modules . 184
Testing the Resource Adapter . 190

Packaging and Release . 191
Summary . 192

12 Deploying Adapters 193

Deployment Objectives . 194
Adapter Dependencies . 194

Adapter Version Control . 195
Deployment Scenarios. 196
Defining Deployment Requirements . 197

Dynamic Adapter Configuration Changes . 198
Remote Administration Capability. 198

JCA Adapter Deployment Descriptor. 198
Deployment Plan Template . 200
Summary . 201

13 Customizing Adapters 203

Adapter Customization Domains . 204
Administration Interfaces . 205
Environment Settings . 206
Host Interface . 207
Persistence Management . 208

Example of Customizable Frameworks . 209
Summary . 219

14 Developing Integration-Ready Applications 221

Importance of Integration Readiness. 221
Characteristics of Integration-Ready Applications. 223

Distinct Points of Integration (PIN). 223
Isolated and Localized Integration Logic . 224

Contents ix

00 0672323109 fm 4/18/02 10:08 AM Page ix

Secured Access Support . 224
Transaction-Enabled . 225
Customization API . 225
Based on Open Standards. 226
Support for I18N and L10N . 226

Refactoring Legacy Applications. 227
Designing New Integration-Ready Applications . 229

Architecture Centric Application Design . 229
Component-Based Application Development . 230
XML-Based Document Models . 230

Rating Integration Readiness . 231
Summary . 233

15 Trends in Adapter Technology 235

Beyond JCA Resource Adapters . 235
Adapters Integrated with IDE and Operating Systems . 236
Adapter Certification Centers . 238
Adapter Vendors Will Be the Preferred Source for Adapters 238
Standardization of Adapter Platform and Technology . 239
Tools for Adapter Customization . 240
Impact of Web Services. 241
Adapter Patterns Will Emerge . 241
Proprietary Adapters Will Be Displaced. 242
Summary . 242

16 Components of Integration Technology 243

Integration Platform . 244
Operating Systems . 244

Middleware. 245
Integration Hub. 246
Administration Tools . 250
High Availability Repository . 251

Adapter Interactions with Integration Components. 251
Summary . 253

Java Connector Architecture: Building Custom Connectors and Adaptersx

00 0672323109 fm 4/18/02 10:08 AM Page x

17 Source Code for ASCII File J2EE Adapter 255

Environment for the ASCII File J2EE Adapter . 256
Access Layer Source Code. 257
Engine Layer Source Code. 265
Shared Service Layer Source Code. 292
Test Harness . 306
Summary . 313

Appendixes

A Glossary 315

B References 321

Books . 321
Resources on the Web . 322

Index 323

Contents xi

00 0672323109 fm 4/18/02 10:08 AM Page xi

About the Author

Atul Apte is the President and CEO of iConexio Technologies Inc., a leading appli-
cation integration framework and tools company based in Ontario, Canada. He has
more than 16 years experience in designing and developing real-time distributed
systems and enterprise application integration. He continues to strengthen his
programming skills in C, C++, and Java—especially with wireless technologies—as
well as identify and analyze application integration related design patterns. Since
1999, he has dedicated his career to advancing adapter technology and creating an
awareness of its benefits to e-Business.

He is the co-author of another book on EAI, Integrating Your e-Business Enterprise, and
has authored many published articles and white papers on the topic of adapters and
application integration. He currently resides in Georgetown, Ontario, Canada.

00 0672323109 fm 4/18/02 10:08 AM Page xii

Dedication

I dedicate this book to my parents Aai and Baba.

Acknowledgments

“Without involvement, there is no commitment. Mark it down, asterisk it, circle it,
underline it. No involvement, no commitment.”

—Stephen Covey

This book was possible due the involvement and commitment of many individuals.
Personally, it has been wonderful communicating my experiences as an adapter
developer in the form of this book. Successful software development requires great
teamwork and a collective sense of purpose. Similar attributes are required for
publishing a book. After having gone through that process, one develops a lot more
respect for every new book that one sees in the bookstore.

I want to thank Michael Stephens of Sams Publishing for believing in the concept
and objectives of authoring a book on adapter development. A big thanks is also in
order for Carol Ackerman, who will make a great project manager on any software
development project. Her management skills kept the momentum going, ensuring
constant progress in writing the book.

I want to thank the technical editors of this book Andrew Yang, Jan Haderka, and
Raj Rao, who volunteered their time for reviewing my chapters and providing me
with valuable feedback. In many ways, it is a humbling experience when others give
their time to read what one writes.

Thanks to Lyn Morrison of TogetherSoft for her assistance in getting the license for
Together® ControlCenter© tool, which was very useful for developing the example
resource adapter.

Last, but not the least by any stretch of imagination, I want to thank members of the
CONNECTOR-INTEREST community. Their support and enthusiasm gave me the
motivation necessary to complete this book.

00 0672323109 fm 4/18/02 10:08 AM Page xiii

Tell Us What You Think!

As the reader of this book, you are our most important critic and commentator. We
value your opinion and want to know what we’re doing right, what we could do
better, what areas you’d like to see us publish in, and any other words of wisdom
you’re willing to pass our way.

As an Associate Publisher for Sams Publishing, I welcome your comments. You can
fax, e-mail, or write me directly to let me know what you did or didn’t like about
this book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book,
and that due to the high volume of mail I receive, I might not be able to reply to every
message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or fax number. I will carefully review your comments and share
them with the author and editors who worked on the book.

E-mail: feedback@samspublishing.com

Mail:
Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

00 0672323109 fm 4/18/02 10:08 AM Page xiv

Introduction

“One writes only half the book; the other half is with the reader.”

—Joseph Conrad, English Novelist

Welcome to Java Connector Architecture. It is indeed a privilege to write this book
and get an opportunity to share with you my experience with adapters in general,
and the Java adapter standard known as Java Connector Architecture in particular.
The value of this book depends on its use and your participation in implementing
the ideas and concepts and improving the technology and techniques discussed in
this book. The target audience includes hardcore developers tasked with the onerous
job of integrating applications, architects managing the bigger picture and defining
the target architectures, teams evaluating adapters available in the market, and
project managers managing the integration project.

The technology of adapters is not well-known. It is not a subject that has a lot of
discussion, controversy, or even hype about it. For a change, this technology is
rooted deep in the realities of application integration. This is mainly because it is an
enabling technology—largely invisible, yet doing the hard work of providing physi-
cal connectivity to applications, integrating functions, and exchanging data. The
renewed trend of componentization of applications and the increasing need for inte-
gration of platforms, applications, and business processes have resulted in a stronger
focus on adapters. The need for adapters is generally derived at a design stage of an
application development project or is hidden as an integral part of an integration
project. This book presents some additions to traditional development methodolo-
gies with the intention of providing better tools for project managers to use in plan-
ning, estimating, and monitoring projects that need adapters.

In its simplest form, an adapter is a software component connecting two applica-
tions and facilitating data exchange and/or functional integration between them.
The more complex adapters are capable of maintaining state across different data
exchange sessions, can participate in distributed transactions, and support different
execution contexts. However, the lack of a common definition for an adapter makes
it very difficult to understand, explain, and evaluate the technology.

The central theme and objective of this book is to provide a holistic view of adapter
technology, with specific focus on Java 2 Enterprise Edition (J2EE) and Java
Connector Architecture (JCA). As such, I have tried to cover most of the related
important topics, including a logical architecture for adapters independent of any

01 0672323109 intro 4/18/02 10:06 AM Page 1

industry standard or proprietary technology, a development methodology highlight-
ing the challenges in managing adapter development, and an actual adapter imple-
mentation using J2EE and JCA standards. The J2EE standard is very comprehensive
in its scope, and because this book is more about adapters and JCA, I have included
only an overview that highlights the important architectural concepts. I have also
included an overview of the Enterprise JavaBeans (EJB) specification to give readers
an idea of the component architecture supported by J2EE.

How This Book Is Organized
To facilitate an easy selection of relevant chapters, the book is divided into six parts,
as follows:

Level I is suitable for all readers, and contains an overview of J2EE technology as well
as the EJB specifications. This part also has chapters describing the adapter technol-
ogy in detail, including the role of an adapter in different contexts (for example, EAI,
B2B, and Web services).

Level II contains chapters defining the Adapter Reference Model. This model is the
logical architecture of an adapter, and is useful for building a robust framework for
implementation in different contexts. This section is likely to be of specific interest
to architects and experienced developers, although the contents are useful to all
developers.

Level III is targeted toward project managers assigned with the task of managing
application integration projects in general and adapter development in particular.
The additions to development methodology and a list of known pitfalls should facili-
tate better management of such projects. Various scenarios, including customizing
adapters, developing proprietary adapters, and evaluating off-the-shelf adapters are
presented, with key milestones highlighted in each scenario.

Level IV gets into the details of implementing adapters using Java technology in
general and the J2EE and JCA specifications in particular. The chapters in this section
take a step-by-step approach to building a JCA connector using the adapter develop-
ment methodology described in the previous section. The example connector in this
book is an ASCII JCA connector, which can be configured to read ASCII files of
various formats and transform them into XML documents. The full source code of
the ASCII file connector is included in Chapter 17.

Level V covers many topics on the current technology trends affecting adapter archi-
tectures. It also presents the results of a gap analysis between the logical adapter
reference model and the JCA 1.0 specifications. It is important to know the differ-
ences because it points to the areas where JCA needs further attention and also

Java Connector Architecture: Building Custom Connectors and Adapters2

01 0672323109 intro 4/18/02 10:06 AM Page 2

provides guidelines on how to build adapters on other platforms such as IBM
MQSeries, BEA Tuxedo transaction engine, Integration brokers, and so on. This
section will most likely be more interesting to architects.

Level VI is composed of appendixes, including a comprehensive glossary of terms
used in this book and a set of references for more reading on the subject of adapters
and related technologies. It also has a listing of all the source code of the ASCII File
Resource Adapter (see Chapter 17).

To facilitate focused and faster reading, I have defined the following three reading
tracks—each customized to suit the particular interests of a specific type of reader:

1. Developer track:

• Level I (Chapters 1, 2, 3)

• Level II (Chapters 4, 5, 6)

• Level IV (Chapters 10, 11, 12, 13, 14)

• Level VI (Chapter 17, Appendixes A, B)

2. Architect track:

• Level I (Chapters 1, 2, 3)

• Level II (Chapters 4, 5, 6)

• Level IV (Chapters 10, 13, 14)

• Level V (Chapters 15, 16)

• Level VI (Chapter 17)

3. Project manager track:

• Level I (Chapter 1)

• Level III (Chapters 7, 8, 9)

• Level IV (Chapter 14)

• Level V (Chapters 15, 16)

You can indeed choose to read all chapters in the sequence in which they appear in
the book. The chapters are grouped into sections and ordered to enable you to
understand the general concept of an adapter, get an overview of the Java standards
applicable to adapters, analyze the adapter reference model, build a Java connector,
and prepare for some of the future trends affecting adapter technologies.

Introduction 3

01 0672323109 intro 4/18/02 10:06 AM Page 3

Summary
I sincerely hope that this book helps all readers to better understand the importance
of adapters in the world of application integration in general. In today’s technology-
driven world, integration of business systems is fundamental to any technology
projects, especially those related to e-Business. There is a general misconception that
adapters are required only for B2B-type projects. The reality is that applications need
integration to support all e-Business objectives—not just B2B initiatives. Thus, the
publication of the J2EE: JCA specification is very significant as it marks the begin-
ning of the trend to standardize adapter infrastructure and simplify adapter develop-
ment. I welcome your comments, as I believe that’s the best way to improve this
book and in the process benefit all readers.

Java Connector Architecture: Building Custom Connectors and Adapters4

01 0672323109 intro 4/18/02 10:06 AM Page 4

IN THIS CHAPTER

• Understanding Adapters

• History and Evolution of
Adapters

• Adapter Contexts

• Definition of Application
Integration Adapter

• Application Models

• Points of Integration

1

Introduction to Adapter
Technology

“I am interested in what happens to people when they must

adapt to a new world.”

—Jean Renoir, Film Director

We, the humble folks in the world of IT, have to adapt
to new technologies constantly. Adapter technology is one
such technology we need to confront as part of any e-
Business projects and initiatives. Although it is not really
new, it is getting a lot of attention for the first time. This
chapter presents the concept of an adapter and the differ-
ent integration scenarios in which adapters are required.

It is quite common to think of e-Business within the
constraints of either Web-enabling existing applications or
automating supply chains using business-to-business (B2B)
software. Although these are valid components of any e-
Business initiative, the more difficult scenarios are related
to enterprise application integration (EAI) or integrating
internal systems. Without integration of end-to-end busi-
ness processes, e-Business can be only partially successful
at best. However, integration is not easy.

Even the best-planned integration efforts sometimes fail,
mainly due to the large scope of the problem and the time
required for completing the project. The more successful
integration projects are based on iterative and incremental
automation of business processes beginning with the
process with the greatest impact on business. Another
important success factor is the selection of component-
based technology and frameworks. The technology

02 0672323109 CH01 4/18/02 10:07 AM Page 5

CHAPTER 1 Introduction to Adapter Technology6

platform enabling the integration and automation should allow customers to add
components and functionality as the scope of the project increases. Adapters are
special classes of integration components. They connect the actual enterprise
applications with a target environment that may include enterprise applications,
middleware, databases, or external gateways.

Understanding Adapters
The term adapter may not be familiar unless you were involved in EAI and system
integration projects in the last couple of years. Generally, new terms—especially
those related to software concepts—are not supported by a single definition. This is
true with adapters as well; however, the concept of an adapter has existed for quite a
long time. The term adapter has been in use in the computer hardware and other
industries to mean a device that enables connection of two incompatible devices.

In order to not complicate and confuse the definition and concept of adapters any
further, this book will use a very specific new term: Application Integration Adapter
(AIA). In its simplest form, an AIA is a software component that connects two
incompatible business applications with the specific purpose of facilitating informa-
tion exchange.

Information exchange can happen in various different contexts. Some exchanges
can happen between databases, whereas others are part of a business transaction.
Hence, the definition of an AIA needs to be generic enough to include the different
techniques of application integration, yet specific enough to set the right functional
scope. This is not easy, and could well be the reason why no single definition exists
for AIA.

History and Evolution of Adapters
Unlike most software innovations, adapter technology was born in the corporate IT
shops. The need to connect two business applications has existed for a long time,
and generally was driven by the requirement to exchange data between applications
on different platforms (operating systems). The typical solution to this problem
involved downloading data from an application database and uploading it to
another application’s database. As the number of applications grew, the relatively
straightforward task of moving data between two applications became much more
complex. Differences in the data models, architecture, and executing environments
(platforms, databases, and so on) added to the complexity.

Proprietary solutions for integration were developed and deployed. The proprietary
solutions were mainly in the form of standalone applications or scripts that were
scheduled to execute as background processes. These applications and scripts could
be regarded as the first-generation adapters. There were no standards or design
patterns to follow when developing these first-generation adapters. One common

02 0672323109 CH01 4/18/02 10:07 AM Page 6

problem was keeping the proprietary solutions upgraded with the various dependencies
on operating systems, database products, programming languages, and applications.

As computing environments became more distributed, integrating applications
became more difficult—especially between the older generation of applications and
the new, more modularized applications. The complexity grew with the Internet
revolution when it became a fundamental requirement that all applications be inte-
grated to support the self-service, automated world of e-Business.

Corporate IT departments encountered a common and never-ending problem with
homegrown first-generation adapters: It was very difficult to keep track of the
changes in various business applications as well as the underlying platforms. Adapter
development was not a one-time task. It required a sustained, budgeted effort to
keep the applications integrated. Changes in enterprise applications and upgrades to
operating systems and databases resulted in upgrades to the homegrown scripts and
adapters. Hence, it was a very attractive proposal for corporate users when EAI soft-
ware vendors began bundling some adapters as part of the EAI platform. This action
shifted the burden of keeping the adapters up-to-date to the EAI vendors and, in
some cases, package software vendors.

Adapter Contexts
Most of us are familiar with the concept of exchanging data between two or more
applications. Database administrators have been exporting (downloading) and
importing (uploading) data between different databases for a long time. This process
seems to work well most of the time. Errors sometimes occur during the download
and upload tasks, mostly due to bad data or incompatible data models. But for the
most part, these errors are handled by massaging the bad data or forcing the data
upload by relaxing some of the data integrity rules.

This offline data synchronization method is outdated and not suited to the dynam-
ics of e-Business. In the context of e-Business transactions, real-time or (more appro-
priately) near-real-time data synchronization is one of the fundamental
requirements. This can be achieved only by integrating applications to enable e-
Business transactions and manage data exchange. The different application models
and the inconsistent points of integration make the task of application integration
harder to solve.

Adapters play an important part in three basic contexts or integration patterns.
There can be numerous variations of these patterns, but understanding the basic
patterns will give you a better perspective of any specific variations, which are not
covered in this book. The three basic contexts we’ll explore further are the following:

• Data synchronization

• Online services

• Process automation

Adapter Contexts 7

02 0672323109 CH01 4/18/02 10:07 AM Page 7

Data Synchronization
The main objective of the data synchronization pattern is to ensure the data
integrity of all applications participating in a business process. Applications are
responsible for maintaining the data integrity of their own databases. The applica-
tion transactions and the business rules encapsulated in them achieve this data
integrity within the context of the individual applications. However, maintaining
data integrity across applications without further human intervention is a task easier
said than done. For successful automation of business processes, it is important for
applications that were not designed to synchronize their databases with other appli-
cation transactions to be integrated.

The primary role of adapters in this context is to provide a mechanism for opening
the application transactions to the outside world. For every application transaction,
the action (add, update, delete), the actual data, and the metadata should be made
available to all other applications in the business process. The objective of doing this
is to enable all other applications to replicate the specific application transaction
(action, data, metadata) in their specific application environments.

One of the major challenges of maintaining data integrity across applications is the
different data models that are encapsulated by the applications. A single data object,
such as a customer object, is invariably implemented as different customer data
models—each designed to suit the specific application. Ensuring that any change in
one customer data model is replicated appropriately in all applications’ customer
data models requires a common superset definition of the customer data object.
Defining such a data model is now possible with XML; however, the task is not
simple.

Chapter 7, “Adapter Development Methodology and Best Practices,” outlines a
process that could be used in building such superdata models. Adapters capable of
enabling data synchronization must have a common definition of data objects in
need of synchronization. Invariably, adapter development begins with the creation
of the required superdata structures, and implements them using a platform-inde-
pendent, extendible data description language such as XML.

Persistent and Transient Data Synchronization
Another important aspect of data synchronization is the difference between persistent
and transient mechanisms. The frequency of data updates and the type of action
sometimes drive the choice between the two mechanisms involved in the synchro-
nization process. For example, if the data synchronization is about adding a new
data object or deleting the data object, a persistent mechanism is preferable. It
enables the adapter to ensure that the data synchronization is achieved when the
target application is available. However, if the action is an update action, the number
of updates is very high, and the target application maintains only the latest updates,
a transient mechanism may be enough. Obviously, persistent data synchronization

CHAPTER 1 Introduction to Adapter Technology8

02 0672323109 CH01 4/18/02 10:07 AM Page 8

has overhead, so a careful analysis of the actual integration scenario is always
beneficial.

Rollback Mechanism
Management of distributed transactions is an ongoing challenge of distributed
computing. When you’re integrating transaction-enabled applications with non-
transaction enabled applications, this problem is amplified further. One particular
problem is managing transaction rollbacks. If an integration scenario is replicating
an application transaction in two other applications or is extending an application
transaction by incorporating two more applications into the scenario, a rollback of
the entire distributed transaction is indeed hard to guarantee. Hence, the rollback
requirements as well as the impact of the inability to support transaction rollback
need to be identified very carefully.

Typically, a transaction-processing monitor (TPM) is required to maintain the state of
individual application transactions in the context of a bigger distributed enterprise
transaction. An adapter rarely performs the job of a TPM; a better option is to
develop the adapters with interfaces to the TPM as an option.

Online Services
The online service context is useful for exposing application functions in the form of
easily accessible services. Service-based application architecture has been in use for
some time, especially when using object-oriented techniques for developing applica-
tions. The emergence of e-Commerce has put a further demand on applications to
expose application services and make them accessible to Web applications. Recent
technology trends such as Web services and XML are a serious attempt to expose
internal corporate applications and external B2B applications as a set of available
services accessible over the Internet or an intranet.

Application functions encapsulate business rules and business logic automated by
the application. However, these functions are typically available only to the direct
users of the application. In a process-centric business world, it is increasingly
important for applications to be able to collaborate with each other and access the
collective services to automate respective business processes. But collaboration
between applications (both old and new) is not an easy task. The concept of a Web
service is supposed to make the job of searching for appropriate services and invok-
ing the selected services much easier.

Microsoft’s .NET platform enables Web services by supporting SOAP-based service
access. Similarly, SUN and other vendors have defined their own service platforms.
Adapters have an important part in the Web service domain. If a Web service is
about advertising business services on the Internet and making the service accessible
to its users, adapters do the job of fulfilling the services by linking internal applica-
tion functions to the Web service. This architecture and collaboration between Web

Adapter Contexts 9

02 0672323109 CH01 4/18/02 10:07 AM Page 9

service and adapters is consistent with the business-modeling view in which business
services are outward-facing business process (customer service, and so on), and inter-
nal support processes are modeled as business applications.

Generally, there are two types of services: a service that is part of an application and
runs in the same address space (embedded), and a remote service accessible by an
API or a message-based interface.

Embedded (In-Process) Service
An embedded service is generally used when performance is of paramount importance.
Being in the same address space as the application removes any overhead of commu-
nication, session management, and so on. However, change management of an
embedded service is more difficult. Any change to a service needs to be replicated in
all applications where it is embedded.

More stable services, such as security services, are good candidates to be made part of
an application. Note that the security service itself may have to access remote data-
bases and communicate with other remote services. But they can invoke the security
service much more quickly. A common scenario could be an embedded service
communicating with a remote adapter to fulfill its service functions.

Remote (Out-of-Process) Service
A remote service, on the other hand, is the more common approach for implement-
ing shared services. The current trend of SOAP-based Web services is an example of
remote services. Storing service information in a central registry or repository enables
finding the location of a remote service. Directory servers such as LDAP are ideal for
storing physical location information of services, such as the port number or the
message queue name, machine names, and so on. But a central repository is just part
of the puzzle. Depending on the scale of the distributed computing environment, a
federated name space for a hierarchy of business services may be required. The
Universal Description, Discovery, and Integration (UDDI) specification brings
together the necessary technologies for supporting distributed business services.

Process Automation
Process automation comes in various flavors; some are focused on internal workflow
automation, whereas others are focused on automating supply-and-demand chains.
Regardless of the technology, a major objective of process automation is to close the
paradigm gap between business models and technology-based applications. The end
game is to have a bidirectional tracing capability between business concepts and
technology. It is argued that this would help change management and also facilitate
faster technology implementations.

The reality, however, is not as simple or easy as the concept. For business process
automation to really work, there has to be a mechanism of connecting both old and

CHAPTER 1 Introduction to Adapter Technology10

02 0672323109 CH01 4/18/02 10:07 AM Page 10

new applications to the business processes and other business models. Collaborative
tools are making it easier to construct these connections. But for the integration to
be really cost-effective and have a serious impact on the bottom line, applications
and other collaboration tools must be more tightly integrated. Adapters can fill that
gap by providing an event/trigger-handling mechanism as well as maintaining the
appropriate state of related business events.

Event Adapters
Process automation tools are generally event-based, managing the state of a process.
Events are related to the current state of a process, and can either initiate a change in
the state or communicate the internal state to other processes and their environ-
ment. When integrating application to a process automation tool, one of the basic
requirements is for the application to process events. Unless an application has a
built-in event-handling mechanism, it is difficult to modify the application to
include this new functionality. Event-handling capabilities usually require support
from an event model in the application framework. Before adapters, the only option
was a major rewrite of the application—which is obviously not easily justified.

Event adapters essentially wrap the target application and extend its functionality to
include event handling and processing capability. The adapter can map inbound
events to specific application actions. This event-action mapping enhances the
success of process automation, as well as ensuring execution of proper application
functions related to the process events. Many times, a process expects an application
to generate events, indicating the completion of an application function, either
successfully or unsuccessfully. Event adapters provide this capability whereby appli-
cation functions and their status can be mapped to process events to be generated
and posted by the adapter on the applications behalf. Together, the event-processing
and event-generation features of event adapters are critical for integrating applica-
tions with business process automation tools.

Definition of Application Integration Adapter
It is always a good idea to have two types of definition: a logical definition that is
free of any constraints imposed by the implementation details and a physical defini-
tion that clearly states the physical attributes. The logical definition of an adapter is
derived from the concepts discussed in this chapter, whereas the physical definition
is derived from the JCA specification.

Logical Definition
The logical definition of an Application Integration Adapter is as follows: a software
component enabling the adapted application to participate and function in one or

Definition of Application Integration Adapter 11

02 0672323109 CH01 4/18/02 10:07 AM Page 11

more integration patterns without significant changes to the application. The
primary integration patterns include

• Data synchronization

• Online services

• Process automation

This definition can be extended to include other integration patterns as they evolve.
These three patterns are generic and cover most of the e-Business technologies,
including mobile computing, e-Commerce, Web services, business process automa-
tion, supply chain automation, data integrity, and business intelligence.

Note that the logical definition is not bound by any architecture. This is intentional;
our goal is to define the concept of an adapter, regardless of the implementation and
its inherent architecture.

Physical Definition
The physical definition of adapter depends on the technical environment and the
specific vendor’s adapter architecture. In the context of J2EE, an adapter is known as
a resource adapter, and is expected to comply with the JCA specification. A reference
implementation of the JCA is available for download from the SUN Java Web site,
available at http://java.sun/com/j2ee/connector. At the time of this writing, the
compliance or certification aspect of JCA was still being formalized. As such, a
complete definition of a resource adapter is hard to state. Nonetheless, the minimum
definition of a resource adapter can be a J2EE component that is compliant with the
JCA specification.

Similar definitions can be found in other contexts, such as MQSeries Adapter
Offering for MQSeries adapters and other proprietary adapter platforms. However,
this book is focused on JCA, and therefore doesn’t include physical definitions of
adapters in other contexts.

Chapter 7 defines a logical architecture of an adapter. The benefit of the logical defi-
nition combined with the logical architecture described in Chapter 4 is that
customers can compare adapters from different vendors based on different technolo-
gies using a common adapter definition. Not surprisingly, vendors tend to define
adapters in physical terms that are more suitable to describe their technology.

Application Models
To identify the role of adapters in any of the contexts of application integration, we
need to understand the different integration scenarios, sometimes referred to as inte-
gration patterns or integration use cases. Regardless of the term used to define the

CHAPTER 1 Introduction to Adapter Technology12

02 0672323109 CH01 4/18/02 10:07 AM Page 12

specific integration scenario, the role of the adapter depends on some basic parame-
ters, which are explained in this section. We begin by identifying the most common
application architectures or models that you will come across when solving the inte-
gration problem. The application models enable you to identify the appropriate
points of integration and the challenges in designing the adapters.

The term points of integration means the mechanism of accessing application data and
services or functions. Some application models are more open and have multiple
mechanisms or points of integration. Others are more closed in their architecture,
limiting the number of choices for defining points of integration.

Application Components
Every application has three types of components at the highest level of abstraction:
the user interface component, the business logic component, and the database
component. Each of these components can be hosted in a different environment, or
all of them can be hosted on a single computer. The combination of hosting these
components and the technology needed to tie them together is captured in an appli-
cation model.

Host-Based Application Model
In a host-based application, all components of the application are hosted on a single
computer. A desktop application is an example of a host-based application. The user
interface, business logic, and database are on a single desktop. These applications can
be multiuser, but they support only one user at a time. Contrary to the general
thinking, quite a few small desktop applications are still used, especially where
remote site automation is required.

The term host-based is generally used in the context of mainframe applications.
These applications are truly multiuser and multitasking systems. In the case of IBM
mainframes, the user interface is rendered to the end-user on a dumb terminal.
Connecting the terminal to the application is a powerful data stream capable of
translating user input and display attributes back and forth. Sometimes, dumb termi-
nals are replaced by desktop systems with a terminal emulator.

One obvious problem with host-based applications is the non-availability of points
of integration. All components of the application are tightly integrated with each
other, with little room for enabling integration in different contexts. A very common
solution to integrating mainframe applications is using the data streams to simulate
user interaction. The role of a human user is played by an adapter, which navigates
the screens, and performs business functions and database updates. Although many
sophisticated integration tools have been built using similar techniques, it is not
considered an ideal integration solution.

Application Models 13

02 0672323109 CH01 4/18/02 10:07 AM Page 13

The other end of the application is the database, and integrating mainframe applica-
tions by developing adapters for the mainframe database is sometimes preferred. The
choice of adapters and the point of integration depend on the integration scenario.
If the scenario demands the use of business logic encapsulated in the mainframe
application, you have little choice but to use terminal-emulation techniques. Either
way, the benefits of integrating the application with the rest of the application
outweigh the technical limitations most of the time. Figure 1.1 is a representation of
a host-based model.

CHAPTER 1 Introduction to Adapter Technology14

Terminal
(Dumb/

Emulation)

User Domain

User
Interface

Business
Logic

Application Domain

Database

Data Stream

FIGURE 1.1 Host-based application model.

Client-Server Application Model
Most client-server applications are data-centric, meaning the emphasis is more on
data integrity and building strong data models. Not surprisingly, database vendors
led the client-server application era. In this application model, the user interface
component and the business logic component are hosted by a desktop, and the
database is hosted on a separate server. Databases are expected to handle the load of
multiple users, each with a desktop connected to the same LAN as the database. The

02 0672323109 CH01 4/18/02 10:07 AM Page 14

middleware connecting the client components (user interface and business logic) to
the server component (database) is generally an ODBC-compliant driver.

As the client-server application model has matured, the database technologies have
become very powerful; they can support huge numbers of transactions and large
numbers of users. However, integrating a classic client-server application with other
applications is still not easy.

Probably the easiest solution is to build an adapter encapsulating access to the data-
base server. However, doing so will still exclude the business logic encapsulated by
the client components. Also, no data streams are available to emulate the user inter-
actions. In some respects, exposing the business logic of client-server applications is
more difficult than mainframe applications. The one exception is when the client
components use desktop components, such as ActiveX and COM components. In
these scenarios, it is quite possible to build an adapter to access the COM compo-
nents and get access to applications’ functions. However, these components are
single-user most of the time, and proper analysis is required before deploying the
adapters in a multiuser integration scenario. Figure 1.2 represents a server application
model.

Application Models 15

Server Domain

Database

User
Desktop

Client Domain

User
Interface

Business
Logic

User
Desktop

Client Domain

User
Interface

Business
Logic

ODBC Driver ODBC Driver

FIGURE 1.2 Client-server application model.

02 0672323109 CH01 4/18/02 10:07 AM Page 15

Thin-Client Application Model
As client-server applications were deployed in high data volume and dynamic busi-
ness environments, a few problems began to crop up. One of them was change
management. With hundreds of users connected to the LAN and accessing one
central database, any change in the data models or an upgrade to the database soft-
ware was very hard to manage. Users expected to get notification of the downtime,
and IT staff had to precisely manage the upgrades. Even more difficult was upgrading
the client components. Making simultaneous upgrades to all the client desktops was
a very time-consuming job. Backward compatibility of the databases and their data
models was vital.

The thin-client application model was designed to solve some of these problems. The
idea was to move more of the business logic from the client to the database. This
also had the desired effect on performance. The amount of data moving between the
client and server dropped as the business logic that processed the information was
moved to the server. From an adapter perspective, the thin-client application model
is better because encapsulating the database can expose more business functions, as
shown in Figure 1.3.

CHAPTER 1 Introduction to Adapter Technology16

Database Server Domain

Shared Data logic +
Database

User
Desktop

Client Domain

User
Interface

Business
Logic

User
Desktop

Client Domain

User
Interface

Business
Logic

ODBC Driver ODBC Driver

FIGURE 1.3 Thin-client application model.

02 0672323109 CH01 4/18/02 10:07 AM Page 16

Three-Tier Application Model
The real breakthrough came with the three-tier application model. The business logic
component could now be hosted on a separate server. The user interface components
or client components became thinner and more specialized. The middle tier of the
application tier hosted the business logic or business services. These services inter-
acted with the database tier and maintained database integrity. On some occasions,
the user interface components still accessed the database directly using ODBC, espe-
cially when querying large volumes of data. But for most of the transaction-type
activities, the business services hosted on the application server were the point of
access.

The same point of access is ideal as the point of integration for an adapter to encap-
sulate. Many times, the application server also includes a transaction management
platform or a messaging and queuing platform. Either way, the capability of the
adapter to enable three-tier applications to participate in online service and data
synchronization scenarios is greater, as shown in Figure 1.4.

Application Models 17

Database Server Domain

Application Server Domain

Shared Data logic +
Database

User
Desktop

Client Domain

User
Interface

User
Desktop

Client Domain

Middleware Middleware

User
Interface

ODBC Driver

Shared Business
Logic

FIGURE 1.4 Three-tier application model.

02 0672323109 CH01 4/18/02 10:07 AM Page 17

Web Application Model
Although the Web application model is fairly new, it is important to understand it
because in most integration scenarios the objective is to integrate a Web application
with legacy applications. The Web application model is truly distributed, and is a
good example of an N-tier application model. An N-tier application model is a highly
component-based environment capable of collaboration between components. It is
by far the most ideal for sharing and reuse of business services and data. At the same
time, it is more complex to manage. A sophisticated application hosting platform, such
as a J2EE-compliant application server, is a basic requirement for these applications.

The need for adapters in this kind of an environment usually involves one-way inte-
gration of legacy applications with Web applications. The JCA specification is a good
example of how to integrate non-Web applications with Web applications. However,
in some instances, a much larger legacy application, such as an ERP system, may
need to access a Web application and use its services. Adapters play an important
role in integrating Web applications with older applications and systems. Figure 1.5
shows a Web application model.

CHAPTER 1 Introduction to Adapter Technology18

Database Server Domain

Application Server Domain

Shared Data logic +
Database

Middleware Middleware

ODBC Driver

Shared Business
Logic

User
Desktop

Client Domain

Web Server

User
Interface

User
Desktop

Client Domain

WAP Server

User
Interface

FIGURE 1.5 Web application model.

02 0672323109 CH01 4/18/02 10:07 AM Page 18

Various other application models have been developed for proprietary environments,
for other application domains such as embedded systems, and so on. You can define
your niche application models using similar techniques.

Points of Integration
Now that you know the different application models, the next step is to identify the
available points of integration in each model, as required in the different contexts.
Some application models may not have a clear point of integration.

A point of integration is an entry point into an application, providing its users the
capability to access some application functions or facilitate information (data)
exchange. In some applications, a point of integration can be a set of APIs or the
capability of the application to process messages. Stored procedures or other forms of
dedicated interface tables also qualify as points of integration. Thus, a point of inte-
gration is a publicly available interface of the application. This interface can be part
of the database, a function API, or even a desktop component such as an ActiveX or
COM component. Some of the points of integration available in each of the applica-
tion models are identified in the previous sections of this chapter.

In a host-based application model, data synchronization is possible only at the data-
base level, unless the application is modified or extended to include an API. A very
simple point of integration in a database is an interface table: a special database table
or data structure with no dependencies with any other tables and structures. It is a
freestanding space capable of staging external data. Special procedures or programs
can be developed to then read the data from the interface tables and populate the
more complicated production database tables and data structures. This is a common
technique used in integrating and synchronizing data between legacy and other
applications.

In a client-server application, the scenario is not much different, but there is a
middleware (ODBC) between the client and database. This provides developers an
option of tapping into ODBC transactions to capture the different database actions,
and replicate or duplicate them by distributing information on the action and the
actual data to other applications. Potential exists for a significant performance hit if
the integration is not designed properly.

In a thin-client server application, similar techniques can be used. The availability of
shared database logic in the form of stored procedures, and so on adds to the avail-
able points of integration. However, new programs will have to be developed to
access these stored procedures, and such programs sometimes can be quite complex.
Developers need to study stored procedures in detail to know which database tables
are updated and under which business rules. Only then can a stored procedure be
safely considered as a point of integration. One reason for being cautious about

Points of Integration 19

02 0672323109 CH01 4/18/02 10:07 AM Page 19

exposing stored procedures is that they need to be designed for multiple user access
ensuring proper database/table/row locks, and so on.

A three-tier application model is more likely to have business function API and busi-
ness services accessible by messages. These points of integration are ideal for
enabling online services. An adapter can encapsulate services on the middle-tier, and
make them generally available to different applications. Three-tier applications also
have a stronger middleware component as part of their architecture. A transaction
monitor such as BEA Tuxedo is an ideal platform for hosting transactional online
services. Other transaction engines, such as Software AG EntireX, perform similar
functions and enable integration with mainframe applications.

Remember the impact on the backend database when you’re developing adapters
wrapping the business services of a three-tier application. Although three-tier appli-
cations are designed to be multiuser, the number of users in a Web environment and
their usage patterns are very different. Thus, if the objective of developing an online
service-enabling adapter is to make the business services of a three-tier application
available in a self-service environment on the Web, careful analysis of the impact on
the database, middleware, and hosting environment in general should be conducted.

Summary
The objective of this chapter was to introduce the concept of an adapter and identify
some of the difficulties of developing adapters. Developing adapters for applications
with different architecture models requires a deeper understanding of the underlying
limitations of the application platform as well as the available points of integration.
Localizing the integration logic in the form of an adapter makes change manage-
ment easier. Changes to application functionality or upgrades to platforms can be
encapsulated by the adapter. Also, by developing adapters enabling three different
contexts—data synchronization, online services, and process automation—you
enhance the encapsulated application and further extend its usefulness. This chapter
should serve as background as you read the remainder of the book.

CHAPTER 1 Introduction to Adapter Technology20

02 0672323109 CH01 4/18/02 10:07 AM Page 20

IN THIS CHAPTER

• Introduction to J2EE

• J2EE Specification

• J2EE Architecture

• J2EE Components

• J2EE Reference
Implementation

2

Overview of J2EE

“It is of interest to note that while some dolphins are reported

to have learned English, up to fifty words used in correct

context, no human being has been reported to have learned

dolphinese.”

—Carl Sagan

This chapter is a brief introduction to J2EE, and is
intended as background for the rest of the book. The
actual J2EE specifications are quite extensive, and many
books are dedicated to the topic of J2EE programming.
Because this book is about adapters and the Java
Connector Architecture (JCA), this overview focuses on
topics and concepts useful for adapters.

Introduction to J2EE
J2EE is an acronym for Java 2 Enterprise Edition, which is
a platform for developing and deploying distributed,
component-based enterprise applications. Another version
of Java, known as the standard edition, is not based on a
distributed architecture, and is useful for developing
smaller standalone applications. J2EE is based on the J2SE,
which is the foundation of all Java applications. Version
1.3 of J2EE includes a new specification called Java
Connector Architecture, which supports application inte-
gration adapters (resource adapters) as components, or
modules of a J2EE application or the J2EE environment
(server) in general.

03 0672323109 CH02 4/18/02 10:09 AM Page 21

CHAPTER 2 Overview of J2EE22

To many readers, J2EE is perhaps synonymous with an application server. However,
there is a common misunderstanding that J2EE is only an application server stan-
dard. The J2EE specification is not bound to any specific application server imple-
mentation. The specifications are a set of services that enable components to
collaborate and interact with each other in the context of distributed business appli-
cations. Any enterprise-class application platform can choose to support and imple-
ment the J2EE specifications. This would give the platform capability to host Java
components in the form of Enterprise Java Beans (EJBs), Java Server Pages (JSP), and
resource adapters.

For example, an enterprise database server could implement the J2EE specifications,
giving its users a tighter integration between Java components and the database. A
Web server could do the same and provide a better platform for Web applications.
Many such products are available in the market today, including the leading Java
application environments such as IBM WebSphere, which includes not just the J2EE-
compliant server but also MQSeries and other application development tools from
IBM. Another leading application server, BEA WebLogic, also includes the Tuxedo
transaction engine and other tools in addition to the J2EE-compliant application
server. However, most of them have been branded as application servers and support
the new generation of Web applications. Even IDE vendors such as Inprise (Borland)
supply J2EE-compliant application servers as part of their products. It is quite
obvious that J2EE-compliant servers have become the platform of choice for enter-
prise applications, especially in the non-Microsoft technology domain.

The intention of this chapter is to provide a high-level overview of the J2EE technol-
ogy and its important components. Two of the most important components from
adapter perspective are the component model (EJB) and the JCA specification. These
two technologies are covered in more detail in separate chapters in this book.
Chapter 3, “Overview of EJB,” presents an overview of the EJB specifications; and
Chapter 10, “Overview of JCA,” presents a detailed overview of JCA specifications.

J2EE Specification
At the time of writing this book, the latest publicly available version of the J2EE
specification was 1.3.1. Every version of the specification defines the roles and
responsibilities of the various stakeholders, including vendors who sell J2EE-
compliant servers and tools, as well as developers who build business applications
and components. The capability to support the different stakeholders as part of the
specification results in better design and quality of the applications. Each role has a
specific responsibility, and the tasks of these roles usually overlap in software devel-
opment, making it difficult to develop, deploy, and maintain applications.

The J2EE specifications enable software developers to focus on developing business
components, server vendors to focus on developing platform-specific or platform-

03 0672323109 CH02 4/18/02 10:09 AM Page 22

independent servers, application assemblers to assemble different components and
package them as a business application, and deployers to configure the application
and deploy it on the J2EE application servers. This clear delineation of tasks and
roles helps in faster development, lower costs due to increased reuse, and better
deployment due to the flexible configurations in the production environment.

The specification itself is a big document, and you don’t need to read all of it. For
example, JCA resource adapter developers can build resource adapters after under-
standing the JCA specifications and possibly the EJB specifications. The J2EE
architecture makes it easier to pick and choose parts of the specifications that are
relevant, and still build high-quality Java applications and components.

J2EE Architecture
The J2EE architecture is based on the client-server model in an n-tier environment.
The client-server application model has been popular with application developers for
many years. The platforms supporting this model have changed many times, from
the classic two-tier environment to the more prevalent n-tier environments. One
notable difference with J2EE is that its architecture supports different client types as
well as different servers. Using the J2EE platform, a business application can distrib-
ute its various components over different servers running on different operating
systems and different hardware platforms. This distribution model gives developers,
system administrators, and users the flexibility to choose the best of breed technolo-
gies to support their business applications.

There are four basic tiers of a J2EE application, and each tier is responsible for
supporting specific features of an application:

• Client tier—Hosts end user components, and deals with presentation and user
preference management.

• Web tier—Responsible for hosting Web components such as HTML pages, Java
server pages, XML documents, and so on that are required for a Web-based
client.

• Business tier—Responsible for hosting business components that encapsulate
business rules, business logic, and business functions.

• Enterprise Information System (EIS) tier—Responsible for hosting information
management components such as databases or legacy applications.

Server Configurations
Although there are four tiers, each tier does not need its own server or hardware
platform. It is quite possible for more then one tier to be managed by a single server.

J2EE Architecture 23

03 0672323109 CH02 4/18/02 10:09 AM Page 23

A typical server configuration of a J2EE application consists of two servers: an appli-
cation server and a database server. The application server hosts the Web tier and
business tier, whereas the database server hosts EIS applications and databases. Some
vendors also host middleware as part of the application servers. For example, the
IBM WebSphere server includes MQSeries, which is a JMS-compliant messaging
engine; BEA Web Logic supports Tuxedo, which is a transaction monitor.

For large installations, there can be a server farm with application servers running
different tiers distributed over the network. The important thing to remember is that
J2EE provides users with the flexibility to choose different configurations to host the
servers. Providing this flexibility is the responsibility of J2EE containers and the J2EE
architecture overall.

Containers
Developing multitiered distributed applications is not an easy task. In addition to the
usual system-level interfaces, a distributed application needs to manage the coordi-
nation of distributed components—transactions that involve the distributed compo-
nents and other overheads associated with distributed computing in general. The
cost of flexibility is more complex in dealing with different platforms and services.
Distributed platforms such as CORBA provide a host of services and API to make the
task of developing distributed applications easier.

Whereas CORBA supports multiple programming languages in addition to multiple
platforms, the J2EE specifications focus only on the Java programming language.
With J2EE applications, there is no need for an Interface Definition Language (IDL)
such as the CORBA IDL, which is independent of programming languages. This may
simplify the J2EE model a little, but the complexities of dealing with multiple plat-
forms remain. This is resolved by J2EE containers—one for each different type of
component. The job of a container is to provide system services to components and
hide platform details ensuring that the components will work on any platform
supported by the container. A container is the hosting environment of J2EE compo-
nents, which are configured to work on specific containers during the deployment
phase of an application.

Some of the examples of container services include security services, which grant or
restrict access to system services. Note that this feature is provided by the container,
and hence the component can be configured differently without requiring changes
to the component code. Similarly, transactions can be defined to include methods of
components and their relationships, making the task of transaction management
easier. Such features are referred to as container-managed features. So, there are
container-managed transactions and component-managed transactions. It is obvious
that allowing the container to define and manage the transaction lets the compo-
nent developer focus on business logic instead of coding transaction demarcations.

CHAPTER 2 Overview of J2EE24

03 0672323109 CH02 4/18/02 10:09 AM Page 24

This architecture of container-managed services opens up real possibilities of compo-
nent reuse. Component providers can build domain-specific components without
tight coupling to any specific platform or server. Figure 2.1 shows the J2EE architec-
ture and the relationships between servers, application tiers, containers, and compo-
nents hosted by the containers. The diagram shows only some of the common
interactions between the components. One important aspect to note is that the JCA
resource adapters do not have a special container. JCA resource adapters, which are
extensions of the application server, enable other components (such as session beans
and message-driven beans) to communicate with the EIS.

J2EE Architecture 25

HTML
Browser Applet Java

Application

Client Machines

Client Tier

JSP
Page Servlet

J2EE™ Server

Web Tier

JCA
Resource
Adapter

EJB

Business Tier

EIS

Database Servers

EIS Tier

J2EE™ Distributed Architecture (Servers, Tiers, Containers, Components)

FIGURE 2.1 J2EE architecture.

Types of Containers
There are three types of J2EE containers supported by the application server: busi-
ness component containers or Enterprise Java Beans (EJB) containers; Web containers
that manage Web components, such as servlets and JSP pages; and client containers,
such as the application client containers (for managing Java applications) and applet
containers (for managing Web browsers and plug-ins that support Java applets).

03 0672323109 CH02 4/18/02 10:09 AM Page 25

Each container provides services that host specific components and also provide the
component with access to system interfaces. For example, the EJB container provides
a container-managed transaction service. This service enables EJB component devel-
opers to leave the transaction code out of the business component. The component
developer declares the type of transaction support required in the deployment descrip-
tor, and the deployer maps this to the appropriate transaction service. The EJB
container manages the transaction on behalf of the EJB component. This makes the
J2EE application much smaller and simpler. If the component developer chooses to
embed transaction management code in the EJB component, then the deployment
descriptor can declare that the transaction is managed by the bean, and the
container will not manage the transaction in that case.

J2EE Components
Because J2EE is a component-based architecture, a J2EE business application is
composed of more then one type of component. Each component has a specific role
and responsibility that are useful in supporting the business application. A component
is a self-contained software unit that can be deployed and configured in different
environments to support the business applications’ requirements.

Application clients and applets are components that run on the client or users’
machines. Applets are browser-based application client components that require an
applet container that is usually a plug-in in the Web browser. Another example of an
application client is a Java GUI application. These clients (applets and GUI applica-
tions) communicate with the Web tier or the business tier directly, depending on the
type of client. For applets and HTML browser-based clients, the Web tier provides
components such as Java Server Pages (JSP pages) and Java servlets, which receive
requests from the Web clients and send responses back to the clients. Servlets and
JSP pages can communicate with business components of EJBs, such as session beans
and entity beans, to access business functions and services.

Of all these different component types, it is most likely that business components in
the form of session beans will be the real users of JCA resource adapters. It is likely
that a standalone Java application (based on the standard edition of Java) can
communicate with a JCA resource adapter, but in most cases, J2EE application
components will interact with resource adapters.

J2EE Reference Implementation
The reference implementation is a non-commercial implementation of the J2EE spec-
ification available for free to be used for education, demonstration, and prototyping
projects. You can download this implementation from the Web site http://java.
sun.com/j2ee/download.html#sdk. The J2EE SDK includes a binary version of the

CHAPTER 2 Overview of J2EE26

03 0672323109 CH02 4/18/02 10:09 AM Page 26

J2EE reference implementation in addition to other development tools and docu-
ments. The SDK supports multiple platforms, including Solaris, Windows NT,
Windows 2000, and Linux. The same URL also contains sample JCA resource adapter
code and binary files. The reference implementation defines a baseline of functional-
ity that should remain constant across implementations by different vendors. The
SDK includes a J2EE compatibility test suite that helps in testing the vendors’ J2EE
products for compliance with the J2EE specifications. This does not mean that
vendor implementations will be identical, but ensures that the behavior is consis-
tent, as defined by the specifications.

Another interesting use of the reference implementation is in quality assurance of
the applications’ components, including the resource adapters. For example, if the
resource adapter works properly in the reference implementation, it should work
equally well in other application servers, assuming that all external dependencies are
working properly.

Also part of the SDK are tools such as deployment tools and scripts that help in
packaging, deploying, and configuring application components. The reference imple-
mentation is packaged with these specific tools:

• J2EE administration tool—A script that enables users to add resources such as
JDBC drivers, JMS destinations, JCA resource adapter connection factories, and
so on.

• Cleanup tool—Removes all installed applications. It is not recommended that
you use this tool unless a server needs to be cleaned up and reinstalled for
some reason.

• Deployment tool—Supports both a command line interface and a GUI inter-
face. This tool can be used to package and deploy components and applica-
tions.

• Key tool—Creates public and private keys when required. These keys may be
needed, depending on the security options selected and configured.

• Packager tool—Useful in packaging components in a command-line mode.

• Realm tool—Primarily for user management (add and remove users, groups,
and so on). It can also import public or private keys (digital certificates) gener-
ated by the key tool.

• Verifier tool—Checks if the various J2EE archive files are valid and displays the
contents of the archive files.

The reference implementation is a complete set of tools, SDK, and runtime servers
that enable developers to start developing J2EE applications and components

J2EE Reference Implementation 27

03 0672323109 CH02 4/18/02 10:09 AM Page 27

without requiring a third-party application server. However, for large, industry-
strength, mission-critical systems, a vendor-supported application server may be a
better option.

Summary
J2EE is a highly sophisticated application development, deployment, and management
platform. It supports n-tier application models and component-based application
architectures. The intention of the J2EE platform is to provide a platform-independent
model, API, and specification capable of hosting application components from many
vendors. Although the J2EE platform is not tied to any vendor’s specific API, the
specifications enable vendors to add their own extensions to the platform. Also, the
specifications do not impose implementation guidelines, which enables vendors to
be creative in their implementations.

A key design or architecture concept of J2EE is that of containers that implement
system services, enabling J2EE developers to focus on business logic encapsulated in
application components. Containers host different types of application components,
including Web components such as servlets, JSP instances, Java beans, resource
adapters, and so on. Each component is managed by a specific container. A container
isolates the application components from system-level details, adding to their plat-
form independence and flexibility.

The J2EE environment is one of the most comprehensive and flexible application
development, hosting, and management environments. This chapter was a very brief
overview of the J2EE environment; understanding the J2EE environment takes time,
practice, and experience. JCA is the standard mechanism for extending the J2EE
environment’s capability to integrate with legacy applications. The remaining chap-
ters in the book focus on JCA adapter development. A J2EE tutorial can be found on
the following Web site: http://java.sun.com/j2ee/tutorial/1_3-fcs/index.html.

CHAPTER 2 Overview of J2EE28

03 0672323109 CH02 4/18/02 10:09 AM Page 28

IN THIS CHAPTER

• Introduction to EJB

• Understanding EJB Roles

• Types of EJB

• Client Access

• Adapters and Beans

3

Overview of EJB

“Your present circumstances don’t determine where you can

go; they merely determine where you start.”

—Nido Qubein

This chapter is a quick overview of Enterprise Java Beans
(EJB) and their role in J2EE-based business applications.
Components of an application EJB will be the primary
clients of resource adapters, and hence resource adapter
developers need to understand the dynamics of EJB. Entire
books are focused on EJB programming, and therefore this
chapter focuses on how EJB and JCA resource adapters can
work together in the context of J2EE applications.

Introduction to EJB
Enterprise Java Bean (EJB) is the component model for
developing software components that are managed by the
J2EE platform. The EJB specifications that outline the
model also define the hosting environment responsible for
managing the components (beans) at run time. The
primary objective of EJB is to enable business application
developers to focus their time developing the business
functionality instead of building system functions such as
multiuser support, transaction support, and so on. A
typical EJB application developer does not need to know
the system-level details of how the J2EE platform manages
transactions, for example.

04 0672323109 CH03 4/18/02 10:08 AM Page 29

CHAPTER 3 Overview of EJB30

The EJB specifications handle the encapsulation and isolation of system interfaces by
defining specific roles for EJB developers:

• Enterprise bean provider

• Application assembler

• Deployer

• EJB server provider

• EJB container provider

• System administrator

It is possible that some of these roles will be fulfilled by one entity instead of one
entity for each role. For example, the enterprise bean provider and the application
assembler could be the same team of programmers; or the EJB server provider and
the EJB container provider can be the same vendor. Each role defined in the EJB
specification has a set of contracts or interfaces that support the roles’ responsibili-
ties.

Notice that although the JCA specifications define specific roles, there is an overlap
with the roles defined in the EJB specifications. The application assembler, deployer,
and system administrator roles exist in JCA and EJB specifications. An application
assembler will assemble the business application by tying together (assembling) rele-
vant EJB components and JCA resource adapters. Hence, it is quite possible that in
the context of a business application, an EJB component can call a JCA resource
adapter, which in turn can call another EJB, and so on.

Understanding EJB Roles
Every EJB developer assumes the role of enterprise bean provider, as defined in the
EJB specifications. This entails the responsibility for not only developing the specific
EJB components or beans, but also packaging them in a Java archive file (.jar)
together with the deployment descriptor. Because EJBs are reusable discrete compo-
nents, they can be supplied by third-party vendors just like resource adapters.
Domain experts can develop and sell EJBs that can be used by application assemblers
to assemble specific business applications. Figure 3.1 shows the different roles speci-
fied in the EJB specifications and the overlap with the roles specified in the JCA
specification.

04 0672323109 CH03 4/18/02 10:08 AM Page 30

FIGURE 3.1 Roles specified in EJB specifications.

An application assembler is responsible for packaging all the necessary EJB jar files
and any other jar files, including resource adapter .rar files, into an assembled busi-
ness application. Note that assembling does not mean installing and deploying the
application; it means bringing together the various application components neces-
sary for the application, and changing the individual components deployment
descriptors as necessary.

The deployer takes the assembled application, and deploys it in a specific run-time
operational environment consisting of an EJB server and EJB containers. Although it
is not necessary that the EJB server and EJB container be provided by the same
vendor, in most cases it is (especially because the current specifications assume that
the EJB container provider also supplies the EJB server). Any configurations required
by the components are also handled by the deployer, who uses a deployment tool to
install all external software that the application components depend on.

The EJB container provider is responsible for supplying a server and container that
conform to the EJB 2.0 architecture specifications. The EJB container is a hosting envi-
ronment for EJB instances. The container also has a deployment management tool
that enables the deployer to manage J2EE applications.

Understanding EJB Roles 31

Resource
Adapter

JCA Container

J2EE Server

.rar

Resource
Adapter
Provider

EJB

EJB Container

.jar

Bean
Provider

Container
Provider

Server
Provider

Application
AssemblerDeployer

Client API

EJB Roles And Overlapping JCA Roles

(CCI)

04 0672323109 CH03 4/18/02 10:08 AM Page 31

The system administrator’s role is much broader than just maintaining the J2EE envi-
ronments. A system administrator is also responsible for managing the EIS environ-
ment and monitoring the distributed environment. No specific system
administration and monitoring contracts are specified in the EJB specifications.
Neither are any similar contracts defined in the JCA specifications. Thus, for the
most part, the system administration and monitoring function is customized to
match the specific enterprise’s requirements.

Types of EJB
The EJB 2.0 specification has several major and important additions and changes.
One of the biggest additions has been a new type of bean—a message-driven bean.
These beans provide the J2EE applications with the capability to be triggered by a
messaging engine, and more specifically by the arrival of a specific message. Three
types of beans are defined in the EJB specifications: entity beans, session beans, and
message-driven beans. Each bean enables a specific set of interactions between the
client and the J2EE application.

Entity Beans
An entity bean represents the different data objects of a J2EE application and the rela-
tionships between them. Entity beans are a representation of a J2EE application’s
data, and are independent of the actual persistent storage mechanism. Each entity
bean has an abstract schema that describes the structure (fields and relationships as
well as the access mechanisms). The fields and their relationships are actually
managed by the entity bean container in an implementation-specific way. The
deployment descriptor of the entity bean describes the abstract schema that is associ-
ated with the physical classes used by the container to store the entity bean fields
and relationships.

Container-Managed Persistence
In container-managed persistence, the container is responsible for making the right
calls to the persistence storage mechanism (RDBMS, XML database, ASCII files, and
so on), and ensuring the synchronization between the entity bean and the physical
storage. An entity bean is essentially a framework for transforming data stored in
external persistence mechanisms into Java objects. The code of a container-managed
entity bean does not have any calls to the physical persistence environment. So if
the data is actually stored in a relational database, then the entity bean has no JDBC
calls to update the database. That is deferred to the entity bean container. The
deployer maps the entity bean schema (and its fields) to the RDBMS tables and
columns. The deployment tools provided by the container provider generate the
necessary classes (drivers), which interact with the RDBMS and transform data to
entity beans.

CHAPTER 3 Overview of EJB32

04 0672323109 CH03 4/18/02 10:08 AM Page 32

NOTE

Deployment tools play a critical role in the installation, configuration, and maintenance of
J2EE applications. J2EE users have the choice of using deployment tools from third parties that
specialize in deployment management technologies. For example, tools such as TopLink and
CocoBase are commonly used for deploying J2EE applications, especially when some of the
application servers do not have deployment tools.

This separation of the entity bean from the actual storage mechanism makes the
container-managed persistence scheme very flexible. If the entity bean needs to
change its underlying persistence mechanism, the deployer can do it without having
to change the entity bean code. The individual fields of the entity bean will be
remapped to the new persistence mechanism.

Because there are no direct JDBC calls in the entity bean, there has to be a different
interface for querying persistence environment for data. EJB QL is the query
language used by the entity bean, and is very similar in syntax to SQL. So although
the entity beans are independent of the persistence environment, the query language
is very much like SQL-based RDBMS queries. It is the deployer’s job to map EJB QL
to the physical interface, which can be JDBC-based SQL or another persistence-
management mechanism depending on the implementation classes generated by
the deployment tool.

The benefit of container-managed persistence is the resulting flexibility, but the over-
head of working with logical schemas is not always justified—especially if the schema
is small or if the persistent storage is expected to remain constant for a long time.

Bean-Managed Persistence
In this method of accessing persistent data, the entity bean provides an object view
of the data. Just as the container-managed persistence mechanism transformed exter-
nal data representation into a Java object, a bean-managed persistence mechanism
transforms the physical data structure to a Java object. The difference is that the
entity bean has code that accesses the persistence environment directly. There is no
logical schema involved, and therefore there is no mapping of the entity bean’s
structure (fields and relationships) to the physical data model.

Bean-managed persistence can be used to reduce the overhead of container-managed
persistence, but the price to pay is loss of flexibility.

Session Beans
A session bean is an EJB that manages sessions (or conversations) on behalf of the
client (application components or JCA resource adapters). The lifecycle of a session
bean is controlled by the client. In some situations, such as server (host of the

Types of EJB 33

04 0672323109 CH03 4/18/02 10:08 AM Page 33

session bean) errors, the EJB container can terminate a session bean. Therefore,
clients of a session bean should be prepared to create a new instance of the session
bean if the original instance is terminated by the container.

A typical session is transient, and its state is usually not persistent. An example of a
session could be tracking your courier package using a Web-based status query appli-
cation. If for some reason the Web server dies or the session times out (does not get
the response back within a predetermined time interval), then the session terminates
and the user is required to start a new session. Most online transactions are session-
oriented, with the user initiating a session, performing a set of actions, and then
terminating the session. Hence, a session bean generally stores its state in transient
variables.

Not all sessions are conversational, and some sessions are unidirectional—with the
client invoking some methods or actions as part of the session without expecting
any reply. These sessions are called stateless sessions; the state management mode of
the session bean is described in the deployment descriptor. Conversational sessions
are managed by stateful session beans. In practice, especially in the context of distrib-
uted Web applications, the stateless session beans are used more frequently than
stateful session beans.

There can be many session bean instances being managed by the bean container,
and it is possible that not all session beans are active at any given moment. Session
beans can be active as a result of direct invocation by client components or as part of
container-managed transactions. In either case, it is possible that the session bean
container may want to swap out inactive session beans to secondary storage
temporarily, and swap them back when required. This swapping-out process is
known as passivation, and the swapping-in process is known as activation of session
beans.

All session beans must implement the SessionBean interface. The bean container
invokes the setSessionContext method to associate a session bean instance with a
context that is maintained by the container. The context instance is usually held by
the session bean instance as part of its state. Because the context is valid while the
session bean is in existence, it should be held in a transient variable. This is to
ensure that when the session bean is swapped out by the container, the context
instance is not lost when the session bean is swapped back in.

Some of the events generated by the session bean container, which are associated
with specific actions in a session bean, include ejbRemove, ejbPassivate, and
ejbActivate. When a session bean receives these notifications, it should release the
resource (in the case of ejbRemove and ejbPassivate) and require the resource (in
the case of ejbActivate).

Unlike stateful session beans, stateless session beans do not store any reference or
state information that associates the bean to a particular client. This makes stateless

CHAPTER 3 Overview of EJB34

04 0672323109 CH03 4/18/02 10:08 AM Page 34

session beans equivalent in terms of servicing clients. The session bean container can
therefore pass along the client’s request for a specific stateless bean method to any
instance of the stateless bean, as long as it belongs to the right class.

This means if the resource adapter interacts with an asynchronous messaging engine,
then a stateless session bean may be better suited as the client. If on the other hand
the message engine is a synchronous message platform, or if there is a synchronous
service that the resource adapter is interacting with, then a stateful session bean is
better suited as a client. Overall session beans (stateful or stateless) will be some of
the primary clients of resource adapters.

Message-Driven Beans
A message-driven bean is different from the session bean or the entity bean. Its client
is the container that invokes the message-driven bean upon receiving a JMS message.
So a client that wants to access the business logic encapsulated in the message-driven
bean must send a JMS message to the appropriate JMS destination (queue or a
specific topic). The message-driven bean listens for messages on a queue or for a
topic. In some ways, a message-driven bean is like a stateless session bean, with the
capability of waiting for a JMS message on an asynchronous messaging platform.

Because JMS is a messaging standard not restricted to the J2EE environment, other
messaging platforms that are also JMS-compatible, such as IBM MQSeries, can be
used to integrate legacy applications. Herein lies a conflict in terms of what is the
better mechanism for integrating message-based legacy systems. Would a message-
driven bean be the appropriate mechanism for receiving messages from the legacy
application, or should that job be left for JCA resource adapters? Note that a JCA
resource adapter does not have a message-driven interface in its client component
interface (CCI) interface. Thus, in some instances when the legacy application is
sending messages to the J2EE application, a message-driven bean could then be a
trigger for processing inbound messages. Outbound messages could be generated by
a resource adapter.

Figure 3.2 shows a possible design pattern in which message-driven beans and JCA
resource adapters work together to support a distributed asynchronous integration
scenario involving a message platform-based legacy application and a J2EE applica-
tion. In the scenario, a session bean that is part of the J2EE application accesses the
resource adapter for the legacy system using its CCI interface. The resource adapter
creates a JMS message encapsulating the service request, and puts the message into
the legacy application’s inbound message queue. At this time, the resource adapter
has completed its job, and either returns a successful status if the message is written
properly to the queue, or throws an exception. The legacy system processes the
inbound message when it has time, and encapsulates the response in a message
before writing the message to the outbound queue. A message-driven bean is moni-
toring the outbound queue, and the bean container invokes the message-driven bean
as soon as it detects the presence of the response message.

Types of EJB 35

04 0672323109 CH03 4/18/02 10:08 AM Page 35

FIGURE 3.2 Distributed J2EE integration scenario.

Suppose that the scenario changes a little, and instead of processing the response in
an asynchronous way, the J2EE application wants to wait for the response. Then, the
JCA resource adapter must monitor the outbound queue and wait for the response
message before returning control to the client session bean. A number of similar
design patterns involve session beans, message-driven beans, and entity beans, in
conjunction with resource adapters, to solve application integration problems and
scenarios.

Client Access
With different types of beans, the client access mechanisms and views need to be
formalized to reduce complexity and simplify maintenance. Clients can be instances
of EJBs or other Web application components such as JSP, Java applets, and so on. To
a client, a session bean is a non-persistent enterprise bean that encapsulates business
logic, and an entity bean is an object-oriented (Java) representation of different types
of persistent data (RDBMS and others).

Every bean has two interfaces that define the client access mechanisms: home and
component interfaces. Together, these interfaces define the clients’ view of enterprise

CHAPTER 3 Overview of EJB36

Messaging Based Legacy System

Business
Logic

Messaging
Platform

Distributed Integration Scenario

Inbound
Queue

Outbound
Queue

Resource
Adapter

JCA Container

J2EE Server

Session
EJB

Message-
Driven
EJB

EJB Container

Client API

(CCI)

Service Request
Message

Service Response
Message

04 0672323109 CH03 4/18/02 10:08 AM Page 36

beans. The bean container provides the implementation of these interfaces, but the
container is transparent to the client.

A client can be either local or remote, and the client views (interfaces) to EJB are
different depending on the client’s location (local or remote). This means that if the
client is local to the EJB, then the interfaces used by the client to access the EJB are
different from the interfaces used by a remote client to access the same EJB. The
remote client’s view is composed of two interfaces: a remote interface and a remote
home interface. These remote interfaces can be used by a client that can be running
in the same Java Virtual Machine (JVM) or a different JVM on a different machine.
The remote client view interfaces remain the same, and are independent of the loca-
tion of the client. Both the remote and remote home interfaces are Java RMI-based
(Remote Method Invocation-based).

If the client and the bean are both hosted in the same JVM, then the remote client
view is an overhead that can be removed by a local client view. Similar to the remote
client view, the local view is composed of a local interface and a local home inter-
face.

Both the local and remote client views enable entity and session beans’ maximum
scalability and flexibility. Together with the capabilities of entity (independent of
persistence mechanism) and session beans (stateful and stateless) and the client
access views (local and remote), EJB form a strong foundation for distributed applica-
tions. JCA resource adapters can have EJB clients, or they can interact with EJB to
fulfill some of its internal functions.

Adapters and Beans
The brief outline of some of the capabilities of entity beans, session beans, and
message-driven beans in the previous sections is bound to create some doubt in
terms of the usefulness of JCA as compared with EJB. The benefits and strengths of
JCA are not in its system contracts as much as in the formalization of the client API
in the form of the CCI. Future versions of JCA will probably have a more compre-
hensive client API and stronger support for emerging XML-based protocols and APIs.
There is no reason why this cannot be done with EJBs, but the objectives of EJB and
JCA are different. EJB is a component model for distributing business logic of the
J2EE application in relevant components. JCA is a standard method of accessing
legacy systems.

Of the three types of beans, the session bean will tend to be the most likely client of
JCA resource adapters. Entity beans map Java objects to persistent data models, and
it is unlikely that entity beans will need to access JCA resource adapters. There can
be times when an entity bean maps its schema (fields and relationships) to the JCA
interface (XML document). The resource adapter can then store the document or
data in the legacy system’s database.

Adapters and Beans 37

04 0672323109 CH03 4/18/02 10:08 AM Page 37

It is very likely that JCA adapters will interact with entity and session beans, espe-
cially those of other J2EE applications. Message-driven beans will be useful in trigger-
ing application components upon arrival of JMS messages from external applications.
The same mechanism can be used to trigger resource adapters if required. The
bottom line is that resource adapters will collaborate with enterprise Java beans and
support complex integration patterns.

Summary
Enterprise Java Beans have become the foundation for developing distributed appli-
cation components. However, the EJB standard does not include specific contracts
for adapters; hence the importance of JCA specifications. Perhaps you can argue that
the EJB specifications could have been extended to include adapter-specific contracts.
An adapter can be conceptualized as a specialization or a new type of EJB. Just like
there is an entity bean, a session bean, and a message bean, there could have been
an EIS bean. However, the scope of adapters goes beyond the J2EE environment, and
because EJB is a J2EE component model, a separate specification for adapters makes
sense.

However, EJBs will be the primary clients of JCA resource adapters, and they will also
be the primary J2EE application access points for resource adapters. The relationship
between EJBs and resource adapters is bidirectional, and the resulting scenarios can
range from simple to complex. The job of the application assembler will be to tie
together the relevant EJB components and JCA adapters, and ensure the integrity of
the J2EE application.

Perhaps the JCA and EJB specifications will merge at some point, especially because
there is an overlap in their roles as well as in their capabilities. The intent of JCA is
different from the EJB objectives, which are restricted to J2EE environments.
Nonetheless, sometimes a session bean or a message-driven bean can do the job of
application integration; and if it’s a simpler design pattern, it could be justified.

CHAPTER 3 Overview of EJB38

04 0672323109 CH03 4/18/02 10:08 AM Page 38

IN THIS CHAPTER

• Role of Software Reference
Models

• Choosing Reference Models

• Adapter Requirements and
Architecture Models

• Objectives of the Logical
Adapter Reference Model

• Layered Architecture

• Use Case Models

• Logical Adapter Reference
Model

• Design Considerations

• Applying the Logical
Reference Model

4

Adapter Reference Model

The test of a good architecture is that it will last. The sound

architecture is an enduring pattern.

—Robert Spinrad, 1988

Software architecture is an art similar to software
programming. Being recognized as a software architect
may be the wish of many programmers, but not every
programmer can succeed in becoming an architect.
Architecture is as much about the mind set as it is about
software engineering and the art of problem solving.

Role of Software Reference Models
Software reference models are central to any software engi-
neering methodology or technique. A reference model is an
accurate and complete representation of the internal
design (static and dynamic) of a software system. As such,
these models are also the primary means of communica-
tion with various stakeholders of the system. Stakeholders
view the system differently, and also use different
languages to express requirements and understand the
design. An architect is a person capable of understanding
these different languages and views and able to define a
reference model that can be used during and after the
development of the target system.

Although there are multiple models of a system, each
model has a specific role. The contents of these models are
also different, although they all refer to the same system.
The now ubiquitous UML techniques include many differ-
ent system models and views. For large and complex soft-
ware, it is no doubt beneficial to follow a model-based

05 0672323109 CH04 4/18/02 10:07 AM Page 39

CHAPTER 4 Adapter Reference Model40

development process. Software adapters also require models to capture the analysis
and design decisions. It is very important that we build reference models to capture
the important aspects and artifacts of an adapter, without any outright bias to the
supporting technologies and infrastructure.

In general, reference models fill many different roles in adapter development,
including the following:

• Communicate (accurately and concisely) system requirements and structure to
the stakeholders. This is very important because the stakeholders need to agree
on the end result before it’s developed. Software development is still a very
costly proposition, and the trial-and-error methods frequently prove to be very
expensive.

• Define the acceptance criteria, including the identification of certification
requirements. A comprehensive test plan is part of a complete reference model.

• Provide a consistent and repeatable design concept to adapter developers.
Because part of the challenge faced by adapter developers is the adaptation of
different systems, a consistent architecture and design model ensures mainte-
nance is manageable.

• Maintain the integrity of the software system as it proceeds in the develop-
ment lifecycle. Even with the advances in UML, it is very easy to miss critical
aspects of the software system during the transition from one phase of the
development lifecycle to the other. Research into development practices and
methodologies has repeatedly shown that the cost of fixing problems becomes
significantly higher after each subsequent step of the development lifecycle.
Needless to say, a reference model goes a long way in reducing the changes of
such costly mistakes.

Choosing Reference Models
A common challenge is deciding which models are critical to adapter development,
and which aren’t. It is difficult to determine which models are more important than
others; however, it is possible to put the models into perspective and select the
appropriate models, depending on the type of adapter. As stated earlier in this
section, a software system is viewed differently by the different stakeholders. By
understanding which model represents the specific views of the stakeholders, archi-
tects and developers can decide on the priority of the models. Figure 4.1 shows the
different stakeholders and their views of the adapter.

05 0672323109 CH04 4/18/02 10:07 AM Page 40

FIGURE 4.1 Adapter stakeholders and views.

Adapter Requirements and Architecture Models
In the ideal scenario, all the stakeholders will get to review the system model match-
ing the criteria of their specific view. Modeling tools and techniques, such as UML,
support multiple types of models. In this chapter, we focus on two important views:
the end user view (requirements model) and the system structure view (architecture
model). That is not to say that the other models are not important, but they are
more relevant to specific adapters rather than to a generic model. Even the require-
ments model is better understood in the context of real requirements, but there are
generic requirements that can be modeled and can form the basis of the generic
architecture model.

There are two types of architecture models: a logical model and a physical model. A
logical model captures the design details and concepts, whereas the physical refer-
ence model captures the implementation and deployment details. This chapter is
focused on the logical adapter model, and is used in the development of the example
resource adapter in Chapter 17, “Source Code for ASCII File J2EE Adapter.” The bene-
fits of the logical model are that it can be used in different physical environments
such as J2EE-compliant application servers, proprietary application servers, messag-
ing platform environments (IBM MQSeries), and so on, while preserving the core
concepts and design to be implemented by the adapter.

Logical Models
When does a logical model become a reference model? It depends largely on the
context in which the model is developed and applied. If the logical model is built to
solve a specific adapter problem, it cannot be classified as a reference model because

Adapter Requirements and Architecture Models 41

End User

IT Mgr.

Project Mgr.

Business Analyst

Developer

System Architect

Adapter

05 0672323109 CH04 4/18/02 10:07 AM Page 41

its reference context is limited to the specific adapter. To build a generic logical refer-
ence model, the requirements that drive the model should be broad in scope and
applicable to more than one adapter. You can build adapter reference models for
specific categories (classes) or adapters. For example, a reference model for ERP
system adapters or a reference model for database adapters can be defined to main-
tain consistency between adapters for different ERP systems or adapters for different
databases.

The logical reference model defined in this chapter is applicable to any type (class) of
adapter, especially because its primary focus is on defining a flexible structure (archi-
tecture) for an adapter. Before getting into the details of the logical reference model,
a list of objectives for the reference model will be useful in defining its scope.

Objectives of the Logical Adapter Reference Model
The primary objective of the adapter reference model is to define an abstract
(generic) design model that is capable of supporting most adapter patterns and
behavior. To achieve this objective, the model needs to exhibit several important
properties, including the following:

• A flexible component-based architecture supportive of plug-and-play capability

• Clearly defined functional boundaries ensuring no redundant functionality

• Consistently universal applicability

These properties are difficult to maintain in one model. In practice, multiple models
are necessary, each capturing different aspects and different dimensions
(static/dynamic, logical/physical, transience/persistence) of the adapter. One impor-
tant objective is to keep the reference model as simple as possible without losing any
significant details.

Assigning Responsibility
Any object-oriented architect and programmer will quickly admit that one of the
difficult tasks of object modeling is assigning responsibilities. It takes several itera-
tions of analysis and design before a stable and robust distribution of responsibilities
can be achieved. Another equally challenging job is drawing clear functional bound-
aries. After the boundaries are drawn and components are defined, it is not easy to
change them in the future without significantly affecting the system design.

A good place to start understanding the boundaries and responsibilities is by captur-
ing the requirements in a use case model. Figure 4.2 shows the use case model that
defines the generic requirements of an adapter. The use case identifies the various
actors, use cases, and subsystems (or system boundaries) responsible for managing
the use cases.

CHAPTER 4 Adapter Reference Model42

05 0672323109 CH04 4/18/02 10:07 AM Page 42

FIGURE 4.2 Use case model.

Reducing Complexity
It is obvious from the use case model that the level of complexity is quite high, and
the reference model needs to simplify the associated design. Simplicity is typically
achieved by deferring the complications of the constraints of physical environment
to another model (physical design model). Another useful architectural paradigm in
reducing complexity is the concept of layers or tiers, with the higher layers repre-
senting (higher levels of abstraction) design models simpler than the lower (increas-
ingly concrete) layers. Application architectures such as the three-tier model use the
layered architecture principle to define functional boundaries. The logical adapter
reference model is also based on a layered architecture.

Defining the Problem Domain
The first step in building the reference model is defining the problem domain. Figure
4.3 shows a block diagram with the major domains and their relationships. The
block diagram also shows the role of an adapter and its relationships with other soft-
ware components and their domains. There are three main domains in any adapter
problem model: the adapter domain, the administration domain, and the target
domain.

The adapter domain consists of the actual adapter, the adapted application, and the
adapter configuration information. Each of these components can be in a different
hosting environment or in a single hosting environment. From a logical perspective,
all these components are part of a single domain, regardless of the potential cross-
platform, distributed physical environment. By deferring the implementation details
and focusing on the component responsibilities and relationships, the resulting
reference model will be more robust.

The target domain consists of only one component: the target entity. This can be
either an application or middleware or a database. Similarly, the administration
domain has only the administration tool component.

Objectives of the Logical Adapter Reference Model 43

Adapter
Client

Administration
Tool

Security Mgt.
Tool

HostAPI

SecurityProviderAPI

PersistenceAPI

Adapter Host
Environment

Persistence
Resource

Security
Provider

AccessLayer FoundationLayer

SyncServiceAPI

AsyncServiceAPI

EngineLayer

Access Adapter Services Implement SyncService

Access Configuration Services

Access Security Services

Access Administration Services
Implement AsyncService

Parse

Parse

Manage Host Connectivity

Access Security Provider

Manage Persistence

Manage Lifestyle

1..*11

1

1

1

1

1

110..*

0..*

0..*0..*0..*

0..*
0..*

0..*

«concludes»

05 0672323109 CH04 4/18/02 10:07 AM Page 43

FIGURE 4.3 Primary problem domains of adapter analysis.

It is obvious from the block diagram that the adapter is the central piece, with many
points of integration and multiple stakeholders—each driving different requirements.
In a situation in which requirements are coming from multiple sources, the system
design needs to be such that changes driven by one source of requirements does not
affect other system components. At the same time, the integrity of all the compo-
nents in the system needs to be maintained at all times. In a homogenous environ-
ment, in which all the system components defined in the block diagram are
physically hosted in the same environment, the physical reference model will be
much simpler than in a distributed heterogeneous environment. The complexity of
the task of modeling the physical environment is the reason why most projects fail
to define the physical reference model. Especially under these circumstances, a
complete logical reference model becomes even more critical.

Layered Architecture
The concept of layered architecture is neither new nor very difficult to understand.
The seven-layer application architecture model from Open Systems Institution (OSI)
is a classic example of a successful layered architecture model. Before using the layer
concept for building the adapter reference model, a quick overview of some of the
advantages of the layered architecture will be useful.

CHAPTER 4 Adapter Reference Model44

Adapter
Configuration

Hosting
Environment

Database

Hosting
Environment

Hosting
Environment

Hosting
Environment

AdapterAdapted
Application

Admin
Tool

Hosting
Environment

Hosting
Environment

Target
Entity

Adapter Problem Domains

05 0672323109 CH04 4/18/02 10:07 AM Page 44

A layer defines a conceptual boundary that isolates a set of software functionality
from other layers. Synonymous with the concept of layers is the concept of tiers,
where layers are stacked on top of each other, with the higher layers defining more
generic and abstract concepts than the lower layers. This means the higher layer in
the stack defines the most generic concepts, and the lowest layer defines the most
concrete concepts. The terms generic and concrete take different meaning, depending
on the context in which the layers are defined. In the context of the OSI application
model, the highest layer (layer 7) is the Application layer, and the lowest layer (layer
1) is the Physical layer. In between are different layers, increasing in application-
specific functionality (layer 6 is Presentation, layer 5 is Session, and so on).

Figure 4.4 shows the concept of layers and their dependencies in the context of
adapters and the adapter reference model defined later in this chapter.

Layered Architecture 45

<Module>

API

<Module>

API

<Module>

API

<Module>

API

<Layer>

Local/Remote
Connection

<Module>

API

<Module>

API

<Module>

API

<Module>

API

<Layer>

Loose
Coupling

Internal
Collaborations

Multiple
Interfaces

Functional
Boundary

Layers and
Dependency

FIGURE 4.4 Concept of layers and their dependencies.

A layer encapsulates one or more modules that define the functionality isolated by
the layer. Access to the modules is restricted or defined by a set of APIs associated
with the layer. The connectivity between the APIs and the modules of a layer can be
either local or remote. There can be one or more APIs for any specific module of a
layer. Each API defines a specific access mechanism or channel for accessing the
layer’s functionality. The modules encapsulated by the layer can collaborate between

05 0672323109 CH04 4/18/02 10:07 AM Page 45

themselves, and may or may not use an internal API. However, when layers are
stacked in tiers, interlayer collaborations between modules of different layers are
facilitated by APIs. Restricting direct communication between modules of different
layers helps maintain the integrity of the individual layers and preserves their func-
tional boundaries, resulting in a more robust architecture.

Use Case Models
Before getting into the details of the reference model—its structure, dependencies,
and responsibilities—an analysis of the generic adapter requirements will be useful
for understanding the scope and complexity of the problem domain. Figure 4.2,
earlier in the chapter, shows the use case model for an adapter. Notice that the use
cases, actors, and system boundaries are very generic and can be applied to most
adapters. One more noticeable element is that there are no real users accessing the
adapter except other applications and systems. After all, adapters are supposed to
integrate applications, and as such the use case model shows which applications
interact with the adapter and their role in the integration scenario. Also, the use
cases interact with each other via APIs, also represented by external actors.

The use case in Figure 4.2 is generic and can be used as a guideline for building
specific adapter requirements models. Real use cases are bound to be more complex,
but the basic idea and strategy should remain the same. Three subsystems are identi-
fied in the model: the access subsystem, engine subsystem, and foundation subsys-
tem. There are common data objects shared across the use cases, but they appear as
part of the individual use cases rather than being modeled as a separate use case. The
adapter reference model, however, has a separate layer to encapsulate shared data
and services.

Logical Adapter Reference Model
The logical adapter reference model consists of four layers: the access layer, the engine
layer, the foundation layer, and the common component layer. These four layers
define a solution to the four most common questions involved in software (adapter)
modeling:

• What features does the adapter provide to its users?

• How are those features implemented?

• What are the dependencies between the adapter and its hosting environment?

• What information and services are common and shared by the various
modules encapsulated by the layers?

CHAPTER 4 Adapter Reference Model46

05 0672323109 CH04 4/18/02 10:07 AM Page 46

Figure 4.5 shows the logical adapter reference model, its different layers, and the
major modules (components) of each layer. The layers are stacked in a two-
dimensional model, one dimension consisting of the common component layer and
its modules, and another dimension consisting of a stack of three functional layers
(access layer, engine layer, foundation layer).

Logical Adapter Reference Model 47

Client
Interface

API

Shared
Data

Object

Exception
Handling

Business
Rules

API

What is
shared?

Administration
Interface

API

Configuration
Interface

API

Security
Interface

API

Access Layer

Sync
Service

API

Async
Service

API

Parser
Mapping
engine

Engine Layer

Persistence
Mgt.

API

Lifestyle
Mgt.

API

Host
Connectivity

API

Security
Provider

API

Foundation
Layer

What are the
dependencies?

How is it
implemented?

What
features?

Functional
Dimension Shared Services

Dimension

Common
Component

Layer

Adapter
Dimensions & Layers

FIGURE 4.5 Adapter reference model (dimensions and layers).

The reference model is based on the principle that each model has one or more
types of dimensions. A dimension is defined as a distinctly different view of a system,
sometimes defined by the roles played by set of layers and modules. The two dimen-
sions of the logical adapter reference model provide two views: a functional view of
the adapter and a shared service view. The functional view is useful to determine
what services and functions the adapter is designed to provide, whereas the shared
services dimension helps to determine the dependencies between various layers of
the functional dimension. This separation of code into logical groupings (modules,
layers, and dimensions) is a very powerful structural pattern capable of supporting
mutually different views of the adapter in a cohesive model.

05 0672323109 CH04 4/18/02 10:07 AM Page 47

Functional Dimension
The functional dimension of the logical reference model consists of three layers: the
access layer, the engine layer, and the foundation layer.

Access Layer
The topmost layer is the adapter access layer, or simply access layer. This layer has
four basic modules, each of which is an interface accessible via an API. Each module
represents a set of services targeted at a specific stakeholder identified in the use case
model:

• Client interface—Provides a set of services that represent the actual adapter
services. If the adapter is a SAP adapter, then one of the client interfaces can
access a specific SAP Business Application Programming Interface (BAPI) or a
SAP Intermediate Document (IDOC) document.

• Administration interface—Provides adapter services to any external administra-
tion tool. Typically, these services include starting and stopping the adapter,
tracking the exceptions, and so on.

• Configuration interface—Consists of services enabling static and dynamic config-
uration of the adapter. If the adapter accepts parameters in real-time and can
adjust its behavior accordingly, then the configuration interface is an impor-
tant part of those features.

• Security interface—Exposes security services, such as logon and logoff, and
provides the capability to accept security credentials from an external security
environment such as a single sign-on platform.

Engine Layer
The next layer below the access layer is the engine layer. This layer is the heart of the
adapter, and it does most of the work. There are four important modules in this
layer: the sync service and async service modules, as well as the parser and mapping
engine modules. Generally, this layer provides an API only for the sync and async
services. The parser and mapping engine modules are used internally by the sync
and async service modules to parse incoming data and map different outgoing data
types to one another.

Foundation Layer
The last layer in the functional layer is the foundation layer, which is the layer closest
to the hosting environment. In the case of the JCA resource adapter, the foundation
layer consists of modules that implement the system contracts defined as part of the
JCA specifications. These contracts include transaction and security interfaces. Apart
from the hosting environment interfaces, other modules in this layer include the

CHAPTER 4 Adapter Reference Model48

05 0672323109 CH04 4/18/02 10:07 AM Page 48

lifecycle management module responsible for state management of the adapter, a
persistence management module providing interfaces to the underlying persistence
resource (such as an RDBMS database), and a security provider module that interfaces
with the external security infrastructure.

The lifecycle management module should support single-cycle adapters and multicy-
cle adapters. Single-cycle adapters are created to process any existing service requests,
and after all the services are processed, the adapter is destroyed. Multicycle adapters
can be preconfigured to process services multiple times. This can be useful when the
data supplied to the service is for more than one invocation of the service. For
example, if the service processes purchase orders and the adapter receives data for
five POs in a batch, it might be necessary to execute the service five times, with each
cycle getting a different part of the received PO data. Multicycle adapters are neces-
sary when interfacing with a batch-oriented application or environment.

Shared Services Dimension
All the layers in the functional layer (and their APIs and modules) share some
common data objects and services. The shared services dimension consists of the
common component layer. This layer encapsulates shared data objects and services
such as the exception handling service, business rules, and other shared data objects.

If there are a lot of common data and services in a particular adapter, then it might
be necessary to define two layers: one for shared services and the other for shared
data objects. Reusing components is a major benefit of isolating shared objects and
services. Another benefit is easy change management because a change in any of the
shared objects is reflected throughout the adapter.

With just two dimensions and four layers, the reference model is simple and has the
placeholders to define most of the adapter’s design without specific physical
constants. There are, however, some potentially essential useful modules, such as
session management, that have been deliberately left out of the logical model.
Session management and transport mechanisms (such as HTTP, MQSeries, and so
on) are usually captured in the physical models, especially if they result in
constraints at implementation time.

Design Considerations
Some design considerations are not captured in the logical reference model but may
be important to some specific adapters. Session management is one of the design
considerations that must be captured either in the physical reference model or in a
more adapter-specific logical reference model. Session management could well be an
issue when developing adapters for legacy systems (mainframe applications), and the
reference model for these adapters must define the relevant session layer and

Design Considerations 49

05 0672323109 CH04 4/18/02 10:07 AM Page 49

modules. Some of the design considerations that haven’t been specifically identified
in the logical reference models are outlined in the following sections.

Session Management
Most communication protocols require some level of session management. Some of
the simpler session management requirements can be the use of a session ID when
exchanging information or invoking services over an established session or connec-
tion.

Typically, a session is identified by a connection between a client and a server
resource. Sessions are useful for coordinating information and services relevant to a
specific transaction. If the underlying protocol does not support session manage-
ment, the adapter may have to develop a pseudo-session manager to maintain the
integrity of the services and information exchanged by the integrated applications.

Non-persistent Session
Sometimes the sessions are transient or non-persistent, meaning that if there is any
loss of connection due to physical (hardware) or software problems, then the entire
session is lost and needs to be restarted. On other occasions, transient sessions are
based on business transactions in which the transaction is real-time or time-sensitive.
In these situations, if the transaction cannot be completed in a fixed, predetermined
time interval, the session is terminated, and a new transaction initiated.

Persistent Session
On the other hand, some sessions are persistent, and keep their state information in a
secondary storage. If for some reason the session is disconnected or broken, the
session manager (adapter) can restart the session from the last successful point or
state. An example of a persistent session is a file transfer across a network, which can
be restarted from the point when the file transfer failed due to network problems.

A session management module in the foundation layer or a completely different
layer between the engine and foundation layers will be required to manage the
sessions, regardless of their type. One of the reasons why it has been left out of the
logical reference model is that, more often than not, session management is included
in the underlying protocols that manage connections between machines. Hence,
unless the adapter is required to actively manage the session, there is no need to
include it in the adapter design.

Applying the Logical Reference Model
One way to test the effectiveness of any reference model is its applicability to specific
problem domains. In the case of the logical adapter reference model, its effectiveness
can be measured by its applicability to different types of adapters. Another measure

CHAPTER 4 Adapter Reference Model50

05 0672323109 CH04 4/18/02 10:07 AM Page 50

of effectiveness is the degree of customization or specialization required to use the
logical reference model and develop a physical model. The logical reference model
must be relevant to the context. For example, an abstract Java class such as
Exception is generic, but only in the context of exception handling, whereas the
class Object is really generic. The logical adapter reference model should be analo-
gous to the Exception class to be effective within the adapter context.

Adapter Types
Many different types of adapters are required to support integration within an enter-
prise and between enterprises. Some of the most common types of adapters and the
way the logical adapter reference model applies to each type are described in the
following sections.

Point-to-Point Integration Adapters
Point-to-point adapters are useful when a small number of applications need to be
integrated or when all the applications to be integrated are on the same host
machine. It is very rare to find the use of integration brokers in these situations
because they are add overhead. The logical reference model does not depend on any
external brokers for basic data transformation and mapping features.

There is a distinction between external data transformation and internal transforma-
tion. External data transformers are required when there are too many different data
models to involved in an integration scenario. Also, the real value of external data
transformers is when applied to structural transformations as opposed to data type
transformations.

The logical reference model includes basic data type transformation capabilities as a
distinct module of the engine layer called the mapping engine. The mapping engine
module maps one data type to another data type, and handles any conversation
between them. It does not change the structure of the data model. In a point-to-
point integration scenario, it is fair to assume that the data structure can remain the
same, and the target system can parse the specific data structure. This assumption is
made on the basis that both the applications know about each other’s data models.

Brokered Integration Adapters
Will the same logical model hold in the case of brokered adapters? Integration brokers
are used when the scale of integration is large and in a distributed environment. The
value of using a broker is that most of the decisions related to transforming the
structure of the data models between integrated applications, routing the data
objects (messages), filtering unwanted or erroneous messages, and so on are handled
by the broker. The adapters (and therefore the applications) have little or no knowl-
edge of the target applications.

Applying the Logical Reference Model 51

05 0672323109 CH04 4/18/02 10:07 AM Page 51

Because the logical reference model does not perform any routing or structural trans-
formations, the same model can be used for brokered adapters. Also, the host
connectivity and lifecycle modules in the reference model are responsible for manag-
ing the connectivity and state of the adapter, depending on the hosting environ-
ment. When the host is an integration broker, these modules can delegate most of
the lifecycle and state management tasks to the broker, ensuring proper broker-
managed integration.

Conversation Adapters
Some adapters support conversations or interactions between applications. These
conversations between applications can take place within the context of one session
or across a session. The state of the conversation also needs to be maintained across
conversation sessions. The sync service and async service modules in the engine
layer can support bidirectional conversations (interactions) in collaboration with the
lifecycle management and host connectivity modules in the foundation layer. One
benefit of keeping the lifecycle and host connectivity management in the founda-
tion layer is that adapter can support the same service in a sync mode and async
mode while reusing the underlying state management and host connections.

An example of a conversation adapter is an adapter for an inventory system that
exposes services to query inventory information for items and exposes services to
move items from the warehouse to the appropriate locations (retail shops, and so
on). Typically, the system moving items from the warehouse to the retail shops will
first query the current inventory levels among other things before authorizing the
movement of items. This is all part of a conversation between the two applications,
and the inventory application adapter must support this type of behavior.

Query Adapters
A query adapter supports data queries exclusively. Generally, query adapters enable
remote connectivity with enterprise databases, and consolidate the results in an
effort to reduce network traffic. The persistence management module in the founda-
tion layer of the logical reference model is instrumental for managing the submis-
sion of selection criteria and retrieving the results. If the result size is large, then the
async service module can be used to break down the response into multiple units of
data. The security provider interface can provide the necessary interfaces to log on to
the database or use existing security credentials. Parsing and mapping of data objects
may not be necessary in a query-only adapter.

Broadcast Adapters
A broadcast adapter sends or distributes a piece of information or an object to more
than one target system simultaneously. The use of the publish-subscribe pattern in
supporting this behavior is getting more popular. In this pattern, the external entity
interested in being notified about changes or creation of a specific object or piece of

CHAPTER 4 Adapter Reference Model52

05 0672323109 CH04 4/18/02 10:07 AM Page 52

information registers with the adapter. When the adapter recognizes the change, it
looks in its registration database for a list of clients interested in being notified of the
change, and broadcasts the information to them.

The business rules module in the common component layer is useful for keeping the
subscriber information. The fact that the host connectivity module can have multi-
ple interfaces may prove to be useful for invoking multiple instances of the host
interface to send the information simultaneously to multiple clients. If the adapter
chooses to use the operating system features to do the broadcast (or multicast) of the
changed objects, then a single interface will be enough. Either way, the business
rules module can be used to determine which clients should get the changed infor-
mation (objects).

Event Adapters
An event adapter is triggered by an external event, as opposed to being invoked by an
external entity such as another adapter or an integration broker. Sometimes, the
event is actually a timer event that is set off at predefined intervals. The lifecycle
management module can be extended to set timers and self-invoke the services
exposed by the access layer. In the case of external events, the host connectivity
module can be extended to interface with the external event environment and
process the events.

There are many other types of adapters that are part of the enterprise integration
environment. The reference model described in this chapter may not be applicable
to all the adapters, but it is quite capable of supporting most types of adapters.

Summary
The process of developing adapter models requires skill, experience, and discipline.
You cannot underestimate the time required to build robust flexible reference models
that will withstand the test of time. However, that is exactly what system architects
are expected to do as part of the software development team.

This chapter presented a logical adapter reference model, and also defined some of
the physical attributes of the adapter that need to be part of the physical reference
models. The logical reference model can be used as the basis of architecture, and
specialized for specific adapter types and their physical reference models. Eventually,
the use of adapter patterns will make the job of defining reference models (logical
and physical) much easier, but this chapter can help developers with a starting point
for developing customized, robust, and long-lasting adapter reference models.

Summary 53

05 0672323109 CH04 4/18/02 10:07 AM Page 53

05 0672323109 CH04 4/18/02 10:07 AM Page 54

IN THIS CHAPTER

• Overview of XML

• Document Type Definitions
(DTDs)

• XML Schema

• XSL-Based Transformation

• XML Parsers

• Using XML in Adapters

• Why XML Will Not Replace
Adapters

5

Role of XML in Adapters

“You cannot change your destination overnight, but you can

change your direction overnight.”

—Jim Rohn

XML has become part of the vocabulary for any
e-Business-related discussion. Over the last couple of years,
XML has progressed to become a rich set of specifications
that is capable of handling complex data-definition and
transformation tasks. XML started as a simple yet powerful
tool for defining data structures in a human readable and
computer-friendly format. There are misconceptions and
occasionally exaggerated expectations about XML and its
role in e-Business and especially in application integration.
Some people believe XML will replace the need for
adapters entirely, and eventually even replace some other
integration technologies in use today. Similar opinions
were afloat when Windows NT and object databases were
first introduced. Windows NT was expected to replace
UNIX, and object databases were expected to be preferred
for object-oriented applications. Today, UNIX continues to
play an important role in enterprise computing, and
object-relational frameworks (capable of bridging the gap
between business data objects and RDBMS databases) are
more popular than object databases.

Some technologists and industry analyst believe XML will
replace Electronic Data Interchange (EDI) as we know it.
Others predict public exchanges based on open Internet
standards such as XML will eliminate private EDI
exchanges. That may still happen sometime in the future,
but EDI will most likely be still around, although in a
different way. The concept of EDI and the business
processes it automates will continue to exist. You can think

06 0672323109 CH05 4/18/02 10:09 AM Page 55

CHAPTER 5 Role of XML in Adapters56

of existing EDI as the legacy version of a new XML and Internet-based EDI. Many
technologies available today convert existing EDI documents to XML documents.
Eventually, all EDI documents may be in XML format, but XML does not replace
EDI. It makes it easier to understand, manage, and deploy EDI solutions and in that
sense is a significant innovation.

XML is a very compelling solution for adapters—especially those with data-
integration capabilities. However, XML does not replace the vast array of application
technologies such as transaction engines, messaging platforms, network and other
middleware protocols, programming languages, object brokers, relational databases,
and so on. The job of an adapter is to integrate applications across all these tech-
nologies, so the notion of XML replacing adapters is probably exaggerated.

This chapter is about understanding XML and its role in adapter development. That
role may be enhanced as XML matures and expands and as more features are added
to its specifications. Many books and other educational material on XML are avail-
able on the Internet and other media. This chapter does not get into the details of
XML itself, but focuses on how XML can be used in adapters. The important thing
to remember about XML is that its roots are in document definition and document
processing. It is a markup language derived from SGML—the same source used for
defining HTML, but with a different objective. HTML was tailored for Web browsers,
and is thus limited in its capabilities. HTML has a limited set of markups or tags with
specific syntax and semantics (meaning) that cannot be changed. XML is a broader,
more flexible standard, tailored for Internet-based data exchange. XML is extendable,
and specific markup languages such as MathML, WML, and ebXML are proof of its
capabilities. The same cannot be achieved by HTML because it does not allow exten-
sions to its set of markups.

You have probably heard about XML or are actively using the technology.
Depending on your level of expertise, you may choose to skip this chapter entirely
or read only sections that are of specific interest. Appendix B has a list of XML
resources that are useful for getting the latest and further information on XML.

Overview of XML
XML is an acronym for Extensible Markup Language. It is a structure (format) and
content description standard for ASCII documents (files), and is recommended by
World Wide Web Consortium (W3C). The term XML document can be applied to
application data, business documents (letters, memos, and so on), and any other
computing information and data (configuration information, log files, and so on)
that will be exchanged over the Internet. There are no restrictions for using XML in
any particular context, platform, or environment. It can be used in a standalone
environment, but its real power and capabilities are better appreciated when

06 0672323109 CH05 4/18/02 10:09 AM Page 56

deployed in a larger-scale, distributed application integration scenario such as ERP,
CRM, and B2B integration or supply chain automation. These scenarios involve
different platforms, data models, and application transactions; and XML is an ideal
solution to define the data exchanged.

XML is a set of specifications much like J2EE. There are specifications for a document
model (DOM), specifications for document definitions (DTD), specifications for
transforming XML documents (XSL), and so on. Some of these specifications and
compliant products have a greater role in the context of adapters then others. XML,
XSL-based transformation, XML parsers, DTDs, and schema are some of the topics of
greater interest to adapter developers; this chapter focuses on these components and
their use.

XML is constantly evolving, and more standards and specifications will be available
in the near future, including XQuery—an XML query language for retrieving XML
documents from databases. Existing standards are maturing, and the information in
this chapter is a snapshot of XML technologies as they evolve.

XML and HTML Similarities and Differences
Figure 5.1 shows a simple data structure in XML and HTML formats. It is obvious
there are some similarities between XML and HTML files, but the differences are
significant.

Overview of XML 57

<?xml version='1.0'?>

<!DOCTYPE new_customers SYSTEM
 "file:/ex1a.dtd">

<new_customers>
<customer_record>
 <customer_number> 12345 </customer_number>
 <customer_name> Atul Apte </customer_name>
 <customer_address> province='Ontario"
 country='Canada' </customer_address>

</customer_record>
</new_customers>

<html>

<body>

<p>

 12345

 Atul Apte

 Ontario Canada

</body>

</html>

XML document HTML document

FIGURE 5.1 Example XML and HTML files.

The obvious similarities between HTML and XML are that both XML and HTML are
ASCII text files. Also, both have the same syntax for defining tags or markups,
although the tags that encapsulate the data are different.

06 0672323109 CH05 4/18/02 10:09 AM Page 57

However, the differences are not all visible. XML is stricter in applying syntax rules.
For example, HTML allows the suffix part of the markups to be missing. In Figure
5.1, the HTML tag <p> (marking the beginning of a paragraph) does not have a corre-
sponding </p> (marking the end of the paragraph). HTML browsers allow processing
of HTML documents with such errors. XML is stricter in its enforcement of valida-
tion rules. Another difference is that the HTML tags are limited in number and are
the same, regardless of the data encapsulated. For example, an HTML paragraph can
contain application data as in the example, or any other information and the tag <p>
will remain unchanged. However, in the XML document, the tags were more descrip-
tive of the data encapsulated, and these tags will be different, depending on the data.
You can still use a single tag to represent all types of data in XML, but that will
defeat the purpose of XML, which is to define the structure and the semantics or the
meaning of the data.

The data in the Figure 5.1 XML example is easily understood due to the descriptive
tags such as <customer_number>, <customer_name>, <customer_address>, and so on.
These tags can be replaced by tags that are more relevant to the task. If the XML
document is derived from an RDBMS table, the column names for the customer table
probably will be different from those in the example. Perhaps <customer_name> will
become <c_name>, <customer_address> will become <c_address>, and so on. What is
the impact of this on the XML parser? Does the XML parser know that the tag
<c_name> is the same as <customer_name>? The XML parser does not know and does
not care what the individual tags mean. XML parsers ensure that tags are valid and
follow the naming conventions of the XML standard. Understanding the actual
meaning of the tags and their data is the responsibility of the application or, in the
context of this book, an adapter.

Another important difference between the XML and HTML documents is that HTML
tags are designed for presenting documents on different media supporting HTML
browsers. Each tag has a specific job related to the task of data or document presen-
tation. These tags cannot be changed to do different things in different contexts the
way XML tags can change—depending on the context and the application receiving
the XML document.

Data Management
The following sections explore some of the components of XML, such as XML DTD
and XML Schema, which provide more powerful document-validation features than
simple checking of the syntax and structural rules. We also discuss the different XML
parsers and the document model before identifying some of the roles for the XML
components in adapter development. These roles are by no means an exhaustive list
of all possible uses of XML, but point to some of the more common XML usage
patterns. Other components of XML such as XPath, XLink, and so on are the

CHAPTER 5 Role of XML in Adapters58

06 0672323109 CH05 4/18/02 10:09 AM Page 58

building blocks for the higher-level XML components. The core piece of all XML
components is the XML specification, which defines the format (syntax) and rules
(compliance criteria) for XML documents.

To get a better understanding of which XML components fulfill specific require-
ments of adapters, let’s review Figure 5.2, which shows a simplified view of data-
management components and data domains applicable to typical business
applications.

Overview of XML 59

Components

Data Management

Domains

Presentation Processing Persistence

Data

Events Functions Information

FIGURE 5.2 Simplified view of data management.

Almost all data management tasks can be summarized into three types of compo-
nents: data presentation, data processing, and data persistence. The technology used
to support these components and tasks can be simple or complex, depending on the
objectives and the context. The data itself can also be classified into three categories:
information, events, and functions. Information can include application data, busi-
ness information, or scientific data, depending on the context. Events represent state
changes in objects, and functions include description of business services, and so on.

The data-management components and domain shown in Figure 5.2 are generic and
don’t cover all aspects of data management. However, they are important to under-
stand where XML technologies fit in this model and derive an appropriate role for
XML in adapters.

If you are to accept XML as the foundation for developing data-integration adapters,
then you must have access to XML standards and tools to fulfill the responsibilities
of data management components. XML also needs to fill the different data domains
that exist in different data models.

06 0672323109 CH05 4/18/02 10:09 AM Page 59

Document Type Definitions (DTDs)
Because XML is flexible and can be applied to a broad set of data and document-
processing applications, the XML parsers are equally generic in their functionality.
An XML parser ensures the XML document is correct in its structure and syntax. But
this leads to another problem for applications receiving specific data in XML format:
Without a stricter application-specific validation of XML documents, the application
will be open to receiving and processing unknown and wrong XML documents.
Applications capable of processing XML documents should define specific rules in
terms of the structure of the XML document, the set of elements applicable to a
specific XML document, the attributes attached to an element, and so on. DTDs
enable developers and business analysts to do just that with precision. XML parsers
use DTDs to compare the XML document with the specified DTD, and makes a list of
places where the XML document differs from the DTD.

Figure 5.3 shows two DTDs for the XML document in Figure 5.1. Using different
DTDs, you can define different constraints for the same document used by different
applications or adapters. This is one of the benefits of using XML with DTDs. The
difference between DTD (A) and DTD (B) is shown in bold. Both DTDs define all the
elements and attributes of the XML document. DTA (A) states that the attribute
province is optional and that the attribute country is mandatory. DTA (B) states that
both the attributes province and country are mandatory. The other difference
between the two DTDs is in the definition of element new_customers. DTD (A) puts
the constraint that there will be only one customer_record element, whereas DTD
(B) allows zero or more customer_record elements. The * in (customer_record*)

indicates the cardinality of customer_record.

CHAPTER 5 Role of XML in Adapters60

<!ELEMENT new_customers
 (customer_record)>
<!ELEMENT customer_record
 (customer_number, customer_name,
 customer_address)>
<!ELEMENT customer_number (#PCDATA)>
<!ELEMENT customer_data (#PCDATA)>
<!ELEMENT customer_address (#PCDATA)>
<!ATTLIST customer_address
 province CDATA #IMPLIED
 country CDATA #REQUIRED

DTD (A)

<!ELEMENT new_customers
 (customer_record*)>
<!ELEMENT customer_record
 (customer_number, customer_name,
 customer_address)>
<!ELEMENT customer_number (#PCDATA)>
<!ELEMENT customer_data (#PCDATA)>
<!ELEMENT customer_address (#PCDATA)>
<!ATTLIST customer_address
 province CDATA #REQUIRED
 country CDATA #REQUIRED

DTD (B)

FIGURE 5.3 Examples of DTDs.

Different applications receiving the same XML document can define their own
DTDs, which are used by validating parsers to ensure that the XML documents
conform to the rules defined in the corresponding DTD. This allows an application-
level verification not possible without the features of DTD. DTDs provide many

06 0672323109 CH05 4/18/02 10:09 AM Page 60

other powerful features, such as support for internal (DTDs embedded in XML docu-
ments) and external DTDs, support for externally parsed and externally unparsed
data to be included in XML, namespaces, support for different encoding, and so on.
(They are not explained in this chapter, but are extremely important for applying
XML to adapter development.)

XML Schema
Although DTDs help with the additional higher-level validation of XML documents,
they can’t perform data-type validations. DTDs ensure that all the elements and
attributes expected in the right structure exist in the XML document. But data vali-
dations—for example, if the value of an element is supposed to be a date or the
value of an attribute is supposed to be a number between 1 and 10—are not possible.
XML Schema is a better mechanism for defining data schemas and ensuring that
XML documents have the right data in addition to the right structure.

XML Schema allows the addition of user data types. If you’re familiar with C, XML
Schema is something like the typedef feature that allows programmers to define
their own C structures and give them specific names. XML Schema uses two data
types: a simple data type and a complex data type. Complex data types are
constructed by users, and consist of elements (of other complex data types or simple
data types) and attributes. Attributes are always simple data types.

Because XML Schema is still relatively new, support for it in XML tools is not
common yet. XML document editors are already supporting XML Schema. This
allows XML document managers to incorporate and manage more complex docu-
ments then previously possible. It will still be some time before XML Schema is
preferred over DTD. As use cases and integration scenarios become more complex,
the value of XML Schema will be appreciated. However the next three months will
prove to be critical for XML Schema users, especially adapter developers who build
data-intensive adapters. If you need stronger type checking of the contents of XML
documents, there is no other way except XML Schema. The additional level of
checking adds overhead, but if data accuracy and integrity is important, then using
DTDs alone is not very helpful. The adapters will have much more validation code
without XML Schema.

XSL-Based Transformation
There are two types of transformations in the context of data integration: structural
transformation, meaning changing the order or the data and perhaps even its presen-
tation; and content transformation, meaning adding, changing, or dropping data
elements. Many times, both structural and content transformation are required while
exchanging data between two applications. But sometimes, just a structural change
or a content change is needed.

XSL-Based Transformation 61

06 0672323109 CH05 4/18/02 10:09 AM Page 61

XML markup can be very descriptive of the contents, but it needs to be transformed
into a presentation-friendly markup for display. XML has two choices for achieving
this without changing the code handling XML documents:

• Cascading Stylesheets (CSS)

• XSL Formatting Objects (XSL-FO)

CSS can be used to describe the appearance or particular elements of an XML docu-
ment. The CSS syntax is not based on XML, and is very different. However, the CSS
language is quite small and hence quite easy to implement. One limitation of using
CSS is the lack of transformation capabilities, both structural and content related.
The CSS syntax works at an element level, and applies presentation rules to the exist-
ing markup of the XML document. Using CSS to define the presentation style of the
XML document contents results in a more flexible design of adapters, especially
those interacting with presentation layer servers such as Web servers, WAP servers,
and so on.

Stylesheets are associated with XML documents by using the XML processing
instructions. For example, a stylesheet for the XML document in Figure 5.1 could be
associated with the XML document using the following processing instruction:

<?xml-stylesheet type=”text/css” href=”ex1.css”?>

Many times, the same XML document may need to be displayed on a computer
screen, shown on a PDA device, and printed on a regular printer. Instead of generat-
ing three versions of the XML document, you can associate three different
stylesheets—one for each type of media. Extending the stylesheet processing instruc-
tion shown previously, you can add the following three instructions to your XML
example document:

<?xml-stylesheet type=”text/css” href=”ex1_screen.css” media=”screen”?>

<?xml-stylesheet type=”text/css” href=”ex1_pda.css” media=”handheld”?>

<?xml-stylesheet type=”text/css” href=”ex1_printer.css” media=”print”?>

CSS supports many different types of media that are not covered in this chapter.
From an adapter perspective, the media types most commonly required are screen,
print, and handheld.

Although CSS works with existing XML elements and markup, XSL-FO is an XML
application that describes the layout of text on a page. It has a different set of
elements representing pages, blocks of text on the pages, graphics, and so on. It is
more complex compared to CSS, and you’ll rarely have to work with XSL-FO directly.
The preferred method of converting XML documents to XSL-FO documents is by
using XSLT stylesheets that transform the documents’ native XML markup to XSL-FO
markup.

CHAPTER 5 Role of XML in Adapters62

06 0672323109 CH05 4/18/02 10:09 AM Page 62

XML Parsers
Two types of XML parsers are available: DOM parsers based on the Document Object
Model (DOM), which is recommended by W3C as a language-neutral object model,
and SAX parsers.

DOM Parsers
A DOM parser usually accepts an XML document file or a stream or an URI referring
to an XML document. After the source XML document is parsed and validated (if the
parser supports validation using DTDs or XML Schema), the parser generally exposes
an interface capable of traversing the parsed document tree. Each item in the tree is
linked to its parent, children, and siblings. Different types of nodes can exist in the
tree, such as ELEMENT_NODE, ATTRIBUTE_NODE, TEXT_NODE, CDATA_SECTION_NODE,
COMMENT_NODE, and so on.

An important thing to remember is that a DOM-based parser is different from the
DOM Node interface that provides an API for traversing the DOM tree. The parser
creates a DOM-compatible tree, and the Node interface gives you access to the tree.
The Node interface supports get and set operations, and hence is useful for building
XML documents as well as reading XML documents.

Because DOM is a hierarchical tree of elements that contain references to other
elements, a DOM-based parser requires the entire XML document before it can
successfully parse and validate the document. The overhead of maintaining a sepa-
rate DOM tree for each XML document is also very resource-intensive. This can be
an issue for large XML documents if the frequency of receiving XML documents is
usually very high, or if there is no requirement to wait for the entire document
before commencing to parse the document.

SAX Parser
Simple API for XML (SAX) is usually an event-based API for parsing XML documents.
Event-based means the API enables you to capture and process the parsing events
generated by a SAX parser. Events are generated when the parser encounters start
and end tags, processing instructions, and character data. This is helpful to programs
that can begin processing XML documents in pieces. Perhaps the XML document
has two purchase orders, and the program (or in our case, the adapter) can begin
processing the first purchase order without waiting for the second purchase order to
be parsed. The SAX parser provides flexibility in how the program processes the XML
document. The choice to process after the entire document is parsed or only part of
the document is parsed is a design time or run-time decision of the program.

On the down side, SAX-based parsers cannot be used to traverse the document tree,
and add new elements or attributes to existing elements. Hence, a common design

XML Parsers 63

06 0672323109 CH05 4/18/02 10:09 AM Page 63

pattern used by adapter developers is to use the DOM interface to create XML docu-
ments and SAX-based parsers to read or parse XML documents. The decision about
which parser is suitable for the adapter is partly driven by the integration scenario,
the type and size of the XML document, and the capability of the adapted applica-
tion to process data contained in the XML document either in pieces or as a whole.

Having reviewed the XML components, let’s put things in perspective and analyze
how much of the data management requirements XML supports. It is evident from
Figure 5.4 that XML is able to handle most of the tasks of general data management
except for persistence-related functions and any specific support for event defini-
tions. It can handle most adapter-related data-integration scenarios, including data
presentation and data validation. XML also provides greater flexibility then other
proprietary document definition and parsing technology.

CHAPTER 5 Role of XML in Adapters64

Components

XML Components

Domains

CCS,
XSL

DOM,
SAX

Persistence

Data

Events SOAP
DTD,

Schema

FIGURE 5.4 Components of XML.

Using XML in Adapters
Adapters interface with applications, and process both inbound and outbound data.
Inbound data (from the external world to the application) and outbound data will
most likely be XML in the relatively near term. The transition to XML-based docu-
ments is a gradual process, and during the transition period other proprietary and
less-flexible standards will be in use for achieving data integration.

For new adapters or in situations where adapters are being upgraded, a better strat-
egy is to replace proprietary and less-flexible open standards with XML-based docu-
ments. Migrating from proprietary document formats to XML is easier because the

06 0672323109 CH05 4/18/02 10:09 AM Page 64

decision control is inside the organization. With open standards such as EDI, HL7,
and so on, organizations must wait for the standards to be XML-compliant, which
can take months or years.

Assuming that the application is suitable for XML-based data integration, part of the
job of an adapter is to transform the internal application data into outbound XML
documents and parse inbound XML documents before updating the native applica-
tion data. The scenario in Figure 5.5 shows the various XML components and their
role in adapters.

Using XML in Adapters 65

Integration Domain

Application Domain Application Domain

Role of XML in Adapters

Adapter

Adapter

DOM
Business

Application
(A)

Document
(XML)

(DOM,
SAX

Parser)

Business
Application

(B)

DTD
Repository

CSS
XSL-FO

FIGURE 5.5 Role of XML in adapters.

The example is a simple integration scenario in which Business Application A is
producing XML documents containing different types of data contents to be
processed by Business Application B. Application A uses the DOM interface to create
the XML document and, depending on the type, to associate a DTD (document defi-
nition) or a CSS (stylesheet). Application B uses a DOM parser to parse the XML
document and validate it with the associated DTD, or uses a SAX parser to process
XML documents with associated CSS before presenting the data.

Using XML as the cross application document format eliminates issues with plat-
form incompatibility and differences between application data models. The benefits

06 0672323109 CH05 4/18/02 10:09 AM Page 65

of using XML are appreciated when DTD and CSS documents can be changed
without necessarily changing code. XML documents can be managed by external
XML editors. This is useful in fixing problems in XML documents, DTD, and
Schema. As adapter developers continue to use XML, design patterns will evolve, and
adapter development will become that much easier.

XML is extensible, and it has proven that by the presence of numerous XML-based
protocols and specialized markup languages. One of the most talked-about XML-
based protocols is Simple Object Access Protocol (SOAP). We will explore SOAP in
more detail in Chapter 6, “Introduction to Web Services.” Adapter developers will
have to spend time learning these protocols because they are inherently platform
independent and capable of supporting a more dynamic form of application integra-
tion.

The ultimate metrics for the success of XML will be the existence or non-existence of
proprietary and legacy document structures and protocols. EDI is likely to live a
much longer life than anticipated, but B2B exchanges are primarily based on XML
standards. So, an adapter may still need to interface with non-XML documents, espe-
cially in the B2B context, because more then one organization is involved. A quicker
transition from proprietary documents to XML is most likely to happen behind a
firewall in intranet-based applications.

Why XML Will Not Replace Adapters
Some people believe that as software vendors adopt XML and its components, the
need for adapters will gradually disappear. Indeed, XML simplifies the design and
deployment of certain components of the adapter. Probably one reason for thinking
that adapters will be replaced by XML is the different definitions of an adapter. No
doubt, some classes of adapters—especially those that are heavy on proprietary docu-
ment models—may become much thinner in their technology footprint. However,
adapters do much more than document transformation. We have seen ample
evidence of it in our adapter reference model. XML doesn’t handle all the design
considerations outlined in the adapter reference model. Adapters do the job of
connecting with the target application, encapsulating the business rules and integra-
tion logic necessary to manage the points of integration, and interface with the
middleware and protocols necessary to achieve integration. XML does not do any of
this, and it is not intended for it.

For XML to replace even a subset of the adapters, all applications, legacy and new,
will have to be converted to use XML as their only data model, and to use one stan-
dard transport or protocol to exchange all XML documents. That is not likely to
happen anytime soon, given that software and hardware vendors are constantly
innovating their technologies. The need for application integration is generated by

CHAPTER 5 Role of XML in Adapters66

06 0672323109 CH05 4/18/02 10:09 AM Page 66

the existence of different protocols, data models, platforms, and so on. XML is a very
important tool for adapter developers because it helps standardize solutions to cross-
platform data exchange and management issues, but it does not replace the need for
adapters.

Summary
XML is a powerful standard capable of introducing greater flexibility in adapter
design. Data expressed in ASCII files using XML standards and vocabulary is easy to
read, process, change, and is platform-independent. All these qualities make XML
ideal for defining data integration and exchanging data documents across applica-
tions and platforms.

Adapters need a common document model, enabling collaboration between
adapters. Today, XML is the most suitable technology for the common document
model. Software vendors—including IBM, SUN, and Microsoft—have expressed
strong commitment to XML. Not surprisingly, XML is the common thread across
platforms, and is an ideal base for adapters.

However, XML covers only a small part of the overall adapter design. Adapters are
required to convert data from native application format to XML, and vice versa.
Adapters also interface with appropriate protocols to transport the XML documents
among other things. The XML set of specifications and standards continues to grow,
and adapter developers will save a lot of time by adopting XML as the common data
model for integration.

Summary 67

06 0672323109 CH05 4/18/02 10:09 AM Page 67

06 0672323109 CH05 4/18/02 10:09 AM Page 68

IN THIS CHAPTER

• Benefits of Web Services

• Application Services (A
Conceptual Model)

• Simple Object Access Protocol
(SOAP)

• Universal Description,
Discovery, and Integration
(UDDI)

• Web Services’ Impact on
Resource Adapters

6

Introduction to Web
Services

“I was taught that the way of progress was neither swift nor

easy.”

—Madame Marie Curie

In Chapter 5, “Role of XML in Adapters,” you saw the role
of XML in adapters; but the role of XML is increasing from
the perspective of integration in general. One such exten-
sion of XML in application integration is Web Services. We
discuss Web services in a separate chapter because of their
potentially disruptive impact on JCA resource adapters.

Web Services are said to be the next generation of applica-
tion integration technology, with the potential to radically
change e-Business. The concept of Web Services is captur-
ing the mindset of many technology companies and devel-
opers. The potential of Internet-based Web Services is
huge, but only recently have there been advancements in
the technology and platform required to support the
concept. The biggest push for Web Services is from
Microsoft and its vision for the .NET platform.

This chapter takes a closer look at some important compo-
nents of Web Services, and discusses their impact on
adapter development in general and on JCA resource
adapters in particular. If all the hype about Web Services is
true, should we even bother to build resource adapters?
Yes. Adapters and Web Services are complementary tech-
nologies, although they overlap in some areas.

07 0672323109 CH06 4/18/02 10:08 AM Page 69

CHAPTER 6 Introduction to Web Services70

Benefits of Web Services
The primary benefit of Web Services is that they are designed to work across plat-
forms and programming models (programming languages and paradigms). In some
ways, the goals of Web Services are similar to those of CORBA, which also integrates
applications across platforms and programming languages. The difference is that
CORBA depends on an Interface Definition Language (IDL), whereas Web Services
depend on Simple Object Access Protocol (SOAP), which is an XML-based protocol.
Another difference is that SOAP is simpler than CORBA IDL, which requires binding
with different programming languages at compile time. SOAP, on the other hand, is
a late-binding technology, meaning that the application calling a SOAP service does
not care which language the service was implemented in. If the same service were
implemented in CORBA, it would need an Interface Definition Language (IDL)
compiler to map the implementation to CORBA IDL.

Another benefit of Web Services is their acceptance by major vendors—including
Microsoft, IBM, SUN, and others. I believe one of the reasons is that vendors are free
to define their proprietary technologies (such as programming languages, databases,
and so on) without requiring a design-time connectivity to any specific program-
ming language or platform. As long as the Web Service can parse SOAP (XML)
messages (documents), it doesn’t matter which platform the service is developed and
implemented on. Web Services are more flexible than CORBA and other technolo-
gies because they’re built on top of SOAP, which is derived from XML.

However, the Web Service infrastructure is still very lightweight compared to
CORBA, which has a complete array of services to support distributed applications.
Perhaps the relative simplicity and small footprint of SOAP-based Web Services is the
reason why more developers are attracted to them. JCA Resource Adapter developers
must understand the role of Web Services, and how to integrate and collaborate
between Web Services and resource adapters. Although product vendors sing the
praises of one technology over another, the reality is that both the JCA and SOAP
technologies enable developers to build more complete integration solutions.

This chapter is an overview of the Web Service concepts and the potential scenarios
in which resource adapters and Web Services can work together. SOAP; Universal
Description, Discovery, and Integration (UDDI); and Web Services Description
Language (WSDL) are some of the fundamental technologies enabling Web Services.
Thus, no overview of Web Services can be complete without a basic understanding
of these technologies. Before getting into the details of SOAP and UDDI, a concep-
tual model of an application service is useful for understanding its role in applica-
tion integration.

07 0672323109 CH06 4/18/02 10:08 AM Page 70

Application Services (A Conceptual Model)
The concept of application services is not new by any standard. Service-oriented
application architectures have been in use for many years, especially in relation to
application integration. Figure 6.1 shows a conceptual model of an application
service, as well as the roles and components of Web Services. The primary objective
of an application service is to make specific functions accessible by external applica-
tions. Not all functions and services are integration-oriented. Some services are
standalone, and their scope is restricted to one applications. Other services involve
more than one application, and are more complex by definition.

Application Services (A Conceptual Model) 71

Service
Provider

(Application)

Application
(Web)

Service

Service
User

(Application)

Service
Directory

Hosting
Environment

Hosting
Environment

Hosting
Environment

Hosting
Environment

Service
Contract

Service
Description

Service Lookup

Application Service (Roles and Components)

FIGURE 6.1 Application services (roles and components).

An application has more than one role in the context of application services. The
application that provides a service is known as the service provider, and the applica-
tion(s) that uses the service is known as the service user. Any application can be a
service provider and a service user at the same time. As a service provider, an appli-
cation publishes details of each service it provides. These service details are also
sometimes referred to as service contracts. A service contract defines the prerequisites
of using the service; the expected results of successful execution of the service; and
any post-service actions, including acknowledgements and exception handling.
Together, these parameters define the quality of service and obligations of both the
provider and user.

07 0672323109 CH06 4/18/02 10:08 AM Page 71

Service Directory
As a service user, an application needs to know which application provides the
necessary service. This is usually accomplished by searching for service definitions in
a service directory. The service directory stores service contracts and information about
service providers (location, availability, and so on). Some of the services can be
synchronous, and others can be asynchronous. Invoking a synchronous service
results in a dialogue between the service provider and the service user; whereas
invoking a asynchronous service results in an acknowledgement, followed by the
service user retrieving the results at a future time.

The service directory has a special and important role in application services. A direc-
tory stores the service definitions (contracts) as well as service information (physical
location of the server, configuration, security information, and so on) in one central
location. This makes the task of discovering services much simpler. The UDDI and
WSDL components of Web Services are fast becoming the accepted standards for
defining and implementing service directories. Before UDDI, Lightweight Directory
Access Protocol (LDAP) was the preferred directory server and access mechanisms.
LDAP can still be used to store the service contracts; however, access to LDAP servers
have to be UDDI-based for a more standards-compliant implementation.

Service directories can be generic or serve specific industries. They are something like
the yellow pages in a phone book: Some yellow pages contain the names of all busi-
nesses in a geographical area, and other yellow pages are focused on specific indus-
tries or professions. One of the differences between a UDDI repository and the
yellow pages is that a yellow page contains information about the business and a
description of its main products and services. A UDDI repository stores more detailed
information about how to access the services provided, as well as where they are
located. UDDI also defines more than one data type, which capture different details
of the Web Service—including information about the service provider, the location
of the Web Service, and technical details such as the port numbers required to access
the service.

Simple Object Access Protocol (SOAP)
This section on SOAP provides an overview of its objectives, capabilities, and poten-
tial uses. You should read the entire SOAP specification (the latest version is 1.2,
available at http://www.w3.org) to understand it before designing Web Services.

SOAP includes a specific definition of an XML document, which can be used to
exchange structured and typed information. SOAP is a stateless, one-way XML
message exchange mechanism; applications or adapters can extend it to support
more complex integration scenarios, including conversations (request response),

CHAPTER 6 Introduction to Web Services72

07 0672323109 CH06 4/18/02 10:08 AM Page 72

multicast, and so on. SOAP does not define the routing, transformation, message
delivery, and so on. It depends on the underlying transport infrastructure to deliver
those characteristics. In short, SOAP is a message definition standard or specification.

What makes this standard powerful is that it’s based on XML, which is platform-
independent. In addition, the SOAP specification includes definitions of which
actions should take place when a SOAP message is received by a SOAP server (also
known as a SOAP processor). These actions are described in the SOAP processing
model.

An example of a SOAP message for a purchase order with three items is as follows:

<?xml version=’1.’ ?>

<env:Envelope xmlns:env=http://www.w3.org/2001/12/soap-envelope>

<env:Header>

<po:purchaseorder xmlns=:po=”http://book.example.com/purchaseorder”

env:actor=http://www.w3.org/2001/12/soap-envelope/actor/next

env:mustUnderstand=”true”>

<po:Number>12345</po:Number>

</po:purchaseorder>

</env:Header>

<env:Body>

<itm:itemList xmlns:itm=http://book.example.com/items>

<itm:itemType>Book</itm:itemType>

<itm:name>Integrating Your E-Business Enterprise</itm:name>

<itm:copies>one</itm:copies>

<itm:itemType>Book</itm:itemType>

<itm:name>XML In A Nutshell</itm:name>

<itm:copies>two</itm:copies>

<itm:itemType>Book</itm:itemType>

<itm:name>Patterns In Java</itm:name>

<itm:copies>one</itm:copies>

</itm:itemList>

</env:Body>

</env:Envelope>

A SOAP message is actually an XML document with a specific structure (tags) and a
name space to avoid any confusion in processing the SOAP tags from similar tags
defined in the header or the body. The header is an optional part of the message and
is usually extended by SOAP applications. Tags in the header section generally have
their own application-specific name spaces. The body is a mandatory part of the
SOAP message. Without a body, there is nothing to process. The SOAP message struc-
ture is very simple and small.

Simple Object Access Protocol (SOAP) 73

07 0672323109 CH06 4/18/02 10:08 AM Page 73

SOAP Processing Model
A SOAP message can be sent from the sender to the receiver without any intermedi-
ate steps (a point-to-point SOAP message exchange), or can involve several process-
ing nodes (SOAP processors). Each SOAP processor can assume different roles for
processing specific SOAP messages. When there are one or more SOAP processor
nodes between the sender and receiver, the header section of the SOAP message can
carry and convey important information to ensure that the processing nodes handle
the SOAP message appropriately.

SOAP defines an attribute called actor, whose value indicates the role a processor is
expected to assume when processing the SOAP message. Three possible roles can be
indicated by the actor: none, next, and anonymous.

The concept of an envelope suggests that the SOAP structure is an outer shell of the
real message or data. This is true, and the actual data can be grouped in one or more
application-specific header blocks and body blocks. As a result, a SOAP message may
include information that is not intended for the actual processing by the target
application. For example, if an ERP system such as SAP generates an EDI message
wrapped as a SOAP message that is targeted at an external supplier’s system, then the
SOAP message may have information about the EDI gateway responsible for trans-
porting the SOAP message to a SOAP server in the supplier environment. This EDI
gateway information may be processed by an intermediate SOAP processor, which
will ensure that the message has been properly received over the network before
forwarding it to the SOAP-enabled application or Web Service.

The attribute actor identifies the target processor’s role for individual blocks of data
in the header section. Each data block in the header can be targeted at different
SOAP processors, who may assume different roles as defined by the actor attribute of
each block. The body section does not have any actor attributes, ensuring that the
final target SOAP processor must process the body section per the defined name
space.

There is obviously much more to SOAP than we can cover in this chapter. However,
the basic structure of a SOAP message and some of its capabilities in terms of
supporting multistep processing of messages are important to the concept of
Internet-enabled Web Services.

Universal Description, Discovery, and Integration (UDDI)
A central piece of any online service infrastructure is a directory that stores the defin-
ition of all available services, enabling users to query the availability of the services
before interacting with the specific service implementations. UDDI
(http://www.uddi.org) is a platform-independent method of describing services,
discovering service providers (businesses), and integrating with the services over the

CHAPTER 6 Introduction to Web Services74

07 0672323109 CH06 4/18/02 10:08 AM Page 74

Internet. UDDI enables users to publish their services and business information,
which is stored in a central repository. UDDI is based on SOAP; its data structure
provides a framework for describing the service contracts and business information.

UDDI Data Types
The UDDI data structures are defined using XML Schema. There are four basic data
types:

• businessEntity

• businessService

• bindingTemplate

• tModel

What do these four data structures represent? Referring to Figure 6.1, the
businessService data type represents the service description, and tModel represents
the service contract (or at least part of it). The businessEntity data type is useful for
getting more details on the service provider (company)—for example, when more
than one service provider is capable of providing the same or similar services. You
may have a preference for one service provider over others. The bindingTemplate
data type provides information on the location of the service. In some respects, the
bindingTemplate provides a more technical version of the service description than is
provided by businessService data type. Together, these two data types help describe
the service. Together, the four data types form the registration information in a
UDDI repository. The businessEntity data type is mandatory, and every Web Service
is required to provide information about the service provider. Other data types are
optional.

WSDL
UDDI also specifies an API for publishing and searching for UDDI entries. The API is
divided into publishing API functions and inquiry API functions. These APIs enable
businesses to maintain their business and service information, and also search for
appropriate Web Services.

Although UDDI builds on top of SOAP and XML, the data types are still quite
generic, and it is possible to define more specific service definition vocabularies and
specifications. WSDL is one such example of a general-purpose service description
language. WSDL complements UDDI, and provides a uniform mechanism for
describing abstract service interfaces and specific protocol bindings that support the
service. You can use SOAP and UDDI for implementing Web Services, but you will
have to develop a proprietary implementation similar to WSDL.

Universal Description, Discovery, and Integration (UDDI) 75

07 0672323109 CH06 4/18/02 10:08 AM Page 75

The combination of SOAP, UDDI, and WSDL provide the necessary infrastructure for
Web Services without actually depending on any specific platform, protocol, or data
models. All these technologies prove that XML has real potential in integrating cross-
platform applications built with different programming languages. Doing so is not
easy, and requires you to learn many new technologies, but the end result of inte-
grating the applications is worth the effort.

Web Services’ Impact on Resource Adapters
The impact of Web Services on adapters is still undefined. Which of the two is better
than the other depends on the integration scenario, the supporting infrastructure,
and the available tools. A more immediate impact will be in categorizing and decom-
posing the integration logic into Web Services and/or resource adapters.

When should you develop a Web Service, and when should you develop a resource
adapter? Can a Web Service do what a resource adapter does (provide EIS connectiv-
ity to J2EE applications)? Most likely yes, mainly due to the JCA-specific contracts
defined in the J2EE environment. A Web Service will have to implement the JCA
contracts in addition to receiving SOAP messages and publishing its service contracts
to a UDDI registry.

However, SUN is approaching Web Service support in a different context (portal
servers), and is using the iPlanet directory servers and iPlanet portal servers as part of
the SUN ONE Web Service platform. This does create some confusion about whether
J2EE is a valid platform for Web Services. However, SUN’s Web strategy is rapidly
evolving, and a more stable and feature-rich platform for Web Services from a Java
and J2EE perspective will emerge soon.

Technically, not much prevents a Java developer from implementing a Web Service
as a JCA resource adapter. Its usefulness will be determined by what role it plays in
the context of J2EE applications. J2EE is an application platform, and its components
are mostly designed as part of a J2EE application. External (service-oriented) access to
the J2EE application is thought to be more of a portal server job. But Web Services
can be developed on a J2EE platform as message-driven Enterprise JavaBeans (EJBs).
The possibilities are many, but the real issue is where and how Web Services fit in the
Java application context.

Adapters and Web Services Working Together
As complementary technologies, adapters and Web Services can work together to
implement complex integration scenarios. Adapters can take on the role of data
synchronization, whereas Web Services will enable application functions to interact
with each other. A Web Service may need to integrate with other applications to
fulfill its service contract. Furthermore, the drivers of data synchronization and Web

CHAPTER 6 Introduction to Web Services76

07 0672323109 CH06 4/18/02 10:08 AM Page 76

Services are also different. Web Services generally will be initiated by a user
request/event, whereas data synchronization is generally initiated by state changes in
data objects.

A user event can be a purchase order or an online bill payment, for example. User
events can also be generated by applications such as a customer service application
requiring an account status check from the accounting system. Web Services are an
ideal mechanism for implementing a universally accessible application function
(service). On the other hand, a state change in a data object can be something like
the addition of a new customer record in the customer service application or an
update to the customer’s billing address. These state changes trigger an adapter to
add the new customer record or update the customer record in all other applications
that keep their own copies of customer data. Data synchronization is one of the
primary objectives of resource adapters.

But adapters do more than data synchronization, and many times they support
distributed transactions. This is the area in which there is potential for an overlap
between Web Services and adapters. It may be better to define an implementation
strategy in terms of when to use an adapter and when to use a Web Service. Figure
6.2 shows a potential scenario in which a Web Service and a resource adapter coexist.

Web Services’ Impact on Resource Adapters 77

Service
Provider

Application
Component

(Web)
Service

Resource
Adapter EIS

Service
User

(Application)

Service
Directory

Hosting
Environment

Hosting
Environment

Hosting
Environment

Hosting
Environment

Hosting
Environment

Hosting
Environment

Web Service and Adapter

FIGURE 6.2 Web Service and adapter coexisting.

The role of the Web Service is to expose the functionality of the J2EE application to
non-J2EE clients such as .NET applications and other clients. In doing so, the Web
Service may have to integrate with other instances of EIS in the company, or the
J2EE application itself may have to integrate with other EISs. In both these scenarios,
a resource adapter is required. In this implementation strategy, Web Services become

07 0672323109 CH06 4/18/02 10:08 AM Page 77

the interface between the company and its customers, partners, and suppliers;
whereas the resource adapters become integration components tying up different
EISs inside the company. This is just one potential implementation pattern in which
Web Services and resource adapters can coexist.

Another potential integration pattern in which Web Services and resource adapters
are required to collaborate is in business process integration. Applications that are
part of a specific business process will have to expose the required processes (func-
tions), and Web Services are ideal for that purpose. When the applications need to
integrate with other EISs to fulfill their part in the business process, they will use
resource adapters.

When a SOAP-based Web Service needs to call a resource adapter, the actual call is
made by a SOAP server (SOAP node). The SOAP server will have to be hosted in a
J2EE environment, and be capable of calling the CCI-compliant interfaces of the
resource adapter. J2EE does not support SOAP as part of the specification; neither
does it support XML. It is left to the application server vendors to provide the addi-
tional SOAP server functionality in their application servers. An alternative to a
SOAP container in the J2EE environment is being defined as part of J2EE 1.4 Java API
for XML Messaging (JAXM) and Java API for XML-based RPC (JAX-RPC); this alterna-
tive will help in building custom SOAP containers and developing components that
do the work of SOAP nodes (SOAP processors).

Summary
The hype surrounding Web Services makes it very hard to ignore this emerging tech-
nology. Experienced software developers should study the details of Web Services,
and differentiate between the hype and practical uses of Web Services. Already, some
of the EAI vendors are downplaying the potential effectiveness of Web Services and
their role in application integration. However, Web Services do bring some simplicity
to integration solutions.

By using an integration protocol based on XML and focusing on application services
instead of data, Web Services enable more sophisticated integration patterns.
Interapplication collaborations are easier with Web Services. It is possible that in the
near future, applications will invoke application services across the Internet, both
inside and outside the firewall. This may sound similar to EDI and its objectives in
integrating intercompany processes. However, EDI is a point-to-point data exchange
solution, and Web Services are more dynamic service-based application-collaboration
solutions.

Web Services pose a challenge to the long-term effectiveness of Java Connector
Architecture. SUN had to announce its support for Web Services due to industry pres-
sure, and the roadmap for JCA may have to change as a result. But every challenge is

CHAPTER 6 Introduction to Web Services78

07 0672323109 CH06 4/18/02 10:08 AM Page 78

an opportunity, and perhaps the emergence of Web Services will give JCA a more
focused objective and role in application integration. After all, JCA is a standard only
in the realm of J2EE application servers; and although J2EE is the primary platform
for Internet applications today, it will likely face stiff competition from .NET initia-
tives.

Only time will tell how Web Services influence the evolution of J2EE in general and
JCA in particular. In the meantime, Web Services and resource adapters can and will
coexist to solve the application-integration problem.

Summary 79

07 0672323109 CH06 4/18/02 10:08 AM Page 79

07 0672323109 CH06 4/18/02 10:08 AM Page 80

IN THIS CHAPTER

• Understanding Integration
Project Objectives

• Managing Integration Teams

• Role of Adapters in
Integration Project

• Adapter Analysis

• Adapter Maintenance

• Adapter Coding

• Adapter QA

• Deploying Adapters

• Adapter Maintenance

7

Adapter Development
Methodology and Best

Practices

“Even if you are on the right track, you’ll get run over if you

just sit there.”

—Will Rogers, American humorist

Business today is heavily dependent on interactions and
networking with customers, partners, suppliers, and
employees. This dependency on integration of business
processes and resources drives the need for integrated busi-
ness applications. The days of developing standalone appli-
cations are long gone, and today none of the applications
can satisfy users’ requirements for information and trans-
action processing without interfacing with other applica-
tions. Almost all software development projects can be
categorized as one of the following:

• Developing a new business application using emerg-
ing technologies, leading edge software paradigms,
new platforms, and tools.

• Upgrading existing systems by adding new functions
to exchange data and functions with other applica-
tions. New functions typically include Web enabling
legacy applications and adding integration capabili-
ties.

08 0672323109 CH07 4/18/02 10:07 AM Page 81

CHAPTER 7 Adapter Development Methodology and Best Practices82

• Deploying a third-party package or upgrading an existing third-party package.
Typically, deploying third-party packages involves data migration issues,
customization issues, and integration with existing business applications.

• Research projects and other initiatives that experiment with new technologies
such as wireless networking and wireless applications can work in an isolated
environment or with limited integration with existing systems.

• Composite applications are a new category of applications that integrate
isolated applications as a coherent system capable of supporting e-Business
requirements—typically, Web Services.

In each of these scenarios, the need to integrate business applications is driven not
just by the technical requirements; it is mainly the business requirements that drive
the software development projects. Application integration has become part of main-
stream software development, and it is essential to include integration as a primary
objective when planning and managing software projects.

Do we need a new methodology for handling the inclusion of integration require-
ments and adapter development? Not unless software development is managed
without a methodology in the first place. This chapter is not about introducing a
new methodology, but customizing existing methodologies for adapter development.
Many significant differences exist between standard application development and
software development involving adapters or integration. The following sections iden-
tify the most important aspects of adapter development, and present how to apply
known methodologies and techniques to overcome some of the unique challenges.

Understanding Integration Project Objectives
Most adapter-related projects are initiated as part of other mainstream development
projects. Sometimes, an adapter requirement is identified during system integration.
In many instances, adapter requirements come from IT staff who handle data
integrity issues rather than application users. The reason for this is that most end-
users assume that application integration is a normal feature of software. I have seen
numerous occasions when end-users were surprised when their applications were not
able to share data with other applications without major modifications. In these
situations, IT staff are usually commissioned to come up with a short-term solution

08 0672323109 CH07 4/18/02 10:07 AM Page 82

in the form of shell scripts and other manual processes. The problem is that over
time there are too many short-term solutions. Although sometimes time constraints
demand patchy solutions and manual application integration procedures, the long-
term solution is a proper EAI platform and adapters. This chapter should be useful
for project managers who have identified a need for adapters or who are undertaking
software development projects.

As an example project, let’s consider the Web enabling of a customer service applica-
tion. The application is currently used by internal customer service staff. These users
are trained in-house to handle specific customer situations and exceptions, and to
customize business processes to meet the customer needs. However, with the
customer interacting directly with the application, most of the work done by the
customer service staff will now be the responsibility of the customer. Some of the
major differences of Internet-based applications supporting e-Business initiatives and
the legacy applications are the end-users and their roles. Web-enabling external busi-
ness services and internal business processes require the end-users to take more
responsibilities than before.

Business processes that were handled manually by the customer service staff now
need to be automated by the application and its infrastructure. It is not surprising to
see Web enabling of one application requiring significant modifications to other
business applications. The need to understand the end-to-end business processes and
their impact on all the applications participating in those business processes is
fundamental to any e-Business project. As a result, every e-Business project becomes
an integration project with varying degrees of complexities.

For many legacy systems developed to work in isolation, integration is a new
phenomenon. Adding integration capabilities to existing applications requires careful
planning and sustained development. A good design principle is to isolate and local-
ize the integration capabilities of each business application in a separate component
that is directly associated with the application. These components are known by
different terms: adapters, connectors, components, and so on. The separation of core
application functionality and integration logic enables software developers to evolve
the business application and the adapter with minimum dependency. Figure 7.1
shows an integration-ready application. The architecture includes an additional inte-
gration tier; this tier supports the different types of integration components.

Understanding Integration Project Objectives 83

08 0672323109 CH07 4/18/02 10:07 AM Page 83

FIGURE 7.1 Integration-ready applications.

Managing Integration Teams
There are two basic models for managing integration requirements and supporting
software development projects: enterprise integration teams and business model-
driven integration. Both models have their own challenges and key success factors.
The choice depends on the corporate culture, the number of project teams, and the
experience of project management staff.

Enterprise Integration Teams
Usually, the enterprise integration team is a separate team or department with dedi-
cated staff to support it. These teams work at an enterprise level, and are liaisons
with departmental and other distributed development project teams. The integration
team is tasked with designing the integration infrastructure, setting standards, and
working with the other project team leaders who implement the various integration
strategies and components.

Enterprise integration teams need to have a broader view of the corporate IT func-
tion and the corporate business goals. The challenges faced by these teams include

CHAPTER 7 Adapter Development Methodology and Best Practices84

Application Domain

Database Domain

User Domain User Domain

User
Interface

Business
Logic

Database

Integration Ready Application Architecture

Adapter

Adapter

Adapter

08 0672323109 CH07 4/18/02 10:07 AM Page 84

getting support from other project teams in implementing enterprise-level integra-
tion requirements. It is not unusual for department project teams to feel burdened
with extra work by the enterprise teams. There is often conflict between the short-
term goals of department project teams and the long-term goals of enterprise integra-
tion teams that result in tension; integration often suffers as a result. Enterprise
integration teams rarely succeed without continued support from senior manage-
ment. Figure 7.2 shows the critical role of project managers in enterprise integration
teams. These project managers not only manage specific integration projects but also
are responsible for coordinating integration analysis across department project
teams.

Managing Integration Teams 85

Department
Project Team

Dev.
Team

Enterprise Domain

Prog.
Mgr.

Integration
Team

Prog.
Mgr.

Department
Project Team

Enterprise Integration Team

Dev.
Team

Prog.
Mgr.

Department
Project Team

Dev.
Team

Prog.
Mgr.

FIGURE 7.2 Centralized integration team.

Business-Model-Driven Integration
Another model used in some corporate environments is to define integration
requirements based on the business models. When using this model, the business
users or business analysts define the overall business integration objectives, and
publish a roadmap. Project teams responsible for implementing the roadmap resolve
application integration issues by using the common development process. Individual
project teams are completely responsible for adhering to corporate standards in their
development projects. Project managers collaborate to schedule, estimate, and plan
for integration-related enhancements and developments.

08 0672323109 CH07 4/18/02 10:07 AM Page 85

This model works well when the number of project teams is small (between one and
five), and when the business models are well-defined and documented. For larger
numbers of project teams, a central integration team is required to define the stan-
dards and ensure compliance across the enterprise. Also, the business models often
are not accurate or even complete. The fast-changing business environment makes it
hard to define the business requirements and build a stable business model. As a
result, frequent changes to integration requirements bog down the project teams
affecting the delivery of software.

Figure 7.3 shows the importance of a complete business model when it drives enter-
prise integration. A complete business model does not have to capture all business
processes in the enterprise, but the business processes that are part of the model
should be complete. Only then can integration requirements be derived for imple-
mentation across project teams.

CHAPTER 7 Adapter Development Methodology and Best Practices86

Department
Project Team

Dev.
Team

Enterprise Domain

Prog.
Mgr.

Business
Analyst

Department
Project Team

Business Modelling Team

Dev.
Team

Prog.
Mgr.

Department
Project Team

Dev.
Team

Prog.
Mgr.

Business
Model

FIGURE 7.3 Business-model-driven integration teams.

Advantages and Disadvantages
Both models have their advantages and disadvantages when applied to project-
managing strategies. Isolating integration as a separate project enables the integra-
tion project teams to focus on developing the integration solutions more quickly.

08 0672323109 CH07 4/18/02 10:07 AM Page 86

However, the practical value of the integration solution can only be realized when
deployed in conjunction with business applications that are developed by different
project teams. Many times, the integration solutions developed by dedicated integra-
tion project teams are technically good, but they are developed in isolation without
full understanding of the complete requirements. The usual causality in these scenar-
ios is the technology, which takes the blame for failed integration projects.

On the other hand, empowering individual project teams with the necessary integra-
tion standards and tools doesn’t automatically guarantee cooperation between
project teams. Many times, the management objectives of individual project teams
are focused on departmental issues rather then understanding enterprise objectives.
Unless a stable business model is defined, project teams are constantly grappling
with changing integration requirements.

Software integration is a cross-functional requirement and cannot be solved by
isolating the integration teams; nor can it be solved by allowing individual project
teams to function in isolation. One approach that yields better results is training the
development teams on integration tools and development methodologies that make
integration part of the process. Project managers need to change their project
management techniques and processes to include closer cooperation from other
project managers, technical leads, business analysts, and integration experts. It is
very important that every project team has a technical lead (or an architect, depend-
ing on the size of the project) who is a member of an integration team composed of
technical and business experts.

In very large global organizations where integration issues are not only technical but
also geographical, a central integration council with participants from all geographi-
cal regions is useful in determining the challenges of integration. In smaller organi-
zations, integration teams tend to be formed on a more informal basis, with
representation from each project team as required for specific time-bound integra-
tion projects. Regardless of the type of team and the methods used to form them,
participation from all involved application teams and availability of integration
experts is critical.

The integration experts need to ensure that all software development activities
adhere to common enterprise integration standards, tools, and architecture. We will
explore the role of adapters in integration projects more in the following sections.

Role of Adapters in Integration Project
Adapters are endpoints of any integration solution, so they interact directly with the
business applications. The role of adapters is defined by the type of integration
scenarios. In the case of data integration scenarios, adapters are responsible for

Role of Adapters in Integration Project 87

08 0672323109 CH07 4/18/02 10:07 AM Page 87

extracting data from the business applications database, and updating the applica-
tion database with external data and actions. When the integration scenario is about
workflow automation, adapters must enable applications to generate events repre-
senting application transaction and state changes in the database. Adapters also need
to handle external events and triggers, which may require the application to take
specific actions. In the scenario of Web services, adapters expose application func-
tions to the Web and invoke appropriate application function, depending on the
service request. It is usually a good practice to identify adapters with the business
application it integrates instead of the integration platform it requires to achieve the
integration. In other words, it is very important to understand that adapters are
extensions of the business applications and not of the integration platform or infra-
structure.

Project managers need to make a conscious decision to include application adapters
in any type of integration scenario. If the existing adapter does not provide the func-
tionality required for the integration scenario, the adapter must be upgraded.
Following this practice ensures that all integration logic is located in one place (in
the adapter), making future upgrades and maintenance in general easier. Without
adapters, applications will have to be significantly changed.

Adapters do the actual connections with application resources (such as databases and
middleware); and manage application transactions, security, exceptions, and so on.
In an ideal integration scenario, all participating applications will have an adapter
defining and managing the integration capability of the associated application.
Adapters define the point of integration for an application, and hence project
managers can build and share development metrics based on a known set of arti-
facts. The section “Estimating Adapter Development” provides some high-level
guidelines on how to build adapter development and maintenance metrics.

Adapter Analysis
As with any other software development project, analysis is very important for
adapter development and maintenance. Understanding the complete integration
scenario is fundamental to any adapter analysis methodology or technique. Knowing
the objectives of the integration scenario is useful in determining the specific role of
the adapters.

Where should a software analyst begin when developing adapters? The analysis is a
four-step process, beginning with the business objectives and ending with an analy-
sis model—complete with integration use cases, analysis of application architectures,
data models, and API. Following is a series of individual steps and tasks that can be
used as a guideline for adapter analysis in general:

CHAPTER 7 Adapter Development Methodology and Best Practices88

08 0672323109 CH07 4/18/02 10:07 AM Page 88

1. Understanding the business objective.

• Integrate applications to eliminate duplicate data entry and ensuring data
integrity.

• Enable Web-based, service-oriented access to application functions. The
services can be used by customers, partners, and internal staff.

• Enhance applications to support workflow and process automation.

• Document the business objectives that are driving the integration
requirements. It will be useful in calculating the ROI as well as justifying
future integration requirements.

2. Analyze the end-to-end integration scenario.

• Identify all the applications participating in the integration scenario.

• If applicable, identify master or controlling applications. Typically, these
applications manage master databases and provide unique services.

• In a peer-to-peer integration model, identify the initiator of integration
scenarios. If the initiators are different, based on business rules, a table
stating the association between business rules and which application is
the initiator when the business rule is asserted.

• Identify the mismatch between individual data models of all participating
applications. This information will be useful for defining the data struc-
tures to be exchanged by applications within an integration scenario.
Data transformation and validation requirements are derived from this
analysis.

• Document the analysis results, either in a text document with as much
detail as possible or using a UML-based development tool. A use case
analysis model captures the results of analysis in text form. Use case
models identify the relationships between use cases, system boundaries,
and entities interacting with the use cases. An example of a use case
capturing a simple end-to-end integration scenario is shown in the
section on “Documenting Integration Scenario.”

3. Analyze the individual application architecture.

• Identify the database structures (tables, objects, and so on) of each appli-
cation required to complete the integration scenario.

• Identify any available API, staging database tables, and other types of
interfaces in the application. These interfaces could be used as points of
integration for adapters. If no such interfaces are available, it is a good
indication of the effort required to develop integration capabilities for the
application.

Adapter Analysis 89

08 0672323109 CH07 4/18/02 10:07 AM Page 89

• Identify third-party middleware technologies used in multitier applica-
tions. Generally, distributed applications are easier to integrate because
they have more points of integration tied together by middleware plat-
forms and tools.

• One of the most important design features that needs research is the
applications support for synchronous and asynchronous transactions.
Knowing which applications support either or both types of transactions
helps in the design of a high-quality adapter. It is quite common for
adapters to be burdened with additional work required to handle asyn-
chronous interfaces in a synchronous transaction and vice versa.

• Document the available points of integration (PIN) and the type of PIN
(database table, stored procedure, API, message, and so on). Also, docu-
ment the business function exposed by the individual PIN. Document the
sync-async mismatch between PINs because it will drive the individual
adapter designs later in the process.

4. Identify programming constraints.

• Many times, integration project teams face the difficult task of integrat-
ing old business applications. Not only are the programming language
and supporting tools an issue, but also knowledge about its architecture
and design. Identifying the constraints, especially with respect to the
non-availability of appropriate development tools, needs to be docu-
mented very early in the process. Project managers need to treat these as
potential risks and try to develop alternate strategies.

• Differences in programming languages of the business applications
should be taken into consideration when identifying constraints. Not all
programming languages are easier to deal with when developing adapters.
Java provides a JNI interface to call code developed in other languages.
However, it is not easy, and not all languages are supported by JNI.

• The constraints identified by the adapter analysis teams are very useful
for project managers in estimating the adapter development efforts as
well as setting the right expectations.

This four-step process is very basic and is not supposed to be a full-fledged analysis
process. Individual project teams and project managers need to verify whether their
analysis process handles some of things stated above.

Documenting the Integration Scenario
Integration scenarios can be simple point-to-point data exchange or complex distrib-
uted data synchronization. Other types of integration scenarios include accessing

CHAPTER 7 Adapter Development Methodology and Best Practices90

08 0672323109 CH07 4/18/02 10:07 AM Page 90

services over the Web or other proprietary platforms. Increasingly, process modeling
and automation are seen as means to capture business processes and link them to
applications using workflow and other tools.

Each type of integration scenario has unique requirements and can be implemented
using different design patterns. But before you know which design patterns to use, it
is important to document the integration scenario and identify all the participants as
well as the different integration points. A common practice in software analysis
today is defining the requirements in use cases. A use case is part of UML specifica-
tions, and is more often used to capture user requirements. However, use cases can
also be used to capture integration requirements. Requirements of a simple integra-
tion scenario are shown in the example use case in Figure 7.4.

Adapter Analysis 91

Customer Service
Application

Accounting Application

HandleExceptorStatus

«Feature»
ProcessCustomerData

StatusInformation
CUSTOMER_IDICUS

«Feature»
ManageCustomerData

ThrowException

StatusInformation
STATUS_IDISTAT

«Business Rule»
ProcessStatus

«Business Rule»
PostStatus

«case worker»
Customer Service

Agent

«external worker»
Accounts
Manager

1

1

Acts on

1

1

1

Post

Process

Assigns
Exceptor

creates

FIGURE 7.4 Example integration use case.

It may look odd at first that the diagram shows two system boundaries. Most busi-
ness analysts using UML are perhaps used to a single system boundary that defines
the business application for which the user requirements are captured. This diagram
shows the difference between normal requirements analysis and integration analysis.
More complex integration scenarios will have more system boundaries (systems)
involved in the use case model.

08 0672323109 CH07 4/18/02 10:07 AM Page 91

Another difference is the identification of data structures that need to be exchanged
between systems. In Figure 7.4, the data structures are shown as text notes outside
the system boundaries. It is important to understand these requirements early on
because they may require different project teams to spend significant time later on in
supporting the integration projects.

From a project management perspective, a use case model is very useful for under-
standing the complexity of the integration scenario, the different systems involved,
and the points of integration between the systems at a high level without any tech-
nical details. Project managers can then begin to estimate the effort and coordinate
with other project managers the work required from members of other teams in
successfully implementing the integration solution.

Determining Hub and Spoke Scenarios
Sometimes, integration scenarios can be defined as a hub and spoke type of integra-
tion scenario. This is usually the case when one application is the master or control-
ling application, and all other applications are reacting to the state changes of the
controlling application. Controlling application could be legacy applications, third-
party packages, and even J2EE applications.

In a hub and spoke integration scenario, the controlling application’s action deter-
mines the effect on all other applications in the scenario. If the controlling applica-
tion (hub) changes any of its data, other applications (spokes) need to be notified of
the change so that they can synchronize their database states as required. Changes to
data in other applications besides the controlling application are not part of the inte-
gration scenario; they are considered to be local changes.

The benefits of identifying hub and spoke scenarios are evident when selecting inte-
gration technologies implementing the solution. However, from a project manage-
ment perspective, it is quite likely that the project managers responsible for the
controlling application (hub) need to take the leadership role and put in extra efforts
to coordinate the integration efforts from other teams. Without a defined flow of
project management activities, it is difficult to understand and manage the integra-
tion project.

Determining Peer-to-peer Scenarios
A different type of integration scenario occurs when all participants have equal
responsibilities. In a peer-to-peer integration scenario, the participants synchronize
data between their databases by processing data updates from all applications. An
update to one application is broadcast to all other applications in the scenario. There
is no concept of a master application controlling the chain of events.

CHAPTER 7 Adapter Development Methodology and Best Practices92

08 0672323109 CH07 4/18/02 10:07 AM Page 92

Peer-to-peer integration scenarios are more likely to emerge in the context of process
automation rather then data integration. Most data-integration scenarios have one
application as the data owner, and only this application triggers data updates. The
hub and spoke scenario discussed earlier is more suitable for data integration.
Examples of peer-to-peer scenarios include workflow and process automation-related
integration scenarios in which participating applications are expected to generate
events reflecting internal state changes, and to process incoming events by taking
appropriate actions. In a workflow automation environment, all applications gener-
ate events or they process events and then trigger the associated actions. The coordi-
nation and propagation of the events are not controlled by any one application, but
depend on a higher-level abstraction of the finite state machine.

In some special cases, one or more of the peers in a peer-to-peer integration scenario
is a composite application. A composite application is an aggregation of other applica-
tions built to support specific integration requirements. The individual applications
that are part of the composite application may have a hub-and-spoke or peer-to-peer
relationship with other applications; but for analysis, the composite application can
be considered as supporting the peer-to-peer scenario. Composite applications may
not be common today, but over time they will be found in most enterprises.

It is always better to separate the peer-to-peer integration scenarios from hub and
spoke scenarios. Most adapters only handle data integration. Event processing is not
usually considered an adapter function. Sometimes, it is handled by a workflow
automation tool, which maintains the state changes on the application’s behalf. By
identifying the peer-to-peer scenarios project, managers can choose to either
enhance the workflow tool if one exists or include the functionality in adapters.
Without proper support in the adapter frameworks, however, it is very difficult to
have both data integration and event processing implemented as one adapter.

Analyzing Application Architectures
Adapters are part of business applications, so one of the challenges of building
adapters for existing applications is having the knowledge of application internals or
the architecture. Very often, the application architecture and design are not explic-
itly documented or modeled. As a result, adapter developers need to spend a signifi-
cant amount of time understanding the application internals. Integration teams
often spend most of their time modeling the database structure and business rules—
something that should have been done earlier by the application development teams
that maintain the application. Project managers need to consider the impact of this
when estimating the integration efforts. Depending on the size of the application,
available documentation, and access to resources knowledgeable about the applica-
tion, the architecture analysis effort can be reasonable or frustrating.

Adapter Analysis 93

08 0672323109 CH07 4/18/02 10:07 AM Page 93

Project managers should not skip this activity because the result is a longer design
and development cycle. In other words, the architecture analysis work cannot be
avoided. It can be done as part of the integration analysis process or deferred to the
development teams. Putting it off to the development teams usually results in a less-
than-desirable integration solution.

Analyzing Application Data Models
Data impedance or differences in data models between applications is the classic
application integration problem. These issues are complicated by business rules
attached to data models. For example, it is quite likely that the structure of an
account number column in the accounting database is actually a composite of three
business data elements: Customer ID, Geographical Area code, and Account type.
These types of data fields and data models pose significant integration challenges
during the development and implementation phase. It is not surprising to see inte-
gration projects fail due to lengthy implementation cycles as a result of hidden data
impedance. Project managers need to understand the significance of these seemingly
small technical issues. It is not just about transforming data from one format to
another; it involves applying and verifying business rules, as well.

Experienced project managers tend to estimate additional time for data model analy-
sis because generally it is one of those areas that comes back later as a major underes-
timated factor. The lack of any documentation on the business rules attached with
data models means coordination and help from business analysts. Either way, this is
a very important task of adapter development, especially when focused on data inte-
gration.

Analyzing Application APIs
Sometimes we get lucky, and one such instance in the life of an adapter developer is
when applications have a well-defined API. Adapter developers eventually develop a
sense of respect for applications with well-documented APIs. However, not all APIs
are useful for adapter development. Many times, low-level APIs that work with tech-
nical objects instead of higher-level business objects tend to be more work than
they’re worth. This is not to say that lower-level APIs are not useful, but in the
context of adapter development, accessing technical objects such as data rows in an
RDBMS table, or data objects in a ODBMS is faster and easier with the native inter-
faces such as SQL and OQL. Application-level APIs that encapsulate business logic are
more useful for adapter development.

In the absence of a higher-level API, a decision needs to be made very early on in the
project on the relative use of lower-level APIs in adapter development. If the lower-
level APIs are expected to save time and encapsulate the adapter developers from
many technical details, there is still value in using the APIs. However, if the differ-
ence between native interfaces and the lower-level APIs is not much and the value

CHAPTER 7 Adapter Development Methodology and Best Practices94

08 0672323109 CH07 4/18/02 10:07 AM Page 94

added by the APIs is more cosmetic, a better strategy would be to build a higher-level
API as part of the adapter development project.

In the long term, adapter development time and maintenance time can be reduced
by higher-level, business-oriented application APIs. Project managers need to
consider and weigh the long-term benefits versus short-term time constraints.

Analyzing Buy Versus Build Options
Having a good understanding of the end-to-end integration scenario, individual
application architectures, data impedance between applications, availability of clearly
defined APIs, and so on should enable project managers to contribute to the buy
versus build decision-making process. Many integration solutions are available in the
market. Some specialize in data transformation, and others provide integration
brokers and application servers capable of simplifying integration.

This book is not about the various decision-making processes involved in selecting
integration solutions, but the information generated during the analysis phase
outlined in the chapter should enable project managers to contribute to that process.
It is always a good strategy to engage application integration vendors and consul-
tants and get the benefit of their expertise in managing and deploying integration
solutions. The number of adapter vendors is increasing, and the availability of open
standards such as JCA makes adapter development a better-understood technology. It
will be easier to buy a JCA-compatible resource adapter and maintain it in-house
than build a completely proprietary adapter technology. However, Chapter 10,
“Overview of JCA,” identifies some areas in which JCA is still missing critical specifi-
cations. It is very likely that adapter vendors will fill this gap in JCA specifications
with their own proprietary solutions.

Building adapters in-house makes sense, especially when proprietary technology and
applications are considered. No one understands the proprietary technologies better
than the team that originally developed it. Some adapter vendors will probably
provide tools that make JCA resource adapter development easier.

Estimating Adapter Development
Software estimation is always a challenge, and adapter development projects have
more variables to consider. The primary variables that affect adapter development
include the following:

• The number of application interfaces (points of interface) to be included in the
adapter. A good design principle is to implement not more than three to five
interfaces in one adapter. If there are more then five interfaces, it is better to
group them by business or technical functions, and implement one adapter for
each group. You implement fewer interfaces in one adapter to keep the

Adapter Analysis 95

08 0672323109 CH07 4/18/02 10:07 AM Page 95

memory footprint as small as possible. Adapters are expected to scale a lot
more than the applications. Hence, the smaller the adapter, the larger the
number of instances the JVM can manage. It may not be possible in all cases to
break down the adapter functionality into groups for better implementation.
The optimum number of interfaces per adapter depends on the specific integra-
tion scenario and the technical complexities.

• The number of data models and databases, differences between them, and
resulting data transformation requirements.

• The differences between the adapter development environment and the appli-
cation development environment. For example, a JCA adapter developer may
need to interface with a C or C++ API to access data objects stored in an object
database. These paradigm differences require more time to understand, design,
and develop the adapter.

• Internationalization requirements resulting in DBCS support in adapters and
the resulting conversions always create unwanted surprises during development
and deployment.

Other factors affect the overall estimation effort, but these depend on the individual
team structures, IT environments, and the company culture. The objective of this
chapter is to identify areas of concern, not define project management solutions.

Adapter Design
The details of adapter architecture and design are explored in Chapter 4, “Adapter
Reference Model.” From a methodology perspective, the adapter architecture and
design is no doubt impacted by the constraints identified in the analysis phase. The
primary object of adapters is to encapsulate the application and expose integration
functions and features. Hence, the adapter design should be driven by the right
balance of long-term objectives enabling easier secure integration and short-term
objectives of specific integration with specific applications and integration scenarios.

The complexities of interfacing with the application should not affect the long-term
value of the adapter. Sometimes, this is hard to achieve with applications that have
very closed architectures. Adapters for such applications can be very complex, and
the benefits of integrating the application should be considered and weighed with
the cost of developing complex adapters. If the application is strategic or mission-
critical, then developing an adapter is always beneficial despite the possible complex-
ities.

Adapter developers need to be some of the most creative programmers because they
face challenging integration scenarios. Given the choice between constraining

CHAPTER 7 Adapter Development Methodology and Best Practices96

08 0672323109 CH07 4/18/02 10:07 AM Page 96

adapter functionality due to the underlying application architecture and developing
complex integration adapters, the decision will be based on the significance of the
application in the integration scenario. If the application is identified to be the
master application that drives data synchronization actions, adapter developers may
need to modify the application so it’s more open to adapters.

Some of the design choices that adapter developers have to make involve the selec-
tion of point-to-point integration versus broker-enabled integration. Integration
brokers are great tools for centralizing and managing complex integration scenarios
involving intelligent routing of data and messages. However, you pay a price for the
flexibility of using integration brokers. Sometimes when the integration scenario is
simple, few applications are involved in the scenario (between three and five), and
the volume of data is small, it might be better to develop a point-to-point adapter-
based integration solution. This is more cost-effective and also easier to manage.
However, the adapter design must be easy to migrate to a broker-enabled integration
scenario without additional modifications in future.

Other design choices include persistence mechanisms that can include serialized
objects, RDBMS, property files, and so on. Once again, the final decision should be
guided by the foreseen integration scenarios. Obviously, large corporations need to
plan for flexible integration platforms and adapter designs from the very beginning.
Another design choice is the document model standard driving the data exchange
mechanisms between adapters. Given the maturity and broad-based support for XML
and XML-related technologies, it is logical to select XML as the document model.
However, developers new to XML face a steep learning curve with many new tech-
nologies, and must assess the impact of learning on project estimates.

Selecting an Implementation Environment
The implementation environment for an adapter depends on various things, includ-
ing the integration context (data integration, Web service, process automation) and
existing infrastructure. The implementation environment for adapters usually
comprises the operating system, servers, and database.

Operating System
It is quite possible for the adapter to run on the same platform as the business appli-
cation. Many times, adapters need to support remote execution. This is especially
required when the two applications collaborating in the integration scenario are
located in remote locations or on different hardware and operating platforms. The
operating system(s) on which the adapters are expected to run also define the choice
of supporting software-like databases and other servers. The selection of appropriate
types and versions of operating systems is critical to the final adapter implementa-
tion environment.

Adapter Design 97

08 0672323109 CH07 4/18/02 10:07 AM Page 97

For example, an adapter can integrate with a CICS application on the IBM OS/390
platform to use CICS transaction gateways on Windows NT environment to access
the CICS application data. In this case, the adapter implementation is simpler
because it involves only Windows NT instead of both Windows NT and OS/390.
However, if the integration scenario needs the adapter to run closer to the CICS
application, then the adapter needs to support remote execution on the OS/390 plat-
form, so it is much more complex.

Servers
Depending on the type of adapter and the integration scenario, one or more servers
may be required as adapter hosting environments or gateways. Application servers,
database servers, Web servers, WAP servers, and transaction servers all become part of
adapter implementation environments depending on the individual application
architectures and the integration scenario.

Database
Adapters need to store their configuration information in a fail-safe environment.
Depending on the number of adapters and the frequency of changes to the configu-
ration, a simple RDBMS-based configuration database or a high availability, data
persistence solution may be required. Storing adapter configuration environments in
a separate environment is a good design principle because it isolates adapter-
generated control information (error messages, log files, and configuration data)
from other application and system data.

Constraints Identified During Analysis
As developers begin to analyze the application architecture and design, it is quite
common to identify serious constraints. Often, legacy applications (and sometimes
even newer applications) are not designed with integration capabilities. Database
stored procedures are not always thread safe or re-entrant. Many stored procedures
do not identify the actual user invoking them. Database security and access are often
defined by user requirements, and do not include application integration require-
ments. Allowing applications to access the database as a different type of users (invis-
ible user) may require changes to the security policies used by the database
administration teams.

Architecture constraints are the most difficult to solve during adapter development.
If no APIs are available to the adapter developer, the design choices are significantly
reduced unless the application is changed. Even then, refactoring application archi-
tecture and design is always prone to errors and introduction of new bugs. It is
typical and wise to expect new bugs or resurfacing of old application bugs in the
context of integration projects. It is important to remember that adapters cannot
add new functionality to the application; they can only increase its integration

CHAPTER 7 Adapter Development Methodology and Best Practices98

08 0672323109 CH07 4/18/02 10:07 AM Page 98

capabilities. However, you can change or enhance the application functionality at
the same time the adapter is being developed.

Adapter Hosting Environment
Adapters can be hosted in a multitude of environments, ranging from simple operat-
ing systems and application servers to sophisticated integration brokers. The differ-
ence between hosting environment and implementation environments are the
supported services specific to adapters. For example, a J2EE-compliant application
server can be an implementation environment; however, the JCA-compliant services
define an adapter hosting environment. Adapters can be built with or without JCA
support with the adapter architecture varying based on the adapter hosting environ-
ment.

Adapters can be hosted by different hosting environments. Some are sophisticated,
like JCA-compliant application servers; and others are not so sophisticated, like the
UNIX operating system. The level of sophistication expected is very specific to the
requirements of managing adapters and providing adapters with system-level
services. It is not always possible or even required to host adapters in an application
server environment. Adapters can be hosted as UNIX processes, as standalone appli-
cations, as embedded components, or even as services and components of a distrib-
uted environment such as DCOM or CORBA.

Selecting the appropriate hosting environment depends on the integration scenario,
requirements, and constraints identified. If the scenario is expected to achieve data
synchronization between different databases, it is possible to host the adapters on
the database servers, perhaps even including database triggers and procedures. The
actual hosting environment can be selected based on the following criteria.

Level of Manageability
Adapters requiring a higher level of management services (dynamic configuration
capabilities, graphical representations, dynamic load balancing, fail over capabilities,
and so on) will require a sophisticated environment such as J2EE and JCA-compliant
application servers or a CORBA-based distributed object environment. On the other
hand, some adapters may not be complex or may be more static in their configura-
tions. These could be hosted in a simpler environment, such as a Web server or a
UNIX/NT-based workstation.

Performance Requirements
The volume of data, number of service messages, or number of workflow events to
be processed can determine the hosting environment. Higher performance require-
ments will evidently require faster machines as well as high throughput environ-
ments. Higher-end application servers or those environments supporting clustering
technologies will need to be considered.

Adapter Design 99

08 0672323109 CH07 4/18/02 10:07 AM Page 99

Operational Requirements
Transaction and security requirements impact the adapter hosting choices on the
operational side. Single sign-on requirements, distributed transactions, two-phase
commit, and other transactional requirements must be provided by the hosting envi-
ronment when needed. For example, when you’re using MQSeries as an adapter
hosting environment, you may need to develop some additional transaction and
security services to meet the adapter requirements. MQSeries is one of the best
messaging and queuing platforms, but does not perform the functions of a transac-
tion monitor.

It is clear that adapter hosting environments need to be analyzed and selected based
on a number of different factors. Some adapters can be hosted in a simpler environ-
ment, whereas others cannot function without a sophisticated adapter hosting envi-
ronment. It is always a good design principle to develop scalable adapters capable of
working in a multitude of hosting environments.

Building the Target Reference Model
In the previous sections, we have covered some of the important aspects of adapter
analysis and design. Without a common reference model, the architecture of
adapters probably will be different for each adapter. Consistency in design requires a
common set of standards, and a reference model captures those critical parameters
and design principles. Chapter 4 defines a target reference model for adapters. A
similar model or a specialized version of this reference model should be accessible to
adapter developers.

Reference models ensure a common design philosophy and a set of design patterns
useful for developing adapters. The reference model is a good starting point when
developing adapters. It provides you with a structural model of the adapter that can
be extended and specialized for the specific adapter requirements without sacrificing
a common infrastructure.

Adapter Coding
Adapters can be developed in any programming language. However, some languages
provide better support for adapters then others. For example, Java has an excellent
component model in the form of Java Beans and Enterprise Java Beans. Java also has
specific support for hosting adapters in J2EE-compliant servers. Java JNDI can be
used to access code developed in other programming languages such as C and C++.
Also, the multiplatform support of Java makes a strong case as the language of choice
for adapter development.

CHAPTER 7 Adapter Development Methodology and Best Practices100

08 0672323109 CH07 4/18/02 10:07 AM Page 100

Having said that, there will be cases in which other languages are better suited for
specific environments. In the case of embedded operating systems and databases, C
or C++ may be the only language available or may be better for performance-related
issues. When faced with a proprietary platform that supports only specific program-
ming languages, your choice could be limited. Hence, the logical architecture of an
adapter is devoid of any programming language or platform. Regardless of the
programming language used to develop the adapter, the basic principles of the devel-
opment methodology described in this chapter are applicable to all adapter develop-
ment projects.

Using Appropriate Tools
The complex task of defining integration requirements, developing adapters, and
deploying the integration solution requires good tools. Very little specialized devel-
opment tool support exists for adapters. The basic tools needed for design, coding,
and testing adapters are not very different from the standard development tools.
However, specific features help to speed the developer and QA tasks in particular, as
required for adapter development. Developing adapters generally involves external
components such as parsers and mapping engines. For example, XML document
editors are required to create, view, and edit document definitions. Ideally, develop-
ment tools should support easy extensions such as adding editors, generating test
data, and so on.

Support for Top-Down and Bottom-Up Coding
Many very good development tools are available today. Most of the popular IDE
tools are comprehensive and include modeling capabilities, code generation, version
control, deployment management, and so on. Some of the more popular tools, espe-
cially for Java programming include Together Control Center, Rational Rose, Borland
JBuilder, and IBM VisualAge. Apart from the features listed here, one very important
feature especially for adapter development is the capability to support top-down and
bottom up development.

Top-down development starts with a UML-based model, including business process
definitions, requirements in the form of use cases, and so on. This type of develop-
ment is more appropriate in the case in which adapters are built for a well-known set
of integration requirements, and in the situation in which the applications involved
have APIs and other documented points of interface. However, if the adapter is to be
designed with little knowledge of the applications or no known points of integra-
tion, a more iterative method of coding and testing is required. This is where the
development tools need to support easy transformation of code to higher-level
models of abstraction. It is important to keep the code and the model in synchro-
nization.

Adapter Coding 101

08 0672323109 CH07 4/18/02 10:07 AM Page 101

When selecting development tools for adapters and integration projects in general,
you need to take into consideration the different coding methods and full lifecycle
support. It is advisable to go for a high-end development tool when developing
adapters because many applications could be involved. Being able to model the
complex integration scenarios enables you to see the big picture and build the right
adapter functionality. One such tool is Together Control Center from TogetherSoft
Inc., which was used for developing the example JCA connector in this book. All the
models (use case, class diagram, and so on) in this book were also generated by
Together Control Center. (An overview of the Together Control Center tool with
instructions of where to get further information is contained in the Appendix B,
“References.”)

Adapter QA
Quality assurance is a tedious task but extremely important. The best architecture
and design is not very useful if the software does not comply with requirements, and
if it has too many bugs. Fixing software bugs is a continuous process that involves
constant checking and fixing. Adapter QA is a more complicated task that considers
the involvement of not one but many applications in a scenario. Two levels of QA
are basic to adapter development: adapter unit tests and integration scenario tests.

Adapter unit tests are focused on testing the adapter features and capabilities with
reference to the adapter requirements. They involve testing the connectivity between
the adapter and the business application, the fail over, and other recovery mecha-
nisms programmed into the adapter. Adapter unit tests are important to ensure the
basic level of integration between the business application and adapter on a one-on-
one basis.

However, adapter unit tests are not enough to certify the adapter fit for participating
in integration scenarios. That is the job of integration scenario tests, sometimes
known as end-to-end testing. These tests are more complex, and involve a series of
adapters collaborating in a simulated integrating scenario using test data. Sometimes,
these tests are run for days to ensure the adapters do their job over a long period of
time without crashing or corrupting any data.

Ironically, these tests expose bugs in operating systems—bugs in business applica-
tions, middleware, and so on. It is only in the integration scenario tests that the
entire infrastructure associated with the scenario (including hardware, operating
systems, databases, applications, adapters, and other middleware) are tested as a
single unit of operation.

The usual system tests or integrated system tests conducted as part of software devel-
opment are slightly different from integration scenario testing. The objective of the
system test is to identify bugs in a particular business application. The objective of

CHAPTER 7 Adapter Development Methodology and Best Practices102

08 0672323109 CH07 4/18/02 10:07 AM Page 102

integration scenario testing is to ensure that all points of integration work as
expected. The scope of testing is therefore much bigger and involves many potential
points of failure.

Setup of the QA Environment
It is no surprise that setting up the QA environment for integration scenario testing,
as well as a separate adapter unit test, is not a small task. Most QA teams prefer to
maintain their test environments for a long time after they are set up. It takes a lot
of effort to build a valid QA environment, complete with meaningful test data,
decent hardware configurations, and defining appropriate scenarios. Automating the
repetitive testing cycles is very important to maintain consistency between testing
different versions of the adapters, and so on. Without a consistent QA environment,
it is hard to isolate bugs, or even prove that past bugs don’t exist in new versions of
the software.

Selecting Valid Test Data
Access to good quality test data is always a challenge. Sometimes, QA teams consider
copies of production data (data from applications in production environments) as
good test data. This principle is problematic, however, because in many instances
production data only represents the valid conditions. Test exceptions, business rules,
security policies, and so on require an incredibly comprehensive set of test data.
Most of the time, the quality of test data increases with the number of testing cycles.

QA teams need to expand their testing procedures and include test data for end-to-
end integration scenarios. This requires test data from potentially multiple applica-
tions in different databases. This task of defining the appropriate set of test data
should begin as soon as the integration requirements are known. Test plans and test
databases should be defined and populated as soon as possible to avoid lengthy QA
cycles in the later half of the development schedules.

Identifying Regression Test Cases
How many times should you test the adapter? If a minor change has been made to
an adapter, or if an adapter has some bugs fixed, what kind of testing is required
before it is deployed? These are some of the questions that QA engineers, project
managers, and IT staff face regularly in any integration project. Regression tests
define a set of test cases that represent critical aspects of the integration scenario.
Not all adapter test cases are required for regression tests. Generally, each adapter has
a specific set of features or functions relevant to a particular integration scenario. All
features of all adapters probably are not deployed or even required to fulfill a specific
integration scenario.

Adapter QA 103

08 0672323109 CH07 4/18/02 10:07 AM Page 103

Hence, it is important to identify a series of test cases that represent the critical func-
tionality in play for a particular integration scenario, and reference them as regres-
sion test cases. Regression test cases are useful for testing minor upgrades to adapters
or bug fixes or maintenance releases of adapters. They provide the adapter QA team
with enough testing procedures to test adapters quickly before deploying them in a
production environment. However, if the adapters have undergone significant
changes, it may be better to test using the full set of test cases.

Developing a Test Harness
A very useful part of adapter QA is the availability of a test harness. A test harness is a
self-contained testing tool that is part of the adapter. It helps in conducting quick
and easy adapter unit tests without major QA infrastructure. It also helps developers
test their adapters because other adapters or even applications may not be ready for a
comprehensive adapter QA. Developers and project managers can decide to include a
test harness as part of the development schedule. However, the effectiveness of such
a harness is likely to go down if it is not kept in sync with the adapter and the busi-
ness application.

Deploying Adapters
Adapter deployment can be a tedious task, depending on the complexity of the inte-
gration scenarios and the integration platform. Specific challenges are involved in
deploying internationalized adapters and deploying adapters on multiple platforms.
Adapters are normally developed on a platform more suitable to development activi-
ties. Most adapter development is done in a Windows NT environment. If Java is the
programming language, deploying the adapters on different platforms requires
extensive testing. Not all platforms may support the same JDK or support all the
features of J2EE specifications. This section identifies the critical tasks before and
during adapter deployment.

One of the features frequently requested by adapter developers is the support for
deploying adapters in different stages. A very real challenge of any integration solu-
tion deployment project is the simultaneous deployment of many interrelated
components. Consider an integration scenario that involves 10 different applications
hosted on different platforms in two different countries. Deploying adapters for all
10 applications at the same time is not an easy task. Quite often, a sequential
deployment strategy is used to install the adapters. However, it is not a good idea to
have individual adapters working in a production environment until all other
adapters necessary are also installed and potentially tested.

It is also important that the integration platform on which adapters are installed is
capable of recognizing and managing the adapters in different states. Adapters can

CHAPTER 7 Adapter Development Methodology and Best Practices104

08 0672323109 CH07 4/18/02 10:07 AM Page 104

exist in different states—including installed, tested, configured, deployed, and so on.
Alternately, adapters that are already in the deployed state may need to be stopped
for upgrades. Many times, deployment management tools are not sufficiently sophis-
ticated. Hence, project managers need to fully understand the implication of
installing adapters in stages, and define a schedule to complete the deployment
successfully.

Multiplatform Deployment Guidelines
One of the benefits of programming in Java is the multiplatform support it generates
without specific porting of the code base. With adapters (especially JCA resource
adapters), the definition of multiplatform support includes J2EE-compliant applica-
tion servers. Although the J2EE specifications are comprehensive, application
vendors have some flexibility in how the implement the specifications. Some
vendors also add additional functionality and support for their other products. For
example, BEA WebLogic’s application server also includes the Tuxedo transaction
engine as an option. IBM’s WebSphere application server includes MQSeries and
gateways to IBM mainframe platform and environments such as CICS.

In the case of JCA support in application servers, vendors have the necessary flexibil-
ity to implement connection pooling and other JCA services using proprietary
designs. Hence, although the connection-pooling service interfaces are guaranteed
across application servers, the actual implementation will be different. Some will
have more additional features than others. These differences result in different
deployment management and configurations.

Needless to say, the application server will have bugs just like any other software.
Thus, it is critical to test JCA-compliant adapters on all application servers it is
expected to support. Although it is the same JCA adapter, it may work in the J2EE
reference implementation, but may not work with other application servers. J2EE
compliance, as defined by SUN, does not require application server vendors to
support all specifications of J2EE. This is another reason for adapter developers to
check if the J2EE-compliant application server also supports JCA specifications.

The more committed adapter vendors try to get the products tested and certified on
different operating systems and hardware configurations. JCA adapter vendors
should do the same, and get the resource adapters certified on different application
servers whenever possible. To summarize, the testing and deployment guidelines for
JCA resource adapters are as follows:

• Test the JCA resource adapter with the reference implementation for J2EE 1.3.

• Test the JCA resource adapter with all other application servers used in the
production environment.

Deploying Adapters 105

08 0672323109 CH07 4/18/02 10:07 AM Page 105

• Test the resource adapter with the different operating systems supported by the
J2EE application servers in the production environment.

• Deploy the resource adapter on one type of application server at a time. This
helps to eliminate application server-specific problems more quickly.
Application servers may have different configurations, which could result in
varying results.

• Group the resource adapter deployment by operating system. If you are
expected to deploy three resource adapters on a Windows NT environment and
two resource adapters on Linux, it is better to complete all the Windows NT or
Linux deployment first. Chances are, if one resource adapter encounters a
problem with the operating system or a problem with the application server
running in the operating system, other adapters will face the same issues.

Deploying Internationalized Adapters
Not all adapters are internationalized or ready to support different languages and
locales. But there are two parts to ensure that adapters are ready for international
deployment. The first part is internationalization, which involves additional work and
discipline from adapter developers. Developers need to ensure the use of appropriate
mechanisms such as resource bundles to store literal strings, and so on. The second
part is localization, which involves the creation of resource bundles in different
languages.

Apart from the visual support for languages other than English, there is the issue of
supporting double byte data and different input methods for languages. Several prod-
ucts enhance the native Java capabilities for internationalization by providing data
input mechanisms for many different languages. UNICODE is the widely accepted
standard for Double Byte Character Support (DBCS), but other specific standards
(especially for Japanese and Chinese language support) may be more prevalent in
different parts of the world.

Regardless of the level of DBCS support and the different input methods supported
by the adapters, it is important to understand that testing and deploying adapters in
different languages involves different versions of operating systems and perhaps
different versions of business applications as well. Hence, QA of international
versions of adapters is not simply restricted to testing the adapter using standard test
cases. It involves a completely different test environment, including international
versions operating systems (such as Chinese Windows), hardware that is more
popular in different parts of the world, different versions of applications, and test
data in the language matching the locale.

Project managers who plan to deploy adapters in a global environment using inter-
nationalized adapters should take into account the additional efforts required to test

CHAPTER 7 Adapter Development Methodology and Best Practices106

08 0672323109 CH07 4/18/02 10:07 AM Page 106

and support the adapters on hardware and operating systems that are more popular
and relevant to the local environments. Support for Java is not equal on all plat-
forms. Hardware and operating system vendors may be supporting various different
versions of JDK, and it is important to understand those differences before the
adapter development project starts.

Adapter Maintenance
Adapter maintenance needs to be planned just like any other software or application
maintenance. Although adapters are logically part of a specific business application,
they usually require additional maintenance due to the dependencies with other
adapters, applications, and infrastructure. The types of changes affecting adapters
include enhancements to business applications, operating system upgrades, hardware
upgrades, database upgrades, and platform upgrades (such as JDK upgrades). It is
important for project managers to keep track of all these parameters and plan
adapter enhancements accordingly. As such, the three basic tasks of adapter mainte-
nance include planning adapter upgrades, deploying adapter fixes, and managing
related vendor relationships. The following sections take a closer look at these three
tasks, and provide some guidelines on adapter maintenance.

Planning Adapter Upgrades
Because adapters are extensions of business applications, it is vital that adapters are
always synchronized with changes and upgrades to application functions and data-
bases. Some of the obvious challenges are when changes to one application can
result in changes to adapters of other applications. This can happen, for example,
when the database structure or the database model of an application drops elements
and attributes. Not only the adapter of the changed application, but also adapters of
dependent applications may need to be upgraded.

As a guideline, adapter upgrades should be analyzed with each release of the relevant
application. The analysis should also cover adapter upgrades needed due to changes
in other applications participating in the integration scenario. The planning activity
should become a regular practice for project managers. One of the first tasks in any
software and IT planning meetings should be integration planning, and it should
involve adapters. Integration and adapters is not a one-time activity; it requires
regular planning, analysis, and constant monitoring.

Deploying Adapter Fixes
Because adapters are primarily built to enable integration, applying fixes or patches
should be done with more than normal planning. The impact of changes to adapters
could be felt by other applications integrating with the adapter. For that matter,

Adapter Maintenance 107

08 0672323109 CH07 4/18/02 10:07 AM Page 107

testing adapter patches with all other adapters involved in the affected integration
scenario is very important. The regression test scenarios identified in the adapter QA
plan are useful when deploying patches and fixes to adapters.

Project managers should plan for extra time and resources when conducting regres-
sion tests before deploying adapter fixes. This is especially required in a distributed
environment in which adapters can be on servers connected by a WAN. Distributed
IT teams should inform all other IT teams about adapter deployments and other
administration tasks.

Importance of Vendor Relationships
Various integration products are available in the market. Some are message broker-
based; others are application server-oriented. There aren’t many adapter vendors yet,
but the number of adapter vendors specializing in specific integration platforms
(application servers, messaging platforms, and so on) and types of integration (data,
Web service, process automation) is sure to grow rapidly.

Successful integration projects are partly dependent on close partnerships or relation-
ships with technology vendors. Platform vendors continue to add significant support
for integration. Major hardware and software vendors—including Microsoft, SUN,
IBM, and others—have a comprehensive set of platform technology and services
capable of supporting complex integration requirements. These platforms can host
integration solutions such as adapters and integration brokers. On the other hand,
business application vendors haven’t been as aggressive in their efforts to support
integration. Not surprisingly, most business software vendors, including ERP and
CRM vendors, are likely to focus on better integration within their application
modules and less on integration with other applications. The business integration
issues faced by business application vendors are more complex and numerous when
compared with platform integration issues.

For integration projects to succeed in the long term, it is vital that hardware, soft-
ware, and infrastructure vendors share their product roadmaps, capabilities, and
strategies more openly than before. Customers and end-users need to plan their
integration strategies by working closely with their vendors. Without the visibility of
the vendors’ plans, customers will be forced to react to integration requirements
instead of proactively planning to resolve integration issues. Corporate IT managers
and development managers should actively seek closer partnerships with vendors,
and include long-term information sharing as a prerequisite to acquiring new soft-
ware and hardware technology.

A typical corporate IT department is likely to deal with various type of vendors,
including application package vendors, hardware vendors, integration vendors,
service providers, and so on. Each vendor will have a specific approach and visibility

CHAPTER 7 Adapter Development Methodology and Best Practices108

08 0672323109 CH07 4/18/02 10:07 AM Page 108

to integration issues and solutions. It is important to define a corporate integration
strategy that fits the corporate technology and vendors supplying and supporting the
technology. Integration is not a problem that can be solved in isolation.

One of the benefits of partnering with an adapter vendor is the consistency in
adapter technology across platforms and business applications. Without a consistent
adapter management environment, it will be almost impossible to manage the
complex integration scenario. Adapter vendors are also more likely to better under-
stand the challenges of adding integration features to applications. The motivation
for adapter vendors should be to provide adapters independent of integration infra-
structure, thus providing their customers the freedom to select infrastructure match-
ing the business and budget requirements.

Summary
Software project management is a difficult task in general, and is more complex and
critical in the case of integration projects. By definition, there is more collaboration
and planning required between development teams and project managers. You need
to select development tools carefully to manage the complex adapter development
projects. Understanding the differences between normal software development and
adapter development mean that the end results (adapters) meet the business require-
ments, as well as handle complex technical infrastructures involved in the integra-
tion scenario.

Building close relationships with vendors of third-party packages is essential to
knowing their product roadmap. Knowledge of what features and changes to expect
in the near future, as well as what features will be deprecated, enables project
managers to plan integration projects and requirements. Without a planned integra-
tion roadmap, it is difficult to upgrade third-party application packages without
impacting any customization or integration between applications.

This chapter doesn’t provide all the answers, but it helps identify some of the unique
project management and development issues related to integration projects. Existing
development methodologies may need some adjustments when applied to integra-
tion projects. As integration and adapter development become entrenched into
mainstream development, the experience gained by the teams involved will influ-
ence future methodologies, techniques, and design patterns.

Summary 109

08 0672323109 CH07 4/18/02 10:07 AM Page 109

08 0672323109 CH07 4/18/02 10:07 AM Page 110

IN THIS CHAPTER

• Strategy and Planning Pitfalls

• Architecture Pitfalls

• Analysis and Design Pitfalls

• Development and
Implementation Pitfalls

8

Pitfalls of Adapter
Development

“Your legacy should be that you made it better than it was

when you got it.”

—Lee Iacocca

Most software development projects can be managed
better the second time around. Despite the best of inten-
tions, management experience, tools, and budgets, projects
are invariably delayed. A common problem is the underes-
timation of work involved and the technical complexity.
Unclear requirements add to the usual frustrations of
development teams. In this chapter, I have highlighted
some of the pitfalls or mistakes made by development and
project managers, architects, and developers during
adapter projects. Sometimes, knowing what to avoid saves
more time and raises the chance of overall project success.

Faced with new concepts, technologies, and little time to
deliver the end product, development teams often compro-
mise long-term benefits with short-term constraints. The
pitfalls identified in this chapter are by no means exhaus-
tive, but the intention is to help you understand common
mistakes and the results of ignoring them. Mistakes made
earlier in the development cycle are harder to fix and
prove more costly over time. I have categorized the pitfalls
into four groups:

• Strategy and planning pitfalls

• Architecture pitfalls

• Analysis and design pitfalls

• Development and implementation pitfalls

09 0672323109 CH08 4/18/02 10:09 AM Page 111

CHAPTER 8 Pitfalls of Adapter Development112

Avoiding known pitfalls during the strategy and planning stage will prove beneficial
in the long term. Compromising development and implementation pitfalls may be
unavoidable sometimes, but can be fixed in the future at lesser cost. Ultimately, indi-
vidual project teams will have to ascertain pitfalls unique to their environments and
avoid them.

Strategy and Planning Pitfalls
Decisions made during the early stage of adapter projects have a lasting impact on
the overall E-Business integration objectives. Choosing a strategic direction in terms
of selecting adapter vendors, integration infrastructure, and so on is complex and
hard. Avoiding the following specific mistakes during this critical planning phase
will ensure greater flexibility in delivering the required integration solution.

Assuming All Adapters Are Available as Prebuilt Components
This is a very common perception among those who are newly exposed to the
adapter technologies. Although quite a few companies have built a whole list of
adapters for off-the-shelf packages and middleware, the list is not complete by any
stretch of the imagination. Also, prebuilt adapters are generally not flexible in terms
of their capability to work with different integration infrastructures (integration
brokers, messaging engines, process-modeling tools, etc.) Usually, prebuilt adapters
have specific infrastructure requirements, and are sold as part of the integration soft-
ware and hardware solution.

What about proprietary and home-grown applications? Where can you get adapters
for these applications? The only solution is to build these adapters, and that requires
a strong adapter framework capable of adapting to different infrastructures and envi-
ronments. Although adapter vendors are known to provide customers with an
adapter API, the functions and underlying framework of the adapters is not accessi-
ble or exposed for customization.

Instead of spending time and money searching for all the adapters you need, a better
strategy is to select prebuilt adapters for off-the-shelf applications and to select an
adapter framework for building all other adapters in-house. The ideal situation is if
the prebuilt adapters are built on the same adapter framework. Failure to balance the
advantages of prebuilt adapters and requirements for proprietary adapters leads to
different adapter solutions. When this happens, the end goal of achieving complete
application integration becomes more complex.

Adapter Development Is Planned as a One-Time Effort
Sustaining adapter development is the most challenging part of the planning
process. Continued support for adapter enhancements is rarely planned from the

09 0672323109 CH08 4/18/02 10:09 AM Page 112

onset of an integration project. Most of the time and effort is spent on the actual
integration infrastructure and the implementation, but most of the value-add is in
application adapters. Before J2EE standards, application server vendors had mostly
proprietary software, resulting in much higher costs to the customer. Because J2EE
was accepted by major application server vendors such as IBM and BEA, the competi-
tion is more intense. It is quite possible that application servers are becoming more
of a commodity and less of a proprietary software platform. This changes the
customer focus from evaluating the application server to evaluating value-added
components such as adapters that are packaged with the application server.

Even if a majority of the adapters you need are available as prebuilt adapters, the
customization of these adapters leads to upgrades as the underlying application and
infrastructure changes. Hence, it is wise to consider adapter development as an
ongoing project, evolving with the applications and the infrastructure. With careful
planning and modifications to development methodologies, as identified in Chapter
7, “Adapter Development Methodology,” the effort required to maintain the adapters
can be better predicted and managed.

On the other hand, you don’t need to build or buy all adapters to start an integra-
tion project. Using the big bang approach of integrating all applications at the same
time does not usually work. A phased approach of integrating critical business
processes and the applications enabling these processes before integrating other
applications is a better choice. Start with the few adapters required, and plan to
sustain these adapters over a long time before expanding the integration project.
Many companies have experienced success by using this approach instead of the all-
or-nothing strategy.

Lack of Vendor Relationship Management
Vendor relationships are very important to any integration project. A major task of
the project management office or team is to coordinate activities between the differ-
ent players and managing the cross-functional processes. Some of the players will be
the package vendors, platform vendors (hardware), and integration experts or consul-
tants.

From an adapter-development perspective, it is important to build a good relation-
ship with the package vendor. If an ERP package or a CRM package is part of the
integration scenario, it is better to consult with the vendor technical experts before
finalizing the adapter architecture and design. Not all internal technical details are
documented nor are the future plans for the package publicly disclosed by the
vendor.

One way to get exposure to the technical details is to work with the vendor and
explain your integration project objectives. Most vendors will give their long-term

Strategy and Planning Pitfalls 113

09 0672323109 CH08 4/18/02 10:09 AM Page 113

perspective as well as point you in the right technical direction. The really big
package vendors such as SAP, Oracle, PeopleSoft, Siebel, and so on have documented
their integration tools, API, and so on. But such information is hard to get with
other package vendors who may not have a formal integration strategy.

Building adapters in isolation without consulting the package vendor is technically
possible. But it will be hard to know if the adapter is interfacing with the application
in the best possible way, or even plan or anticipate adapter changes driven by
package upgrades.

Not Understanding the Vendor Product Roadmap
From a technical perspective, this is the most dangerous situation, which usually
means that more money is spent in constantly changing the adapter in a reactive
way rather then in a planned proactive way. It is very important to understand the
package roadmap from the respective vendors over an 18-to-24-month period. Many
vendors announce their intentions publicly, but knowing when their technical
visions and strategies will be implemented is vital for ensuring that adapters are kept
in sync with the package.

Part of your adapter development strategy should be to identify the critical packaged
applications that require adapters, and build a stronger relationship with the vendor
with the intention of getting access to their product roadmaps. No amount of plan-
ning will result in perfect synchronization between the adapters and the package.
However, the time required for the adapter to catch up with the changes to the
package is greatly reduced by knowing the product roadmap. This applies to inter-
nally developed applications as well, and not just to packaged applications. However,
getting the product roadmap may be easier for internal applications then external
packages.

Architecture Pitfalls
The architecture of any software determines how easy it is to maintain it over the
long term. Closed architectures make change management difficult and very costly.
Open architectures require more time to build the first time, but make change
management easier. Although good software architectures and principles are all
useful in adapter development, certain concepts and design patterns require specific
focus.

Assuming that Adapters Are Extensions of Integration
Infrastructure
There is a major problem in the way adapters are conceptualized in terms of their
role in application integration. Because adapters, especially the prebuilt adapters, are

CHAPTER 8 Pitfalls of Adapter Development114

09 0672323109 CH08 4/18/02 10:09 AM Page 114

usually packaged as part of the integration infrastructure and solutions, it is easy to
think of them as extensions of the infrastructure. However, this can lead to different
adapters for the same application. For example, suppose that an application is
required to exchange data with an application using MQSeries messaging engine and
another application using CORBA as its middleware. In this scenario, it is better to
have one adapter capable of working in both environments (MQSeries and CORBA)
instead of two adapters, one for MQSeries and one for CORBA. This will require the
adapters to be extensions of the application, and not of the underlying integration
infrastructure.

The benefit of one adapter being capable of working in different infrastructures is
obvious when changes are made to the application. Generally, integration infrastruc-
ture vendors would want customers to avoid taking this approach of a single adapter
because it requires a single cross-platform adapter framework that most integration
vendors don’t provide yet. Nonetheless, it is important to maintain the idea of
having a single adapter per application capable of running in different contexts,
environments, and infrastructures. The alternative is many adapters for one applica-
tion, each working on a specific infrastructure, which is very difficult and costly to
maintain in the long run.

The JCA specifications are a step in the right direction, in the sense that it will work
for any application server as long as it is J2EE 1.3-compliant. However, if we extend
the requirement to include non-J2EE platforms such as CORBA, COM, and so on,
then the concept of a single adapter framework becomes even more critical. Some
adapter vendors are moving in that direction and will provide such a framework in
the near future.

Underestimating the Technical Impedance
The requirement to integrate applications is based on the reality that applications
have different technical environments, architectures, and infrastructures. For adapter
architects, it is vital that they understand the differences between the major techni-
cal environments of the applications before designing adapters. As architects dig
deeper into the application, they find differences in database models, transaction
management, session management, and so on. Each one of these differences makes
it harder to integrate the applications. The job of an adapter is to bridge these differ-
ences, which are known as technical impedance. Some of the common differences are
the following:

• Synchronous versus asynchronous sessions

• Object versus relational databases

• Transactional versus non-transactional systems

Architecture Pitfalls 115

09 0672323109 CH08 4/18/02 10:09 AM Page 115

Each of these aspects of technical impedance requires a lot of bridging code, and
most of it ends up in the adapter. For example, if a customer service application that
is based on a two-tier client server architecture needs to integrate with a MQSeries-
based Order Management system, it is possible that the adapter for the customer
service application will have to do extra work in reading all the MQSeries messages
before presenting the data as one data object to the customer service application.
This additional work can be significant, and needs to be identified during the archi-
tecture phase to avoid costly delays later in the development process.

Similarly supporting XA-complaint transactions for an application that is not XA-
complaint to start with is the job of an adapter. In some cases, this may require the
adapter to directly access the applications database and expose its data as XA-
compliant transactions.

More than one solution can solve these impedance issues, and the choice of the
solution will determine how much additional work the adapter is required to do.
Underestimating this work seriously impacts the success of the integration project. A
good architecture will tackle common technical impedance issues such as integrating
object-oriented databases and XML documents by implementing a framework for
converting data objects into flat data structures. This framework can then be used for
similar problems in other adapters.

Simulating synchronous sessions over asynchronous middleware requires state
management with the adapters. This can also be isolated in a session management
framework capable of being reused in other adapters. The failure to recognize these
impedances and not implement a framework-based solution will result in delays to
adapter projects.

Analysis and Design Pitfalls
Assuming that a sound adapter development strategy is in place and a strong archi-
tecture reference model is available, the next step involves avoiding critical mistakes
during the requirements analysis and design phase. Although an architecture refer-
ence model provides guidelines for the eventual design of the adapter, a great deal of
effort is required to hone the right set of requirements and the physical design of the
adapter.

Not Understanding Hidden Integration Requirements
Where do you start to define the adapter requirements? Based on the concept that
the adapter is an extension of the application, you might be tempted to analyze the
application and derive adapter requirements from what the application does in terms
of business functionality. Although this can be done, a better approach is to analyze
the end-to-end integration scenario. These scenarios define the requirements from a

CHAPTER 8 Pitfalls of Adapter Development116

09 0672323109 CH08 4/18/02 10:09 AM Page 116

collaboration perspective and identify the points of integration for the applications.
Ignoring these requirements derived from the end-to-end integration scenario will
lead to missing and inadequate adapter functionality.

For example, the integration scenario may point to the same data objects required in
different formats and structures by two different applications. Unless you know these
unique requirements that the adapter is expected to implement, it is not possible to
design the right functionality.

Sometimes, adapter development teams take the approach that a generic adapter will
solve the issue of satisfying unique requirements during the implementation phase,
but this rarely works. More often than not, the adapter needs to be enhanced or
reworked to include additional features, no matter how generic the design is. The
problem is not the adapter’s capability of supporting generic requirements, but
different applications’ having specific and unique requirements. If the adapter is
capable of providing customer data in the form of a generic message, it may not be
enough because some applications will dictate a different structure for the message.
The objective of the adapter is to solve the problem of supporting different data
requirements and not pushing that problem to some other entity.

These requirements will not be visible unless the entire end-to-end integration
scenario is analyzed. Adapter teams should be prepared to look at bigger integration
problems before deciding on the adapter requirements. Failure to do so results in
hidden requirements left out of the adapter functionality, leading to disappoint-
ments.

Managing Technical Constraints
Adapters are not without technical constraints imposed by the underlying applica-
tions and infrastructure. Adapter design teams have to constantly evaluate these
constraints and compromise on the eventual design.

Some technical constraints could be managed by better design. For example, it is
quite possible to have adapters run in a remote environment. Although the ideal
scenario may demand that the adapter be hosted in the same environment as the
application, it is not always technically possible. In the case of JCA resource adapters,
it is more than likely that the resource adapter is communicating with a remote
legacy application on a mainframe. This adds complications to the adapter because it
has to manage the communication between the legacy application and the J2EE
application server. An alternative solution could be to divide the resource adapter
between two components: one hosted on the application server and the other hosted
on the mainframe. Logically, both components are part of one adapter and have a
common architecture and framework, but physically they are hosted in separate
environments. Such solutions are required to manage some of the technical
constraints that adapter developers are likely to face.

Analysis and Design Pitfalls 117

09 0672323109 CH08 4/18/02 10:09 AM Page 117

Forgetting Customization
Although adapters are designed and developed to solve specific application-
integration problems, customization is required to handle different platforms,
locales, and so on. Externalizing adapter configurations as much as possible does
ensure that most of the customization of adapter behavior is possible without code
changes.

I18N (Internationalization) and L10N (Localization) are two such features that
adapters should support. This ensures quick customization of the adapters to suit
local languages and data requirements such as DBCS (Double Byte Characters)
support. Also, adapters may be required to work in different environments and with
different infrastructures in the future. Not providing an API for supporting these
future requirements is not a good design principle. Although no one knows the
future requirements fully, it is possible to make the job easier by designing an API to
the adapter. If all applications were built with API integration, it would be that much
simpler.

Development and Implementation Pitfalls
So far, you have a good strategy, well-designed architecture, and solid design, but
most of the development work is still to come. Although the actual coding task is
largely dependent on the experience and quality of the programmers, some of the
non-technical mistakes done in this phase have a more lasting impact. Having good
programming practices, coding standards, documentation, and so on are integral
parts of any development project including adapters.

Importance of Test Data
This may not be a surprise to many developers, but it is worth mentioning. Adapters
require a complex set of test data involving more than one application participating
in the integration scenarios.

Sometimes, test data is not taken very seriously because it is hard to build a good test
database. However, every attempt should be made to get the best quality test data
available. This data is also useful in testing prebuilt adapters that are more often
than not tested under different environments and conditions. It is always better to
test third-party components (adapters) with real application data because it is a more
accurate test of the business requirements. A prebuilt adapter may work and perhaps
be certified by the package vendor, but it does not mean the adapter will work with
your data.

In an integrated environment, in which applications share data and collaborate to
implement enterprise processes, it is very easy for one application with a bug to
propagate the errors to other applications. What was a standalone bug is now poten-
tially affecting many other applications. To avoid this chain reaction of bad data

CHAPTER 8 Pitfalls of Adapter Development118

09 0672323109 CH08 4/18/02 10:09 AM Page 118

spreading across the network, adapters need to be tested more stringently than the
applications themselves. Before exposing an application to the network, it is prudent
to test its readiness.

Lack of Supporting Tools
How many times have you heard complaints from system administrators about the
challenges of investigating what is wrong when things don’t work? It is very rare for
applications to include monitoring and administration tools. We leave that tedious
task to the system administrators, and wonder why it takes so long to identify bugs
in the production environment. You can imagine the scale of this problem in an
integrated environment with many moving parts.

Componentization is a very good concept and base for application architectures
because it promotes more flexible solutions. However, with it come more points of
failures or potential failures. The more the number of parts in a machine, the more
the likelihood of one of the parts breaking down.

To ensure a smooth implementation of the integrated solution, adapters should be
developed to generate and maintain statistics. A good monitoring tool is required to
identify which software component failed and what recovery path is available.
Although a sophisticated GUI-driven tool is not yet available and will require more
standardization, adapters can generate meaningful messages and respond to external
administration events and triggers. As a bare-minimum solution, adapters should
keep a log of failed activities and suggest corrective actions wherever possible.

This part of the development activity should not be ignored because it comes back to
haunt everyone involved in the integration projects.

Summary
In this chapter, you have seen some of the common mistakes most of us have made
or could make in adapter and integration projects. The sooner you stop making these
mistakes, the faster adapter projects progress, and the cheaper it will be to fix any
problems. The pitfalls identified are not all of the possible mistakes likely to occur
during the integration project, but are a good starting point to avoid known stum-
bling blocks.

As adapter development matures and methodologies are adapted to match the
unique adapter development requirements, the process of application integration
will improve. Adapter design patterns will emerge, and it will be easier to avoid some
of the mistakes identified in this chapter. Knowing what to avoid is an important
success factor.

Summary 119

09 0672323109 CH08 4/18/02 10:09 AM Page 119

09 0672323109 CH08 4/18/02 10:09 AM Page 120

IN THIS CHAPTER

• The Importance of Testing

• Stages of Adapter Testing

• Types of Adapter Testing

• Testing Environments

• Gathering Test Data

• Planning Regression Tests

9

Testing Adapters

“Give them quality. That’s the best kind of advertising in the

world.”

—Milton S. Hershey, Founder of Hershey’s Chocolate

This chapter identifies some of the most important
factors of adapter quality assurance. The application of the
principles in this chapter depends on the methodology
used for developing individual adapters. But it should be
quite easy to incorporate and customize these adapter-
testing concepts to suit your specific adapter projects.

The Importance of Testing
Testing software is never easy, neither is it a very exciting
task—especially for developers. Developing test plans and
test cases, and executing them with the appropriate test
data is a tedious task that needs to be repeated a number
of times. The more you test software, the more bugs and
faults you uncover. Good software development processes
and tools make the testing cycles shorter by spreading the
testing tasks throughout the development process.
Although most developers understand the importance of
software testing, very few development teams apply suffi-
cient quality assurance (QA) practices. Despite the best
planning efforts, in many cases, software testing turns out
to be a hurried activity at the end of the development
cycle. QA teams come under great pressure to test the soft-
ware as fast as they can because it looks like they are
holding the software release process. After all, developers
have done enough testing, right?

Users have shown higher tolerance levels in accepting soft-
ware bugs than in any other product or technology. We
typically don’t accept faults in consumer products, but are

10 0672323109 CH09 4/18/02 10:06 AM Page 121

CHAPTER 9 Testing Adapters122

willing to work with less-than-perfect software. The situation is different in the
corporate IT environment, in which large numbers of servers and applications are
required to work in harmony. A buggy piece of software can be very frustrating, and
will most likely be replaced with other acceptable software. Because adapters perform
the critical task of integration, it is vitally important that their quality be higher. In
fact, adapters need to be of higher quality than the adapted applications. High-
quality adapters should expose bugs and faults in the adapted application, and not
contribute to the list of problems.

Adapter testing has more variables than traditional software test environments. The
adapter test environment can get quite complicated because some of the target
systems the adapter works with are remote, or large ERP packages that are difficult to
configure with the best talent available. Hence, the prudent thing to do is plan
adapter QA from the beginning of the development process.

Stages of Adapter Testing
Adapter QA can be done in two stages: The first stage focuses on application compli-
ance, and the second stage focuses on platform compliance. Application compliance
is focused on ensuring that the links between the adapter and business application
function as expected. Application compliance could be triggered by a new version of
the business application or the adapter. If a business application changes, all
adapters associated with it will have to undergo application compliance tests.
Platform compliance is ensuring that the adapter works in the production environ-
ments. The adapter platform is typically composed of appropriate hardware, operat-
ing systems, and middleware, such as an application server. Depending on the type
of environments, adapters may have to undergo multiple platform compliance tests.
In large corporate environments, adapters may have to work on different platforms
in different geographical regions.

The JCA specifications allow J2EE vendors to implement additional functionality
around the core specifications. This will lead to differences in how the JCA container
or the J2EE application server is configured or behaves at run-time. In such circum-
stances, it is better to test the adapters in a simple environment first. The J2EE refer-
ence implementation from SUN is a good environment for conducting baseline
adapter tests. Upon successfully demonstrating compliance with JCA and J2EE,
further tests can be performed on specific application servers.

Types of Adapter Testing
There are several types of adapter testing that are required to ensure the adapters’
overall quality and readiness before deployment in a production environment. These
tests range from simple unit tests performed by adapter developers on an ongoing
basis to formal QA procedures involving test engineers and business analysts.

10 0672323109 CH09 4/18/02 10:06 AM Page 122

The actual QA procedures and the composition of the QA team depends on the orga-
nization, but the testing function can be categorized into four primary types of
testing:

• Black box testing

• White box testing

• End-to-end testing

• Stress testing

Black Box Testing
Black box testing is useful for verifying the adapter functionality as stated in the
requirement models and documents. Black box test cases are not designed to test the
internals of an adapter, but to test the adapter services and business functionality. In
other words, black box test cases focus on “what” the adapter does, as opposed to
“how” it does it. Usually this is what QA teams focus on, primarily because it doesn’t
require a lot of detailed knowledge about the adapter design and code. Testers expect
the adapter to work as expected in the individual test cases. If the results are differ-
ent, then the test case is considered to be a failure.

In the case of JCA-compliant resource adapters, a test client should be developed to
simulate real-life scenarios and test the adapter’s functionality.

White Box Testing
White box testing handles the internal workings of the adapter. Test cases in white
box testing are designed to test specific paths of the adapter code. Knowledge of the
adapter architecture and design is vital for building white box test cases. Hence, most
adapter development teams find it hard to conduct white box testing. Complex
adapters should, however, pass at least some white box testing. Critical paths of the
code base should be identified, so that show stopper bugs can be avoided during the
software release cycles. Nothing is more harmful to software release and deployment
than show stopper bugs. These bugs prevent the adapter from being deployed in
production environments, resulting in lost opportunities and revenues.

White box testing techniques are generally used for testing the exception-handling
capabilities of an adapter. This is harder than black box testing, in which the test
data is designed to succeed and not fail. In white box testing, the test data is
designed to ensure that the adapter fails, and tests its exception-handling behavior. If
an adapter is expected to log debug messages when processing a null object or when
certain business rules are violated, then white box testing ensures that the adapter
behavior is consistent with this expectation.

Types of Adapter Testing 123

10 0672323109 CH09 4/18/02 10:06 AM Page 123

Many times, software in general does not undergo white box testing due to the
notion that the failure rate is much lower than the success rate. Some software engi-
neers believe that software works adequately for 80% of its operational time, and
fails 20% of the time. However, the time spent to rectify the failures is far more in
proportion. So, although the software may fail only 20% of the time it requires 80%
of the system administrators’ time to fix it when it fails.

With adapters, this can be a real nightmare without proper monitoring and adminis-
tration tools. There are many moving parts in an integration scenario, and determin-
ing where exactly the scenario failed and which component is responsible can take a
frustratingly long time, with serious impact on the business. It takes only one major
failure for customers to lose confidence. White box testing helps to avoid these situa-
tions by testing for exceptions, and ensuring that the adapters fail gracefully and
don’t crash or propagate errors throughout the network.

End-to-End Testing
End-to-end testing involves more than one adapter, and is useful for proving the capa-
bility of the adapter to function in a larger integration scenario or context. Although
the adapter may have passed all the black box and white box tests, its role as part of
an integration scenario may expose its limitations, or even some bugs. Integration
scenarios also ensure the robustness of the adapter. Memory leaks are often identified
in simulations of real-world integration scenarios. These memory leaks affect the
performance, as well as contribute to the eventual crash of the adapter and some-
times of the platform (operating system, hardware). Hence, end-to-end testing is a
very important step in the adapter QA process. Typically, these tests are run for a
week without any breaks unless warranted by the adapters failure.

Stress Testing
Stress tests are a combination of black box, white box, and end-to-end test cases. The
objective of stress tests is to identify the break point of the adapters. Break point can
be defined by degrading performance or other observable effects due to large
volumes of data and transactions. These tests often prove to be useful for system
administrators who are required to fine-tune the platforms for optimum performance
and reliability.

The definition of stress test depends on the number of expected users, transactions,
and data volumes involved. Simultaneous user sessions should be simulated as far as
possible to create real-life situations. The end result of stress testing is invariably the
failure of adapters, applications, and the platform. Knowing when this failure
happens determines how much stress the system can handle in a production envi-
ronment. Eventually, the actual production environment will always be different for

CHAPTER 9 Testing Adapters124

10 0672323109 CH09 4/18/02 10:06 AM Page 124

each customer and end-user, but the stress testing provides the necessary bench-
marks useful to IT team in capacity planning. Professional IT teams always ask for
stress test results from vendors because it helps them size the necessary hardware,
software, bandwidth, and so on.

VENDOR CERTIFICATION

One of the most sought-after benefits of component-based application development is effec-
tive reuse. For reuse to be practical and real, components should be available off-the-shelf.
However, there also should be a level of trust and confidence in the component by its users.
Third-party certification is a good mechanism for gaining that confidence in a component.

Adapters are specialized types of application components, and yet vendor certification is
indeed not very common. One of the reasons is the extensive process and support (technical
and management) required to build a credible certification program. The return on invest-
ments is not so much to the vendor as it is to the component developer.

Leading package vendors such as SAP have an extensive software certification program. These
programs are generic in nature, and only test the interfaces between the SAP modules and
the third-party software. Getting SAP certification only proves that the interfaces between the
adapter and the SAP modules are found to be correct and as required. It does not mean that
the adapter has been tested for JCA compliance or any other platform compliance.
Nonetheless, vendor certification is important because it is one more parameter to compare
adapters for the same packages and applications. At the very least, it shows the component or
adapter builder’s commitment to quality and planning.

Vendor certification may not be very useful for adapters built in-house. There is no harm in
seeking vendor certification, but the same can be achieved by extensive testing in-house.
What is important are the test plans used by the package vendor to certify third-party soft-
ware. These test plans provide good indicators about what is more important to the package
vendor in terms of testing.

Testing Environments
One of fundamental principles of software QA is to have a separate test environ-
ment. More often than not, developers claim that they have tested their code and
that it works as required. However, developers usually test their code in development
environments. Many of us who have created and published Web pages will be famil-
iar with the situation in which the Web page works fine on our development
machines, but fail or break when tested from a different machine. This happens
because references to images and other links may be pointing to local files instead of
files on the Web server. Similar things happen with adapters, and having a separate
testing environment saves time and effort further down the line of the product life-
cycle.

Testing Environments 125

10 0672323109 CH09 4/18/02 10:06 AM Page 125

Having a standalone test environment totally separate from other environments
(development, production, and so on) is expensive. In the case of JCA adapters, you
are looking at a separate installation of the application server and the required hard-
ware and operating systems. If more than one operating system needs to be
supported, the test environments get bigger and more expensive to set up and main-
tain. The benefits of having a testing environment become clear over the long term.
A consistent environment for testing different versions of the adapter helps to isolate
factors contributing to the bugs and faults. Without a consistent test bed, it is not
possible to isolate problems easily.

Reference Implementation Test Environment
SUN Microsystems has made available a reference implementation of a J2EE-
compliant application server that supports the JCA contracts. This reference imple-
mentation is a good candidate for setting up a baseline test environment. Adapter
developers can use this environment to test their code, knowing that the tested
adapter is expected to work on all other application servers. This also helps develop-
ers understand the expected run-time behavior of both the adapters and the applica-
tion server.

After the adapter has passed all test cases in a reference implementation-based test
environment, it is ready for specific tests on application servers from other vendors.
Portability of the resource adapter across J2EE-compliant application servers may be
important to resource adapter providers. In this case, the reference implementation
test environment is useful for ensuring minimum compliance. However, more
testing is required on specific application servers to ensure full compliance. The
differences between J2EE-compliant application servers depend on the different
vendors and their architectures. However, adapter developers should expect consis-
tent behavior between the reference implementation and the vendor application
servers.

Application Server Test Environment
Because this book is focused on JCA from an implementation perspective, the appli-
cation server is considered as part of the test environment. Other middleware may be
required, depending on the adapter architecture. Although the reference implemen-
tation is a good sandbox for establishing basic JCA conformance, a fully supported
J2EE-compliant application server is absolutely necessary for a production environ-
ment. The same version and brand of application server used in production should
also be installed and maintained as part of the testing environment. Many leading
application server vendors have certification guidelines and programs aimed at
speeding the process of testing adapters and other application server-based compo-
nents.

CHAPTER 9 Testing Adapters126

10 0672323109 CH09 4/18/02 10:06 AM Page 126

Operating Systems
The operating system plays an important part in any test environment. With Java, it
is especially important because the support for JVM varies on different platforms.
There are also instances in which particular JVMs work better in specific operating
systems. The version of the operating system, the JVM support, and the system para-
meters set up by the administrators are important factors in understanding the
testing environment.

After a baseline operating system and its environment are established, test engineers
should not change the configuration unless there is solid justification. For adapters,
the operating system part of the test environment gets complex when the applica-
tion demands or requires specific versions and parameters that conflict with the
adapter requirements. For example, the application may be built using Java 1.2 and
the adapter is Java 1.3, which could be a problem for some operating systems and
platforms.

Although Java is intended to work on all platforms, Java support is not consistent,
and varies with time. Hence, a safer approach to testing is to establish the baseline of
the operating systems in conjunction with the application servers, the version of
Java, and also the hardware platform.

Hardware
This is the most stable part of the testing environment. Companies do not change
hardware as often. Operating systems require upgrades; application servers require
upgrades; and so do the adapters and business applications. Hardware, on the other
hand, does not undergo significant change. The addition of CPUs, hard drives, and
so on does not require software to be retested.

If the production environment has more than one type of hardware architectures on
which the adapters are required to run, it is better to have all the types of hardware
architectures in the testing environment, too. The likelihood of an adapter failing on
different hardware platforms is due to the JVM or the application server version
being different for the hardware. The JVM for SUN SPARC and JVM for Intel plat-
forms will be different, and although both JVMs may be Java 1.3, there could be
problems on one platform and not on the other. Even if both platforms are running
the SUN Solaris operating system, it is not safe to assume that if the adapter works
on SUN SPARC platform it will work on the Intel platform as well. Testing the
adapter on both platforms is always a better strategy than allowing bugs to crop up
in the production environment.

Testing Environments 127

10 0672323109 CH09 4/18/02 10:06 AM Page 127

Test Harness
So far, you have seen the testing environment from a platform-compliance perspec-
tive. You also need an environment from an application-compliance perspective.
Adapter developers commonly run into situations in which they have to develop the
adapters without access to the applications or with limited access to the applications.
Under such circumstances, adapter test harnesses are ideal environments for testing
application interfaces.

A test harness takes the place of the actual application, and simulates the interfaces
between the adapters and the actual application. One drawback of a test harness is
the additional time required to develop it. With careful planning, adapter developers
can build simple, command line-driven test harness components that can be part of
the testing environments in general. For example, if the target application is Web-
based and uses HTTP-based servlets to process incoming data, the adapter developer
can develop similar servlets, but replace the back-end process of the incoming data
with a simple storage mechanism. This test harness allows you to send data to the
servlet as if it were the real application. In reality, nothing happens at the back end,
but the adapter thinks everything is working properly. Such test harnesses are useful
for fixing adapter problems early on in the development cycles.

Gathering Test Data
Perhaps the most difficult task of any testing activity is the availability of a good
sample of test data. Meaningful test data does not mean only volume, but also the
quality of the test data. The data should cover every business pattern and scenario
that the adapter is likely to encounter. In practice, access to such test data is rare.
Adapter developers and QA engineers have to spend time analyzing the available test
data and then build the test database over time. Testing tools are capable of generat-
ing data based on some parameters, but the generated data is not the same as real
data.

Leading package vendors such as Oracle include a test database with its application
software. Oracle Applications includes a test database that is ideal for adapter devel-
opers and QA engineers. But not all applications provide such databases, and it is left
to the development teams or the QA teams to build it from scratch. Test data are
perhaps the biggest show stoppers in adapter testing, and require cooperation from
application developers who have better domain knowledge in creating the test data.

NOTE

Personally, I always like to see the test data before I see the test plans. The best test plans and
test cases do not mean much if the test data is weak and unable to cover the business
patterns as much as possible.

CHAPTER 9 Testing Adapters128

10 0672323109 CH09 4/18/02 10:06 AM Page 128

Another reason for focusing on test data is getting predictable results. It is important
to establish a known and stable set of test data. The data arms testers with
predictable expected results every time the tests are performed. If the test data
changes during different testing cycles, it is hard to identify the source of bugs when
identified. Isolating bugs is very important, just as reproducing bugs is important to
find where things are going wrong. In many instances, bugs cannot be isolated or
reproduced, making the job of bug fixing extremely difficult. A good set of test data
is generally useful to solve such problems (or, at the very least, to confirm a reported
problem).

Planning Regression Tests
As you have seen so far, there are many different types of tests that adapter develop-
ers and QA engineers need to perform. Testing is not a one-time deal. Changes to the
adapters or any of its platform components may require retesting. Regression tests
are useful for getting a quick feel for the adapters’ compliance after any changes.
Generally, regression tests are based on black box test cases, except in the case where
the adapter has undergone significant re-engineering or the addition of new features
and functions.

Many times, regression tests are also based on end-to-end tests that ensure that the
larger integration scenario is not broken by changes to any of the participating
adapters and applications. Identifying test cases as one of the regression test suite is
important and should be based on the following parameters:

• The most complex test case of the adapter test plan

• The most time-consuming test case of the adapter test plan

• The most resource-intensive test case of the adapter test plan

• Test cases for the most frequently used adapter features and functions

Any test cases that match any one of the previous parameters is a good candidate for
regression tests. Automating regression tests is always a good strategy, but may not
be feasible at all times. Every effort must be made to automate regression tests
because they are repeated most often of all test cases.

Summary
Adapter QA is not a small task that can be finished in a day or two at the end of the
development cycle. It needs careful planning, a proper testing environment, a
comprehensive test data suite, and a host of test cases. All this requires time and
resources that are in addition to the development resources.

Summary 129

10 0672323109 CH09 4/18/02 10:06 AM Page 129

Platform compliance and application compliance are separate tasks, and must be part
of adapter testing. Vendor certification may be useful for boosting the confidence
levels and trust in third-party components. Whether the adapters are built in-house
or bought from an adapter vendor, a comprehensive adapter QA plan is required to
ensure its long-term stability and robustness in a production environment.

Some platform and application vendors have specified compliance criteria that help
determine the end goal of the test plans. However, in the absence of such criteria
from the vendors, project teams should consult with system administrators and IT
managers to determine a baseline platform compliance. This can be as simple as
compliance with specific versions of the operating system, JVM, databases, and so
on; or can be more complicated and include performance requirements, security
requirements, and sometimes even certain administration requirements such as log
messages created in the right directories.

This chapter has highlighted the importance of adapter testing, and identified the
basic types of tests that every adapter team should plan and undertake. At the end of
the day, quality differentiates between two adapters for the same application.

CHAPTER 9 Testing Adapters130

10 0672323109 CH09 4/18/02 10:06 AM Page 130

IN THIS CHAPTER

• Objectives of JCA
Specifications

• Roles Specified in the JCA
Specifications

• Understanding Connection
Management

• Understanding Transaction
Management

• Understanding Common
Client Interface

• Overview of JCA Security

• Support for Packaging and
Deployment

10

Overview of JCA

“Honest criticism is hard to take, particularly from a relative, a

friend, an acquaintance or a stranger.”

—Franklin P. Jones

The J2EE Connector Architecture Specification version
1.0 is a comprehensive document outlining the objective
and concept of JCA, as well as examples of potential inte-
gration scenarios in which they may be applicable. This
chapter provides an overview and a perspective on the JCA
specifications. It is intended to be complementary to the
JCA specifications and intended to help you better under-
stand JCA.

The JCA specification is the first serious attempt to formal-
ize and standardize the infrastructure and architecture for
application integration adapters. The specification does
more than define an architecture model; it defines the
different stakeholders and their roles and responsibilities,
and it also provides a framework for building an adapter
reference model in the context of J2EE-compliant applica-
tion servers and applications. The specification also
includes guidelines for testing and deploying adapters.

Although this book covers aspects of adapter development
beyond the current scope of the JCA specifications, it is
important to read and understand the entire JCA specifica-
tion because it is the basis on which J2EE resource adapters
are developed. The objective of this chapter is to clarify
some of the goals and objectives of JCA, and in the
process, enable quicker and easier implementations of JCA-
compliant resource adapter.

11 0672323109 CH10 4/18/02 10:08 AM Page 131

CHAPTER 10 Overview of JCA132

Objectives of JCA Specifications
The objective of JCA is quite simply to enable J2EE applications to integrate with
legacy applications and other emerging technologies known in JCA terms as
Enterprise Information Systems (EIS). From a J2EE application’s perspective, an EIS
manages information resources either in the form of databases or real-time informa-
tion.

J2EE is a component-based application platform, and as such, a business application
will be decomposed into many different types of components. One type of compo-
nent is a JCA-compliant resource adapter. Although there are no restrictions on how
many resource adapters can be developed and deployed, typically there is one
resource adapter for an EIS. This does not mean that there cannot be more than one
instances of the adapter running at the same time. In fact, it is very likely that there
will be multiple instances of resource adapters required to access EIS—depending on
the volume of users, data, and instances of EIS.

A JCA-compliant resource adapter will obviously be hosted by a J2EE server. In most
cases, this means that the resource adapter will be accessing the actual EIS remotely
using some form of middleware. This can be Java Database Connectivity (JDBC),
messaging and distributed computing, or proprietary middleware. The JCA adapter
model is somewhat different than what is commonly found in the EAI technologies,
where the adapters are generally considered to be hosted in the same environment
as the EIS. So if the legacy application is a mainframe accounting system, then most
EAI solutions will have an adapter that executes in a mainframe environment, with
the integration broker communicating with the adapter in the legacy application
environment. In the case of JCA, that model has changed; the mainframe resource
adapter (JCA resource adapter) will be hosted in a J2EE application server environ-
ment. It is important to remember this distinction because the resulting architecture
and design of the resource adapter will be different.

Readers of the JCA specification may notice that there is no mention of integration
scenarios in which legacy applications may need to integrate with J2EE applications.
It is entirely possible that a mission-critical application in a mainframe environment
may want to invoke a specific EJB or other J2EE application components. Although
you can innovate and develop a solution to achieve this, the JCA specifications are
not designed to solve this type of integration scenarios. Figure 10.1 shows a
schematic diagram of JCA and its role in J2EE application integration.

Figure 10.1 contains two distinct domains: the J2EE domain and the Enterprise
Information System (EIS) domain. The J2EE domain contains a J2EE-compliant appli-
cation server, and the EIS domain contains the EIS-specific platforms and servers.
The J2EE domain consists of three environments: the JCA environment, managed
application environment, and non-managed application environment. Of these, the

11 0672323109 CH10 4/18/02 10:08 AM Page 132

managed application environment and JCA environment are hosted by a J2EE-
compliant application server. The non-managed application environment is for
standalone Java applications, which can also communicate with resource adapters.

Objectives of JCA Specifications 133

EIS (Resource Mgr)

Resource Resource

EIS (Resource Mgr)

Resource Resource

EIS Domain

J2EE Server Domain

JCA Schematic Diagram

Non-managed
App Environment

JCA EnvironmentManaged APP Environment

Java
Application

Client
Container

Applet

Web
Container

JSP

EJB
Container

EJB

Resource
Adapter

Resource
Adapter

CCI Connection

Managed Connection

Managed Connection

CCI Connection

FIGURE 10.1 JCA schematic diagram.

Each environment hosts software components of different granularity. The JCA envi-
ronment hosts JCA resource adapters, and the managed application environment
hosts J2EE application components. There are different types of J2EE application
components, each hosted by a specific container. Figure 10.1 shows three containers:
a client component container, an EJB container, and a Web component container.
The non-managed environment includes Java applications or standalone two tier
Java applications.

The objective of JCA is to extend the application server’s integration capabilities.
This is significant from a design perspective, especially because it means that JCA
resource adapters are not the same as business components (EJB). The resource
adapters are not managed by a JCA container, but are extensions of the application
server. Hence, the need for system contracts that enable application servers to access
these extensions or resource adapters. However, it also means that the application
server acts like a broker between the business components (EJB) and the resource
adapters. Understanding the system contracts as well as the connection mechanisms

11 0672323109 CH10 4/18/02 10:08 AM Page 133

between EJB and the resource adapters is very important for the design of the
resource adapters as well as the EJB.

System Contracts
True to its component-based architecture, a resource adapter is not a single Java
program, but essentially is a collection of Java classes. Some of the Java classes are
required to implement specific system contracts (Java interfaces), as defined by the
JCA specifications. These system contracts enable the J2EE platform to discover the
necessary Java classes and invoke the required methods during deployment and at
runtime. Some classes, such as the javax.resource.cci.ConnectionFactory imple-
mentation, are intended for the client’s (EJB) use. Other classes, such as javax.
resource.spi.ManagedConnection, are intended for the application server.

The system contracts are generally grouped into two categories, one for the clients of
the resource adapter (javax.resource.cci package) and the other for the application
server (javax.resource.spi package). Although the specifications say that the
system contracts define a standard set of interfaces between an applications server
and EIS (Enterprise Information System), in practice the contracts are between appli-
cation servers and resource adapters or the client components and the resource
adapter. The actual EIS now has knowledge about the system contracts. For a JCA
resource adapter to function properly, a compatible J2EE server is essential.

Some of the system contracts are mandatory, and others are optional. For example,
all resource adapters must implement the connection management contracts,
whereas the transaction contracts could be implemented only if the underlying EIS
supports transactions.

Figure 10.2 shows the JCA contracts that are part of the resource adapter domain. A
JCA contract is specified as an interface, which ensures a consistent method of
invoking the resource adapter, but not necessarily the associated implementation or
behavior. For example, a resource adapter for Oracle database may support Oracle
SQL extensions, whereas another resource adapter for Oracle database may not. The
JCA contract does not specify any EIS-related attributes, methods, or interfaces.

The same applies to system contracts between the resource adapter and the applica-
tion server. Neither resource adapter developers nor users of resource adapters should
assume that the implementations of system contracts by the application servers will
be consistent. One application server may support connection pooling, and another
application server may not. If there is a need to handle aspects of connection
pooling (especially dynamic content-based connection pooling) with EIS, then it
may be possible that the resource adapter will have to implement connection
pooling.

CHAPTER 10 Overview of JCA134

11 0672323109 CH10 4/18/02 10:08 AM Page 134

FIGURE 10.2 JCA contracts.

JCA resource adapter developers need to understand all the system contracts, includ-
ing transaction management and security management, even if they may not be
implemented in all resource adapters.

Roles Specified in the JCA Specifications
There are multiple roles defined for stakeholder responsibilities in the JCA specifica-
tions:

• Resource adapter provider—An entity with expertise in a particular EIS that is
therefore capable of providing a resource adapter for that EIS. This entity could
be the EIS vendors in the case of packaged applications, corporate development
teams in the case of in-house proprietary applications, and system integrators
or consulting companies specializing in custom adapter development. Even
some EAI vendors can be resource adapter providers, depending on their expe-
rience with the EIS and J2EE environments. Expertise in the EIS alone is not
enough to become a resource adapter provider. Along with the domain knowl-
edge of the EIS, resource adapter providers must be experts in J2EE and JCA.

• Application server vendor—Provides an implementation of the J2EE specifica-
tions. In the case of JCA, the application server vendor is responsible for
supporting the JCA contracts that ensure proper management of resource
adapters and implementation of support services such as connection pooling
and so on.

Roles Specified in the JCA Specifications 135

Connection
Factory Managed

Connection

Security
Manager

Connection
Manager

Transaction
Manager

Pool
Manager

Connection
Manager

Local
Transaction

XAResource

Managed
Connection

Factory

Managed
Connection
MetaData

EJB
(Session Bean)

Connection

J2EE Application Server

EJB Container

Resource Adapter

Client Contracts

Server (System) Contracts

JCA Contracts

11 0672323109 CH10 4/18/02 10:08 AM Page 135

• Container provider—Generally, the same entity as the application server
vendor. Container providers develop EJB and Web component containers for
JSP, servlets, and so on as part of the application server. In terms of JCA, the
containers (EJB, JSP, servlets, and so on) are expected to use the system-level
contracts (security, transaction, and so on) provided by the resource adapter
and manage connectivity to the EIS on behalf of the application components.
Container-managed transactions or container-managed security is possible due
to the support for these features in the J2EE component containers.

• Application component provider—In the context of JCA, a supplier of compo-
nents that accesses one or more EIS. This means it’s typically a domain expert
or an EIS expert who builds EJB and other components who use the CCI-based
interfaces of resource adapters. For all practical purposes, an application
component provider is the end user of JCA resource adapters. In the case of an
end-to-end integration scenario, as described earlier in Chapter 7, “Adapter
Development Methodology and Best Practices,” an application component
provider is responsible for understanding the scenario and supplies compo-
nents that can be configured at deployment time to interface with different
resource adapters as required to enable the scenario.

• Enterprise tool vendors—As described in the JCA specifications, supplies a
comprehensive application development tool that involves much more than
traditional analysis, design, and debugging capabilities. A J2EE application
development tool needs to support component assembly or composition,
explore available resource adapters capabilities, manage deployment (install
and configuration) of modules, and so on. Although many IDEs are good, they
still lack the capability to explore resource adapters. Perhaps in the near future,
leading Java IDEs may support that, too, because it will make the job of an
application assembler simpler.

• Deployer—Responsible for the installation and configuration of modules in the
target operational environment, which is generally comprised of the applica-
tion server and the various other EIS connected to it over the network.

• System administrator—Responsible for maintaining the operational environ-
ment, and will work with the deployer to ensure that applications are deployed
correctly.

One person can assume different roles at different times. It is quite possible that in a
relatively small operational environment, the system administrator, deployer, and in
some cases even the application assembler are the same person. Also, it is possible
that a team of developers assumes the role of resource adapter provider as well as

CHAPTER 10 Overview of JCA136

11 0672323109 CH10 4/18/02 10:08 AM Page 136

application component provider. Identifying the roles as opposed to actual end-users
results in better distribution of responsibilities and tasks. The intention is to become
more efficient in developing and deploying distributed applications using J2EE
and JCA.

Understanding Connection Management
Connection management can be a very confusing subject, especially for program-
mers who are new to J2EE and JCA. But it is also one of the most important aspects
of the JCA architecture. In the context of JCA, connection management means creating
and managing the connections between J2EE applications and connected EIS. This
task is distributed between the resource adapter and the application server. After all,
the resource adapter is supposed to connect applications components (EJB) hosted by
application servers with one or more instances of EIS. It is this distributed nature of
managing connections that may be intimidating to some programmers.

The client contracts in Figure 10.2 define connections and connection management
contracts between application components (EJB) and the resource adapter. These
connection contracts are not the actual connections to EIS. Thus, an EJB is not really
connecting with the EIS when it interacts with the resource adapter. The EJB gets a
connection handle that represents an actual physical connection to EIS, which is
maintained by another connection type called ManagedConnection.

Managed and Non-managed Applications
Before getting into the details of connection management, it is important to remem-
ber the two application scenarios:

• Managed application—Application components depend on the application
server to manage system services such as transactions, security, persistence, and
so on. In this scenario, the application components contain only the business
logic. At deployment time, the deployer looks at the deployment descriptor for
the application component, and configures the required system services. With
the addition of JCA specifications, one of the system services can be access to
an EIS, as supported by the associated resource adapter.

• Non-managed application—The application components (which are also part
of the application, and not managed by any server) include interfaces to
system services. Therefore, a non-managed application is typically a two-tiered
Java application with JDBC, transaction, and code for other system services
embedded in it.

Understanding Connection Management 137

11 0672323109 CH10 4/18/02 10:08 AM Page 137

Resource adapters must support connectivity to EIS for both managed applications
and non-managed applications. A resource adapter must support two types of
connections:

• Connections between the client and the adapter

• Connections between the adapter and EIS

In a managed application scenario, the application server acts like a broker that
manages these connections and ensures proper load balancing (connection pooling)
between client usage, server performance, and EIS connection bandwidth. Client
usage is dictated by the number of application components requesting connections
to a resource adapter, server performance is dictated partly by the algorithms used for
load balancing, and the EIS connection bandwidth depends on the type of EIS.

The connections between client and adapter are represented by the interfaces
(contracts) defined in the javax.resource.cci package. These include javax.
resource.cci.ConnectionFactory, javax.resource.cci.Connection. Every resource
adapter must define a class that implements these or derived interfaces. The deploy-
ment descriptor has a tag, <connection-impl-class>, whose value is the fully quali-
fied name of the class that implements the Connection interface. For example, if the
class name is ClientAccess.ExConnection.java, then the deployment descriptor
entry will be

<connection-impl-class>ClientAccess.ExConnection</connection-impl-class>

Instead of creating instances of the Connection class directly, clients of the resource
adapter should use an implementation of the ConnectionFactory interface
(contract). Any object factory is used to create instances of one or more classes,
depending on a key supplied by the client. For example, the key could be an EIS
name, or it could include an EIS name and some security parameters such as user
name and password. The key value is used by ConnectionFactory to determine what
type of connection is appropriate for the client.

The association between a client application component and a resource adapter’s
connection factory is handled by the application component’s deployment descrip-
tor. The deployment descriptor for the application component states the resource
reference name defined in the JNDI name space and the resource type, which is the
fully qualified name of the Java interface implemented by the connection factory.

From an application component’s perspective, getting a connection to the EIS is
quite simple; but a heck of a lot of things are happening under the covers to create
an instance of the connection. The application component creates a default initial
JNDI-naming context and does a lookup of the connection factory instance, as
defined in its deployment descriptor. The connection factory has methods such as

CHAPTER 10 Overview of JCA138

11 0672323109 CH10 4/18/02 10:08 AM Page 138

getConnection that return a connection to the EIS. The application component then
uses the connection to perform EIS-related tasks and services before closing the
connection.

In the case of a non-managed application, the sequence of getting a connection to
the EIS via a resource adapter is very much the same. However, the resource adapter
must support both managed and non-managed clients. There are some differences in
how these two types of clients (applications) are handled by the resource adapter.
Most of the work of supporting these clients is done by the managed connection
factory, as described in subsequent sections of this chapter.

Managing the connections, and especially the distributed flow of connection-related
tasks, is the responsibility of a ConnectionManager. An application server provides a
ConnectionManager that deals with the details of coordinating connection pooling
with the creation of new connections, and so on. A resource adapter is required to
provide an implementation of a ConnectionManager to support the case of a non-
managed application accessing the resource adapter. Remember, in a non-managed
application scenario, the application server does not take responsibility for coordi-
nating the flow of connection-related tasks. This includes connection pooling, and
so on. Hence, if a resource adapter is expected to support many standalone two-
tiered Java applications, it may have to do a lot of work in terms of implementing
connection pooling, transactions, security, and so on.

But in the case of a managed application, the connection factory of a resource
adapter delegates the job of creating connections to the ConnectionManager instance
created by the application server. When the application server creates an instance of
the connection factory, as requested by the application component, the application
server hands an instance of a ConnectionManager to the connection factory. The
connection factory is expected to preserve the connection manager and use it when
the application component asks it to create a connection instance.

Figure 10.3 shows a simplified depiction of two connection-managed flows. One is
the lookup of a connection factory, and the other is creating an application-level
connection to an external EIS via a resource adapter.

Flow 1: Look Up a Connection Factory
Figure 10.3 shows a session bean creating a context (1.1) and invoking the JNDI
lookup function on the context (1.2). This results in the JNDI delegating the request
to a server process (1.3), which creates an instance of a ConnectionManager (1.4) if
required, as well as creating an instance of the ManagedConnectionFactory (1.5) and
invoking the getConnectionFactory method on the managed connection factory
(which creates an instance of ConnectionFactory). The connection factory instance
is then bound to the JNDI namespace. In a managed environment, the deployment
tool does most of the job of creating and configuring the connection factory and
binding it to the JNDI name space. In a non-managed environment, the application
needs to do the work.

Understanding Connection Management 139

11 0672323109 CH10 4/18/02 10:08 AM Page 139

FIGURE 10.3 Connection management flows.

Flow 2: Get an Application Level Connection
Figure 10.3 also shows a session bean getting a connection by invoking the
getConnection method on the connection factory instance. The connection factory
delegates the request for connection to the ConnectionManager instance associated
with the factory. The allocateConnection method of the connection manager
receives a ManagedConnectionFactory instance as a parameter. This managed connec-
tion factory provides two kinds of services to the application server: It either creates
a new managed connection (physical connection to the EIS) or matches an existing
set of managed connections with the properties set as part of the
ConnectionRequestInfo instance, which is another parameter to the
allocateConnection method.

If there is a matching connection, then the server process invokes the getConnection
method on the managed connection instance. This method creates a new
Connection instance that is associated with the managed connection. If there are no
matching managed connections, then the server process invokes
createManagedConnection method on the managed connection factory, resulting in
a new managed connection. The server process then invokes the getConnection
method on the managed connection, resulting in a new Connection instance being
created and associated with the managed connection. The Connection instance is
returned to the connection manager, which returns it to the connection factory,
which returns it to the application component.

CHAPTER 10 Overview of JCA140

Connection
Factory

Session
Bean

Context

Managed
Connection

Connection
Manager

Managed
Connection

Factory

Connection

J2EE Server Domain

EJB Container

JCA Connection Management Flow

JNDI
Lookup

Server
Process

Resource Adapter
Domain

getConnection

ge
tC

on
ne

ct
io

n

ge
tM

an
ag

ed
C

on
ne

ct
io

n

cr
ea

te
C

on
ne

ct
io

nF
ac

to
ry

allocateConnection

2.1

2.2

2.5 2.4

1.1

1.2

1.6

1.3

1.5

1.4

2.3

11 0672323109 CH10 4/18/02 10:08 AM Page 140

The benefits of this rather roundabout way of getting connections to EIS are the
layers of abstraction that result in a consistent connection management interface for
application components. Regardless of the underlying EIS and its connection mecha-
nisms, the application component always uses an instance of the Connection class to
interact with the EIS. It also ensures that the application server can manage connec-
tion pooling without affecting the physical connections with EIS. Although all this
sounds complex and at times confusing, a couple of implementations of resource
adapters will make it clear how the different classes collaborate to manage EIS
connections.

Understanding Transaction Management
The transaction management contracts specified in the JCA specifications are system-
level interfaces between the application server and the EIS. A resource adapter is
expected to support the transaction contracts used by the application server to
manage transactions across resource managers (EIS). An EIS can support two types of
transactions:

• Java Transaction API (JTA) or X/Open’s transaction demarcation protocol (XA)
transactions—Transactions controlled and coordinated by an external transac-
tion manager such as BEA Tuxedo

• Resource Manager (RM) local transactions—Transactions managed entirely by
the EIS

A transaction manager, which is part of the application server, manages/coordinates
transactions across multiple EIS. It propagates the transaction context across all EIS
participating in a transaction. The transaction manager is invisible to the application
component; the JCA transaction contracts define interfaces between the application
server (transaction manager) and the EIS. There are two contracts: javax.
transaction.xa.XAResource and javax.resource.spi.LocalTransaction. It is
obvious from these interfaces that an XA transaction is managed by the transaction
manager, and a local transaction is managed directly by the application server.

Local Transactions
There are two types of local transactions. In one type, the transaction demarcation is
managed by the component container (container-managed transaction); in the other
type, the demarcation is coded by the application component (component-managed
transaction). In the case of a component-managed transaction, the application
component can use the UserTransaction interface defined in the JTA (Java
Transaction API) package, or use an API specific to the EIS (for example, JDBC). In
terms of J2EE applications, the EJB container is required to support both container-

Understanding Transaction Management 141

11 0672323109 CH10 4/18/02 10:08 AM Page 141

managed and component-managed local transactions. Web component containers,
on the other hand, support only component-managed transactions.

The interface for local transactions is included in the javax.resource.spi package. A
resource adapter implements the interface javax.resource.spi.LocalTransaction to
provide support for local transactions performed on the EIS. The application server
uses the LocalTransaction interface to manage the transaction. The
LocalTransaction interface is shown here:

public interface javax.resource.spi.LocalTransaction {

public void being() throws ResourceException;

public void commit() throws ResourceException;

public void rollback() throws ResourceException;

}

Role of ManagedConnection Objects
Transactions happen over a physical connection to the EIS, which is represented by
the ManagedConnection instances. These instances are also factories for connection
handles used by client components. ManagedConnection interfaces also support trans-
action management contracts by creating LocalTransaction and XAResource

instances. The interface defines two methods, getLocalTransaction() and
getXAResource(), which return instances of the respective transaction management
objects.

There is a one-to-one correspondence between an XA resource and the managed
connection to the underlying EIS. The ManagedConnection instance, which represents
the physical connection, is responsible for returning the same instance of
XAResource across calls to the getXAResource method. Hence, the
ManagedConnection instance also acts as a factory of LocalTransaction and
XAResource instances.

Supporting XAResource-based transaction (XA transactions) is not mandatory, and
resource adapters need not implement it if the underlying EIS does not support XA-
compliant transactions. The decision on transaction support for the resource adapter
is dictated by the capabilities of the EIS. If the EIS is an ASCII file, for example, then
the resource adapter will most likely not support any transaction that is also allowed
as an option in the deployment descriptor of the adapter.

In most cases, the resource adapter will be required to support container-managed
local transactions and XA transactions. Unless the resource adapter is expected to
support standalone Java applications or other forms of non-managed applications, it
is not necessary to implement transaction demarcation code in the resource adapter
classes. The transaction contracts specified in the JCA specifications make the often-
onerous task of managing distributed transactions simpler and more manageable.

CHAPTER 10 Overview of JCA142

11 0672323109 CH10 4/18/02 10:08 AM Page 142

They also formalize the resource adapter’s responsibility in supporting XA-compliant
and local transactions.

Understanding Common Client Interface
The term common client interface implies that it is intended for any type of client that
needs access to the resource adapter. The section on CCI in the JCA specifications
could be clearer and less ambiguous in explaining the actual role of CCI. Some of the
unclear and confusing objectives of CCI are as follows.

Implementing a CCI-compatible interface is not mandatory. This will invariably lead
to different designs and implementation of access mechanisms to resource adapters.
This is not entirely bad because the usage patterns or used cases of resource adapters
are too big in number to be constrained by a small set of interfaces or APIs. However,
a better solution would have been to design a flexible extendable client API, which
was also a mandatory requirement for resource adapters. Building a CCI-compliant
API for resource adapters brings a structured and more manageable method of grant-
ing access to resource adapters. Without the API, users will build their own inter-
faces, which will result in maintenance nightmares over time.

Common Client Interface (CCI) is the API for clients of resource adapters, and
defines services (interactions) supported by the resource adapter. The features and
functionality of the resource adapter is presented to the client in the form of CCI-
compliant API. The JCA specifications state that the CCI APIs do not replace other
Java APIs, such as the JDBC API. However, the JCA specifications do not stop devel-
opers from encapsulating JDBC API in CCI classes. This gives adapter developers the
flexibility to encapsulate database access to the EIS as part of the client API.

Although the CCI does not define any EIS-specific characteristics, it is possible to
develop EIS-specific APIs. For example, a resource adapter for SAP can define a CCI-
compatible API that offers SAP-specific services (interactions) such as invoking BAPI
objects. The example adapter in this book has a CCI interface with services (interac-
tions) capable of parsing ASCII data files and converting the contents to Java objects.
It is not mandatory that all resource adapters implement or extend the CCI interface.
Neither is it mandatory that if a resource adapter has an API, it must be CCI-compli-
ant. However, because any client API will have to deal with connection management
(as specified in the JCA specifications), extending CCI is the better approach for
defining EIS-specific client APIs.

Categories of CCI
CCI is composed of four parts or categories of interfaces: connection-related inter-
faces, interaction (service)-related interfaces, data-related interfaces, and metadata-
related interfaces. Each category has a set of interfaces that must be implemented to

Understanding Common Client Interface 143

11 0672323109 CH10 4/18/02 10:08 AM Page 143

enable the respective category of API. The connection-related interfaces represent an
application (J2EE application) level connection to the EIS. The interfaces in this cate-
gory include

javax.resource.cci.ConnectionFactory

javax.resource.cci.Connection

javax.resource.cci.LocalTransaction

The ConnectionFactory interface enables resource adapters to define EIS-specific
connection factories that can contain simple or complex logic for determining the
appropriate type of connection to the underlying EIS. If there are multiple instances
of an EIS in a distributed environment, for example, and the client demands connec-
tion to a specific instance of the EIS, the CCI connection factory can choose the
appropriate connection type associated with the EIS. This will require the resource
adapter to extend ConnectionFactory and Connection interfaces to support the
previous connection requirements.

A ConnectionFactory implementation is an extension of java.io.Serializable and
javax.resource.Referenceable classes. This means that a ConnectionFactory
instance can be looked up in the JNDI namespace. The client component (an EJB)
uses an instance of javax.naming.context to look up the specific
ConnectionFactory. The ConnectionFactory instance has a method,
getConnection(), which returns the Connection object (instance) that represents a
connection to the EIS.

The getConnection method has two signatures: one without parameters,
getConnection(); and one with a parameter which is an instance of java.util.Map
class, getConnection(java.util.Map properties). The getConnection() method is
used when the EIS sign-on (logon) is managed by the J2EE containers. The client
invoking the getConnection() method does not specify any sign-on-related informa-
tion such as user name, password, or other credentials. This is useful when many
clients share a common user-id, password combination to access the EIS, or when
there is a single sign-on process managed by the application server. Many databases
have a user license, and sometimes it is more cost-effective to share a physical
connection to the database. In other instances when a client is required to provide a
unique user-id and password for security and privileged access, the
getConnection(java.util.Map properties) method should be used. If an EIS
requires custom connection management services and behavior, additional EIS-
specific getConnection methods can be defined.

Overview of Interaction
An interaction represents a function or service (or a sequence of functions and
services) provided by an EIS and accessible by the application component via the

CHAPTER 10 Overview of JCA144

11 0672323109 CH10 4/18/02 10:08 AM Page 144

resource adapter. For example, if an order-tracking system has a service or function
Add Purchase Order that can be accessed by the resource adapter, then the Add
Purchase Order could be one of the interactions supported by the adapter. Adapters
can support one or more interactions, and each interaction is a separate class that
implements the javax.resource.cci.Interaction interface. There are two interfaces
related to Interaction in the CCI:

javax.resource.cci.Interaction

javax.resource.cci.InteractionSpec

An interaction supports two styles of executing a function:

public void execute(InteractionSpec iSpec, Record input, Record output) throws

ResourceException;

public Record execute(InteractionSpec iSpec, Record input) throws

ResourceException;

The InteractionSpec class execute methods define parameters or quality of service
attributes for specific instances of Interaction classes. The InteractionSpec inter-
face can be extended or implemented as is. The standard InteractionSpec interface
defines a set of standard properties, including the name of the EIS function that
should be accessed, an integer describing the integration scenario type (SYNC_SEND,
SYNC_SEND_RECEIVE, SYNC_RECEIVE), and an integer representing the execution
timeout (in milliseconds).

The SYNC_SEND scenario (interaction) type is useful if the resource adapter enables a
function such as data upload, or when sending a service request and not waiting for
the response.

The SYNC_SEND_SYNC_RECEIVE scenario (interaction) type is useful when the interac-
tion is about sending a request and waiting for immediate response. The execution
timeout value determines how long the Interaction should wait for the response
from EIS before throwing an exception or taking corrective actions.

The SYNC_RECEIVE scenario (interaction) type is useful when retrieving message from
a queue, extracting information from a staging table, and so on.

Figure 10.4 shows examples of the three interactions (patterns) just described. The
first interaction (1) shows a SYNC_SEND_SYNC_RECEIVE type of interaction, in which
the session bean sends a request to the resource adapter and then waits for the
response from EIS. The second interaction (2) shows a session bean that sends a
request to the resource adapter, but does not wait for the response from the EIS. The
resource adapter sends the request to a message queue monitored by the EIS. The EIS
sends its response to the reply queue that is monitored by a message-driven bean. In
this instance, the interaction is a SYNC_SEND interaction. The last type of interaction

Understanding Common Client Interface 145

11 0672323109 CH10 4/18/02 10:08 AM Page 145

occurs when an application component invokes a method on the resource adapter to
read messages from a reply queue. It is quite possible that there are several messages
on the queue, and the application component wants to receive all messages before
processing them. This is a SYNC_RECEIVE type of interaction.

CHAPTER 10 Overview of JCA146

Database Servers

J2EE™ Server

EIS Tier

J2EE™ CCI Interaction Patterns

Request
Message
Queue

Reply
Message
Queue

EIS

JCA
Resource
Adapter

Business Tier

1

1

2

2

2

2

3

3

3

EJB
(Message

Driven
Bean)

EJB
(Session

Bean)

FIGURE 10.4 CCI interaction patterns.

Apart from the standard properties, the InteractionSpec interface can be extended
to define EIS interaction-specific properties. For example, the interactions defined in
the example adapter included in this book require the ASCII filename and the name
of the metadata file. These can be added as properties of the interaction spec,
enabling client components to set different filenames to parse every time the
resource adapter is used:

public interface myEISInteractionSpec1 extends javax.resource.cci.InteractionSpec {

public static final String asciiFileName;

public static final String asciiMetadataFileName;

public String getasciiFileName();

public void setasciiFileName(String filename);

public String getasciiMetadataFileName();

public void setasciiMetadataFileName(String filename);

}

11 0672323109 CH10 4/18/02 10:08 AM Page 146

An adapter need not support all the standard properties defined for an
InteractionSpec. For example, not all adapters will return a result set as the return
value of an interaction. Result sets are very database-oriented, and do not make sense
if the resource adapter is reading messages off a queue, or reading records in an
ASCII file and converting them to Java objects. Irrespective of the properties
supported by the InteractionSpec, the specifications do state that the interface must
be implemented as a JavaBean.

Another way to store InteractionSpec instances is by registering them as adminis-
tered objects in the JNDI namespace. This gives the instance a logical name that is
easier to read and more meaningful to the application component and the EIS. The
deployment tool can be used to manage the registration process. Just like the appli-
cation component looks up the connection factory in the JNDI space, the applica-
tion component can look up an InteractionSpec by using a logical name before
handling it to the execute method in the Interaction interface. InteractionSpec
instances provide runtime flexibility of invoking an EIS service (interaction) with
different parameters, as required by the application component.

Understanding Metadata Interfaces and Records
There are several reasons why metadata information is important and useful. Self-
describing messages have been designed and deployed for many years, and the XML
standard is a classic example of the benefits of including metadata information along
with the actual data. Metadata information describes the associated data indepen-
dent of the implementation. Because the Connection interface is not bound to any
specific EIS, connection-related metadata information is useful for determining the
attributes of the underlying physical connection and EIS environment.

The interface javax.resource.cci.ConnectionMetaData provides information about
an EIS instance connected through a Connection instance. A client (application)
component interested in knowing the metadata information calls the
Connection.getMetaData method to get an instance of ConnectionMetaData. Some of
the information that can be retrieved from the metadata interface include the EIS
(product) name, EIS version number, and even the user name used to connect to the
EIS. As you have seen in earlier sections in this chapter, the user name used to
connect to the EIS can be different from the user name used to get a Connection
instance.

There is another class of metadata information, known as ResourceAdapterMetaData,
which describes information related to the resource adapter—and not the underlying
EIS. It is quite possible that the resource adapter will support different versions of the
JCA specification in the future, although the EIS version may be the same. Even
information about the resource adapter’s capabilities, in terms of supporting local
transactions and so on, can be retrieved from the ResourceAdapterMetaData

Understanding Common Client Interface 147

11 0672323109 CH10 4/18/02 10:08 AM Page 147

instance. Resource adapters that have more EIS-specific or adapter-specific metadata
information to offer their clients can extend the ConnectionMetaData and
ResourceAdapterMetaData interfaces.

A Record is a Java representation of a data structure used as input or output to an EIS
function. Because the data structures of the EIS can vary and will most likely not be
Java, a generic Record implementation that uses a metadata repository at run-time is
a basic requirement for resource adapters. This type of abstraction or indirection
shields the adapter from changes in the data structure of the EIS, too. There is a
catch to this solution of a generic Record, and that is the requirement to map EIS
data structures (or data models) to the Record data structure. Without mapping, the
attributes of the data structures will not be converted to and from Java data types
properly.

It is possible to not use the Record data structure in an adapter. Instead, either a
derived interface (a more specialized form of Record interface) or an entirely differ-
ent custom interface may be used to interface and transform EIS data into Java data,
and vice versa. With the widespread use of XML, it might make more sense to use
XML as the data structure between the resource adapter and the external applica-
tions. However, the external application (EIS) must be able to exchange XML docu-
ments.

Other aspects of using the generic Record implementation, such as the use of the
ResultSet interface to return data extracted from a RDBMS using a JDBC interface,
may not be useful when the EIS is not database-centric. It is not a surprise that
ResultSet cannot be of much use for adapters that interface with messages or other
forms of data representations besides RDBMS. There may be instances when a
ResultSet can still be used to convert a flat data structure to a ResultSet-compatible
data set, but the overhead may not be justified. The one instance in which the over-
head may be justified is when all or most application components (Entity beans)
that interface with the resource adapter are capable of processing a ResultSet.

The CCI architecture is free of any implementation details and specifics of the under-
lying EIS. This gives the JCA architecture the flexibility required to maintain the
design patterns of a J2EE application. But it also makes presumably simple tasks,
such as getting a connection and invoking a function, more tedious. However, the
long-term benefits of a common interface far outweigh the extra efforts required to
implement the required CCI interfaces.

Overview of JCA Security
The security architecture defined in the JCA specifications extends the end-to-end
security model for J2EE application by including integration with EIS-based resource
adapters. Users accessing EIS are authenticated and authorized before being allowed

CHAPTER 10 Overview of JCA148

11 0672323109 CH10 4/18/02 10:08 AM Page 148

to interface with the EIS. One problem with multiple EISs is that the security infra-
structures can be different, as will the security capabilities. Hence, keeping the secu-
rity neutral is one of the most important goals of JCA security. In most cases, access
to EISs will be over networks (local or remote), which means that support for secured
communications is a basic requirement.

Some of the terms used to describe the JCA security architecture are defined here:

• A principal is an entity that can be authenticated by the enterprise authentica-
tion platform. So it can be an individual with a valid ID that can be authenti-
cated. Each principal has a principal name, and it is authenticated by using
authentication data. The actual contents of both the name and data depend on
the authentication platform. So, if the authentication is a magnetic card, then
a magnetic card reader is required as part of the enterprise security platform.

• Security attributes are associated with the security environment or platform.
There can be more than one security environment or platform, in which case
there will be more than one set of security attributes for the principal.

• A credential is a set of security information that the principal acquires upon
authentication. A credential can be a valid credential or an invalid credential. If
the principal is carrying an expired identification card, the authentication
mechanism will fail, resulting in invalid credentials. Principals with invalid
credentials must not be allowed to access enterprise systems.

• An end-user is the source of application requests; and it can be a human being
or another application, component, or service. An end-user is represented as a
security principal in a Subject instance. A subject is an instance of
javax.security.auth.Subject class. This class holds a subject’s identity (one
or more) and its security-related attributes (user names, passwords, digital
certificates, and so on).

• An initiating principal represents the end-user that interacts directly with the
application. So, if an application component is not initiating an authentication
process, it is not an initiating principal. User authentication can be done either
with a Web client or an application client (component).

• A caller principal is associated with an application component instance when a
method is invoked. This is used to identify the caller of a specific method
within the current security context. In a managed environment, when an
application component method is invoked, the principal associated with the
component instance is called a caller principal.

• A resource principal is a security principal under whose security context a
connection to the EIS is established. A resource principal can be different from
a caller principal. This means that there can be one set of security attributes

Overview of JCA Security 149

11 0672323109 CH10 4/18/02 10:08 AM Page 149

and credentials for the resource principal when an application component
requests a connection to be established. If the resource adapter has a user-Id =
“myUserID” and password = “xyz”, then every connection made under this
security context has the same user-id and password, allowing for the sharing of
security credentials.

• A security domain defines the security mechanisms and policies that are
enforced. There can be different security domains in an enterprise (for
example, inside the firewall, outside the firewall, in the DMZ (demilitarized)
zones, and so on). It is possible for the application server and the EIS to be in
different security domains, and hence have different security policies and
mechanisms.

The purpose of these terms is to define security in the larger context of J2EE applica-
tions, with the intention of extending its capabilities to different EIS environments.

An application component provider has two choices for supporting EIS sign-on:
allow the component deployer to set up the resource principal and EIS sign-on infor-
mation, or allow components to sign on to EIS using explicit and potentially differ-
ent security information for the resource principal. The application component
provider uses the deployment descriptor element <res-auth> to indicate the choice
of the preceding two choices. If <res-auth> is set to Application, the component
performs the EIS sign-on; if it’s set to Container, then the application server does the
EIS sign-on.

Sometimes, a physical connection to the EIS is shared by more than one end-user
(principal), in which case the reauthentication of security attributes may be required.
Not all EIS or physical connections or security platforms can support reauthentica-
tion on open connections.

Security Contract
The classes and interfaces of the security contract actually extend the connection
management contract to include security-specific details. The objective of the secu-
rity contract is to support EIS sign-on by the application server. This is achieved by
passing connection requests (ConnectionFactory.getConnecion();) from resource
adapter clients to the application server’s ConnectionManager.instance. This allows
the application server to add security services before continuing with connection
management. After the EIS sign-on is completed, the security credentials are propa-
gated back to the resource adapter.

The security contract includes the following classes and interfaces:

• javax.security.auth.Subject

• javax.security.Principal

CHAPTER 10 Overview of JCA150

11 0672323109 CH10 4/18/02 10:08 AM Page 150

• javax.resource.spi.security.GenericCredential

• javax.resource.spi.security.PasswordCredential

An instance of Subject is a composite object containing the identity (represented by
one or more instances of Principal), as well as credentials. If there are multiple
identities as part of the Subject instance, the getPrincipals method retrieves all the
principals associated with the Subject. Other methods, such as
getPublicCredentials and getPrivateCredentials, retrieve the public and private
credentials, respectively.

The interface GenericCredential provides a mechanism to retrieve credential-related
data, independent of the security platform. So a PKI (Public Key Interface) or digital
certificate data can be encapsulated inside the GenericCredential implementation.
If the credentials are composed of a user name and password, only then the
PasswordCredential interface will be better suited to hold the credential data.

The connection management flow involves delegating the request for a connection
to the ConnectionManager associated with the ConnectionFactory instance. The
allocateConnection method can be invoked by the connection factory without any
security-related data or with the security information provided by the application
component. The first method is used by the connection factory when the applica-
tion server is managing the sign-on to EIS. In this case, the configuration parameters
(security policies) define the user name and password, or any other security data
required for the sign-on process. The second method is used when the security is
managed by the application component.

Under both circumstances, the actual physical connection and sign-on are done by
the managed connection. The difference is where the security-related information
comes from—the application server or the component. In either case, the resource
adapter makes the connection and sign-on.

Role of ManagedConnectionFactory
The createManagedConnection method of the ManagedConnectionFactory instance of
a resource adapter is the security hook between the resource adapter (and therefore
the EIS) and the application server. One of the parameters to the
createManagedConnection method is of type javax.security.auth.Subject. The
application server can perform one or more security-related tasks before invoking the
createManagedConnection method with the appropriate credentials. The application
component is unaware of the application server’s security related tasks, which can
include a single sign-on service.

If the EIS sign-on is to be managed by the application component without any
involvement of the application server, the resource adapter’s

Overview of JCA Security 151

11 0672323109 CH10 4/18/02 10:08 AM Page 151

createManagedConnection does not receive a null javax.security.auth.Subject
object. The user information contained in the ConnectionRequestInfo object passed
by the application component in the getConnection method is used by the resource
adapter’s createManagedConnection to perform the appropriate EIS sign-on.

The decision to delegate the authentication task to the resource adapter or configure
the application server to manage it depends on the type of authentication mecha-
nism supported by the EIS. Irrespective of who manages the sign-on process, the
J2EE security contracts hide the authentication tasks from the application client. In
this way, the security contracts also hide the security mechanisms and platform from
the application component and ensure the end-to-end security between application
components and the EIS.

Support for Packaging and Deployment
A resource adapter is essentially a set of classes; some implement JCA contracts or
interfaces, and others implement the services and functions interacting with the EIS.
There can also be external libraries and drivers, such as JDBC drivers, or network
drivers, or middleware drivers necessary for the resource adapter to interact with the
EIS. All these classes, together with a deployment descriptor, are packaged as a
resource adapter module. This module is an extension of the application server, and
the deployment descriptor defines a contract between the resource adapter provider
(developers) and the resource adapter deployer.

A J2EE application is composed of one or more J2EE modules, such as an EJB
module, Web client modules, and a resource adapter module, if required. A resource
adapter can be deployed directly into an application server or as a standalone
component. Another mechanism for deploying a resource adapter is by deploying it
as part of an application. Chapter 12, “Deploying Adapters,” goes into the details of
the deployment descriptor and deployment scenarios; this chapter focuses on the
deployment code requirements and some of the details of the deployment descriptor.

Deployment Descriptors and Deployment Tools
A resource adapter provider declares deployment hints by defining the properties in
a deployment descriptor. If multiple managed connection factories are supported by
the resource adapter, there will be a deployment descriptor for each managed
connection factory class. A deployment descriptor becomes the contract between the
adapter provider and the adapter deployer.

An application server provides a deployment tool that supports the deployment of
multiple resource adapters. Deployment tools can be sourced from third-party
vendors as well as IDE vendors, for example. The basic requirement for a deployment
tool is the capability to read the deployment descriptor from a resource adapter

CHAPTER 10 Overview of JCA152

11 0672323109 CH10 4/18/02 10:08 AM Page 152

module and configure multiple property sets (one per configured
ManagedConnectionFactory instance). It should also help the deployer in adding or
removing resource adapters from the operational environment. The set of standard
properties for ManagedConnectionFactory include

• ServerName (Name of the server hosting the EIS instance.)

• PortNumber (Port number used to establish the connection.)

• UserName (Name of the user establishing a connection to the EIS.)

• Password (Password for the user establishing a connection. This can be differ-
ent from the client credentials using the resource adapter.)

• ConnectionURL (URL for the target EIS instance.)

The managed connection factory is not required to support all the standard proper-
ties; but for the properties it does support, the implementation class must implement
setter and getter methods for each property. In addition to the standard properties,
the managed connection factory can support other EIS-specific properties required to
create connections.

Another function of the deployment tool is to generate deployment code that ties
the resource adapter to the application server. Part of the code registers the connec-
tion factory instance in the JNDI name space. If there are any administered objects,
then those are also registered in the JNDI name space. The more sophisticated
deployment tools generate the necessary code to configure the resource adapter and
other external modules the adapter depends on. The J2EE reference implementation
includes a deployment tool that can be used as a default deployment tool.

Summary
This chapter is an overview of the JCA specifications and is intended to help you
understand the specifications more easily. You should refer to the JCA specifications,
as well as EJB and J2EE specifications, for further details.

The JCA specifications define a set of APIs for extending the application server’s
capability of integrating external EISs (legacy applications and other non-J2EE enter-
prise applications). A resource adapter must support two types of application envi-
ronments: a managed application environment and a non-managed application
environment.

In a managed application environment, the application server and the containers do
most of the system-level work, such as managing physical connections with the EIS,
transactions, security, and so on. This allows configuration to be handled at deploy-
ment time, ensuring more flexibility. In the non-managed application environment,

Summary 153

11 0672323109 CH10 4/18/02 10:08 AM Page 153

the application does not depend on the server to do the system-level tasks. A
resource adapter must implement connection management functions such as
connection pooling, signing on with the EIS, managing transaction demarcation,
and so on to support a non-managed application environment.

The JCA specifications are defined in terms of contracts or interfaces that should be
implemented by a resource adapter. These contracts are either system- or server-
related interfaces (connection management, security, transaction management) or
client- (application component) related interfaces (CCI). EIS-specific interfaces are
outside the scope of the JCA specifications. The concept of JCA contracts allows a
resource adapter to provide a consistent interface to its clients and to the application
server while maintaining application-specific interfaces to the EIS encapsulated in
the resource adapter.

Resource adapters support two types of connections: one set of connections and
connection factories for the client (application components), and the other set of
managed connections and managed connection factories for the application server.
The application server is responsible for providing a connection manager, as well as
services such as connection pooling, security, and transaction management. This is
to ensure that in a container-managed environment, the application server can inter-
act with the appropriate contracts of interfaces of the resource adapter.

The connection flow between an application component, the application server, the
resource adapter, and the EIS is quite complicated and distributed across a number of
classes. Understanding the exact sequence in a managed and non-managed applica-
tion environment may take time and the actual implementation of a resource
adapter.

The current specifications are still restricted in what they can achieve in terms of
interactions with EIS. All interactions are synchronous, although there are ways to
work around this limitation and support asynchronous interactions under some
specific conditions. Using a combination of a resource adapter and a message-driven
bean, you can support simple asynchronous design patterns.

The next version of JCA specifications will attempt to solve some of the problems or
restrictions of the JCA 1.0 specifications. It is anybody’s guess whether XML will play
a bigger role in JCA, as well as whether the CCI interfaces will be stronger in terms of
supporting XML and other metadata along with the interaction specifications. The
concept of message-driven beans is quite powerful, but JCA needs more inherit
support for asynchronous services with EIS. But even in its current form, JCA repre-
sents a big step forward in application integration, and promises to leave its mark on
the J2EE world.

CHAPTER 10 Overview of JCA154

11 0672323109 CH10 4/18/02 10:08 AM Page 154

IN THIS CHAPTER

• Documenting ASCII File
Adapter Integration Scenarios

• Designing the Logical
Reference Model

• Packaging and Release

11

Developing J2EE
Resource Adapters

“The truth of the matter is that you always know the right

thing to do. The hard part is doing it.”

—General H. Norman Schwarzkopf

This chapter is focused on applying the adapter develop-
ment process, adapter reference model, and other best
practices discussed throughout the book. As an example of
a simple resource adapter, this book includes the full
source code for an ASCII file adapter in Chapter 17,
“Source Code for ASCII File J2EE Adapter.” This resource
adapter can read the contents of an ASCII file, depending
on the associated metadata supplied to it as on of the para-
meters. The intention is to use the various concepts and
principles of the previous 10 chapters, and implement
them in practice using the ASCII file resource adapter as
the example.

The process of developing a resource adapter begins with
the end-to-end requirements analysis, and this chapter
captures the process and the resulting artifacts. The code
for the ASCII resource adapter is available for download at
www.samspublishing.com, or it can be installed from the
CD-ROM at the back of this book.

The integration scenario described here is a very common
situation found in many organizations. An ASCII file or a
text file has a stream of ASCII characters representing
application data. One of the obvious problems is the lack
of structural information for this data. Usually, there are
no metadata describing what the ASCII characters repre-
sent. Reading such a file and interpreting the data is typi-
cally done by inserting all the logic and functions required

12 0672323109 CH11 4/18/02 10:10 AM Page 155

CHAPTER 11 Developing J2EE Resource Adapters156

for parsing the file, extracting the data, validating the data, and so on, in the receiv-
ing application. If the format of the data in the ASCII file is simple and without any
implied logic or ordering/sequencing, then the database can probably import the
ASCII file without much help. But usually, even the slightest complication in the
data structure results in failed data uploads. You will develop a generic resource
adapter capable of reading ASCII files with different data formats maintained by the
application using the resource adapter. You can use similar techniques, and build
more powerful and feature-rich ASCII file resource adapters.

Documenting ASCII File Adapter Integration Scenarios
If there is one habit that adapter programmers must develop, it is the habit of
analyzing end-to-end integration requirements before focusing on specific adapter
requirements. Therefore, you start the process of analyzing the ASCII file adapter
requirements by documenting the end-to-end integration scenario involving all the
applications and their components participating in the scenario, and capturing the
adapter requirements by defining a problem domain model.

Integration Scenario Description
A J2EE application that maintains customer information and allows customers to
update their profiles needs to synchronize changes to the customer information
maintained by other enterprise and departmental applications. One such departmen-
tal system is a legacy customer information application used by sales and customer
service agents. This legacy application maintains the current customer status, includ-
ing the number of outstanding customer complaints and queries as well as the
account status in terms of outstanding balance. Figure 11.1 shows a schematic
diagram of the different domains and components and their relationships.

The legacy application exports changes to the customer information in the form of
an ASCII text file on a daily basis. These changes include adding new customers (by
sales and customer service agents); updating customer information; suspending
customers, especially when the outstanding balance is higher than the allocated
limits; and deleting customer records in the legacy application. The ASCII file does
not contain any structural information (metadata). The J2EE application administra-
tor has defined a metadata file after discussing the details of the ASCII text file with
the developers of the legacy application.

The J2EE application has an administration task that creates an EJB (Customer Data
Synchronization EJB). This EJB reads the name of the ASCII text file as well as the
associated metadata file, and invokes the ASCII resource adapter using the adapter’s
CCI-based services. The resource adapter opens the ASCII text file, and parses the
data contained in the file depending on the rules defined in the metadata file. If the

12 0672323109 CH11 4/18/02 10:10 AM Page 156

parsing is successful, the end result is that the customer data is stored in a Vector
object (list), which is available to the calling EJB. It is the responsibility of the EJB to
process each customer record in the Vector object and take appropriate action. In
this example, the EJB reads each record from the Vector, and displays it.

Documenting ASCII File Adapter Integration Scenarios 157

ASCII
Resource
Adapter

JCA EnvironmentManaged App Environment

J2EE Application Server

EIS Domain

Schematic Diagram (Integration Scenario)

Legacy Customer Information Application

ASCII
FileCustomer Info Table

Client
Container

Administration
Applet

Web
Container

Customer
Data Sync

JSP

EJB
Container

Customer
Data Sync

Session Bean

FIGURE 11.1 Schematic diagram of integration scenario.

Use Case Model
The use case model is a more detailed decomposition of the integration scenario just
described. The resource adapter’s features are captured in use cases, and described as
a sequence of steps. Apart from individual use cases, the model also defines the
system boundaries that help to identify the required access mechanisms to access
remote resources. Figure 11.2 shows the use case model for the ASCII file resource
adapter. Because this is an example, some of the more complicated aspects of use
case models, such as inheritance of actors and so on, are not included.

12 0672323109 CH11 4/18/02 10:10 AM Page 157

FIGURE 11.2 Use case model.

The focus of this use case model is on understanding the requirements of the
resource adapter. Hence, the ASCII file resource adapter subsystem is considered the
black box, with external entities (actors) interacting with the use cases of resource
adapter subsystem. The actors in this case include the session bean that invokes the
adapter, the metadata file that defines the structure of the ASCII file, and the ASCII
text file itself.

The primary flow of the use case model is captured by the Process Customer Info File
use case. Alternate use cases include Invalid Customer Record and Process
Completed. Notice that the Invalid Customer Record use case has an <includes>
relationship with the primary use case. This indicates that the Process Customer Info
File use case knows about the Invalid Customer Record use case, and makes specific
reference to it when exceptions are detected.

On the other hand, the Process Completed use case has an <extends> relationship
with the Process Customer Info File use case. This means the Process Customer Info
File use cases does not make any reference to the Process Completed use case, which
is triggered by the event that indicates that the process of ASCII file is complete. The
Process Completed use case captures statistics such as number of records processed,
number of bad records, and so on, and logs them to an ASCII log file. The benefit of
the <extends> relationship is that it’s a loose coupling between two use cases, and
the extended use case may not exist at run-time without impacting the primary use

CHAPTER 11 Developing J2EE Resource Adapters158

J2EE Application
Sub System

ASCII File Resource Adapter
Sub System

Legacy Application Sub System

Use Case Model

Process
Customer Info File

Invalid
Customer Record

Process
Completed

CustInfoSyncEJB
(Session Bean) ASCII Text File

Metadata File <includes>

<extends>

12 0672323109 CH11 4/18/02 10:10 AM Page 158

case. On the other hand, any use case with the <includes> relationship must exist at
all times for the primary use case to function.

All three use cases are documented here, with each use case description containing
its objective, assumptions (if any), preconditions that need to be true before the use
case is initiated, the process that defines the sequence and steps of the use case, any
post conditions that ensure that the use case is in the proper state before ending,
and a list of exceptions thrown in case of errors.

Use Case: Process Customer Info File (Primary Use Case)
We’ll begin by examining the Process Customer Info File use case.

Objective The primary objective of this use case is to open and parse the contents
of an ASCII text file whose structure is defined in a separate metadata file.

Assumptions The use case relies on these assumptions:

• Each ASCII text file has an associated metadata file that defines the internal
structure of the text file. The metadata file defines the layout of record and
fields in the ASCII text file.

• All data in the ASCII text file are delimited by a delimiting character defined in
the metadata file.

Pre-conditions The use case assumes that these pre-conditions are true:

• The ASCII text file to be parsed exists, and is accessible and readable.

• The metadata file that defines the structure of the ASCII file is also accessible
and readable.

Process The use case follows this process:

1. If the metadata filename is not specified, then retrieve the default metadata
filename from the adapter configuration parameters.

2. Open the metadata file, and parse the metadata records. There should be one
control record and one or more file_layout records. The control record speci-
fies the delimiting character to be used in parsing the ASCII data file. The
file_layout records define the structure of the customer records contained in
the ASCII data file.

3. Upon the successful parsing of the metadata file, open the ASCII data file, and
parse all customer records. Each customer record must be validated with the
file_layout record extracted from the metadata file.

4. If the customer record does not match the file_layout log, throw an excep-
tion, and copy the bad customer record to a log file named BADCREC.DAT.

Documenting ASCII File Adapter Integration Scenarios 159

12 0672323109 CH11 4/18/02 10:10 AM Page 159

Post-conditions Update the total number of customer records successfully parsed
and the total number of bad records.

Exceptions The use case raises exceptions under these conditions:

• If the metadata file is missing or not accessible

• If the ASCII text file is missing or not accessible

Use Case: Invalid Customer Record (Alternate Use Case)
Next, let’s examine the Invalid Customer Record use case.

Objective The primary objective of this use case is to log the invalid customer
record in a log file named BADREC.DAT.

Assumptions This use case is invoked as soon as a bad customer record is detected
by the ASCII file parser.

Pre-conditions This use case assumes that the customer record is either incomplete
or invalid.

Process The use case follows this process:

1. If the file BADREC.DAT is not open, then open the file in append mode.

2. Log the bad customer data, and timestamp it.

3. Also, for each bad record logged to the file, increment the counter; this will be
useful for administrators.

Post-conditions The file BADREC.DAT remains open until all the records are parsed.

Exceptions If the BADREC.DAT file can’t be opened, raise an exception.

Use Case: Process Completed (Alternate Use Case)
Finally, let’s look at the Process Completed use case.

Objective The primary objective of this use case is to log the total number of good
records in a log file: PSTATS.DAT. The intention is to keep a historical record of how
many customer records were successfully processed by the resource adapter.

Assumptions This use case assumes that the parsing process has been successfully
completed. This alternate use case does not get triggered if the processing was
stopped due to any exceptions.

Pre-conditions This use case assumes that the primary use case Process Customer
Info File has completed its sequence of actions successfully.

CHAPTER 11 Developing J2EE Resource Adapters160

12 0672323109 CH11 4/18/02 10:10 AM Page 160

Process The use case follows this process:

1. Open the ASCII text file PSTATS.DAT.

2. Log the total number of records successfully parsed in the text file. The start
time and end time of the parsing cycle should also be logged in the ASCII text
file.

3. Close the ASCII text file PSTATS.DAT.

Post-conditions This use case has no post-conditions.

Exceptions If the file PSTATS.DAT cannot be opened, raise an exception.

Designing the Logical Reference Model
The logical architecture model for the ASCII file resource adapter will be based on
the reference model presented in Chapter 4, “Adapter Reference Model.” Only a
subset of the modules identified in the logical reference module will be needed for
the ASCII file adapter. Figure 11.3 shows the logical architecture for the adapter in
terms of the relevant modules. The APIs in the logical model are expressed by a set
of Java interfaces that define the primary methods (services) provided by each
module in the model. These API are implemented as part of the resource adapter,
and will provide the non-JCA contracts for the adapter.

Access Layer Modules
The role of access layer modules, as explained in Chapter 4, is to define APIs and
interfaces or channels for accessing the adapter functionality. The modules and the
classes they contain implement application-specific contracts. In the case of the
example adapter, these contracts are about parsing an ASCII file containing customer
records and transforming the records into Java objects. The Java interfaces (APIs)
defined for each module of the access layer are the following:

• clientAPI

• adminAPI

• configAPI

The source files for these APIs are given in Listings 11.1 through 11.3. These inter-
faces will be implemented by associated classes that will be used to invoke the
adapter services. The host connectivity module in the foundation layer implements
the JCA interfaces (ConnectionFactory, Connection, and so on), which will invoke
the methods described in these interfaces.

Designing the Logical Reference Model 161

12 0672323109 CH11 4/18/02 10:10 AM Page 161

FIGURE 11.3 Logical architecture model.

LISTING 11.1 clientAPI.java

/**

* Title: ASCII File Adapter<p>

* Description: This package contains all non-JCA classes of the

* ASCII file adapter.<p>

* Copyright: Copyright (c) Atul Apte<p>

* Company: iConexio Technologies Inc.<p>

* @author Atul Apte

* @version 1.0

*/

package com.iconexio.asciiFileAdapter;

import java.util.Vector;

/*

* This is the API for all client services offered by the ASCII File

* resource adapter. Since the contents of the ASCII file can change

* their structure the adapter services accept metadata

CHAPTER 11 Developing J2EE Resource Adapters162

Client
Interface

API

Shared
Data

Object

Exception
Handling

APIAdministration
Interface

API

Configuration
Interface

API

Access Layer

Sync
Service

API

Parser

Engine Layer

Lifestyle
Mgt.

API

Host
Connectivity

API

Foundation
Layer

Functional
Dimension Shared Services

Dimension

Common
Component

Layer

ASCII File Adapter
Logical Architecture

12 0672323109 CH11 4/18/02 10:10 AM Page 162

* information in a different file.

* All customer objects created as a result of the

* process are stored in a Vector instance.

*/

public interface ClientAPI

{

// This API uses the default metaData filename set by the configuration

// interface. If there is no default metaData filename then this API

// returns an exception. The metaData file contains the filename of the

// customer data ASCII file

// Pre-condition: The calling method must check for the files existence

// The implementation of this method assumes the file is accessible and

// readable

public void extractRecords() throws Exception;

// This API requires the invoking method to define a specific metadata

// and customer data filename

// Pre-condition: The calling method must check for the files existence and

// and if it’s readable

public void extractRecords(String dataFileName, String metadataFileName)

throws Exception;

// This API returns the Vector holding the parsed customer record objects.

// objects.

// Pre-condition: Either one of the processASCIIFile methods has been

// successfully executed.

public Vector getCustomerRecordList();

// This API checks the validity of the customer record

public boolean isCustomerRecordValid(CustomerRec aRec);

}

LISTING 11.2 adminAPI.java

/**

* Title: ASCII File Adapter<p>

* Description: This package contains all non-JCA classes of the

* ASCII file adapter.<p>

* Copyright: Copyright (c) Atul Apte<p>

* Company: iConexio Technologies Inc.<p>

* @author Atul Apte

Designing the Logical Reference Model 163

LISTING 11.1 Continued

12 0672323109 CH11 4/18/02 10:10 AM Page 163

* @version 1.0

*/

package com.iconexio.asciiFileAdapter;

/*

* This is the API for all administration services offered by the

* ASCII File resource adapter. This interface can be implemented by an EJB

* or even integrated with a system management tool. However in the

* example adapter this interface will be implemented by a simple Java class

*/

public interface AdminAPI

{

// This API returns the total number of records parsed by

// the resource adapter

// since it was instantiated. The implementation can be serial

// ized to store

// the statistics if required.

// Pre-condition: None

public int getNoOfRecordsProcessed() throws Exception;

// This API returns the total number of bad records parsed by

// the resource

// adapter since it was instantiated. The implementation can

// be serialized

// to store the statistics if required.

// Pre-condition: None

public int getNoOfBadRecords();

}

LISTING 11.3 configAPI.java

/**

* Title: ASCII File Adapter<p>

* Description: This package contains all non-JCA classes of the

* ASCII file adapter.<p>

* Copyright: Copyright (c) Atul Apte<p>

* Company: iConexio Technologies Inc.<p>

* @author Atul Apte

* @version 1.0

CHAPTER 11 Developing J2EE Resource Adapters164

LISTING 11.2 Continued

12 0672323109 CH11 4/18/02 10:10 AM Page 164

*/

package com.iconexio.asciiFileAdapter;

/*

* This is the API for all configuration services offered by the

* ASCII File resource adapter. This interface can be implemented by an EJB

* or any other Java class besides the resource adapter.

* However in the example adapter

* this interface will be implemented by a simple Java class which

* is used by

* other classes to get and set the default metaData filename.

*/

public interface ConfigAPI

{

// This API sets the default metaData filename.

// Pre-condition: None

public void setDefaultMetadataFileName(String metadataFileName);

// This API returns the default metaData filename

public String getDefaultMetadataFileName();

}

Engine Layer Modules
The role of engine layer modules is to define and implement the core functionality
of the adapter. This is done as a set of services supported by other modules such as
parsers and mapping engines. For the example adapter, there are only two modules:
the synchronous service module and the parser module.

The customerDataServiceAPI in Listing 11.4 defines methods that enable the client
to load customer records from the ASCII text file as Java objects. This is a synchro-
nous type of service, with the caller waiting for the service to complete (parse the
ASCII text file).

LISTING 11.4 customerDataServiceAPI.java

/**

* Title: ASCII File Adapter<p>

* Description: This package contains all non-JCA classes of the

* ASCII file adapter.<p>

* Copyright: Copyright (c) Atul Apte<p>

Designing the Logical Reference Model 165

LISTING 11.3 Continued

12 0672323109 CH11 4/18/02 10:10 AM Page 165

* Company: iConexio Technologies Inc.<p>

* @author Atul Apte

* @version 1.0

*/

package com.iconexio.asciiFileAdapter;

// The customerDataServiceAPI interface defines the methods representing

// the services offered by sync-servic module of the engine layer.

// These services enable the client to load customer records from an

// ASCII file whose structure is defined by a metaData file.

import java.util.Vector;

import java.io.IOException;

public interface CustomerDataServiceAPI

{

// This method parses and load the customer data from the data filename

// stated in the metaData file. The structure of the customer data file is

// also defined in metaData file.

public void loadCustomerRecords(String metaDataFileName) throws Exception,

ParserException, IOException;

// This method does the same function as above except the data filename is

// explicit.

public void loadCustomerRecords(String metaDataFileName, String dataFileName)

throws Exception, ParserException, IOException;

// This method allows client to verify if the customer record is valid

public boolean isCustomerRecordValid(CustomerRec aRec);

// This method returns the Vector instance holding all the

// customer records

public Vector getCustomerRecordTable();

// This method returns a specific customer record with matching ID

public CustomerRec getCustomerRecord(String ID);

Foundation Layer Modules
The most important module in the foundation layer is the host connectivity
module, which contains classes that implement the JCA contracts. Although the

CHAPTER 11 Developing J2EE Resource Adapters166

LISTING 11.4 Continued

12 0672323109 CH11 4/18/02 10:10 AM Page 166

access layer modules define the client services and interfaces from an end user
perspective, the host connectivity module classes tie the client services to the client
environment. In the case of the example adapter in this chapter, the host connectiv-
ity classes invoke the appropriate client services (interfaces) as part of the JCA
connection implementation classes.

This separation of adapter services from the host connectivity results in a loosely
coupled interaction between application connectivity contracts implemented by the
access layer and engine layer modules and the J2EE connectivity contracts imple-
mented by the foundation layer modules.

The following two classes implement the CCI interfaces:

• ASCIIFileConnection (implements Connection interface). Listing 11.5 shows
the source code for this class. Note that the class returns the actual filename
managed by the adapter so that the client application knows which connection
is associated with which file.

• AFConnectionFactory (implements ConnectionFactory interface). Listing 11.6
shows the source code for this class. This class is responsible for delegating the
call to get a new connection to the application server’s connection manager.

The following three classes implement the SPI interfaces:

• ASCIIFileManagedConnection (implements ManagedConnection interface).
Listing 11.7 shows the source code for this class. The managed connection class
ensures that one instance of ASCIIFileManagedConnection is associated with
only one file at a time.

• AFManagedConnectionFactory (implements ManagedConnectionFactory inter-
face). Listing 11.8 shows the source code for this class. The managed connec-
tion factory is responsible for creating instances of managed connections as
well as connection factories.

• AFManagedConnectionMetaData (implements ManagedConnectionMetaData inter-
face). Listing 11.9 shows the source code for this class. This class provides more
descriptive information of the resource adapter and especially what resources it
is managing.

LISTING 11.5 ASCIIFileConnection.java

/**

* Title: ASCII File Resource Adapter<p>

* Description: This project is about building a JCA 1.0 compatible

* resource adapter as part of the book on developing

Designing the Logical Reference Model 167

12 0672323109 CH11 4/18/02 10:10 AM Page 167

* JCA adapters.<p>

* Copyright: Copyright (c) Atul Apte<p>

* Company: iConexio Technologies Inc.<p>

* @author Atul Apte

* @version 1.0

*/

package com.iConexio.jca.asciiFileRA;

import javax.resource.cci.*;

import javax.resource.NotSupportedException;

import java.util.Map;

import javax.resource.ResourceException;

import javax.resource.spi.ConnectionEvent;

import javax.resource.spi.IllegalStateException;

import javax.resource.spi.*;

/** This class represents the connection handle between the ASCII file

* adapter and the application component or client.

* The ASCII file adapter can be part of a local transaction however the entire

* ASCII file will be parsed as a single step with a begin and an end as

* transaction demarcations

*/

public class ASCIIFileConnection implements javax.resource.cci.Connection {

/** Each connection handle has a reference to the managed connection

* that interfaces or represents the actual ASCII file.

*/

public ASCIIFileConnection(ASCIIFileManagedConnection mc)

{

this.mc = mc;

}

ASCIIFileManagedConnection getManagedConnection()

{

return(mc);

}

public String getASCIIFileName() throws javax.resource.ResourceException

{

if (mc == null)

{

CHAPTER 11 Developing J2EE Resource Adapters168

LISTING 11.5 Continued

12 0672323109 CH11 4/18/02 10:10 AM Page 168

throw new ResourceException(“Connection is already closed”);

}

return(mc.getASCIIFileName());

}

public javax.resource.cci.LocalTransaction getLocalTransaction() throws

javax.resource.ResourceException

{

// Since the ASCII file itself does not have a any support for transactions

// the adapter only supports local transactions for this adapter.

return(new AFLocalTransactionImpl(mc));

}

public void setAutoCommit(boolean autoCommit) throws ResourceException

{

throw new ResourceException(“ Auto Commit is not supported”);

}

public boolean getAutoCommit() throws ResourceException

{

return false;

}

/** This adapter does not use the ResultSetInfo class to return data

* ResultSetInfo is more useful when accessing a database rather than

* a flat file. The Interaction class of this adapter returns a vector of

* customer records instead

*/

public javax.resource.cci.ResultSetInfo getResultSetInfo() throws

javax.resource.ResourceException {

NotSupportedException e = new

NotSupportedException(“Result Set Info Not Supported”);

throw e;

}

public void close() throws ResourceException {

if (mc == null) return; // already closed

mc.removeAFConnection(this); // Remove this connection from the set of

// connections in the managed connection

// instance

mc = null;

Designing the Logical Reference Model 169

LISTING 11.5 Continued

12 0672323109 CH11 4/18/02 10:10 AM Page 169

connectionDestroyed = true;

}

public javax.resource.cci.ConnectionMetaData getMetaData() throws

javax.resource.ResourceException {

ASCIIFileMetaData md = new ASCIIFileMetaData();

return(md);

}

/** The createInteraction method returns an instance of ASCIIFileInteraction

* This object contains services or methods that provide the capability of

* parsing customer data files in ASCII format.

*/

public javax.resource.cci.Interaction createInteraction() throws

javax.resource.ResourceException

{

ASCIIFileInteraction aint = new ASCIIFileInteraction(this);

return(aint);

}

// This method is called by the application server when needed.

// The application server wants the connection to be associated with a

// new or different managed connection instance.

void associateConnection(ASCIIFileManagedConnection newMc)

throws ResourceException

{

if (mc == null)

{

// Then the connection was closed and therefore no need to

// associate it with the new or different managed connection

throw new IllegalStateException(“Connection is either closed or “+

“invalid”);

}

else

{

// dissociate handle with current managed connection

mc.removeAFConnection(this);

// associate handle with new managed connection

newMc.addAFConnection(this);

CHAPTER 11 Developing J2EE Resource Adapters170

LISTING 11.5 Continued

12 0672323109 CH11 4/18/02 10:10 AM Page 170

mc = newMc;

}

}

private void checkIfDestroyed() throws ResourceException {

if (connectionDestroyed) {

throw new IllegalStateException(“Managed connection is closed”);

}

}

public void invalidate()

{

mc = null;

}

// private member variables

private ASCIIFileManagedConnection mc; // Represents the physical connection

// to the ASCII data file

private boolean connectionDestroyed; // Flag to indicate that the connection

// is destroyed.

}

LISTING 11.6 AFConnectionFactory.java

/**

* Title: ASCII File Resource Adapter<p>

* Description: This project is about building a JCA 1.0 compatible

* resource adapter as part of the book on developing

* JCA adapters.<p>

* Copyright: Copyright (c) Atul Apte<p>

* Company: iConexio Technologies Inc.<p>

* @author Atul Apte

* @version 1.0

*/

package com.iConexio.jca.asciiFileRA;

import java.io.*;

import java.io.Serializable;

import javax.resource.Referenceable;

import javax.resource.*;

import javax.resource.spi.*;

Designing the Logical Reference Model 171

LISTING 11.5 Continued

12 0672323109 CH11 4/18/02 10:10 AM Page 171

import javax.naming.Reference;

import javax.resource.cci.*;

public class AFConnectionFactory implements

javax.resource.cci.ConnectionFactory,

java.io.Serializable, javax.resource.Referenceable

{

public AFConnectionFactory(ManagedConnectionFactory mcf,

ConnectionManager cm)

{

this.mcf = mcf;

if (cm == null)

{

this.cm = new AFConnectionManager(); // This is the default

// Connection Manager

}

else

{

this.cm = cm;

}

}

public AFConnectionFactory(ManagedConnectionFactory mcf)

{

this.mcf = mcf;

}

public javax.resource.cci.Connection getConnection()

throws ResourceException

{

javax.resource.cci.Connection con = null;

// Delegate the getConnection function to connection manager

// and its allocate connection method

con =

(javax.resource.cci.Connection) cm.allocateConnection(mcf, null);

return con;

}

public javax.resource.cci.Connection

getConnection(ConnectionSpec properties) throws ResourceException

{

CHAPTER 11 Developing J2EE Resource Adapters172

LISTING 11.6 Continued

12 0672323109 CH11 4/18/02 10:10 AM Page 172

javax.resource.cci.Connection con = null;

// Create a connection request info object from connection properties

// This connection request info object is sent to the managed connection

AFConnectionRequestInfo info =

new AFConnectionRequestInfo(

((AFConnectionSpec)properties).getUser(),

((AFConnectionSpec)properties).getPassword(),

((AFConnectionSpec)properties).getASCIIFileName(),

((AFConnectionSpec)properties).getMetadataFileName());

con = (javax.resource.cci.Connection)

cm.allocateConnection(mcf,info);

return con;

}

public ASCIIFileMetaData getMetaData() throws ResourceException

{

return new ASCIIFileAdapterMetaData();

}

public RecordFactory getRecordFactory() throws ResourceException

{

throw new ResourceException(“Record Factory not supported”);

}

public void setReference(Reference reference)

{

this.reference = reference;

}

public Reference getReference()

{

return reference;

}

// Private variables

private ManagedConnectionFactory mcf;

private ConnectionManager cm;

private Reference reference;

}

Designing the Logical Reference Model 173

LISTING 11.6 Continued

12 0672323109 CH11 4/18/02 10:10 AM Page 173

LISTING 11.7 ASCIIFileManagedConnection.java

/**

* Title: ASCII File Resource Adapter<p>

* Description: This project is about using existing Java

* application level classes and encapsulating them

* in a JCA 1.0 compliant resource adapter<p>

* Copyright: Copyright (c) Atul Apte<p>

* Company: iConexio Technologies Inc.<p>

* @author Atul Apte

* @version 1.0

*/

package com.iConexio.jca.asciiFileRA;

import javax.resource.*;

import javax.resource.spi.*;

import javax.resource.spi.security.PasswordCredential;

import javax.resource.spi.IllegalStateException;

import javax.resource.spi.SecurityException;

import javax.resource.NotSupportedException;

import java.io.*;

import java.util.*;

import javax.security.auth.Subject;

public class ASCIIFileManagedConnection implements ManagedConnection

{

ASCIIFileManagedConnection(ManagedConnectionFactory mcf,

PasswordCredential passCred)

{

this.mcf = mcf;

theCredentials = passCred;

this.asciiFileName = null;

this.metadataFileName = null;

connectionSet = new HashSet();

}

public void setManagedConnectionFactory(ManagedConnectionFactory mcf)

{

this.mcf = mcf;

}

CHAPTER 11 Developing J2EE Resource Adapters174

12 0672323109 CH11 4/18/02 10:10 AM Page 174

public ManagedConnectionFactory getManagedConnectionFactory()

{

return this.mcf;

}

// This method is called by the application server on behalf of the

// application component. The application component passes information

// to the application server via connectionRequestInfo instance.

public Object getConnection(Subject subject,

ConnectionRequestInfo cRequestInfo)

throws ResourceException

{

// Retrieve the password credentials passed in the ConnectionRegInfo

PasswordCredential pc =

Util.getPasswordCredential(mcf, subject, cRequestInfo);

if (!Util.isPasswordCredentialEqual(pc, theCredentials)) {

throw new SecurityException(“Principal does not match.” +

“Reauthentication not supported”);

}

AFConnectionRequestInfo afcri = (AFConnectionRequestInfo)cRequestInfo;

if (this.asciiFileName == null)

{

this.asciiFileName = new String(afcri.getASCIIFileName());

this.metadataFileName = new String(afcri.getMetadataFileName());

}

if (afcri.getASCIIFileName().equalsIgnoreCase(this.asciiFileName)

== false)

{

// This managed connection is not managing the file requested by the

// application component in the connection request info

throw new ResourceException(“ASCII file name and managed connection”

+ “ do not match”);

}

// Ensure that this managed connection is still valid.

checkIfDestroyed();

ASCIIFileConnection aCon = new ASCIIFileConnection(this);

addCciConnection(aCon); // Add the new connection to the set

return aCon;

}

Designing the Logical Reference Model 175

LISTING 11.7 Continued

12 0672323109 CH11 4/18/02 10:10 AM Page 175

public void destroy() throws ResourceException

{

if (destroyed) return;

destroyed = true;

Iterator it = connectionSet.iterator();

while (it.hasNext())

{

ASCIIFileConnection afCon = (ASCIIFileConnection) it.next();

afCon.invalidate();

}

connectionSet.clear();

}

public void cleanup() throws ResourceException

{

checkIfDestroyed();

Iterator it = connectionSet.iterator();

while (it.hasNext())

{

ASCIIFileConnection afCon = (ASCIIFileConnection) it.next();

afCon.invalidate();

}

connectionSet.clear();

}

public void associateConnection(Object theCon)

throws ResourceException

{

checkIfDestroyed();

if (theCon instanceof ASCIIFileConnection)

{

ASCIIFileConnection afCon = (ASCIIFIleConnection) theCon;

afCon.associateConnection(this);

}

else

{

throw new IllegalStateException(“Invalid connection object: “ +

theCon);

}

}

CHAPTER 11 Developing J2EE Resource Adapters176

LISTING 11.7 Continued

12 0672323109 CH11 4/18/02 10:10 AM Page 176

public ManagedConnectionMetaData getMetaData() throws ResourceException

{

checkIfDestroyed();

return new AFManagedConnectionMetaData(this);

}

public void setLogWriter(PrintWriter out) throws ResourceException

{

this.logWriter = out;

}

public PrintWriter getLogWriter() throws ResourceException

{

return logWriter;

}

boolean isDestroyed()

{

return destroyed;

}

PasswordCredential getPasswordCredential()

{

return passCred;

}

public void removeASCIIFileConnection(ASCIIFileConnection afCon)

{

connectionSet.remove(afCon);

}

public void addASCIIFileConnection(CciConnection afCon)

{

connectionSet.add(afCon);

}

private void checkIfDestroyed() throws ResourceException

{

if (destroyed)

{

Designing the Logical Reference Model 177

LISTING 11.7 Continued

12 0672323109 CH11 4/18/02 10:10 AM Page 177

throw new IllegalStateException(“Managed connection is closed”);

}

}

public String getASCIIFileName()

{

return(asciiFileName);

}

// The managed connection instance keeps track of the data filename it

// manages as well as the metaData filename associated with it.

// The example adapter assumes that these files are accessible on the local

// machine. If these files exist on a remote machine then a different set

// of functions may be necessary to access the files over the network.

private String asciiFileName;

private String metadataFileName;

// These variables hold the managed connection factory used to create this

// instance and the a container (set) to hold application level connections

// or handles to the adapter.

private ManagedConnectionFactory mcf;

private Set connectionSet;

// This adapter supports the basic password credentials. These credentials

// have no bearing on the ASCII data file and its permissions although it

// can be programmed to check the ASCII files ownership in a UNIX file system.

private PasswordCredential theCredentials;

private PrintWriter logWriter;

private boolean connectionDestroyed; // Flag indicating that the connection

// is destroyed.

}

LISTING 11.8 AFManagedConnectionFactory.java

/**

* Title: ASCII File Resource Adapter<p>

* Description: This project is about using existing Java

* application level classes and encapsulating them

* in a JCA 1.0 compliant resource adapter<p>

* Copyright: Copyright (c) Atul Apte<p>

CHAPTER 11 Developing J2EE Resource Adapters178

LISTING 11.7 Continued

12 0672323109 CH11 4/18/02 10:10 AM Page 178

* Company: iConexio Technologies Inc.<p>

* @author Atul Apte

* @version 1.0

*/

package com.iConexio.jca.asciiFileRA;

import javax.resource.ResourceException;

import javax.resource.spi.*;

import javax.resource.*;

import javax.resource.spi.security.PasswordCredential;

import java.io.Serializable;

import javax.resource.spi.security.PasswordCredential;

import javax.resource.spi.SecurityException;

import java.io.*;

import javax.security.auth.Subject;

import java.util.*;

import javax.naming.Context;

import javax.naming.InitialContext;

/** The AFManagedConnectionFactory instance create instances of

* AFConnectionFactory as well as ASCIIFileManagedConnection

*/

public class AFManagedConnectionFactory implements ManagedConnectionFactory,

Serializable

{

public AFManagedConnectionFactory()

{

factoryID = new String(“ASCII File”);

}

/** This method creates a connection factory instance. The parameter

* connection manager is passed by the application server. The constructor

* for the connection factory also accepts a managed connection factory

* instance for future reference. The connection manager instance is there to

* support connection pooling by the application server.

*/

public Object createConnectionFactory(ConnectionManager cm) throws

ResourceException

{

Designing the Logical Reference Model 179

LISTING 11.8 Continued

12 0672323109 CH11 4/18/02 10:10 AM Page 179

AFConnectionFactory afcf;

afcf = new AFConnectionFactory(this, cm);

return(afcf);

}

/** This method creates a connection factory instance without any

* associated connection manager. The application server does not perform

* any connection pooling when connections are retrieved from this type

* of connection factory later.

*/

public Object createConnectionFactory() throws ResourceException

{

AFConnectionFactory afcf;

afcf = new AFConnectionFactory(this, null);

return(afcf);

}

public ManagedConnection

createManagedConnection(Subject subject,

ConnectionRequestInfo info)

throws ResourceException

{

String userName = null;

PasswordCredential pc =

Util.getPasswordCredential(this, subject, info);

if (pc != null) {

userName = pc.getUserName();

}

return new ASCIIFileManagedConnection(this,pc);

}

public ManagedConnection

matchManagedConnections(Set connectionSet,

Subject subject,

ConnectionRequestInfo info)

throws ResourceException

{

PasswordCredential pc =

Util.getPasswordCredential(this, subject, info);

CHAPTER 11 Developing J2EE Resource Adapters180

LISTING 11.8 Continued

12 0672323109 CH11 4/18/02 10:10 AM Page 180

Iterator it = connectionSet.iterator();

while (it.hasNext())

{

Object obj = it.next();

if (obj instanceof ASCIIFileManagedConnection)

{

ASCIIFileManagedConnection mc =

(ASCIIFileManagedConnection) obj;

ManagedConnectionFactory mcf =

mc.getManagedConnectionFactory();

if (Util.isPasswordCredentialEqual

(mc.getPasswordCredential(), pc) &&

mcf.equals(this))

{

AFConnectionRequestInfo afcri =

(AFConnectionRequestInfo)info;

String s = afcri.getASCIIFileName();

if (mc.getASCIIFileName().equalsIgnoreCase(s) == true)

return mc;

}

}

}

return null;

}

public boolean equals(Object obj) {

if (obj == null) return false;

if (obj instanceof AFManagedConnectionFactory) {

String v1 = ((AFManagedConnectionFactory) obj).

getFactoryID();

String v2 = this.getFactoryID();

return (v1 == null) ? (v2 == null) : (v1.equals(v2));

} else {

return false;

}

}

public int hashCode() {

if (getFactoryID() == null) {

return (new String(“”)).hashCode();

} else {

Designing the Logical Reference Model 181

LISTING 11.8 Continued

12 0672323109 CH11 4/18/02 10:10 AM Page 181

return getFactoryID().hashCode();

}

}

private transient Context ctx;

private String factoryID;

}

LISTING 11.9 AFManagedConnectionMetaData.java

/**

* Title: ASCII File Resource Adapter<p>

* Description: This project is about using existing Java

* application level classes and encapsulating them

* in a JCA 1.0 compliant resource adapter<p>

* Copyright: Copyright (c) Atul Apte<p>

* Company: iConexio Technologies Inc.<p>

* @author Atul Apte

* @version 1.0

*/

package com.iConexio.jca.asciiFileRA;

import javax.resource.ResourceException;

import javax.resource.spi.*;

/** This class will return information about the managed connections and the

* resource managed by it.

*/

public class AFManagedConnectionMetaData implements ManagedConnectionMetaData

{

public AFManagedConnectionMetaData(ASCIIFileManagedConnection afmc)

{

this.afmc = afmc;

}

/** This method returns the name of the EIS and can be the ASCII

* filename of the customer data file

*/

public String getEISProductName() throws ResourceException

{

CHAPTER 11 Developing J2EE Resource Adapters182

LISTING 11.8 Continued

12 0672323109 CH11 4/18/02 10:10 AM Page 182

if (mc.isDestroyed()) {

throw new ResourceException

(“ManagedConnection has been destroyed”);

}

// If the managed connection instance stores the customer data filename

// it can be returned here.

return(afmc.getASCIIFileName());

}

public String getEISProductVersion() throws ResourceException

{

/** The version number of the ASCII file cannot be retrieved in most

* cases

*/

String versionNo = new String(“Version number unknown”);

return(versionNo);

}

public int getMaxConnections() throws ResourceException

{

// The number of connections to the ASCII file will depend on

// how many files can be opened by a user or in a session etc.

// Hence for this example we just return the number 16

return((int)16);

}

public String getUserName() throws ResourceException

{

if (mc.isDestroyed()) {

throw new ResourceException

(“ManagedConnection has been destroyed”);

}

// Return the user name stored as part of the credentials

return(afmc.getPasswordCredentail.getUserName());

}

private ASCIIFileManagedConnection afmc;

}

Designing the Logical Reference Model 183

LISTING 11.9 Continued

12 0672323109 CH11 4/18/02 10:10 AM Page 183

The example adapter does not implement any XA transaction interfaces because it
does not support XA-compliant transactions. The ASCII file can be parsed outside the
context of a transaction or be part of a local transaction. This might be useful when
parsing the customer data file (ASCII file) and updating the customer database in a
single transaction. The full source code for the ASCII file resource adapter including
all the support classes can be downloaded from the Web site www.samspublishing.
com. Chapter 17 presents all the functional (application level) classes used by the
adapter.

Common Component Layer Modules
The modules of this layer represent shared services and data objects. In other words,
the classes contained in these modules will be used by more than one class across
other layers. For the example resource adapter, there are two shared data objects:
customer record and customer file metadata. There is only one shared service: excep-
tion handling, which uses the log manager framework (the source code is presented
in Chapter 13, “Customizing Adapters”).

Shared Data Objects
The Java classes representing the shared data objects are also referred to as integra-
tion data objects because they represent the data that is used to integrate different
target environments and applications.

The customer record (shown in Listing 11.10) is a read-only object because it is
derived from the ASCII file that is parsed by the resource adapter. Data encapsulated
by the customer record object cannot be changed by the adapter because it will
mean that the customer record object would be out of sync with its source, the ASCII
file. Hence, the setter methods in the customer record are declared private, and are
used only by the constructor. If, on the other hand, the integration scenario were
bidirectional, with the resource adapter changing the customer records before
sending the changed data back in the form of a new ASCII file, then the customer
records would have the setter methods as public methods.

LISTING 11.10 CustomerRec.java

/**

* Title: ASCII File Adapter<p>

* Description: This package contains all non-JCA classes of the

* ASCII file adapter.<p>

* Copyright: Copyright (c) Atul Apte<p>

* Company: iConexio Technologies Inc.<p>

* @author Atul Apte

* @version 1.0

CHAPTER 11 Developing J2EE Resource Adapters184

12 0672323109 CH11 4/18/02 10:10 AM Page 184

*/

package com.iconexio.asciiFileAdapter;

// Objects of CustomerRec class hold the parsed customer data information

// Each customer record has a unique ID. There can be more than one record

// with the same ID as there can be multiple actions performed on a record

// including add, update, delete

public class CustomerRec

{

public CustomerRec()

{

ID = null;

name = null;

actionID = 0x00;

address = null;

status = null;

outstandingBal = (float)0.00;

}

// Since this customer record is supposed to be read-only all the setters are

// declared as private methods accessible from the constuctor

public CustomerRec(String ID, String name, String actionID, String address,

String status, String balance) {

setID(ID);

setName(name);

setRecAction(actionID.charAt(0));

setAddress(address);

setStatus(status);

Float x = new Float(1.00);

x.parseFloat(balance);

setOutstandingBal(x.parseFloat(balance));

}

public String getID() {

return(ID);

}

private void setID(String theID) {

ID = new String(theID);

}

public String getName() {

Designing the Logical Reference Model 185

LISTING 11.10 Continued

12 0672323109 CH11 4/18/02 10:10 AM Page 185

return(name);

}

private void setName(String theName) {

name = new String(theName);

}

public char getRecAction() {

return(actionID);

}

private void setRecAction(char theAction) {

actionID = theAction;

}

public String getAddress() {

return(address);

}

private void setAddress(String theAddress) {

address = new String(theAddress);

}

public float getOutstandingBal() {

return(outstandingBal);

}

private void setOutstandingBal(float theBal) {

outstandingBal = theBal;

}

private void setStatus(String theStatus) {

status = new String(theStatus);

}

public String getStatus() {

return(status);

}

public boolean isCustomerAccountActive() {

if (status.equalsIgnoreCase(“Active”) == true)

return(true);

return(false);

}

private String ID;

private String name;

private char actionID; // A = Add, U = Update, D = Delete

private String address;

private float outstandingBal; // Default = 0.00

private String status; // Active, Dormant, Bad Account

}

CHAPTER 11 Developing J2EE Resource Adapters186

LISTING 11.10 Continued

12 0672323109 CH11 4/18/02 10:10 AM Page 186

There are two types of metadata records that describe the layout of the ASCII file, as
well as the control information necessary to parse the ASCII files. The control infor-
mation is stored in MetaDataControl objects (see Listing 11.11); the file layout (struc-
ture) objects are stored in MetaDataLayout (see Listing 11.12) objects. The
MetaDataRec (see Listing 11.13) object holds an instance of the control object, as
well as one or more instances of layout objects.

LISTING 11.11 MetaDataControl.java

/**

* Title: ASCII File Adapter<p>

* Description: This package contains all non-JCA classes of the

* ASCII file adapter.<p>

* Copyright: Copyright (c) Atul Apte<p>

* Company: iConexio Technologies Inc.<p>

* @author Atul Apte

* @version 1.0

*/

package com.iconexio.asciiFileAdapter;

// This class contains the basic control data required to parse any ASCII

// file namely the field delimiter. This class can be extended for more complex

// control data.

public class MetadataControl extends Object

{

public MetadataControl()

{

}

public MetadataControl(int afID, String fName, String fValue)

{

fID = afID;

fname = new String(fName);

fvalue = new String(fValue);

}

public int getID()

{

return(fID);

}

public String getName()

{

return(fname);

}

Designing the Logical Reference Model 187

12 0672323109 CH11 4/18/02 10:10 AM Page 187

public String getValue()

{

return(fvalue);

}

private int fID;

private String fname;

private String fvalue;

}

LISTING 11.12 MetaDataLayout.java

/**

* Title: ASCII File Adapter<p>

* Description: This package contains all non-JCA classes of the

* ASCII file adapter.<p>

* Copyright: Copyright (c) Atul Apte<p>

* Company: iConexio Technologies Inc.<p>

* @author Atul Apte

* @version 1.0

*/

package com.iconexio.asciiFileAdapter;

// This class defines the structure of a field including its name, type, and

// the actual value. An example of MetaDataLayout instance is:

// fID = 1

// fName = ACCOUNT_STATUS

// fType = String

// fDomain = ACTIVE,DORMANT (values that define the domain of this field.)

// The domain parameter is optional and can be used by the parser to validate

// any values assigned to the field.

public class MetadataLayout

{

public MetadataLayout()

{

}

public MetadataLayout(int afID, String fName, String fType, String fDomain) {

fID = afID;

fname = new String(fName);

CHAPTER 11 Developing J2EE Resource Adapters188

LISTING 11.11 Continued

12 0672323109 CH11 4/18/02 10:10 AM Page 188

ftype = new String(fType);

fdomain = new String(fDomain);

}

public int getID() {

return(fID);

}

public String getName() {

return(fname);

}

public String getDomainValue() {

return(fdomain);

}

public String getType() {

return(ftype);

}

private int fID;

private String fname;

private String ftype;

private String fdomain;

}

LISTING 11.13 MetaDataRec.java

/**

* Title: ASCII File Adapter<p>

* Description: This package contains all non-JCA classes of the

* ASCII file adapter.<p>

* Copyright: Copyright (c) Atul Apte<p>

* Company: iConexio Technologies Inc.<p>

* @author Atul Apte

* @version 1.0

*/

package com.iconexio.asciiFileAdapter;

import java.util.Hashtable;

public class MetadataRec

{

public MetadataRec()

{

Designing the Logical Reference Model 189

LISTING 11.12 Continued

12 0672323109 CH11 4/18/02 10:10 AM Page 189

controlRec = new Hashtable();

layoutRec = new Hashtable();

}

public MetadataControl getControlRecord(String tag)

{

return((MetadataControl)controlRec.get(tag));

}

public void addControlRecord (MetadataControl cRec)

{

controlRec.put(cRec.getName(), cRec);

}

public void addLayoutRecord (MetadataLayout lRec)

{

layoutRec.put(lRec.getName(),lRec);

}

public MetadataLayout getLayoutRecord(String tag)

{

return((MetadataLayout)layoutRec.get(tag));

}

private Hashtable controlRec;

private Hashtable layoutRec;

Exception Handling
The exception handling module of the common component layer defines a log file
manager framework. Details of this framework (including the code) are included in
Chapter 13. This log manager framework enables the adapter to open multiple log
files (ASCII text files) and store error messages, bad data, and processing statistics.

Testing the Resource Adapter
The test cases for the ASCII file resource adapters are grouped into white box test
cases and black box test cases. Black box test cases are designed to test the function-
ality of the adapter and its proper behavior, as expected by the adapter users. The
white box test cases are designed to test the internal design of the adapter including
testing for exceptions and how they are handled by the adapter. White box test cases
will require test data that has wrong data or bad data so that the appropriate excep-
tions are raised by the adapter.

CHAPTER 11 Developing J2EE Resource Adapters190

LISTING 11.13 Continued

12 0672323109 CH11 4/18/02 10:10 AM Page 190

Black Box Test Cases
Test Case 1 processes a valid ASCII text file with an associated metadata file:

• Objective: Ensure that the resource adapter works per the requirements
described in the primary use case Process Customer Info File.

• Expected results: All customer records contained in the ASCII file and defined
by the metadata file are parsed successfully.

Test Case 2 processes a valid ASCII text file with the default metadata file:

• Objective: To test the adapter’s capability to process a valid ASCII text file using
the default metadata filename.

• Expected results: All customer records contained in the ASCII file and defined
by the default metadata file are parsed successfully.

White Box Test Cases
Test Case 1 processes a valid ASCII text file with an invalid metadata file:

• Objective: To test the resource adapter’s capability to detect a mismatch
between the ASCII text file (data) and the contents of the metadata file.

• Expected results: The parser is expected to detect the mismatch between actual
data structure and the metadata definitions. The parser should throw an excep-
tion that is caught by the customerRecService class and logged using the
exception handling service.

Test Case 2 processes an incomplete ASCII text file with a valid metadata file:

• Objective: To test the resource adapter’s capability to detect an incomplete
ASCII text file.

• Expected results: The parser is expected to detect the first incomplete record
and throw an exception that is caught by the customerRecService class and
logged using the exception handling service. The parser then continues to
process other records if any in the ASCII text file.

Packaging and Release
Normally, when adapters or any other software is packaged for distribution, it does
not include test data or test case documentation. There are exceptions to this rule,
but the majority of the software you buy does not have a test harness that will allow
you to test the software if you change the configuration or customize the software.

Packaging and Release 191

12 0672323109 CH11 4/18/02 10:10 AM Page 191

With adapters, it is better to ship the product with any available test data, test plans,
or test harness (test tools) that may be useful to the adapter users.

One reason vendors don’t like to ship their products with testing tools is the fear of
discovering bugs, especially at the customer site. However, in reality, customers do
find bugs after installing the software. In the case of adapters, the adapter providers
can be different vendors; so it is important to have access to testing tools to ensure
that the adapters are working properly.

Resource adapters are packaged in resource archive files, also known as RAR files. A
RAR is actually a Java jar file that contains all the classes of the resource adapter,
including those classes that implement the JCA system contracts; any external
classes; and packages that may be used by the adapter, configuration files, deploy-
ment descriptor, and other adapter-specific files.

The order in which these files appear in the RAR file may be significant, depending
on the interdependencies between the classes. The example adapter is packaged as
ExRA.rar file.

Summary
This chapter is an example of how to implement some of the concepts, techniques,
and best practices present in the book in the real world. The resource adapter devel-
oped in this chapter is capable of reading data from an ASCII file and converting it
into Java objects. The client of this resource adapter is a session bean that displays
the Java objects on screen.

The full source code (including the implementations of all interfaces defined in this
chapter) for the example adapter, and the configuration of the J2EE environment in
which it has been successfully tested is available in Chapter 17. The code is also
available for download on the Web site www.samspublishing.com and on the
attached CD-ROM.

The important thing to remember is the importance of following a methodology.
Even for a seemingly simple adapter such as the ASCII file adapter, quite a few things
need to be done, including understanding the end-to-end integration scenario, defin-
ing test plans and test data, and actually developing the adapter. The benefit of using
an architecture reference model is easier and quicker adapter design because the
model provides a starting point for adapter designers.

CHAPTER 11 Developing J2EE Resource Adapters192

12 0672323109 CH11 4/18/02 10:10 AM Page 192

IN THIS CHAPTER

• Deployment Objectives

• Adapter Version Control

• Deployment Scenarios

• Defining Deployment
Requirements

• JCA Adapter Deployment
Descriptor

• Deployment Plan Template

12

Deploying Adapters

“Once was enough.”

—Christophe Auguin, French teacher and sailor, after sailing

around the world solo in 106 days in 1997

Software deployment is the final make-or-break situation
in which the software is either successfully installed,
configured, and operational in a product environment; or
rejected for one of several reasons, including failing to
operate properly, too many unknown dependencies, and
so on. This is the phase in the software development life-
cycle that determines the value of months of hard work
and what impact the software has on the enterprise and its
business. Deployment in a distributed environment is
never easy, especially when you’re upgrading the hosting
environment components such as the operating systems,
middleware, hardware, and so on. In the case of adapters,
many of the deployment management options depend on
the underlying platform features. If an integration broker
is managing the adapters, then ease of deploying and
configuration of the adapter depend on the broker’s tools
and features for system administration.

Automatic software distribution, applying adapter patches,
and so on are essential features, but not many platforms
support them. The J2EE specifications define deployment
descriptors with the intention of making adapter and other
component (J2EE modules) deployment easier. Regardless
of the type of support that adapters get from the plat-
forms, some basic functionality is helpful for making the
task of deploying and managing the adapter easier. This
chapter identifies these features, and provides high-level
guidelines for implementing good deployment practices.

13 0672323109 CH12 4/18/02 10:09 AM Page 193

CHAPTER 12 Deploying Adapters194

Deployment Objectives
Let’s begin with the fundamental objects of deploying an adapter. Apart from its role
in application integration, the adapter must facilitate easy support for different
deployment scenarios. Although the use case models of adapters capture some of the
end user requirements, they do not capture the deployment scenarios, which are
based on the underlying systems, network architecture, distributed platforms, and
the overall dependencies between applications.

The primary objective of any deployment can be categorized into three broad
deployment types:

• New deployment

• Software upgrade

• Software patch

Each type has different dynamics associated with it; for example, new deployments
are easier to manage because there is no need to consider existing environments,
users, and so on. However, upgrades and patches to already deployed adapters
require more planning. After all, the last thing system administrators need to hear is
that upgrading software and hardware has resulted in disruption of services. It is
better to be prepared with a deployment plan to ensure a smooth deployment.

Every deployment consists of three basic activities or tasks: installation, configura-
tion, and operational testing. Each task needs pertinent information, and some of it
needs to come from the software developers—in this case, adapter developers. With
JCA resource adapters, the deployment descriptor is responsible for carrying that
information from the developers to system administrators who use deployment tools
to read the descriptor and set any values to match the specific run-time environ-
ment.

Adapter Dependencies
In each type of deployment, one of the most nagging problems is not knowing the
dependencies between the adapter and its environment. Often, not knowing these
dependencies results in failed or delayed adapter deployment. Although many
vendors have J2EE-compliant servers, it does not mean that the run-time environ-
ment is the same across these servers. Because vendors can implement their own
design patterns, it is quite likely that the adapter deployment descriptors vary with
application servers. One application server may use multiple class loaders to load
different types of modules (EJB, Resource Adapters, JSP, and so on), whereas other
application servers may not. But there are more dependencies than just the applica-
tion server that the system administrator needs to worry about.

13 0672323109 CH12 4/18/02 10:09 AM Page 194

An adapter depends on the application server for the run-time environment, and
also depends on the target application it connects to and the infrastructure of the
target application, including any middleware and databases that the application uses.
Adding to this complication, the legacy system may have multiple instances or
copies deployed in a geographically distributed environment. The resource adapter
for this legacy system has to be configured to connect with a potentially different
legacy system environment. If one instance is running on a SUN Solaris operating
system and another instance is running on an IBM AIX operating system, then the
resource adapter may need different configuration parameters.

In general, adapter dependencies can include multiple operating systems, multiple
databases, and multiple versions of applications. The simplest case is one in which
there is only one instance of each, and therefore the resource adapter deployment is
simple as well. Some of the deployment requirements can be identified during the
use case model phase; in particular, system attributes can be captured and docu-
mented. However, there are other, more granular dependencies such as shared
libraries, dynamically linked libraries and components, device drivers, and so on.
Some of these component dependencies are sensitive to the order in which they are
loaded during run-time. System-level dependencies such as these must be identified
and verified during QA, and documented in the system admin guide or release notes.
Without this information, system administrators are left with little choice but to use
trial-and-error methods. When deploying new adapters, doing so might not be as
dangerous and potentially disruptive as when you are upgrading adapters or apply-
ing bug fix patches.

Adapter Version Control
The level of version control needed for an adapter depends on the scope of the target
application(s) being supported by the adapter as well as the scope of the hosting
environment (J2EE application server versions, JDK versions, and so on). Version
control can be defined in the context of a specific implementation environment or a
set of implementation environments. If the adapter is being developed for a particu-
lar end user, then the dependencies are known and can be specified. For example, if
a resource adapter was developed for an instance of an Oracle Application installa-
tion, then the specific version of Oracle Application and its underlying operating
system are known. The adapter has to work with those specific versions of the differ-
ent components of its environment. However, if a resource adapter provider (a third-
party ISV that provides resource adapters) is developing a similar Oracle Applications
adapter, then the context in which version control and dependencies are defined is
more complex. The resource adapters from adapter providers need to be more
generic in their support of the target applications and its environments. This affects
the version control required in the adapter because it has to interface with different

Adapter Version Control 195

13 0672323109 CH12 4/18/02 10:09 AM Page 195

versions of Oracle Applications, in different operating environments, and with differ-
ent configurations.

Also, if the target system is large and has many features, it is likely that there will be
more than one adapter developed, each handling a group of related features. For the
sake of performance and manageability, it may not be wise to write one adapter for
all the features and modules of Oracle Applications, for example. Some adapters
require version control at a method level, whereas others may not. In the case of
adapters that support more than one version of the target application, some of the
adapter services may need to know the version of the target application before inter-
facing with it. It is quite possible that the database table structures are different
between different versions of an application. If the adapter is accessing that table for
any reason, then the method responsible for it may need to know which version of
the database tables it is interfacing with.

Sometimes, messages that carry information between applications also have version
numbers. These message version numbers may indicate different message structures
or even different semantics. If the resource adapter is receiving, processing, or gener-
ating these messages, a more granular method-level version control may be required
in the adapter. From a deployment perspective, version control is absolutely neces-
sary to maintain backward compatibility.

The resource adapter deployment descriptor does not support method-level version
control. It only defines the version of the adapter and the version of the EIS the
adapter interacts with. The XML DTD that defines the descriptor has to be extended
to include additional information. This information should be stored in a different
XML file, and should refer to the standard deployment descriptor. The DTD
describing the descriptor can be found at http://java.sun.com/j2ee/dtds/
connector_1_0.dtd. Note that the standard properties (information) defined in
this DTD cannot be changed.

Deployment Scenarios
There are many different deployment scenarios that can exist in a production envi-
ronment. These scenarios can be specific to the environment, but some basic deploy-
ment scenarios can be identified. You can think of these scenarios as deployment
patterns that are useful for understanding the deployment requirements and the
definition of the deployment descriptor. Figure 12.1 captures the basic deployment
scenarios for resource adapters. These scenarios can be extended to include specific
run-time environments and other attributes of the distributed computing environ-
ment.

CHAPTER 12 Deploying Adapters196

13 0672323109 CH12 4/18/02 10:09 AM Page 196

FIGURE 12.1 Basic adapter deployment scenarios.

In Figure 12.1, there are four deployment scenarios:

• A component of a managed application invokes two resource adapters

• An unmanaged Java application invokes a standalone resource adapter

• A resource adapter interfaces with one and only one EIS

• A resource adapter interfaces with two instances of the same EIS

Other permutations of these scenarios are also possible, such as an unmanaged Java
application invoking more than one adapter. Identifying the deployment scenarios
for each resource adapter enables the system administrator to configure the environ-
ments appropriately.

Defining Deployment Requirements
Something that is often not part of most software requirements is the specific
deployment requirement. Most development methodologies focus on end user
requirements, but do little to capture the run-time environment and its require-
ments. Part of the reason is that these requirements are not known until the devel-
opers start designing the system. Capacity planning (hardware, memory, network

Defining Deployment Requirements 197

Legacy
EIS

Legacy
EIS

EIS Domain

J2EE Server Domain

Deployment Scenarios

Managed APP Environment

Web
Container

Client
JSP

Unmanaged
Environment

Java
Application

EJB
Container

Client
EJB

Resource
Adapter

Resource
Adapter

Standalone JCA Env.

B

A

D

C

JCA Env.

13 0672323109 CH12 4/18/02 10:09 AM Page 197

bandwidth, and so on) is a task left to the system administrators and IT to define
and implement. The adapter development methodology and the adapter reference
model described in this book highlight the need for thinking about deployment
requirements as part of the design process.

Dynamic Adapter Configuration Changes
Not all configurations can be static parameters that are configured once during
installation or require the adapters to be shut down before changing the parameters.
Some configuration changes are preferably done more dynamically without requiring
the client, adapters, and EIS to be shut down. Typically, there would be an addition
of new users or changes to the credentials of an existing user’s privileges.
Unfortunately, the resource adapter deployment descriptor cannot change the
configuration of the adapter while it’s still running (instantiated). Perhaps one of the
future enhancements to JCA will be the support of dynamic configurations that will
enable system administrators to change any parameters without requiring that the
adapters and other software be shut down.

Remote Administration Capability
In a distributed environment, the capability to monitor and administer the adapter
from a remote location is a critical requirement. The deployment tools used by
system administrators to configure resource adapters must ideally support this capa-
bility. The use of Web-based deployment tools provides system administrators the
flexibility to manage the adapters from remote sites.

JCA Adapter Deployment Descriptor
Per the JCA specification, a deployment descriptor defines the contract between a
resource adapter provider (developer) and a deployer (or system administrator). The
descriptor is an XML document that conforms to the connector_1_0.dtd file. The
root element in this DTD is <connector>, and it has many elements—including
display-name, description, icon, vendor-name, spec-version, eis-type, version,
license, and resourceadapter. Of these, the description, icon, and license
elements are optional; and if they do exist in the descriptor, then only one instance
is allowed. Hence, there can be only one description for the resource adapter, or
none. All the other elements are required.

The resourceadapter element is further broken down into child elements—includ-
ing managedconnectionfactory-class, connectionfactory-interface,
connectionfactory-impl-class, connection-interface, connection-impl-class,
transaction-support, config-property, auth-mechanism, reauthentication-
support, and security-permission. Of all these elements, the config-property,

CHAPTER 12 Deploying Adapters198

13 0672323109 CH12 4/18/02 10:09 AM Page 198

auth-mechanism, and security-permission elements can have more than one
instance or element. This means there can be multiple config-properties for a
resource adapter. Also, there can be more than one authentication mechanism—from
the simplest user-ID password combinations to more sophisticated digital certificates.

One thing to note is that the authentication mechanism does not relate to the EIS
authentication mechanism. Hence, the adapter may support digital certificate-based
authentication, even if the EIS has a much simpler authentication mechanism (or no
authentication mechanism at all). Another important factor of the resourceadapter
element is the connectionfactory-interface and connectionfactory-impl-class.
They signify that the standard connection factory interface (and, similarly, the
connection interface) can be extended before implementing the respective interfaces.
However, the managedconnectionfactory interface cannot be extended. The skeleton
structure of a resource adapter deployment descriptor is shown here:

<!DOCTYPE connector PUBLIC

➥ “-//Sun Microsystems, Inc.//DTD Connector 1.0/EN”

➥ http://java.sun.com/j2ee/dtds/connector_1_0.dtd>

<connector>

<display-name> Legacy System Adapter </display-name>

<vendor-name> Developed Inhouse </vendor-name>

<spec-version>1.0</spec-version>

<eis-type> AccountingSys in CICS Environment </eis-type>

<version> 2.1.1 </version>

<resourceadapter>

<connectionfactory-interface>javax.resource.cci.ConnectionFactory

➥ </connectionfactory-interface>

<connectionfactory-impl-class>myCFImplClass

➥ </connectionfactory-impl-class>

<connection-interface>javax.resource.cci.Connection

➥ </connection-interface>

<connection-impl-class>myConnection</connection-impl-class>

<managedconnectionfactory-class>myMCClass

➥ </managedconnectionfactoryclass>

…

</resourceadapter>

</connector>

The deployment descriptor is packaged as part of the resource adapter archive file.
The archive file is in JAR (Java Archive) format with a .RAR extension. The descriptor
itself must have the specific name META-INF/ra.xml. Thus, if the .rar file has a
descriptor with a different name, it is not recognized, which also means that there

JCA Adapter Deployment Descriptor 199

13 0672323109 CH12 4/18/02 10:09 AM Page 199

cannot be more than one deployment descriptors in a .rar file. If an adapter supports
different deployment environments, it has to be packaged as different .rar files, or
the deployment descriptor has to be extended, if possible. The .rar file must also
contain all external third-party libraries and components that the resource adapter
classes depend on and requires at run-time. If the order in which the jar files are
loaded is significant, then it should reflect that in the .rar file too.

If an adapter supports more than one instance of the EIS (target application), there
has to be a corresponding deployment descriptor for each instance of the supported
EIS. A deployment descriptor is used to configure an instance of the managed
connection factory that enables connections to the EIS.

Deployment Plan Template
The deployment plan template provides a guideline for defining a comprehensive plan
that needs to be produced jointly by the development team and the system adminis-
tration team. Deployment descriptors are part of a much broader deployment plan
that includes the following information:

• Objective: The objective of the deployment can be one of the three identified
earlier in this chapter: deploying new adapters, upgrading to existing adapters,
or applying bug fix patches to existing adapters.

• Components: The components of the package that needs to be deployed
must be listed in the correct order of significance. Some of the components of
the package may not be installed in the target environment, and these should
be highlighted. Other components may be required only during the installa-
tion process, and are deleted after the installation process is complete. These
types of components should be listed so that they can be automatically deleted
or manually removed after successful deployment.

• Configuration of each component: For each component, the configura-
tion parameters and their default values, if any, must be clearly stated. If the
component can be used without further configuration, then the component
must be identified as a self-configuring or out-of-the-box component, enabling
system administrators to see whether the environments are set up correctly.
Developers sometimes like to keep the component configuration constant, and
change the environment instead.

• Deployment test cases: The system administrator needs to know whether
the installation and deployment are successful or not. Simply installing all the
components, modules, files, and so on does not mean the adapters will work as
expected. It is better to include a small set of test cases to check and certify the
deployment.

CHAPTER 12 Deploying Adapters200

13 0672323109 CH12 4/18/02 10:09 AM Page 200

• Deployment rollback guidelines: Despite the best efforts and best plans,
there are instances when the deployment fails, and any problems identified
need to be fixed. Having deployment rollback guidelines helps system adminis-
trators make those decisions more quickly and be better informed in general.

Summary
Adapter deployment can be simple or complex, depending on the target environ-
ment. It is better to be prepared for deployment challenges, and having a deploy-
ment plan helps system administrators achieve successful deployments. Many times,
the information required during deployment comes from software developers; and in
the case of resource adapters, deployment descriptors fill that role of capturing
deployment and configuration information.

Knowing the various dependencies between the adapter and its environment, as well
as the potential deployment scenarios that may need to be supported by the resource
adapter, ensures a successful transition of the resource adapter from a development
stage to production stage. Some of the best-designed and developed software do not
see the light of day because of inadequate deployment information. Developers need
to remember that a resource adapter may be simple to develop, but the deployment
environment may not be that simple.

Summary 201

13 0672323109 CH12 4/18/02 10:09 AM Page 201

13 0672323109 CH12 4/18/02 10:09 AM Page 202

IN THIS CHAPTER

• Adapter Customization
Domains

• Example of Customizable
Frameworks

13

Customizing Adapters

“You can learn a lot from the client. Some 70% doesn’t matter,

but that 30% will kill you.”

—Paul J. Paulson

One of the universal facts of e-Business projects is the
need for customizing applications and components of e-
Business infrastructure. Adapter customization is a neces-
sity that can be rarely avoided. The deployment of an
adapter in an e-Business environment results in changes to
the adapter configuration or even changes to the adapter
code. The extent of customization depends on how much
customization the adapted business application has under-
gone, or if there are proprietary deployment and adminis-
tration policy requirements that require additional
functionality in the adapters. There are many forces result-
ing in customization requirements on adapters, but the
real question is whether the adapter is conducive to
customization. Unless the adapter was developed to
support customization, it will be very hard, time-intensive,
and costly to make the required changes in the adapter.
This chapter focuses on some of the aspects of adapter
customization, and how to be prepared for the inevitable
question: “Can I change this feature of the adapter?”

14 0672323109 CH13 4/18/02 10:08 AM Page 203

CHAPTER 13 Customizing Adapters204

Perhaps this chapter is more relevant in the cases in which prebuilt adapters are
selected for deployment or if adapters have been acquired from more than one
source (adapter providers). In that case, it is very likely that the architecture of the
adapters will be different. Under such circumstances, the administration of the
adapters will be difficult if there is no consistent interface to manage it. But
customization is not limited to prebuilt adapters only; it applies even to custom-
built adapters. The need to customize is not a one-time requirement, but an ongoing
process driven by business requirements.

Consideration for adapter customization should be one of the major aspects of
adapter development from the very beginning. This chapter identifies some specific
areas of an adapter that tend to need customization more often. The intention is to
help adapter architects and developers give some thought to future requirements in
terms of extending the behavior of the adapter, or even using them in different
deployment environments. The chapter also includes an example of how to build
extendable and easily customizable adapter designs by using some of the more well-
known design patterns. The code presented in this chapter is part of the example
resource adapter described in Chapter 17, “Source Code for ASCII File J2EE Adapter,”
and shows a simple design for extendable log (audit trail) management.

Adapter Customization Domains
It is very hard to predict when and what sort of customization may be needed of any
adapter. There are almost infinite business patterns, each slightly different from the
each other but requiring varying degrees of customization. There are, however, some
very common areas or domains of an adapter that appear frequently during adapter
customization projects. The four major adapter customization domains include the
following:

• Administration interfaces

• Environment settings

• Host interface

• Persistence management

Figure 13.1 shows the major domains and the feature categories most often
customized in each domain. The list of domains and the feature categories are by no
means complete, but cover the most frequent adapter customizations.

14 0672323109 CH13 4/18/02 10:08 AM Page 204

FIGURE 13.1 Adapter customization domains.

Administration Interfaces
Any well-designed adapter keeps track of its actions and states in a log or an audit
trail in varying levels of details. These logs are very useful for determining the exact
cause of system and application errors, maintaining a proof of e-Business transac-
tions, as well as capturing statistics that are useful in system monitoring in general.
There are several methods of creating logs, maintaining them, and analyzing them.
More sophisticated adapter designs integrate with system management and network
management environments and tools such as IBM Tivoli and others. It is not
uncommon to have more the one type of log maintained on different servers in a
distributed environment. With JDK 1.4, Java has a logging API that will be useful for
developing a custom log manager.

Administration policies and infrastructure are mostly customized to suit the organi-
zation’s needs and available resources. Deploying adapters in a heterogeneous IT
environment does require that the adapters interface with and support the adminis-
tration policies and guidelines of the organization. Often, adapters are customized to
enhance their audit trail capabilities, or new interfaces to system-management envi-
ronments are added to the adapter. There is a tendency to think of audit trails and
logs in the context of system events and exception handling. But with the adapter’s
participation in e-Business transactions, audit trails of transactions at a higher level
are also required, especially in the case of supporting any dispute resolutions.

Adapter Customization Domains 205

Static
Configs

Monitoring
Interface

Logs

Dynamic
Configs

Environment Settings

Administration

Lifestyle
Mgt.

System
Interface

Host Interface

Persistence
Interface

Persistence
Management

Adapter
Customization

Domains

14 0672323109 CH13 4/18/02 10:08 AM Page 205

The typical end-to-end integration use case is composed of many moving parts,
including adapters, and tracking the transaction from one end to the other is almost
impossible without an audit trail in which each adapter logs its actions and data in
one or more logs. Obviously, audit trails add considerable overhead, depending on
their features and complexity. Once again, the level of detail to be captured in an
audit trail varies among organizations.

Hence, a highly customizable set of administration interfaces increases the long-term
value of an adapter. Without administration and audit trail capabilities, the signifi-
cance of an adapter in e-Business tends to be lower than its potential. Many of us
know the 80-20 rule in the context of exception handling. Applications or software
in general function without problems 80% of the time, but during that 20% of the
time when it fails, business costs in lost revenues and so on are very high. Problems
will occur, and adapters need to make it easy for you to customize their administra-
tion features to match specific deployment environments and policies.

Another important administration feature that generally requires some customiza-
tion is the monitoring capability. The actual monitoring of the adapter is usually
managed by an external tool, but the adapter needs to support the monitoring capa-
bilities of the tool. Generating appropriate events and responding to external triggers
generated by the monitoring tool are essential features of an adapter. After all, moni-
toring tools cannot be effective without support from the monitored applications
and components (adapters). Monitoring features sometimes also include perfor-
mance statistics such as number of transactions processed within a given period or
number of errors, bad data, and so on. Adapters need to generate these statistics or
(at a minimum) generate the required data for some other tool to generate the statis-
tics.

It is not possible for an adapter to have interfaces to all different logging and moni-
toring mechanisms and tools. Hence, a flexible architecture, including a log manager
that can be easily customized to incorporate specific logging mechanisms, must be
included in the basic adapter designs. Things would be a lot simpler if there were a
standard interface to manage audit In the current environment, because there is no
such standard available, the next best thing to do is be prepared for customization
and design administration interfaces and frameworks to achieve easy customization.

Environment Settings
Good programmers always externalize as much of the internal adapter behavior as
possible. Externalizing adapter behavior means identifying parameters that define the
different possible choices of specific adapter functions and features, and extracting
the values of these parameters from an external source. Many times in the Java envi-
ronment, the external source is a Java property file or Java resource bundle. But there

CHAPTER 13 Customizing Adapters206

14 0672323109 CH13 4/18/02 10:08 AM Page 206

is more to it than just reading parameters and their values from a property files.
Some behaviors need more dynamic changes than others. Some parameters depend
on specific business and system conditions.

For example, if the adapter is writing data to one database that happens to be
unavailable, then the adapter writes to a secondary database. Another example of a
business condition driving behavior is an adapter that interfaces with different
message queues depending on the type of the customer account (investment
account, savings account, and so on). These message queues may change in the
future, and hard coding the association between account type and message queue is
not appropriate or advisable—even if it works. In such situations, programmers
externalize the parameters (message queue names, associated account types, and so
on) in an external file (property file). More complicated business rules are stored in a
business rules engine (database). An example of such complex business rules is an
order management system that distributes orders based on order amount or number
of items. Larger orders may get preference or may be routed to a different order
fulfillment cycle. Customer service calls routed by severity, geographical areas, or
customer account is also a valid example of business rules being stored in a database
of some sort.

Adapters to these systems will have to interface with the business rules engines and
the databases to extract the appropriate parameters and their values. Thus, a flexible
interface to get and set environment variables alone is not enough. A more compre-
hensive interface to support static and dynamic environment settings is required.
Not all adapters may need an advanced environment settings API, but if such an API
is available as part of the adapter framework, it is better to use it. Even in the case of
resource adapters, there will be times when external parameters may need to be
retrieved from databases instead of property files.

Host Interface
Integration components such as adapters are required to plug into various different
types of infrastructures. Even in the case of resource adapters, although the system
interfaces are well-defined (system contracts between resource adapters and the
application server) and should not change from one J2EE application server to
another, there is no restriction on additional system interfaces provided by applica-
tion server vendors. It is quite possible to find application server vendors that
include more than the standard JCA-defined system interfaces to differentiate their
servers from competition. Load balancing, state management, and interfaces to
messaging and transaction infrastructures are some of the additional system inter-
faces that you can find in application servers. Resource adapters may also need to
interface with these system interfaces besides the JCA contracts.

Adapter Customization Domains 207

14 0672323109 CH13 4/18/02 10:08 AM Page 207

A critical part of any integration component including adapters is the state manage-
ment capability. Adapters can exist in different states throughout their lifecycle, from
creation to final destruction. In-between these two states, an adapter may suspend its
execution while performing housekeeping activities or while waiting for a critical
system resource to be available. A lifecycle management interface makes the task of
changing the adapter states much easier and more manageable and consistent.
Changes to an adapter environment or regular system maintenance tasks should not
require all adapters to stop or be completely shut down. Adapters should have the
capability of temporarily suspending their normal processing, allowing for system
management tasks to complete or allowing for dynamic configuration changes
without affecting the executing of the adapters. State management is not usually
considered critical, but its value is obvious when dealing with multithreaded or
distributed software and components.

Persistence Management
Persistence management, in the form of supporting different databases and storage
mechanisms, is a very familiar customization domain. For example, an SAP adapter
may be using an Oracle database as its staging area for moving data between SAP and
external systems, but the customer may be using a completely different database,
such as an object database or a flat file, as a storage mechanism. The capability to
change the persistence management features is very important if the SAP adapter has
to function well with other databases. Without an API or a set of abstract interfaces,
defining the persistence interface for the adapter will be very difficult if not impossi-
ble. Adapters that store data in a staging or intermediary database tables should not
be tied to any specific database or even to any type of database. It should be possible
to use any popular storage mechanism as a data staging area. It is easier said than
done, but a persistence framework generally does the trick.

With resource adapters, the use of JDBC and JNDI helps to support different storage
mechanisms, as long as they support either one of the interfaces. The need for a
persistence framework does not stop at data staging areas. Adapters store their inter-
nal states and configuration in external storage media. Even a simple serialization of
adapter objects is better off with a higher-level API that is capable of moving from a
serialized object file to a more sophisticated RDBMS or other database.

Sometimes, the reverse is true, and adapters that originally stored everything in a
database may need to be customized to store part or all of the data in memory or
shared memory. This may be required when adapters are deployed in a high-volume
environment in which the frequency of updates and data access is fast and furious,
as with a stock market ticker. Even in such conditions, a persistence framework
makes customization easier and more localized. Without the framework, it is very
hard to isolate the functions or classes and interfaces that need to be changed.

CHAPTER 13 Customizing Adapters208

14 0672323109 CH13 4/18/02 10:08 AM Page 208

Example of Customizable Frameworks
The example resource adapter developed as part of this book uses a simple Log
package that contains a log manager framework capable of creating instances of
multiple types of log managers. Each log manager is capable of managing one or
more individual logs.

By designing a simple interface to the log manager functions, it is possible to extend
the features and support—not just simple ASCII files for logs, but also to interact
with logs maintained by RDBMS or even remote RMI-capable logging mechanisms.
The objective of the framework is simply to allow developers to add new features
(log managers) without affecting existing features. The log manager package uses the
well-known factory pattern to accept log manager types as a key, which the factory
uses to create instances of appropriate log managers. Figure 13.2 shows the interfaces
and classes of the log manager package included with the example adapter of this
book.

Example of Customizable Frameworks 209

LogFileManager
Object

-_noOfLogFilesOpen:int
-_maxLogFilesOpen:int
-logFileTable:Hashtable

 noOfLogFilesOpen:int
 maxNoOfLogFiles:int

+LogFileManager()
+LogFileManager(maxNoOfLogF
+openLog(theLogFileName:Strin
+closeLog(theFileName:String)
+logMessage(logName:String, id
+incrementNoOfFilesOpen() :voi

TooManyLogFilesOpenException
Exception

+TooManyLogFilesOpenException(
+TooManyLogFilesOpenException(

AdapterExceptionLogManager

+AdapterExceptionLogmanager()
+setTimestamp(logName:String, tim
+logException(logName:String, msg

AdapterDefaultLogManager

+AdapterDefaultLogmanager()
+setTimestamp(logName:String, tim

interface
LogManagerFactoryIF

+createLogManager(logType:String

LogManagerFactory

+LogManagerFactory()
+createLogManager(logType:String

interface
LogManager

+openLog(logName:String, mode:S
+openLog(logName:String, mode:S
+closeLog(logName:String):void
+logMessage(logname:String, logM
+setTimestamp(logName:String, tim

FIGURE 13.2 Log package.

14 0672323109 CH13 4/18/02 10:08 AM Page 209

Listings 13.1 through 13.7 show the source code for all the classes in the Log
package.

The design of the abstract class LogManager is very simple, and in the real world
needs to be more rich in functionality as well as design. But even in its rather simple
form, the current design is capable of supporting new log managers or even new
methods of logging messages very easily. The biggest benefit is obviously the fact
that developers know the precise location where changes are required and the effect
the change will have on the Log package and its users.

A quick analysis of the LogManager class reveals that it is a simple abstraction of
normal operations such as open and close logs, log messages, add a time stamp, and
so on. These methods can be easily extended or overridden to support more complex
features. For example, the openLog method in the LogManager class has two signa-
tures: One is open and accessible to all users, and the other requires a valid user ID
and password to open a particular log. Also notice that the use of factory pattern
means that the decision to associate log types with specific instances of log managers
is handled by the factory. This provides additional flexibility to change the associa-
tions or create new log manager types easily and quickly.

LISTING 13.1 The LogManager Class

/* Generated by Together */

package LogPackage;

/**

* A log manager is a generic interface to different types of audit

* trails that track different aspects of the resource adapter.

* Some of the audit trail will be managed local to the resource

* adapter (on the same J2EE application server) while other audit

* trails will be remote to the adapter. For example if a resource

* adapter is integrating a CICS COBOL application then it may well

* be necessary to maintain a log in the CICS environment as well as

* the application server environment.

*

* Designing a log manager independent of the actual location and

* implementation is important part of adapter customization and

* flexibility. In more advanced IT centers a NMS (Network Monitoring

* System) based log manager may be needed.

* An adapter may have to open more than one log at the same time.

* One of the customization could be to I18N one or more of the log

CHAPTER 13 Customizing Adapters210

14 0672323109 CH13 4/18/02 10:08 AM Page 210

* files. This will ensure that geographically distributed centers

* and users get messages in local languages.

*

* @author Atul Apte

* @version 1.0

*/

import java.io.*;

public interface LogManager {

/* The LogManager implementation can open and manage more then one

* log of different types including transaction logs, system logs,

* exception logs, and performance logs

*/

public void openLog(String logName, String mode) throws Exception;

/* Some logs may need a secured access especially if the log file is

* maintaining details of a business transaction and not just system

* information

*/

public void

openLog(String logName, String mode, String userID, String password)

throws Exception;

public void closeLog(String logName) throws IOException;

public void logMessage(String logName, String logMessage)

throws Exception;

public void setTimestamp(String logName) throws Exception;

}

LISTING 13.2 LogFileManager.java

/* Generated by Together */

/* The LogFileManager provides a class for managing file based logs

* This class must be extended to manage specific types of log files

*

* @author Atul Apte

Example of Customizable Frameworks 211

LISTING 13.1 Continued

14 0672323109 CH13 4/18/02 10:08 AM Page 211

* @version 1.0

*/

package LogPackage;

import java.io.*;

import java.util.*;

import java.lang.*;

abstract public class LogFileManager extends Object implements LogManager {

public LogFileManager() {

// The default constructor allows for only one log file

// to be open at any given time

_noOfLogFilesOpen = 0;

_maxLogFilesOpen = 1;

logFileTable = new Hashtable();

}

public LogFileManager(int maxNoOfLogFiles) {

// If you need more than one log file open at the same

// time use this constructor. The actual maximum files open

// in any environment is defined by the system kernel.

_maxLogFilesOpen = maxNoOfLogFiles;

_noOfLogFilesOpen = 0;

logFileTable = new Hashtable();

}

// mode can be a string with the value WRITE or APPEND

public void openLog(String theLogFileName, String mode) throws

TooManyLogFilesOpenException, Exception {

// Check to see if there is any room to open more files

if (getNoOfLogFilesOpen() >= getMaxNoOfLogFiles()) {

TooManyLogFilesOpenException e = new

TooManyLogFilesOpenException(“Cannot open “ +

theLogFileName + “Too many log files open”);

throw e;

}

// Open a log file and store the handle in a hash table

File logFile = new File(theLogFileName);

FileOutputStream logFileStream;

CHAPTER 13 Customizing Adapters212

LISTING 13.2 Continued

14 0672323109 CH13 4/18/02 10:08 AM Page 212

if (logFile.isFile() == false) {

// File doesnot exist

if (mode.equalsIgnoreCase(“WRITE”) == true) {

try {

// Open file in write mode

logFileStream = new

FileOutputStream(theLogFileName, false);

} catch (Exception e) {

throw e;

}

// Store the FileOutputStream object in the hashtable

logFileTable.put(theLogFileName, logFileStream);

}

else if (mode.equalsIgnoreCase(“APPEND”) == true) {

try {

// Open file in write mode

logFileStream = new

FileOutputStream(theLogFileName, true);

} catch (Exception e) {

throw e;

}

// Store the FileOutputStream object in the hashtable

logFileTable.put(theLogFileName, logFileStream);

}

incrementNoOfFilesOpen();

}

else {

if (mode.equalsIgnoreCase(“APPEND”) == true) {

try {

// Open file in write mode

logFileStream = new

FileOutputStream(theLogFileName, true);

} catch (Exception e) {

throw e;

}

// Store the FileOutputStream object in the hashtable

logFileTable.put(theLogFileName, logFileStream);

incrementNoOfFilesOpen();

}

else {

// Throw an exception

Example of Customizable Frameworks 213

LISTING 13.2 Continued

14 0672323109 CH13 4/18/02 10:08 AM Page 213

TooManyLogFilesOpenException e = new

TooManyLogFilesOpenException(“File “ +

theLogFileName +

“ exists. Cannot open in WRITE mode”);

throw e;

}

}

}

public void openLog(String theLogFileName, String mode,

String userID, String password)

throws TooManyLogFilesOpenException, Exception {

openLog(theLogFileName,mode);

}

public void closeLog(String theFileName) throws IOException {

Object logFileStream = (Object)logFileTable.remove(theFileName);

if (logFileStream != null) {

Class logClass = logFileStream.getClass();

String className = logClass.getName();

if (className.equalsIgnoreCase(“FileOutputStream”) == true) {

FileOutputStream theStream = (FileOutputStream)logFileStream;

try {

theStream.close();

} catch (IOException e) {

throw e;

}

}

}

}

public void logMessage(String logName, String logMsg) throws Exception {

// Retrieve the correct file stream object matching the log name

Object theFileStream;

theFileStream = logFileTable.get(logName);

if (theFileStream == (Object)null) {

NullPointerException e = new

NullPointerException(“Cannot find matching file stream for “

+ logName);

CHAPTER 13 Customizing Adapters214

LISTING 13.2 Continued

14 0672323109 CH13 4/18/02 10:08 AM Page 214

throw e;

}

FileOutputStream logFileStream;

logFileStream = (FileOutputStream)theFileStream;

byte[] msgInBytes = logMsg.getBytes();

logFileStream.write(msgInBytes);

logFileStream.write((int)nl);

}

public int getNoOfLogFilesOpen() {

return(_noOfLogFilesOpen);

}

public int getMaxNoOfLogFiles() {

return(_maxLogFilesOpen);

}

public void incrementNoOfFilesOpen() {

_noOfLogFilesOpen++;

}

public void decrementNoOfFilesOpen() {

_noOfLogFilesOpen--;

}

private int _noOfLogFilesOpen;

private int _maxLogFilesOpen;

private Hashtable logFileTable;

private final char nl = ‘\n’;

}

LISTING 13.3 AdapterDefaultLogManager.java

/* Generated by Together */

/* The AdapterDefaultLogManager extends LogFileManager class

* The example resource adapter in this book uses this

* as the default log manager.

*

Example of Customizable Frameworks 215

LISTING 13.2 Continued

14 0672323109 CH13 4/18/02 10:08 AM Page 215

* @author Atul Apte

* @version 1.0

*/

package LogPackage;

import java.util.*;

import java.text.*;

public class AdapterDefaultLogManager extends LogFileManager {

public AdapterDefaultLogManager() {

super(1); // Only one default log manager

}

public void setTimestamp(String logName) throws Exception {

Date now = new Date();

DateFormat fmt = DateFormat.getDateTimeInstance();

String timeStamp = fmt.format(now);

try {

logMessage(logName, timeStamp);

} catch (Exception e) {

throw e;

}

}

}

LISTING 13.4 AdapterExceptionLogManager.java

/* Generated by Together */

/* The AdapterExceptionLogManager extends LogFileManager class

* The example resource adapter in this book uses this

* as the exception log manager.

* Notice the logException method has been extended to support

* severity of the exception

*

* @author Atul Apte

* @version 1.0

*/

package LogPackage;

CHAPTER 13 Customizing Adapters216

LISTING 13.3 Continued

14 0672323109 CH13 4/18/02 10:08 AM Page 216

import java.lang.*;

import java.util.*;

import java.text.*;

public class AdapterExceptionLogManager extends LogFileManager {

public AdapterExceptionLogManager() {

// set max number of files that can be opened to 3

super(3);

}

public void setTimestamp(String logName) throws Exception {

Date now = new Date();

DateFormat fmt = DateFormat.getDateTimeInstance();

String timeStamp = fmt.format(now);

try {

logMessage(logName, timeStamp);

} catch (Exception e) {

throw e;

}

}

public void logException(String logName, String msg,

String severity) throws Exception {

try {

logMessage(logName,severity);

} catch (Exception e) {

throw e;

}

try {

logMessage(logName,msg);

} catch (Exception e) {

throw e;

}

}

}

LISTING 13.5 LogManagerFactoryIF.java

/* Generated by Together */

/* This factory interface creates a log manager depending

* on the key defined by the parameter logType

* The benefits of having a factory create instances of

Example of Customizable Frameworks 217

LISTING 13.4 Continued

14 0672323109 CH13 4/18/02 10:08 AM Page 217

* log managers is that the decision to associate a specific

* key or log type to appropriate class is localized in

* this class and easier to change in future without

* affecting the other classes.

*

* @author Atul Apte

* @version 1.0

*/

package LogPackage;

public interface LogManagerFactoryIF {

public LogManager createLogManager(String logType);

}

LISTING 13.6 LogManagerFactory.java

/* Generated by Together */

/* This is the implementation of the log manager factory

* interface

* If the logType is == Adapter Exception Log then

* an instance of the exception log manager is created.

* Otherwise the default log manager is created

* If the exceptions need to be directed to the system

* admin by an email, the AdapterExceptionLogManager can

* be extended to send an email using SMTP or other mail

* protocols

*

* @author Atul Apte

* @version 1.0

*/

package LogPackage;

public class LogManagerFactory implements LogManagerFactoryIF {

public LogManagerFactory() {

}

public LogManager createLogManager(String logType) {

LogManager aNewManager;

if (logType.equalsIgnoreCase(“Adapter Exception Log”) == true)

CHAPTER 13 Customizing Adapters218

LISTING 13.5 Continued

14 0672323109 CH13 4/18/02 10:08 AM Page 218

aNewManager = new AdapterExceptionLogManager();

else

aNewManager = new AdapterDefaultLogManager();

return(aNewManager);

}

}

LISTING 13.7 TooManyLogFilesOpenException.java

/* Generated by Together */

/* This is the exception thrown when too many log files are

* open at the same time.

*

* @author Atul Apte

* @version 1.0

*/

package LogPackage;

public class TooManyLogFilesOpenException extends Exception {

public TooManyLogFilesOpenException() {

super(“Too many log files opened at the same time”);

}

public TooManyLogFilesOpenException(String s) {

super(s);

}

}

Agreeing to use a single framework to manage different types of logs proves to be
extremely useful, both in the short and long term. Perhaps in future versions of JCA,
log management will also be standardized across different logging mechanisms.

Summary
Adapter customization is inevitable, and the degree of customization depends on the
environment and context. In an ideal situation, there will be APIs for every aspect of
the adapter that may need changing. In reality, however, it is not possible or neces-
sary to build APIs for every little function of the adapter. There are some features and
functionalities of adapters that are more often changed during deployment, and it is
wise to incorporate APIs and extendable designs for them. The goal should be to

Summary 219

LISTING 13.6 Continued

14 0672323109 CH13 4/18/02 10:08 AM Page 219

shorten the customization cycle by building flexible architectures and designs rather
than reinventing the wheel by building custom adapters every time.

Object-oriented programming has benefited a lot from the use of design patterns.
Programmers are familiar with the more common patterns, such as Model View
Controller (MVC), Factory, Singleton, Command, Proxy, and others. Adapter devel-
opers should use these patterns to build the adapters and simplify the task of adapter
customization in the future.

When evaluating or comparing adapter designs, the capability to customize must
take precedence over other features. For resource adapters, the capability to function
on different J2EE application servers may be great, but the capability to take advan-
tage of the unique features of an application server is equally important. Hence, the
internal architecture of the adapter is important, and consequently the availability of
APIs for the different customization domains explored in the chapter is also impor-
tant. Lack of customization features will hurt the effectiveness of the adapter in the
long term, and the effectiveness of the integrated applications will also suffer.

CHAPTER 13 Customizing Adapters220

14 0672323109 CH13 4/18/02 10:08 AM Page 220

IN THIS CHAPTER

• Importance of Integration
Readiness

• Characteristics of Integration-
Ready Applications

• Refactoring Legacy
Applications

• Designing New Integration-
Ready Applications

• Rating Integration Readiness

14

Developing Integration-
Ready Applications

“We work day after day, not to finish things, but to make the

future better because we will spend the rest of our lives there.”

—Charles F. Kettering

With increasing focus on application integration and
the fast pace of technology innovations, future integration
will be much simpler. But have we learned our lessons, or
do we continue to make the same mistakes and ignore
application integration as a fundamental requirement of
all software development activities? Are we applying our
increasing knowledge about application integration to the
new systems under development today? After all, we are
building tomorrow’s legacy systems today. How good are
these applications in terms of integration readiness?

The primary focus of application integration today is
indeed on finding the most efficient and cost-effective way
to integrate legacy applications that were not designed to
easily integrate with new applications. But it is equally
important to design the new applications with the proper
integration features. This chapter defines the characteristics
of integration-ready applications, and focuses on the best
practices for developing integration-ready applications.

Importance of Integration Readiness
Unless software developers change their programming
habits and learn to include integration readiness in all soft-
ware designs, we will be faced with a constant problem of
integrating closed applications that are not integration-

15 0672323109 CH14 4/18/02 10:10 AM Page 221

CHAPTER 14 Developing Integration-Ready Applications222

ready. The term “closed” does not apply only to legacy applications and architec-
tures. It is very easy to build closed applications using the latest software platforms
including J2EE. Closed applications do not integrate with other applications or make
it very hard for applications to integrate and exchange information. An integration-
ready application, on the other hand, has a more open architecture and has built-in
capabilities to support integration with applications running on different infrastruc-
tures and platforms, running in different locales, developed in different program-
ming languages, and having different core architectures.

The best practices for developing integration-ready applications are derived from
real-life project experiences involving many different applications—including legacy
and new applications, proprietary and packaged applications, and small and large
distributed systems. It is quite possible to build JCA-compatible resource adapters
without incorporating any of the best practices highlighted in this chapter, but the
result will most likely be a resource adapter that is less flexible and subject to
constant modifications and changes—and not delivering any significant business
benefits in terms of integrating business processes, functions, and data.

The basic principle of this chapter is that existing (legacy) applications need to
change to become truly integration-ready. Many EAI technologies are sold under the
banner of “no coding required” to integrate legacy applications. There is a big differ-
ence between not changing the functionality of the legacy application during the
process of integration and not changing any code of the application to achieve inte-
gration. The former is a necessity unless there is a real business reason to change
functionality. The latter is very hard to achieve, even with the best EAI, code genera-
tion, and business modeling tools.

In the real world, business applications mirror the business processes of the
company and as such, business applications vary from company to company. Even
the most expensive and flexible ERP and CRM packages need to be customized for
automating the unique business processes of a company. In the initial days of ERP,
implementation package vendors were trying to encourage companies to change
their business processes to match the ERP packages. Over the years, ERP vendors and
companies have realized that generally the packages need to be fine-tuned to match
the business processes, and not the other way around. This is mainly due to the fact
that business processes are driven by market forces and not by technologies. This is
an important factor to consider when integrating applications because the solution
should be to make legacy applications more flexible and support easy integration (or
in other words, applications should be integration-ready).

Most business applications need some code changes to make them integration-ready.
These code changes can be few and easy or extensive and complicated. The degree of
difficulty depends on the existing architecture and design. A lot depends on the
knowledge of the application by its programmers.

15 0672323109 CH14 4/18/02 10:10 AM Page 222

We begin the process of building integration-ready applications by defining the char-
acteristics or properties of an integration-ready application. These properties provide
important guidelines when developing resource adapters, which extend the integra-
tion capabilities of business applications. The best practices of developing integra-
tion-ready applications are grouped into two categories: one for legacy applications
and one for new applications. Following the best practices, this chapter also includes
guidelines on rating integration readiness. This rating model helps measure the inte-
gration readiness of individual applications and assesses their capabilities to support
different deployment domains (departmental, enterprise, and e-Business domains).

Characteristics of Integration-Ready Applications
What differentiates one application from another in terms of being integration-
ready? Why are some applications easier to integrate with than others? Does the
incorporation of open standards in application architecture and design guarantee
integration readiness? These are indeed some of the basic questions haunting most
developers and IT decision makers. It is harder to find the answers as the technical
landscape keeps changing. What was considered the next technology revolution
quickly becomes a legacy technology that did not live up to its promise.
Nonetheless, there are some core properties or characteristics that all applications
should demonstrate to be considered integration-ready.

Distinct Points of Integration (PIN)
A point of integration (PIN) is defined by a business application, and is a gateway or
channel to its internal business logic, data, and rules that will be accessible by other
business applications. Clearly, the ideal scenario is to have one PIN for each business
object exposed by the application. The term business object is used as a generic
concept encapsulating data, functions, and rules of an application, and is in no way
restricted to only object-oriented software artifacts.

Any internal business logic can be exposed by a well-defined PIN. However, having
more than one PIN for the same business object is not a good practice because
keeping them in sync with each other is almost impossible, or is very costly. A busi-
ness application can have several PINs that collectively define the integration capa-
bilities of the application.

Defining a PIN depends on the applications architecture and the context or platform
on which it runs. So, for a database-centric application, a specific RDBMS table or a
specific stored procedure could be a PIN. For a message-centric application, a specific
message type will be a PIN. For a J2EE-based application, the resource adapter encap-
sulates all the PINs, and is accessible by its CCI-compatible API.

Characteristics of Integration-Ready Applications 223

15 0672323109 CH14 4/18/02 10:10 AM Page 223

The important thing to remember is that the objective is to have a clear definition of
all the PINs and to ensure that there is only one PIN for each business object
exposed to other applications. So if there is a stored procedure that updates the
account object (table), and there is a message type that is capable of performing the
same task, it is important to choose one of the two as the PIN. In the long run, it is
better to refactor and consolidate all the different PINs.

Isolated and Localized Integration Logic
Although having well-defined PINs results in a consistent and managed access to
business objects, it is important to ensure that similar consistency is preserved in the
business objects inside the application. Otherwise, the objective and benefits of
defining PINs are lost due to duplicate and redundant code for the same business
objects of an application.

Integration logic that includes one or more business objects in the application must
be isolated and localized. Isolating integration logic means defining and/or identify-
ing the business rules and functionality required to fulfill specific integration, in the
form of a distinctly separate piece of code. It is important to isolate integration code
so that future changes to the business application do not easily break its integration
capabilities. Localization of integration logic means that there is only one physical
copy of the code in the application. One of the challenges is that although the
process of isolation of integration logic may be easy, the process of physical localiza-
tion can be much harder. This will be harder to achieve in legacy applications, and
code changes will be inevitable. In many instances, a major redesign of the business
application is required to localize the integration logic and associated business
objects. The work is not focused as much on changes to the functionality of the
application as it is on restructuring the legacy application code structure—a process
also known as refactoring. A smarter approach to refactoring is the use of design
patterns to either encapsulate or wrap legacy business objects and code, or to create
new access channels to legacy programs.

Secured Access Support
As applications become integrated with one another within the corporate network
and between corporate networks, secured access to applications is a basic require-
ment. Security in general, and especially security of application data, is a fundamen-
tal requirement. There are too many instances of security breaches resulting in
millions of dollars of losses.

Traditionally, application security was restricted to granting access to its direct users.
It was relatively easy to identify the potential users and their roles, and assign appro-
priate privileges. Security in an integrated environment is much more complex.
Applications will be accessed (via PIN) by many more users who were not in the

CHAPTER 14 Developing Integration-Ready Applications224

15 0672323109 CH14 4/18/02 10:10 AM Page 224

original list of users. A common example is that of a departmental application that is
integrated with applications from other departments. Not only are there more direct
users as a result of the integration, but there is also a need for more granular control
of access to appropriate business objects.

Eventually, a single sign-on process is required, in which an employee or a partner
can get access to different applications and data as required, without having to sign-
on more than once. This requires all applications to support secured access to its
business objects using a common security infrastructure or a common security stan-
dard.

Transaction-Enabled
In the context of application integration, transaction-enabled means support for
distributed transactions and XA compliance. This may sound like an overhead when
dealing with low volumes of transactions, especially in a smaller integration environ-
ment with few applications. By definition, any enterprise scale transaction will be
distributed because it will involve multiple applications on different platforms.
Without proper support for two-phase commit and rollback, transaction integrity
could be compromised.

The underlying application may not support distributed transactions, but it does not
mean that the adapter cannot fill the obvious holes. In fact, an adapter must
complement the application’s deficiencies, and enhance its integration capabilities as
much as possible. The JCA specifications allow for local transactions that are not
managed by an external transaction managers, as well as XA-compliant transaction
resources. Adapter developers must become familiar with the XA standard, and
enable resource adapter deployment tools to switch between local and XA transac-
tion support when required. Some legacy applications and even some of the new
applications may not support transactions (distributed or local). In this case, the
choices are few: Either the adapter must implement transaction support and the
application should be enhanced to support transactions as well, or the adapter and
application do not support transactions at all. If the application is performing a
mission-critical application, then it makes sense to spend the time and resources
to include transaction support. Sometimes, the application cannot be enhanced to
include transaction support. Under such circumstances, the adapter will have to
interface with the legacy systems database directly, and replicate the business rules
and support transactions. In other words, the adapter will have to do what the appli-
cation should have done in the first place.

Customization API
Even the best resource adapters need customization to match business requirements.
Many adapters externalize most of their parameters as Java properties. But properties

Characteristics of Integration-Ready Applications 225

15 0672323109 CH14 4/18/02 10:10 AM Page 225

cannot change the behavior of adapters; they also can select one of the prebuilt
behaviors. Customization can be made much more simple by clever designing of
Java interfaces. When analyzing adapter designs, the first thing I look for is the inter-
face definitions. If there are none, or if the interfaces are not well-designed, then the
usefulness of the adapter drops over time.

Chapter 4, “Adapter Reference Model,” identifies some key APIs that every adapter
should consider implementing. These APIs enable adapters to work in different envi-
ronments (integration platforms), as well as easily extend the adapters’ functionality
without impacting existing functions. One use of adapter customization APIs is to
handle the customization of business applications or packages. For example, an SAP
system may have been customized by its customer to satisfy its unique business
requirements. When selecting an SAP adapter, a key decision factor should be the
following: How soon can the SAP resource adapter be customized to integrate with
the customized SAP system?

Based on Open Standards
Adapters should support open standards wherever possible. Failure to do so adds to
the customization effort during implementation time. Even with resource adapters,
the use of XML to define data structures exchanged between the J2EE application
and the legacy application is more preferable than any other proprietary document
model.

Standards may not be available for every piece of technology that an adapter may
have to handle, but when available, standards-based adapters allow for more flexibil-
ity in general. This is not to say that proprietary technologies are not flexible or are
not as good as open standards. In fact, many innovations start as proprietary tech-
nologies before being widely accepted as a standard. Because standards are usually
supported by more than one vendor, it is easier to buy products (adapters) from
more than one vendor, knowing that they will work together. With the JCA specifi-
cation, resource adapters from different vendors should work on J2EE-compliant
application servers from different vendors. There can be differences between adapters
from different vendors, but their common JCA-based interfaces will make interoper-
ability between adapters and application servers much simpler and easier.

Compliance with open standards does not necessarily add any specific integration
feature that would make an application integration-ready by itself. But supporting
open standards does make the application more flexible, which is one of the main
objectives of integration, and hence is important for integration readiness in general.

Support for I18N and L10N
Internationalization (I18N) may seem an exotic feature not really needed, especially
in North America. Yes, there are different languages that an application may have to

CHAPTER 14 Developing Integration-Ready Applications226

15 0672323109 CH14 4/18/02 10:10 AM Page 226

support (Spanish, French), but the list is short. However, from the perspective of
integration, especially in the global context when supply chain automation or other
EDI processes need integration, I18N is extremely important.

What is more important is the fact that I18N takes up lot of time if not handled
from the start. Converting an application to support I18N requires all text messages,
legends, error messages, and pop-up windows to be externalized so that more than
one language can be supported without changing the application code. If we extend
the I18N issue to include non-Latin languages, we need to handle double-byte char-
acter sets (DBCS).

Failure to support I18N invariably results in delayed and sometimes cancelled inte-
gration projects, especially in global organizations or integration between global
trading partners. Adapter developers must incorporate I18N in the basic design of all
adapters, ensuring quick adaptation to different locals, also known as localization
(L10N).

Refactoring Legacy Applications
The task of refactoring is never easy because it requires knowledge of the internal
architecture and design of the application. Over time, many applications become
enormously difficult to maintain, let alone restructure. Even fixing small frustrating
bugs becomes a huge task. Integrating these types of applications is extremely diffi-
cult. A better approach might be to redesign the integration logic, and implement it
as a physically separate component (adapter). An example is a resource adapter for a
CICS-based COBOL application. Instead of changing that application, it is better to
build a resource adapter, and localize the integration logic in it. One side effect is the
potential duplication of some business rules and logic that exist in the COBOL appli-
cation as well as the adapter. Developers have to keep the duplicate code in sync all
the time or risk inconsistent results.

Unfortunately, there is no easy solution to refactoring legacy applications for integra-
tion readiness. This is the reason why you must be careful when building new appli-
cations today—so that you don’t fall in the same trap twice. It is okay to make
mistakes, as long as you learn from them and make sincere efforts to not repeat the
same mistakes. If the legacy application is one of the mission-critical systems, then it
might be worth spending time, money, and resources to restructure the application,
isolate the integration logic, and build an adapter for the application. In the long
run, this will prove to be the right decision because the application will be able to
support complex integration scenarios much more quickly.

The bottom line is you can avoid making changes to legacy applications, to an
extent. Perhaps Level I integration readiness (described later in this chapter) can be

Refactoring Legacy Applications 227

15 0672323109 CH14 4/18/02 10:10 AM Page 227

achieved without changing the internal structure of the legacy application. But
getting to Level II and Level III ratings does require code changes in most instances.
Refactoring is one of the good principles of software development, and should be
used regardless of integration requirements. A few years ago, I initiated a major refac-
toring of an automated customer service application. The application was very old,
based on DOS and developed using Pascal. Its main feature was that customers could
dial up from remote locations, and use the automated services quickly and easily.
The refactoring project was mainly to enable bidirectional communication between
the remote sites and the corporate hub, as well as adding more sophisticated services.
It was clear very early in the development process that a major restructuring of the
application code was also required. One of the first steps, and perhaps the most
important, was to create a comprehensive test plan to ensure that the features and
functionality of the application weren’t broken after refactoring. The test plan turned
out to be the biggest document of the entire project.

Changing existing code (especially code developed by someone else, who may not be
working for the company any more) is not a very exciting task. Hence, the task of
integrating legacy applications should not be underestimated, even when off-the-
shelf adapters are available. It is not unusual for customization of adapters to become
a task that is lengthier than estimated. In some instances, it will be impossible to
achieve a higher level of integration readiness for legacy applications in the required
time frame. This is especially true with Level II and Level III integration, which
require integration with workflow and process automation tools. Generally, legacy
applications achieve Level I integration readiness by providing direct access to their
databases via an adapter. The end result is less than ideal, but helps in keeping the
raw data synchronized. Reusing any stored procedures and other SQL procedures can
speed up the development of adapters for legacy applications.

In summary, converting a legacy application to an integration-ready application
requires the following macro steps:

1. Restructure or refactor existing code.

2. Reuse existing business logic wherever possible.

3. Create a comprehensive test plan to ensure that existing functionality isn’t
broken.

Each of these steps needs to be expanded further on a case-by-case basis to suit indi-
vidual legacy applications and integration objectives. Other steps may also be neces-
sary, but the three steps outlined previously are the basic steps required during most
legacy integration projects.

CHAPTER 14 Developing Integration-Ready Applications228

15 0672323109 CH14 4/18/02 10:10 AM Page 228

Designing New Integration-Ready Applications
A fundamental assumption for all new applications should be that integration with
other applications is inevitable. Hence, every new application must include an
adapter with a minimum set of functionalities such as data uploads and downloads,
shared procedures, and so on. New applications must be ready with basic integration
capabilities from the beginning.

Readers of this book are obviously developing new J2EE applications. But just
because you may be using leading-edge technologies does not mean the software will
be better. Bad programming practices transcend all technologies, including J2EE and
Java. However, the J2EE programming model does enforce a more component-based
development model. J2EE application models are more granular, with the application
functionality distributed between EJB, Web components, and data components. The
addition of resource adapters to this component architecture makes the architecture
of J2EE applications more flexible.

One possible exception to the use of resource adapters is when querying JDBC-
compliant databases. It is quite natural to search databases directly by using JDBC
instead of a resource adapter. Ideally, a resource adapter will define all the points of
integration, including database queries. But the overhead of wrapping JDBC calls
may sound like extra work for simple queries. However, for the sake of consistency
and connection pooling, it may still be a better idea to use a resource adapter for
database queries.

Although implementing CCI-based API for a resource adapter is optional according
to the JCA specification, it is a good practice to always have an API to access the
resource adapter. The CCI standard is very thin in JCA version 1.0, and needs to
support remote execution over RMI, IIOP, and other protocols to be really useful. The
important thing is to start developing the new application with integration readiness
as one of the core objectives.

Architecture Centric Application Design
When you’re developing new applications, starting the design process from an archi-
tecture reference model always proves to be cost-effective over the long term. The
lack of reference models with legacy applications is one of the challenges of integrat-
ing older applications. You should avoid this situation from arising with new appli-
cations. Chapter 4 defines an architecture reference model that can be used as a
starting point for all adapter development projects. It is important to incorporate
concepts such as separation of error handling from the rest of the application, I18N
of all error messages, and separation of integration logic from the application as core
principles of the application architecture.

Designing New Integration-Ready Applications 229

15 0672323109 CH14 4/18/02 10:10 AM Page 229

A logical architecture reference model, free from any physical constraints such as a
specific application server and API, results in a more robust design that is capable of
withstanding future changes more easily.

Component-Based Application Development
J2EE and other component-based application environments such as .NET enable
developers to decompose application requirements into smaller components that are
capable of higher reuse potential. In fact, resource adapters—especially generic
resource adapters such as LDAP resource adapters—can be used by components of
many different applications.

A side effect of component-based designs is better manageability of application
features. Developers are not faced with the difficult task of understanding big chunks
of code as in the legacy applications. It is much easier to understand the code of an
EJB (even if it’s badly designed and not documented) because it is very likely that
there isn’t a whole lot of code to analyze in the first place. To that effect, localizing
integration logic in a resource adapter will help simplify future enhancements to the
integration capabilities. There will be instances in which resource adapters are
accessed in a non-managed environment by standalone Java applications or two-tier
Java applications. But the real benefit of component-based design is appreciated
when a resource adapter needs to access a small piece of business logic encapsulated
in an EJB. Having business logic implemented as small components (EJB) helps share
the logic much more quickly and precisely between resource adapters.

XML-Based Document Models
A common solution to exchanging data before XML was the definition of propri-
etary data structures or document models. The problem with this approach was
obvious as the number of application increased and as the data structures became
more complex. Barring instances in which proprietary data models cannot be
avoided, all other new data exchanges should be based on XML and its derivatives,
such as ebXML, WML, and so on.

Even resource adapters for legacy applications can convert legacy data into XML
documents before handling the XML document instance to the calling component.
The resource adapter may have to do the extra work of mapping native legacy data
types and structures to XML elements and attributes, but the result will be increased
integration capabilities.

In summary, when you’re developing new applications, the following macro steps
should be taken to ensure integration readiness:

1. Start with an architecture reference model.

2. Always implement an API to access the integration components (resource
adapters).

CHAPTER 14 Developing Integration-Ready Applications230

15 0672323109 CH14 4/18/02 10:10 AM Page 230

3. Enforce component-based development, resulting in a more granular, flexible
application that’s easy to integrate with.

4. Use open standards such as XML for defining data-exchange documents. This
allows for greater consistency and cross-platform integration capabilities.

Rating Integration Readiness
Applications achieve integration readiness at a cost, usually in the form of time and
effort. For these and other reasons, a phased approach is often preferred, enabling
applications to progress from a basic integration capability to full-blown integration
readiness over time. Without a formal rating or measuring scheme for integration
readiness, the task of judging the integration capabilities of different applications
becomes very subjective. Figure 14.1 shows a scheme that can be used to judge the
integration readiness of applications based on the concepts and principles described
throughout this book.

Rating Integration Readiness 231

Level III
Level II

Level I

Authorization

Process
Model

Shared
Procedures

Data
Upload/

Download

Authentication

Workflow
Automation

Transaction
Integration

Data
Transformation

Single
Sign-on

Process
Automation

Service
Collaboration

Data
Synchronization

Department Enterprise

Rating Integration Readiness

Deployment Domains

In
te

g
ra

ti
o

n
 D

o
m

ai
n

s

E-Business

Security

Process

Function

Data

FIGURE 14.1 Rating integration readiness.

15 0672323109 CH14 4/18/02 10:10 AM Page 231

There are three levels of integration readiness:

• Level I includes the basic integration features and functions that all applica-
tions must have to achieve minimal meaningful integration. Usually, Level I
integration readiness is good enough for departmental application integration.

• Level II is the enterprise scale integration readiness.

• Level III represents the integration readiness that applications must achieve for
participating in e-Business.

Each level has four major integration domains: data, function, process, and security.
These four domains represent the features that should be present in any resource
adapter. The depth of the functionality implemented in each feature determines the
level of integration readiness.

Thus, for any application to be considered for a Level I rating, its resource adapter
must support data upload and download, and must use shared procedures or func-
tions, which must be derived from an end-to-end process model and have basic user
authorization mechanisms.

To achieve enterprise-level integration readiness (Level II) it is essential to support
data transformation because there will be more applications involved, and some of
them will need data in different formats. A higher level of security in terms of user
authentication is needed to ensure consistent access across applications. Transaction
integration features such as XA compliance and distributed transaction support are
essential to maintain the integrity of the integrated systems. For workflow-intensive
environments, in which job allocation is dynamic (such as customer service), inte-
gration with workflow automation tools is very useful.

To support e-Business, all participating applications must get a Level III integration
readiness rating. This is the most advanced state of application integration yet, and
is not easy to achieve. Significant time, money, and resources are required; but the
potential ROI is equally high. For example, applications with a Level III rating must
support service collaboration. This is easier now with SOAP-based Web Services.
Integration with process-automation tools (both internal processes and external B2B
processes) is essential to enable e-Business. Single sign-on and other advanced secu-
rity features such as digital certificates are also required to prevent hackers and loss
of revenues. Data (business objects) need to be synchronized across applications at
all times.

The end goal is to get all applications to a consistent level rather than have a
mixture of different levels of integration readiness. Often, the application with the
lowest level of integration readiness affects the overall effectiveness of all integrated
applications. To maintain a certain level of consistency in performance and expecta-
tions, it might be better to have all applications get to a particular level. However,

CHAPTER 14 Developing Integration-Ready Applications232

15 0672323109 CH14 4/18/02 10:10 AM Page 232

the reality may be different, and indeed most companies may end up with different
levels of integration readiness. In these situations, integration readiness can be
handled within the context of end-to-end integration scenarios. All applications that
are part of an integration scenario must have a rating level equal to or higher than
other applications. This will help in extracting the maximum benefits from the inte-
gration project.

The rating scheme for integration readiness may also be useful when evaluating
resource adapters from different vendors. It is important to know at what level the
resource adapter will fit before making buying decisions. In some cases, a Level I
resource adapter may be enough to satisfy the integration requirements. In other
instances, a Level III resource adapter may be needed. Users must insist on getting a
roadmap for the resource adapters from the vendors because it will help determine
how soon the resource adapter can be rated as Level III.

Summary
This chapter presented some of the criteria of an integration-ready application. It
should be the goal of every resource adapter to make the task of satisfying these
criteria simple and easy. The value-add of a resource adapter is not only defined by
its depth of functionality, but also by the breadth of its features. Having a compre-
hensive security feature is not much use if the resource adapter does not include
comprehensive support for distributed transactions, I18N, and so on. It is important
to maintain the right balance between features and associated functionality in the
resource adapters. The section on rating integration readiness helps achieve this goal
using a phased approach. The end goal should be to get a Level III rating for all
features of resource adapters.

Summary 233

15 0672323109 CH14 4/18/02 10:10 AM Page 233

15 0672323109 CH14 4/18/02 10:10 AM Page 234

IN THIS CHAPTER

• Beyond JCA Resource
Adapters

• Adapters Integrated with IDE
and Operating Systems

• Adapter Certification Centers

• Adapter Vendors Will Be the
Preferred Source for Adapters

• Standardization of Adapter
Platform and Technology

• Tools for Adapter
Customization

• Impact of Web Services

• Adapter Patterns Will Emerge

• Proprietary Adapters Will Be
Displaced

15

Trends in Adapter
Technology

“There are two kinds of fool. One says, ‘This is old, and there-

fore good.’ And one says, ‘This is new, and therefore better.’”

—Dean Inge

It is abundantly clear that adapters are an important part
of integration solutions. But the real value of adapters and
the surrounding integration technologies can be appreci-
ated more when applied in conjunction with mainstream
software development. The trend to formalize and stan-
dardize integration will continue and result in integration-
ready applications. Chapter 14, “Developing
Integration-Ready Applications,” takes a closer look at the
characteristics of integration-ready applications. This
chapter will outline some of the market trends related to
adapter technology. The intention is to get an idea of
where and how the adapter technology will be used and
deployed in the short term and in the future.

Beyond JCA Resource Adapters
The availability of adapters alone is not enough to promise
rapid application integration. Adapters are useful for quan-
tifying the integration solution, but the actual implemen-
tation requires many other integration-related artifacts and
components. We have also learned that adapter develop-
ment and implementation is not a one-time exercise, but
requires sustainable planned efforts. Some of the emerging
technology trends are more disruptive to adapters than
others.

16 0672323109 CH15 4/18/02 10:09 AM Page 235

CHAPTER 15 Trends in Adapter Technology236

For example, Chapter 6, “Introduction to Web Services,” discusses the emerging Web
Service trend and supporting technologies. The impact of Web services on adapters
in general is not fully known yet, but it is quite possible that Web services could
become the integration platform for inter-enterprise (B2B) collaborations. If this
happens, then integration platforms will become fragmented into different integra-
tion contexts with one platform for B2B integration, another for EAI integration,
and a different platform for e-Commerce and mobile commerce application integra-
tion. This leads us to believe that an application will have to integrate with many
different integration platforms and standards, in addition to operating systems and
business applications. Each integration platform will be specialized and designed to
solve a specific integration context. For example, JCA resource adapters are supposed
to solve integration from a J2EE application perspective. Web services are expected to
solve dynamic collaboration between application services. Other XML-based stan-
dards such as cXML, ebXML,and so on are designed to facilitate industry specific
collaborations.

J2EE programmers should not expect that JCA resource adapters will solve all inte-
gration problems. Programmers need to base the adapter features and functionality
on the broader end-to-end integration requirements, which will transcend all the
previous integration contexts, standards, and technologies. The integration tech-
nologies are not yet mature, and perhaps will always be in a state of flux because
technology innovations happen faster each time. Eventually, some of the trends
identified in this chapter won’t materialize, and others may be truer. Only time will
determine which technologies prevail, and developers will determine the overall
success of integration standards and tools.

Adapters Integrated with IDE and Operating Systems
Because the effort required to build adapters is quite extensive, and the realization
among IT professionals that the majority of the adapters needed will have to be
developed in-house, there will be increasing focus on IDEs (Integrated Development
Environments) and their capability to support adapter development. Even the exis-
tence of standards such as JCA specifications does not replace the need for better
adapter development tools. The capability to look up adapters from a central cata-
logue, exploring the adapters interfaces and API, and debugging resource adapters
using common component interface (CCI)-based test clients are some of the features
J2EE developers should expect from Java IDE vendors.

The objective of IDE should be to simplify adapter development and speed up the
testing cycles. It will be harder for IDE vendors that do not support development of
integration components (transformers, filters, and so on) and adapters to compete in
the increasing integration-conscious development community. Support for XML and
specific dialects of XML including SOAP, ebXML, and others will prove to be equally

16 0672323109 CH15 4/18/02 10:09 AM Page 236

essential. After all, without these standards being part of the developer tools it will
be hard to motivate the developers to build standards-based integration components
and adapters.

Having said this, standards that enable IDE vendors to incorporate adapters into
their tools are not defined yet. The JCA’s CCI is an attempt to define such a standard
for J2EE tool developers. But the CCI specifications need more meat on them.
Resource adapters are components, such as GUI components, and developers should
have the tools to build new applications using component-based development tech-
niques. It makes no sense to build new applications using the J2EE platform without
using existing resource adapters. Similarly, all new applications must have a resource
adapter to enable integration with other applications. Managing adapters as integra-
tion components in an IDE will go a long way toward ensuring the better reuse of
adapters. But we are long way from that; in the meantime, developers will have to
do most of these management tasks, including version control, manually and by
using self-discipline. (Version control, in this sense, means not just controlling source
code, but maintaining different versions of the adapters.)

Programming language compatibility has been an historical issue, and continues to
get worse. Microsoft will not support Java on its platforms and development envi-
ronments, and likewise J2EE doesn’t support other programming languages. This
does limit the programming language choice from an integration perspective, and it
is quite possible that in the future (when application integration is as common as
database management today), the programming language choice could be limited to
Java and C#. Already, more new applications are built using Java than C++ or Visual
Basic. These ongoing problems with programming languages and platforms will
mean that technologies such as XML will become even more critical to integration
and application development in general.

Most adapters will be for business applications, but some adapters will manage inte-
gration between protocols and middleware. These adapters will eventually become
part of the vendors’ operating systems and servers. It may not be too farfetched to
think that Oracle database servers may soon have prepackaged Oracle JCA resource
adapters. After all, who would know the internals of Oracle database and the data-
base server better than the Oracle Corporation itself? Similarly, package vendors big
and small will include standards-based adapters as part of their software. This trend
is discussed in more detail in the section “Adapter Vendors Will Be the Preferred
Source of Adapters,” in which the arguments for adapter vendors are explored.

As adapters continue to mature and become indispensable, developers and system
administrators will realize the importance of integrating adapters with system
management tools and platforms. This is one area that is weak, no matter what
application platform we evaluate and select. A lot of work needs to be done in defin-
ing the interface between adapters and system management tools. The more tradi-
tional Simple Network Management Protocol (SNMP)-based tools can be useful for

Adapters Integrated with IDE and Operating Systems 237

16 0672323109 CH15 4/18/02 10:09 AM Page 237

managing adapters as long as adapters implement the SNMP interfaces. It is impor-
tant from a system administration perspective to have visibility on the end-to-end
scenario, not just individual adapters and other integration components.

Adapter Certification Centers
One common problem faced by adapter developers and IT decision-makers involved
in selecting integration software is how to evaluate similar adapters from different
adapter vendors. How do you determine which SAP adapter is better when you have
a choice of 20 SAP adapters for the same platform that supports the features you
need? One deciding factor could be certification of the adapter by SAP. Another
could be certification from the platform vendor. Even with the respective certifica-
tions, there are other factors you must consider before choosing an adapter: extensi-
bility of the adapter, performance, integration with system management tools,
capability to work in different hardware and software platforms, and so on. All these
factors effect the adapter’s long term-value to an organization.

Today, there is very little information in terms of formal certification available for
adapters. All adapter vendors claim they have tested their adapters extensively, but
very few will actually share their test plans to prove their level of QA.

Independent certification centers do not exist today, but may be established in the
future. One of the challenges these centers will face will be to establish the partner-
ships with adapter vendors, platform vendors, IDE vendors, package vendors, and so
on. Without the right partnerships, the certification center may not have the
required credibility in the market. But the benefits of certification centers go beyond
just compliance testing. These centers can establish performance benchmarks, such
as those in the database world, in which we can compare the transaction processing
power of different databases using a standard set of tests. As the integration plat-
forms are more standardized, certification centers will be easier to build.

Adapter Vendors Will Be the Preferred Source for
Adapters

This could be one of the most controversial trends presented in this chapter. Some of
the package vendors do provide adapters today. For example, SAP will soon provide
its own version of JCA-compliant resource adapters. Although a handful of package
vendors continue to have a similar strategy, most of the other package vendors will
prefer not to. The reason is fragmentation of the application infrastructure tech-
nology.

Even today, you must deal with J2EE-compliant application servers on different
Windows and UNIX platforms—and then there is the emerging .NET platform from
Microsoft, mainframe operating systems, and other proprietary platforms. It will be

CHAPTER 15 Trends in Adapter Technology238

16 0672323109 CH15 4/18/02 10:09 AM Page 238

very hard for package vendors to provide adapters to their software on all these plat-
forms. It is expensive and requires a long-term strategy to generate a decent ROI and
sustain the adapter offering. Things get more complicated with adapters for wireless
applications in which even the platforms are not very stable yet.

Customers will need many adapters besides just the package adapters. Some of the
adapters will be for their proprietary applications. Hence, consistency in architecture,
uniformity in implementation, and administration support by common adapter
tools will be considered higher priority than the source of adapters. These factors will
mean customers will prefer to source their adapters and adapter tools from adapter
vendors, not necessarily package vendors. The difficulty for adapter vendors is the
certification of their adapters by the package vendors. Nonetheless, between vendor
certification and consistency in architecture and implementation, most customers
may prefer the latter.

The challenge to adapter vendors is to form long-term relationships with package,
platform, and other software and hardware vendors. Many vendors would like to see
their packages and platforms getting preference from the adapter vendor. Most likely,
adapter vendors will choose specific industries as their core competency and estab-
lish partnerships with software vendors focused in the particular industry. This trend
is already visible in the ASP market, in which service providers that have a niche are
better at providing focused services than the more generic ASPs. Perhaps a similar
trend will emerge in adapter providers over the long term.

Standardization of Adapter Platform and Technology
The JCA specifications is the first attempt by a vendor to define a standard platform
for adapters. JCA is not a complete adapter platform yet. It is more of a component
interface for J2EE applications especially designed for adapters. J2EE has become the
de facto standard for application servers. This is a good launching platform for JCA
to follow in those steps.

Serious holes in the JCA specification need to be addressed before it becomes a
decent adapter platform standard that is capable of supporting complex integration
scenarios, however. Some of the glaring deficiencies in JCA are being handled in the
next version of the specifications. Among these include the lack of asynchronous
interfaces to other adapters and messaging engines, the capability of XML-based
meta-data processing, and so on. But more importantly, JCA solves integration only
from the J2EE application’s perspective. In other words, JCA assumes that the inte-
gration is initiated by a J2EE application. What about a legacy application that needs
to integrate with a J2EE application and invoke one of its EJBs? Can a COBOL
program running on a mainframe machine call an EJB hosted by a J2EE application
server? These types of integration scenarios are not easily supported by JCA. This will
be one area in which the specifications need to be expanded with significant new
features.

Standardization of Adapter Platform and Technology 239

16 0672323109 CH15 4/18/02 10:09 AM Page 239

If JCA is to become a meaningful standard over the long term, it needs to address the
issues of administration tools and integration with system maintenance platforms.
Those of you who are familiar with MQSeries will recall the different tools available
to manage and administer the queues and queue managers, and so on. Those tools
are proprietary to the tool vendor, so it is very hard to integrate applications that use
MQSeries with the tools. The tool vendors typically provide proprietary API, if any at
all. JCA will have to tackle this issue for resource adapters very soon, and enable
system administrators to manage the resource adapters from different vendors
without problems due to incompatibility.

The standardization of adapter platforms and tool frameworks will provide greater
flexibility to adapter vendors and customers. Although this is highly desirable, it
probably can’t be achieved any time soon. Major system management software
vendors such as IBM could take the lead and work within the Java community
process to establish standards for resource adapter administration tools.

XML is fast emerging as the de facto document model standard. Given the increasing
support for complex data models and the various implementations derived from
XML—such as ebXML, cXML, and so on—it will be harder to argue against using
XML as the common document model for application integration. It will take time
to replace existing proprietary document models, but any new document models will
most likely be based on some form of XML.

Tools for Adapter Customization
Adapter customization is a highly manual task at the moment. Most adapters require
some customization to fit the specific business processes and business patterns of an
organization. Business processes and patterns are unique, and therefore the underly-
ing applications are also unique.

One of the problems of ERP and CRM package implementations was the heavy
customization required to make them work as required. ERP vendors tried to change
the business processes, but that turned out to be the wrong approach. After all, if all
companies use a common set of business processes, there is no differentiation
between companies, and that goes against the basic principles of business innova-
tion.

Adapters will have to support quick and easy customization driven by the business
processes and the applications. As business process integration becomes a more
mature and complete technology, adapters will integrate with process automation
tools. This means that changes to the business processes made by the process
automation tools need to ripple to the adapters. This is largely uncharted territory
today, but likely to change in the future. Business process integration and automa-
tion is still an elusive goal, and adapters will be the key middleware to achieve inte-
gration between business processes and applications.

CHAPTER 15 Trends in Adapter Technology240

16 0672323109 CH15 4/18/02 10:09 AM Page 240

Impact of Web Services
Even if this book is focused on resource adapters and J2EE, we cannot ignore the
.NET phenomenon—and especially its Web service capabilities. Microsoft .NET
supports SOAP and UDDI based Web services. Chapter 6 provides an overview of
Web services, and especially SOAP and UDDI.

If all goes well for Web services, the role of resource adapters will be very different.
Web services advocate a service-based architecture and approach to application inte-
gration. JCA promotes a component-based approach to integration. The difference is
that with SOAP and UDDI, Web services are not tied to any specific platform. JCA,
on the other hand, is dependent on the J2EE platform. As a result, the appeal of Web
services is understandably more.

The initial focus of Web services is dynamic collaboration between enterprises or B2B
transactions. This is mainly because the applications and platforms between compa-
nies will most likely be different. At some point, the Web services will have to inter-
act with J2EE applications, and the resource adapters may be useful in these
scenarios.

The bottom line is that it may not be enough to just have JCA-compliant resource
adapters for legacy applications. SOAP- and UDDI-based Web services will be equally
important. In fact, in a non-J2EE environment, Web services will be the preferred
option.

Adapter Patterns Will Emerge
Design patterns have changed software development in the last few years. Support
for design patterns in modeling tools and IDE is getting very common, and program-
mers are now more familiar with terms such as singleton, MVC, factory pattern, and so
on. A few years ago, these terms did not mean much to most programmers. Today,
many developers understand their benefits, and apply design patterns to their soft-
ware designs on a regular basis. One of the contributing factors to the popularity of
the design patterns is the familiarity with the problems it solves. Software architects,
designers, and programmers have encountered similar problems that the patterns
solve, and hence accept the pattern concept and solutions.

A similar common and widespread understanding of the integration-related prob-
lems will lead to integration and adapter patterns in the future. These patterns could
be categorized by different integration contexts (data integration, Web services,
process automation, and so on), and their solutions will result in better adapters.

Adapter Patterns Will Emerge 241

16 0672323109 CH15 4/18/02 10:09 AM Page 241

Proprietary Adapters Will Be Displaced
With all the current activity in establishing adapter standards, it is anybody’s guess
whether proprietary adapters will be displaced in the near future. EAI vendors and
other integration platform vendors will have to redesign their adapters. A very
common approach to JCA compliance is wrapping proprietary adapters with JCA-
compliant resource adapters. Although this strategy results in faster product delivery,
it adds a lot of unnecessary code to the resource adapters. Given the choice between
a proprietary SAP adapter wrapped by a resource adapter and a native SAP resource
adapter, we can safely assume that customers will prefer the native resource adapter.
Existing adapter vendors with proprietary architectures will have to quickly redesign
their adapters and replace proprietary code with JCA specifications wherever applica-
ble.

Another possibility is resulting changes to adapter prices. Proprietary code is gener-
ally more expensive when compared with open standards-based code. This is because
of the additional time required to define the interfaces, which are readily available in
open standards. With more competition between adapter vendors (especially for JCA
resource adapters), adapter prices will be lower in the future. Alternately, adapters
will have to offer more functionality for the same price charged today. Either way,
adapter customers will be better off in the near future.

Summary
There are numerous factors affecting adapter technology, and it is anybody’s guess as
to how the adapter industry will shape up over the next few years. Will Web services
wipe out resource adapters? Will resource adapters become a standard for adapters
across platforms? Many of these questions can only be answered in time. However,
the trends identified in this chapter and the potential outcome of these trends may
indicate what to expect in the near future.

Adapter developers must constantly evaluate their adapter strategies, adapter archi-
tecture, and design with the emerging trends in mind. It doesn’t take long for tech-
nology to become obsolete. Just recently, XML was the be-all and end-all. Today,
many XML-based software companies are finding that the market adoption of XML
is much slower than expected. XML-based business exchanges and other commerce
initiatives are equally suffering from lack of commitment by end-users. Older legacy
systems, including EDI and mainframe applications, are still driving mission-critical
business applications and revenues. However, the need to integrate these old applica-
tions with new Web-based applications and J2EE-based applications is increasing
every day. Much of the debate is over how the integration should be achieved; not
whether integration is required.

CHAPTER 15 Trends in Adapter Technology242

16 0672323109 CH15 4/18/02 10:09 AM Page 242

IN THIS CHAPTER

• Integration Platform

• Operating Systems

• Adapter Interactions with
Integration Components

16

Components of
Integration Technology

“Skeptical scrutiny is the means, in both science and religion,

by which deep insights can be winnowed from deep

nonsense.”

—Carl Sagan

The task of integrating applications does not end with
adapters, but merely begins a lengthy, sometimes complex
integration process. There are several other components
besides adapters that are required to achieve meaningful
integration. A standalone resource adapter capable of
supporting point-to-point interactions with other adapters
is not a very scalable integration solution. Point-to-point
adapters do the integration job well in a small integration
scenario or scenarios in which the number of points of
integration (connections) between adapters is relatively
small. As the number of applications in the integration
scenario increases, or as the number of points of integra-
tion increases, a more sophisticated integration platform is
required. This chapter presents some of the fundamental
components of integration technology besides adapters
that are required to enable true application integration.

The classic EAI products typically include a component
called an integration broker. An integration broker is a soft-
ware component that centralizes the management of other
integration components, and provides essential services
such as message routing, transformation, filters, and so on.
An integration broker is essential to manage the integra-
tion of distributed applications.

17 0672323109 CH16 4/18/02 10:07 AM Page 243

CHAPTER 16 Components of Integration Technology244

Not all EAI products are alike. Some take a bottom-up approach to solve the integra-
tion problem. These products have a messaging engine, transformation capabilities,
and lately have a fair selection of adapters. Other products take a top-down
approach, and begin with a business process view of the organization before drilling
down into actual integration.

Regardless of the type of EAI product you select, the need for adapters is universal.
Hence, it is important to understand the type of services and environment adapters
usually encountered in an EAI environment. This chapter covers some of the impor-
tant components of integration technology other than adapters, and outlines their
interactions with adapters.

Integration Platform
The notion of what constitutes an integration platform is not very clear. Some
vendors refer to integration brokers as integration platforms; others point to a
combination of middleware (messaging engine, object broker, transaction process
monitor). Even portal servers, application servers, and in some cases a set of transfor-
mation tools are sold as integration platforms.

For the purpose of this book, our definition of integration platform is very broad: It
includes the operating system, different types of middleware, an integration hub
including an integration broker, and administration tools. Without them, applica-
tion integration quickly becomes patchy and cumbersome to manage. Even with all
the different pieces of an integration platform in place, real integration is not easy to
achieve; however, the task becomes a little bit simpler and easier.

Operating Systems
A key part of what any integration platform is the operating system and the system
services provided by it. The basic system services are usually similar, but the support
and performance for Java will be different. A major consideration in selecting an
operating system for the integration platform should be its system administration
support. As integration scenarios become complex, and as performance demands
increase, the capability to scale a hardware platform depends on the ability of the
operating system. After all, adding more memory, more disk space, or more CPU will
not result in expected performance improvements if the operating system does not
manage the hardware properly.

Most of the time, the operating system is selected by default rather than based on an
analysis of the long-term integration requirements and the operating system’s capa-
bility to effectively support the requirements.

17 0672323109 CH16 4/18/02 10:07 AM Page 244

Middleware
Integration platforms typically have more than one type of middleware technologies.
In fact, it is entirely reasonable to find middleware products from multiple vendors
bolted together in the integration platform. Even with the J2EE-compliant applica-
tion servers, different vendors package different types of additional middleware. IBM
WebSphere application server, for example, comes with the IBM MQSeries messaging
engine. The BEA WebLogic application server includes Tuxedo transaction monitor.
SUN’s iPlanet application server has a director server and a portal server, among
other middleware.

The challenge is to piece together the necessary middleware technologies from differ-
ent potential vendors. This challenge becomes more difficult if the customer has
some middleware as part of its legacy system. Although there are many middleware
technologies available, some of them serve basic integration requirements, whereas
others are required for specific integration scenarios.

Application Server
It is a well-established fact that Web applications are hosted by application servers.
J2EE is clearly the standard for application servers, but there are still quite a few
proprietary application servers, especially in niche technology markets such as wire-
less applications.

The main function of an application server is to provide a hosting environment for
the various types of components that constitute a business application, including
adapters. Applications have indeed existed with application servers for a long time,
and it is not entirely critical that all applications be hosted by a J2EE-compliant
server. Most enterprises are moving to a Web-based application model, and the appli-
cation server is an essential piece of middleware. The leading application server
vendors, such as IBM and BEA, include many complementary technologies—such as
transaction monitors, messaging engines, and databases—with the application server.

Messaging Engine
Before application servers became necessary for Web applications, messaging engines
played a direct role in application integration. More often than not, applications
were interfacing directly with messaging engines to exchange data. Since application
servers became the preferred hosting platform, applications no longer interact with
messaging engines directly. Communication with messaging engines is managed by
the application server, which exposes a higher-level API for application developers.
This significantly reduces the complexity of the applications, and prevents redun-
dant code between applications. It is good for you to be aware of some of the basic
features of messaging engines because you may need to use such an engine to facili-
tate complex integration scenarios.

Operating Systems 245

17 0672323109 CH16 4/18/02 10:07 AM Page 245

Asynchronous Messaging
One of the benefits of using a messaging engine is its capability to transform
synchronous, single-task applications to asynchronous, multitasking applications.
This is usually achieved by developing an adapter capable of managing multiple
requests on behalf of the application. There are significant challenges in bridging the
gap between a synchronous application and an asynchronous messaging engine.
Adapters can use asynchronous messaging to support parallel transaction processing
and other complex integration patterns. However, the challenge is that you have to
deal with lower-level APIs to accomplish this.

Distributed Transaction Management
One problem that often troubles adapter developers is transaction management. This
is because not all participating applications in an integration scenario are
transaction-enabled. As a result, distributed transaction management is very difficult
or almost impossible unless adapters support two-phase commit and rollback
features. Although distributed transaction management is not strictly a messaging
engine job, it is definitely tied to it. Transaction monitors usually require a messag-
ing engine to manage transactions, and you should plan ahead of time when to
interface with a TPM (Transaction Processing Monitor) and when to interface with a
messaging engine. Straightforward data exchanges can be achieved by messaging
engines, but any state management or transaction management requirements need a
transaction engine or a TPM.

Synchronous Messaging
Although asynchronous messaging is more powerful in its capabilities to support
different types of message exchange sessions, a very specific case is synchronous
messaging. There are some business services that are fundamentally synchronous (for
example, depositing money at a bank ATM machine). The ATM user will not walk
away from the ATM without a confirmation that the money was received and cred-
ited to the correct account. In such instances, adapters have to support synchronous
messaging to enable the appropriate business services. It is much easier to implement
synchronous messaging over asynchronous messaging engine than the other way
around.

All this requires additional work on the part of adapter developers, and it is usually
one of the underestimated efforts of adapter development. If you’re keen on learning
new lower-level APIs, you’ll soon learn that a lot of work needs to be done to
support simple business services.

Integration Hub
An integration hub is usually the centerpiece of an integration solution. There are
other topologies, such as peer-to-peer integration, but one of the most common

CHAPTER 16 Components of Integration Technology246

17 0672323109 CH16 4/18/02 10:07 AM Page 246

topologies is the hub-and-spoke topology. The integration hub includes a broker that
coordinates several types of integration components, such as transformers, messag-
ing engines, routing engines, and so on. The integration spokes include components
such as adapters and gateways that connect business applications, databases, and so
on with the integration hub.

Broker
A broker is an intermediary component capable of integrating loosely coupled appli-
cations. One of the biggest benefits of a broker is that it simplifies connectivity
between applications. With a broker, adapters need not manage 1:N connections
(one application to N applications), resulting in simpler adapter design and connec-
tivity management. It is true that brokers can be overkill in simple integration
scenarios, but anything complex in terms of number of applications or distributed
environments requires a broker to manage the complexities.

A broker typically also hosts other integration components and services such as
routing and transformation. Adapters integrating with a broker are also more easily
scalable. There is no standard for an integration broker yet, but there are emerging
standards for some other components such as transformers (XSLT) and messaging
engines (JMS). Until there is a broker API standard, you have to manage with propri-
etary broker API. Nonetheless, brokers streamline connections between adapters, and
that in itself is a huge benefit, both during adapter development and at run-time in a
production environment.

Transformation Engine
One of the most important tasks of application integration is data or message trans-
formation. The basic need for integration arises from incompatible applications, so
transformation capabilities are at the heart of any integration solution. There are
different types of transformation services that can be effective in application integra-
tion. Not all integration platforms or transformation engines can provide these
services. Some integration platforms have specialized transformation capabilities,
whereas others are more generic. For example, an XSLT-based transformer (an
instance of a transformation engine) is capable of transforming any XML document
with an associated XML style sheet. The rules for transformation, in this case, are
defined by the stylesheet, and the transformer interprets these rules and applies
them to the XML document. But transformation capability is required by other non-
XML data and documents as well. Some of the basic transformation services that a
good transformation engine should provide are described in the next section.

Structure Transformation Service
This service is used to change the structure of a data object, document, or message.
The actual data is not changed, nor is the metadata describing the data. Structural
transformation is important when the same data is required in different order (struc-
ture) by different applications. For example, two RDBMS databases have different

Operating Systems 247

17 0672323109 CH16 4/18/02 10:07 AM Page 247

table structures for the customer table. The fields have similar attributes, but the
order is different, or (more likely) the keys are different. In such cases, a structural
transformation service acts as a lightweight transformer capable of moving individ-
ual fields around to change the data structure.

Although the structure transformation service does not change the data, it can apply
business rules for validation. Business applications tend to apply different business
rules to the same or similar data. What could be acceptable to one business applica-
tion in one context may be unacceptable to another application in a different
context. Hence, the better transformers supply an option to apply validation rules
after the structural transformation is complete. This is an important feature that
helps maintain data integrity during data exchanges.

Format Transformation Service
A format transformation service changes the actual metadata of a data object,
message, or a document. So an incoming XML document can be changed to an
HTML document or an MQSeries message. To achieve this type of transformation,
the transformation engine requires more knowledge and access to metadata informa-
tion in different contexts. The engine must also have the capability to read and parse
different formats of data. Generally, this is the most common transformation service
found in integration platforms and transformation tools. You can frequently find
transformation tools claiming the capability of transforming legacy data (typically, a
dump of RDBMS table) to XML or EDI formats.

The challenge in using this service is the availability of all the metadata definitions
for each format. Many times, metadata information does not exist (especially for
legacy applications), making it very difficult to apply the format transformation
services. A good transformation engine must have a very flexible formatting service.

Object Transformation Service
The term object refers to data, a document, a message, or any other software artifact
with state information. The object transformation service enables a complete transfor-
mation of one object type to another. For example, a purchase order could be placed
for many different types of items. Some of the items ordered may need to be
procured from a supplier, or perhaps need some special additional paperwork before
fulfilling the purchase order. In these scenarios, the purchase order actually initiates
the creation of other objects.

Another scenario is where a customer object in the CRM application needs to be
converted (transformed) into an account object in the accounting package. An
account object possibly has similar data attributes, but the object type and object ID
are different. An object transformation service is capable of creating new objects and
carrying forward the same data as the original object.

CHAPTER 16 Components of Integration Technology248

17 0672323109 CH16 4/18/02 10:07 AM Page 248

Sometimes, in doing object transformation, the transformation engine may need to
fetch more data from other applications. This could mean interacting with the appli-
cation directly or, more appropriately, by interacting with the application’s adapters.
The capability to fetch data when required is essential in many instances, especially
when transforming object types.

End-to-End Transformation Service
Many times, transformations are not a one-step process. A sequence of steps and a
combination of different transformation services is required to achieve end-to-end
transformations. An end-to-end transformation is driven by the end-to-end integration
scenario. Therefore, it involves many applications, each requiring varying degrees of
transformed data. Most transformers and transformation tools do not provide end-
to-end transformation services. These kinds of services require state management
capabilities in the transformer and the capability to chain or link different transfor-
mation services as one unit. In some cases, the end-to-end transformation capability
is distributed across the integration components, with some work done by adapters,
some by the integration platform, and most by the transformation engine.

Routing Engine
A routing engine’s primary function is to facilitate the movement of data or messages
based on different criteria. There are various methods of routing implemented by
integration vendors, but some of the most common and fundamental routing
services include content-based routing and fail-over routing.

The intention of using a routing engine is to relieve adapters from the responsibility
of deciding how to send a message from point A to point B. Unless two adapters are
communicating in a point-to-point model, and there are no other adapters involved
in the integration scenario, routing can be a very complex issue. Adapters that
perform data routing are extremely hard to maintain, especially when new adapters
participate in integration scenarios. Externalizing the job of routing in a routing
engine ensures that the routing rules can be changed without changing adapters.

Content-Based Routing
As the name suggests, content-based routing means that the routing engine is capable
of reading the data structures or messages, and making routing decisions based on
business rules associated with the contents of the data structure or messages. These
business rules are maintained in a separate repository, and can be changed without
affecting the adapter, data, or message. Complex business rules can affect the overall
performance of the integration, but the resulting flexibility outweighs the perfor-
mance issues most of the time.

Fail-Over Routing
Although content-based routing is useful for implementing intelligent data routing
mechanisms, an often-overlooked part of data routing is fail-over routing. Fail-over

Operating Systems 249

17 0672323109 CH16 4/18/02 10:07 AM Page 249

routing doesn’t decide the data route based only on its content or business rules; it
also makes the decision based on the characteristics of the supporting hardware.

The objective of fail-over routing is to ensure that data reaches its final destination,
using alternate routes if the primary route has failed for software or hardware
reasons. Not all data requires such fail-over routing support, but critical business data
or highly sensitive data may need to take alternate routes for reasons not obvious
from the contents of the data. Perhaps the primary network is down, in which case
an alternate network is required to carry the data. Ideally, you need not worry about
these issues. Good routing engines are capable of encapsulating fail-over routing
schemes.

Administration Tools
One of the most important aspects of managing integration platforms at run-time is
the availability of good administration tools. Often, the realities of application inte-
gration are different and somewhat unexpected despite the best analysis. Transaction
load can be higher than expected, or the hardware and middleware performance
may not be as anticipated. Adjusting to these situations as fast as possible is the only
way to support the business. Without administration tools, it is almost impossible to
isolate problems in a production environment, or even fix known problems. Two
types of administration tools are usually considered essential components of an inte-
gration platform: a deployment management tool and a platform monitoring tool.

Deployment Management Tools
Deployment tools are usually tightly coupled with specific platforms. It is not easy to
develop a multiplatform deployment tool because the operating systems do not have
a standard for deployment management functions. Perhaps in the future, such a
standard will emerge. Until then, deployment is a platform-specific issue.

Adapters must not be tied to a specific deployment environment. Ideally, an adapter
can function across different integration platforms. This is a lot harder to achieve
without a comprehensive adapter framework that supports more than one integra-
tion platform.

Note that an integration platform is not just the operating system, but includes all
components presented in this chapter. Nevertheless, adapters may need to imple-
ment a specific API to facilitate easier and better deployment. The deployment
descriptor is a step in the right direction for resource adapters in a J2EE environ-
ment, and adapter developers must take the maximum advantage of this feature in
J2EE.

Monitoring Tools
Monitoring tools have traditionally been a weakness in all platforms. Especially
during application integration, such tools are almost nonexistent. Some vendors do

CHAPTER 16 Components of Integration Technology250

17 0672323109 CH16 4/18/02 10:07 AM Page 250

provide tools to view log files and so on, but it is very rare to find a real-time integra-
tion monitoring tool.

If you have access to such a tool, there may be a need to generate statistics or even
post events as adapter functions execute. Typically, monitoring capabilities at a
system level are found more often in large distributed environments. SNMP- (Simple
Network Monitoring Protocol)-compatible tools provide APIs that adapters can use to
integrate with the tool.

High Availability Repository
A common problem with systems is too many points of failure. This means that a
failure in one of the system components results in the total failure of the system.
These days, mission-critical systems are often installed on fault-tolerant hardware
capable of running many processors, dual power supplies, and other redundant
features. Similarly, a distributed software system needs to provide some redundancy
to its critical components. One such critical component of most integration solu-
tions is usually the repository, which holds all types of data required to ensure the
smooth operation of the integrated platform.

The failure of repositories or data corruption in the repositories affects the overall
performance of the integration platform. Access to backup repositories can solve
some of the problems, but a better solution is to use a high-availability database to
store integration configurations, process state, and other critical information.

Externalizing adapter configurations and storing them in a high-availability data
store ensures a consistent state of the overall integration platform. There is nothing
more disastrous than not knowing the exact state and reasons for failure. Without
knowing where things have gone wrong and having the capability to recover from
the failed state, it is very difficult to deploy integration solutions involving mission-
critical applications.

Adapters should ideally use a central repository to store configuration and state
information. Most Java developers will argue about using serialized objects, which is
a much simpler and perhaps easier method of storage. However, if the adapter is
integrating critical data or functions, and its availability is important to business,
then a high-availability repository such as a high RDBMS must be used instead.

Adapter Interactions with Integration Components
With so many components in a typical integration solution, there are times when
interactions and collaboration between the integration components becomes a chal-
lenge. Without careful planning and proper architecture and design, adapters may
not work with different parsers, integration brokers, or transformers. In fact, it is

Adapter Interactions with Integration Components 251

17 0672323109 CH16 4/18/02 10:07 AM Page 251

quite common for integration product vendors to constrain adapter developers by
providing proprietary APIs that will work only with a limited set of integration
components and technologies.

You need to pay extra attention to these potentially show-stopping problems. The
best solution is to build or select a set of adapters that are not tied to any specific set
of integration platforms, tools, and solutions. This gives you the freedom to concen-
trate on solving the business application integration problem, and allows IT special-
ists to focus on selecting the best set of integration platforms and tools.

Regardless of the type of integration components in use, a general pattern of how
these components interact with each other is identified in Figure 16.1. The figure
shows a snapshot of the most common integration components and their interac-
tions. Adapters are merely the tip of the integration iceberg. There are many things
happening inside the integration platform that facilitate application integration.
Knowing the individual roles of these integration components stops you from build-
ing duplicate or redundant functionality, and helps you define a cleaner adapter
architecture and design.

CHAPTER 16 Components of Integration Technology252

Business
Application

Business
Application

Resource
Adapter

Messaging Engine

Integration Broker

Operating System

Adapter

J2EE Application Server

Point to Point integration

Components of Integration Technology

Brokered integration

Repository

TransformerRouter

Integration Platform

FIGURE 16.1 Different Types of Integration Components.

17 0672323109 CH16 4/18/02 10:07 AM Page 252

The figure clearly shows the difference between a point-to-point integration between
adapters and broker-based integration. The advantages of having a broker are added
flexibility and scalability. Even in the case of an application server hosting the
adapters, the role of an integration broker does not change. An application server
only hosts the application components and the adapters. Integration brokers provide
functionality not covered by application servers.

Summary
Application integration requires a lot more than just adapters and an application
server. A typical integration solution involves more than one vendor, and is more
complex than most IT teams expect it to be. Adapter developers need to understand
the different roles of these integration components. One of the best design principles
is to know what to avoid. An understanding of the responsibilities of transformation
components, routing components, and so on enables you to not overdevelop the
adapters and assign the right responsibilities to all integration components including
adapters.

Over time, the complexity of integration technology will reduce, and architectures
will become simpler. Until then, you must confront many different types of tech-
nologies and concepts. This chapter was a brief overview of these technologies,
which are an important part of any application integration solution.

Summary 253

17 0672323109 CH16 4/18/02 10:07 AM Page 253

17 0672323109 CH16 4/18/02 10:07 AM Page 254

IN THIS CHAPTER

• Environment for the ASCII File
J2EE Adapter

• Access Layer Source Code

• Engine Layer Source Code

• Shared Service Layer Source
Code

• Test Harness

17

Source Code for ASCII
File J2EE Adapter

"When you come to the edge of all the light you know, and are

about to step off into the darkness of the unknown, faith is

knowing one of two things will happen: There will be some-

thing solid to stand on, or you will be taught how to fly."

— Barbara J. Winter

This chapter has listings of all source programs of the
J2EE adapter. The source programs are grouped into two
Java packages: com.iconexio.asciiFileAdapter and
com.iconexio.jca.asciiFileRA. The first package contains
all non-JCA classes that collectively provide the adapter’s
functionality. The second package has JCA classes that
implement the JCA system contracts and invoke the non-
JCA classes, as required.

The com.iconexio.asciiFileAdapter package classes are
listed in the following order:

• Access layer classes

• Engine layer classes

• Shared service layer classes

There is also a standalone test harness class that uses all
the classes in the com.iconexio.asciiFileAdapter package
to parse the test files METADATA.DAT and CUSTDATA.DAT. The
intention of this test harness is to provide readers with a
simple testing tool, and to serve as an example of how a
standalone Java application can be changed into a resource
adapter. The associated test data and deployment descrip-
tor for the J2EE reference implementation is also included.
Chapter 11, “Developing J2EE Resource Adapters,” has the
source code listings of JCA classes that use the application-
level classes listed in this chapter.

18 0672323109 CH17 4/18/02 1:34 PM Page 255

CHAPTER 17 Source Code for ASCII File J2EE Adapter256

The source for all programs listed in this book can be downloaded from the
www.samspublishing.com Web site. This Web site will have the latest bug fixes and
further information on any system configurations (application server configurations)
that may be added in the future.

Environment for the ASCII File J2EE Adapter
The resource adapter was developed on a Windows platform. All unit tests were
performed on the Windows platform by first using the testHarness class as the
testing tool. System tests were performed on the SuSE Linux platform with the J2EE
reference implementation for Linux. Both the development machine and the test
server had 256K of RAM and a minimum of 8GB of disk space.

The testing environment had the following data files:

• METADATA.DAT (valid metadata file):

<METADATATYPE>Control</METADATATYPE>

<FIELD_DELIM>,</FIELD_DELIM>

<MAX_NO_DATAREC>100</MAX_NO_DATAREC>

<DEFAULT_DATAFILENAME>\com\iconexio\CUSTDATA.DAT</DEFAULT_DATAFILENAME>

<METADATATYPE>Layout</METADATATYPE>

<CUSTOMER_ID>String</CUSTOMER_ID>

<CUSTOMER_NAME>String</CUSTOMER_NAME>

<DATAACTION_IND>char</DATAACTION_IND>

<CUSTOMER_ADDRESS>String</CUSTOMER_ADDRESS>

<ACCOUNT_STATUS>String|Active,Dormant</ACCOUNT_STATUS>

<OUTSTANDING_BAL>float</OUTSTANDING_BAL>

• ER1MDATA.DAT (metadata file with non-existent customer data filename):

<METADATATYPE>Control</METADATATYPE>

<FIELD_DELIM>,</FIELD_DELIM>

<MAX_NO_DATAREC>100</MAX_NO_DATAREC>

<DEFAULT_DATAFILENAME>\com\iconexio\CUST.DAT</DEFAULT_DATAFILENAME>

<METADATATYPE>Layout</METADATATYPE>

<CUSTOMER_ID>String</CUSTOMER_ID>

<CUSTOMER_NAME>String</CUSTOMER_NAME>

<DATAACTION_IND>char</DATAACTION_IND>

<CUSTOMER_ADDRESS>String</CUSTOMER_ADDRESS>

<ACCOUNT_STATUS>String|Active,Dormant</ACCOUNT_STATUS>

<OUTSTANDING_BAL>float</OUTSTANDING_BAL>

18 0672323109 CH17 4/18/02 10:10 AM Page 256

• CUSTDATA.DAT (valid customer data file):

12345,ATUL,A,CANADA,Active,1000.00

94959,ARATI,C,CANADA,Dormant,20000.00

66565,Victoria,A,CANADA,Active,3030.00

88484,Fern,C,USA,Active,1020.00

11345,Norman,A,CANADA,Active,1000.00

92959,Vijay,C,CANADA,Dormant,20000.00

63565,Sachin,A,CANADA,Active,300.30

84484,Rick,C,USA,Active,1020.00

15345,Kate,A,CANADA,Active,1000.00

96959,Venkat,C,CANADA,Dormant,20000.00

67565,Sally,A,CANADA,Active,3030.00

89484,Dick,C,USA,Active,1020.00

80222,Harry,D,USA,Dormant,9399.99

• ER1CDATA.DAT (invalid customer data file):

12345,ATUL,A,CANADA,Active,1000.00

94959,ARATI,C,CANADA,Dormant,20000.00

66565,Victoria,A,CANADA,Active,3030.00

88484,Fern,C,USA,Active,1020.00

11345,Norman,A,CANADA,Active,1000.00

92959,Vijay,C,CANADA,Dormant

63565,Sachin,A,CANADA,Active,300.30

84484,Rick,C,USA,Active,1020.00

15345,Kate,A,CANADA,Active,1000.00

96959,Venkat,C,CANADA,Dormant,20000.00

67565,Sally,A,CANADA,Active,3030.00

89484,Dick,C,USA,Active,1020.00

80222,Harry,D,USA,Dormant,9399.99

Access Layer Source Code
The access layer classes include interfaces for three APIs (ClientAPI, ConfigAPI, and
AdminAPI) and their respective implementations. The ClientAPI is used by adapter
clients (standalone Java applications or JCA clients). The ConfigAPI and AdminAPI are
for administration and deployment tools.

Access Layer Source Code 257

18 0672323109 CH17 4/18/02 10:10 AM Page 257

Listings 17.1 and 17.2 are the interface and implementation of the highest-level API
(ClientAPI). Listings 17.3 and 17.4 contain the interface and implementation of a
simple configuration API. In actual production environment this API can retrieve
data from property files, system environment, or other configuration repositories.
Listings 17.5 and 17.6 contain the interface and implementation of a simple admin-
istration API. Production environment will require more sophisticated APIs that
gather statistics in real time and help the system administrator to determine the
points of failure and their causes, as well as track successful transactions.

LISTING 17.1 ClientAPI.java

/** * Title: ASCII File Adapter<p>

* Description: This package contains all non-JCA classes of the

* ASCII file adapter.<p>

* Copyright: Copyright (c) Atul Apte<p>

* Company: iConexio Technologies Inc.<p>

* @author Atul Apte

* @version 1.0

*/

package com.iconexio.asciiFileAdapter;

import java.util.Vector;

/*

* This is the API for all client services offered by the ASCII File

* resource adapter. Since the contents of the ASCII file can change

* their structure the adapter services accept metadata

* information in a different file.

* All customer objects created as a result of the

* process are stored in a Vector instance.

*/

public interface ClientAPI

{

// This API uses the default metadata filename set by the configuration

// interface. If there is no default metaData filename then this API

// returns an exception. The metadata file contains the filename of the

// customer data ASCII file

// Pre-condition: The calling method must check for the files existence

// The implementation of this method assumes the file is accessible and

// readable

CHAPTER 17 Source Code for ASCII File J2EE Adapter258

18 0672323109 CH17 4/18/02 10:10 AM Page 258

public void extractRecords() throws Exception;

// This API requires the invoking method to define a specific metadata

// and customer data filename

// Pre-condition: The calling method must check for the files existence and

// and if its readable

public void extractRecords(String dataFileName, String metadataFileName)

throws Exception;

// This API returns the Vector holding the parsed customer record objects.

// objects.

// Pre-condition: Either one of the processASCIIFile methods has been

// successfully executed.

public Vector getCustomerRecordList();

// This API checks the validity of the customer record

public boolean isCustomerRecordValid(CustomerRec aRec);

}

LISTING 17.2 ClientAPIImpl.java

/**

* Title: ASCII File Adapter<p>

* Description: This package contains all non-JCA classes of the

* ASCII file adapter.<p>

* Copyright: Copyright (c) Atul Apte<p>

* Company: iConexio Technologies Inc.<p>

* @author Atul Apte

* @version 1.0

*/

package com.iconexio.asciiFileAdapter;

import java.util.Vector;

public class ClientAPIImpl implements ClientAPI

{

public ClientAPIImpl()

{

custService = new CustomerDataServiceAPIImpl();

}

Access Layer Source Code 259

LISTING 17.1 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 259

public void extractRecords() throws Exception

{

ConfigAPIImpl c = new ConfigAPIImpl();

try

{

custService.loadCustomerRecords(c.getDefaultMetadataFileName());

}

catch(Exception e)

{

throw e;

}

}

public void extractRecords(String dataFileName, String metadataFileName)

throws Exception

{

try

{

custService.loadCustomerRecords(metadataFileName, dataFileName);

}

catch(Exception e)

{

throw e;

}

}

public Vector getCustomerRecordList()

{

return(custService.getCustomerRecordTable());

}

public boolean isCustomerRecordValid(CustomerRec aRec)

{

return(custService.isCustomerRecordValid(aRec));

}

private CustomerDataServiceAPIImpl custService;

}

CHAPTER 17 Source Code for ASCII File J2EE Adapter260

LISTING 17.2 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 260

LISTING 17.3 ConfigAPI.java

/**

* Title: ASCII File Adapter<p>

* Description: This package contains all non-JCA classes of the

* ASCII file adapter.<p>

* Copyright: Copyright (c) Atul Apte<p>

* Company: iConexio Technologies Inc.<p>

* @author Atul Apte

* @version 1.0

*/

package com.iconexio.asciiFileAdapter;

/*

* This is the API for all configuration services offered by the

* ASCII File resource adapter. This interface can be implemented by an EJB

* or any other Java class besides the resource adapter.

* However in the example adapter

* this interface will be implemented by a simple Java class which

* is used by

* other classes to get and set the default metaData filename.

*/

public interface ConfigAPI

{

// This API sets the default metaData filename.

// Pre-condition: None

public void setDefaultMetadataFileName(String metadataFileName);

// This API returns the default metaData filename

public String getDefaultMetadataFileName();

}

LISTING 17.4 ConfigAPIImpl.java

/**

* Title: ASCII File Adapter<p>

* Description: This package contains all non-JCA classes of the

* ASCII file adapter.<p>

* Copyright: Copyright (c) Atul Apte<p>

* Company: iConexio Technologies Inc.<p>

* @author Atul Apte

Access Layer Source Code 261

18 0672323109 CH17 4/18/02 10:10 AM Page 261

* @version 1.0

*/

package com.iconexio.asciiFileAdapter;

public class ConfigAPIImpl implements ConfigAPI

{

public ConfigAPIImpl()

{

defaultFileName = new String(“METADATA.DAT”);

}

public void setDefaultMetadataFileName(String fileName)

{

defaultFileName = new String(fileName);

}

public String getDefaultMetadataFileName()

{

return(defaultFileName);

}

private String defaultFileName;

}

LISTING 17.5 AdminAPI.java

/**

* Title: ASCII File Adapter<p>

* Description: This package contains all non-JCA classes of the

* ASCII file adapter.<p>

* Copyright: Copyright (c) Atul Apte<p>

* Company: iConexio Technologies Inc.<p>

* @author Atul Apte

* @version 1.0

*/

package com.iconexio.asciiFileAdapter;

/*

* This is the API for all administration services offered by the

CHAPTER 17 Source Code for ASCII File J2EE Adapter262

LISTING 17.4 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 262

* ASCII File resource adapter. This interface can be implemented by an EJB

* or even integrated with a system management tool. However in the

* example adapter this interface will be implemented by a simple Java class

*/

public interface AdminAPI

{

// This API returns the total number of records parsed by

// the resource adapter

// since it was instantiated. The implementation can be serial

// ized to store

// the statistics if required.

// Pre-condition: None

public int getNoOfRecordsProcessed() throws Exception;

// This API returns the total number of bad records parsed by

// the resource

// adapter since it was instantiated. The implementation can

// be serialized

// to store the statistics if required.

// Pre-condition: None

public int getNoOfBadRecords();

}

LISTING 17.6 AdminAPIImpl.java

/**

* Title: ASCII File Adapter<p>

* Description: This package contains all non-JCA classes of the

* ASCII file adapter.<p>

* Copyright: Copyright (c) Atul Apte<p>

* Company: iConexio Technologies Inc.<p>

* @author Atul Apte

* @version 1.0

*/

package com.iconexio.asciiFileAdapter;

import java.io.FileInputStream;

import java.io.IOException;

public class AdminAPIImpl implements AdminAPI

{

Access Layer Source Code 263

LISTING 17.5 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 263

public AdminAPIImpl()

{

}

public int getNoOfRecordsProcessed() throws Exception

{

FileInputStream fis;

byte[] rec;

int n, r;

fis = new FileInputStream(“PSTATS.DAT”);

try

{

n = fis.available();

if (n <= 0)

{

Exception e = new Exception(“Empty PSTATS.DAT file”);

throw e;

}

if (n > 0)

{

rec = new byte[n];

r = fis.read(rec);

if (r > 0)

{

String s = new String(rec);

String s1 = s.substring(0,s.indexOf(10));

Integer n1 = new Integer(s1);

return(n1.intValue());

}

} // End of n > 0

} catch (IOException e) { throw e; }

fis.close();

return(0);

}

public int getNoOfBadRecords()

{

return(0);

}

}

CHAPTER 17 Source Code for ASCII File J2EE Adapter264

LISTING 17.6 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 264

Engine Layer Source Code
The engine layer classes include implementations for the two parsers (one for meta-
data file, and the other for the customer data file), as well as an API for extracting
customer records from the ASCII file. This API is used by the ClientAPIImpl class in
the access layer. Listings 17.7 and 17.8 contain the code for the API and its imple-
mentation.

LISTING 17.7 CustomerDataServiceAPI.java

/**

* Title: ASCII File Adapter<p>

* Description: This package contains all non-JCA classes of the

* ASCII file adapter.<p>

* Copyright: Copyright (c) Atul Apte<p>

* Company: iConexio Technologies Inc.<p>

* @author Atul Apte

* @version 1.0

*/

package com.iconexio.asciiFileAdapter;

// The customerDataServiceAPI interface defines the methods representing

// the services offered by sync-service module of the engine layer.

// These services enable the client to load customer records from an

// ASCII file whose structure is defined by a metaData file.

import java.util.Vector;

import java.io.IOException;

public interface CustomerDataServiceAPI

{

// This method parses and loads the customer data from the data filename

// stated in the metaData file. The structure of the customer data file is

// also defined in metaData file.

public void loadCustomerRecords(String metaDataFileName) throws Exception,

ParserException, IOException;

// This method does the same function as above except the data filename is

// explicit.

public void loadCustomerRecords(String metaDataFileName, String dataFileName)

throws Exception, ParserException, IOException;

Engine Layer Source Code 265

18 0672323109 CH17 4/18/02 10:10 AM Page 265

// This method allows client to verify if the customer record is valid

public boolean isCustomerRecordValid(CustomerRec aRec);

// This method returns the Vector instance holding all the

// customer records

public Vector getCustomerRecordTable();

// This method returns a specific customer record with matching ID

public CustomerRec getCustomerRecord(String ID);

}

LISTING 17.8 CustomerDataServiceAPIImpl.java

/**

* Title: ASCII File Adapter<p>

* Description: This package contains all non-JCA classes of the

* ASCII file adapter.<p>

* Copyright: Copyright (c) Atul Apte<p>

* Company: iConexio Technologies Inc.<p>

* @author Atul Apte

* @version 1.0

*/

package com.iconexio.asciiFileAdapter;

import java.util.Vector;

import java.io.IOException;

public class CustomerDataServiceAPIImpl implements CustomerDataServiceAPI

{

public CustomerDataServiceAPIImpl()

{

customerRecs = null;

metadataRecs = null;

}

public void loadCustomerRecords(String metaDataFileName, String dataFileName)

throws Exception, IOException, ParserException

{

ASCIIDataFileParser dfp;

CHAPTER 17 Source Code for ASCII File J2EE Adapter266

LISTING 17.7 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 266

TagValueParser tvp;

TagValueParserEngine tvpEngine;

int sFlag;

// Create an instance of tag value parser engine. We only do this so that

// we can assign our own metadata record container and pass it to the

// engine.

tvpEngine = new TagValueParserEngine();

// Creat a new instance of MetadataRec

metadataRecs = new MetadataRec();

// Assign it to the tag value parser engine

tvpEngine.setMetadataRec(metadataRecs);

// Associate the engine with the tag value parser

tvp = new TagValueParser(tvpEngine);

// Create an instance of ASCII file parser

dfp = new ASCIIDataFileParser();

customerRecs = dfp.getRecordContainer(); // We can extract

// individual records later

sFlag = 0;

try

{

// Since the metadata definition file is in a tag value format

// The tag value parser is used to parse the file and store the

// the data in Java objects

tvp.processFile(metaDataFileName);

}

catch (Exception e)

{

// Exceptions thrown indicating errors in the parsing cycles

sFlag = 1;

throw e;

}

if (sFlag == 0)

{

// No errors during parsing the metadata definition file

Engine Layer Source Code 267

LISTING 17.8 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 267

// Retrieve the control fields FIELD_DELIM and DEFAULT_DATAFILENAME

// The FIELD_DELIM record indicates the field delimiter used in the

// customer data file and the DEFAULT_DATAFILENAME record indicates

// the name of the default customer data filename

String s = tvp.getControlRecord(“FIELD_DELIM”);

byte [] b = s.getBytes();

// Set the appropriate field delimiter

dfp.setFieldDelimiter(b[0]);

try

{

// Parse the customer data file using the ASCII data file parser

dfp.processFile(dataFileName);

}

catch (Exception e)

{

throw e;

}

}

return;

}

public void loadCustomerRecords(String metaDataFileName) throws Exception,

ParserException, IOException

{

ASCIIDataFileParser dfp;

TagValueParser tvp;

TagValueParserEngine tvpEngine;

int sFlag;

// Create an instance of tag value parser engine. We only do this so that

// we can assign our own metadata record container and pass it to the

// engine.

tvpEngine = new TagValueParserEngine();

// Creat a new instance of MetadataRec

metadataRecs = new MetadataRec();

// Assign it to the tag value parser engine

tvpEngine.setMetadataRec(metadataRecs);

// Associate the engine with the tag value parser

tvp = new TagValueParser(tvpEngine);

CHAPTER 17 Source Code for ASCII File J2EE Adapter268

LISTING 17.8 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 268

// Create an instance of ASCII file parser

dfp = new ASCIIDataFileParser();

customerRecs = dfp.getRecordContainer(); // We can extract

// individual records later

sFlag = 0;

try

{

// Since the metadata definition file is in a tag value format

// The tag value parser is used to parse the file and store the

// the data in Java objects

tvp.processFile(metaDataFileName);

}

catch(Exception e)

{

// Exceptions thrown indicating errors in the parsing cycles

sFlag = 1;

throw e;

}

if (sFlag == 0)

{

// No errors during parsing the metadata definition file

// Retrieve the control fields FIELD_DELIM and DEFAULT_DATAFILENAME

// The FIELD_DELIM record indicates the field delimiter used in the

// customer data file and the DEFAULT_DATAFILENAME record indicates

// the name of the default customer data filename

String s = tvp.getControlRecord(“FIELD_DELIM”);

byte [] b = s.getBytes();

// Set the appropriate field delimiter

dfp.setFieldDelimiter(b[0]);

String f = tvp.getControlRecord(“DEFAULT_DATAFILENAME”);

try

{

// Parse the customer data file using the ASCII data file parser

dfp.processFile(f);

}

Engine Layer Source Code 269

LISTING 17.8 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 269

catch(Exception e)

{

throw e;

}

}

return;

}

public boolean isCustomerRecordValid(CustomerRec aRec)

{

if (aRec.getID() == null)

return(false);

if (aRec.getName() == null)

return(false);

if (aRec.getRecAction() == 0x00)

return(false);

if (aRec.getAddress() == null)

return(false);

if (aRec.getStatus() == null)

return(false);

if (aRec.getOutstandingBal() < (float)0.00)

return(false);

return(true);

}

public Vector getCustomerRecordTable()

{

return(customerRecs);

}

public CustomerRec getCustomerRecord(String ID)

{

if (customerRecs == null)

return(null);

int n = customerRecs.size();

CustomerRec crec;

String cID;

CHAPTER 17 Source Code for ASCII File J2EE Adapter270

LISTING 17.8 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 270

for (int i = 0; i < n; i++)

{

crec = (CustomerRec) customerRecs.get(i);

cID = crec.getID();

if (cID.equalsIgnoreCase(ID) == true)

return(crec);

}

return(null);

}

// Member variables

private Vector customerRecs;

private MetadataRec metadataRecs;

}

Listings 17.9 and 17.10 contain the interfaces for the parsers. The source for the two
parsers, ASCII data file parser and metadata parser (implemented as Tag Value parser),
is contained in source code Listings 17.11 to 17.17.

LISTING 17.9 FileParser.java

/**

* Title: ASCII File Adapter<p>

* Description: This package contains all non-JCA classes of the

* ASCII file adapter.<p>

* Copyright: Copyright (c) Atul Apte<p>

* Company: iConexio Technologies Inc.<p>

* @author Atul Apte

* @version 1.0

*/

package com.iconexio.asciiFileAdapter;

import java.io.IOException;

public interface FileParser

{

public void processFile(String fileName) throws IOException, Exception;

}

Engine Layer Source Code 271

LISTING 17.8 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 271

LISTING 17.10 ParserEngine.java

/**

* Title: ASCII File Adapter<p>

* Description: This package contains all non-JCA classes of the

* ASCII file adapter.<p>

* Copyright: Copyright (c) Atul Apte<p>

* Company: iConexio Technologies Inc.<p>

* @author Atul Apte

* @version 1.0

*/

package com.iconexio.asciiFileAdapter;

public interface ParserEngine

{

public void parseBuffer(byte[] buff, int buffLen) throws ParserException;

}

LISTING 17.11 TagValueParser.java

/**

* Title: ASCII File Adapter<p>

* Description: This package contains all non-JCA classes of the

* ASCII file adapter.<p>

* Copyright: Copyright (c) Atul Apte<p>

* Company: iConexio Technologies Inc.<p>

* @author Atul Apte

* @version 1.0

*/

package com.iconexio.asciiFileAdapter;

import java.lang.String;

import java.io.IOException;

import java.io.FileInputStream;

public class TagValueParser extends Object implements FileParser

{

public TagValueParser()

{

pEngine = new TagValueParserEngine(); // Default tag value parser engine

}

CHAPTER 17 Source Code for ASCII File J2EE Adapter272

18 0672323109 CH17 4/18/02 10:10 AM Page 272

TagValueParser(ParserEngine aEngine)

{

pEngine = (TagValueParserEngine)aEngine; // Custom engine

}

public void processFile(String fileName) throws IOException, Exception,

ParserException

{

FileInputStream fis;

byte[] rec;

int n, r;

fis = new FileInputStream(fileName);

try {

while (true) {

n = fis.available();

if (n <= 0)

break;

if (n > 10241)

{

Exception e = new Exception(“File too big.. > 10K”);

throw e;

}

if (n > 0)

{

// There is data to be read, create a byte array to hold the data

rec = new byte[n+1];

r = fis.read(rec);

if (r == -1)

break; // break out of the while loop

try

{

pEngine.parseBuffer(rec,n); // This buffer contains all the data

// in the ascii file

}

catch (ParserException e)

{

throw e;

}

}

}

Engine Layer Source Code 273

LISTING 17.11 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 273

} catch (IOException e) { throw e; }

}

public String getControlRecord(String tag)

{

MetadataControl m;

m = pEngine.getControlRecord(tag);

return(m.getValue());

}

public String getLayoutRecord(String tag)

{

MetadataLayout l;

l = pEngine.getLayoutRecord(tag);

return(l.getType());

}

// Associated TagValueParserEngine instance

private TagValueParserEngine pEngine;

}

LISTING 17.12 TagValueParserEngine.java

/**

* Title: ASCII File Adapter<p>

* Description: This package contains all non-JCA classes of the

* ASCII file adapter.<p>

* Copyright: Copyright (c) Atul Apte<p>

* Company: iConexio Technologies Inc.<p>

* @author Atul Apte

* @version 1.0

*/

/*

* This parser engine transforms text strings into metadata control and

* layout objects

*/

package com.iconexio.asciiFileAdapter;

import java.util.Hashtable;

CHAPTER 17 Source Code for ASCII File J2EE Adapter274

LISTING 17.11 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 274

public class TagValueParserEngine extends Object implements ParserEngine

{

public TagValueParserEngine()

{

// This is the default state machine for the engine

psMachine = new TagValueParserStateMachine();

}

public void parseBuffer(byte[] buff, int len) throws ParserException

{

String startTag;

String endTag;

String tagValue;

String v, d;

int sFlag = 0;

int fid = 1;

int recType; // Control = 0 or Layout = 1

psMachine.resetParser();

startTag = null;

endTag = null;

tagValue = null;

recType = 0;

for (int i = 0; i < len; i++)

{

if (sFlag == 1) // Previous error detected do not continue

break;

try

{

// Call the parser state machine to process the data

psMachine.processByte(buff[i]);

} catch(ParserException e) { throw e; }

if (psMachine.startTagDetected() == true)

{

// Start tag has been detected and is stored in the parserEngine

// Get the tag name stored in the state engine

startTag = psMachine.getData();

Engine Layer Source Code 275

LISTING 17.12 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 275

psMachine.resetDataBuffer();

} // Start tag detected

if (psMachine.endTagDetected() == true)

{

endTag = psMachine.getData();

// Validate if the element tags are the same before adding the tag

// value pair to the Hashtable

if (startTag.equalsIgnoreCase(endTag) == true)

{

if (startTag.equalsIgnoreCase(“METADATATYPE”) == true)

{

// This element defines the metadata type - control or layout

if (tagValue.equalsIgnoreCase(“Layout”) == true)

{

recType = 1;

psMachine.resetDataBuffer();

continue;

}

else if (tagValue.equalsIgnoreCase(“Control”) == true)

{

recType = 0;

psMachine.resetDataBuffer();

continue;

}

else

{

recType = -1;

sFlag = 1;

ParserException e = new

ParserException(“Invalid meta data type”);

throw e;

}

}

if (recType == 0)

{

// This metadata record has control information

MetadataControl m = new MetadataControl(fid,startTag,tagValue);

mRec.addControlRecord(m);

fid++;

}

CHAPTER 17 Source Code for ASCII File J2EE Adapter276

LISTING 17.12 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 276

else if (recType == 1)

{

// This metadata record has layout information

// If there are any domain values extract them from the tagValue

int j = tagValue.indexOf((int)’|’);

if (j == -1)

{

d = new String(“NO_DOMAIN_DEFINED”);

MetadataLayout m = new MetadataLayout(fid,startTag,tagValue,d);

mRec.addLayoutRecord(m);

fid++;

}

else

{

d = tagValue.substring(j);

v = tagValue.substring(0,j);

MetadataLayout m = new MetadataLayout(fid,startTag,v,d);

mRec.addLayoutRecord(m);

fid++;

}

}

}

else

{

// Log data to error log

sFlag = 1;

ParserException e = new

ParserException(“Start Tag “ + startTag +

“ and End Tag “ + endTag +

“ do not match”);

throw e;

} // Start tag and End tag do not match

psMachine.resetDataBuffer();

} // End of tag detected

if (psMachine.tagValueDetected() == true)

{

tagValue = psMachine.getData();

psMachine.resetDataBuffer();

} // An element value detected

Engine Layer Source Code 277

LISTING 17.12 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 277

} // End of for

} // End of method

public MetadataControl getControlRecord(String tagName)

{

return(mRec.getControlRecord(tagName));

}

public MetadataLayout getLayoutRecord(String tagName)

{

return(mRec.getLayoutRecord(tagName));

}

public void setMetadataRec(MetadataRec aRec)

{

this.mRec = aRec;

}

// Member variables

private TagValueParserStateMachine psMachine;

private MetadataRec mRec;

}

LISTING 17.13 TagValueParserStateMachine.java

/**

* Title: ASCII File Adapter<p>

* Description: This package contains all non-JCA classes of the

* ASCII file adapter.<p>

* Copyright: Copyright (c) Atul Apte<p>

* Company: iConexio Technologies Inc.<p>

* @author Atul Apte

* @version 1.0

*/

package com.iconexio.asciiFileAdapter;

public class TagValueParserStateMachine

{

// The default constructor of this class resets the parser state

public TagValueParserStateMachine()

{

CHAPTER 17 Source Code for ASCII File J2EE Adapter278

LISTING 17.12 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 278

resetParser();

}

// This method returns true if the tag represents start of an element

public boolean startTagDetected()

{

if (currentState == endTag && tagType == prefixTag)

return(true);

return(false);

}

// This method returns true if the tag represents end of an element

public boolean endTagDetected()

{

if (currentState == endTag && tagType == suffixTag)

return(true);

return(false);

}

// This method returns true if the parsing of element value is complete

public boolean tagValueDetected()

{

if (currentState == processingDataComplete)

return(true);

return(false);

}

// This method just resets the data buffer

public void resetDataBuffer()

{

dataIterator = 0;

}

// This method returns the string representing the parsed data

public String getData()

{

String s;

if (dataIterator == 0)

return((String)null); // No data has been parsed or the statemachine

// has been reset.

s = new String(parsedData,0,dataIterator);

return(s);

}

Engine Layer Source Code 279

LISTING 17.13 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 279

public void processByte(byte a) throws ParserException {

switch (currentState)

{

case idleState:

if (a == tagSDelim) // Start of an element tag is detected

currentState = startTag; // Change state

// Else ignore all bytes until start of tag is detected

break;

case startTag:

if (a == tagEDelim) // Tag end delimiter detected

{

currentState = endTag; // End of tag is detected

break;

}

else

{

// Store the bytes as tag name

if (dataIterator >= 32)

{

// Tag cannot be bigger than 32 bytes long

ParserException e = new

ParserException(“Tag name cannot exceed 32 bytes”);

throw(e);

}

if (a == ‘/’ && dataIterator == 0)

tagType = suffixTag; // Do not store the byte

else

{

// Store the byte as data

parsedData[dataIterator] = a;

dataIterator++;

}

}

break;

case endTag:

if (a == tagSDelim) {

currentState = startTag;

break;

}

CHAPTER 17 Source Code for ASCII File J2EE Adapter280

LISTING 17.13 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 280

if (a == EOR) // This indicates end of a record in the buffer

{

currentState = idleState;

tagType = prefixTag;

break;

}

parsedData[dataIterator] = a;

dataIterator++;

currentState = processingData;

break;

case processingData:

if (a == tagSDelim)

{

// Start of end tag detected

currentState = processingDataComplete;

}

else

{

parsedData[dataIterator] = a;

dataIterator++;

}

break;

case processingDataComplete:

if (a == tagEDelim) {

// Null tag name detected throw exception

ParserException e = new

ParserException(“End Tag naming error expecting /”);

throw e;

}

else {

if (a == ‘/’)

currentState = startTag;

tagType = suffixTag;

}

break;

}

Engine Layer Source Code 281

LISTING 17.13 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 281

return;

}

// This method resets the entire parser state including allocating a new

// buffer. The maximum data size is set to 1K

public void resetParser()

{

currentState = idleState;

parsedData = new byte[1025];

for (int i = 0; i <= 1024; i++)

parsedData[i] = 0;

tagType = prefixTag;

dataIterator = 0;

setTagSDelim((byte)’<’);

setTagEDelim((byte)’>’);

}

public void setTagSDelim(byte a) {

tagSDelim = a;

}

public void setTagEDelim(byte a) {

tagEDelim = a;

}

public byte getTagEDelim() {

return(tagEDelim);

}

public byte getTagSDelim() {

return(tagSDelim);

}

// Parser state engine member variables

private byte[] parsedData;

private int dataIterator;

private byte tagSDelim;

private byte tagEDelim;

private int currentState;

private int tagType; // prefixTag, suffixTag

CHAPTER 17 Source Code for ASCII File J2EE Adapter282

LISTING 17.13 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 282

// Parser states

private final static int idleState = 0;

private final static int startTag = 1;

private final static int endTag = 2;

private final static int processingData = 3;

private final static int processingDataComplete = 4;

private final static byte EOR = 13;

// Tag types

private final static int prefixTag = 1;

private final static int suffixTag = 2;

}

LISTING 17.14 ASCIIDataFileParser.java

/**

* Title: ASCII File Adapter<p>

* Description: This package contains all non-JCA classes of the

* ASCII file adapter.<p>

* Copyright: Copyright (c) Atul Apte<p>

* Company: iConexio Technologies Inc.<p>

* @author Atul Apte

* @version 1.0

*/

package com.iconexio.asciiFileAdapter;

import java.io.FileInputStream;

import java.io.IOException;

import java.util.Vector;

public class ASCIIDataFileParser extends Object implements FileParser

{

public ASCIIDataFileParser()

{

this.pEngine = new ASCIIDataFileParserEngine();

}

public ASCIIDataFileParser(ASCIIDataFileParserEngine theEngine)

{

Engine Layer Source Code 283

LISTING 17.13 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 283

this.pEngine = theEngine;

}

public void setFieldDelimiter(byte fieldDelim)

{

this.pEngine.setFieldDelimiter(fieldDelim);

}

public void processFile(String fileName) throws IOException, ParserException,

Exception

{

FileInputStream fis;

byte[] rec;

int n, r;

fis = new FileInputStream(fileName);

try

{

while (true)

{

n = fis.available();

if (n <= 0)

break;

if (n > 10241)

{

Exception e = new Exception(“File too big.. > 10K”);

throw e;

}

if (n > 0)

{

// There is data to be read, create a byte array to hold the data

rec = new byte[n];

r = fis.read(rec);

if (r == -1)

break; // break out of the while loop

try

{

pEngine.parseBuffer(rec,n);

}

catch (ParserException e)

{

CHAPTER 17 Source Code for ASCII File J2EE Adapter284

LISTING 17.14 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 284

throw e;

}

} // End of if n > 0

} // End of while loop

} catch (IOException e) { throw e; }

}

public Vector getRecordContainer()

{

// Call the ASCIIDataFileParserEngine.getRecordContainer

return(pEngine.getRecordContainer());

}

// Member variables

private ASCIIDataFileParserEngine pEngine;

}

LISTING 17.15 ASCIIDataFileParserEngine.java

/**

* Title: ASCII File Adapter<p>

* Description: This package contains all non-JCA classes of the

* ASCII file adapter.<p>

* Copyright: Copyright (c) Atul Apte<p>

* Company: iConexio Technologies Inc.<p>

* @author Atul Apte

* @version 1.0

*/

package com.iconexio.asciiFileAdapter;

import java.util.Vector;

public class ASCIIDataFileParserEngine implements ParserEngine

{

public ASCIIDataFileParserEngine()

{

psMachine = new ASCIIDataFileParserStateMachine();

recordContainer = new Vector();

}

Engine Layer Source Code 285

LISTING 17.14 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 285

public void setFieldDelimiter(byte fieldDelim)

{

psMachine.setFieldDelim(fieldDelim);

}

public void parseBuffer(byte[] buff, int len) throws ParserException

{

String f1,f2,f3,f4,f5,f6;

CustomerRec cRec;

int f;

f1 = f2 = f3 = f4 = f5 = f6 = null;

psMachine.resetParser();

f = 1;

for (int i = 0; i < len; i++)

{

try

{

psMachine.processByte(buff[i]);

} catch (ParserException e) { throw e; }

if (psMachine.fieldDetected() == true)

{

// A new field delimiter was detected. Store the data as a field

// and assign it to the right customer record field

if (f == 1)

{

f1 = psMachine.getData();

f++;

}

else if (f == 2)

{

f2 = psMachine.getData();

f++;

}

else if (f == 3)

{

f3 = psMachine.getData();

f++;

}

CHAPTER 17 Source Code for ASCII File J2EE Adapter286

LISTING 17.15 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 286

else if (f == 4)

{

f4 = psMachine.getData();

f++;

}

else if (f == 5)

{

f5 = psMachine.getData();

f++;

}

psMachine.resetDataBuffer();

}

if (psMachine.EORDetected() == true)

{

if (f <= 5)

{

// We have fewer than anticipated fields

ParserException e = new

ParserException(f1+”,”+f2+”,”+f3+”,”+f4+”,”+f5+

“ Missing field detected”);

psMachine.resetDataBuffer();

f = 1;

throw e;

}

else

{

// Get the last field

f6 = psMachine.getData();

cRec = new CustomerRec(f1,f2,f3,f4,f5,f6);

recordContainer.add(cRec);

psMachine.resetDataBuffer();

f = 1;

}

}

}

}

public Vector getRecordContainer()

{

Engine Layer Source Code 287

LISTING 17.15 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 287

return(recordContainer);

}

private ASCIIDataFileParserStateMachine psMachine;

private Vector recordContainer; // Each record in this container is an

// instance of CustomerRec

}

LISTING 17.16 ASCIIDataFileParserStateMachine.java

/**

* Title: ASCII File Adapter<p>

* Description: This package contains all non-JCA classes of the

* ASCII file adapter.<p>

* Copyright: Copyright (c) Atul Apte<p>

* Company: iConexio Technologies Inc.<p>

* @author Atul Apte

* @version 1.0

*/

package com.iconexio.asciiFileAdapter;

public class ASCIIDataFileParserStateMachine

{

public ASCIIDataFileParserStateMachine()

{

resetParser();

}

public boolean fieldDetected()

{

if (currentState == endOfField)

return(true);

return(false);

}

public boolean EORDetected()

{

if (currentState == endOfRecord)

return(true);

CHAPTER 17 Source Code for ASCII File J2EE Adapter288

LISTING 17.15 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 288

return(false);

}

public void resetParser()

{

currentState = idleState;

dataIterator = 0;

parsedData = new byte[10240+1];

}

public String getData()

{

String s;

if (dataIterator == 0)

return((String)null); // No data has been parsed or the statemachine

// has been reset.

s = new String(parsedData,0,dataIterator);

resetDataBuffer();

return(s);

}

public void resetDataBuffer()

{

dataIterator = 0;

}

public void processByte(byte a) throws ParserException {

switch (currentState)

{

case idleState:

if (a == fieldDelim) // Start of an element tag is detected

{

currentState = endOfField; // Change state

break;

}

if (a == EOR)

{

currentState = endOfRecord;

}

else

{

Engine Layer Source Code 289

LISTING 17.16 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 289

// Store into parsedData

parsedData[dataIterator] = a;

dataIterator++;

if (dataIterator > 10240)

{

ParserException e = new ParserException(“Data field too long”);

throw e;

}

}

break;

case endOfField:

if (a == EOR) // Tag end delimiter detected

{

currentState = endOfRecord; // End of tag is detected

dataIterator = 0;

break;

}

else

{

// Store data in parsedData

parsedData[dataIterator] = a;

dataIterator++;

currentState = idleState;

if (dataIterator > 10240)

{

ParserException e = new ParserException(“Data field too long”);

throw e;

}

}

break;

case endOfRecord:

parsedData[dataIterator] = a;

dataIterator++;

currentState = idleState;

if (dataIterator > 10240)

{

ParserException e = new ParserException(“Data field too long”);

throw e;

}

CHAPTER 17 Source Code for ASCII File J2EE Adapter290

LISTING 17.16 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 290

break;

}

return;

}

public void setFieldDelim(byte a)

{

fieldDelim = a;

}

public byte getFieldDelim()

{

return(fieldDelim);

}

// private member variables

private static final int idleState = 0;

private static final int endOfField = 1;

private static final int endOfRecord = 2;

private static final byte EOR = 13;

private byte fieldDelim;

private byte[] parsedData;

private int dataIterator;

private int currentState;

}

LISTING 17.17 ParserException.java

/**

* Title: ASCII File Adapter<p>

* Description: This package contains all non-JCA classes of the

* ASCII file adapter.<p>

* Copyright: Copyright (c) Atul Apte<p>

* Company: iConexio Technologies Inc.<p>

* @author Atul Apte

* @version 1.0

*/

package com.iconexio.asciiFileAdapter;

Engine Layer Source Code 291

LISTING 17.16 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 291

public class ParserException extends Exception

{

public ParserException(String s)

{

super(s);

}

}

Shared Service Layer Source Code
The source code in this layer contains all data objects (customer and metadata), as
well as the log manager. Listings 17.18 to 17.21 contain source code for the data
objects, and Listings 17.22 to 17.28 contain the log manager-related source code.

LISTING 17.18 CustomerRec.java

/**

* Title: ASCII File Adapter<p>

* Description: This package contains all non-JCA classes of the

* ASCII file adapter.<p>

* Copyright: Copyright (c) Atul Apte<p>

* Company: iConexio Technologies Inc.<p>

* @author Atul Apte

* @version 1.0

*/

package com.iconexio.asciiFileAdapter;

// Objects of CustomerRec class hold the parsed customer data information

// Each customer record has a unique ID. There can be more than one record

// with the same ID as there can be multiple actions performed on a record

// including add, update, delete

public class CustomerRec

{

public CustomerRec()

{

ID = null;

name = null;

actionID = 0x00;

CHAPTER 17 Source Code for ASCII File J2EE Adapter292

LISTING 17.17 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 292

address = null;

status = null;

outstandingBal = (float)0.00;

}

// Since this customer record is supposed to be read-only all the setters are

// declared as private methods accessible from the constructor

public CustomerRec(String ID, String name, String actionID, String address,

String status, String balance) {

setID(ID);

setName(name);

setRecAction(actionID.charAt(0));

setAddress(address);

setStatus(status);

Float x = new Float(1.00);

x.parseFloat(balance);

setOutstandingBal(x.parseFloat(balance));

}

public String getID() {

return(ID);

}

private void setID(String theID) {

ID = new String(theID);

}

public String getName() {

return(name);

}

private void setName(String theName) {

name = new String(theName);

}

public char getRecAction() {

return(actionID);

}

private void setRecAction(char theAction) {

actionID = theAction;

}

public String getAddress() {

return(address);

}

private void setAddress(String theAddress) {

Shared Service Layer Source Code 293

LISTING 17.18 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 293

address = new String(theAddress);

}

public float getOutstandingBal() {

return(outstandingBal);

}

private void setOutstandingBal(float theBal) {

outstandingBal = theBal;

}

private void setStatus(String theStatus) {

status = new String(theStatus);

}

public String getStatus() {

return(status);

}

public boolean isCustomerAccountActive() {

if (status.equalsIgnoreCase(“Active”) == true)

return(true);

return(false);

}

private String ID;

private String name;

private char actionID; // A = Add, U = Update, D = Delete

private String address;

private float outstandingBal; // Default = 0.00

private String status; // Active, Dormant, Bad Account

}

LISTING 17.19 MetadataRec.java

/**

* Title: ASCII File Adapter<p>

* Description: This package contains all non-JCA classes of the

* ASCII file adapter.<p>

* Copyright: Copyright (c) Atul Apte<p>

* Company: iConexio Technologies Inc.<p>

* @author Atul Apte

* @version 1.0

CHAPTER 17 Source Code for ASCII File J2EE Adapter294

LISTING 17.18 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 294

*/

package com.iconexio.asciiFileAdapter;

import java.util.Hashtable;

public class MetadataRec

{

public MetadataRec()

{

controlRec = new Hashtable();

layoutRec = new Hashtable();

}

public MetadataControl getControlRecord(String tag)

{

return((MetadataControl)controlRec.get(tag));

}

public void addControlRecord (MetadataControl cRec)

{

controlRec.put(cRec.getName(), cRec);

}

public void addLayoutRecord (MetadataLayout lRec)

{

layoutRec.put(lRec.getName(),lRec);

}

public MetadataLayout getLayoutRecord(String tag)

{

return((MetadataLayout)layoutRec.get(tag));

}

private Hashtable controlRec;

private Hashtable layoutRec;

}

LISTING 17.20 MetadataControl.java

/**

* Title: ASCII File Adapter<p>

* Description: This package contains all non-JCA classes of the

* ASCII file adapter.<p>

* Copyright: Copyright (c) Atul Apte<p>

Shared Service Layer Source Code 295

LISTING 17.19 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 295

* Company: iConexio Technologies Inc.<p>

* @author Atul Apte

* @version 1.0

*/

package com.iconexio.asciiFileAdapter;

// This class contains the basic control data required to parse any ASCII

// file namely the field delimiter. This class can be extended for more complex

// control data.

public class MetadataControl extends Object

{

public MetadataControl()

{

}

public MetadataControl(int afID, String fName, String fValue)

{

fID = afID;

fname = new String(fName);

fvalue = new String(fValue);

}

public int getID()

{

return(fID);

}

public String getName()

{

return(fname);

}

public String getValue()

{

return(fvalue);

}

private int fID;

private String fname;

private String fvalue;

}

CHAPTER 17 Source Code for ASCII File J2EE Adapter296

LISTING 17.20 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 296

LISTING 17.21 MetadataLayout.java

/**

* Title: ASCII File Adapter<p>

* Description: This package contains all non-JCA classes of the

* ASCII file adapter.<p>

* Copyright: Copyright (c) Atul Apte<p>

* Company: iConexio Technologies Inc.<p>

* @author Atul Apte

* @version 1.0

*/

package com.iconexio.asciiFileAdapter;

// This class defines the structure of a field including its name, type, and

// the actual value. An example of MetaDataLayout instance is:

// fID = 1

// fName = ACCOUNT_STATUS

// fType = String

// fDomain = ACTIVE,DORMANT (values that define the domain of this field.)

// The domain parameter is optional and can be used by the parser to validate

// any values assigned to the field.

public class MetadataLayout

{

public MetadataLayout()

{

}

public MetadataLayout(int afID, String fName, String fType, String fDomain) {

fID = afID;

fname = new String(fName);

ftype = new String(fType);

fdomain = new String(fDomain);

}

public int getID() {

return(fID);

}

public String getName() {

return(fname);

}

public String getDomainValue() {

return(fdomain);

}

Shared Service Layer Source Code 297

18 0672323109 CH17 4/18/02 10:10 AM Page 297

public String getType() {

return(ftype);

}

private int fID;

private String fname;

private String ftype;

private String fdomain;

}

LISTING 17.22 LogManager.java

/* Generated by Together */

package com.iconexio.asciiFileAdapter;

/**

* A log manager is a generic interface to different types of audit

* trails that track different aspects of the resource adapter.

* Some of the audit trail will be managed local to the resource

* adapter (on the same J2EE application server) while other audit

* trails will be remote to the adapter. For example if a resource

* adapter is integrating a CICS COBOL application then it may well

* be necessary to maintain a log in the CICS environment as well as

* the application server environment.

*

* Designing a log manager independent of the actual location and

* implementation is an important part of adapter customization and

* flexibility. In more advanced IT centers a NMS (Network Monitoring

* System) based log manager may be needed.

* An adapter may have to open more than one log at the same time.

* One of the customization could be to I18N one or more of the log

* files. This will ensure that geographically distributed centers

* and users get messages in local languages.

*

* @author Atul Apte

* @version 1.0

*/

import java.io.*;

public interface LogManager {

CHAPTER 17 Source Code for ASCII File J2EE Adapter298

LISTING 17.21 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 298

/* The LogManager implementation can open and manage more than one

* log of different types including transaction logs, system logs,

* exception logs,and performance logs. Mode can be WRITE or APPEND

*/

public void openLog(String logName, String mode) throws Exception;

/* Some logs may need a secured access especially if the log file is

* maintaining details of a business transaction and not just system

* information. MODE can be WRITE or APPEND

*/

public void

openLog(String logName, String mode, String userID, String password)

throws Exception;

public void closeLog(String logName) throws IOException;

public void logMessage(String logName, String logMessage)

throws Exception;

public void setTimestamp(String logName) throws Exception;

}

LISTING 17.23 LogFileManager.java

/* Generated by Together */

/* The LogFileManager provides a class for managing file based logs

* This class must be extended to manage specific types of log files

*

* @author Atul Apte

* @version 1.0

*/

package com.iconexio.asciiFileAdapter;

import java.io.*;

import java.util.*;

import java.lang.*;

abstract public class LogFileManager extends Object implements LogManager {

public LogFileManager() {

// The default constructor allows for only one log file

Shared Service Layer Source Code 299

LISTING 17.22 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 299

// to be open at any given time

_noOfLogFilesOpen = 0;

_maxLogFilesOpen = 2;

logFileTable = new Hashtable();

}

public LogFileManager(int maxNoOfLogFiles) {

// If you need more than one log file open at the same

// time use this constructor. The actual maximum files open

// in any environment is defined by the system kernel.

_maxLogFilesOpen = maxNoOfLogFiles;

_noOfLogFilesOpen = 0;

logFileTable = new Hashtable();

}

// mode can be a string with the value WRITE or APPEND

public void openLog(String theLogFileName, String mode) throws

TooManyLogFilesOpenException, Exception {

// Check to see if there is any room to open more files

if (getNoOfLogFilesOpen() >= getMaxNoOfLogFiles()) {

TooManyLogFilesOpenException e = new

TooManyLogFilesOpenException(“Cannot open “ +

theLogFileName + “Too many log files open”);

throw e;

}

// Open a log file and store the handle in a hash table

File logFile = new File(theLogFileName);

FileOutputStream logFileStream;

if (mode.equalsIgnoreCase(“WRITE”) == true) {

try {

// Open file in write mode

logFileStream = new

FileOutputStream(theLogFileName);

} catch (Exception e) {

throw e;

}

logFileTable.put(theLogFileName, logFileStream);

incrementNoOfFilesOpen();

}

else if (mode.equalsIgnoreCase(“APPEND”) == true) {

try {

CHAPTER 17 Source Code for ASCII File J2EE Adapter300

LISTING 17.23 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 300

// Open file in append mode

logFileStream = new

FileOutputStream(theLogFileName, true);

} catch (Exception e) {

throw e;

}

logFileTable.put(theLogFileName, logFileStream);

incrementNoOfFilesOpen();

}

else {

// Throw an exception

TooManyLogFilesOpenException e = new

TooManyLogFilesOpenException(“File “ +

theLogFileName +

“ exists. Cannot open in WRITE mode”);

throw e;

}

}

public void openLog(String theLogFileName, String mode,

String userID, String password)

throws TooManyLogFilesOpenException, Exception {

openLog(theLogFileName,mode);

}

public void closeLog(String theFileName) throws IOException {

Object logFileStream = (Object)logFileTable.remove(theFileName);

if (logFileStream != null) {

Class logClass = logFileStream.getClass();

String className = logClass.getName();

if (className.equalsIgnoreCase(“FileOutputStream”) == true) {

FileOutputStream theStream = (FileOutputStream)logFileStream;

try {

theStream.close();

} catch (IOException e) {

throw e;

}

}

}

}

Shared Service Layer Source Code 301

LISTING 17.23 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 301

public void logMessage(String logName, String logMsg) throws Exception {

// Retrieve the correct file stream object matching the log name

FileOutputStream theFileStream;

theFileStream = (FileOutputStream)logFileTable.get(logName);

if (theFileStream == null) {

NullPointerException e = new

NullPointerException(“Cannot find matching file stream for “

+ logName);

throw e;

}

byte[] msgInBytes = logMsg.getBytes();

theFileStream.write(msgInBytes);

theFileStream.write((int)10);

theFileStream.write((int)13);

}

public int getNoOfLogFilesOpen() {

return(_noOfLogFilesOpen);

}

public int getMaxNoOfLogFiles() {

return(_maxLogFilesOpen);

}

public void incrementNoOfFilesOpen() {

_noOfLogFilesOpen++;

}

public void decrementNoOfFilesOpen() {

_noOfLogFilesOpen--;

}

private int _noOfLogFilesOpen;

private int _maxLogFilesOpen;

private Hashtable logFileTable;

private final char nl = ‘\n’;

}

CHAPTER 17 Source Code for ASCII File J2EE Adapter302

LISTING 17.23 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 302

LISTING 17.24 AdapterDefaultLogManager.java

/* Generated by Together */

/* The AdapterDefaultLogManager extends LogFileManager class

* The example resource adapter in this book uses this

* as the default log manager.

*

* @author Atul Apte

* @version 1.0

*/

package com.iconexio.asciiFileAdapter;

import java.util.*;

import java.text.*;

public class AdapterDefaultLogManager extends LogFileManager {

public AdapterDefaultLogManager() {

super(1); // Only one default log manager

}

public void setTimestamp(String logName) throws Exception {

Date now = new Date();

DateFormat fmt = DateFormat.getDateTimeInstance();

String timeStamp = fmt.format(now);

try {

logMessage(logName, timeStamp);

} catch (Exception e) {

throw e;

}

}

}

LISTING 17.25 AdapterExceptionLogManager.java

/* Generated by Together */

/* The AdapterExceptionLogManager extends LogFileManager class

* The example resource adapter in this book uses this

* as the exception log manager.

* Notice the logException method has been extended to support

* severity of the exception

*

Shared Service Layer Source Code 303

18 0672323109 CH17 4/18/02 10:10 AM Page 303

* @author Atul Apte

* @version 1.0

*/

package com.iconexio.asciiFileAdapter;

import java.lang.*;

import java.util.*;

import java.text.*;

public class AdapterExceptionLogManager extends LogFileManager {

public AdapterExceptionLogManager() {

// set max number of files that can be opened to 3

super(3);

}

public void setTimestamp(String logName) throws Exception {

Date now = new Date();

DateFormat fmt = DateFormat.getDateTimeInstance();

String timeStamp = fmt.format(now);

try {

logMessage(logName, timeStamp);

} catch (Exception e) {

throw e;

}

}

public void logException(String logName, String msg,

String severity) throws Exception {

try {

logMessage(logName,severity);

} catch (Exception e) {

throw e;

}

try {

logMessage(logName,msg);

} catch (Exception e) {

throw e;

}

}

}

CHAPTER 17 Source Code for ASCII File J2EE Adapter304

LISTING 17.25 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 304

LISTING 17.26 LogManagerFactoryIF.java

/* Generated by Together */

/* This factory interface creates a log manager depending

* on the key defined by the parameter logType

* The benefits of having a factory create instances of

* log managers is that the decision to associate a specific

* key or log type to appropriate class is localized in

* this class and easier to change in the future without

* affecting the other classes.

*

* @author Atul Apte

* @version 1.0

*/

package com.iconexio.asciiFileAdapter;

public interface LogManagerFactoryIF {

public LogManager createLogManager(String logType);

}

LISTING 17.27 LogManagerFactory.java

/* Generated by Together */

/* This is the implemenation of the log manager factory

* interface

* If the logType is == Adapter Exception Log then

* an instance of the exception log manager is created.

* Otherwise the default log manager is created

* If the exceptions need to be directed to the system

* admin by an email, the AdapterExceptionLogManager can

* be extended to send an email using SMTP or other mail

* protocols

*

* @author Atul Apte

* @version 1.0

*/

package com.iconexio.asciiFileAdapter;

public class LogManagerFactory implements LogManagerFactoryIF {

public LogManagerFactory() {

}

Shared Service Layer Source Code 305

18 0672323109 CH17 4/18/02 10:10 AM Page 305

public LogManager createLogManager(String logType) {

LogManager aNewManager;

if (logType.equalsIgnoreCase(“EXCEPTION”) == true)

aNewManager = new AdapterExceptionLogManager();

else

aNewManager = new AdapterDefaultLogManager();

return(aNewManager);

}

}

LISTING 17.28 TooManyLogFilesOpenException.java

/* Generated by Together */

/* This is the exception throw when too many log files are

* open at the same time.

*

* @author Atul Apte

* @version 1.0

*/

package com.iconexio.asciiFileAdapter;

public class TooManyLogFilesOpenException extends Exception {

public TooManyLogFilesOpenException() {

super(“Too many log files open”);

}

public TooManyLogFilesOpenException(String s) {

super(s);

}

}

Test Harness
Every adapter must have a test harness capable of testing the adapter classes in a
non-JCA environment. This simplifies the unit testing of the adapter classes. Listing
17.29 contains a test harness for the ASCII file adapter.

CHAPTER 17 Source Code for ASCII File J2EE Adapter306

LISTING 17.27 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 306

LISTING 17.29 testHarness.java

/**

* Title: ASCII File Adapter<p>

* Description: This package contains all non-JCA classes of the

* ASCII file adapter.<p>

* Copyright: Copyright (c) Atul Apte<p>

* Company: iConexio Technologies Inc.<p>

* @author Atul Apte

* @version 1.0

*/

package com.iconexio.asciiFileAdapter;

/**

* The test harness is a standalone Java program that uses the ASCII file

* parser classes to parse the customer data file and display the contents

* to the standard output.

*/

import java.util.Vector;

import java.lang.Integer;

import java.io.File;

public class testHarness

{

public testHarness()

{

LogManager lm;

LogManagerFactory lmf;

int badRec;

badRec = 0;

// Create a log manager for exception log files

lmf = new LogManagerFactory();

lm = lmf.createLogManager(“EXCEPTION”);

try

{

lm.openLog(“BADREC.DAT”,”APPEND”);

} catch(Exception e)

{

Test Harness 307

18 0672323109 CH17 4/18/02 10:10 AM Page 307

System.err.println(e.getMessage());

}

try

{

lm.setTimestamp(“BADREC.DAT”);

} catch(Exception e)

{

System.err.println(e.getMessage());

}

ClientAPIImpl cAPI = new ClientAPIImpl();

try

{

cAPI.extractRecords();

} catch(Exception e)

{

// Log the exception in a log file

try

{

lm.logMessage(“BADREC.DAT”,e.getMessage());

} catch(Exception e1)

{

System.err.println(e1.getMessage());

}

}

// Open the statistics log file

try

{

lm.openLog(“PSTATS.DAT”,”WRITE”);

} catch(Exception e)

{

System.err.println(e.getMessage());

}

Vector custRecs;

custRecs = cAPI.getCustomerRecordList();

CustomerRec cRec;

int z;

z = custRecs.size();

CHAPTER 17 Source Code for ASCII File J2EE Adapter308

LISTING 17.29 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 308

for (int i = 0; i < z; i++)

{

cRec = (CustomerRec)custRecs.get(i);

if (cAPI.isCustomerRecordValid(cRec) == true)

{

System.out.println(cRec.getID());

System.out.println(cRec.getName());

System.out.println(cRec.getRecAction());

System.out.println(cRec.getAddress());

System.out.println(cRec.getStatus());

System.out.println(cRec.getOutstandingBal());

}

else

badRec++; // Keep a counter for recording number of invalid records

}

// Log statistics before closing the log files

Integer zz = new Integer(z);

Integer yy = new Integer(badRec);

// Write this information to the PSTATS.DAT log file

try

{

lm.logMessage(“PSTATS.DAT”,zz.toString());

lm.logMessage(“PSTATS.DAT”,yy.toString());

} catch(Exception e1)

{

System.err.println(e1.getMessage());

}

try

{

lm.closeLog(“BADREC.DAT”);

lm.closeLog(“PSTATS.DAT”);

} catch(Exception e)

{

System.err.println(e.getMessage());

}

}

/** The parameter metaDataFileName references the metadata definitions

* and the parameter customerDataFileName references the actual customer

Test Harness 309

LISTING 17.29 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 309

* data filename

*/

public testHarness(String metaDataFileName, String customerDataFileName)

{

// Since we are testing the same data files the pstats.log file is not

// present in this method

LogManager lm;

LogManagerFactory lmf = new LogManagerFactory();

lm = lmf.createLogManager(“EXCEPTION”);

try

{

lm.openLog(“BADREC.DAT”,”APPEND”);

} catch(Exception e)

{

System.err.println(e.getMessage());

}

try

{

lm.setTimestamp(“BADREC.DAT”);

}

catch(Exception e)

{

System.err.println(e.getMessage());

}

ClientAPIImpl cAPI = new ClientAPIImpl();

try

{

cAPI.extractRecords(customerDataFileName,metaDataFileName);

}

catch(Exception e)

{

// Log the error in a log file

try

{

lm.logMessage(“BADREC.DAT”,e.getMessage());

}

catch(Exception e1)

{

CHAPTER 17 Source Code for ASCII File J2EE Adapter310

LISTING 17.29 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 310

System.err.println(e1.getMessage());

}

}

Vector custRecs;

custRecs = cAPI.getCustomerRecordList();

CustomerRec cRec;

int z;

z = custRecs.size();

for (int i = 0; i < z; i++)

{

cRec = (CustomerRec)custRecs.get(i);

if (cAPI.isCustomerRecordValid(cRec) == true)

{

System.out.println(cRec.getID());

System.out.println(cRec.getName());

System.out.println(cRec.getRecAction());

System.out.println(cRec.getAddress());

System.out.println(cRec.getStatus());

System.out.println(cRec.getOutstandingBal());

}

}

try

{

lm.closeLog(“BADREC.DAT”);

}

catch(Exception e)

{

System.err.println(e.getMessage());

}

}

public static void main(String[] args)

{

if (args.length == 0)

{

// First parse the default customer data file as defined in the

// default metadata definition file METADATA.DAT

testHarness testHarness1 = new testHarness();

// Print the total number of records processed

Test Harness 311

LISTING 17.29 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 311

AdminAPIImpl a = new AdminAPIImpl();

try

{

System.out.println(“No of record processed = “ +

a.getNoOfRecordsProcessed());

} catch(Exception e)

{

System.err.println(e.getMessage());

}

return;

}

if (args.length == 2)

{

// Next parse the customer data file and metadata file passed to this

// program as arguments

File testArg;

testArg = new File(args[0]);

if (testArg.exists() == false)

{

System.out.println(“File name specified in args[0] “ + args[0] +

“ Does not exist”);

return;

}

testArg = new File(args[1]);

if (testArg.exists() == false)

{

System.out.println(“File name specified in args[0] “ + args[1] +

“ Does not exist”);

return;

}

testHarness testHarness2 = new testHarness(args[0], args[1]);

return;

}

if (args.length > 2 || args.length == 1)

{

System.out.println(

“Usage 1: java com.iconexio.asciiFileAdapter.testHarness”);

System.out.println(

“Usage 2: java com.iconexio.asciiFileAdapter.testHarness “ +

“<Meta data filename> <Cutomer data filename>”);

CHAPTER 17 Source Code for ASCII File J2EE Adapter312

LISTING 17.29 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 312

return;

}

}

}

Summary
The source code listed in this chapter is the complete set of classes providing the
core functionality of the resource adapter. Together with the classes presented in
Chapter 11 (which contains the JCA-related classes), the source represents a complete
J2EE resource adapter. The test harness and the test data presented in the earlier
sections of this chapter will be useful in unit and system testing of the adapter.

Summary 313

LISTING 17.29 Continued

18 0672323109 CH17 4/18/02 10:10 AM Page 313

18 0672323109 CH17 4/18/02 10:10 AM Page 314

A

Glossary

abstraction A representation in terms of presumed
essentials, with a corresponding suppression of the non-
essential.

ACID (Atomicity, Consistency, Isolation,
Durability) Properties Hallmark properties of OLTP
systems.

AIA (Application Integration Adapter) A software
component whose sole objective is to integrate two busi-
ness applications in a point-to-point or brokered environ-
ment.

API (Application Programming Interface) An
application-specific interface that enables different
programs to interact with each other.

architecting The process of creating and building
architectures. Depending on your perspective, architecting
may or may not be seen as a separable part of engineering.
These aspects of system development are most concerned
with conceptualization, objective definition, and certifica-
tion for use.

architecture The structure (components, connections,
and constraints) of a product, process, or element. The
architecture of a particular application is defined by the
classes and the interrelation of the classes. At another
level, the architecture of a system is determined by the
arrangement of the hardware and software components.
The terms logical architecture and physical architecture are
often used to emphasize this distinction.

asynchronous request A request where the client does
not pause to wait for results.

19 0672323109 AppA 4/18/02 10:09 AM Page 315

APPENDIX A Glossary316

atomicity One of the ACID properties; all or none of the transaction must occur.
If all parts of the transaction cannot occur successfully, all effects of the transaction
must be undone or “rolled back.”

B2B Business to Business connectivity over the Internet, especially in the context
of supply chain automation. B2B exchanges could be private exchanges between
trading partners or public exchanges with a wider set of members.

CCI (Common Connector Interface) The specification defining an API for
accessing Java Connector Architecture-compliant resource adapters. It is not manda-
tory to implement a CCI-compliant API for each resource adapter; however, it is
advisable to do so for the sake of consistency.

commit The declaration or process of making a transaction’s updates and
messages visible to other transactions. When a transaction commits, all its effects
become public and durable. After commitment, the effects of a transaction cannot
be reversed automatically.

complexity A measure of the numbers and types of interrelationships among
system elements. Generally speaking, the more complex a system, the more difficult
it is to design, build, and use.

composite object An object that is composed of objects, and delegates defined
responsibilities to those objects. The validity of the composite object depends on the
continued connection with its component objects. The composite object is defined
by its parts; the termination of a component object would require the termination or
declassification of the composite object.

consistency One of the ACID properties; a transaction’s results must be repro-
ducible and predictable, even when the processing is distributed across different plat-
forms.

constraint A condition or proposition that must be maintained as true.
Constraints are typically applied to the permissible states of an object or the exten-
sion of one or more types.

delegation The notion that an object can issue a request to another object in
response to a request. The first object, therefore, delegates the responsibility to the
second object. Delegation can be used as an alternative to inheritance.

design pattern A recurring structure or approach to a solution.

distributed computing The distribution of process among computing compo-
nents that are within the same computer or different computers on a shared
network.

domain A recognized field of activity and expertise, or of specialized theory and
application.

19 0672323109 AppA 4/18/02 10:09 AM Page 316

durability One of the ACID properties; a transaction’s results must be permanent.
The transaction must also have robustness; transactions must be able to survive
application errors and rollbacks for resubmission to the application.

EAI (Enterprise Application Integration) A set of technologies that allows
the movement and exchange of information between different applications and busi-
ness processes with and between organizations.

EDI (Electronic Data Interchange) A standard for sharing information (data)
between trading partners in the context of interorganization process integration. EDI
has been in use, both in commercial environments as well as government depart-
ments.

EJB (Enterprise Java Bean) A component model for J2EE servers. There are
three types of EJB in the latest version of the EJB specifications, version 2.0: entity
beans, session beans, and message driven beans.

factory An entity that provides a service for creating objects.

IDE (Integrated Development Environment) A development tool usually
considered as a comprehensive environment supporting the full development lifecy-
cle, from design to coding to testing and deployment.

integration pattern A design pattern defined in the domain and context of
application integration. An integration pattern connects to incompatible software or
application artifacts.

interface table A data table in a relational database intended to be a staging area
for data external to the application. Interface tables are used to hold external data
before transforming and validating the data into application-compatible formats, and
committing the transformed and validated data to the application’s production
tables.

isolation One of the ACID properties; a transaction must be distinguishable as
discrete from other transactions. No executing transaction can interfere with another
concurrently existing transaction.

J2EE (Java 2 Enterprise Edition) An enterprise-scale Java platform capable of
supporting EJB, JCA, and other specifications. J2EE is the ideal platform for Internet-
based, component-oriented, enterprise applications.

J2SE (Java 2 Standard Edition) The standard edition of Java used to develop
two-tier, standalone business applications.

JCA (Java Connector Architecture) A specification for extending the integra-
tion capabilities of a J2EE-compatible server. JCA specifications define specific system
contracts for developing resource adapters that integrate J2EE applications with
legacy systems.

Glossary 317

19 0672323109 AppA 4/18/02 10:09 AM Page 317

LAN (Local Area Network) A departmental network inside the corporate fire-
wall. LAN environments are still useful for isolating internal integration environ-
ments from external interactions.

legacy system A production system that was designed for technology assump-
tions that are no longer valid or expected to become invalid in the foreseeable
future.

lifecycle services Operations that manage object creation, deletion, copy, and
equivalence.

message routing/content based routing A super-application process in which
messages are routed to applications based on business rules. A particular message
may be directed based on its subject or actual content.

methodology A process for the production of software using a collection of
predefined techniques and notational conventions.

module A collection of objects, methods, and classes that collaborate to provide a
subset of the functionality of an application. Modules can retain their own state, and
share information and behavior with the rest of the application.

n-tier client/server An application development approach that partitions appli-
cation logic across three or more environments: the desktop computer, one or more
application servers, and a database server. The main advantage of the n-tier
client/server is that it extends the benefits of client/server to the enterprise level.
Other advantages include added manageability, scalability, security, and higher
performance.

open system A system whose architecture permits components developed by
independent organizations or vendors to be combined.

On-Line Transaction Processing (OLTP) The area of business computing that
involves mission-critical business transactions that are processed in real time. These
systems require high volume throughput and rapid response times.

persistent object An object that can survive the process that created it. A persis-
tent object exists until it is explicitly deleted.

Points Of Integration (PIN) The program code of an application that is
invoked by an external entity. User interfaces of an application are an example of
points of integration used by end-users of the application. Other application func-
tions and database tables form points of integration for external systems.

post-condition A constraint that must be satisfied after the termination of an
operation.

precondition A constraint that must be satisfied for the invocation of an opera-
tion.

APPENDIX A Glossary318

19 0672323109 AppA 4/18/02 10:09 AM Page 318

referential integrity The assurance that an object handle identifies a single
object.

Remote Procedure Call (RPC) A local procedure call that is executed in a non-
local program or address space. Enables application logic to be split between a client
and a server in the way that best uses available resources.

role A job type defined in terms of a set of responsibilities.

rollback Terminates a transaction so that all resources updated within a transac-
tion revert to the original state before the transaction started.

SOAP (Simple Object Access Protocol) An XML-based protocol for invoking
remote procedures. SOAP has become one of the cornerstones of Web services, and
has been accepted as a standard by all major vendors including Microsoft, SUN, IBM,
and others.

synchronous request A request where the client pauses to wait for completion
of the request.

two-phase commit A mechanism to synchronize updates on different machines
or platforms, so that they all fall or all succeed together. The decision to commit is
centralized, but each participant has the right to veto. This is a key process in real-
time, transaction-based environments.

TPM (Transaction Processing Monitor) Based on the premise of a transaction.
A transaction is a unit of work with a beginning and an end. The reasoning is that if
an application’s logic is encapsulated within a transaction, then the transaction
either completes or is rolled back completely. If the transaction has been updating
remote resources, such as databases and queues, then they too will be rolled back if a
problem occurs.

transient object An object whose existence is limited to that of the process that
created it.

transaction A logical construct through which applications perform work on
shared resources (for example, databases). The work done on behalf of the transac-
tion conforms to the four ACID properties: Atomicity, Consistency, Isolation, and
Durability.

UDDI (Universal Description, Discovery and Integration) A standard API
for accessing Web service registries. UDDI simplifies discovering Web services over
the Internet before accessing them using SOAP. UDDI-compliant Web service
registries are expected to become the preferred mechanism of publishing and locat-
ing Web services.

Glossary 319

19 0672323109 AppA 4/18/02 10:09 AM Page 319

WSDL (Web Services Description Language) The de facto standard for
describing Web services. WSDL is derived from XML, and is a platform-independent
language useful for defining the specific interfaces and other properties of a Web
service.

XML (Extensible Markup Language) One of the major technology break-
throughs, XML is a platform-independent and extendable language used to exchange
self-describing data and data models.

XSL (Extensible Style Sheet Language) This language has two parts: XSLT or
XSL transformations, and XSL-FO or XSL formatting objects. The objective of XSL is
to simplify transforming an XML document from one format to another without
requiring specific transformation code.

XSLT (XML Style Sheet Language Transformation) An XSLT stylesheet is an
XML document that contains templates. An XSLT processor compares the elements
in an input XML document to the templates in a stylesheet. When a matching
stylesheet is found, the template’s contents is written to an output tree.

APPENDIX A Glossary320

19 0672323109 AppA 4/18/02 10:09 AM Page 320

B

References

This appendix contains references to books and informa-
tive sites on various technologies covered in this book.
Some of these resources are online and subject to change.

Books
Fowler, Martin. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

Grand, Mark. Patterns in Java. John Wiley and Sons, 1998.

Harold, Elliotte Rusty. JAVA IO. O’Reilly, 1999.

Harold, Elliotte Rusty, and W. Scott Means. XML in a
Nutshell: A Desktop Quick Reference. O’Reilly, 2001.

Horton, Ivor. Beginning Java 2. Wrox, 1999.

Jacobson, Ivar, Grady Booch, and James Rumbaugh. The
Unified Software Development Process. Addison-Wesley, 1999.

Linthicum, David S. Enterprise Application Integration.
Addison-Wesley, 1999.

———. Guide to Client/Server and Intranet Development.
Wiley Computer Publishing, 1997.

Monson-Haefel, Richard. Enterprise Java Beans. O’Reilly,
2001.

Nichols, Randall K., Daniel J. Ryan, and Julie J. C. H. Ryan.
Defending Your Digital Assets Against Hackers, Crackers, Spies,
and Thieves. McGraw-Hill Professional Publishing, 2000.

Rechtin, Eberhardt, and Mark W. Maier. The Art of Systems
Architecting. CRC Press, 1997.

20 0672323109 AppB 4/18/02 10:06 AM Page 321

APPENDIX B References322

Rumbaugh, James, Ivar Jacobson, and Grady Booch. The Unified Modeling Language
Reference Manual. Addison-Wesley, 1998.

Yee, Andre, and Atul Apte. Integrating Your e-Business Enterprise. Sams, 2001.

Resources on the Web
eAI Journal: http://www.eaijournal.com

EJB Specifications: http://java.sun.com/products/ejb

Integration Portal: http://www.ebizq.net

IBM Developer Works: http://www-106.ibm.com/developerworks

IBM’s XML Zone: http://www-106.ibm.com/developerworks/xml

J2EE Tutorial: (online): http://java.sun.com/j2ee/tutorial/1_3-fcs/index.html

J2EE Tutorial (downloadable):
http://developer.java.sun.com/developer/earlyAccess/j2ee/tutorial.html

JCA Specifications: http://java.sun.com/j2ee/connector

Object Management Group: http://www.omg.org

TogetherSoft: http://www.togethersoft.com

UDDI: http://www.uddi.org

W3C: http://www.w3c.org

W3C Recommendations: http://www.w3.org/TR/#Recommendations

Workflow Management Coalition: http://www.wfmc.org

XML 1.0 (Second Edition): http://www.w3.org/TR/REC-xml

20 0672323109 AppB 4/18/02 10:06 AM Page 322

Index

Symbols

80-20 rule, software exception handling, 206

A

access layer (logical adapter reference model)

administration interface, 48

adminAPI, 161-165

classes (com.iconexio.asciiFileAdapter pack-
age), 255

AdminAPI.java (17.5), 262-263

AdminAPIImpl.java (17.6), 263-264

ClientAPI.java (17.1), 257-259

ClientAPIImpl.java (17.2), 259-260

ConfigAPI.java (17.3), 261

ConfigAPIImpl.java (17.4), 261-262

client interface, 48

clientAPI, 161-165

configuration interface, 48

configAPI, 161-165

security interface, 48

activation of session beans (EJB), 34

actor attribute in SOAP messages, 74

AdapterDefaultLogmanager.java (Listing 13.3),
215-216

AdapterExceptionLogmanager.java (Listing
13.4), 216-217

21 0672323109 Index 4/18/02 10:06 AM Page 323

adapters. See also resource adapters

AIA (Application Integration Adapter), 6

logical definition, 11-12

physical definition, 12

buy versus build options, 95

coding, 100-101

bottom-up method, 101-102

development tools, 101

top-down method, 101-102

complexity of, 7

contexts, 7-11

customization

administration interfaces, 205-206

considerations, 204

DBCS (Double Byte Support), 118

domains, 204-208

environment settings, 206-207

frameworks, 209-219

host interface, 207-208

I18N (Internationalization), 118

L10N (Localization), 118

persistence management, 208

reasons for, 203-204

data synchronization

persistent, 8

rollback mechanisms, 9

transient, 8

deployment, 104-105

configurations, 194

dependencies, 194-195

descriptors, 196

dynamic adapter configuration modifica-
tions, 198

installations, 194

internationalized, 106

JCA descriptors, 198-200

localized, 106

multiplatform guidelines, 105-106

new, 194

operational testing, 194

plan templates, 200-201

remote administration capabilities, 198

requirements, 197-198

scenarios, 196-197

software patches, 194

software upgrades, 194

version control, 195-196

design elements, 96-97

constraint identification, 98-99

database environment, 98

hosting environment, 99-100

operating system environment, 97-98

server environment, 98

target reference model, 100

development pitfalls, 111-112

architectural, 114-116

design, 116-118

implementation, 118-119

strategic, 112-114

development variables

internationalization requirements, 96

number of application interfaces, 95

number of data models, 96

EAI software vendors, 7

evolution of, 6-7

externalizing behaviors, 206-207

function of, 6, 56

future trends, 56

certification centers, 238

concentration on IDE development,
236-238

customization tools, 240

displacement of proprietary adapters, 242

emergence of design patterns, 241

adapters324

21 0672323109 Index 4/18/02 10:06 AM Page 324

end of reliance on JCA resource adapters,
235-236

impact of Web services, 241

platform standardization, 239-240

vendors, 238-239

impact of Web Services, 76

integration

analysis guidelines, 88-95

development estimation, 95-96

patterns, 12

platform, 243

project objectives, 82-83

role of, 87-88

scenarios, 5-6

uses cases, 12

interaction with integration components,
251-253

log managers, 209-219

logical reference model, 41

access layer, 48

administration domain, 43-44

design considerations, 49

non-persistent sessions, 50

persistent sessions, 50

session management, 50

engine layer, 48

foundation layer, 48-49

measuring effectiveness of, 50-53

objectives, 42

problem domain, defining, 43-44

reduction of complexity, 43

shared services dimension, 49

target domain, 43-44

use case requirements, 42

maintenance guidelines, 107

fixes/patches, 107

upgrade planning, 107

vendor partnerships, 108-109

online services, 9-10

embedded (in-process), 10

process automation tools, 10-11

remote (out-of-process), 10

quality assurance (QA), 121-122

application compliance, 122

application server test environment, 126

black-box testing, 123

end-to-end testing, 102-103, 124

environmental setup, 103

hardware, 127

operating systems, 127

platform compliance, 122

reference implementation test environ-
ment, 126

regression testing, 103-104, 129

stress testing, 124-125

test data collection, 103, 128-129

test harnesses, 104, 128

testing environments, 125-126

unit tests, 102

vendor certification, 125

white-box testing, 123-124

reference models

development roles, 40

selecting, 40

state management capabilities, 208

test harness source code, 306-313

testing

application compliance, 122

application server test environment, 126

black-box cases, 123

end-to-end cases, 124

environments, 125-126

hardware, 127

harnesses, 128

importance of, 121-122

operating systems, 127

adapters 325

21 0672323109 Index 4/18/02 10:06 AM Page 325

platform compliance, 122

reference implementation test environ-
ment, 126

regression type, 129

stress cases, 124-125

test data collection, 128-129

vendor certification, 125

white-box cases, 123-124

types

broadcast, 52

brokered integration, 51-52

conversion, 52

event, 53

point-to-point integration, 51

query, 52

use case model

access subsystem, 46

engine subsystem, 46

foundation subsystem, 46

vendor certification, 125

Web Services, coexistence with, 76-78

XML

future of, 66-67

inbound data, 64-66

outbound data, 64-66

administration tool (J2EE SDK), 27

interface customization, log monitoring tools,
205-206

integration platform

deployment management, 250

monitoring, 250

AFConnectionfactory class, CCI interfaces, 167,
171-173

AFManagedConnectionFactory class, SPI inter-
faces, 167, 178-182

AFManagedConnectionMetaData class, SPI inter-
faces, 167, 182-184

AIA (Application Integration Adapter), 6

logical definition, 11-12

physical definition, 12

analyzing adapters

application APIs, 94-95

application data models, 94

business objectives, 89

buy versus build options, 95

end-to-end integration scenario, 89

individual application architecture, 89-94

integration scenarios, 88-95

programming constraints, 90

APIs (application programming interfaces)

application integration analysis, 94-95

customization in integration-ready applica-
tions, 225-226

applet containers (J2EE), 25-26

application assemblers (EJB), 31

application component provider role (JCA
Specification), 136

Application Integration Adapter. See AIA

application level connections, obtaining,
140-141

Application Server Interfaces (API) classes

AFManagedConnectionFactory, 167, 178-182

AFManagedConnectionMetaData, 167,
182-184

ASCIIFileManagedConnection, 167, 174-178

application server vendor role (JCA
Specification), 135

application services

BEA WebLogic, 22

components, 71

IBM WebSphere, 22

middleware for integration platforms, 245

service contracts, 71

service directories, generic/specific purpose,
72

service providers, 71

service users, 71

application tiers (J2EE)

business tier, 23

client tier, 23

adapters326

21 0672323109 Index 4/18/02 10:06 AM Page 326

EIS tier, 23

Web tier, 23

applications

client-server model, 14-15

components

business logic, 13

database, 13

user interface, 13

development scenarios, 81-82

host-based model, 13-14

integration analysis

APIs, 94-95

architecture, 93-94

data models, 94

integration-ready

characteristics, 223-227

creating, 82-83

customization API, 225-226

designing, 229-231

I18N support for adapters (international-
ization), 226-227

importance of, 221-223

L10N support for adapters (localization),
226-227

open standards compliance, 226

points of integration (PINs), 223-224

secured access support, 224-225

transaction-enabled, 225

legacy

converting to integration-ready, 222-223

refactoring, 227-228

level connections, obtaining, 140-141

N-tier model, 18-19

points of integration

client-server model, 19

host-based model, 19

thin-client model, 16, 19

three-tier model, 17, 20

thin-client model, 16

three-tier model, 17

Web model, 18-19

architecture

adapter development pitfalls

as infrastructure extensions, 114-115

technical impedance, 115-116

models

centric reference, 229

logical, 41-44

physical, 41

software reference, 39

ASCII file adapters, integration scenarios,
156-161

ASCIIFileConnection class, CCI interfaces,
167-171

ASCIIFileManagedConnection class, SPI inter-
faces, 167, 174-178

asynchronous messaging, middleware for inte-
gration platforms, 246

B

B2B (business-to-business), XML integration sce-
narios, 56

BEA WebLogic application server, 22

bean-managed persistence (EJB), 33

beans (EJB)

entity, 32, 37

bean-managed persistence, 33

container-managed persistence, 32-33

message-driven versus JCA resource adapters,
35-36

session, 33-37

activation, 34

passivation, 34

stateful sessions, 34-35

stateless sessions, 34-35

bindingTemplate data type (UDDI), 75

black-box testing (adapters), 123, 190-191

black-box testing (adapters) 327

21 0672323109 Index 4/18/02 10:06 AM Page 327

bottom-up coding, 101-102

break points, stress testing adapters, 124-125

broadcast adapters, logical adapter reference
model, 52

brokered integration adapters, logical adapter
reference model, 51-52, 243-247

brokers (integration), 243-247

business component containers (J2EE), 25-26

business logic component (applications), 13

business tier (J2EE applications), 23

business-model-driven integration teams

advantages/disadvantages, 86-87

function of, 85-86

businessEntity data type (UDDI), 75

businessService data type (UDDI), 75

C

caller principals, JCA security architecture, 149

Cascading Stylesheets (CSS), 61-62

CCI (Common Client Interface)

classes

AFConnectionFactory, 167, 171-173

ASCIIFileConnection, 167-171

JCA Specification, 143

connection-related interface, 143-144

data-related interface, 143-144

interaction-related interface, 143-147

metadata-related interface, 143-148

certification centers for adapters, 238

cleanup tool (J2EE SDK), 27

client tier (J2EE applications), 23

client-server application model, 14-15

clients, EJB access mechanisms

component interface, 36-37

home interface, 36-37

closed applications versus integration-ready
applications, 221

CocoBase tool, J2EE application deployment, 33

code listings

AdapterDefaultLogManager.java (13.3),
215-216

AdapterDefaultLogManager.java (17.24), 303

AdapterexceptionLogManager.java (13.4),
216-217

AdapterExceptionLogManager.java (17.25),
303-304

adminAPI.java (11.2), 163-164

AdminAPI.java (17.5), 262-263

AdminAPIImpl.java (17.6), 263-264

AFConnectionFactory.java (11.6), 171-173

AFManagedConnectionFactory.java (11.8),
178-182

AFManagedConnectionMetaData.java (11.9),
182-184

ASCIIDataFileParser.java (17.14), 283-285

ASCIIDataFileParserEngine.java (17.15),
285-287

ASCIIDataFileParserStateMachine.java
(17.16), 288-291

ASCIIFileConnection.java (11.5), 167-171

ASCIIFileManagedConnection.java (11.7),
174-178

clientAPI.java (11.1), 161-163

ClientAPI.java (17.1), 257-259

ClientAPIImpl.java (17.2), 259-260

configAPI.java (11.3), 164-165

ConfigAPI.java (17.3), 261

ConfigAPIImpl.java (17.4), 261-262

customerDataService.java (11.4), 165-166

CustomerDataServiceAPI.java (17.7), 265-266

CustomerDataServiceAPIImpl.java (17.8),
266-271

CustomerRec.java (11.10), 184-186

CustomerRec.java (17.18), 292-294

FileParser.java (17.9), 271

bottom-up coding328

21 0672323109 Index 4/18/02 10:06 AM Page 328

LogFileManager.java (13.2), 211-215

LogFileManager.java (17.23), 299-302

LogManager class (13.1), 210-211

LogManager.java (17.22), 298-299

LogManagerFactory.java (13.6), 218-219

LogManagerFactory.java (17.27), 305

LogManagerFactoryIF.java (13.5), 217

LogManagerFactoryIF.java (17.26), 305

MetaDataControl.java (11.11), 187-188

MetadataControl.java (17.20), 295-296

MetaDataLayout.java (11.12), 188-189

MetadataLayout.java (17.21), 297-298

MetaDataRec.java (11.13), 189-190

MetadataRec.java (17.19), 294-295

ParserEngine.java (17.10), 272

ParserException.java (17.17), 291-292

TagValueParser.java (17.11), 272-274

TagValueParserEngine.java (17.12), 274-278

TagValueParserStateMachine.java (17.13),
278-283

testHarness.java (17.29), 306-313

TooManyLogFilesOpenException.java (13.7),
219

TooManyLogFilesOpenException.java (17.28),
306

coding adapters, 100-101

bottom-up method, 101-102

development tools, 101

top-down method, 101-102

com.iconexio.asciiFileAdapter package

access layer classes, 255

AdminAPI.java (Listing 17.5), 262-263

AdminAPIImpl.java (Listing 17.6), 263-264

ClientAPI.java (Listing 17.1), 257-259

ClientAPIImpl.java (Listing 17.2), 259-260

ConfigAPI.java (Listing 17.3), 261

ConfigAPIImpl.java (Listing 17.4), 261-262

engine layer classes, 255

ASCIIDataFileParser.java (Listing 17.14),
283-285

ASCIIDataFileParserEngine.java (Listing
17.15), 285-287

ASCIIDataFileParserStateMachine.java
(Listing 17.16), 288-291

CustomerDataServiceAPI.java (Listing
17.7), 265-266

CustomerDataServiceAPIImpl.java (Listing
17.8), 266-271

FileParser.java (Listing 17.9), 271

ParserEngine.java (Listing 17.10), 272

ParserException.java (Listing 17.17),
291-292

TagValueParser.java (Listing 17.11),
272-274

TagValueParserEngine.java (Listing 17.12),
274-278

TagValueParserStateMachine.java (Listing
17.13), 278-283

shared service layer classes, 255

AdapterDefaultLogManager.java (Listing
17.24), 303

AdapterExceptionLogManager.java (Listing
17.25), 303-304

CustomerRec.java (Listing 17.18), 292-294

LogFileManager.java (Listing 17.23),
299-302

LogManager.java (Listing 17.22), 298-299

LogManagerFactory.java (Listing 17.27),
305

LogManagerFactoryIF.java (Listing 17.26),
305

MetadataControl.java (Listing 17.20),
295-296

MetadataLayout.java (Listing 17.21),
297-298

MetadataRec.java (Listing 17.19), 294-295

TooManyLogFilesOpenException.java
(Listing 17.28), 306

testHarness class, 256-257

com.iconexio.asciiFileAdapter package 329

21 0672323109 Index 4/18/02 10:06 AM Page 329

Common Client Interface (CCI)

classes

AFConnectionFactory, 167, 171-173

ASCIIFileConnection, 167-171

JCA Specification, 143

connection-related, 143-144

data-related, 143-144

interaction-related, 143-147

metadata-related, 143-148

common component layer, logical adapter refer-
ence model, 46-47, 184

exception handling, 190

shared data objects, 184-190

component-based application development, 230

component-managed transactions, 141-142

components (applications)

business logic, 13

database, 13

function of, 26

user interface, 13

vendor certification, 125

connection factories, locating, 139

connection management (JCA Specification),
137

flows, 139-141

managed applications, 137-139

non-managed applications, 137-139

container provider role (JCA Specification), 136

container-managed persistence, entity beans
(EJB), 32-33

container-managed transactions, 141-142

containers (J2EE)

function of, 24

types

applet, 25-26

business component, 25-26

EJB (Enterprise JavaBeans), 25-26

Web, 25-26

content transformations in XML documents,
61-62

content-based routing (integration hub), 249

conversion adapters (logical adapter reference
model), 52

CORBA versus Web Services, 70

credentials in JCA security architecture, 149

CSS (Cascading Stylesheets), 61-62

customized APIs for integration-ready applica-
tions, 225-226

customizing adapters

administration interfaces, 205-206

considerations, 204

domains, 204-208

environment settings, 206-207

frameworks, 209-219

host interface, 207-208

persistence management, 208

reasons for, 203-204

tools, 240

D

data management components (XML)

persistence, 59

presentation, 59

processing, 59

types, 58-59

data models, integration analysis, 94

data synchronization

adapters, 8

persistent, 8

rollback mechanisms, 9

transient, 8

data types (UDDI)

bindingTemplate, 75

businessEntity, 75

Common Client Interface (CCI)330

21 0672323109 Index 4/18/02 10:06 AM Page 330

businessService, 75

tModel, 75

database component (applications), 13

DBCS (Double Byte Support) adapter, 118

dependencies in adapters, deployment issues,
194-195

deployer role (JCA Specification), 136

deploying

adapters, 104-105

configuration task, 194

dependencies, 194-195

descriptors, 196

dynamic adapter configuration modifica-
tions, 198

fixes/patches, 107

installation task, 194

internationalized, 106

JCA descriptors, 198-200

localized, 106

multiplatform guidelines, 105-106

new deployments, 194

operational testing task, 194

plan templates, 200-201

remote administration capabilities, 198

requirements, 197-198

scenarios, 196-197

software patches, 194

software upgrades, 194

version control, 195-196

J2EE applications

CocoBase tool, 33

TopLink tool, 33

resource adapters, 152-153, 191-192

deployment tool (J2EE SDK), 27

descriptors, adapter deployment, 196-200

design development pitfalls (adapters)

customization errors, 118

hidden integration requirements, 116-117

lack of support tools, 119

technical constraint mismanagement, 117

test data quality, 118-119

designing

adapters, 96-97

constraint identification, 98-99

database environment, 98

hosting environment, 99-100

operating system environment, 97-98

patterns, 241

server environment, 98

target reference model, 100

development pitfalls (adapters)

customization errors, 118

hidden integration requirements, 116-117

lack of support tools, 119

technical constraint mismanagement, 117

test data quality, 118-119

integration-ready applications, 229

architecture centric reference model, 229

component-based development, 230

XML-based document models, 230-231

logical adapter reference model, 49

non-persistent sessions, 50

persistent sessions, 50

session management, 50

developer roles (EJB), 29-30

application assemblers, 31

container providers, 31

deployers, 31

domain experts, 30

responsibilities of, 30-32

development pitfalls (adapters)

architectural

adapters as infrastructure extensions,
114-115

technical impedance, 115-116

development pitfalls (adapters) 331

21 0672323109 Index 4/18/02 10:06 AM Page 331

design

customization errors, 118

hidden integration requirements, 116-117

technical constraint mismanagement, 117

lack of support tools, 119

strategic, 112

all-or-nothing approach, 112-113

lack of vendor relationships, 113-114

misunderstood product roadmaps, 114

prebuilt component availability, 112

test data quality, 118-119

dimensions (logical adapter reference model),
47-49

distributed transaction management, middle-
ware for integration platforms, 246

Document Type Definitions (DTDs), 60

documenting integration scenarios, 90-92

documents (XML)

adapter roles, 64-66

content transformations, 61-62

parsing (DOM parser), 63

parsing (SAX parser), 63-64

structural transformations, 61-62

validation

DTDs, 60

XML Schema, 61

DOM parsers (XML), 63

domains, adapter customization, 204-208

downloading J2EE reference implementation
from Java Sun Web site, 26

DTDs (Document Type Definitions), 60

E

e-Business adapters

complexity of, 7

contexts, 7-11

data synchronization, 8-9

EAI software vendors, 7

evolution of, 6-7

function of, 6

integration scenarios, 5-6

online services, 9-11

EAI (enterprise application integration), 5

brokers, 243-244

eAI Journal Web site, 322

EDI (Electronic Data Interchange), impact of
XML, 55

EIS (Enterprise Information Systems), 132-133

EJB (Enterprise Java Beans), 29

beans

entity, 32-33, 37

message-driven, 35-36

session, 33-37

client access mechanisms

component interface, 36-37

home interface, 36-37

containers (J2EE), 25-26

developer roles, 29-30

application assemblers, 31

container providers, 31

deployers, 31

domain experts, 30

responsibilities of, 30-32

specifications, 29-32

primary objective of, 29-30

version 2.0 specifications, changes from pre-
vious versions, 32

versus JCA, usage of, 37-38

EJB Specifications Web site, 322

Electronic Data Interchange (EDI), impact of
XML, 55

embedded (in-process) service adapters, 10

end user view (requirements), reference models,
41

end-to-end testing (adapter quality assurance),
102-103, 124

development pitfalls (adapters)332

21 0672323109 Index 4/18/02 10:06 AM Page 332

end-to-end transformation service (integration
hub), 249

end-users, JCA security architecture, 149

engine layer

classes (com.iconexio.asciiFileAdapter pack-
age), 255

ASCIIDataFileParser.java (Listing 17.14),
283-285

ASCIIDataFileParserEngine.java (Listing
17.15), 285-287

ASCIIDataFileParserStateMachine.java
(Listing 17.16), 288-291

CustomerDataServiceAPI.java (Listing
17.7), 265-266

CustomerDataServiceAPIImpl.java (Listing
17.8), 266-271

FileParser.java (Listing 17.9), 271

ParserEngine.java (Listing 17.10), 272

ParserException.java (Listing 17.17),
291-292

TagValueParser.java (Listing 17.11),
272-274

TagValueParserEngine.java (Listing 17.12),
274-278

TagValueParserStateMachine.java (Listing
17.13), 278-283

logical reference model, 48-49, 165-166

enterprise application integration (EAI), 5

Enterprise Information Systems (EIS), 132

enterprise integration teams

advantages/disadvantages, 86-87

function of, 84-85

Enterprise Java Beans. See EJB

enterprise tool vendor role (JCA Specification),
136

entity beans (EJB), 32, 37

bean-managed persistence, 33

container-managed persistence, 32-33

envelopes (SOAP messages), 74

environment settings in adapter customization,
206-207

estimating adapter development variables,
95-96

event adapters, 11, 53

Extensible Markup Language. See XML

externalizing adapter behaviors, 206-207

F

fail-over routing (integration hub), 249

fixes/patches, deploying for adapters, 107

format transformation service (integration hub),
248

foundation layer modules, logical reference
model, 46-49, 166-184

AFConnectionFactory class, 167, 171-173

AFManagedConnectionFactory class, 167,
178-182

AFManagedConnectionMetaData class, 167,
182-184

ASCIIFileConnection class, 167-171

ASCIIFileManagedConnection class, 167,
174-178

H

hardware, adapter testing, 127

high availability repository, integration platform,
251

host-based application model, 13-14

hosting environment (adapters), 99

interface customization, 207-208

level of manageability, 99

operational requirements, 100

performance requirements, 99

HTML (Hypertext Markup Language) versus
XML, 56-58

hub and spoke integration scenarios, 92

hub and spoke integration scenarios 333

21 0672323109 Index 4/18/02 10:06 AM Page 333

I

I18N (internationalization) adapter support,
118, 226-227

IBM WebSphere application server, 22

IBM XML Zone Web site, 322

IDE (Integrated Development Environment),
236-238

implementation environment (adapters)

databases, 98

operating systems, 97-98

servers, 98

initiating principals in JCA security architecture,
149

Integrated Development Environment (IDE),
236-238

integration

adapters, 5-6

analysis guidelines, 88-95

coding, 100-102

complexity of, 7

contexts, 7-11

data synchronization, 8-9

deployment, 104-106

design elements, 96-100

development estimation, 95-96

development pitfalls, 111-118

EAI software vendors, 7

evolution of, 6-7

fixes/patches, 107

future of, 235-242

implementation pitfalls, 118-119

maintenance guidelines, 107-109

online services, 9-11

QA (quality assurance), 102-104

role of, 87-88

application APIs, analyzing, 94-95

application architecture, analyzing, 93-94

application data models, analyzing, 94

business-model-driven integration teams

advantages/disadvantages, 86-87

function of, 85-86

buy versus build options, 95

client-server application model, 14-15

enterprise teams

advantages/disadvantages, 86-87

function of, 84-85

host-based application model, 13-14

hub, 246

broker, 247

end-to-end transformation service, 249

fail-over routing, 249

format transformation service, 248

object content-based routing, 249

object transformation service, 248

routing engine, 249

structure transformation service, 247

transformation engine, 247

N-tier application model, 18-19

patterns, 12

points of integration

client-server application model, 19

host-based application model, 19

thin-client application model, 19

three-tier application model, 20

project objectives, 82-83

ratings levels

Level I, 227-228, 231-233

Level II, 227-228, 231-233

Level III, 227-228, 231-233

readiness, importance of, 221-223

scenarios, 156-161

documentation, 90-92

hub and spoke, 92

peer-to-peer, 92-93

use cases, 90-92

thin-client application model, 16

I18N (internationalization) adapter support334

21 0672323109 Index 4/18/02 10:06 AM Page 334

three-tier application model, 17

use cases, 12

Web application model, 18-19

integration platform

adapter interactions, 251-253

brokers, 243-244

components, 244

operating systems, 244

administration tools, 250

high availability repository, 251

integration hub, 246-249

middleware, 245-246

integration-ready applications

characteristics, 223-227

converting legacy applications, 222-223

customization API, 225-226

designing, 229-231

I18N support for adapters (internationaliza-
tion), 226-227

integration ratings levels, 227-228

Level I, 231-233

Level II, 231-233

Level III, 231-233

isolated integration logic, 224

L10N support for adapters (localization),
226-227

localized integration logic, 224

open standards compliance, 226

points of integration (PINs), 223-224

readiness, importance of, 221-223

refactoring legacy applications, 227-228

secured access support, 224-225

transaction-enabled, 225

versus closed applications, 221

interaction-related interfaces (CCI), 144-147

internationalized adapters, deployment of, 106

isolated integration logic, 224

J - K

J2EE (Java 2 Enterprise Edition). See also J2EE
adapter

application deployment tools

CocoBase, 33

TopLink, 33

application tiers

business, 23

client, 23

EIS (Enterprise Information System), 23

server configurations, 23

Web, 23

architecture

client-server model, 23

n-tier environments, 23

relationship diagram, 25

components, function of, 26

containers

applet, 25-26

business component, 25-26

EJB (Enterprise JavaBeans), 25-26

function of, 24

Web, 25-26

domain (JCA Specification), 132-133

features, 21

latest version, 22-23

misconceptions, 22

reference implementation, downloading, 26

SDK

administration tool, 27

cleanup tool, 27

compatibility test suite, 26

deployment tool, 27

key tool, 27

packager tool, 27

platform support, 26

realm tool, 27

verifier tool, 27

J2EE (Java 2 Enterprise Edition) 335

21 0672323109 Index 4/18/02 10:06 AM Page 335

source code resources, Sams Publishing Web
site, 155

specifications, 22-23

versus standard Java edition, 21

as Web Service platform, 76

J2EE adapter

access layer source code

AdminAPI.java (17.5), 262-263

AdminAPIImpl.java (17.6), 263-264

ClientAPI.java (17.1), 257-259

ClientAPIImpl.java (17.2), 259-260

ConfigAPI.java (17.3), 261

ConfigAPIImpl.java (17.4), 261-262

engine layer source code

ASCIIDataFileParser.java (17.14), 283-285

ASCIIDataFileParserEngine.java (17.15),
285-287

ASCIIDataFileParserStateMachine.java
(17.16), 288-291

CustomerDataServiceAPI.java (17.7),
265-266

CustomerDataServiceAPIImpl.java (17.8),
266-271

FileParser.java (17.9), 271

ParserEngine.java (17.10), 272

ParserException.java (17.17), 291-292

TagValueParser.java (17.11), 272-274

TagValueParserEngine.java (17.12),
274-278

TagValueParserStateMachine.java (17.13),
278-283

shared service layer source code

AdapterDefaultLogManager.java (17.24),
303

AdapterExceptionLogManager.java (17.25),
303-304

CustomerRec.java (17.18), 292-294

LogFileManager.java (17.23), 299-302

LogManager.java (17.22), 298-299

LogManagerFactoryIF.java (17.26), 305

LogManagerFactoryIF.java (17.27), 305

MetadataControl.java (17.20), 295-296

MetadataLayout.java (17.21), 297-298

MetadataRec.java (17.19), 294-295

TooManyLogFilesOpenException.java
(17.28), 306

testing environment data files

CUSTDATA.DAT, 256-257

ER1CDATA.DAT, 256-257

ER1MDATA.DAT, 256-257

METADATA.DAT, 256-257

J2EE Connector Architecture Specification v1.0.
See JCA Specification

J2EE Tutorial Web site, 322

Java 2 Enterprise Edition. See J2EE

Java Sun Web site, J2EE reference implementa-
tion, downloading, 26

Java Transaction API (JTA), 141

javax.resource.cci system contract (JCA), 134

javax.resource.spi system contract (application
server), 134

JCA Specification (J2EE Connector Architecture
Specification v1.0), 131

Common Client Interface (CCI), 143

connection-related, 143-144

data-related, 143-144

interaction-related, 143-147

metadata-related, 143-148

connection management, 137

flows, 139-141

managed applications, 137-139

non-managed applications, 137-139

descriptors, adapter deployments, 198-200

domains

EIS, 132-133

J2EE, 132-133

EIS, 132-133

goals of, 131

J2EE application integration, 132-133

ManagedConnection objects, role of, 142

objectives of, 132-133

J2EE (Java 2 Enterprise Edition)336

21 0672323109 Index 4/18/02 10:06 AM Page 336

resource adapters, 132-133

future of, 235-236

roles

application component provider, 136

application server vendor, 135

container provider, 136

deployer, 136

enterprise tool vendors, 136

resource adapter provider, 135

system administrator, 136

schematic diagram, 132

security architecture, 148

caller principals, 149

credentials, 149

end-users, 149

initiating principals, 149

principals, 149

resource principals, 149

security attributes, 149

security domains, 150

security contract

classes/interfaces, 150-151

ManagedConnectionFactory role, 151-152

system contracts, javax.resource.cci (clients),
134

versus EJB, usage of, 37-38

JCA Specifications Web site, 322

key tool (J2EE SDK), 27

L

L10N (localization) adapter support, 118,
226-227

layers (OSI model), logical adapter reference
model

common component, 46-47

engine, 46-47

foundation, 46-47

legacy applications

converting to integration-ready, 222-223

refactoring, 224, 227-228

Level I integration readiness, 231-233

Level II integration readiness, 231-233

Level III integration readiness, 231-233

local transactions (JCA Specification)

component-managed, 141-142

container-managed, 141-142

localized adapters, deployment of, 106

localized integration logic for integration-ready
applications, 224

log managers for adapters, 209-219

Log package (adapters), 209-219

logical adapter reference model, 41

access layer, 48

adapters

access layer modules, 161-165

common component layer modules,
184-190

designing, 161-190

engine layer modules, 165-166

foundation layer modules, 166-184

measuring effectiveness of, 50-53

administration domain, 43-44

broadcast adapters, 52

brokered integration adapters, 51-52

conversion adapters, 52

design considerations, 49-50

dimensions, 47-49

engine layer, 48

event adapters, 53

foundation layer, 48-49

layers

common component, 46-47

engine, 46-47

foundation, 46-47

objectives, 42

point-to-point integration adapters, 51

logical adapter reference model 337

21 0672323109 Index 4/18/02 10:06 AM Page 337

problem domain, defining, 43-44

query adapters, 52

reduction of complexity, 43

shared service dimension, 49

target domain, 43-44

logs (adapters), 205-206

M

maintenance (adapters)

fixes/patches, 107

upgrade planning, 107

vendor partnerships, 108-109

managed applications, connection management
(JCA Specification), 137-139

ManagedConnection objects (JCA Specification),
142

ManagedConnectionFactory instance

ConnectionURL property, 153

JCA security, 151-152

Password property, 153

PortName property, 153

ServerName property, 153

UserName property, 153

managing integration

business-model-driven integration teams,
85-87

enterprise teams, 84-87

message-driven beans (EJB) versus JCA resource
adapters, 35-36

messages (SOAP)

actor attribute, 74

body, 73

envelope structure, 74

example, 73

headers, 73

point-to-point exchange, 74

processing model, 73-74

stateless mechanism, 72

tags, 73

messaging engines, middleware for integration
platforms, 245

metadata-related interfaces (CCI), 147-148

middleware

application servers, 245

asynchronous messaging, 246

distributed transaction management, 246

examples, 245

messaging engines, 245

synchronous messaging, 246

monitoring logs, adapter interfaces, 205-206

N - O

N-tier application model, 18-19

non-JCA adapters, test harness, 306-313

non-managed applications, connection manage-
ment (JCA Specification), 137-139

non-persistent sessions, logical reference model,
50

Object Management Group Web site, 322

object transformation service (integration hub),
248

online services

adapters, 9-10

embedded (in-process), 10

process automation tools, 10-11

remote (out-of-process), 10

open standards for integration-ready applica-
tions, 226

Open Systems Institution (OSI) model, 44-46

logical adapter reference model338

21 0672323109 Index 4/18/02 10:06 AM Page 338

operating systems (integration platform), 244

adapters

design implementation, 97-98

testing, 127

administration tools

deployment management, 250

monitoring, 250

high availability repository, 251

integration hub, 246

broker, 247

content-based routing, 249

end-to-end transformation service, 249

object fail-over routing, 249

object transformation service, 248

routing engine, 249

structure transformation service, 247-248

transformation engine, 247

middleware, 245

application servers, 245

asynchronous messaging, 246

distributed transaction management, 246

messaging engines, 245

synchronous messaging, 246

P

packager tool (J2EE SDK), 27

packaging resource adapters, 152-153, 191-192

passivation, session beans (EJB), 34

patterns, designing for adapters, 241

peer-to-peer integration scenarios, 92-93

persistence management, adapter customiza-
tion, 208

persistent data synchronization, 8

persistent sessions, logical reference model, 50

PINs (points of integration), 13, 19, 223-224

plan templates (adapter deployment)

component configuration, 200

deployment rollback guidelines, 201

deployment test cases, 200

platforms

adapters

deployment, 105-106

standardization trend, 239-240

Web services, multiple support, 70

point-to-point integration adapters, 51

points of integration (PINs), 13, 19, 223-224

client-server application model, 19

host-based application model, 19

thin-client application model, 19

three-tier application model, 20

principals in JCA security architecture, 149

process automation tools

adapters, 10

event adapters, 11

processing model (SOAP), 74

projects (integration), 82-83, 87-90

adapters

analysis guidelines, 88-95

coding, 100-102

design elements, 96-100

development estimation, 95-96

role of, 87-88

business-model-driven integration teams

advantages/disadvantages, 86-87

function of, 85-86

development objectives, 82-83

enterprise integration teams

advantages/disadvantages, 86-87

function of, 84-85

proprietary adapters, replacement of, 242

proprietary adapters, replacement of 339

21 0672323109 Index 4/18/02 10:06 AM Page 339

Q

quality assurance (QA), adapters, 121-122

application compliance, 122

application server test environment, 126

black-box testing, 123

end-to-end testing, 102-103, 124

environmental setup, 103

hardware, 127

operating systems, 127

platform compliance, 122

reference implementation test environment,
126

regression testing, 103-104, 129

stress testing, 124-125

test data collection, 128-129

test harnesses, 104, 128

testing environments, 125-126

unit tests, 102

vendor certification, 125

white-box testing, 123-124

query adapters, logical adapter reference model,
52

R

RAR files, resource adapter packaging, 191-192

realm tool (J2EE SDK), 27

refactoring legacy applications, 224-228

reference models

adapter development roles, 40

end user view (requirements), 41

selecting, 40

software

architects, 39

stakeholders, 39

system structure view (architecture), 41

regression testing (adapters), 103-104, 129

releasing resource adapters, 191-192

remote (out-of-process) service, 10

resource adapter provider role (JCA
Specification), 135

resource adapters. See also adapters

deployment, 152-153, 191-192

future of, 235-236

impact of Web Services, 76

integration scenarios, 156-161

logical reference model

access layer modules, 161-165

common component layer modules,
184-190

designing, 161-190

engine layer modules, 165-166

foundation layer modules, 166-184

packaging, 152-153, 191-192

source code resources (Sams Publishing Web
site), 155

system contracts (JCA Specification), 134

testing, 190-191

versus message-driven beans (EJB), 35-36

Web Services, coexistence with, 76-78

Resource Manager (RM), local transactions,
141-142

resource principals in JCA security architecture,
149

resources (Web sites)

eAI Journal, 322

EJB Specifications, 322

J2EE Tutorial, 322

JCA Specifications, 322

Object Management Group, 322

TogetherSoft, 322

UDDI, 322

W3C, 322

Workslow Management Coalition, 322

quality assurance (QA), adapters340

21 0672323109 Index 4/18/02 10:06 AM Page 340

roles (JCA Specification)

application component provider, 136

application server vendor, 135

container provider, 136

deployer, 136

enterprise tool vendors, 136

resource adapter provider, 135

system administrator, 136

routing engine (integration hub), 249

S

Sams Publishing Web site

J2EE resource adapter code, 155

source code resources, 256

SAX parsers (Simple API for XML), 63-64

security

integration-ready applications, 224-225

JCA Specification, 148

attributes, 149

caller principals, 149

contract, 150-152

credentials, 149

domains, 150

end-users, 149

initiating principals, 149

principals, 149

resource principals, 149

security attributes, 149

security contract, 150-151

security domains, 150

selecting reference models, 40

servers

adapters, design implementation, 98-99

configuration for J2EE applications, 23

service contracts (application services), 71

service directories (application services), 72

service providers (application services), 71

service users (application services), 71

session beans (EJB), 33-37

activation, 34

passivation, 34

stateful sessions, 34-35

stateless sessions, 34-35

swapping-in, 34

swapping-out, 34

session management, logical reference model,
50

SGML (Standard Generalized Markup
Language), 56

shared service layer classes
(com.iconexio.asciiFileAdapter package), 255

AdapterDefaultLogManager.java (Listing
17.24), 303

AdapterExceptionLogManager.java (Listing
17.25), 303-304

CustomerRec.java (Listing 17.18), 292-294

LogFileManager.java (Listing 17.23), 299-302

LogManager.java (Listing 17.22), 298-299

LogManagerFactory.java (Listing 17.27), 305

LogManagerFactoryIF.java (Listing 17.26), 305

MetadataControl.java (Listing 17.20),
295-296

MetadataLayout.java (Listing 17.21), 297-298

MetadataRec.java (Listing 17.19), 294-295

TooManyLogFilesOpenException.java (Listing
17.28), 306

shared services dimension, logical adapter refer-
ence model, 49

SOAP (Simple Access Object Protocol), 70

messages

actor attribute, 74

body, 73

envelope structure, 74

example, 73

headers, 73

SOAP (Simple Access Object Protocol) 341

21 0672323109 Index 4/18/02 10:06 AM Page 341

point-to-point exchange, 74

processing model, 73-74

stateless mechanism, 72

tags, 73

UDDI basis, 74

W3C specification, 72

software

development scenarios, 81-82

patches, adapter deployments, 194

reference models

architects, 39

stakeholders, 39

upgrades, adapter deployments, 194

SPI (Application Server Interfaces) classes

AFManagedConnectionFactory, 167, 178-182

AFManagedConnectionMetaData, 167,
182-184

ASCIIFileManagedConnection, 167, 174-178

stakeholders, software reference model, 39

Standard Generalized Markup Language. See
SGML

state management (adapters), 208

stateful sessions, 34-35

stateless sessions, 34-35

strategic development pitfalls (adapters), 112

all-or-nothing approach, 112-113

lack of vendor relationships, 113-114

misunderstood product roadmaps, 114

prebuilt component availability, 112

stress testing, break points, 124-125

structure transformation service (integration
hub), 61-62, 247

SUN Java Web site, JCA reference implementa-
tion, 12

SUN ONE Web Service, 76

synchronous messaging, middleware for integra-
tion platforms, 246

system administrator role (JCA Specification),
136

system contracts (JCA Specification)

javax.resource.cci (clients), 134

javax.resource.spi (application server), 134

system structure view (architecture)

logical model, 41-44

physical model, 41

T

technical impedance (adapters)

object versus relational databases, 115-116

synchronous versus asynchronous sessions,
115-116

transactional versus non-transactional sys-
tems, 115-116

test harnesses (adapter QA), 104, 128

class (com.iconexio.asciiFileAdapter package),
256-257

testHarness.java (Listing 17.29), 306-313

testing adapters, 190-191

application compliance, 122

application server test environment, 126

black-box cases, 123

end-to-end cases, 124

environments, 125-126

hardware, 127

harnesses, 128

importance of, 121-122

operating systems, 127

platform compliance, 122

reference implementation test environment,
126

regression type, 129

stress cases, 124-125

test data collection, 128-129

vendor certification, 125

white-box cases, 123-124

SOAP (Simple Access Object Protocol)342

21 0672323109 Index 4/18/02 10:06 AM Page 342

thin-client application model, 16

three-client application model, 17

tModel data type (UDDI), 75

TogetherSoft Web site, 322

top-down coding (adapters), 101-102

TopLink tool, J2EE application deployment, 33

transaction processing monitors (TPM), 9

transactions

JCA Specification

Java Transaction API (JTA), 141

local, 141-142

support for integration-ready applications,
225

transformation engine (integration hub), 247

transient data synchronization, 8

U - V

UDDI (Universal Description, Discovery, and
Integration), 70

data types

bindingTemplate, 75

businessEntity, 75

businessService, 75

tModel, 75

derived from SOAP, 74

function of, 74

UDDI.org Web site, 74

UDDI.org Web site, 74, 322

Universal Description, Discovery, and
Integration. See UDDI

upgrades for adapters, 107

use case models, 42, 157-161

access subsystem, 46

engine subsystem, 46

foundation subsystem, 46

scenarios, 90-92

user interface component (applications), 13

validating XML documents

DTDs, 60

XML Schema, 61

vendors (adapters)

future development, 238-239

importance of partnerships, 108-109

verifier tool (J2EE SDK), 27

version control for adapters, deployment issues,
195-196

W

W3C (World Wide Web Consortium) Web site,
322

SOAP specification, 72

XML recommendation, 56

Web application model, 18-19

Web containers (J2EE), 25-26

Web Services

adapters

coexistence, 76-78

future impact of, 241

impact on, 76

benefits

acceptance by major vendors, 70

multiple platform support, 70

growth of, 69

J2EE platforms, 76

Microsoft .NET platform, 69

resource adapters

coexistence, 76-78

impact on, 76

SUN Microsystems strategy, 76

technologies

SOAP, 70-74

UDDI, 70, 74-75

WDSL, 70

WSDL, 75-76

versus CORBA, 70

Web Services 343

21 0672323109 Index 4/18/02 10:06 AM Page 343

Web Services Description Language (WSDL), 70

Web sites

eAI Journal, 322

EJB Specifications, 322

J2EE Tutorial, 322

Java Sun, J2EE reference implementation, 26

JCA Specifications, 322

Object Management Group, 322

Sams Publishing, 155, 256

SUN Java, JCA reference implementation, 12

TogetherSoft, 322

UDDI.org, 74, 322

W3C, 72, 322

Workflow Management Coalition, 322

Web tier in J2EE applications, 23

white-box testing (adapters), 123-124, 190-191

Workflow Management Coalition Web site, 322

WSDL (Web Services Description Language), 70

function of, 75-76

X - Y - Z

XML (Extensible Markup Language), 56

adapters

future of, 66-67

inbound data, 64-66

outbound data, 64-66

role of, 56

data management components

persistence, 59

presentation, 59

processing, 59

types, 58-59

document models, integration environments,
230-231

document validation

DTDs, 60

rules, 58

XML Schema, 61

documents

adapter roles, 64-66

content transformations, 61-62

structural transformations, 61-62

DOM parsers, 63

DTDs, 60

EDI, future of, 55

extendability of, 56

large scale integration scenarios, 56

SAX parsers, 63-64

SGML roots, 56

specifications, current, 57

syntax rules, 58

transformations

Cascading Stylesheets (CSS), 61-62

XSL-FO (XSL Formatting Objects), 61-62

versus HTML, 56-58

W3C recommendation, 56

XML Schema

complex data type, 61

DTDs, document validation, 61

simple data type, 61

XSL-FO (XSL Formatting Objects), 61-62

Web Services Description Language (WSDL)344

21 0672323109 Index 4/18/02 10:06 AM Page 344

	0672323109
	Contents at a Glance
	Table of Contents
	Introduction
	1 Introduction to Adapter Technology
	2 Overview of J2EE
	3 Overview of EJB
	4 Adapter Reference Model
	5 Role of XML in Adapters
	6 Introduction to Web Services
	7 Adapter Development Methodology and Best Practices
	8 Pitfalls of Adapter Development
	9 Testing Adapters
	10 Overview of JCA
	11 Developing J2EE Resource Adapters
	12 Deploying Adapters
	13 Customizing Adapters
	14 Developing Integration-Ready Applications
	15 Trends in Adapter Technology
	16 Components of Integration Technology
	17 Source Code for ASCII File J2EE Adapter
	Appendixes
	A Glossary
	B References
	Index

